Slip and Dilation Tendency Analysis of the Tuscarora Geothermal Area
Faulds, James E.
2013-12-31
Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the Tuscarora geothermal field was calculated based on the faults mapped Tuscarora area (Dering, 2013). The Tuscarora area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the Tuscarora area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60° dipping fault segments have the highest tendency to slip. Tuscarora is defined by a left-step in a major north- to-north northeast striking, west-dipping range-bounding normal fault system. Faults within the broad step define an anticlinal accommodation zone...
Slip and Dilation Tendency Anlysis of Neal Hot Springs Geothermal Area
Faulds, James E.
2013-12-31
Slip and Dilation Tendency in focus areas Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Based on inversion of fault kinematic data, Edwards (2013) interpreted that two discrete stress orientations are preserved at Neal Hot Springs. An older episode of east-west directed extension and a younger episode of southwest-northeast directed sinistral, oblique -normal extension. This interpretation is consistent with the evolution of Cenozoic tectonics in the region (Edwards, 2013). As such we applied a southwest-northeast (060) directed normal faulting stress regime, consistent with the younger extensional episode, to the Neal Hot Springs faults. Under these stress conditions northeast striking steeply dipping fault segments have the highest tendency to dilate and northeast striking 60° dipping fault segments have the highest tendency to slip. Under these stress condition...
Slip and Dilation Tendency Anlysis of McGinness Hills Geothermal Area
Faulds, James E.
2013-12-31
Slip and Dilation Tendency in focus areas Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the McGinness Hills geothermal field was calculated based on the faults mapped McGinness Hills area (Siler 2012, unpublished). The McGinness Hills area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the McGinness area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60° dipping fault segments have the highest tendency to slip. The McGinness Hills geothermal system is characterized by a left-step in a north-northeast striking west-dipping fault system wit...
Slip and Dilation Tendency Analysis of the San Emidio Geothermal Area
Faulds, James E.
2013-12-31
Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the San Emidio geothermal field was calculated based on the faults mapped Tuscarora area (Rhodes, 2011). The San Emidio area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the San Emidio area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. This is consistent with the shmin determined through inversion of fault data by Rhodes (2011). Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60° dipping fault segments have the highest tendency to slip. Interesting, the San Emidio geothermal field lies in an area of primarily north striking faults, which...
Slip and Dilation Tendency Analysis of the Salt Wells Geothermal Area
Faulds, James E.
2013-12-31
Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the Salt Wells geothermal field was calculated based on the faults mapped in the Bunejug Mountains quadrangle (Hinz et al., 2011). The Salt Wells area lies in the Basin and Range Province (N. Hinz personal comm.) As such we applied a normal faulting stress regime to the Salt Wells area faults, with a minimum horizontal stress direction oriented 105, based on inspection of local and regional stress determinations. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60° dipping fault segments have the highest tendency to slip. Several such faults intersect in high density in the core of the accommodation zone in the Bunejug Mountains and local to the Salt Wells geothermal .
Slip and Dilation Tendency Analysis of the Patua Geothermal Area
Faulds, James E.
2013-12-31
Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency analysis for the Patua geothermal system was calculated based on faults mapped in the Hazen Quadrangle (Faulds et al., 2011). Patua lies near the margin between the Basin and Range province, which is characterized by west-northwest directed extension and the Walker Lane province, characterized by west-northwest directed dextral shear. As such, the Patua area likely has been affected by tectonic stress associated with either or both of stress regimes over geologic time. In order to characterize this stress variation we calculated slip tendency at Patua for both normal faulting and strike slip faulting stress regimes. Based on examination of regional and local stress data (as explained above) we applied at shmin direction of 105 to Patua. Whether the vertical stress (sv) magnitude is larger than ...
NASA Astrophysics Data System (ADS)
Beeler, N. M.; Thomas, Amanda; Bürgmann, Roland; Shelly, David
2018-01-01
Families of recurring low-frequency earthquakes (LFEs) within nonvolcanic tremor on the San Andreas Fault in central California are sensitive to tidal stresses. LFEs occur at all levels of the tides, are strongly correlated and in phase with the 200 Pa shear stresses, and weakly and not systematically correlated with the 2 kPa tidal normal stresses. We assume that LFEs are small sources that repeatedly fail during shear within a much larger scale, aseismically slipping fault zone and consider two different models of the fault slip: (1) modulation of the fault slip rate by the tidal stresses or (2) episodic slip, triggered by the tides. LFEs are strongly clustered with duration much shorter than the semidiurnal tide; they cannot be significantly modulated on that time scale. The recurrence times of clusters, however, are many times longer than the semidiurnal, leading to an appearance of tidal triggering. In this context we examine the predictions of laboratory-observed triggered frictional (dilatant) fault slip. The undrained end-member model produces no sensitivity to the tidal normal stress, and slip onsets are in phase with the tidal shear stress. The tidal correlation constrains the diffusivity to be less than 1 × 10-6/s and the product of the friction and dilatancy coefficients to be at most 5 × 10-7, orders of magnitude smaller than observed at room temperature. In the absence of dilatancy the effective normal stress at failure would be about 55 kPa. For this model the observations require intrinsic weakness, low dilatancy, and lithostatic pore fluid.
Constraining friction, dilatancy and effective stress with earthquake rates in the deep crust
NASA Astrophysics Data System (ADS)
Beeler, N. M.; Thomas, A.; Burgmann, R.; Shelly, D. R.
2015-12-01
Similar to their behavior on the deep extent of some subduction zones, families of recurring low-frequency earthquakes (LFE) within zones of non-volcanic tremor on the San Andreas fault in central California show strong sensitivity to stresses induced by the tides. Taking all of the LFE families collectively, LFEs occur at all levels of the daily tidal stress, and are in phase with the very small, ~200 Pa, shear stress amplitudes while being uncorrelated with the ~2 kPa tidal normal stresses. Following previous work we assume LFE sources are small, persistent regions that repeatedly fail during shear within a much larger scale, otherwise aseismically creeping fault zone and that the correlation of LFE occurrence reflects modulation of the fault creep rate by the tidal stresses. We examine the predictions of laboratory-observed rate-dependent dilatancy associated with frictional slip. The effect of dilatancy hardening is to damp the slip rate, so high dilatancy under undrained pore pressure reduces modulation of slip rate by the tides. The undrained end-member model produces: 1) no sensitivity to the tidal normal stress, as first suggested in this context by Hawthorne and Rubin [2010], and 2) fault creep rate in phase with the tidal shear stress. Room temperature laboratory-observed values of the dilatancy and friction coefficients for talc, an extremely weak and weakly dilatant material, under-predict the observed San Andreas modulation at least by an order of magnitude owing to too much dilatancy. This may reflect a temperature dependence of the dilatancy and friction coefficients, both of which are expected to be zero at the brittle-ductile transition. The observed tidal modulation constrains the product of the friction and dilatancy coefficients to be at most 5 x 10-7 in the LFE source region, an order of magnitude smaller than observed at room temperature for talc. Alternatively, considering the predictions of a purely rate-dependent talc friction would constrain the ambient effective normal stress to be no more than 40 kPa. In summary, for friction models that have both rate-dependent strength and dilatancy, the observations require intrinsic weakness, low dilatancy, and lithostatic pore fluid pressures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stockli, Daniel
Geothermal plays in extensional and transtensional tectonic environments have long been a major target in the exploration of geothermal resources and the Dixie Valley area has served as a classic natural laboratory for this type of geothermal plays. In recent years, the interactions between normal faults and strike-slip faults, acting either as strain relay zones have attracted significant interest in geothermal exploration as they commonly result in fault-controlled dilational corners with enhanced fracture permeability and thus have the potential to host blind geothermal prospects. Structural ambiguity, complications in fault linkage, etc. often make the selection for geothermal exploration drilling targetsmore » complicated and risky. Though simplistic, the three main ingredients of a viable utility-grade geothermal resource are heat, fluids, and permeability. Our new geological mapping and fault kinematic analysis derived a structural model suggest a two-stage structural evolution with (a) middle Miocene N -S trending normal faults (faults cutting across the modern range), - and tiling Olio-Miocene volcanic and sedimentary sequences (similar in style to East Range and S Stillwater Range). NE-trending range-front normal faulting initiated during the Pliocene and are both truncating N-S trending normal faults and reactivating some former normal faults in a right-lateral fashion. Thus the two main fundamental differences to previous structural models are (1) N-S trending faults are pre-existing middle Miocene normal faults and (2) these faults are reactivated in a right-later fashion (NOT left-lateral) and kinematically linked to the younger NE-trending range-bounding normal faults (Pliocene in age). More importantly, this study provides the first constraints on transient fluid flow through the novel application of apatite (U-Th)/He (AHe) and 4He/ 3He thermochronometry in the geothermally active Dixie Valley area in Nevada.« less
Regional Slip Tendency Analysis of the Great Basin Region
Faulds, James E.
2013-09-30
Slip and dilation tendency on the Great Basin fault surfaces (from the USGS Quaternary Fault Database) were calculated using 3DStress (software produced by Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by the measured ambient stress field. - Values range from a maximum of 1 (a fault plane ideally oriented to slip or dilate under ambient stress conditions) to zero (a fault plane with no potential to slip or dilate). - Slip and dilation tendency values were calculated for each fault in the Great Basin. As dip is unknown for many faults in the USGS Quaternary Fault Database, we made these calculations using the dip for each fault that would yield the maximum slip or dilation tendency. As such, these results should be viewed as maximum slip and dilation tendency. - The resulting along‐fault and fault‐to‐fault variation in slip or dilation potential is a proxy for along fault and fault‐to‐fault variation in fluid flow conduit potential. Stress Magnitudes and directions were calculated across the entire Great Basin. Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson‐Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005). The minimum horizontal stress direction (Shmin) was contoured, and spatial bins with common Shmin directions were calculated. Based on this technique, we subdivided the Great Basin into nine regions (Shmin <070, 070
NASA Astrophysics Data System (ADS)
van Gent, Heijn W.; Holland, Marc; Urai, Janos L.; Loosveld, Ramon
2010-09-01
We present analogue models of the formation of dilatant normal faults and fractures in carbonate fault zones, using cohesive hemihydrate powder (CaSO 4·½H 2O). The evolution of these dilatant fault zones involves a range of processes such as fragmentation, gravity-driven breccia transport and the formation of dilatant jogs. To allow scaling to natural prototypes, extensive material characterisation was done. This showed that tensile strength and cohesion depend on the state of compaction, whereas the friction angle remains approximately constant. In our models, tensile strength of the hemihydrate increases with depth from 9 to 50 Pa, while cohesion increases from 40 to 250 Pa. We studied homogeneous and layered material sequences, using sand as a relatively weak layer and hemihydrate/graphite mixtures as a slightly stronger layer. Deformation was analyzed by time-lapse photography and Particle Image Velocimetry (PIV) to calculate the evolution of the displacement field. With PIV the initial, predominantly elastic deformation and progressive localization of deformation are observed in detail. We observed near-vertical opening-mode fractures near the surface. With increasing depth, dilational shear faults were dominant, with releasing jogs forming at fault-dip variations. A transition to non-dilatant shear faults was observed near the bottom of the model. In models with mechanical stratigraphy, fault zones are more complex. The inferred stress states and strengths in different parts of the model agree with the observed transitions in the mode of deformation.
Frictional behavior of large displacement experimental faults
Beeler, N.M.; Tullis, T.E.; Blanpied, M.L.; Weeks, J.D.
1996-01-01
The coefficient of friction and velocity dependence of friction of initially bare surfaces and 1-mm-thick simulated fault gouges (400 mm at 25??C and 25 MPa normal stress. Steady state negative friction velocity dependence and a steady state fault zone microstructure are achieved after ???18 mm displacement, and an approximately constant strength is reached after a few tens of millimeters of sliding on initially bare surfaces. Simulated fault gouges show a large but systematic variation of friction, velocity dependence of friction, dilatancy, and degree of localization with displacement. At short displacement (<10 mm), simulated gouge is strong, velocity strengthening and changes in sliding velocity are accompanied by relatively large changes in dilatancy rate. With continued displacement, simulated gouges become progressively weaker and less velocity strengthening, the velocity dependence of dilatancy rate decreases, and deformation becomes localized into a narrow basal shear which at its most localized is observed to be velocity weakening. With subsequent displacement, the fault restrengthens, returns to velocity strengthening, or to velocity neutral, the velocity dependence of dilatancy rate becomes larger, and deformation becomes distributed. Correlation of friction, velocity dependence of friction and of dilatancy rate, and degree of localization at all displacements in simulated gouge suggest that all quantities are interrelated. The observations do not distinguish the independent variables but suggest that the degree of localization is controlled by the fault strength, not by the friction velocity dependence. The friction velocity dependence and velocity dependence of dilatancy rate can be used as qualitative measures of the degree of localization in simulated gouge, in agreement with previous studies. Theory equating the friction velocity dependence of simulated gouge to the sum of the friction velocity dependence of bare surfaces and the velocity dependence of dilatancy rate of simulated gouge fails to quantitatively account for the experimental observations.
NASA Astrophysics Data System (ADS)
Nussbaum, C.; Guglielmi, Y.
2016-12-01
The FS experiment at the Mont Terri underground research laboratory consists of a series of controlled field stimulation tests conducted in a fault zone intersecting a shale formation. The Main Fault is a secondary order reverse fault that formed during the creation of the Jura fold-and-thrust belt, associated to a large décollement. The fault zone is up to 6 m wide, with micron-thick shear zones, calcite veins, scaly clay and clay gouge. We conducted fluid injection tests in 4 packed-off borehole intervals across the Main Fault using mHPP probes that allow to monitor 3D displacement between two points anchored to the borehole walls at the same time as fluid pressure and flow rate. While pressurizing the intervals above injection pressures of 3.9 to 5.3 MPa, there is an irreversible change in the displacements magnitude and orientation associated to the hydraulic opening of natural shear planes oriented N59 to N69 and dipping 39 to 58°. Displacements of 0.01 mm to larger than 0.1 mm were captured, the highest value being observed at the interface between the low permeable fault core and the damage zone. Contrasted fault movements were observed, mainly dilatant in the fault core, highly dilatant-normal slip at the fault core-damage zone interface and low dilatant-strike-slip-reverse in the damage-to-intact zones. First using a slip-tendency approach based on Coulomb reactivation potential of fault planes, we computed a stress tensor orientation for each test. The input parameters are the measured displacement vectors above the hydraulic opening pressure and the detailed fault geometry of each intervals. All measurements from the damage zone can be explained by a stress tensor in strike-slip regime. Fault movements measured at the core-damage zone interface and within the fault core are in agreement with the same stress orientations but changed as normal faulting, explaining the significant dilatant movements. We then conducted dynamic hydromechanical simulations of the Coulomb stress variations on discrete fault planes, considering the injection pressure variations with time in the packed-off sections as the source parameters. Results suggest that the fault architecture and heterogeneity play an important role on the local stress variation at the core-damage zone interface, favouring slip activation below sigma 3.
Fluid involvement in normal faulting
NASA Astrophysics Data System (ADS)
Sibson, Richard H.
2000-04-01
Evidence of fluid interaction with normal faults comes from their varied role as flow barriers or conduits in hydrocarbon basins and as hosting structures for hydrothermal mineralisation, and from fault-rock assemblages in exhumed footwalls of steep active normal faults and metamorphic core complexes. These last suggest involvement of predominantly aqueous fluids over a broad depth range, with implications for fault shear resistance and the mechanics of normal fault reactivation. A general downwards progression in fault rock assemblages (high-level breccia-gouge (often clay-rich) → cataclasites → phyllonites → mylonite → mylonitic gneiss with the onset of greenschist phyllonites occurring near the base of the seismogenic crust) is inferred for normal fault zones developed in quartzo-feldspathic continental crust. Fluid inclusion studies in hydrothermal veining from some footwall assemblages suggest a transition from hydrostatic to suprahydrostatic fluid pressures over the depth range 3-5 km, with some evidence for near-lithostatic to hydrostatic pressure cycling towards the base of the seismogenic zone in the phyllonitic assemblages. Development of fault-fracture meshes through mixed-mode brittle failure in rock-masses with strong competence layering is promoted by low effective stress in the absence of thoroughgoing cohesionless faults that are favourably oriented for reactivation. Meshes may develop around normal faults in the near-surface under hydrostatic fluid pressures to depths determined by rock tensile strength, and at greater depths in overpressured portions of normal fault zones and at stress heterogeneities, especially dilational jogs. Overpressures localised within developing normal fault zones also determine the extent to which they may reutilise existing discontinuities (for example, low-angle thrust faults). Brittle failure mode plots demonstrate that reactivation of existing low-angle faults under vertical σ1 trajectories is only likely if fluid overpressures are localised within the fault zone and the surrounding rock retains significant tensile strength. Migrating pore fluids interact both statically and dynamically with normal faults. Static effects include consideration of the relative permeability of the faults with respect to the country rock, and juxtaposition effects which determine whether a fault is transmissive to flow or acts as an impermeable barrier. Strong directional permeability is expected in the subhorizontal σ2 direction parallel to intersections between minor faults, extension fractures, and stylolites. Three dynamic mechanisms tied to the seismic stress cycle may contribute to fluid redistribution: (i) cycling of mean stress coupled to shear stress, sometimes leading to postfailure expulsion of fluid from vertical fractures; (ii) suction pump action at dilational fault jogs; and, (iii) fault-valve action when a normal fault transects a seal capping either uniformly overpressured crust or overpressures localised to the immediate vicinity of the fault zone at depth. The combination of σ2 directional permeability with fluid redistribution from mean stress cycling may lead to hydraulic communication along strike, contributing to the protracted earthquake sequences that characterise normal fault systems.
Shallow fluid pressure transients caused by seismogenic normal faults
NASA Astrophysics Data System (ADS)
Fleischmann, Karl Henry
1993-10-01
Clastic dikes, induced by paleo-seismic slip along the Jonesboro Fault, can be used to estimate the magnitude of shallow fluid pressure transients. Fractures show evidence of two phases of seismically induced dilation by escaping fluids. Initial dilation and propagation through brittle rocks was caused by expulsion of trapped reducing fluids from beneath a clay cap. Second phase fluids were thixotropic clays which flowed vertically from clay beds upwards into the main fracture. Using the differential dilation and fracture trace lengths, the fluid pressure pulse is estimated to have ranged from 0.312-0.49 MPa, which is approximately equal to the vertical load during deformation. Field observations in adjacent rocks record evidence of large-magnitude seismic events, which are consistent with the large nature of the fluid pressure fluctuation.
Dilational processes accompanying earthquakes in the Long Valley Caldera
Dreger, Douglas S.; Tkalcic, Hrvoje; Johnston, M.
2000-01-01
Regional distance seismic moment tensor determinations and broadband waveforms of moment magnitude 4.6 to 4.9 earthquakes from a November 1997 Long Valley Caldera swarm, during an inflation episode, display evidence of anomalous seismic radiation characterized by non-double couple (NDC) moment tensors with significant volumetric components. Observed coseismic dilation suggests that hydrothermal or magmatic processes are directly triggering some of the seismicity in the region. Similarity in the NDC solutions implies a common source process, and the anomalous events may have been triggered by net fault-normal stress reduction due to high-pressure fluid injection or pressurization of fluid-saturated faults due to magmatic heating.
NASA Astrophysics Data System (ADS)
Mitsui, Y.; Hirahara, K.
2006-12-01
There have been a lot of studies that simulate large earthquakes occurring quasi-periodically at a subduction zone, based on the laboratory-derived rate-and-state friction law [eg. Kato and Hirasawa (1997), Hirose and Hirahara (2002)]. All of them assume that pore fluid pressure in the fault zone is constant. However, in the fault zone, pore fluid pressure changes suddenly, due to coseismic pore dilatation [Marone (1990)] and thermal pressurization [Mase and Smith (1987)]. If pore fluid pressure drops and effective normal stress rises, fault slip is decelerated. Inversely, if pore fluid pressure rises and effective normal stress drops, fault slip is accelerated. The effect of pore fluid may cause slow slip events and low-frequency tremor [Kodaira et al. (2004), Shelly et al. (2006)]. For a simple spring model, how pore dilatation affects slip instability was investigated [Segall and Rice (1995), Sleep (1995)]. When the rate of the slip becomes high, pore dilatation occurs and pore pressure drops, and the rate of the slip is restrained. Then the inflow of pore fluid recovers the pore pressure. We execute 2D earthquake cycle simulations at a subduction zone, taking into account such changes of pore fluid pressure following Segall and Rice (1995), in addition to the numerical scheme in Kato and Hirasawa (1997). We do not adopt hydrostatic pore pressure but excess pore pressure for initial condition, because upflow of dehydrated water seems to exist at a subduction zone. In our model, pore fluid is confined to the fault damage zone and flows along the plate interface. The smaller the flow rate is, the later pore pressure recovers. Since effective normal stress keeps larger, the fault slip is decelerated and stress drop becomes smaller. Therefore the smaller flow rate along the fault zone leads to the shorter earthquake recurrence time. Thus, not only the frictional parameters and the subduction rate but also the fault zone permeability affects the recurrence time of earthquake cycle. Further, the existence of heterogeneity in the permeability along the plate interface can bring about other slip behaviors, such as slow slip events. Our simulations indicate that, in addition to the frictional parameters, the permeability within the fault damage zone is one of essential parameters, which controls the whole earthquake cycle.
NASA Astrophysics Data System (ADS)
Liu, Y.; Rice, J. R.
2005-12-01
In 3D modeling of long tectonic loading and earthquake sequences on a shallow subduction fault [Liu and Rice, 2005], with depth-variable rate and state friction properties, we found that aseismic transient slip episodes emerge spontaneously with only a simplified representation of effects of metamorphic fluid release. That involved assumption of a constant in time but uniformly low effective normal stress in the downdip region. As suggested by observations in several major subduction zones [Obara, 2002; Rogers and Dragert, 2003; Kodaira et al, 2004], the presence of fluids, possibly released from dehydration reactions beneath the seismogenic zone, and their pressurization within the fault zone may play an important role in causing aseismic transients and associated non-volcanic tremors. To investigate the effects of fluids in the subduction zone, particularly on the generation of aseismic transients and their various features, we develop a more complete physical description of the pore pressure evolution (specifically, pore pressure increase due to supply from dehydration reactions and shear heating, decrease due to transport and dilatancy during slip), and incorporate that into the rate and state based 3D modeling. We first incorporated two important factors, dilatancy and shear heating, following Segall and Rice [1995, 2004] and Taylor [1998]. In the 2D simulations (slip varies with depth only), a dilatancy-stabilizing effect is seen which slows down the seismic rupture front and can prevent rapid slip from extending all the way to the trench, similarly to Taylor [1998]. Shear heating increases the pore pressure, and results in faster coseismic rupture propagation and larger final slips. In the 3D simulations, dilatancy also stabilizes the along-strike rupture propagation of both seismic and aseismic slips. That is, aseismic slip transients migrate along the strike faster with a shorter Tp (the characteristic time for pore pressure in the fault core to re-equilibrate with that of its surroundings). This is consistent with our previous simulations, which show that the aseismic transients migrate along the strike at a higher speed under a lower, constant in time, effective normal stress. As a combination of the two factors, we show the pore pressure evolution with drops (due to dilatancy during slip) and then rises (due to shear heating) on the fault over multiple time scales. We next plan to formulate, and merge with the slip-rupture analysis, fuller fluid release models based on phase equilibria and models of transport in which the average fault-parallel permeability is a decreasing function of the effective normal stress. The thrust fault zone, at seismogenic depths and slightly downdip, is represented in a conceptually similar manner to the well-studied major continental faults, assuming the fault core materials have a lower permeability than the neighboring damaged zone. Heat diffusion in the fault core and damaged zone will also be considered in the modeling. The simulation results may help to improve our understanding of the processes of the aseismic transients observed within a transform plate boundary along the SAF near Cholame, California [Nadeau and Dolenc, 2005].
Poromechanics of stick-slip frictional sliding and strength recovery on tectonic faults
Scuderi, Marco M.; Carpenter, Brett M.; Johnson, Paul A.; ...
2015-10-22
Pore fluids influence many aspects of tectonic faulting including frictional strength aseismic creep and effective stress during the seismic cycle. But, the role of pore fluid pressure during earthquake nucleation and dynamic rupture remains poorly understood. Here we report on the evolution of pore fluid pressure and porosity during laboratory stick-slip events as an analog for the seismic cycle. We sheared layers of simulated fault gouge consisting of glass beads in a double-direct shear configuration under true triaxial stresses using drained and undrained fluid conditions and effective normal stress of 5–10 MPa. Shear stress was applied via a constant displacementmore » rate, which we varied in velocity step tests from 0.1 to 30 µm/s. Here, we observe net pore pressure increases, or compaction, during dynamic failure and pore pressure decreases, or dilation, during the interseismic period, depending on fluid boundary conditions. In some cases, a brief period of dilation is attendant with the onset of dynamic stick slip. Our data show that time-dependent strengthening and dynamic stress drop increase with effective normal stress and vary with fluid conditions. For undrained conditions, dilation and preseismic slip are directly related to pore fluid depressurization; they increase with effective normal stress and recurrence time. Microstructural observations confirm the role of water-activated contact growth and shear-driven elastoplastic processes at grain junctions. These results indicate that physicochemical processes acting at grain junctions together with fluid pressure changes dictate stick-slip stress drop and interseismic creep rates and thus play a key role in earthquake nucleation and rupture propagation.« less
Lommatzsch, Marco; Exner, Ulrike; Gier, Susanne; Grasemann, Bernhard
2015-01-01
The present study examines deformation bands in calcareous arkosic sands. The investigated units can be considered as an equivalent to the Matzen field in the Vienna Basin (Austria), which is one of the most productive oil reservoirs in central Europe. The outcrop exposes carbonate-free and carbonatic sediments of Badenian age separated by a normal fault. Carbonatic sediments in the hanging wall of the normal fault develop dilation bands with minor shear displacements (< 2 mm), whereas carbonate-free sediments in the footwall develop cataclastic shear bands with up to 70 cm displacement. The cataclastic shear bands show a permeability reduction up to 3 orders of magnitude and strong baffling effects in the vadose zone. Carbonatic dilation bands show a permeability reduction of 1-2 orders of magnitude and no baffling structures. We distinguished two types of deformation bands in the carbonatic units, which differ in deformation mechanisms, distribution and composition. Full-cemented bands form as dilation bands with an intense syn-kinematic calcite cementation, whereas the younger loose-cemented bands are dilatant shear bands cemented by patchy calcite and clay minerals. All analyzed bands are characterized by a porosity and permeability reduction caused by grain fracturing and cementation. The changed petrophysical properties and especially the porosity evolution are closely related to diagenetic processes driven by varying pore fluids in different diagenetic environments. The deformation band evolution and sealing capacity is controlled by the initial host rock composition. PMID:26300577
NASA Astrophysics Data System (ADS)
Guglielmi, Y.; Nussbaum, C.; Birkholzer, J. T.; De Barros, L.; Cappa, F.
2017-12-01
There is a large spectrum of fault slow rupture processes such as stable creep and slow slip that radiate no or little seismic energy, and which relationships to normal earthquakes and fault permeability variations are enigmatic. Here we present measurements of a fault slow rupture, permeability variation and seismicity induced by fluid-injection in a fault affecting the Opalinus clay (Mt Terri URL, Switzerland) at a depth of 300 m. We observe multiple dilatant slow slip events ( 0.1-to-30 microm/s) associated with factor-of-1000 increase of permeability, and terminated by a magnitude -2.5 main seismic event associated with a swarm of very small magnitude ones. Using fully coupled numerical modeling, we calculate that the short term velocity strengthening behavior observed experimentally at laboratory scale is overcome by longer slip weakening that may be favored by slip induced dilation. Two monitoring points set across the fault allow estimating that, at the onset of the seismicity, the radius of the fault patch invaded by pressurized fluid is 9-to-11m which is in good accordance with a fault instability triggering when the dimensions of the critical slip distance are overcome. We then observe that the long term slip weakening is associated to an exponential permeability increase caused by a cumulated effective normal stress drop of about 3.4MPa which controls the successive slip activation of multiple fracture planes inducing a 0.1MPa shear stress drop in the fault zone. Therefore, our data suggest that the induced earthquake that terminated the rupture sequence may have represented enough dynamic stress release to arrest the fault permeability increase, suggesting the high sensitivity of the slow rupture processes to the structural heterogeneity of the fault zone hydromechanical properties.
Laboratory observations of fault strength in response to changes in normal stress
Kilgore, Brian D.; Lozos, Julian; Beeler, Nicholas M.; Oglesby, David
2012-01-01
Changes in fault normal stress can either inhibit or promote rupture propagation, depending on the fault geometry and on how fault shear strength varies in response to the normal stress change. A better understanding of this dependence will lead to improved earthquake simulation techniques, and ultimately, improved earthquake hazard mitigation efforts. We present the results of new laboratory experiments investigating the effects of step changes in fault normal stress on the fault shear strength during sliding, using bare Westerly granite samples, with roughened sliding surfaces, in a double direct shear apparatus. Previous experimental studies examining the shear strength following a step change in the normal stress produce contradictory results: a set of double direct shear experiments indicates that the shear strength of a fault responds immediately, and then is followed by a prolonged slip-dependent response, while a set of shock loading experiments indicates that there is no immediate component, and the response is purely gradual and slip-dependent. In our new, high-resolution experiments, we observe that the acoustic transmissivity and dilatancy of simulated faults in our tests respond immediately to changes in the normal stress, consistent with the interpretations of previous investigations, and verify an immediate increase in the area of contact between the roughened sliding surfaces as normal stress increases. However, the shear strength of the fault does not immediately increase, indicating that the new area of contact between the rough fault surfaces does not appear preloaded with any shear resistance or strength. Additional slip is required for the fault to achieve a new shear strength appropriate for its new loading conditions, consistent with previous observations made during shock loading.
Using gravity as a proxy for stress accumulation in complex fault systems
NASA Astrophysics Data System (ADS)
Hayes, Tyler Joseph
The gravity signal contains information regarding changes in density at all depths and can be used as a proxy for the strain accumulation in fault networks. A general method for calculating the total, dilatational, and free-air gravity for fault systems with arbitrary geometry, slip motion, and number of fault segments is presented. The technique uses a Green's function approach for a fault buried within an elastic half-space with an underlying driver plate forcing the system. A stress-evolution time-dependent earthquake fault model was used to create simulated slip histories over the San Andreas Fault network in California. Using a sum of the gravity signals from each fault segment in the model, via coseismic gravity Green's functions, a time-dependent gravity model was created. The steady-state gravity from the long term plate motion generates a signal over five years with magnitudes of +/- ˜2 muGal; the current limit of portable instrument observations. Moderate to large events generate signal magnitudes in the range of ˜10 muGal to ˜80 muGal, well within the range of ground based observations. The complex fault network geometry of California significantly affects the spatial extent of the gravity signal from the three events studied. Statistical analysis of 55 000 years of simulated slip histories were used to investigate the use of the dilatational gravity signal as a proxy for precursory stress and strain changes. Results indicate that the precursory dilatational gravity signal is dependent upon the fault orientation with respect the tectonic loading plate velocity. This effect is interpreted as a consequence of preferential amplification of the shear stress or reduction of the normal stress, depending on the steady-state regime investigated. Finally, solutions for the corresponding gravity gradients of the coseismic dilatational gravity signals are developed for a vertical strike-slip fault. Gravity gradient solutions exhibit similar spatial distributions as those calculated for Coulomb stress changes, reflecting their physical relationship to the stress changes. The magnitude of the signals, on the order of 1 x 10-4 E, are beyond the resolution of typical exploration instruments at the present time. Keywords. numerical solutions; seismic cycle; gravity; gravity gradients; time variable gravity; earthquake interaction; forecasting; and prediction
NASA Astrophysics Data System (ADS)
Singh, Jaskaran; Darpe, A. K.; Singh, S. P.
2018-02-01
Local damage in rolling element bearings usually generates periodic impulses in vibration signals. The severity, repetition frequency and the fault excited resonance zone by these impulses are the key indicators for diagnosing bearing faults. In this paper, a methodology based on over complete rational dilation wavelet transform (ORDWT) is proposed, as it enjoys a good shift invariance. ORDWT offers flexibility in partitioning the frequency spectrum to generate a number of subbands (filters) with diverse bandwidths. The selection of the optimal filter that perfectly overlaps with the bearing fault excited resonance zone is based on the maximization of a proposed impulse detection measure "Temporal energy operated auto correlated kurtosis". The proposed indicator is robust and consistent in evaluating the impulsiveness of fault signals in presence of interfering vibration such as heavy background noise or sporadic shocks unrelated to the fault or normal operation. The structure of the proposed indicator enables it to be sensitive to fault severity. For enhanced fault classification, an autocorrelation of the energy time series of the signal filtered through the optimal subband is proposed. The application of the proposed methodology is validated on simulated and experimental data. The study shows that the performance of the proposed technique is more robust and consistent in comparison to the original fast kurtogram and wavelet kurtogram.
Fault zone processes in mechanically layered mudrock and chalk
NASA Astrophysics Data System (ADS)
Ferrill, David A.; Evans, Mark A.; McGinnis, Ronald N.; Morris, Alan P.; Smart, Kevin J.; Wigginton, Sarah S.; Gulliver, Kirk D. H.; Lehrmann, Daniel; de Zoeten, Erich; Sickmann, Zach
2017-04-01
A 1.5 km long natural cliff outcrop of nearly horizontal Eagle Ford Formation in south Texas exposes northwest and southeast dipping normal faults with displacements of 0.01-7 m cutting mudrock, chalk, limestone, and volcanic ash. These faults provide analogs for both natural and hydraulically-induced deformation in the productive Eagle Ford Formation - a major unconventional oil and gas reservoir in south Texas, U.S.A. - and other mechanically layered hydrocarbon reservoirs. Fault dips are steep to vertical through chalk and limestone beds, and moderate through mudrock and clay-rich ash, resulting in refracted fault profiles. Steeply dipping fault segments contain rhombohedral calcite veins that cross the fault zone obliquely, parallel to shear segments in mudrock. The vertical dimensions of the calcite veins correspond to the thickness of offset competent beds with which they are contiguous, and the slip parallel dimension is proportional to fault displacement. Failure surface characteristics, including mixed tensile and shear segments, indicate hybrid failure in chalk and limestone, whereas shear failure predominates in mudrock and ash beds - these changes in failure mode contribute to variation in fault dip. Slip on the shear segments caused dilation of the steeper hybrid segments. Tabular sheets of calcite grew by repeated fault slip, dilation, and cementation. Fluid inclusion and stable isotope geochemistry analyses of fault zone cements indicate episodic reactivation at 1.4-4.2 km depths. The results of these analyses document a dramatic bed-scale lithologic control on fault zone architecture that is directly relevant to the development of porosity and permeability anisotropy along faults.
Fluid-injection and the mechanics of frictional stability of shale-bearing faults
NASA Astrophysics Data System (ADS)
Scuderi, Marco Maria; Collettini, Cristiano; Marone, Chris
2017-04-01
Fluid overpressure is one of the primary mechanisms for triggering tectonic fault slip and human-induced seismicity. This mechanism is appealing because fluids lubricate the fault and reduce the effective normal stress that holds the fault in place. However, current models of earthquake nucleation, based on rate- and state- friction, imply that stable sliding is favored by the increase of pore fluid pressure. Despite this apparent dilemma, there are a few studies on the role of fluid pressure in frictional stability under controlled, laboratory conditions. Here, we describe laboratory experiments on shale fault gouge, conducted in the double direct shear configuration in a true-triaxial machine. To characterize frictional stability and hydrological properties we performed three types of experiments: 1) stable sliding shear experiment to determine the material failure envelope resulting in fault strength of µ=0.28 and fault zone permeability (k 10-19m2); 2) velocity step experiments to determine the rate- and state- frictional properties, characterized by a velocity strengthening behavior with a negative rate parameter b, indicative of stable aseismic creep; 3) creep experiment to study fault slip evolution with increasing pore-fluid pressure. In these creep experiments fault slip history can be divided in three main stages: a) for low fluid pressure the fault is locked and undergoes compaction; b) with increasing fluid pressurization, we observe aseismic creep (i.e. v=0.0001 µm/s) associated with fault dilation, with maintained low permeability; c) As fluid pressure is further increased and we approach the failure criteria fault begins to accelerate, the dilation rate increases causing an increase in permeability. Following the first acceleration we document complex fault slip behavior characterized by periodic accelerations and decelerations with slip velocity that remains slow (i.e. v 200 µm/s), never approaching dynamic slip rates. Surprisingly, this complex slip behavior is associated with fault zone compaction and permeability increase as opposite to the dilation hardening mechanism that is usually invoked to quench the instability. We relate this complex fault slip behaviour to the interplay between fault weakening induced by fluid pressurization and the strong rate-strengthening behaviour of shales. Our data show that fault rheology and fault stability is controlled by the coupling between fluid pressure and rate- and state- friction parameters suggesting that their comprehensive characterization is fundamental for assessing the role of fluid pressure in natural and human induced earthquakes.
Stress and Strain Rates from Faults Reconstructed by Earthquakes Relocalization
NASA Astrophysics Data System (ADS)
Morra, G.; Chiaraluce, L.; Di Stefano, R.; Michele, M.; Cambiotti, G.; Yuen, D. A.; Brunsvik, B.
2017-12-01
Recurrence of main earthquakes on the same fault depends on kinematic setting, hosting lithologies and fault geometry and population. Northern and central Italy transitioned from convergence to post-orogenic extension. This has produced a unique and very complex tectonic setting characterized by superimposed normal faults, crossing different geologic domains, that allows to investigate a variety of seismic manifestations. In the past twenty years three seismic sequences (1997 Colfiorito, 2009 L'Aquila and 2016-17 Amatrice-Norcia-Visso) activated a 150km long normal fault system located between the central and northern apennines and allowing the recordings of thousands of seismic events. Both the 1997 and the 2009 main shocks were preceded by a series of small pre-shocks occurring in proximity to the future largest events. It has been proposed and modelled that the seismicity pattern of the two foreshocks sequences was caused by active dilatancy phenomenon, due to fluid flow in the source area. Seismic activity has continued intensively until three events with 6.0
Slip behaviour of carbonate-bearing faults subjected to fluid pressure stimulations
NASA Astrophysics Data System (ADS)
Collettini, Cristiano; Scuderi, Marco; Marone, Chris
2017-04-01
Earthquakes caused by fluid injection within reservoir have become an important topic of political and social discussion as new drilling and improved technologies enable the extraction of oil and gas from previously unproductive formations. During reservoir stimulation, the coupled interactions of frictional and fluid flow properties together with the stress state control both the onset of fault slip and fault slip behaviour. However, currently, there are no studies under controlled, laboratory conditions for which the effect of fluid pressure on fault slip behaviour can be deduced. To cover this gap, we have developed laboratory experiments where we monitor fault slip evolution at constant shear stress but with increasing fluid pressure, i.e. reducing the effective normal stress. Experiments have been conducted in the double direct shear configuration within a pressure vessel on carbonate fault gouge, characterized by a slightly velocity strengthening friction that is indicative of stable aseismic creep. In our experiments fault slip history can be divided in three main stages: 1) for high effective normal stress the fault is locked and undergoes compaction; 2) when the shear and effective normal stress reach the failure condition, accelerated creep is associated to fault dilation; 3) further pressurization leads to an exponential acceleration during fault compaction and slip localization. Our results indicate that fault weakening induced by fluid pressurization overcomes the velocity strengthening behaviour of calcite gouge, resulting in fast acceleration and earthquake slip. As applied to tectonic faults our results suggest that a larger number of crustal faults, including those slightly velocity strengthening, can experience earthquake slip due to fluid pressurization.
NASA Astrophysics Data System (ADS)
Scuderi, M. M.; Collettini, C.; Marone, C.
2017-11-01
It is widely recognized that the significant increase of M > 3.0 earthquakes in Western Canada and the Central United States is related to underground fluid injection. Following injection, fluid overpressure lubricates the fault and reduces the effective normal stress that holds the fault in place, promoting slip. Although, this basic physical mechanism for earthquake triggering and fault slip is well understood, there are many open questions related to induced seismicity. Models of earthquake nucleation based on rate- and state-friction predict that fluid overpressure should stabilize fault slip rather than trigger earthquakes. To address this controversy, we conducted laboratory creep experiments to monitor fault slip evolution at constant shear stress while the effective normal stress was systematically reduced via increasing fluid pressure. We sheared layers of carbonate-bearing fault gouge in a double direct shear configuration within a true-triaxial pressure vessel. We show that fault slip evolution is controlled by the stress state acting on the fault and that fluid pressurization can trigger dynamic instability even in cases of rate strengthening friction, which should favor aseismic creep. During fluid pressurization, when shear and effective normal stresses reach the failure condition, accelerated creep occurs in association with fault dilation; further pressurization leads to an exponential acceleration with fault compaction and slip localization. Our work indicates that fault weakening induced by fluid pressurization can overcome rate strengthening friction resulting in fast acceleration and earthquake slip. Our work points to modifications of the standard model for earthquake nucleation to account for the effect of fluid overpressure and to accurately predict the seismic risk associated with fluid injection.
NASA Astrophysics Data System (ADS)
Johnson, A. M.; Griffiths, J. H.
2007-05-01
At the 2005 Fall Meeting of the American Geophysical Union, Griffiths and Johnson [2005] introduced a method of extracting from the deformation-gradient (and velocity-gradient) tensor the amount and preferred orientation of simple-shear associated with 2-D shear zones and faults. Noting the 2-D is important because the shear zones and faults in Griffiths and Johnson [2005] were assumed non-dilatant and infinitely long, ignoring the scissors- like action along strike associated with shear zones and faults of finite length. Because shear zones and faults can dilate (and contract) normal to their walls and can have a scissors-like action associated with twisting about an axis normal to their walls, the more general method of detecting simple-shear is introduced and called MODES "method of detecting simple-shear." MODES can thus extract from the deformation-gradient (and velocity- gradient) tensor the amount and preferred orientation of simple-shear associated with 3-D shear zones and faults near or far from the Earth's surface, providing improvements and extensions to existing analytical methods used in active tectonics studies, especially strain analysis and dislocation theory. The derivation of MODES is based on one definition and two assumptions: by definition, simple-shear deformation becomes localized in some way; by assumption, the twirl within the deformation-gradient (or the spin within the velocity-gradient) is due to a combination of simple-shear and twist, and coupled with the simple- shear and twist is a dilatation of the walls of shear zones and faults. The preferred orientation is thus the orientation of the plane containing the simple-shear and satisfying the mechanical and kinematical boundary conditions. Results from a MODES analysis are illustrated by means of a three-dimensional diagram, the cricket- ball, which is reminiscent of the seismologist's "beach ball." In this poster, we present the underlying theory of MODES and illustrate how it works by analyzing the three- dimensional displacements measured with the Global Positioning System across the 1999 Chi-Chi earthquake ground rupture in Taiwan. In contrast to the deformation zone in the upper several meters of the ground below the surface detected by Yu et al. [2001], MODES determines the orientation and direction of shift of a shear zone representing the earthquake fault within the upper several hundred or thousand meters of ground below the surface. Thus, one value of the MODES analysis in this case is to provide boundary conditions for dislocation solutions for the subsurface shape of the main rupture during the earthquake.
Triaxial testing of Lopez Fault gouge at 150 MPa mean effective stress
Scott, D.R.; Lockner, D.A.; Byerlee, J.D.; Sammis, C.G.
1994-01-01
Triaxial compression experiments were performed on samples of natural granular fault gouge from the Lopez Fault in Southern California. This material consists primarily of quartz and has a self-similar grain size distribution thought to result from natural cataclasis. The experiments were performed at a constant mean effective stress of 150 MPa, to expose the volumetric strains associated with shear failure. The failure strength is parameterized by the coefficient of internal friction ??, based on the Mohr-Coulomb failure criterion. Samples of remoulded Lopez gouge have internal friction ??=0.6??0.02. In experiments where the ends of the sample are constrained to remain axially aligned, suppressing strain localisation, the sample compacts before failure and dilates persistently after failure. In experiments where one end of the sample is free to move laterally, the strain localises to a single oblique fault at around the point of failure; some dilation occurs but does not persist. A comparison of these experiments suggests that dilation is confined to the region of shear localisation in a sample. Overconsolidated samples have slightly larger failure strengths than normally consolidated samples, and smaller axial strains are required to cause failure. A large amount of dilation occurs after failure in heavily overconsolidated samples, suggesting that dilation is occurring throughout the sample. Undisturbed samples of Lopez gouge, cored from the outcrop, have internal friction in the range ??=0.4-0.6; the upper end of this range corresponds to the value established for remoulded Lopez gouge. Some kind of natural heterogeneity within the undisturbed samples is probably responsible for their low, variable strength. In samples of simulated gouge, with a more uniform grain size, active cataclasis during axial loading leads to large amounts of compaction. Larger axial strains are required to cause failure in simulated gouge, but the failure strength is similar to that of natural Lopez gouge. Use of the Mohr-Coulomb failure criterion to interpret the results from this study, and other recent studies on intact rock and granular gouge, leads to values of ?? that depend on the loading configuration and the intact or granular state of the sample. Conceptual models are advanced to account for these descrepancies. The consequences for strain-weakening of natural faults are also discussed. ?? 1994 Birkha??user Verlag.
NASA Astrophysics Data System (ADS)
Maerten, Laurent; Maerten, Frantz; Lejri, Mostfa
2018-03-01
Whatever the processes involved in the natural fracture development in the subsurface, fracture patterns are often affected by the local stress field during propagation. This homogeneous or heterogeneous local stress field can be of mechanical and/or tectonic origin. In this contribution, we focus on the fracture-pattern development where active faults perturb the stress field, and are affected by fluid pressure and sliding friction along the faults. We analyse and geomechanically model two fractured outcrops in UK (Nash Point) and in France (Les Matelles). We demonstrate that the observed local radial joint pattern is best explained by local fluid pressure along the faults and that observed fracture pattern can only be reproduced when fault friction is very low (μ < 0.2). Additionally, in the case of sub-vertical faults, we emphasize that the far field horizontal stress ratio does not affect stress trajectories, or fracture patterns, unless fault normal displacement (dilation or contraction) is relatively large.
NASA Astrophysics Data System (ADS)
Okubo, C. H.
2012-12-01
In order to yield new insight into the process of faulting in fine-grained, poorly indurated volcanic ash, the distribution of strain around faults in the Miocene-aged Joe Lott Tuff Member of the Mount Belknap Volcanics, Utah, is investigated. Several distinct styles of inelastic strain are identified. Deformation bands are observed in tuff that is porous and granular in nature, or is inferred to have been so at the time of deformation. Where silicic alteration is pervasive, fractures are the dominant form of localized strain. Non-localized strain within the host rock is manifest as pore space compaction, including crushing of pumice clasts. Distinct differences in fault zone architecture are observed at different magnitudes of normal fault displacement, in the mode II orientation. A fault with cm-scale displacements is manifest as a single well-defined surface. Off-fault damage occurs as pore space compaction near the fault tips and formation of deformation band damage zones that are roughly symmetric about the fault. At a fault with larger meter-scale displacements, a fault core is present. A recognizable fault-related deformation band damage zone is not observed here, even though large areas of the host rock remain porous and granular and deformation bands had formed prior to faulting. The host rock is instead fractured in areas of pervasive alteration and shows possible textural evidence of fault pulverization. The zones of localized and distributed strain have notably different spatial extents around the causative fault. The region of distributed deformation, as indicated by changes in gas permeability of the macroscopically intact rock, extends up to four times farther from the fault than the highest densities of localized deformation (i.e., fractures and deformation bands). This study identifies a set of fault-related processes that are pertinent to understanding the evolution of fault systems in poorly indurated tuff. Not surprisingly, the type of structural discontinuity that forms in the fault environment is found to be a function of the porosity and granularity of the host rock. Non-localized deformation in the form of pore space compaction of the host rock is found to be prominent around the fault tips at First Spring Hollow. Interestingly, the spatial distribution of host rock compaction and the occurrences of dilational deformation bands around this fault do not correlate with the classic pattern of compression and dilation generally anticipated for slipped normal faults when viewed in mode II. Therefore, while broad generalities regarding the types of discontinuities that form around faults in tuff can be drawn based on current principles, additional work is needed to better understand the genesis of the observed spatial distributions of strain.
Dynamic Dilational Strengthening During Earthquakes in Saturated Gouge-Filled Fault Zones
NASA Astrophysics Data System (ADS)
Sparks, D. W.; Higby, K.
2016-12-01
The effect of fluid pressure in saturated fault zones has been cited as an important factor in the strength and slip-stability of faults. Fluid pressure controls the effective normal stress across the fault and therefore controls the faults strength. In a fault core consisting of granular fault gouge, local transient dilations and compactions occur during slip that dynamically change the fluid pressure. We use a grain-scale numerical model to investigate the effect of these fluid effects in fault gouge during an earthquake. We use a coupled finite difference-discrete element model (Goren et al, 2011), in which the pore space is filled with a fluid. Local changes in grain packing generate local deviations in fluid pressure, which can be relieved by fluid flow through the permeable gouge. Fluid pressure gradients exert drag forces on the grains that couple the grain motion and fluid flow. We simulated 39 granular gouge zones that were slowly loaded in shear stress to near the failure point, and then conducted two different simulations starting from each grain packing: one with a high enough mean permeability (> 10-11 m2) that pressure remains everywhere equilibrated ("fully drained"), and one with a lower permeability ( 10-14 m2) in which flow is not fast enough to prevent significant pressure variations from developing ("undrained"). The static strength of the fault, the size of the event and the evolution of slip velocity are not imposed, but arise naturally from the granular packing. In our particular granular model, all fully drained slip events are well-modeled by a rapid drop in the frictional resistance of the granular packing from a static value to a dynamic value that remains roughly constant during slip. Undrained events show more complex behavior. In some cases, slip occurs via a slow creep with resistance near the static value. When rapid slip events do occur, the dynamic resistance is typically larger than in drained events, and highly variable. Frictional resistance is not correlated with the mean fluid pressure in the layer, but is instead controlled by local regions undergoing dilational strengthening. We find that (in the absence of pressure-generating effects like thermal pressurization or fluid-releasing reactions), the overall effect of fluid is to strengthen the fault.
Thermal effects on shearing resistance of fractures in Tak granite
NASA Astrophysics Data System (ADS)
Khamrat, S.; Thongprapha, T.; Fuenkajorn, K.
2018-06-01
Triaxial shear tests have been performed on tension-induced fractures and smooth saw-cut surfaces in Tak granite under temperatures up to 773 K. The objective is to gain an understanding of the movement of shallow faults that cause seismic activities in the Tak batholith in the north of Thailand. The results indicate that the peak and residual shear strengths and fracture dilations notably decrease as the temperatures increase. The thermal effect is enhanced under higher confining pressures. The areas of the sheared-off asperities increase with temperature and confining pressure. A power equation can describe the increase of shear strengths with normal stress where the normal stress exponent is a linear function of the temperature. The strain energy principle is applied to incorporate the principal stresses and strains into a strength criterion. A linear relation between the distortional strain energy (Wd) and the mean strain energy (Wm) of the fractures is obtained. The Wd-Wm slope depends on the fracture roughness and strength of the asperities, which can be defined as a function of shear and mean strains and dilation of the fractures. This may allow predicting the peak strength of the shallow faults in the Tak batholith.
NASA Astrophysics Data System (ADS)
Nukman, M.; Moeck, I.
2012-04-01
The Tarutung Basin is one of several basins along the prominent Sumatra Fault System (SFS) which represents a dextral strike slip fault zone segmented into individual fault strands. The basins are located at right-stepping transfer. The Tarutung Basin hosts geothermal manifestations such as hot springs and travertines indicating a geothermal system with some decent potential in the subsurface. As part of geothermal exploration, field geology is investigated focusing on how the structural setting controls the thermal manifestation distribution. A complex fault pattern is now newly mapped and evidences sinistral faults striking E-W (Silangkitang), normal faults striking SE-NW at the eastern strand of Tarutung Basin (Sitompul) and normal faults striking NW-SE at the western strand of the basin (Sitaka). These structures form an angle greater than 450 with respect to the current maximum principal stress which is oriented in N-S. Secondary sinistral shear fractures identified as antithetic Riedel shears can be correlated with hot spring locations at Silangkitang, forming an angle of 500 with respect to the current maximum stress. A large angle of normal fault and antithetic Riedel shear trend with respect to the current maximum stress direction indicates that the structures have been rotated. Unidentified dextral strike slip faults might exist at the eastern strand of Tarutung Basin to accommodate the clockwise rotation between the eastern boundary of the basin and the NW-SE striking normal fault of Panabungan. Normal faults striking parallel with the SFS East of the basin are interpreted as dilatational jogs caused by the clockwise rotated block movement with respect to the NW-SE fault trend sinistral shear along ENE-WSW faults. Silicified pryroclastics in association with large discharge at hot springs at these NW-SE striking normal faults support this hypothesis. As proposed by Nivinkovich (1976) and Nishimura (1986) Sumatra has rotated 20° clockwise since the last two million years due to the increase in sea-floor spreading rate of the Indian-Australian plate. The combination of regional clockwise rotation of Sumatra with local clockwise rotation caused by simple shear along the dextral SFS might generate the complex fault pattern which controls fluid flow of thermal water and placement of hot springs. Acknowledgements : Deutscher Akademischer Austausch Dienst, DAAD. German Ministry for Education and Research, BMBF. Badan Geologi - KESDM Bandung, Indonesia.
Characteristics of Asperity Damage and Its Influence on the Shear Behavior of Granite Joints
NASA Astrophysics Data System (ADS)
Meng, Fanzhen; Zhou, Hui; Wang, Zaiquan; Zhang, Chuanqing; Li, Shaojun; Zhang, Liming; Kong, Liang
2018-02-01
Surface roughness significantly affects the shear behavior of rock joints; thus, studies on the asperity damage characteristics and its influence on the shear behavior of joints are extremely important. In this paper, shear tests were conducted on tensile granite joints; asperity damage was evaluated based on acoustic emission (AE) events; and the influence of asperity damage on joint shear behavior was analyzed. The results indicated that the total AE events tended to increase with normal stress. In addition, the asperity damage initiation shear stress, which is defined as the transition point from slow growth to rapid growth in the cumulative events curve, was approximately 0.485 of the peak shear strength regardless of the normal stress. Moreover, 63-85% of the AE events were generated after the peak shear stress, indicating that most of the damage occurred in this stage. Both the dilation and the total AE events decreased with shear cycles because of the damage inflicted on asperities during the previous shear cycle. Two stages were observed in the normal displacement curves under low normal stress, whereas three stages (compression, dilation and compression again) were observed at a higher normal stress; the second compression stage may be caused by tensile failure outside the shear plane. The magnitude of the normal stress and the state of asperity are two important factors controlling the post-peak stress drop and stick-slip of granite joints. Serious deterioration of asperities will stop stick-slip from recurring under the same normal stress because the ability to accumulate energy is decreased. The AE b-value increases with the number of shear cycles, indicating that the stress concentration inside the fault plane is reduced because of asperity damage; thus, the potential for dynamic disasters, such as fault-slip rockbursts, will be decreased.
Detection of postseismic fault-zone collapse following the Landers earthquake
Massonnet, D.; Thatcher, W.; Vadon, H.
1996-01-01
Stress changes caused by fault movement in an earthquake induce transient aseismic crustal movements in the earthquake source region that continue for months to decades following large events. These motions reflect aseismic adjustments of the fault zone and/or bulk deformation of the surroundings in response to applied stresses, and supply information regarding the inelastic behaviour of the Earth's crust. These processes are imperfectly understood because it is difficult to infer what occurs at depth using only surface measurements, which are in general poorly sampled. Here we push satellite radar interferometry to near its typical artefact level, to obtain a map of the postseismic deformation field in the three years following the 28 June 1992 Landers, California earthquake. From the map, we deduce two distinct types of deformation: afterslip at depth on the fault that ruptured in the earthquake, and shortening normal to the fault zone. The latter movement may reflect the closure of dilatant cracks and fluid expulsion from a transiently over-pressured fault zone.
NASA Astrophysics Data System (ADS)
Schwab, D.; Bidgoli, T.; Taylor, M. H.
2015-12-01
South-central Kansas has experienced an unprecedented increase in seismic activity since 2013. The spatial and temporal relationship of the seismicity with brine disposal operations has renewed interest in the role of fluids in fault reactivation. This study focuses on determining the suitability of CO2 injection into a Cambro-Ordovician reservoir for long-term storage and a Mississippian reservoir for enhanced oil recovery in Wellington Field, Sumner County, Kansas. Our approach for determining the potential for induced seismicity has been to (1) map subsurface faults and estimate in-situ stresses, (2) perform slip and dilation tendency analysis to identify optimally-oriented faults relative to the estimated stress field, and (3) monitor surface deformation through cGPS data and InSAR imaging. Through the use of 3D seismic reflection data, 60 near vertical, NNE-striking faults have been identified. The faults range in length from 140-410 m and have vertical separations of 3-32m. A number of faults appear to be restricted to shallow intervals, while others clearly cut the top basement reflector. Drilling-induced tensile fractures (N=78) identified from image logs and inversion of earthquake focal mechanism solutions (N=54) are consistent with the maximum horizontal stress (SHmax) oriented ~E-W. Both strike-slip and normal-slip fault plane solutions for earthquakes near the study area suggest that SHmax and Sv may be similar in magnitude. Estimates of stress magnitudes using step rate tests (Shmin = 2666 psi), density logs (Sv = 5308 psi), and calculations from wells with drilling induced tensile fractures (SHmax = 4547-6655 psi) are determined at the gauge depth of 4869ft. Preliminary slip and dilation tendency analysis indicates that faults striking 0°-20° are stable, whereas faults striking 26°-44° may have a moderate risk for reactivation with increasing pore-fluid pressure.
An earthquake instability model based on faults containing high fluid-pressure compartments
Lockner, D.A.; Byerlee, J.D.
1995-01-01
It has been proposed that large strike-slip faults such as the San Andreas contain water in seal-bounded compartments. Arguments based on heat flow and stress orientation suggest that in most of the compartments, the water pressure is so high that the average shear strength of the fault is less than 20 MPa. We propose a variation of this basic model in which most of the shear stress on the fault is supported by a small number of compartments where the pore pressure is relatively low. As a result, the fault gouge in these compartments is compacted and lithified and has a high undisturbed strength. When one of these locked regions fails, the system made up of the neighboring high and low pressure compartments can become unstable. Material in the high fluid pressure compartments is initially underconsolidated since the low effective confining pressure has retarded compaction. As these compartments are deformed, fluid pressure remains nearly unchanged so that they offer little resistance to shear. The low pore pressure compartments, however, are overconsolidated and dilate as they are sheared. Decompression of the pore fluid in these compartments lowers fluid pressure, increasing effective normal stress and shear strength. While this effect tends to stabilize the fault, it can be shown that this dilatancy hardening can be more than offset by displacement weakening of the fault (i.e., the drop from peak to residual strength). If the surrounding rock mass is sufficiently compliant to produce an instability, slip will propagate along the fault until the shear fracture runs into a low-stress region. Frictional heating and the accompanying increase in fluid pressure that are suggested to occur during shearing of the fault zone will act as additional destabilizers. However, significant heating occurs only after a finite amount of slip and therefore is more likely to contribute to the energetics of rupture propagation than to the initiation of the instability. We present results of a one-dimensional dynamic Burridge-Knopoff-type model to demonstrate various aspects of the fluid-assisted fault instability described above. In the numerical model, the fault is represented by a series of blocks and springs, with fault rheology expressed by static and dynamic friction. In addition, the fault surface of each block has associated with it pore pressure, porosity and permeability. All of these variables are allowed to evolve with time, resulting in a wide range of phenomena related to fluid diffusion, dilatancy, compaction and heating. These phenomena include creep events, diffusion-controlled precursors, triggered earthquakes, foreshocks, aftershocks, and multiple earthquakes. While the simulations have limitations inherent to 1-D fault models, they demonstrate that the fluid compartment model can, in principle, provide the rich assortment of phenomena that have been associated with earthquakes. ?? 1995 Birkha??user Verlag.
Caine, Jonathan S.; Bruhn, R.L.; Forster, C.B.
2010-01-01
Outcrop mapping and fault-rock characterization of the Stillwater normal fault zone in Dixie Valley, Nevada are used to document and interpret ancient hydrothermal fluid flow and its possible relationship to seismic deformation. The fault zone is composed of distinct structural and hydrogeological components. Previous work on the fault rocks is extended to the map scale where a distinctive fault core shows a spectrum of different fault-related breccias. These include predominantly clast-supported breccias with angular clasts that are cut by zones containing breccias with rounded clasts that are also clast supported. These are further cut by breccias that are predominantly matrix supported with angular and rounded clasts. The fault-core breccias are surrounded by a heterogeneously fractured damage zone. Breccias are bounded between major, silicified slip surfaces, forming large pod-like structures, systematically oriented with long axes parallel to slip. Matrix-supported breccias have multiply brecciated, angular and rounded clasts revealing episodic deformation and fluid flow. These breccias have a quartz-rich matrix with microcrystalline anhedral, equant, and pervasively conformable mosaic texture. The breccia pods are interpreted to have formed by decompression boiling and rapid precipitation of hydrothermal fluids whose flow was induced by coseismic, hybrid dilatant-shear deformation and hydraulic connection to a geothermal reservoir. The addition of hydrothermal silica cement localized in the core at the map scale causes fault-zone widening, local sealing, and mechanical heterogeneities that impact the evolution of the fault zone throughout the seismic cycle. ?? 2010.
Suppression of slip and rupture velocity increased by thermal pressurization: Effect of dilatancy
NASA Astrophysics Data System (ADS)
Urata, Yumi; Kuge, Keiko; Kase, Yuko
2013-11-01
investigated the effect of dilatancy on dynamic rupture propagation on a fault where thermal pressurization (TP) is in effect, taking into account permeability varying with porosity; the study is based on three-dimensional (3-D) numerical simulations of spontaneous ruptures obeying a slip-weakening friction law and Coulomb failure criterion. The effects of dilatancy on dynamic ruptures interacting with TP have been often investigated in one- or two-dimensional numerical simulations. The sole 3-D numerical simulation gave attention only to the behavior at a single point on a fault. Moreover, with the sole exception based on a single-degree-freedom spring-slider model, the previous simulations including dilatancy and TP have not considered changes in hydraulic diffusivity. However, the hydraulic diffusivity, which strongly affects TP, can vary as a power of porosity. In this study, we apply a power law relationship between permeability and porosity. We consider both reversible and irreversible changes in porosity, assuming that the irreversible change is proportional to the slip rate and dilatancy coefficient ɛ. Our numerical simulations suggest that the effects of dilatancy can suppress slip and rupture velocity increased by TP. The results reveal that the amount of slip on the fault decreases with increasing ɛ or exponent of the power law, and the rupture velocity is predominantly suppressed by ɛ. This was observed regardless of whether the applied stresses were high or low. The deficit of the final slip in relation to ɛ can be smaller as the fault size is larger.
Detection of postseismic fault-zone collapse following the Landers earthquake
NASA Astrophysics Data System (ADS)
Massonnet, Didier; Thatcher, Wayne; Vadon, Hélèna
1996-08-01
STRESS changes caused by fault movement in an earthquake induce transient aseismic crustal movements in the earthquake source region that continue for months to decades following large events1-4. These motions reflect aseismic adjustments of the fault zone and/or bulk deformation of the surroundings in response to applied stresses2,5-7, and supply information regarding the inelastic behaviour of the Earth's crust. These processes are imperfectly understood because it is difficult to infer what occurs at depth using only surface measurements2, which are in general poorly sampled. Here we push satellite radar interferometry to near its typical artefact level, to obtain a map of the postseismic deformation field in the three years following the 28 June 1992 Landers, California earthquake. From the map, we deduce two distinct types of deformation: afterslip at depth on the fault that ruptured in the earthquake, and shortening normal to the fault zone. The latter movement may reflect the closure of dilatant cracks and fluid expulsion from a transiently over-pressured fault zone6-8.
NASA Astrophysics Data System (ADS)
Meixner, J.; Grimmer, J. C.; Becker, A.; Schill, E.; Kohl, T.
2018-03-01
GIS-based remote sensing techniques and lineament mapping provide additional information on the spatial arrangement of faults and fractures in large areas with variable outcrop conditions. Due to inherent censoring and truncation bias mapping of lineaments is still a challenging task. In this study we show how statistical evaluations help to improve the reliability of lineament mappings by comparing two digital elevation models (ASTER, LIDAR) and satellite imagery data sets in the seismically active southern Black Forest. A statistical assessment of the orientation, average length, and the total length of mapped lineaments reveals an impact of the different resolutions of the data sets that allow to define maximum (censoring bias) and minimum (truncation bias) observable lineament length for each data set. The increase of the spatial resolution of the digital elevation model from 30 m × 30 m to 5 m × 5 m results in a decrease of total lineament length by about 40% whereby the average lineament lengths decrease by about 60%. Lineament length distributions of both data sets follow a power law distribution as documented elsewhere for fault and fracture systems. Predominant NE-, N-, NNW-, and NW-directions of the lineaments are observed in all data sets and correlate with well-known, mappable large-scale structures in the southern Black Forest. Therefore, mapped lineaments can be correlated with faults and hence display geological significance. Lineament density in the granite-dominated areas is apparently higher than in the gneiss-dominated areas. Application of a slip- and dilation tendency analysis on the fault pattern reveals largest reactivation potentials for WNW-ESE and N-S striking faults as strike-slip faults whereas normal faulting may occur along NW-striking faults within the ambient stress field. Remote sensing techniques in combination with highly resolved digital elevation models and a slip- and dilation tendency analysis thus can be used to quickly get first order results of the spatial arrangement of critically stressed faults in crystalline basement rocks.
NW-SE Pliocene-Quaternary extension in the Apan-Acoculco region, eastern Trans-Mexican Volcanic Belt
NASA Astrophysics Data System (ADS)
García-Palomo, Armando; Macías, José Luis; Jiménez, Adrián; Tolson, Gustavo; Mena, Manuel; Sánchez-Núñez, Juan Manuel; Arce, José Luis; Layer, Paul W.; Santoyo, Miguel Ángel; Lermo-Samaniego, Javier
2018-01-01
The Apan-Acoculco area is located in the eastern portion of the Mexico basin and the Trans-Mexican Volcanic Belt. The area is transected by right-stepping variably dipping NE-SW normal faults. The Apan-Tlaloc Fault System is a major discontinuity that divides the region into two contrasting areas with different structural and volcanic styles. a) The western area is characterized by a horst-graben geometry with widespread Quaternary monogenetic volcanism and scattered outcrops of Miocene and Pliocene rocks. b) The eastern area is dominated by tilted horsts with a domino-like geometry with widespread Miocene and Pliocene rocks, scattered Quaternary monogenetic volcanoes and the Acoculco Caldera. Gravity data suggest that this structural geometry continues into the Mesozoic limestones. Normal faulting was active since the Pliocene with three stages of extension. One of them, an intense dilatational event began during late Pliocene and continues nowadays, contemporaneously with the emplacement of the Apan-Tezontepec Volcanic Field and the Acoculco caldera. Statistical analysis of cone elongation, cone instability, and the kinematic analysis of faults attest for a NW50°SE ± 7° extensional regime in the Apan-Acoculco area. The activity in some portions of the Apan-Tlaloc Fault System continues today as indicated by earthquake swarms recorded in 1992 and 1996, that disrupted late Holocene paleosols, and Holocene volcanism.
Structure and mechanics of the Hayward-Rodgers Creek Fault step-over, San Francisco Bay, California
Parsons, T.; Sliter, R.; Geist, E.L.; Jachens, R.C.; Jaffe, B.E.; Foxgrover, A.; Hart, P.E.; McCarthy, J.
2003-01-01
A dilatational step-over between the right-lateral Hayward and Rodgers Creek faults lies beneath San Pablo Bay in the San Francisco Bay area. A key seismic hazard issue is whether an earthquake on one of the faults could rupture through the step-over, enhancing its maximum possible magnitude. If ruptures are terminated at the step-over, then another important issue is how strain transfers through the step. We developed a combined seismic reflection and refraction cross section across south San Pablo Bay and found that the Hayward and Rodgers Creek faults converge to within 4 km of one another near the surface, about 2 km closer than previously thought. Interpretation of potential field data from San Pablo Bay indicated a low likelihood of strike-slip transfer faults connecting the Hayward and Rodgers Creek faults. Numerical simulations suggest that it is possible for a rupture to jump across a 4-km fault gap, although special stressing conditions are probably required (e.g., Harris and Day, 1993, 1999). Slip on the Hayward and Rodgers Creek faults is building an extensional pull-apart basin that could contain hazardous normal faults. We investigated strain in the pull-apart using a finite-element model and calculated a ???0.02-MPa/yr differential stressing rate in the step-over on a least-principal-stress orientation nearly parallel to the strike-slip faults where they overlap. A 1- to 10-MPa stress-drop extensional earthquake is expected on normal faults oriented perpendicular to the strike-slip faults every 50-500 years. The last such earthquake might have been the 1898 M 6.0-6.5 shock in San Pablo Bay that apparently produced a small tsunami. Historical hydrographic surveys gathered before and after 1898 indicate abnormal subsidence of the bay floor within the step-over, possibly related to the earthquake. We used a hydrodynamic model to show that a dip-slip mechanism in north San Pablo Bay is the most likely 1898 rupture scenario to have caused the tsunami. While we find no strike-slip transfer fault between the Hayward and Rodgers Creek faults, a normal-fault link could enable through-going segmented rupture of both strike-slip faults and may pose an independent hazard of M ???6 earthquakes like the 1898 event.
Tectonic and Structural Controls of Geothermal Activity in the Great Basin Region, Western USA
NASA Astrophysics Data System (ADS)
Faulds, J. E.; Hinz, N.; Kreemer, C. W.
2012-12-01
We are conducting a thorough inventory of structural settings of geothermal systems (>400 total) in the extensional to transtensional Great Basin region of the western USA. Most of the geothermal systems in this region are not related to upper crustal magmatism and thus regional tectonic and local structural controls are the most critical factors controlling the locations of the geothermal activity. A system of NW-striking dextral faults known as the Walker Lane accommodates ~20% of the North American-Pacific plate motion in the western Great Basin and is intimately linked to N- to NNE-striking normal fault systems throughout the region. Overall, geothermal systems are concentrated in areas with the highest strain rates within or proximal to the eastern and western margins of the Great Basin, with the high temperature systems clustering in transtensional areas of highest strain rate in the northwestern Great Basin. Enhanced extension in the northwestern Great Basin probably results from the northwestward termination of the Walker Lane and the concomitant transfer of dextral shear into west-northwest directed extension, thus producing a broad transtensional region. The capacity of geothermal power plants also correlates with strain rates, with the largest (hundreds of megawatts) along the Walker Lane or San Andreas fault system, where strain rates range from 10-100 nanostrain/yr to 1,000 nanostrain/yr, respectively. Lesser systems (tens of megawatts) reside in the Basin and Range (outside the Walker Lane), where local strain rates are typically < 10 nanostrain/yr. Of the 250+ geothermal fields catalogued, step-overs or relay ramps in normal fault zones serve as the most favorable setting, hosting ~32% of the systems. Such areas have multiple, overlapping fault strands, increased fracture density, and thus enhanced permeability. Other common settings include a) intersections between normal faults and strike-slip or oblique-slip faults (27%), where multiple minor faults connect major structures and fluids can flow readily through highly fractured, dilational quadrants, and b) normal fault terminations or tip-lines (22%), where horse-tailing generates closely-spaced faults and increased permeability. Other settings include accommodation zones (i.e., belts of intermeshing, oppositely dipping normal faults; 8%), major range-front faults (5-6%), and pull-aparts in strike-slip faults (4%). In addition, Quaternary faults lie within or near most systems. The relative scarcity of geothermal systems along displacement-maxima of major normal faults may be due to reduced permeability in thick zones of clay gouge and periodic release of stress in major earthquakes. Step-overs, terminations, intersections, and accommodation zones correspond to long-term, critically stressed areas, where fluid pathways are more likely to remain open in networks of closely-spaced, breccia-dominated fractures. These findings may help guide future exploration efforts, especially for blind geothermal systems, which probably comprise the bulk of the geothermal resources in the Great Basin.
Surface deformation in volcanic rift zones
Pollard, D.D.; Delaney, P.T.; Duffield, W.A.; Endo, E.T.; Okamura, A.T.
1983-01-01
The principal conduits for magma transport within rift zones of basaltic volcanoes are steeply dipping dikes, some of which feed fissure eruptions. Elastic displacements accompanying a single dike emplacement elevate the flanks of the rift relative to a central depression. Concomitant normal faulting may transform the depression into a graben thus accentuating the topographic features of the rift. If eruption occurs the characteristic ridge-trough-ridge displacement profile changes to a single ridge, centered at the fissure, and the erupted lava alters the local topography. A well-developed rift zone owes its structure and topography to the integrated effects of many magmatic rifting events. To investigate this process we compute the elastic displacements and stresses in a homogeneous, two-dimensional half-space driven by a pressurized crack that may breach the surface. A derivative graphical method permits one to estimate the three geometric parameters of the dike (height, inclination, and depth-to-center) and the mechanical parameter (driving pressure/rock stiffness) from a smoothly varying displacement profile. Direct comparison of measured and theoretical profiles may be used to estimate these parameters even if inelastic deformation, notably normal faulting, creates discontinuities in the profile. Geological structures (open cracks, normal faults, buckles, and thrust faults) form because of stresses induced by dike emplacement and fissure eruption. Theoretical stress states associated with dilation of a pressurized crack are used to interpret the distribution and orientation of these structures and their role in rift formation. ?? 1983.
NASA Astrophysics Data System (ADS)
Fitzenz, D. D.; Miller, S. A.
2001-12-01
We present preliminary results from a 3-dimensional fault interaction model, with the fault system specified by the geometry and tectonics of the San Andreas Fault (SAF) system. We use the forward model for earthquake generation on interacting faults of Fitzenz and Miller [2001] that incorporates the analytical solutions of Okada [85,92], GPS-constrained tectonic loading, creep compaction and frictional dilatancy [Sleep and Blanpied, 1994, Sleep, 1995], and undrained poro-elasticity. The model fault system is centered at the Big Bend, and includes three large strike-slip faults (each discretized into multiple subfaults); 1) a 300km, right-lateral segment of the SAF to the North, 2) a 200km-long left-lateral segment of the Garlock fault to the East, and 3) a 100km-long right-lateral segment of the SAF to the South. In the initial configuration, three shallow-dipping faults are also included that correspond to the thrust belt sub-parallel to the SAF. Tectonic loading is decomposed into basal shear drag parallel to the plate boundary with a 35mm yr-1 plate velocity, and East-West compression approximated by a vertical dislocation surface applied at the far-field boundary resulting in fault-normal compression rates in the model space about 4mm yr-1. Our aim is to study the long-term seismicity characteristics, tectonic evolution, and fault interaction of this system. We find that overpressured faults through creep compaction are a necessary consequence of the tectonic loading, specifically where high normal stress acts on long straight fault segments. The optimal orientation of thrust faults is a function of the strike-slip behavior, and therefore results in a complex stress state in the elastic body. This stress state is then used to generate new fault surfaces, and preliminary results of dynamically generated faults will also be presented. Our long-term aim is to target measurable properties in or around fault zones, (e.g. pore pressures, hydrofractures, seismicity catalogs, stress orientation, surface strain, triggering, etc.), which may allow inferences on the stress state of fault systems.
Structural controls on a geothermal system in the Tarutung Basin, north central Sumatra
NASA Astrophysics Data System (ADS)
Nukman, Mochamad; Moeck, Inga
2013-09-01
The Sumatra Fault System provides a unique geologic setting to evaluate the influence of structural controls on geothermal activity. Whereas most of the geothermal systems in Indonesia are controlled by volcanic activity, geothermal systems at the Sumatra Fault System might be controlled by faults and fractures. Exploration strategies for these geothermal systems need to be verified because the typical pattern of heat source and alteration clays are missing so that conventional exploration with magnetotelluric surveys might not provide sufficient data to delineate favorable settings for drilling. We present field geological, structural and geomorphological evidence combined with mapping of geothermal manifestations to allow constraints between fault dynamics and geothermal activity in the Tarutung Basin in north central Sumatra. Our results indicate that the fault pattern in the Tarutung Basin is generated by a compressional stress direction acting at a high angle to the right-lateral Sumatra Fault System. NW-SE striking normal faults possibly related to negative flower structures and NNW-SSE to NNE-SSW oriented dilative Riedel shears are preferential fluid pathways whereas ENE-WSW striking faults act as barriers in this system. The dominant of geothermal manifestations at the eastern part of the basin indicates local extension due to clockwise block rotation in the Sumatra Fault System. Our results support the effort to integrate detailed field geological surveys to refined exploration strategies even in tropical areas where outcrops are limited.
Numerical Simulation of Slow Slip and Dynamic Rupture in the Cascadia Subduction Zone
NASA Astrophysics Data System (ADS)
Segall, P.; Bradley, A. M.
2010-12-01
Seismic and geodetic observations are consistent with slow-slip events (SSE) occurring down-dip of the locked megathrust in regions of anomalously high pore pressure p. We hypothesize that at low effective normal stress (σ -p), dilatancy stabilizes velocity weakening faults, whereas at higher (σ -p), thermal pressurization overwhelms dilatancy, which leads to dynamic slip. We present two-dimensional half-space simulations that include rate-state friction, dilatancy (following Segall and Rice [1995]), and heat and pore-fluid flow normal to the fault. The system of equations is an index-1 differential algebraic equation (DAE) in slip δ , state θ , fault zone porosity φ , p, and T. We integrate θ , φ , and δ explicitly; solve the stress-balance equation on the fault; and integrate p and T implicitly. Numerical methods are discussed in Bradley and Segall [this meeting]. We take depth-variable frictional properties (based on lab experiments on gabbro, similar to Liu and Rice [2009]) that yield a transition from velocity strengthening to weakening friction at ˜ 33 km depth. We assume low effective stress, presumed to be driven by dehydration reactions, in the ˜ 25 to ˜ 40 km depth range. Simulations reveal generic behavior: dynamic events (DE) repeat every few hundred years, and between each DE is a quiescent period and then a long sequence of SSE. If the width of the low effective stress region exceeds a critical dimension, the SSE penetrate up-dip with time. During this period, the SSE moment rates generally (but not monotonically) increase with time. Eventually slip speeds become high enough to induce thermal pressurization, which nucleates a DE. The predicted behavior, in terms of SSE slip, stress drop, and repeat time bear many similarities to SSE in Cascadia. In related experiments [Chen et al, this meeting] we explore the role of heterogeneous permeability in generating low-frequency earthquakes and tremor. In all cases examined, slow slip fails to accommodate plate motion, and DE propagate through the SSE zone. To test model predictions against GPS data, we develop a pseudo-3D method that accounts for the markedly non-2D geometry of the plate interface. The approach employs 3D elastic Green's functions but assumes that slip rate is a function of depth only, as computed in the physics based model. We discuss whether or not steady creep is required above the SSE region to satisfy the inter-ETS GPS velocities, and the distribution of physical parameters that might permit this to occur (without artificially requiring an additional velocity strengthening region).
NASA Astrophysics Data System (ADS)
Budach, Ingmar; Moeck, Inga; Lüschen, Ewald; Wolfgramm, Markus
2018-03-01
The structural evolution of faults in foreland basins is linked to a complex basin history ranging from extension to contraction and inversion tectonics. Faults in the Upper Jurassic of the German Molasse Basin, a Cenozoic Alpine foreland basin, play a significant role for geothermal exploration and are therefore imaged, interpreted and studied by 3D seismic reflection data. Beyond this applied aspect, the analysis of these seismic data help to better understand the temporal evolution of faults and respective stress fields. In 2009, a 27 km2 3D seismic reflection survey was conducted around the Unterhaching Gt 2 well, south of Munich. The main focus of this study is an in-depth analysis of a prominent v-shaped fault block structure located at the center of the 3D seismic survey. Two methods were used to study the periodic fault activity and its relative age of the detected faults: (1) horizon flattening and (2) analysis of incremental fault throws. Slip and dilation tendency analyses were conducted afterwards to determine the stresses resolved on the faults in the current stress field. Two possible kinematic models explain the structural evolution: One model assumes a left-lateral strike slip fault in a transpressional regime resulting in a positive flower structure. The other model incorporates crossing conjugate normal faults within a transtensional regime. The interpreted successive fault formation prefers the latter model. The episodic fault activity may enhance fault zone permeability hence reservoir productivity implying that the analysis of periodically active faults represents an important part in successfully targeting geothermal wells.
NASA Astrophysics Data System (ADS)
Kettermann, Michael; von Hagke, Christoph; Urai, Janos L.
2017-04-01
Dilatant faults often form in rocks containing pre-existing joints, but the effects of joints on fault segment linkage and fracture connectivity is not well understood. Studying evolution of dilatancy and influence of fractures on fault development provides insights into geometry of fault zones in brittle rocks and will eventually allow for predicting their subsurface appearance. In an earlier study we recognized the effect of different angles between strike direction of vertical joints and a basement fault on the geometry of a developing fault zone. We now systematically extend the results by varying geometric joint parameters such as joint spacing and vertical extent of the joints and measuring fracture density and connectivity. A reproducibility study shows a small error-range for the measurements, allowing for a confident use of the experimental setup. Analogue models were carried out in a manually driven deformation box (30x28x20 cm) with a 60° dipping pre-defined basement fault and 4.5 cm of displacement. To produce open joints prior to faulting, sheets of paper were mounted in the box to a depth of 5 cm at a spacing of 2.5 cm. We varied the vertical extent of the joints from 5 to 50 mm. Powder was then sieved into the box, embedding the paper almost entirely (column height of 19 cm), and the paper was removed. During deformation we captured structural information by time-lapse photography that allows particle imaging velocimetry analyses (PIV) to detect localized deformation at every increment of displacement. Post-mortem photogrammetry preserves the final 3-dimensional structure of the fault zone. A counterintuitive result is that joint depth is of only minor importance for the evolution of the fault zone. Even very shallow joints form weak areas at which the fault starts to form and propagate. More important is joint spacing. Very large joint spacing leads to faults and secondary fractures that form subparallel to the basement fault. In contrast, small joint spacing results in fault strands that only localize at the pre-existing joints, and secondary fractures that are oriented at high angles to the pre-existing joints. With this new set of experiments we can now quantitatively constrain how (i) the angle between joints and basement fault, (ii) the joint depth and (iii) the joint spacing affect fault zone parameters such as (1) the damage zone width, (2) the density of secondary fractures, (3) map-view area of open gaps or (4) the fracture connectivity. We apply these results to predict subsurface geometries of joint-fault networks in cohesive rocks, e.g. basaltic sequences in Iceland and sandstones in the Canyonlands NP, USA.
NASA Astrophysics Data System (ADS)
Gomila, Rodrigo; Arancibia, Gloria; Mitchell, Thomas M.; Cembrano, Jose M.; Faulkner, Daniel R.
2016-02-01
Understanding fault zone permeability and its spatial distribution allows the assessment of fluid-migration leading to precipitation of hydrothermal minerals. This work is aimed at unraveling the conditions and distribution of fluid transport properties in fault zones based on hydrothermally filled microfractures, which reflect the ''frozen-in'' instantaneous advective hydrothermal activity and record palaeopermeability conditions of the fault-fracture system. We studied the Jorgillo Fault, an exposed 20 km long, left-lateral strike-slip fault, which juxtaposes Jurassic gabbro against metadiorite belonging to the Atacama Fault System in northern Chile. Tracings of microfracture networks of 19 oriented thin sections from a 400 m long transect across the main fault trace was carried out to estimate the hydraulic properties of the low-strain fault damagezone, adjacent to the high-strain fault core, by assuming penny-shaped microfractures of constant radius and aperture within an anisotropic fracture system. Palaeopermeability values of 9.1*10-11 to 3.2*10-13 m2 in the gabbro and of 5.0*10-10 to 1.2*10-13 m2 in the metadiorite were determined, both decreasing perpendicularly away from the fault core. Fracture porosity values range from 40.00% to 0.28%. The Jorgillo Fault has acted as a left-lateral dilational fault-bend, generating large-scale dilation sites north of the JF during co-seismic activity.
A broader classification of damage zones
NASA Astrophysics Data System (ADS)
Peacock, D. C. P.; Dimmen, V.; Rotevatn, A.; Sanderson, D. J.
2017-09-01
Damage zones have previously been classified in terms of their positions at fault tips, walls or areas of linkage, with the latter being described in terms of sub-parallel and synchronously active faults. We broaden the idea of linkage to include structures around the intersections of non-parallel and/or non-synchronous faults. These interaction damage zones can be divided into approaching damage zones, where the faults kinematically interact but are not physically connected, and intersection damage zones, where the faults either abut or cross-cut. The damage zone concept is applied to other settings in which strain or displacement variations are taken up by a range of structures, such as at fault bends. It is recommended that a prefix can be added to a wide range of damage zones, to describe the locations in which they formed, e.g., approaching, intersection and fault bend damage zone. Such interpretations are commonly based on limited knowledge of the 3D geometries of the structures, such as from exposure surfaces, and there may be spatial variations. For example, approaching faults and related damage seen in outcrop may be intersecting elsewhere on the fault planes. Dilation in intersection damage zones can represent narrow and localised channels for fluid flow, and such dilation can be influenced by post-faulting stress patterns.
Abrupt along-strike change in tectonic style: San Andreas fault zone, San Francisco Peninsula
Zoback, M.L.; Jachens, R.C.; Olson, J.A.
1999-01-01
Seismicity and high-resolution aeromagnetic data are used to define an abrupt change from compressional to extensional tectonism within a 10- to 15-km-wide zone along the San Andreas fault on the San Francisco Peninsula and offshore from the Golden Gate. This 100-km-long section of the San Andreas fault includes the hypocenter of the Mw = 7.8 1906 San Francisco earthquake as well as the highest level of persistent microseismicity along that ???470-km-long rupture. We define two distinct zones of deformation along this stretch of the fault using well-constrained relocations of all post-1969 earthquakes based a joint one-dimensional velocity/hypocenter inversion and a redetermination of focal mechanisms. The southern zone is characterized by thrust- and reverse-faulting focal mechanisms with NE trending P axes that indicate "fault-normal" compression in 7- to 10-km-wide zones of deformation on both sides of the San Andreas fault. A 1- to 2-km-wide vertical zone beneath the surface trace of the San Andreas is characterized by its almost complete lack of seismicity. The compressional deformation is consistent with the young, high topography of the Santa Cruz Mountains/Coast Ranges as the San Andreas fault makes a broad restraining left bend (???10??) through the southernmost peninsula. A zone of seismic quiescence ???15 km long separates this compressional zone to the south from a zone of combined normal-faulting and strike-slip-faulting focal mechanisms (including a ML = 5.3 earthquake in 1957) on the northernmost peninsula and offshore on the Golden Gate platform. Both linear pseudo-gravity gradients, calculated from the aeromagnetic data, and seismic reflection data indicate that the San Andreas fault makes an abrupt ???3-km right step less than 5 km offshore in this northern zone. A similar right-stepping (dilatational) geometry is also observed for the subparallel San Gregorio fault offshore. Persistent seismicity and extensional tectonism occur within the San Andreas right stepover region and at least 15 km along-strike both to the SE and NW. The 1906 San Francisco earthquake may have nucleated within the San Andreas right stepover, which may help explain the bilateral nature of rupture of this event. Our analysis suggests two seismic hazards for the San Francisco Peninsula in addition to the hazard associated with a M = 7 to 8 strike-slip earthquake along the San Andreas fault: the potential for a M ??? 6 normal-faulting earthquake just 5-8 km west of San Francisco and a M = 6+ thrust faulting event in the southern peninsula.
Nucleation and growth of strike slip faults in granite.
Segall, P.; Pollard, D.P.
1983-01-01
Fractures within granodiorite of the central Sierra Nevada, California, were studied to elucidate the mechanics of faulting in crystalline rocks, with emphasis on the nucleation of new fault surfaces and their subsequent propagation and growth. Within the study area the fractures form a single, subparallel array which strikes N50o-70oE and dips steeply to the S. Some of these fractures are identified as joints because displacements across the fracture surfaces exhibit dilation but no slip. The joints are filled with undeformed minerals, including epidote and chlorite. Other fractures are identified as small faults because they display left-lateral strike slip separations of up to 2m. Slickensides, developed on fault surfaces, plunge 0o-20o to the E. The faults occur parallel to, and in the same outcrop with, the joints. The faults are filled with epidote, chlorite, and quartz, which exhibit textural evidence of shear deformation. These observations indicate that the strike slip faults nucleated on earlier formed, mineral filled joints. Secondary, dilational fractures propagated from near the ends of some small faults contemporaneously with the left-lateral slip on the faults. These fractures trend 25o+ or -10o from the fault planes, parallel to the direction of inferred local maximum compressive stress. The faults did not propagate into intact rock in their own planes as shear fractures. -from Authors
NASA Technical Reports Server (NTRS)
Kattenhorn, S. A.
2003-01-01
A commonly observed feature in faulted terrestrial rocks is the occurrence of secondary fractures alongside faults. Depending on exact morphology, such fractures have been termed tail cracks, wing cracks, kinks, or horsetail fractures, and typically form at the tip of a slipping fault or around small jogs or steps along a fault surface. The location and orientation of secondary fracturing with respect to the fault plane or the fault tip can be used to determine if fault motion is left-lateral or right-lateral.
NASA Astrophysics Data System (ADS)
Hashimoto, Y.; Morita, K.; Okubo, M.; Hamada, Y.; Lin, W.; Hirose, T.; Kitamura, M.
2015-12-01
Fault motion has been estimated by diffusion pattern of frictional heating recorded in geology (e.g., Fulton et al., 2012). The same record in deeper subduction plate interface can be observed from micro-faults in an exhumed accretionary complex. In this study, we focused on a micro-fault within the Cretaceous Shimanto Belt, SW Japan to estimate fault motion from the frictional heating diffusion pattern. A carbonaceous material concentrated layer (CMCL) with ~2m of thickness is observed in study area. Some micro-faults cut the CMCL. Thickness of a fault is about 3.7mm. Injection veins and dilatant fractures were observed in thin sections, suggesting that the high fluid pressure was existed. Samples with 10cm long were collected to measure distribution of vitrinite reflectance (Ro) as a function of distance from the center of micro-fault. Ro of host rock was ~1.0%. Diffusion pattern was detected decreasing in Ro from ~1.2%-~1.1%. Characteristic diffusion distance is ~4-~9cm. We conducted grid search to find the optimal frictional heat generation per unit area (Q, the product of friction coefficient, normal stress and slip velocity) and slip duration (t) to fit the diffusion pattern. Thermal diffusivity (0.98*10-8m2/s) and thermal conductivity (2.0 W/mK) were measured. In the result, 2000-2500J/m2 of Q and 63000-126000s of t were estimated. Moment magnitudes (M0) of slow earthquakes (slow EQs) follow a scaling law with slip duration and its dimension is different from that for normal earthquakes (normal EQ) (Ide et al., 2007). The slip duration estimated in this study (~104-~105s) consistent with 4-5 of M0, never fit to the scaling law for normal EQ. Heat generation can be inverted from 4-5 of M0, corresponding with ~108-~1011J, which is consistent with rupture area of 105-108m2 in this study. The comparisons in heat generation and slip duration between geological measurements and geophysical remote observations give us the estimation of rupture area, M0, and earthquake style, for non-active geological records.
NASA Astrophysics Data System (ADS)
Lacroix, S.; Sawyer, E. W.; Chown, E. H.
1998-01-01
The Lake Abitibi area within the late Archaean Abitibi Greenstone Belt exhibits an interlinked plutonic, structural and metamorphic evolution that may characterize segmented strike-slip faults at upper-to-mid-crustal levels. Along the major, southeastward propagating Macamic D2 dextral strike-slip fault, Theological and preexisting D1 structural heterogeneities induced the development of NNW-trending dextral-oblique splays which evolved into an extensional trailing fan and created an extensional, NNW-dipping stepover. Magma flowing upwards from deeper parts of the Macamic Fault spread towards the southeast at upper crustal levels along both the oblique-slip and extensional D2 splays, and built several plutons in a pull-apart domain between 2696 and 2690 Ma. Different emplacement and material transfer mechanisms operated simultaneously in different parts of the system, including fault dilation and wedging, lateral expansion, wall-rock ductile flow and stoping. Transfer of movement between D2 splays occurred under ductile conditions during syn-emplacement, amphibolite-grade metamorphism (500-700 °C). During cooling (< 2690 Ma), narrower brittle-ductile zones of greenschist-grade shearing were concentrated along the pluton-wall rock contacts, but the extensional stepover locked since both normal and reverse movements occurred along NNW-dipping faults. Pluton emplacement, contact metamorphism and propagation of D2 faults appear to have been closely linked during the Superior Province-wide late transpressional event.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Ryan B; Faulds, James E
The Pyramid Lake area is favorable for geothermal development due to the tectonic setting of the region. The Walker Lane belt, a dextral shear zone that accommodates ~20% relative motion between the Pacific and North American plates, terminates northwestward in northeast California. NW-directed dextral shear is transferred to WNW extension accommodated by N-to -NNE striking normal faults of the Basin and Range. As a consequence, enhanced dilation occurs on favorably oriented faults generating high geothermal potential in the northwestern Great Basin. The NW-striking right-lateral Pyramid Lake fault, a major structure of the northern Walker Lane, terminates at the southern endmore » of Pyramid Lake and transfers strain to the NNE-striking down to the west Lake Range fault, resulting in high geothermal potential. Known geothermal systems in the area have not been developed due to cultural considerations of the Pyramid Lake Paiute Tribe. Therefore, exploration has been focused on discovering blind geothermal systems elsewhere on the reservation by identifying structurally favorable settings and indicators of past geothermal activity. One promising area is the northeast end of Pyramid Lake, where a broad left step between the west-dipping range-bounding faults of the Lake and Fox Ranges has led to the formation of a broad, faulted relay ramp. Furthermore, tufa mounds, mineralized veins, and altered Miocene rocks occur proximal to a thermal anomaly discovered by a 2-m shallow temperature survey at the north end of the step-over in Emerson Pass. Detailed geologic mapping has revealed a system of mainly NNE-striking down to the west normal faults. However, there are three notable exceptions to this generality, including 1) a prominent NW-striking apparent right-lateral fault, 2) a NW-striking down to the south fault which juxtaposes the base of the mid-Miocene Pyramid sequence against younger late Tertiary sedimentary rocks, and 3) a NNE-striking down to the east normal fault, which accommodates motion such that the Mesozoic Nightingale sequence is juxtaposed with late Tertiary sedimentary rocks. The NW dextral fault, the NNE-down to east fault, and several NNE-down to the west faults intersect roughly at the thermal anomaly in Emerson Pass. This suggests that fault intersections locally control upwelling of geothermal fluids within the step-over. Based on this assumption, it is proposed that the area near Buckbrush Springs be investigated further for geothermal potential. At this location, a NNE-down to the west normal fault, with >1 km of offset, intersects a NW-striking down to the south fault at a small left step in the NNE fault. Further studies will include collection of available kinematic indicators near the shallow thermal anomaly in Emerson Pass, geothermometry on Buckbrush Spring, and possibly drilling of temperature gradient wells in Emerson Pass and at Buckbrush Spring.« less
The roles of time and displacement in velocity-dependent volumetric strain of fault zones
Beeler, N.M.; Tullis, T.E.
1997-01-01
The relationship between measured friction??A and volumetric strain during frictional sliding was determined using a rate and state variable dependent friction constitutive equation, a common work balance relating friction and volume change, and two types of experimental faults: initially bare surfaces of Westerly granite and rock surfaces separated by a 1 mm layer of < 90 ??m Westerly granite gouge. The constitutive equation is the sum of a constant term representing the nominal resistance to sliding and two smaller terms: a rate dependent term representing the shear viscosity of the fault surface (direct effect), and a term which represents variations in the area of contact (evolution effect). The work balance relationship requires that ??A differs from the frictional resistance that leads to shear heating by the derivative of fault normal displacement with respect shear displacement, d??n ld??s. An implication of this relationship is that the rate dependence of d??n ld??s contributes to the rate dependence of ??A. Experiments show changes in sliding velocity lead to changes in both fault strength and volume. Analysis of data with the rate and state equations combined with the work balance relationship preclude the conventional interpretation of the direct effect in the rate and state variable constitutive equations. Consideration of a model bare surface fault consisting of an undeformable indentor sliding on a deformable surface reveals a serious flaw in the work balance relationship if volume change is time-dependent. For the model, at zero slip rate indentation creep under the normal load leads to time-dependent strengthening of the fault surface but, according to the work balance relationship, no work is done because compaction or dilatancy can only be induced by shearing. Additional tests on initially bare surfaces and gouges show that fault normal strain in experiments is time-dependent, consistent with the model. This time-dependent fault normal strain, which is not accounted for in the work balance relationship, explains the inconsistency between the constitutive equations and the work balance. For initially bare surface faults, all rate dependence of volume change is due to time dependence. Similar results are found for gouge. We conclude that ??A reflects the frictional resistance that results in shear heating, and no correction needs to be made for the volume changes. The result that time-dependent volume changes do not contribute to ??A is a general result and extends beyond these experiments, the simple indentor model and particular constitutive equations used to illustrate the principle.
NASA Astrophysics Data System (ADS)
Griffith, W. A.; Nielsen, S.; di Toro, G.; Pollard, D. D.; Pennacchioni, G.
2007-12-01
We estimate the coseismic static stress drop on small exhumed strike-slip faults in the Mt. Abbot quadrangle of the central Sierra Nevada (California). The sub-vertical strike-slip faults cut ~85 Ma granodiorite, were exhumed from 7-10 km depth, and were chosen because they are exposed along their entire lengths, ranging from 8 to 13 m. Net slip is estimated using offset aplite dikes and shallowly plunging slickenlines on the fault surfaces. The faults show a record of progressive strain localization: slip initially nucleated on joints and accumulated from ductile shearing (quartz-bearing mylonites) to brittle slipping (epidote-bearing cataclasites). Thin (< 1 mm) pseudotachylytes associated with the cataclasites have been identified along some faults, suggesting that brittle slip may have been seismic. The brittle contribution to slip may be distinguished from the ductile shearing because epidote-filled, rhombohedral dilational jogs opened at bends and step-overs during brittle slip, are distributed periodically along the length of the faults. We argue that brittle slip occurred along the measured fault lengths in single slip events based on several pieces of evidence. 1) Epidote crystals are randomly oriented and undeformed within dilational jogs, indicating they did not grow during aseismic slip and were not broken after initial opening and precipitation. 2) Opening-mode splay cracks are concentrated near fault tips rather than the fault center, suggesting that the reactivated faults ruptured all at once rather than in smaller slip patches. 3) The fact that the opening lengths of the dilational jogs vary systematically along the fault traces suggests that brittle reactivation occurred in a single slip event along the entire fault rather than in multiple slip events. This unique combination of factors distinguishes this study from previous attempts to estimate stress drop from exhumed faults because we can constrain the coseismic rupture length and slip. The static stress drop is calculated for a circular fault using the length of the mapped faults and their slip distributions as well as the shear modulus of the host granodiorite measured in the laboratory. Calculations yield stress drops on the order of 100-200 MPa, one to two orders of magnitude larger than typical seismological estimates. The studied seismic ruptures occurred along small, deep-seated faults (10 km depth), and, given the fault mineral filling (quartz-bearing mylonites) these were "strong" faults. Our estimates are consistent with static stress drops estimated by Nadeau and Johnson (1998) for small repeated earthquakes.
Fossil rocks of slow earthquake detected by thermal diffusion length
NASA Astrophysics Data System (ADS)
Hashimoto, Yoshitaka; Morita, Kiyohiko; Okubo, Makoto; Hamada, Yohei; Lin, Weiren; Hirose, Takehiro; Kitamura, Manami
2016-04-01
Fault motion has been estimated by diffusion pattern of frictional heating recorded in geology (e.g., Fulton et al., 2012). The same record in deeper subduction plate interface can be observed from micro-faults in an exhumed accretionary complex. In this study, we focused on a micro-fault within the Cretaceous Shimanto Belt, SW Japan to estimate fault motion from the frictional heating diffusion pattern. A carbonaceous material concentrated layer (CMCL) with ~2m of thickness is observed in study area. Some micro-faults cut the CMCL. Thickness of a fault is about 3.7mm. Injection veins and dilatant fractures were observed in thin sections, suggesting that the high fluid pressure was existed. Samples with 10cm long were collected to measure distribution of vitrinite reflectance (Ro) as a function of distance from the center of micro-fault. Ro of host rock was ~1.0%. Diffusion pattern was detected decreasing in Ro from ~1.2%-~1.1%. Characteristic diffusion distance is ~4-~9cm. We conducted grid search to find the optimal frictional heat generation per unit area per second (Q (J/m^2/s), the product of friction coefficient, normal stress and slip velocity) and slip duration (t(s)) to fit the diffusion pattern. Thermal diffusivity (0.98*10^8m^2/s) and thermal conductivity (2.0 w/mK) were measured. In the result, 2000-2500J/m^2/s of Q and 63000-126000s of t were estimated. Moment magnitudes (M0) of slow earthquakes (slow EQs) follow a scaling law with slip duration and its dimension is different from that for normal earthquakes (normal EQ) (Ide et al., 2007). The slip duration estimated in this study (~10^4-~10^5s) consistent with 4-5 of M0, never fit to the scaling law for normal EQ. Heat generation can be inverted from 4-5 of M0, corresponding with ~10^8-~10^11J, which is consistent with rupture area of 10^5-10^8m2 in this study. The comparisons in heat generation and slip duration between geological measurements and geophysical remote observations give us the estimation of rupture area, M0, and earthquake style, for geological records.
Weak Frictional Healing as Controlled by Intergranular Pressure Solution
NASA Astrophysics Data System (ADS)
He, C.
2017-12-01
Unstable fault slips due to velocity weakening requires a frictional healing effect that is stronger than the instantaneous rate effect. Based on a previous analytical result regarding the healing effect at spherical contacts by intergranular pressure solution (He et al., 2013), we extend the analysis to incorporate the full range of dilatancy angles from π/6 to -π/6, covering uphill and downhill situations of many contacts with different dilatancy angles. Assuming that both healing effect (parameter b) and instantaneous rate effect (parameter a) are controlled by intergranular pressure solution, and averaging over the whole range of dilatancy angle, our analysis derives each of the two effects as a function of temperature. The result shows velocity weakening for friction coefficient>0.274. As hydrothermal conditions are important for deep portion of actual fault zones, the strength of velocity weakening is of interest when the related faulting behavior is concerned. As a measure of the strength of velocity weakening, the derived ratio b/a fully controlled by pressure solution shows an upper bound of 1.22. Data analyses in previous studies on plagioclase (He et al., 2013) and oceanic basalt (Zhang and He, 2017) shows a range of b/a =1.05-1.2, consistent with the analytical result. The values<1.2 are considered here to be due to concurrent cataclasis that promotes the instantaneous rate effect, which reduces b/a to levels below the upper bound. These values are significantly less than in dry experiments on granite by Mitchell et al.(2016), where b/a ranges from 1.54-2.59 as inferred by reanalyzing their stick-slip data at temperatures of 20°C, 500°C and 600°C. Comparison between the two ranges of b/a helps understand the dominant mechanism of frictional healing at contacts, especially under hydrothermal conditions in fault zones. For comparable ratios of system stiffness to the critical value, numerical simulations with a single-degree-of-freedom system show that a smaller b/a significantly reduces the peak slip velocity as a result of reduced period of free oscillation corresponding to the lower stiffness (Fig.1). This is an effect similar to that by reduced effective normal stress due to overpressure of pore fluid, which lowers the stiffness suitable for unstable slips, thus weakens the peak slip velocity.
Hammond, W.C.; Thatcher, W.
2004-01-01
We have estimated patterns and rates of crustal movement across 800 km of the Basin and Range at ???39?? north latitude with Global Positioning System surveys in 1992, 1996, 1998, and 2002. The total rate of motion tangent to the small circle around the Pacific-North America pole of rotation is 10.4 ?? 1.0 mm/yr, and motion normal to this small circle is 3.9 ?? 0.9 mm/yr compared to the east end of our network. On the Colorado Plateau the east end of our network moves by ???1-2 mm/yr westerly with respect to North America. Transitions in strain rates delimit six major tectonic domains within the province. These deformation zones coincide with areas of modern seismicity and are, from east to west, (1) east-west extension in the Wasatch Fault zone, (2) low rate east-west extension centered near the Nevada-Utah border, (3) low rate east-west contraction between 114.7??W and 117.9??W, (4) extension normal to and strike-slip motion across the N10??E striking Central Nevada Seismic Zone, (5) right lateral simple shear oriented N13??W inside the Walker Lane Belt, and (6) shear plus extension near the Sierra Nevada frontal faults. Concentration of shear and dilatational deformation across the three westernmost zones suggests that the Walker Lane Belt lithosphere is rheologically weak. However, we show that linear gradients in viscosity and gravitational potential energy can also effectively concentrate deformation. In the Basin and Range, gradients in gravitational potential are spatially anticorrelated with dilatational strain rates, consistent with the presence of horizontal variations in viscosity of the lithosphere.
Surface-wave potential for triggering tectonic (nonvolcanic) tremor
Hill, D.P.
2010-01-01
Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle is anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45?? incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia mega-thrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction, ????? 0.2). However, documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, is associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (?? ~ 0.6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.
Surface-wave potential for triggering tectonic (nonvolcanic) tremor-corrected
Hill, David P.
2012-01-01
Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle are anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45° incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia megathrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction is μ* ≤ 0:2). Documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, however, are associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (μ ~ 0:6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.
Evolution of Friction, Wear, and Seismic Radiation Along Experimental Bi-material Faults
NASA Astrophysics Data System (ADS)
Carpenter, B. M.; Zu, X.; Shadoan, T.; Self, A.; Reches, Z.
2017-12-01
Faults are commonly composed by rocks of different lithologies and mechanical properties that are positioned against one another by fault slip; such faults are referred to as bimaterial-faults (BF). We investigate the mechanical behavior, wear production, and seismic radiation of BF via laboratory experiments on a rotary shear apparatus. In the experiments, two rock blocks of dissimilar or similar lithology are sheared against each other. We used contrasting rock pairs of a stiff, igneous block (diorite, granite, or gabbro) against a more compliant, sedimentary block (sandstone, limestone, or dolomite). The cylindrical blocks have a ring-shaped contact, and are loaded under conditions of constant normal stress and shear velocity. Fault behavior was monitored with stress, velocity and dilation sensors. Acoustic activity is monitored with four 3D accelerometers mounted at 2 cm distance from the experimental fault. These sensors can measure accelerations up to 500 g, and their full waveform output is recorded at 1MHz for periods up to 14 sec. Our preliminary results indicate that the bi-material nature of the fault has a strong affect on slip initiation, wear evolution, and acoustic emission activity. In terms of wear, we observe enhanced wear in experiments with a sandstone block sheared against a gabbro or limestone block. Experiments with a limestone or sandstone block produced distinct slickenline striations. Further, significant differences appeared in the number and amplitude of acoustic events depending on the bi-material setting and slip-distance. A gabbro-gabbro fault showed a decrease in both amplitude and number of acoustic events with increasing slip. Conversely, a gabbro-limestone fault showed a decrease in the number of events, but an increase in average event amplitude. Ongoing work focuses on advanced characterization of mechanical, dynamic weakening, and acoustic, frequency content, parameters.
Distribution, morphology, and origins of Martian pit crater chains
NASA Astrophysics Data System (ADS)
Wyrick, Danielle; Ferrill, David A.; Morris, Alan P.; Colton, Shannon L.; Sims, Darrell W.
2004-06-01
Pit craters are circular to elliptical depressions found in alignments (chains), which in many cases coalesce into linear troughs. They are common on the surface of Mars and similar to features observed on Earth and other terrestrial bodies. Pit craters lack an elevated rim, ejecta deposits, or lava flows that are associated with impact craters or calderas. It is generally agreed that the pits are formed by collapse into a subsurface cavity or explosive eruption. Hypotheses regarding the formation of pit crater chains require development of a substantial subsurface void to accommodate collapse of the overlying material. Suggested mechanisms of formation include: collapsed lava tubes, dike swarms, collapsed magma chamber, substrate dissolution (analogous to terrestrial karst), fissuring beneath loose material, and dilational faulting. The research described here is intended to constrain current interpretations of pit crater chain formation by analyzing their distribution and morphology. The western hemisphere of Mars was systematically mapped using Mars Orbiter Camera (MOC) images to generate ArcView™ Geographic Information System (GIS) coverages. All visible pit crater chains were mapped, including their orientations and associations with other structures. We found that pit chains commonly occur in areas that show regional extension or local fissuring. There is a strong correlation between pit chains and fault-bounded grabens. Frequently, there are transitions along strike from (1) visible faulting to (2) faults and pits to (3) pits alone. We performed a detailed quantitative analysis of pit crater morphology using MOC narrow angle images, Thermal Emission Imaging System (THEMIS) visual images, and Mars Orbiter Laser Altimeter (MOLA) data. This allowed us to determine a pattern of pit chain evolution and calculate pit depth, slope, and volume. Volumes of approximately 150 pits from five areas were calculated to determine volume size distribution and regional trends. The information collected in the study was then compared with non-Martian examples of pit chains and physical analog models. We evaluated the various mechanisms for pit chain development based on the data collected and conclude that dilational normal faulting and sub-vertical fissuring provide the simplest and most comprehensive mechanisms to explain the regional associations, detailed geometry, and progression of pit chain development.
Effects of fluid-rock interaction on friction and slip stability of gouge-filled faults (Invited)
NASA Astrophysics Data System (ADS)
Spiers, C. J.
2013-12-01
Understanding the effects of fluid-rock interaction on fault friction is central not only to understanding natural seismogenesis but also to evaluating the risks of fault reactivation and induced seismicity posed by subsurface resources production and by geological storage of CO2. Microstructural studies on natural fault rocks deformed in the mid and upper crust, including those sampled in fault drilling projects, frequently show evidence for i) fluid-related reactions forming an anastomosing phyllosilicate network, ii) pressure solution and cataclasis of clast phases, and iii) dilatation and cementation of fractures, cracks and pores. Moreover, decades of friction experiments on simulated granitic, gabroic, quartz and more recently calcite and phyllosilicate-quartz gouges, have shown that the presence of an aqueous pore fluid, or even water vapour, strongly influences the frictional behaviour of these materials. This has long been recognised to point to the operation of fluid-assisted deformation mechanisms, such as stress corrosion cracking or pressure solution. Indeed, recent low velocity friction experiments performed at Utrecht on evaporite and quartz gouges, with varying amounts of phyllosilicate, indicate that fluid-assisted deformation of the clast phases is a requirement for velocity-weakening slip capable of causing stick-slip. Supercritical carbon dioxide, on the other hand, has little effect on the frictional behaviour of either dry or wet gouges. An important trend emerging from all gouges containing quartz, and tested at hydrothermal conditions and sliding velocities below 100 μm/s, is a transition from velocity strengthening at low temperatures, to velocity weakening at intermediate temperatures, and back to velocity strengthening at high temperatures, delineating three regimes of steady state frictional behaviour. Where dilation has been measured or estimated, the velocity weakening regime is further characterised by porosity development. This all leads to the conclusion that a micromechanism-based description of the frictional behaviour of gouge-filled faults, under mid and upper crustal conditions, needs to account for pressure solution and stress corrosion cracking of clast phases, and for both dilatant and non-dilatant slip on intervening, weak phyllosilicates. First attempts to do this, assuming pressure solution as the fluid-assisted clast deformation mechanism, successfully predict the three-regime behaviour seen in experiments on phyllosilicate-quartz gouges, as well as other key observations. Both steady state and transient frictional behaviour similar to that seen in experiments can be predicted. The key factor here controlling both frictional response (i.e a, b, a-b and Dc in the terminology of RSF modelling) and porosity turns out to be competition between dilatation due to intergranular slip on phyllosillicates versus flow and compaction by pressure solution. In particular, velocity-weakening slip, hence rupture nucleation, are predicted to be caused by the effects of the fluid phase in promoting compaction by pressure solution during dilatant shear.
NASA Astrophysics Data System (ADS)
Schneeberger, Raphael; Berger, Alfons; Mäder, Urs K.; Niklaus Waber, H.; Kober, Florian; Herwegh, Marco
2017-04-01
Water flow across crystalline bedrock is of major interest for deep-seated geothermal energy projects as well as for underground disposal of radioactive waste. In crystalline rocks enhanced fluid flow is related to zones of increased permeability, i.e. to fractures that are associated to fault zones. The flow regime around the Grimsel Test Site (GTS, Central Aar massif) was assessed by establishing a 3D fault zone pattern on a local scale in the GTS underground facility (deca-meter scale) and on a regional scale at the surface (km-scale). The study reveals the existence of a dense fault zone network consisting of several km long and few tens of cm to meter wide, sub-vertically oriented major faults that are connected by tens to hundreds of meters long minor bridging faults. This geometrical information was used as input for the generation of a 3D fault zone network model. The faults originate from ductile shear zones that were reactivated as brittle faults under retrograde conditions during exhumation. Embrittlement and associated dilatancy along the faults provide the pathways for today's groundwater flow. Detection of the actual 3D flow paths is, however, challenging since flow seem to be not planar but rather tube-like. Two strategies are applied to constrain the 3D geometry of the flow tubes: (i) Characterization of the groundwater infiltrating into the GTS (location, yield, hydraulic head, and chemical composition) and (ii) stress modelling on the base of the 3D structural model to unravel potential domains of enhanced fluid flow such as fault plane intersections and domains of dilatancy. At the Grimsel Test Site, hydraulic and structural data demonstrate that the groundwater flow is head-driven from the surface towards the GTS located some 450 m below the surface. The residence time of the groundwater in this surface-near section is >60 years as evidenced by absence of detectable tritium. However, hydraulic heads obtained from interval pressure measurements within boreholes are variable and do not correspond to the overburden above the interval. Underground mapping revealed close spatial relation between water inflow points and faults, major water inflows occur in strongly deformed areas of the GTS. Furthermore, persistent differences in the groundwater chemical composition between infiltration points indicate that connectivity between different water flow paths is poor. Different findings indicate complex flow path geometries. However, domains of enhanced dilatancy and domains with increased number of fault intersections correlate with areas in the underground with 'high' water inflow.
NASA Astrophysics Data System (ADS)
Martinez-Garzon, Patricia; Kwiatek, Grzegorz; Bohnhoff, Marco; Dresen, Georg
2017-04-01
Improving estimates of seismic hazard associated to reservoir stimulation requires advanced understanding of the physical processes governing induced seismicity, which can be better achieved by carefully processing large datasets. To this end, we investigate source-type processes (shear/tensile/compaction) and rupture geometries with respect to the local stress field using seismicity from The Geysers (TG) and Salton Sea geothermal reservoirs, California. Analysis of 869 well-constrained full moment tensors (MW 0.8-3.5) at TG reveals significant non-double-couple (NDC) components (>25%) for 65% of the events and remarkably diversity in the faulting mechanisms. Volumetric deformation is clearly governed by injection rates with larger NDC components observed near injection wells and during high injection periods. The overall volumetric deformation from the moment tensors increases with time, possibly reflecting a reservoir pore pressure increase after several years of fluid injection with no significant production nearby. The obtained source mechanisms and fault orientations are magnitude-dependent and vary significantly between faulting regimes. Normal faulting events (MW < 2) reveal substantial NDC components indicating dilatancy, and they occur on varying fault orientations. In contrast, strike-slip events dominantly reveal a double-couple source, larger magnitudes (MW > 2) and mostly occur on optimally oriented faults with respect to the local stress field. NDC components indicating closure of cracks and pore spaces in the source region are found for reverse faulting events with MW > 2.5. Our findings from TG are generally consistent with preliminary source-type results from a reduced subset of well-recorded seismicity at the Salton Sea geothermal reservoir. Combined results imply that source processes and magnitudes of geothermal-induced seismicity are strongly affected by and systematically related to the hydraulic operations and the local stress state.
Fault compaction and overpressured faults: results from a 3-D model of a ductile fault zone
NASA Astrophysics Data System (ADS)
Fitzenz, D. D.; Miller, S. A.
2003-10-01
A model of a ductile fault zone is incorporated into a forward 3-D earthquake model to better constrain fault-zone hydraulics. The conceptual framework of the model fault zone was chosen such that two distinct parts are recognized. The fault core, characterized by a relatively low permeability, is composed of a coseismic fault surface embedded in a visco-elastic volume that can creep and compact. The fault core is surrounded by, and mostly sealed from, a high permeability damaged zone. The model fault properties correspond explicitly to those of the coseismic fault core. Porosity and pore pressure evolve to account for the viscous compaction of the fault core, while stresses evolve in response to the applied tectonic loading and to shear creep of the fault itself. A small diffusive leakage is allowed in and out of the fault zone. Coseismically, porosity is created to account for frictional dilatancy. We show in the case of a 3-D fault model with no in-plane flow and constant fluid compressibility, pore pressures do not drop to hydrostatic levels after a seismic rupture, leading to an overpressured weak fault. Since pore pressure plays a key role in the fault behaviour, we investigate coseismic hydraulic property changes. In the full 3-D model, pore pressures vary instantaneously by the poroelastic effect during the propagation of the rupture. Once the stress state stabilizes, pore pressures are incrementally redistributed in the failed patch. We show that the significant effect of pressure-dependent fluid compressibility in the no in-plane flow case becomes a secondary effect when the other spatial dimensions are considered because in-plane flow with a near-lithostatically pressured neighbourhood equilibrates at a pressure much higher than hydrostatic levels, forming persistent high-pressure fluid compartments. If the observed faults are not all overpressured and weak, other mechanisms, not included in this model, must be at work in nature, which need to be investigated. Significant leakage perpendicular to the fault strike (in the case of a young fault), or cracks hydraulically linking the fault core to the damaged zone (for a mature fault) are probable mechanisms for keeping the faults strong and might play a significant role in modulating fault pore pressures. Therefore, fault-normal hydraulic properties of fault zones should be a future focus of field and numerical experiments.
Burton, William C.; Armstrong, Thomas R.
2013-01-01
The bedrock geology of the Pinardville quadrangle includes the Massabesic Gneiss Complex, exposed in the core of a regional northeast-trending anticlinorium, and highly deformed metasedimentary rocks of the Rangeley Formation, exposed along the northwest limb of the anticlinorium. Both formations were subjected to high-grade metamorphism and partial melting: the Rangeley during the middle Paleozoic Acadian orogeny, and the Massabesic Gneiss Complex during both the Acadian and the late Paleozoic Alleghanian orogeny. Granitoids produced during these orogenies range in age from Devonian (Spaulding Tonalite) to Permian (granite at Damon Pond), each with associated pegmatite. In the latest Paleozoic the Massabesic Gneiss Complex was uplifted with respect to the Rangeley Formation along the ductile Powder Hill fault, which also had a left-lateral component. Uplift continued into the early Mesozoic, producing the 2-kilometer-wide Campbell Hill fault zone, which is marked by northwest-dipping normal faults and dilational map-scale quartz bodies. Rare, undeformed Jurassic diabase dikes cut all older lithologies and structures. A second map is a compilation of joint orientations measured at all outcrops in the quadrangle. There is a great diversity of strike trends, with northeast perhaps being the most predominant.
Interactions between Polygonal Normal Faults and Larger Normal Faults, Offshore Nova Scotia, Canada
NASA Astrophysics Data System (ADS)
Pham, T. Q. H.; Withjack, M. O.; Hanafi, B. R.
2017-12-01
Polygonal faults, small normal faults with polygonal arrangements that form in fine-grained sedimentary rocks, can influence ground-water flow and hydrocarbon migration. Using well and 3D seismic-reflection data, we have examined the interactions between polygonal faults and larger normal faults on the passive margin of offshore Nova Scotia, Canada. The larger normal faults strike approximately E-W to NE-SW. Growth strata indicate that the larger normal faults were active in the Late Cretaceous (i.e., during the deposition of the Wyandot Formation) and during the Cenozoic. The polygonal faults were also active during the Cenozoic because they affect the top of the Wyandot Formation, a fine-grained carbonate sedimentary rock, and the overlying Cenozoic strata. Thus, the larger normal faults and the polygonal faults were both active during the Cenozoic. The polygonal faults far from the larger normal faults have a wide range of orientations. Near the larger normal faults, however, most polygonal faults have preferred orientations, either striking parallel or perpendicular to the larger normal faults. Some polygonal faults nucleated at the tip of a larger normal fault, propagated outward, and linked with a second larger normal fault. The strike of these polygonal faults changed as they propagated outward, ranging from parallel to the strike of the original larger normal fault to orthogonal to the strike of the second larger normal fault. These polygonal faults hard-linked the larger normal faults at and above the level of the Wyandot Formation but not below it. We argue that the larger normal faults created stress-enhancement and stress-reorientation zones for the polygonal faults. Numerous small, polygonal faults formed in the stress-enhancement zones near the tips of larger normal faults. Stress-reorientation zones surrounded the larger normal faults far from their tips. Fewer polygonal faults are present in these zones, and, more importantly, most polygonal faults in these zones were either parallel or perpendicular to the larger faults.
NASA Astrophysics Data System (ADS)
Schuck, B.; Janssen, C.; Schleicher, A. M.; Toy, V. G.; Dresen, G.
2018-05-01
The Alpine Fault is capable of generating large (MW > 8) earthquakes and is the main geohazard on South Island, NZ, and late in its 250-291-year seismic cycle. To minimize its hazard potential, it is indispensable to identify and understand the processes influencing the geomechanical behavior and strength-evolution of the fault. High-resolution microstructural, mineralogical and geochemical analyses of the Alpine Fault's core demonstrate wall rock fragmentation, assisted by mineral dissolution, and cementation resulting in the formation of a fine-grained principal slip zone (PSZ). A complex network of anastomosing and mutually cross-cutting calcite veins implies that faulting occurred during episodes of dilation, slip and sealing. Fluid-assisted dilatancy leads to a significant volume increase accommodated by vein formation in the fault core. Undeformed euhedral chlorite crystals and calcite veins that have cut footwall gravels demonstrate that these processes occurred very close to the Earth's surface. Microstructural evidence indicates that cataclastic processes dominate the deformation and we suggest that powder lubrication and grain rolling, particularly influenced by abundant nanoparticles, play a key role in the fault core's velocity-weakening behavior rather than frictional sliding. This is further supported by the absence of smectite, which is reasonable given recently measured geothermal gradients of more than 120 °C km-1 and the impermeable nature of the PSZ, which both limit the growth of this phase and restrict its stability to shallow depths. Our observations demonstrate that high-temperature fluids can influence authigenic mineral formation and thus control the fault's geomechanical behavior and the cyclic evolution of its strength.
NASA Astrophysics Data System (ADS)
Allison, K.; Reinen, L. A.
2011-12-01
Slip on non-planar faults produces stress perturbations in the surrounding host rock that can yield secondary faults at a scale too small to be resolved on seismic surveys. Porosity changes during failure may affect the ability of the rock to transmit fluids through dilatant cracking or, in porous rocks, shear-enhanced compaction (i.e., cataclastic flow). Modeling the mechanical behavior of the host rock in response to slip on non-planar faults can yield insights into the role of fault geometry on regions of enhanced or inhibited fluid flow. To evaluate the effect of normal fault geometry on deformation in porous sandstones, we model the system as a linear elastic, homogeneous, whole or half space using the boundary-element modeling program Poly3D. We consider conditions leading to secondary deformation using the maximum Coulomb shear stress (MCSS) as an index of brittle deformation and proximity to an elliptical yield envelope (Y), determined experimentally for porous sandstone (Baud et al., JGR, 2006), for cataclastic flow. We model rectangular faults consisting of two segments: an upper leg with a constant dip of 60° and a lower leg with dips ranging 15-85°. We explore far-field stress models of constant and gradient uniaxial strain. We investigate the potential damage in the host rock in two ways: [1] the size of the damage zone, and [2] regions of enhanced deformation indicated by elevated MCSS or Y. Preliminary results indicate that, along a vertical transect passing through the fault kink, [1] the size of the damage zone increases in the footwall with increasing lower leg dip and remains constant in the hanging wall. [2] In the footwall, the amount of deformation does not change as a function of lower leg dip in constant stress models; in gradient stress models, both MCSS and Y increase with dip. In the hanging wall, Y decreases with increasing lower leg dip for both constant and gradient stress models. In contrast, MCSS increases: as lower leg dip increases for constant stress models, and as the difference between lower leg dip and 60° increases for gradient stress models. These preliminary results indicate that the dip of the lower fault segment significantly affects the amount and style of deformation in the host rock.
NASA Astrophysics Data System (ADS)
Kraner, Meredith L.
Central California is a tectonically active region in the Western United States, which encompasses segments of both the San Andreas and Calaveras Faults and centers around the town of Parkfield, California. Recently, statistical studies of microseismicity suggest that earthquake rates in this region can vary seasonally. Also, studies using data from modern GPS networks have revealed that crustal deformation can be influenced by seasonal and nontectonic factors, such as hydrological, temperature, and atmospheric loads. Here we analyze eight-years (2008 - 2016) of GPS data and build on this idea by developing a robust seasonal model of dilatational and shear strain in Central California. Using an inversion, we model each GPS time series in our study region to derive seasonal horizontal displacements for each month of the year. These positions are detrended using robust MIDAS velocities, destepped using a Heavyside function, and demeaned to center the time series around zero. The stations we use are carefully chosen using a selection method which allows us to exclude stations located on unstable, heavily subsiding ground and include stations on sturdy bedrock. In building our seasonal strain model, we first filter these monthly seasonal horizontal displacements using a median-spatial filter technique called GPS Imaging to remove outliers and enhance the signal common to multiple stations. We then grid these seasonal horizontal filtered displacements and use them to model our dilatational and shear strain field for each month of the year. We setup our model such that a large portion of the strain in the region is accommodated on or near the San Andreas and Calaveras Faults. We test this setup using two sets of synthetic data and explore how varying the a priori faulting constraints of the on and off-fault standard deviations in the strain tensor affects the output of the model. We additionally extract strain time series for key regions along/near the San Andreas and Calaveras Faults. We find that the most prevalent seasonal strain signal exists in the main creeping section along the San Andreas Fault in Central California. This region, which runs from Parkfield to Bitterwater Valley, shows peaks in contraction (negative dilatation) during the wet period (February/March) and peaks in extension (positive dilatation) during the dry period (August/September). The north transitional creeping section along the San Andreas Fault and the Calaveras Fault displays general similarities with the main creeping section trend. In sharp contrast, seasonality is virtually undetected in the locked section of the San Andreas Fault south of the town of Cholame. Additionally, the southern transitional creeping section shows two distinct patterns. For the most part this region, between Parkfield and Cholame, shows peaks in contraction during the wet period (February/March) and peaks in extension during the dry period (August/September), similar to the main creeping section. However, the segment of the southern transitional creeping section surrounding the town of Cholame opposes this trend with peaks in extension during the wet period and peaks in contraction during the dry period. We postulate several causes for this seasonal signal, which we plan to explore further in future work.
NASA Astrophysics Data System (ADS)
Firth, Emily A.; Holwell, David A.; Oliver, Nicholas H. S.; Mortensen, James K.; Rovardi, Matthew P.; Boyce, Adrian J.
2015-08-01
Mineral de Talca is a rare occurrence of Mesozoic, gold-bearing quartz vein mineralisation situated within the Coastal Range of northern Chile. Quartz veins controlled by NNW-SSE-trending faults are hosted by Devonian-Carboniferous metasediments of greenschist facies and younger, undeformed granitoid and gabbro intrusions. The principal structural control in the area is the easterly dipping, NNW-SSE-trending El Teniente Fault, which most likely developed as an extensional normal fault in the Triassic but was later reactivated as a strike-slip fault during subsequent compression. A dilational zone in the El Teniente Fault appears to have focussed fluid flow, and an array of NW-SE-trending veins is present as splays off the El Teniente Fault. Mineralised quartz veins typically up to a metre thick occur in three main orientations: (1) parallel to and within NNW-SSE-trending, E-dipping faults throughout the area; (2) along NW-SE-trending, NE-dipping structures which may also host andesite dykes; and (3) rarer E-W-trending, subvertical veins. All mineralised quartz veins show evidence of multiple fluid events with anastomosing and crosscutting veins and veinlets, some of which contain up to 3.5 vol.% base metal sulphides. Mineralogically, Au is present in three textural occurrences, identified by 3D CT scanning: (1) with arsenopyrite and pyrite in altered wall rock and along the margins of some of the veins; (2) with Cu-Pb-Zn sulphides within quartz veins; and (3) as nuggets and clusters of native Au within quartz. Fluid inclusion work indicates the presence of CO2-CH4-bearing fluids with homogenisation temperatures of ˜350 °C and aqueous fluids with low-moderate salinities (0.4-15.5 wt% NaCl eq.) with homogenisation temperatures in the range of 161-321 °C. The presence of Au with arsenopyrite and pyrite in structurally controlled quartz veins and in greenschist facies rocks with evidence of CO2-bearing fluids is consistent with an orogenic style classification for the mineralisation. However, the significant amounts of base metals and the moderate salinity of some of the fluids and the proximity to felsic granitoid intrusions have raised the possibility of an intrusion-related origin for the mineralisation. Vein sulphides display S isotope signatures (δ34S +2.1 to +4.3 ‰) that are intermediate between the host rock metasediments (δ34S +5.3 to +7.5 ‰) and the local granitoids (δ34S +1.3 to +1.4 ‰), indicating a distinct crustal source of some of the S in the veins and possibly a mixed magmatic-crustal S source. The local granite and granodiorite give U-Pb zircon ages of 219.6 ± 1 and 221.3 ± 2.8 Ma, respectively. Lead isotopic compositions of galena in the veins are consistent, suggesting derivation from a homogeneous source. Differences, however, between the isotopic signatures of the veins and igneous feldspars from nearby intrusions imply that these bodies were not the source of the metals though an igneous source from depth cannot be discounted. The Triassic age of the granitoids is consistent with emplacement during regional crustal extension, with the El Teniente Fault formed as an easterly dipping normal fault. The change to a compressional regime in the mid-Jurassic caused reactivation of the El Teniente Fault as a strike-slip fault and provided a structural setting suitable for orogenic style mineralisation. The intrusions may, however, have provided a structural competency contrast that focused the mineralising fluids in a dilational jog along the El Teniente Fault to form WNW-trending veins. As such, the mineralisation is classified as orogenic style, and the identification of the key mineralogical, isotopic and structural features has implications for exploration and the development of similar deposits along the Coastal Range.
Fault Wear and Friction Evolution: Experimental Analysis
NASA Astrophysics Data System (ADS)
Boneh, Y.; Chang, J. C.; Lockner, D. A.; Reches, Z.
2011-12-01
Wear is an inevitable product of frictional sliding of brittle rocks as evidenced by the ubiquitous occurrence of fault gouge and slickenside striations. We present here experimental observations designed to demonstrate the relationship between wear and friction and their governing mechanisms. The experiments were conducted with a rotary shear apparatus on solid, ring-shaped rock samples that slipped for displacements up to tens of meters. Stresses, wear and temperature were continuously monitored. We analyzed 86 experiments of Kasota dolomite, Sierra White granite, Pennsylvania quartzite, Karoo gabbro, and Tennessee sandstone at slip velocities ranging from 0.002 to 0.97 m/s, and normal stress from 0.25 to 6.9 MPa. We conducted two types of runs: short slip experiments (slip distance < 25 mm) primarily on fresh, surface-ground samples, designed to analyze initial wear mechanisms; and long slip experiments (slip distance > 3 m) designed to achieve mature wear conditions and to observe the evolution of wear and friction as the fault surfaces evolved. The experiments reveal three wear stages: initial, running-in, and steady-state. The initial stage is characterized by (1) discrete damage striations, the length of which is comparable to total slip , and local pits or plow features; (2) timing and magnitude of fault-normal dilation corresponds to transient changes of normal and shear stresses; and (3) surface roughness increasing with the applied normal stress. We interpret these observations as wear mechanisms of (a) plowing into the fresh rock surfaces; (b) asperity breakage; and (c) asperity climb. The running-in stage is characterized by (1) intense wear-rate over a critical wear distance of Rd = 0.3-2 m; (2) drop of friction coefficient over a weakening distance of Dc = 0.2-4 m; (3) Rd and Dc display positive, quasi-linear relation with each other. We interpret these observations as indicating the organizing of newly-created wear particles into a 'three-body' structure that acts to lubricate the fault (Reches & Lockner, 2010). The steady-state stage is characterized by (1) relatively low wear-rate (approximately 10% of running-in wear-rate) and (2) quasi-constant friction coefficient. These observations suggest only small changes in the gouge layer in term of thickness (100 to 200 microns) and strength in this final stage. The present study indicates that (1) wear by plowing and asperity failure initiate early, during the first few millimeters of slip; and (2) wear and associated gouge formation appear as the controlling factors of friction evolution and fault weakening.
Seismic and geodetic signatures of fault slip at the Slumgullion Landslide Natural Laboratory
Gomberg, J.; Schulz, W.; Bodin, P.; Kean, J.
2011-01-01
We tested the hypothesis that the Slumgullion landslide is a useful natural laboratory for observing fault slip, specifically that slip along its basal surface and side-bounding strike-slip faults occurs with comparable richness of aseismic and seismic modes as along crustal- and plate-scale boundaries. Our study provides new constraints on models governing landslide motion. We monitored landslide deformation with temporary deployments of a 29-element prism array surveyed by a robotic theodolite and an 88-station seismic network that complemented permanent extensometers and environmental instrumentation. Aseismic deformation observations show that large blocks of the landslide move steadily at approximately centimeters per day, possibly punctuated by variations of a few millimeters, while localized transient slip episodes of blocks less than a few tens of meters across occur frequently. We recorded a rich variety of seismic signals, nearly all of which originated outside the monitoring network boundaries or from the side-bounding strike-slip faults. The landslide basal surface beneath our seismic network likely slipped almost completely aseismically. Our results provide independent corroboration of previous inferences that dilatant strengthening along sections of the side-bounding strike-slip faults controls the overall landslide motion, acting as seismically radiating brakes that limit acceleration of the aseismically slipping basal surface. Dilatant strengthening has also been invoked in recent models of transient slip and tremor sources along crustal- and plate-scale faults suggesting that the landslide may indeed be a useful natural laboratory for testing predictions of specific mechanisms that control fault slip at all scales.
NASA Astrophysics Data System (ADS)
Kasch, N.; Kley, J.; Navabpour, P.; Siegburg, M.; Malz, A.
2014-12-01
Recent investigations in Thuringia, Central Germany, focus on the potential for carbon sequestration, groundwater supply and geothermal energy. We report on the results of an integrated fault-slip data analysis to characterize the geometries and kinematics of systematic fractures in contrasting basement and cover rock lithologies. The lithostratigraphy of the area comprises locally exposed crystalline rocks and intermittently overlying Permian volcanic and clastic sedimentary rocks, together referred to as basement. A Late Permian sequence of evaporites, carbonates and shale constitutes the transition to the continuous sedimentary cover of Triassic age. Major NW-SE-striking fault zones and minor NNE-SSW-striking faults affect this stratigraphic succession. These characteristic narrow deforming areas (< 3 km width) build a dense network of individual fault strands with a close juxtaposition to wider (> 15 km) non-deforming areas suggesting localized zones of mechanical weakness, which can be confirmed by the frequent reactivation of single fault strands. Along the major fault zones, the basement and cover contain dominant inclined to sub-vertical NW-SE-striking fractures. These fractures indicate successive normal, dextral strike-slip and reverse senses of slip, evidencing events of NNE-SSW extension and contraction. Another system of mostly sub-vertical NNW-SSE- and NE-SW-striking conjugate strike-slip faults mainly developed within the cover implies NNE-SSW contraction and WNW-ESE extension. Earthquake focal mechanisms and in-situ stress measurements reveal a NW-SE trend for the modern SHmax. Nevertheless, fractures and fault-slip indicators are rare in the non-deforming areas, which characterizes Thuringia as a dual domain of (1) large unfractured areas and (2) narrow zones of high potential for technical applications. Our data therefore provide a basis for estimation of slip and dilation tendency of the contrasting fractures in the basement and cover under the present-day stress field, which must be taken into account for different subsurface technical approaches.
NASA Astrophysics Data System (ADS)
Doubre, C.; Peltzer, G.; Manighetti, I.; Jacques, E.
2005-12-01
The volcano-tectonic Asal-Ghoubbet rift (Djibouti) is the youngest spreading segment of the Aden oceanic ridge propagating inland into the Afar Depression. The deformation in the rift is characterized by magmatic inflation and dilatation (dyking), distributed extension, fissure opening, and normal faulting, contributing to a far field opening velocity of ~1.5 cm/yr. We use radar interferometry data acquired by the Canadian satellite Radarsat on 24-day repeat, descending passes to measure the surface deformation in a 100 km wide region centered on the rift. The data set defines 87 epochs of acquisitions distributed between 1997 and 2005. We combined the SAR data into 354 full-resolution interferograms and solved for incremental displacements between epochs using a least-square approach [Berardino et al., 2002]. The resulting line of sight displacement map time series shows the following features: - A 40 km-wide zone centered on the rift is uplifted as a dome at a steady rate. - The central rift is subsiding with respect to the north and south shoulders. The velocity field shows a marked asymmetry with faster rates occurring along the northern edge of the rift. The mean velocity of the relative movement of the subsiding inner floor with respect to the northern up-lifting shoulder reaches 7 mm/yr. - Subsidence is faster in the north half of the inner floor of the rift and is associated with episodic creep events on normal faults. These includes a slip of 16 mm on the north-dipping δ fault in 2003 and an episode of accelerated creep of 10 mm occurring in 2000 on the γ fault, which is creeping at a steady rate of 3.5 mm/yr. A northern-dipping normal fault is slipping with a mean rate of 1.4 mm/yr and accommodates also the subsidence of the northern part of the inner floor. Unlike other active faults, this one does not coincide with a topographic scarp but shows evidence of surface creep in the velocity field. - The southeastern part of F fault system is the only fault clearly active on the south side of the rift axis and shows a creep event of 9 mm in 2002. We investigate the spatial and temporal relationship between deformation events observed in the SAR data and the catalog of seismicity collected by the Djibouti Observatory and during field campaign in the winter 2000/2001. We observe that creep events are generally associated with bursts of micro-seismicity distributed in the vicinity of the fault, or with swarms of small events concentrated below the fault. These observations suggest that while the overall region is deforming in response to the steady inflation of a magmatic chamber below the central rift, the faults and dykes that accommodate the deformation at the surface are sensitive and respond rapidly to small stress changes occurring episodically within the rift.
Holodny, A I; George, A E; de Leon, M J; Golomb, J; Kalnin, A J; Cooper, P R
1998-11-01
The authors describe a subgroup of patients with shunt-proven normal-pressure hydrocephalus (NPH) who presented with focal fissural and sulcal dilation on imaging studies. The specific radiological features and methods of differentiating this condition from cortical atrophy are delineated. Normal-pressure hydrocephalus has been described as dilation of the ventricles that is out of proportion to the sulci. Sulcal dilation has been taken as evidence of cortical atrophy and has even been used as a criterion to exclude patients from undergoing a shunting procedure. The authors describe five cases of patients with shunt-proven NPH who presented with focal dilation of cortical fissures and sulci. In three of the cases, there was a paradoxical decrease in the size of the dilated fissures and sulci that paralleled the decrease in the size of the lateral ventricles following successful shunting. This study demonstrates that focal fissural and sulcal dilation may represent reservoirs of cerebrospinal fluid analogous to the ventricular system. Patients should not be denied a shunting procedure solely on the basis of focally dilated fissures of sulci.
Morrow, C.A.; Byerlee, J.D.
1989-01-01
Transient strength changes are observed in fault gouge materials when the velocity of shearing is varied. A transient stress peak is produced when the strain rate in the gouge is suddenly increased, whereas a transient stress drop results from a sudden change to a slower strain rate. We have studied the mechanism responsible for these observations by performing frictional sliding experiments on sawcut granite samples filled with a layer of several different fault gouge types. Changes in pore volume and strength were monitored as the sliding velocity alternated between fast and slow rates. Pore volume increased at the faster strain rate, indicating a dilation of the gouge layer, whereas volume decreased at the slower rate indicating compaction. These results verify that gouge dilation is a function of strain rate. Pore volume changed until an equilibrium void ratio of the granular material was reached for a particular rate of strain. Using arguments from soil mechanics, we find that the dense gouge was initially overconsolidated relative to the equilibrium level, whereas the loose gouge was initially underconsolidated relative to this level. Therefore, the transient stress behavior must be due to the overconsolidated state of the gouge at the new rate when the velocity is increased and to the underconsolidated state when the velocity is lowered. Time-dependent compaction was also shown to cause a transient stress response similar to the velocity-dependent behavior. This may be important in natural fault gouges as they become consolidated and stronger with time. In addition, the strain hardening of the gouge during shearing was found to be a function of velocity, rendering it difficult to quantify the change in equilibrium shear stress when velocity is varied under certain conditions. ?? 1989.
Rianthavorn, Pornpimol; Tangngamsakul, Onjira
2016-11-01
We evaluated risk factors and assessed predicted probabilities for grade III or higher vesicoureteral reflux (dilating reflux) in children with a first simple febrile urinary tract infection and normal renal and bladder ultrasound. Data for 167 children 2 to 72 months old with a first febrile urinary tract infection and normal ultrasound were compared between those who had dilating vesicoureteral reflux (12 patients, 7.2%) and those who did not. Exclusion criteria consisted of history of prenatal hydronephrosis or familial reflux and complicated urinary tract infection. The logistic regression model was used to identify independent variables associated with dilating reflux. Predicted probabilities for dilating reflux were assessed. Patient age and prevalence of nonEscherichia coli bacteria were greater in children who had dilating reflux compared to those who did not (p = 0.02 and p = 0.004, respectively). Gender distribution was similar between the 2 groups (p = 0.08). In multivariate analysis older age and nonE. coli bacteria independently predicted dilating reflux, with odds ratios of 1.04 (95% CI 1.01-1.07, p = 0.02) and 3.76 (95% CI 1.05-13.39, p = 0.04), respectively. The impact of nonE. coli bacteria on predicted probabilities of dilating reflux increased with patient age. We support the concept of selective voiding cystourethrogram in children with a first simple febrile urinary tract infection and normal ultrasound. Voiding cystourethrogram should be considered in children with late onset urinary tract infection due to nonE. coli bacteria since they are at risk for dilating reflux even if the ultrasound is normal. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Seismicity near Palmdale, California, and its relation to strain changes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sauber, J.; McNally, K.; Pechmann, J.C.
We evaluate the relationships between the spatio-temporal patterns and faulting mechanisms of small earthquakes and the recent temporal changes in horizontal strain observed along the 'big bend' portion of the San Andreas fault near Palmdale, California. Microearthquake activity along the entire big bend of the San Andreas fault increased in November 1976 concurrent with the initiation of an earthquake swarm at Juniper Hills. This activity then decreased abruptly to the northwest and southeast of Juniter Hills during the beginning of 1979. This drop in seismic activity occurred around the time that crustal dilatation was observed on the U.S. Geological Surveymore » Palmdale trilateration network. Focal mechanisms from the study region are predominantly thrust. There are two time periods when the mechanisms are closer to strike slip than to thrust. The first period (December 1976 to February 1977) corresponds to the beginning of the Juniper Hills swarm. The second period (November 1978 to April 1979) approximately coincides with a change in trend of the strain data from uniaxial N-S compression to dilatation.« less
Are Geotehrmal Reservoirs Stressed Out?
NASA Astrophysics Data System (ADS)
Davatzes, N. C.; Laboso, R. C.; Layland-Bachmann, C. E.; Feigl, K. L.; Foxall, W.; Tabrez, A. R.; Mellors, R. J.; Templeton, D. C.; Akerley, J.
2017-12-01
Crustal permeability can be strongly influenced by developing connected networks of open fractures. However, the detailed evolution of a fracture network, its extent, and the persistence of fracture porosity are difficult to analyze. Even in fault-hosted geothermal systems, where heat is brought to the surface from depth along a fault, hydrothermal flow is heterogeneously distributed. This is presumably due to variations in fracture density, connectivity, and attitude, as well as variations in fracture permeability caused by sealing of fractures by precipitated cements or compaction. At the Brady Geothermal field in Nevada, we test the relationship between the modeled local stress state perturbed by dislocations representing fault slip or volume changes in the geothermal reservoir inferred from surface deformation measured by InSAR and the location of successful geothermal wells, hydrothermal activity, and seismicity. We postulate that permeability is favored in volumes that experience positive Coulomb stress changes and reduced compression, which together promote high densities of dilatant fractures. Conversely, permeability can be inhibited in locations where Coulomb stress is reduced, compression promotes compaction, or where the faults are poorly oriented in the stress field and consequently slip infrequently. Over geologic time scales spanning the development of the fault system, these local stress states are strongly influenced by the geometry of the fault network relative to the remote stress driving slip. At shorter time scales, changes in fluid pressure within the fracture network constituting the reservoir cause elastic dilations and contractions. We integrate: (1) direct observations of stress state and fractures in boreholes and the mapped geometry of the fault network; (2) evidence of permeability from surface hydrothermal features, production/injection wells and surface deformations related to pumping history; and (3) seismicity to test the correlation between the reservoir geometry and models of the local stress state.
Strain accumulation across the Coast Ranges at the latitude of San Francisco, 1994-2000
Savage, J.C.; Gan, Weijun; Prescott, W.H.; Svarc, J.L.
2004-01-01
A 66-monument geodetic array spanning the Coast Ranges near San Francisco has been surveyed more than eight times by GIPS between late 1993 and early 2001. The measured horizontal velocities of the monuments are well represented by uniform, right-lateral, simple shear parallel to N29??W. (The local strike of the San Andreas Fault is ???N34??W. The observed areal dilatation rate of 6.9 ?? 10.0 nstrain yr-1 (quoted uncertainty is one standard deviation and extension is reckoned positive) is not significantly different from zero, which implies that the observed strain accumulation could be released by strike-slip faulting alone. Our results are consistent with the slip rates assigned by the Working Group on California Earthquake Probabilities [2003] to the principal faults (San Gregorio, San Andreas, Hayward-Rodgers Creek, Calaveras-Concord-Green Valley, and Greenville Faults) cutting across the GPS array. The vector sum of those slip rates is 39.8 ?? 2.6 mm yr-1 N29.8??W ?? 2.8??, whereas the motion across the GPS array (breadth 120 km) inferred from the uniform strain rate approximation is 38.7 ?? 1.2 mm yr-1 N29.0?? ?? 0.9?? right-lateral shear and 0.4 ?? 0.9 mm yr-1 N61??E ?? 0.9?? extension. We interpret the near coincidence of these rates and the absence of significant accumulation of areal dilatation to imply that right-lateral slip on the principal faults can release the accumulating strain; major strain release on reverse faults subparallel to the San Andreas Fault within the Coast Ranges is not required. Copyright 2004 by the American Geophysical union.
A footwall system of faults associated with a foreland thrust in Montana
NASA Astrophysics Data System (ADS)
Watkinson, A. J.
1993-05-01
Some recent structural geology models of faulting have promoted the idea of a rigid footwall behaviour or response under the main thrust fault, especially for fault ramps or fault-bend folds. However, a very well-exposed thrust fault in the Montana fold and thrust belt shows an intricate but well-ordered system of subsidiary minor faults in the footwall position with respect to the main thrust fault plane. Considerable shortening has occurred off the main fault in this footwall collapse zone and the distribution and style of the minor faults accord well with published patterns of aftershock foci associated with thrust faults. In detail, there appear to be geometrically self-similar fault systems from metre length down to a few centimetres. The smallest sets show both slip and dilation. The slickensides show essentially two-dimensional displacements, and three slip systems were operative—one parallel to the bedding, and two conjugate and symmetric about the bedding (acute angle of 45-50°). A reconstruction using physical analogue models suggests one possible model for the evolution and sequencing of slip of the thrust fault system.
Permeability Evolution of Slowly Slipping Faults in Shale Reservoirs
NASA Astrophysics Data System (ADS)
Wu, Wei; Reece, Julia S.; Gensterblum, Yves; Zoback, Mark D.
2017-11-01
Slow slip on preexisting faults during hydraulic fracturing is a process that significantly influences shale gas production in extremely low permeability "shale" (unconventional) reservoirs. We experimentally examined the impacts of mineralogy, surface roughness, and effective stress on permeability evolution of slowly slipping faults in Eagle Ford shale samples. Our results show that fault permeability decreases with slip at higher effective stress but increases with slip at lower effective stress. The permeabilities of saw cut faults fully recover after cycling effective stress from 2.5 to 17.5 to 2.5 MPa and increase with slip at constant effective stress due to asperity damage and dilation associated with slip. However, the permeabilities of natural faults only partially recover after cycling effective stress returns to 2.5 MPa and decrease with slip due to produced gouge blocking fluid flow pathways. Our results suggest that slowly slipping faults have the potential to enhance reservoir stimulation in extremely low permeability reservoirs.
The Architecture and Frictional Properties of Faults in Shale
NASA Astrophysics Data System (ADS)
De Paola, N.; Imber, J.; Murray, R.; Holdsworth, R.
2015-12-01
The geometry of brittle fault zones in shale rocks, as well as their frictional properties at reservoir conditions, are still poorly understood. Nevertheless, these factors may control the very low recovery factors (25% for gas and 5% for oil) obtained during fracking operations. Extensional brittle fault zones (maximum displacement < 3 m) cut exhumed oil mature black shales in the Cleveland Basin (UK). Fault cores up to 50 cm wide accommodated most of the displacement, and are defined by a stair-step geometry. Their internal architecture is characterised by four distinct fault rock domains: foliated gouges; breccias; hydraulic breccias; and a slip zone up to 20 mm thick, composed of a fine-grained black gouge. Hydraulic breccias are located within dilational jogs with aperture of up to 20 cm. Brittle fracturing and cataclastic flow are the dominant deformation mechanisms in the fault core of shale faults. Velocity-step and slide-hold-slide experiments at sub-seismic slip rates (microns/s) were performed in a rotary shear apparatus under dry, water and brine-saturated conditions, for displacements of up to 46 cm. Both the protolith shale and the slip zone black gouge display shear localization, velocity strengthening behaviour and negative healing rates, suggesting that slow, stable sliding faulting should occur within the protolith rocks and slip zone gouges. Experiments at seismic speed (1.3 m/s), performed on the same materials under dry conditions, show that after initial friction values of 0.5-0.55, friction decreases to steady-state values of 0.1-0.15 within the first 10 mm of slip. Contrastingly, water/brine saturated gouge mixtures, exhibit almost instantaneous attainment of very low steady-state sliding friction (0.1), suggesting that seismic ruptures may efficiently propagate in the slip zone of fluid-saturated shale faults. Stable sliding in faults in shale can cause slow fault/fracture propagation, affecting the rate at which new fracture areas are created and, hence, limiting oil and gas production during reservoir stimulation. However, fluid saturated conditions can favour seismic slip propagation, with fast and efficient creation of new fracture areas. These processes are very effective at dilational jogs, where fluid circulation may be enhanced, facilitating oil and gas production.
INDUCED SEISMICITY. Seismicity triggered by fluid injection-induced aseismic slip.
Guglielmi, Yves; Cappa, Frédéric; Avouac, Jean-Philippe; Henry, Pierre; Elsworth, Derek
2015-06-12
Anthropogenic fluid injections are known to induce earthquakes. The mechanisms involved are poorly understood, and our ability to assess the seismic hazard associated with geothermal energy or unconventional hydrocarbon production remains limited. We directly measure fault slip and seismicity induced by fluid injection into a natural fault. We observe highly dilatant and slow [~4 micrometers per second (μm/s)] aseismic slip associated with a 20-fold increase of permeability, which transitions to faster slip (~10 μm/s) associated with reduced dilatancy and micro-earthquakes. Most aseismic slip occurs within the fluid-pressurized zone and obeys a rate-strengthening friction law μ = 0.67 + 0.045ln(v/v₀) with v₀ = 0.1 μm/s. Fluid injection primarily triggers aseismic slip in this experiment, with micro-earthquakes being an indirect effect mediated by aseismic creep. Copyright © 2015, American Association for the Advancement of Science.
Sleeper, Meg M; Rosato, Bradley P; Bansal, Seema; Avadhani, Narayan G
2012-11-01
To compare mitochondrial complex I and complex IV activity in myocardial mitochondria of clinically normal dogs, clinically normal dogs exposed to inhalation anesthesia, and dogs affected with dilated cardiomyopathy. Myocardial samples obtained from 21 euthanized dogs (6 clinically normal [control] dogs, 5 clinically normal dogs subjected to inhalation anesthesia with isoflurane prior to euthanasia, 5 dogs with juvenile-onset dilated cardiomyopathy, and 5 dogs with adult-onset dilated cardiomyopathy). Activity of mitochondrial complex I and complex IV was assayed spectrophotometrically in isolated mitochondria from left ventricular tissue obtained from the 4 groups of dogs. Activity of complex I and complex IV was significantly decreased in anesthetized dogs, compared with activities in the control dogs and dogs with juvenile-onset or adult-onset dilated cardiomyopathy. Inhalation anesthesia disrupted the electron transport chain in the dogs, which potentially led to an outburst of reactive oxygen species that caused mitochondrial dysfunction. Inhalation anesthesia depressed mitochondrial function in dogs, similar to results reported in other species. This effect is important to consider when anesthetizing animals with myocardial disease and suggested that antioxidant treatments may be beneficial in some animals. Additionally, this effect should be considered when designing studies in which mitochondrial enzyme activity will be measured. Additional studies that include a larger number of animals are warranted.
NASA Astrophysics Data System (ADS)
Pastori, M.; Piccinini, D.; Margheriti, L.; Improta, L.; Valoroso, L.; Chiaraluce, L.; Chiarabba, C.
2009-10-01
Shear wave splitting is measured at 19 seismic stations of a temporary network deployed in the Val d'Agri area to record low-magnitude seismic activity. The splitting results suggest the presence of an anisotropic layer between the surface and 15 km depth (i.e. above the hypocentres). The dominant fast polarization direction strikes NW-SE parallel to the Apennines orogen and is approximately parallel to the maximum horizontal stress in the region, as well as to major normal faults bordering the Val d'Agri basin. The size of the normalized delay times in the study region is about 0.01 s km-1, suggesting 4.5 percent shear wave velocity anisotropy (SWVA). On the south-western flank of the basin, where most of the seismicity occurs, we found larger values of normalized delay times, between 0.017 and 0.02 s km-1. These high values suggest a 10 percent of SWVA. These parameters agree with an interpretation of seismic anisotropy in terms of the Extensive-Dilatancy Anisotropy (EDA) model that considers the rock volume pervaded by fluid-saturated microcracks aligned by the active stress field. Anisotropic parameters are consistent with borehole image logs from deep exploration wells in the Val d'Agri oil field that detect pervasive fluid saturated microcracks striking NW-SE parallel to the maximum horizontal stress in the carbonatic reservoir. However, we cannot rule out the contribution of aligned macroscopic fractures because the main Quaternary normal faults are parallel to the maximum horizontal stress. The strong anisotropy and the seismicity concentration testify for active deformation along the SW flank of the basin.
NASA Astrophysics Data System (ADS)
Rice, J. R.; Liu, Y.
2008-12-01
For episodic slow slip transients in subduction zones, a large uncertainty in comparing surface deformations predicted by rate and state friction modeling [Liu and Rice, JGR, 2007] to GPS measurements lies in our limited knowledge of the frictional properties and fluid pore pressure along the fault. In this study, we apply petrological data [Peacock et al., USGS, 2002; Hacker et al., JGR 2003; Wada et al., JGR, 2008] and recently reported friction data [He et al., Tectonophys, 2006, 2007] for gabbro, as a reasonable representation of the seafloor, to a Cascadia-like 2D model in order to produce simulations which show spontaneous aseismic transients. We compare the resulting inter-transient and transient surface deformations to GPS observations along the northern Cascadia margin. An inferred region along dip of elevated fluid pressure is constrained by seismological observations where available, and by thermal and petrological models for the Cascadia and SW Japan subduction zones. For the assumed a and a-b profiles, we search the model parameter space, by varying the level of effective normal stress σ, characteristic slip distance L in the source areas of transients, and the fault width under that low σ, to identify simulation cases which produce transient aseismic slip and recurrence interval similar to the observed 20-30 mm and 14 months, respectively, in northern Cascadia. Using a simple planar fault geometry and extrapolating the 2D fault slip to a 3D distribution, we find that the gabbro gouge friction data allows a much better fit to GPS observations than is possible with the granite data [Blanpied et al., JGR, 1995, 1998] which, for lack of a suitable alternative, has been used as the basis for most previous subduction earthquake modeling, including ours. Nevertheless, the values of L required to reasonably fit the geodetic data during a transient event are somewhat larger than 100 microns, rather than in the range of 10 to a few 10s of microns as might be expected from lab results. We propose elsewhere at this meeting [Liu et al., submitted abstract] that dilatancy of fault gouge, and related frictional stabilization because of its assumed infiltration by dehydration fluids, may be important to resolving that discrepancy. Those dilatancy effects are known from Segall and Rice [JGR, 1995] to be important in stabilizing otherwise unstable friction at conditions of low σ like those assumed, and they have been shown by Segall and Rubin [EOS, 2007] to be capable of producing episodic slow slip transients.
Aortic dilatation in Turner syndrome: the role of MRI in early recognition.
Chalard, François; Ferey, Solène; Teinturier, Cécile; Kalifa, Gabriel
2005-03-01
Aortic dilatation and dissection are rare but important complications of Turner syndrome that increase the risk of sudden death in young patients. To assess the value of aortic MRI in patients with Turner syndrome; in particular to demonstrate early aortic dilatation. A total of 21 patients with Turner syndrome underwent MRI of the thoracic aorta with measurement of vessel diameter at four levels. Measurements were normal for age in 15 cases, two patients presented with values at the upper limit of normal and four had obvious dilatation of the ascending aorta. All were symptom free. MRI allows the non-invasive demonstration of early aortic dilatation, which may lead to earlier surgery in asymptomatic individuals.
Pravastatin and endothelium dependent vasomotion after coronary angioplasty: the PREFACE trial.
Mulder, H J; Schalij, M J; Kauer, B; Visser, R F; van Dijkman, P R; Jukema, J W; Zwinderman, A H; Bruschke, A V
2001-11-01
To test the hypothesis that the 3-hydroxy-3-methylglutaryl coenzyme-A reductase inhibitor pravastatin ameliorates endothelium mediated responses of dilated coronary segments: the PREFACE (pravastatin related effects following angioplasty on coronary endothelium) trial. A double blind, randomised, placebo controlled, multicentre study. Four hospitals in the Netherlands. 63 non-smoking, non-hypercholesterolaemic patients scheduled for elective balloon angioplasty (pravastatin 34, placebo 29). The effects of three months of pravastatin treatment (40 mg daily) on endothelium dependent vasomotor function were studied. Balloon angioplasty was undertaken one month after randomisation, and coronary vasomotor function tests using acetylcholine were performed two months after balloon angioplasty. The angiograms were analysed quantitatively. The efficacy measure was the acetylcholine induced change in mean arterial diameter, determined in the dilated segment and in an angiographically normal segment of an adjacent non-manipulated coronary artery. Increasing acetylcholine doses produced vasoconstriction in the dilated segments (p = 0.004) but not in the normal segments. Pravastatin did not affect the vascular response to acetylcholine in either the dilated segments (p = 0.09) or the non-dilated sites. Endothelium dependent vasomotion in normal segments was correlated with that in dilated segments (r = 0.47, p < 0.001). There were fewer procedure related events in the pravastatin group than in the placebo group (p < 0.05). Endothelium dependent vasomotion in normal segments is correlated with that in dilated segments. A significant beneficial effect of pravastatin on endothelial function could not be shown, but in the dilated segments there was a trend towards a beneficial treatment effect in the pravastatin group.
NASA Astrophysics Data System (ADS)
Zhang, W.; Jia, M. P.
2018-06-01
When incipient fault appear in the rolling bearing, the fault feature is too small and easily submerged in the strong background noise. In this paper, wavelet total variation denoising based on kurtosis (Kurt-WATV) is studied, which can extract the incipient fault feature of the rolling bearing more effectively. The proposed algorithm contains main steps: a) establish a sparse diagnosis model, b) represent periodic impulses based on the redundant wavelet dictionary, c) solve the joint optimization problem by alternating direction method of multipliers (ADMM), d) obtain the reconstructed signal using kurtosis value as criterion and then select optimal wavelet subbands. This paper uses overcomplete rational-dilation wavelet transform (ORDWT) as a dictionary, and adjusts the control parameters to achieve the concentration in the time-frequency plane. Incipient fault of rolling bearing is used as an example, and the result shows that the effectiveness and superiority of the proposed Kurt- WATV bearing fault diagnosis algorithm.
Zhang, Ye; Li, Si Zhen; Li, Lei; He, Ming Guang; Thomas, Ravi; Wang, Ning Li
2014-04-24
To estimate and compare the change in iris cross-sectional area (IA) and iris volume (IV) following physiologic and pharmacologic pupil dilation in primary angle closure suspects (PACS) and normal subjects. Anterior segment-optical coherence tomography (AS-OCT) measurements in light, dark, and following pharmacologic dilation were obtained on 186 PACS and 224 normal subjects examined during the 5-year follow-up of the Handan Eye Study. Iris cross-sectional area, IV, and other biometric parameters calculated using the Zhongshan angle assessment program in the right eyes of all subjects were analyzed. The mean IA and IV decreased in dark compared with light and after pharmacologic dilation in both PACS and normal eyes. This change was statistically significant in normal eyes: light versus pharmacologic dilation for IA (P = 0.038) and for IV, both light versus dark (P = 0.031) and light versus pharmacologic dilation (P = 0.012). A longer axial length (P = 0.028) and a greater change in pupil diameter (PD) (P < 0.001) were associated with a larger decrease of IA for the light to dark comparison. A diagnosis of normal eyes (P = 0.011), larger PD in dark (P = 0.001), and a larger change in PD (P = 0.001) were associated with a larger decrease of IV from light to dark. The differences in iris behavior between PACS and normal rural Chinese subjects following physiologic or pharmacologic pupillary dilation may help provide insights into the pathogenesis of angle closure. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
Janecke, S.U.; Blankenau, J.J.; VanDenburg, C.J.; VanGosen, B.S.
2001-01-01
Compilation of a 1:100,000-scale map of normal faults and extensional folds in southwest Montana and adjacent Idaho reveals a complex history of normal faulting that spanned at least the last 50 m.y. and involved six or more generations of normal faults. The map is based on both published and unpublished mapping and shows normal faults and extensional folds between the valley of the Red Rock River of southwest Montana and the Lemhi and Birch Creek valleys of eastern Idaho between latitudes 45°05' N. and 44°15' N. in the Tendoy and Beaverhead Mountains. Some of the unpublished mapping has been compiled in Lonn and others (2000). Many traces of the normal faults parallel the generally northwest to north-northwest structural grain of the preexisting Sevier fold and thrust belt and dip west-southwest, but northeastand east-striking normal faults are also prominent. Northeaststriking normal faults are subparallel to the traces of southeast-directed thrusts that shortened the foreland during the Laramide orogeny. It is unlikely that the northeast-striking normal faults reactivated fabrics in the underlying Precambrian basement, as has been documented elsewhere in southwestern Montana (Schmidt and others, 1984), because exposures of basement rocks in the map area exhibit north-northwest- to northwest-striking deformational fabrics (Lowell, 1965; M’Gonigle, 1993, 1994; M’Gonigle and Hait, 1997; M’Gonigle and others, 1991). The largest normal faults in the area are southwest-dipping normal faults that locally reactivate thrust faults (fig. 1). Normal faulting began before middle Eocene Challis volcanism and continues today. The extension direction flipped by about 90° four times.
NASA Astrophysics Data System (ADS)
Safitri, A. A.; Meilano, I.; Gunawan, E.; Abidin, H. Z.; Efendi, J.; Kriswati, E.
2018-03-01
The Cimandiri fault which is running in the direction from Pelabuhan Ratu to Padalarang is the longest fault in West Java with several previous shallow earthquakes in the last 20 years. By using continues and campaign GPS observation from 2006-2016, we obtain the deformation pattern along the fault through the variation of strain tensor. We use the velocity vector of GPS station which is fixed in stable International Terrestrial Reference Frame 2008 to calculate horizontal strain tensor. Least Square Collocation is applied to produce widely dense distributed velocity vector and optimum scale factor for the Least Square Weighting matrix. We find that the strain tensor tend to change from dominantly contraction in the west to dominantly extension to the east of fault. Both the maximum shear strain and dilatation show positive value along the fault and increasing from the west to the east. The findings of strain tensor variation along Cimandiri Fault indicate the post seismic effect of the 2006 Java Earthquake.
NASA Astrophysics Data System (ADS)
Barchi, M. R.; Collettini, C.; Lena, G.
2012-04-01
Thrust and normal faults affecting mechanically heterogeneous multilayers often show staircase trajectories, where flat segments follow less competent units. Within flat segments the initiation/reactivation angle, θ, which is the angle that the fault makes with the σ1 direction, is different from that predicted by the Andersonian theory. This suggests that fault trajectory is mainly controlled by rock anisotropy instead of frictional properties of the material. Our study areas are located in the Umbria-Marche fold-thrust belt, within the Northern Apennines of Italy. The area is characterized by a lithologically complex multilayer, about 2000 m thick, consisting of alternated competent (mainly calcareous) and less competent (marls or evaporites) units. At the outcrop scale, some units show a significant mechanical layering, consisting of alternated limestones and shales. Due to the complex tectonic evolution of the Apennines, well developed sets of conjugate normal, thrust and strike-slip faults are exposed in the region. The study outcrop, Candigliano Gourge, is characterized by steep (dip > 60°) NE dipping beds, affected by conjugate sets of strike-slip faults, exposed in the eastern limb of a NE verging anticline. The faults develop within the Marne a Fucoidi Fm., a Cretaceous sedimentary unit, about 70 m thick, made of competent calcareous beds (about 20 cm thick), separated by marly beds (1-20 cm thick). The conjugate strike-slip faults are formed after the major folding phase: in fact the strike-slip faults cut both minor folds and striated bedding surfaces, related to syn-folding flexural slip. Faults show marked staircase trajectories, with straight segments almost parallel to the marly horizons and ramps cutting through the calcareous layers. Slip along these faults induces local block rotation of the competent strata, dilational jogs (pull-aparts), extensional duplexes and boudinage of the competent layers, while marly levels are strongly laminated. In order to reconstruct the σ1 direction, calcite veins syntectonic to strike-slip faulting, have been used to constrain the σ1-σ2 plane: fixing the σ2 direction at the conjugate fault intersection, the σ1 is oriented N15°, forming an angle of about 70° with the bedding direction. Once constrained the σ1 direction, we have calculated the θ angle that is comprised between 40° and 55°, resulting therefore larger than expected from Andersonian theory, i.e. 22°-32° for friction coefficient in the range of 0.5-1.0. Initiation/reactivation angles, θ, as a function of the different lithologies, are less than 35° for calcareous beds, 50°-70° for the marly and clayey layers, and around 60° for the black shales. Our studies, focused on strike-slip small displacement faults, show that: 1) irrespective of the σ1 orientation, ramp and flat form along competent and less competent material respectively and 2) the overall fault orientation/initiation is at high-angle to the σ1 direction. Our results suggest that rock anisotropy and layering are one of the possible causes for faulting at high angle to the σ1 direction, i.e. fault weakness. Further studies are required to up-scale the results of our outcrop-based study to crustal scale structures.
Pravastatin and endothelium dependent vasomotion after coronary angioplasty: the PREFACE trial
Mulder, H; Schalij, M; Kauer, B; Visser, R; van Dijkman, P R M; Jukema, J; Zwinderman, A; Bruschke, A
2001-01-01
OBJECTIVE—To test the hypothesis that the 3-hydroxy-3-methylglutaryl coenzyme-A reductase inhibitor pravastatin ameliorates endothelium mediated responses of dilated coronary segments: the PREFACE (pravastatin related effects following angioplasty on coronary endothelium) trial. DESIGN—A double blind, randomised, placebo controlled, multicentre study. SETTING—Four hospitals in the Netherlands. PATIENTS—63 non-smoking, non-hypercholesterolaemic patients scheduled for elective balloon angioplasty (pravastatin 34, placebo 29). INTERVENTIONS—The effects of three months of pravastatin treatment (40 mg daily) on endothelium dependent vasomotor function were studied. Balloon angioplasty was undertaken one month after randomisation, and coronary vasomotor function tests using acetylcholine were performed two months after balloon angioplasty. The angiograms were analysed quantitatively. MAIN OUTCOME MEASURES—The efficacy measure was the acetylcholine induced change in mean arterial diameter, determined in the dilated segment and in an angiographically normal segment of an adjacent non-manipulated coronary artery. RESULTS—Increasing acetylcholine doses produced vasoconstriction in the dilated segments (p = 0.004) but not in the normal segments. Pravastatin did not affect the vascular response to acetylcholine in either the dilated segments (p = 0.09) or the non-dilated sites. Endothelium dependent vasomotion in normal segments was correlated with that in dilated segments (r = 0.47, p < 0.001). There were fewer procedure related events in the pravastatin group than in the placebo group (p < 0.05). CONCLUSIONS—Endothelium dependent vasomotion in normal segments is correlated with that in dilated segments. A significant beneficial effect of pravastatin on endothelial function could not be shown, but in the dilated segments there was a trend towards a beneficial treatment effect in the pravastatin group. Keywords: angioplasty; endothelium; acetylcholine; pravastatin PMID:11602546
Possible control of subduction zone slow-earthquake periodicity by silica enrichment.
Audet, Pascal; Bürgmann, Roland
2014-06-19
Seismic and geodetic observations in subduction zone forearcs indicate that slow earthquakes, including episodic tremor and slip, recur at intervals of less than six months to more than two years. In Cascadia, slow slip is segmented along strike and tremor data show a gradation from large, infrequent slip episodes to small, frequent slip events with increasing depth of the plate interface. Observations and models of slow slip and tremor require the presence of near-lithostatic pore-fluid pressures in slow-earthquake source regions; however, direct evidence of factors controlling the variability in recurrence times is elusive. Here we compile seismic data from subduction zone forearcs exhibiting recurring slow earthquakes and show that the average ratio of compressional (P)-wave velocity to shear (S)-wave velocity (vP/vS) of the overlying forearc crust ranges between 1.6 and 2.0 and is linearly related to the average recurrence time of slow earthquakes. In northern Cascadia, forearc vP/vS values decrease with increasing depth of the plate interface and with decreasing tremor-episode recurrence intervals. Low vP/vS values require a large addition of quartz in a mostly mafic forearc environment. We propose that silica enrichment varying from 5 per cent to 15 per cent by volume from slab-derived fluids and upward mineralization in quartz veins can explain the range of observed vP/vS values as well as the downdip decrease in vP/vS. The solubility of silica depends on temperature, and deposition prevails near the base of the forearc crust. We further propose that the strong temperature dependence of healing and permeability reduction in silica-rich fault gouge via dissolution-precipitation creep can explain the reduction in tremor recurrence time with progressive silica enrichment. Lower gouge permeability at higher temperatures leads to faster fluid overpressure development and low effective fault-normal stress, and therefore shorter recurrence times. Our results also agree with numerical models of slip stabilization under fault zone dilatancy strengthening caused by decreasing fluid pressure as pore space increases. This implies that temperature-dependent silica deposition, permeability reduction and fluid overpressure development control dilatancy and slow-earthquake behaviour.
Geomechanical Modeling of Deformation Banding in the Navajo Sandstone, San Rafael Monocline, Utah
NASA Astrophysics Data System (ADS)
Gutierrez, M.; Sundal, A.; Petrie, E. S.
2017-12-01
Deformation bands are ubiquitous geological features in many types of rocks. Depending on their micro-structure, they can act either as conduits or barriers to fluid flow. Given the significant roles deformation bands play in fluid flow and chemical transport in rocks, it is important to develop fundamental understanding of their origin, and their characteristics as they relate with the host rock properties and their depositional and structural-geological history. We present a forward-modeling technique based on the geomechanical Bifurcation Theory (BT) to predict the formation of deformation bands in sandstone. According to BT, the formation of deformation bands is a result of strain location, which in turn stems from instability in the stress-strain response of materials during loading. Due to bifurcation, a material which undergoes homogeneous deformation can reach a point at which the material experiences instability and deformation starts to become non-homogenous. We implemented BT in the commercially-available geomechanical code FLAC (Fast Langragian Analysis of Continua) and applied it in the field-scale modeling of deformation banding in the Navajo Sandstone in the San Rafael Monocline in Utah induced by fault propagation folding. The results show that geomechanical modeling using BT has a powerful potential to simulate the physical processes in the formation of deformation banding in rocks. Predicted deformation bands, specifically the pervasive bedding-parallel bands in the Navajo sandstone formation, normal faulting in the upper limb and reverse faulting in the lower limb, are generally in agreement with field observations. Predictions indicate that the pervasive bedding-parallel bands in the Navajo Sandstone are transitional compaction-shear bands with alternating zones of volumetric compaction and dilation. These predictions are consistent with petrographic analysis of thin sections of rock samples from the Navajo Sandstone. The most important parameter in the geomechanical modeling is the dilation angle in relation to the friction angle of the host rock. These parameters, as well the elastic properties, should evolve during the geologic history of a site, thus, the main challenge in the modeling is how to calibrate these parameters to yield consistent results.
NASA Astrophysics Data System (ADS)
Park, J. O.; Tsuru, T.; Fujie, G.; Kagoshima, T.; Sano, Y.
2017-12-01
A lot of fluids at subduction zones are exchanged between the solid Earth and ocean, affecting the earthquake and tsunami generation. New multi-channel seismic reflection and sub-bottom profiling data reveal normal and reverse faults as the fluid pathways in the coseismic slip area of the 2011 Tohoku earthquake (M9.0). Based on seismic reflection characteristics and helium isotope anomalies, we recognize variations in fluid pathways (i.e., faults) from the mantle wedge up to forearc seafloor in the Japan Trench margin. Some fluids are migrated from the mantle wedge along plate interface and then normal or reverse faults cutting through the overriding plate. Others from the mantle wedge are migrated directly up to seafloor along normal faults, without passing through the plate interface. Locations of the normal faults are roughly consistent with aftershocks of the 2011 Tohoku earthquake, which show focal mechanism of normal faulting. It is noticeable that landward-dipping normal faults developing down into Unit C (Cretaceous basement) from seafloor are dominant in the middle slope region where basal erosion is inferred to be most active. A high-amplitude, reverse-polarity reflection of the normal faults within Unit C suggests that the fluids are locally trapped along the faults in high pore pressures. The 2011 Tohoku mainshock and subsequent aftershocks could lead the pre-existing normal faults to be reactive and more porous so that the trapped fluids are easily transported up to seafloor through the faults. Elevated fluid pressures can decrease the effective normal stress for the fault plane, allowing easier slip of the landward-dipping normal fault and also enhancing its tsunamigenic potential.
Igneous Sheet Intrusions as a Record of Paleostress States
NASA Astrophysics Data System (ADS)
Stephens, T. L.; Walker, R. J.; Healy, D.; Bubeck, A.; England, R. W.; McCaffrey, K. J. W.
2017-12-01
The architecture of igneous sheet intrusion networks provides useful constraints on paleostress during emplacement. Several models for sill emplacement have used the close spatial relationships between sills and dikes in layered (sedimentary) host rocks to propose that dike-sill transitions are driven by layering. Such models require a stress rotation - from horizontal extension for dikes, to horizontal compression for sills - which is assumed to reflect a near-hydrostatic stress state, facilitating the dilation and intrusion of pre-existing structures (e.g. faults, joints, and bedding). Here, we present case examples of sills for which layering is not the main control on emplacement: Isle of Mull (UK), Faroe Islands (European Atlantic margin) and the San Rafael Subvolcanic Field (Utah, USA). In each case, dikes cut, or are cut by, sills; indicating that dikes were not the feeders to sills in the same section. The sills consist of linked, flat and shallowly-dipping segments that always show near-vertical opening directions. Sills cut bedding and formation contacts with consistent low-angle dips, and cut or abut against vertical faults, fractures, and tectonic foliations. From this, we infer that magma pressure during emplacement did not exceed the horizontal stress. To constrain the stress state during emplacement we present a novel approach that combines analysis of local and overall sill geometry data with mechanical models for slip tendency, dilation tendency, and fracture susceptibility. We also present a new depth-independent mechanical model, which estimates paleostress ratio and driving fluid pressure ratio using the opening angles of dilated fluid-filled fractures. Our results show that the studied sills record previously unrecognised local fluctuations in the far-field stress state, during magmatic supply. Sills, therefore, present an important tool for determining paleostress in areas where few brittle deformation structures (e.g. faults), other than intrusions, are present.
Solum, J.G.; Davatzes, N.C.; Lockner, D.A.
2010-01-01
The presence of clays in fault rocks influences both the mechanical and hydrologic properties of clay-bearing faults, and therefore it is critical to understand the origin of clays in fault rocks and their distributions is of great importance for defining fundamental properties of faults in the shallow crust. Field mapping shows that layers of clay gouge and shale smear are common along the Moab Fault, from exposures with throws ranging from 10 to ???1000 m. Elemental analyses of four locations along the Moab Fault show that fault rocks are enriched in clays at R191 and Bartlett Wash, but that this clay enrichment occurred at different times and was associated with different fluids. Fault rocks at Corral and Courthouse Canyons show little difference in elemental composition from adjacent protolith, suggesting that formation of fault rocks at those locations is governed by mechanical processes. Friction tests show that these authigenic clays result in fault zone weakening, and potentially influence the style of failure along the fault (seismogenic vs. aseismic) and potentially influence the amount of fluid loss associated with coseismic dilation. Scanning electron microscopy shows that authigenesis promotes that continuity of slip surfaces, thereby enhancing seal capacity. The occurrence of the authigenesis, and its influence on the sealing properties of faults, highlights the importance of determining the processes that control this phenomenon. ?? 2010 Elsevier Ltd.
Flügel-Koch, Cassandra M.; Tektas, Ozan Y.; Kaufman, Paul L.; Paulsen, Friedrich P.; Lütjen-Drecoll, Elke
2014-01-01
Purpose. To analyze the peripheral fixation of the iris dilator muscle in normal eyes and in eyes with pigmentary glaucoma (PG). Methods. Using 63 control eyes (age 18 months–99 years), the peripheral iris dilator was investigated by light microscopy, immunohistochemistry, and electron microscopy. Development was studied using 18 differently aged fetal eyes stained immunohistochemically against α-smooth muscle (SM) actin. The peripheral iris dilator muscle in PG was analyzed using semithin and ultrathin sections of six glutaraldehyde-fixed eyes from three donors aged 38, 62, and 74 years. Results. In normal eyes, the peripheral end of the iris dilator muscle is arranged in a sphincter-like manner. Arcade-shaped tendinous connections associated with myofibroblasts (iridial strands) anchor the iris dilator within the elastic–fibromuscular ciliary meshwork that also serves as fixation area for the elastic tendons of the inner ciliary muscle portions. The iridial strands are innervated and can adapt their length during accommodation. The PG eyes show incomplete circular bundles and iridial strands that are mainly anchored to the iris stroma and the flexible uveal parts of the trabecular meshwork. Conclusions. The normal anchorage of the peripheral iris dilator and its presumably neuronally regulated length adaptation stabilize the peripheral iris during accommodation. Insufficient fixation in PG could promote posterior bowing of the iris with rubbing against the zonular fibers and pigment liberation from the iris pigmented epithelium. PMID:24938519
NASA Astrophysics Data System (ADS)
WANG, J. H.; Liu, C. S.; Chang, J. H.; Yang, E. Y.
2017-12-01
The western Taiwan Foreland Basin lies on the eastern part of Taiwan Strait. The structures in this region are dominated by crustal stretch and a series of flexural normal faults have been developed since Late Miocene owing to the flexural of Eurasia Plate. Through deciphering multi-channel seismic data and drilling data, these flexural features are observed in the offshore Changhua coastal area. The flexure normal faults are important features to realize structural activity in the western Taiwan Foreland Basin. Yang et al. (2016) mention that the reactivated normal faults are found north of the Zhushuixi estuary. It should be a significant issue to decipher whether these faults are still active. In this study, we have analyzed all the available seismic reflections profiles in the central part of the Taiwan Strait, and have observed many pre-Pliocene normal faults that are mainly distributed in the middle of the Taiwan Strait to Changyun Rise, and we tentatively suggest that the formation of these faults may be associated with the formation of the foreland basal unconformity. Furthermore, we will map the distribution of these normal faults and examine whether the reactivated normal faults have extended to south of the Zhushuixi estuary. Finally, we discuss the relation between the reactivated normal faults in the Taiwan Strait and those faults onshore. Key words: Multichannel seismic reflection profile, Taiwan Strait, Foreland basin, normal fault.
Shear dilatancy and acoustic emission in dry and saturated granular materials
NASA Astrophysics Data System (ADS)
Brodsky, E. E.; Siman-Tov, S.
2017-12-01
Shearing of granular materials plays a strong role in naturally sheared systems as landslides and faults. Many works on granular flows have concentrated on dry materials, but relatively little work has been done on water saturated sands. Here we experimentally investigate dry versus saturated quartz-rich sand to understand the effect of the fluid medium on the rheology and acoustic waves emission of the sheared sand. The sand was sheared in a rotary shear rheometer under applied constant normal stress boundary at low (100 µm/s) to high (1 m/s) velocities. Mechanical, acoustic data and deformation were continuously recorded and imaged. For dry and water saturated experiments the granular volume remains constant for low shear velocities ( 10-3 m/s) and increases during shearing at higher velocities ( 1 m/s). Continuous imaging of the sheared sand show that the steady state shear band thickness is thicker during the high velocity steps. No significant change observed in the shear band thickness between dry and water saturated experiments. In contrast, the amount of dilation during water saturated experiments is about half the value measured for dry material. The measured decrease cannot be explained by shear band thickness change as such is not exist. However, the reduced dilation is supported by our acoustic measurements. In general, the event rate and acoustic event amplitudes increase with shear velocity. While isolated events are clearly detected during low velocities at higher the events overlap, resulting in a noisy signal. Although detection is better for saturated experiments, during the high velocity steps the acoustic energy measured from the signal is lower compared to that recorded for dry experiments. We suggest that the presence of fluid suppresses grain motion and particles impacts leading to mild increase in the internal pressure and therefore for the reduced dilation. In addition, the viscosity of fluids may influence the internal pressure via hydrodynamic lubrication which increases the fluid pressure and therefore increases the dilation compared to dry material. The effect is particularly strong for high viscosity fluids, as observed in the silicon oil experiment. Therefore, fluid viscosity can play a crucial role in determining the physics that controls the rheology of the sheared material.
Sandstone-filled normal faults: A case study from central California
NASA Astrophysics Data System (ADS)
Palladino, Giuseppe; Alsop, G. Ian; Grippa, Antonio; Zvirtes, Gustavo; Phillip, Ruy Paulo; Hurst, Andrew
2018-05-01
Despite the potential of sandstone-filled normal faults to significantly influence fluid transmissivity within reservoirs and the shallow crust, they have to date been largely overlooked. Fluidized sand, forcefully intruded along normal fault zones, markedly enhances the transmissivity of faults and, in general, the connectivity between otherwise unconnected reservoirs. Here, we provide a detailed outcrop description and interpretation of sandstone-filled normal faults from different stratigraphic units in central California. Such faults commonly show limited fault throw, cm to dm wide apertures, poorly-developed fault zones and full or partial sand infill. Based on these features and inferences regarding their origin, we propose a general classification that defines two main types of sandstone-filled normal faults. Type 1 form as a consequence of the hydraulic failure of the host strata above a poorly-consolidated sandstone following a significant, rapid increase of pore fluid over-pressure. Type 2 sandstone-filled normal faults form as a result of regional tectonic deformation. These structures may play a significant role in the connectivity of siliciclastic reservoirs, and may therefore be crucial not just for investigation of basin evolution but also in hydrocarbon exploration.
Strain-dependent permeability of volcanic rocks.
NASA Astrophysics Data System (ADS)
Farquharson, Jamie; Heap, Michael; Baud, Patrick
2016-04-01
We explore permeability evolution during deformation of volcanic materials using a suite of rocks with varying compositions and physical properties (such as porosity ϕ). 40 mm × 20 mm cylindrical samples were made from a range of extrusive rocks, including andesites from Colima, Mexico (ϕ˜0.08; 0.18; 0.21), Kumamoto, Japan (ϕ˜0.13), and Ruapehu, New Zealand (ϕ˜0.15), and basalt from Mt Etna, Italy (ϕ˜0.04). Gas permeability of each sample was measured before and after triaxial deformation using a steady-state benchtop permeameter. To study the strain-dependence of permeability in volcanic rocks, we deformed samples to 2, 3, 4, 6, and 12 % axial strain at a constant strain rate of 10-5 s-1. Further, the influence of failure mode - dilatant or compactant - on permeability was assessed by repeating experiments at different confining pressures. During triaxial deformation, porosity change of the samples was monitored by a servo-controlled pore fluid pump. Below an initial porosity of ˜0.18, and at low confining pressures (≤ 20 MPa), we observe a dilatant failure mode (shear fracture formation). With increasing axial strain, stress is accommodated by fault sliding and the generation of ash-sized gouge between the fracture planes. In higher-porosity samples, or at relatively higher confining pressures (≥ 60 MPa), we observe compactant deformation characterised by a monotonous decrease in porosity with increasing axial strain. The relative permeability k' is given by the change in permeability divided by the initial reference state. When behaviour is dilatant, k' tends to be positive: permeability increases with progressive deformation. However, results suggest that after a threshold amount of strain, k' can decrease. k' always is negative (permeability decreases during deformation) when compaction is the dominant behaviour. Our results show that - in the absence of a sealing or healing process - the efficiency of a fault to transmit fluids is correlated to the degree of strain to which is subjected. Volcanic processes such as dome extrusion, which involve progressive strain on complex fault systems, have been seen to cause fault sliding and the prolific generation of fault gouge. Our results indicate that the permeability of these faults will tend to remain constant or increase during continued extrusion, allowing magmatic gases to readily outgas through permeable fault architectures despite the generation and accumulation of gouge. On the other hand, deeper regions of the edifice that will typically be compacting due to the relatively higher confining pressures, will exhibit a continuous decrease in permeability. The interplay between permeability-increasing and permeability-decreasing processes within the edifice is likely to influence outgassing and eruptive cycles at active volcanoes.
Influence of fault steps on rupture termination of strike-slip earthquake faults
NASA Astrophysics Data System (ADS)
Li, Zhengfang; Zhou, Bengang
2018-03-01
A statistical analysis was completed on the rupture data of 29 historical strike-slip earthquakes across the world. The purpose of this study is to examine the effects of fault steps on the rupture termination of these events. The results show good correlations between the type and length of steps with the seismic rupture and a poor correlation between the step number and seismic rupture. For different magnitude intervals, the smallest widths of the fault steps (Lt) that can terminate the rupture propagation are variable: Lt = 3 km for Ms 6.5 6.9, Lt = 4 km for Ms 7.0 7.5, Lt = 6 km for Ms 7.5 8.0, and Lt = 8 km for Ms 8.0 8.5. The dilational fault step is easier to rupture through than the compression fault step. The smallest widths of the fault step for the rupture arrest can be used as an indicator to judge the scale of the rupture termination of seismic faults. This is helpful for research on fault segmentation, as well as estimating the magnitude of potential earthquakes, and is thus of significance for the assessment of seismic risks.
NASA Astrophysics Data System (ADS)
Pinzuti, P.; Mignan, A.; King, G. C.
2009-12-01
Mechanical stretching models have been previously proposed to explain the process of continental break-up through the example of the Asal Rift, Djibouti, one of the few places where the early stages of seafloor spreading can be observed. In these models, deformation is distributed starting at the base of a shallow seismogenic zone, in which sub-vertical normal faults are responsible for subsidence whereas cracks accommodate extension. Alternative models suggest that extension results from localized magma injection, with normal faults accommodating extension and subsidence above the maximum reach of the magma column. In these magmatic intrusion models, normal faults have dips of 45-55° and root into dikes. Using mechanical and kinematics concepts and vertical profiles of normal fault scarps from an Asal Rift campaign, where normal faults are sub-vertical on surface level, we discuss the creation and evolution of normal faults in massive fractured rocks (basalt). We suggest that the observed fault scarps correspond to sub-vertical en echelon structures and that at greater depth, these scarps combine and give birth to dipping normal faults. Finally, the geometry of faulting between the Fieale volcano and Lake Asal in the Asal Rift can be simply related to the depth of diking, which in turn can be related to magma supply. This new view supports the magmatic intrusion model of early stages of continental breaking.
Balloon dilation of the eustachian tube for dilatory dysfunction: A randomized controlled trial.
Poe, Dennis; Anand, Vijay; Dean, Marc; Roberts, William H; Stolovitzky, Jose Pablo; Hoffmann, Karen; Nachlas, Nathan E; Light, Joshua P; Widick, Mark H; Sugrue, John P; Elliott, C Layton; Rosenberg, Seth I; Guillory, Paul; Brown, Neil; Syms, Charles A; Hilton, Christopher W; McElveen, John T; Singh, Ameet; Weiss, Raymond L; Arriaga, Moises A; Leopold, John P
2018-05-01
To assess balloon dilation of the Eustachian tube with Eustachian tube balloon catheter in conjunction with medical management as treatment for Eustachian tube dilatory dysfunction. In this prospective, multicenter, randomized, controlled trial, we assigned, in a 2:1 ratio, patients age 22 years and older with Eustachian tube dilatory dysfunction refractory to medical therapy to undergo balloon dilation of the Eustachian tube with balloon catheter in conjunction with medical management or medical management alone. The primary endpoint was normalization of tympanogram at 6 weeks. Additional endpoints were normalization of Eustachian Tube Dysfunction Questionaire-7 symptom scores, positive Valsalva maneuver, mucosal inflammation, and safety. Primary efficacy results demonstrated superiority of balloon dilation of the Eustachian tube with balloon catheter + medical management compared to medical management alone. Tympanogram normalization at 6-week follow-up was observed in 51.8% (72/139) of investigational patients versus 13.9% (10/72) of controls (P < .0001). Tympanogram normalization in the treatment group was 62.2% after 24 weeks. Normalization of Eustachian Tube Dysfunction Questionaire-7 Symptom scores at 6-week follow-up was observed in 56.2% (77/137) of investigational patients versus 8.5% (6/71) controls (P < .001). The investigational group also demonstrated substantial improvement in both mucosal inflammation and Valsalva maneuver at 6-week follow-up compared to controls. No device- or procedure-related serious adverse events were reported for those who underwent balloon dilation of the Eustachian tube. This study demonstrated superiority of balloon dilation of the Eustachian tube with balloon catheter + medical management compared to medical management alone to treat Eustachian tube dilatory dysfunction in adults. 1b. Laryngoscope, 128:1200-1206, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.
NASA Astrophysics Data System (ADS)
Pinzuti, Paul; Mignan, Arnaud; King, Geoffrey C. P.
2010-10-01
Tectonic-stretching models have been previously proposed to explain the process of continental break-up through the example of the Asal Rift, Djibouti, one of the few places where the early stages of seafloor spreading can be observed. In these models, deformation is distributed starting at the base of a shallow seismogenic zone, in which sub-vertical normal faults are responsible for subsidence whereas cracks accommodate extension. Alternative models suggest that extension results from localised magma intrusion, with normal faults accommodating extension and subsidence only above the maximum reach of the magma column. In these magmatic rifting models, or so-called magmatic intrusion models, normal faults have dips of 45-55° and root into dikes. Vertical profiles of normal fault scarps from levelling campaign in the Asal Rift, where normal faults seem sub-vertical at surface level, have been analysed to discuss the creation and evolution of normal faults in massive fractured rocks (basalt lava flows), using mechanical and kinematics concepts. We show that the studied normal fault planes actually have an average dip ranging between 45° and 65° and are characterised by an irregular stepped form. We suggest that these normal fault scarps correspond to sub-vertical en echelon structures, and that, at greater depth, these scarps combine and give birth to dipping normal faults. The results of our analysis are compatible with the magmatic intrusion models instead of tectonic-stretching models. The geometry of faulting between the Fieale volcano and Lake Asal in the Asal Rift can be simply related to the depth of diking, which in turn can be related to magma supply. This new view supports the magmatic intrusion model of early stages of continental breaking.
Slip-localization within confined gouge powder sheared at moderate to high slip-velocity
NASA Astrophysics Data System (ADS)
Reches, Zeev; Chen, Xiaofeng; Morgan, Chance; Madden, Andrew
2015-04-01
Slip along faults in the upper crust is always associated with comminution and formation of non-cohesive gouge powder that can be lithified to cataclasite. Typically, the fine-grained powders (grain-size < 1 micron) build a 1-10 cm thick inner-core of a fault-zone. The ubiquitous occurrence of gouge powder implies that gouge properties may control the dynamic weakening of faults. Testing these properties is the present objective. We built a Confined ROtary Cell, CROC, with a ring-shape, ~3 mm thick gouge chamber, with 62.5 and 81.2 mm of inner and outer diameters. The sheared powder is sealed by two sets of seals pressurized by nitrogen. In CROC, we can control the pore-pressure and to inject fluids, and to monitor CO2 and H2O concentration; in addition, we monitor the standard mechanical parameters (slip velocity, stresses, dilation, and temperature). We tested six types of granular materials (starting grain-size in microns): Talc (<250), Kasota dolomite (125-250), ooides grains (125-250), San Andreas fault zone powder (< 840), montmorillonite powder (1-2), kaolinite powder and gypsum. The experimental slip-velocity ranged 0.001-1 m/s, slip distances from a few tens of cm to tens of m, effective normal stress up to 6.1 MPa. The central ultra-microscopic (SEM) observation is that almost invariably the slip was localized along principal-slip-zone (PSZ) within the granular layer. Even though the starting material was loose, coarse granular material, the developed PSZ was cohesive, hard, smooth and shining. The PSZ is about 1 micron thick, and built of agglomerated, ultra-fine grains (20-50 nm) that were pulverized from the original granular material. We noted that PSZs of the different tested compositions display similar characteristics in terms of structure, grain size, and roughness. Further, we found striking similarities between PSZ in the granular samples and the PZS that developed along experimental faults made of solid rock that were sheared at similar conditions. The ultra-fine grains and extreme slip localization in these experiments are generally similar to ultra-cataclasites found in exhumed faults-zones, and the intensely pulverized gouge found in drilling across active faults.
NASA Astrophysics Data System (ADS)
Khoshmanesh, M.; Shirzaei, M.
2017-12-01
Recent seismic and geodetic observations indicate that interseismic creep rate varies in both time and space. The spatial extent of creep determines the earthquake potential, while its temporal evolution, known as slow slip events (SSE), may trigger earthquakes. Although the conditions promoting fault creep are well-established, the mechanism for initiating self-sustaining and sometimes cyclic creep events is enigmatic. Here we investigate a time series of 19 years of surface deformation measured by radar interferometry between 1992 and 2011 along the Central San Andreas Fault (CSAF) to constrain the temporal evolution of creep. We show that the creep rate along the CSAF has a sporadic behavior, quantified with a Gumbel-like probability distribution characterized by longer tail toward the extreme positive rates, which is signature of burst-like creep dynamics. Defining creep avalanches as clusters of isolated creep with rates exceeding the shearing rate of tectonic plates, we investigate the statistical properties of their size and length. We show that, similar to the frequency-magnitude distribution of seismic events, the distribution of potency estimated for creep avalanches along the CSAF follows a power law, dictated by the distribution of their along-strike lengths. We further show that an ensemble of concurrent creep avalanches which aseismically rupture isolated fault compartments form the semi-periodic SSEs observed along the CSAF. Using a rate and state friction model, we show that normal stress is temporally variable on the fault, and support this using seismic observations. We propose that, through a self-sustaining fault-valve behavior, compaction induced elevation of pore pressure within hydraulically isolated fault compartments, and subsequent frictional dilation is the cause for the observed episodic SSEs. We further suggest that the 2004 Parkfield Mw6 earthquake may have been triggered by the SSE on adjacent creeping segment, which increased Coulomb failure stress up to 0.45 bar/yr. While creeping segments are suggested to act as barriers and arrest rupture, our study implies that SSEs on these zones may trigger seismic events on adjacent locked parts.
NASA Astrophysics Data System (ADS)
Bouin, Marie-Paule; TéLlez, Julia; Bernard, Pascal
1996-03-01
Several thousand three-component seismograms from local earthquakes recorded during two field experiments in August 1991 and November 1992 in the Gulf of Corinth have been analyzed to detect shear wave splitting. After a first selection of the events located in the S window of the considered stations, a second very strict selection of the records is applied in order to avoid the effect of scattered or converted phases which can mimic the behavior of shear wave splitting. Two main directions of fast S wave polarization have been detected: one oriented N105°E-N120°E, the other N55°E-N75°E. The first one is perpendicular to the main direction of extension of the Gulf provided by focal mechanism, Global Positioning System measurements, and tectonic studies, and is thus consistent with the extensive-dilatancy anisotropy (EDA) model. The second direction is subparallel to the direction of the active normal fault closest to the sites. This suggests a local control of the anisotropy by these active faults, either by a local rotation of the total stress field, in which case the EDA model may still explain the anisotropy, or by the existence of a specific microstructure or macrostructure generated by the long-term fault activity (set of secondary fault planes parallel to the major one), in which case the anisotropy direction would be significantly rotated from the stress direction (about 50°). The anisotropic signature does not seem to be affected by the geology of the site (pre-Tertiary limestone and Pleistocene sediments), except for a station located on the thick Plio-Quaternary deposits of a delta, where the time delay is significantly larger.
Deformation associated with continental normal faults
NASA Astrophysics Data System (ADS)
Resor, Phillip G.
Deformation associated with normal fault earthquakes and geologic structures provide insights into the seismic cycle as it unfolds over time scales from seconds to millions of years. Improved understanding of normal faulting will lead to more accurate seismic hazard assessments and prediction of associated structures. High-precision aftershock locations for the 1995 Kozani-Grevena earthquake (Mw 6.5), Greece image a segmented master fault and antithetic faults. This three-dimensional fault geometry is typical of normal fault systems mapped from outcrop or interpreted from reflection seismic data and illustrates the importance of incorporating three-dimensional fault geometry in mechanical models. Subsurface fault slip associated with the Kozani-Grevena and 1999 Hector Mine (Mw 7.1) earthquakes is modeled using a new method for slip inversion on three-dimensional fault surfaces. Incorporation of three-dimensional fault geometry improves the fit to the geodetic data while honoring aftershock distributions and surface ruptures. GPS Surveying of deformed bedding surfaces associated with normal faulting in the western Grand Canyon reveals patterns of deformation that are similar to those observed by interferometric satellite radar interferometry (InSAR) for the Kozani Grevena earthquake with a prominent down-warp in the hanging wall and a lesser up-warp in the footwall. However, deformation associated with the Kozani-Grevena earthquake extends ˜20 km from the fault surface trace, while the folds in the western Grand Canyon only extend 500 m into the footwall and 1500 m into the hanging wall. A comparison of mechanical and kinematic models illustrates advantages of mechanical models in exploring normal faulting processes including incorporation of both deformation and causative forces, and the opportunity to incorporate more complex fault geometry and constitutive properties. Elastic models with antithetic or synthetic faults or joints in association with a master normal fault illustrate how these secondary structures influence the deformation in ways that are similar to fault/fold geometry mapped in the western Grand Canyon. Specifically, synthetic faults amplify hanging wall bedding dips, antithetic faults reduce dips, and joints act to localize deformation. The distribution of aftershocks in the hanging wall of the Kozani-Grevena earthquake suggests that secondary structures may accommodate strains associated with slip on a master fault during postseismic deformation.
Fault rock mineralogy and fluid flow in the Coso Geothermal Field, CA
NASA Astrophysics Data System (ADS)
Davatzes, N. C.; Hickman, S. H.
2005-12-01
The minerals that comprise fault rock, their grain shapes, and packing geometry are important controls on fault zone properties such as permeability, frictional strength, and slip behavior. In this study we examine the role of mineralogy and deformation microstructures on fluid flow in a fault-hosted, fracture-dominated geothermal system contained in granitic rocks in the Coso Geothermal Field, CA. Initial examination of the mineralogy and microstructure of fault rock obtained from core and surface outcrops reveals three fault rock types. (1) Fault rock consisting of kaolinite and amorphous silica that contains large connected pores, dilatant brittle fractures, and dissolution textures. (2) Fault rock consisting of foliated layers of chlorite and illite-smectite separated by slip surfaces. (3) Fault rock consisting of poorly sorted angular grains, characterized by large variations in grain packing (pore size), and crack-seal textures. These different fault rocks are respectively associated with a high permeability upper boiling zone for the geothermal system, a conductively heated "caprock" at moderate to shallow depth associated with low permeability, and a deeper convectively heated region associated with enhanced permeability. Outcrop and hand-sample scale mapping, XRD analysis, and SEM secondary electron images of fault gouge and slip surfaces at different stages of development (estimated shear strain) are used to investigate the processes responsible for the development and physical properties of these distinct fault rocks. In each type of fault rock, mineral dissolution and re-precipitation in conjunction with the amount and geometry of porosity changes induced by dilation or compaction are the key controls on fault rock development. In addition, at the contacts between slip surfaces, abrasion and resulting comminution appear to influence grain size, sorting, and packing. Macroscopically, we expect the frictional strength of these characteristic fault rocks to differ because the processes that accommodate deformation depend strongly on mineralogy. Frictional strength of quartz-dominated fault rocks in the near surface and in the reservoir should be greater (~0.6) than that in the clay-dominated cap rock (~0.2-0.4). Similarly, permeability should be much lower in foliated clay-rich fault rocks than in quartz-rich fault rocks as evidenced by larger, more connected pores imaged in quartz-rich gouge. Mineral stability is a function of loading, strain rate, temperature, and fluid flow conditions. Which minerals form, and the rates at which they grow is also a key element in determining variations in the magnitude and anisotropy of fault zone properties at Coso. Consequently, we suggest that the development of fault-zone properties depends on the feedback between deformation, resulting changes in permeability, and large-scale fluid flow and the leading to dissolution/precipitation of minerals in the fault rock and adjacent host rock. The implication for Coso is that chemical alteration of otherwise low-porosity crystalline rocks appears to determine the distribution and temporal evolution of permeability in the actively deforming fracture network at small to moderate scales as well as along major, reservoir-penetrating fault zones.
Flügel-Koch, Cassandra M; Tektas, Ozan Y; Kaufman, Paul L; Paulsen, Friedrich P; Lütjen-Drecoll, Elke
2014-06-17
To analyze the peripheral fixation of the iris dilator muscle in normal eyes and in eyes with pigmentary glaucoma (PG). Using 63 control eyes (age 18 months-99 years), the peripheral iris dilator was investigated by light microscopy, immunohistochemistry, and electron microscopy. Development was studied using 18 differently aged fetal eyes stained immunohistochemically against α-smooth muscle (SM) actin. The peripheral iris dilator muscle in PG was analyzed using semithin and ultrathin sections of six glutaraldehyde-fixed eyes from three donors aged 38, 62, and 74 years. In normal eyes, the peripheral end of the iris dilator muscle is arranged in a sphincter-like manner. Arcade-shaped tendinous connections associated with myofibroblasts (iridial strands) anchor the iris dilator within the elastic-fibromuscular ciliary meshwork that also serves as fixation area for the elastic tendons of the inner ciliary muscle portions. The iridial strands are innervated and can adapt their length during accommodation. The PG eyes show incomplete circular bundles and iridial strands that are mainly anchored to the iris stroma and the flexible uveal parts of the trabecular meshwork. The normal anchorage of the peripheral iris dilator and its presumably neuronally regulated length adaptation stabilize the peripheral iris during accommodation. Insufficient fixation in PG could promote posterior bowing of the iris with rubbing against the zonular fibers and pigment liberation from the iris pigmented epithelium. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
NASA Astrophysics Data System (ADS)
Dooley, T. P.; Monastero, F. C.; McClay, K. R.
2007-12-01
Results of scaled physical models of a releasing bend in the transtensional, dextral strike-slip Coso geothermal system located in the southwest Basin and Range, U.S.A., are instructive for understanding crustal thinning and heat flow in such settings. The basic geometry of the Coso system has been approximated to a 30? dextral releasing stepover. Twenty-four model runs were made representing successive structural iterations that attempted to replicate geologic structures found in the field. The presence of a shallow brittle-ductile transition in the field known from a well-documented seismic-aseismic boundary, was accommodated by inclusion of layers of silicone polymer in the models. A single polymer layer models a conservative brittle-ductile transition in the Coso area at a depth of 6 km. Dual polymer layers impose a local elevation of the brittle-ductile transition to a depth of 4 km. The best match to known geologic structures was achieved with a double layer of silicone polymers with an overlying layer of 100 µm silica sand, a 5° oblique divergent motion across the master strike-slip faults, and a thin-sheet basal rubber décollement. Variation in the relative displacement of the two base plates resulted in some switching in basin symmetry, but the primary structural features remained essentially the same. Although classic, basin-bounding sidewall fault structures found in all pull-apart basin analog models formed in our models, there were also atypical complex intra-basin horst structures that formed where the cross-basin fault zone is situated. These horsts are flanked by deep sedimentary basins that were the locus of maximum crustal thinning accomplished via high-angle extensional and oblique-extensional faults that become progressively more listric with depth as the brittle-ductile transition was approached. Crustal thinning was as much as 50% of the original model depth in dual polymer models. The weak layer at the base of the upper crust appears to focus brittle deformation and facilitate formation of listric normal faults. The implications of these modeling efforts are that: 1) Releasing stepovers that have associated weak upper crust will undergo a more rapid rate of crustal thinning due to the strain focusing effect of this ductile layer; 2) The origin of listric normal faults in these analog models is related to the presence of the weak, ductile layer; and, 3) Due to high dilatency related to major intra-basin extension these stepover structures can be the loci for high heat flow.
NASA Astrophysics Data System (ADS)
Hosono, Masaki; Mitsui, Yuta; Ishibashi, Hidemi; Kataoka, Jun
2016-12-01
We discuss elastostatic effects on Mt. Fuji, the tallest volcano in Japan, due to historic earthquakes in Japan. The 1707 Hoei eruption, which was the most explosive historic eruption of Mt. Fuji, occurred 49 days after the Hoei earthquake (Mw 8.7) along the Nankai Trough. It was previously suggested that the Hoei earthquake induced compression of a basaltic magma reservoir and unclamping of a dike-intruded region at depth, possibly triggering magma mixing and the subsequent Plinian eruption. Here, we show that the 1707 Hoei earthquake was a special case of induced volumetric strain and normal stress changes around the magma reservoir and pathway of Mt. Fuji. The 2011 Tohoku earthquake (Mw 9), along the Japan Trench, dilated the magma reservoir. It has been proposed that dilation of a magma reservoir drives the ascent of gas bubbles with magma and further depressurization, leading to a volcanic eruption. In fact, seismicity notably increased around Mt. Fuji during the first month after the 2011 Tohoku earthquake, even when we statistically exclude aftershocks, but the small amount of strain change (< 1 μ strain) may have limited the ascent of magma. For many historic earthquakes, the magma reservoir was compressed and the magma pathway was wholly clamped. This type of interaction has little potential to mechanically trigger the deformation of a volcano. Thus, Mt. Fuji may be less susceptible to elastostatic effects because of its location relative to the sources of large tectonic earthquakes. As an exception, a possible local earthquake in the Fujikawa-kako fault zone could induce a large amount of magma reservoir dilation beneath the southern flank of Mt. Fuji.
Smoothing and roughening of slip surfaces in direct shear experiments
NASA Astrophysics Data System (ADS)
Sagy, Amir; Badt, Nir; Hatzor, Yossef H.
2015-04-01
Faults in the upper crust contain discrete slip surfaces which have absorbed a significant part of the shear displacement along them. Field measurements demonstrate that these surfaces are rough at all measurable scales and indicate that surfaces of relatively large-slip faults are statistically smoother than those of small-slip faults. However, post faulting and surface erosion process that might affect the geometry of outcrops cannot be discounted in such measurements. Here we present experimental results for the evolution of shear surface topography as function of slip distance and normal stress in direct shear experiments. A single prismatic fine grain limestone block is first fractured in tension mode using the four-point bending test methodology and then the fracture surface topography is scanned using a laser profilometer. We then shear the obtained tensile fracture surfaces in direct shear, ensuring the original fracture surfaces are in a perfectly matching configuration at the beginning of the shear test. First, shearing is conducted to distances varying from 5 to 15 mm under constant normal stress of 2MPa and a constant displacement rate of 0.05 mm/s using two closed-loop servo controlled hydraulic pistons, supplying normal and shear forces (Davidesko et al., 2014). In the tested configuration peak shear stress is typically attained after a shear displacement of about 2-3 mm, beyond which lower shear stress is required to continue shearing at the preset displacement rate of 0.05 mm/s as is typical for initially rough joints. Following some initial compression the interface begins to dilate and continues to do so until the end of the test. The sheared tensile fracture surface is then scanned again and the geometrical evolution, in term of RMS roughness and power spectral density (PSD) is analyzed. We show that shearing smooth the surface along all our measurements scales. The roughness ratio, measured by initial PSD / final PSD for each wavelength, increases as a function of slip amount. The roughness measured after slip can be fitted by a power-law similar to that of the initial tensile surface. In the next series of experiments a similar procedure is applied when the roughness evolution is measured as a function of increasing normal stress for a fixed displacement amount of 10 mm. While samples sheared under a constant normal stress of 5 MPa generated surface smoothing, shearing under normal stress of 7.5 MPa to 15 MPa exhibited surface roughening at the measured range of scales. We find that roughening is correlated with the attained peak shear stress values, stress drop (peak shear stress minus residual shear stress) and with wear accumulation, a novel measurement procedure of which is developed here. Analysis of the sheared samples shows that roughening is generated by sets of dense fractures that significantly damaged the sample in the immediate proximity to large asperities. This roughening is related to penetrative damage during transient wear in rough surfaces.
Geological perspectives of shallow slow earthquakes deduced from deformation in subduction mélanges
NASA Astrophysics Data System (ADS)
Ujiie, K.; Saishu, H.; Kinoshita, T.; Nishiyama, N.; Otsubo, M.; Ohta, K.; Yamashita, Y.; Ito, Y.
2017-12-01
Shallow (< 15 km depth) slow earthquakes are important to understand, as they occur along the subduction thrust where devastating tsunamis are generated. Geophysical studies have revealed that shallow slow earthquakes are not restricted to specific temperature conditions and depths but occur in regions of high fluid pressure. In the Nankai subduction zone, the shallow slow slip appears to trigger tremor and very-low-frequency-earthquake. However, the geologic perspectives for shallow slow earthquakes remain enigmatic. The Makimine mélange in the Late Cretaceous Shimanto accretionary complex of southwest Japan was formed during the subduction of young oceanic plate. Within the mélange, the quartz-filled veins and viscous shear zones are concentrated in the zones of 10 to 60 m-thick. The veins consist of shear veins showing low-angle thrust or normal faulting mechanisms and extension veins parallel or at high angle to mélange foliation. The geometrical relationship between shear and extension veins indicates that shear slip and tensile fracturing occur by small differential stress under elevated fluid pressure. The shear and extension veins typically show crack-seal textures defined by the solid inclusions bands. The time scale of each crack-seal event, which is determined from the quartz kinetics considering inclusion band spacing and vein length, is a few years. The shear slip increments estimated from the spacing of inclusions bands at dilational jogs are 0.1 mm. The viscous shear is accommodated by pressure solution creep and consistently shows low-angle thrust shear sense. These geologic features are suggested to explain seismogenic environment for shallow slow earthquakes. The shear veins and viscous shear zones showing low-angle thrust faulting mechanism could represent episodic tremor and slip, while the shear veins showing low-angle normal faulting mechanism may represent the tremor that occurred after the passage of slow slip front.
Earthquake Clustering on Normal Faults: Insight from Rate-and-State Friction Models
NASA Astrophysics Data System (ADS)
Biemiller, J.; Lavier, L. L.; Wallace, L.
2016-12-01
Temporal variations in slip rate on normal faults have been recognized in Hawaii and the Basin and Range. The recurrence intervals of these slip transients range from 2 years on the flanks of Kilauea, Hawaii to 10 kyr timescale earthquake clustering on the Wasatch Fault in the eastern Basin and Range. In addition to these longer recurrence transients in the Basin and Range, recent GPS results there also suggest elevated deformation rate events with recurrence intervals of 2-4 years. These observations suggest that some active normal fault systems are dominated by slip behaviors that fall between the end-members of steady aseismic creep and periodic, purely elastic, seismic-cycle deformation. Recent studies propose that 200 year to 50 kyr timescale supercycles may control the magnitude, timing, and frequency of seismic-cycle earthquakes in subduction zones, where aseismic slip transients are known to play an important role in total deformation. Seismic cycle deformation of normal faults may be similarly influenced by its timing within long-period supercycles. We present numerical models (based on rate-and-state friction) of normal faults such as the Wasatch Fault showing that realistic rate-and-state parameter distributions along an extensional fault zone can give rise to earthquake clusters separated by 500 yr - 5 kyr periods of aseismic slip transients on some portions of the fault. The recurrence intervals of events within each earthquake cluster range from 200 to 400 years. Our results support the importance of stress and strain history as controls on a normal fault's present and future slip behavior and on the characteristics of its current seismic cycle. These models suggest that long- to medium-term fault slip history may influence the temporal distribution, recurrence interval, and earthquake magnitudes for a given normal fault segment.
Spatiotemporal analysis of Quaternary normal faults in the Northern Rocky Mountains, USA
NASA Astrophysics Data System (ADS)
Davarpanah, A.; Babaie, H. A.; Reed, P.
2010-12-01
The mid-Tertiary Basin-and-Range extensional tectonic event developed most of the normal faults that bound the ranges in the northern Rocky Mountains within Montana, Wyoming, and Idaho. The interaction of the thermally induced stress field of the Yellowstone hot spot with the existing Basin-and-Range fault blocks, during the last 15 my, has produced a new, spatially and temporally variable system of normal faults in these areas. The orientation and spatial distribution of the trace of these hot-spot induced normal faults, relative to earlier Basin-and-Range faults, have significant implications for the effect of the temporally varying and spatially propagating thermal dome on the growth of new hot spot related normal faults and reactivation of existing Basin-and-Range faults. Digitally enhanced LANDSAT 7 Enhanced Thematic Mapper Plus (ETM+) and Landsat 4 and 5 Thematic Mapper (TM) bands, with spatial resolution of 30 m, combined with analytical GIS and geological techniques helped in determining and analyzing the lineaments and traces of the Quaternary, thermally-induced normal faults in the study area. Applying the color composite (CC) image enhancement technique, the combination of bands 3, 2 and 1 of the ETM+ and TM images was chosen as the best statistical choice to create a color composite for lineament identification. The spatiotemporal analysis of the Quaternary normal faults produces significant information on the structural style, timing, spatial variation, spatial density, and frequency of the faults. The seismic Quaternary normal faults, in the whole study area, are divided, based on their age, into four specific sets, which from oldest to youngest include: Quaternary (>1.6 Ma), middle and late Quaternary (>750 ka), latest Quaternary (>15 ka), and the last 150 years. A density map for the Quaternary faults reveals that most active faults are near the current Yellowstone National Park area (YNP), where most seismically active faults, in the past 1.6 my, are located. The GIS based autocorrelation method, applied to the trace orientation, length, frequency, and spatial distribution for each age-defined fault set, revealed spatial homogeneity for each specific set. The results of the method of Moran`sI and Geary`s C show no spatial autocorrelation among the trend of the fault traces and their location. Our results suggest that while lineaments of similar age define a clustered pattern in each domain, the overall distribution pattern of lineaments with different ages seems to be non-uniform (random). The directional distribution analysis reveals a distinct range of variation for fault traces of different ages (i.e., some displaying ellipsis behavior). Among the Quaternary normal fault sets, the youngest lineament set (i.e., last 150 years) defines the greatest ellipticity (eccentricity) and the least lineaments distribution variation. The frequency rose diagram for the entire Quaternary normal faults, shows four major modes (around 360o, 330o, 300o, and 270o), and two minor modes (around 235 and 205).
Huang, Bao-Tao; Peng, Yong; Liu, Wei; Zhang, Chen; Huang, Fang-Yang; Wang, Peng-Ju; Zuo, Zhi-Liang; Liao, Yan-Biao; Chai, Hua; Li, Qiao; Zhao, Zhen-Gang; Luo, Xiao-Lin; Ren, Xin; Huang, Kai-Sen; Meng, Qing-Tao; Chen, Chi; Huang, De-Jia; Chen, Mao
2014-10-01
A new 4-tired classification of left ventricular hypertrophy (LVH) based on LV concentricity and dilation has been proposed; however, the association between the new categorization of LV geometry and outcomes in patients with coronary artery disease (CAD) is still unknown. All the 2297 patients with CAD included underwent echocardiographic examination prior to discharge. Left ventricular mass (LVM) was calculated, and left ventricular end-diastolic volume (EDV) was indexed by body surface area (BSA). Study cohort was divided into five groups according to LV geometry: (i) eccentric nondilated LVH (normal LVM/EDV((2/3)) and EDV/BSA) (n = 129); (ii) eccentric dilated LVH (normal LVM/EDV((2/3)) with increased EDV/BSA) (n = 222); (iii) concentric nondilated LVH (increased LVM/EDV((2/3)) with normal EDV/BSA) (n = 441); (iv) concentric dilated LVH (increased LVM/EDV((2/3)) and EDV/BSA) (n = 118); and (v) normal LV mass (n = 1387). Dilated LVH was associated with a higher event rates of all-cause death (eccentric 13·1% vs. 3·1%; concentric 13·6% vs. 8·4%) and composite events (eccentric: 17·6% vs. 5·4%; concentric: 18·6% vs. 12·7%) compared with nondilated LVH. While eccentric nondilated LVH had comparable risk for adverse outcomes compared with normal LV mass (all-cause death: relative risk (RR) 0·68, 95% confidential interval (CI) 0·25-1·85; composite events: RR 0·75, 95% CI 0·36-1·58). Cox regression analyses showed that eccentric dilated LVH had the highest propensity to all-cause death (adjusted hazard ratio [aHR] 2·752 [95% CI 1·749-4·328], P < 0·001) and composite events (aHR 2·462 [95% CI 1·688-3·592], P < 0·001). In patients with CAD, dilated LVH and nondilated LVH provide distinct prognostic information. Eccentric nondilated LVH does not predict adverse outcomes. © 2014 Stichting European Society for Clinical Investigation Journal Foundation.
NASA Astrophysics Data System (ADS)
Li, Yingchun; Wu, Wei; Li, Bo
2018-05-01
Jointed rock masses during underground excavation are commonly located under the constant normal stiffness (CNS) condition. This paper presents an analytical formulation to predict the shear behaviour of rough rock joints under the CNS condition. The dilatancy and deterioration of two-order asperities are quantified by considering the variation of normal stress. We separately consider the dilation angles of waviness and unevenness, which decrease to zero as the normal stress approaches the transitional stress. The sinusoidal function naturally yields the decay of dilation angle as a function of relative normal stress. We assume that the magnitude of transitional stress is proportionate to the square root of asperity geometric area. The comparison between the analytical prediction and experimental data shows the reliability of the analytical model. All the parameters involved in the analytical model possess explicit physical meanings and are measurable from laboratory tests. The proposed model is potentially practicable for assessing the stability of underground structures at various field scales.
NASA Astrophysics Data System (ADS)
Cortés, Angel L.; Liesa, Carlos L.; Soria, Ana R.; Meléndez, Alfonso
1999-03-01
The Aguilón Subbasin (NE Spain) was originated daring the Late Jurassic-Early Cretaceous rifting due to the action of large normal faults, probably inherited from Late Variscan fracturing. WNW-ESE normal faults limit two major troughs filled by continental deposits (Valanginian to Early Barremian). NE-SW faults control the location of subsidiary depocenters within these troughs. These basins were weakly inverted during the Tertiary with folds and thrusts striking E-W to WNW-ESE involving the Mesozoic-Tertiary cover with a maximum estimated shortening of about 12 %. Tertiary compression did not produce the total inversion of the Mesozoic basin but extensional structures are responsible for the location of major Tertiary folds. Shortening of the cover during the Tertiary involved both reactivation of some normal faults and development of folds and thrusts nucleated on basement extensional steps. The inversion style depends mainly on the occurrence and geometry of normal faults limiting the basin. Steep normal faults were not reactivated but acted as buttresses to the cover translation. Around these faults, affecting both basement and cover, folds and thrusts were nucleated due to the stress rise in front of major faults. Within the cover, the buttressing against normal faults consists of folding and faulting implying little shortening without development of ceavage or other evidence of internal deformation.
NASA Astrophysics Data System (ADS)
Barnes, H.; Spinelli, G. A.; Mozley, P.
2015-12-01
Fault-zones are an important control on fluid flow, affecting groundwater supply, hydrocarbon/contaminant migration, and waste/carbon storage. However, current models of fault seal are inadequate, primarily focusing on juxtaposition and entrainment effects, despite the recognition that fault-zone cementation is common and can dramatically reduce permeability. We map the 3D cementation patterns of the variably cemented Loma Blanca fault from the land surface to ~40 m depth, using electrical resistivity and induced polarization (IP). The carbonate-cemented fault zone is a region of anomalously low normalized chargeability, relative to the surrounding host material. Zones of low-normalized chargeability immediately under the exposed cement provide the first ground-truth that a cemented fault yields an observable IP anomaly. Low-normalized chargeability extends down from the surface exposure, surrounded by zones of high-normalized chargeability, at an orientation consistent with normal faults in the region; this likely indicates cementation of the fault zone at depth, which could be confirmed by drilling and coring. Our observations are consistent with: 1) the expectation that carbonate cement in a sandstone should lower normalized chargeability by reducing pore-surface area and bridging gaps in the pore space, and 2) laboratory experiments confirming that calcite precipitation within a column of glass beads decreases polarization magnitude. The ability to characterize spatial variations in the degree of fault-zone cementation with resistivity and IP has exciting implications for improving predictive models of the hydrogeologic impacts of cementation within faults.
NASA Astrophysics Data System (ADS)
Zhou, Zhiyuan; Lin, Jian
2018-06-01
We investigated variations in the elasto-plastic deformation of the subducting plate along the Mariana Trench through an analysis of flexural bending and normal fault characteristics together with geodynamic modeling. Most normal faults were initiated at the outer-rise region and grew toward the trench axis with strikes mostly subparallel to the local trench axis. The average trench relief and maximum fault throws were measured to be significantly greater in the southern region (5 km and 320 m, respectively) than the northern and central regions (2 km and 200 m). The subducting plate was modeled as an elasto-plastic slab subjected to tectonic loading at the trench axis. The calculated strain rates and velocities revealed an array of normal fault-like shear zones in the upper plate, resulting in significant faulting-induced reduction in the deviatoric stresses. We then inverted for solutions that best fit the observed flexural bending and normal faulting characteristics, revealing normal fault penetration to depths of 21, 20, and 32 km beneath the seafloor for the northern, central, and southern regions, respectively, which is consistent with the observed depths of the relocated normal faulting earthquakes in the central Mariana Trench. The calculated deeper normal faults of the southern region might lead to about twice as much water being carried into the mantle per unit trench length than the northern and central regions. We further calculated that normal faulting has reduced the effective elastic plate thickness Te by up to 52% locally in the southern region and 33% in both the northern and central regions. The best-fitting solutions revealed a greater apparent angle of the pulling force in the southern region (51-64°) than in the northern (22-35°) and central (20-34°) regions, which correlates with a general southward increase in the seismically-determined dip angle of the subducting slab along the Mariana Trench.
Monitoring of hydrogen along the San Andreas and Calaveras faults in central California in 1980-1984
NASA Astrophysics Data System (ADS)
Sato, Motoaki; Sutton, A. J.; McGee, K. A.; Russell-Robinson, Susan
1986-11-01
Hydrogen (H2) has been monitored continuously at 1.5-m depth at nine sites along the San Andreas and Calaveras faults in central California since December 1980. Site characteristic small noninstrumental diurnal variations were recorded during quiescent periods at most sites. Abrupt H2 changes were observed concurrently at two sites on the Calaveras fault; some of these were correlated with oscillatory fault slips. Large (1000-4000 ppm) H2 increases were recorded at some sites on the San Andreas fault between July 1982 and November 1983, which may be correlated with eleven M ≥ 5 earthquakes that occurred near Coalinga during this period. We attribute both the H2 increases and the triggering of the earthquakes to a large-scale compressive stress field within the ductile mafic crust near the plate boundary. The stress perhaps caused bulging of the base of the brittle upper crust and thus caused dilation of the San Andreas fault zone, allowing the escape of pent-up H2 generated by hydration reaction of the mafic crust. At the same time, mobile serpentinites may have squeezed into the seismogenic fault beneath the Coalinga area triggering the earthquakes.
NASA Astrophysics Data System (ADS)
Abdelrhman, Ahmed M.; Sei Kien, Yong; Salman Leong, M.; Meng Hee, Lim; Al-Obaidi, Salah M. Ali
2017-07-01
The vibration signals produced by rotating machinery contain useful information for condition monitoring and fault diagnosis. Fault severities assessment is a challenging task. Wavelet Transform (WT) as a multivariate analysis tool is able to compromise between the time and frequency information in the signals and served as a de-noising method. The CWT scaling function gives different resolutions to the discretely signals such as very fine resolution at lower scale but coarser resolution at a higher scale. However, the computational cost increased as it needs to produce different signal resolutions. DWT has better low computation cost as the dilation function allowed the signals to be decomposed through a tree of low and high pass filters and no further analysing the high-frequency components. In this paper, a method for bearing faults identification is presented by combing Continuous Wavelet Transform (CWT) and Discrete Wavelet Transform (DWT) with envelope analysis for bearing fault diagnosis. The experimental data was sampled by Case Western Reserve University. The analysis result showed that the proposed method is effective in bearing faults detection, identify the exact fault’s location and severity assessment especially for the inner race and outer race faults.
Effects induced by an earthquake on its fault plane:a boundary element study
NASA Astrophysics Data System (ADS)
Bonafede, Maurizio; Neri, Andrea
2000-04-01
Mechanical effects left by a model earthquake on its fault plane, in the post-seismic phase, are investigated employing the `displacement discontinuity method'. Simple crack models, characterized by the release of a constant, unidirectional shear traction are investigated first. Both slip components-parallel and normal to the traction direction-are found to be non-vanishing and to depend on fault depth, dip, aspect ratio and fault plane geometry. The rake of the slip vector is similarly found to depend on depth and dip. The fault plane is found to suffer some small rotation and bending, which may be responsible for the indentation of a transform tectonic margin, particularly if cumulative effects are considered. Very significant normal stress components are left over the shallow portion of the fault surface after an earthquake: these are tensile for thrust faults, compressive for normal faults and are typically comparable in size to the stress drop. These normal stresses can easily be computed for more realistic seismic source models, in which a variable slip is assigned; normal stresses are induced in these cases too, and positive shear stresses may even be induced on the fault plane in regions of high slip gradient. Several observations can be explained from the present model: low-dip thrust faults and high-dip normal faults are found to be facilitated, according to the Coulomb failure criterion, in repetitive earthquake cycles; the shape of dip-slip faults near the surface is predicted to be upward-concave; and the shallower aftershock activity generally found in the hanging block of a thrust event can be explained by `unclamping' mechanisms.
NASA Astrophysics Data System (ADS)
Braun, Jean
1994-08-01
We have developed a three-dimensional finite element model to study wrench deformation of the crust regarded as an elasto-plastic material obeying Murrell's extension of Griffith's failure criterion. Numerical experiments using this model predict that the imposed basal wrenching is accommodated by an array of oblique Riedel-like shears and Y-shears (parallel to the direction of wrenching). The partitioning of deformation between the two types of structure depends on the width of the zone of imposed basal wrenching and the existence of a component of deformation in the x-direction (normal to the direction of wrenching). The Riedel shears are arranged in spiral-like structures that root into the basal wrench zone. In cross-section, the Riedel shears resemble wedge-shaped flower structures similar to those often observed in seismic cross-sections. The 'polarity' of the flower structures is positive (or palm-tree-like) in transpression experiments and negative (or tulip-like) in transtension experiments. The orientation of the Riedel shears throughout the crust obeys Mohr's hypothesis for incipient faulting combined with Murrell's failure criterion. The model also predicts plastic dilatancy inversely proportional to the square root of the confining pressure; this result agrees qualitatively with field observations and the results of sand-box experiments and quantitatively with direct measurement of dilatancy during high-pressure rock-deformation experiments.
Varga, R.J.; Faulds, J.E.; Snee, L.W.; Harlan, S.S.; Bettison-Varga, L.
2004-01-01
Recent studies demonstrate that rifts are characterized by linked tilt domains, each containing a consistent polarity of normal faults and stratal tilt directions, and that the transition between domains is typically through formation of accommodation zones and generally not through production of throughgoing transfer faults. The mid-Miocene Black Mountains accommodation zone of southern Nevada and western Arizona is a well-exposed example of an accommodation zone linking two regionally extensive and opposing tilt domains. In the southeastern part of this zone near Kingman, Arizona, east dipping normal faults of the Whipple tilt domain and west dipping normal faults of the Lake Mead domain coalesce across a relatively narrow region characterized by a series of linked, extensional folds. The geometry of these folds in this strike-parallel portion of the accommodation zone is dictated by the geometry of the interdigitating normal faults of opposed polarity. Synclines formed where normal faults of opposite polarity face away from each other whereas anticlines formed where the opposed normal faults face each other. Opposed normal faults with small overlaps produced short folds with axial trends at significant angles to regional strike directions, whereas large fault overlaps produce elongate folds parallel to faults. Analysis of faults shows that the folds are purely extensional and result from east/northeast stretching and fault-related tilting. The structural geometry of this portion of the accommodation zone mirrors that of the Black Mountains accommodation zone more regionally, with both transverse and strike-parallel antithetic segments. Normal faults of both tilt domains lose displacement and terminate within the accommodation zone northwest of Kingman, Arizona. However, isotopic dating of growth sequences and crosscutting relationships show that the initiation of the two fault systems in this area was not entirely synchronous and that west dipping faults of the Lake Mead domain began to form between 1 m.y. to 0.2 m.y. prior to east dipping faults of the Whipple domain. The accommodation zone formed above an active and evolving magmatic center that, prior to rifting, produced intermediate-composition volcanic rocks and that, during rifting, produced voluminous rhyolite and basalt magmas. Copyright 2004 by the American Geophysical Union.
Infundibulopelvic stenosis in children
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucaya, J.; Enriquez, G.; Delgado, R.
1984-03-01
Of 11,500 children who underwent excretory urography during a 17-year period, three were found to have the rare renal malformation infundibulopelvic stenosis, characterized by caliceal dilatation, infundibular stenosis, and hypoplasia or stenosis of the renal pelvis. The contralateral kidney was absent in two cases and normal in the other. Voiding cystourethrograms were normal in all three. Renal sonography showed a variable degree of caliceal dilatation without associated pelvic dilatation. The diagnosis was confirmed by retrograde ureteropyelography in one case. Two patients were followed for 12 and 18 months, respectively; both remained asymptomatic with normal renal function, and sequential sonographic examinationsmore » of their kidneys have shown no significant changes. The third patient died of an unrelated condition. Infundibulopelvic stenosis has highly characteristic radiographic features, and prognosis is good for most affected patients.« less
Tectono-stratigraphic evolution of normal fault zones: Thal Fault Zone, Suez Rift, Egypt
NASA Astrophysics Data System (ADS)
Leppard, Christopher William
The evolution of linkage of normal fault populations to form continuous, basin bounding normal fault zones is recognised as an important control on the stratigraphic evolution of rift-basins. This project aims to investigate the temporal and spatial evolution of normal fault populations and associated syn-rift deposits from the initiation of early-formed, isolated normal faults (rift-initiation) to the development of a through-going fault zone (rift-climax) by documenting the tectono-stratigraphic evolution of the Sarbut EI Gamal segment of the exceptionally well-exposed Thai fault zone, Suez Rift, Egypt. A number of dated stratal surfaces mapped around the syn-rift depocentre of the Sarbut El Gamal segment allow constraints to be placed on the timing and style of deformation, and the spatial variability of facies along this segment of the fault zone. Data collected indicates that during the first 3.5 My of rifting the structural style was characterised by numerous, closely spaced, short (< 3 km), low displacement (< 200 m) synthetic and antithetic normal faults within 1 - 2 km of the present-day fault segment trace, accommodating surface deformation associated with the development of a fault propagation monocline above the buried, pre-cursor strands of the Sarbut El Gamal fault segment. The progressive localisation of displacement onto the fault segment during rift-climax resulted in the development of a major, surface-breaking fault 3.5 - 5 My after the onset of rifting and is recorded by the death of early-formed synthetic and antithetic faults up-section, and thickening of syn-rift strata towards the fault segment. The influence of intrabasinal highs at the tips of the Sarbut EI Gamal fault segment on the pre-rift sub-crop level, combined with observations from the early-formed structures and coeval deposits suggest that the overall length of the fault segment was fixed from an early stage. The fault segment is interpreted to have grown through rapid lateral propagation and early linkage of the precursor fault strands at depth before the fault segment broke surface, followed by the accumulation of displacement on the linked fault segment with minimal lateral propagation. This style of fault growth contrasts conventional fault growth models by which growth occurs through incremental increases in both displacement and length through time. The evolution of normal fault populations and fault zones exerts a first- order control on basin physiography and sediment supply, and therefore, the architecture and distribution of coeval syn-rift stratigraphy. The early syn-rift continental, Abu Zenima Formation, to shallow marine, Nukhul Formation show a pronounced westward increase in thickness controlled by the series of synthetic and antithetic faults up to 3 km west of present day Thai fault. The orientation of these faults controlled the location of fluvial conglomerates, sandstones and mudstones that shifted to the topographic lows created. The progressive localisation of displacement onto the Sarbut El Gamal fault segment during rift-climax resulted in an overall change in basin geometry. Accelerated subsidence rates led to sedimentation rates being outpaced by subsidence resulting in the development of a marine, sediment-starved, underfilled hangingwall depocentre characterised by slope-to-basinal depositional environments, with a laterally continuous slope apron in the immediate hangingwall, and point-sourced submarine fans. Controls on the spatial distribution, three dimensional architecture, and facies stacking patterns of coeval syn-rift deposits are identified as: I) structural style of the evolution and linkage of normal fault populations, ii) basin physiography, iii) evolution of drainage catchments, iv) bedrock lithology, and v) variations in sea/lake level.
NASA Astrophysics Data System (ADS)
Melosh, Ben L.; Rowe, Christie D.; Smit, Louis; Groenewald, Conrad; Lambert, Christopher W.; Macey, Paul
2014-10-01
Off-fault dynamic tensile cracks form behind an earthquake rupture front with distinct orientation and spacing. These cracks explode the wall rock and create breccias, which we hypothesize will preserve a unique fingerprint of dynamic rupture. Identification of these characteristic breccias may enable a new tool for identifying paleoseismic slip surfaces in the rock record. Using previous experimental and theoretical predictions, we develop a field-based model of dynamic dilational breccia formation. Experimental studies find that secondary tensile fracture networks comprise closely spaced fractures at angles of 70-90° from a slip surface, as well as fractures that branch at angles of ∼ 30 ° from a primary mode I fracture. The Pofadder Shear Zone, in Namibia and South Africa, preserves breccias formed in the brittle-ductile transition zone displaying fracture patterns consistent with those described above. Fracture spacing is approximately two orders of magnitude less than predicted by quasi-static models. Breccias are clast-supported, monomict and can display an abrupt transition from fracture network crackle breccia to mosaic breccia textures. Brecciation occurs by the intersection of off-fault dynamic fractures and wall rock fabric; this is in contrast to previous models of fluid pressure gradient-driven failure ;implosion breccias;. This mechanism tends to form many similar sized clasts with particle size distributions that may not display self-similarity; where self-similarity is observed the distributions have relatively low D-values of 1.47 ± 0.37, similar to other studies of dynamic processes. We measure slip distances at dilational breccia stepovers, estimating earthquake magnitudes between Mw 2.8-5.8 and associated rupture lengths of 0.023-3.3 km. The small calculated rupture dimensions, in combination with our geologic observations, suggest that some earthquakes nucleated within the quartz-plastic transitional zone and potentially record deep seismic slip.
Long Valley caldera and the UCERF depiction of Sierra Nevada range-front faults
Hill, David P.; Montgomery-Brown, Emily K.
2015-01-01
Long Valley caldera lies within a left-stepping offset in the north-northwest-striking Sierra Nevada range-front normal faults with the Hilton Creek fault to the south and Hartley Springs fault to the north. Both Uniform California Earthquake Rupture Forecast (UCERF) 2 and its update, UCERF3, depict slip on these major range-front normal faults as extending well into the caldera, with significant normal slip on overlapping, subparallel segments separated by ∼10 km. This depiction is countered by (1) geologic evidence that normal faulting within the caldera consists of a series of graben structures associated with postcaldera magmatism (intrusion and tumescence) and not systematic down-to-the-east displacements consistent with distributed range-front faulting and (2) the lack of kinematic evidence for an evolving, postcaldera relay ramp structure between overlapping strands of the two range-front normal faults. The modifications to the UCERF depiction described here reduce the predicted shaking intensity within the caldera, and they are in accord with the tectonic influence that underlapped offset range-front faults have on seismicity patterns within the caldera associated with ongoing volcanic unrest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Obrador, D.; Ballester, M.; Carrio, I.
1989-05-01
Monoclonal antimyosin antibody studies were undertaken to assess the presence of myocardial uptake in patients with chronic idiopathic dilated cardiomyopathy. Three groups were studied: 17 patients with chronic (greater than 12 months) idiopathic dilated cardiomyopathy, 12 patients with a large, poorly contracting left ventricle not due to dilated cardiomyopathy (control patients) and 8 normal individuals. The patients in the cardiomyopathy and control groups showed a similar degree of clinical and functional impairment. Imaging was undertaken 48 h after antimyosin injection. The heart/lung ratio of antimyosin uptake was used to assess the results. The mean ratio in the cardiomyopathy group wasmore » 1.83 +/- 0.36 (range 1.40 to 2.80), a value significantly higher than that obtained in the control patients without cardiomyopathy (mean 1.46 +/- 0.04, range 1.38 to 1.50) or normal subjects (mean 1.46 +/- 0.13, range 1.31 to 1.6) (p less than 0.01). No difference in the ratio was noted between the normal subjects and control patients. Abnormal antimyosin uptake was seen in 12 (70%) of the 17 patients with cardiomyopathy and in only 1 (8%) of the 12 control patients. Positive monoclonal antimyosin antibody studies are highly prevalent in chronic idiopathic dilated cardiomyopathy.« less
Biomechanical analysis of wrapping of the moderately dilated ascending aorta.
Plonek, Tomasz; Rylski, Bartosz; Dumanski, Andrzej; Siedlaczek, Przemyslaw; Kustrzycki, Wojciech
2015-08-01
External wrapping is a surgical method performed to prevent the dilatation of the aorta and to decrease the risk of its dissection and rupture. However, it is also believed to cause degeneration of the aortic wall. A biomechanical analysis was thus performed to assess the stress of the aortic wall subjected to external wrapping. A stress analysis using the finite elements method was carried out on three models: a non-dilated aorta, a moderately dilated aorta and a wrapped aorta. The models were subjected to a pulsatile flow (120/80 mmHg) and a systolic aortic annulus motion of 11 mm. The finite elements analysis showed that the stress exerted on the outer surface of the ascending aorta in the wrapping model (0.05-0.8 MPa) was similar to that observed in the normal aorta (0.03-0.7 MPa) and was lower than in the model of a moderately dilated aorta (0.06-1.4 MPa). The stress on the inner surface of the ascending aorta ranged from 0.2 MPa to 0.4 MPa in the model of the normal aorta, from 0.3 to 1.3 MPa in the model of the dilated aorta and from 0.05 MPa to 0.4 MPa in the wrapping model. The results of this study suggest that the aortic wall is subjected to similar stress following a wrapping procedure to the one present in the normal aorta.
Frictional, Hydraulic, and Acoustic Properties of Alpine Fault DFDP-1 Core
NASA Astrophysics Data System (ADS)
Carpenter, B. M.; Ikari, M.; Kitajima, H.; Kopf, A.; Marone, C.; Saffer, D. M.
2012-12-01
The Alpine Fault, a transpressional plate-boundary fault transecting the South Island of New Zealand, is the current focus of the Deep Fault Drilling Project (DFDP), a major fault zone drilling initiative. Phase 1 of this project included 2 boreholes that penetrated the active fault at depths of ˜100 m and ˜150 m, and provided a suite of core samples crossing the fault. Here, we report on laboratory measurements of frictional strength and constitutive behavior, permeability, and ultrasonic velocities for a suite of the recovered core samples We conducted friction experiments on powdered samples in a double-direct shear configuration at room temperature and humidity. Our results show that over a range of effective normal stresses from 10-100 MPa, friction coefficients are ~0.60-0.70, and are similar for all of the materials we tested. Rate-stepping tests document velocity-weakening behavior in the majority of wall rock samples, whereas the principal slip surface (PSS) and an adjacent clay-rich cataclasite exhibit velocity-strengthening behavior. We observe significant rates of frictional healing in all of our samples, indicating that that the fault easily regains its strength during interseismic periods. Our results indicate that seismic slip is not likely to nucleate in the clay-rich PSS at shallow depths, but might nucleate and propagate on the gouge/wall rock interface. We measured permeability using a constant head technique, on vertically oriented cylindrical mini-cores (i.e. ˜45 degrees to the plane of the Alpine Fault). We conducted these tests in a triaxial configuration, under isotropic stress conditions and effective confining pressures from ~2.5 - 63.5 MPa. We conducted ultrasonic wavespeed measurements concurrently with the permeability measurements to determine P- and S-wave velocities from time-of-flight. The permeability of all samples decreases systematically with increasing effective stress. The clay-rich cataclasite (1.37 x 10-19 m2) and PSS (1.62 x 10-20 m2) samples exhibit the lowest permeabilities. The cataclasite, and wall rock mylonite and gravel samples, all exhibit permeabilities > 10-18 m2. We also observe that permeability of the cataclasites appears to decrease with proximity to the active fault zone. Our laboratory measurements are consistent with borehole slug tests that show the fault is a hydraulic barrier, and suggest that fault rock permeability is sufficiently low to facilitate transient pore pressure effects during rapid slip, including thermal pressurization and dilatancy hardening. Elastic wave velocity increases systematically with increasing effective stress. We find the lowest P-wave velocities in clay-rich, poorly lithified samples from within and near the active fault, including hanging wall cataclasite, fault gouge, and footwall gravel. Our results are consistent with borehole logging data that show an increase in P-wave velocity from the mylonite into the competent cataclasites, and a decrease in P-wave velocity through the clay-rich cataclasite and into the fault zone.
NASA Astrophysics Data System (ADS)
Jiménez-Bonilla, Alejandro; Balanya, Juan Carlos; Exposito, Inmaculada; Diaz-Azpiroz, Manuel; Barcos, Leticia
2015-04-01
Strain partitioning modes within migrating orogenic arcs may result in arc-parallel stretching that produces along-strike structural and topographic discontinuities. In the Western Gibraltar Arc, arc-parallel stretching has operated from the Lower Miocene up to recent times. In this study, we have reviewed the Colmenar Fault, located at the SW end of the Subbetic ranges, previously interpreted as a Middle Miocene low-angle normal fault. Our results allow to identify younger normal fault segments, to analyse their kinematics, growth and segment linkage, and to discuss its role on the structural and relief drop at regional scale. The Colmenar Fault is folded by post-Serravallian NE-SW buckle folds. Both the SW-dipping fault surfaces and the SW-plunging fold axes contribute to the structural relief drop toward the SW. Nevertheless, at the NW tip of the Colmenar Fault, we have identified unfolded normal faults cutting quaternary soils. They are grouped into a N110˚E striking brittle deformation band 15km long and until 3km wide (hereafter Ubrique Normal Fault Zone; UNFZ). The UNFZ is divided into three sectors: (a) The western tip zone is formed by normal faults which usually dip to the SW and whose slip directions vary between N205˚E and N225˚E. These segments are linked to each other by left-lateral oblique faults interpreted as transfer faults. (b) The central part of the UNFZ is composed of a single N115˚E striking fault segment 2,4km long. Slip directions are around N190˚E and the estimated throw is 1,25km. The fault scarp is well-conserved reaching up to 400m in its central part and diminishing to 200m at both segment terminations. This fault segment is linked to the western tip by an overlap zone characterized by tilted blocks limited by high-angle NNE-SSW and WNW-ESE striking faults interpreted as "box faults" [1]. (c) The eastern tip zone is formed by fault segments with oblique slip which also contribute to the downthrown of the SW block. This kinematic pattern seems to be related to other strike-slip fault systems developed to the E of the UNFZ. The structural revision together with updated kinematic data suggest that the Colmenar Fault is cut and downthrown by a younger normal fault zone, the UNFZ, which would have contributed to accommodate arc-parallel stretching until the Quaternary. This stretching provokes along-strike relief segmentation, being the UNFZ the main fault zone causing the final drop of the Subbetic ranges towards the SW within the Western Gibraltar Arc. Our results show displacement variations in each fault segment of the UNFZ, diminishing to their tips. This suggests fault segment linkage finally evolved to build the nearly continuous current fault zone. The development of current large through-going faults linked inside the UNFZ is similar to those ones simulated in some numerical modelling of rift systems [2]. Acknowledgements: RNM-415 and CGL-2013-46368-P [1]Peacock, D.C.P., Knipe, R.J., Sanderson, D.J., 2000. Glossary of normal faults. Journal Structural Geology, 22, 291-305. [2]Cowie, P.A., Gupta, S., Dawers, N.H., 2000. Implications of fault array evolution for synrift depocentre development: insights from a numerical fault growth model. Basin Research, 12, 241-261.
Juliani, Paulo Sérgio; Costa, Eder França da; Correia, Aristides Tadeu; Monteiro, Rosangela; Jatene, Fabio Biscegli
2014-01-01
A feature of dilated cardiomyopathy is the deformation of ventricular cavity, which contributes to systolic dysfunction. Few studies have evaluated this deformation bearing in mind ventricular regions and segments of the ventricle, which could reveal important details of the remodeling process, supporting a better understanding of its role in functional impairment and the development of new therapeutic strategies. To evaluate if, in basal, equatorial and apical regions, increased internal transverse perimeter of left ventricle in idiopathic dilated cardiomyopathy occurs proportionally between the septal and non-septal segment. We performed an anatomical study with 28 adult hearts from human cadavers. One group consisted of 18 hearts with idiopathic dilated cardiomyopathy and another group with 10 normal hearts. After lamination and left ventricle digital image capture, in three different regions (base, equator and apex), the transversal internal perimeter of left ventricle was divided into two segments: septal and not septal. These segments were measured by proper software. It was established an index of proportionality between these segments, called septal and non-septal segment index. Then we determined whether this index was the same in both groups. Among patients with normal hearts and idiopathic dilated cardiomyopathy, the index of proportionality between the two segments (septal and non-septal) showed no significant difference in the three regions analyzed. The comparison results of the indices NSS/SS among normal and enlarged hearts were respectively: in base 1.99 versus 1.86 (P=0.46), in equator 2.22 versus 2.18 (P=0.79) and in apex 2.96 versus 3.56 (P=0.11). In the idiopathic dilated cardiomyopathy, the transversal dilatation of left ventricular internal perimeter occurs proportionally between the segments corresponding to the septum and free wall at the basal, equatorial and apical regions of this chamber.
NASA Astrophysics Data System (ADS)
Laubach, S. E.; Hundley, T. H.; Hooker, J. N.; Marrett, R. A.
2018-03-01
Fault arrays typically include a wide range of fault sizes and those faults may be randomly located, clustered together, or regularly or periodically located in a rock volume. Here, we investigate size distribution and spatial arrangement of normal faults using rigorous size-scaling methods and normalized correlation count (NCC). Outcrop data from Miocene sedimentary rocks in the immediate upper plate of the regional Buckskin detachment-low angle normal-fault, have differing patterns of spatial arrangement as a function of displacement (offset). Using lower size-thresholds of 1, 0.1, 0.01, and 0.001 m, displacements range over 5 orders of magnitude and have power-law frequency distributions spanning ∼ four orders of magnitude from less than 0.001 m to more than 100 m, with exponents of -0.6 and -0.9. The largest faults with >1 m displacement have a shallower size-distribution slope and regular spacing of about 20 m. In contrast, smaller faults have steep size-distribution slopes and irregular spacing, with NCC plateau patterns indicating imposed clustering. Cluster widths are 15 m for the 0.1-m threshold, 14 m for 0.01-m, and 1 m for 0.001-m displacement threshold faults. Results demonstrate normalized correlation count effectively characterizes the spatial arrangement patterns of these faults. Our example from a high-strain fault pattern above a detachment is compatible with size and spatial organization that was influenced primarily by boundary conditions such as fault shape, mechanical unit thickness and internal stratigraphy on a range of scales rather than purely by interaction among faults during their propagation.
Beard, Sue; Campagna, David J.; Anderson, R. Ernest
2010-01-01
The Lake Mead fault system is a northeast-striking, 130-km-long zone of left-slip in the southeast Great Basin, active from before 16 Ma to Quaternary time. The northeast end of the Lake Mead fault system in the Virgin Mountains of southeast Nevada and northwest Arizona forms a partitioned strain field comprising kinematically linked northeast-striking left-lateral faults, north-striking normal faults, and northwest-striking right-lateral faults. Major faults bound large structural blocks whose internal strain reflects their position within a left step-over of the left-lateral faults. Two north-striking large-displacement normal faults, the Lakeside Mine segment of the South Virgin–White Hills detachment fault and the Piedmont fault, intersect the left step-over from the southwest and northeast, respectively. The left step-over in the Lake Mead fault system therefore corresponds to a right-step in the regional normal fault system.Within the left step-over, displacement transfer between the left-lateral faults and linked normal faults occurs near their junctions, where the left-lateral faults become oblique and normal fault displacement decreases away from the junction. Southward from the center of the step-over in the Virgin Mountains, down-to-the-west normal faults splay northward from left-lateral faults, whereas north and east of the center, down-to-the-east normal faults splay southward from left-lateral faults. Minimum slip is thus in the central part of the left step-over, between east-directed slip to the north and west-directed slip to the south. Attenuation faults parallel or subparallel to bedding cut Lower Paleozoic rocks and are inferred to be early structures that accommodated footwall uplift during the initial stages of extension.Fault-slip data indicate oblique extensional strain within the left step-over in the South Virgin Mountains, manifested as east-west extension; shortening is partitioned between vertical for extension-dominated structural blocks and south-directed for strike-slip faults. Strike-slip faults are oblique to the extension direction due to structural inheritance from NE-striking fabrics in Proterozoic crystalline basement rocks.We hypothesize that (1) during early phases of deformation oblique extension was partitioned to form east-west–extended domains bounded by left-lateral faults of the Lake Mead fault system, from ca. 16 to 14 Ma. (2) Beginning ca. 13 Ma, increased south-directed shortening impinged on the Virgin Mountains and forced uplift, faulting, and overturning along the north and west side of the Virgin Mountains. (3) By ca. 10 Ma, initiation of the younger Hen Spring to Hamblin Bay fault segment of the Lake Mead fault system accommodated westward tectonic escape, and the focus of south-directed shortening transferred to the western Lake Mead region. The shift from early partitioned oblique extension to south-directed shortening may have resulted from initiation of right-lateral shear of the eastern Walker Lane to the west coupled with left-lateral shear along the eastern margin of the Great Basin.
Weltert, Luca; de Tullio, Marco D.; Afferrante, Luciano; Salica, Andrea; Scaffa, Raffaele; Maselli, Daniele; Verzicco, Roberto; De Paulis, Ruggero
2013-01-01
OBJECTIVES In the belief that stress is the main determinant of leaflet quality deterioration, we sought to evaluate the effect of annular and/or sino-tubular junction dilatation on leaflet stress. A finite element computer-assisted stress analysis was used to model four different anatomic conditions and analyse the consequent stress pattern on the aortic valve. METHODS Theoretical models of four aortic root configurations (normal, with dilated annulus, with loss of sino-tubular junction and with both dilatation simultaneously) were created with computer-aided design technique. The pattern of stress and strain was then analysed by means of finite elements analysis, when a uniform pressure of 100 mmHg was applied to the model. Analysis produced von Mises charts (colour-coded, computational, three-dimensional stress-pattern graphics) and bidimensional plots of compared stress on arc-linear line, which allowed direct comparison of stress in the four different conditions. RESULTS Stresses both on the free margin and on the ‘belly’ of the leaflet rose from 0.28 MPa (normal conditions) to 0.32 MPa (+14%) in case of isolated dilatation of the sino-tubular junction, while increased to 0.42 MPa (+67%) in case of isolated annular dilatation, with no substantial difference whether sino-tubular junction dilatation was present or not. CONCLUSIONS Annular dilatation is the key element determining an increased stress on aortic leaflets independently from an associated sino-tubular junction dilatation. The presence of annular dilatation associated with root aneurysm greatly decreases the chance of performing a valve sparing procedure without the need for additional manoeuvres on leaflet tissue. This information may lead to a refinement in the optimal surgical strategy. PMID:23536020
NASA Astrophysics Data System (ADS)
Wang, Yu; Wei, Shengji; Wang, Xin; Lindsey, Eric O.; Tongkul, Felix; Tapponnier, Paul; Bradley, Kyle; Chan, Chung-Han; Hill, Emma M.; Sieh, Kerry
2017-12-01
The M w 6.0 Mt. Kinabalu earthquake of 2015 was a complete (and deadly) surprise, because it occurred well away from the nearest plate boundary in a region of very low historical seismicity. Our seismological, space geodetic, geomorphological, and field investigations show that the earthquake resulted from rupture of a northwest-dipping normal fault that did not reach the surface. Its unilateral rupture was almost directly beneath 4000-m-high Mt. Kinabalu and triggered widespread slope failures on steep mountainous slopes, which included rockfalls that killed 18 hikers. Our seismological and morphotectonic analyses suggest that the rupture occurred on a normal fault that splays upwards off of the previously identified normal Marakau fault. Our mapping of tectonic landforms reveals that these faults are part of a 200-km-long system of normal faults that traverse the eastern side of the Crocker Range, parallel to Sabah's northwestern coastline. Although the tectonic reason for this active normal fault system remains unclear, the lengths of the longest fault segments suggest that they are capable of generating magnitude 7 earthquakes. Such large earthquakes must occur very rarely, though, given the hitherto undetectable geodetic rates of active tectonic deformation across the region.
3D geometries of normal faults in a brittle-ductile sedimentary cover: Analogue modelling
NASA Astrophysics Data System (ADS)
Vasquez, Lina; Nalpas, Thierry; Ballard, Jean-François; Le Carlier De Veslud, Christian; Simon, Brendan; Dauteuil, Olivier; Bernard, Xavier Du
2018-07-01
It is well known that ductile layers play a major role in the style and location of deformation. However, at the scale of a single normal fault, the impact of rheological layering is poorly constrained and badly understood, and there is a lack of information regarding the influence of several décollement levels within a sedimentary cover on the single fault geometry under purely extensive deformation. We present small-scale experiments that were built with interbedded layers of brittle and ductile materials and with minimum initial constraints (only a velocity discontinuity at the base of the experiment) on the normal fault geometry in order to investigate the influence of controlled parameters such as extension velocity, rate of extension, ductile thickness and varying stratigraphy on the 3D fault geometry. These experiments showed a broad-spectrum of tectonic features such as grabens, ramp-flat-ramp normal faults and reverse faults. Forced folds are associated with fault flats that develop in the décollement levels (refraction of the fault angle). One of the key points is that the normal fault geometry displays large variations in both direction and dip, despite the imposed homogeneous extension. This result is exclusively related to the presence of décollement levels, and is not associated with any global/regional variation in extension direction and/or inversion.
The Role of Coseismic Coulomb Stress Changes in Shaping the Hard Link Between Normal Fault Segments
NASA Astrophysics Data System (ADS)
Hodge, M.; Fagereng, Å.; Biggs, J.
2018-01-01
The mechanism and evolution of fault linkage is important in the growth and development of large faults. Here we investigate the role of coseismic stress changes in shaping the hard links between parallel normal fault segments (or faults), by comparing numerical models of the Coulomb stress change from simulated earthquakes on two en echelon fault segments to natural observations of hard-linked fault geometry. We consider three simplified linking fault geometries: (1) fault bend, (2) breached relay ramp, and (3) strike-slip transform fault. We consider scenarios where either one or both segments rupture and vary the distance between segment tips. Fault bends and breached relay ramps are favored where segments underlap or when the strike-perpendicular distance between overlapping segments is less than 20% of their total length, matching all 14 documented examples. Transform fault linkage geometries are preferred when overlapping segments are laterally offset at larger distances. Few transform faults exist in continental extensional settings, and our model suggests that propagating faults or fault segments may first link through fault bends or breached ramps before reaching sufficient overlap for a transform fault to develop. Our results suggest that Coulomb stresses arising from multisegment ruptures or repeated earthquakes are consistent with natural observations of the geometry of hard links between parallel normal fault segments.
NASA Astrophysics Data System (ADS)
Kitada, N.; Inoue, N.; Tonagi, M.
2016-12-01
The purpose of Probabilistic Fault Displacement Hazard Analysis (PFDHA) is estimate fault displacement values and its extent of the impact. There are two types of fault displacement related to the earthquake fault: principal fault displacement and distributed fault displacement. Distributed fault displacement should be evaluated in important facilities, such as Nuclear Installations. PFDHA estimates principal fault and distributed fault displacement. For estimation, PFDHA uses distance-displacement functions, which are constructed from field measurement data. We constructed slip distance relation of principal fault displacement based on Japanese strike and reverse slip earthquakes in order to apply to Japan area that of subduction field. However, observed displacement data are sparse, especially reverse faults. Takao et al. (2013) tried to estimate the relation using all type fault systems (reverse fault and strike slip fault). After Takao et al. (2013), several inland earthquakes were occurred in Japan, so in this time, we try to estimate distance-displacement functions each strike slip fault type and reverse fault type especially add new fault displacement data set. To normalized slip function data, several criteria were provided by several researchers. We normalized principal fault displacement data based on several methods and compared slip-distance functions. The normalized by total length of Japanese reverse fault data did not show particular trend slip distance relation. In the case of segmented data, the slip-distance relationship indicated similar trend as strike slip faults. We will also discuss the relation between principal fault displacement distributions with source fault character. According to slip distribution function (Petersen et al., 2011), strike slip fault type shows the ratio of normalized displacement are decreased toward to the edge of fault. However, the data set of Japanese strike slip fault data not so decrease in the end of the fault. This result indicates that the fault displacement is difficult to appear at the edge of the fault displacement in Japan. This research was part of the 2014-2015 research project `Development of evaluating method for fault displacement` by the Secretariat of Nuclear Regulation Authority (NRA), Japan.
NASA Astrophysics Data System (ADS)
Sayab, Mohammad; Khan, Muhammad Asif
2010-10-01
Detailed rupture-fracture analyses of some of the well-studied earthquakes have revealed that the geometrical arrangement of secondary faults and fractures can be used as a geological tool to understand the temporal evolution of slip produced during the mainshock. The October 8, 2005 Mw 7.6 Kashmir earthquake, NW Himalaya, surface rupture provides an opportunity to study a complex network of secondary fractures developed on the hanging wall of the fault scarp. The main fault scarp is clearly thrust-type, rupture length is ~ 75 ± 5 km and the overall trend of the rupture is NW-SE. We present the results of our detailed structural mapping of secondary faults and fractures at 1:100 scale, on the hanging wall of the southern end of the rupture in the vicinity of the Sar Pain. Secondary ruptures can be broadly classified as two main types, 1) normal faults and, (2) right-lateral strike-slip 'Riedel' fractures. The secondary normal faults are NW-SE striking, with a maximum 3.3 meter vertical displacement and 2.5 meter horizontal displacement. Estimated total horizontal extension across the secondary normal faults is 3.1-3.5%. We propose that the bending-moment and coseismic stress relaxation can explain the formation of secondary normal faults on the hanging wall of the thrust fault. The strike-slip 'Riedel' fractures form distinct sets of tension (T) and shear fractures (R', R, Y) with right-lateral displacement. Field observations revealed that the 'Riedel' fractures (T) cut the secondary normal faults. In addition, there is kinematic incompatibility and magnitude mismatch between the secondary normal faults and strike-slip 'Riedel' fractures. The cross-cutting relationship, geometric and magnitude incoherence implies a temporal evolution of slip from dip- to strike-slip during the mainshock faulting. The interpretation is consistent with the thrust fault plane solution with minor right-lateral strike-slip component.
NASA Astrophysics Data System (ADS)
Paredes, José Matildo; Aguiar, Mariana; Ansa, Andrés; Giordano, Sergio; Ledesma, Mario; Tejada, Silvia
2018-01-01
We use three-dimensional (3D) seismic reflection data to analyze the structural style, fault kinematics and growth fault mechanisms of non-colinear normal fault systems in the South Flank of the Golfo San Jorge basin, central Patagonia. Pre-existing structural fabrics in the basement of the South Flank show NW-SE and NE-SW oriented faults. They control the location and geometry of wedge-shaped half grabens from the "main synrift phase" infilled with Middle Jurassic volcanic-volcaniclastic rocks and lacustrine units of Late Jurassic to Early Cretaceous age. The NE-striking, basement-involved normal faults resulted in the rapid establishment of fault lenght, followed by gradual increasing in displacement, and minor reactivation during subsequent extensional phases; NW-striking normal faults are characterized by fault segments that propagated laterally during the "main rifting phase", being subsequently reactivated during succesive extensional phases. The Aptian-Campanian Chubut Group is a continental succession up to 4 km thick associated to the "second rifting stage", characterized by propagation and linkage of W-E to WNW-ESE fault segments that increase their lenght and displacement in several extensional phases, recognized by detailed measurement of current throw distribution of selected seismic horizons along fault surfaces. Strain is distributed in an array of sub-parallel normal faults oriented normal to the extension direction. A Late Cretaceous-Paleogene (pre-late Eocene) extensional event is characterized by high-angle, NNW-SSE to NNE-SSW grabens coeval with intraplate alkali basaltic volcanism, evidencing clockwise rotation of the stress field following a ∼W-E extension direction. We demonstrate differences in growth fault mechanisms of non-colinear fault populations, and highlight the importance of follow a systematic approach to the analysis of fault geometry and throw distribution in a fault network, in order to understand temporal-spatial variations in the coeval topography, potential structural traps, and distribution of oil-bearing sandstone reservoirs.
Kusky, Timothy M.
1997-01-01
The Mesozoic accretionary wedge of south-central Alaska is cut by an array of faults including dextral and sinistral strike-slip faults, synthetic and antithetic thrust faults, and synthetic and antithetic normal faults. The three fault sets are characterized by quartz ± calcite ± chlorite ± prehnite slickensides, and are all relatively late, i.e. all truncate ductile fabrics of the host rocks. Cross-cutting relationships suggest that the thrust fault sets predate the late normal and strike-slip fault sets. Together, the normal and strike-slip fault system exhibits orthorhombic symmetry. Thrust faulting shortened the wedge subhorizontally perpendicular to strike, and then normal and strike-slip faulting extended the wedge oblique to orogenic strike. Strongly curved slickenlines on some faults of each set reveal that displacement directions changed over time. On dip-slip faults (thrust and normal), slickenlines tend to become steeper with younger increments of slip, whereas on strike-slip faults, slickenlines become shallower with younger strain increments. These patterns may result from progressive exhumation of the accretionary wedge while the faults were active, with the curvature of the slickenlines tracking the change from a non-Andersonian stress field at depth to a more Andersonian system (σ1 or σ2 nearly vertical) at shallower crustal levels.We interpret this complex fault array as a progressive deformation that is one response to Paleocene-Eocene subduction of the Kula-Farallon spreading center beneath the accretionary complex because: (1) on the Kenai Peninsula, ENE-striking dextral faults of this array exhibit mutually cross-cutting relationships with Paleocene-Eocene dikes related to ridge subduction; and (2) mineralized strike-slip and normal faults of the orthorhombic system have yielded 40Ar/39Ar ages identical to near-trench intrusives related to ridge subduction. Both features are diachronous along-strike, having formed at circa 65 Ma in the west and 50 Ma in the east. Exhumation of deeper levels of the southern Alaska accretionary wedge and formation of this late fault array is interpreted as a critical taper adjustment to subduction of progressively younger oceanic lithosphere yielding a shallower basal de´collement dip as the Kula-Farallon ridge approached the accretionary prism. The late structures also record different kinematic regimes associated with subduction of different oceanic plates, before and after ridge subduction. Prior to triple junction passage, subduction of the Farallon plate occurred at nearly right angles to the trench axis, whereas after triple junction migration, subduction of the Kula plate involved a significant component of dextral transpression and northward translation of the Chugach terrane. The changes in kinematics are apparent in the sequence of late structures from: (1) thrusting; (2) near-trench plutonism associated with normal + strike-slip faulting; (3) very late gouge-filled dextral faults.
Global strike-slip fault distribution on Enceladus reveals mostly left-lateral faults
NASA Astrophysics Data System (ADS)
Martin, E. S.; Kattenhorn, S. A.
2013-12-01
Within the outer solar system, normal faults are a dominant tectonic feature; however, strike-slip faults have played a role in modifying the surfaces of many icy bodies, including Europa, Ganymede, and Enceladus. Large-scale tectonic deformation in icy shells develops in response to stresses caused by a range of mechanisms including polar wander, despinning, volume changes, orbital recession/decay, diurnal tides, and nonsynchronous rotation (NSR). Icy shells often preserve this record of tectonic deformation as patterns of fractures that can be used to identify the source of stress responsible for creating the patterns. Previously published work on Jupiter's moon Europa found that right-lateral strike-slip faults predominantly formed in the southern hemisphere and left-lateral strike-slip faults in the northern hemisphere. This pattern suggested they were formed in the past by stresses induced by diurnal tidal forcing, and were then rotated into their current longitudinal positions by NSR. We mapped the distribution of strike-slip faults on Enceladus and used kinematic indicators, including tailcracks and en echelon fractures, to determine their sense of slip. Tailcracks are secondary fractures that form as a result of concentrations of stress at the tips of slipping faults with geometric patterns dictated by the slip sense. A total of 31 strike-slip faults were identified, nine of which were right-lateral faults, all distributed in a seemingly random pattern across Enceladus's surface, in contrast to Europa. Additionally, there is a dearth of strike-slip faults within the tectonized terrains centered at 90°W and within the polar regions north and south of 60°N and 60°S, respectively. The lack of strike-slip faults in the north polar region may be explained, in part, by limited data coverage. The south polar terrain (SPT), characterized by the prominent tiger stripes and south polar dichotomy, yielded no discrete strike-slip faults. This does not suggest that the SPT is devoid of shear: previous work has indicated that the tiger stripes may be undergoing strike-slip motions and the surrounding regions may be experiencing shear. The fracture patterns and geologic activity within the SPT have been previously documented to be the result of stresses induced by both NSR and diurnal tidal deformation. As these same mechanisms are the main controls on strike-slip fault patterns on Europa, the lack of a match between strike-slip patterns on Europa and Enceladus is intriguing. The pattern of strike-slip faults on Enceladus suggests a different combination of stress mechanisms is required to produce the observed distributions. We will present models of global stress mechanisms to consider how the global-scale pattern of strike-slip faults on Enceladus may have been produced. This problem will be investigated further by measuring the angles at which tailcracks have formed on Enceladus. Tailcracks produced by simple shear form at 70.5° to the fault. Any deviation from this angle indicates some ratio of concomitant shear and dilation, which may provide insights into elucidating the stresses controlling strike-slip formation on Enceladus.
Segmental dilatation of sigmoid colon in a neonate: atypical presentation and histology.
Mahadevaiah, Shubha Attibele; Panjwani, Poonam; Kini, Usha; Mohanty, Suravi; Das, Kanishka
2011-03-01
Segmental dilatation of the colon is a rare disorder of colonic motility in children, often presenting with severe constipation in older infants, children, and occasionally adults. It may mimic the commoner Hirschsprung disease clinicoradiologically but differs in that the ganglion cell morphology and distribution are typically normal in the colon. We report a neonate with segmental dilatation of the sigmoid colon who had an atypical clinical presentation and describe certain abnormalities in bowel histology (hypertrophied muscularis propria, nerve plexus, and ganglion cells located within the circular layer rather than the normal myenteric location), for the first time in the English literature. Copyright © 2011 Elsevier Inc. All rights reserved.
Flicker-induced retinal arteriole dilation is reduced by ambient lighting.
Noonan, Jonathan E; Dusting, Gregory J; Nguyen, Thanh T; Man, Ryan E K; Best, William J; Lamoureux, Ecosse L
2014-08-07
To investigate the impact of ambient room lighting on the magnitude of flicker light-induced retinal vasodilations in healthy individuals. Twenty healthy nonsmokers participated in a balanced 2 × 2 crossover study. Retinal vascular imaging was performed with the dynamic vessel analyzer under reduced or normal ambient lighting, then again after 20 minutes under the alternate condition. Baseline calibers of selected arteriole and venule segments were recorded in measurement units. Maximum percentage dilations from baseline during 20 seconds of luminance flicker were calculated from the mean of three measurement cycles. Within-subject differences were assessed by repeated measures analysis of variance with the assumption of no carryover effects and pairwise comparisons from the fitted model. Mean (SD) maximum arteriole dilations during flicker stimulation under reduced and normal ambient lighting were 4.8% (2.3%) and 4.1% (1.9%), respectively (P = 0.019). Maximum arteriole dilations were (mean ± 95% confidence interval) 0.7% ± 0.6% lower under normal ambient lighting compared with reduced lighting. Ambient lighting had no significant effect on maximum venular dilations during flicker stimulation or on the baseline calibers of arterioles or venules. Retinal arteriole dilation in response to luminance flicker stimulation is reduced under higher ambient lighting conditions. Reduced responses with higher ambient lighting may reflect reduced contrast between the ON and OFF flicker phases. Although it may not always be feasible to conduct studies under reduced lighting conditions, ambient lighting levels should be consistent to ensure that comparisons are valid. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
NASA Astrophysics Data System (ADS)
Laurich, Ben; Urai, Janos L.; Nussbaum, Christophe
2017-01-01
The Main Fault in the shaly facies of Opalinus Clay is a small reverse fault formed in slightly overconsolidated claystone at around 1 km depth. The fault zone is up to 6 m wide, with micron-thick shear zones, calcite and celestite veins, scaly clay and clay gouge. Scaly clay occurs in up to 1.5 m wide lenses, providing hand specimens for this study. We mapped the scaly clay fabric at 1 m-10 nm scale, examining scaly clay for the first time using broad-ion beam polishing combined with scanning electron microscopy (BIB-SEM). Results show a network of thin shear zones and microveins, separating angular to lensoid microlithons between 10 cm and 10 µm in diameter, with slickensided surfaces. Our results show that microlithons are only weakly deformed and that strain is accumulated by fragmentation of microlithons by newly formed shear zones, by shearing in the micron-thick zones and by rearrangement of the microlithons.The scaly clay aggregates can be easily disintegrated into individual microlithons because of the very low tensile strength of the thin shear zones. Analyses of the microlithon size by sieving indicate a power-law distribution model with exponents just above 2. From this, we estimate that only 1 vol % of the scaly clay aggregate is in the shear zones.After a literature review of the hypotheses for scaly clay generation, we present a new model to explain the progressive formation of a self-similar network of anastomosing thin shear zones in a fault relay. The relay provides the necessary boundary conditions for macroscopically continuous deformation. Localization of strain in thin shear zones which are locally dilatant, and precipitation of calcite veins in dilatant shear fractures, evolve into complex microscale re-partitioning of shear, forming new shear zones while the microlithons remain much less deformed internally and the volume proportion of the µm-thick shear zones slowly increases. Grain-scale deformation mechanisms are microfracturing, boudinage and rotation of mica grains, pressure solution of carbonate fossils and pore collapse during ductile flow of the clay matrix. This study provides a microphysical basis to relate microstructures to macroscopic observations of strength and permeability of the Main Fault, and extrapolating fault properties in long-term deformation.
NASA Astrophysics Data System (ADS)
Carpenter, B. M.; Kitajima, H.; Sutherland, R.; Townend, J.; Toy, V. G.; Saffer, D. M.
2014-03-01
We report on laboratory measurements of permeability and elastic wavespeed for a suite of samples obtained by drilling across the active Alpine Fault on the South Island of New Zealand, as part of the first phase of the Deep Fault Drilling Project (DFDP-1). We find that clay-rich cataclasite and principal slip zone (PSZ) samples exhibit low permeabilities (⩽10-18 m), and that the permeability of hanging-wall cataclasites increases (from c. 10-18 m to 10-15 m) with distance from the fault. Additionally, the PSZ exhibits a markedly lower P-wave velocity and Young's modulus relative to the wall rocks. Our laboratory data are in good agreement with in situ wireline logging measurements and are consistent with the identification of an alteration zone surrounding the PSZ defined by observations of core samples. The properties of this zone and the low permeability of the PSZ likely govern transient hydrologic processes during earthquake slip, including thermal pressurization and dilatancy strengthening.
NASA Astrophysics Data System (ADS)
Fondriest, M.; Demurtas, M.; Bistacchi, A.; Fabrizio, B.; Storti, F.; Valoroso, L.; Di Toro, G.
2017-12-01
The mechanics and seismogenic behaviour of fault zones are strongly influenced by their internal structure, in terms of both fault geometry and fault rock constitutive properties. In recent years high-resolution seismological techniques yielded new constraints on the geometry and velocity structure of seismogenic faults down to 10s meters length scales. This reduced the gap between geophysical imaging of active seismic sources and field observations of exhumed fault zones. Nevertheless fundamental questions such as the origin of geometrical and kinematic complexities associated to seismic faulting remain open. We addressed these topics by characterizing the internal structure of the Vado di Corno Fault Zone, an active seismogenic normal fault cutting carbonates in the Central Apennines of Italy and comparing it with the present-day seismicity of the area. The fault footwall block, which was exhumed from < 2 km depth, was mapped with high detail (< 1 m spatial resolution) for 2 km of exposure along strike, combining field structural data and photogrammetric surveys in a three dimensional structural model. Three main structural units separated by principal fault strands were recognized: (i) cataclastic unit (20-100 m thick), (ii) damage zone (≤ 300 m thick), (iii) breccia unit ( 20 thick). The cataclastic unit lines the master fault and represents the core of the normal fault zone. In-situ shattering together with evidence of extreme (possibly coseismic) shear strain localization (e.g., mirror-like faults with truncated clasts, ultrafine-grained sheared veins) was recognized. The breccia unit is an inherited thrust zone affected by pervasive veining and secondary dolomitization. It strikes subparallel to the active normal fault and is characterized by a non-cylindrical geometry with 10-100 m long frontal and lateral ramps. The cataclastic unit cuts through thrust flats within the breccia unit, whereas normal to oblique inversion occur on frontal and lateral ramps. A comparable structural setting was imaged South-West of the study area, during the 2009 L'Aquila seismic sequence. Here at 2 km depth, the master normal fault cross-cuts a 10 km long flat structure and clear lateral ramps are illuminated, suggesting the superposition of normal seismic faulting on inherited compressional structures.
Porosity variations in and around normal fault zones: implications for fault seal and geomechanics
NASA Astrophysics Data System (ADS)
Healy, David; Neilson, Joyce; Farrell, Natalie; Timms, Nick; Wilson, Moyra
2015-04-01
Porosity forms the building blocks for permeability, exerts a significant influence on the acoustic response of rocks to elastic waves, and fundamentally influences rock strength. And yet, published studies of porosity around fault zones or in faulted rock are relatively rare, and are hugely dominated by those of fault zone permeability. We present new data from detailed studies of porosity variations around normal faults in sandstone and limestone. We have developed an integrated approach to porosity characterisation in faulted rock exploiting different techniques to understand variations in the data. From systematic samples taken across exposed normal faults in limestone (Malta) and sandstone (Scotland), we combine digital image analysis on thin sections (optical and electron microscopy), core plug analysis (He porosimetry) and mercury injection capillary pressures (MICP). Our sampling includes representative material from undeformed protoliths and fault rocks from the footwall and hanging wall. Fault-related porosity can produce anisotropic permeability with a 'fast' direction parallel to the slip vector in a sandstone-hosted normal fault. Undeformed sandstones in the same unit exhibit maximum permeability in a sub-horizontal direction parallel to lamination in dune-bedded sandstones. Fault-related deformation produces anisotropic pores and pore networks with long axes aligned sub-vertically and this controls the permeability anisotropy, even under confining pressures up to 100 MPa. Fault-related porosity also has interesting consequences for the elastic properties and velocity structure of normal fault zones. Relationships between texture, pore type and acoustic velocity have been well documented in undeformed limestone. We have extended this work to include the effects of faulting on carbonate textures, pore types and P- and S-wave velocities (Vp, Vs) using a suite of normal fault zones in Malta, with displacements ranging from 0.5 to 90 m. Our results show a clear lithofacies control on the Vp-porosity and the Vs-Vp relationships for faulted limestones. Using porosity patterns quantified in naturally deformed rocks we have modelled their effect on the mechanical stability of fluid-saturated fault zones in the subsurface. Poroelasticity theory predicts that variations in fluid pressure could influence fault stability. Anisotropic patterns of porosity in and around fault zones can - depending on their orientation and intensity - lead to an increase in fault stability in response to a rise in fluid pressure, and a decrease in fault stability for a drop in fluid pressure. These predictions are the exact opposite of the accepted role of effective stress in fault stability. Our work has provided new data on the spatial and statistical variation of porosity in fault zones. Traditionally considered as an isotropic and scalar value, porosity and pore networks are better considered as anisotropic and as scale-dependent statistical distributions. The geological processes controlling the evolution of porosity are complex. Quantifying patterns of porosity variation is an essential first step in a wider quest to better understand deformation processes in and around normal fault zones. Understanding porosity patterns will help us to make more useful predictive tools for all agencies involved in the study and management of fluids in the subsurface.
Rueda-Martínez, Carmen; Lamas, Oscar; Mataró, María José; Robledo-Carmona, Juan; Sánchez-Espín, Gemma; Jiménez-Navarro, Manuel; Such-Martínez, Miguel; Fernández, Borja
2014-01-01
Dilatation of the ascending aorta (AAD) is a prevalent aortopathy that occurs frequently associated with bicuspid aortic valve (BAV), the most common human congenital cardiac malformation. The molecular mechanisms leading to AAD associated with BAV are still poorly understood. The search for differentially expressed genes in diseased tissue by quantitative real-time PCR (qPCR) is an invaluable tool to fill this gap. However, studies dedicated to identify reference genes necessary for normalization of mRNA expression in aortic tissue are scarce. In this report, we evaluate the qPCR expression of six candidate reference genes in tissue from the ascending aorta of 52 patients with a variety of clinical and demographic characteristics, normal and dilated aortas, and different morphologies of the aortic valve (normal aorta and normal valve n = 30; dilated aorta and normal valve n = 10; normal aorta and BAV n = 4; dilated aorta and BAV n = 8). The expression stability of the candidate reference genes was determined with three statistical algorithms, GeNorm, NormFinder and Bestkeeper. The expression analyses showed that the most stable genes for the three algorithms employed were CDKN1β, POLR2A and CASC3, independently of the structure of the aorta and the valve morphology. In conclusion, we propose the use of these three genes as reference genes for mRNA expression analysis in human ascending aorta. However, we suggest searching for specific reference genes when conducting qPCR experiments with new cohort of samples. PMID:24841551
ERIC Educational Resources Information Center
Busch, Melanie M. D.
2011-01-01
An array of north-striking, left-stepping, active normal faults is situated along the southwestern margin of the Gulf of California. This normal fault system is the marginal fault system of the oblique-divergent plate boundary within the Gulf of California. To better understand the role of upper-crustal processes during development of an obliquely…
Tectonic implications of the 2017 Ayvacık (Çanakkale) earthquakes, Biga Peninsula, NW Turkey
NASA Astrophysics Data System (ADS)
Özden, Süha; Över, Semir; Poyraz, Selda Altuncu; Güneş, Yavuz; Pınar, Ali
2018-04-01
The west to southwestward motion of the Anatolian block results from the relative motions between the Eurasian, Arabian and African plates along the right-lateral North Anatolian Fault Zone in the north and left-lateral East Anatolian Fault Zone in the east. The Biga Peninsula is tectonically influenced by the Anatolian motion originating along the North Anatolian Fault Zone which splits into two main (northern and southern) branches in the east of Marmara region: the southern branch extends towards the Biga Peninsula which is characterized by strike-slip to oblique normal faulting stress regime in the central to northern part. The southernmost part of peninsula is characterized by a normal to oblique faulting stress regime. The analysis of both seismological and structural field data confirms the change of stress regime from strike-slip character in the center and north to normal faulting character in the south of peninsula where the earthquake swarm recently occurred. The earthquakes began on 14 January 2017 (Mw: 4.4) on Tuzla Fault and migrated southward along the Kocaköy and Babakale's stepped-normal faults of over three months. The inversion of focal mechanisms yields a normal faulting stress regime with an approximately N-S (N4°E) σ3 axis. The inversion of earthquakes occurring in central and northern Biga Peninsula and the north Aegean region gives a strike-slip stress regime with approximately WNW-ESE (N85°W) σ1 and NNE-SSW (N17°E) σ3 axis. The strike-slip stress regime is attributed to westward Anatolian motion, while the normal faulting stress regime is attributed to both the extrusion of Anatolian block and the slab-pull force of the subducting African plate along the Hellenic arc.
Marine forearc extension in the Hikurangi Margin: New insights from high-resolution 3D seismic data
NASA Astrophysics Data System (ADS)
Böttner, Christoph; Gross, Felix; Geersen, Jacob; Mountjoy, Joshu; Crutchley, Gareth; Krastel, Sebastian
2017-04-01
In subduction zones upper-plate normal faults have long been considered a tectonic feature primarily associated with erosive margins. However, increasing data coverage has proven that similar features also occur in accretionary margins, such as Cascadia, Makran, Nankai or Central Chile, where kinematics are dominated by compression. Considering their wide distribution there is, without doubt, a significant lack of qualitative and quantitative knowledge regarding the role and importance of normal faults and zones of extension for the seismotectonic evolution of accretionary margins. We use a high-resolution 3D P-Cable seismic volume from the Hikurangi Margin acquired in 2014 to analyze the spatial distribution and mechanisms of upper-plate normal faulting. The study area is located at the upper continental slope in the area of the Tuaheni landslide complex. In detail we aim to (1) map the spatial distribution of normal faults and characterize their vertical throws, strike directions, and dip angles; (2) investigate their possible influence on fluid migration in an area, where gas hydrates are present; (3) discuss the mechanisms that may cause extension of the upper-slope in the study area. Beneath the Tuaheni Landslide Complex we mapped about 200 normal faults. All faults have low displacements (<15 m) and dip at high (> 65°) angles. About 71% of the faults dip landward. We found two main strike directions, with the majority of faults striking 350-10°, parallel to the deformation front. A second group of faults strikes 40-60°. The faults crosscut the BSR, which indicates the base of the gas hydrate zone. In combination with seismically imaged bright-spots and pull-up structures, this indicates that the normal faults effectively transport fluids vertically across the base of the gas hydrate zone. Localized uplift, as indicated by the presence of the Tuaheni Ridge, might support normal faulting in the study area. In addition, different subduction rates across the margin may also favor extension between the segments. Future work will help to further untangle the mechanisms that cause extension of the upper continental slope.
NASA Astrophysics Data System (ADS)
Demurtas, Matteo; Fondriest, Michele; Balsamo, Fabrizio; Clemenzi, Luca; Storti, Fabrizio; Bistacchi, Andrea; Di Toro, Giulio
2016-09-01
The Vado di Corno Fault Zone (VCFZ) is an active extensional fault cutting through carbonates in the Italian Central Apennines. The fault zone was exhumed from ∼2 km depth and accommodated a normal throw of ∼2 km since Early-Pleistocene. In the studied area, the master fault of the VCFZ dips N210/54° and juxtaposes Quaternary colluvial deposits in the hangingwall with cataclastic dolostones in the footwall. Detailed mapping of the fault zone rocks within the ∼300 m thick footwall-block evidenced the presence of five main structural units (Low Strain Damage Zone, High Strain Damage Zone, Breccia Unit, Cataclastic Unit 1 and Cataclastic Unit 2). The Breccia Unit results from the Pleistocene extensional reactivation of a pre-existing Pliocene thrust. The Cataclastic Unit 1 forms a ∼40 m thick band lining the master fault and recording in-situ shattering due to the propagation of multiple seismic ruptures. Seismic faulting is suggested also by the occurrence of mirror-like slip surfaces, highly localized sheared calcite-bearing veins and fluidized cataclasites. The VCFZ architecture compares well with seismological studies of the L'Aquila 2009 seismic sequence (mainshock MW 6.1), which imaged the reactivation of shallow-seated low-angle normal faults (Breccia Unit) cut by major high-angle normal faults (Cataclastic Units).
NASA Astrophysics Data System (ADS)
Debenham, Natalie; King, Rosalind C.; Holford, Simon P.
2018-07-01
Despite the ubiquity of normal faults that have undergone compressional inversion, documentation of the structural history of natural fractures around these structures is limited. In this paper, we investigate the geometries and relative chronologies of natural fractures adjacent to a reverse-reactivated normal fault, the Castle Cove Fault in the Otway Basin, southeast Australia. Local variations in strain resulted in greater deformation within the fault damage zone closer to the fault. Structural mapping within the damage zone reveals a complex tectonic history recording both regional and local perturbations in stress and a total of 11 fracture sets were identified, with three sets geometrically related to the Castle Cove Fault. The remaining fracture sets formed in response to local stresses at Castle Cove. Rifting in the late Cretaceous resulted in normal movement of the Castle Cove Fault and associated rollover folding, and the formation of the largest fracture set. Reverse-reactivation of the fault and associated anticlinal folding occurred during late Miocene to Pliocene compression. Rollover folding may have provided structural traps if seals were not breached by fractures, however anticlinal folding likely post-dated the main episodes of hydrocarbon generation and migration in the region. This study highlights the need to conduct careful reconstruction of the structural histories of fault zones that experienced complex reactivation histories when attempting to define off-fault fluid flow properties.
NASA Astrophysics Data System (ADS)
Gasser, D.; Mancktelow, N. S.
2009-04-01
The Helvetic nappes in the Swiss Alps form a classic fold-and-thrust belt related to overall NNW-directed transport. In western Switzerland, the plunge of nappe fold axes and the regional distribution of units define a broad depression, the Rawil depression, between the culminations of Aiguilles Rouge massif to the SW and Aar massif to the NE. A compilation of data from the literature establishes that, in addition to thrusts related to nappe stacking, the Rawil depression is cross-cut by four sets of brittle faults: (1) SW-NE striking normal faults that strike parallel to the regional fold axis trend, (2) NW-SE striking normal faults and joints that strike perpendicular to the regional fold axis trend, and (3) WNW-ESE striking normal plus dextral oblique-slip faults as well as (4) WSW-ENE striking normal plus dextral oblique-slip faults that both strike oblique to the regional fold axis trend. We studied in detail a beautifully exposed fault from set 3, the Rezli fault zone (RFZ) in the central Wildhorn nappe. The RFZ is a shallow to moderately-dipping (ca. 30-60˚) fault zone with an oblique-slip displacement vector, combining both dextral and normal components. It must have formed in approximately this orientation, because the local orientation of fold axes corresponds to the regional one, as does the generally vertical orientation of extensional joints and veins associated with the regional fault set 2. The fault zone crosscuts four different lithologies: limestone, intercalated marl and limestone, marl and sandstone, and it has a maximum horizontal dextral offset component of ~300 m and a maximum vertical normal offset component of ~200 m. Its internal architecture strongly depends on the lithology in which it developed. In the limestone, it consists of veins, stylolites, cataclasites and cemented gouge, in the intercalated marls and limestones of anastomosing shear zones, brittle fractures, veins and folds, in the marls of anastomosing shear zones, pressure solution seams and veins and in the sandstones of coarse breccia and veins. Later, straight, sharp fault planes cross-cut all these features. In all lithologies, common veins and calcite-cemented fault rocks indicate the strong involvement of fluids during faulting. Today, the southern Rawil depression and the Rhone Valley belong to one of the seismically most active regions in Switzerland. Seismogenic faults interpreted from earthquake focal mechanisms strike ENE-WSW to WNW-ESE, with dominant dextral strike-slip and minor normal components and epicentres at depths of < 15 km. All three Neogene fault sets (2-4) could have been active under the current stress field inferred from the current seismicity. This implies that the same mechanisms that formed these fault zones in the past may still persist at depth. The Rezli fault zone allows the detailed study of a fossil fault zone that can act as a model for processes still occurring at deeper levels in this seismically active region.
The Genesis of Precious and Base Metal Mineralization at the Miguel Auza Deposit, Zacatecas, Mexico
NASA Astrophysics Data System (ADS)
Findley, A. A.; Olivo, G. R.; Godin, L.
2009-05-01
The Miguel Auza mine located in Zacatecas State, Mexico, is a vein-type polymetallic epithermal deposit hosted in deformed argillite, siltstone and, greywacke of the Cretaceous Caracol Formation. Silver-rich base metal veins (0.2 m to >1.5 m wide) are spatially associated with the NE-striking, steeply SE- dipping (70-80°) Miguel Auza fault over a strike length of 1.6 km and a depth of 460 m. A 2 km2 monzonitic stock located in the proximity of the mineralized zones, has previously been interpreted as the source of the mineralizing fluids. Four distinct structural stages are correlated with hydrothermal mineral deposition: (I) The Pre-ore stage is characterized by normal faulting, fracturing of host rock, and rotation of bedding planes. This stage consists of quartz, illite, chlorite, +/- pyrite alteration of sedimentary wall rocks. (II) The Pyrite-vein stage is associated with reverse-sense reactivation of early normal faults, dilation of bedding planes/fractures, and deposition of generally barren calcite + pyrite veinlets. (III) The Main-ore stage is related to the development of reverse-fault- hosted massive sulphide veins. During this stage three phases of mineral deposition are recorded: early pyrite and arsenopyrite, intermediate chalcopyrite, pyrite, arsenopyrite, and base metals, and late base metals and Ag-bearing minerals. Associated gangue minerals during the main ore stage are quartz, muscovite, calcite and chlorite. (IV) The Post-ore stage involves late NW-SE striking block faulting, brecciation and calcite veining. Later supergene oxidation of veins led to deposition of Fe-oxides and hydroxides, commonly filling fractures or replacing early-formed sulphide assemblages. The various vein types display classic epithermal textures including open space filling, banding, comb quartz and brecciation. The Ag-bearing minerals comprise pyrargyrite [Ag3(Sb,As)S3], argentotennantite [(Cu,Ag)10(Zn,Fe)2(Sn,As)4S13], polybasite-pearceite [(Ag,Cu)16(Sb,As)2S11], and acanthite [AgS2]; associated sulphides include galena, sphalerite, chalcopyrite, arsenopyrite and pyrite. In the main ore zone, base metal sulphides are commonly intergrown with the Ag-bearing sulfosalts. Analyses of galena show no significant silver values indicating that silver grades are exclusively associated with the Ag-bearing sulfosalts and sulphides. The distribution of the Sb/(Sb + As) ratios in the silver sulfosalts indicate that the ore forming fluid(s) was consistently antimony-rich during the Ag-rich ore deposition with no significant variation laterally, vertically, or along strike of the vein systems. However, Ag/(Ag + Cu) values in argentotennantite decrease along-strike from NE to SW and with depth. Compositions of argentotennantite + pyrargyrite + sphalerite indicate a primary depositional temperature around 325-350° C for the late phase of the Main-ore stage. Compositions of sphalerite also show an increasing trend in FeS (mol %) along strike of the deposit from NE to SW. The geometric relationship between the various structures, vein types, and the regional Miguel Auza fault zone suggest episodic reverse-sense reactivation of normal faults. It is argued that the structural evolution of the area, and, in particular, the Main-ore stage, provided transport pathways for metal-rich fluids and controlled the orientations of ore-bearing veins. Variations in mineral chemistry suggest that the rocks in the NE sector interacted with hotter fluids than in the SW part of the deposit.
NASA Astrophysics Data System (ADS)
Viola, Giulio
2017-04-01
Faulting accommodates momentous deformation and its style reflects the complex interplay of often transient processes such as friction, fluid flow and rheological changes within generally dilatant systems. Brittle faults are thus unique archives of the stress state and the physical and chemical conditions at the time of both initial strain localization and subsequent slip(s) during structural reactivation. Opening those archives, however, may be challenging due to the commonly convoluted (if not even chaotic) nature of brittle fault architectures and fault rocks. This is because, once formed, faults are extremely sensitive to variations in stress field and environmental conditions and are prone to readily slip in a variety of conditions, also in regions affected by only weak, far-field stresses. The detailed, multi-scalar structural analysis of faults and of fault rocks has to be the starting point for any study aiming at reconstructing the complex framework of brittle deformation. However, considering that present-day exposures of faults only represent the end result of the faults' often protracted and heterogeneous histories, the obtained structural and mechanical results have to be integrated over the life span of the studied fault system. Dating of synkinematic illite/muscovite to constrain the time-integrated evolution of faults is therefore the natural addition to detailed structural studies. By means of selected examples it will be demonstrated how careful structural analysis integrated with illite characterization and K-Ar dating allows the high-resolution reconstruction of brittle deformation histories and, in turn, multiple constraints to be placed on strain localization, deformation mechanisms, fluid flow, mineral alteration and authigenesis within actively deforming brittle fault rocks. Complex and long brittle histories can thus be reconstructed and untangled in any tectonic setting.
Fault orientations in extensional and conjugate strike-slip environments and their implications
Thatcher, W.; Hill, D.P.
1991-01-01
Seismically active conjugate strike-slip faults in California and Japan typically have mutually orthogonal right- and left-lateral fault planes. Normal-fault dips at earthquake nucleation depths are concentrated between 40?? and 50??. The observed orientations and their strong clustering are surprising, because conventional faulting theory suggests fault initiation with conjugate 60?? and 120?? intersecting planes and 60?? normal-fault dip or fault reactivation with a broad range of permitted orientations. The observations place new constraints on the mechanics of fault initiation, rotation, and evolutionary development. We speculate that the data could be explained by fault rotation into the observed orientations and deactivation for greater rotation or by formation of localized shear zones beneath the brittle-ductile transition in Earth's crust. Initiation as weak frictional faults seems unlikely. -Authors
NASA Astrophysics Data System (ADS)
Hirakawa, E. T.; Ma, S.
2012-12-01
The deficiency of high-frequency seismic radiation from shallow subduction zone earthquakes was first recognized in tsunami earthquakes (Kanamori, 1972), which produce larger tsunamis than expected from short-period (20 s) surface wave excitation. Shallow subduction zone earthquakes were also observed to have unusually low energy-to-moment ratios compared to regular subduction zone earthquakes (e.g., Newman and Okal, 1998; Venkataraman and Kanamori, 2004; Lay et al., 2012). What causes this anomalous radiation and how it relates to large tsunami generation has remained unclear. Here we show that these anomalous observations can be due to extensive poroplastic deformation in the overriding wedge, which provides a unifying interpretation. Ma (2012) showed that the pore pressure increase in the wedge due to up-dip rupture propagation significantly weakens the wedge, leading to widespread Coulomb failure in the wedge. Widespread failure gives rise to slow rupture velocity and large seafloor uplift (landward from the trench) in the case of a shallow fault dip. Here we extend this work and demonstrate that the large seafloor uplift due to the poroplastic deformation significantly dilates the fault behind the rupture front, which reduces the normal stress on the fault and increases the stress drop, slip, and rupture duration. The spectral amplitudes of the moment-rate time function is significantly less at high frequencies than those from elastic simulations. Large tsunami generation and deficiency of high-frequency radiation are thus two consistent manifestations of the same mechanism (poroplastic deformation). Although extensive poroplastic deformation in the wedge represents a significant portion of total seismic moment release, the plastic deformation is shown to act as a large energy sink, leaving less energy to be radiated and leading to low energy-to-moment ratios as observed for shallow subduction zone earthquakes.
Cardiovascular Magnetic Resonance Findings Late After the Arterial Switch Operation.
Shepard, Charles W; Germanakis, Ioannis; White, Matthew T; Powell, Andrew J; Co-Vu, Jennifer; Geva, Tal
2016-09-01
Despite its robust diagnostic capabilities in adolescents and adult patients after the arterial switch operation, little information is available on the cardiovascular magnetic resonance findings in this population. The cardiovascular magnetic resonance findings of 220 consecutive patients evaluated in our center were retrospectively reviewed (median age at cardiovascular magnetic resonance, 15.4 years; 66.8% male sex). Compared with published normal values, left and right ventricular end-diastolic volume z scores were mildly enlarged (0.48±1.76 and 0.33±1.5; P=0.0003 and 0.0038, respectively), with 26% of patients having left ventricular dilatation and 20% having right ventricular dilatation. Left ventricular dysfunction was present in 21.5% of patients (mild in most), and only 5.1% of patients had mild right ventricular dysfunction. Myocardial scar was found in 1.8% of patients. Dilatation of the neoaortic root was common (76%), and root z score increased at an average rate of 0.03 points per year. By multivariable analysis, neoaortic root dilatation was associated with worse neoaortic valve regurgitation (OR, 5.29; P=0.0016). The diameters of the thoracic aorta distal to the root were near-normal in most patients, whereas the neomain pulmonary artery was typically oval shaped with decreased anteroposterior and normal lateral diameters. Although the majority of arterial switch operation patients have normal ventricular size and function and myocardial scar is rare, an important minority exhibits ventricular enlargement or dysfunction. Neoaortic root dilatation, which is present in most patients and progresses over time, is strongly associated with significant neoaortic valve regurgitation. The findings of this study provide reference values against which arterial switch operation patients can be compared with their peers. © 2016 American Heart Association, Inc.
NASA Astrophysics Data System (ADS)
Yildirim, Cengiz; Akif Sarikaya, Mehmet; Ciner, Attila
2016-04-01
Late Pleistocene activity of the Ecemiş Fault Zone is integrally tied to ongoing intraplate crustal deformation in the Central Anatolian Plateau. Here we document the vertical displacement, slip rate, extension rate, and geochronology of normal faults within a narrow strip along the main strand of the fault zone. The Kartal, Cevizlik and Lorut faults are normal faults that have evident surface expression within the strip. Terrestrial cosmogenic nuclide geochronology reveals that the Kartal Fault deformed a 104.2 ± 16.5 ka alluvial fan surface and the Cevizlik Fault deformed 21.9 ± 1.8 ka glacial moraine and talus fan surfaces. The Cevizlik Fault delimits mountain front of the Aladaglar and forms >1 km relief. Our topographic surveys indicate 13.1 ± 1.4 m surface breaking vertical displacements along Cevizlik Faults, respectively. Accordingly, we suggest a 0.60 ± 0.08 mm a-1 slip rate and 0.35 ± 0.05 mm a-1 extension rate for the last 21.9 ± 1.8 ka on the Cevizlik Fault. Taken together with other structural observations in the region, we believe that the Cevizlik, Kartal ve Lorut faults are an integral part of intraplate crustal deformation in Central Anatolia. They imply that intraplate structures such as the Ecemiş Fault Zone may change their mode through time; presently, the Ecemiş Fault Zone has been deformed predominantly by normal faults. The presence of steep preserved fault scarps along the Kartal, Cevizlik and Lorut faults point to surface breaking normal faulting away from the main strand and particularly signify that these structures need to be taken into account for regional seismic hazard assessments. This project is supported by The Scientific and Technological Research Council of Turkey (TUBITAK, Grant number: 112Y087).
NASA Astrophysics Data System (ADS)
Baines, A. Graham; Cheadle, Michael J.; Dick, Henry J. B.; Hosford Scheirer, Allegra; John, Barbara E.; Kusznir, Nick J.; Matsumoto, Takeshi
2003-12-01
Atlantis Bank is an anomalously uplifted oceanic core complex adjacent to the Atlantis II transform, on the southwest Indian Ridge, that rises >3 km above normal seafloor of the same age. Models of flexural uplift due to detachment faulting can account for ˜1 km of this uplift. Postdetachment normal faults have been observed during submersible dives and on swath bathymetry. Two transform-parallel, large-offset (hundreds of meters) normal faults are identified on the eastern flank of Atlantis Bank, with numerous smaller faults (tens of meters) on the western flank. Flexural uplift associated with this transform-parallel normal faulting is consistent with gravity data and can account for the remaining anomalous uplift of Atlantis Bank. Extension normal to the Atlantis II transform may have occurred during a 12 m.y. period of transtension initiated by a 10° change in spreading direction ca. 19.5 Ma. This extension may have produced the 120-km-long transverse ridge of which Atlantis Bank is a part, and is consistent with stress reorientation about a weak transform fault.
Baines, A.G.; Cheadle, Michael J.; Dick, H.J.B.; Scheirer, A.H.; John, Barbara E.; Kusznir, N.J.; Matsumoto, T.
2003-01-01
Atlantis Bank is an anomalously uplifted oceanic core complex adjacent to the Atlantis II transform, on the southwest Indian Ridge, that rises >3 km above normal seafloor of the same age. Models of flexural uplift due to detachment faulting can account for ???1 km of this uplift. Postdetachment normal faults have been observed during submersible dives and on swath bathymetry. Two transform-parallel, large-offset (hundreds of meters) normal faults are identified on the eastern flank of Atlantis Bank, with numerous smaller faults (tens of meters) on the western flank. Flexural uplift associated with this transform-parallel normal faulting is consistent with gravity data and can account for the remaining anomalous uplift of Atlantis Bank. Extension normal to the Atlantis II transform may have occurred during a 12 m.y. period of transtension initiated by a 10?? change in spreading direction ca. 19.5 Ma. This extension may have produced the 120-km-long transverse ridge of which Atlantis Bank is a part, and is consistent with stress reorientation about a weak transform fault.
Merlo, Marco; Stolfo, Davide; Anzini, Marco; Negri, Francesco; Pinamonti, Bruno; Barbati, Giulia; Ramani, Federica; Lenarda, Andrea Di; Sinagra, Gianfranco
2015-01-13
An important number of patients with idiopathic dilated cardiomyopathy have dramatically improved left ventricular function with optimal treatment; however, little is known about the evolution and long-term outcome of this subgroup, which shows apparent healing. This study assesses whether real healing actually exists in dilated cardiomyopathy. Persistent apparent healing was evaluated among 408 patients with dilated cardiomyopathy receiving tailored medical treatment and followed over the very long-term. Persistent apparent healing was defined as left ventricular ejection fraction ≥50% and indexed left ventricular end-diastolic diameter ≤33 mm/m(2) at both mid-term (19±4 months) and long-term (103±9 months) follow-up. At mid-term, 63 of 408 patients (15%) were apparently healed; 38 (60%; 9%of the whole population) showed persistent apparent healing at long-term evaluation. No predictors of persistent apparent healing were found. Patients with persistent apparent healing showed better heart transplant–free survival at very long-term follow-up (95% versus 71%; P=0.014) compared with nonpersistently normalized patients. Nevertheless, in the very longterm, 37% of this subgroup experienced deterioration of left ventricular systolic function, and 5% died or had heart transplantation. Persistent long-term apparent healing was evident in a remarkable proportion of dilated cardiomyopathy patients receiving optimal medical treatment and was associated with stable normalization of main clinical and laboratory features. This condition can be characterized by a decline of left ventricular function over the very long term, highlighting the relevance of serial nd individualized follow-up in all patients with dilated cardiomyopathy, especially considering the absence of predictors for longterm apparent healing.
Juliani, Paulo Sérgio; da Costa, Éder França; Correia, Aristides Tadeu; Monteiro, Rosangela; Jatene, Fabio Biscegli
2014-01-01
Introduction A feature of dilated cardiomyopathy is the deformation of ventricular cavity, which contributes to systolic dysfunction. Few studies have evaluated this deformation bearing in mind ventricular regions and segments of the ventricle, which could reveal important details of the remodeling process, supporting a better understanding of its role in functional impairment and the development of new therapeutic strategies. Objective To evaluate if, in basal, equatorial and apical regions, increased internal transverse perimeter of left ventricle in idiopathic dilated cardiomyopathy occurs proportionally between the septal and non-septal segment. Methods We performed an anatomical study with 28 adult hearts from human cadavers. One group consisted of 18 hearts with idiopathic dilated cardiomyopathy and another group with 10 normal hearts. After lamination and left ventricle digital image capture, in three different regions (base, equator and apex), the transversal internal perimeter of left ventricle was divided into two segments: septal and not septal. These segments were measured by proper software. It was established an index of proportionality between these segments, called septal and non-septal segment index. Then we determined whether this index was the same in both groups. Results Among patients with normal hearts and idiopathic dilated cardiomyopathy, the index of proportionality between the two segments (septal and non-septal) showed no significant difference in the three regions analyzed. The comparison results of the indices NSS/SS among normal and enlarged hearts were respectively: in base 1.99 versus 1.86 (P=0.46), in equator 2.22 versus 2.18 (P=0.79) and in apex 2.96 versus 3.56 (P=0.11). Conclusion In the idiopathic dilated cardiomyopathy, the transversal dilatation of left ventricular internal perimeter occurs proportionally between the segments corresponding to the septum and free wall at the basal, equatorial and apical regions of this chamber. PMID:25372906
NASA Astrophysics Data System (ADS)
Redfield, T. F.; Osmundsen, P. T.
2009-09-01
On February 22, 1756, approximately 15.7 million cubic meters of bedrock were catastrophically released as a giant rockslide into the Langfjorden. Subsequently, three ˜ 40 meter high tsunami waves overwhelmed the village of Tjelle and several other local communities. Inherited structures had isolated a compartment in the hanging wall damage zone of the fjord-dwelling Tjellefonna fault. Because the region is seismically active in oblique-normal mode, and in accordance with scant historical sources, we speculate that an earthquake on a nearby fault may have caused the already-weakened Tjelle hillside to fail. From interpretation of structural, geomorphic, and thermo-chronological data we suggest that today's escarpment topography of Møre og Trøndelag is controlled to a first order by post-rift reactivation of faults parallel to the Mesozoic passive margin. In turn, a number of these faults reactivated Late Caledonian or early post-Caledonian fabrics. Normal-sense reactivation of inherited structures along much of coastal Norway suggests that a structural link exists between the processes that destroy today's mountains and those that created them. The Paleozoic Møre-Trøndelag Fault Complex was reactivated as a normal fault during the Mesozoic and, probably, throughout the Cenozoic until the present day. Its NE-SW trending strands crop out between the coast and the base of a c. 1.7 km high NW-facing topographic 'Great Escarpment.' Well-preserved kinematic indicators and multiple generations of fault products are exposed along the Tjellefonna fault, a well-defined structural and topographic lineament parallel to both the Langfjorden and the Great Escarpment. The slope instability that was formerly present at Tjelle, and additional instabilities currently present throughout the region, may be viewed as the direct product of past and ongoing development of tectonic topography in Møre og Trøndelag county. In the Langfjorden region in particular, structural geometry suggests additional unreleased rock compartments may be isolated and under normal fault control. Although post-glacial rebound and topographically-derived horizontal spreading stresses might in part help drive present-day oblique normal seismicity, the normal-fault-controlled escarpments of Norway were at least partly erected in pre-glacial times. Cretaceous to Early Tertiary post-rift subsidence was interrupted by normal faulting at the innermost portion of the passive margin, imposing a strong tectonic empreinte on the developing landscape.
Nagata, Kohei; Kilgore, Brian D.; Beeler, Nicholas M.; Nakatani, Masao
2014-01-01
During localized slip of a laboratory fault we simultaneously measure the contact area and the dynamic fault normal elastic stiffness. One objective is to determine conditions where stiffness may be used to infer changes in area of contact during sliding on nontransparent fault surfaces. Slip speeds between 0.01 and 10 µm/s and normal stresses between 1 and 2.5 MPa were imposed during velocity step, normal stress step, and slide-hold-slide tests. Stiffness and contact area have a linear interdependence during rate stepping tests and during the hold portion of slide-hold-slide tests. So long as linearity holds, measured fault stiffness can be used on nontransparent materials to infer changes in contact area. However, there are conditions where relations between contact area and stiffness are nonlinear and nonunique. A second objective is to make comparisons between the laboratory- and field-measured changes in fault properties. Time-dependent changes in fault zone normal stiffness made in stress relaxation tests imply postseismic wave speed changes on the order of 0.3% to 0.8% per year in the two or more years following an earthquake; these are smaller than postseismic increases seen within natural damage zones. Based on scaling of the experimental observations, natural postseismic fault normal contraction could be accommodated within a few decimeter wide fault core. Changes in the stiffness of laboratory shear zones exceed 10% per decade and might be detectable in the field postseismically.
NASA Astrophysics Data System (ADS)
Yamashita, Teruo; Schubnel, Alexandre
2016-10-01
Sustained slow slip, which is a distinctive feature of slow slip events (SSEs), is investigated theoretically, assuming a fault embedded within a fluid-saturated 1D thermo-poro-elastic medium. The object of study is specifically SSEs occurring at the down-dip edge of seismogenic zone in hot subduction zones, where mineral dehydrations (antigorite, lawsonite, chlorite, and glaucophane) are expected to occur near locations where deep slow slip events are observed. In the modeling, we introduce dehydration reactions, coupled with slip-induced dilatancy and thermal pressurization, and slip evolution is assumed to interact with fluid pressure change through Coulomb's frictional stress. Our calculations show that sustained slow slip events occur when the dehydration reaction is coupled with slip-induced dilatancy. Specifically, slow slip is favored by a low initial stress drop, an initial temperature of the medium close to that of the dehydration reaction equilibrium temperature, a low permeability, and overall negative volume change associated with the reaction (i.e., void space created by the reaction larger than the space occupied by the fluid released). Importantly, if we do not assume slip-induced dilatancy, slip is accelerated with time soon after the slip onset even if the dehydration reaction is assumed. This suggests that slow slip is sustained for a long time at hot subduction zones because dehydration reaction is coupled with slip-induced dilatancy. Such slip-induced dilatancy may occur at the down-dip edge of seismogenic zone at hot subduction zones because of repetitive occurrence of dehydration reaction there.
Tertiary extension and mineral deposits, southwestern U.S.
Rehrig, William A.; Hardy, James.J.
1996-01-01
Starting in Las Vegas, we will traverse through many of the geometric elements and complexities of hanging wall deformation above the regional detachment systems of the Colorado River extensional terrane. We will study the interaction of normal faults as arranged in regional, crustal-scale mega-domains and the bounding structures that separate these tilt domains. As we progress through the classic Eldorado Mountains-Hoover Dam region, where many of the ideas of listric normal faulting were first popularized, we will see both the real rocks and the historic rationale for their deformation. By examining the listric versus domino models for normal faulting, we will utilize different geometric techniques for determining the depth to the detachment structures and percent extension. Continuing further south toward southernmost Nevada, we will cross the accommodation zone that separates the Lake Mead and Whipple dip domains and further descend to deeper structural levels to examine lower levels of the major normal faults and their tilting of upper-crustal blocks and associated offset along the regional detachment faults. Fluid flow within the shattered fault zones and its relationship to the 3-D geometries of the fault surfaces will be studied both along the faults and within the hydrothermally altered and mineralized wallrocks.
NASA Astrophysics Data System (ADS)
Cetin, S.; Konca, A. O.; Dogan, U.; Floyd, M.; Karabulut, H.; Ergintav, S.; Ganas, A.; Paradisis, D.; King, R. W.; Reilinger, R. E.
2017-12-01
The 2014 Mw6.9 Gokceada (strike-slip) and 2017 Mw6.3 Lesvos (normal) earthquakes represent two of the set of faults that accommodate the transition from right-lateral strike-slip faulting on the North Anatolian Fault (NAF) to normal faulting along the Gulf of Corinth. The Gokceada earthquake was a purely strike-slip event on the western extension of the NAF where it enters the northern Aegean Sea. The Lesvos earthquake, located roughly 200 km south of Gokceada, occurred on a WNW-ESE-striking normal fault. Both earthquakes respond to the same regional stress field, as indicated by their sub-parallel seismic tension axis and far-field coseismic GPS displacements. Interpretation of GPS-derived velocities, active faults, crustal seismicity, and earthquake focal mechanisms in the northern Aegean indicates that this pattern of complementary faulting, involving WNW-ESE-striking normal faults (e.g. Lesvos earthquake) and SW-NE-striking strike-slip faults (e.g. Gokceada earthquake), persists across the full extent of the northern Aegean Sea. The combination of these two "families" of faults, combined with some systems of conjugate left-lateral strike-slip faults, complement one another and culminate in the purely extensional rift structures that form the large Gulfs of Evvia and Corinth. In addition to being consistent with seismic and geodetic observations, these fault geometries explain the increasing velocity of the southern Aegean and Peloponnese regions towards the Hellenic subduction zone. Alignment of geodetic extension and seismic tension axes with motion of the southern Aegean towards the Hellenic subduction zone suggests a direct association of Aegean extension with subduction, possibly by trench retreat, as has been suggested by prior investigators.
Dilated cardiomyopathy with short QT interval: is it a new clinical entity?
Bohora, Shomu; Namboodiri, Narayanan; Tharakan, Jaganmohan; Vk, Ajit Kumara; Nayyar, Sachin
2009-05-01
Short QT syndrome is a rare autosomal dominant channelopathy of structurally normal hearts characterized by atrial fibrillation, ventricular arrhythmias, and sudden cardiac death. We report a case having short QT, dilated ventricles, and severe ventricular dysfunction, an unreported association so far.
Chiaraluce, L.; Ellsworth, W.L.; Chiarabba, C.; Cocco, M.
2003-01-01
Six moderate magnitude earthquakes (5 < Mw < 6) ruptured normal fault segments of the southern sector of the North Apennine belt (central Italy) in the 1997 Colfiorito earthquake sequence. We study the progressive activation of adjacent and nearby parallel faults of this complex normal fault system using ???1650 earthquake locations obtained by applying a double-difference location method, using travel time picks and waveform cross-correlation measurements. The lateral extent of the fault segments range from 5 to 10 km and make up a broad, ???45 km long, NW trending fault system. The geometry of each segment is quite simple and consists of planar faults gently dipping toward SW with an average dip of 40??-45??. The fault planes are not listric but maintain a constant dip through the entire seismogenic volume, down to 8 km depth. We observe the activation of faults on the hanging wall and the absence of seismicity in the footwall of the structure. The observed fault segmentation appears to be due to the lateral heterogeneity of the upper crust: preexisting thrusts inherited from Neogene's compressional tectonic intersect the active normal faults and control their maximum length. The stress tensor obtained by inverting the six main shock focal mechanisms of the sequence is in agreement with the tectonic stress active in the inner chain of the Apennine, revealing a clear NE trending extension direction. Aftershock focal mechanisms show a consistent extensional kinematics, 70% of which are mechanically consistent with the main shock stress field.
Permeability Evolution With Shearing of Simulated Faults in Unconventional Shale Reservoirs
NASA Astrophysics Data System (ADS)
Wu, W.; Gensterblum, Y.; Reece, J. S.; Zoback, M. D.
2016-12-01
Horizontal drilling and multi-stage hydraulic fracturing can lead to fault reactivation, a process thought to influence production from extremely low-permeability unconventional reservoir. A fundamental understanding of permeability changes with shear could be helpful for optimizing reservoir stimulation strategies. We examined the effects of confining pressure and frictional sliding on fault permeability in Eagle Ford shale samples. We performed shear-flow experiments in a triaxial apparatus on four shale samples: (1) clay-rich sample with sawcut fault, (2) calcite-rich sample with sawcut fault, (3) clay-rich sample with natural fault, and (4) calcite-rich sample with natural fault. We used pressure pulse-decay and steady-state flow techniques to measure fault permeability. Initial pore and confining pressures are set to 2.5 MPa and 5.0 MPa, respectively. To investigate the influence of confining pressure on fault permeability, we incrementally raised and lowered the confining pressure and measure permeability at different effective stresses. To examine the effect of frictional sliding on fault permeability, we slide the samples four times at a constant shear displacement rate of 0.043 mm/min for 10 minutes each and measure fault permeability before and after frictional sliding. We used a 3D Laser Scanner to image fault surface topography before and after the experiment. Our results show that frictional sliding can enhance fault permeability at low confining pressures (e.g., ≥5.0 MPa) and reduce fault permeability at high confining pressures (e.g., ≥7.5 MPa). The permeability of sawcut faults almost fully recovers when confining pressure returns to the initial value, and increases with sliding due to asperity damage and subsequent dilation at low confining pressures. In contrast, the permeability of natural faults does not fully recover. It initially increases with sliding, but then decreases with further sliding most likely due to fault gouge blocking fluid pathways.
NASA Astrophysics Data System (ADS)
Pan, J.; Li, H.; Chevalier, M.; Liu, D.; Sun, Z.; Pei, J.; Wu, F.; Xu, W.
2013-12-01
Located at the northwestern end of the Himalayan-Tibetan orogenic belt, the Kongur Shan extensional system (KES) is a significant tectonic unit in the Chinese Pamir. E-W extension of the KES accommodates deformation due to the India/Asia collision in this area. Cenozoic evolution of the KES has been extensively studied, whereas Late Quaternary deformation along the KES is still poorly constrained. Besides, whether the KES is the northern extension of the Karakorum fault is still debated. Well-preserved normal fault scarps are present all along the KES. Interpretation of satellite images as well as field investigation allowed us to map active normal faults and associated vertically offset geomorphological features along the KES. At one site along the northern Kongur Shan detachment fault, in the eastern Muji basin, a Holocene alluvial fan is vertically offset by the active fault. We measured the vertical displacement of the fan with total station, and collected quartz cobbles for cosmogenic nuclide 10Be dating. Combining the 5-7 m offset and the preliminary surface-exposure ages of ~2.7 ka, we obtain a Holocene vertical slip-rate of 1.8-2.6 mm/yr along the fault. This vertical slip-rate is comparable to the right-lateral horizontal-slip rate along the Muji fault (~4.5 mm/yr, which is the northern end of the KES. Our result is also similar to the Late Quaternary slip-rate derived along the KES around the Muztagh Ata as well as the Tashkurgan normal fault (1-3 mm/yr). Geometry, kinematics, and geomorphology of the KES combined with the compatible slip-rate between the right-lateral strike-slip Muji fault and the Kongur Shan normal fault indicate that the KES may be an elongated pull-apart basin formed between the EW-striking right-lateral strike-slip Muji fault and the NW-SE-striking Karakorum fault. This unique elongated pull-apart structure with long normal fault in the NS direction and relatively short strike-slip fault in the ~EW direction seems to still be in formation, with the Karakorum fault still propagating to the north.
Faulting, Seismicity and Stress Interaction in the Salton Sea Region of Southern California
NASA Astrophysics Data System (ADS)
Kilb, D. L.; Brothers, D. S.; Lin, G.; Kent, G.; Newman, R. L.; Driscoll, N.
2009-12-01
The Salton Sea region in southern California provides an ideal location to study the relationship between transcurrent and extensional motion in the northern Gulf of California margin, allowing us to investigate the spatial and temporal interaction of faults in the area and better understand their kinematics. In this region, the San Andreas Fault (SAF) and Imperial Fault present two major transform faults separated by the Salton Sea transtensional domain. Earthquakes over magnitude 4 in this area almost always have associated aftershock sequences. Recent seismic reflection surveys in the Salton Sea reveal that the majority of faults under the southern Salton Sea trend ~N15°E, appear normal-dominant and have very minimal associated microseismicity. These normal faults rupture every 100-300 years in large earthquakes and most of the nearby microseismicity locates east of the mapped surface traces. For example, there is profuse microseismicity in the Brawley Seismic Zone (BSZ), which is coincident with the southern terminus of the SAF as it extends offshore into the Salton Sea. Earthquakes in the BSZ are dominantly swarm-like, occurring along short (<5 km) ~N45°E oriented sinistral and N35°W oriented dextral fault planes. This mapped seismicity makes a rung-and-ladder pattern. In an effort to reconcile differences between processes at the surface and those at seismogenic depths we integrate near surface fault kinematics, geometry and paleoseismic history with seismic data. We identify linear and planer trends in these data (20 near surface faults, >20,000 relocated earthquakes and >2,000 earthquake focal mechanisms) and when appropriate estimate the fault strike and dip using principal component analysis. With our more detailed image of the fault structure we assess how static stress changes imparted by magnitude ~6.0 ruptures along N15E oriented normal faults beneath the Salton Sea can modulate the stress field in the BSZ and along the SAF. These tests include exploring sensitivity of the results to parameter uncertainties. In general, we find rupture of the normal faults produces a butterfly pattern of static stress changes on the SAF with decreases along the southernmost portion below latitude 33.3±0.1 and increases on segments above these latitudes. Additionally, simulated ruptures on the normal faults predict optimally oriented sinistral faults that align with the “rungs” in the BSZ and optimally oriented dextral faults that are parallel to the SAF. Given these observations and results, we favor the scenario that normal faults beneath the Salton Sea accommodate most of the strain budget, rupturing as magnitude ~6.0-6.6 events every 100 years or so, and the consequent stress field generated within the relatively weak crust shapes the orientation of the short faults in the BSZ.
Quimby, Jessica M; Dowers, Kristy; Herndon, Andrea K; Randall, Elissa K
2017-08-01
Objectives The objective was to describe ultrasonographic characteristics of cats with stable chronic kidney disease (CKD) and determine if these were significantly different from cats with pyelonephritis (Pyelo) and ureteral obstruction (UO), to aid in clinical assessment during uremic crisis. Methods Sixty-six cats with stable CKD were prospectively enrolled, as well as normal control cats (n = 10), cats with a clinical diagnosis of Pyelo (n = 13) and cats with UO confirmed by surgical resolution (n = 11). Renal ultrasound was performed and routine still images and cine loops were obtained. Analysis included degree of pelvic dilation, and presence and degree of ureteral dilation. Measurements were compared between groups using non-parametric one-way ANOVA with Dunn's post-hoc analysis. Results In total, 66.6% of CKD cats had measurable renal pelvic dilation compared with 30.0% of normal cats, 84.6% of Pyelo cats and 100% of UO cats. There was no statistically significant difference in renal pelvic widths between CKD cats and normal cats, or CKD cats and Pyelo cats. On almost all measurement categories, UO cats had significantly greater renal pelvic widths compared with CKD cats and normal cats ( P <0.05) but not Pyelo cats. Six percent of stable CKD cats had measurable proximal ureteral dilation on one or both sides vs 46.2% of Pyelo cats and 81.8% of UO cats. There was no statistically significant difference in proximal ureteral width between normal and CKD cats, or between Pyelo and UO cats. There was a statistically significant difference in proximal ureteral width between CKD and Pyelo cats, CKD and UO cats, normal and UO cats, and normal and Pyelo cats. Conclusions and relevance No significant difference in renal pelvic widths between CKD cats and Pyelo cats was seen. These data suggest CKD cats should have a baseline ultrasonography performed so that abnormalities documented during a uremic crisis can be better interpreted.
NASA Astrophysics Data System (ADS)
Carpenter, B. M.; Scuderi, M. M.; Collettini, C.; Marone, C.
2014-12-01
Observations of heterogeneous and complex fault slip are often attributed to the complexity of fault structure and/or spatial heterogeneity of fault frictional behavior. Such complex slip patterns have been observed for earthquakes on normal faults throughout central Italy, where many of the Mw 6 to 7 earthquakes in the Apennines nucleate at depths where the lithology is dominated by carbonate rocks. To explore the relationship between fault structure and heterogeneous frictional properties, we studied the exhumed Monte Maggio Fault, located in the northern Apennines. We collected intact specimens of the fault zone, including the principal slip surface and hanging wall cataclasite, and performed experiments at a normal stress of 10 MPa under saturated conditions. Experiments designed to reactivate slip between the cemented principal slip surface and cataclasite show a 3 MPa stress drop as the fault surface fails, then velocity-neutral frictional behavior and significant frictional healing. Overall, our results suggest that (1) earthquakes may readily nucleate in areas of the fault where the slip surface separates massive limestone and are likely to propagate in areas where fault gouge is in contact with the slip surface; (2) postseismic slip is more likely to occur in areas of the fault where gouge is present; and (3) high rates of frictional healing and low creep relaxation observed between solid fault surfaces could lead to significant aftershocks in areas of low stress drop.
NASA Astrophysics Data System (ADS)
Tvedt, Anette B. M.; Rotevatn, Atle; Jackson, Christopher A.-L.
2016-10-01
Normal faulting and the deep subsurface flow of salt are key processes controlling the structural development of many salt-bearing sedimentary basins. However, our detailed understanding of the spatial and temporal relationship between normal faulting and salt movement is poor due to a lack of natural examples constraining their geometric and kinematic relationship in three-dimensions. To improve our understanding of these processes, we here use 3D seismic reflection and borehole data from the Egersund Basin, offshore Norway, to determine the structure and growth of a normal fault array formed during the birth, growth and decay of an array of salt structures. We show that the fault array and salt structures developed in response to: (i) Late Triassic-to-Middle Jurassic extension, which involved thick-skinned, sub-salt and thin-skinned supra-salt faulting with the latter driving reactive diapirism; (ii) Early Cretaceous extensional collapse of the walls; and (iii) Jurassic-to-Neogene, active and passive diapirism, which was at least partly coeval with and occurred along-strike from areas of reactive diapirism and wall collapse. Our study supports physical model predictions, showcasing a three-dimensional example of how protracted, multiphase salt diapirism can influence the structure and growth of normal fault arrays.
NASA Astrophysics Data System (ADS)
Pinar, Ali; Coskun, Zeynep; Mert, Aydin; Kalafat, Dogan
2015-04-01
The general consensus based on historical earthquake data point out that the last major moment release on the Prince's islands fault was in 1766 which in turn signals an increased seismic risk for Istanbul Metropolitan area considering the fact that most of the 20 mm/yr GPS derived slip rate for the region is accommodated mostly by that fault segment. The orientation of the Prince's islands fault segment overlaps with the NW-SE direction of the maximum principle stress axis derived from the focal mechanism solutions of the large and moderate sized earthquakes occurred in the Marmara region. As such, the NW-SE trending fault segment translates the motion between the two E-W trending branches of the North Anatolian fault zone; one extending from the Gulf of Izmit towards Çınarcık basin and the other extending between offshore Bakırköy and Silivri. The basic relation between the orientation of the maximum and minimum principal stress axes, the shear and normal stresses, and the orientation of a fault provides clue on the strength of a fault, i.e., its frictional coefficient. Here, the angle between the fault normal and maximum compressive stress axis is a key parameter where fault normal and fault parallel maximum compressive stress might be a necessary and sufficient condition for a creeping event. That relation also implies that when the trend of the sigma-1 axis is close to the strike of the fault the shear stress acting on the fault plane approaches zero. On the other hand, the ratio between the shear and normal stresses acting on a fault plane is proportional to the coefficient of frictional coefficient of the fault. Accordingly, the geometry between the Prince's islands fault segment and a maximum principal stress axis matches a weak fault model. In the frame of the presentation we analyze seismological data acquired in Marmara region and interpret the results in conjuction with the above mentioned weak fault model.
One-dimensional modeling of thermal energy produced in a seismic fault
NASA Astrophysics Data System (ADS)
Konga, Guy Pascal; Koumetio, Fidèle; Yemele, David; Olivier Djiogang, Francis
2017-12-01
Generally, one observes an anomaly of temperature before a big earthquake. In this paper, we established the expression of thermal energy produced by friction forces between the walls of a seismic fault while considering the dynamic of a one-dimensional spring-block model. It is noted that, before the rupture of a seismic fault, displacements are caused by microseisms. The curves of variation of this thermal energy with time show that, for oscillatory and aperiodic displacement, the thermal energy is accumulated in the same way. The study reveals that thermal energy as well as temperature increases abruptly after a certain amount of time. We suggest that the corresponding time is the start of the anomaly of temperature observed which can be considered as precursory effect of a big seism. We suggest that the thermal energy can heat gases and dilate rocks until they crack. The warm gases can then pass through the cracks towards the surface. The cracks created by thermal energy can also contribute to the rupture of the seismic fault. We also suggest that the theoretical model of thermal energy, produced in seismic fault, associated with a large quantity of experimental data may help in the prediction of earthquakes.
NASA Astrophysics Data System (ADS)
Styron, R. H.; Hetland, E. A.; Zhang, G.
2013-12-01
The weight of large mountains produces stresses in the crust that locally may be on the order of tectonic stresses (10-100 MPa). These stresses have a significant and spatially-variable deviatoric component that may be resolved as strong normal and shear stresses on range-bounding faults. In areas of high relief, the shear stress on faults can be comparable to inferred stress drops in earthquakes, and fault-normal stresses may be greater than 50 MPa, and thus may potentially influence fault rupture. Additionally, these stresses may be used to make inferences about the orientation and magnitude of tectonic stresses, for example by indicating a minimum stress needed to be overcome by tectonic stress. We are studying these effects in several tectonic environments, such as the Longmen Shan (China), the Denali fault (Alaska, USA) and the Wasatch Fault Zone (Utah, USA). We calculate the full topographic stress tensor field in the crust in a study region by convolution of topography with Green's functions approximating stresses from a point load on the surface of an elastic halfspace, using the solution proposed by Liu and Zoback [1992]. The Green's functions are constructed from Boussinesq's solutions for a vertical point load on an elastic halfspace, as well as Cerruti's solutions for a horizontal surface point load, accounting for irregular surface boundary and topographic spreading forces. The stress tensor field is then projected onto points embedded in the halfspace representing the faults, and the fault normal and shear stresses at each point are calculated. Our primary focus has been on the 2008 Wenchuan earthquake, as this event occurred at the base of one of Earth's highest and steepest topographic fronts and had a complex and well-studied coseismic slip distribution, making it an ideal case study to evaluate topographic influence on faulting. We calculate the topographic stresses on the Beichuan and Pengguan faults, and compare the results to the coseismic slip distribution, considering several published fault models. These models differ primarily in slip magnitude and planar vs. listric fault geometry at depth. Preliminary results indicate that topographic stresses are generally resistive to tectonic deformation, especially above ~10 km depth, where the faults are steep in all models. Down-dip topographic shear stresses on the fault are normal sense where the faults dip steeply, and reach 20 MPa on the fault beneath the Pengguan massif. Reverse-sense shear up to ~15 MPa is present on gently-dipping thrust flats at depth on listric fault models. Strike-slip shear stresses are sinistral on the steep, upper portions of faults but may be dextral on thrust flats. Topographic normal stress on the faults reaches ~80 MPa on thrust ramps and may be higher on flats. Coseismic slip magnitude is negatively correlated with topographic normal and down-dip shear stresses. The spatial patterns of topographic stresses and slip suggest that topographic stresses have significantly suppressed slip in certain areas: slip maxima occur in areas of locally lower topographic stresses, while areas of higher down-dip shear and normal stress show less slip than adjacent regions.
NASA Astrophysics Data System (ADS)
Wu, Liang-Chun; Li, Chien-Hung; Chan, Pei-Chen; Lin, Ming-Lang
2017-04-01
According to the investigations of well-known disastrous earthquakes in recent years, ground deformation induced by faulting is one of the causes for engineering structure damages in addition to strong ground motion. Most of structures located on faulting zone has been destroyed by fault offset. Take the Norcia Earthquake in Italy (2016, Mw=6.2) as an example, the highway bridge in Arquata crossing the rupture area of the active normal fault suffered a quantity of displacement which causing abutment settlement, the piers of bridge fractured and so on. However, The Seismic Design Provisions and Commentary for Highway Bridges in Taiwan, the stating of it in the general rule of first chapter, the design in bridges crossing active fault: "This specification is not applicable of making design in bridges crossing or near active fault, that design ought to the other particular considerations ".This indicates that the safty of bridges crossing active fault are not only consider the seismic performance, the most ground deformation should be attended. In this research, to understand the failure mechanism and the deformation characteristics, we will organize the case which the bridges subjected faulting at home and abroad. The processes of research are through physical sandbox experiment and numerical simulation by discrete element models (PFC3-D). The normal fault case in Taiwan is Shanchiao Fault. As above, the research can explore the deformation in overburden soil and the influences in the foundations of bridges by normal faulting. While we can understand the behavior of foundations, we will make the bridge superstructures into two separations, simple beam and continuous beam and make a further research on the main control variables in bridges by faulting. Through the above mentioned, we can then give appropriate suggestions about planning considerations and design approaches. This research presents results from sandbox experiment and 3-D numerical analysis to simulate overburden soil and embedded pile foundations subjected to normal faulting. In order to validate this numerical model, it is compared to sandbox experiments. Since the 3-D numerical analysis corresponds to the sandbox expeiments, the response of pile foundations and ground deformation induced by normal faulting are discussed. To understand the 3-D behavior of ground deformation and pile foundations, the observation such as the triangular shear zone, the width of primary deformation zone and the inclination, displacements, of the pile foundations are discussed in experiments and simulations. Furthermore, to understand the safty of bridges crossing faulting zone. The different superstructures of bridges, simple beam and continuous beam will be discussed subsequently in simulations.
NASA Astrophysics Data System (ADS)
Bellier, Olivier; Zoback, Mary Lou
1995-06-01
The NW to north-trending Walker Lane zone (WLZ) is located along the western boundary of the northern Basin and Range province with the Sierra Nevada. This zone is distinguished from the surrounding Basin and Range province on the basis of irregular topography and evidence for both normal and strike-slip Holocene faulting. Inversion of slip vectors from active faults, historic fault offsets, and earthquake focal mechanisms indicate two distinct Quaternary stress regimes within the WLZ, both of which are characterized by a consistent WNW σ3 axis; these are a normal faulting regime with a mean σ3 axis of N85°±9°W and a mean stress ratio (R value) (R=(σ2-σ1)/(σ3-σ1)) of 0.63-0.74 and a younger strike-slip faulting regime with a similar mean σ3 axis (N65° - 70°W) and R values ranging between ˜ 0.1 and 0.2. This younger regime is compatible with historic fault offsets and earthquake focal mechanisms. Both the extensional and strike-slip stress regimes reactivated inherited Mesozoic and Cenozoic structures and also produced new faults. The present-day strike-slip stress regime has produced strike-slip, normal oblique-slip, and normal dip-slip historic faulting. Previous workers have explained the complex interaction of active strike-slip, oblique, and normal faulting in the WLZ as a simple consequence of a single stress state with a consistent WNW σ3 axis and transitional between strike-slip and normal faulting (maximum horizontal stress approximately equal to vertical stress, or R ≈ 0 in both regimes) with minor local fluctuations. The slip data reported here support previous results from Owens Valley that suggest deformation within temporally distinct normal and strike-slip faulting stress regimes with a roughly constant WNW trending σ3 axis (Zoback, 1989). A recent change from a normal faulting to a strike-slip faulting stress regime is indicated by the crosscutting striae on faults in basalts <300,000 years old and is consistent with the dominantly strike-slip earthquake focal mechanisms and the youngest striae observed on faults in Plio-Quaternary deposits. Geologic control on the timing of the change is poor; it is impossible to determine if there has been a single recent absolute change or if there is, rather, an alternating or cyclical variation in stress magnitudes. Our slip data, in particular, the cross-cutting normal and strike-slip striae on the same fault plane, are inconsistent with postulated simple strain partitioning of deformation within a single regional stress field suggested for the WLZ by Wesnousky and Jones [1994]. The location of the WLZ between the deep-seated regional extension of the Basin and Range and the right-lateral strike-slip regional tectonics of the San Andreas fault zone is probably responsible for the complex interaction of tectonic regimes in this transition zone. In early to mid-Tertiary time the WLZ appears to have had a similarly complex deformational history, in this case as a back arc or intra-arc region, accommodating at least part of the right-lateral component of oblique convergence as well as a component of extension.
Schneider, Jaycie; Ames, Marisa; DiCicco, Michael; Savage, Mason; Atkins, Clarke; Wood, Michael; Gookin, Jody L
2015-06-01
An 8-week-old male domestic shorthair was presented to the Internal Medicine Service at North Carolina State University for regurgitation. Radiographic diagnosis of generalized esophageal dilation and failure of esophageal peristalsis were compatible with diagnosis of congenital megaesophagus. Endoscopic examination of the esophagus revealed a fibrous stricture just orad to the lower esophageal sphincter. Conservative management to increase the body condition and size of the kitten consisted of feeding through a gastrostomy tube, during which time the esophagus regained normal peristaltic function, the stricture orifice widened in size and successful balloon dilatation of the stricture was performed. Esophageal endoscopy should be considered to rule out a stricture near the lower esophageal sphincter in kittens with radiographic findings suggestive of congenital megaesophagus. Management of such kittens by means of gastrostomy tube feeding may be associated with a return of normal esophageal motility and widening of the esophageal stricture, and facilitate subsequent success of interventional dilation of the esophageal stricture. © ISFM and AAFP 2014.
Structural Data for the Columbus Salt Marsh Geothermal Area - GIS Data
Faulds, James E.
2011-12-31
Shapefiles and spreadsheets of structural data, including attitudes of faults and strata and slip orientations of faults. - Detailed geologic mapping of ~30 km2 was completed in the vicinity of the Columbus Marsh geothermal field to obtain critical structural data that would elucidate the structural controls of this field. - Documenting E‐ to ENE‐striking left lateral faults and N‐ to NNE‐striking normal faults. - Some faults cut Quaternary basalts. - This field appears to occupy a displacement transfer zone near the eastern end of a system of left‐lateral faults. ENE‐striking sinistral faults diffuse into a system of N‐ to NNE‐striking normal faults within the displacement transfer zone. - Columbus Marsh therefore corresponds to an area of enhanced extension and contains a nexus of fault intersections, both conducive for geothermal activity.
Apparent stress, fault maturity and seismic hazard for normal-fault earthquakes at subduction zones
Choy, G.L.; Kirby, S.H.
2004-01-01
The behavior of apparent stress for normal-fault earthquakes at subduction zones is derived by examining the apparent stress (?? a = ??Es/Mo, where E s is radiated energy and Mo is seismic moment) of all globally distributed shallow (depth, ?? 1 MPa) are also generally intraslab, but occur where the lithosphere has just begun subduction beneath the overriding plate. They usually occur in cold slabs near trenches where the direction of plate motion across the trench is oblique to the trench axis, or where there are local contortions or geometrical complexities of the plate boundary. Lower ??a (< 1 MPa) is associated with events occurring at the outer rise (OR) complex (between the OR and the trench axis), as well as with intracrustal events occurring just landward of the trench. The average apparent stress of intraslab-normal-fault earthquakes is considerably higher than the average apparent stress of interplate-thrust-fault earthquakes. In turn, the average ?? a of strike-slip earthquakes in intraoceanic environments is considerably higher than that of intraslab-normal-fault earthquakes. The variation of average ??a with focal mechanism and tectonic regime suggests that the level of ?? a is related to fault maturity. Lower stress drops are needed to rupture mature faults such as those found at plate interfaces that have been smoothed by large cumulative displacements (from hundreds to thousands of kilometres). In contrast, immature faults, such as those on which intraslab-normal-fault earthquakes generally occur, are found in cold and intact lithosphere in which total fault displacement has been much less (from hundreds of metres to a few kilometres). Also, faults on which high ??a oceanic strike-slip earthquakes occur are predominantly intraplate or at evolving ends of transforms. At subduction zones, earthquakes occurring on immature faults are likely to be more hazardous as they tend to generate higher amounts of radiated energy per unit of moment than earthquakes occurring on mature faults. We have identified earthquake pairs in which an interplate-thrust and an intraslab-normal earthquake occurred remarkably close in space and time. The intraslab-normal member of each pair radiated anomalously high amounts of energy compared to its thrust-fault counterpart. These intraslab earthquakes probably ruptured intact slab mantle and are dramatic examples in which Mc (an energy magnitude) is shown to be a far better estimate of the potential for earthquake damage than Mw. This discovery may help explain why loss of life as a result of intraslab earthquakes was greater in the 20th century in Latin America than the fatalities associated with interplate-thrust events that represented much higher total moment release. ?? 2004 RAS.
The architecture and frictional properties of faults in shale
NASA Astrophysics Data System (ADS)
De Paola, Nicola; Murray, Rosanne; Stillings, Mark; Imber, Jonathan; Holdsworth, Robert
2015-04-01
The geometry of brittle fault zones and associated fracture patterns in shale rocks, as well as their frictional properties at reservoir conditions, are still poorly understood. Nevertheless, these factors may control the very low recovery factors (25% for gas and 5% for oil) obtained during fracking operations. Extensional brittle fault zones (maximum displacement ≤ 3 m) cut exhumed oil mature black shales in the Cleveland Basin (UK). Fault cores up to 50 cm wide accommodated most of the displacement, and are defined by a stair-step geometry, controlled by the reactivation of en-echelon, pre-existing joints in the protolith. Cores typically show a poorly developed damage zone, up to 25 cm wide, and sharp contact with the protolith rocks. Their internal architecture is characterised by four distinct fault rock domains: foliated gouges; breccias; hydraulic breccias; and a slip zone up to 20 mm thick, composed of a fine-grained black gouge. Hydraulic breccias are located within dilational jogs with aperture of up to 20 cm, composed of angular clasts of reworked fault and protolith rock, dispersed within a sparry calcite cement. Velocity-step and slide-hold-slide experiments at sub-seismic slip rates (microns/s) were performed in a rotary shear apparatus under dry, water and brine-saturated conditions, for displacements of up to 46 cm. Both the protolith shale and the slip zone black gouge display shear localization, velocity strengthening behaviour and negative healing rates. Experiments at seismic slip rates (1.3 m/s), performed on the same materials under dry conditions, show that after initial friction values of 0.5-0.55, friction decreases to steady-state values of 0.1-0.15 within the first 10 mm of slip. Contrastingly, water/brine saturated gouge mixtures, exhibit almost instantaneous attainment of very low steady-state sliding friction (0.1). Our field observations show that brittle fracturing and cataclastic flow are the dominant deformation mechanisms in the fault core of shale faults, where slip localization may lead to the development of a thin slip zone made of very fine-grained gouges. The velocity-strengthening behaviour and negative healing rates observed during our laboratory experiments, suggest that slow, stable sliding faulting should take place within the protolith rocks and slip zone gouges. This behaviour will cause slow fault/fracture propagation, affecting the rate at which new fracture areas are created and, hence, limiting oil and gas production during reservoir stimulation. During slipping events, fluid circulation may be very effective along the fault zone at dilational jogs - where oil and gas production should be facilitated by the creation of large fracture areas - and rather restricted in the adjacent areas of the protolith, due to the lack of a well-developed damage zone and the low permeability of the matrix and slip zone gouge. Finally, our experiments performed at seismic slip rates show that seismic ruptures may still be able to propagate in a very efficient way within the slip zone of fluid-saturated shale faults, due to the attainment of instantaneous weakening.
Improving Ms Estimates by Calibrating Variable-Period Magnitude Scales at Regional Distances
2008-09-01
TF), or oblique - slip variations of normal and thrust faults using the Zoback (1992) classification scheme. For normal faults , 2008 Monitoring...between the observed and Ms-predicted Mw have a definable faulting mechanism effect, especially when strike- slip events are compared to those with...between true and Ms-predicted Mw have a definable faulting mechanism effect, especially when strike- slip events are compared to those with other
Yang, Young Ae; Yang, Dong Heon; Kim, Hong Nyun; Kwon, Sang Hoon; Jang, Se Young; Bae, Myung Hwan; Lee, Jang Hoon; Chae, Shung Chull
2015-12-01
Secondary tricuspid regurgitation (TR) primarily develops due to left heart failure or primary pulmonary diseases. Tricuspid annular dilation, which is commonly caused by right ventricular volume and pressure overload followed by right ventricle dilation, is believed to be the main mechanism underlying secondary TR. It is reported that once the tricuspid annulus is dilated, its size cannot spontaneously return to normal, and it may continue to dilate. These reports also suggest the use of an aggressive surgical approach for secondary TR. In the present report, we describe a case of tachycardia-induced severe TR that was completely resolved without the need for surgery.
Permeability of the San Andreas Fault Zone at Depth
NASA Astrophysics Data System (ADS)
Rathbun, A. P.; Song, I.; Saffer, D.
2010-12-01
Quantifying fault rock permeability is important toward understanding both the regional hydrologic behavior of fault zones, and poro-elastic processes that affect fault mechanics by mediating effective stress. These include long-term fault strength as well as dynamic processes that may occur during earthquake slip, including thermal pressurization and dilatancy hardening. Despite its importance, measurements of fault zone permeability for relevant natural materials are scarce, owing to the difficulty of coring through active fault zones seismogenic depths. Most existing measurements of fault zone permeability are from altered surface samples or from thinner, lower displacement faults than the SAF. Here, we report on permeability measurements conducted on gouge from the actively creeping Central Deformation Zone (CDZ) of the San Andreas Fault, sampled in the SAFOD borehole at a depth of ~2.7 km (Hole G, Run 4, sections 4,5). The matrix of the gouge in this interval is predominantly composed of particles <10 µm, with ~5 vol% clasts of serpentinite, very fine-grained sandstone, and siltstone. The 2.6 m-thick CDZ represents the main fault trace and hosts ~90% of the active slip on the SAF at this location, as documented by repeated casing deformation surveys. We measured permeability in two different configurations: (1) in a uniaxial pressure cell, in which a sample is placed into a rigid steel ring which imposes a zero lateral strain condition and subjected to axial load, and (2) in a standard triaxial system under isostatic stress conditions. In the uniaxial configuration, we obtained permeabilities at axial effective stresses up to 90 MPa, and in the triaxial system up to 10 MPa. All experiments were conducted on cylindrical subsamples of the SAFOD core 25 mm in diameter, with lengths ranging from 18mm to 40mm, oriented for flow approximately perpendicular to the fault. In uniaxial tests, permeability is determined by running constant rate of strain (CRS) tests up to 90 MPa axial stress. In these tests, axial stress is increased via a constant rate of displacement, and the excess pore pressure build up at the base of the sample is measured. Stress, pore pressure and strain are monitored to calculate coefficient of consolidation and volumetric compressibility in addition to permeability. In triaxial experiments, permeability is measured from by flow through tests under constant head boundary conditions. Permeability of the CDZ rapidly decreases to ~10-19 m2 by 20 MPa axial stress in our CRS tests. Over axial stresses from 20-85 MPa, permeability decreases log-linearly with effective stress from 8x10-20 m2 to 1x10-20 m2. Flow-through tests in the triaxial system under isostatic conditions yield permeabilities of 2.2x10-19 m2 and 1x10-20 m2 at 5 and 10 MPa, respectively. Our results are consistent with published geochemical data from SAFOD mud gas samples and inferred pore pressures during drilling [Zoback et al., 2010], which together suggest that the fault is a barrier to regional fluid flow. Our results indicate that the permeability of the fault core is sufficiently low to result in effectively undrained behavior during slip, thus allowing dynamic processes including thermal pressurization and dilatancy hardening to affect slip behavior.
NASA Astrophysics Data System (ADS)
Zhou, Z.; Lin, J.
2017-12-01
We investigated variations in the elasto-plastic deformation of the subducting plate along the Mariana Trench through an analysis of flexural bending, normal fault characteristics, and geodynamic modeling. It was observed that most of the normal faults were initiated along the outer-rise region and grew toward the trench axis with strikes that are mostly subparallel to the local trend of the trench axis. The average trench relief is more than 5 km in the southern region while only about 2 km in the northern and central regions. Fault throws were measured to be significantly greater in the southern region (maximum 320 m) than the northern and central regions (maximum 200 m). The subducting plate was modeled as an elasto-plastic slab subjected to tectonic loading along the trench axis. The "apparent" slab-pull dip angle of the subducting plate, calculated from the ratio of the inverted vertical loading versus horizontal tensional force, was significantly larger in the southern region (51-64°) than in the northern (22-35°) and central (20-34°) regions, which is consistent with the seismologically determined dip angle within the shallow part of the subducting slab. This result suggests that the differences in the plate flexure and normal faulting characteristics along the Mariana Trench might be influenced, at least in part, by significant variations in the dip angle within the shallow part of the subducting plate. Normal faults were modeled to penetrate to a maximum depth of 15, 14, and 25 km in the upper mantle for the northern, central, and southern regions, respectively, which is consistent with the depths of available relocated normal faulting earthquakes in the central region. We calculated that the average reduction of the effective elastic plate thickness Te due to normal faulting is 31% in the southern region, which is almost twice that in both the northern and central regions ( 16%). Furthermore, model results revealed that the stress reduction associated with individual normal faults could also decrease Te locally.
Moore, Diane E.; Byerlee, J.
1992-01-01
Moore, D.E. and Byerlee, J., 1992. Relationships between sliding behavior and internal geometry of laboratory fault zones and some creeping and locked strike-slip faults of California. In: T. Mikumo, K. Aki, M. Ohnaka, L.J. Ruff and P.K.P. Spudich (Editors), Earthquake Source Physics and Earthquake Precursors. Tectonophysics, 211: 305-316. In order to relate fault geometries to sliding behavior, maps of recently active breaks within the Hayward fault of central California, which is characterized by fault creep, have been examined and compared to maps of the San Andreas fault. The patterns of recent breaks of the Hayward fault are consistent with those found within the creeping section of the San Andreas, and they appear to have plausible physical explanations in the findings of laboratory experiments. The distinguishing geometric features of the examined locked and creeping faults are: (1) P-type second-order traces predominate over R(Riedel)-type traces in creeping sections; and (2) R-type second-order traces make smaller angles to the local fault strike in creeping sections than they do in locked sections. Two different maps of the Hayward fault gave similar results, supporting the inference that the patterns identified are basic characteristics of the fault rather than artifacts of a particular mapping procedure. P shears predominate over R shears under laboratory conditions that allow dilation within the fault zone. In our own experiments, P-shear development was favored by the generation of excess pore-fluid pressures. We propose that creep in California faults also is the result of fluid overpressures that are maintained in a low-permeability gouge zone and that significantly lower effective stresses, thus helping to stabilize slip and producing high values of the ratio P/R. Small R-trace angles may also be an indicator of low effective stresses, but the evidence for this is not conclusive because other factors can also affect the size of the angles. ?? 1992.
Normal fault earthquakes or graviquakes
Doglioni, C.; Carminati, E.; Petricca, P.; Riguzzi, F.
2015-01-01
Earthquakes are dissipation of energy throughout elastic waves. Canonically is the elastic energy accumulated during the interseismic period. However, in crustal extensional settings, gravity is the main energy source for hangingwall fault collapsing. Gravitational potential is about 100 times larger than the observed magnitude, far more than enough to explain the earthquake. Therefore, normal faults have a different mechanism of energy accumulation and dissipation (graviquakes) with respect to other tectonic settings (strike-slip and contractional), where elastic energy allows motion even against gravity. The bigger the involved volume, the larger is their magnitude. The steeper the normal fault, the larger is the vertical displacement and the larger is the seismic energy released. Normal faults activate preferentially at about 60° but they can be shallower in low friction rocks. In low static friction rocks, the fault may partly creep dissipating gravitational energy without releasing great amount of seismic energy. The maximum volume involved by graviquakes is smaller than the other tectonic settings, being the activated fault at most about three times the hypocentre depth, explaining their higher b-value and the lower magnitude of the largest recorded events. Having different phenomenology, graviquakes show peculiar precursors. PMID:26169163
Enigmatic rift-parallel, strike-slip faults around Eyjafjörður, Northern Iceland
NASA Astrophysics Data System (ADS)
Proett, J. A.; Karson, J. A.
2014-12-01
Strike-slip faults along mid-ocean ridge spreading centers are generally thought to be restricted to transform boundaries connecting rift segments. Faults that are parallel to spreading centers are generally assumed to be normal faults associated with tectonic extension. However, clear evidence of north-south (rift-parallel), strike-slip displacements occur widely around the southern portion of Eyjafjörður, northern Iceland about 50 km west of the Northern Rift Zone. The area is south of the southernmost strand (Dalvík Lineament) of the NW-SE-trending, dextral-slip, Tjӧrnes Fracture Zone (where N-S, sinistral, strike-slip "bookshelf" faulting occurs). Faults in the Eyjafjörður area cut 8.5-10 m.y. basaltic crust and are parallel to spreading-related dikes and are commonly concentrated along dike margins. Fault rocks range from fault breccia to gouge. Riedel shears and other kinematic indicators provide unambiguous evidence of shear sense. Most faults show evidence of sinistral, strike-slip movement but smaller proportions of normal and oblique-slip faults also are present. Cross cutting relations among the different types of faults are inconsistent and appear to be related to a single deformation event. Fault slip-line kinematic analysis yields solutions indicating sinistral-normal oblique-slip overall. These results may be interpreted in terms of either previously unrecognized transform-fault bookshelf faulting or slip accommodating block rotation associated with northward propagation of the Northern Rift Zone.
NASA Astrophysics Data System (ADS)
Scuderi, M.; Marone, C.
2012-12-01
The seismic potential of faults, as well as mechanical strength and frictional instability are controlled by the evolution of the real contact area within the fault gouge. Fault gouge is characterized by granular and clay rich material, as the result of continuous wear produced by dynamic or quasi-static slip along the fault plane. In this context, water and thermally-activated physicochemical reactions play a fundamental role in controlling the evolution of friction, via asperity contact properties and processes including hydrolytic weakening, adsorption/desorption, and/or intergranular pressure-solution (IPS). To investigate the role of granular processes and temperature in faulting, we performed shear experiments in water-saturated simulated gouges. We sheared layers of synthetic fault gouge composed of soda-lime glass beads (dia. 105-149 mm) in a double direct shear configuration within a true-triaxial pressure vessel under controlled fluid pressure using DI water. Effective normal stress (σn) was kept constant during shear at 5 MPa, and layer thickness was constantly monitored via a DCDT attached to the ram. Shear stress (τ) was applied via a constant shear displacement rate at layers boundaries. We performed velocity step experiments, during which shearing velocity was increased stepwise from 0.3 to 300 μm/s, and slide-hold-slide tests, with hold times from 1 to 1000 s. During each experiment temperature was kept constant at values of 25, 50 and 75C. Our experiments were conducted in a stick-slip sliding regime. At the end of each run, simulated gouge layers were carefully collected and impregnated with epoxy resin for SEM analysis. For all experiments, stress drop (Δτ) decreases roughly linearly with the log of velocity. With increasing temperature Δτ increases and the velocity dependence varies. Frictional healing is characterized by β = 0.023 change in friction per decade at T = 25C, increasing to β = 0.037 at T = 50C. We find that maximum friction (μmax) increases with increasing temperature, as well as the amount of pre-seismic slip and the corresponding layers dilation. In agreement with previous studies, our data suggest that in water saturated simulated gouges, solid-fluid chemical reactions are enhanced by increasing temperature, which may induce plastic flow and/or intergranular pressure solution at grain junction, controlling μmax, stress drop magnitude and frictional healing. Future work will consider the connection between the observed mechanical behavior and the evolution of grain contact properties.
The role of bed-parallel slip in the development of complex normal fault zones
NASA Astrophysics Data System (ADS)
Delogkos, Efstratios; Childs, Conrad; Manzocchi, Tom; Walsh, John J.; Pavlides, Spyros
2017-04-01
Normal faults exposed in Kardia lignite mine, Ptolemais Basin, NW Greece formed at the same time as bed-parallel slip-surfaces, so that while the normal faults grew they were intermittently offset by bed-parallel slip. Following offset by a bed-parallel slip-surface, further fault growth is accommodated by reactivation on one or both of the offset fault segments. Where one fault is reactivated the site of bed-parallel slip is a bypassed asperity. Where both faults are reactivated, they propagate past each other to form a volume between overlapping fault segments that displays many of the characteristics of relay zones, including elevated strains and transfer of displacement between segments. Unlike conventional relay zones, however, these structures contain either a repeated or a missing section of stratigraphy which has a thickness equal to the throw of the fault at the time of the bed-parallel slip event, and the displacement profiles along the relay-bounding fault segments have discrete steps at their intersections with bed-parallel slip-surfaces. With further increase in displacement, the overlapping fault segments connect to form a fault-bound lens. Conventional relay zones form during initial fault propagation, but with coeval bed-parallel slip, relay-like structures can form later in the growth of a fault. Geometrical restoration of cross-sections through selected faults shows that repeated bed-parallel slip events during fault growth can lead to complex internal fault zone structure that masks its origin. Bed-parallel slip, in this case, is attributed to flexural-slip arising from hanging-wall rollover associated with a basin-bounding fault outside the study area.
Seismological constraints on the down-dip shape of normal faults
NASA Astrophysics Data System (ADS)
Reynolds, Kirsty; Copley, Alex
2018-04-01
We present a seismological technique for determining the down-dip shape of seismogenic normal faults. Synthetic models of non-planar source geometries reveal the important signals in teleseismic P and SH waveforms that are diagnostic of down-dip curvature. In particular, along-strike SH waveforms are the most sensitive to variations in source geometry, and have significantly more complex and larger-amplitude waveforms for curved source geometries than planar ones. We present the results of our forward-modelling technique for 13 earthquakes. Most continental normal-faulting earthquakes that rupture through the full seismogenic layer are planar and have dips of 30°-60°. There is evidence for faults with a listric shape from some of the earthquakes occurring in two regions; Tibet and East Africa. These ruptures occurred on antithetic faults, or minor faults within the hanging walls of the rifts affected, which may suggest a reason for the down-dip curvature. For these earthquakes, the change in dip across the seismogenic part of the fault plane is ≤30°.
The transition from brittle faulting to cataclastic flow: Permeability evolution
NASA Astrophysics Data System (ADS)
Zhu, Wenlu; Wong, Teng-Fong
1997-02-01
Triaxial compression experiments were conducted to investigate influences of stress and failure mode on axial permeability of five sandstones with porosities ranging from 15% to 35%. In the cataclastic flow regime, permeability and porosity changes closely track one another. A drastic decrease in permeability was triggered by the onset of shear-enhanced compaction caused by grain crushing and pore collapse. The compactive yield stress C* maps out a boundary in stress space separating two different types of permeability evolution. Before C* is attained, permeability and porosity both decrease with increasing effective mean stress, but they are independent of deviatoric stresses. However, with loading beyond C*, both permeability and porosity changes are strongly dependent on the deviatoric and effective mean stresses. In the brittle faulting regime, permeability and porosity changes are more complex. Before the onset of shear-induced dilation C', both permeability and porosity decrease with increasing effective mean stress. Beyond C', permeability may actually decrease in a dilating rock prior to brittle failure. After the peak stress has been attained, the development of a relatively impermeable shear band causes an accelerated decrease of permeability. Permeability evolution in porous sandstones is compared with that in low-porosity crystalline rocks. A conceptual model for the coupling of deformation and fluid transport is proposed in the form of a deformation-permeability map.
Schultz, R.A.; Soliva, R.; Fossen, H.; Okubo, C.H.; Reeves, D.M.
2008-01-01
Displacement-length data from faults, joints, veins, igneous dikes, shear deformation bands, and compaction bands define two groups. The first group, having a power-law scaling relation with a slope of n = 1 and therefore a linear dependence of maximum displacement and discontinuity length (Dmax = ??L), comprises faults and shear (non-compactional or non-dilational) deformation bands. These shearing-mode structures, having shearing strains that predominate over volumetric strains across them, grow under conditions of constant driving stress, with the magnitude of near-tip stress on the same order as the rock's yield strength in shear. The second group, having a power-law scaling relation with a slope of n = 0.5 and therefore a dependence of maximum displacement on the square root of discontinuity length (Dmax = ??L0.5), comprises joints, veins, igneous dikes, cataclastic deformation bands, and compaction bands. These opening- and closing-mode structures grow under conditions of constant fracture toughness, implying significant amplification of near-tip stress within a zone of small-scale yielding at the discontinuity tip. Volumetric changes accommodated by grain fragmentation, and thus control of propagation by the rock's fracture toughness, are associated with scaling of predominantly dilational and compactional structures with an exponent of n = 0.5. ?? 2008 Elsevier Ltd.
Structural controls of the Tuscarora geothermal field, Elko County, Nevada
NASA Astrophysics Data System (ADS)
Dering, G.; Faulds, J. E.
2012-12-01
Tuscarora is an amagmatic geothermal system located ~90 km northwest of Elko, Nevada, in the northern part of the Basin and Range province ~15 km southeast of the Snake River Plain. Detailed geologic mapping, structural analysis, and well data have been integrated to identify the structural controls of the Tuscarora geothermal system. The structural framework of the geothermal field is defined by NNW- to NNE-striking normal faults that are approximately orthogonal to the present extension direction. Boiling springs, fumaroles, and siliceous sinter emanate from a single NNE-striking, west-dipping normal fault. Normal faults west of these hydrothermal features mostly dip steeply east, whereas normal faults east of the springs primarily dip west. Thus, the springs, fumaroles, and sinter straddle a zone of interaction between fault sets that dip toward each other, classified as a strike-parallel anticlinal accommodation zone. Faults within the geothermal area are mostly discontinuous along strike with offsets of tens to hundreds of meters, whereas the adjacent range-bounding fault systems of the Bull Run and Independence Mountains accommodate several kilometers of displacement. The geothermal field lies within a broad step over between the southward terminating west-dipping Bull Run fault zone and the northward terminating west-dipping Independence Mountains fault zone. Neither of these major fault zones is known to host high temperature geothermal systems. The accommodation zone lies within the broad step over and contains both east-dipping antithetic and west-dipping synthetic faults. Accommodation zones are relatively common structural components of extended terranes that transfer strain between oppositely dipping fault sets via a network of subsidiary normal faults. This study has identified the hinge zone of an anticlinal accommodation zone as the site most conducive to fluid up-flow. The recognition of this specific portion of an accommodation zone as a favorable structural setting for geothermal activity may be a useful exploration tool for development of drilling targets in extensional terranes, as well as for developing geologic models of known geothermal fields. This type of information may ultimately help to reduce the risks of targeting successful geothermal wells in such settings.
Numerical analysis of the effects induced by normal faults and dip angles on rock bursts
NASA Astrophysics Data System (ADS)
Jiang, Lishuai; Wang, Pu; Zhang, Peipeng; Zheng, Pengqiang; Xu, Bin
2017-10-01
The study of mining effects under the influences of a normal fault and its dip angle is significant for the prediction and prevention of rock bursts. Based on the geological conditions of panel 2301N in a coalmine, the evolution laws of the strata behaviors of the working face affected by a fault and the instability of the fault induced by mining operations with the working face of the footwall and hanging wall advancing towards a normal fault are studied using UDEC numerical simulation. The mechanism that induces rock burst is revealed, and the influence characteristics of the fault dip angle are analyzed. The results of the numerical simulation are verified by conducting a case study regarding the microseismic events. The results of this study serve as a reference for the prediction of rock bursts and their classification into hazardous areas under similar conditions.
Evolution of triangular topographic facets along active normal faults
NASA Astrophysics Data System (ADS)
Balogun, A.; Dawers, N. H.; Gasparini, N. M.; Giachetta, E.
2011-12-01
Triangular shaped facets, which are generally formed by the erosion of fault - bounded mountain ranges, are arguably one of the most prominent geomorphic features on active normal fault scarps. Some previous studies of triangular facet development have suggested that facet size and slope exhibit a strong linear dependency on fault slip rate, thus linking their growth directly to the kinematics of fault initiation and linkage. Other studies, however, generally conclude that there is no variation in triangular facet geometry (height and slope) with fault slip rate. The landscape of the northeastern Basin and Range Province of the western United States provides an opportunity for addressing this problem. This is due to the presence of well developed triangular facets along active normal faults, as well as spatial variations in fault scale and slip rate. In addition, the Holocene climatic record for this region suggests a dominant tectonic regime, as the faulted landscape shows little evidence of precipitation gradients associated with tectonic uplift. Using GIS-based analyses of USGS 30 m digital elevation data (DEMs) for east - central Idaho and southwestern Montana, we analyze triangular facet geometries along fault systems of varying number of constituent segments. This approach allows us to link these geometries with established patterns of along - strike slip rate variation. For this study, we consider major watersheds to include only catchments with upstream and downstream boundaries extending from the drainage divide to the mapped fault trace, respectively. In order to maintain consistency in the selection criteria for the analyzed triangular facets, only facets bounded on opposite sides by major watersheds were considered. Our preliminary observations reflect a general along - strike increase in the surface area, average slope, and relief of triangular facets from the tips of the fault towards the center. We attribute anomalies in the along - strike geometric measurements of the triangular facets to represent possible locations of fault segment linkage associated with normal fault evolution.
NASA Technical Reports Server (NTRS)
Avouac, Jean-Philippe; Peltzer, Gilles
1993-01-01
The northern piedmont of the western Kunlun mountains (Xinjiang, China) is marked at its easternmost extremity, south of the Hotan-Qira oases, by a set of normal faults trending N50E for nearly 70 km. Conspicuous on Landsat and SPOT images, these faults follow the southeastern border of a deep flexural basin and may be related to the subsidence of the Tarim platform loaded by the western Kunlun northward overthrust. The Hotan-Qira normal fault system vertically offsets the piedmont slope by 70 m. Highest fault scarps reach 20 m and often display evidence for recent reactivations about 2 m high. Successive stream entrenchments in uplifted footwallls have formed inset terraces. We have leveled topographic profiles across fault scarps and transverse abandoned terrace risers. The state of degradation of each terrace edge has been characterized by a degradation coefficient tau, derived by comparison with analytical erosion models. Edges of highest abandoned terraces yield a degradation coefficient of 33 +/- 4 sq.m. Profiles of cumulative fault scarps have been analyzed in a similar way using synthetic profiles generated with a simple incremental fault scarp model.
The Gabbs Valley, Nevada, geothermal prospect: Exploring for a potential blind geothermal resource
NASA Astrophysics Data System (ADS)
Payne, J.; Bell, J. W.; Calvin, W. M.
2012-12-01
The Gabbs Valley prospect in west-central Nevada is a potential blind geothermal resource system. Possible structural controls on this system were investigated using high-resolution LiDAR, low sun-angle aerial (LSA) photography, exploratory fault trenching and a shallow temperature survey. Active Holocene faults have previously been identified at 37 geothermal systems with indication of temperatures greater than 100° C in the western Nevada region. Active fault controls in Gabbs Valley include both Holocene and historical structures. Two historical earthquakes occurring in 1932 and 1954 have overlapping surface rupture patterns in Gabbs Valley. Three active fault systems identified through LSA and LiDAR mapping have characteristics of Basin and Range normal faulting and Walker Lane oblique dextral faulting. The East Monte Cristo Mountains fault zone is an 8.5 km long continuous NNE striking, discrete fault with roughly 0.5 m right-normal historic motion and 3 m vertical Quaternary separation. The Phillips Wash fault zone is an 8.2 km long distributed fault system striking NE to N, with Quaternary fault scarps of 1-3 m vertical separation and a 500 m wide graben adjacent to the Cobble Cuesta anticline. This fault displays ponded drainages, an offset terrace riser and right stepping en echelon fault patterns suggestive of left lateral offset, and fault trenching exposed non-matching stratigraphy typical of a significant component of lateral offset. The unnamed faults of Gabbs Valley are a 10.6 km long system of normal faults striking NNE and Quaternary scarps are up to 4 m high. These normal faults largely do not have historic surface rupture, but a small segment of 1932 rupture has been identified. A shallow (2 m deep) temperature survey of 80 points covering roughly 65 square kilometers was completed. Data were collected over approximately 2 months, and continual base station temperature measurements were used to seasonally correct temperature measurements. A 2.5 km long temperature anomaly greater than 3° C above background temperatures forms west-northwest trending zone between terminations of the Phillips Wash fault zone and unnamed faults of Gabbs Valley to the south. Rupture segments of two young active faults bracket the temperature anomaly. The temperature anomaly may be due to several possible causes. 1. Increases in stress near the rupture segments or tip-lines of these faults, or where multiple fault splays exist, can increase fault permeability. The un-ruptured segments of these faults may be controlling the location of the Gabbs Valley thermal anomaly between ruptured segments of the 1932 Cedar Mountain and 1954 Fairview Peak earthquakes. 2. Numerous unnamed normal faults may interact and the hanging wall of these faults is hosting the thermal anomaly. The size and extent of the anomaly may be due to its proximity to a flat playa and not the direct location of the shallow heat anomaly. 3. The linear northwest nature of the thermal anomaly may reflect a hydrologic barrier in the subsurface controlling where heated fluids rise. A concealed NW- striking fault is possible, but has not been identified in previous studies or in the LiDAR or LSA fault mapping.
NASA Astrophysics Data System (ADS)
Byers, C.; Mann, P.
2015-12-01
The Cuzco basin forms a 80-wide, relatively flat valley within the High Andes of southern Peru. This larger basin includes the regional capital of Cuzco and the Urubamba Valley, or "Sacred Valley of the Incas" favored by the Incas for its mild climate and broader expanses of less rugged and arable land. The valley is bounded on its northern edge by a 100-km-long and 10-km-wide zone of down-to-the-south systems of normal faults that separate the lower area of the down-dropped plateau of central Peru and the more elevated area of the Eastern Cordillera foldbelt that overthrusts the Amazon lowlands to the east. Previous workers have shown that the normal faults are dipslip with up to 600 m of measured displacements, reflect north-south extension, and have Holocene displacments with some linked to destructive, historical earthquakes. We have constructed topographic and structural cross sections across the entire area to demonstrate the normal fault on a the plateau peneplain. The footwall of the Eastern Cordillera, capped by snowcapped peaks in excess of 6 km, tilts a peneplain surface northward while the hanging wall of the Cuzco basin is radially arched. Erosion is accelerated along the trend of the normal fault zone. As the normal fault zone changes its strike from east-west to more more northwest-southeast, normal displacement decreases and is replaced by a left-lateral strike-slip component.
Heart failure: when form fails to follow function.
Katz, Arnold M; Rolett, Ellis L
2016-02-01
Cardiac performance is normally determined by architectural, cellular, and molecular structures that determine the heart's form, and by physiological and biochemical mechanisms that regulate the function of these structures. Impaired adaptation of form to function in failing hearts contributes to two syndromes initially called systolic heart failure (SHF) and diastolic heart failure (DHF). In SHF, characterized by high end-diastolic volume (EDV), the left ventricle (LV) cannot eject a normal stroke volume (SV); in DHF, with normal or low EDV, the LV cannot accept a normal venous return. These syndromes are now generally defined in terms of ejection fraction (EF): SHF became 'heart failure with reduced ejection fraction' (HFrEF) while DHF became 'heart failure with normal or preserved ejection fraction' (HFnEF or HFpEF). However, EF is a chimeric index because it is the ratio between SV--which measures function, and EDV--which measures form. In SHF the LV dilates when sarcomere addition in series increases cardiac myocyte length, whereas sarcomere addition in parallel can cause concentric hypertrophy in DHF by increasing myocyte thickness. Although dilatation in SHF allows the LV to accept a greater venous return, it increases the energy cost of ejection and initiates a vicious cycle that contributes to progressive dilatation. In contrast, concentric hypertrophy in DHF facilitates ejection but impairs filling and can cause heart muscle to deteriorate. Differences in the molecular signals that initiate dilatation and concentric hypertrophy can explain why many drugs that improve prognosis in SHF have little if any benefit in DHF. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.
Chaumoitre, K; Colavolpe, N; Shojai, R; Sarran, A; D' Ercole, C; Panuel, M
2007-01-01
To assess the use of diffusion-weighted magnetic resonance imaging (DW-MRI) in the evaluation of the fetal kidney and to estimate age-dependent changes in the apparent diffusion coefficient (ADC) of normal and pathological fetal kidneys. DW-MRI was performed on a 1.5-T machine at 23-38 gestational weeks in 51 pregnant women in whom the fetal kidneys were normal and in 10 whose fetuses had renal pathology (three with suspected nephropathy, three with renal tract dilatation, one with unilateral renal venous thrombosis, and three with twin-twin transfusion syndrome (TTTS)). The ADC was measured in an approximately 1-cm2 region of interest within the renal parenchyma. ADC values in normal renal parenchyma ranged from 1.1 to 1.8 10(-3) mm2 s-1. There was no significant age-dependent change in the ADC of normal kidneys. In cases of nephropathy, the ADC value was not always pathological but an ADC map could show abnormal findings. In cases of dilatation, the ADC value was difficult to determine when the dilatation was huge. In cases of TTTS, the ADC of the donor twin was higher than that of the recipient twin and the difference seemed to be related to the severity of the syndrome. Evaluation of the ADC for fetal kidneys is feasible. Fetal measurement of the ADC value and ADC maps may be useful tools with which to explore the fetal kidney when used in conjunction with current methods. DW-MR images, ADC value and ADC map seem to be useful in cases of suspected nephropathy (hyperechoic kidneys), dilated kidney and vascular pathology (renal venous thrombosis, TTTS). Copyright (c) 2006 ISUOG.
Eccentric LVH healing after starting renal replacement therapy.
Vertolli, Ugo; Lupia, Mario; Naso, Agostino
2002-01-01
Hypertension and left ventricular hypertrophy (LVH) are commonly associated in patients with CRF starting RDT. We report a case of eccentric LVH with marked dilatation and subsequent mitral incompetence of +3/4 that disappeared after three months of standard hemodialysis. Mrs SN, 62 years old, starting HD, had an echocardiography because of dyspnoea; the echo showed: dilated left atrium (78 ml/m2), moderately dilated left ventricle with normal systolic function (TDV 81 ml/m2, EF 66%), an increased ventricular mass (120 gr/m2) and a high grade mitral incompetence +3/4. After three months standard RDT and a dry weight only 2 kg less, the patients was normotensive without therapy, a cardiac angiogram with a hemodynamic study was performed as a pre-transplant workout: a normal left ventricle was found with normal systolic function (TDV 66, TSV 17, GS 49, EF 75%), and a perfectly competent mitral valve (reflux disappeared). The coronary angiography did not reveal critical stenosis. A new echocardiography confinned the data of the hemodynamic study: hypertensive cardiomiopathy with normal systolic function. After one year the patient has been transplanted, with a good renal function and the cardiac echo unchanged. Relieving uremic toxicity ameliorated the cardiac performance in this particular patient.
Normal Faulting at the Western Margin of the Altiplano Plateau, Southern Peru
NASA Astrophysics Data System (ADS)
Schildgen, T. F.; Hodges, K. V.; Whipple, K. X.; Perignon, M.; Smith, T. M.
2004-12-01
Although the western margin of the Altiplano Plateau is commonly used to illustrate the marked differences in the evolution of a mountain range with strong latitudinal and longitudinal precipitation gradients, the nature of tectonism in this semi-arid region is poorly understood and much debated. The western margin of the Altiplano in southern Peru and northern Chile marks an abrupt transition from the forearc region of the Andes to the high topography of the Cordillera Occidental. This transition has been interpreted by most workers as a monocline, with modifications due to thrust faulting, normal faulting, and gravity slides. Based on recent fieldwork and satellite image analysis, we suggest that, at least in the semi-arid climate of southern Peru, this transition has been the locus of significant high-angle normal faulting related to the block uplift of the Cordillera Occidental. We have focused our initial work in the vicinity of 15\\deg S latitude, 71\\deg W longitude, where the range front crosses Colca Canyon, a major antecedent drainage northwest of Arequipa. In that area, Oligocene to Miocene sediments of the Moquegua Formation, which were eroded from uplifted terrain to the northeast, presently dip to the northeast at angles between 2 and 10º. Field observations of a normal fault contact between the Moquegua sedimentary rocks and Jurassic basement rocks, as well as 15-m resolution 3-D images generated from ASTER satellite imagery, show that the Moquegua units are down-dropped to the west across a steeply SW-dipping normal fault of regional significance. Morphology of the range front throughout southern Peru suggests that normal faulting along the range front has characterized the recent tectonic history of the region. We present geochronological data to constrain the timing of movement both directly from the fault zone as well as indirectly from canyon incision that likely responded to fault movement.
Permeability and of the San Andreas Fault core and damage zone from SAFOD drill core
NASA Astrophysics Data System (ADS)
Rathbun, A. P.; Fry, M.; Kitajima, H.; Song, I.; Carpenter, B. M.; Marone, C.; Saffer, D. M.
2012-12-01
Quantifying fault-rock permeability is important toward understanding both the regional hydrologic behavior of fault zones, and poro-elastic processes that may affect faulting and earthquake mechanics by mediating effective stress. These include persistent fluid overpressures hypothesized to reduce fault strength, as well as dynamic processes that may occur during earthquake slip, including thermal pressurization and dilatancy hardening. To date, studies of permeability on fault rocks and gouge from plate-boundary strike-slip faults have mainly focused on samples from surface outcrops. We report on permeability tests conducted on the host rock, damage zone, and a major actively creeping fault strand (Central Deformation Zone, CDZ) of the San Andreas Fault (SAF), obtained from coring across the active SAF at ~2.7 km depth as part of SAFOD Phase III. We quantify permeability on subsamples oriented both perpendicular and parallel to the coring axis, which is nearly perpendicular to the SAF plane, to evaluate permeability anisotropy. The fault strand samples were obtained from the CDZ, which accommodates significant creep, and hosts ~90% of the observed casing deformation measured between drilling phases. The CDZ is 2.6 m thick with a matrix grain size < 10 μm and ~5% vol. clasts, and contains ~80% clay, of which ~90% is smectite. We also tested damage zone samples taken from adjacent core sections within a few m on either side of the CDZ. Permeability experiments were conducted in a triaxial vessel, on samples 25.4 mm in diameter and ~20-35 mm in length. We conducted measurements under isotropic stress conditions, at effective stress (Pc') of ~5-70 MPa. We measure permeability using a constant head flow-through technique. At the highest Pc', low permeability of the CDZ and damage zone necessitates using a step loading transient method and is in good agreement with permeabilities obtained from flow-through experiments. We quantify compression behavior by monitoring the volumetric and axial strain in response to changes in effective stress. Permeability of the CDZ is systematically lower than that of the damage zone or wall rock, and decreases from 2x10 -19m 2 at 5 MPa effective stress to 5x10-21 m 2 at 65 MPa. Some damage zone samples exhibit permeabilities as low as the CDZ, but most values are ~10-30 times higher. For both the damage zone and CDZ, permeability anisotropy is negligible. Volumetric compressibility (mv) decreases from ~1x10-9 Pa-1 to ~1x10-10 Pa-1 and hydraulic diffusivity decreases from ~2x10-7 m2/s to 1.7x10-8 m2/s over a range of effective stresses from 10 to 65 MPa. Our results are consistent with published geochemical data from SAFOD mud gas monitoring, and from inferred pore pressures during drilling [Zoback et al., 2010], which together suggest that the fault has a low permeability and is a barrier to regional fluid flow along. Our results also demonstrate that the diffusivity of the fault core of CDZ is sufficiently low to result in effectively undrained behavior over timescales of minutes to hours, thus facilitating dynamic hydrologic processes that may impact fault slip, including thermal pressurization and dilatancy hardening.
Controls of earthquake faulting style on near field landslide triggering: The role of coseismic slip
NASA Astrophysics Data System (ADS)
Tatard, L.; Grasso, J. R.
2013-06-01
compare the spatial distributions of seven databases of landslides triggered by Mw=5.6-7.9 earthquakes, using distances normalized by the earthquake fault length. We show that the normalized landslide distance distributions collapse, i.e., the normalized distance distributions overlap whatever the size of the earthquake, separately for the events associated with dip-slip, buried-faulting earthquakes, and surface-faulting earthquakes. The dip-slip earthquakes triggered landslides at larger normalized distances than the oblique-slip event of Loma Prieta. We further identify that the surface-faulting earthquakes of Wenchuan, Chi-Chi, and Kashmir triggered landslides at normalized distances smaller than the ones expected from their Mw ≥ 7.6 magnitudes. These results support a control of the seismic slip (through amplitude, rake, and surface versus buried slip) on the distances at which landslides are triggered. In terms of coseismic landslide management in mountainous areas, our results allow us to propose distances at which 95 and 75% of landslides will be triggered as a function of the earthquake focal mechanism.
3D Model of the McGinness Hills Geothermal Area
Faulds, James E.
2013-12-31
The McGinness Hills geothermal system lies in a ~8.5 km wide, north-northeast trending accommodation zone defined by east-dipping normal faults bounding the Toiyabe Range to the west and west-dipping normal faults bounding the Simpson Park Mountains to the east. Within this broad accommodation zone lies a fault step-over defined by north-northeast striking, west-dipping normal faults which step to the left at roughly the latitude of the McGinness Hills geothermal system. The McGinness Hills 3D model consists of 9 geologic units and 41 faults. The basal geologic units are metasediments of the Ordovician Valmy and Vininni Formations (undifferentiated in the model) which are intruded by Jurassic granitic rocks. Unconformably overlying is a ~100s m-thick section of Tertiary andesitic lava flows and four Oligocene-to-Miocene ash-flow tuffs: The Rattlesnake Canyon Tuff, tuff of Sutcliffe, the Cambell Creek Tuff and the Nine Hill tuff. Overlying are sequences of pre-to-syn-extensional Quaternary alluvium and post-extensional Quaternary alluvium. 10-15º eastward dip of the Tertiary stratigraphy is controlled by the predominant west-dipping fault set. Geothermal production comes from two west dipping normal faults in the northern limb of the step over. Injection is into west dipping faults in the southern limb of the step over. Production and injection sites are in hydrologic communication, but at a deep level, as the northwest striking fault that links the southern and northern limbs of the step-over has no permeability.
Periodic oscillation of intracranial pressure in ventricular dilation: a preliminary report.
Kuchiwaki, H; Misu, N; Kageyama, N; Ishiguri, H; Takada, S
1987-12-01
Artificial pressure waves (PWs) were generated by manual inflation of a balloon in the trigonum of the lateral ventricle in seven adult mongrel dogs with normal cerebrospinal fluid (CSF) circulation. In 14 of 16 series of continuous appearances of artificial PWs, local shifts of the brain were successfully monitored using small strain-gauge sensors at the periventricular structures in these animals. Of the 14 series, 13 showed displacements of the periventricular structures, suggesting ventricular dilation. These results did not always correlate with macroscopic findings. They are thought to be due largely to periventricular oedemas and, in part, non-uniform dilations of the ventricles during PWs. We conclude that a water hammer formed by reflection of an increased pulse pressure of PWs at the site of CSF absorption causes a shift of CSF from the ventricle to the periventricular structures through the wall of the ventricle. This phenomenon appears amplified in patients with impaired CSF absorption. Thus, PWs have a pathological role in the progress of ventricular dilation in patients with normal pressure hydrocephalus.
NASA Astrophysics Data System (ADS)
Rice, J. R.
2012-04-01
Field observations of maturely slipped faults show that despite a generally broad zone of damage by cracking and granulation, large shear deformation, and therefore heat generation, in individual earthquakes takes place with extreme localization to a zone of order 1 mm or less width within a finely granulated fault core. Relevant fault weakening processes during large crustal events are therefore likely to be thermally influenced, although a constraint to be met, from scarcity of pseudotachylite, is that melting within fault zones seems relatively rare, at least in the up per crust. Further, given the porosit y of damage zones, it seems reasonable to assume in-situ water presence. The lecture reviews current understanding of the materials physics underlying rapid shear of such fault zones, addressing questions like: Why is there severe localization? What are the dynamic relations between shear stress sustained by the fault and its slip history? How do those relations, taken to provide the boundary conditions on a rupturing interface between elastic regions of the earth, control key features of the dynamics of earthquakes? Primary dynamic weakening mechanisms, expected active in at least the early phases of nearly all crustal events, are flash heating at highly stressed frictional micro-contacts and thermal pressurization of native fault-zone pore fluid, the latter with a net effect that depends on interactions with dilatancy. Other weakening processes may also become active at large enough T rise, still prior to bulk melting, including endothermic decomposition reactions releasing a CO2 or H2O fluid phase under conditions that the fluid and solid products would, at the same p and T , occupy more volume than the parent rock, so that the pore fluid is forced to undergo severe pressure increase. The endothermic nature of the reactions buffers against melting because frictional work is absorbed into enthalpy increase of the reactants. There may also be a contribution to the weakening linked to the typically nanoscale range of the solid product phases. The results, applied to modeling of spontaneous slip ruptures, show how faults can be statically strong yet dynamically weak, and operate under low overall driving stress, in a manner that generates negligible heat and meets major seismic constraints on slip, stress drop, and self-healing rupture mode. They also shed light on how fault segments that normally shear stably, so as to not nucleate earthquakes, can nevertheless take part in major events when a high-slip rupture impinges from a bordering segment. The studies reviewed have been done collaboratively with, or draw on the separate insights of, N. Brantut, M. Cocco, E. Dunham, D. Garagash, D. Goldsby, N. Lapusta, H. Noda, J. Platt, A. Rempel, J. Rudnicki, P. Segall, T. Shimamoto, J. Sulem, T. Tullis and I. Vardoulakis.
NASA Astrophysics Data System (ADS)
Shreedharan, S.; Riviere, J.; Marone, C.
2017-12-01
We report on a suite of laboratory friction experiments conducted on saw-cut Westerly Granite surfaces to probe frictional response to step changes in normal stress and loading rate. The experiments are conducted to illuminate the fundamental processes that yield friction rate and state dependence. We quantify the microphysical frictional response of the simulated fault surfaces to normal stress steps, in the range of 1% - 600% step increases and decreases from a nominal baseline normal stress. We measure directly the fault slip rate and account for changes in slip rate with changes in normal stress and complement mechanical data acquisition by continuously probing the faults with ultrasonic pulses. We conduct the experiments at room temperature and humidity conditions in a servo controlled biaxial testing apparatus in the double direct shear configuration. The samples are sheared over a range of velocities, from 0.02 - 100 μm/s. We report observations of a transient shear stress and friction evolution with step increases and decreases in normal stress. Specifically, we show that, at low shear velocities and small increases in normal stress (<5% increase), the shear stress on the fault does not increase instantaneously with the normal stress step while the ultrasonic wave amplitude and normal displacement do. In other words, the shear stress does not follow the load point stiffness curve. At high shear velocities and larger normal stress steps (> 5% increases), the shear stress evolves immediately with normal stress. We show that the excursions in slip rate resulting from the changes in normal stress must be accounted for in order to predict fault strength evolution. Ultrasonic wave amplitudes which first increase immediately in response to normal stress steps, then decrease approximately linearly to a new steady state value, in part due to changes in fault slip rate. Previous descriptions of frictional state evolution during normal stress perturbations have not adequately accounted for the effect of large slip velocity excursions. Here, we attempt to do so by using the measured ultrasonic amplitudes as a proxy for frictional state during transient shear stress evolution. Our work aims to improve understanding of induced and triggered seismicity with focus on simulating static triggering using rate and state friction.
Mechanics of graben formation in crustal rocks - A finite element analysis
NASA Technical Reports Server (NTRS)
Melosh, H. J.; Williams, C. A., Jr.
1989-01-01
The mechanics of the initial stages of graben formation are examined, showing that the configuration of a graben (a pair of antithetically dipping normal faults) is the most energetically favorable fault configuration in elastic-brittle rocks subjected to pure extension. The stress field in the vicinity of a single initial normal fault is computed with a two-dimensional FEM. It is concluded that the major factor controlling graben width is the depth of the initial fault.
NASA Astrophysics Data System (ADS)
Lapusta, N.; Liu, Y.
2007-12-01
Heterogeneity in fault properties can have significant effect on dynamic rupture propagation and aseismic slip. It is often assumed that a fixed heterogeneity would have similar effect on fault slip throughout the slip history. We investigate dynamic rupture interaction with a fault patch of higher normal stress over several earthquake cycles in a three-dimensional model. We find that the influence of the heterogeneity on dynamic events has significant variation and depends on prior slip history. We consider a planar strike-slip fault governed by rate and state friction and driven by slow tectonic loading on deeper extension of the fault. The 30 km by 12 km velocity-weakening region, which is potentially seismogenic, is surrounded by steady-state velocity-strengthening region. The normal stress is constant over the fault, except in a circular patch of 2 km in diameter located in the seismogenic region, where normal stress is higher than on the rest of the fault. Our simulations employ the methodology developed by Lapusta and Liu (AGU, 2006), which is able to resolve both dynamic and quasi-static stages of spontaneous slip accumulation in a single computational procedure. The initial shear stress is constant on the fault, except in a small area where it is higher and where the first large dynamic event initiates. For patches with 20%, 40%, 60% higher normal stress, the first event has significant dynamic interaction with the patch, creating a rupture speed decrease followed by a supershear burst and larger slip around the patch. Hence, in the first event, the patch acts as a seismic asperity. For the case of 100% higher stress, the rupture is not able to break the patch in the first event. In subsequent dynamic events, the behavior depends on the strength of heterogeneity. For the patch with 20% higher normal stress, dynamic rupture in subsequent events propagates through the patch without any noticeable perturbation in rupture speed or slip. In particular, supershear propagation and additional slip accumulation around the patch are never repeated in the simulated history of the fault, and the patch stops manifesting itself as a seismic asperity. This is due to higher shear stress that is established at the patch after the first earthquake cycle. For patches with higher normal stress, shear stress redistribution also occurs, but it is less effective. The patches with 40% and 60% higher normal stress continue to affect rupture speed and fault slip in some of subsequent events, although the effect is much diminished with respect to the first event. For example, there are no supershear bursts. The patch with 100% higher normal stress is first broken in the second large event, and it retains significant influence on rupture speed and slip throughout the fault history, occasionally resulting in supershear bursts. Additional slip complexity emerges for patches with 40% and higher normal stress contrast. Since higher normal stress corresponds to a smaller nucleation size, nucleation of some events moves from the rheological transitions (where nucleation occurs in the cases with no stronger patch and with the patch of 20% higher normal stress) to the patches of higher normal stress. The patches nucleate both large, model-spanning, events, and small events that arrest soon after exiting the patch. Hence not every event that originates at the location of a potential seismic asperity is destined to be large, as its subsequent propagation is significantly influenced by the state of stress outside the patch.
Huang, Nantian; Chen, Huaijin; Cai, Guowei; Fang, Lihua; Wang, Yuqiang
2016-11-10
Mechanical fault diagnosis of high-voltage circuit breakers (HVCBs) based on vibration signal analysis is one of the most significant issues in improving the reliability and reducing the outage cost for power systems. The limitation of training samples and types of machine faults in HVCBs causes the existing mechanical fault diagnostic methods to recognize new types of machine faults easily without training samples as either a normal condition or a wrong fault type. A new mechanical fault diagnosis method for HVCBs based on variational mode decomposition (VMD) and multi-layer classifier (MLC) is proposed to improve the accuracy of fault diagnosis. First, HVCB vibration signals during operation are measured using an acceleration sensor. Second, a VMD algorithm is used to decompose the vibration signals into several intrinsic mode functions (IMFs). The IMF matrix is divided into submatrices to compute the local singular values (LSV). The maximum singular values of each submatrix are selected as the feature vectors for fault diagnosis. Finally, a MLC composed of two one-class support vector machines (OCSVMs) and a support vector machine (SVM) is constructed to identify the fault type. Two layers of independent OCSVM are adopted to distinguish normal or fault conditions with known or unknown fault types, respectively. On this basis, SVM recognizes the specific fault type. Real diagnostic experiments are conducted with a real SF₆ HVCB with normal and fault states. Three different faults (i.e., jam fault of the iron core, looseness of the base screw, and poor lubrication of the connecting lever) are simulated in a field experiment on a real HVCB to test the feasibility of the proposed method. Results show that the classification accuracy of the new method is superior to other traditional methods.
Huang, Nantian; Chen, Huaijin; Cai, Guowei; Fang, Lihua; Wang, Yuqiang
2016-01-01
Mechanical fault diagnosis of high-voltage circuit breakers (HVCBs) based on vibration signal analysis is one of the most significant issues in improving the reliability and reducing the outage cost for power systems. The limitation of training samples and types of machine faults in HVCBs causes the existing mechanical fault diagnostic methods to recognize new types of machine faults easily without training samples as either a normal condition or a wrong fault type. A new mechanical fault diagnosis method for HVCBs based on variational mode decomposition (VMD) and multi-layer classifier (MLC) is proposed to improve the accuracy of fault diagnosis. First, HVCB vibration signals during operation are measured using an acceleration sensor. Second, a VMD algorithm is used to decompose the vibration signals into several intrinsic mode functions (IMFs). The IMF matrix is divided into submatrices to compute the local singular values (LSV). The maximum singular values of each submatrix are selected as the feature vectors for fault diagnosis. Finally, a MLC composed of two one-class support vector machines (OCSVMs) and a support vector machine (SVM) is constructed to identify the fault type. Two layers of independent OCSVM are adopted to distinguish normal or fault conditions with known or unknown fault types, respectively. On this basis, SVM recognizes the specific fault type. Real diagnostic experiments are conducted with a real SF6 HVCB with normal and fault states. Three different faults (i.e., jam fault of the iron core, looseness of the base screw, and poor lubrication of the connecting lever) are simulated in a field experiment on a real HVCB to test the feasibility of the proposed method. Results show that the classification accuracy of the new method is superior to other traditional methods. PMID:27834902
3D Model of the Tuscarora Geothermal Area
Faulds, James E.
2013-12-31
The Tuscarora geothermal system sits within a ~15 km wide left-step in a major west-dipping range-bounding normal fault system. The step over is defined by the Independence Mountains fault zone and the Bull Runs Mountains fault zone which overlap along strike. Strain is transferred between these major fault segments via and array of northerly striking normal faults with offsets of 10s to 100s of meters and strike lengths of less than 5 km. These faults within the step over are one to two orders of magnitude smaller than the range-bounding fault zones between which they reside. Faults within the broad step define an anticlinal accommodation zone wherein east-dipping faults mainly occupy western half of the accommodation zone and west-dipping faults lie in the eastern half of the accommodation zone. The 3D model of Tuscarora encompasses 70 small-offset normal faults that define the accommodation zone and a portion of the Independence Mountains fault zone, which dips beneath the geothermal field. The geothermal system resides in the axial part of the accommodation, straddling the two fault dip domains. The Tuscarora 3D geologic model consists of 10 stratigraphic units. Unconsolidated Quaternary alluvium has eroded down into bedrock units, the youngest and stratigraphically highest bedrock units are middle Miocene rhyolite and dacite flows regionally correlated with the Jarbidge Rhyolite and modeled with uniform cumulative thickness of ~350 m. Underlying these lava flows are Eocene volcanic rocks of the Big Cottonwood Canyon caldera. These units are modeled as intracaldera deposits, including domes, flows, and thick ash deposits that change in thickness and locally pinch out. The Paleozoic basement of consists metasedimenary and metavolcanic rocks, dominated by argillite, siltstone, limestone, quartzite, and metabasalt of the Schoonover and Snow Canyon Formations. Paleozoic formations are lumped in a single basement unit in the model. Fault blocks in the eastern portion of the model are tilted 5-30 degrees toward the Independence Mountains fault zone. Fault blocks in the western portion of the model are tilted toward steeply east-dipping normal faults. These opposing fault block dips define a shallow extensional anticline. Geothermal production is from 4 closely-spaced wells, that exploit a west-dipping, NNE-striking fault zone near the axial part of the accommodation zone.
NASA Astrophysics Data System (ADS)
Collanega, L.; Jackson, C. A. L.; Bell, R. E.; Lenhart, A.; Coleman, A. J.; Breda, A.; Massironi, M.
2017-12-01
Intrabasement structures are often envisaged to have acted as structural templates for normal fault growth in the overlying sedimentary cover during rifting (e.g. East African Rift; NE Brazilian Margin; Norwegian North Sea). However, in some settings, the geometry of rift-related faults is apparently unaffected by pre-existing basement fabric (Måløy Slope and Lofoten Ridge, offshore Norway). Understanding the nucleation and propagation of normal faults in the presence of basement structures may elucidate how and under what conditions basement fabric can exert an influence on rifting. Here, we investigate the 3D geometry of a series of normal faults and intrabasement structures from the Taranaki Basin, offshore New Zealand to understand how normal faults grow in the presence of basement heterogeneities. The Taranaki Basin is an ideal setting because the basement structures, related to the Mesozoic compressional tectonics, are shallow and well-imaged on 3D seismic reflection data, and the relatively thin and stratigraphically simple sedimentary cover is only affected by mild Pliocene extension. Our kinematic analysis highlights two classes of normal faults affecting different vertical intervals of the sedimentary cover. Deep faults, just above the basement, strike NW-SE to NE-SW, reflecting the trend of underlying intrabasement structures. In contrast, shallow faults strike according to the NE-SW to NNE-SSW Pliocene trend and are not generally affected by intrabasement structures at distances >500 m above the basement. Deep and shallow faults are only linked when they strike similarly, and are located above strong intrabasement reflections. We infer that cover deformation is significantly influenced by intrabasement structures within the 500 m interval above the crystalline basement, whereas shallower faults are optimally aligned to the Pliocene regional stress field. Since we do not observe an extensional reactivation of intrabasement structures during Pliocene rifting, we suspect that the key factor controlling cover fault nucleation and growth are local stress perturbations due to intrabasement structures. We conclude that intrabasement structures may provide a structural template for subsequent rift episodes, but only when these structures are proximal to newly forming faults.
NASA Astrophysics Data System (ADS)
Gil, Antonio J.; Galindo-Zaldívar, Jesús; Sanz de Galdeano, Carlos; Borque, Maria Jesús; Sánchez-Alzola, Alberto; Martinez-Martos, Manuel; Alfaro, Pedro
2017-08-01
The Padul Fault is located in the Central Betic Cordillera, formed in the framework of the NW-SE Eurasian-African plate convergence. In the Internal Zone, large E-W to NE-SW folds of western Sierra Nevada accommodated the greatest NW-SE shortening and uplift of the cordillera. However, GPS networks reveal a present-day dominant E-W to NE-SW extensional setting at surface. The Padul Fault is the most relevant and best exposed active normal fault that accommodates most of the NE-SW extension of the Central Betics. This WSW-wards dipping fault, formed by several segments of up to 7 km maximum length, favored the uplift of the Sierra Nevada footwall away from the Padul graben hanging wall. A non-permanent GPS network installed in 1999 constrains an average horizontal extensional rate of 0.5 mm/yr in N66°E direction. The fault length suggests that a (maximum) 6 magnitude earthquake may be expected, but the absence of instrumental or historical seismic events would indicate that fault activity occurs at least partially by creep. Striae on fault surfaces evidence normal-sinistral kinematics, suggesting that the Padul Fault may have been a main transfer fault of the westernmost end of the Sierra Nevada antiform. Nevertheless, GPS results evidence: (1) shortening in the Sierra Nevada antiform is in its latest stages, and (2) the present-day fault shows normal with minor oblique dextral displacements. The recent change in Padul fault kinematics will be related to the present-day dominance of the ENE-WSW regional extension versus NNW-SSE shortening that produced the uplift and northwestwards displacement of Sierra Nevada antiform. This region illustrates the importance of heterogeneous brittle extensional tectonics in the latest uplift stages of compressional orogens, as well as the interaction of folding during the development of faults at shallow crustal levels.
NASA Astrophysics Data System (ADS)
Contreras, J.; Vega-Ramirez, L. A.; Spelz, R. M.; Portner, R. A.; Clague, D. A.
2017-12-01
The Monterey Bay Aquarium Research Institute collected in 2012 and 2015 high-resolution (1 m horizontal/0.2 m vertical) bathymetry data in the southern Gulf of California using an autonomous underwater vehicle (AUV) that bring to light an extensive array of normal faults and fissures cutting lava domes and smaller volcanic cones, pillow mounds and lava sheet flows of variable compositions along the Alarcon rise. Active faulting and fissure growth in the transition between the neovolcanic zone and adjacent axial summit trough, in a 6.9 x 1.5 km2 area at the NE segment of the rise, developed at some point between 6 Ka B.P. (14C) and the present time. We performed a population analysis of fracture networks imaged by the AUV that reveal contrasting scaling attributes between mode I (opening) and mode III (shearing) extensional structures. Opening-mode fractures are spatially constrained to narrow bands 400 m wide. The youngest set developed on pillow lavas 800 yr old (14C) of the neovolcanic zone. Regions of normal fault propagation by anti-plane shearing alternate with the tensile-fracture growth areas. This provides evidence for permutations in space of the stress field across the ridge axis. Moreover, fault-length frequency plots for both fracture networks show that opening-mode fractures are best fit using an exponential relationship whereas normal faults are best fit using a power-law relationship. These size distributions indicate tensile fractures rapidly reached a saturated state in which large fractures (102 m) accommodate most of the strain and appear to be constrained to a thin mechanical/thermal layer. Faults, by contrast, have slowly evolved to a state of self-organization characterized by growth by linkage with neighboring faults in the strike direction forming fault arrays with a maximum length of 2km. We also analyzed the development of faults in the vicinity of an off-axis rhyolitic dome. We find that faults have asymmetric, half-restricted slip profiles with abrupt displacement gradients towards the dome. We further document a strain deficit in normal faulting near the dome. We suggest that these observations reflect the control that changes in mechanical properties and rheology may exert on fault slip localization by effectively suppressing fault nucleation and propagation.
Structural superposition in fault systems bounding Santa Clara Valley, California
Graymer, Russell W.; Stanley, Richard G.; Ponce, David A.; Jachens, Robert C.; Simpson, Robert W.; Wentworth, Carl M.
2015-01-01
Santa Clara Valley is bounded on the southwest and northeast by active strike-slip and reverse-oblique faults of the San Andreas fault system. On both sides of the valley, these faults are superposed on older normal and/or right-lateral normal oblique faults. The older faults comprised early components of the San Andreas fault system as it formed in the wake of the northward passage of the Mendocino Triple Junction. On the east side of the valley, the great majority of fault displacement was accommodated by the older faults, which were almost entirely abandoned when the presently active faults became active after ca. 2.5 Ma. On the west side of the valley, the older faults were abandoned earlier, before ca. 8 Ma and probably accumulated only a small amount, if any, of the total right-lateral offset accommodated by the fault zone as a whole. Apparent contradictions in observations of fault offset and the relation of the gravity field to the distribution of dense rocks at the surface are explained by recognition of superposed structures in the Santa Clara Valley region.
Goto, Masami; Abe, Osamu; Aoki, Shigeki; Kamagata, Koji; Hori, Masaaki; Miyati, Tosiaki; Gomi, Tsutomu; Takeda, Tohoru
2018-01-18
To evaluate the error in segmented tissue images and to show the usefulness of the brain image in voxel-based morphometry (VBM) using Statistical Parametric Mapping (SPM) 12 software and 3D T 1 -weighted magnetic resonance images (3D-T 1 WIs) processed to simulate idiopathic normal pressure hydrocephalus (iNPH). VBM analysis was performed on sagittal 3D-T 1 WIs obtained in 22 healthy volunteers using a 1.5T MR scanner. Regions of interest for the lateral ventricles of all subjects were carefully outlined on the original 3D-T 1 WIs, and two types of simulated 3D-T 1 WI were also prepared (non-dilated 3D-T 1 WI as normal control and dilated 3D-T 1 WI to simulate iNPH). All simulated 3D-T 1 WIs were segmented into gray matter, white matter, and cerebrospinal fluid images, and normalized to standard space. A brain image was made by adding the gray and white matter images. After smoothing with a 6-mm isotropic Gaussian kernel, group comparisons (dilated vs non-dilated) were made for gray and white matter, cerebrospinal fluid, and brain images using a paired t-test. In evaluation of tissue volume, estimation error was larger using gray or white matter images than using the brain image, and estimation errors in gray and white matter volume change were found for the brain surface. To our knowledge, this is the first VBM study to show the possibility that VBM of gray and white matter volume on the brain surface may be more affected by individual differences in the level of dilation of the lateral ventricles than by individual differences in gray and white matter volumes. We recommend that VBM evaluation in patients with iNPH should be performed using the brain image rather than the gray and white matter images.
Tibayan, Frederick A; Lai, David T M; Timek, Tomasz A; Dagum, Paul; Liang, David; Zasio, Mary K; Daughters, George T; Miller, D Craig; Ingels, Neil B
2003-05-01
Functional mitral regurgitation (FMR) is increasingly recognized as a left ventricular (LV) disease. Dilated cardiomyopathy (DCM) is commonly accompanied by FMR and reduction of LV torsion. Therapeutic targets for DCM include LV size reduction, altered LV shape, elimination of MR, and increasing LV torsion. It was hypothesized that, in addition to increasing LV size, DCM with FMR would alter normal LV shape and reduce and alter the direction of principal strains across the LV wall. This hypothesis was tested by measuring changes in epicardial and endocardial 2-D principal strains and regional radii of curvature accompanying tachycardia-induced cardiomyopathy in ovine hearts. Radio-opaque marker arrays were implanted into the left ventricle of eight sheep, including one subepicardial triangle and one subendocardial triangle in the anterior wall of the left ventricle. At one week postoperatively, biplane videofluoroscopy was used to determine marker dynamics. Rapid ventricular pacing was then instituted until FMR and signs of heart failure developed, and fluoroscopy was repeated. Circumferential LV radii of curvature were determined from marker triplets. DCM changed the normal epicardial oval LV cross-section to a more circular configuration. The endocardium maintained its normal circular shape as the left ventricle dilated. Deformations of the triangles from end-diastole to end-systole were determined, and the magnitude and direction of 2-D principal strains calculated. DCM was associated with decreased magnitude of both epicardial (-0.095 +/- 0.055 versus -0.040 +/- 0.032, p = 0.006) and endocardial (-0.117 +/- 0.047 versus -0.073 +/- 0.037, p = 0.023) principal strains. DCM reduced the angle of epicardial but not endocardial principal strain. DCM with FMR is associated with LV dilation, circularization of the normally oval equatorial circumferential LV epicardium, transmural reduction in principal strain, and decrease in angle of principal epicardial strain. These changes contribute to a reduction in the net torsional moment and may guide the development of reverse remodeling procedures for the dilated, failing ventricle with FMR.
NASA Astrophysics Data System (ADS)
La Marra, D.; Battaglia, M.
2013-12-01
Mono Basin is a north-trending graben that extends from the northern edge of Long Valley caldera towards the Bodie Hills and is bounded by the Cowtrack Mountains on the east and the Sierra Nevada on the west. The Mono-Inyo Craters volcanic chain forms a north-trending zone of volcanic vents extending from the west moat of the Long Valley caldera to Mono Lake. The Hartley Springs fault transects the southern Mono Craters-Inyo Domes area between the western part of the Long Valley caldera and June Lake. Stratigraphic data suggest that a series of strong earthquakes occurred during the North Mono-Inyo eruption sequence of ~1350 A.D. The spatial and temporal proximity between Hartley Springs Fault motion and the North Mono-Inyo eruption sequence suggests a possible relation between seismic events and eruptions. We investigate the interactions between slip along the Hartley Springs fault and dike intrusion beneath the Mono-Inyo craters using a three-dimensional finite element model of the Mono Basin. We employ a realistic representation of the Basin that includes topography, vertical and lateral heterogeneities of the crust, contact relations between fault planes, and a physical model of the pressure required to propagate the dike. We estimate (a) the distribution of Coulomb stress changes to study the influence of dike intrusion on Hartley Springs fault, and (b) the local stress and volumetric dilatation changes to understand how fault slip may influence the propagation of a dike towards the surface.
NASA Astrophysics Data System (ADS)
La Femina, P. C.; Geirsson, H.; Saballos, A.; Mattioli, G. S.
2017-12-01
A long-standing paradigm in plate tectonics is that oblique convergence results in strain partitioning and the formation of migrating fore-arc terranes accommodated on margin-parallel strike-slip faults within or in close proximity to active volcanic arcs (e.g., the Sumatran fault). Some convergent margins, however, are segmented by margin-normal faults and margin-parallel shear is accommodated by motion on these faults and by vertical axis block rotation. Furthermore, geologic and geophysical observations of active and extinct margins where strain partitioning has occurred, indicate the emplacement of magmas within the shear zones or extensional step-overs. Characterizing the mechanism of accommodation is important for understanding short-term (decadal) seismogenesis, and long-term (millions of years) fore-arc migration, and the formation of continental lithosphere. We investigate the geometry and kinematics of Quaternary faulting and magmatism along the Nicaraguan convergent margin, where historical upper crustal earthquakes have been located on margin-normal, strike-slip faults within the fore arc and arc. Using new GPS time series, other geophysical and geologic data, we: 1) determine the location of the maximum gradient in forearc motion; 2) estimate displacement rates on margin-normal faults; and 3) constrain the geometric moment rate for the fault system. We find that: 1) forearc motion is 11 mm a-1; 2) deformation is accommodated within the active volcanic arc; and 3) that margin-normal faults can have rates of 10 mm a-1 in agreement with geologic estimates from paleoseismology. The minimum geometric moment rate for the margin-normal fault system is 2.62x107 m3 yr-1, whereas the geometric moment rate for historical (1931-2006) earthquakes is 1.01x107 m3/yr. The discrepancy between fore-arc migration and historical seismicity may be due to aseismic accommodation of fore-arc motion by magmatic intrusion along north-trending volcanic alignments within the volcanic arc.
Carkeet, Andrew; Wood, Joanne M; McNeill, Kylie M; McNeill, Hamish J; James, Joanna A; Holder, Leigh S
The Enright phenomenon describes the distortion in speed perception experienced by an observer looking sideways from a moving vehicle when viewing with interocular differences in retinal image brightness, usually induced by neutral density filters. We investigated whether the Enright phenomenon could be induced with monocular pupil dilation using tropicamide. We tested 17 visually normal young adults on a closed road driving circuit. Participants were asked to travel at Goal Speeds of 40km/h and 60km/h while looking sideways from the vehicle with: (i) both eyes with undilated pupils; (ii) both eyes with dilated pupils; (iii) with the leading eye only dilated; and (iv) the trailing eye only dilated. For each condition we recorded actual driving speed. With the pupil of the leading eye dilated participants drove significantly faster (by an average of 3.8km/h) than with both eyes dilated (p=0.02); with the trailing eye dilated participants drove significantly slower (by an average of 3.2km/h) than with both eyes dilated (p<0.001). The speed, with the leading eye dilated, was faster by an average of 7km/h than with the trailing eye dilated (p<0.001). There was no significant difference between driving speeds when viewing with both eyes either dilated or undilated (p=0.322). Our results are the first to show a measurable change in driving behaviour following monocular pupil dilation and support predictions based on the Enright phenomenon. Copyright © 2016 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.
NASA Astrophysics Data System (ADS)
Shamsuddin, N. F. H.; Isa, N. M.; Taib, I.; Mohammed, A. N.
2017-09-01
Meniere’s disease or known as endolymphatic hydrops is an incurable vestibular disorder of the inner ear. This is due to the excessive fluid build-up in the endolymphatic sac which causing the vestibular endolymphatic membrane to start stretching. Although this mechanism has been widely accepted as the likely mechanism of Meniere’s syndrome, the reason for its occurrence remains unclear. Thus, the aims of this study to investigate the critical parameters of fluid flow in membranous labyrinth that is influencing instability of vestibular system. In addition, to visualise the flow behaviour between a normal membranous labyrinth and dilated membranous labyrinth in Meniere’s disease in predicting instability of vestibular system. Three dimensional geometry of endolymphatic sac is obtained from Magnetic Resonance Images (MRI) and reconstructed using commercial software. As basis of comparison the two different model of endolymphatic sac is considered in this study which are normal membranous labyrinth for model I and dilated membranous labyrinth for model II. Computational fluid dynamics (CFD) method is used to analyse the behaviour of pressure and velocity flow in the endolymphatic sac. The comparison was made in terms of pressure distribution and velocity profile. The results show that the pressure for dilated membranous labyrinth is greater than normal membranous labyrinth. Due to abnormally pressure in the vestibular system, it leads to the increasing value of the velocity at dilated membranous labyrinth while at the normal membranous labyrinth the velocity values decreasing. As a conclusion by changing the parameters which is pressure and velocity can significantly affect to the instability of vestibular system for Meniere’s disease.
Balloon dilatation of nasopharyngeal stenosis in a dog.
Berent, Allyson C; Kinns, Jennifer; Weisse, Chick
2006-08-01
A dog was examined because of a 6-month history of upper airway stridor that began after postoperative regurgitation of gastric contents. Constant stridor was evident during inspiration and expiration, although it was worse during inspiration. The stridor was no longer evident when the dog's mouth was manually held open. Computed tomography, rhinoscopy, and fluoroscopy were used to confirm a diagnosis of nasopharyngeal stenosis. The dog was anesthetized, and balloon dilatation of the stenosis was performed. Prednisone was prescribed for 4 weeks after the procedure to decrease fibrous tissue formation. Although the dog was initially improved, signs recurred 3.5 weeks later, and balloon dilatation was repeated. This time, however, triamcinolone was injected into the area of stenosis at the end of the dilatation procedure. Two months later, although the dog did not have clinical signs of stridor, a third dilatation procedure was performed because mild stenosis was seen on follow-up computed tomographic images; again, triamcinolone was injected into the area of stenosis at the end of the dilatation procedure. Three and 6 months after the third dilatation procedure, the dog reportedly was clinically normal. Findings suggest that balloon dilatation may be an effective treatment for nasopharyngeal stenosis in dogs.
NASA Astrophysics Data System (ADS)
Jackson, Christopher; Bell, Rebecca; Rotevatn, Atle; Tvedt, Anette
2016-04-01
Normal faulting accommodates stretching of the Earth's crust, and it is arguably the most fundamental tectonic process leading to continent rupture and oceanic crust emplacement. Furthermore, the incremental and finite geometries associated with normal faulting dictate landscape evolution, sediment dispersal and hydrocarbon systems development in rifts. Displacement-length scaling relationships compiled from global datasets suggest normal faults grow via a sympathetic increase in these two parameters (the 'isolated fault model'). This model has dominated the structural geology literature for >20 years and underpins the structural and tectono-stratigraphic models developed for active rifts. However, relatively recent analysis of high-quality 3D seismic reflection data suggests faults may grow by rapid establishment of their near-final length prior to significant displacement accumulation (the 'coherent fault model'). The isolated and coherent fault models make very different predictions regarding the tectono-stratigraphic evolution of rift basin, thus assessing their applicability is important. To-date, however, very few studies have explicitly set out to critically test the coherent fault model thus, it may be argued, it has yet to be widely accepted in the structural geology community. Displacement backstripping is a simple graphical technique typically used to determine how faults lengthen and accumulate displacement; this technique should therefore allow us to test the competing fault models. However, in this talk we use several subsurface case studies to show that the most commonly used backstripping methods (the 'original' and 'modified' methods) are, however, of limited value, because application of one over the other requires an a priori assumption of the model most applicable to any given fault; we argue this is illogical given that the style of growth is exactly what the analysis is attempting to determine. We then revisit our case studies and demonstrate that, in the case of seismic-scale growth faults, growth strata thickness patterns and relay zone kinematics, rather than displacement backstripping, should be assessed to directly constrain fault length and thus tip behaviour through time. We conclude that rapid length establishment prior to displacement accumulation may be more common than is typically assumed, thus challenging the well-established, widely cited and perhaps overused, isolated fault model.
Transformation of fault slip modes in laboratory experiments
NASA Astrophysics Data System (ADS)
Martynov, Vasilii; Alexey, Ostapchuk; Markov, Vadim
2017-04-01
Slip mode of crust fault can vary because of many reasons. It's well known that fault structure, material of fault gouge, pore fluid et al. in many ways determines slip modes from creep and slow slip events to mega-earthquakes [1-3]. Therefore, the possibility of fault slip transformation due to external action is urgent question. There is popular and developing approach of fluid injection into central part of fault. The phenomenon of earthquakes induced due to pumping of water was investigated on small and large scales [4, 5]. In this work the laboratory experiments were conducted to study the evolution of the experimental fault slip when changing the properties of the interstitial fluid. The scheme of experiments is the classical slider-model set-up, in which the block under the shear force slips along the interface. In our experiments the plexiglas block 8x8x3 cm3 in size was put on the plexiglas base. The contact of the blocks was filled with a thin layer (about 3 mm thick) of a granular material. The normal load varied from 31 to 156 kPa. The shear load was applied through a spring with stiffness 60 kN/m, and the rate of spring deformation was 20 or 5 mcm/s. Two parameters were recorded during experiments: the shear force acting on the upper block (with an accuracy of 1 N) and its displacement relatively the base (with an accuracy of 0.1 μm). The gouge was composed of quartz sand (97.5%) and clay (2.5%). As a moisturizer were used different fluids with viscosity varying from 1 to 103 mPa x s. Different slip modes were simulated during slider-experiments. In our experiments slip mode is the act of instability manifested in an increase of slip velocity and a drop of shear stress acting on a movable block. The amplitude of a shear stress drop and the peak velocity of the upper block were chosen as the characteristics of the slip mode. In the laboratory experiments, slip events of one type can be achieved either as regularly recurring (regular mode) or as random stochastic (irregular mode). To investigate regularities of transformation and get statistically correct results we simulated only regular mode. During the experiments, after the establishment of a regular mode, we injected fluid into central part of interblock contact. Varying injecting fluid we were able both to decrease and increase amplitude of events. For example, after injection of 1 mPa x s fluid (water) in gouge, moisturized with 100 mPa x s fluid (ethylene glycol), peak velocity rose by almost an order. But after injection of an aqueous solution of starch (big viscosity and dilatant rheology) amplitude decreased 1.5 times and then slip almost completely stabilized. It's probably connected with the viscosity of solution, which increases with quick shift. Time of injection also has the significant impact on the possibility of transformation and its efficiency. Thus, it is well known that if the time of injection is in the vicinity of loss of strength moment, any external influence only initiates slip events. Preliminary results of our laboratory experiments show that the fluid injection can both reduce the part of deformation energy going seismic wave radiation, and to increase it. The most effective action observed in experinemts with injection of dilatant fluid. Findings demonstrate the prospectivity of further research in this direction. The work was supported by the Russian Science Foundation (Grant No. 16-17-00095) [1] Fagereng A., Sibson R.H. 2010. Melange rheology and seismic style. Geology. Vol.38, p.751-754. [2] Kocharyan G.G., et al. 2017. A study of different fault slip modes governed by the gouge material composition in laboratory experiments. Geophys. J. Int. Vol.208, p. 521-528. [3] Yamashita T. 2013. Generation of slow slip coupled with tremor due to fluid flow along a fault. Geophys. J. Int. Vol.193, p.375-393. [4] Guglielmi Y., et. al. 2015. Seismicity triggered by fluid injection-induced aseismic slip. Science. Vol.348, p.1224-1226. [5] Wei S., et al. 2015. The 2012 Brawley swarm triggered by injection-induced aseismic slip. EPSL. Vol. 422, p.115-122.
NASA Astrophysics Data System (ADS)
Wang, H.; Jing, X. J.
2017-07-01
This paper presents a virtual beam based approach suitable for conducting diagnosis of multiple faults in complex structures with limited prior knowledge of the faults involved. The "virtual beam", a recently-proposed concept for fault detection in complex structures, is applied, which consists of a chain of sensors representing a vibration energy transmission path embedded in the complex structure. Statistical tests and adaptive threshold are particularly adopted for fault detection due to limited prior knowledge of normal operational conditions and fault conditions. To isolate the multiple faults within a specific structure or substructure of a more complex one, a 'biased running' strategy is developed and embedded within the bacterial-based optimization method to construct effective virtual beams and thus to improve the accuracy of localization. The proposed method is easy and efficient to implement for multiple fault localization with limited prior knowledge of normal conditions and faults. With extensive experimental results, it is validated that the proposed method can localize both single fault and multiple faults more effectively than the classical trust index subtract on negative add on positive (TI-SNAP) method.
Static stress changes associated with normal faulting earthquakes in South Balkan area
NASA Astrophysics Data System (ADS)
Papadimitriou, E.; Karakostas, V.; Tranos, M.; Ranguelov, B.; Gospodinov, D.
2007-10-01
Activation of major faults in Bulgaria and northern Greece presents significant seismic hazard because of their proximity to populated centers. The long recurrence intervals, of the order of several hundred years as suggested by previous investigations, imply that the twentieth century activation along the southern boundary of the sub-Balkan graben system, is probably associated with stress transfer among neighbouring faults or fault segments. Fault interaction is investigated through elastic stress transfer among strong main shocks ( M ≥ 6.0), and in three cases their foreshocks, which ruptured distinct or adjacent normal fault segments. We compute stress perturbations caused by earthquake dislocations in a homogeneous half-space. The stress change calculations were performed for faults of strike, dip, and rake appropriate to the strong events. We explore the interaction between normal faults in the study area by resolving changes of Coulomb failure function ( ΔCFF) since 1904 and hence the evolution of the stress field in the area during the last 100 years. Coulomb stress changes were calculated assuming that earthquakes can be modeled as static dislocations in an elastic half-space, and taking into account both the coseismic slip in strong earthquakes and the slow tectonic stress buildup associated with major fault segments. We evaluate if these stress changes brought a given strong earthquake closer to, or sent it farther from, failure. Our modeling results show that the generation of each strong event enhanced the Coulomb stress on along-strike neighbors and reduced the stress on parallel normal faults. We extend the stress calculations up to present and provide an assessment for future seismic hazard by identifying possible sites of impending strong earthquakes.
NASA Astrophysics Data System (ADS)
Goodall, H.; Gregory, L. C.; Wedmore, L.; Roberts, G.; Shanks, R. P.; McCaffrey, K. J. W.; Amey, R.; Hooper, A. J.
2017-12-01
The cosmogenic isotope chlorine-36 (36Cl) is increasingly used as a tool to investigate normal fault slip rates over the last 10-20 thousand years. These slip histories are being used to address complex questions, including investigating slip clustering and understanding local and large scale fault interaction. Measurements are time consuming and expensive, and as a result there has been little work done validating these 36Cl derived slip histories. This study aims to investigate if the results are repeatable and therefore reliable estimates of how normal faults have been moving in the past. Our approach is to test if slip histories derived from 36Cl are the same when measured at different points along the same fault. As normal fault planes are progressively exhumed from the surface they accumulate 36Cl. Modelling these 36Cl concentrations allows estimation of a slip history. In a previous study, samples were collected from four sites on the Magnola fault in the Italian Apennines. Remodelling of the 36Cl data using a Bayesian approach shows that the sites produced disparate slip histories, which we interpret as being due to variable site geomorphology. In this study, multiple sites have been sampled along the Campo Felice fault in the central Italian Apennines. Initial results show strong agreement between the sites we have processed so far and a previous study. This indicates that if sample sites are selected taking the geomorphology into account, then 36Cl derived slip histories will be highly similar when sampled at any point along the fault. Therefore our study suggests that 36Cl derived slip histories are a consistent record of fault activity in the past.
Microscale cavitation as a mechanism for nucleating earthquakes at the base of the seismogenic zone.
Verberne, Berend A; Chen, Jianye; Niemeijer, André R; de Bresser, Johannes H P; Pennock, Gillian M; Drury, Martyn R; Spiers, Christopher J
2017-11-21
Major earthquakes frequently nucleate near the base of the seismogenic zone, close to the brittle-ductile transition. Fault zone rupture at greater depths is inhibited by ductile flow of rock. However, the microphysical mechanisms responsible for the transition from ductile flow to seismogenic brittle/frictional behaviour at shallower depths remain unclear. Here we show that the flow-to-friction transition in experimentally simulated calcite faults is characterized by a transition from dislocation and diffusion creep to dilatant deformation, involving incompletely accommodated grain boundary sliding. With increasing shear rate or decreasing temperature, dislocation and diffusion creep become too slow to accommodate the imposed shear strain rate, leading to intergranular cavitation, weakening, strain localization, and a switch from stable flow to runaway fault rupture. The observed shear instability, triggered by the onset of microscale cavitation, provides a key mechanism for bringing about the brittle-ductile transition and for nucleating earthquakes at the base of the seismogenic zone.
Physical and chemical controls on ore shoots - insights from 3D modeling of an orogenic gold deposit
NASA Astrophysics Data System (ADS)
Vollgger, S. A.; Tomkins, A. G.; Micklethwaite, S.; Cruden, A. R.; Wilson, C. J. L.
2016-12-01
Many ore deposits have irregular grade distributions with localized elongate and well-mineralized rock volumes commonly referred to as ore shoots. The chemical and physical processes that control ore shoot formation are rarely understood, although transient episodes of elevated permeability are thought to be important within the brittle and brittle-ductile crust, due to faulting and fracturing associated with earthquake-aftershock sequences or earthquake swarms. We present data from an orogenic gold deposit in Australia where the bulk of the gold is contained in abundant fine arsenopyrite crystals associated with a fault-vein network within tight upright folds. The deposit-scale fault network is connected to a deeper network of thrust faults (tens of kilometers long). Using 3D implicit modeling of geochemical data, based on radial basis functions, gold grades and gold-arsenic element ratios were interpolated and related to major faults, vein networks and late intrusions. Additionally, downhole bedding measurements were used to model first order (mine-scale) fold structures. The results show that ore shoot plunges are not parallel with mine-scale or regional fold plunges, and that bedding parallel faults related to flexural slip folding play a pivotal role on ore shoot attitudes. 3D fault slip and dilation tendency analysis indicate that fault reactivation and formation of linking faults are associated with large volumes of high-grade ore. We suggest slip events on the large-scale thrust network allowed mineralizing fluids to rapidly migrate over large distances and become supersaturated in elements such as gold, promoting widespread precipitation and high nucleation densities of arsenopyrite upon fluid-rock interaction at trap sites within the deposit.
NASA Astrophysics Data System (ADS)
Schwab, Drew R.; Bidgoli, Tandis S.; Taylor, Michael H.
2017-12-01
Kansas, like other parts of the central U.S., has experienced a recent increase in seismicity. Correlation of these events with brine disposal operations suggests pore fluid pressure increases are reactivating preexisting faults, but rigorous evaluation at injection sites is lacking. Here we determine the suitability of CO2 injection into the Cambrian-Ordovician Arbuckle Group for long-term storage and into a Mississippian reservoir for enhanced oil recovery in Wellington Field, Sumner County, Kansas. To determine the potential for injection-induced earthquakes, we map subsurface faults and estimate in situ stresses, perform slip and dilation tendency analyses to identify well-oriented faults relative to the estimated stress field, and determine the pressure changes required to induce slip at reservoir and basement depths. Three-dimensional seismic reflection data reveal 12 near-vertical faults, mostly striking NNE, consistent with nodal planes from moment tensor solutions from recent earthquakes in the region. Most of the faults cut both reservoirs and several clearly penetrate the Precambrian basement. Drilling-induced fractures (N = 40) identified from image logs and inversion of earthquake moment tensor solutions (N = 65) indicate that the maximum horizontal stress is approximately EW. Slip tendency analysis indicates that faults striking <020° are stable under current reservoir conditions, whereas faults striking 020°-049° may be prone to reactivation with increasing pore fluid pressure. Although the proposed injection volume (40,000 t) is unlikely to reactive faults at reservoir depths, high-rate injection operations could reach pressures beyond the critical threshold for slip within the basement, as demonstrated by the large number of injection-induced earthquakes west of the study area.
Fault detection of helicopter gearboxes using the multi-valued influence matrix method
NASA Technical Reports Server (NTRS)
Chin, Hsinyung; Danai, Kourosh; Lewicki, David G.
1993-01-01
In this paper we investigate the effectiveness of a pattern classifying fault detection system that is designed to cope with the variability of fault signatures inherent in helicopter gearboxes. For detection, the measurements are monitored on-line and flagged upon the detection of abnormalities, so that they can be attributed to a faulty or normal case. As such, the detection system is composed of two components, a quantization matrix to flag the measurements, and a multi-valued influence matrix (MVIM) that represents the behavior of measurements during normal operation and at fault instances. Both the quantization matrix and influence matrix are tuned during a training session so as to minimize the error in detection. To demonstrate the effectiveness of this detection system, it was applied to vibration measurements collected from a helicopter gearbox during normal operation and at various fault instances. The results indicate that the MVIM method provides excellent results when the full range of faults effects on the measurements are included in the training set.
NASA Astrophysics Data System (ADS)
Wang, Y.; Wei, S.; Tapponnier, P.; WANG, X.; Lindsey, E.; Sieh, K.
2016-12-01
A gravity-driven "Mega-Landslide" model has been evoked to explain the shortening seen offshore Sabah and Brunei in oil-company seismic data. Although this model is considered to account simultaneously for recent folding at the edge of the submarine NW Sabah trough and normal faulting on the Sabah shelf, such a gravity-driven model is not consistent with geodetic data or critical examination of extant structural restorations. The rupture that produced the 2015 Mw6.0 Mt. Kinabalu earthquake is also inconsistent with the gravity-driven model. Our teleseismic analysis shows that the centroid depth of that earthquake's mainshock was 13 to 14 km, and its favored fault-plane solution is a 60° NW-dipping normal fault. Our finite-rupture model exhibits major fault slip between 5 and 15 km depth, in keeping with our InSAR analysis, which shows no appreciable surface deformation. Both the hypocentral depth and the depth of principal slip are far too deep to be explained by gravity-driven failure, as such a model would predict a listric normal fault connecting at a much shallower depth with a very gentle detachment. Our regional mapping of tectonic landforms also suggests the recent rupture is part of a 200-km long system of narrowly distributed active extension in northern Sabah. Taken together, the nature of the 2015 rupture, the belt of active normal faults, and structural consideration indicate that active tectonic shortening plays the leading role in controlling the overall deformation of northern Sabah and that deep-seated, onland normal faulting likely results from an abrupt change in the dip-angle of the collision interface beneath the Sabah accretionary prism.
NASA Astrophysics Data System (ADS)
Wu, Schuman
1989-12-01
In a low-temperature environment, the thin-section scale rock-deformation mode is primarily a function of confining pressure and total strain at geological strain rates. A deformation mode diagram is constructed from published experimental data by plotting the deformation mode on a graph of total strain versus the confining pressure. Four deformation modes are shown on the diagram: extensional fracturing, mesoscopic faulting, incipient faulting, and uniform flow. By determining the total strain and the deformation mode of a naturally deformed sample, the confining pressure and hence the depth at which the rock was deformed can be evaluated. The method is applied to normal faults exposed on the gently dipping southeast limb of the Birmingham anticlinorium in the Red Mountain expressway cut in Birmingham, Alabama. Samples of the Ordovician Chickamauga Limestone within and adjacent to the faults contain brittle structures, including mesoscopic faults and veins, and ductile deformation features including calcite twins, intergranular and transgranular pressure solution, and deformed burrows. During compaction, a vertical shortening of about 45 to 80% in shale is indicated by deformed burrows and relative compaction of shale to burrows, about 6% in limestone by stylolites. The normal faults formed after the Ordovician rocks were consolidated because the faults and associated veins truncate the deformed burrows and stylolites, which truncate the calcite cement. A total strain of 2.0% was caused by mesoscopic faults during normal faulting. A later homogenous deformation, indicated by the calcite twins in veins, cement and fossil fragments, has its major principal shortening strain in the dip direction at a low angle (about 22°) to bedding. The strain magnitude is about 2.6%. By locating the observed data on the deformation mode diagram, it is found that the normal faulting characterized by brittle deformation occurred under low confining pressure (< 18 MPa) at shallow depth (< 800 m), and the homogenous horizontal compression characterized by uniform flow occurred under higher confining pressure (at least 60 MPa) at greater depth (> 2.5 km).
NASA Astrophysics Data System (ADS)
Cuss, Robert J.; Wiseall, Andrew C.; Tamayo-Mas, Elena; Harrington, Jon F.
2018-04-01
The injection of super-critical CO2 into a depleted reservoir will alter the pore pressure of the basin, which if sufficiently perturbed could result in fault slip. Therefore, knowledge of the acceptable pressure limits is required in order to maintain fault stability. A two-part laboratory study was conducted on fully saturated kaolinite fault gouge to investigate this issue. Previously, we showed that fault slip occurred once pore-pressure within the gouge was sufficient to overcome the normal stress acting on the fault. For kaolinite, this behaviour occurred at a pressure similar to the yield stress. The current study shows that following a slow-reduction in the maximum principal stress, as would be expected through changes in effective stress, the reactivation pressure shows a stress memory. Consequently, the pressure necessary to initiate fault slip is similar to that required at the maximum stress encountered. Therefore, fault slip is at least partially controlled by the previous maximum stress and not the current stress state. During the slow reduction in normal stress, the flow characteristics of the fault remain unchanged until pore-pressure exceeds shear stress and does not increase significantly until it exceeds normal stress. This results in fault slip, which slows the rate of flow increase as shear is an effective self-sealing mechanism. These observations lead to the conclusion that stress history is a vital parameter when considering fault stability.
Hanging-wall deformation above a normal fault: sequential limit analyses
NASA Astrophysics Data System (ADS)
Yuan, Xiaoping; Leroy, Yves M.; Maillot, Bertrand
2015-04-01
The deformation in the hanging wall above a segmented normal fault is analysed with the sequential limit analysis (SLA). The method combines some predictions on the dip and position of the active fault and axial surface, with geometrical evolution à la Suppe (Groshong, 1989). Two problems are considered. The first followed the prototype proposed by Patton (2005) with a pre-defined convex, segmented fault. The orientation of the upper segment of the normal fault is an unknown in the second problem. The loading in both problems consists of the retreat of the back wall and the sedimentation. This sedimentation starts from the lowest point of the topography and acts at the rate rs relative to the wall retreat rate. For the first problem, the normal fault either has a zero friction or a friction value set to 25o or 30o to fit the experimental results (Patton, 2005). In the zero friction case, a hanging wall anticline develops much like in the experiments. In the 25o friction case, slip on the upper segment is accompanied by rotation of the axial plane producing a broad shear zone rooted at the fault bend. The same observation is made in the 30o case, but without slip on the upper segment. Experimental outcomes show a behaviour in between these two latter cases. For the second problem, mechanics predicts a concave fault bend with an upper segment dip decreasing during extension. The axial surface rooting at the normal fault bend sees its dips increasing during extension resulting in a curved roll-over. Softening on the normal fault leads to a stepwise rotation responsible for strain partitioning into small blocks in the hanging wall. The rotation is due to the subsidence of the topography above the hanging wall. Sedimentation in the lowest region thus reduces the rotations. Note that these rotations predicted by mechanics are not accounted for in most geometrical approaches (Xiao and Suppe, 1992) and are observed in sand box experiments (Egholm et al., 2007, referring to Dahl, 1987). References: Egholm, D. L., M. Sandiford, O. R. Clausen, and S. B. Nielsen (2007), A new strategy for discrete element numerical models: 2. sandbox applications, Journal of Geophysical Research, 112 (B05204), doi:10.1029/2006JB004558. Groshong, R. H. (1989), Half-graben structures: Balanced models of extensional fault-bend folds, Geological Society of America Bulletin, 101 (1), 96-105. Patton, T. L. (2005), Sandbox models of downward-steepening normal faults, AAPG Bulletin, 89 (6), 781-797. Xiao, H.-B., and J. Suppe (1992), Orgin of rollover, AAPG Bulletin, 76 (4), 509-529.
NASA Astrophysics Data System (ADS)
Ishiyama, T.; Sugito, N.; Echigo, T.; Sato, H.; Suzuki, T.
2012-04-01
A month after March 11 gigantic M9.0 Tohoku-oki earthquake, M7.0 intraplate earthquake occurred at a depth of 5 km on April 11 beneath coastal area of near Iwaki city, Fukushima prefecture. Focal mechanism of the mainshock indicates that this earthquake is a normal faulting event. Based on field reconnaissance and LIDAR mapping by Geospatial Information Authority of Japan, we recognized coseismic surface ruptures, presumably associated with the main shock. Coseismic surface ruptures extend NNW for about 11 km in a right-stepping en echelon manner. Geomorphic expressions of these ruptures commonly include WWS-facing normal fault scarps and/or drape fold scarp with open cracks on their crests, on the hanging wall sides of steeply west-dipping normal fault planes subparallel to Cretaceous metamorphic rocks. Highest topographic scarp height is about 2.3 m. In this study we introduce preliminary results of a trenching survey across the coseismic surface ruptures at Shionohira site, to resolve timing of paleoseismic events along the Shionohira fault. Trench excavations were carried out at two sites (Ichinokura and Shionohira sites) in Iwaki, Fukushima. At Shionohira site a 2-m-deep trench was excavated across the coseismic fault scarp emerged on the alluvial plain on the eastern flank of the Abukuma Mountains. On the trench walls we observed pairs of steeply dipping normal faults that deform Neogene to Paleogene conglomerates and unconformably overlying, late Quaternary to Holocene fluvial units. Sense of fault slip observed on the trench walls (large dip-slip with small sinistral component) is consistent with that estimated from coseismic surface ruptures. Fault throw estimated from separation of piercing points on lower Unit I and vertical structural relief on folded upper Unit I is consistent with topographic height of the coseismic fault scarp at the trench site. In contrast, vertical separation of Unit II, unconformably overlain by Unit I, is measured as about 1.5 m, twice as large as coseismic vertical component of slip, indicative of penultimate seismic event prior to the 2011 earthquake. Abrupt thickening of overlying Unit I may also suggest preexisting topographic relief prior to its deposition. Radiocarbon dating of charred materials included in event horizons and tephrostratigraphy at two sites indicate that penultimate event prior to the 2011 event might occurred at about 40 ka. This normal fault earthquake is in contrast to compressional or neutral stress regimes in Tohoku region before the 2011 megaquake and rarity of the normal faulting earthquake inferred from these paleoseismic studies may reflect its mechanical relation to the gigantic megathrust earthquakes, such as unusual, enhanced extensional stress on the hangingwall block induced by mainshock and/or postseismic creep after the M~9 earthquake.
Mechanical Effects of Normal Faulting Along the Eastern Escarpment of the Sierra Nevada, California
NASA Astrophysics Data System (ADS)
Martel, S. J.; Logan, J. M.; Stock, G. M.
2013-12-01
Here we test whether the regional near-surface stress field in the Sierra Nevada, California, and the near-surface fracturing that heavily influences the Sierran landscape are a mechanical response to normal faulting along its eastern escarpment. A compilation of existing near-surface stress measurements for the central Sierra Nevada, together with three new measurements, shows the most compressive horizontal stresses are 3-21 MPa, consistent with the widespread distribution of sheeting joints (near-surface fractures subparallel to the ground surface). In contrast, a new stress measurement at Aeolian Buttes in the Mono Basin, east of the range front fault system, reveals a horizontal principal tension of 0.014 MPa, consistent with the abundant vertical joints there. To evaluate mechanical effects of normal faulting, we modeled both normal faults and grabens in three ways: (1) dislocations of specified slip in an elastic half-space, (2) frictionless sliding surfaces in an elastic half-space; and (3) faults in thin elastic beams resting on an inviscid fluid. The different mechanical models predict concave upward flexure and widespread near-surface compressive stresses in the Sierra Nevada that surpass the measurements even for as little as 1 km of normal slip along the eastern escarpment, which exhibits 1-3 km of structural and topographic relief. The models also predict concave downward flexure of the bedrock floors and horizontal near-surface tensile stresses east of the escarpment. The thin-beam models account best for the topographic relief of the eastern escarpment and the measured stresses given current best estimates for the rheology of the Sierran lithosphere. Our findings collectively indicate that the regional near-surface stress field and the widespread near-surface fracturing directly reflect the mechanical response to normal faulting along the eastern escarpment. These results have broad scientific and engineering implications for slope stability, hydrology, and geomorphology in and near fault-bounded mountain ranges in general.
NASA Astrophysics Data System (ADS)
Noda, H.
2016-05-01
Pressure solution creep (PSC) is an important elementary process in rock friction at high temperatures where solubilities of rock-forming minerals are significantly large. It significantly changes the frictional resistance and enhances time-dependent strengthening. A recent microphysical model for PSC-involved friction of clay-quartz mixtures, which can explain a transition between dilatant and non-dilatant deformation (d-nd transition), was modified here and implemented in dynamic earthquake sequence simulations. The original model resulted in essentially a kind of rate- and state-dependent friction (RSF) law, but assumed a constant friction coefficient for clay resulting in zero instantaneous rate dependency in the dilatant regime. In this study, an instantaneous rate dependency for the clay friction coefficient was introduced, consistent with experiments, resulting in a friction law suitable for earthquake sequence simulations. In addition, a term for time-dependent strengthening due to PSC was added which makes the friction law logarithmically rate-weakening in the dilatant regime. The width of the zone in which clasts overlap or, equivalently, the interface porosity involved in PSC plays a role as the state variable. Such a concrete physical meaning of the state variable is a great advantage in future modelling studies incorporating other physical processes such as hydraulic effects. Earthquake sequence simulations with different pore pressure distributions demonstrated that excess pore pressure at depth causes deeper rupture propagation with smaller slip per event and a shorter recurrence interval. The simulated ruptures were arrested a few kilometres below the point of pre-seismic peak stress at the d-nd transition and did not propagate spontaneously into the region of pre-seismic non-dilatant deformation. PSC weakens the fault against slow deformation and thus such a region cannot produce a dynamic stress drop. Dynamic rupture propagation further down to brittle-plastic transition, evidenced by geological observations, would require even smaller frictional resistance at coseismic slip rate, suggesting the importance of implementation of dynamic weakening activated at coseismic slip rates for more realistic simulation of earthquake sequences. The present models produced much smaller afterslip at deeper parts of arrested ruptures than those with logarithmic RSF laws because of a more significant rate-strengthening effect due to linearly viscous PSC. Detailed investigation of afterslip would give a clue to understand the deformation mechanism which controls shear resistance of the fault in a region of arrest of earthquake ruptures.
Continentward-Dipping Normal Faults, Boudinage and Ductile Shear at Rifted Passive Margins
NASA Astrophysics Data System (ADS)
Clerc, C. N.; Ringenbach, J. C.; Jolivet, L.; Ballard, J. F.
2017-12-01
Deep structures resulting from the rifting of the continental crust are now well imaged by seismic profiles. We present a series of recent industrial profiles that allow the identification of various rift-related geological processes such as crustal boudinage, ductile shear of the base of the crust and low-angle detachment faulting. Along both magma-rich and magma-poor rifted margins, we observe clear indications of ductile deformation of the deep continental crust. Large-scale shallow dipping shear zones are identified with a top-to-the-continent sense of shear. This sense of shear is consistent with the activity of the Continentward-Dipping Normal Faults (CDNF) that accommodate the extension in the upper crust. This pattern is responsible for an oceanward migration of the deformation and of the associated syn-tectonic deposits (sediments and/or volcanics). We discuss the origin of the Continentward-Dipping Normal Faults (CDNF) and investigate their implications and the effect of sediment thermal blanketing on crustal rheology. In some cases, low-angle shear zones define an anastomosed pattern that delineates boudin-like structures that seem to control the position and dip of upper crustal normal faults. We present some of the most striking examples from several locations (Uruguay, West Africa, South China Sea…), and discuss their rifting histories that differ from the classical models of oceanward-dipping normal faults.
Swenson, David W; Darge, Kassa; Ziniel, Sonja I; Chow, Jeanne S
2015-04-01
Radiologists commonly evaluate children first diagnosed with urinary tract dilation on prenatal ultrasound (US). To establish how North American pediatric radiologists define and report findings of urinary tract dilation on US. A web-based survey was sent to North American members of the Society for Pediatric Radiology (SPR) from January to February 2014. Reporting practices and interpretation of three image-based cases using free text were queried. Responses to close-ended questions were analyzed with descriptive statistics, while free-text responses to the three cases were categorized and analyzed as (1) using either descriptive terminology or an established numerical grading system and (2) as providing a quantitative term for the degree of dilation. Two hundred eighty-four pediatric radiologists answered the survey resulting in a response rate of 19.0%. There is a great variety in the terms used to describe urinary tract dilation with 66.2% using descriptive terminology, 35.6% using Society for Fetal Urology (SFU) grading system and 35.9% measuring anterior-posterior diameter (APD) of the renal pelvis. There is no consensus for a normal postnatal APD or the meaning of hydronephrosis. For the same images, descriptions vary widely in degree of severity ranging from normal to mild to severe. Similar variability exists among those using the SFU system. Ninety-seven percent say they believe a unified descriptive system would be helpful and 87.7% would use it if available. Pediatric radiologists do not have a standardized method for describing urinary tract dilation but have a great desire for such a system and would follow it if available.
Lei, Wenjia; Fan, Miao; Wang, Meilian; Wang, Yu; Sun, Wei; Sun, Xue; Zhang, Ying
2018-05-02
Foramen ovale (FO) valve with a shape or motion abnormality is frequently detected during routine obstetric ultrasonic examinations. However, the hemodynamics mechanism of this entity remains unclear. The purpose of the study is to determine the relevance of interatrial communication restriction and resultant morphological modifications. We reviewed the echocardiographic records of fetuses with isolated abnormal FO valve evaluated between January of 2010 and december of 2016. The size (DFO) of the FO orifice, opening angle (α) of the FO valve, and dimensions of cardiac chambers, FO channel outlet (DOUT) and inferior vena cava (DIVC) were measured. We evaluated their (DFO, DOUT, α) relationships to the diameters of RA and DIVC. Five hundred and seventy normal fetuses were selected to establish the normal range of the DOUT/DIVC ratio so as to provide a criterion for restriction. An abnormal FO valve was identified in 89 fetuses without congenital heart disease, with restriction noted in 62 fetuses (45 fetuses with RA dilatation, 12 fetuses with RA and RV dilatation, and 5 fetuses with no RA dilatation). There were no significant correlations between RA/LA and DFO/DIVC, RA/ LA and α. RA/LA was negatively correlated with DOUT/DIVC (R2=0.97, p<0.01). For a fetus with an abnormal FO valve, right heart dilatation could be considered as an indicator of interatrial communication restriction, which could be assessed by evaluating the FO channel outlet. The degree of right atrium dilatation indicates the severity of the restriction.
Disertori, Marcello; Quintarelli, Silvia; Grasso, Maurizia; Pilotto, Andrea; Narula, Nupoor; Favalli, Valentina; Canclini, Camilla; Diegoli, Marta; Mazzola, Silvia; Marini, Massimiliano; Del Greco, Maurizio; Bonmassari, Roberto; Masè, Michela; Ravelli, Flavia; Specchia, Claudia; Arbustini, Eloisa
2013-02-01
Atrial dilatation and atrial standstill are etiologically heterogeneous phenotypes with poorly defined nosology. In 1983, we described 8-years follow-up of atrial dilatation with standstill evolution in 8 patients from 3 families. We later identified 5 additional patients with identical phenotypes: 1 member of the largest original family and 4 unrelated to the 3 original families. All families are from the same geographic area in Northeast Italy. We followed up the 13 patients for up to 37 years, extended the clinical investigation and monitoring to living relatives, and investigated the genetic basis of the disease. The disease was characterized by: (1) clinical onset in adulthood; (2) biatrial dilatation up to giant size; (3) early supraventricular arrhythmias with progressive loss of atrial electric activity to atrial standstill; (4) thromboembolic complications; and (5) stable, normal left ventricular function and New York Heart Association functional class during the long-term course of the disease. By linkage analysis, we mapped a locus at 1p36.22 containing the Natriuretic Peptide Precursor A gene. By sequencing Natriuretic Peptide Precursor A, we identified a homozygous missense mutation (p.Arg150Gln) in all living affected individuals of the 6 families. All patients showed low serum levels of atrial natriuretic peptide. Heterozygous mutation carriers were healthy and demonstrated normal levels of atrial natriuretic peptide. Autosomal recessive atrial dilated cardiomyopathy is a rare disease associated with homozygous mutation of the Natriuretic Peptide Precursor A gene and characterized by extreme atrial dilatation with standstill evolution, thromboembolic risk, preserved left ventricular function, and severely decreased levels of atrial natriuretic peptide.
Nemcok, M.; Moore, J.N.; Allis, R.; McCulloch, J.
2004-01-01
Karaha-Telaga Bodas, a vapour-dominated geothermal system located in an active volcano in western Java, is penetrated by more than two dozen deep geothermal wells reaching depths of 3 km. Detailed paragenetic and fluid-inclusion studies from over 1000 natural fractures define the liquid-dominated, transitional and vapour-dominated stages in the evolution of this system. The liquid-dominated stage was initiated by ashallow magma intrusion into the base of the volcanic cone. Lava and pyroclastic flows capped a geothermal system. The uppermost andesite flows were only weakly fractured due to the insulating effect of the intervening altered pyroclastics, which absorbed the deformation. Shear and tensile fractures that developed were filled with carbonates at shallow depths, and by quartz, epidote and actinolite at depths and temperatures over 1 km and 300??C. The system underwent numerous cycles of overpressuring, documented by subhorizontal tensile fractures, anastomosing tensile fracture patterns and implosion breccias. The development of the liquidsystem was interrupted by a catastrophic drop in fluid pressures. As the fluids boiled in response to this pressure drop, chalcedony and quartz were selectively deposited in fractures that had the largest apertures and steep dips. The orientations of these fractures indicate that the escaping overpressured fluids used the shortest possible paths to the surface. Vapour-dominated conditions were initiated at this time within a vertical chimney overlying the still hot intrusion. As pressures declined, these conditions spread outward to form the marginal vapour-dominated region encountered in the drill holes. Downward migration of the chimney, accompanied by growth of the marginal vapour-dominated regime, occurred as the intrusion cooled and the brittle-ductile transition migrated to greater depths. As the liquids boiled off, condensate that formed at the top of the vapour-dominated zone percolated downward and low-salinity meteoric water entered the marginal parts of the system. Calcite, anhydrite and fluorite precipitated in fractures on heating. Progressive sealing of the fractures resulted in the downward migration of the cap rock. In response to decreased pore pressure in the expanding vapour zone, walls of the fracture system within the vapour-dominated reservoir progressively collapsed. It left only residual permeability in the remaining fracture volume, with apertures supported only by asperities or propping breccia. In places where normal stresses acting on the fracture walls exceeded the compressive strength of the wall rock, the fractures have completely collapsed. Fractures within the present-day cap rock include strike- and oblique-slip faults, normal faults and tensile fractures, all controlled by a strike-slip stress regime. The reservoir is characterized by normal faults and tensile fractures controlled by a normal-fault stress regime. The fractures show no evidence that the orientation of the stress field has changed since fracture propagation began. Fluid migration in the lava and pyroclastic flows is controlled by fractures. Matrix permeability controls fluid flow in the sedimentary sections of the reservoir. Productive fractures are typically roughly perpendicular to the minimum compressive stress, ??3, and are prone to slip and dilation within the modern stress regime. ?? The Geological Society of London 2004.
Magma-tectonic Interaction at Laguna del Maule, Chile
NASA Astrophysics Data System (ADS)
Keranen, K. M.; Peterson, D. E.; Miller, C. A.; Garibaldi, N.; Tikoff, B.; Williams-Jones, G.
2016-12-01
The Laguna del Maule Volcanic Field (LdM), Chile, the largest concentration of rhyolite <20 kyr globally, exhibits crustal deformation at rates higher than any non-erupting volcano. The interaction of large magmatic systems with faulting is poorly understood, however, the Chaitén rhyolitic system demonstrated that faults can serve as magma pathways during an eruption. We present a complex fault system at LdM in close proximity to the magma reservoir. In March 2016, 18 CHIRP seismic reflection lines were acquired at LdM to identify faults and analyze potential spatial and temporal impacts of the fault system on volcanic activity. We mapped three key horizons on each line, bounding sediment packages between Holocene onset, 870 ybp, and the present date. Faults were mapped on each line and offset was calculated across key horizons. Our results indicate a system of normal-component faults in the northern lake sector, striking subparallel to the mapped Troncoso Fault SW of the lake. These faults correlate to prominent magnetic lineations mapped by boat magnetic data acquired February 2016 which are interpreted as dykes intruding along faults. We also imaged a vertical fault, interpreted as a strike-slip fault, and a series of normal faults in the SW lake sector near the center of magmatic inflation. Isochron and fault offset maps illuminate areas of growth strata and indicate migration and increase of fault activity from south to north through time. We identify a domal structure in the SW lake sector, coincident with an area of low magnetization, in the region of maximum deformation from InSAR results. The dome experienced 10 ms TWT ( 10 meters) of uplift throughout the past 16 kybp, which we interpret as magmatic inflation in a shallow magma reservoir. This inflation is isolated to a 1.5 km diameter region in the hanging wall of the primary normal fault system, indicating possible fault-facilitated inflation.
Strike-slip faulting at Thebes Gap, Missouri and Illinois; implications for New Madrid tectonism
Harrison, Richard W.; Schultz, Art
1994-01-01
Numerous NNE and NE striking strike-slip faults and associated normal faults, folds, and transtensional grabens occur in the Thebes Gap area of Missouri and Illinois. These structures developed along the northwestern margin of the buried Reelfoot rift of Precambrian-Cambrian age at the northern edge of the Mississippi embayment. They have had a long-lived and complex structural history. This is an area of recent moderate seismicity, approximately 45 km north of the New Madrid seismic zone. Stratigraphic evidence suggests that these faults were active during the Middle Ordovician. They were subsequently reactivated between the Early Devonian and Late Cretaceous, probably in response to both the Acadian and Ouachita orogenies. Deformation during this period was characterized by strongly faulted and folded Ordovician through Devonian rocks. In places, these deformed rocks are overlain with angular unconformity by undeformed Cretaceous strata. Fault motion is interpreted as dominantly strike slip. A still younger period of reactivation involved Late Cretaceous and Cenozoic formations as young as the Miocene or Pliocene Mounds Gravel. These formations have experienced both minor high-angle normal faulting and subsequent major, right-lateral strike-slip faulting. En echelon north-south folds, ENE striking normal faults, regional fracture patterns, and drag folds indicate the right-lateral motion for this major episode of faulting which predates deposition of Quaternary loess. Several nondefinitive lines of evidence suggest Quaternary faulting. Similar fault orientations and kinematics, as well as recent seismicity and proximity, clearly suggest a structural relationship between deformation at Thebes Gap and tectonism associated with the New Madrid area.
Does magmatism influence low-angle normal faulting?
Parsons, Thomas E.; Thompson, George A.
1993-01-01
Synextensional magmatism has long been recognized as a ubiquitous characteristic of highly extended terranes in the western Cordillera of the United States. Intrusive magmatism can have severe effects on the local stress field of the rocks intruded. Because a lower angle fault undergoes increased normal stress from the weight of the upper plate, it becomes more difficult for such a fault to slide. However, if the principal stress orientations are rotated away from vertical and horizontal, then a low-angle fault plane becomes more favored. We suggest that igneous midcrustal inflation occurring at rates faster than regional extension causes increased horizontal stresses in the crust that alter and rotate the principal stresses. Isostatic forces and continued magmatism can work together to create the antiformal or domed detachment surface commonly observed in the metamorphic core complexes of the western Cordillera. Thermal softening caused by magmatism may allow a more mobile mid-crustal isostatic response to normal faulting.
NASA Astrophysics Data System (ADS)
Mizera, M.; Little, T.; Norton, K. P.; Webber, S.; Ellis, S. M.; Oesterle, J.
2016-12-01
While shown to operate in oceanic crust, rolling hinge style deformation remains a debated process in metamorpic core complexes (MCCs) in the continents. The model predicts that unloading and isostatic uplift during slip causes a progressive back-tilting in the upper crust of a normal fault that is more steeply dipping at depth. The Mai'iu Fault in the Woodlark Rift, SE Papua New Guinea, is one of the best-exposed and fastest slipping (probably >7 mm/yr) active low-angle normal faults (LANFs) on Earth. We analysed structural field data from this fault's exhumed slip surface and footwall, together with geomorphic data interpreted from aerial photographs and GeoSAR-derived digital elevation models (gridded at 5-30 m spacing), to evaluate deformational processes affecting the rapidly exhuming, domal-shaped detachment fault. The exhumed fault surface emerges from the ground at the rangefront near sea level with a northward dip of 21°. Up-dip, it is well-preserved, smooth and corrugated, with some fault remnants extending at least 29 km in the slip direction. The surface flattens over the crest of the dome, beyond where it dips S at up to 15°. Windgaps perched on the crestal main divide of the dome, indicate both up-dip tectonic advection and progressive back-tilting of the exhuming fault surface. We infer that slip on a serial array of m-to-km scale up-to-the-north, steeply S-dipping ( 75°) antithetic-sense normal faults accommodated some of the exhumation-related, inelastic bending of the footwall. These geomorphically well expressed faults strike parallel to the main Mai'iu fault at 110.9±5°, have a mean cross-strike spacing of 1520 m, and slip with a consistent up-to-the-north sense of throw ranging from <5 m to 120 m. Apparently the Mai'iu Fault was able to continue slipping despite having to negotiate this added fault-roughness. We interpret the antithetic faulting to result from bending stresses, and to provide the first clear examples of rolling hinge-style accommodation structures on a continental MCC.
Structural geology of western part of Lemhi Range, east-central Idaho
Tysdal, Russell G.
2002-01-01
The Poison Creek Anticline is a major fold that occupies a large part of the western part of the Lemhi Range. The fold is now broken by normal faults, but removal of displacement on the normal faults permitted reconstruction of the anticline. The fold formed during late Mesozoic compressional deformation in the hinterland of the Cordilleran thrust belt. It is in the hanging wall of the Poison Creek thrust fault, a major fault in east-central Idaho, that displaced Proterozoic strata over lower Paleozoic rocks.
Weak fault detection and health degradation monitoring using customized standard multiwavelets
NASA Astrophysics Data System (ADS)
Yuan, Jing; Wang, Yu; Peng, Yizhen; Wei, Chenjun
2017-09-01
Due to the nonobvious symptoms contaminated by a large amount of background noise, it is challenging to beforehand detect and predictively monitor the weak faults for machinery security assurance. Multiwavelets can act as adaptive non-stationary signal processing tools, potentially viable for weak fault diagnosis. However, the signal-based multiwavelets suffer from such problems as the imperfect properties missing the crucial orthogonality, the decomposition distortion impossibly reflecting the relationships between the faults and signatures, the single objective optimization and independence for fault prognostic. Thus, customized standard multiwavelets are proposed for weak fault detection and health degradation monitoring, especially the weak fault signature quantitative identification. First, the flexible standard multiwavelets are designed using the construction method derived from scalar wavelets, seizing the desired properties for accurate detection of weak faults and avoiding the distortion issue for feature quantitative identification. Second, the multi-objective optimization combined three dimensionless indicators of the normalized energy entropy, normalized singular entropy and kurtosis index is introduced to the evaluation criterions, and benefits for selecting the potential best basis functions for weak faults without the influence of the variable working condition. Third, an ensemble health indicator fused by the kurtosis index, impulse index and clearance index of the original signal along with the normalized energy entropy and normalized singular entropy by the customized standard multiwavelets is achieved using Mahalanobis distance to continuously monitor the health condition and track the performance degradation. Finally, three experimental case studies are implemented to demonstrate the feasibility and effectiveness of the proposed method. The results show that the proposed method can quantitatively identify the fault signature of a slight rub on the inner race of a locomotive bearing, effectively detect and locate the potential failure from a complicated epicyclic gear train and successfully reveal the fault development and performance degradation of a test bearing in the lifetime.
Alteration of fault rocks by CO2-bearing fluids with implications for sequestration
NASA Astrophysics Data System (ADS)
Luetkemeyer, P. B.; Kirschner, D. L.; Solum, J. G.; Naruk, S.
2011-12-01
Carbonates and sulfates commonly occur as primary (diagenetic) pore cements and secondary fluid-mobilized veins within fault zones. Stable isotope analyses of calcite, formation fluid, and fault zone fluids can help elucidate the carbon sources and the extent of fluid-rock interaction within a particular reservoir. Introduction of CO2 bearing fluids into a reservoir/fault system can profoundly affect the overall fluid chemistry of the reservoir/fault system and may lead to the enhancement or degradation of porosity within the fault zone. The extent of precipitation and/or dissolution of minerals within a fault zone can ultimately influence the sealing properties of a fault. The Colorado Plateau contains a number of large carbon dioxide reservoirs some of which leak and some of which do not. Several normal faults within the Paradox Basin (SE Utah) dissect the Green River anticline giving rise to a series of footwall reservoirs with fault-dependent columns. Numerous CO2-charged springs and geysers are associated with these faults. This study seeks to identify regional sources and subsurface migration of CO2 to these reservoirs and the effect(s) faults have on trap performance. Data provided in this study include mineralogical, elemental, and stable isotope data for fault rocks, host rocks, and carbonate veins that come from two localities along one fault that locally sealed CO2. This fault is just tens of meters away from another normal fault that has leaked CO2-charged waters to the land surface for thousands of years. These analyses have been used to determine the source of carbon isotopes from sedimentary derived carbon and deeply sourced CO2. XRF and XRD data taken from several transects across the normal faults are consistent with mechanical mixing and fluid-assisted mass transfer processes within the fault zone. δ13C range from -6% to +10% (PDB); δ18O values range from +15% to +24% (VSMOW). Geochemical modeling software is used to model the alteration productions of fault rocks from fluids of various chemistries coming from several different reservoirs within an active CO2-charged fault system. These results are compared to data obtained in the field.
Berger, B.R.; Tingley, J.V.; Drew, L.J.
2003-01-01
Bonanza-grade orebodies in epithermal-style mineral deposits characteristically occur as discrete zones within spatially more extensive fault and/or fracture systems. Empirically, the segregation of such systems into compartments of higher and lower permeability appears to be a key process necessary for high-grade ore formation and, most commonly, it is such concentrations of metals that make an epithermal vein district world class. In the world-class silver- and gold-producing Comstock mining district, Nevada, several lines of evidence lead to the conclusion that the Comstock lode is localized in an extensional stepover between right-lateral fault zones. This evidence includes fault geometries, kinematic indicators of slip, the hydraulic connectivity of faults as demonstrated by veins and dikes along faults, and the opening of a normal-fault-bounded, asymmetric basin between two parallel and overlapping northwest-striking, lateral- to lateral-oblique-slip fault zones. During basin opening, thick, generally subeconomic, banded quartz-adularia veins were deposited in the normal fault zone, the Comstock fault, and along one of the bounding lateral fault zones, the Silver City fault. As deformation continued, the intrusion of dikes and small plugs into the hanging wall of the Comstock fault zone may have impeded the ability of the stepover to accommodate displacement on the bounding strike-slip faults through extension within the stepover. A transient period of transpressional deformation of the Comstock fault zone ensued, and the early-stage veins were deformed through boudinaging and hydraulic fragmentation, fault-motion inversion, and high- and low-angle axial rotations of segments of the fault planes and some fault-bounded wedges. This deformation led to the formation of spatially restricted compartments of high vertical permeability and hydraulic connectivity and low lateral hydraulic connectivity. Bonanza orebodies were formed in the compartmentalized zones of high permeability and hydraulic connectivity. As heat flow and related hydrothermal activitv waned along the Comstock fault zone, extension was reactivated in the stepover along the Occidental zone of normal faults east of the Comstock fault zone. Volcanic and related intrusive activity in this part of the stepover led to a new episode of hydrothermal activity and formation of the Occidental lodes.
Deformation along the leading edge of the Maiella thrust sheet in central Italy
NASA Astrophysics Data System (ADS)
Aydin, Atilla; Antonellini, Marco; Tondi, Emanuele; Agosta, Fabrizio
2010-09-01
The eastern forelimb of the Maiella anticline above the leading edge of the underlying thrust displays a complex system of fractures, faults and a series of kink bands in the Cretaceous platform carbonates. The kink bands have steep limbs, display top-to-the-east shear, parallel to the overall transport direction, and are brecciated and faulted. A system of pervasive normal faults, trending sub-parallel to the strike of the mechanical layers, accommodates local extension generated by flexural slip. Two sets of strike-slip faults exist: one is left-lateral at a high angle to the main Maiella thrust; the other is right-lateral, intersecting the first set at an acute angle. The normal and strike-slip faults were formed by shearing across bed-parallel, strike-, and dip-parallel pressure solution seams and associated splays; the thrust faults follow the tilted mechanical layers along the steeper limb of the kink bands. The three pervasive, mutually-orthogonal pressure solution seams are pre-tilting. One set of low-angle normal faults, the oldest set in the area, is also pre-tilting. All other fault/fold structures appear to show signs of overlapping periods of activity accounting for the complex tri-shear-like deformation that developed as the front evolved during the Oligocene-Pliocene Apennine orogeny.
Diagnosing a Strong-Fault Model by Conflict and Consistency
Zhou, Gan; Feng, Wenquan
2018-01-01
The diagnosis method for a weak-fault model with only normal behaviors of each component has evolved over decades. However, many systems now demand a strong-fault models, the fault modes of which have specific behaviors as well. It is difficult to diagnose a strong-fault model due to its non-monotonicity. Currently, diagnosis methods usually employ conflicts to isolate possible fault and the process can be expedited when some observed output is consistent with the model’s prediction where the consistency indicates probably normal components. This paper solves the problem of efficiently diagnosing a strong-fault model by proposing a novel Logic-based Truth Maintenance System (LTMS) with two search approaches based on conflict and consistency. At the beginning, the original a strong-fault model is encoded by Boolean variables and converted into Conjunctive Normal Form (CNF). Then the proposed LTMS is employed to reason over CNF and find multiple minimal conflicts and maximal consistencies when there exists fault. The search approaches offer the best candidate efficiency based on the reasoning result until the diagnosis results are obtained. The completeness, coverage, correctness and complexity of the proposals are analyzed theoretically to show their strength and weakness. Finally, the proposed approaches are demonstrated by applying them to a real-world domain—the heat control unit of a spacecraft—where the proposed methods are significantly better than best first and conflict directly with A* search methods. PMID:29596302
Pre- and post-treatment urinary tract findings in children with nephrogenic diabetes insipidus.
Caletti, María Gracia; Balestracci, Alejandro; Di Pinto, Diana
2014-03-01
Nephrogenic diabetes insipidus (NDI) is characterized by the kidney's inability to concentrate urine, which causes intense polyuria that may lead to urinary tract dilation. We report the morphological findings of the urinary tract in ten boys with NDI specifically addressing the presence and changes of urinary tract dilation during treatment. Patients were diagnosed at a median age of 1.6 years (range, 0.16-6.33 years) and treated with a low osmotic diet, hydrochlorothiazide-amiloride and indomethacin, which decreased the diuresis from a median of 10.5 ml/kg/h to 4.4 ml/kg/h (p < 0.001). Three patients showed normal renal ultrasound before treatment until last control, while the remaining seven showed urinary tract dilation. In this second group, dilation was reduced with treatment in four patients and disappeared in the remaining three. Children without dilation or in whom the dilation disappeared were diagnosed and treated earlier than those with persistent dilation (median 1.66 versus 4.45 years, respectively). After a median of 10.4 (range, 2.3-20.3) years of follow-up, no patients showed urological complications. Medical treatment of the disease improved the dilation in all cases, preventing its potential complications. Regardless of the good outcome of our patients, periodic urologic follow-up is recommended in NDI patients.
Stein, W.G.; Ozuna, G.B.
1995-01-01
The faults in northern Bexar County are part of the Balcones fault zone. Although most of the faults in this area trend northeast, a smaller set of cross-faults trend northwest. Generally, the faults are en echelon and normal, with the downthrown blocks typically toward the coast.
NASA Astrophysics Data System (ADS)
Marín-Lechado, C.; Pedrera, A.; Peláez, J. A.; Ruiz-Constán, A.; González-Ramón, A.; Henares, J.
2017-06-01
The tectonic structure of the Guadalquivir foreland basin becomes complex eastward evolving from a single depocenter to a compartmented basin. The deformation pattern within the eastern Guadalquivir foreland basin has been characterized by combining seismic reflection profiles, boreholes, and structural field data to output a 3-D model. High-dipping NNE-SSW to NE-SW trending normal and reverse fault arrays deform the Variscan basement of the basin. These faults generally affect Tortonian sediments, which show syntectonic features sealed by the latest Miocene units. Curved and S-shaped fault traces are abundant and caused by the linkage of nearby fault segments during lateral fault propagation. Preexisting faults were reactivated either as normal or reverse faults depending on their position within the foreland. At Tortonian time, reverse faults deformed the basin forebulge, while normal faults predominated within the backbulge. Along-strike variation of the Betic foreland basin geometry is supported by an increasing mechanical coupling of the two plates (Alborán Domain and Variscan basement) toward the eastern part of the cordillera. Thus, subduction would have progressed in the western Betics, while it would have failed in the eastern one. There, the initially subducted Iberian paleomargin (Nevado-Filábride Complex) was incorporated into the upper plate promoting the transmission of collision-related compressional stresses into the foreland since the middle Miocene. Nowadays, compression is still active and produces low-magnitude earthquakes likely linked to NNE-SSW to NE-SW preexiting faults reactivated with reverse oblique-slip kinematics. Seismicity is mostly concentrated around fault tips that are frequently curved in overstepping zones.
Discovering the Complexity of Capable Faults in Northern Chile
NASA Astrophysics Data System (ADS)
Gonzalez, G.; del Río, I. A.; Rojas Orrego, C., Sr.; Astudillo, L. A., Sr.
2017-12-01
Great crustal earthquakes (Mw >7.0) in the upper plate of subduction zones are relatively uncommon and less well documented. We hypothesize that crustal earthquakes are poorly represented in the instrumental record because they have long recurrence intervals. In northern Chile, the extreme long-term aridity permits extraordinary preservation of landforms related to fault activity, making this region a primary target to understand how upper plate faults work at subduction zones. To understand how these faults relate to crustal seismicity in the long-term, we have conducted a detailed palaeoseismological study. We performed a palaeoseismological survey integrating trench logging and photogrammetry based on UAVs. Optically stimulated luminescence (OSL) age determinations were practiced for dating deposits linked to faulting. In this contribution we present the study case of two primary faults located in the Coastal Cordillera of northern Chile between Iquique (21ºS) and Antofagasta (24ºS). We estimate the maximum moment magnitude of earthquakes generated in these upper plate faults, their recurrence interval and the fault-slip rate. We conclude that the studied upper plate faults show a complex kinematics on geological timescales. Faults seem to change their kinematics from normal (extension) to reverse (compression) or from normal to transcurrent (compression) according to the stage of subduction earthquake cycle. Normal displacement is related to coseismic stages and compression is linked to interseismic period. As result this complex interaction these faults are capable of generating Mw 7.0 earthquakes, with recurrence times on the order of thousands of years during every stage of the subduction earthquake cycle.
NASA Astrophysics Data System (ADS)
Kalafat, D.; Gunes, Y.; Kekovali, K.; Kara, M.; Gorgun, E.
2017-12-01
n this study we investigated seismicity and source characteristics of the Sultandağı Fault Zone (SFZ). As known Western Anatolia is one of the most important seismically active region in Turkey. The relative movement of the African-Arabian plates, it causes the Anatolian Plate to movement to the west-Southwest direction 2.5 cm per year and this result provides N-S direction with extensional regime in the recent tectonic. In this study, especially with the assessment of seismic activity occurring in Afyon and around between 200-2002 years, we have been evaluated to date with seismic activity as well as fault mechanism solution. We analyzed recent seismicity and distribution of earthquakes in this region. In the last century, 3 important earthquakes occurred in the Sultandağı Fault zone (Afyon-Akşehir Graben), this result shown it was seismic active and broken fault segments caused stress balance in the region and it caused to occur with short intervals of earthquakes in 2000 and 2002, triggering each other. The scope of this tudy, we installed new BB stations in the region and we have been done of the fault plane solutions for important earthquakes. The focal mechanisms clearly exhibit the activation of a NE-SW trending normal faulting system along the SFZ region. The results of stress analysis showed that the effective current tectonic evolution of normal faulting in this region. This study is supported by Bogazici University Research Projects Commission under SRP/BAP project No. 12280. Key Words: Sultandağı fault zone, normal faulting, seismicity, fault mechanism
Wali, Behram; Khattak, Asad J; Xu, Jingjing
2018-01-01
The main objective of this study is to simultaneously investigate the degree of injury severity sustained by drivers involved in head-on collisions with respect to fault status designation. This is complicated to answer due to many issues, one of which is the potential presence of correlation between injury outcomes of drivers involved in the same head-on collision. To address this concern, we present seemingly unrelated bivariate ordered response models by analyzing the joint injury severity probability distribution of at-fault and not-at-fault drivers. Moreover, the assumption of bivariate normality of residuals and the linear form of stochastic dependence implied by such models may be unduly restrictive. To test this, Archimedean copula structures and normal mixture marginals are integrated into the joint estimation framework, which can characterize complex forms of stochastic dependencies and non-normality in residual terms. The models are estimated using 2013 Virginia police reported two-vehicle head-on collision data, where exactly one driver is at-fault. The results suggest that both at-fault and not-at-fault drivers sustained serious/fatal injuries in 8% of crashes, whereas, in 4% of the cases, the not-at-fault driver sustained a serious/fatal injury with no injury to the at-fault driver at all. Furthermore, if the at-fault driver is fatigued, apparently asleep, or has been drinking the not-at-fault driver is more likely to sustain a severe/fatal injury, controlling for other factors and potential correlations between the injury outcomes. While not-at-fault vehicle speed affects injury severity of at-fault driver, the effect is smaller than the effect of at-fault vehicle speed on at-fault injury outcome. Contrarily, and importantly, the effect of at-fault vehicle speed on injury severity of not-at-fault driver is almost equal to the effect of not-at-fault vehicle speed on injury outcome of not-at-fault driver. Compared to traditional ordered probability models, the study provides evidence that copula based bivariate models can provide more reliable estimates and richer insights. Practical implications of the results are discussed. Published by Elsevier Ltd.
Finding Faults: Tohoku and other Active Megathrusts/Megasplays
NASA Astrophysics Data System (ADS)
Moore, J. C.; Conin, M.; Cook, B. J.; Kirkpatrick, J. D.; Remitti, F.; Chester, F.; Nakamura, Y.; Lin, W.; Saito, S.; Scientific Team, E.
2012-12-01
Current subduction-fault drilling procedure is to drill a logging hole, identify target faults, then core and instrument them. Seismic data may constrain faults but the additional resolution of borehole logs is necessary for efficient coring and instrumentation under difficult conditions and tight schedules. Thus, refining the methodology of identifying faults in logging data has become important, and thus comparison of log signatures of faults in different locations is worthwhile. At the C0019 (JFAST) drill site, the Tohoku megathrust was principally identified as a decollement where steep cylindrically-folded bedding abruptly flattens below the basal detachment. A similar structural contrast occurs across a megasplay fault in the NanTroSEIZE transect (Site C0004). At the Tohoku decollement, a high gamma-ray value from a pelagic clay layer, predicted as a likely decollement sediment type, strengthens the megathrust interpretation. The original identification of the pelagic clay as a decollement candidate was based on results of previous coring of an oceanic reference site. Negative density anomalies, often seen as low resistivity zones, identified a subsidiary fault in the deformed prism overlying the Tohoku megathrust. Elsewhere, at Barbados, Nankai (Moroto), and Costa Rica, negative density anomalies are associated with the decollement and other faults in hanging walls. Log-based density anomalies in fault zones provide a basis for recognizing in-situ fault zone dilation. At the Tohoku Site C0019, breakouts are present above but not below the megathrust. Changes in breakout orientation and width (stress magnitude) occur across megasplay faults at Sites C0004 and C0010 in the NantroSEIZE transect. Annular pressure anomalies are not apparent at the Tohoku megathrust, but are variably associated with faults and fracture zones drilled along the NanTroSEIZE transect. Overall, images of changes in structural features, negative density anomalies, and changes in breakout occurrence and orientation provide the most common log criteria for recognizing major thrust zones in ocean drilling holes at convergent margins. In the case of JFAST, identification of faults by logging was confirmed during subsequent coring activities, and logging data was critical for successful placement of the observatory down hole.
A transient fault-valve mechanism operating in upper crustal level, Sierras Pampeanas, Argentina
NASA Astrophysics Data System (ADS)
Japas, María Silvia; Urbina, Nilda Esther; Sruoga, Patricia; Garro, José Matías; Ibañes, Oscar
2016-11-01
Located in the Sierras Pampeanas (the broken-foreland of the Pampean flat slab segment in the southern Central Andes), the Cerro Tiporco volcanic field shows Neogene hydrothermal activity linked to migration of arc-magmatism into the foreland. Late Neogene deposits comprise epithermal vein systems emplaced in Precambrian-Early Palaeozoic igneous-metamorphic basement, Late Miocene sedimentary rocks and Early Pliocene volcaniclastic rocks. Mineralization consists of calcareous onyx, aragonite and calcite veins as well as travertine deposits. Onyx and aragonite occur as fill of low-displacement nearly vertical reverse-sinistral faults striking NW, and nearly horizontal dilatant fractures. The latter consist of load-removal induced fractures affecting the igneous-metamorphic rocks, as well as bedding planes in the Late Miocene sediments. The presence of veins recording multiple fracture episodes and crack-and-seal growth of veins suggests relatively low differential stress and supralithostatic fluid pressure, as well as cyclic changes in pore pressure and high mineral-deposition/fracture-opening ratio. These conditions support a mechanism of fault-valve behaviour during onyx and aragonite vein emplacement. The fault-valve mechanism involves fractures associated with impermeable barriers between environments with different fluid pressure. Faulting generated an appreciable directional permeability triggering fluid migration from the highest to the lowest pressure region, with subsequent deposition and sealing that started a new pressurization-faulting-sealing cycle. Late aragonite and calcite veins suggest a change in kinematics indicating the onset of tectonic-load conditions.
Cervical Dilatation Curves of Spontaneous Deliveries in Pregnant Japanese Females
Inde, Yusuke; Nakai, Akihito; Sekiguchi, Atsuko; Hayashi, Masako; Takeshita, Toshiyuki
2018-01-01
Background: Although cervical dilatation curves are crucial for appropriate management of labor progression, abnormal labor progression and obstetric interventions were included in previous and widely-used cervical dilatation curves. We aimed to describe the cervical dilatation curves of normal labor progression in pregnant Japanese females without abnormal labor progression and obstetric interventions. Methods: We completed retrospective obstetric record reviews on 3172 pregnant Japanese females (parity = 0, n = 1047; parity = 1, n = 1083; parity ≥ 2, n = 1042), aged 20 to 39 years old at delivery, with pregravid body mass indices of less than 30. All patients underwent spontaneous deliveries with term, singleton, cephalic and live newborns of appropriate-for-gestational age birthweight, without adverse neonatal outcomes. We characterized labor progression patterns by examining the relationship between elapsed times from the full dilatation and cervical dilatation stages, and labor durations by examining the distribution of time intervals from one cervical dilatation stage, to the next, and ultimately to the full dilatation. Results: Fastest cervical changes occurred at 6 cm (primiparas) and 5 cm (multiparas) of dilatation. The 95%tile of labor progression took over 3 hours to progress from 6 cm to 7 cm (primiparas), and over 2 hours to progress from 5 cm to 6 cm (multiparas). The 5%tile of traverse time to the full dilatation, during the active phase, was less than 1 hour (primiparas) and 0.5 hours (multiparas). At the end of the active phase, no deceleration phase was observed. Conclusions: Active labor may not start until 5 cm of dilatation. At the beginning of the active phase, cervical dilatation was slower than previously described. These results may reduce opportunities for obstetric interventions during labor progression. PMID:29725244
The emergence of asymmetric normal fault systems under symmetric boundary conditions
NASA Astrophysics Data System (ADS)
Schöpfer, Martin P. J.; Childs, Conrad; Manzocchi, Tom; Walsh, John J.; Nicol, Andrew; Grasemann, Bernhard
2017-11-01
Many normal fault systems and, on a smaller scale, fracture boudinage often exhibit asymmetry with one fault dip direction dominating. It is a common belief that the formation of domino and shear band boudinage with a monoclinic symmetry requires a component of layer parallel shearing. Moreover, domains of parallel faults are frequently used to infer the presence of a décollement. Using Distinct Element Method (DEM) modelling we show, that asymmetric fault systems can emerge under symmetric boundary conditions. A statistical analysis of DEM models suggests that the fault dip directions and system polarities can be explained using a random process if the strength contrast between the brittle layer and the surrounding material is high. The models indicate that domino and shear band boudinage are unreliable shear-sense indicators. Moreover, the presence of a décollement should not be inferred on the basis of a domain of parallel faults alone.
The 2016 Central Italy "reverse" seismic sequence
NASA Astrophysics Data System (ADS)
Chiaraluce, Lauro; Di Stefano, Raffaele; Tinti, Elisa; Scognamiglio, Laura; Michele, Maddalena; Cattaneo, Marco; De Gori, Pasquale; Chiarabba, Claudio; Monachesi, Giancarlo; Lombardi, Annamaria; Valoroso, Luisa; Latorre, Diana; Marzorati, Simone
2017-04-01
The 2016 seismic sequence consists so far of a series of moderate to large earthquakes that within three month's time activated a 60 km long segmented normal fault system located in the Central Italy and almost contiguous to the 1997 Colfiorito and 2009 L'Aquila normal fault systems. The first mainshock of the sequence occurred with MW6.0 on the 24th of August at 01:36 UTC close to the Accumoli and Amatrice villages producing evidence for centimetres' surface ruptures along the Mt. Vettore normal fault outcrop. Two months later on the 26th of October at 19:18 UTC another mainshock with MW5.9 occurred 25 km to the north activating another normal fault segment approximately on the along strike continuation of the first structure. Then, four days later on the 30th of October at 06:40 UTC the largest shock of the sequence with MW6.5 close to Norcia, in the middle part of the fault system activated two months before. We reconstruct the first order anatomy of the activated normal faults system, by analysing the spatial and temporal distribution of 25,354 aftershocks with 0.1
NASA Astrophysics Data System (ADS)
Amato, Vincenzo; Aucelli, Pietro P. C.; Bellucci Sessa, Eliana; Cesarano, Massimo; Incontri, Pietro; Pappone, Gerardo; Valente, Ettore; Vilardo, Giuseppe
2017-04-01
A multidisciplinary methodology, integrating stratigraphic, geomorphological and structural data, combined with GIS-aided analysis and PS-InSAR interferometric data, was applied to characterize the relationships between ground deformations and the stratigraphic and the morphostructural setting of the Venafro intermontane basin. This basin is a morphostructural depression related to NW-SE and NE-SW oriented high angle normal faults bordering and crossing it. In particular, a well-known active fault crossing the plain is the Aquae Juliae Fault, whose recent activity is evidenced by archeoseismological data. The approach applied here reveals new evidence of possible faulting, acting during the Lower to Upper Pleistocene, which has driven the morphotectonic and the environmental evolution of the basin. In particular, the tectonic setting emerging from this study highlights the influence of the NW-SE oriented extensional phase during the late Lower Pleistocene - early Middle Pleistocene, in the generation of NE-SW trending, SE dipping, high-angle faults and NW-SE trending, high-angle transtensive faults. This phase has been followed by a NE-SW extensional one, responsible for the formation of NW-SE trending, both NW and SE dipping, high-angle normal faults, and the reactivation of the oldest NE-SW oriented structures. These NW-SE trending normal faults include the Aquae Juliae Fault and a new one, unknown until now, crossing the plain between the Venafro village and the Colle Cupone Mt. (hereinafter named the Venafro-Colle Cupone Fault, VCCF). This fault has controlled deposition of the youngest sedimentary units (late Middle Pleistocene to late Upper Pleistocene) suggesting its recent activity and it is well constrained by PS-InSAR data, as testified by the increase of the subsidence rate in the hanging wall block.
Aksu-Dinar Fault System: Its bearing on the evolution of the Isparta Angle (SW Turkey)
NASA Astrophysics Data System (ADS)
Kaymakci, Nuretdin; Özacar, Arda; Langereis, Cornelis G.; Özkaptan, Murat; Gülyüz, Erhan; van Hinsbergen, Douwe J. J.; Uzel, Bora; McPhee, Peter; Sözbilir, Hasan
2017-04-01
The Isparta Angle is a triangular structure in SW Turkey with NE-SW trending western and NW-SE trending eastern flanks. Aksu Fault is located within the core of this structure and have been taken-up large E-W shortening and sinistral translation since the Late Miocene. It is an inherited structure which emplaced Antalya nappes over the Beydaǧları Platform during the late Eocene to Late Miocene and was reactivated by the Pliocene as a high angle reverse fault to accommodate the counter-clockwise rotation of Beydaǧları and SW Anatolia. On the other hand, the Dinar Fault is a normal fault with slight sinistral component has been active since Pliocene. These two structures are collinear and delimit areas with clockwise and counter-clockwise rotations. The areas to the north and east of these structures rotated clockwise while southern and western areas are rotated counter-clockwise. We claim that the Dinar-Aksu Fault System facilitate rotational deformation in the region as a scissor like mechanism about a pivot point north of Burdur. This mechanism resulted in the normal motion along the Dinar and reverse motion along the Aksu faults with combined sinistral translation component on both structures. We claim that the driving force for the motion of these faults and counter-clockwise rotation of the SW Anatolia seems to be slab-pull forces exerted by the east dipping Antalya Slab, a relic of Tethys oceanic lithosphere. The research for this paper is supported by TUBITAK - Grant Number 111Y239. Key words: Dinar Fault, Aksu Fault, Isparta Angle, SW Turkey, Burdur Pivot, Normal Fault, Reverse Fault
NASA Astrophysics Data System (ADS)
Haines, Samuel; Marone, Chris; Saffer, Demian
2014-12-01
The mechanics of slip on low-angle normal faults (LANFs) remain an enduring problem in structural geology and fault mechanics. In most cases, new faults should form rather than having slip occur on LANFs, assuming values of fault friction consistent with Byerlee's Law. We present results of laboratory measurements on the frictional properties of natural clay-rich gouges from low-angle normal faults (LANF) in the American Cordillera, from the Whipple Mts. Detachment, the Panamint range-front detachment, and the Waterman Hills detachment. These clay-rich gouges are dominated by neoformed clay minerals and are an integral part of fault zones in many LANFs, yet their frictional properties under in situ conditions remain relatively unknown. We conducted measurements under saturated and controlled pore pressure conditions at effective normal stresses ranging from 20 to 60 MPa (corresponding to depths of 0.9-2.9 km), on both powdered and intact wafers of fault rock. For the Whipple Mountains detachment, friction coefficient (μ) varies depending on clast content, with values ranging from 0.40 to 0.58 for clast-rich material, and 0.29-0.30 for clay-rich gouge. Samples from the Panamint range-front detachment were clay-rich, and exhibit friction values of 0.28 to 0.38, significantly lower than reported from previous studies on fault gouges tested under room humidity (nominally dry) conditions, including samples from the same exposure. Samples from the Waterman Hills detachment are slightly stronger, with μ ranging from 0.38 to 0.43. The neoformed gouge materials from all three localities exhibits velocity-strengthening frictional behavior under almost all of the experimental conditions we explored, with values of the friction rate parameter (a - b) ranging from -0.001 to +0.025. Clast-rich samples exhibited frictional healing (strength increases with hold time), whereas clay-rich samples do not. Our results indicate that where clay-rich neoformed gouges are present along LANFs, they provide a mechanically viable explanation for slip on faults with dips <20°, requiring only moderate (Pf <σ3) overpressures and/or correcting for ∼5° of footwall tilting. Furthermore, the low rates of frictional strength recovery and velocity-strengthening frictional behavior we observe provide an explanation for the lack of observed seismicity on these structures. We suggest that LANFs in the upper crust (depth <8 km) slip via a combination of a) reaction-weakening of initially high-angle fault zones by the formation of neoformed clay-rich gouges, and b) regional tectonic accommodation of rotating fault blocks.
NASA Astrophysics Data System (ADS)
Ma, X.; Elbanna, A. E.; Kothari, K.
2017-12-01
Fault zone dynamics hold the key to resolving many outstanding geophysical problems including the heat flow paradox, discrepancy between fault static and dynamic strength, and energy partitioning. Most fault zones that generate tectonic events are gouge filled and fluid saturated posing the need for formulating gouge-specific constitutive models that capture spatially heterogeneous compaction and dilation, non-monotonic rate dependence, and transition between localized and distributed deformation. In this presentation, we focus primarily on elucidating microscopic underpinnings for shear banding and stick-slip instabilities in sheared saturated granular materials and explore their implications for earthquake dynamics. We use a non-equilibrium thermodynamics model, the Shear Transformation Zone theory, to investigate the dynamics of strain localization and its connection to stability of sliding in the presence and absence of pore fluids. We also consider the possible influence of self-induced mechanical vibrations as well as the role of external acoustic vibrations as analogue for triggering by a distant event. For the dry case, our results suggest that at low and intermediate strain rates, persistent shear bands develop only in the absence of vibrations. Vibrations tend to fluidize the granular network and de-localize slip at these rates. Stick-slip is only observed for rough grains and it is confined to the shear band. At high strain rates, stick-slip disappears and the different systems exhibit similar stress-slip response. Changing the vibration intensity, duration or time of application alters the system response and may cause long-lasting rheological changes. The presence of pore fluids modifies the stick slip pattern and may lead to both loss and development of slip instability depending on the value of the confining pressure, imposed strain rate and hydraulic parameters. We analyze these observations in terms of possible transitions between rate strengthening and rate weakening response facilitated by a competition between shear induced dilation and acoustic compaction. We discuss the implications of our results on dynamic triggering, quiescence and strength evolution in gouge filled fault zones.
NASA Astrophysics Data System (ADS)
Ueta, K.; Tani, K.
2001-12-01
Sandbox experiments were performed to investigate ground surface deformation in unconsolidated sediments caused by dip-slip and strike-slip motion on bedrock faults. A 332.5 cm long, 200 cm high, and 40 cm wide sandbox was used in a dip-slip fault model test. In the strike-slip fault test, a 600 cm long, 250 cm wide, and 60 cm high sandbox and a 170 cm long, 25 cm wide, 15 cm high sandbox were used. Computerized X-ray tomography applied to the sandbox experiments made it possible to analyze the kinematic evolution, as well as the three-dimensional geometry, of the faults. The fault type, fault dip, fault displacement, thickness and density of sandpack and grain size of the sand were varied for different experiments. Field survey of active faults in Japan and California were also made to investigate the deformation of unconsolidated sediments overlying bedrock faults. A comparison of the experimental results with natural cases of active faults reveals the following: (1) In the case of dip-slip faulting, the shear bands are not shown as one linear plane but as en echelon pattern. Thicker and finer unconsolidated sediments produce more shear bands and clearer en echelon shear band patterns. (2) In the case of left-lateral strike-slip faulting, the deformation of the sand pack with increasing basement displacement is observed as follows. a) In three dimensions, the right-stepping shears that have a "cirque" / "shell" / "ship body" shape develop on both sides of the basement fault. The shears on one side of the basement fault join those on the other side, resulting in helicoidal shaped shear surfaces. Shears reach the surface of the sand near or above the basement fault and en echelon Riedel shears are observed at the surface of the sand. b) Right-stepping pressure ridges develop within the zone defined by the Riedel shears. c) Lower-angle shears generally branch off from the first Riedel shears. d) Right-stepping helicoidal shaped lower-angle shears offset Riedel shears and pressure ridges, and left-stepping and right-stepping pressure ridges are observed. d) With displacement concentrated on the central throughgoing fault zone, a "Zone of shear band" (ZSB) developed directly above the basement fault. The geometry of the ZSB shows a strong resemblance to linear ridge and trough geomorphology associated with active strike-slip faulting. (3) In the case of normal faulting, the location of the surface fault rupture is just above the bedrock faults, which have no relationship with the fault dip. On the other hand, the location of the surface rupture of the reverse fault has closely relationship with the fault dip. In the case of strike-slip faulting, the width of the deformation zone in dense sand is wider than that in loose sand. (4) The horizontal distance of surface rupture from the bedrock fault normalized by the height of sand mass (W/H) does not depend on the height of sand mass and grain size of sand. The values of W/H from the test agree well with those of earthquake faults. (5) The normalized base displacement required to propagate the shear rupture zone to the ground surface (D/H), in the case of normal faulting, is lower than those for reverse faulting and strike-slip faulting.
NASA Astrophysics Data System (ADS)
Bialas, Jörg; Dannowski, Anke; Reston, Timothy J.
2015-12-01
A wide-angle seismic section across the Mid-Atlantic Ridge just south of the Ascension transform system reveals laterally varying crustal thickness, and to the east a strongly distorted Moho that appears to result from slip along a large-offset normal fault, termed an oceanic detachment fault. Gravity modelling supports the inferred crustal structure. We investigate the interplay between magmatism, detachment faulting and the changing asymmetry of crustal accretion, and consider several possible scenarios. The one that appears most likely is remarkably simple: an episode of detachment faulting which accommodates all plate divergence and results in the westward migration of the ridge axis, is interspersed with dominantly magmatic and moderately asymmetric (most on the western side) spreading which moves the spreading axis back towards the east. Following the runaway weakening of a normal fault and its development into an oceanic detachment fault, magma both intrudes the footwall to the fault, producing a layer of gabbro (subsequently partially exhumed).
Style of Cenozoic extensional deformation in the central Beaverhead Mountains, Idaho-Montana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kellogg, K.S.
1993-04-01
Cenozoic extension in the upper Medicine Lodge Creek area in the Beaverhead Mountains was accommodated along numerous low- to high-angle, west-facing normal faults. These faults have repeated moderately east-dipping (by 20--40[degree]) Tertiary rocks that are as old as the Eocene Medicine Lodge Volcanics and that include conformably overlying Miocene and Oligocene conglomerate, tuffaceous sandstone, siltstone, and limestone; a reasonable restoration of Tertiary faulting suggests that the region has extended about 20 percent. At least one normal fault soles into the Late Cretaceous Cabin thrust, one of at least four major Cordilleran thrusts in the Beaverhead Mountains and the Tendoy Mountainsmore » immediately to the east. The Cabin thrust places enigmatic quartzite (age is between Middle Proterozoic and Lower Cambrian) and Archean gneiss above Mississippian to Ordovician rocks. The formation of the north-northwest-trending upper Medicine Lodge Valley was controlled mostly by low-angle normal faults along its east side, where Eocene volcanics and overlying sedimentary rocks dip about 25[degree] eastward against Archean rocks. Faceted spurs are prominent but no scarps are visible, suggesting that last movement is pre-Holocene. Other large-displacement normal faults at higher elevations show relatively little topographic expression. The Late Proterozoic or Cambrian Beaverhead impact structure, defined by wide-spread shatter-coning, pseudotachylite formation, and localized brecciation, make interpretation of some extensive breccia zones in Archean rocks along the east side of Medicine Lodge Valley problematic. The proximity of the breccias to Tertiary normal faults makes a Tertiary age attractive, yet the breccias are older than pseudotachylite interpreted to have been produced by the impact.« less
NASA Astrophysics Data System (ADS)
Demurtas, Matteo; Fondriest, Michele; Clemenzi, Luca; Balsamo, Fabrizio; Storti, Fabrizio; Di Toro, Giulio
2015-04-01
Fault zones cutting carbonate sequences represent significant seismogenic sources worldwide (e.g. L'Aquila 2009, MW 6.1). Though seismological and geophysical techniques (double differences method, trapped waves, etc.) allow us to investigate down to the decametric scale the structure of active fault zones, further geological field surveys and microstructural studies of exhumed seismogenic fault zones are required to support interpretation of geophysical data, quantify the geometry of fault zones and identify the fault processes active during the seismic cycle. Here we describe the architecture (i.e. fault geometry and fault rock distribution) of the well-exposed footwall-block of the Campo Imperatore Fault Zone (CIFZ) by means of remote sensed analyses, field surveys, mineralogical (XRD, micro-Raman spectroscopy) and microstructural (FE-SEM, optical microscope cathodoluminescence) investigations. The CIFZ dips 58° towards N210 and its strike mimics that of the arcuate Gran Sasso Thrust Belt (Central Apennines). The CIFZ was exhumed from 2-3 km depth and accommodated a normal throw of ~2 km starting from the Early-Pleistocene. In the studied area, the CIFZ puts in contact the Holocene deposits at the hangingwall with dolomitized Jurassic carbonate platform successions (Calcare Massiccio) at the footwall. From remote sensed analyses, structural lineaments both inside and outside the CIFZ have a typical NW-SE Apenninic strike, which is parallel to the local trend of the Gran Sasso Thrust. Based on the density of the fracture/fault network and the type of fault zone rocks, we distinguished four main structural domains within the ~300 m thick CIFZ footwall-block, which include (i) a well-cemented (white in color) cataclastic zone (up to ~40 m thick) at the contact with the Holocene deposits, (ii) a well-cemented (brown to grey in color) breccia zone (up to ~15 m thick), (iii) an high strain damage zone (fracture spacing < 2-3 cm), and (iv) a low strain damage zone (fracture spacing > 10 cm). Other than by the main boundary normal fault, slip was accommodated in the cataclastic zone by minor sub-parallel synthetic and antithetic normal faults and by few tear strike-slip fault; the rest of the footwall shows progressively less pervasive damage down to the background intensity of deformation. High strain domains include (1) pervasively fragmented dolostones with radial fractures (evidence of in-situ shattering), (2) shiny (mirror-like) fault surfaces truncating dolostone clasts, (3) mm-thick ultra-cataclastic layers with lobate and cuspate boundaries, (4) mixed calcite-dolomite "foliated cataclasites". The above microstructures can be associated with seismic faulting. Fluids infiltration during deformation is attested by the occurrence of multiple generations of carbonate-filled veins, often exploited as minor faults with a mylonite-like fabric (e.g. presence of micrometer in size euhedral calcite grains). The attitude of the studied segment of the CIFZ, the thickness of the footwall block and the kinematics of the minor faults compares well with the hypocentral and focal mechanisms distribution typical of the earthquake sequences in the Apennines. In particular, the CIFZ can be considered as an exhumed analogue of the normal fault system that caused the L'Aquila 2009 seismic sequence.
A lung sound classification system based on the rational dilation wavelet transform.
Ulukaya, Sezer; Serbes, Gorkem; Sen, Ipek; Kahya, Yasemin P
2016-08-01
In this work, a wavelet based classification system that aims to discriminate crackle, normal and wheeze lung sounds is presented. While the previous works related with this problem use constant low Q-factor wavelets, which have limited frequency resolution and can not cope with oscillatory signals, in the proposed system, the Rational Dilation Wavelet Transform, whose Q-factors can be tuned, is employed. Proposed system yields an accuracy of 95 % for crackle, 97 % for wheeze, 93.50 % for normal and 95.17 % for total sound signal types using energy feature subset and proposed approach is superior to conventional low Q-factor wavelet analysis.
The 2016-2017 Central Italy Seismic Sequence: Source Complexity Inferred from Rupture Models.
NASA Astrophysics Data System (ADS)
Scognamiglio, L.; Tinti, E.; Casarotti, E.; Pucci, S.; Villani, F.; Cocco, M.; Magnoni, F.; Michelini, A.
2017-12-01
The Apennines have been struck by several seismic sequences in recent years, showing evidence of the activation of multiple segments of normal fault systems in a variable and, relatively short, time span, as in the case of the 1980 Irpinia earthquake (three shocks in 40 s), the 1997 Umbria-Marche sequence (four main shocks in 18 days) and the 2009 L'Aquila earthquake having three segments activated within a few weeks. The 2016-2017 central Apennines seismic sequence begin on August 24th with a MW 6.0 earthquake, which strike the region between Amatrice and Accumoli causing 299 fatalities. This earthquake ruptures a nearly 20 km long normal fault and shows a quite heterogeneous slip distribution. On October 26th, another main shock (MW 5.9) occurs near Visso extending the activated seismogenic area toward the NW. It is a double event rupturing contiguous patches on the fault segment of the normal fault system. Four days after the second main shock, on October 30th, a third earthquake (MW 6.5) occurs near Norcia, roughly midway between Accumoli and Visso. In this work we have inverted strong motion waveforms and GPS data to retrieve the source model of the MW 6.5 event with the aim of interpreting the rupture process in the framework of this complex sequence of moderate magnitude earthquakes. We noted that some preliminary attempts to model the slip distribution of the October 30th main shock using a single fault plane oriented along the Apennines did not provide convincing fits to the observed waveforms. In addition, the deformation pattern inferred from satellite observations suggested the activation of a multi-fault structure, that is coherent to the complexity and the extension of the geological surface deformation. We investigated the role of multi-fault ruptures and we found that this event revealed an extraordinary complexity of the rupture geometry and evolution: the coseismic rupture propagated almost simultaneously on a normal fault and on a blind fault, possibly inherited from compressional tectonics. These earthquakes raise serious concerns on our understanding of fault segmentation and seismicity evolution during sequences of normal faulting earthquakes. Finally, the retrieved rupture history has important implications on seismic hazard assessment and on the maximum expected magnitude in a given tectonic area.
NASA Astrophysics Data System (ADS)
Sinha, Nitish; Singh, Arun K.; Singh, Trilok N.
2018-05-01
In this article, we study numerically the dynamic stability of the rate, state, temperature, and pore pressure friction (RSTPF) model at a rock interface using standard spring-mass sliding system. This particular friction model is a basically modified form of the previously studied friction model namely the rate, state, and temperature friction (RSTF). The RSTPF takes into account the role of thermal pressurization including dilatancy and permeability of the pore fluid due to shear heating at the slip interface. The linear stability analysis shows that the critical stiffness, at which the sliding becomes stable to unstable or vice versa, increases with the coefficient of thermal pressurization. Critical stiffness, on the other hand, remains constant for small values of either dilatancy factor or hydraulic diffusivity, but the same decreases as their values are increased further from dilatancy factor (˜ 10^{ - 4} ) and hydraulic diffusivity (˜ 10^{ - 9} {m}2 {s}^{ - 1} ) . Moreover, steady-state friction is independent of the coefficient of thermal pressurization, hydraulic diffusivity, and dilatancy factor. The proposed model is also used for predicting time of failure of a creeping interface of a rock slope under the constant gravitational force. It is observed that time of failure decreases with increase in coefficient of thermal pressurization and hydraulic diffusivity, but the dilatancy factor delays the failure of the rock fault under the condition of heat accumulation at the creeping interface. Moreover, stiffness of the rock-mass also stabilizes the failure process of the interface as the strain energy due to the gravitational force accumulates in the rock-mass before it transfers to the sliding interface. Practical implications of the present study are also discussed.
NASA Astrophysics Data System (ADS)
Valoroso, L.; Chiaraluce, L.; Di Stefano, R.; Piccinini, D.; Schaff, D. P.; Waldhauser, F.
2011-12-01
On April 6th 2009, a MW 6.1 normal faulting earthquake struck the axial area of the Abruzzo region in Central Italy. We present high-precision hypocenter locations of an extraordinary dataset composed by 64,000 earthquakes recorded at a very dense seismic network of 60 stations operating for 9 months after the main event. Events span in magnitude (ML) between -0.9 to 5.9, reaching a completeness magnitude of 0.7. The dataset has been processed by integrating an accurate automatic picking procedure together with cross-correlation and double-difference relative location methods. The combined use of these procedures results in earthquake relative location uncertainties in the range of a few meters to tens of meters, comparable/lower than the spatial dimension of the earthquakes themselves). This data set allows us to image the complex inner geometry of individual faults from the kilometre to meter scale. The aftershock distribution illuminates the anatomy of the en-echelon fault system composed of two major faults. The mainshock breaks the entire upper crust from 10 km depth to the surface along a 14-km long normal fault. A second segment, located north of the normal fault and activated by two Mw>5 events, shows a striking listric geometry completely blind. We focus on the analysis of about 300 clusters of co-located events to characterize the mechanical behavior of the different portions of the fault system. The number of events in each cluster ranges from 4 to 24 events and they exhibit strongly correlated seismograms at common stations. They mostly occur where secondary structures join the main fault planes and along unfavorably oriented segments. Moreover, larger clusters nucleate on secondary faults located in the overlapping area between the two main segments, where the rate of earthquake production is very high with a long-lasting seismic decay.
Negative Selection Algorithm for Aircraft Fault Detection
NASA Technical Reports Server (NTRS)
Dasgupta, D.; KrishnaKumar, K.; Wong, D.; Berry, M.
2004-01-01
We investigated a real-valued Negative Selection Algorithm (NSA) for fault detection in man-in-the-loop aircraft operation. The detection algorithm uses body-axes angular rate sensory data exhibiting the normal flight behavior patterns, to generate probabilistically a set of fault detectors that can detect any abnormalities (including faults and damages) in the behavior pattern of the aircraft flight. We performed experiments with datasets (collected under normal and various simulated failure conditions) using the NASA Ames man-in-the-loop high-fidelity C-17 flight simulator. The paper provides results of experiments with different datasets representing various failure conditions.
Hill, David P.
2015-01-01
Accumulating evidence, although still strongly spatially aliased, indicates that although remote dynamic triggering of small-to-moderate (Mw<5) earthquakes can occur in all tectonic settings, transtensional stress regimes with normal and subsidiary strike-slip faulting seem to be more susceptible to dynamic triggering than transpressional regimes with reverse and subsidiary strike-slip faulting. Analysis of the triggering potential of Love- and Rayleigh-wave dynamic stresses incident on normal, reverse, and strike-slip faults assuming Andersonian faulting theory and simple Coulomb failure supports this apparent difference for rapid-onset triggering susceptibility.
Transfer zones in listric normal fault systems
NASA Astrophysics Data System (ADS)
Bose, Shamik
Listric normal faults are common in passive margin settings where sedimentary units are detached above weaker lithological units, such as evaporites or are driven by basal structural and stratigraphic discontinuities. The geometries and styles of faulting vary with the types of detachment and form landward and basinward dipping fault systems. Complex transfer zones therefore develop along the terminations of adjacent faults where deformation is accommodated by secondary faults, often below seismic resolution. The rollover geometry and secondary faults within the hanging wall of the major faults also vary with the styles of faulting and contribute to the complexity of the transfer zones. This study tries to understand the controlling factors for the formation of the different styles of listric normal faults and the different transfer zones formed within them, by using analog clay experimental models. Detailed analyses with respect to fault orientation, density and connectivity have been performed on the experiments in order to gather insights on the structural controls and the resulting geometries. A new high resolution 3D laser scanning technology has been introduced to scan the surfaces of the clay experiments for accurate measurements and 3D visualizations. Numerous examples from the Gulf of Mexico have been included to demonstrate and geometrically compare the observations in experiments and real structures. A salt cored convergent transfer zone from the South Timbalier Block 54, offshore Louisiana has been analyzed in detail to understand the evolutionary history of the region, which helps in deciphering the kinematic growth of similar structures in the Gulf of Mexico. The dissertation is divided into three chapters, written in a journal article format, that deal with three different aspects in understanding the listric normal fault systems and the transfer zones so formed. The first chapter involves clay experimental models to understand the fault patterns in divergent and convergent transfer zones. Flat base plate setups have been used to build different configurations that would lead to approaching, normal offset and overlapping faults geometries. The results have been analyzed with respect to fault orientation, density, connectivity and 3D geometry from photographs taken from the three free surfaces and laser scans of the top surface of the clay cake respectively. The second chapter looks into the 3D structural analysis of the South Timbalier Block 54, offshore Louisiana in the Gulf of Mexico with the help of a 3D seismic dataset and associated well tops and velocity data donated by ExxonMobil Corporation. This study involves seismic interpretation techniques, velocity modeling, cross section restoration of a series of seismic lines and 3D subsurface modeling using depth converted seismic horizons, well tops and balanced cross sections. The third chapter deals with the clay experiments of listric normal fault systems and tries to understand the controls on geometries of fault systems with and without a ductile substrate. Sloping flat base plate setups have been used and silicone fluid underlain below the clay cake has been considered as an analog for salt. The experimental configurations have been varied with respect to three factors viz. the direction of slope with respect to extension, the termination of silicone polymer with respect to the basal discontinuities and overlap of the base plates. The analyses for the experiments have again been performed from photographs and 3D laser scans of the clay surface.
NASA Astrophysics Data System (ADS)
Kell, Anna Marie
The plate margin in the western United States is an active tectonic region that contains the integrated deformation between the North American and Pacific plates. Nearly focused plate motion between the North American and Pacific plates within the northern Gulf of California gives way north of the Salton Trough to more diffuse deformation. In particular a large fraction of the slip along the southernmost San Andreas fault ultimately bleeds eastward, including about 20% of the total plate motion budget that finds its way through the transtensional Walker Lane Deformation Belt just east of the Sierra Nevada mountain range. Fault-bounded ranges combined with intervening low-lying basins characterize this region; the down-dropped features are often filled with water, which present opportunities for seismic imaging at unprecedented scales. Here I present active-source seismic imaging from the Salton Sea and Walker Lane Deformation Belt, including both marine applications in lakes and shallow seas, and more conventional land-based techniques along the Carson range front. The complex fault network beneath the Salton Trough in eastern California is the on-land continuation of the Gulf of California rift system, where North American-Pacific plate motion is accommodated by a series of long transform faults, separated by small pull-apart, transtensional basins; the right-lateral San Andreas fault bounds this system to the north where it carries, on average, about 50% of total plate motion. The Salton Sea resides within the most youthful and northerly "spreading center" in this several thousand-kilometer-long rift system. The Sea provides an ideal environment for the use of high-data-density marine seismic techniques. Two active-source seismic campaigns in 2010 and 2011 show progression of the development of the Salton pull-apart sub-basin and the northerly propagation of the Imperial-San Andreas system through time at varying resolutions. High fidelity seismic imagery documents the timing of strain transfer from the Imperial fault onto the San Andreas fault through the application of sequence stratigraphy. Evidence shows that the formation of the Salton and Mesquite sub-basins and the associated change of strain partitioning occurred within the last 20-40 k.y., essentially modifying a broader zone of transtension bounding the Imperial and San Andreas faults into two smaller zones of focused extension. The north-central Walker Lane contains a diffuse network of both strike-slip and normal faults, with some degree of strain partitioning characterized by normal faulting to the west along the eastern edge of the Sierra Nevada mountain range, and strike-slip faults to the east that define a diffuse boundary against the Basin and Range proper. A seismic study across the Mount Rose fault zone, bounding the Carson Range near Reno, Nevada, was carried out to investigate slip across a potential low-angle normal fault. A hammer seismic reflection and refraction profile combined with airborne LiDAR (light detection and ranging) imagery highlights fault scarp modification through minor slumping/landslides, providing a better understanding of the nature of slip on this fault. The northeastern margin of the Walker Lane is a region where both "Basin and Range" style normal faults and dextral strike-slip faults contribute to the northward propagation of the Walker Lane (essentially parallel to an equivalent northward propagation of the Mendocino triple junction). Near this intersection lies Pyramid Lake, bounded to the southwest by the dextral Pyramid Lake fault and to the northeast by the normal Lake Range fault. A high-resolution (sub-meter) seismic CHIRP survey collected in 2010 shows intriguing relationships into fault architecture beneath Pyramid Lake. Over 500 line-km of seismic data reveal a polarity flip in basin structure as down-to-the-east motion at the northern end of the Pyramid Lake fault rapidly gives way to down-to-the-west normal motion along the Lake Range fault. Alternating patterns of asymmetric and symmetric stratal patterns west of the Lake Range fault provides some evidence for segmentation of total slip along this large normal fault. Using dated sediment cores, slip rate for the Lake Range fault was found to be approximately 1 mm/yr during the Holocene. A complex zone of transtenstion was also observed in seismic CHIRP data in the northwest quadrant of the lake, where short, discontinuous faults hint at the development of a nascent shear zone trending to the northwest. (Abstract shortened by UMI.)
Rock friction under variable normal stress
Kilgore, Brian D.; Beeler, Nicholas M.; Lozos, Julian C.; Oglesby, David
2017-01-01
This study is to determine the detailed response of shear strength and other fault properties to changes in normal stress at room temperature using dry initially bare rock surfaces of granite at normal stresses between 5 and 7 MPa. Rapid normal stress changes result in gradual, approximately exponential changes in shear resistance with fault slip. The characteristic length of the exponential change is similar for both increases and decreases in normal stress. In contrast, changes in fault normal displacement and the amplitude of small high-frequency elastic waves transmitted across the surface follow a two stage response consisting of a large immediate and a smaller gradual response with slip. The characteristic slip distance of the small gradual response is significantly smaller than that of shear resistance. The stability of sliding in response to large step decreases in normal stress is well predicted using the shear resistance slip length observed in step increases. Analysis of the shear resistance and slip-time histories suggest nearly immediate changes in strength occur in response to rapid changes in normal stress; these are manifested as an immediate change in slip speed. These changes in slip speed can be qualitatively accounted for using a rate-independent strength model. Collectively, the observations and model show that acceleration or deceleration in response to normal stress change depends on the size of the change, the frictional characteristics of the fault surface, and the elastic properties of the loading system.
Frictional strength of wet- and dry- talc gouge in high-velocity shear experiments
NASA Astrophysics Data System (ADS)
Chen, X.; Reches, Z.; Elwood Madden, A. S.
2015-12-01
The strength of the creeping segment of the San Andres fault may be controlled by the distinct weakness and stability of talc (Moore & Rymer, 2007). We analyze talc frictional strength at high slip-velocity of 0.002 - 0.66 m/s, long slip-distances of 0.01 m to 33 m, and normal stresses up to 4.1 MPa. This analysis bridges the gap between nucleation stage of low velocity/distance, and the frictional behavior during large earthquakes. We tested wet and dry samples of pure talc gouge in a confined rotary cell, and continuously monitored the slip-velocity, stresses, dilation and temperature. We run 29 experiments of single and stepped velocities to obtain 243 values of quasi-static frictional coefficients. Dry talc gouge showed distinct slip-strengthening: friction coefficient of µ ~0.4 at short slip-distances of D < 0.1 m, and it increased systematically to µ ~0.8 at slip-distances of D = 0.1- 1 m; at D > 1 m, the frictional strength saturated at µ= 0.8 - 1 level. Wet talc gouge (16-20% water) displayed low frictional strength of µ= 0.1-0.3, in agreement with published triaxial tests. The stepped-velocity runs revealed a consistent velocity-strengthening trend. For a velocity jump from V1 to V2, we used VD = (µ2 -µ1)/ln (V2/V1), and found that on average VD = 0.06 and 0.03 for dry and wet talc, respectively, and for slip distances shorter than 1 m. Microstructural analysis of post-shearing wet talc gouge revealed extreme slip localization to a principal-slip-zone of a few microns, and significant shear compaction of 10-30%. In contrast, dry talc gouge exhibited distributed shear in a wide zone and systematic shear dilation (10-50%). We propose slip along weak interlayer talc plates and thermal-pressurization as the possible weakening mechanisms for wet talc. The development of distributed secondary fault network along with substantial grain crushing is responsible for slip-strengthening in dry condition. Fig. 1. Friction maps of talc gouge as function of slip-distance (left) and slip-velocity (right). Resuslts of both stepped-velocity and constant-velocity runs. Open symbols- wet talc; solid symbols- dry talc; symbol colors on right plotindicate slip-distance; data scatter in right plot may indicate slip at same velocity for different distances.
NASA Astrophysics Data System (ADS)
Kravitz, K.; Mueller, K. J.; Furuya, M.; Tiampo, K. F.
2017-12-01
First order conditions that control creeping behavior on faults include the strength of faulted materials, fault maturity and stress changes associated with seismic cycles. We present mapping of surface strain from differential interferometric synthetic aperture radar (DInSAR) of actively creeping faults in Eastern Utah that form by reactivation of older joints and faults. A nine-year record of displacement across the region using descending ERS scenes from 1992-2001 suggests maximum slip rates of 1 mm/yr. Time series analysis shows near steady rates across the region consistent with the proposed ultra-weak nature of these faults as suggested by their dilating nature, based on observations of sinkholes, pit chains and recently opened fissures along their lengths. Slip rates along the faults in the main part of the array are systematically faster with closer proximity to the Colorado River Canyon, consistent with mechanical modeling of the boundary conditions that control the overall salt system. Deeply incised side tributaries coincide with and control the edges of the region with higher strain rates. Comparison of D:L scaling at decadal scales in fault bounded grabens (as defined by InSAR) with previous measurements of total slip (D) to length (L) is interpreted to suggest that faults reached nearly their current lengths relatively quickly (i.e. displaying low displacement to length scaling). We argue this may then have been followed by along strike slip distributions where the centers of the grabens slip more rapidly than their endpoints, resulting in a higher D:L ratio over time. InSAR mapping also points to an increase in creep rates in overlap zones where two faults became hard-linked at breached relay ramps. Additionally, we see evidence for soft-linkage, where displacement profiles along a graben coincide with obvious fault segments. While an endmember case (ultra-weak faults sliding above a plastic substrate), structures in this region highlight mechanical behavior driven by rheological conditions that promote steady state slip in a complex array of extensional faults. Besides defining how creep varies along strike on individual faults, our work also hints at how strain rates may vary within the context of ongoing strain and fault linkage in a complex fault array.
NASA Astrophysics Data System (ADS)
Jackson, C. A. L.; Bell, R. E.; Rotevatn, A.; Tvedt, A. B. M.
2015-12-01
Normal faulting accommodates stretching of the Earth's crust and is one of the fundamental controls on landscape evolution and sediment dispersal in rift basins. Displacement-length scaling relationships compiled from global datasets suggest normal faults grow via a sympathetic increase in these two parameters (the 'isolated fault model'). This model has dominated the structural geology literature for >20 years and underpins the structural and tectono-stratigraphic models developed for active rifts. However, relatively recent analysis of high-quality 3D seismic reflection data suggests faults may grow by rapid establishment of their near-final length prior to significant displacement accumulation (the 'coherent fault model'). The isolated and coherent fault models make very different predictions regarding the tectono-stratigraphic evolution of rift basin, thus assessing their applicability is important. To-date, however, very few studies have explicitly set out to critically test the coherent fault model thus, it may be argued, it has yet to be widely accepted in the structural geology community. Displacement backstripping is a simple graphical technique typically used to determine how faults lengthen and accumulate displacement; this technique should therefore allow us to test the competing fault models. However, in this talk we use several subsurface case studies to show that the most commonly used backstripping methods (the 'original' and 'modified' methods) are, however, of limited value, because application of one over the other requires an a priori assumption of the model most applicable to any given fault; we argue this is illogical given that the style of growth is exactly what the analysis is attempting to determine. We then revisit our case studies and demonstrate that, in the case of seismic-scale growth faults, growth strata thickness patterns and relay zone kinematics, rather than displacement backstripping, should be assessed to directly constrain fault length and thus tip behaviour through time. We conclude that rapid length establishment prior to displacement accumulation may be more common than is typically assumed, thus challenging the well-established, widely cited and perhaps overused, isolated fault model.
Ross procedure for ascending aortic replacement.
Elkins, R C; Lane, M M; McCue, C
1999-06-01
Patients with aortic valve disease and aneurysm or dilatation of the ascending aorta require both aortic valve replacement and treatment of their ascending aortic disease. In children and young adults, the Ross operation is preferred when the aortic valve requires replacement, but the efficacy of extending this operation to include replacement of the ascending aorta or reduction of the dilated aorta has not been tested. We reviewed the medical records of 18 (5.9%) patients with aortic valve disease and an ascending aortic aneurysm and 26 (8.5%) patients with dilation of the ascending aorta, subgroups of 307 patients who had a Ross operation between August 1986 and February 1998. We examined operative and midterm results, including recent echocardiographic assessment of autograft valve function and ability of the autograft root and ascending aortic repair or replacement to maintain normal structural integrity. There was one operative death (2%) related to a perioperative stroke. Forty-two of 43 survivors have normal autograft valve function, with trace to mild autograft valve insufficiency, and one patient has moderate insufficiency at the most recent echocardiographic evaluation. None of the patients has dilatation of the autograft root or of the replaced or reduced ascending aorta. Early results with extension of the Ross operation to include replacement of an ascending aortic aneurysm or vertical aortoplasty for reduction of a dilated ascending aorta are excellent, with autograft valve function equal to that seen in similar patients without ascending aortic disease.
Closed transventricular dilation of discrete subvalvular aortic stenosis in dogs.
Linn, K; Orton, E C
1992-01-01
Discrete subvalvular aortic stenosis with peak systolic pressure gradients of more than 60 mm Hg was treated by closed transventricular dilation in six young dogs. Peak systolic pressure gradients were measured by direct catheterization before surgery, immediately after dilation, and 3 months after surgery. Maximum instantaneous pressure gradients were measured by continuous wave Doppler echocardiography before surgery and 6 weeks to 9 months after surgery. All dogs survived the procedure, and two dogs were clinically normal after 9 and 14 months. Two dogs died at week 6 and month 7. One dog was receiving medication for pulmonary edema 15 months after surgery. One dog underwent open resection of the subvalvular ring at month 3, and was clinically normal 6 months after the second procedure. Complications included intraoperative ventricular fibrillation in one dog, and mild postoperative aortic insufficiency in one dog. Closed transventricular dilation resulted in an immediate 83% decrease in the peak systolic pressure gradient from a preoperative mean of 97 +/- 22 mm Hg to a mean of 14 +/- 15 mm Hg. However, systolic pressure gradients measured by direct catheterization at month 3 (77 +/- 26 mm Hg), and by Doppler echocardiography at week 6 to month 9 (85 +/- 32 mm Hg) were not significantly different from preoperative values, which suggested recurrence of the aortic stenosis. Closed transventricular dilation should not be considered a definitive treatment for discrete subvalvular aortic stenosis in dogs, but may be useful in young dogs with critical aortic stenosis as a bridge to more definitive surgery.
NASA Astrophysics Data System (ADS)
Hammond, K. Jill; Evans, James P.
2003-05-01
We examine the geochemical signature and structure of the Keno fault zone to test its impact on the flow of ore-mineralizing fluids, and use the mined exposures to evaluate structures and processes associated with normal fault development. The fault is a moderately dipping normal-fault zone in siltstone and silty limestone with 55-100 m of dip-slip displacement in north-central Nevada. Across-strike exposures up to 180 m long, 65 m of down-dip exposure and 350 m of along-strike exposure allow us to determine how faults, fractures, and fluids interact within mixed-lithology carbonate-dominated sedimentary rocks. The fault changes character along strike from a single clay-rich slip plane 10-20 mm thick at the northern exposure to numerous hydrocarbon-bearing, calcite-filled, nearly vertical slip planes in a zone 15 m wide at the southern exposure. The hanging wall and footwall are intensely fractured but fracture densities do not vary markedly with distance from the fault. Fault slip varies from pure dip-slip to nearly pure strike-slip, which suggests that either slip orientations may vary on faults in single slip events, or stress variations over the history of the fault caused slip vector variations. Whole-rock major, minor, and trace element analyses indicate that Au, Sb, and As are in general associated with the fault zone, suggesting that Au- and silica-bearing fluids migrated along the fault to replace carbonate in the footwall and adjacent hanging wall rocks. Subsequent fault slip was associated with barite and calcite and hydrocarbon-bearing fluids deposited at the southern end of the fault. No correlation exists at the meter or tens of meter scale between mineralization patterns and fracture density. We suggest that the fault was a combined conduit-barrier system in which the fault provides a critical connection between the fluid sources and fractures that formed before and during faulting. During the waning stages of deposit formation, the fault behaved as a localized conduit to hydrocarbon-bearing calcite veins. The results of this study show that fault-zone character may change dramatically over short, deposit- or reservoir-scale distances. The presence of damage zones may not be well correlated at the fine scale with geochemically defined regions of the fault, even though a gross spatial correlation may exist.
NASA Astrophysics Data System (ADS)
Doubre, Cécile; Peltzer, Gilles
2007-01-01
The deformation in the Asal Rift (Djibouti) is characterized by magmatic inflation, diking, distributed extension, fissure opening, and normal faulting. An 8 yr time line of surface displacement maps covering the rift, constructed using radar interferometry data acquired by the Canadian satellite Radarsat between 1997 and 2005, reveals the aseismic behavior of faults and its relation with bursts of microseismicity. The observed ground movements show the asymmetric subsidence of the inner floor of the rift with respect to the bordering shoulders accommodated by slip on three of the main active faults. Fault slip occurs both as steady creep and during sudden slip events accompanied by an increase in the seismicity rate around the slipping fault and the Fieale volcanic center. Slip distribution along fault strike shows triangular sections, a pattern not explained by simple elastic dislocation theory. These observations suggest that the Asal Rift faults are in a critical failure state and respond instantly to small pressure changes in fluid-filled fractures connected to the faults, reducing the effective normal stress on their locked section at depth.
NASA Astrophysics Data System (ADS)
Villani, Fabio; Tulliani, Valerio; Sapia, Vincenzo; Fierro, Elisa; Civico, Riccardo; Pantosti, Daniela
2015-12-01
The Piano di Pezza fault is the central section of the 35 km long L'Aquila-Celano active normal fault-system in the central Apennines of Italy. Although palaeoseismic data document high Holocene vertical slip rates (˜1 mm yr-1) and a remarkable seismogenic potential of this fault, its subsurface setting and Pleistocene cumulative displacement are still poorly known. We investigated for the first time the shallow subsurface of a key section of the main Piano di Pezza fault splay by means of high-resolution seismic and electrical resistivity tomography coupled with time-domain electromagnetic soundings (TDEM). Our surveys cross a ˜5-m-high fault scarp that was generated by repeated surface-rupturing earthquakes displacing Holocene alluvial fans. We provide 2-D Vp and resistivity images, which show significant details of the fault structure and the geometry of the shallow basin infill material down to 50 m depth. Our data indicate that the upper fault termination has a sub-vertical attitude, in agreement with palaeoseismological trench evidence, whereas it dips ˜50° to the southwest in the deeper part. We recognize some low-velocity/low-resistivity regions in the fault hangingwall that we relate to packages of colluvial wedges derived from scarp degradation, which may represent the record of some Holocene palaeo-earthquakes. We estimate a ˜13-15 m throw of this fault splay since the end of the Last Glacial Maximum (˜18 ka), leading to a 0.7-0.8 mm yr-1 throw rate that is quite in accordance with previous palaeoseismic estimation of Holocene vertical slip rates. The 1-D resistivity models from TDEM soundings collected along the trace of the electrical profile significantly match with 2-D resistivity images. Moreover, they indicate that in the fault hangingwall, ˜200 m away from the surface fault trace, the pre-Quaternary carbonate basement is at ˜90-100 m depth. We therefore provide a minimal ˜150-160 m estimate of the cumulative throw of the Piano di Pezza fault system in the investigated section. We further hypothesize that the onset of the Piano di Pezza fault activity may date back to the Middle Pleistocene (˜0.5 Ma), so this is a quite young active normal fault if compared to other mature normal fault systems active since 2-3 Ma in this portion of the central Apennines.
Zhang, Shuoting; Liu, Bo; Zheng, Sheng; ...
2018-01-01
A transmission line emulator has been developed to flexibly represent interconnected ac lines under normal operating conditions in a voltage source converter (VSC)-based power system emulation platform. As the most serious short-circuit fault condition, the three-phase short-circuit fault emulation is essential for power system studies. Here, this paper proposes a model to realize a three-phase short-circuit fault emulation at different locations along a single transmission line or one of several parallel-connected transmission lines. At the same time, a combination method is proposed to eliminate the undesired transients caused by the current reference step changes while switching between the fault statemore » and the normal state. Experiment results verify the developed transmission line three-phase short-circuit fault emulation capability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Shuoting; Liu, Bo; Zheng, Sheng
A transmission line emulator has been developed to flexibly represent interconnected ac lines under normal operating conditions in a voltage source converter (VSC)-based power system emulation platform. As the most serious short-circuit fault condition, the three-phase short-circuit fault emulation is essential for power system studies. Here, this paper proposes a model to realize a three-phase short-circuit fault emulation at different locations along a single transmission line or one of several parallel-connected transmission lines. At the same time, a combination method is proposed to eliminate the undesired transients caused by the current reference step changes while switching between the fault statemore » and the normal state. Experiment results verify the developed transmission line three-phase short-circuit fault emulation capability.« less
Subduction of thick oceanic plateau and high-angle normal-fault earthquakes intersecting the slab
NASA Astrophysics Data System (ADS)
Arai, Ryuta; Kodaira, Shuichi; Yamada, Tomoaki; Takahashi, Tsutomu; Miura, Seiichi; Kaneda, Yoshiyuki; Nishizawa, Azusa; Oikawa, Mitsuhiro
2017-06-01
The role of seamounts on interplate earthquakes has been debated. However, its impact on intraslab deformation is poorly understood. Here we present unexpected evidence for large normal-fault earthquakes intersecting the slab just ahead of a subducting seamount. In 1995, a series of earthquakes with maximum magnitude of 7.1 occurred in northern Ryukyu where oceanic plateaus are subducting. The aftershock distribution shows that conjugate faults with an unusually high dip angle of 70-80° ruptured the entire subducting crust. Seismic reflection images reveal that the plate interface is displaced over 1 km along one of the fault planes of the 1995 events. These results suggest that a lateral variation in slab buoyancy can produce sufficient differential stress leading to near-vertical normal-fault earthquakes within the slab. On the contrary, the upper surface of the seamount (plate interface) may correspond to a weakly coupled region, reflecting the dual effects of seamounts/plateaus on subduction earthquakes.
NASA Astrophysics Data System (ADS)
Martínez-Martínez, José Miguel; Booth-Rea, Guillermo; Azañón, José Miguel; Torcal, Federico
2006-08-01
Pliocene and Quaternary tectonic structures mainly consisting of segmented northwest-southeast normal faults, and associated seismicity in the central Betics do not agree with the transpressive tectonic nature of the Africa-Eurasia plate boundary in the Ibero-Maghrebian region. Active extensional deformation here is heterogeneous, individual segmented normal faults being linked by relay ramps and transfer faults, including oblique-slip and both dextral and sinistral strike-slip faults. Normal faults extend the hanging wall of an extensional detachment that is the active segment of a complex system of successive WSW-directed extensional detachments which have thinned the Betic upper crust since middle Miocene. Two areas, which are connected by an active 40-km long dextral strike-slip transfer fault zone, concentrate present-day extension. Both the seismicity distribution and focal mechanisms agree with the position and regime of the observed faults. The activity of the transfer zone during middle Miocene to present implies a mode of extension which must have remained substantially the same over the entire period. Thus, the mechanisms driving extension should still be operating. Both the westward migration of the extensional loci and the high asymmetry of the extensional systems can be related to edge delamination below the south Iberian margin coupled with roll-back under the Alborán Sea; involving the asymmetric westward inflow of asthenospheric material under the margins.
Robinson, L.N.; Barnum, B.E.
1986-01-01
The Lake Basin fault zone consists mainly of en echelon NE-striking normal faults that have been interpreted to be surface expressions of left-lateral movement along a basement wrench fault. Information gathered from recent field mapping of coal beds and from shallow, closely-spaced drill holes resulted in detailed coal bed correlations, which revealed another linear zone of en echelon faulting directly on the extended trend of the Lake Basin fault zone. This faulted area, referred to as the Sarpy Creek area, is located 48 km E of Hardin, Montana. It is about 16 km long, 13 km wide, and contains 21 en echelon normal faults that have an average strike of N 63oE. We therefore extend the Lake Basin fault zone 32 km farther SE than previously mapped to include the Sarpy Creek area. The Ash Creek oil field, Wyoming, 97 km due S of the Sarpy Creek area, produces from faulted anticlinal structues that have been interpreted to be genetically related to the primary wrench-fault system known as the Nye-Bowler fault zone. The structural similarities between the Sarpy Creek area and the Ash Creek area indicate that the Sarpy Creek area is a possible site for hydrocarbon accumulation.-from Authors
Geometric and thermal controls on normal fault seismicity from rate-and-state friction models
NASA Astrophysics Data System (ADS)
Mark, H. F.; Behn, M. D.; Olive, J. A. L.; Liu, Y.
2017-12-01
Seismic and geodetic observations from the last two decades have led to a growing realization that a significant amount of fault slip at plate boundaries occurs aseismically, and that the amount of aseismic displacement varies across settings. Here we investigate controls on the seismogenic behavior of crustal-scale normal faults that accommodate extensional strain at mid-ocean ridges and continental rifts. Seismic moment release rates measured along the fast-spreading East Pacific Rise suggest that the majority of fault growth occurs aseismically with almost no seismic slip. In contrast, at the slow-spreading Mid-Atlantic Ridge seismic slip may represent up to 60% of the total fault displacement. Potential explanations for these variations include heterogeneous distributions of frictional properties on fault surfaces, effects of variable magma supply associated with seafloor spreading, and/or differences in fault geometry and thermal structure. In this study, we use rate-and-state friction models to study the seismic coupling coefficient (the fraction of total fault slip that occurs seismically) for normal faults at divergent plate boundaries, and investigate controls on fault behavior that might produce the variations in the coupling coefficient observed in natural systems. We find that the seismic coupling coefficient scales with W/h*, where W is the downdip width of the seismogenic area of the fault and h* is the critical earthquake nucleation size. At mid-ocean ridges, W is expected to increase with decreasing spreading rate. Thus, the observed relationship between seismic coupling and W/h* explains to first order variations in seismic coupling coefficient as a function of spreading rate. Finally, we use catalog data from the Gulf of Corinth to show that this scaling relationship can be extended into the thicker lithosphere of continental rift systems.
Slip behaviour of experimental faults subjected to fluid pressure stimulation: carbonates vs. shales
NASA Astrophysics Data System (ADS)
Collettini, C.; Scuderi, M. M.; Marone, C.
2017-12-01
Fluid overpressure is one of the primary mechanisms for triggering tectonic fault slip and human-induced seismicity. This mechanism has been invoked to explain the dramatic increase in seismicity associated with waste water disposal in intra-plate setting, and it is appealing because fluids lubricate the fault and reduce the effective normal stress that holds the fault in place. Although, this basic physical mechanism is well understood, several fundamental questions remain including the apparent delay between fluid injection and seismicity, the role of fault zone rheology, and the relationship between injection volume and earthquake size. Moreover, models of earthquake nucleation predict that a reduction in normal stress, as expected for fluid overpressure, should stabilize fault slip. Here, we address these questions using laboratory experiments, conducted in the double direct shear configuration in a true-triaxial machine on carbonates and shale fault gouges. In particular, we: 1) evaluate frictional strength and permeability, 2) characterize the rate- and state- friction parameters and 3) study fault slip evolution during fluid pressure stimulations. With increasing fluid pressure, when shear and effective normal stresses reach the failure condition, in calcite gouges, characterized by slightly velocity strengthening behaviour, we observe an acceleration of slip that spontaneously evolves into dynamic failure. For shale gouges, with a strong rate-strengthening behaviour, we document complex fault slip behavior characterized by periodic accelerations and decelerations with slip velocity that remains slow (i.e. v 200 µm/s), never approaching dynamic slip rates. Our data indicate that fault rheology and fault stability is controlled by the coupling between fluid pressure and rate- and state- friction parameters suggesting that their comprehensive characterization is fundamental for assessing the role of fluid pressure in natural and human induced earthquakes.
NASA Astrophysics Data System (ADS)
Coogan, James C.; Decelles, Peter G.
1996-10-01
Newly released and previously published seismic reflection data from the northern Sevier Desert basin provide a complete seismic transect between the tilted western margin of the basin and the eastern breakaway zone. When tied to well and surface age data, the transect delineates a continuum of extensional fault and basin fill geometries that developed between late Oligocene and Pleistocene time across the basin. A minimum of 18 km of top-to-the-west normal displacement is estimated across the Sevier Desert from only the most conspicuous growth geometries and offsets across listric normal faults that sole downward into the Sevier Desert reflection (SDR). The SDR clearly marks a normal fault zone beneath the entire basin, where stratal truncations are imaged for 50% of the 39 km length of the reflection east of the Cricket Mountains block. Restoration of extensional displacement along this entire 39 km fault length is necessary to reconstruct the pre-Oligocene configuration and erosion level of Sevier thrust sheets across the Sevier Desert area. The SDR normal fault zone underlies the former topographic crest of the Sevier orogenic belt, where it accommodated extensional collapse after cessation of regional contractile tectonism.
Durvasula, Venkata S P B; Shalin, Sara C; Tulunay-Ugur, Ozlem E; Suen, James Y; Richter, Gresham T
2018-06-01
Cricoid fracture is a serious concern for balloon dilatation in airway stenosis. Furthermore, there are no studies examining tracheal rupture in balloon dilatation of stenotic segments. The aim of this study was to evaluate the effect of supramaximal pressures of balloons on the cricoid and tracheal rings. Prospective cadaveric study. Seven cadaveric laryngotracheal complexes of normal adults with intact cricothyroid membranes were acquired. Noncompliant vascular angioplasty balloons (BARD-VIDA) were used for dilatation. The subglottis and trachea were subjected to supramaximal dilatation pressures graduated to nominal burst pressure (NBP) and, if necessary, rated burst pressure (RBP). Larger-diameter balloons, starting from 18 mm size to 24 mm, were used. Dilatations were maintained for 3 minutes. The cricoid ring was disrupted by larger-diameter balloons (22 mm and 24 mm) even at lower pressures (less than NBP) in six cases. Tracheal cartilages were very distensible, and external examination after supramaximal dilatation (24 mm close to RBP) revealed no obvious cartilage fractures or trachealis tears. Histopathological examination revealed sloughing of mucosa in the areas corresponding to balloon placement, but no microfractures or disruption of the perichondrium of tracheal ring cartilages. These results indicate that the cricoid is vulnerable to injury from larger balloons even at lower dilatation pressures. The tracheal cartilages and the membranous wall of the trachea remained resilient to supramaximal dilatation and larger balloons. NA. Laryngoscope, 128:1304-1309, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.
Roig‐Silva, Coral Marie; Asencio, Eugenio; Joyce, James
2013-01-01
The North Boquerón Bay–Punta Montalva fault zone has been mapped crossing the Lajas Valley in southwest Puerto Rico. Identification of the fault was based upon detailed analysis of geophysical data, satellite images, and field mapping. The fault zone consists of a series of Cretaceous bedrock faults that reactivated and deformed Miocene limestone and Quaternary alluvial fan sediments. The fault zone is seismically active (local magnitude greater than 5.0) with numerous locally felt earthquakes. Focal mechanism solutions suggest strain partitioning with predominantly east–west left-lateral displacements with small normal faults striking mostly toward the northeast. Northeast-trending fractures and normal faults can be found in intermittent streams that cut through the Quaternary alluvial fan deposits along the southern margin of the Lajas Valley, an east–west-trending 30-km-long fault-controlled depression. Areas of preferred erosion within the alluvial fan trend toward the west-northwest parallel to the onland projection of the North Boquerón Bay fault. The North Boquerón Bay fault aligns with the Punta Montalva fault southeast of the Lajas Valley. Both faults show strong southward tilting of Miocene strata. On the western end, the Northern Boquerón Bay fault is covered with flat-lying Holocene sediments, whereas at the southern end the Punta Montalva fault shows left-lateral displacement of stream drainage on the order of a few hundred meters.
NASA Astrophysics Data System (ADS)
Iglseder, C.; Grasemann, B.; Schneider, D.; Rice, A. H. N.; Stöckli, D.; Rockenschaub, M.
2009-04-01
The overall tectonic regime in the Cyclades since the Oligocene has been characterized by crustal extension, accommodated by movements on low-angle normal faults (LANFs). On Kea, structural investigations have demonstrated the existence of an island-wide LANF within a large-scale ductile-brittle shear-zone traceable over a distance of 19.5 km parallel to the stretching lineation. The tectonostratigraphy comprises Attic-Cycladic Crystalline lithologies with a shallowly-dipping schist-calcite marble unit overlain by calcitic and dolomitic fault rocks. Notably, the calcitic marbles have been mylonitized, with a mean NNE/NE-SSW/SW trending, pervasive stretching lineation and intense isoclinal folding with fold axes parallel to the stretching lineation. Numerous SC-SCĆ-fabrics and monoclinic clast-geometries show a consistent top-to-SSW shear-sense. Recorded within all lithologies is a consistent WNW/NW-ESE/SE and NNE/NE-SSW/SW striking network of conjugated brittle, brittle-ductile high-angle faults perpendicular and (sub)parallel to the main stretching direction. Field evidence and microstructural investigations indicate high-angle normal faults formed synchronously with movement on LANFs. This interplay of LANFs with high-angle structures, initiated and evolved from brittle-ductile to brittle conditions, indicates initial stages of movement below the calcite brittle-ductile transition but above the dolomite transition. Weakening processes related to syntectonic fluid-rock interactions highlight these observations. In particular, grain-size reduction and strain localisation in fine-grained (ultra)-cataclasites and fine-grained aggregates of phyllosilicate-rich fault-rocks promoted fluid-flow and pressure-solution-accommodated ‘frictional-viscous' creep. These mechanisms show the importance for LANF slip and movement in the progressive development and interaction between contemporaneous active normal faults in the Andersonian-Byerlee frictional mechanics.
Influence of slip-surface geometry on earth-flow deformation, Montaguto earth flow, southern Italy
Guerriero, L.; Coe, Jeffrey A.; Revellio, P.; Grelle, G.; Pinto, F.; Guadagno, F.
2016-01-01
We investigated relations between slip-surface geometry and deformational structures and hydrologic features at the Montaguto earth flow in southern Italy between 1954 and 2010. We used 25 boreholes, 15 static cone-penetration tests, and 22 shallow-seismic profiles to define the geometry of basal- and lateral-slip surfaces; and 9 multitemporal maps to quantify the spatial and temporal distribution of normal faults, thrust faults, back-tilted surfaces, strike-slip faults, flank ridges, folds, ponds, and springs. We infer that the slip surface is a repeating series of steeply sloping surfaces (risers) and gently sloping surfaces (treads). Stretching of earth-flow material created normal faults at risers, and shortening of earth-flow material created thrust faults, back-tilted surfaces, and ponds at treads. Individual pairs of risers and treads formed quasi-discrete kinematic zones within the earth flow that operated in unison to transmit pulses of sediment along the length of the flow. The locations of strike-slip faults, flank ridges, and folds were not controlled by basal-slip surface topography but were instead dependent on earth-flow volume and lateral changes in the direction of the earth-flow travel path. The earth-flow travel path was strongly influenced by inactive earth-flow deposits and pre-earth-flow drainages whose positions were determined by tectonic structures. The implications of our results that may be applicable to other earth flows are that structures with strikes normal to the direction of earth-flow motion (e.g., normal faults and thrust faults) can be used as a guide to the geometry of basal-slip surfaces, but that depths to the slip surface (i.e., the thickness of an earth flow) will vary as sediment pulses are transmitted through a flow.
NASA Technical Reports Server (NTRS)
John, B. E.; Howard, K. A.
1985-01-01
A transect across the 100 km wide Colorado River extensional corridor of mid-Tertiary age shows that the upper 10 to 15 km of crystalline crust extended along an imbricate system of brittle low-angle normal faults. The faults cut gently down a section in the NE-direction of tectonic transport from a headwall breakaway in the Old Woman Mountains, California. Successively higher allochthons above a basal detachment fault are futher displaced from the headwall, some as much as tens of kilometers. Allochthonous blocks are tilted toward the headwall as evidenced by the dip of the cappoing Tertiary strata and originally horizontal Proterozoic diabase sheets. On the down-dip side of the corridor in Arizona, the faults root under the unbroken Hualapai Mountains and the Colorado Plateau. Slip on faults at all exposed levels of the crust was unidirectional. Brittle thinning above these faults affected the entire upper crust, and wholly removed it locally along the central corridor or core complex region. Isostatic uplift exposed metamorphic core complexes in the domed footwall. These data support a model that the crust in California moved out from under Arizona along an asymmetric, rooted normal-slip shear system. Ductile deformation must have accompanied mid-Tertiary crustal extension at deeper structural levels in Arizona.
NASA Astrophysics Data System (ADS)
Little, T. A.; Boulton, C. J.; Webber, S. M.; Mizera, M.; Oesterle, J.; Ellis, S. M.; Norton, K. P.; Wallace, L.; Biemiller, J.; Seward, D.; Boles, A.
2016-12-01
The Mai'iu Fault is a corrugated low-angle normal fault (LANF) that has slipped >24 km. It emerges near sea level at 21° N dip, and flattens southward over the dome crest at 3000 m. This reactivated Paleogene suture is slipping at up to 1 cm/year based on previous GPS data and preliminary 10Be cosmogenic nuclide exposure scarp dating. An alignment of microseismicity (Eilon et al. 2015) suggests a dip of 30° N at 15-25 km depth. Pseudotachylites are abundant in lower, mylonitic parts of the footwall. One vein yielded 40Ar/39Ar ages of 1.9-2.2 Ma, implying seismicity at 8-10 km depth at the above slip rate. Widespread, antithetic normal faults in the footwall are attributed to rolling-hinge controlled yielding during exhumation. A single rider block is downfolded into synformal megamullion. Unconformities within this block, and ductile folding and conjugate strike-slip faulting of mylonitic footwall fabrics record prolonged EW shortening and constriction. Many normal and strike-slip faults cut the metabasaltic footwall recording Andersonian stresses and flipping between σ1 and σ2. To exhume the steep faults, the LANF must have remained active despite differential stress being locally high enough to initiate well-oriented faults—relationships that bracket the frictional strength of the LANF. Quantitative XRD on mafic and serpentinitic gouges reveal the Mai'iu fault core is enriched in weak clays corrensite and saponite. Hydrothermal friction experiments were done at effective normal stresses of 30-210 MPa, and temperatures of 50-450oC. At shallow depths (T≤200 oC), clay-rich fault gouges are frictionally weak (μ=0.13-0.15 and 0.20-0.28) and velocity-strengthening. At intermediate depths (T>200 oC), the footwall is frictionally strong (μ=0.71-0.78 and 0.50-0.64) and velocity-weakening. Velocity-strengthening is observed at T≥400 oC. The experiments provide evidence for deep unstable slip, consistent with footwall pseudotachylites and microseismicity at depth
Nearly frictionless faulting by unclamping in long-term interaction models
Parsons, T.
2002-01-01
In defiance of direct rock-friction observations, some transform faults appear to slide with little resistance. In this paper finite element models are used to show how strain energy is minimized by interacting faults that can cause long-term reduction in fault-normal stresses (unclamping). A model fault contained within a sheared elastic medium concentrates stress at its end points with increasing slip. If accommodating structures free up the ends, then the fault responds by rotating, lengthening, and unclamping. This concept is illustrated by a comparison between simple strike-slip faulting and a mid-ocean-ridge model with the same total transform length; calculations show that the more complex system unclapms the transforms and operates at lower energy. In another example, the overlapping San Andreas fault system in the San Francisco Bay region is modeled; this system is complicated by junctions and stepovers. A finite element model indicates that the normal stress along parts of the faults could be reduced to hydrostatic levels after ???60-100 k.y. of system-wide slip. If this process occurs in the earth, then parts of major transform fault zones could appear nearly frictionless.
Optimal fault-tolerant control strategy of a solid oxide fuel cell system
NASA Astrophysics Data System (ADS)
Wu, Xiaojuan; Gao, Danhui
2017-10-01
For solid oxide fuel cell (SOFC) development, load tracking, heat management, air excess ratio constraint, high efficiency, low cost and fault diagnosis are six key issues. However, no literature studies the control techniques combining optimization and fault diagnosis for the SOFC system. An optimal fault-tolerant control strategy is presented in this paper, which involves four parts: a fault diagnosis module, a switching module, two backup optimizers and a controller loop. The fault diagnosis part is presented to identify the SOFC current fault type, and the switching module is used to select the appropriate backup optimizer based on the diagnosis result. NSGA-II and TOPSIS are employed to design the two backup optimizers under normal and air compressor fault states. PID algorithm is proposed to design the control loop, which includes a power tracking controller, an anode inlet temperature controller, a cathode inlet temperature controller and an air excess ratio controller. The simulation results show the proposed optimal fault-tolerant control method can track the power, temperature and air excess ratio at the desired values, simultaneously achieving the maximum efficiency and the minimum unit cost in the case of SOFC normal and even in the air compressor fault.
NASA Astrophysics Data System (ADS)
Piana Agostinetti, Nicola; Giacomuzzi, Genny; Chiarabba, Claudio
2017-01-01
We present high-resolution elastic models and relocated seismicity of a very active segment of the Apennines normal faulting system, computed via transdimensional local earthquake tomography (trans-D LET). Trans-D LET, a fully nonlinear approach to seismic tomography, robustly constrains high-velocity anomalies and inversions of P wave velocity, i.e., decreases of VP with depth, without introducing bias due to, e.g., a starting model, and giving the possibility to investigate the relation between fault structure, seismicity, and fluids. Changes in seismicity rate and recurring seismic swarms are frequent in the Apennines extensional belt. Deep fluids, upwelling from the delaminating continental lithosphere, are thought to be responsible for seismicity clustering in the upper crust and lubrication of normal faults during swarms and large earthquakes. We focus on the tectonic role played by the Alto Tiberina low-angle normal fault (ATF), finding displacements across the fault consistent with long-term accommodation of deformation. Our results show that recent seismic swarms affecting the area occur within a 3 km thick, high VP/VS, densely cracked, and overpressurized evaporitic layer, composed of dolostones and anhydrites. A persistent low VP, low VP/VS volume, present on top of and along the ATF low-angle detachment, traces the location of mantle-derived CO2, the upward flux of which contributes to cracking within the evaporitic layer.
NASA Astrophysics Data System (ADS)
Walsh, L. S.; Martin, A. J.; Ojha, T. P.; Fedenczuk, T.
2009-12-01
To investigate feedbacks between tectonics and erosion in the Himalaya-Tibet orogen we compare high resolution digital topography with detailed geologic maps of the Modi Khola valley in central Nepal. We examine the influence of lithologic contacts and structures on river steepness and concavity. The trace of the Bhanuwa fault, a large normal fault in Greater Himalayan rocks, coincides with the steepest location on the river profile where river steepness (ksn) reaches 884 m0.9. Transitions in ksn also occur at 1) the Romi fault, another normal fault, 2) within the Kuncha formation, 3) within Greater Himalayan rocks at the Formation I - Formation II boundary, and 4) between quartzite- and phyllite-rich parts of the Fagfog Formation. We assess mechanisms for ksn transitions on the Modi Khola by examining the influence of precipitation variability, glacial and landslide dams, tributary junctions, changes in lithology, and rock uplift on the topography. Although changes in lithology and/or landslide dams potentially explain all ksn extrema and transitions, these changes in river steepness consistently occur at normal faults suggesting possible recent motion on some of them. In detail, the Main Central thrust appears not to be the location of a major steepness change. Correlations of ksn with normal faults and lithologic contacts exhibit an important component of the landscape evolution process occurring in central Nepal and potentially other mountain belts.
NASA Astrophysics Data System (ADS)
Heilman, E.; Kolawole, F.; Mayle, M.; Atekwana, E. A.; Abdelsalam, M. G.
2017-12-01
We address the longstanding question of the role of long-lived basement structures in strain accommodation within active rift systems. Studies have highlighted the influence of pre-existing zones of lithospheric weakness in modulating faulting and fault kinematics. Here, we investigate the role of the Neoproterozoic Mughese Shear Zone (MSZ) in Cenozoic rifting along the Rukwa-Malawi rift segment of the East African Rift System (EARS). Detailed analyses of Shuttle Radar Topography Mission (SRTM) DEM and filtered aeromagnetic data allowed us to determine the relationship between rift-related basement-rooted normal faults and the MSZ fabric extending along the southern boundary of the Rukwa-Malawi Rift North Basin. Our results show that the magnetic lineaments defining the MSZ coincide with the collinear Rukwa Rift border fault (Ufipa Fault), a dextral strike-slip fault (Mughese Fault), and the North Basin hinge-zone fault (Mbiri Fault). Fault-scarp and minimum fault-throw analyses reveal that within the Rukwa Rift, the Ufipa Border Fault has been accommodating significant displacement relative to the Lupa Border Fault, which represents the northeastern border fault of the Rukwa Rift. Our analysis also shows that within the North Basin half-graben, the Mbiri Fault has accommodated the most vertical displacement relative to other faults along the half-graben hinge zone. We propose that the Cenozoic reactivation along the MSZ facilitated significant normal slip displacement along the Ufipa Border Fault and the Mbiri Fault, and minor dextral strike-slip between the two faults. We suggest that the fault kinematics along the Rukwa-Malawi Rift is the result of reactivation of the MSZ through regional oblique extension.
Fethiye-Burdur Fault Zone (SW Turkey): a myth?
NASA Astrophysics Data System (ADS)
Kaymakci, Nuretdin; Langereis, Cornelis; Özkaptan, Murat; Özacar, Arda A.; Gülyüz, Erhan; Uzel, Bora; Sözbilir, Hasan
2017-04-01
Fethiye Burdur Fault Zone (FBFZ) is first proposed by Dumont et al. (1979) as a sinistral strike-slip fault zone as the NE continuation of Pliny-Strabo trench in to the Anatolian Block. The fault zone supposed to accommodate at least 100 km sinistral displacement between the Menderes Massif and the Beydaǧları platform during the exhumation of the Menderes Massif, mainly during the late Miocene. Based on GPS velocities Barka and Reilinger (1997) proposed that the fault zone is still active and accommodates sinistral displacement. In order to test the presence and to unravel its kinematics we have conducted a rigorous paleomagnetic study containing more than 3000 paleomagnetic samples collected from 88 locations and 11700 fault slip data collected from 198 locations distributed evenly all over SW Anatolia spanning from Middle Miocene to Late Pliocene. The obtained rotation senses and amounts indicate slight (around 20°) counter-clockwise rotations distributed uniformly almost whole SW Anatolia and there is no change in the rotation senses and amounts on either side of the FBFZ implying no differential rotation within the zone. Additionally, the slickenside pitches and constructed paleostress configurations, along the so called FBFZ and also within the 300 km diameter of the proposed fault zone, indicated that almost all the faults, oriented parallel to subparallel to the zone, are normal in character. The fault slip measurements are also consistent with earthquake focal mechanisms suggesting active extension in the region. We have not encountered any significant strike-slip motion in the region to support presence and transcurrent nature of the FBFZ. On the contrary, the region is dominated by extensional deformation and strike-slip components are observed only on the NW-SE striking faults which are transfer faults that accommodated extension and normal motion. Therefore, we claim that the sinistral Fethiye Burdur Fault (Zone) is a myth and there is no tangible evidence to support the existence of such a strike-slip fault zone. The research for this paper is supported by TUBITAK - Grant Number 111Y239. Key words: Fethiye Burdu Fault Zone, Paleomagnetism, paleostress inversion, normal fault, Strike-slip fault, SW Turkey
NASA Astrophysics Data System (ADS)
Pellegrini, Claudio; Marchese, Fabio; Savini, Alessandra; Bistacchi, Andrea
2016-04-01
The Apulian ridge (North-eastern Ionian margin - Mediterranean Sea) is formed by thick cretaceous carbonatic sequences and discontinuous tertiary deposits crosscut by a NNW-SSE penetrative normal fault system and is part of the present foreland system of both the Apennine to the west and the Hellenic arc to the east. The geometry, age, architecture and kinematics of the fault network were investigated integrating data of heterogeneous sources, provided by previous studies: regional scale 2D seismics and three wells collected by oil companies from the '60s to the '80s, more recent seismics collected during research projects in the '90s, very high resolution seismic (VHRS - Sparker and Chirp-sonar data), multi-beam echosounder bathymetry and results from sedimentological and geo-chronological analysis of sediment samples collected on the seabed. Multibeam bathymetric data allowed in particular assessing the 3D continuity of structures imaged in 2D seismics, thanks to the occurrence of continuous fault scarps on the seabed (only partly reworked by currents and covered by landslides), revealing the vertical extent and finite displacement associated to fault scarps. A penetrative network of relatively small faults, always showing a high dip angle, composes the NNW-SSE normal fault system, resulting in frequent relay zones, which are particularly well imaged by seafloor geomorphology. In addition, numerous fault scarps appear to be roughly coeval with quaternary submarine mass-wasting deposits colonised by Cold-Water Corals (CWC). Coral colonies, yielding ages between 11 and 14 kA, develop immediately on top of late Pleistocene mass-wasting deposits. Mutual cross-cutting relationships have been recognized between fault scarps and landslides, indicating that, at least in places, these features may be coeval. We suppose that fault activity lasted at least as far as the Holocene-Pleistocene boundary and that the NNW-SSW normal fault network in the Apulian Plateau can be considered active (or at least active till the Holocene-Pleistocene boundary), and that the cumulative horizontal displacement is consistent with a relevant WSW-ENE stretching, that can be associated to the bending moment applied to the Apulian Plate by the combined effect of the Appennines and Hellenides subduction.
NASA Astrophysics Data System (ADS)
Spagnuolo, E.; Violay, M.; Nielsen, S. B.; Di Toro, G.
2013-12-01
Fluid pressure Pf has been indicated as a major factor controlling natural (e.g., L'Aquila, Italy, 2009 Mw 6.3) and induced seismicity (e.g., Wilzetta, Oklahoma, 2011 Mw 5.7). The Terzaghi's principle states that the effective normal stress σeff= σn (1- α Pf ), with α the Biot coefficient and σn the normal stress, is reduced in proportion to Pf. A value of α=1 is often used by default; however, within a complex fault core of inhomogeneous permeability, α may vary in a yet poorly understood way. To shed light on this problem, we conducted experiments on carbonate-bearing rock samples (Carrara marble) in room humidity conditions and in the presence of pore fluids (drained conditions), where a pre-cut fault is loaded by shear stress τ in a rotary apparatus (SHIVA) under constant σn=15 MPa. Two types of tests were performed with fluids: (1) the fluid pressure was kept constant at Pf=5 MPa (close to hydrostatic conditions at a depth of 0.5 km) and the fault was driven to failure instability by gradually increasing τ; (2) the fluid pressure was kept at Pf=5 MPa and τ was increased until close to instability (τ = 7 MPa): at this point Pf was raised of 0.5 MPa every 10 s up to Pf =10 MPa to induce a main (failure) instability. Assuming α=1 and an effective peak strength (τp)eff=μp σeff at failure, the experiments reveal that: 1) (τp)eff is sensitive to the shear loading rate: fast loading rates (0.5 MPa every 20 s) induce higher peak shear-stress values than slow loading rates (0.5 MPa every 40 s). Such effect is not observed (minor or inexistent) in the absence of pore fluids. 2) Under fast loading rates the (τp)eff may surpass that measured in the absence of pore fluids under identical effective normal stress σeff. 3) An increase of Pf does not necessarily induce the main instability (within the time intervals studied here, i.e. up to ~10 s) even if the effective strength threshold is largely surpassed (e.g., (τp)eff=1.3 μp σeff). We interpret these results in terms of limited permeability of the fault slip zone which reduces α. Indeed result (3) may indicate that a Pf increase did not rapidly penetrate the slip zone because a seal (thin layer of wet ultrafine calcite gouge) formed during the slip preceding the main instability. On the other hand, shearing of the slip zone probably induces dilation (not measured because below resolution) in the slip zone and results in a decrease in pore pressure. Again, due to limited permeability, the drop in pore pressure within the slip zone does not have time to re-equilibrate with the imposed Pf, provided that the hold time is short (20 s) with respect to the diffusion time, but it may re-equilibrate under longer hold times (40 s). As a consequence the Biot coefficient depends on the time interval of observation, with α~0 at short time periods and α~1 at long time periods. This yields an approximate hydraulic diffusivity κ~10-8 m2 s-1 using κ=l2/td with the half length of the contact surface l=5 mm and td=30 s. Such diffusivity is compatible, for example, with a low porosity shale.
NASA Astrophysics Data System (ADS)
Glesener, G. B.; Peltzer, G.; Stubailo, I.; Cochran, E. S.; Lawrence, J. F.
2009-12-01
The Modeling and Educational Demonstrations Laboratory (MEDL) at the University of California, Los Angeles has developed a fourth version of the Elastic Rebound Strike-slip (ERS) Fault Model to be used to educate students and the general public about the process and mechanics of earthquakes from strike-slip faults. The ERS Fault Model is an interactive hands-on teaching tool which produces failure on a predefined fault embedded in an elastic medium, with adjustable normal stress. With the addition of an accelerometer sensor, called the Joy Warrior, the user can experience what it is like for a field geophysicist to collect and observe ground shaking data from an earthquake without having to experience a real earthquake. Two knobs on the ERS Fault Model control the normal and shear stress on the fault. Adjusting the normal stress knob will increase or decrease the friction on the fault. The shear stress knob displaces one side of the elastic medium parallel to the strike of the fault, resulting in changing shear stress on the fault surface. When the shear stress exceeds the threshold defined by the static friction of the fault, an earthquake on the model occurs. The accelerometer sensor then sends the data to a computer where the shaking of the model due to the sudden slip on the fault can be displayed and analyzed by the student. The experiment clearly illustrates the relationship between earthquakes and seismic waves. One of the major benefits to using the ERS Fault Model in undergraduate courses is that it helps to connect non-science students with the work of scientists. When students that are not accustomed to scientific thought are able to experience the scientific process first hand, a connection is made between the scientists and students. Connections like this might inspire a student to become a scientist, or promote the advancement of scientific research through public policy.
Elastic Solutions in a Semi-Infinite Solid with an Ellipsoidal Inclusion
1990-01-25
the free surface has been solved for a spherical inclusion with pure dilatational eigenstrain ( stress free transformation strain ) ( Mindlin and Cheng...1950B ), an ellipsoidal inclusion with pure dilatational eigenstrains ( Seo and Mura, 1979 ) and a cuboidal inclusion with uniform eigenstrains ...solution of a half-space under normal surface traction on the full space solution due to a cuboidal inclusion and its image with the uniform eigenstrains
Palermo, Valentina; Stafford Johnson, Michael J; Sala, Elisabetta; Brambilla, Paola G; Martin, Mike W S
2011-03-01
To retrospectively compare and contrast the clinical presentation, diagnostic findings and survival in Boxer dogs with cardiomyopathy, with or without left ventricular (LV) systolic failure. Medical records of Boxers referred between 1993 and 2008 in which a diagnosis of ventricular arrhythmias and/or cardiomyopathy was made, were reviewed. Dogs were divided into two groups according to their left ventricular (LV) systolic diameter, group A normal (20 dogs) or group B dilated (59 dogs). Dogs in group A had a better outcome than dogs in group B (median survival time of 124 and 17 weeks respectively, p < 0.001). In group B, dogs with a history of collapse had a worse outcome (median survival time of 10 weeks) compared with dogs not showing collapse (median survival time 24 weeks) (p = 0.031). The majority of dogs, in this UK study, presented with the myocardial dysfunction form of the disease, with LV dilation and congestive heart failure signs. The prognosis was worse in dogs with LV dilation compared to dogs with a normal LV and ventricular arrhythmias. In the Boxers with LV dilation, dogs with collapse had a worse prognosis than those without. Copyright © 2011 Elsevier B.V. All rights reserved.
Roan, Jun-Neng; Yeh, Chin-Yi; Chiu, Wen-Cheng; Lee, Chou-Hwei; Chang, Shih-Wei; Jiangshieh, Ya-Fen; Tsai, Yu-Chuan; Lam, Chen-Fuh
2011-01-01
Renal blood flow (RBF) is tightly regulated by several intrinsic pathways in maintaining optimal kidney blood supply. Using a rat model of aortocaval (AC) fistula, we investigated remodeling of the renal artery following prolonged increased blood flow. An AC fistula was created in the infrarenal aorta of anesthetized rats, and changes of blood flow in the renal artery were assessed using an ultrasonic flow probe. Morphological changes and expression of endothelial nitric oxide synthase and matrix metalloproteinase-2 in the remodeled renal artery were analyzed. Blood flow in the renal artery increased immediately after creation of AC fistula, but normal RBF was restored 8 weeks later. The renal artery dilated significantly 8 weeks after operation. Expression of endothelial nitric oxide synthase and matrix metalloproteinase-2 was upregulated shortly after blood flow increase, and returned to baseline levels after 3 weeks. Histological sections showed luminal dilatation with medial thickening and endothelial cell-to-smooth muscle cell attachments in the remodeled renal artery. Increased RBF was accommodated by functional dilatation and remodeling in the medial layer of the renal artery in order to restore normal blood flow. Our results provide important mechanistic insight into the intrinsic regulation of the renal artery in response to increased RBF. Copyright © 2011 S. Karger AG, Basel.
Zhang, Zhi-Hui; Yang, Guang-Hong
2017-05-01
This paper provides a novel event-triggered fault detection (FD) scheme for discrete-time linear systems. First, an event-triggered interval observer is proposed to generate the upper and lower residuals by taking into account the influence of the disturbances and the event error. Second, the robustness of the residual interval against the disturbances and the fault sensitivity are improved by introducing l 1 and H ∞ performances. Third, dilated linear matrix inequalities are used to decouple the Lyapunov matrices from the system matrices. The nonnegative conditions for the estimation error variables are presented with the aid of the slack matrix variables. This technique allows considering a more general Lyapunov function. Furthermore, the FD decision scheme is proposed by monitoring whether the zero value belongs to the residual interval. It is shown that the information communication burden is reduced by designing the event-triggering mechanism, while the FD performance can still be guaranteed. Finally, simulation results demonstrate the effectiveness of the proposed method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Molli, G.; Cortecci, G.; Vaselli, L.; Ottria, G.; Cortopassi, A.; Dinelli, E.; Mussi, M.; Barbieri, M.
2010-09-01
We studied the geometry, intensity of deformation and fluid-rock interaction of a high angle normal fault within Carrara marble in the Alpi Apuane NW Tuscany, Italy. The fault is comprised of a core bounded by two major, non-parallel slip surfaces. The fault core, marked by crush breccia and cataclasites, asymmetrically grades to the host protolith through a damage zone, which is well developed only in the footwall block. On the contrary, the transition from the fault core to the hangingwall protolith is sharply defined by the upper main slip surface. Faulting was associated with fluid-rock interaction, as evidenced by kinematically related veins observable in the damage zone and fluid channelling within the fault core, where an orange-brownish cataclasite matrix can be observed. A chemical and isotopic study of veins and different structural elements of the fault zone (protolith, damage zone and fault core), including a mathematical model, was performed to document type, role, and activity of fluid-rock interactions during deformation. The results of our studies suggested that deformation pattern was mainly controlled by processes associated with a linking-damage zone at a fault tip, development of a fault core, localization and channelling of fluids within the fault zone. Syn-kinematic microstructural modification of calcite microfabric possibly played a role in confining fluid percolation.
Basement control of structure in the Gettysburg rift basin, Pennsylvania and Maryland
NASA Astrophysics Data System (ADS)
Root, Samuel I.
1989-09-01
Jurassic faulting formed the 93 km long Gettysburg basin as an extensional half graben paralleling the basement structural grain. Preserved in the basin are rift-related Carnian to Rhaetian strata that were tilted 20-30° NW into a SE dipping, listric normal fault at the northwest border of the basin. Vertical displacement on the border fault approaches 10 km. The border fault developed parallel to the trend of the terminal Paleozoic Alleghenian South Mountain cleavage of the Blue Ridge basement along 80% of its extent. However, it is only roughly parallel to discordant to dip of the cleavage. Relationship of cleavage and later border faulting may be the result of persistent reactivation of the original Appalachian continental margin. Local complex structures in the half graben are related to reactivation of two subvertical, pre-Mesozoic faults that transect basement structural grain (cleavage) at a large angle. The northern Shippensburg fault was reactivated during basin normal faulting, offsetting the border fault in a right-lateral sense by 3.5 km and forming within the basin a fold and a fault sliver of basement. The southern Carbaugh-Marsh Creek fault was not reactivated, but is the locus of a 20°-30° change of trend of both the basement cleavage and later border fault. However, two large, NW trending, left-lateral wrench faults, antithetic to the Carbaugh-March Creek fault, developed here offsetting the border fault and forming en echelon folds and horst blocks of basement rock within the basin.
NASA Astrophysics Data System (ADS)
Dalstra, Hilke J.
2014-10-01
The discovery of two relatively small but high-grade iron ore deposits near Mt Wall, an intensely faulted part of the southwestern Hamersley province provides unique insights into the structural control on ore formation in this region. The deposits have many geological features typical of the high grade microplaty hematite group which also contains the much larger Mt Tom Price, Paraburdoo and Mt Whaleback deposits. The deposits are structurally controlled along early normal faults and contain abundant microplaty hematite and martite, and are largely confined to the Dales Gorge member of the Brockman Iron Formation. In addition to the microplaty hematite-martite ore, there are martite-goethite ores and rare magnetite-goethite or magnetite-hematite ores. Below the modern weathering surface, hydrothermally altered zones in wallrock BIF from the Lower Dales Gorge member contain magnetite, hematite and carbonate/talc bearing mineral assemblages. A staged ore genesis model involving early extension and fluid circulation along normal faults, hypogene silica leaching and carbonate alteration, followed by deep meteoric oxidation with microplaty hematite formation and finally weathering can explain most features of the Mt Wall deposits. The role of deformation was to provide pathways for mineralising fluids and initiate the seed points for the mineralised systems. High grade iron in the Wellthandalthaluna deposit is situated between the NW to NNW trending Boolgeeda Creek fault and a synthetic joining splay, the Northern fault. Both are high angle normal faults and formed during early extension in this part of the province. Faults are characterised by localised small scale deformation and brecciation, deep carbonate alteration and oxidation. Recent weathering has penetrated deeply into the fault zones, converting the carbonate-rich assemblages into goethite. Mineralisation in the Arochar deposit is situated in the overlap or relay zone between two segments of the Mt Wall fault zone, a moderately to steeply southerly dipping normal fault system which at Arochar is intruded by dolerite dykes. At both locations, the ore controlling faults are offset by later NW trending dextral and normal faults. Fault relay zones or fault splay zones were likely zones of increased permeability and fluid flow during fault development or reactivation and may also have been important in initiating mineralisation in larger deposits such as Mt Tom Price and Mt Whaleback. However structural controls on the largest iron ore deposits are often obscured due to the intensity and scale of ore development, whereas they are better preserved in the smaller deposits. Recognition that carbonate bearing protores at Mt Wall survived for nearly two billion years until intense recent weathering converted them to martite-goethite or magnetite-goethite ores may imply that more of the giant hematite-goethite deposits of the Hamersley province had hydrothermal precursors and were not formed by supergene processes alone.
Henry, Christopher S.; Colgan, Joseph P.
2011-01-01
The 2008 Wells earthquake occurred on a northeast-striking, southeast-dipping fault that is clearly delineated by the aftershock swarm to a depth of 10-12 km below sea level. However, Cenozoic rocks and structures around Wells primarily record east-west extension along north- to north-northeast-striking, west-dipping normal faults that formed during the middle Miocene. These faults are responsible for the strong eastward tilt of most basins and ranges in the area, including the Town Creek Flat basin (the location of the earthquake) and the adjacent Snake Mountains and western Windermere Hills. These older west-dipping faults are locally overprinted by a younger generation of east-dipping, high-angle normal faults that formed as early as the late Miocene and have remained active into the Quaternary. The most prominent of these east-dipping faults is the set of en-échelon, north-striking faults that bounds the east sides of the Ruby Mountains, East Humboldt Range, and Clover Hill (about 5 km southwest of Wells). The northeastern-most of these faults, the Clover Hill fault, projects northward along strike toward the Snake Mountains and the approximately located surface projection of the Wells earthquake fault as defined by aftershock locations. The Clover Hill fault also projects toward a previously unrecognized, east-facing Quaternary fault scarp and line of springs that appear to mark a significant east-dipping normal fault along the western edge of Town Creek Flat. Both western and eastern projections may be northern continuations of the Clover Hill fault. The Wells earthquake occurred along this east-dipping fault system. Two possible alternatives to rupture of a northern continuation of the Clover Hill fault are that the earthquake fault (1) is antithetic to an active west-dipping fault or (2) reactivated a Mesozoic thrust fault that dips east as a result of tilting by the west-dipping faults along the west side of the Snake Mountains. Both alternatives are precluded by the depths of the earthquake and aftershocks, about 8 km and as deep as 12 km, respectively. These depths are below where an antithetic fault would intersect any main fault, and a tilted, formerly shallow and sub-horizontal thrust fault would not extend to depths of more than about 5–6 km. The east-dipping, high-angle, earthquake fault cuts older west-dipping faults rather than reactivating them, highlighting a change in the structural style of Basin and Range extension in this region from closely-spaced, west-dipping faults that rotated significantly during slip and accommodated large-magnitude extension, to widely-spaced, high-angle faults that accommodate much less total strain over a long time span.
3D Model of the San Emidio Geothermal Area
James E. Faulds
2013-12-31
The San Emidio geothermal system is characterized by a left-step in a west-dipping normal fault system that bounds the western side of the Lake Range. The 3D geologic model consists of 5 geologic units and 55 faults. Overlying Jurrassic-Triassic metasedimentary basement is a ~500 m-1000 m thick section of the Miocene lower Pyramid sequence, pre- syn-extensional Quaternary sedimentary rocks and post-extensional Quaternary rocks. 15-30º eastward dip of the stratigraphy is controlled by the predominant west-dipping fault set. Both geothermal production and injection are concentrated north of the step over in an area of closely spaced west dipping normal faults.
NASA Astrophysics Data System (ADS)
Mercuri, Marco; Scuderi, Marco Maria; Tesei, Telemaco; Carminati, Eugenio; Collettini, Cristiano
2018-04-01
A great number of earthquakes occur within thick carbonate sequences in the shallow crust. At the same time, carbonate fault rocks exhumed from a depth < 6 km (i.e., from seismogenic depths) exhibit the coexistence of structures related to brittle (i.e., cataclasis) and ductile deformation processes (i.e., pressure-solution and granular plasticity). We performed friction experiments on water-saturated simulated carbonate-bearing faults for a wide range of normal stresses (from 5 to 120 MPa) and slip velocities (from 0.3 to 100 μm/s). At high normal stresses (σn > 20 MPa) fault gouges undergo strain-weakening, that is more pronounced at slow slip velocities, and causes a significant reduction of frictional strength, from μ = 0.7 to μ = 0.47. Microstructural analysis show that fault gouge weakening is driven by deformation accommodated by cataclasis and pressure-insensitive deformation processes (pressure solution and granular plasticity) that become more efficient at slow slip velocity. The reduction in frictional strength caused by strain weakening behaviour promoted by the activation of pressure-insensitive deformation might play a significant role in carbonate-bearing faults mechanics.
Geologic map of the Paintbrush Canyon Area, Yucca Mountain, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickerson, R.P.; Drake, R.M. II
This geologic map is produced to support site characterization studies of Yucca Mountain, Nevada, site of a potential nuclear waste storage facility. The area encompassed by this map lies between Yucca Wash and Fortymile Canyon, northeast of Yucca Mountain. It is on the southern flank of the Timber Mountain caldera complex within the southwest Nevada volcanic field. Miocene tuffs and lavas of the Calico Hills Formation, the Paintbrush Group, and the Timber Mountain Group crop out in the area of this map. The source vents of the tuff cones and lava domes commonly are located beneath the thickest deposits ofmore » pyroclastic ejecta and lava flows. The rocks within the mapped area have been deformed by north- and northwest-striking, dominantly west-dipping normal faults and a few east-dipping normal faults. Faults commonly are characterized by well developed fault scarps, thick breccia zones, and hanging-wall grabens. Latest movement as preserved by slickensides on west-dipping fault scarps is oblique down towards the southwest. Two of these faults, the Paintbrush Canyon fault and the Bow Ridge fault, are major block-bounding faults here and to the south at Yucca Mountain. Offset of stratigraphic units across faults indicates that faulting occurred throughout the time these volcanic units were deposited.« less
Micromechanics of Friction in a Detailed Study of Mg-rich Phyllosilicates
NASA Astrophysics Data System (ADS)
Sanchez Roa, C.; Faulkner, D.; Boulton, C. J.; Jimenez Millan, J.; Nieto, F.
2016-12-01
Phyllosilicate minerals commonly occur within faults, which may accommodate slip either aseismically via creep mechanisms or seismically in earthquakes. The Mg-rich phyllosilicates talc, saponite, sepiolite, and palygorskite have different crystallography and habits. Sepiolite and palygorskite are fibrous due to their discontinuous tetrahedral layers, while saponite and talc are platy due to the continuity of their TOT and water layers. Friction experiments were conducted in a triaxial apparatus under 95 MPa effective normal stress with water and argon as pore fluids. Results show a marked contrast between friction coefficients of fibrous phyllosilicates, 0.57 to 0.63 for argon experiments and 0.4 to 0.5 for water-saturated experiments, and platy Mg-rich phyllosilicates, as low as 0.22 for argon experiments and 0.04 for water-saturated experiments. During velocity steps (where sliding velocity is increased or decreased by one order of magnitude), the two mineral groups exhibit distinctly dissimilar behaviours. After the direct effect of the change in sliding rate, fibrous phyllosilicates show a rapid exponential decay towards a new friction coefficient (a positive b value). Meanwhile, the friction coefficient of the platy phyllosilicates has a more linear evolution (a zero, or negative b value). This effect could be related to a difference in the sliding strength of the contact asperities which would be much higher for crystal surfaces of fibrous minerals with an indented surface due to the silicon tetrahedra inversions. The fibre-shaped crystals may consequently require higher amounts of volumetric work against the normal stress (dilatancy). SEM and TEM observations of the deformed samples showed a well-developed network of R1 Riedel shears in the fibrous materials; planar phyllosilicates show a more homogeneous matrix and incipient development of P foliation. Planar phyllosilicate grains align on their basal planes facilitating intergranular sliding, in contrast, the fibrous phyllosilicates appear to form an interlocking grid-like network that may promote dilatancy during velocity steps. The contrasting strength of Mg-rich phyllosilicates and analysis of their microstructures imply that phyllosilicate habit strongly influences the micromechanics of frictional sliding.
NASA Astrophysics Data System (ADS)
Austin, Lauren Jean
We investigate the evolution of the regional stress state near the Pit River, northern California, in order to understand the faulting style in a tectonic transition zone and to inform the hazard analysis of Fault 3432 near the Pit 3 Dam. By analyzing faults and folds preserved in and adjacent to a diatomite mine north of the Pit River, we have determined principal stress directions preserved during the past million years. We find that the stress state has evolved from predominantly normal to strike slip and most recently to reverse, which is consistent with regional structures such as the extensional Hat Creek Fault to the south and the compressional folding of Mushroom Rock to the north. South of the Pit River, we still observe normal and strike slip faults, suggesting that changes in stress state are moving from north to south through time.
Gravity and Magnetic Surveys Over the Santa Rita Fault System, Southeastern Arizona
Hegmann, Mary
2001-01-01
Gravity and magnetic surveys were performed in the northeast portion of the Santa Rita Experimental Range, in southeastern Arizona, to identify faults and gain a better understanding of the subsurface geology. A total of 234 gravity stations were established, and numerous magnetic data were collected with portable and truck-mounted proton precession magnetometers. In addition, one line of very low frequency electromagnetic data was collected together with magnetic data. Gravity anomalies are used to identify two normal faults that project northward toward a previously identified fault. The gravity data also confirm the location of a second previously interpreted normal fault. Interpretation of magnetic anomaly data indicates the presence of a higher-susceptibility sedimentary unit located beneath lowersusceptibility surficial sediments. Magnetic anomaly data identify a 1-km-wide negative anomaly east of these faults caused by an unknown source and reveal the high variability of susceptibility in the Tertiary intrusive rocks in the area.
Fault and joint geometry at Raft River Geothermal Area, Idaho
NASA Astrophysics Data System (ADS)
Guth, L. R.; Bruhn, R. L.; Beck, S. L.
1981-07-01
Raft River geothermal reservoir is formed by fractures in sedimentary strata of the Miocene and Pliocene salt lake formation. The fracturing is most intense at the base of the salt lake formation, along a decollement that dips eastward at less than 50 on top of metamorphosed precambrian and lower paleozoic rocks. Core taken from less than 200 m above the decollement contains two sets of normal faults. The major set of faults dips between 500 and 700. These faults occur as conjugate pairs that are bisected by vertical extension fractures. The second set of faults dips 100 to 200 and may parallel part of the basal decollement or reflect the presence of listric normal faults in the upper plate. Surface joints form two suborthogonal sets that dip vertically. East-northeast-striking joints are most frequent on the limbs of the Jim Sage anticline, a large fold that is associated with the geothermal field.
Shallow properties of faults in carbonate rocks - The Jandaíra Formation, Potiguar Basin, Brazil
NASA Astrophysics Data System (ADS)
Bezerra, F. H.; Bertotti, G.; Rabelo, J.; Silva, A. T.; Carneiro, M. A.; Cazarin, C. L.; Silva, C. C.; Vieira, M. M.; Bisdom, K.; Moraes, A.
2014-12-01
We studied the development of shallow faults in the Jandaíra Formation, a Turonian-Campanian carbonate platform in the Potiguar Basin, northeastern Brazil. Our main goal was to characterize fault geometry and properties such as porosity and permeability, and associate these results with fluid flow in shallow conditions. We used an integrated multidisciplinary approach, which combined Quickbird satellite and an unmanned aerial vehicle (UAV, drone) imagery, structural and sedimentary-facies mapping, and petrographic and petrophysical analyses. The Jandaíra Formation presents a variety of carbonate facies, which include mudstones to bioclastic, peloidal, intraclastic, and oolitic grainstones. We modeled our remote sensing and structural data using a finite element analysis system for 2D deformation modeling. We applied the magnitudes and directions of the present-day stress field to simulate depths as deep as 500 m. These stress data were derived from borehole breakout data and drilling-induced tensile fractures observed in resistivity image logs. Our results indicate the occurrence of dilation processes along three sets of joints that were reactivated as faults in the upper crust: N-S, NE-, and E-W-striking faults. These faults provided preferential leaching pathways to fresh water percolation, contributing to localized dissolution and increased secondary porosity and permeability. The results also indicate that the tectonic stresses are concentrated in preferred structural zones such as fault intersection and termination, which are sites of increased fracturing and dissolution. Dissolution by fluids increased permeability in carbonate rocks from primary values of 0.0-0.94 mD to as much as 1370.11 mD. This process is mostly Cenozoic.
Johnston, M.J.S.; Linde, A.T.; Agnew, D.C.
1994-01-01
High-precision strain was observed with a borehole dilational strainmeter in the Devil's Punchbowl during the 11:58 UT 28 June 1992 MW 7.3 Landers earthquake and the large Big Bear aftershock (MW 6.3). The strainmeter is installed at a depth of 176 m in the fault zone approximately midway between the surface traces of the San Andreas and Punchbowl faults and is about 100 km from the 85-km-long Landers rupture. We have questioned whether unusual amplified strains indicating precursive slip or high fault compliance occurred on the faults ruptured by the Landers earthquake, or in the San Andreas fault zone before and during the earthquake, whether static offsets for both the Landers and Big Bear earthquakes agree with expectation from geodetic and seismologic models of the ruptures and with observations from a nearby two-color geodimeter network, and whether postseismic behavior indicated continued slip on the Landers rupture or local triggered slip on the San Andreas. We show that the strain observed during the earthquake at this instrument shows no apparent amplification effects. There are no indications of precursive strain in these strain data due to either local slip on the San Andreas or precursive slip on the eventual Landers rupture. The observations are generally consistent with models of the earthquake in which fault geometry and slip have the same form as that determined by either inversion of the seismic data or inversion of geodetically determined ground displacements produced by the earthquake. Finally, there are some indications of minor postseismic behavior, particularly during the month following the earthquake.
NASA Astrophysics Data System (ADS)
Lee, J.; Stockli, D.; Gosse, J.
2007-12-01
Two different mechanisms have been proposed for fault slip transfer between the subparallel NW-striking dextral- slip faults that dominant the Eastern California Shear Zone (ECSZ)-Walker Lane Belt (WLB). In the northern WLB, domains of sinistral-slip along NE-striking faults and clockwise block rotation within a zone of distributed deformation accommodated NW-dextral shear. A somewhat modified version of this mechanism was also proposed for the Mina deflection, southern WLB, whereby NE-striking sinistral faults formed as conjugate faults to the primary zone of NW-dextral shear; clockwise rotation of the blocks bounding the sinistral faults accommodated dextral slip. In contrast, in the northern ECSZ and Mina deflection, domains of NE-striking pure dip-slip normal faults, bounded by NW-striking dextral-slip faults, exhibited no rotation; the proposed mechanism of slip transfer was one of right-stepping, high angle normal faults in which the magnitude of extension was proportional to the amount of strike-slip motion transferred. New geologic mapping, tectonic geomorphologic, and geochronologic data from the Queen Valley area, southern Mina deflection constrain Pliocene to late Quaternary fault geometries, slip orientations, slip magnitudes, and slip rates that bear on the mechanism of fault slip transfer from the relatively narrow northern ECSZ to the broad deformation zone that defines the Mina deflection. Four different fault types and orientations cut across the Queen Valley area: (1) The NE-striking normal-slip Queen Valley fault; (2) NE-striking sinistral faults; (3) the NW-striking dextral Coyote Springs fault, which merges into (4) a set of EW-striking thrust faults. (U-Th)/He apatite and cosmogenic radionuclide data, combined with magnitude of fault offset measurements, indicate a Pliocene to late Pleistocene horizontal extension rate of 0.2-0.3 mm/yr across the Queen Valley fault. Our results, combined with published slip rates for the dextral White Mountain fault zone (0.3-0.8 mm/yr) and the eastern sinistral Coaldale fault (0.4 mm/yr) suggest that transfer of dextral slip from the narrow White Mountains fault zone is explained best by a simple shear couple whereby slip is partitioned into three different components: horizontal extension along the Queen Valley fault, dominantly dextral slip along the Coyote Springs fault, and dominantly sinistral slip along the Coaldale fault. A velocity vector diagram illustrating fault slip partitioning predicts contraction rates of <0.1 to 0.5 mm/yr across the Coyote Springs and western Coaldale faults. The predicted long-term contraction across the Mina deflection is consistent with present-day GPS data.
Geochemistry and fluxes of volatiles in the Magadi and Natron thermal springs, East African Rift
NASA Astrophysics Data System (ADS)
Lee, H.; Fischer, T. P.; Muirhead, J.; Ebinger, C. J.; Kattenhorn, S. A.; Sharp, Z. D.; Sano, Y.; Takahata, N.
2016-12-01
The Magadi and Natron basin (MNB) is in the earliest stages of continental rifting (<10 Ma) in the East African Rift, and is bounded by numerous normal faults releasing a significant amount of CO2 (4.05 Mt/yr). Although many thermal springs have been observed along fault zones, sources and fluxes of volatiles from these fluids are poorly known. This study reports geochemistry and fluxes of dissolved gases in thermal springs of the MNB (T = 36.8 - 83.5°C and pH = 8.5 - 10.3), including major gas chemistry, d13C-CO2, d15N-N2, and 3He/4He ratios. N2 (< 94.7 vol%) is the most abundant gas, with minor air contamination (mean value of O2 = 1.79 vol%). The majority of CO2 (mean = 11.8 vol%) is dissolved in alkaline waters. Abundant CH4 concentrations (19.3 and 25.1 vol%) are observed only in high temperature (82.3 - 83.5°C) samples. Mean values of Ar and He are 1.75 and 0.59 vol%, respectively. d13C-CO2 (-5.68 to 1.62‰) and CO2/3He (7.24 x 108 - 1.81 x 1011) values show that CO2 originates from both mantle and limestone. d15N-N2 (-1.46 to 0.35‰) and N2/3He (3.92 x 106 - 1.33 x 109) values indicate that the major source of N2 is atmospheric, with a minor input of mantle N2 (fmantle < 22%), except for an anomalous biogenic sample (d15N-N2 = 5.93‰). 3He/4He ratios (0.64 - 4.00 Ra) suggest contributions of radiogenic 4He derived from a crustal source. 4He flux rates (3.64 x 1011 - 3.34 x 1014 atoms/m2 sec) calculated using spring flow rates are much greater than reported mean of continental flux values (4.18x1010 atoms/m2 sec), implying that magma intrusions or widespread normal faulting may help to mobilize crustal 4He in the study area. Total flux values (mol/yr) of CO2, N2, 3He, and 4He are 7.91 x 106, 1.77 x 107, 8.18, and 9.33 x 104, respectively. In particular, the total CO2 flux of springs is 0.01% of the total diffuse CO2 flux reported in the region. Our results reveal an interaction between mantle-derived volatiles and continental crust during early stage continental rifting in the MNB, with their upward rise facilitated by dilatational fault systems.
NASA Astrophysics Data System (ADS)
Okubo, C. H.
2014-12-01
In order to establish a foundation for studies of faulting in Martian rocks and soils in volcanic terrain, the distribution of brittle strain around faults within the North Menan Butte Tuff in the eastern Snake River Plain, Idaho and the Joe Lott Tuff Member of the Mount Belknap Volcanics, Utah, has been recently described. These studies employed a combination of macroscopic and microscopic observations, including measurements of in situ permeability as a proxy for non-localized brittle deformation of the host rock. In areas where the tuff retained its primary granular nature at the time of deformation, initial plastic yielding in both tuffs occurred along deformation bands. Both compactional and dilational types of deformation bands were observed, and faulting occurred along clusters of deformation bands. Where secondary alteration processes imparted a massive texture to the tuff, brittle deformation was accommodated along fractures. Host-rock permeability exhibits little variation from non-deformed values in the North Menan Butte Tuff, whereas host rock permeability is reduced by roughly an order of magnitude through compaction alone (no alteration) in the Joe Lott Tuff. To create a bridge between these observations in tuff and the more substantial body of work centered on deformation band formation and faulting in quartz-rich sandstones, the same techniques employed in the North Menan Butte Tuff and the Joe Lott Tuff have also been applied to a kilometer-scale fault in the Jurassic Navajo Sandstone in the Waterpocket Fold, Utah. These observations demonstrate that the manifestation of strain and evolution of faulting in the Mars-analog tuffs are comparable to that in quartz-rich sandstones. Therefore, current understanding of brittle deformation in quartz-rich sandstones can be used to inform investigations into fault growth within porous tuffs on Mars. A discussion of these observations, practical limitations, and directions for future work are presented here.
NASA Astrophysics Data System (ADS)
Lin, S.; Luo, D.; Yanlin, F.; Li, Y.
2016-12-01
Shallow Seismic Reflection (SSR) is a major geophysical exploration method with its exploration depth range, high-resolution in urban active fault exploration. In this paper, we carried out (SSR) and High-resolution refraction (HRR) test in the Liangyun Basin to explore a buried fault. We used NZ distributed 64 channel seismic instrument, 60HZ high sensitivity detector, Geode multi-channel portable acquisition system and hammer source. We selected single side hammer hit multiple overlay, 48 channels received and 12 times of coverage. As there are some coincidence measuring lines of SSR and HRR, we chose multi chase and encounter observation system. Based on the satellite positioning, we arranged 11 survey lines in our study area with total length for 8132 meters. GEOGIGA seismic reflection data processing software was used to deal with the SSR data. After repeated tests from the aspects of single shot record compilation, interference wave pressing, static correction, velocity parameter extraction, dynamic correction, eventually got the shallow seismic reflection profile images. Meanwhile, we used Canadian technology company good refraction and tomographic imaging software to deal with HRR seismic data, which is based on nonlinear first arrival wave travel time tomography. Combined with drilling geological profiles, we explained 11 measured seismic profiles. Results show 18 obvious fault feature breakpoints, including 4 normal faults of south-west, 7 reverse faults of south-west, one normal fault of north-east and 6 reverse faults of north-east. Breakpoints buried depth is 15-18 meters, and the inferred fault distance is 3-12 meters. Comprehensive analysis shows that the fault property is reverse fault with northeast incline section, and fewer branch normal faults presenting southwest incline section. Since good corresponding relationship between the seismic interpretation results, drilling data and SEM results on the property, occurrence, broken length of the fault, we considered the Liangyun fault to be an active fault which has strong activity during the Neogene Pliocene and early Pleistocene, Middle Pleistocene period. The combined application of SSR and HRR can provide more parameters to explain the seismic results, and improve the accuracy of the interpretation.
NASA Astrophysics Data System (ADS)
Zhuo, Yan-Qun; Ma, Jin; Guo, Yan-Shuang; Ji, Yun-Tao
In stick-slip experiments modeling the occurrence of earthquakes, the meta-instability stage (MIS) is the process that occurs between the peak differential stress and the onset of sudden stress drop. The MIS is the final stage before a fault becomes unstable. Thus, identification of the MIS can help to assess the proximity of the fault to the earthquake critical time. A series of stick-slip experiments on a simulated strike-slip fault were conducted using a biaxial servo-controlled press machine. Digital images of the sample surface were obtained via a high speed camera and processed using a digital image correlation method for analysis of the fault displacement field. Two parameters, A and S, are defined based on fault displacement. A, the normalized length of local pre-slip areas identified by the strike-slip component of fault displacement, is the ratio of the total length of the local pre-slip areas to the length of the fault within the observed areas and quantifies the growth of local unstable areas along the fault. S, the normalized entropy of fault displacement directions, is derived from Shannon entropy and quantifies the disorder of fault displacement directions along the fault. Based on the fault displacement field of three stick-slip events under different loading rates, the experimental results show the following: (1) Both A and S can be expressed as power functions of the normalized time during the non-linearity stage and the MIS. The peak curvatures of A and S represent the onsets of the distinct increase of A and the distinct reduction of S, respectively. (2) During each stick-slip event, the fault evolves into the MIS soon after the curvatures of both A and S reach their peak values, which indicates that the MIS is a synergetic process from independent to cooperative behavior among various parts of a fault and can be approximately identified via the peak curvatures of A and S. A possible application of these experimental results to field conditions is provided. However, further validation is required via additional experiments and exercises.
Numerical simulation of the stress distribution in a coal mine caused by a normal fault
NASA Astrophysics Data System (ADS)
Zhang, Hongmei; Wu, Jiwen; Zhai, Xiaorong
2017-06-01
Luling coal mine was used for research using FLAC3D software to analyze the stress distribution characteristics of the two sides of a normal fault zone with two different working face models. The working faces were, respectively, on the hanging wall and the foot wall; the two directions of mining were directed to the fault. The stress distributions were different across the fault. The stress was concentrated and the influenced range of stress was gradually larger while the working face was located on the hanging wall. The fault zone played a negative effect to the stress transmission. Obviously, the fault prevented stress transmission, the stress concentrated on the fault zone and the hanging wall. In the second model, the stress on the two sides decreased at first, but then increased continuing to transmit to the hanging wall. The concentrated stress in the fault zone decreased and the stress transmission was obvious. Because of this, the result could be used to minimize roadway damage and lengthen the time available for coal mining by careful design of the roadway and working face.
NASA Astrophysics Data System (ADS)
Kobayashi, T.; Yarai, H.; Morishita, Y.; Kawamoto, S.; Fujiwara, S.; Nakano, T.
2016-12-01
We report ground displacement associated with the 2016 Kumamoto Earthquake obtained by ALOS-2 SAR and GNSS data. For the SAR analyses, we applied InSAR, MAI, and pixel offset methods, which has successfully provided a 3D displacement field showing the widely- and locally-distributed deformation. The obtained displacement field shows clear displacement boundaries linearly along the Futagawa, the Hinagu, and the Denokuchi faults across which the sign of displacement component turns to be opposite, suggesting that the fault ruptures occurred there. Our fault model for the main shock suggests that the main rupture occurred on the Futagawa fault with a right-lateral motion including a slight normal fault motion. Due to the normal faulting movement, the northern side of the active fault subsides with approximately 2 m. The rupture on the Futagawa fault extends into the Aso caldera with slightly shifting the position northward. Of note, the fault plane oppositely dips toward southeast. It may be a conjugate fault against the main fault. In the western side of the Futagawa fault, the slip on the Hinagu fault, in which the Mj6.5 and Mj6.4 foreshocks occurred with a pure right-lateral motion, is also deeply involved with the main shock. This fault rupture released the amount of approximately 30 percent of the total seismic moment. The hypocenter is determined near the fault and its focal mechanism is consistent with the estimated slip motion of this fault plane, maybe suggesting that the rupture started at this fault and proceeded toward the Futagawa fault eastward. Acknowledgements: ALOS-2 data were provided from the Earthquake Working Group under a cooperative research contract with JAXA (Japan Aerospace Exploration Agency). The ownership of ALOS-2 data belongs to JAXA.
Evolving geometrical heterogeneities of fault trace data
NASA Astrophysics Data System (ADS)
Wechsler, Neta; Ben-Zion, Yehuda; Christofferson, Shari
2010-08-01
We perform a systematic comparative analysis of geometrical fault zone heterogeneities using derived measures from digitized fault maps that are not very sensitive to mapping resolution. We employ the digital GIS map of California faults (version 2.0) and analyse the surface traces of active strike-slip fault zones with evidence of Quaternary and historic movements. Each fault zone is broken into segments that are defined as a continuous length of fault bounded by changes of angle larger than 1°. Measurements of the orientations and lengths of fault zone segments are used to calculate the mean direction and misalignment of each fault zone from the local plate motion direction, and to define several quantities that represent the fault zone disorder. These include circular standard deviation and circular standard error of segments, orientation of long and short segments with respect to the mean direction, and normal separation distances of fault segments. We examine the correlations between various calculated parameters of fault zone disorder and the following three potential controlling variables: cumulative slip, slip rate and fault zone misalignment from the plate motion direction. The analysis indicates that the circular standard deviation and circular standard error of segments decrease overall with increasing cumulative slip and increasing slip rate of the fault zones. The results imply that the circular standard deviation and error, quantifying the range or dispersion in the data, provide effective measures of the fault zone disorder, and that the cumulative slip and slip rate (or more generally slip rate normalized by healing rate) represent the fault zone maturity. The fault zone misalignment from plate motion direction does not seem to play a major role in controlling the fault trace heterogeneities. The frequency-size statistics of fault segment lengths can be fitted well by an exponential function over the entire range of observations.
Fosdick, J.C.; Colgan, J.P.
2008-01-01
The East Range in northwestern Nevada is a large, east-tilted crustal block bounded by west-dipping normal faults. Detailed mapping of Tertiary stratigraphic units demonstrates a two-phase history of faulting and extension. The oldest sedimentary and volcanic rocks in the area record cumulative tilting of -30??-45??E, whereas younger olivine basalt flows indicate only a 15??-20??E tilt since ca. 17-13 Ma. Cumulative fault slip during these two episodes caused a minimum of 40% extensional strain across the East Range, and Quaternary fault scarps and seismic activity indicate that fault motion has continued to the present day. Apatite fission track and (U-Th)/He data presented here show that faulting began in the East Range ca. 17-15 Ma, coeval with middle Miocene extension that occurred across much of the Basin and Range. This phase of extension occurred contemporaneously with middle Miocene volcanism related to the nearby northern Nevada rifts, suggesting a link between magmatism and extensional stresses in the crust that facilitated normal faulting in the East Range. Younger fault slip, although less well constrained, began after 10 Ma and is synchronous with the onset of low-magnitude extension in many parts of northwestern Nevada and eastern California. These findings imply that, rather than migrating west across a discrete boundary, late Miocene extension in western Nevada is a distinct, younger period of faulting that is superimposed on the older, middle Miocene distribution of extended and unextended domains. The partitioning of such middle Miocene deformation may reflect the influence of localized heterogeneities in crustal structure, whereas the more broadly distributed late Miocene extension may reflect a stronger influence from regional plate boundary processes that began in the late Miocene. ?? 2008 Geological Society of America.
NASA Astrophysics Data System (ADS)
Davarpanah, A.; Babaie, H. A.
2012-12-01
The interaction of the thermally induced stress field of the Yellowstone hotspot (YHS) with existing Basin and Range (BR) fault blocks, over the past 17 m.y., has produced a new, spatially and temporally variable system of normal faults around the Snake River Plain (SRP) in Idaho and Wyoming-Montana area. Data about the trace of these new cross faults (CF) and older BR normal faults were acquired from a combination of satellite imageries, DEM, and USGS geological maps and databases at scales of 1:24,000, 1:100,000, 1:250,000, 1:1000, 000, and 1:2,500, 000, and classified based on their azimuth in ArcGIS 10. The box-counting fractal dimension (Db) of the BR fault traces, determined applying the Benoit software, and the anisotropy intensity (ellipticity) of the fractal dimensions, measured with the modified Cantor dust method applying the AMOCADO software, were measured in two large spatial domains (I and II). The Db and anisotropy of the cross faults were studied in five temporal domains (T1-T5) classified based on the geologic age of successive eruptive centers (12 Ma to recent) of the YHS along the eastern SRP. The fractal anisotropy of the CF system in each temporal domain was also spatially determined in the southern part (domain S1), central part (domain S2), and northern part (domain S3) of the SRP. Line (fault trace) density maps for the BR and CF polylines reveal a higher linear density (trace length per unit area) for the BR traces in the spatial domain I, and a higher linear density of the CF traces around the present Yellowstone National Park (S1T5) where most of the seismically active faults are located. Our spatio-temporal analysis reveals that the fractal dimension of the BR system in domain I (Db=1.423) is greater than that in domain II (Db=1.307). It also shows that the anisotropy of the fractal dimension in domain I is less eccentric (axial ratio: 1.242) than that in domain II (1.355), probably reflecting the greater variation in the trend of the BR system in domain I. The CF system in the S1T5 domain has the highest fractal dimension (Db=1.37) and the lowest anisotropy eccentricity (1.23) among the five temporal domains. These values positively correlate with the observed maxima on the fault trace density maps. The major axis of the anisotropy ellipses is consistently perpendicular to the average trend of the normal fault system in each domain, and therefore approximates the orientation of extension for normal faulting in each domain. This fact gives a NE-SW and NW-SE extension direction for the BR system in domains I and II, respectively. The observed NE-SW orientation of the major axes of the anisotropy ellipses in the youngest T4 and T5 temporal domains, oriented perpendicular to the mean trend of the normal faults in the these domains, suggests extension along the NE-SW direction for cross faulting in these areas. The spatial trajectories (form lines) of the minor axes of the anisotropy ellipses, and the mean trend of fault traces in the T4 and T5 temporal domains, define a large parabolic pattern about the axis of the eastern SRP, with its apex at the Yellowstone plateau.
Three Types of Flower Structures in a Divergent-Wrench Fault Zone
NASA Astrophysics Data System (ADS)
Huang, Lei; Liu, Chi-yang
2017-12-01
Flower structures are typical features of wrench fault zones. In conventional studies, two distinct kinds of flower structures have been identified based on differences in their internal structural architecture: (1) negative flower structures characterized by synforms and normal separations and (2) positive flower structures characterized by antiforms and reverse separations. In addition to negative and positive flower structures, in this study, a third kind of flower structure was identified in a divergent-wrench fault zone, a hybrid characterized by both antiforms and normal separations. Negative flower structures widely occur in divergent-wrench fault zones, and their presence indicates the combined effects of extensional and strike-slip motion. In contrast, positive and hybrid flower structures occur only in fault restraining bends and step overs. A hybrid flower structure can be considered as product of a kind of structural deformation typical of divergent-wrench zones; it is the result of the combined effects of extensional, compressional, and strike-slip strains under a locally appropriate compressional environment. The strain situation in it represents the transition stage that in between positive and negative flower structures. Kinematic and dynamic characteristics of the hybrid flower structures indicate the salient features of structural deformation in restraining bends and step overs along divergent-wrench faults, including the coexistence of three kinds of strains (i.e., compression, extension, and strike-slip) and synchronous presence of compressional (i.e., typical fault-bend fold) and extensional (normal faults) deformation in the same place. Hybrid flower structures are also favorable for the accumulation of hydrocarbons because of their special structural configuration in divergent-wrench fault zones.
The influence of normal fault on initial state of stress in rock mass
NASA Astrophysics Data System (ADS)
Tajduś, Antoni; Cała, Marek; Tajduś, Krzysztof
2016-03-01
Determination of original state of stress in rock mass is a very difficult task for rock mechanics. Yet, original state of stress in rock mass has fundamental influence on secondary state of stress, which occurs in the vicinity of mining headings. This, in turn, is the cause of the occurrence of a number of mining hazards, i.e., seismic events, rock bursts, gas and rock outbursts, falls of roof. From experience, it is known that original state of stress depends a lot on tectonic disturbances, i.e., faults and folds. In the area of faults, a great number of seismic events occur, often of high energies. These seismic events, in many cases, are the cause of rock bursts and damage to the constructions located inside the rock mass and on the surface of the ground. To estimate the influence of fault existence on the disturbance of original state of stress in rock mass, numerical calculations were done by means of Finite Element Method. In the calculations, it was tried to determine the influence of different factors on state of stress, which occurs in the vicinity of a normal fault, i.e., the influence of normal fault inclination, deformability of rock mass, values of friction coefficient on the fault contact. Critical value of friction coefficient was also determined, when mutual dislocation of rock mass part separated by a fault is impossible. The obtained results enabled formulation of a number of conclusions, which are important in the context of seismic events and rock bursts in the area of faults.
NASA Astrophysics Data System (ADS)
Loveless, S. E.; Bense, V.; Turner, J.
2011-12-01
Many aquifers worldwide occur in poorly lithified sediments, often in regions that experience active tectonic deformation. Faulting of these sediments introduces heterogeneities that may affect aquifer porosity and permeability, and consequently subsurface fluid flow and groundwater storage. The specific hydrogeological effects of faults depend upon the fault architecture and deformation mechanisms. These are controlled by factors such as rheology, stratigraphy and burial depth. Here, we analyse fault permeability in poorly lithified sediments as a function of fault displacement. We have carried out detailed outcrop studies of minor normal faults at five study sites within the rapidly extending Corinth rift, Central Greece. Gravel conglomerates of giant Gilbert delta facies form productive but localised shallow aquifers within the region. Exposures reveal dense (average 20 faults per 100 m) networks of minor (0.1 to 50 m displacement) normal faults within the uplifted sequences, proximal to many of the crustal-scale normal faults. Analysis of 42 faults shows that fault zones are primarily composed of smeared beds that can either retain their definition or mix with surrounding sediment. Lenses or blocks of sediment are common in fault zones that cut beds with contrasting rheology, and a few faults have a clay core and/or damage zone. Fault thickness increases at a rate of about 0.4 m per 10 m increase in displacement. Comparison of sediment micro-structures from the field, hand samples and thin sections show grain-scale sediment mixing, fracturing of clasts, and in some cases cementation, within fault zones. In faults with displacements >12 m we also find a number of roughly parallel, highly indurated shear planes, up to 20 mm in thickness, composed of highly fragmented clasts and a fine grained matrix. Image analysis of thin sections from hand samples collected in the field was used to quantify the porosity of fault zones and adjacent undeformed sediment. These data show a reduction in average porosity from 21% (± 4) in undisturbed sediments to 14% (± 8) within fault zones. We find that fault zone porosity decreases by approximately 5% per 1 m displacement (up to 2 m displacement), as sediments undergo greater micro-scale deformation. Porosity within the shear planes of larger displacement faults (> 12 m) is significantly less than 5%. In summary, with an increase in fault displacement there is an increase in fault thickness and decrease in fault zone porosity, in addition to the occurrence of extremely low porosity shear planes. Consequently, the impact of faults in poorly lithified sediment on fluid flow is, to a large degree, dependent upon the magnitude of fault displacement.
Impact of Acid Attack on the Shear Behaviour of a Carbonate Rock Joint
NASA Astrophysics Data System (ADS)
Nouailletas, O.; Perlot, C.; Rivard, P.; Ballivy, G.; La Borderie, C.
2017-06-01
The mechanical behaviour of structural discontinuities in rock mass is a key element of the stability analysis in civil engineering, petroleum engineering and mining engineering. In this paper, the mechanical analysis is coupled with the acidic attack of a rock joint associated with leakage of CO2 through a geological fault in the context of carbon sequestration. Experiments were conducted at the laboratory scale to assess the shear behaviour of degraded joint: direct shear tests were performed on rock joints that have been previously immersed into water or into an acidic solution (pH 0.2). The shear behaviour of joints is governed by the roughness of its walls: the parameters Z2, Z3, Z4 and RL characterize the rough surfaces. They are calculated from the scans of joint surfaces after and before immersion. Their comparison pointed out a slight impact of the acidic attack. However, the results of the direct shear tests show significant modifications in the shear behaviour for the degraded joints: the tangential stress peak disappears, the tangential stiffness decreases in the stress/displacement curve, and the contraction increases, the dilation angle decreases in the dilation curve. Acid attack has a greater impact on the mechanical properties of the asperities than their geometric characteristics. The results of this study will be used to improve chemo-mechanical modelling to better simulate with higher accuracy the fault stability in different cases of civil engineering, petroleum engineering and mining engineering.
NASA Astrophysics Data System (ADS)
Zhu, A.; Wang, P.; Liu, F.
2017-12-01
The southeastern China in the mainland corresponds to the south China block, which is characterized by moderate historical seismicity and low stain rate. Most faults are buried under thick Quaternary deposits, so it is difficult to detect and locate them using the routine geological methods. Only a few have been identified to be active in late Quaternary, which leads to relatively high potentially seismic risk to this region due to the unexpected locations of the earthquakes. We performed both hypoDD and tomoDD for the background seismicity from 2000 to 2016 to investigate the buried faults. Some buried active faults are revealed by the relocated seismicity and the velocity structure, no geologically known faults corresponding to them and no surface active evidence ever observed. The geometries of the faults are obtained by analyzing the hypocentral distribution pattern and focal mechanism. The focal mechanism solutions indicate that all the revealed faults are dominated in strike-slip mechanisms, or with some thrust components. While the previous fault investigation and detection results show that most of the Quaternary faults in southeastern China are dominated by normal movement. It suggests that there may exist two fault systems in deep and shallow tectonic regimes. The revealed faults may construct the deep one that act as the seismogenic faults, and the normal faults at shallow cannot generate the destructive earthquakes. The variation in the Curie-point depths agrees well with the structure plane of the revealed active faults, suggesting that the faults may have changed the deep structure.
NASA Astrophysics Data System (ADS)
Bonali, F. L.; Corazzato, C.; Tibaldi, A.
2012-06-01
We describe the relationships between Plio-Quaternary tectonics, palaeoseismicity and volcanism along the NW-trending Calama-Olacapato-El Toro (COT) lineament that crosses the Andean chain and the Puna Plateau and continues within the eastern Cordillera at about 24° S. We studied in detail the area from the Chile-Argentina border to a few km east of the San Antonio del Los Cobres village. Satellite and field data revealed the presence of seven Quaternary NW-striking normal left-lateral fault segments in the southeastern part of the studied area and of a Plio-Quaternary N-S-striking graben structure in the northwestern part. The NW-striking Chorrillos fault (CF) segment shows the youngest motions, of late Pleistocene age, being marked by several fault scarps, sag ponds and offset Quaternary deposits and landforms. Offset lavas of 0.78 ± 0.1 Ma to 0.2 ± 0.08 Ma indicate fault kinematics characterised by a pitch angle of 20° to 27° SE, a total net displacement of 31 to 63.8 m, and a slip-rate of 0.16 to 0.08 mm/yr. This fault segment is 32 km long and terminates to the northwest near a set of ESE-dipping thrust faults affecting Tertiary strata, while to the southeast it terminates 10 km further from San Antonio. In the westernmost part of the examined area, in Chile at altitudes > 4000 m, recent N-S-striking normal fault scarps depict the 5-km-wide and 10-km-long graben structure. Locally, fault pitches indicate left-lateral normal kinematics. These faults affect deposits up to ignimbrites of Plio-Quaternary age. Scarp heights are from a few metres to 24 m. Despite that this area is located along the trace of the COT strike-slip fault system, which is reported as a continuous structure from Chile to Argentina in the literature, no evidence of NW-striking Plio-Quaternary strike-slip structures is present here. A series of numerical models were also developed in an elastic half-space with uniform isotropic elastic properties using the Coulomb 3.1 code. We studied the stress changes caused by slip along the various Quaternary COT fault segments, showing that the last motions occurred along the CF might promote in the future further displacement along nearby fault segments located to the northwest. Furthermore, slip along the NW-striking fault segments imparts normal stress changes on the nearby Tuzgle volcano feeding system.
NASA Astrophysics Data System (ADS)
Riegel, H. B.; Zambrano, M.; Jablonska, D.; Emanuele, T.; Agosta, F.; Mattioni, L.; Rustichelli, A.
2017-12-01
The hydraulic properties of fault zones depend upon the individual contributions of the damage zone and the fault core. In the case of the damage zone, it is generally characterized by means of fracture analysis and modelling implementing multiple approaches, for instance the discrete fracture network model, the continuum model, and the channel network model. Conversely, the fault core is more difficult to characterize because it is normally composed of fine grain material generated by friction and wear. If the dimensions of the fault core allows it, the porosity and permeability are normally studied by means of laboratory analysis or in the other case by two dimensional microporosity analysis and in situ measurements of permeability (e.g. micro-permeameter). In this study, a combined approach consisting of fracture modeling, three-dimensional microporosity analysis, and computational fluid dynamics was applied to characterize the hydraulic properties of fault zones. The studied fault zones crosscut a well-cemented heterolithic succession (sandstone and mudstones) and may vary in terms of fault core thickness and composition, fracture properties, kinematics (normal or strike-slip), and displacement. These characteristics produce various splay and fault core behavior. The alternation of sandstone and mudstone layers is responsible for the concurrent occurrence of brittle (fractures) and ductile (clay smearing) deformation. When these alternating layers are faulted, they produce corresponding fault cores which act as conduits or barriers for fluid migration. When analyzing damage zones, accurate field and data acquisition and stochastic modeling was used to determine the hydraulic properties of the rock volume, in relation to the surrounding, undamaged host rock. In the fault cores, the three-dimensional pore network quantitative analysis based on X-ray microtomography images includes porosity, pore connectivity, and specific surface area. In addition, images were used to perform computational fluid simulation (Lattice-Boltzmann multi relaxation time method) and estimate the permeability. These results will be useful for understanding the deformation process and hydraulic properties across meter-scale damage zones.
Fault detection and diagnosis using neural network approaches
NASA Technical Reports Server (NTRS)
Kramer, Mark A.
1992-01-01
Neural networks can be used to detect and identify abnormalities in real-time process data. Two basic approaches can be used, the first based on training networks using data representing both normal and abnormal modes of process behavior, and the second based on statistical characterization of the normal mode only. Given data representative of process faults, radial basis function networks can effectively identify failures. This approach is often limited by the lack of fault data, but can be facilitated by process simulation. The second approach employs elliptical and radial basis function neural networks and other models to learn the statistical distributions of process observables under normal conditions. Analytical models of failure modes can then be applied in combination with the neural network models to identify faults. Special methods can be applied to compensate for sensor failures, to produce real-time estimation of missing or failed sensors based on the correlations codified in the neural network.
The evolution of tectonic features on Ganymede
NASA Technical Reports Server (NTRS)
Squyres, S. W.
1982-01-01
The bands of bright resurfaced terrain on Ganymede are probably broad grabens formed by global expansion and filled with deposits of ice. Grooves within the bands are thought to be extensional features formed during the same episode of expansion. The crust of Ganymede is modeled as a viscoelastic material subjected to extensional strain. With sufficiently high strain rates and stresses, deep normal faulting will occur, creating broad grabens that may then be filled. Continuing deformation at high strain rates and stresses will cause propagation of deep faults up into the flood deposits and normal faulting at the surface, while lower strain rates and stresses will cause formation of open extension fractures or, if the crustal strength is very low, grabens at the surface. The spacing between adjacent fractures may reflect the geothermal gradient at the time of deformation. Surface topography resulting from fracturing and normal faulting will decay with time as a result of viscous relaxation and mass-wasting.
Superconducting fault current-limiter with variable shunt impedance
Llambes, Juan Carlos H; Xiong, Xuming
2013-11-19
A superconducting fault current-limiter is provided, including a superconducting element configured to resistively or inductively limit a fault current, and one or more variable-impedance shunts electrically coupled in parallel with the superconducting element. The variable-impedance shunt(s) is configured to present a first impedance during a superconducting state of the superconducting element and a second impedance during a normal resistive state of the superconducting element. The superconducting element transitions from the superconducting state to the normal resistive state responsive to the fault current, and responsive thereto, the variable-impedance shunt(s) transitions from the first to the second impedance. The second impedance of the variable-impedance shunt(s) is a lower impedance than the first impedance, which facilitates current flow through the variable-impedance shunt(s) during a recovery transition of the superconducting element from the normal resistive state to the superconducting state, and thus, facilitates recovery of the superconducting element under load.
Faulds, James E.
2013-12-31
Over the course of the entire project, field visits were made to 117 geothermal systems in the Great Basin region. Major field excursions, incorporating visits to large groups of systems, were conducted in western Nevada, central Nevada, northwestern Nevada, northeastern Nevada, east‐central Nevada, eastern California, southern Oregon, and western Utah. For example, field excursions to the following areas included visits of multiple geothermal systems: - Northwestern Nevada: Baltazor Hot Spring, Blue Mountain, Bog Hot Spring, Dyke Hot Springs, Howard Hot Spring, MacFarlane Hot Spring, McGee Mountain, and Pinto Hot Springs in northwest Nevada. - North‐central to northeastern Nevada: Beowawe, Crescent Valley (Hot Springs Point), Dann Ranch (Hand‐me‐Down Hot Springs), Golconda, and Pumpernickel Valley (Tipton Hot Springs) in north‐central to northeast Nevada. - Eastern Nevada: Ash Springs, Chimney Hot Spring, Duckwater, Hiko Hot Spring, Hot Creek Butte, Iverson Spring, Moon River Hot Spring, Moorman Spring, Railroad Valley, and Williams Hot Spring in eastern Nevada. - Southwestern Nevada‐eastern California: Walley’s Hot Spring, Antelope Valley, Fales Hot Springs, Buckeye Hot Springs, Travertine Hot Springs, Teels Marsh, Rhodes Marsh, Columbus Marsh, Alum‐Silver Peak, Fish Lake Valley, Gabbs Valley, Wild Rose, Rawhide‐ Wedell Hot Springs, Alkali Hot Springs, and Baileys/Hicks/Burrell Hot Springs. - Southern Oregon: Alvord Hot Spring, Antelope Hot Spring‐Hart Mountain, Borax Lake, Crump Geyser, and Mickey Hot Spring in southern Oregon. - Western Utah: Newcastle, Veyo Hot Spring, Dixie Hot Spring, Thermo, Roosevelt, Cove Fort, Red Hill Hot Spring, Joseph Hot Spring, Hatton Hot Spring, and Abraham‐Baker Hot Springs. Structural controls of 426 geothermal systems were analyzed with literature research, air photos, google‐Earth imagery, and/or field reviews (Figures 1 and 2). Of the systems analyzed, we were able to determine the structural settings of more than 240 sites. However, we found that many “systems” consisted of little more than a warm or hot well in the central part of a basin. Such “systems” were difficult to evaluate in terms of structural setting in areas lacking in geophysical data. Developed database for structural catalogue in a master spreadsheet. Data components include structural setting, primary fault orientation, presence or absence of Quaternary faulting, reservoir lithology, geothermometry, presence or absence of recent magmatism, and distinguishing blind systems from those that have surface expressions. Reviewed site locations for all 426 geothermal systems– Confirmed and/or relocated spring and geothermal sites based on imagery, maps, and other information for master database. Many systems were mislocated in the original database. In addition, some systems that included several separate springs spread over large areas were divided into two or more distinct systems. Further, all hot wells were assigned names based on their location to facilitate subsequent analyses. We catalogued systems into the following eight major groups, based on the dominant pattern of faulting (Figure 1): - Major normal fault segments (i.e., near displacement maxima). - Fault bends. - Fault terminations or tips. - Step‐overs or relay ramps in normal faults. - Fault intersections. - Accommodation zones (i.e., belts of intermeshing oppositely dipping normal faults), - Displacement transfer zones whereby strike‐slip faults terminate in arrays of normal faults. - Transtensional pull‐aparts. These settings form a hierarchal pattern with respect to fault complexity. - Major normal faults and fault bends are the simplest. - Fault terminations are typically more complex than mid‐segments, as faults commonly break up into multiple strands or horsetail near their ends. - A fault intersection is generally more complex, as it generally contains both multiple fault strands and can include discrete di...
Barbalias, Dimitrios; Lappas, Georgios; Ravazoula, Panagiotia; Liourdi, Despoina; Kyriazis, Iason; Liatsikos, Evangelos; Kallidonis, Panagiotis
2018-05-01
Urethral strictures are a common urologic problem that could require complex reconstructive procedures. Urethral dilatation represents a frequent practiced intervention associated with high recurrence rates. Drug-coated percutaneous angioplasty balloons (DCBs) with cytostatic drugs have been effectively used for the prevention of vascular restenosis after balloon dilatation. To reduce restenosis rates of urethral dilatation, these balloons could be used in the urethra. Nevertheless, the urothelium is different than the endothelium and these drugs may not be distributed to the outer layers of the urethra. Thus, an experiment was performed to evaluate the distribution of paclitaxel (PTX) in the rabbit urethra after the inflation of a PTX-coated balloon (PCB). Eleven rabbits underwent dilatation of the posterior urethra with common endoscopic balloons after urethrography. Nine of these rabbits were additionally treated with PCB. The urethras of the two control animals were removed along with three more dilated with PCB urethras immediately after the dilatation. The remaining of the urethras were removed after 24 (n = 3) and 48 hours (n = 3). The posterior segments of the urethras were evaluated with hematoxylin and eosin staining as well as with immunohistochemistry with polyclonal anti-PTX antibody. The two control specimens showed denudation of the urothelium after balloon dilatations and no PTX was observed. All specimens from dilated PCB urethras showed distribution of PTX to all layers of the urethra. The specimens that were immediately removed exhibited denudation of the urothelium without any inflammation. The specimens removed at 24 and 48 hours showed mild acute inflammation. PTX was distributed to the urothelial, submucosal, and smooth muscle layers of the normal rabbit urethra immediately after dilatation with a DCB. PTX and mild inflammation were present at the site 24 and 48 hours after the dilatation.
Hartmann, A; Maul, F D; Zimny, M; Klepzig, H; Vallbracht, C; Kneissl, H G; Schräder, R; Hör, G; Kaltenbach, M
1991-09-01
Impairment of left ventricular function during controlled myocardial ischemia induced by coronary angioplasty has been reported from angiographic and echocardiographic studies. Ejection fraction, peak ejection, peak filling rates, and end-systolic and end-diastolic volumes were investigated before, during and after coronary occlusion on-line with a nonimaging scintillation probe. The study consisted of 18 patients (mean age 59 +/- 10 years) with coronary artery stenosis of greater than 70%. During balloon inflation of 60 seconds' duration, coronary occlusion pressure was 31.6 +/- 12 mm Hg. There was no significant change in heart rate. Delay between first and second dilatation was 109 +/- 63 seconds. Ejection fraction decreased from 53 +/- 16 to 40 +/- 12% (first dilatation, p less than 0.01) and to 39 +/- 14% (second dilatation, p less than 0.01) and recovered to 51 +/- 16% 5 minutes after the second dilatation. Peak ejection rate was significantly reduced during the first and second balloon inflations. Peak filling rate decreased from 2.5 +/- 0.8 to 2.0 +/- 0.7 end-diastolic volume.s-1 (first dilatation, p less than 0.01) and to 1.8 +/- 0.7 end-diastolic volume.s-1 (second dilatation, p less than 0.01) and remained reduced at 2.2 +/- 0.7 end-diastolic volume.s-1 (p = not significant) at 5 minutes after the second dilatation. End-systolic and end-diastolic volumes increased significantly during the first and second dilatations and returned to normal after dilatation. It is concluded that short, controlled myocardial ischemia during coronary angioplasty leads to a decrease in systolic and diastolic left ventricular function. Sequential dilatations do not further decrease function if a sufficient interval is kept.
NASA Astrophysics Data System (ADS)
Bonali, F. L.; Tibaldi, A.; Corazzato, C.; Lanza, F.; Cavallo, A.; Nardin, A.
2012-04-01
The aim of this work is to describe the relationships between Plio-Quaternary tectonics, palaeoseismicity and volcanism along the NW-trending Calama-Olacapato-El Toro (COT) lineament that crosses the Andean chain and the Puna Plateau and continues within the eastern Cordillera at about 24° S. Field and satellite data have been collected from the Chile-Argentina border to a few km east of the San Antonio del Los Cobres village. These data revealed the presence of seven Quaternary NW-striking normal left-lateral fault segments in the southeastern part of the studied area and of a Plio-Quaternary N-S-striking graben structure in the northwestern part. The NW-striking Chorrillos fault (CF) segment shows the youngest motions, of late Pleistocene age, being marked by several fault scarps, sag-ponds and offset Quaternary deposits and landforms. Offset lavas of 0.78±0.1 Ma to 0.2±0.08 Ma indicate fault kinematics characterized by a pitch angle of 20° to 27° SE, a total net displacement that ranges from 31 to 63.8 m, and a slip-rate of 0.16 to 0.08 mm/yr. This fault segment is 32 km long and terminates to the northwest near a set of ESE-dipping thrust faults affecting Tertiary strata, while to the southeast it terminates 10 km further from San Antonio. In the westernmost part of the examined area, in Chile at altitudes of 4000 m, recent N-S-striking normal fault scarps depict the 5-km-wide and 10-km-long graben structure. Locally, fault pitches indicate left-lateral normal kinematics. These faults affect deposits up to ignimbrites of Plio-Quaternary age. Scarp heights are from a few metres to 24 m. Despite this area is located along the trace of the COT strike-slip fault system, which is reported as a continuous structure from Chile to Argentina in the literature, no evidence of NW-striking Plio-Quaternary strike-slip structures is present here. A series of numerical models were developed in an elastic half-space with uniform isotropic elastic properties using the Coulomb 3.2 code. We studied the stress changes caused by slip along the various Quaternary COT fault segments, showing that the last motions occurred along the Chorrillos fault might promote in the future further displacement along nearby fault segments located to the northwest. Furthermore, slip along the NW-striking fault segments imparts normal stress changes on the nearby Tuzgle volcano feeding system. Cumulative effects of fault reactivation disadvantage future Tuzgle eruptions.
NASA Astrophysics Data System (ADS)
Fagereng, A.; Hodge, M.; Biggs, J.; Mdala, H. S.; Goda, K.
2016-12-01
Faults grow through the interaction and linkage of isolated fault segments. Continuous fault systems are those where segments interact, link and may slip synchronously, whereas non-continuous fault systems comprise isolated faults. As seismic moment is related to fault length (Wells and Coppersmith, 1994), understanding whether a fault system is continuous or not is critical in evaluating seismic hazard. Maturity may be a control on fault continuity: immature, low displacement faults are typically assumed to be non-continuous. Here, we study two overlapping, 20 km long, normal fault segments of the N-S striking Bilila-Mtakataka fault, Malawi, in the southern section of the East African Rift System. Despite its relative immaturity, previous studies concluded the Bilila-Mtakataka fault is continuous for its entire 100 km length, with the most recent event equating to an Mw8.0 earthquake (Jackson and Blenkinsop, 1997). We explore whether segment geometry and relationship to pre-existing high-grade metamorphic foliation has influenced segment interaction and fault development. Fault geometry and scarp height is constrained by DEMs derived from SRTM, Pleiades and `Structure from Motion' photogrammetry using a UAV, alongside direct field observations. The segment strikes differ on average by 10°, but up to 55° at their adjacent tips. The southern segment is sub-parallel to the foliation, whereas the northern segment is highly oblique to the foliation. Geometrical surface discontinuities suggest two isolated faults; however, displacement-length profiles and Coulomb stress change models suggest segment interaction, with potential for linkage at depth. Further work must be undertaken on other segments to assess the continuity of the entire fault, concluding whether an earthquake greater than that of the maximum instrumentally recorded (1910 M7.4 Rukwa) is possible.
Activation of preexisting transverse structures in an evolving magmatic rift in East Africa
NASA Astrophysics Data System (ADS)
Muirhead, J. D.; Kattenhorn, S. A.
2018-01-01
Inherited crustal weaknesses have long been recognized as important factors in strain localization and basin development in the East African Rift System (EARS). However, the timing and kinematics (e.g., sense of slip) of transverse (rift-oblique) faults that exploit these weaknesses are debated, and thus the roles of inherited weaknesses at different stages of rift basin evolution are often overlooked. The mechanics of transverse faulting were addressed through an analysis of the Kordjya fault of the Magadi basin (Kenya Rift). Fault kinematics were investigated from field and remote-sensing data collected on fault and joint systems. Our analysis indicates that the Kordjya fault consists of a complex system of predominantly NNE-striking, rift-parallel fault segments that collectively form a NNW-trending array of en echelon faults. The transverse Kordjya fault therefore reactivated existing rift-parallel faults in ∼1 Ma lavas as oblique-normal faults with a component of sinistral shear. In all, these fault motions accommodate dip-slip on an underlying transverse structure that exploits the Aswa basement shear zone. This study shows that transverse faults may be activated through a complex interplay among magma-assisted strain localization, preexisting structures, and local stress rotations. Rather than forming during rift initiation, transverse structures can develop after the establishment of pervasive rift-parallel fault systems, and may exhibit dip-slip kinematics when activated from local stress rotations. The Kordjya fault is shown here to form a kinematic linkage that transfers strain to a newly developing center of concentrated magmatism and normal faulting. It is concluded that recently activated transverse faults not only reveal the effects of inherited basement weaknesses on fault development, but also provide important clues regarding developing magmatic and tectonic systems as young continental rift basins evolve.
Padilla, Jaume; Johnson, Blair D; Newcomer, Sean C; Wilhite, Daniel P; Mickleborough, Timothy D; Fly, Alyce D; Mather, Kieren J; Wallace, Janet P
2008-09-04
Normalization of brachial artery flow-mediated dilation (FMD) to individual shear stress area under the curve (peak FMD:SSAUC ratio) has recently been proposed as an approach to control for the large inter-subject variability in reactive hyperemia-induced shear stress; however, the adoption of this approach among researchers has been slow. The present study was designed to further examine the efficacy of FMD normalization to shear stress in reducing measurement variability. Five different magnitudes of reactive hyperemia-induced shear stress were applied to 20 healthy, physically active young adults (25.3 +/- 0. 6 yrs; 10 men, 10 women) by manipulating forearm cuff occlusion duration: 1, 2, 3, 4, and 5 min, in a randomized order. A venous blood draw was performed for determination of baseline whole blood viscosity and hematocrit. The magnitude of occlusion-induced forearm ischemia was quantified by dual-wavelength near-infrared spectrometry (NIRS). Brachial artery diameters and velocities were obtained via high-resolution ultrasound. The SSAUC was individually calculated for the duration of time-to-peak dilation. One-way repeated measures ANOVA demonstrated distinct magnitudes of occlusion-induced ischemia (volume and peak), hyperemic shear stress, and peak FMD responses (all p < 0.0001) across forearm occlusion durations. Differences in peak FMD were abolished when normalizing FMD to SSAUC (p = 0.785). Our data confirm that normalization of FMD to SSAUC eliminates the influences of variable shear stress and solidifies the utility of FMD:SSAUC ratio as an index of endothelial function.
Impaired Collagen Biosynthesis and Cross‐linking in Aorta of Patients With Bicuspid Aortic Valve
Wågsäter, Dick; Paloschi, Valentina; Hanemaaijer, Roeland; Hultenby, Kjell; Bank, Ruud A.; Franco‐Cereceda, Anders; Lindeman, Jan H. N.; Eriksson, Per
2013-01-01
Background Patients with bicuspid aortic valve (BAV) have an increased risk of developing ascending aortic aneurysm. In the present study, collagen homeostasis in nondilated and dilated aorta segments from patients with BAV was studied, with normal and dilated aortas from tricuspid aortic valve (TAV) patients as reference. Methods and Results Ascending aortas from 56 patients were used for biochemical and morphological analyses of collagen. mRNA expression was analyzed in 109 patients. Collagen turnover rates were similar in nondilated and dilated aortas of BAV patients, showing that aneurysmal formation in BAV is, in contrast to TAV, not associated with an increased collagen turnover. However, BAV in general was associated with an increased aortic collagen turnover compared with nondilated aortas of TAV patients. Importantly, the ratio of hydroxylysyl pyridinoline (HP) to lysyl pyridinoline (LP), 2 distinct forms of collagen cross‐linking, was lower in dilated aortas from patients with BAV, which suggests that BAV is associated with a defect in the posttranslational collagen modification. This suggests a deficiency at the level of lysyl hydroxylase (PLOD1), which was confirmed by mRNA and protein analyses that showed reduced PLOD1 expression but normal lysyl oxidase expression in dilated aortas from patients with BAV. This suggests that impaired collagen cross‐linking in BAV patients may be attributed to changes in the expression and/or activity of PLOD1. Conclusions Our results demonstrate an impaired biosynthesis and posttranslational modification of collagen in aortas of patients with BAV, which may explain the increased aortic aneurysm formation in BAV patients. PMID:23525417
NASA Astrophysics Data System (ADS)
Razumov, I. K.
2017-10-01
The previously proposed model of pearlite transformation develops taking into account the possible interaction between carbon and lattice dilatations arising in austenite near the pearlite colony. The normal stresses caused by the colony stimulate autocatalysis of plates, and tangential stresses promote the stabilization of the transformation front. The mechanism of ferrite branching, which can play an important role in the kinetics of pearlite and bainite transformations, is discussed.
An imbalance fault detection method based on data normalization and EMD for marine current turbines.
Zhang, Milu; Wang, Tianzhen; Tang, Tianhao; Benbouzid, Mohamed; Diallo, Demba
2017-05-01
This paper proposes an imbalance fault detection method based on data normalization and Empirical Mode Decomposition (EMD) for variable speed direct-drive Marine Current Turbine (MCT) system. The method is based on the MCT stator current under the condition of wave and turbulence. The goal of this method is to extract blade imbalance fault feature, which is concealed by the supply frequency and the environment noise. First, a Generalized Likelihood Ratio Test (GLRT) detector is developed and the monitoring variable is selected by analyzing the relationship between the variables. Then, the selected monitoring variable is converted into a time series through data normalization, which makes the imbalance fault characteristic frequency into a constant. At the end, the monitoring variable is filtered out by EMD method to eliminate the effect of turbulence. The experiments show that the proposed method is robust against turbulence through comparing the different fault severities and the different turbulence intensities. Comparison with other methods, the experimental results indicate the feasibility and efficacy of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
An integrated geodetic and seismic study of the Cusco Fault system in the Cusco Region-Southern Peru
NASA Astrophysics Data System (ADS)
Norabuena, E. O.; Tavera, H. J.
2017-12-01
The Cusco Fault system is composed by six main faults (Zurite, Tamboray, Qoricocha, Tambomachay, Pachatusan, and Urcos) extending in a NW-SE direction over the Cusco Region in southeastern Peru. From these, the Tambomachay is a normal fault of 20 km length, strikes N120°E and bounds a basin filled with quaternary lacustrine and fluvial deposits. Given its 5 km distance to Cusco, an historical and Inca's archeological landmark, it represents a great seismic hazard for its more than 350,000 inhabitants. The Tambomachay fault as well as the other secondary faults have been a source of significant seismic activity since historical times being the more damaging ones the Cusco earthquakes of 1650, 1950 and more recently April 1986 (M 5.8). Previous geological studies indicate that at the beginning of the Quaternary the fault showed a transcurrent mechanism leading to the formation of the Cusco basin. However, nowadays its mechanism is normal fault and scarps up to 22m can be observed. We report the current dynamics of the Tambomachay fault and secondary faults based on seismic activity imaged by a network of 29 broadband stations deployed in the Cusco Region as well as the deformation field inferred from GPS survey measurements carried out between 2014 and 2016.
NASA Astrophysics Data System (ADS)
Magee, Craig; McDermott, Kenneth G.; Stevenson, Carl T. E.; Jackson, Christopher A.-L.
2014-05-01
Continental rifting is commonly accommodated by the nucleation of normal faults, slip on pre-existing fault surfaces and/or magmatic intrusion. Because crystallised igneous intrusions are pervasive in many rift basins and are commonly more competent (i.e. higher shear strengths and Young's moduli) than the host rock, it is theoretically plausible that they locally intersect and modify the mechanical properties of pre-existing normal faults. We illustrate the influence that crystallised igneous intrusions may have on fault reactivation using a conceptual model and observations from field and subsurface datasets. Our results show that igneous rocks may initially resist failure, and promote the preferential reactivation of favourably-oriented, pre-existing faults that are not spatially-associated with solidified intrusions. Fault segments situated along strike from laterally restricted fault-intrusion intersections may similarly be reactivated. This spatial and temporal control on strain distribution may generate: (1) supra-intrusion folds in the hanging wall; (2) new dip-slip faults adjacent to the igneous body; or (3) sub-vertical, oblique-slip faults oriented parallel to the extension direction. Importantly, stress accumulation within igneous intrusions may eventually initiate failure and further localise strain. The results of our study have important implications for the structural of sedimentary basins and the subsurface migration of hydrocarbons and mineral-bearing fluids.
NASA Astrophysics Data System (ADS)
Zhang, Yanhua; Clennell, Michael B.; Delle Piane, Claudio; Ahmed, Shakil; Sarout, Joel
2016-12-01
This generic 2D elastic-plastic modelling investigated the reactivation of a small isolated and critically-stressed fault in carbonate rocks at a reservoir depth level for fluid depletion and normal-faulting stress conditions. The model properties and boundary conditions are based on field and laboratory experimental data from a carbonate reservoir. The results show that a pore pressure perturbation of -25 MPa by depletion can lead to the reactivation of the fault and parts of the surrounding damage zones, producing normal-faulting downthrows and strain localization. The mechanism triggering fault reactivation in a carbonate field is the increase of shear stresses with pore-pressure reduction, due to the decrease of the absolute horizontal stress, which leads to an expanded Mohr's circle and mechanical failure, consistent with the predictions of previous poroelastic models. Two scenarios for fault and damage-zone permeability development are explored: (1) large permeability enhancement of a sealing fault upon reactivation, and (2) fault and damage zone permeability development governed by effective mean stress. In the first scenario, the fault becomes highly permeable to across- and along-fault fluid transport, removing local pore pressure highs/lows arising from the presence of the initially sealing fault. In the second scenario, reactivation induces small permeability enhancement in the fault and parts of damage zones, followed by small post-reactivation permeability reduction. Such permeability changes do not appear to change the original flow capacity of the fault or modify the fluid flow velocity fields dramatically.
Marine forearc tectonics in the unbroken segment of the Northern Chile seismic gap
NASA Astrophysics Data System (ADS)
Geersen, J.; Behrmann, J.; Ranero, C. R.; Klaucke, I.; Kopp, H.; Lange, D.; Barckhausen, U.; Reichert, C. J.; Diaz-Naveas, J.
2016-12-01
While clearly occurring within the well-defined Northern Chile seismic gap, the 2014 Mw. 8.1 Iquique Earthquake only ruptured part of this gap, leaving large and possibly highly coupled areas untouched. These non-ruptured areas now may pose an elevated seismic hazard due to the transfer of stresses resulting from the 2014 rupture. Here we use recently collected multibeam bathymetric data, covering 90% of the North Chilean marine forearc, in combination with unpublished seismic reflection images to derive a tectonic map of the marine forearc in the unbroken segment of the seismic gap. In the entire study area we find evidence for widespread normal faulting. Seaward dipping normal faults locally extend close to the deformation front at the deep-sea trench under 8 km of water. Similar normal faults on the lower slope are neither observed further north (2014 Iquique earthquake area) nor further south (2007 Tocopilla earthquake area). On the upper continental slope, some of the normal faults dip towards the continent, defining N-S trending ridges that can be traced over tens of kilometers. The spatial variations in normal faulting do not correlate with obvious changes in the structural and tectonic setting of the subduction zone (e.g. plate convergence rate and direction, trench sediment thickness, subducting plate roughness). Thus, the permanent deformation recorded in the spatial distribution of faults may hold crucial information about the long-term seismic behavior of the Northern Chile seismic gap over multiple earthquake cycles. Although the structural interpretations cannot directly be translated into seismic hazard, the tectonic map serves to better understand deformation in the marine forearc in relation to the seismic cycle, historic seismicity, and the spatial distribution of plate-coupling.
Shakal, A.; Haddadi, H.; Graizer, V.; Lin, K.; Huang, M.
2006-01-01
The 2004 Parkfield, California, earthquake was recorded by an extensive set of strong-motion instruments well positioned to record details of the motion in the near-fault region, where there has previously been very little recorded data. The strong-motion measurements obtained are highly varied, with significant variations occurring over only a few kilometers. The peak accelerations in the near fault region range from 0.13g to over 1.8g (one of the highest acceleration recorded to date, exceeding the capacity of the recording instrument The largest accelerations occurred near the northwest end of the inferred rupture zone. These motions are consistent with directivity for a fault rupturing from the hypocenter near Gold Hill toward the northwest. However, accelerations up to 0.8g were also observed in the opposite direction, at the south end of the Cholame Valley near Highway 41, consistent with bilateral rupture, with rupture southeast of the hypocenter. Several stations near and over the rupturing fault recorded relatively weak motions, consistent with seemingly paradoxical observations of low shaking damage near strike-slip faults. This event had more ground-motion observations within 10 km of the fault than many other earthquakes combined. At moderate distances peak horizontal ground acceleration (PGA) values dropped off more rapidly with distance than standard relationships. At close-in distance the wide variation of PGA suggests a distance-dependent sigma may be important to consider. The near-fault ground-motion variation is greater than that assumed in ShakeMap interpolations, based on the existing set of observed data. Higher density of stations near faults may be the only means in the near future to reduce uncertainty in the interpolations. Outside of the near-fault zone the variance is closer to that assumed. This set of data provides the first case where near-fault radiation has been observed at an adequate number of stations around the fault to allow detailed study of the fault-normal and fault-parallel motion and the near-field S-wave radiation. The fault-normal motions are significant, but they are not large at the central part of the fault, away from the ends. The fault-normal and fault-parallel motions drop off quite rapidly with distance from the fault. Analysis of directivity indicates increased values of peak velocity in the rupture direction. No such dependence is observed in the peak acceleration, except for stations close to the strike of the fault near and beyond the ends of the faulting.
Radionuclide esophageal transit: an evaluation of therapy in achalasia
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKinney, M.K.; Brady, C.E.; Weiland, F.L.
1983-09-01
We measured quantitative esophageal transit, expressed as percentage of esophageal retention, before and after pneumatic dilatation in two patients with achalasia. In the sitting position they ingested a 500 ml liquid meal containing 500 muCi technetium Tc 99m sulfur colloid. Radioactivity counts of the entire esophagus were plotted at five-minute intervals for 30 minutes. In five normal control subjects the esophagus essentially cleared in less than one minute. Both patients with achalasia had definite retention 30 minutes before dilatation and had quantitative improvement after dilatation. Radionuclide scintigraphic esophageal transit probably correlates better than other parameters with the physiologic degree ofmore » obstruction in achalasia.« less
NASA Astrophysics Data System (ADS)
Kazmi, Zaheer Abbas; Konagai, Kazuo; Kyokawa, Hiroyuki; Tetik, Cigdem
On April 11th, 2011, Iwaki region of Fukushima prefecture was jolted by Fukushima-Prefecture Hamadoori Earthquake. Surface ruptures were observed along causative Idosawa and Yunotake normal faults. In addition to numerous small slope failures, a coherent landslide and building structures of Tabito Junior High School, bisected by Idosawa Fault, were found along the causative faults. A precise digital elevation model of the coherent landslide was obtained through the ground and air-born LiDAR surveys. The measurements of perimeters of the gymnasium building and the swimming pool of Tabito Junior High School have shown that ground undergoes a slow and steady/continual deformation.
NASA Astrophysics Data System (ADS)
Mikumo, Takeshi; Yagi, Yuji; Singh, Shri Krishna; Santoyo, Miguel A.
2002-01-01
A large intraplate, normal-faulting earthquake (Mw = 7.5) occurred in 1999 in the subducting Cocos plate below the downdip edge of the ruptured thrust fault of the 1978 Oaxaca, Mexico, earthquake (Mw = 7.8). This situation is similar to the previous case of the 1997 normal-faulting event (Mw = 7.1) that occurred beneath the rupture area of the 1985 Michoacan, Mexico, earthquake (Mw = 8.1). We investigate the possibility of any stress interactions between the preceding 1978 thrust and the following 1999 normal-faulting earthquakes. For this purpose, we estimate the temporal change of the stress state in the subducting Cocos plate by calculating the slip distribution during the 1978 earthquake through teleseismic waveform inversion, the dynamic rupture process, and the resultant coseismic stress change, together with the postseismic stress variations due to plate convergence and the viscoelastic relaxation process. To do this, we calculate the coseismic and postseismic changes of all stress components in a three-dimensional space, incorporating the subducting slab, the overlying crust and uppermost mantle, and the asthenosphere. For the coseismic stress change we solve elastodynamic equations, incorporating the kinematic fault slip as an observational constraint under appropriate boundary conditions. To estimate postseismic stress accumulations due to plate convergence, a virtual backward slip is imposed to lock the main thrust zone. The effects of viscoelastic stress relaxations of the coseismic change and the back slip are also included. The maximum coseismic increase in the shear stress and the Coulomb failure stress below the downdip edge of the 1978 thrust fault is estimated to be in the range between 0.5 and 1.5 MPa, and the 1999 normal-faulting earthquake was found to take place in this zone of stress increase. The postseismic variations during the 21 years after the 1978 event modify the magnitude and patterns of the coseismic stress change to some extent but are not large enough to overcome the coseismic change. These results suggest that the coseismic stress increase due to the 1978 thrust earthquake may have enhanced the chance of occurrence of the 1999 normal-faulting event in the subducting plate. If this is the case, one of the possible mechanisms could be static fatigue of rock materials around preexisting weak planes involved in the subducting plate, and it is speculated that that one of these planes might have been reactivated and fractured because of stress corrosion cracking under the applied stress there for 21 years.
Active simultaneous uplift and margin-normal extension in a forearc high, Crete, Greece
NASA Astrophysics Data System (ADS)
Gallen, S. F.; Wegmann, K. W.; Bohnenstiehl, D. R.; Pazzaglia, F. J.; Brandon, M. T.; Fassoulas, C.
2014-07-01
The island of Crete occupies a forearc high in the central Hellenic subduction zone and is characterized by sustained exhumation, surface uplift and extension. The processes governing orogenesis and topographic development here remain poorly understood. Dramatic topographic relief (2-6 km) astride the southern coastline of Crete is associated with large margin-parallel faults responsible for deep bathymetric depressions known as the Hellenic troughs. These structures have been interpreted as both active and inactive with either contractional, strike-slip, or extensional movement histories. Distinguishing between these different structural styles and kinematic histories here allows us to explore more general models for improving our global understanding of the tectonic and geodynamic processes of syn-convergent extension. We present new observations from the south-central coastline of Crete that clarifies the role of these faults in the late Cenozoic evolution of the central Hellenic margin and the processes controlling Quaternary surface uplift. Pleistocene marine terraces are used in conjunction with optically stimulated luminesce dating and correlation to the Quaternary eustatic curve to document coastal uplift and identify active faults. Two south-dipping normal faults are observed, which extend offshore, offset these marine terrace deposits and indicate active N-S (margin-normal) extension. Further, marine terraces preserved in the footwall and hanging wall of both faults demonstrate that regional net uplift of Crete is occurring despite active extension. Field mapping and geometric reconstructions of an active onshore normal fault reveal that the subaqueous range-front fault of south-central Crete is synthetic to the south-dipping normal faults on shore. These findings are inconsistent with models of active horizontal shortening in the upper crust of the Hellenic forearc. Rather, they are consistent with topographic growth of the forearc in a viscous orogenic wedge, where crustal thickening and uplift are a result of basal underplating of material that is accompanied by extension in the upper portions of the wedge. Within this framework a new conceptual model is presented for the late Cenozoic vertical tectonics of the Hellenic forearc.
Spudich, Paul A.; Chiou, Brian
2015-01-01
We present a two-dimensional system of generalized coordinates for use with geometrically complex fault ruptures that are neither straight nor continuous. The coordinates are a generalization of the conventional strike-normal and strike-parallel coordinates of a single straight fault. The presented conventions and formulations are applicable to a single curved trace, as well as multiple traces representing the rupture of branching faults or noncontiguous faults. An early application of our generalized system is in the second round of the Next Generation of Ground-Motion Attenuation Model project for the Western United States (NGA-West2), where they were used in the characterization of the hanging-wall effects. We further improve the NGA-West2 strike-parallel formulation for multiple rupture traces with a more intuitive definition of the nominal strike direction. We also derive an analytical expression for the gradient of the generalized strike-normal coordinate. The direction of this gradient may be used as the strike-normal direction in the study of polarization effects on ground motions.
NASA Astrophysics Data System (ADS)
Sanny, Teuku A.
2017-07-01
The objective of this study is to determine boundary and how to know surrounding area between Lembang Fault and Cimandiri fault. For the detailed study we used three methodologies: (1). Surface deformation modeling by using Boundary Element method and (2) Controlled Source Audiomagneto Telluric (CSAMT). Based on the study by using surface deformation by using Boundary Element Methods (BEM), the direction Lembang fault has a dominant displacement in east direction. The eastward displacement at the nothern fault block is smaller than the eastward displacement at the southern fault block which indicates that each fault block move in left direction relative to each other. From this study we know that Lembang fault in this area has left lateral strike slip component. The western part of the Lembang fault move in west direction different from the eastern part that moves in east direction. Stress distribution map of Lembang fault shows difference between the eastern and western segments of Lembang fault. Displacement distribution map along x-direction and y-direction of Lembang fault shows a linement oriented in northeast-southwest direction right on Tangkuban Perahu Mountain. Displacement pattern of Cimandiri fault indicates that the Cimandiri fault is devided into two segment. Eastern segment has left lateral strike slip component while the western segment has right lateral strike slip component. Based on the displacement distribution map along y-direction, a linement oriented in northwest-southeast direction is observed at the western segment of the Cimandiri fault. The displacement along x-direction and y-direction between the Lembang and Cimandiri fault is nearly equal to zero indicating that the Lembang fault and Cimandiri Fault are not connected to each others. Based on refraction seismic tomography that we know the characteristic of Cimandiri fault as normal fault. Based on CSAMT method th e lembang fault is normal fault that different of dip which formed as graben structure.
NASA Astrophysics Data System (ADS)
Brocher, Thomas M.; Wells, Ray E.; Lamb, Andrew P.; Weaver, Craig S.
2017-05-01
Paleomagnetic and GPS data indicate that Washington and Oregon have rotated clockwise for the past 16 Myr. Late Cenozoic and Quaternary fault geometries, seismicity lineaments, and focal mechanisms provide evidence that this rotation is accommodated by north directed thrusting and right-lateral strike-slip faulting in Washington, and SW to W directed normal faulting and right-lateral strike-slip faulting to the east. Several curvilinear NW to NNW trending high-angle strike-slip faults and seismicity lineaments in Washington and NW Oregon define a geologic pole (117.7°W, 47.9°N) of rotation relative to North America. Many faults and focal mechanisms throughout northwestern U.S. and southwestern British Columbia have orientations consistent with this geologic pole as do GPS surface velocities corrected for elastic Cascadia subduction zone coupling. Large Quaternary normal faults radial to the geologic pole, which appear to accommodate crustal rotation via crustal extension, are widespread and can be found along the Lewis and Clark zone in Montana, within the Centennial fault system north of the Snake River Plain in Idaho and Montana, to the west of the Wasatch Front in Utah, and within the northern Basin and Range in Oregon and Nevada. Distributed strike-slip faults are most prominent in western Washington and Oregon and may serve to transfer slip between faults throughout the northwestern U.S.
Brocher, Thomas M.; Wells, Ray E.; Lamb, Andrew P.; Weaver, Craig S.
2017-01-01
Paleomagnetic and GPS data indicate that Washington and Oregon have rotated clockwise for the past 16 Myr. Late Cenozoic and Quaternary fault geometries, seismicity lineaments, and focal mechanisms provide evidence that this rotation is accommodated by north directed thrusting and right-lateral strike-slip faulting in Washington, and SW to W directed normal faulting and right-lateral strike-slip faulting to the east. Several curvilinear NW to NNW trending high-angle strike-slip faults and seismicity lineaments in Washington and NW Oregon define a geologic pole (117.7°W, 47.9°N) of rotation relative to North America. Many faults and focal mechanisms throughout northwestern U.S. and southwestern British Columbia have orientations consistent with this geologic pole as do GPS surface velocities corrected for elastic Cascadia subduction zone coupling. Large Quaternary normal faults radial to the geologic pole, which appear to accommodate crustal rotation via crustal extension, are widespread and can be found along the Lewis and Clark zone in Montana, within the Centennial fault system north of the Snake River Plain in Idaho and Montana, to the west of the Wasatch Front in Utah, and within the northern Basin and Range in Oregon and Nevada. Distributed strike-slip faults are most prominent in western Washington and Oregon and may serve to transfer slip between faults throughout the northwestern U.S.
NASA Technical Reports Server (NTRS)
Ahrens, Thomas J.
2001-01-01
We examined the von Mises and Mohr-Coulomb strength models with and without damage effects and developed a model for dilatancy. The models and results are given in O'Keefe et al. We found that by incorporating damage into the models that we could in a single integrated impact calculation, starting with the bolide in the atmosphere produce final crater profiles having the major features found in the field measurements. These features included a central uplift, an inner ring, circular terracing and faulting. This was accomplished with undamaged surface strengths of approximately 0.1 GPa and at depth strengths of approximately 1.0 GPa. We modeled the damage in geologic materials using a phenomenological approach, which coupled the Johnson-Cook damage model with the CTH code geologic strength model. The objective here was not to determine the distribution of fragment sizes, but rather to determine the effect of brecciated and comminuted material on the crater evolution, fault production, ejecta distribution, and final crater morphology.
Cyclic loading of simulated fault gouge to large strains
NASA Astrophysics Data System (ADS)
Jones, Lucile M.
1980-04-01
As part of a study of the mechanics of simulated fault gouge, deformation of Kayenta Sandstone (24% initial porosity) was observed in triaxial stress tests through several stress cycles. Between 50- and 300-MPa effective pressure the specimens deformed stably without stress drops and with deformation occurring throughout the sample. At 400-MPa effective pressure the specimens underwent strain softening with the deformation occurring along one plane. However, the difference in behavior seems to be due to the density variation at different pressures rather than to the difference in pressure. After peak stress was reached in each cycle, the samples dilated such that the volumetric strain and the linear strain maintained a constant ratio (approximately 0.1) at all pressures. The behavior was independent of the number of stress cycles to linear strains up to 90% and was in general agreement with laws of soil behavior derived from experiments conducted at low pressure (below 5 MPa).
NASA Astrophysics Data System (ADS)
Paredes, José Matildo; Plazibat, Silvana; Crovetto, Carolina; Stein, Julián; Cayo, Eric; Schiuma, Ariel
2013-10-01
Up to 10% of the liquid hydrocarbons of the Golfo San Jorge basin come from the Mina del Carmen Formation (Albian), an ash-dominated fluvial succession preserved in a variably integrated channel network that evolved coeval to an extensional tectonic event, poorly analyzed up to date. Fault orientation, throw distribution and kinematics of fault populations affecting the Mina del Carmen Formation were investigated using a 3D seismic dataset in the Cerro Dragón field (Eastern Sector of the Golfo San Jorge basin). Thickness maps of the seismic sub-units that integrate the Mina del Carmen Formation, named MEC-A-MEC-C in ascending order, and mapping of fluvial channels performed applying geophysical tools of visualization were integrated to the kinematical analysis of 20 main normal faults of the field. The study provides examples of changes in fault throw patterns with time, associated with faults of different orientations. The "main synrift phase" is characterized by NE-SW striking (mean Az = 49°), basement-involved normal faults that attains its maximum throw on top of the volcanic basement; this set of faults was active during deposition of the Las Heras Group and Pozo D-129 formation. A "second synrift phase" is recognized by E-W striking normal faults (mean Az = 91°) that nucleated and propagated from the Albian Mina del Carmen Formation. Fault activity was localized during deposition of the MEC-A sub-unit, but generalized during deposition of MEC-B sub-unit, producing centripetal and partially isolated depocenters. Upward decreasing in fault activity is inferred by more gradual thickness variation of MEC-C and the overlying Lower Member of Bajo Barreal Formation, evidencing passive infilling of relief associated to fault boundaries, and conformation of wider depocenters with well integrated networks of channels of larger dimensions but random orientation. Lately, the Mina del Carmen Formation was affected by the downward propagation of E-W to ESE-WNW striking normal faults (mean Az = 98°) formed during the "third rifting phase", which occurs coeval with the deposition of the Upper Member of the Bajo Barreal Formation. The fault characteristics indicate a counterclockwise rotation of the stress field during the deposition of the Chubut Group of the Golfo San Jorge basin, likely associated to the rotation of Southern South America during the fragmentation of the Gondwana paleocontinent. Understanding the evolution of fault-controlled topography in continental basins allow to infer location and orientation of coeval fluvial systems, providing a more reliable scenario for location of producing oil wells.
Brar, Vijaywant; Bernardo, Nelson; Suddath, William; Weissman, Gaby; Asch, Federico; Campia, Umberto
2015-01-01
We report the case of a large right renal arteriovenous fistula (AVF) in a 74-year old woman who presented with heart failure. Transthoracic echocardiography revealed normal left ventricular size and systolic function (ejection fraction 60-65%), moderately dilated right ventricle with severely depressed systolic function, and severe pulmonary hypertension. Right heart catheterization confirmed the elevated pulmonary pressures and showed a high cardiac output. Physical examination was remarkable for a right flank bruit. An abdominal ultrasound revealed an AVF originating from the distal right renal artery and dilated suprarenal inferior vena cava and hepatic veins. These findings were confirmed with an abdominal MRI. Percutaneous endovascular closure of the right renal AVF was successfully performed, with immediate reduction of pulmonary pressures and normalization of cardiac output. The patient's symptoms improved, and a post intervention echocardiogram revealed normalization of right ventricular size. Copyright © 2015 Elsevier Inc. All rights reserved.
High-angle faults control the geometry and morphology of the Corinth Rift
NASA Astrophysics Data System (ADS)
Bell, R. E.; Duclaux, G.; Nixon, C.; Gawthorpe, R.; McNeill, L. C.
2016-12-01
Slip along low-angle normal faults is mechanically difficult, and the existence of low angle detachment faults presents one of most important paradoxes in structural geology. Only a few examples of young continental rifts where low-angle faults may be a mechanism for accommodating strain have been described in the literature, and an important example is the Gulf of Corinth, central Greece. Here, microseismicity, the geometry of onshore faults and deep seismic reflection images have been used to argue for the presence of <30o dipping faults. However, new and reinterpreted data calls into question whether low-angle faults have been influential in controlling rift geometry. We seek to definitively test whether slip on a mature low-angle normal fault can reproduce the long-term geometry and morphology of the Corinth Rift, which involves i) significant uplift of the southern margin, ii) long-term uplift to subsidence ratios across south coast faults of 1 -2, and iii) a northern margin that does not undergo significant long-term uplift. We use PyLith, an open-source finite-element code for quasi-static viscoelastic simulations of crustal deformation and model the uplift and subsidence fields associated with the following fault geometries: i) planar faults with dips of 45-60° that sole onto a 10° detachment at a depth of 6 to 8 km, ii) 45-60° faults, which change to a dip angle of 25-45° at a depth of 3 km and continue to a brittle-ductile transition at 10 km and iii) planar faults which dip 45-60° to the brittle-ductile transition at a depth of 10 km. We show that models involving low-angle detachments, shallower than 8 km produce very minor coseismic uplift of the southern margin and post-seismic relaxation results in the southern margin experiencing net subsidence over many seismic cycles, incompatible with geological observations. Models involving planar faults produce long-term displacement fields involving uplifted southern margin with uplift to subsidence ratios of c. 1:2 and subsidence of the northern margin, compatible with geological observations. We propose that low-angle detachment faults cannot have controlled the long-term geometry of the Corinth rift, and that the rift should no longer be used as an example of low-angle normal faulting.
NASA Astrophysics Data System (ADS)
Villamor, P.; Berryman, K.; Langridge, R.; van Dissen, R.; Persaud, M.; Canora, C.; Nicol, A.; Alloway, B.; Litchfield, N.; Cochran, U.; Stirling, M.; Mouslopoulou, V.; Wilson, K.
2006-12-01
Over the last ~15 years we have excavated 73 trenches across active normal faults in the Taupo and Hauraki Rifts, North Island, New Zealand. The stratigraphy in these trenches is quite similar because of the predominance of volcanic and volcanic-derived deposits, sourced from the active Taupo Volcanic Zone. These deposits, whether alluvial (reworked, mainly volcanics) or volcanic (tephra), are all characterized by relative loose, to moderately loose, medium-size gravel and sands, and cohesive (sticky) clays. The homogeneity of the materials and of the sedimentation rates across these paleoseismic trenches has allowed us to assess the influence of different materials on the faulting style. The predominant types of material, their relative thickness, and their stratigraphic order (e.g. whether cohesive materials are overlying or underlying loose materials) in the trench strongly determine the deformation style when subjected to normal faulting. However, the final geometric relation between the sedimentary layers and the faults also depends on the sediment depositional environment (e.g., alluvial vs air fall deposition), the fault dip, and cumulative displacement (i.e., the size of the scarp). For example, the cumulative displacement of the fault conditions the amount of erosion/deposition at/derived from the scarp itself. When we combine observations from the tectonic deformation style and from geometries derived from erosional/depositional processes, we can define at least five "geometric styles" present in paleoseismic trenches in our study area: 1) folding, where the fault does not reach the upper layers, and relative displacement of the fault walls is achieved by folding (dragging of the layer); 2) folding-large cracks, where relative movement of the fault walls is achieved by folding and opening of large fissures; 3) faulting, the most common style where a layer is displaced along the fault plane; 4) faulting- erosion, similar to the previous style but with larger cumulative displacements which cause large amounts of erosion and/or deposition at the fault scarp; and 5) faulting-toppling, when due to gravitational forces the materials on the up-thrown side of the fault topple towards the downthrown side causing rotation of the fault plane itself, which induces a geometry of "false reverse fault". These observations can be used to analyze the criteria to identify individual earthquakes within each "geometric style". We present examples from New Zealand to describe the "geometric styles", their faulting criteria and the uncertainties associated with these criteria.
Liu, Chunbo; Pan, Feng; Li, Yun
2016-07-29
Glutamate is of great importance in food and pharmaceutical industries. There is still lack of effective statistical approaches for fault diagnosis in the fermentation process of glutamate. To date, the statistical approach based on generalized additive model (GAM) and bootstrap has not been used for fault diagnosis in fermentation processes, much less the fermentation process of glutamate with small samples sets. A combined approach of GAM and bootstrap was developed for the online fault diagnosis in the fermentation process of glutamate with small sample sets. GAM was first used to model the relationship between glutamate production and different fermentation parameters using online data from four normal fermentation experiments of glutamate. The fitted GAM with fermentation time, dissolved oxygen, oxygen uptake rate and carbon dioxide evolution rate captured 99.6 % variance of glutamate production during fermentation process. Bootstrap was then used to quantify the uncertainty of the estimated production of glutamate from the fitted GAM using 95 % confidence interval. The proposed approach was then used for the online fault diagnosis in the abnormal fermentation processes of glutamate, and a fault was defined as the estimated production of glutamate fell outside the 95 % confidence interval. The online fault diagnosis based on the proposed approach identified not only the start of the fault in the fermentation process, but also the end of the fault when the fermentation conditions were back to normal. The proposed approach only used a small sample sets from normal fermentations excitements to establish the approach, and then only required online recorded data on fermentation parameters for fault diagnosis in the fermentation process of glutamate. The proposed approach based on GAM and bootstrap provides a new and effective way for the fault diagnosis in the fermentation process of glutamate with small sample sets.
NASA Astrophysics Data System (ADS)
Wilson, Paul; Gawthorpe, Rob L.; Hodgetts, David; Rarity, Franklin; Sharp, Ian R.
2009-08-01
The geometry and architecture of a well exposed syn-rift normal fault array in the Suez rift is examined. At pre-rift level, the Nukhul fault consists of a single zone of intense deformation up to 10 m wide, with a significant monocline in the hanging wall and much more limited folding in the footwall. At syn-rift level, the fault zone is characterised by a single discrete fault zone less than 2 m wide, with damage zone faults up to approximately 200 m into the hanging wall, and with no significant monocline developed. The evolution of the fault from a buried structure with associated fault-propagation folding, to a surface-breaking structure with associated surface faulting, has led to enhanced bedding-parallel slip at lower levels that is absent at higher levels. Strain is enhanced at breached relay ramps and bends inherited from pre-existing structures that were reactivated during rifting. Damage zone faults observed within the pre-rift show ramp-flat geometries associated with contrast in competency of the layers cut and commonly contain zones of scaly shale or clay smear. Damage zone faults within the syn-rift are commonly very straight, and may be discrete fault planes with no visible fault rock at the scale of observation, or contain relatively thin and simple zones of scaly shale or gouge. The geometric and architectural evolution of the fault array is interpreted to be the result of (i) the evolution from distributed trishear deformation during upward propagation of buried fault tips to surface faulting after faults breach the surface; (ii) differences in deformation response between lithified pre-rift units that display high competence contrasts during deformation, and unlithified syn-rift units that display low competence contrasts during deformation, and; (iii) the history of segmentation, growth and linkage of the faults that make up the fault array. This has important implications for fluid flow in fault zones.
Armenia-To Trans-Boundary Fault: AN Example of International Cooperation in the Caucasus
NASA Astrophysics Data System (ADS)
Karakhanyan, A.; Avagyan, A.; Avanesyan, M.; Elashvili, M.; Godoladze, T.; Javakishvili, Z.; Korzhenkov, A.; Philip, S.; Vergino, E. S.
2012-12-01
Studies of a trans-boundary active fault that cuts through the border of Armenia to Georgia in the area of the Javakheti volcanic highland have been conducted since 2007. The studies have been implemented based on the ISTC 1418 and NATO SfP 983284 Projects. The Javakheti Fault is oriented to the north-northwest and consists of individual segments displaying clear left-stepping trend. Fault mechanism is represented by right-lateral strike-slip with normal-fault component. The fault formed distinct scarps, deforming young volcanic and glacial sediments. The maximum-size displacements are recorded in the central part of the fault and range up to 150-200 m by normal fault and 700-900 m by right-lateral strike-slip fault. On both flanks, fault scarps have younger appearance, and displacement size there decreases to tens of meters. Fault length is 80 km, suggesting that maximum fault magnitude is estimated at 7.3 according to the Wells and Coppersmith (1994) relation. Many minor earthquakes and a few stronger events (1088, Mw=6.4, 1899 Mw=6.4, 1912, Mw=6.4 and 1925, Mw=5.6) are associated with the fault. In 2011/2012, we conducted paleoseismological and archeoseismological studies of the fault. By two paleoseismological trenches were excavated in the central part of the fault, and on its northern and southern flanks. The trenches enabled recording at least three strong ancient earthquakes. Presently, results of radiocarbon age estimations of those events are expected. The Javakheti Fault may pose considerable seismic hazard for trans-boundary areas of Armenia and Georgia as its northern flank is located at the distance of 15 km from the Baku-Ceyhan pipeline.
Earthquake scaling laws for rupture geometry and slip heterogeneity
NASA Astrophysics Data System (ADS)
Thingbaijam, Kiran K. S.; Mai, P. Martin; Goda, Katsuichiro
2016-04-01
We analyze an extensive compilation of finite-fault rupture models to investigate earthquake scaling of source geometry and slip heterogeneity to derive new relationships for seismic and tsunami hazard assessment. Our dataset comprises 158 earthquakes with a total of 316 rupture models selected from the SRCMOD database (http://equake-rc.info/srcmod). We find that fault-length does not saturate with earthquake magnitude, while fault-width reveals inhibited growth due to the finite seismogenic thickness. For strike-slip earthquakes, fault-length grows more rapidly with increasing magnitude compared to events of other faulting types. Interestingly, our derived relationship falls between the L-model and W-model end-members. In contrast, both reverse and normal dip-slip events are more consistent with self-similar scaling of fault-length. However, fault-width scaling relationships for large strike-slip and normal dip-slip events, occurring on steeply dipping faults (δ~90° for strike-slip faults, and δ~60° for normal faults), deviate from self-similarity. Although reverse dip-slip events in general show self-similar scaling, the restricted growth of down-dip fault extent (with upper limit of ~200 km) can be seen for mega-thrust subduction events (M~9.0). Despite this fact, for a given earthquake magnitude, subduction reverse dip-slip events occupy relatively larger rupture area, compared to shallow crustal events. In addition, we characterize slip heterogeneity in terms of its probability distribution and spatial correlation structure to develop a complete stochastic random-field characterization of earthquake slip. We find that truncated exponential law best describes the probability distribution of slip, with observable scale parameters determined by the average and maximum slip. Applying Box-Cox transformation to slip distributions (to create quasi-normal distributed data) supports cube-root transformation, which also implies distinctive non-Gaussian slip distributions. To further characterize the spatial correlations of slip heterogeneity, we analyze the power spectral decay of slip applying the 2-D von Karman auto-correlation function (parameterized by the Hurst exponent, H, and correlation lengths along strike and down-slip). The Hurst exponent is scale invariant, H = 0.83 (± 0.12), while the correlation lengths scale with source dimensions (seismic moment), thus implying characteristic physical scales of earthquake ruptures. Our self-consistent scaling relationships allow constraining the generation of slip-heterogeneity scenarios for physics-based ground-motion and tsunami simulations.
Quaternary uplift and tilting of Amorgos Island (southern Aegean) and the 1956 earthquake
NASA Astrophysics Data System (ADS)
Stiros, Stathis C.; Marangou, Lila; Arnold, Maurice
1994-12-01
Uplifted Pleistocene marine sediments, submerged ancient ruins and raised beaches confirm earlier views that the asymmetry of the relief of Amorgos Island (southern Aegean) testifies to a fault-bounded block uplifted and tilted along a SW-NE trending horizontal axis; the uplifted coast corresponds to a high-gradient slope controlled by an oblique master normal fault. Furthermore, geomorphic and biological evidence, radiometric data and comparison of aerial photographs indicates that the 1956 earthquake (Ms = 7.4) uplifted the footwall of this normal fault by about 30 cm.
Utility of Genetic Testing in Elite Volleyball Players with Aortic Root Dilation.
Herrick, Nicole; Davis, Christopher; Vargas, Lisa; Dietz, Hal; Grossfeld, Paul
2017-07-01
Basketball and volleyball attract individuals with a characteristic biophysical profile, mimicking features of Marfan syndrome. Consequently, identification of these abnormalities can be lifesaving. To determine how physical examination, echocardiography, and genetic screening can identify elite volleyball players with a previously undiagnosed aortopathy. We have performed cardiac screening on 90 US Volleyball National Team members and identified four individuals with dilated sinuses of Valsalva. This case series reports on three individuals who underwent a comprehensive genetics evaluation, including gene sequencing. Cardiac screening combined with genetic testing can identify previously undiagnosed tall athletes with an aortopathy, in the absence of noncardiac findings of a connective tissue disorder. Subject 1 had a revised Ghent systems (RGS) score of 2 and a normal aortopathy gene panel. Subject 2 had a RGS score of 1 and genetic testing revealed a de novo disease causing mutation in the gene encoding fibrillin-1 (FBN1). Subject 3 had an RGS score of 4.0 and had a normal aortopathy gene panel. Despite variable clinical features of Marfan syndrome, dilated sinuses of Valsalva were found in 4.9% of the athletes. A disease-causing mutation in the FBN1 gene was identified in subject 2, who had the lowest RGS but the largest aortic root measurement. Subjects 1 and 3, with the highest RGS, had a normal aortopathy gene panel. Our findings provide further evidence suggesting that a cardiac evaluation, including a screening echocardiogram, should be performed on all elite tall adult athletes independent of other physical findings. Genetic testing should be considered for athletes with dilated sinuses of Valsalva (male, >4.2 cm; female, >3.4 cm), regardless of other extracardiac findings.
Long streamer waveform tomography imaging of the Sanak Basin, Alaska subduction zone
NASA Astrophysics Data System (ADS)
Roche, Pierre-Henri; Delescluse, Matthias; Becel, Anne; Nedimovic, Mladen; Shillington, Donna; Webb, Spahr; Kuehn, Harold
2017-04-01
The Alaska subduction zone is prone to large megathrust earthquakes, including several large tsunamigenic events in the historical record (e.g. the 1964 Mw 9.2 and the 1946 Mw 8.6 earthquakes). Along the Alaska Peninsula trench, seismic coupling varies from fully locked to the east to weakly coupled to the West, with apparent aseismic slip in the Shumagin Gap and Unimak rupture zone. Overlapping the Shumagin gap and the Unimak area, the Sanak basin is a Miocene basin formed by a large-scale normal fault recently imaged by the ALEUT 2011 cruise and clearly rooting in the subduction interface at 30 km depth (Becel et al., submitted). Recent activity on this normal fault is detected at the seafloor of the Sanak Basin by a 5 m scarp in the multibeam bathymetry data. As this normal fault may be associated with faults involved in the 1946 tsunami earthquake, it is particularly important to try to decipher its history in the Sanak basin, where sediments record the fault activity. MCS data processing and interpretation shows evidence for the activity of the fault from Miocene to recent geological times. Very limited knowledge of the sedimentation rates and ages as well as complexities due to submarine landslides and channel depositions make it difficult to quantify the present day fault activity with respect to the Miocene fault activity. In addition, the mechanical behaviour of a normal splay fault system requires low to zero effective friction and probably involves fluids. High-resolution seismic velocity imaging can help with both the interpretation of complex sedimentary deposition and fluid detection. To obtain such a high resolution velocity field, we use two 45-km-long MCS profiles from the ALEUT 2011 cruise acquired with an 8-km-long streamer towed at 12 m depth to enhance low frequencies with shots fired from a large, tuned airgun array (6600 cu.in.). The two profiles extend from the shelf break to mid slope and encompass the normal splay fault emerging at 1 km water depth. At these depths, refracted arrivals are recorded on the second half of the streamer and a traveltime tomography inversion of the first refracted arrivals is possible. To quantify the uncertainties of the inversion results, starting from a smoothed RMS velocity model from the reflection data analysis, we perform a Monte-Carlo analysis using 360 randomly perturbed initial models and perturbed traveltime picks. We use the converging models as input for a Monte-Carlo analysis of acoustic frequency domain waveform tomography. We show that the model resolution is high in the faulted area ( 100m) and the uncertainty is low. We image a complex pattern of low velocities around and away from the fault corresponding to mass transport deposits and possible fluid flow through the fault, in agreement with low reflectivity of the multibeam data and the presence of pockmarks.
Slemmons, D.B.; Wormer, D.V.; Bell, E.J.; Silberman, M.L.
1979-01-01
This review of geological, seismological, geochronological and paleobotanical data is made to compare historic and geologic rates and styles of deformation of the Sierra Nevada and western Basin and Range Provinces. The main uplift of this region began about 17 m.y. ago, with slow uplift of the central Sierra Nevada summit region at rates estimated at about 0.012 mm/yr and of western Basin and Range Province at about 0.01 mm/yr. Many Mesozoic faults of the Foothills fault system were reactivated with normal slip in mid-Tertiary time and have continued to be active with slow slip rates. Sparse data indicate acceleration of rates of uplift and faulting during the Late Cenozoic. The Basin and Range faulting appears to have extended westward during this period with a reduction in width of the Sierra Nevada. The eastern boundary zone of the Sierra Nevada has an irregular en-echelon pattern of normal and right-oblique faults. The area between the Sierra Nevada and the Walker Lane is a complex zone of irregular patterns of ho??rst and graben blocks and conjugate normal-to right- and left-slip faults of NW and NE trend, respectively. The Walker Lane has at least five main strands near Walker Lake, with total right-slip separation estimated at 48 km. The NE-trending left-slip faults are much shorter than the Walker Lane fault zone and have maximum separations of no more than a few kilometers. Examples include the 1948 and 1966 fault zone northeast of Truckee, California, the Olinghouse fault (Part III) and possibly the almost 200-km-long Carson Lineament. Historic geologic evidence of faulting, seismologic evidence for focal mechanisms, geodetic measurements and strain measurements confirm continued regional uplift and tilting of the Sierra Nevada, with minor internal local faulting and deformation, smaller uplift of the western Basin and Range Province, conjugate focal mechanisms for faults of diverse orientations and types, and a NS to NE-SW compression axis (??1) and an EW to NW-SE extension axis (??3). ?? 1979.
Frictional heating processes during laboratory earthquakes
NASA Astrophysics Data System (ADS)
Aubry, J.; Passelegue, F. X.; Deldicque, D.; Lahfid, A.; Girault, F.; Pinquier, Y.; Escartin, J.; Schubnel, A.
2017-12-01
Frictional heating during seismic slip plays a crucial role in the dynamic of earthquakes because it controls fault weakening. This study proposes (i) to image frictional heating combining an in-situ carbon thermometer and Raman microspectrometric mapping, (ii) to combine these observations with fault surface roughness and heat production, (iii) to estimate the mechanical energy dissipated during laboratory earthquakes. Laboratory earthquakes were performed in a triaxial oil loading press, at 45, 90 and 180 MPa of confining pressure by using saw-cut samples of Westerly granite. Initial topography of the fault surface was +/- 30 microns. We use a carbon layer as a local temperature tracer on the fault plane and a type K thermocouple to measure temperature approximately 6mm away from the fault surface. The thermocouple measures the bulk temperature of the fault plane while the in-situ carbon thermometer images the temperature production heterogeneity at the micro-scale. Raman microspectrometry on amorphous carbon patch allowed mapping the temperature heterogeneities on the fault surface after sliding overlaid over a few micrometers to the final fault roughness. The maximum temperature achieved during laboratory earthquakes remains high for all experiments but generally increases with the confining pressure. In addition, the melted surface of fault during seismic slip increases drastically with confining pressure. While melting is systematically observed, the strength drop increases with confining pressure. These results suggest that the dynamic friction coefficient is a function of the area of the fault melted during stick-slip. Using the thermocouple, we inverted the heat dissipated during each event. We show that for rough faults under low confining pressure, less than 20% of the total mechanical work is dissipated into heat. The ratio of frictional heating vs. total mechanical work decreases with cumulated slip (i.e. number of events), and decreases with increasing confining pressure and normal stress. Our results suggest that earthquakes are less dispersive under large normal stress. We linked this observation with fault roughness heterogeneity, which also decreases with applied normal stress. Keywords: Frictional heating, stick-slip, carbon, dynamic rupture, fault weakening.
Resolving the fault systems with the magnetotelluric method in the western Ilan plain of NE Taiwan
NASA Astrophysics Data System (ADS)
Chang, P. Y.; Chen, C. S.
2017-12-01
In the study we attempt to use the magnetotelluric (MT) surveys to delineate the basement topography of the western part of the Ilan plain. The triangular plain is located on the extension part of the Okinawa Trough, and is thought to be a subsidence basin bounded by the Hsueshan Range in the north and the Central Range in the south. The basement of the basin is composed of Tertiary metamorphic rocks such as argillites and slates. The recent extension of the Okinawa Trough started from approximately 0.1 Ma and involved ENE- and WSW-trending normal faults that may extended into the Ilan plain area. However, high sedimentation rates as well as the frequent human activities have resulted in unconsolidated sediments with a thickness of over 100 meters, and caused the difficulties in observing the surface traces of the active faults in the area. Hence we deployed about 70 MT stations across the southwestern tip of the triangular plain. We also tried to resolve the subsurface faults the relief variations of the basement with the inverted resistivity images, since the saturated sediments are relatively conductive and the consolidated rocks are resistive. With the inverted MT images, we found that there are a series of N-S trending horsts and grabens in addition to the ENE-WSW normal fault systems. The ENE-WSW trending faults are dipping mainly toward the north in our study area in the western tip of the Ilan plain. The preliminary results suggest that a younger N-S trending normal fault system may modify the relief of the basement in the recent stage after the activation of the ENE-WSW normal faults. The findings of the MT resistivity images provide new information to further review the tectonic explanations of the region in the future.
NASA Astrophysics Data System (ADS)
Lai, Wenqing; Wang, Yuandong; Li, Wenpeng; Sun, Guang; Qu, Guomin; Cui, Shigang; Li, Mengke; Wang, Yongqiang
2017-10-01
Based on long term vibration monitoring of the No.2 oil-immersed fat wave reactor in the ±500kV converter station in East Mongolia, the vibration signals in normal state and in core loose fault state were saved. Through the time-frequency analysis of the signals, the vibration characteristics of the core loose fault were obtained, and a fault diagnosis method based on the dual tree complex wavelet (DT-CWT) and support vector machine (SVM) was proposed. The vibration signals were analyzed by DT-CWT, and the energy entropy of the vibration signals were taken as the feature vector; the support vector machine was used to train and test the feature vector, and the accurate identification of the core loose fault of the flat wave reactor was realized. Through the identification of many groups of normal and core loose fault state vibration signals, the diagnostic accuracy of the result reached 97.36%. The effectiveness and accuracy of the method in the fault diagnosis of the flat wave reactor core is verified.
The dilemma of the Jiaodong gold deposits: Are they unique?
Goldfarb, Richard J.; Santosh, M.
2013-01-01
The ca. 126–120 Ma Au deposits of the Jiaodong Peninsula, eastern China, define the country's largest gold province with an overall endowment estimated as >3000 t Au. The vein and disseminated ores are hosted by NE- to NNE-trending brittle normal faults that parallel the margins of ca. 165–150 Ma, deeply emplaced, lower crustal melt granites. The deposits are sited along the faults for many tens of kilometers and the larger orebodies are associated with dilatational jogs. Country rocks to the granites are Precambrian high-grade metamorphic rocks located on both sides of a Triassic suture between the North and South China blocks. During early Mesozoic convergent deformation, the ore-hosting structures developed as ductile thrust faults that were subsequently reactivated during Early Cretaceous “Yanshanian” intracontinental extensional deformation and associated gold formation.Classification of the gold deposits remains problematic. Many features resemble those typical of orogenic Au including the linear structural distribution of the deposits, mineralization style, ore and alteration assemblages, and ore fluid chemistry. However, Phanerozoic orogenic Au deposits are formed by prograde metamorphism of accreted oceanic rocks in Cordilleran-style orogens. The Jiaodong deposits, in contrast, formed within two Precambrian blocks approximately 2 billion years after devolatilization of the country rocks, and thus require a model that involves alternative fluid and metal sources for the ores. A widespread suite of ca. 130–123 Ma granodiorites overlaps temporally with the ores, but shows a poor spatial association with the deposits. Furthermore, the deposit distribution and mineralization style is atypical of ores formed from nearby magmas. The ore concentration requires fluid focusing during some type of sub-crustal thermal event, which could be broadly related to a combination of coeval lithospheric thinning, asthenospheric upwelling, paleo-Pacific plate subduction, and seismicity along the continental-scale Tan-Lu fault. Possible ore genesis scenarios include those where ore fluids were produced directly by the metamorphism of oceanic lithosphere and overlying sediment on the subducting paleo-Pacific slab, or by devolatilization of an enriched mantle wedge above the slab. Both the sulfur and gold could be sourced from either the oceanic sediments or the serpentinized mantle. A better understanding of the architecture of the paleo-Pacific slab during Early Cretaceous below the eastern margin of China is essential to determination of the validity of possible models.
NASA Astrophysics Data System (ADS)
Paya, B. A.; Esat, I. I.; Badi, M. N. M.
1997-09-01
The purpose of condition monitoring and fault diagnostics are to detect and distinguish faults occurring in machinery, in order to provide a significant improvement in plant economy, reduce operational and maintenance costs and improve the level of safety. The condition of a model drive-line, consisting of various interconnected rotating parts, including an actual vehicle gearbox, two bearing housings, and an electric motor, all connected via flexible couplings and loaded by a disc brake, was investigated. This model drive-line was run in its normal condition, and then single and multiple faults were introduced intentionally to the gearbox, and to the one of the bearing housings. These single and multiple faults studied on the drive-line were typical bearing and gear faults which may develop during normal and continuous operation of this kind of rotating machinery. This paper presents the investigation carried out in order to study both bearing and gear faults introduced first separately as a single fault and then together as multiple faults to the drive-line. The real time domain vibration signals obtained for the drive-line were preprocessed by wavelet transforms for the neural network to perform fault detection and identify the exact kinds of fault occurring in the model drive-line. It is shown that by using multilayer artificial neural networks on the sets of preprocessed data by wavelet transforms, single and multiple faults were successfully detected and classified into distinct groups.
NASA Astrophysics Data System (ADS)
Samant, Hrishikesh; Pundalik, Ashwin; D'souza, Joseph; Sheth, Hetu; Lobo, Keegan Carmo; D'souza, Kyle; Patel, Vanit
2017-02-01
The Panvel flexure is a 150-km long tectonic structure, comprising prominently seaward-dipping Deccan flood basalts, on the western Indian rifted margin. Given the active tectonic faulting beneath the Panvel flexure zone inferred from microseismicity, better structural understanding of the region is needed. The geology of Elephanta Island in the Mumbai harbour, famous for the ca. mid-6th century A.D. Hindu rock-cut caves in Deccan basalt (a UNESCO World Heritage site) is poorly known. We describe a previously unreported but well-exposed fault zone on Elephanta Island, consisting of two large faults dipping steeply east-southeast and producing easterly downthrows. Well-developed slickensides and structural measurements indicate oblique slip on both faults. The Elephanta Island fault zone may be the northern extension of the Alibag-Uran fault zone previously described. This and two other known regional faults (Nhava-Sheva and Belpada faults) indicate a progressively eastward step-faulted structure of the Panvel flexure, with the important result that the individual movements were not simply downdip but also oblique-slip and locally even rotational (as at Uran). An interesting problem is the normal faulting, block tectonics and rifting of this region of the crust for which seismological data indicate a normal thickness (up to 41.3 km). A model of asymmetric rifting by simple shear may explain this observation and the consistently landward dips of the rifted margin faults.
Quantifying wall turbulence via a symmetry approach: A Lie group theory
NASA Astrophysics Data System (ADS)
She, Zhen-Su; Chen, Xi; Hussain, Fazle
2017-11-01
We present a symmetry-based approach which yields analytic expressions for the mean velocity and kinetic energy profiles from a Lie-group analysis. After verifying the dilation-group invariance of the Reynolds averaged Navier-Stokes equation in the presence of a wall, we select a stress and energy length function as similarity variables which are assumed to have a simple dilation-invariant form. Three kinds of (local) invariant forms of the length functions are postulated, a combination of which yields a multi-layer formula giving its distribution in the entire flow region normal to the wall. The mean velocity profile is then predicted using the mean momentum equation, which yields, in particular, analytic expressions for the (universal) wall function and separate wake functions for pipe and channel - which are validated by data from direct numerical simulations (DNS). Future applications to a variety of wall flows such as flows around flat plate or airfoil, in a Rayleigh-Benard cell or Taylor-Couette system, etc., are discussed, for which the dilation group invariance is valid in the wall-normal direction.
Satılmışoğlu, Muhammet Hulusi; Örnek Diker, Vesile; Taşbulak, Ömer; Diker, Mustafa; Birand, Ali; Kaya, Mehmet; İyigün, Taner; Eksik, Abdurrahman
2017-01-01
Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide synthase. We aimed to determine plasma ADMA levels in patients with ascending aorta dilatation in comparison to those without aorta dilatation, and to evaluate the diagnostic, predictive, and prognostic value of serum ADMA level for aorta dilatation. This was a cross-sectional case-control study. A total of 104 consecutive patients (female/male, 35/69; mean age, 62.75 ± 13.11 years) diagnosed with ascending aorta dilatation (≥ 4.5 cm) on echocardiography (case group), and 52 age-and gender-matched patients (female/male, 17/35; mean age, 63.44 ± 7.56 years) with normal aorta dimensions (≤ 3.8 cm) (control group) were included. Routine biochemical and haematological analysis in addition to measurement of serum ADMA level were performed. The mean diameter of ascending aorta measured on echocardiography was 4.95 ± 0.57 cm and 3.34 ± 0.36 cm in patients with aorta dilatation and those without aorta dilatation, respectively (p < 0.001). Serum ADMA level was significantly higher in patients with aorta dilatation than in the control group (1.70 ± 1.12 μmol/L vs. 0.79 ± 0.76 μmol/L, respectively, p < 0.001). There was significant positive correlation between ADMA level and aortic diameter in Spearman correlation analysis (r = 0.317, p < 0.001). In linear regression analysis, ADMA was found to be a significant independent predictor of aorta diameter (Beta = 0.26, p < 0.001). Receiver-operator characteristic curve analysis also revealed that serum ADMA cut-off level over 0.29 μmol/L predicts aorta dilatation (≥ 4.5 cm) with 94% sensitivity and 92% specificity and with high ac-curacy (area under curve: 0.786; 95% confidence interval: 0.709-0.863, p < 0.001). Serum ADMA level is diagnostic for ascending aorta dilatation with high sensitivity and specificity, and should be considered for use in clinical diagnosis of aorta dilatation.
NASA Astrophysics Data System (ADS)
Patel, J. R.
2002-06-01
Stacking faults in boron-implanted silicon give rise to streaks or rods of scattered x-ray intensity normal to the stacking fault plane. We have used the diffuse scattering rods to follow the growth of faults as a function of time when boron-implanted silicon is annealed in the range 925 - 1025 C.
Regulation of landslide motion by dilatancy and pore pressure feedback
Iverson, R.M.
2005-01-01
A new mathematical model clarifies how diverse styles and rates of landslide motion can result from regulation of Coulomb friction by dilation or contraction of water-saturated basal shear zones. Normalization of the model equations shows that feedback due to coupling between landslide motion, shear zone volume change, and pore pressure change depends on a single dimensionless parameter ??, which, in turn, depends on the dilatancy angle ?? and the intrinsic timescales for pore pressure generation and dissipation. If shear zone soil contracts during slope failure, then ?? 0, and negative feedback permits slow, steady landslide motion to occur while positive pore pressure is supplied by rain infiltration. Steady state slip velocities v0 obey v0 = -(K/??) p*e, where K is the hydraulic conductivity and p*e is the normalized (dimensionless) negative pore pressure generated by dilation. If rain infiltration and attendant pore pressure growth continue unabated, however, their influence ultimately overwhelms the stabilizing influence of negative p*e. Then, unbounded landslide acceleration occurs, accentuated by an instability that develops if ?? diminishes as landslide motion proceeds. Nonetheless, numerical solutions of the model equations show that slow, nearly steady motion of a clay-rich landslide may persist for many months as a result of negative pore pressure feedback that regulates basal Coulomb friction. Similarly stabilized motion is less likely to occur in sand-rich landslides that are characterized by weaker negative feedback.
Bodin, Paul; Bilham, Roger; Behr, Jeff; Gomberg, Joan; Hudnut, Kenneth W.
1994-01-01
Five out of six functioning creepmeters on southern California faults recorded slip triggered at the time of some or all of the three largest events of the 1992 Landers earthquake sequence. Digital creep data indicate that dextral slip was triggered within 1 min of each mainshock and that maximum slip velocities occurred 2 to 3 min later. The duration of triggered slip events ranged from a few hours to several weeks. We note that triggered slip occurs commonly on faults that exhibit fault creep. To account for the observation that slip can be triggered repeatedly on a fault, we propose that the amplitude of triggered slip may be proportional to the depth of slip in the creep event and to the available near-surface tectonic strain that would otherwise eventually be released as fault creep. We advance the notion that seismic surface waves, perhaps amplified by sediments, generate transient local conditions that favor the release of tectonic strain to varying depths. Synthetic strain seismograms are presented that suggest increased pore pressure during periods of fault-normal contraction may be responsible for triggered slip, since maximum dextral shear strain transients correspond to times of maximum fault-normal contraction.
Long-term, low-dose prophylaxis against urinary tract infections in young children.
Brandström, Per; Hansson, Sverker
2015-03-01
Urinary tract infection (UTI) affects about 2 % of boys and 8 % of girls during the first 6 years of life with Escherichia coli as the predominant pathogen. Symptomatic UTI causes discomfort and distress, and carries a risk of inducing renal damage. The strong correlation between febrile UTI, dilating vesicoureteral reflux (VUR), and renal scarring led to the introduction of antibiotic prophylaxis for children with VUR to reduce the rate of UTI recurrence. It became common practice to use prophylaxis for children with VUR and other urinary tract abnormalities. This policy has been challenged because of a lack of scientific support. Now, randomized controlled studies are available that compare prophylaxis to no treatment or placebo. They show that children with normal urinary tracts or non-dilating VUR do not benefit from prophylaxis. Dilating VUR may still be an indication for prophylaxis in young children. After the first year of life, boys have very few recurrences and do not benefit from prophylaxis. Girls with dilating VUR, on the other hand, are more prone to recurrences and benefit from prophylaxis. There has been a decline in the use of prophylaxis due to questioning of its efficacy, increasing bacterial resistance, and a propensity to low adherence to medication. Alternative measures to reduce UTI recurrences should be emphasized. However, in selected patients carefully followed, prophylaxis can protect from recurrent UTI and long-term sequelae. 1. There is a strong correlation between UTI, VUR, and renal scarring. 2. Children with normal urinary tracts or non-dilating VUR do not benefit from prophylaxis. 3. Young children, mainly girls, with dilating VUR are at risk of recurrent UTI and acquired renal scarring and seem to gain from antibiotic prophylaxis. 4. Increasing bacterial resistance and low adherence with prescribed medication is a major obstacle to successful antibiotic prophylaxis.
NASA Astrophysics Data System (ADS)
Ocakoğlu, Neslihan; Nomikou, Paraskevi; İşcan, Yeliz; Loreto, Maria Filomena; Lampridou, Danai
2018-06-01
The interpretation of new multichannel seismic profiles and previously published high-resolution swath and seismic reflection data from the Gökova Gulf and southeast of Kos Island in the eastern Aegean Sea revealed new morphotectonic features related to the July 20, 2017 Mw6.6 Bodrum-Kos earthquake offshore between Kos Island and the Bodrum Peninsula. The seafloor morphology in the northern part of the gulf is characterized by south-dipping E-W-oriented listric normal faults. These faults bend to a ENE-WSW direction towards Kos Island, and then extend parallel to the southern coastline. A left-lateral SW-NE strike-slip fault zone is mapped with segments crossing the Gökova Gulf from its northern part to south of Kos Island. This fault zone intersects and displaces the deep basins in the gulf. The basins are thus interpreted as the youngest deformed features in the study area. The strike-slip faults also produce E-W-oriented ridges between the basin segments, and the ridge-related vertical faults are interpreted as reverse faults. This offshore study reveals that the normal and strike-slip faults are well correlated with the focal mechanism solutions of the recent earthquake and general seismicity of the Gökova Gulf. Although the complex morphotectonic features could suggest that the area is under a transtensional regime, kinematic elements normally associated with a transtensional system are missing. At present, the Gökova Gulf is experiencing strike-slip motion with dominant extensional deformation, rather than transtensional deformation.
NASA Astrophysics Data System (ADS)
Shackleton, J. R.; Cooke, M. L.
2005-12-01
The Sant Corneli Anticline is a well-exposed example of a fault-cored fold whose hydrologic evolution and structural development are directly linked. The E-W striking anticline is ~ 5 km wide with abrupt westerly plunge, and formed in response to thrusting associated with the upper Cretaceous to Miocene collision of Iberia with Europe. The fold's core of fractured carbonates contains a variety of west dipping normal faults with meter to decameter scale displacement and abundant calcite fill. This carbonate unit is capped by a marl unit with low angle, calcite filled normal faults. The marl unit is overlain by clastic syn-tectonic strata whose sedimentary architecture records limb rotation during the evolution of the fold. The syn-tectonic strata contain a variety of joint sets that record the stresses before, during, and possibly after fold growth. Faulting in the marl and calcite-filled joints in the syn-tectonic strata suggest that normal faults within the carbonate core of the fold eventually breached the overlying marl unit. This breach may have connected the joints of the syn-tectonic strata to the underlying carbonate reservoir and eliminated previous compartmentalization of fluids. Furthermore, breaching of the marl units probably enhanced joint formation in the overlying syn-tectonic strata. Future geochemical studies of calcite compositions in the three units will address this hypothesis. Preliminary mapping of joint sets in the syn-tectonic strata reveal a multistage history of jointing. Early bed-perpendicular joints healed by calcite strike NE-SW, parallel to normal faults in the underlying carbonates, and may be related to an early regional extensional event. Younger healed bed-perpendicular joints cross cut the NE-SW striking set, and are closer to N-S in strike: these joints are interpreted to represent the initial stages of folding. Decameter scale, bed perpendicular, unfilled fractures that are sub-parallel to strike probably represent small joints and faults that formed in response to outer arc extension during folding. Many filled, late stage joints strike sub-parallel to, and increase in frequency near, normal faults and transverse structures observed in the carbonate fold core. This suggests that faulting in the underlying carbonates and marls significantly affected the joint patterns in the syn-tectonic strata. Preliminary three-dimensional finite element restorations using Dynel have allowed us to test our hypotheses and constrain the timing of jointing and marl breach.
NASA Astrophysics Data System (ADS)
Saidi, Amal; Tahiri, Abdelfatah; Ait Brahim, Lahcen; Saidi, Maraim
The fracturing analysis in the Permian basins of Jebilet and Rehamna (Hercynian Morocco) and the underlying terranes allowed us to suggest a model for their opening. Three tectonic episodes are distinguished: a transtensional episode NNE-SSW-trending (Permian I), occurring during the opening along sinistral wrench faults N70-110-trending, associated with synsedimentary normal faults; a transpressive episode ESE-WNW-trending (Permian II), initiating the closure, the normal faults playing back reverse faults and the N70 trending faults dextral wrench faults; a compressional episode NNW-SSE (post-Permian, ante-Triassic), accentuating the closure and the deformation and putting an end to the Tardi-Hercynian compressive movements. To cite this article: A. Saidi et al., C. R. Geoscience 334 (2002) 221-226.
Stein, R.S.; King, G.C.P.; Rundle, J.B.
1988-01-01
A strong test of our understanding of the earthquake cycle is the ability to reproduce extant faultbounded geological structures, such as basins and ranges, which are built by repeated cycles of deformation. Three examples are considered for which the structure and fault geometry are well known: the White Wolf reverse fault in California, site of the 1952 Kern County M=7.3 earthquake, the Lost River normal fault in Idaho, site of the 1983 Borah Peak M=7.0 earthquake, and the Cricket Mountain normal fault in Utah, site of Quaternary slip events. Basin stratigraphy and seismic reflection records are used to profile the structure, and coseismic deformation measured by leveling surveys is used to estimate the fault geometry. To reproduce these structures, we add the deformation associated with the earthquake cycle (the coseismic slip and postseismic relaxation) to the flexure caused by the observed sediment load, treating the crust as a thin elastic plate overlying a fluid substrate. -from Authors
Triggering of destructive earthquakes in El Salvador
NASA Astrophysics Data System (ADS)
Martínez-Díaz, José J.; Álvarez-Gómez, José A.; Benito, Belén; Hernández, Douglas
2004-01-01
We investigate the existence of a mechanism of static stress triggering driven by the interaction of normal faults in the Middle American subduction zone and strike-slip faults in the El Salvador volcanic arc. The local geology points to a large strike-slip fault zone, the El Salvador fault zone, as the source of several destructive earthquakes in El Salvador along the volcanic arc. We modeled the Coulomb failure stress (CFS) change produced by the June 1982 and January 2001 subduction events on planes parallel to the El Salvador fault zone. The results have broad implications for future risk management in the region, as they suggest a causative relationship between the position of the normal-slip events in the subduction zone and the strike-slip events in the volcanic arc. After the February 2001 event, an important area of the El Salvador fault zone was loaded with a positive change in Coulomb failure stress (>0.15 MPa). This scenario must be considered in the seismic hazard assessment studies that will be carried out in this area.
NASA Astrophysics Data System (ADS)
Schroeder, T.; Cheadle, M. J.; Dick, H. J.; Faul, U.
2005-12-01
Large degrees (up to 90°) of tectonic rotation may be the norm at slow-spreading, non-volcanic ridges. Vertically upwelling mantle beneath all mid-ocean ridges must undergo corner flow to move horizontally with the spreading plate. Because little or no volcanic crust is produced at some slow-spreading ridges, the uppermost lithospheric mantle must undergo this rotation in the regime of localized, rather than distributed deformation. Anomalous paleomagnetic inclinations in peridotite and gabbro cores drilled near the 15-20 Fracture Zone (Mid-Atlantic Ridge, ODP Leg 209) support such large rotations, with sub-Curie-temperature rotations up to 90° (Garces et al., 2004). Here, we present two end-member tectonic mechanisms, with supporting data from Leg 209 cores and bathymetry, to show how rotation is accomplished via extensional faults and shear zones: 1) long-lived detachment faults, and 2) multiple generations of high-angle normal faults. Detachment faults accommodate rotation by having a moderate to steep dip at depth, and rotating to horizontal through a rolling hinge as the footwall is tectonically denuded. Multiple generations of high-angle normal faults accommodate large rotations in a domino fashion; early faults become inactive when rotated to inopportune slip angles, and are cut by younger high-angle faults. Thus, each generation of high-angle faults accommodates part of the total rotation. There is likely a gradation between the domino and detachment mechanisms; transition from domino to detachment faulting occurs when a single domino fault remains active at inopportune slip angles and evolves into a detachment that accommodates all corner flow for that region. In both cases, the original attitude of layering within mantle-emplaced gabbro bodies must be significantly different than present day observed attitudes; sub-horizontal bodies may have been formed sub-vertically and vice-versa. Leg 209 cores record an average major brittle fault spacing of approximately 100 m, suggesting that the width of individual rotating fault blocks may be on the order of 100-200 m. Numerous fault bounded domino slices could therefore be formed within a 10km wide axial valley, with large rotations (and commensurate extension) leading to the exposure of 1km wide shallow-dipping fault surfaces, as are seen in the 15-20 FZ region bathymetry. The region's bathymetry is dominated by irregular, low-relief ridges that were likely formed by domino faulting of lithosphere with a small elastic thickness. The region contains relatively few corrugated detachment fault domes, suggesting that domino faulting may be the normal mode of lithospheric corner flow at non-volcanic ridges.
NASA Astrophysics Data System (ADS)
Sorlien, C. C.; Seeber, L.; Diebold, J.; Shillington, D.; Steckler, M. S.; Gurcay, S.; Kucuk, H. M.; Akhun, S. D.; Timur, D.; Dondurur, D.; Kurt, H.; Perincek, E.; Ozer, P.; Imren, C.; Coskun, S.; Buyukasik, E.; Cevatoglu, M.; Cifci, G.; Demirbag, E.
2008-12-01
We collected high-resolution multichannel seismic reflection (MCS) and chirp seismic data across the North Anatolian Fault (NAF) system in the Marmara Sea aboard the R/V K. Piri Reis during July 2008. Three 1200+ m-deep bathymetric basins are arrayed along the North strand of the NAF. This strand passes closest to Istanbul and is considered to carry most of the current and late Holocene plate motion, but other strands to the south are active and may have been more important in the past. The transverse Central Marmara Ridge, formed by a contractional anticline, separates two of the basins. Filled sedimentary basins underlie the southern shelf, and, adjacent to that shelf, the partly-filled North Imrali basin underlies a 400 m-deep platform. Our chirp data image several strands of the southern fault system, 50 km south of the northern NAF on the inner (southern) shelf, that offset strata which postdate the ~12 ka marine transgression. Another W-striking fault that deforms post-12 ka strata cuts the mid-southern shelf. A WNW-striking segment of the Imrali fault system is associated with normal-separation, 300 m-high sea floor scarps that separate the shelf from the North Imrali basin. This basin is cut by numerous NW-striking normal-separation faults, some deforming the sea floor. At least 4 complexes of shelf edge deltas, whose tops were formed near sea level or lake level, are stacked between 500 and 900 m depth in this downthrown block of the Imrali fault. The originally sub- horizontal tops of each delta are now locally progressively tilted and folded near an ENE-striking branch of the Imrali fault (known as the Yalova fault). Lacking stratigraphic control, we infer that the deltas represent glacial intervals spaced at 100 ka during the late Pleistocene. Assuming a locally constant subsidence rate, with lowstands near -90 m, and the observed 130 m vertical spacing between the deltas, subsidence rates would be ~1.3 mm/yr, and the youngest well-preserved delta would be ~320 ka (MIS10). Alternatively, it corresponds to the pronounced 420 ka glacial (MIS12). Younger deltas did not form in this area, at least not with prograding geometries, because the water depth became too great. Possibly, outer shelf anticlinal growth may have diverted the river westward, where younger deltas are preserved on the shelf. The slope between the 400 m platform and the lower flank of the NE-trending Central Marmara Ridge is dominated by north-trending and northeast-trending 1 km-wavelength folds. These folds grew through the late Quaternary interval of deposition of the imaged deltas, and they deform the seafloor. They could be secondary shortening structures, forced folds above blind normal faults, or both. Farther east along the same slope, low-angle normal faults also grew through much of late Quaternary time. These faults root above unfaulted strata, and represent a slow collapse of the escarpment into the deep basin. NE-trending thrust- folds, NW-striking normal faults, WNW-striking transtensional faults, and ENE-striking transpressional faults are all consistent with the E-W right-lateral continental transform fault system.
Folding associated with extensional faulting: Sheep Range detachment, southern Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guth, P.L.
1985-01-01
The Sheep Range detachment is a major Miocene extensional fault system of the Great Basin. Its major faults have a scoop shape, with straight, N-S traces extending 15-30 km and then abruptly turning to strike E-W. Tertiary deformation involved simultaneous normal faulting, sedimentation, landsliding, and strike-slip faulting. Folds occur in two settings: landslide blocks and drag along major faults. Folds occur in landslide blocks and beneath them. Most folds within landslide blocks are tight anticlines, with limbs dipping 40-60 degrees. Brecciation of the folds and landslide blocks suggests brittle deformation. Near Quijinump Canyon in the Sheep Range, at least threemore » landslide blocks (up to 500 by 1500 m) slid into a small Tertiary basin. Tertiary limestone beneath the Paleozoic blocks was isoclinally folded. Westward dips reveal drag folds along major normal faults, as regional dips are consistently to the east. The Chowderhead anticline is the largest drag fold, along an extensional fault that offsets Ordovician units 8 km. East-dipping Ordovician and Silurian rocks in the Desert Range form the hanging wall. East-dipping Cambrian and Ordovician units in the East Desert Range form the foot wall and east limb of the anticline. Caught along the fault plane, the anticline's west-dipping west limb contains mostly Cambrian units.« less
A study of fault prediction and reliability assessment in the SEL environment
NASA Technical Reports Server (NTRS)
Basili, Victor R.; Patnaik, Debabrata
1986-01-01
An empirical study on estimation and prediction of faults, prediction of fault detection and correction effort, and reliability assessment in the Software Engineering Laboratory environment (SEL) is presented. Fault estimation using empirical relationships and fault prediction using curve fitting method are investigated. Relationships between debugging efforts (fault detection and correction effort) in different test phases are provided, in order to make an early estimate of future debugging effort. This study concludes with the fault analysis, application of a reliability model, and analysis of a normalized metric for reliability assessment and reliability monitoring during development of software.
The frictional strength of talc gouge in high-velocity shear experiments
NASA Astrophysics Data System (ADS)
Chen, Xiaofeng; Elwood Madden, Andrew S.; Reches, Ze'ev
2017-05-01
Talc is present in several large-scale fault zones worldwide and is mineralogically stable at temperature of the upper crust. It is therefore necessary to gain a better understanding of the frictional behavior of talc under a wide range of slip velocity conditions occurring during the seismic cycle. We analyzed the frictional and structural characteristics of room-dry and water-saturated talc gouge by shear experiments on a confined gouge layer at slip velocity range of 0.002-0.66 m/s and normal stress up to 4.1 MPa. Room-dry talc showed a distinct slip-strengthening with the initial friction coefficient of μ 0.4 increased systematically to μ 1 at slip distance D > 1 m. Room-dry talc also displayed velocity-strengthening at slip distances shorter than 1 m. The water-saturated talc gouge displayed systematic low frictional strength of μ = 0.1-0.3 for the entire experimental range, with clear velocity-strengthening behavior with positive (a-b) values (rate dependence parameter of rate and state friction) of 0.01-0.04. The microstructural analyses revealed distributed shear and systematic dilation (up to 50%) for the room-dry talc, in contrast to the extreme slip localization and strong shear compaction for water-saturated talc. We propose that talc frictional strength is controlled by lubrication along cleavage surfaces that is facilitated by adsorbed water (room-dry) and surplus water (water-saturated). This mechanism can explain our experimental observations of slip-strengthening and velocity-strengthening for both types of talc gouge, as well as other clay minerals. It is thus expected that talc presence in fault zones would enhance creep and inhibit unstable slip.
Seismic waves increase permeability.
Elkhoury, Jean E; Brodsky, Emily E; Agnew, Duncan C
2006-06-29
Earthquakes have been observed to affect hydrological systems in a variety of ways--water well levels can change dramatically, streams can become fuller and spring discharges can increase at the time of earthquakes. Distant earthquakes may even increase the permeability in faults. Most of these hydrological observations can be explained by some form of permeability increase. Here we use the response of water well levels to solid Earth tides to measure permeability over a 20-year period. At the time of each of seven earthquakes in Southern California, we observe transient changes of up to 24 degrees in the phase of the water level response to the dilatational volumetric strain of the semidiurnal tidal components of wells at the Piñon Flat Observatory in Southern California. After the earthquakes, the phase gradually returns to the background value at a rate of less than 0.1 degrees per day. We use a model of axisymmetric flow driven by an imposed head oscillation through a single, laterally extensive, confined, homogeneous and isotropic aquifer to relate the phase response to aquifer properties. We interpret the changes in phase response as due to changes in permeability. At the time of the earthquakes, the permeability at the site increases by a factor as high as three. The permeability increase depends roughly linearly on the amplitude of seismic-wave peak ground velocity in the range of 0.21-2.1 cm s(-1). Such permeability increases are of interest to hydrologists and oil reservoir engineers as they affect fluid flow and might determine long-term evolution of hydrological and oil-bearing systems. They may also be interesting to seismologists, as the resulting pore pressure changes can affect earthquakes by changing normal stresses on faults.
Vaginal dilator therapy for women receiving pelvic radiotherapy.
Miles, Tracie; Johnson, Nick
2014-09-08
Vaginal dilation therapy is advocated after pelvic radiotherapy to prevent stenosis (abnormal narrowing of the vagina), but can be uncomfortable and psychologically distressing. To assess the benefits and harms of different types of vaginal dilation methods offered to women treated by pelvic radiotherapy for cancer. Searches included the Cochrane Central Register of Controlled Trials (CENTRAL 2013, Issue 5), MEDLINE (1950 to June week 2, 2013), EMBASE (1980 to 2013 week 24) and CINAHL (1982 to 2013). Comparative data of any type, which evaluated dilation or penetration of the vagina after pelvic radiotherapy treatment for cancer. Two review authors independently assessed whether potentially relevant studies met the inclusion criteria. We found no trials and therefore analysed no data. We identified no studies for inclusion in the original review or for this update. However, we felt that some studies that were excluded warranted discussion. These included one randomised trial (RCT), which showed no improvement in sexual scores associated with encouraging women to practise dilation therapy; a recent small RCT that did not show any advantage to dilation over vibration therapy during radiotherapy; two non-randomised comparative studies; and five correlation studies. One of these showed that objective measurements of vaginal elasticity and length were not linked to dilation during radiotherapy, but the study lacked power. One study showed that women who dilated tolerated a larger dilator, but the risk of objectivity and bias with historical controls was high. Another study showed that the vaginal measurements increased in length by a mean of 3 cm after dilation was introduced 6 to 10 weeks after radiotherapy, but there was no control group; another case series showed the opposite. Three recent studies showed less stenosis associated with prophylactic dilation after radiotherapy. One small case series suggested that dilation years after radiotherapy might restore the vagina to a functional length. There is no reliable evidence to show that routine, regular vaginal dilation during radiotherapy treatment prevents stenosis or improves quality of life. Several observational studies have examined the effect of dilation therapy after radiotherapy. They suggest that frequent dilation practice is associated with lower rates of self reported stenosis. This could be because dilation is effective or because women with a healthy vagina are more likely to comply with dilation therapy instructions compared to women with strictures. We would normally suggest that a RCT is needed to distinguish between a casual and causative link, but pilot studies highlight many reasons why RCT methodology is challenging in this area.
Evidence of post-Pleistocene faults on New Jersey Atlantic outer continental shelf
Sheridan, R.E.; Knebel, H.J.
1976-01-01
Recently obtained high-resolution seismic profiles (400-4,000-Hz band) show evidence of faults in shallow sedimentary strata near the edge of the Atlantic continental shelf off New Jersey. Apparent normal faults having a throw of about 1.5 m displace sediments to within 7 m of the sea floor. The faults appear to be overlain by undeformed horizontal beds of relatively recent age. Several faults 1 to 2 km apart strike approximately N70°E and dip northwest. The data suggest that the faults are upthrown on the southeast.Projection of the faults on the high-resolution profiles to a nearby multichannel seismic-reflection profile indicates that these shallow faults might be the near-surface expression of a more fundamental deep-seated fault. Several prominent reflectors in the multichannel records are offset by a high-angle normal fault reaching depths of 4.0 to 5.0 sec (6.0 to 6.5 km). The deep fault on the multichannel line also is upthrown on the southeast. Throws of as much as 90 m are apparent at depth, but offsets of as much as 10 m could be present in the shallower parts of the section that may not be resolved in the multichannel data.The position and strike of these faults coincide with and parallel the East Coast magnetic anomaly interpreted as the fundamental seaward basement boundary of the Baltimore Canyon trough. Recurring movements along such boundary faults are expected theoretically if the marginal basins are subsiding in response to the plate rotation of North America and seafloor spreading in the Atlantic.
NASA Astrophysics Data System (ADS)
Dawers, N. H.; McLindon, C.
2017-12-01
A synthesis of late Quaternary faults within the Mississippi River deltaic plain aims to provide a more accurate assessment of regional and local fault architecture, and interactions between faulting, sediment loading, salt withdrawal and compaction. This effort was initiated by the New Orleans Geological Society and has resulted in access to industry 3d seismic reflection data, as well as fault trace maps, and various types of well data and biostratigraphy. An unexpected outgrowth of this project is a hypothesis that gravity-driven normal faults in deltaic settings may be good candidates for shallow aseismic and slow-slip phenomena. The late Quaternary fault population is characterized by several large, highly segmented normal fault arrays: the Baton Rouge-Tepetate fault zone, the Lake Pontchartrain-Lake Borgne fault zone, the Golden Meadow fault zone (GMFZ), and a major counter-regional salt withdrawal structure (the Bay Marchand-Timbalier Bay-Caillou Island salt complex and West Delta fault zone) that lies just offshore of southeastern Louisiana. In comparison to the other, more northerly fault zones, the GMFZ is still significantly salt-involved. Salt structures segment the GMFZ with fault tips ending near or within salt, resulting in highly localized fault and compaction related subsidence separated by shallow salt structures, which are inherently buoyant and virtually incompressible. At least several segments within the GMFZ are characterized by marsh breaks that formed aseismically over timescales of days to months, such as near Adams Bay and Lake Enfermer. One well-documented surface rupture adjacent to a salt dome propagated over a 3 day period in 1943. We suggest that Louisiana's coastal faults make excellent analogues for deltaic faults in general, and propose that a series of positive feedbacks keep them active in the near surface. These include differential sediment loading and compaction, weak fault zone materials, high fluid pressure, low elastic stiffness in surrounding materials, and low confining pressure.
NASA Astrophysics Data System (ADS)
Urata, Yumi; Kuge, Keiko; Kase, Yuko
2015-02-01
Phase transitions of pore water have never been considered in dynamic rupture simulations with thermal pressurization (TP), although they may control TP. From numerical simulations of dynamic rupture propagation including TP, in the absence of any water phase transition process, we predict that frictional heating and TP are likely to change liquid pore water into supercritical water for a strike-slip fault under depth-dependent stress. This phase transition causes changes of a few orders of magnitude in viscosity, compressibility, and thermal expansion among physical properties of water, thus affecting the diffusion of pore pressure. Accordingly, we perform numerical simulations of dynamic ruptures with TP, considering physical properties that vary with the pressure and temperature of pore water on a fault. To observe the effects of the phase transition, we assume uniform initial stress and no fault-normal variations in fluid density and viscosity. The results suggest that the varying physical properties decrease the total slip in cases with high stress at depth and small shear zone thickness. When fault-normal variations in fluid density and viscosity are included in the diffusion equation, they activate TP much earlier than the phase transition. As a consequence, the total slip becomes greater than that in the case with constant physical properties, eradicating the phase transition effect. Varying physical properties do not affect the rupture velocity, irrespective of the fault-normal variations. Thus, the phase transition of pore water has little effect on dynamic ruptures. Fault-normal variations in fluid density and viscosity may play a more significant role.
The narcoleptic cognitive pupillary response.
O'Neill, W D; Trick, K P
2001-09-01
It has been reported that narcoleptics exhibit deficits in short-term memory, list recall, and stimulus frequency estimation compared with control subjects. It is also well-known that pupil dilation during cognitive tasks is a measure of subject attention state. Here we present results from six narcoleptics and six controls, a total of 360 experimental records in which pupillograms were made during cognitive tests, which indicate that narcoleptics begin pupillary dilations at a smaller diameter, begin dilating earlier poststimulus, attain higher pupillary diameter velocities, yet achieve the same equilibrium dilation diameter as controls. These findings are derived from statistical tests performed on the parameters of a nonlinear regression model of pupillary cognitive dilation as a function of time. In our experiments, the standard 1-s interdigit time between cognitive stimuli was increased to 2.3 s, which yielded pupillographic time records showing that the process of short-term memory overload sets in gradually at about four memory digits for controls and three memory digits for narcoleptics. We suggest our results can be partially explained by a narcoleptic stimulus-encoding deficit, which limits the time available for subjects to rehearse cognitive tasks. However, we also report the unexpected finding that the inferred encoding deficit is a transient one in that repeated tasks at the same memory load elicit a near normal naroleptic pupillary dilation.
Verification of an IGBT Fusing Switch for Over-current Protection of the SNS HVCM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benwell, Andrew; Kemp, Mark; Burkhart, Craig
2010-06-11
An IGBT based over-current protection system has been developed to detect faults and limit the damage caused by faults in high voltage converter modulators. During normal operation, an IGBT enables energy to be transferred from storage capacitors to a H-bridge. When a fault occurs, the over-current protection system detects the fault, limits the fault current and opens the IGBT to isolate the remaining stored energy from the fault. This paper presents an experimental verification of the over-current protection system under applicable conditions.
Attenuation and recovery of brain stem autoregulation in spontaneously hypertensive rats.
Toyoda, K; Fujii, K; Ibayashi, S; Kitazono, T; Nagao, T; Takaba, H; Fujishima, M
1998-03-01
Cerebral large arteries dilate actively around the lower limits of CBF autoregulation, mediated at least partly by nitric oxide, and maintain CBF during severe hypotension. We tested the hypothesis that this autoregulatory response of large arteries, as well as the response of arterioles, is altered in spontaneously hypertensive rats (SHR) and that the altered response reverts to normal during long-term antihypertensive treatment with cilazapril, an angiotensin-converting enzyme inhibitor. In anesthetized 6- to 7-month-old normotensive Wistar-Kyoto rats (WKY), 4- and 6- to 7-month-old SHR without antihypertensive treatment, and 6- to 7-month-old SHR treated with cilazapril for 10 weeks, local CBF to the brain stem was determined with laser-Doppler flowmetry and diameters of the basilar artery and its branches were measured through a cranial window during stepwise hemorrhagic hypotension. The lower limit of CBF autoregulation shifted upward in untreated SHR to 90 to 105 mm Hg from 30 to 45 mm Hg in WKY, and it reverted to 30 to 45 mm Hg in treated SHR. In response to severe hypotension, the basilar artery dilated by 21 +/- 6% (mean +/- SD) of the baseline internal diameter in WKY. The vasodilation was impaired in untreated SHR (10 +/- 8% in 4-mo-old SHR and 4 +/- 5% in 6- to 7-month-old SHR), and was restored to 22 +/- 10% by treatment with cilazapril (P < 0.005). Dilator responses of branch arterioles to hypotension showed similar attenuation and recovery as that of the basilar artery. The data indicate that chronic hypertension impairs the autoregulatory dilation of the basilar artery as well as branch arterioles and that antihypertensive treatment with cilazapril restores the diminished dilation toward normal.
Long, Pamela A.; Evans, Jared M.; Olson, Timothy M.
2015-01-01
Idiopathic dilated cardiomyopathy is a heritable, genetically heterogeneous disorder characterized by progressive heart failure. Dilated cardiomyopathy typically exhibits autosomal dominant inheritance, yet frequently remains clinically silent until adulthood. We sought to discover the molecular basis of idiopathic, non-syndromic dilated cardiomyopathy in a one-month-old male presenting with severe heart failure. Previous comprehensive testing of blood, urine, and skin biopsy specimen was negative for metabolic, mitochondrial, storage, and infectious etiologies. Ophthalmologic examination was normal. Chromosomal microarray and commercial dilated cardiomyopathy gene panel testing failed to identify a causative mutation. Parental screening echocardiograms revealed no evidence of clinically silent dilated cardiomyopathy. Whole exome sequencing was carried out on the family trio on a research basis, filtering for rare, deleterious, recessive and de novo genetic variants. Pathogenic compound heterozygous truncating mutations were identified in ALMS1, diagnostic of Alström syndrome and prompting disclosure of genetic findings. Alström syndrome is a known cause for dilated cardiomyopathy in children yet delayed and mis-diagnosis are common owing to its rarity and age-dependent emergence of multisystem clinical manifestations. At six months of age the patient ultimately developed bilateral nystagmus and hyperopia, features characteristic of the syndrome. Early diagnosis is guiding clinical monitoring of other organ systems and allowing for presymptomatic intervention. Furthermore, recognition of recessive inheritance as the mechanism for sporadic disease has informed family planning. This case highlights a limitation of standard gene testing panels for pediatric dilated cardiomyopathy and exemplifies the potential for whole exome sequencing to solve a diagnostic dilemma and enable personalized care. PMID:25706677
Estimating Stresses, Fault Friction and Fluid Pressure from Topography and Coseismic Slip Models
NASA Astrophysics Data System (ADS)
Styron, R. H.; Hetland, E. A.
2014-12-01
Stress is a first-order control on the deformation state of the earth. However, stress is notoriously hard to measure, and researchers typically only estimate the directions and relative magnitudes of principal stresses, with little quantification of the uncertainties or absolute magnitude. To improve upon this, we have developed methods to constrain the full stress tensor field in a region surrounding a fault, including tectonic, topographic, and lithostatic components, as well as static friction and pore fluid pressure on the fault. Our methods are based on elastic halfspace techniques for estimating topographic stresses from a DEM, and we use a Bayesian approach to estimate accumulated tectonic stress, fluid pressure, and friction from fault geometry and slip rake, assuming Mohr-Coulomb fault mechanics. The nature of the tectonic stress inversion is such that either the stress maximum or minimum is better constrained, depending on the topography and fault deformation style. Our results from the 2008 Wenchuan event yield shear stresses from topography up to 20 MPa (normal-sinistral shear sense) and topographic normal stresses up to 80 MPa on the faults; tectonic stress had to be large enough to overcome topography to produce the observed reverse-dextral slip. Maximum tectonic stress is constrained to be >0.3 * lithostatic stress (depth-increasing), with a most likely value around 0.8, trending 90-110°E. Minimum tectonic stress is about half of maximum. Static fault friction is constrained at 0.1-0.4, and fluid pressure at 0-0.6 * total pressure on the fault. Additionally, the patterns of topographic stress and slip suggest that topographic normal stress may limit fault slip once failure has occurred. Preliminary results from the 2013 Balochistan earthquake are similar, but yield stronger constraints on the upper limits of maximum tectonic stress, as well as tight constraints on the magnitude of minimum tectonic stress and stress orientation. Work in progress on the Wasatch fault suggests that maximum tectonic stress may also be able to be constrained, and that some of the shallow rupture segmentation may be due in part to localized topographic loading. Future directions of this work include regions where high relief influences fault kinematics (such as Tibet).
NASA Astrophysics Data System (ADS)
Ramadhan, Aldis; Badai Samudra, Alexis; Jaenudin; Puji Lestari, Enik; Saputro, Julian; Sugiono; Hirosiadi, Yosi; Amrullah, Indi
2018-03-01
Geologically, Ketaling area consists of a local high considered as flexure margin of Tempino-Kenali Asam Deep in west part and graben in east part also known as East Ketaling Deep. Numerous proven plays were established in Ketaling area with reservoir in early Miocene carbonate and middle Miocene sand. This area underwent several major deformations. Faults are developed widely, yet their geometrical features and mechanisms of formation remained so far indistinct, which limited exploration activities. With new three-dimensional seismic data acquired in 2014, this area evidently interpreted as having strike-slip mechanism. The objective of this study is to examine characteristic of strike slip fault and its affect to hydrocarbon trapping in Ketaling Area. Structural pattern and characteristic of strike slip fault deformation was examined with integration of normal seismic with variance seismic attribute analysis and the mapping of Syn-rift to Post-rift horizon. Seismic flattening on 2D seismic cross section with NW-SE direction is done to see the structural pattern related to horst (paleohigh) and graben. Typical flower structure, branching strike-slip fault system and normal fault in synrift sediment clearly showed in section. An echelon pattern identified from map view as the result of strike slip mechanism. Detail structural geology analysis show the normal fault development which has main border fault in the southern of Ketaling area dipping to the Southeast-East with NE-SW lineament. These faults related to rift system in Ketaling area. NW-SE folds with reactive NE-SW fault which act as hydrocarbon trapping in the shallow zone. This polyphase tectonic formed local graben, horst and inverted structure developed a good kitchen area (graben) and traps (horst, inverted structure). Subsequently, hydrocarbon accumulation potentials such as basement fractures, inverted syn-rift deposit and shallow zone are very interesting to explore in this area.
Mortera-Gutierrez, C. A.; Scholl, D. W.; Carlson, R.L.
2003-01-01
Normal faults along the seaward trench slope (STS) commonly strike parallel to the trench in response to bending of the oceanic plate into the subduction zone. This is not the circumstance for the Aleutian Trench, where the direction of convergence gradually changes westward, from normal to transform motion. GLORIA side-scan sonar images document that the Aleutian STS is dominated by faults striking oblique to the trench, west of 179??E and east of 172??W. These images also show a pattern of east-west trending seafloor faults that are aligned parallel to the spreading fabric defined by magnetic anomalies. The stress-strain field along the STS is divided into two domains west and east, respectively, of 179??E. Over the western domain, STS faults and nodal planes of earthquakes are oriented oblique (9??-46??) to the trench axis and (69??-90??) to the magnetic fabric. West of 179??E, STS fault strikes change by 36?? from the E-W trend of STS where the trench-parallel slip gets larger than its orthogonal component of convergence. This rotation indicates that horizontal stresses along the western domain of the STS are deflected by the increasing obliquity in convergence. An analytical model supports the idea that strikes of STS faults result from a superposition of stresses associated with the dextral shear couple of the oblique convergence and stresses caused by plate bending. For the eastern domain, most nodal planes of earthquakes strike parallel to the outer rise, indicating bending as the prevailing mechanism causing normal faulting. East of 172??W, STS faults strike parallel to the magnetic fabric but oblique (10??-26??) to the axis of the trench. On the basis of a Coulomb failure criterion the trench-oblique strikes probably result from reactivation of crustal faults generated by spreading. Copyright 2003 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Saldaña, S. C.; Snelson, C. M.; Taylor, W. J.; Beachly, M.; Cox, C. M.; Davis, R.; Stropky, M.; Phillips, R.; Robins, C.; Cothrun, C.
2007-12-01
The Pahrump Fault system is located in the central Basin and Range region and consists of three main fault zones: the Nopah range front fault zone, the State Line fault zone and the Spring Mountains range fault zone. The State Line fault zone is made up north-west trending dextral strike-slip faults that run parallel to the Nevada- California border. Previous geologic and geophysical studies conducted in and around Stewart Valley, located ~90 km from Las Vegas, Nevada, have constrained the location of the State Line fault zone to within a few kilometers. The goals of this project were to use seismic methods to definitively locate the northwestern most trace of the State Line fault and produce pseudo 3-D seismic cross-sections that can then be used to characterize the subsurface geometry and determine the slip of the State Line fault. During July 2007, four seismic lines were acquired in Stewart Valley: two normal and two parallel to the mapped traces of the State Line fault. Presented here are preliminary results from the two seismic lines acquired normal to the fault. These lines were acquired utilizing a 144-channel geode system with each of the 4.5 Hz vertical geophones set out at 5 m intervals to produce a 595 m long profile to the north and a 715 m long profile to the south. The vibroseis was programmed to produce an 8 s linear sweep from 20-160 Hz. These data returned excellent signal to noise and reveal subsurface lithology that will subsequently be used to resolve the subsurface geometry of the State Line fault. This knowledge will then enhance our understanding of the evolution of the State Line fault. Knowing how the State Line fault has evolved gives insight into the stick-slip fault evolution for the region and may improve understanding of how stress has been partitioned from larger strike-slip systems such as the San Andreas fault.
Late Quaternary faulting along the Death Valley-Furnace Creek fault system, California and Nevada
Brogan, George E.; Kellogg, Karl; Slemmons, D. Burton; Terhune, Christina L.
1991-01-01
The Death Valley-Furnace Creek fault system, in California and Nevada, has a variety of impressive late Quaternary neotectonic features that record a long history of recurrent earthquake-induced faulting. Although no neotectonic features of unequivocal historical age are known, paleoseismic features from multiple late Quaternary events of surface faulting are well developed throughout the length of the system. Comparison of scarp heights to amount of horizontal offset of stream channels and the relationships of both scarps and channels to the ages of different geomorphic surfaces demonstrate that Quaternary faulting along the northwest-trending Furnace Creek fault zone is predominantly right lateral, whereas that along the north-trending Death Valley fault zone is predominantly normal. These observations are compatible with tectonic models of Death Valley as a northwest-trending pull-apart basin. The largest late Quaternary scarps along the Furnace Creek fault zone, with vertical separation of late Pleistocene surfaces of as much as 64 m (meters), are in Fish Lake Valley. Despite the predominance of normal faulting along the Death Valley fault zone, vertical offset of late Pleistocene surfaces along the Death Valley fault zone apparently does not exceed about 15 m. Evidence for four to six separate late Holocene faulting events along the Furnace Creek fault zone and three or more late Holocene events along the Death Valley fault zone are indicated by rupturing of Q1B (about 200-2,000 years old) geomorphic surfaces. Probably the youngest neotectonic feature observed along the Death Valley-Furnace Creek fault system, possibly historic in age, is vegetation lineaments in southernmost Fish Lake Valley. Near-historic faulting in Death Valley, within several kilometers south of Furnace Creek Ranch, is represented by (1) a 2,000-year-old lake shoreline that is cut by sinuous scarps, and (2) a system of young scarps with free-faceted faces (representing several faulting events) that cuts Q1B surfaces.
NASA Astrophysics Data System (ADS)
Liu, Yin; Wu, Kongyou; Wang, Xi; Liu, Bo; Guo, Jianxun; Du, Yannan
2017-12-01
It is widely accepted that the faults can act as the conduits or the barrier for oil and gas migration. Years of studies suggested that the internal architecture of a fault zone is complicated and composed of distinct components with different physical features, which can highly influence the migration of oil and gas along the fault. The field observation is the most useful methods of observing the fault zone architecture, however, in the petroleum exploration, what should be concerned is the buried faults in the sedimentary basin. Meanwhile, most of the studies put more attention on the strike-slip or normal faults, but the architecture of the reverse faults attracts less attention. In order to solve these questions, the Hong-Che Fault Zone in the northwest margin of the Junggar Basin, Xinjiang Province, is chosen for an example. Combining with the seismic data, well logs and drill core data, we put forward a comprehensive method to recognize the internal architectures of buried faults. High-precision seismic data reflect that the fault zone shows up as a disturbed seismic reflection belt. Four types of well logs, which are sensitive to the fractures, and a comprehensive discriminated parameter, named fault zone index are used in identifying the fault zone architecture. Drill core provides a direct way to identify different components of the fault zone, the fault core is composed of breccia, gouge, and serpentinized or foliated fault rocks and the damage zone develops multiphase of fractures, which are usually cemented. Based on the recognition results, we found that there is an obvious positive relationship between the width of the fault zone and the displacement, and the power-law relationship also exists between the width of the fault core and damage zone. The width of the damage zone in the hanging wall is not apparently larger than that in the footwall in the reverse fault, showing different characteristics with the normal fault. This study provides a comprehensive method in identifying the architecture of buried faults in the sedimentary basin and would be helpful in evaluating the fault sealing behavior.
Slip accumulation and lateral propagation of active normal faults in Afar
NASA Astrophysics Data System (ADS)
Manighetti, I.; King, G. C. P.; Gaudemer, Y.; Scholz, C. H.; Doubre, C.
2001-01-01
We investigate fault growth in Afar, where normal fault systems are known to be currently growing fast and most are propagating to the northwest. Using digital elevation models, we have examined the cumulative slip distribution along 255 faults with lengths ranging from 0.3 to 60 km. Faults exhibiting the elliptical or "bell-shaped" slip profiles predicted by simple linear elastic fracture mechanics or elastic-plastic theories are rare. Most slip profiles are roughly linear for more than half of their length, with overall slopes always <0.035. For the dominant population of NW striking faults and fault systems longer than 2 km, the slip profiles are asymmetric, with slip being maximum near the eastern ends of the profiles where it drops abruptly to zero, whereas slip decreases roughly linearly and tapers in the direction of overall Aden rift propagation. At a more detailed level, most faults appear to be composed of distinct, shorter subfaults or segments, whose slip profiles, while different from one to the next, combine to produce the roughly linear overall slip decrease along the entire fault. On a larger scale, faults cluster into kinematically coupled systems, along which the slip on any scale individual fault or fault system complements that of its neighbors, so that the total slip of the whole system is roughly linearly related to its length, with an average slope again <0.035. We discuss the origin of these quasilinear, asymmetric profiles in terms of "initiation points" where slip starts, and "barriers" where fault propagation is arrested. In the absence of a barrier, slip apparently extends with a roughly linear profile, tapered in the direction of fault propagation.
Deformation pattern during normal faulting: A sequential limit analysis
NASA Astrophysics Data System (ADS)
Yuan, X. P.; Maillot, B.; Leroy, Y. M.
2017-02-01
We model in 2-D the formation and development of half-graben faults above a low-angle normal detachment fault. The model, based on a "sequential limit analysis" accounting for mechanical equilibrium and energy dissipation, simulates the incremental deformation of a frictional, cohesive, and fluid-saturated rock wedge above the detachment. Two modes of deformation, gravitational collapse and tectonic collapse, are revealed which compare well with the results of the critical Coulomb wedge theory. We additionally show that the fault and the axial surface of the half-graben rotate as topographic subsidence increases. This progressive rotation makes some of the footwall material being sheared and entering into the hanging wall, creating a specific region called foot-to-hanging wall (FHW). The model allows introducing additional effects, such as weakening of the faults once they have slipped and sedimentation in their hanging wall. These processes are shown to control the size of the FHW region and the number of fault-bounded blocks it eventually contains. Fault weakening tends to make fault rotation more discontinuous and this results in the FHW zone containing multiple blocks of intact material separated by faults. By compensating the topographic subsidence of the half-graben, sedimentation tends to slow the fault rotation and this results in the reduction of the size of the FHW zone and of its number of fault-bounded blocks. We apply the new approach to reproduce the faults observed along a seismic line in the Southern Jeanne d'Arc Basin, Grand Banks, offshore Newfoundland. There, a single block exists in the hanging wall of the principal fault. The model explains well this situation provided that a slow sedimentation rate in the Lower Jurassic is proposed followed by an increasing rate over time as the main detachment fault was growing.
Contrasting catastrophic eruptions predicted by different intrusion and collapse scenarios.
Rincón, M; Márquez, A; Herrera, R; Alonso-Torres, A; Granja-Bruña, J L; van Wyk de Vries, B
2018-04-18
Catastrophic volcanic eruptions triggered by landslide collapses can jet upwards or blast sideways. Magma intrusion is related to both landslide-triggered eruptive scenarios (lateral or vertical), but it is not clear how such different responses are produced, nor if any precursor can be used for forecasting them. We approach this problem with physical analogue modelling enhanced with X-ray Multiple Detector Computed Tomography scanning, used to track evolution of internal intrusion, and its related faulting and surface deformation. We find that intrusions produce three different volcano deformation patterns, one of them involving asymmetric intrusion and deformation, with the early development of a listric slump fault producing pronounced slippage of one sector. This previously undescribed early deep potential slip surface provides a unified explanation for the two different eruptive scenarios (lateral vs. vertical). Lateral blast only occurs in flank collapse when the intrusion has risen into the sliding block. Otherwise, vertical rather than lateral expansion of magma is promoted by summit dilatation and flank buttressing. The distinctive surface deformation evolution detected opens the possibility to forecast the possible eruptive scenarios: laterally directed blast should only be expected when surface deformation begins to develop oblique to the first major fault.
The analysis and study of fault systems in the Southernmost Part of Okinawa Trough
NASA Astrophysics Data System (ADS)
Huang, Y.; Tsai, C.; Lee, C.
2004-12-01
Taiwan is located in the boundary between the Eurasian and Philippine Sea plates. Due to different subduction, two arc-trench systems in different direction were happened. One is Luzon arc-trench system in N-S direction; the other one is called Ryukyu arc-trench system in E-W direction. The Okinawa Trough is a back-arc basin which was formed by extension of Eurasian plate, and the tectonic setting in this area has a series of normal-faults and igneous bodies. According to previous studies, we know that Southernmost Part of Okinawa Trough (SPOT) have evolved at least two main tensional phases of Okinawa Trough, the first phase probably came up in early Pleistocene and struck in NE-SW direction; and the second phases occurred during late Pleistocene and Holocene changed the direction to E-W. In this study, we have used seismic data collected by R/V Chiu-Lien, Ocean Research I, and R/V L'Atalante to explain the normal-fault systems in the SPOT area. We integrate seismic profiles with corrected bathymetry to relocate these normal faults. Our results show these normal fault systems has two main strikes, respectively N60° E and N80° E. We find that most of N60° E faults are located in the northern slope of SPOT and landward to Taiwan. The N80° E faults are found in the southern slop and center area of SPOT. Compare with the faults and a new topographic map, we find there were a lot of faults around the canyon, such as North-Mienhua Canyon. We suggest that the origin of the canyon is probably due to these tectonic forces. The canyon is a weak area, and is eroded much fast than the surrounding continental shelf. Passing through a series of erosional processes, the canyon becomes what looks like today. We find a lot of graben structure located in the center of SPOT. This area is the extension axis of SPOT right now. We also find many possible igneous rocks in the seismic profiles, some of them are intrusions and the others penetrate the seabed along the weak zone and form the submarine volcanoes. We have found at least 68 volcanoes in the SPOT area. The interactions of submarine volcanoes, canyons, and fault grabens demonstrate an active tectonic episode.
Ruiz, Javier A.; Hayes, Gavin P.; Carrizo, Daniel; Kanamori, Hiroo; Socquet, Anne; Comte, Diana
2014-01-01
On 2010 March 11, a sequence of large, shallow continental crust earthquakes shook central Chile. Two normal faulting events with magnitudes around Mw 7.0 and Mw 6.9 occurred just 15 min apart, located near the town of Pichilemu. These kinds of large intraplate, inland crustal earthquakes are rare above the Chilean subduction zone, and it is important to better understand their relationship with the 2010 February 27, Mw 8.8, Maule earthquake, which ruptured the adjacent megathrust plate boundary. We present a broad seismological analysis of these earthquakes by using both teleseismic and regional data. We compute seismic moment tensors for both events via a W-phase inversion, and test sensitivities to various inversion parameters in order to assess the stability of the solutions. The first event, at 14 hr 39 min GMT, is well constrained, displaying a fault plane with strike of N145°E, and a preferred dip angle of 55°SW, consistent with the trend of aftershock locations and other published results. Teleseismic finite-fault inversions for this event show a large slip zone along the southern part of the fault, correlating well with the reported spatial density of aftershocks. The second earthquake (14 hr 55 min GMT) appears to have ruptured a fault branching southward from the previous ruptured fault, within the hanging wall of the first event. Modelling seismograms at regional to teleseismic distances (Δ > 10°) is quite challenging because the observed seismic wave fields of both events overlap, increasing apparent complexity for the second earthquake. We perform both point- and extended-source inversions at regional and teleseismic distances, assessing model sensitivities resulting from variations in fault orientation, dimension, and hypocentre location. Results show that the focal mechanism for the second event features a steeper dip angle and a strike rotated slightly clockwise with respect to the previous event. This kind of geological fault configuration, with secondary rupture in the hanging wall of a large normal fault, is commonly observed in extensional geological regimes. We propose that both earthquakes form part of a typical normal fault diverging splay, where the secondary fault connects to the main fault at depth. To ascertain more information on the spatial and temporal details of slip for both events, we gathered near-fault seismological and geodetic data. Through forward modelling of near-fault synthetic seismograms we build a kinematic k−2 earthquake source model with spatially distributed slip on the fault that, to first-order, explains both coseismic static displacement GPS vectors and short-period seismometer observations at the closest sites. As expected, the results for the first event agree with the focal mechanism derived from teleseismic modelling, with a magnitude Mw 6.97. Similarly, near-fault modelling for the second event suggests rupture along a normal fault, Mw 6.90, characterized by a steeper dip angle (dip = 74°) and a strike clockwise rotated (strike = 155°) with respect to the previous event.
NASA Astrophysics Data System (ADS)
Swanson, M. T.
2004-12-01
Three brittle strike-slip fault localities in coastal Maine have developed pseudotachylyte fault veins, injection veins and other reservoir structures in a variety of host rocks where the pre-existing layering can serve as a controlling fabric for brittle strike-slip reactivation. Host rocks with a poorly-oriented planar anisotropy at high angles to the shear direction will favor the development of R-shears in initial en echelon arrays as seen in the Two Lights and Richmond Island Fault Zones of Cape Elizabeth that cut gently-dipping phyllitic quartzites. These en echelon R-shears grow to through-going faults with the development of P-shear linkages across the dominantly contractional stepovers in the initial arrays. Pseudotachylyte on these faults is very localized, typically up to 1-2 mm in thickness and is restricted to through-going fault segments, P-shear linkages and some sidewall ripouts. Overall melt production is limited by the complex geometry of the multi-fault array. Host rocks with a favorably-oriented planar anisotropy for reactivation in brittle shear, however, preferentially develop a multitude of longer, non-coplanar layer-parallel fault segments. Pseudotachylyte in the newly-discovered Harbor Island Fault Zone in Muscongus Bay is developed within vertical bedding on regional upright folds with over 50 individual layer-parallel single-slip fault veins, some of which can be traced for over 40 meters along strike. Many faults show clear crosscuts of pre-existing quartz veins that indicate a range of coseismic displacements of 0.23-0.53 meters yielding fault vein widths of a few mm and dilatant reservoirs up to 2 cm thick. Both vertical and rare horizontal lateral injection veins can be found in the adjoining wall rock up to 0.7 cm thick and 80 cm in length. The structure of these faults is simple with minor development of splay faults, sidewall ripouts and strike-slip duplexes. The prominent vertical flow layering within the mylonite gneisses of Gerrish Island serves as host to the complex Fort Foster Brittle Zone where it localizes brittle fault slip and contributes to a maximum area of contact between the sliding surfaces which, in turn, yields fault vein thicknesses of 1-2 mm and locally up to 2 cm. The reactivation of this planar anisotropy in brittle shear produces long overlapping geometries that develop linking structures in both extensional and contractional stepovers may reflect the development of sidewall ripouts due to adhesive wear. The prominent development of closely-spaced individual single-slip fault veins suggests frictional welding as an effective strain hardening mechanism for repeated stick-slip.
Sustained water-level changes caused by damage and compaction induced by teleseismic earthquakes
NASA Astrophysics Data System (ADS)
Shalev, Eyal; Kurzon, Ittai; Doan, Mai-Linh; Lyakhovsky, Vladimir
2016-07-01
Sustained water-level increase and decrease induced by distant earthquakes were observed in two wells, Gomè 1 and Meizar 1 in Israel. The Gomè 1 well is located within a damage zone of a major fault zone, and Meizar 1 is relatively far from a fault. The monitored pressure change in both wells shows significant water-level oscillations and sustained water-level changes in response to the passage of the seismic waves. The sustained water-level changes include short-term (minutes) undrained behavior and longer-period (hours and days) drained behavior associated with groundwater flow. We model the short-term undrained response of water pressure oscillations and sustained change to the distant 2013 Mw 7.7 Balochistan earthquake by nonlinear elastic behavior of damaged rocks, accounting for small wave-induced compaction and damage accumulation. We suggest that the rocks are close to failure in both locations and strain oscillations produced by the passing seismic waves periodically push the rock above the yield cap, creating compaction when volumetric strain increases and damage when shear strain increases. Compaction increases pore pressure, whereas damage accumulation decreases pore pressure by fracture dilation. The dominant process depends on the properties of the rock. For highly damaged rocks, dilatancy is dominant and a sustained pressure decrease is expected. For low-damage rocks, compaction is the dominant process creating sustained water-level increase. We calculate damage and porosity changes associated to the Balochistan earthquake in both wells and quantify damage accumulation and compaction during the passage of the seismic waves.
Eastern rim of the Chesapeake Bay impact crater: Morphology, stratigraphy, and structure
Poag, C.W.
2005-01-01
This study reexamines seven reprocessed (increased vertical exaggeration) seismic reflection profiles that cross the eastern rim of the Chesapeake Bay impact crater. The eastern rim is expressed as an arcuate ridge that borders the crater in a fashion typical of the "raised" rim documented in many well preserved complex impact craters. The inner boundary of the eastern rim (rim wall) is formed by a series of raterfacing, steep scarps, 15-60 m high. In combination, these rim-wall scarps represent the footwalls of a system of crater-encircling normal faults, which are downthrown toward the crater. Outboard of the rim wall are several additional normal-fault blocks, whose bounding faults trend approximately parallel to the rim wall. The tops of the outboard fault blocks form two distinct, parallel, flat or gently sloping, terraces. The innermost terrace (Terrace 1) can be identified on each profile, but Terrace 2 is only sporadically present. The terraced fault blocks are composed mainly of nonmarine, poorly to moderately consolidated, siliciclastic sediments, belonging to the Lower Cretaceous Potomac Formation. Though the ridge-forming geometry of the eastern rim gives the appearance of a raised compressional feature, no compelling evidence of compressive forces is evident in the profiles studied. The structural mode, instead, is that of extension, with the clear dominance of normal faulting as the extensional mechanism.
Spatiotemporal Patterns of Fault Slip Rates Across the Central Sierra Nevada Frontal Fault Zone
NASA Astrophysics Data System (ADS)
Rood, D. H.; Burbank, D.; Finkel, R. C.
2010-12-01
We examine patterns in fault slip rates through time and space across the transition from the Sierra Nevada to the Eastern California Shear Zone-Walker Lane belt. At each of four sites along the eastern Sierra Nevada frontal fault zone between 38-39° N latitude, geomorphic markers, such as glacial moraines and outwash terraces, are displaced by a suite of range-front normal faults. Using geomorphic mapping, surveying, and Be-10 surface exposure dating, we define mean fault slip rates, and by utilizing markers of different ages (generally, ~20 ka and ~150 ka), we examine rates through time and interactions among multiple faults over 10-100 ky timescales. At each site for which data are available for the last ~150 ky, mean slip rates across the Sierra Nevada frontal fault zone have probably not varied by more than a factor of two over time spans equal to half of the total time interval (~20 ky and ~150 ky timescales): 0.3 ± 0.1 mm/yr (mode and 95% CI) at both Buckeye Creek in the Bridgeport basin and Sonora Junction; and 0.4 +0.3/-0.1 mm/yr along the West Fork of the Carson River at Woodfords. Our data permit that rates are relatively constant over the time scales examined. In contrast, slip rates are highly variable in space over the last ~20 ky. Slip rates decrease by a factor of 3-5 northward over a distance of ~20 km between the northern Mono Basin (1.3 +0.6/-0.3 mm/yr at Lundy Canyon site) and the Bridgeport Basin (0.3 ± 0.1 mm/yr). The 3-fold decrease in the slip rate on the Sierra Nevada frontal fault zone northward from Mono Basin reflects a change in the character of faulting north of the Mina Deflection as extension is transferred eastward onto normal faults between the Sierra Nevada and Walker Lane belt. A compilation of regional deformation rates reveal that the spatial pattern of extension rates changes along strike of the Eastern California Shear Zone-Walker Lane belt. South of the Mina Deflection, extension is accommodated within a diffuse zone of normal and oblique faults, with extension rates increasing northward on the Fish Lake Valley fault. Where faults of the Eastern California Shear Zone terminate northward into the Mina Deflection, extension rates increase northward along the Sierra Nevada frontal fault zone to ~0.7 mm/yr in northern Mono Basin. This spatial pattern suggests that extension is transferred from faults systems to the east (e.g. Fish Lake Valley fault) and localized on the Sierra Nevada frontal fault zone as Eastern California Shear Zone-Walker Lane belt faulting is transferred through the Mina Deflection.
Parsons, T.; Stein, R.S.; Simpson, R.W.; Reasenberg, P.A.
1999-01-01
We present a new three-dimensional inventory of the southern San Francisco Bay area faults and use it to calculate stress applied principally by the 1989 M = 7.1 Loma Prieta earthquake and to compare fault seismicity rates before and after 1989. The major high-angle right-lateral faults exhibit a different response to the stress change than do minor oblique (right-lateral/thrust) faults. Seismicity on oblique-slip faults in the southern Santa Clara Valley thrust belt increased where the faults were unclamped. The strong dependence of seismicity change on normal stress change implies a high coefficient of static friction. In contrast, we observe that faults with significant offset (>50-100 km) behave differently; microseismicity on the Hayward fault diminished where right-lateral shear stress was reduced and where it was unclamped by the Loma Prieta earthquake. We observe a similar response on the San Andreas fault zone in southern California after the Landers earthquake sequence. Additionally, the offshore San Gregorio fault shows a seismicity rate increase where right-lateral/oblique shear stress was increased by the Loma Prieta earthquake despite also being clamped by it. These responses are consistent with either a low coefficient of static friction or high pore fluid pressures within the fault zones. We can explain the different behavior of the two styles of faults if those with large cumulative offset become impermeable through gouge buildup; coseismically pressurized pore fluids could be trapped and negate imposed normal stress changes, whereas in more limited offset faults, fluids could rapidly escape. The difference in behavior between minor and major faults may explain why frictional failure criteria that apply intermediate coefficients of static friction can be effective in describing the broad distributions of aftershocks that follow large earthquakes, since many of these events occur both inside and outside major fault zones.
Stability of faults with heterogeneous friction properties and effective normal stress
NASA Astrophysics Data System (ADS)
Luo, Yingdi; Ampuero, Jean-Paul
2018-05-01
Abundant geological, seismological and experimental evidence of the heterogeneous structure of natural faults motivates the theoretical and computational study of the mechanical behavior of heterogeneous frictional fault interfaces. Fault zones are composed of a mixture of materials with contrasting strength, which may affect the spatial variability of seismic coupling, the location of high-frequency radiation and the diversity of slip behavior observed in natural faults. To develop a quantitative understanding of the effect of strength heterogeneity on the mechanical behavior of faults, here we investigate a fault model with spatially variable frictional properties and pore pressure. Conceptually, this model may correspond to two rough surfaces in contact along discrete asperities, the space in between being filled by compressed gouge. The asperities have different permeability than the gouge matrix and may be hydraulically sealed, resulting in different pore pressure. We consider faults governed by rate-and-state friction, with mixtures of velocity-weakening and velocity-strengthening materials and contrasts of effective normal stress. We systematically study the diversity of slip behaviors generated by this model through multi-cycle simulations and linear stability analysis. The fault can be either stable without spontaneous slip transients, or unstable with spontaneous rupture. When the fault is unstable, slip can rupture either part or the entire fault. In some cases the fault alternates between these behaviors throughout multiple cycles. We determine how the fault behavior is controlled by the proportion of velocity-weakening and velocity-strengthening materials, their relative strength and other frictional properties. We also develop, through heuristic approximations, closed-form equations to predict the stability of slip on heterogeneous faults. Our study shows that a fault model with heterogeneous materials and pore pressure contrasts is a viable framework to reproduce the full spectrum of fault behaviors observed in natural faults: from fast earthquakes, to slow transients, to stable sliding. In particular, this model constitutes a building block for models of episodic tremor and slow slip events.
NASA Astrophysics Data System (ADS)
Silver, E. A.; Kluesner, J. W.; Gibson, J. C.; Bangs, N. L.; McIntosh, K. D.; von Huene, R.; Orange, D.; Ranero, C. R.
2012-12-01
Use of narrow, fixed swath multibeam data with high sounding densities has allowed order of magnitude improvement in image resolution with EM122 multibeam and backscatter data, as part of a 3D seismic study west of the Osa Peninsula. On the outer shelf, along the projection of the subducting Quepos Ridge, we mapped a dense array of faults cutting an arcuate, well-layered set of outcropping beds in the backscatter imagery (mosaicked at 2 m), with roughly N-S and E-W trends. The N-S trends dominate, and show inconsistent offsets, implying that the faults are normal and not strike-slip. The faults also show normal displacement in the 3D seismic data, consistent with the surface interpretation. The outcropping beds (of late Pleistocene age, based on Expedition 334 drilling), may have been truncated during the late Pleistocene low sea-level stand. The outermost shelf (edged by arcuate bathymetric contours) does not show these folded beds, as it was below wave base and buried by a thin sediment layer. However, narrow lines of small pockmarks and mounds follow the fault trends exactly, indicating that fluid flow through the faults is expressed at the surface, including a gas plume that extends to the sea-surface. The almost unprecedented increase in resolution of the EM122 data allows us to infer that the N-S, E-W grid of faults overlying the NE-trending Quepos Ridge projection (and NE directed subduction) formed by extensional arching above the ridge, not by collisional slip lines at a rigid indenter (as proposed earlier based on sandbox models). The extensional fault pattern also facilitates fluid and gas flow through the sedimentary section.
Hickman, Stephen; Barton, Colleen; Zoback, Mark; Morin, Roger; Sass, John; Benoit, Richard; ,
1997-01-01
As part of a study relating fractured rock hydrology to in-situ stress and recent deformation within the Dixie Valley Geothermal Field, borehole televiewer logging and hydraulic fracturing stress measurements were conducted in a 2.7-km-deep geothermal production well (73B-7) drilled into the Stillwater fault zone. Borehole televiewer logs from well 73B-7 show numerous drilling-induced tensile fractures, indicating that the direction of the minimum horizontal principal stress, Shmin, is S57 ??E. As the Stillwater fault at this location dips S50 ??E at approximately 3??, it is nearly at the optimal orientation for normal faulting in the current stress field. Analysis of the hydraulic fracturing data shows that the magnitude of Shmin is 24.1 and 25.9 MPa at 1.7 and 2.5 km, respectively. In addition, analysis of a hydraulic fracturing test from a shallow well 1.5 km northeast of 73B-7 indicates that the magnitude of Shmin is 5.6 MPa at 0.4 km depth. Coulomb failure analysis shows that the magnitude of Shmin in these wells is close to that predicted for incipient normal faulting on the Stillwater and subparallel faults, using coefficients of friction of 0.6-1.0 and estimates of the in-situ fluid pressure and overburden stress. Spinner flowmeter and temperature logs were also acquired in well 73B-7 and were used to identify hydraulically conductive fractures. Comparison of these stress and hydrologic data with fracture orientations from the televiewer log indicates that hydraulically conductive fractures within and adjacent to the Stillwater fault zone are critically stressed, potentially active normal faults in the current west-northwest extensional stress regime at Dixie Valley.
Impact of sickle cell anaemia on cardiac chamber size in the paediatric population.
Adjagba, Philippe M; Habib, Gaston; Robitaille, Nancy; Pastore, Yves; Raboisson, Marie-Josée; Curnier, Daniel; Dahdah, Nagib
2017-07-01
Purpose Sickle cell disease is known to cause various degrees of vasculopathy, including impact on heart function. The aims of this single-centre, retrospective study were to assess cardiac chamber size and function and the relationship with haematological indices such as haemoglobin, aspartate aminotransferase, reticulocytosis and bilirubin, lactate dehydrogenase in sickle cell disease. Right ventricle and left ventricle diastolic diameters, left ventricle mass estimate, left ventricle shortening fraction, myocardial performance index, and an index of myocardial relaxation (E/E') were calculated and correlated with haematological parameters. A total of 110 patients (65% haemoglobin SS, 29% haemoglobin SC) were studied at a mean age of 12.14±5.26 years. Right ventricle dilatation and left ventricle dilatation were present in 61.5 and 42.9%, respectively. Left ventricle mass was abnormal in 21.9%; all patients had normal myocardial performance index, 31.4% had abnormal E/E', and left ventricle shortening fraction was low in 38.1%. Cardiac dilatation was best correlated with haemoglobin, aspartate aminotransferase, reticulocytosis and bilirubin. Best subset regression analysis yielded significant additional prediction for right ventricle or left ventricle dilatation with haemoglobin, bilirubin, and lactate dehydrogenase. Abnormal E/E' was solely predictable with haemoglobin level. Hydroxyurea-treated patients had improved diastolic function. Right ventricle dilatation was more prevalent than left ventricle dilatation. The long-term consequences of right ventricular dilatation, clinical consequences, and association with pulmonary vasculopathy need to be further determined.
Assessing first-stage labor progression and its relationship to complications.
Hamilton, Emily F; Warrick, Philip A; Collins, Kathleen; Smith, Samuel; Garite, Thomas J
2016-03-01
New labor curves have challenged the traditional understanding of the general pattern of dilation and descent in labor. They also revealed wide variation in the time to advance in dilation. An interval of arrest such as 4 hours did not fall beyond normal limits until dilation had reached 6 cm. Thus, the American College of Obstetricians and Gynecologists/Society for Maternal-Fetal Medicine first-stage arrest criteria, based in part on these findings, are applicable only in late labor. The wide range of time to dilate is unavoidable because cervical dilation has neither a precise nor direct relationship to time. Newer statistical techniques (multifactorial models) can improve precision by incorporating several factors that are related directly to labor progress. At each examination, the calculations adapt to the mother's current labor conditions. They produce a quantitative assessment that is expressed in percentiles. Low percentiles indicate potentially problematic labor progression. The purpose of this study was to assess the relationship between first-stage labor progress- and labor-related complications with the use of 2 different assessment methods. The first method was based on arrest of dilation definitions. The other method used percentile rankings of dilation or station based on adaptive multifactorial models. We included all 4703 cephalic-presenting, term, singleton births with electronic fetal monitoring and cord gases at 2 academic community referral hospitals in 2012 and 2013. We assessed electronic data for route of delivery, all dilation and station examinations, newborn infant status, electronic fetal monitoring tracings, and cord blood gases. The labor-related complication groups included 272 women with cesarean delivery for first-stage arrest, 558 with cesarean delivery for fetal heart rate concerns, 178 with obstetric hemorrhage, and 237 with neonatal depression, which left 3004 women in the spontaneous vaginal birth group. Receiver operating characteristic curves were constructed for each assessment method by measurement of the sensitivity for each complication vs the false-positive rate in the normal reference group. The duration of arrest at ≥6 cm dilation showed poor levels of discrimination for the cesarean delivery interventions (area under the curve, 0.55-0.65; P < .01) and no significant relationship to hemorrhage or neonatal depression. The dilation and station percentiles showed high discrimination for the cesarean delivery-related outcomes (area under the curve, 0.78-0.93; P < .01) and low discrimination for the clinical outcomes of hemorrhage and neonatal depression (area under the curve, 0.58-0.61; P < .01). Duration of arrest of dilation at ≥6 cm showed little or no discrimination for any of the complications. In comparison, percentile rankings that were based on the adaptive multifactorial models showed much higher discrimination for cesarean delivery interventions and better, but low discrimination for hemorrhage. Adaptive multifactorial models present a different method to assess labor progress. Rather than "pass/fail" criteria that are applicable only to dilation in late labor, they produce percentile rankings, assess 2 essential processes for vaginal birth (dilation and descent), and can be applied from 3 cm onward. Given the limitations of labor-progress assessment based solely on the passage of time and because of the extreme variation in decision-making for cesarean delivery for labor disorders, the types of mathematic analyses that are described in this article are logical and promising steps to help standardize labor assessment. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Begbie, M. J.; Sibson, R. H.; Ghisetti, F. C.
2005-12-01
The Proterozoic Mt Isa inlier, comprising greenschist to amphibolite facies metamorphic assemblages intruded by granites during the Isan Orogeny (1590-1500 Ma), is disrupted by brittle, late- or post-orogenic strike-slip faults. The faults occur in two mutually cross-cutting sets; a set of NE-SW subvertical dextral strike-slip faults, and a conjugate set of NW-SE sinistral faults. These faults thus define a regional stress field with σ1 oriented approximately E-W and σ3 oriented approximately N-S. Locally, the faults outcrop as linear blade-like ridges of silicified microbreccias-cataclasites and quartz veining that extends for kilometres across the semi-arid terrain. The informally named Spinifex Fault is one of the dextral set of subvertical faults. This fault is a classic example of coulomb fault mechanics at work in the Proterozoic. The Spinifex Fault trends ~065° across an outcropping granitic pluton, the margins of which it offsets dextrally by ~0.75 km. Locally within the pluton, the fault refracts to ~075° across an amphibolite layer. In the surrounding granitic pluton the fault trace is comparatively inconspicuous and unmineralized but where it transects the amphibolite it is defined by an upstanding ridge of silicified microbreccia-cataclasite (~10 m thick). Associated with the Spinifex Fault is a swarm of predominantly extensional subvertical quartz veins (cm to m thick) trending 090-95° and a series of mineralised fault splays trending 070-080°. Extension veins define the σ1-σ2 plane, with the Spinifex fault lying at an angle of ~25-30° to the inferred σ1. These veins are composed of colloform and crustiform banded quartz, brecciated fragments of quartz vein and wallrock that are typically rimmed with cockade overgrowths and bladed quartz after calcite pseudomorphs. Mineralised fault splays are < 50 m or so wide with a composite brittle fabric comprising: (1) bounding subvertical cataclastic `walls' <10 m or so thick made up of silicified microbreccias and cataclasites containing vein fragments; (2) innumerable subvertical quartz veins (cm to m thick) lying subparallel to the bounding shear zones with textures ranging from pure dilation to multiply recemented breccias of wallrock and quartz fragments; (3) irregular non-systematic veins; and (4) occasional minor faults from the complementary set. Mutual cross-cutting relationships between all the structural components indicate penecontemporaneous development within the inferred stress field. Slickenfibers and striations along fault components indicate predominantly strike slip motion on subvertical planes. Homogenisation temperatures from quartz hosted fluid inclusions cluster at ~210°C while vein textures record histories of incremental hydrothermal deposition under low effective stress, probably in the epizonal environment (<1-2 km depth). This regional study demonstrates the existence of a rather uniform stress province, corresponding to an Andersonian regime and initiation of faults in accord with the coulomb failure criterion.
NASA Astrophysics Data System (ADS)
Seiler, Christian; Fletcher, John
2013-04-01
Large-scale fault corrugations or megamullions are a common feature of detachment faults and form either as original fault grooves, displacement-gradient folds or constrictional folds parallel to the extension direction. In highly oblique extensional settings such as the Gulf of California, horizontal shortening perpendicular to the extension direction is an inherent part of the regional stress field and likely forms a key factor during the development of extension-parallel fault corrugations. However, the amount of horizontal shortening absorbed by megamullions is difficult to quantify, and constrictional folding is not normally thought to accommodate significant strike-slip deformation. The Las Cuevitas and Santa Rosa detachments are two low-angle normal fault systems exposed on the Gulf of California rifted margin in northeastern Baja California, Mexico. The two detachments accommodate between ~7-9km of SE-directed extension and represent the next significant set of faults in direction of transport from the rift breakaway fault. Fault kinematics are highly complex, but suggest integrated normal, oblique- and strike-slip faulting, with kinematics controlled by the orientation of faults with respect to the regional transtensional stress field. Both fault systems are strongly corrugated, with megamullion amplitudes of ~4-7km and half wavelenghts of between ~15 to 20km. Differential folding of the syntectonic basin-fill of the supradetachment basins strongly suggest that the observed megamullions formed largely, though not exclusively, due to constrictional folding associated with the transtensional stress regime of the plate boundary. This is consistent with basin-scale facies variations that record differential uplift and subsidence in antiformal and synformal megamullion domains, respectively. Compared to the two detachments, the San Pedro Martir fault - the master fault of the rift system at this latitude - shows more subtle fault corrugations with amplitudes of <3km. Unlike the Las Cuevitas and Santa Rosa detachments, though, there is no evidence for constrictional folding on the San Pedro Martir fault. Instead, the observed corrugations likely represent original grooves of the fault plane, formed as adjacent fault nuclei joined along-strike during fault growth. Comparison between the sinuosity of the San Pedro Martir fault (1.08), attributed entirely to original fault asperities, with the sinuosity of the two detachment systems (Las Cuevitas detachment: 1.17, Santa Rosa detachment: 1.22), suggests that about 10% of shortening occurred on each of the two detachments due to synextensional constrictional folding. This corresponds to a combined total of ~8km of N-S shortening, or ~10km of dextral shear resolved in direction of the relative plate motion, and occurs in addition to ~21km of right-lateral strain accommodated by clockwise vertical-axis block rotations. Thus, strain in this part of the rift system was partitioned between discrete extensional faulting on the two detachment systems, and significant right-lateral shear accommodated by distributed volume deformation.
Li, Ying
2016-09-16
Fault-tolerant quantum computing in systems composed of both Majorana fermions and topologically unprotected quantum systems, e.g., superconducting circuits or quantum dots, is studied in this Letter. Errors caused by topologically unprotected quantum systems need to be corrected with error-correction schemes, for instance, the surface code. We find that the error-correction performance of such a hybrid topological quantum computer is not superior to a normal quantum computer unless the topological charge of Majorana fermions is insusceptible to noise. If errors changing the topological charge are rare, the fault-tolerance threshold is much higher than the threshold of a normal quantum computer and a surface-code logical qubit could be encoded in only tens of topological qubits instead of about 1,000 normal qubits.
3D Model of the Neal Hot Springs Geothermal Area
Faulds, James E.
2013-12-31
The Neal Hot Springs geothermal system lies in a left-step in a north-striking, west-dipping normal fault system, consisting of the Neal Fault to the south and the Sugarloaf Butte Fault to the north (Edwards, 2013). The Neal Hot Springs 3D geologic model consists of 104 faults and 13 stratigraphic units. The stratigraphy is sub-horizontal to dipping <10 degrees and there is no predominant dip-direction. Geothermal production is exclusively from the Neal Fault south of, and within the step-over, while geothermal injection is into both the Neal Fault to the south of the step-over and faults within the step-over.
NASA Astrophysics Data System (ADS)
Warsitzka, Michael; Kukowski, Nina; Kley, Jonas
2017-04-01
In extensional sedimentary basins, the movement of ductile salt is mainly controlled by the vertical displacement of the salt layer, differential loading due to syn-kinematic deposition, and tectonic shearing at the top and the base of the salt layer. During basement normal faulting, salt either tends to flow downward to the basin centre driven by its own weight or it is squeezed upward due to differential loading. In analogue experiments and analytical models, we address the interplay between normal faulting of the sub-salt basement, compaction and density inversion of the supra-salt cover and the kinematic response of the ductile salt layer. The analogue experiments consist of a ductile substratum (silicone putty) beneath a denser cover layer (sand mixture). Both layers are displaced by normal faults mimicked through a downward moving block within the rigid base of the experimental apparatus and the resulting flow patterns in the ductile layer are monitored and analysed. In the computational models using an analytical approximative solution of the Navier-Stokes equation, the steady-state flow velocity in an idealized natural salt layer is calculated in order to evaluate how flow patterns observed in the analogue experiments can be translated to nature. The analytical calculations provide estimations of the prevailing direction and velocity of salt flow above a sub-salt normal fault. The results of both modelling approaches show that under most geological conditions salt moves downwards to the hanging wall side as long as vertical offset and compaction of the cover layer are small. As soon as an effective average density of the cover is exceeded, the direction of the flow velocity reverses and the viscous material is squeezed towards the elevated footwall side. The analytical models reveal that upward flow occurs even if the average density of the overburden does not exceed the density of salt. By testing various scenarios with different layer thicknesses, displacement rate or lithological parameters of the cover, our models suggest that the reversal of material flow usually requires vertical displacements between 700 and 2000 m. The transition from downward to upward flow occurs at smaller fault displacements, if the initial overburden thickness and the overburden density are high and if sedimentation rate keeps pace with the displacement rate of the sub-salt normal fault.
Active and long-lived permanent forearc deformation driven by the subduction seismic cycle
NASA Astrophysics Data System (ADS)
Aron Melo, Felipe Alejandro
I have used geological, geophysical and engineering methods to explore mechanisms of upper plate, brittle deformation at active forearc regions. My dissertation particularly addresses the permanent deformation style experienced by the forearc following great subduction ruptures, such as the 2010 M w8.8 Maule, Chile and 2011 Mw9.0 Tohoku, Japan earthquakes. These events triggered large, shallow seismicity on upper plate normal faults above the rupture reaching Mw7.0. First I present new structural data from the Chilean Coastal Cordillera over the rupture zone of the Maule earthquake. The study area contains the Pichilemu normal fault, which produced the large crustal aftershocks of the megathrust event. Normal faults are the major neotectonic structural elements but reverse faults also exist. Crustal seismicity and GPS surface displacements show that the forearc experiences pulses of rapid coseismic extension, parallel to the heave of the megathrust, and slow interseismic, convergence-parallel shortening. These cycles, over geologic time, build the forearc structural grain, reactivating structures properly-oriented respect to the deformation field of each stage of the interplate cycle. Great subduction events may play a fundamental role in constructing the crustal architecture of extensional forearc regions. Static mechanical models of coseismic and interseismic upper plate deformation are used to explore for distinct features that could result from brittle fracturing over the two stages of the interplate cycle. I show that the semi-elliptical outline of the first-order normal faults along the Coastal Cordillera may define the location of a characteristic, long-lived megathrust segment. Finally, using data from the Global CMT catalog I analyzed the seismic behavior through time of forearc regions that have experienced great subduction ruptures >Mw7.7 worldwide. Between 61% and 83% of the cases where upper plate earthquakes exhibited periods of increased seismicity above background levels occurred contemporaneous to megathrust ruptures. That correlation is stronger for normal fault events than reverse or strike-slip crustal earthquakes. More importantly, for any given megathrust the summation of the Mw accounted by the forearc normal fault aftershocks appears to have a positive linear correlation with the Mw of the subduction earthquake -- the larger the megathrust the larger the energy released by forearc events.
Saltus, Richard W.; Stanley, Richard G.; Haeussler, Peter J.; Jones, James V.; Potter, Christopher J.; Lewis, Kristen A.
2016-01-01
The Cenozoic Susitna basin lies within an enigmatic lowland surrounded by the Central Alaska Range, Western Alaska Range (including the Tordrillo Mountains), and Talkeetna Mountains in south-central Alaska. Some previous interpretations show normal faults as the defining structures of the basin (e.g., Kirschner, 1994). However, analysis of new and existing geophysical data shows predominantly (Late Oligocene to present) thrust and reverse fault geometries in the region, as previously proposed by Hackett (1978). A key example is the Beluga Mountain fault where a 50-mGal gravity gradient, caused by the density transition from the igneous bedrock of Beluga Mountain to the >4-km-thick Cenozoic sedimentary section of Susitna basin, spans a horizontal distance of ∼40 km and straddles the topographic front. The location and shape of the gravity gradient preclude a normal fault geometry; instead, it is best explained by a southwest-dipping thrust fault, with its leading edge located several kilometers to the northeast of the mountain front, concealed beneath the shallow glacial and fluvial cover deposits. Similar contractional fault relationships are observed for other basin-bounding and regional faults as well. Contractional structures are consistent with a regional shortening strain field inferred from differential offsets on the Denali and Castle Mountain right-lateral strike-slip fault systems.
Geology and structure of the North Boqueron Bay-Punta Montalva Fault System
NASA Astrophysics Data System (ADS)
Roig Silva, Coral Marie
The North Boqueron Bay-Punta Montalva Fault Zone is an active fault system that cuts across the Lajas Valley in southwestern Puerto Rico. The fault zone has been recognized and mapped based upon detailed analysis of geophysical data, satellite images and field mapping. The fault zone consists of a series of Cretaceous bedrock faults that reactivated and deformed Miocene limestone and Quaternary alluvial fan sediments. The fault zone is seismically active (ML < 5.0) with numerous locally felt earthquakes. Focal mechanism solutions and structural field data suggest strain partitioning with predominantly east-west left-lateral displacements with small normal faults oriented mostly toward the northeast. Evidence for recent displacement consists of fractures and small normal faults oriented mostly northeast found in intermittent streams that cut through the Quaternary alluvial fan deposits along the southern margin of the Lajas Valley, Areas of preferred erosion, within the alluvial fan, trend toward the west-northwest parallel to the on-land projection of the North Boqueron Bay Fault. Beyond the faulted alluvial fan and southeast of the Lajas Valley, the Northern Boqueron Bay Fault joins with the Punta Montalva Fault. The Punta Montalva Fault is defined by a strong topographic WNW lineament along which stream channels are displaced left laterally 200 meters and Miocene strata are steeply tilted to the south. Along the western end of the fault zone in northern Boqueron Bay, the older strata are only tilted 3° south and are covered by flat lying Holocene sediments. Focal mechanisms solutions along the western end suggest NW-SE shortening, which is inconsistent with left lateral strain partitioning along the fault zone. The limited deformation of older strata and inconsistent strain partitioning may be explained by a westerly propagation of the fault system from the southwest end. The limited geomorphic structural expression along the North Boqueron Bay Fault segment could also be because most of the displacement along the fault zone is older than the Holocene and that the rate of displacement is low, such that the development of fault escarpments and deformation all along the fault zone has yet to occur.
Evolution of the Median Tectonic Line fault zone, SW Japan, during exhumation
NASA Astrophysics Data System (ADS)
Shigematsu, Norio; Kametaka, Masao; Inada, Noriyuki; Miyawaki, Masahiro; Miyakawa, Ayumu; Kameda, Jun; Togo, Tetsuhiro; Fujimoto, Koichiro
2017-01-01
Like many crustal-scale fault zones, the Median Tectonic Line (MTL) fault zone in Japan preserves fault rocks that formed across a broad range of physical conditions. We examined the architecture of the MTL at a large new outcrop in order to understand fault behaviours under different crustal levels. The MTL here strikes almost E-W, dips to the north, and juxtaposes the Sanbagawa metamorphic rocks to the south against the Izumi Group sediments to the north. The fault core consists mainly of Sanbagawa-derived fault gouges. The fault zone can be divided into several structural units, including two slip zones (upper and lower slip zones), where the lower slip zone is more conspicuous. Crosscutting relationships among structures and kinematics indicate that the fault zone records four stages of deformation. Microstructures and powder X-ray diffraction (XRD) analyses indicate that the four stages of deformation occurred under different temperature conditions. The oldest deformation (stage 1) was widely distributed, and had a top-to-the-east (dextral) sense of slip at deep levels of the seismogenic zone. Deformation with the same sense of slip, then became localised in the lower slip zone (stage 2). Subsequently, the slip direction in the lower slip zone changed to top-to-the-west (sinistral-normal) (stage 3). The final stage of deformation (stage 4) involved top-to-the-north normal faulting along the two slip zones within the shallow crust (near the surface). The widely distributed stage 1 damage zone characterises the deeper part of the seismogenic zone, while the sets of localised principal slip zones and branching faults of stage 4 characterise shallow depths. The fault zone architecture described in this paper leads us to suggest that fault zones display different behaviours at different crustal levels.
Cumulative co-seismic fault damage and feedbacks on earthquake rupture
NASA Astrophysics Data System (ADS)
Mitchell, T. M.; Aben, F. M.; Ostermeijer, G.; Rockwell, T. K.; Doan, M. L.
2017-12-01
The importance of the damage zone in the faulting and earthquake process is widely recognized, but our understanding of how damage zones are created, what their properties are, and how they feed back into the seismic cycle, is remarkably poorly known. Firstly, damaged rocks have reduced elastic moduli, cohesion and yield strength, which can cause attenuation and potentially non-linear wave propagation effects during ruptures. Secondly, damaged fault rocks are generally more permeable than intact rocks, and hence play a key role in the migration of fluids in and around fault zones over the seismic cycle. Finally, the dynamic generation of damage as the earthquake propagates can itself influence the dynamics of rupture propagation, by increasing the amount of energy dissipation, decreasing the rupture velocity, modifying the size of the earthquake, changing the efficiency of weakening mechanisms such as thermal pressurisation of pore fluids, and even generating seismic waves itself . All of these effects imply that a feedback exists between the damage imparted immediately after rupture propagation, at the early stages of fault slip, and the effects of that damage on subsequent ruptures dynamics. In recent years, much debate has been sparked by the identification of so-called `pulverized rocks' described on various crustal-scale faults, a type of intensely damaged fault rock which has undergone minimal shear strain, and the occurrence of which has been linked to damage induced by transient high strain-rate stress perturbations during earthquake rupture. Damage induced by such transient stresses, whether compressional or tensional, likely constitute heterogeneous modulations of the remote stresses that will impart significant changes on the strength, elastic and fluid flow properties of a fault zone immediately after rupture propagation, at the early stage of fault slip. In this contribution, we will demonstrate laboratory and field examples of two dynamic mechanisms that have been proposed for the generation of pulverized rocks; (i) compressive loading by high-frequency stress pulses due to the radiation of seismic waves and (ii) explosive dilation in tension in rocks containing pressurized pore fluids.
Seismicity and Structure of the Incoming Pacific Plate Subducting into the Japan Trench off Miyagi
NASA Astrophysics Data System (ADS)
Obana, K.; Fujie, G.; Kodaira, S.; Takahashi, T.; Yamamoto, Y.; Sato, T.; Yamashita, M.; Nakamura, Y.; Miura, S.
2015-12-01
Stresses within the oceanic plate in trench axis and outer-rise region have been characterized by shallow extension and deep compression due to the bending of the plate subducting into the trench. The stress state within the incoming/subducting oceanic plate is an important factor not only for the occurrence of shallow intraplate normal-faulting earthquakes in the trench-outer rise region but also the hydration of the oceanic plate through the shallow normal faults cutting the oceanic lithosphere. We investigate seismic velocity structure and stress state within the incoming/subducting Pacific Plate in the Japan Trench based on the OBS aftershock observations for the December 2012 intraplate doublet, which consists of a deep reverse faulting (Mw 7.2) and a shallow normal faulting (Mw 7.2) earthquake, in the Japan Trench off Miyagi. Hypocenter locations and seismic velocity structures were estimated from the arrival time data of about 3000 earthquakes by using double-difference tomography method (Zhang and Thurber, 2003). Also, focal mechanisms were estimated from first motion polarities by using the program HASH by Hardebeck and Shearer (2002). The results show that the earthquakes occurred mainly within the oceanic crust and the uppermost mantle. The deepest event was located at a depth of about 60 km. Focal mechanisms of the earthquakes shallower than a depth of 40 km indicate normal-faulting with T-axis normal to the trench. On the other hand, first motion polarities of the events at depths between 50 and 60 km can be explained a reverse faulting. The results suggest that the neutral plane of the stress between shallow extension and deep compression locates at 40 to 50 km deep. Seismic velocity structures indicate velocity decrease in the oceanic mantle toward the trench. Although the velocity decrease varies with locations, the results suggest the bending-related structure change could extend to at least about 15 km below the oceanic Moho in some locations.
Dilatant shear bands in solidifying metals.
Gourlay, C M; Dahle, A K
2007-01-04
Compacted granular materials expand in response to shear, and can exhibit different behaviour from that of the solids, liquids and gases of which they are composed. Application of the physics of granular materials has increased the understanding of avalanches, geological faults, flow in hoppers and silos, and soil mechanics. During the equiaxed solidification of metallic alloys, there exists a range of solid fractions where the microstructure consists of a geometrically crowded disordered assembly of crystals saturated with liquid. It is therefore natural to ask if such a microstructure deforms as a granular material and what relevance this might have to solidification processing. Here we show that partially solidified alloys can exhibit the characteristics of a cohesionless granular material, including Reynolds' dilatancy and strain localization in dilatant shear bands 7-18 mean crystals wide. We show that this behaviour is important in defect formation during high pressure die casting of Al and Mg alloys, a global industry that contributes over $7.3 billion to the USA's economy alone and is used in the manufacture of products that include mobile-phone covers and steering wheels. More broadly, these findings highlight the potential to apply the principles and modelling approaches developed in granular mechanics to the field of solidification processing, and also indicate the possible benefits that might be gained from exploring and exploiting further synergies between these fields.
A microphysical model explains rate-and-state friction
NASA Astrophysics Data System (ADS)
Chen, Jianye; Spiers, Christopher J.
2015-04-01
The rate-and-state friction (RSF) laws were originally developed as a phenomenological description of the frictional behavior observed in lab experiments. In previous studies, the empirical RSF laws have been extensively and quite successfully applied to fault mechanisms. However, these laws can not readily be envisioned in terms of the underlying physics. There are several critical discrepancies between seismological constraints on RSF behavior associated with earthquakes and lab-derived RSF parameters, in particular regarding the static stress drop and characteristic slip distance associated with seismic events. Moreover, lab friction studies can address only limited fault topographies, displacements, experimental durations and P-T conditions, which means that scale issues, and especially processes like dilatation and fluid-rock interaction, cannot be fully taken into account. Without a physical basis accounting for such effects, extrapolation of lab-derived RSF data to nature involves significant, often unknown uncertainties. In order to more reliably apply experimental results to natural fault zones, and notably to extrapolate lab data beyond laboratory pressure, temperature and velocity conditions, an understanding of the microphysical mechanisms governing fault frictional behavior is required. Here, following some pioneering efforts (e.g. Niemeijer and Spiers, 2007; Den Hartog and Spiers, 2014), a mechanism-based microphysical model is developed for describing the frictional behavior of carbonate fault gouge, assuming that the frictional behavior seen in lab experiments is controlled by competing processes of intergranular slip versus contact creep by pressure solution. The model basically consists of two governing equations derived from energy/entropy balance considerations and the kinematic relations that apply to a granular fault gouge undergoing shear and dilation/compaction. These two equations can be written as ˙τ/K = Vimp- Lt[λ˙γsbps +(1- λ)˙γbpuslk]- Ltλ˙γsbps ------σn------- σn(μbar+ 2tanψ) - τ(1 - barμtanψ) (1) τ(1 - barμtanψ) - σ (μbar+ tanψ) φ˙sb = --------n-----˙γsbps(1- φsb) σn(barμ+ 2tan ψ)- τ(1- barμtan ψ) (2) They describe the evolution of shear stress (τ) and shear band porosity (φsb) in response to any boundary conditions imposed. By solving these two controlling equations, and using standard creep equations to describe gouge compaction by pressure solution, typical lab-frictional tests were simulated, namely 'velocity stepping' and 'slide-hold-slide' test sequences, using velocity histories and environmental conditions employed in the experiments summarized above. The modeling results capture all of the main features and trends seen in the experimental data, including both steady-state and transient aspects of the observed behavior, with reasonable quantitative agreement. The model is the first mechanism-based model that I am aware of that can reproduce RSF-like behavior without recourse to the RSF law. Since it is microphysically based, the approach adopted should help provide a much improved framework for extrapolating friction data to natural conditions.
Structural Controls of the Friction Constitutive Properties of Carbonate-bearing Faults
NASA Astrophysics Data System (ADS)
Carpenter, B. M.; Collettini, C.; Scuderi, M.; Marone, C.
2012-12-01
The identification of hetereogenous and complex post-seismic slip for the 2009, Mw = 6.3, L'Aquila earthquake highlights the importance of fault zone structure and frictional behavior. Many of the Mw 6 to 7 earthquakes that occur on normal faults in the active Apennines, such as L'Aquila, nucleate at depths where the lithology is dominated by carbonate rocks. Due to the complex structure observed in exhumed faults (i.e. the presence of highly polished principal slip surfaces, cemented cataclasites, and phyllosilicate-bearing, foliated fault gouge) as well as the large spectrum of fault slip behaviors identified world wide, we designed a suite of experiments using intact and powdered samples to better constrain the possible slip behaviors of these carbonate bearing faults. We collected samples from the exposed Rocchetta Fault, a ~10km long, normal fault with approximately 600m of total offset. The exposed principal slip surface cuts through the Calcare Massiccio formation, which is present throughout central Italy at depths of earthquake nucleation. We collected intact specimens of the natural slip surface and cemented cataclasite, as well as fragments of both which were later pulverized. Furthermore, we collected an intact sample of the hanging wall cataclasite and footwall limestone that contained the principal slip surface. We performed friction experiments in a variety of different configurations (slip surface on slip surface, slip surface on powdered cataclasite, etc.) in order to investigate heterogeneity in frictional behavior as controlled by fault structure. We sheared saturated samples at a constant normal stress of 10 MPa at room temperature. Velocity-stepping tests were performed from 1 to 300 μm/s to identify the friction constitutive parameters of this fault material. Furthermore, a series slide-hold-slide tests were performed (holds of 3 to 1000 seconds) to measure the amount of frictional healing and determine the frictional healing rate. Results from experiments designed to reactivate slip between the principal slip surface and cemented cataclasite show a peak friction value of ~0.95 followed by a ~3 MPa stress drop as the fault surface fails. Our other results suggest that earthquakes will easily nucleate in areas of the fault where two slip surfaces are in contact and are likely to propagate in areas where pulverized fault gouge is in contact with the slip surface. Our data show that samples collected from a single fault can exhibit a large range of slip behaviors. Heterogeneous frictional behavior documented in the lab must be combined with field observations of complex fault structure and seismological observations of the different modes of fault slip to further our understanding of fault slip. Future work will consist of thin section and XRD analysis of all experimental material.
NASA Astrophysics Data System (ADS)
Giano, Salvatore Ivo; Pescatore, Eva; Agosta, Fabrizio; Prosser, Giacomo
2018-02-01
A composite seismic source, the Irpinia - Agri Valley Fault zone, located in the axial sector of the fold-and-thrust belt of southern Apennines, Italy, is investigated. This composite source is made up of a series of nearly parallel, NW-striking normal fault segments which caused many historical earthquakes. Two of these fault segments, known as the San Gregorio Magno and Pergola-Melandro, and the fault-related mountain fronts, form a wedge-shaped, right-stepping, underlap fault zone. This work is aimed at documenting tectonic geomorphology and geology of this underlap fault zone. The goal is to decipher the evidence of surface topographic interaction between two bounding fault segments and their related mountain fronts. In particular, computation of geomorphic indices such as mountain front sinuosity (Smf), water divide sinuosity (Swd), asymmetry factor (AF), drainage basin elongation (Bs), relief ratio (Rh), Hypsometry (HI), normalized steepness (Ksn), and concavity (θ) is integrated with geomorphological analysis, the geological mapping, and structural analysis in order to assess the recent activity of the fault scarp sets recognized within the underlap zone. Results are consistent with the NW-striking faults as those showing the most recent tectonic activity, as also suggested by presence of related slope deposits younger than 38 ka. The results of this work therefore show how the integration of a multidisciplinary approach that combines geomorphology, morphometry, and structural analyses may be key to solving tectonic geomorphology issues in a complex, fold-and-thrust belt configuration.
Late Cenozoic extensional faulting in Central-Western Peloponnesus, Greece
NASA Astrophysics Data System (ADS)
Skourtsos, E.; Fountoulis, I.; Mavroulis, S.; Kranis, H.
2012-04-01
A series of forearc-dipping, orogen-parallel extensional faults are found in the central-western Peloponnesus, (south-western Aegean) which control the western margin of Mt Mainalon. The latter comprises HP/LT rocks of the Phyllites-Quartzites Unit (PQ), overlain by the carbonates and flysch of the Tripolis Unit while the uppermost nappe is the Pindos Unit, a sequence of Mesozoic pelagic sequence, topped by a Paleocene flysch. Most of the extensional structures were previously thought of as the original thrust between the Pindos and Tripolis Units. However, the cross-cutting relationships among these structures indicate that these are forearc (SW-dipping) extensional faults, downthrowing the Pindos thrust by a few tens or hundreds of meters each, rooting onto different levels of the nappe pile. In SW Mainalon the lowermost of the extensional faults is a low-angle normal fault dipping SW juxtaposing the metamorphic rocks of the PQ Unit against the non-metamorphic sequence of the Tripolis Unit. High-angle normal faults, found further to the west, have truncated or even sole onto the low-angle ones and control the eastern margin of the Quaternary Megalopolis basin. All these extensional structures form the eastern boundary of a series of Neogene-Quaternary tectonic depressions, which in turn are separated by E-W horsts. In the NW, these faults are truncated by NE to NNE-striking, NW-dipping faults, which relay the whole fault activity to the eastern margin of the Pyrgos graben. The whole extensional fault architecture has resulted (i) in the Pindos thrust stepping down from altitudes higher than 1000 m in Mainalon in the east, to negative heights in North Messinia and Southern Ilia in the west; and (ii) the gradual disappearance of the Phyllite-Quartzite metamorphics of Mainalon towards the west. The combination of these extensional faults (which may reach down to the Ionian décollement) with the low-angle floor thrusts of the Pindos, Tripolis and Ionian Units leads to additional ENE-WSW shortening, normal to the Hellenic Arc, west of the Peloponnesus.
Expandable right ventricular-to-pulmonary artery conduit: an animal study.
Boudjemline, Younes; Laborde, François; Pineau, Emmanuelle; Mollet, Alix; Abadir, Sylvia; Borenstein, Nicolas; Behr, Luc; Bonhoeffer, Philipp
2006-06-01
This study was performed to assess a new vascular stent graft as an expandable valved conduit for right ventricular outflow tract (RVOT) reconstruction in sheep. Conduits were constructed by sewing an 18-mm valved conduit inside a stent. Crimped to 16 mm, they were implanted either under or without extracorporeal circulation in seven (group A) and in five (group B) sheep, respectively. Six weeks and 3 mo after their insertion, conduits were dilated intraluminally. A valved stent was implanted percutaneously into conduits before they were killed. Two animals from group A recovered normally, whereas five animals had a complicated postoperative course. In group B, one died acutely due to kinking of the conduit. Balloon dilatations were performed in all surviving animals. First dilatations had a slight impact on valvular function in all animals but one, whereas second dilatations led to significant PR in all. Transcatheter valve implantation was performed successfully. When animals were killed, no bleeding was found around the surgically implanted device. In conclusion, we designed a biologic valved conduit for RVOT reconstruction that can be dilated sequentially to follow animal growth. This new device can have tremendous applications in children with congenital heart diseases involving the RVOT.
NASA Astrophysics Data System (ADS)
Campos-Enriquez, J. O.; Zambrana Arias, X.; Keppie, D.; Ramón Márquez, V.
2012-12-01
Regional scale models have been proposed for the Nicaraguan depression: 1) parallel rifting of the depression (and volcanic front) due to roll back of the underlying subducted Cocos plate; 2) right-lateral strike-slip faulting parallel to the depression and locally offset by pull-apart basins; 3) right-lateral strike-slip faulting parallel to the depression and offset by left-lateral transverse or bookshelf faults. At an intermediate scale, Funk et al. (2011) interpret the depression as half graben type structures. The E-W Airport graben lies in the southeastern part of the Managua graben (Nicaragua), across which the active Central American volcanic arc is dextrally offset, possibly the result of a subducted transform fault where the subduction angle changes. The Managua graben lies within the late Quaternary Nicaragua depression produced by backarc rifting during roll back of the Middle American Trench. The Managua graben formed as a pull-apart rift associated with dextral bookshelf faulting during dextral shear between the forearc and arc and is the locus of two historical, large earthquakes that destroyed the city of Managua. In order to asses future earthquake risk, four E-W gravity and magnetic profiles were undertaken to determine its structure across the Airport graben, which is bounded by the Cofradia and Airport fault zones, to the east and west, respectively. These data indicated the presence of a series of normal faults bounding down-thrown and up-thrown fault blocks and a listric normal fault, Sabana Grande Fault. The models imply that this area has been subjected to tectonic extension. These faults appear to be part of the bookshelf suite and will probably be the locus of future earthquakes, which could destroy the airport and surrounding part of Managua. Three regional SW-NE gravity profiles running from the Pacific Ocean up to the Caribbean See indicate a change in crustal structure: from north to south the crust thins. According to these regional crustal models the offset observed in the Volcanic Front around the Nicaragua Lake is associated with a weakness zone related with: 1) this N-S change in crustal structure, 2) to the subduction angle of the Cocos plate, and 3) to the distance to the Middle America Trench (i.e. the location of the mantle wedge). As mentioned above a subducted transform fault might have given rise to this crustal discontinuity.
NASA Astrophysics Data System (ADS)
Hudson, M. R.; Minor, S. A.; Caine, J. S.
2015-12-01
Permanent strain in sediments associated with shallow fault zones can be difficult to characterize. Anisotropy of magnetic susceptibility (AMS) data were obtained from 120 samples at 6 sites to assess the nature of fault-related AMS fabrics for 4 faults cutting Miocene-Pliocene basin fill sediments of the Rio Grande rift of north-central New Mexico. The San Ysidro (3 sites), Sand Hill, and West Paradise faults within the northern Albuquerque basin have normal offset whereas an unnamed fault near Buckman in the western Española basin has oblique strike-slip offset. Previous studies have shown that detrital magnetite controls magnetic susceptibility in rift sandstones, and in a 50-m-long hanging wall traverse of the San Ysidro fault, non-gouge samples have typical sedimentary AMS fabrics with Kmax and Kint axes (defining magnetic foliation) scattered within bedding. For the 5 normal-fault sites, samples from fault cores or adjacent mixed zones that lie within 1 m of the principal slip surface developed common deformation fabrics with (1) magnetic foliation inclined in the same azimuth but more shallowly dipping than the fault plane, and (2) magnetic lineation plunging down foliation dip with nearly the same trend as the fault striae, although nearer for sand versus clay gouge samples. These relations suggest that the sampled fault materials deformed by particulate flow with alignment of magnetite grains in the plane of maximum shortening. For a 2-m-long traverse at the Buckman site, horizontal sedimentary AMS foliation persists to < 15 cm to the fault slip surface, wherein foliation in sand and clay gouge rotates toward the steeply dipping fault plane in a sense consistent with sinistral offset. Collectively these data suggest permanent deformation fabrics were localized within < 1 m of fault surfaces and that AMS fabrics from gouge samples can provide kinematic information for faults in unconsolidated sediments which may lack associated slickenlines.
Improving the performance of univariate control charts for abnormal detection and classification
NASA Astrophysics Data System (ADS)
Yiakopoulos, Christos; Koutsoudaki, Maria; Gryllias, Konstantinos; Antoniadis, Ioannis
2017-03-01
Bearing failures in rotating machinery can cause machine breakdown and economical loss, if no effective actions are taken on time. Therefore, it is of prime importance to detect accurately the presence of faults, especially at their early stage, to prevent sequent damage and reduce costly downtime. The machinery fault diagnosis follows a roadmap of data acquisition, feature extraction and diagnostic decision making, in which mechanical vibration fault feature extraction is the foundation and the key to obtain an accurate diagnostic result. A challenge in this area is the selection of the most sensitive features for various types of fault, especially when the characteristics of failures are difficult to be extracted. Thus, a plethora of complex data-driven fault diagnosis methods are fed by prominent features, which are extracted and reduced through traditional or modern algorithms. Since most of the available datasets are captured during normal operating conditions, the last decade a number of novelty detection methods, able to work when only normal data are available, have been developed. In this study, a hybrid method combining univariate control charts and a feature extraction scheme is introduced focusing towards an abnormal change detection and classification, under the assumption that measurements under normal operating conditions of the machinery are available. The feature extraction method integrates the morphological operators and the Morlet wavelets. The effectiveness of the proposed methodology is validated on two different experimental cases with bearing faults, demonstrating that the proposed approach can improve the fault detection and classification performance of conventional control charts.
NASA Astrophysics Data System (ADS)
Dai, Z.; Zha, X.; Lu, Z.
2015-12-01
In southern Tibet (30~34N, 80~95E), many north-trending rifts, such as Yadong-Gulu and Lunggar rifts, are characterized by internally drained graben or half-graben basins bounded by active normal faults. Some developed rifts have become a portion of important transportation lines in Tibet, China. Since 1976, eighty-seven >Mw5.0 earthquakes have happened in the rift regions, and fifty-five events have normal faulting focal mechanisms according to the GCMT catalog. These rifts and normal faults are associated with both the EW-trending extension of the southern Tibet and the convergence between Indian and Tibet. The 2015 Mw7.8 Nepal great earthquake and its Mw7.3 aftershock occurred at the main Himalayan Thrust zone and caused tremendous damages in Kathmandu region. Those earthquakes will lead to significant viscoelastic deformation and stress changes in the southern Tibet in the future. To evaluate the seismic hazard in the active rift regions in southern Tibet, we modeled the slip distribution of the 2015 Nepal great earthquakes using the InSAR displacement field from the ALOS-2 satellite SAR data, and calculated the Coulomb failure stress (CFS) on these active normal faults in the rift zones. Because the estimated CFS depends on the geometrical parameters of receiver faults, it is necessary to get the accurate fault parameters in the rift zones. Some historical earthquakes have been studied using the field data, teleseismic data and InSAR observations, but results are in not agreement with each other. In this study, we revaluated the geometrical parameters of seismogenic faults occurred in the rift zones using some high-quality coseismic InSAR observations and teleseismic body-wave data. Finally, we will evaluate the seismic hazard in the rift zones according to the value of the estimated CFS and aftershock distribution.
NASA Astrophysics Data System (ADS)
Howard, K. A.
2009-12-01
The 1968 collapse structure of Fernandina caldera (1.5 km3 collapsed) and also the smaller Darwin Bay caldera in Galápagos each closely resembles morphologically the structural zoning of features found in depressions collapsed into nuclear-explosion cavities (“sinks” of Houser, 1969) and in coherent sandbox-collapse models. Coherent collapses characterized by faulting, folding, and organized structure contrast with spalled pit craters (and lab experiments with collapsed powder) where disorganized piles of floor rubble result from tensile failure of the roof. Subsidence in coherent mode, whether in weak sand in the lab, stronger desert alluvium for nuclear-test sinks, or in hard rock for calderas, exhibits consistent morphologic zones. Characteristically in the sandbox and the nuclear-test analogs these include a first-formed central plug that drops along annular reverse faults. This plug and a surrounding inward-tilted or monoclinal ring (hanging wall of the reverse fault) contract as the structure expands outward by normal faulting, wherein peripheral rings of distending material widen the upper part of the structure along inward-dipping normal faults and compress inner zones and help keep them intact. In Fernandina, a region between the monocline and the outer zone of normal faulting is interpreted, by comparison to the analogs, to overlie the deflation margin of an underlying magma chamber. The same zoning pattern is recognized in structures ranging from sandbox subsidence features centimeters across, to Alae lave lake and nuclear-test sinks tens to hundreds of meters across, to Fenandina’s 2x4 km-wide collapse, to Martian calderas tens of kilometers across. Simple dimensional analysis using the height of cliffs as a proxie for material strength implies that the geometric analogs are good dynamic analogs, and validates that the pattern of both reverse and normal faulting that has been reported consistently from sandbox modeling applies widely to calderas.
NASA Astrophysics Data System (ADS)
Matsumoto, T.; Shinjo, R.; Nakamura, M.; Kubo, A.; Doi, A.; Tamanaha, S.
2011-12-01
Ryukyu Arc is located on the southwestern extension of Japanese Island-arc towards the east of Taiwan Island along the margin of the Asian continent off China. The island-arc forms an arcuate trench-arc-backarc system. A NW-ward subduction of the Philippine Sea Plate (PSP)at a rate of 6-8 cm/y relative to the Eurasian Plate (EP) causes frequent earthquakes. The PSP is subducting almost normally in the north-central area and more obliquely around the southwestern area. Behind the arc-trench system, the Okinawa Trough (OT) was formed by back-arc rifting, where active hydrothermal vent systems have been discovered. Several across-arc submarine faults are located in the central and southern Ryukyu Arc. The East Ishigaki Fault (EIF) is one of the across-arc normal faults located in the southwestern Ryukyu Arc, ranging by 44km and extending from SE to NW. This fault was surveyed by SEABAT8160 multibeam echo sounder and by ROV Hyper-Dolphin in 2005 and 2008. The result shows that the main fault consists of five fault segments. A branched segment from the main fault was also observed. The southernmost segment is most mature (oldest but still active) and the northernmost one is most nascent. This suggests the north-westward propagation of the fault rupture corresponding to the rifting of the southwestern OT and the southward retreat of the arc-trench system. Considering that the fault is segmented and in some part branched, propagation might take place episodically rather than continuously from SE to NW. The ROV survey also revealed the rupture process of the limestone basement along this fault from the nascent stage to the mature stage. Most of the rock samples collected from the basement outcrop were limestone blocks (or calcareous sedimentary rocks). Limestone basement was observed to the west on the hanging wall far away from the main fault scarp. Then fine-grained sand with ripple marks was observed towards the main scarp. Limestone basement was observed on the main scarp and on the footwall. These suggest that basically the both sides are composed of the same material, that the whole study area is characterised by Ryukyu limestone exposure and that the basement was split by the across-arc normal fault. Coarse-grained sand and gravels/rubbles were observed towards and on the trough of the fault. On the main scarp an outcrop of limestone basement was exposed and in some part it was broken into rubbles. These facts suggest that crash of the basement due to rupturing is taking place repeatedly on the scarp and the trough. The observed fine-grained sand on the hanging wall might be the final product by the process of the crash of the limestone basement.
Minor, Scott A.; Hudson, Mark R.; Caine, Jonathan S.; Thompson, Ren A.
2013-01-01
The structural geometry of transfer and accommodation zones that relay strain between extensional domains in rifted crust has been addressed in many studies over the past 30 years. However, details of the kinematics of deformation and related stress changes within these zones have received relatively little attention. In this study we conduct the first-ever systematic, multi-basin fault-slip measurement campaign within the late Cenozoic Rio Grande rift of northern New Mexico to address the mechanisms and causes of extensional strain transfer associated with a broad accommodation zone. Numerous (562) kinematic measurements were collected at fault exposures within and adjacent to the NE-trending Santo Domingo Basin accommodation zone, or relay, which structurally links the N-trending, right-stepping en echelon Albuquerque and Española rift basins. The following observations are made based on these fault measurements and paleostresses computed from them. (1) Compared to the typical northerly striking normal to normal-oblique faults in the rift basins to the north and south, normal-oblique faults are broadly distributed within two merging, NE-trending zones on the northwest and southeast sides of the Santo Domingo Basin. (2) Faults in these zones have greater dispersion of rake values and fault strikes, greater dextral strike-slip components over a wide northerly strike range, and small to moderate clockwise deflections of their tips. (3) Relative-age relations among fault surfaces and slickenlines used to compute reduced stress tensors suggest that far-field, ~E-W–trending σ3 stress trajectories were perturbed 45° to 90° clockwise into NW to N trends within the Santo Domingo zones. (4) Fault-stratigraphic age relations constrain the stress perturbations to the later stages of rifting, possibly as late as 2.7–1.1 Ma. Our fault observations and previous paleomagnetic evidence of post–2.7 Ma counterclockwise vertical-axis rotations are consistent with increased bulk sinistral-normal oblique shear along the Santo Domingo rift segment in Pliocene and later time. Regional geologic evidence suggests that the width of active rift faulting became increasingly confined to the Santo Domingo Basin and axial parts of the adjoining basins beginning in the late Miocene. We infer that the Santo Domingo clockwise stress perturbations developed coevally with the oblique rift segment mainly due to mechanical interactions of large faults propagating toward each other from the adjoining basins as the rift narrowed. Our results suggest that negligible bulk strike-slip displacement has been accommodated along the north-trending rift during much of its development, but uncertainties in the maximum ages of fault slip do not allow us to fully evaluate and discriminate between earlier models that invoked northward or southward rotation and translation of the Colorado Plateau during early (Miocene) rifting.
Map and Database of Probable and Possible Quaternary Faults in Afghanistan
Ruleman, C.A.; Crone, A.J.; Machette, M.N.; Haller, K.M.; Rukstales, K.S.
2007-01-01
The U.S. Geological Survey (USGS) with support from the U.S. Agency for International Development (USAID) mission in Afghanistan, has prepared a digital map showing the distribution of probable and suspected Quaternary faults in Afghanistan. This map is a key component of a broader effort to assess and map the country's seismic hazards. Our analyses of remote-sensing imagery reveal a complex array of tectonic features that we interpret to be probable and possible active faults within the country and in the surrounding border region. In our compilation, we have mapped previously recognized active faults in greater detail, and have categorized individual features based on their geomorphic expression. We assigned mapped features to eight newly defined domains, each of which contains features that appear to have similar styles of deformation. The styles of deformation associated with each domain provide insight into the kinematics of the modern tectonism, and define a tectonic framework that helps constrain deformational models of the Alpine-Himalayan orogenic belt. The modern fault movements, deformation, and earthquakes in Afghanistan are driven by the collision between the northward-moving Indian subcontinent and Eurasia. The patterns of probable and possible Quaternary faults generally show that much of the modern tectonic activity is related to transfer of plate-boundary deformation across the country. The left-lateral, strike-slip Chaman fault in southeastern Afghanistan probably has the highest slip rate of any fault in the country; to the north, this slip is distributed onto several fault systems. At the southern margin of the Kabul block, the style of faulting changes from mainly strike-slip motion associated with the boundary between the Indian and Eurasian plates, to transpressional and transtensional faulting. North and northeast of the Kabul block, we recognized a complex pattern of potentially active strike-slip, thrust, and normal faults that form a conjugate shear system in a transpressional region of the Trans-Himalayan orogenic belt. The general patterns and orientations of faults and the styles of deformation that we interpret from the imagery are consistent with the styles of faulting determined from focal mechanisms of historical earthquakes. Northwest-trending strike-slip fault zones are cut and displaced by younger, southeast-verging thrust faults; these relations define the interaction between northwest-southeast-oriented contraction and northwest-directed extrusion in the western Himalaya, Pamir, and Hindu Kush regions. Transpression extends into north-central Afghanistan where north-verging contraction along the east-west-trending Alburz-Marmul fault system interacts with northwest-trending strike-slip faults. Pressure ridges related to thrust faulting and extensional basins bounded by normal faults are located at major stepovers in these northwest-trending strike-slip systems. In contrast, young faulting in central and western Afghanistan indicates that the deformation is dominated by extension where strike-slip fault zones transition into regions of normal faults. In addition to these initial observations, our digital map and database provide a foundation that can be expanded, complemented, and modified as future investigations provide more detailed information about the location, characteristics, and history of movement on Quaternary faults in Afghanistan.
NASA Astrophysics Data System (ADS)
Cappa, F.; Guglielmi, Y.; De Barros, L.; Wynants-Morel, N.; Duboeuf, L.
2017-12-01
During fluid injection, the observations of an enlarging cloud of seismicity are generally explained by a direct response to the pore pressure diffusion in a permeable fractured rock. However, fluid injection can also induce large aseismic deformations which provide an alternative mechanism for triggering and driving seismicity. Despite the importance of these two mechanisms during fluid injection, there are few studies on the effects of fluid pressure on the partitioning between seismic and aseismic motions under controlled field experiments. Here, we describe in-situ meter-scale experiments measuring synchronously the fluid pressure, the fault motions and the seismicity directly in a fault zone stimulated by controlled fluid injection at 280 m depth in carbonate rocks. The experiments were conducted in a gallery of an underground laboratory in south of France (LSBB, http://lsbb.eu). Thanks to the proximal monitoring at high-frequency, our data show that the fluid overpressure mainly induces a dilatant aseismic slip (several tens of microns up to a millimeter) at the injection. A sparse seismicity (-4 < Mw < -3) is observed several meters away from the injection, in a part of the fault zone where the fluid overpressure is null or very low. Using hydromechanical modeling with friction laws, we simulated an experiment and investigated the relative contribution of the fluid pressure diffusion and stress transfer on the seismic and aseismic fault behavior. The model reproduces the hydromechanical data measured at injection, and show that the aseismic slip induced by fluid injection propagates outside the pressurized zone where accumulated shear stress develops, and potentially triggers seismicity. Our models also show that the permeability enhancement and friction evolution are essential to explain the fault slip behavior. Our experimental results are consistent with large-scale observations of fault motions at geothermal sites (Wei et al., 2015; Cornet, 2016), and suggest that controlled field experiments at meter-scale are important for better assessing the role of fluid pressure in natural and human-induced earthquakes.
Recent Motion on the Kern Canyon Fault, Southern Sierra Nevada, California
NASA Astrophysics Data System (ADS)
Nadin, E. S.; Saleeby, J. B.
2005-12-01
Evidence suggests that the Kern Canyon Fault (KCF), the longest fault in the southern Sierra Nevada, is an active fault. Along the 140-km-long KCF, batholithic and metamorphic rocks were displaced up to 16~km in apparent dextral strike slip during at least three discrete phases of deformation throughout the past ~90~Myr. Early ductile shear is preserved along a 1.5-km-wide zone of S-C mylonites and phyllonites that constitutes the Proto-KCF; a later phase of brittle faulting led to through-going cataclasis along the 50-m-wide KCF; and finally, late-stage minor faulting resulted in thin, hematitic gouge zones. The KCF has been considered inactive since 3.5~Ma based on a dated basalt flow reported to cap the fault. However, we believe this basalt to be disturbed, and several pieces of evidence support the idea that the KCF has been reactivated in a normal sense during the Quaternary. Fresh, high-relief fault scarps at Engineer Point in Lake Isabella and near Brush Creek, suggest recent, west-side-up vertical offset. And seismicity in the area hints at local motion. The center of activity during the 1983--1984 Durrwood Meadows earthquake swarm, a series of more than 2,000 earthquakes, the largest of which was M = 4.5, was 10~km east of the KCF. The swarm spanned a discrete, 100~km-long north-south trajectory between latitudes 35° 20'N and 36° 30'N, and its focal mechanisms were consistent with pure normal faulting, but the KCF has been disqualified as too far west and too steep to accommodate the seismic activity. But it could be part of the fault system: Near latitude 36°N, we documented a well-preserved expression of the KCF, which places Cretaceous granitic rocks against a Quaternary glacial debris flow. This fault plane strikes N05°E and is consistent with west-side-up normal faulting, in agreement with the focal mechanism slip planes of the Durrwood Meadows swarm. It is possible that the recent swarm represents a budding strand of the KCF system, much like the Punchbowl Fault took up lateral slip 5~km from the main San Andreas Fault plane. Although the offset is not appreciable, we propose that recent activity along the KCF has accommodated stresses imparted by either Basin and Range extension or by San Andreas and/or Garlock Fault motion.
Reclosing operation characteristics of the flux-coupling type SFCL in a single-line-to ground fault
NASA Astrophysics Data System (ADS)
Jung, B. I.; Cho, Y. S.; Choi, H. S.; Ha, K. H.; Choi, S. G.; Chul, D. C.; Sung, T. H.
2011-11-01
The recloser that is used in distribution systems is a relay system that behaves sequentially to protect power systems from transient and continuous faults. This reclosing operation of the recloser can improve the reliability and stability of the power supply. For cooperation with this recloser, the superconducting fault current limiter (SFCL) must properly perform the reclosing operation. This paper analyzed the reclosing operation characteristics of the three-phase flux-coupling type SFCL in the event of a ground fault. The fault current limiting characteristics according to the changing number of turns of the primary and secondary coils were examined. As the number of turns of the first coil increased, the first maximum fault current decreased. Furthermore, the voltage of the quenched superconducting element also decreased. This means that the power burden of the superconducting element decreases based on the increasing number of turns of the primary coil. The fault current limiting characteristic of the SFCL according to the reclosing time limited the fault current within a 0.5 cycles (8 ms), which is shorter than the closing time of the recloser. In other words, the superconducting element returned to the superconducting state before the second fault and normally performed the fault current limiting operation. If the SFCL did not recover before the recloser reclosing time, the normal current that was flowing in the transmission line after the recovery of the SFCL from the fault would have been limited and would have caused losses. Therefore, the fast recovery time of a SFCL is critical to its cooperation with the protection system.
Tetralogy of Fallot and aortic root dilation: a long-term outlook.
Nagy, Christian D; Alejo, Diane E; Corretti, Mary C; Ravekes, William J; Crosson, Jane E; Spevak, Philip J; Ringel, Richard; Carson, Kathryn A; Khalil, Sara; Dietz, Harry C; Cameron, Duke E; Vricella, Luca A; Traill, Thomas A; Holmes, Kathryn W
2013-04-01
Dilation of the sinus of Valsalva (SoV) has been increasingly observed after repaired tetralogy of Fallot (TOF). We estimate the prevalence of SoV dilation in adults with repaired TOF and analyze possible factors related to aortic disease. Adults with TOF [n = 109, median age 33.2 years (range 18.1 to 69.5)] evaluated at Johns Hopkins Hospital from 2001 to 2009 were reviewed in an observational retrospective cohort study. Median follow-up was 27.3 (range 0.1-48.8) years. SoV dilation was defined as >95 % confidence interval adjusted for age and body surface area (z-score > 2). The prevalence of SoV dilation was 51 % compared with that of a normal population with a mean z-score of 2.03. Maximal aortic diameters were ≥ 4 cm in 39 % (42 of 109), ≥ 4.5 cm in 21 % (23 of 109), ≥ 5 cm in 8 % (9 of 109), and ≥ 5.5 cm in 2 % (2 of 109). There was no aortic dissection or death due contributable to aortic disease. Aortic valve replacement was performed in 1.8 % and aortic root or ascending aorta (AA) replacement surgery in 2.8 % of patients. By multivariate logistic regression analysis, aortic regurgitation (AR) [odds ratio (OR) = 3.09, p = 0.005], residual ventricular septal defect (VSD) (OR = 4.14, p < 0.02), and TOF with pulmonary atresia (TOF/PA) (OR = 6.75, p = 0.03) were associated with increased odds of dilated aortic root. SoV dilation after TOF repair is common and persists with aging. AR, residual VSD, and TOF/PA are associated with increased odds of dilation. AA evaluation beyond the SoV is important. Indexed values are imperative to avoid bias on the basis of age and body surface area.
Splay fault slip in a subduction margin, a new model of evolution
NASA Astrophysics Data System (ADS)
Conin, Marianne; Henry, Pierre; Godard, Vincent; Bourlange, Sylvain
2012-08-01
In subduction zones, major thrusts called splay faults are thought to slip coseismically during large earthquakes affecting the main plate interface. We propose an analytical condition for the activation of a splay fault based on force balance calculations and suggest thrusting along the splay fault is generally conditioned by the growth of the accretionary wedge, or by the erosion of the hanging wall. In theory, normal slip on the splay fault may occur when the décollement has a very low friction coefficient seaward. Such a low friction also implies an unstable extensional state within the outer wedge. Finite element elasto-plastic calculations with a geometry based on the Nankai Kumano section were performed and confirm that this analytical condition is a valid approximation. Furthermore, localized extension at a shallow level in the splay hanging wall is observed in models for a wide range of friction coefficients (from ∼0 to the value of internal friction coefficient of the rock, here equals to 0.4). The timing of slip established for the splay fault branch drilled on Nankai Kumano transect suggests a phase of concurrent splay and accretionary wedge growth ≈2 Ma to ≈1.5 Ma, followed by a locking of the splay ≈1.3 Ma. Active extension is observed in the hanging wall. This evolution can be explained by the activation of a deeper and weaker décollement, followed by an interruption of accretion. Activation of a splay as a normal fault, as hypothesized in the case of the Tohoku 2011 earthquake, can be achieved only if the friction coefficient on the décollement drops to near zero. We conclude that the tectonic stress state largely determines long-term variations of tightly related splay fault and outer décollement activity and thus influences where and how coseismic rupture ends, but that occurrence of normal slip on a splay fault requires coseismic friction reduction.
Continental Extensional Tectonics in the Basins and Ranges and Aegean Regions: A Review
NASA Astrophysics Data System (ADS)
Cemen, I.
2017-12-01
The Basins and Ranges of North America and the Aegean Region of Eastern Europe and Asia Minor have been long considered as the two best developed examples of continental extension. The two regions contain well-developed normal faults which were considered almost vertical in the 1950s and 1960s. By the mid 1980s, however, overwhelming field evidence emerged to conclude that the dip angle normal faults in the two regions may range from almost vertical to almost horizontal. This led to the discovery that high-grade metamorphic rocks could be brought to surface by the exhumation of mid-crustal rocks along major low-angle normal faults (detachment faults) which were previously either mapped as thrust faults or unconformity. Within the last three decades, our understanding of continental extensional tectonics in the Basins and Ranges and the Aegean Region have improved substantially based on fieldwork, geochemical analysis, analog and computer modeling, detailed radiometric age determinations and thermokinematic modelling. It is now widely accepted that a) Basin and Range extension is controlled by the movement along the San Andreas fault zone as the North American plate moved southeastward with respect to the northwestward movement of the Pacific plate; b) Aegean extension is controlled by subduction roll-back associated with the Hellenic subduction zone; and c) the two regions contain best examples of detachment faulting, extensional folding, and extensional basins. However, there are still many important questions of continental extensional tectonics in the two regions that remain poorly understood. These include determining a) precise amount and percentage of cumulative extension; b) role of strike-slip faulting in the extensional processes; c) exhumation history along detachment surfaces using multimethod geochronology; d) geometry and nature of extensional features in the middle and lower crust; e) the nature of upper mantle and asthenospheric flow; f) evolutions of sedimentary basins associated with dip-slip and strike-slip faults; g) seismic hazards; and i) economic significance of extensional basins.
NASA Astrophysics Data System (ADS)
Barchi, Massimiliano R.; Ciaccio, Maria Grazia
2009-12-01
The study of syntectonic basins, generated at the hangingwall of regional low-angle detachments, can help to gain a better knowledge of these important and mechanically controversial extensional structures, constraining their kinematics and timing of activity. Seismic reflection images constrain the geometry and internal structure of the Sansepolcro Basin (the northernmost portion of the High Tiber Valley). This basin was generated at the hangingwall of the Altotiberina Fault (AtF), an E-dipping low-angle normal fault, active at least since Late Pliocene, affecting the upper crust of this portion of the Northern Apennines. The dataset analysed consists of 5 seismic reflection lines acquired in the 80s' by ENI-Agip for oil exploration and a portion of the NVR deep CROP03 profile. The interpretation of the seismic profiles provides a 3-D reconstruction of the basin's shape and of the sedimentary succession infilling the basin. This consisting of up to 1200 m of fluvial and lacustrine sediments: this succession is much thicker and possibly older than previously hypothesised. The seismic data also image the geometry at depth of the faults driving the basin onset and evolution. The western flank is bordered by a set of E-dipping normal faults, producing the uplifting and tilting of Early to Middle Pleistocene succession along the Anghiari ridge. Along the eastern flank, the sediments are markedly dragged along the SW-dipping Sansepolcro fault. Both NE- and SW-dipping faults splay out from the NE-dipping, low-angle Altotiberina fault. Both AtF and its high-angle splays are still active, as suggested by combined geological and geomorphological evidences: the historical seismicity of the area can be reasonably associated to these faults, however the available data do not constrain an unambiguous association between the single structural elements and the major earthquakes.
The Bear River Fault Zone, Wyoming and Utah: Complex Ruptures on a Young Normal Fault
NASA Astrophysics Data System (ADS)
Schwartz, D. P.; Hecker, S.; Haproff, P.; Beukelman, G.; Erickson, B.
2012-12-01
The Bear River fault zone (BRFZ), a set of normal fault scarps located in the Rocky Mountains at the eastern margin of Basin and Range extension, is a rare example of a nascent surface-rupturing fault. Paleoseismic investigations (West, 1994; this study) indicate that the entire neotectonic history of the BRFZ may consist of two large surface-faulting events in the late Holocene. We have estimated a maximum per-event vertical displacement of 6-6.5 m at the south end of the fault where it abuts the north flank of the east-west-trending Uinta Mountains. However, large hanging-wall depressions resulting from back rotation, which front scarps that locally exceed 15 m in height, are prevalent along the main trace, obscuring the net displacement and its along-strike distribution. The modest length (~35 km) of the BRFZ indicates ruptures with a large displacement-to-length ratio, which implies earthquakes with a high static stress drop. The BRFZ is one of several immature (low cumulative displacement) normal faults in the Rocky Mountain region that appear to produce high-stress drop earthquakes. West (1992) interpreted the BRFZ as an extensionally reactivated ramp of the late Cretaceous-early Tertiary Hogsback thrust. LiDAR data on the southern section of the fault and Google Earth imagery show that these young ruptures are more extensive than currently mapped, with newly identified large (>10m) antithetic scarps and footwall graben. The scarps of the BRFZ extend across a 2.5-5.0 km-wide zone, making this the widest and most complex Holocene surface rupture in the Intermountain West. The broad distribution of Late Holocene scarps is consistent with reactivation of shallow bedrock structures but the overall geometry of the BRFZ at depth and its extent into the seismogenic zone are uncertain.
Pre-existing normal faults have limited control on the rift geometry of the northern North Sea
NASA Astrophysics Data System (ADS)
Claringbould, Johan S.; Bell, Rebecca E.; Jackson, Christopher A.-L.; Gawthorpe, Robert L.; Odinsen, Tore
2017-10-01
Many rifts develop in response to multiphase extension with numerical and physical models suggesting that reactivation of first-phase normal faults and rift-related variations in bulk crustal rheology control the evolution and final geometry of subsequent rifts. However, many natural multiphase rifts are deeply buried and thus poorly exposed in the field and poorly imaged in seismic reflection data, making it difficult to test these models. Here we integrate recent 3D seismic reflection and borehole data across the entire East Shetland Basin, northern North Sea, to constrain the long-term, regional development of this multiphase rift. We document the following key stages of basin development: (i) pre-Triassic to earliest Triassic development of multiple sub-basins controlled by widely distributed, NNW- to NE-trending, east- and west-dipping faults; (ii) Triassic activity on a single major, NE-trending, west-dipping fault located near the basins western margin, and formation of a large half-graben; and (iii) Jurassic development of a large, E-dipping, N- to NE-trending half-graben near the eastern margin of the basin, which was associated with rift narrowing and strain focusing in the Viking Graben. In contrast to previous studies, which argue for two discrete periods of rifting during the Permian-Triassic and Late Jurassic-Early Cretaceous, we find that rifting in the East Shetland Basin was protracted from pre-Triassic to Cretaceous. We find that, during the Jurassic, most pre-Jurassic normal faults were buried and in some cases cross-cut by newly formed faults, with only a few being reactivated. Previously developed faults thus had only a limited control on the evolution and geometry of the later rift. We instead argue that strain migration and rift narrowing was linked to the evolving thermal state of the lithosphere, an interpretation supporting the predictions of lithosphere-scale numerical models. Our study indicates that additional regional studies of natural rifts are required to test and refine the predictions of physical and numerical models, more specifically, our study suggests models not explicitly recognising or including thermal or rheological effects might over emphasise the role of discrete pre-existing rift structures such as normal faults.