Sample records for dilute solution behavior

  1. Modeling mass transfer and reaction of dilute solutes in a ternary phase system by the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Fu, Yu-Hang; Bai, Lin; Luo, Kai-Hong; Jin, Yong; Cheng, Yi

    2017-04-01

    In this work, we propose a general approach for modeling mass transfer and reaction of dilute solute(s) in incompressible three-phase flows by introducing a collision operator in lattice Boltzmann (LB) method. An LB equation was used to simulate the solute dynamics among three different fluids, in which the newly expanded collision operator was used to depict the interface behavior of dilute solute(s). The multiscale analysis showed that the presented model can recover the macroscopic transport equations derived from the Maxwell-Stefan equation for dilute solutes in three-phase systems. Compared with the analytical equation of state of solute and dynamic behavior, these results are proven to constitute a generalized framework to simulate solute distributions in three-phase flows, including compound soluble in one phase, compound adsorbed on single-interface, compound in two phases, and solute soluble in three phases. Moreover, numerical simulations of benchmark cases, such as phase decomposition, multilayered planar interfaces, and liquid lens, were performed to test the stability and efficiency of the model. Finally, the multiphase mass transfer and reaction in Janus droplet transport in a straight microchannel were well reproduced.

  2. Microfluidics Meets Dilute Solution Viscometry: An Undergraduate Laboratory to Determine Polymer Molecular Weight Using a Microviscometer

    ERIC Educational Resources Information Center

    Pety, Stephen J.; Lu, Hang; Thio, Yonathan S.

    2011-01-01

    This paper describes a student laboratory experiment to determine the molecular weight of a polymer sample by measuring the viscosity of dilute polymer solutions in a PDMS microfluidic viscometer. Sample data are given for aqueous solutions of poly(ethylene oxide) (PEO). A demonstration of shear thinning behavior using the microviscometer is…

  3. Separation processes using expulsion from dilute supercritical solutions

    DOEpatents

    Cochran, Jr., Henry D.

    1993-01-01

    A process for separating isotopes as well as other mixtures by utilizing the behavior of dilute repulsive or weakly attractive elements of the mixtures as the critical point of the solvent is approached.

  4. Separation processes using expulsion from dilute supercritical solutions

    DOEpatents

    Cochran, H.D. Jr.

    1993-04-20

    A process is described for separating isotopes as well as other mixtures by utilizing the behavior of dilute repulsive or weakly attractive elements of the mixtures as the critical point of the solvent is approached.

  5. Responsive Copolymers for Enhanced Petroleum Recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, C.; Hester, R.

    The objectives of this work was to: synthesize responsive copolymer systems; characterize molecular structure and solution behavior; measure rheological properties of aqueous fluids in fixed geometry flow profiles; and to tailor final polymer compositions for in situ rheology control under simulated conditions. This report focuses on the synthesis and characterization of novel stimuli responsive copolymers, the investigation of dilute polymer solutions in extensional flow and the design of a rheometer capable of measuring very dilute aqueous polymer solutions at low torque.

  6. Steady and dynamic shear rheological behavior of semi dilute Alyssum homolocarpum seed gum solutions: influence of concentration, temperature and heating-cooling rate.

    PubMed

    Alaeddini, Behzad; Koocheki, Arash; Mohammadzadeh Milani, Jafar; Razavi, Seyed Mohammad Ali; Ghanbarzadeh, Babak

    2018-05-01

    Alyssum homolocarpum seed gum (AHSG) solution exhibits high viscosity at low shear rates and has anionic features. However there is no information regarding the flow and dynamic properties of this gum in semi-dilute solutions. The present study aimed to investigate the dynamic and steady shear behavior of AHSG in the semi-dilute region. The viscosity profile demonestrated a shear thinning behavior at all temperatures and concentrations. An increase in the AHSG concentration was acompanied by an increase in the pseudoplasticity degree, whereas, by increasing the temperature, the pseudoplasticity of AHSG decreased. At low gum concentration, solutions had more viscosity dependence on temperature. The mechanical spectra obtained from the frequency sweep experiment demonstrated viscoelastic properties for gum solutions. AHSG solutions showed typical weak gel-like behavior, revealing G' greater than G' within the experimental range of frequency (Hz), with slight frequency dependency. The influence of temperature on viscoelastic properties of AHSG solutions was studied during both heating (5-85 °C) and cooling (85-5 °C) processes. The complex viscosity of AHSG was greater compared to the apparent viscosity, indicating the disruption of AHSG network structure under continuous shear rates and deviation from the Cox-Merz rule. During the initial heating, the storage modulus showed a decreasing trend and, with a further increase in temperature, the magnitude of storage modulus increased. The influence of temperature on the storage modulus was considerable when a higher heating rate was applied. AHSG can be applied as a thickening and stabilizing agents in food products that require good stability against temperature. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. Behavior of GaSb (100) and InSb (100) surfaces in the presence of H2O2 in acidic and basic cleaning solutions

    NASA Astrophysics Data System (ADS)

    Seo, Dongwan; Na, Jihoon; Lee, Seunghyo; Lim, Sangwoo

    2017-03-01

    Gallium antimonide (GaSb) and indium antimonide (InSb) have attracted strong attention as new channel materials for transistors due to their excellent electrical properties and lattice matches with various group III-V compound semiconductors. In this study, the surface behavior of GaSb (100) and InSb (100) was investigated and compared in hydrochloric acid/hydrogen peroxide mixture (HPM) and ammonium hydroxide/hydrogen peroxide mixture (APM) solutions. In the acidic HPM solution, surface oxidation was greater and the etching rates of the GaSb and InSb surfaces increased when the solution is concentrated, which indicates that H2O2 plays a key role in the surface oxidation of GaSb and InSb in acidic HPM solution. However, the GaSb and InSb surfaces were hardly oxidized in basic APM solution in the presence of H2O2 because gallium and indium are in the thermodynamically stable forms of H2GaO3- and InO2-, respectively. When the APM solution was diluted, however, the Ga on the GaSb surface was oxidized by H2O, increasing the etching rate. However, the effect of dilution of the APM solution on the oxidation of the InSb surface was minimal; thus, the InSb surface was less oxidized than the GaSb surface and the change in the etching rate of InSb with dilution of the APM solution was not significant. Additionally, the oxidation behavior of gallium and indium was more sensitive to the composition of the HPM and APM solutions than that of antimony. Therefore, the surface properties and etching characteristics of GaSb and InSb in HPM and APM solutions are mainly dependent on the behavior of the group III elements rather than the group V elements.

  8. Effect of Aging Temperature on Corrosion Behavior of Sintered 17-4 PH Stainless Steel in Dilute Sulfuric Acid Solution

    NASA Astrophysics Data System (ADS)

    Szewczyk-Nykiel, Aneta; Kazior, Jan

    2017-07-01

    The general corrosion behavior of sintered 17-4 PH stainless steel processed under different processing conditions in dilute sulfuric acid solution at 25 °C was studied by open-circuit potential measurement and potentiodynamic polarization technique. The corrosion resistance was evaluated based on electrochemical parameters, such as polarization resistance, corrosion potential, corrosion current density as well as corrosion rate. The results showed that the precipitation-hardening treatment could significantly improve the corrosion resistance of the sintered 17-4 PH stainless steel in studied environment. As far as the influence of aging temperature on corrosion behavior of the sintered 17-4 PH stainless steel is concerned, polarization resistance and corrosion rate are reduced with increasing aging temperature from 480 up to 500 °C regardless of the temperature of solution treatment. It can be concluded that the highest corrosion resistance in 0.5 M H2SO4 solution exhibits 17-4 PH after solution treatment at 1040 °C followed by aging at 480 °C.

  9. Precise measurement of the self-diffusion coefficient for poly(ethylene glycol) in aqueous solution using uniform oligomers

    NASA Astrophysics Data System (ADS)

    Shimada, Kayori; Kato, Haruhisa; Saito, Takeshi; Matsuyama, Shigetomo; Kinugasa, Shinichi

    2005-06-01

    Uniform poly(ethylene glycol) (PEG) oligomers, with a degree of polymerization n =1-40, were separated by preparative supercritical fluid chromatography from commercial monodispersed samples. Diffusion coefficients, D, for separated uniform PEG oligomers were measured in dilute solutions of deuterium oxide (D2O) at 30 ° C, using pulsed-field gradient nuclear magnetic resonance. The measured D for each molecular weight was extrapolated to infinite dilution. Diffusion coefficients obtained at infinite dilution follow the scaling behavior of Zimm-type diffusion, even in the lower molecular weight range. Molecular-dynamics simulations for PEG in H2O also showed this scaling behavior, and reproduced close hydrodynamic interactions between PEG and water. These findings suggest that diffusion of PEG in water is dominated by hydrodynamic interaction over a wide molecular weight range, including at low molecular weights around 1000.

  10. Lyotropic Phase Behavior of Polybutadiene-Poly(ethylene oxide) Diblock Copolymers in Ionic Liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simone, Peter M.; Lodge, Timothy P.

    2008-08-26

    The lyotropic phase behavior of three poly(1,2-butadiene-b-ethylene oxide) diblock copolymers (PB-PEO) with different monomer volume fractions has been studied in two different ionic liquids, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMI][TFSI]) and 1-butyl-3-methylimidazolium hexafluorophosphate ([BMI][PF{sub 6}]), across the complete concentration range. The ordered microstructures present in the solutions were characterized via small-angle X-ray scattering (SAXS). The phase diagrams for the PB-PEO/ionic liquid solutions include regions corresponding to the classical copolymer microstructures: body-centered-cubic lattices of spheres, hexagonally ordered cylinders, and lamellae. Additionally, the phase diagrams also include wide regions of coexisting microstructures and regions apparently corresponding to a disordered network microstructure. The phase behavior ofmore » the PB-PEO copolymers in both ionic liquids was comparable to their previously reported aqueous solution behavior. The temperature dependence of the phase diagrams was very modest, indicative of a highly segregated system. The level of solvent selectivity was also investigated via cryogenic transmission electron microscopy (cryo-TEM) on dilute solutions. On the basis of the morphology of the dilute solution copolymer aggregate structures in the ionic liquid solvents, and on the structural length scales of the concentrated solutions, it was concluded that for PB-PEO [BMI][PF{sub 6}] behaves as a more selective solvent than [EMI][TFSI].« less

  11. Reaction enthalpy from the binding of multivalent cations to anionic polyelectrolytes in dilute solutions

    NASA Astrophysics Data System (ADS)

    Hansch, Markus; Kaub, Hans Peter; Deck, Sascha; Carl, Nico; Huber, Klaus

    2018-03-01

    Dilute solutions of sodium poly(styrene sulfonate) (NaPSS) in the presence of Al3+, Ca2+, and Ba2+ were analysed by means of isothermal titration calorimetry (ITC) in order to investigate the heat effect of bond formation between those cations and the anionic SO3- residues of NaPSS. The selection of the cations was guided by the solution behavior of the corresponding PSS salts from a preceding study [M. Hansch et al., J. Chem. Phys. 148(1), 014901 (2018)], where bonds between Ba2+ and anionic PSS showed an increasing solubility with decreasing temperature and Al3+ exhibited the inverse trend. Unlike to Al3+ and Ba2+, Ca2+ is expected to behave as a purely electrostatically interacting bivalent cation and was thus included in the present study. Results from ITC satisfactorily succeeded to explain the temperature-dependent solution behavior of the salts with Al3+ and Ba2+ and confirmed the non-specific behavior of Ca2+. Additional ITC experiments with salts of Ca2+ and Ba2+ and sodium poly(acrylate) complemented the results on PSS by data from a chemically different polyanion. Availability of these joint sets of polyanion-cation combinations not only offers the chance to identify common features and subtle differences in the solution behavior of polyelectrolytes in the presence of multi-valent cations but also points to a new class of responsive materials.

  12. Weak Interactions Govern the Viscosity of Concentrated Antibody Solutions: High-Throughput Analysis Using the Diffusion Interaction Parameter

    PubMed Central

    Connolly, Brian D.; Petry, Chris; Yadav, Sandeep; Demeule, Barthélemy; Ciaccio, Natalie; Moore, Jamie M.R.; Shire, Steven J.; Gokarn, Yatin R.

    2012-01-01

    Weak protein-protein interactions are thought to modulate the viscoelastic properties of concentrated antibody solutions. Predicting the viscoelastic behavior of concentrated antibodies from their dilute solution behavior is of significant interest and remains a challenge. Here, we show that the diffusion interaction parameter (kD), a component of the osmotic second virial coefficient (B2) that is amenable to high-throughput measurement in dilute solutions, correlates well with the viscosity of concentrated monoclonal antibody (mAb) solutions. We measured the kD of 29 different mAbs (IgG1 and IgG4) in four different solvent conditions (low and high ion normality) and found a linear dependence between kD and the exponential coefficient that describes the viscosity concentration profiles (|R| ≥ 0.9). Through experimentally measured effective charge measurements, under low ion normality where the electroviscous effect can dominate, we show that the mAb solution viscosity is poorly correlated with the mAb net charge (|R| ≤ 0.6). With this large data set, our results provide compelling evidence in support of weak intermolecular interactions, in contrast to the notion that the electroviscous effect is important in governing the viscoelastic behavior of concentrated mAb solutions. Our approach is particularly applicable as a screening tool for selecting mAbs with desirable viscosity properties early during lead candidate selection. PMID:22828333

  13. Surface tension of dilute alcohol-aqueous binary fluids: n-Butanol/water, n-Pentanol/water, and n-Hexanol/water solutions

    NASA Astrophysics Data System (ADS)

    Cheng, Kuok Kong; Park, Chanwoo

    2017-07-01

    Surface tension of pure fluids, inherently decreasing with regard to temperature, creates a thermo-capillary-driven (Marangoni) flow moving away from a hot surface. It has been known that few high-carbon alcohol-aqueous solutions exhibit an opposite behavior of the surface tension increasing with regard to temperature, such that the Marangoni flow moves towards the hot surface (self-rewetting effect). We report the surface tensions of three dilute aqueous solutions of n-Butanol, n-Pentanol and n-Hexanol as self-rewetting fluids measured for ranges of alcohol concentration (within solubility limits) and fluid temperatures (25-85 °C). A maximum bubble pressure method using a leak-tight setup was used to measure the surface tension without evaporation losses of volatile components. It was found from this study that the aqueous solutions with higher-carbon alcohols exhibit a weak self-rewetting behavior, such that the surface tensions remain constant or slightly increases above about 60 °C. These results greatly differ from the previously reported results showing a strong self-rewetting behavior, which is attributed to the measurement errors associated with the evaporation losses of test fluids during open-system experiments.

  14. Calcium sulphate in ammonium sulphate solution

    USGS Publications Warehouse

    Sullivan, E.C.

    1905-01-01

    Calcium sulphate, at 25?? C., is two-thirds as soluble in dilute (o.i mol per liter) and twice as soluble in concentrated (3 mois per liter) ammonium sulphate solution as in water. The specific electric conductivity of concentrated ammonium sulphate solutions is lessened by saturating with calcium sulphate. Assuming that dissociation of ammonium sulphate takes place into 2NH4?? and SO4" and of calcium sulphate into Ca and SO4" only, and that the conductivity is a measure of such dissociation, the solubility of calcium sulphate in dilute ammonium sulphate solutions is greater than required by the mass-law. The conductivity of the dilute mixtures may be accurately calculated by means of Arrhenius' principle of isohydric solutions. In the data obtained in these calculations, the concentration of non-dissociated calcium sulphate decreases with increasing ammonium sulphate. The work as a whole is additional evidence of the fact that we are not yet in possession of all the factors necessary for reconciling the mass-law to the behavior of electrolytes. The measurements above described were made in the chemical laboratory of the University of Michigan.

  15. Thermodynamics of Dilute Solutions.

    ERIC Educational Resources Information Center

    Jancso, Gabor; Fenby, David V.

    1983-01-01

    Discusses principles and definitions related to the thermodynamics of dilute solutions. Topics considered include dilute solution, Gibbs-Duhem equation, reference systems (pure gases and gaseous mixtures, liquid mixtures, dilute solutions), real dilute solutions (focusing on solute and solvent), terminology, standard states, and reference systems.…

  16. Effect of temperature and selected sugars on dilute solution properties of two hairless canary seed starches compared with wheat starch.

    PubMed

    Heydari, Ali; Razavi, Seyed Mohammad Ali; Irani, Mahdi

    2018-03-01

    In this paper, influence of temperature (25, 35, 45 and 55°C) and sugars (sucrose and lactose) at different concentrations (0, 5, 10 and 15%) on some molecular parameters of starches from two canary seed varieties (C05041 and CDC Maria) in the dilute regime were investigated in comparison to wheat starch (WS). The results indicated that the intrinsic viscosity ([η]) values of C05041, CDC Maria and WS samples were 1.42, 1.46 and 1.70dl/g at 25°C, respectively. Intrinsic viscosity of selected starches decreased with an increase in temperature, but the effect of high temperatures were somewhat unnoticeable. By increasing the sugar concentration, intrinsic viscosity of each starch solution significantly decreased in comparison with the value determined for sugar free solution. Lactose had more pronounced effect on the intrinsic viscosity reduction of CDC Maria starch and WS at 25°C and 35°C compared with sucrose (P<0.05). But at 55°C, the effect of increasing sucrose on decreasing of [η] of CDC Maria and WS samples were more considerable. The shape factor of starch samples at 25°C were spherical, but increasing temperature from 25°C to 55°C, CSSs and WS samples took an ellipsoidal shape. The interaction between starches and solvent/cosolutes is the predominant factors determining their functional properties in food systems. One of the aspects can help to understand the characteristic of biopolymers such as starches is determination of their dilute solution properties as a function of common additives which are used in food systems. As a matter of fact, dilute solution properties can help to understand the potential applications of biopolymers in food and non-food application. Attentively, dilute solution properties would give some priceless information about molecular properties, biopolymer behavior and its interaction with copolymers. For instance, intrinsic viscosity provides deep insight into fundamental properties of the solute and its interaction with the solvent and/or cosolutes, conformation of flexible chains. There are many studies which investigated the effect of different parameters such as temperature, salts and sugars on dilute solution properties of hydrocolloids, especially gums. Regrettably, few researches scrutinized the influence of various cosolutes on dilute solution properties of starch. Then in this paper, we studied the dilute solution properties of starches from two canary seed varieties (C05041 and CDC Maria), as a new potential source of starch, (CSSs), in comparison to wheat starch at different experimental conditions (temperatures and sugars at different concentrations) in order to shed light on its behavior in real system in comparison to wheat starch. Because of the unique properties of wheat starch, comparison of canary seed starch with wheat starch in dilute regime can help to having better vision of this new starch source. Overall, the intrinsic viscosity, coil dimensions (R coil and V coil ), swollen specific volume, shape function, and hydration parameter of selected starches were determined affected by temperature and sugars concentration treatments. The importance of these results will be cleared when taking into account the influence of crucial additives generally used in food systems, for instance, different sugars and/or frequent processing parameters such as temperature on rheological and functional properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Thermo-Responsive Complexes of c-Myc Antisense Oligonucleotide with Block Copolymer of Poly(OEGMA) and Quaternized Poly(4-Vinylpyridine).

    PubMed

    Topuzogullari, Murat; Elalmis, Yeliz Basaran; Isoglu, Sevil Dincer

    2017-04-01

    Solution behavior of thermo-responsive polymers and their complexes with biological macromolecules may be affected by environmental conditions, such as the concentration of macromolecular components, pH, ion concentration, etc. Therefore, a thermo-responsive polymer and its complexes should be characterized in detail to observe their responses against possible environments under physiological conditions before biological applications. To briefly indicate this important issue, thermo-responsive block copolymer of quaternized poly(4-vinylpyridine) and poly(oligoethyleneglycol methyl ether methacrylate) as a potential nonviral vector has been synthesized. Polyelectrolyte complexes of this copolymer with the antisense oligonucleotide of c-Myc oncogene are also thermo-responsive but, have lower LCST (lower critical solution temperature) values compared to individual copolymer. LCST values of complexes decrease with molar ratio of macromolecular components and presence of salt. Dilution of solutions also affects solution behavior of complexes and causes a significant decrease in size and an increase in LCST, which indicates possible effects of severe dilutions in the blood stream. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Olfactory Impact of Higher Alcohols on Red Wine Fruity Ester Aroma Expression in Model Solution.

    PubMed

    Cameleyre, Margaux; Lytra, Georgia; Tempere, Sophie; Barbe, Jean-Christophe

    2015-11-11

    This study focused on the impact of five higher alcohols on the perception of fruity aroma in red wines. Various aromatic reconstitutions were prepared, consisting of 13 ethyl esters and acetates and 5 higher alcohols, all at the average concentrations found in red wine. These aromatic reconstitutions were prepared in several matrices. Sensory analysis revealed the interesting behavior of certain compounds among the five higher alcohols following their individual addition or omission. The "olfactory threshold" of the fruity pool was evaluated in several matrices: dilute alcohol solution, dilute alcohol solution containing 3-methylbutan-1-ol or butan-1-ol individually, and dilute alcohol solution containing the mixture of five higher alcohols, blended together at various concentrations. The presence of 3-methylbutan-1-ol or butan-1-ol alone led to a significant decrease in the "olfactory threshold" of the fruity reconstitution, whereas the mixture of alcohols raised the olfactory threshold. Sensory profiles highlighted changes in the perception of fruity nuances in the presence of the mixture of higher alcohols, with specific perceptive interactions, including a relevant masking effect on fresh- and jammy-fruit notes of the fruity mixture in both dilute alcohol solution and dearomatized red wine matrices. When either 3-methylbutan-1-ol or butan-1-ol was added to the fruity reconstitution in dilute alcohol solution, an enhancement of butyric notes was reported with 3-methylbutan-1-ol and fresh- and jammy-fruit with butan-1-ol. This study, the first to focus on the impact of higher alcohols on fruity aromatic expression, revealed that these compounds participate, both quantitatively and qualitatively, in masking fruity aroma perception in a model fruity wine mixture.

  19. Consideration of some dilute-solution phenomena based on an expression for the Gibbs free energy

    NASA Astrophysics Data System (ADS)

    Jonah, D. A.

    1986-07-01

    Rigorous expressions based on the Lennard-Jones (6 12) potential, are presented for the Gibbs and Helmholtz free energy of a dilute mixture. These expressions give the free energy of the mixture in terms of the thermodynamic properties of the pure solvent, thereby providing a convenient means of correlating dilute mixture behavior with that of the pure solvent. Expressions for the following dilute binary solution properties are derived: Henry's constant, limiting activity coefficients with their derivatives, solid solubilities in supercritical gases, and mixed second virial coefficients. The Henry's constant expression suggests a linear temperature dependence; application to solubility data for various gases in methane and water shows a good agreement between theory and experiment. In the thermodynamic modeling of supercritical fluid extraction, we have demonstrated how to predict new solubility-pressure isotherms from a given isotherm, with encouraging results. The mixed second virial coefficient expression has also been applied to experimental data; the agreement with theory is good.

  20. Visualizing phase transition behavior of dilute stimuli responsive polymer solutions via Mueller matrix polarimetry.

    PubMed

    Narayanan, Amal; Chandel, Shubham; Ghosh, Nirmalya; De, Priyadarsi

    2015-09-15

    Probing volume phase transition behavior of superdiluted polymer solutions both micro- and macroscopically still persists as an outstanding challenge. In this regard, we have explored 4 × 4 spectral Mueller matrix measurement and its inverse analysis for excavating the microarchitectural facts about stimuli responsiveness of "smart" polymers. Phase separation behavior of thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) and pH responsive poly(N,N-(dimethylamino)ethyl methacrylate) (PDMAEMA) and their copolymers were analyzed in terms of Mueller matrix derived polarization parameters, namely, depolarization (Δ), diattenuation (d), and linear retardance (δ). The Δ, d, and δ parameters provided useful information on both macro- and microstructural alterations during the phase separation. Additionally, the two step action ((i) breakage of polymer-water hydrogen bonding and (ii) polymer-polymer aggregation) at the molecular microenvironment during the cloud point generation was successfully probed via these parameters. It is demonstrated that, in comparison to the present techniques available for assessing the hydrophobic-hydrophilic switch over of simple stimuli-responsive polymers, Mueller matrix polarimetry offers an important advantage requiring a few hundred times dilute polymer solution (0.01 mg/mL, 1.1-1.4 μM) at a low-volume format.

  1. Effects of dilute substitutional solutes on interstitial carbon in α-Fe: Interactions and associated carbon diffusion from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Liu, Peitao; Xing, Weiwei; Cheng, Xiyue; Li, Dianzhong; Li, Yiyi; Chen, Xing-Qiu

    2014-07-01

    By means of first-principles calculations coupled with the kinetic Monte Carlo simulations, we have systematically investigated the effects of dilute substitutional solutes on the behaviors of carbon in α-Fe. Our results uncover the following. (i) Without the Fe vacancy the interactions between most solutes and carbon are repulsive due to the strain relief, whereas Mn has a weak attractive interaction with its nearest-neighbor carbon due to the local ferromagnetic coupling effect. (ii) The presence of the Fe vacancy results in attractive interactions of all the solutes with carbon. In particular, the Mn-vacancy pair shows an exceptionally large binding energy of -0.81 eV with carbon. (iii) The alloying addition significantly impacts the atomic-scale concentration distributions and chemical potential of carbon in the Fe matrix. Among them, Mn and Cr increase the carbon chemical potential, whereas Al and Si reduce it. (iv) Within the dilute scale of the alloying solution, the solute concentration- and temperature-dependent carbon diffusivities demonstrate that Mn has a little impact on the carbon diffusion, whereas Cr (Al or Si) remarkably retards the carbon diffusion. Our results provide a certain implication for better understanding the experimental observations related with the carbon solubility limit, carbon microsegregation, and carbide precipitations in the ferritic steels.

  2. Dilution Confusion: Conventions for Defining a Dilution

    ERIC Educational Resources Information Center

    Fishel, Laurence A.

    2010-01-01

    Two conventions for preparing dilutions are used in clinical laboratories. The first convention defines an "a:b" dilution as "a" volumes of solution A plus "b" volumes of solution B. The second convention defines an "a:b" dilution as "a" volumes of solution A diluted into a final volume of "b". Use of the incorrect dilution convention could affect…

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Zhange; Higa, Kenneth; Han, Kee Sung

    The presence of lithium hexafluorophosphate (LiPF 6) ion pairs in carbonate-based electrolyte solutions is widely accepted in the field of battery electrolyte research and is expected to affect solution transport properties. No existing techniques are capable of directly quantifying salt dissociation in these solutions. Previous publications by others have provided estimates of dissociation degrees using dilute solution theory and pulsed field gradient nuclear magnetic resonance spectroscopy (PFG-NMR) measurements of self-diffusivity. However, the behavior of a concentrated electrolyte solution can deviate significantly from dilute solution theory predictions. This paper, for the first time, instead uses Onsager–Stefan–Maxwell concentrated solution theory and themore » generalized Darken relation with PFG-NMR measurements to quantify the degrees of dissociation in electrolyte solutions (LiPF 6 in ethylene carbonate/diethyl carbonate, 1:1 by weight). At LiPF 6 concentrations ranging from 0.1 M to 1.5 M, the salt dissociation degree is found to range from 61% to 37%. Finally, transport properties are then calculated through concentrated solution theory with corrections for these significant levels of ion pairing.« less

  4. Evaluating Transport Properties and Ionic Dissociation of LiPF 6 in Concentrated Electrolyte

    DOE PAGES

    Feng, Zhange; Higa, Kenneth; Han, Kee Sung; ...

    2017-08-17

    The presence of lithium hexafluorophosphate (LiPF 6) ion pairs in carbonate-based electrolyte solutions is widely accepted in the field of battery electrolyte research and is expected to affect solution transport properties. No existing techniques are capable of directly quantifying salt dissociation in these solutions. Previous publications by others have provided estimates of dissociation degrees using dilute solution theory and pulsed field gradient nuclear magnetic resonance spectroscopy (PFG-NMR) measurements of self-diffusivity. However, the behavior of a concentrated electrolyte solution can deviate significantly from dilute solution theory predictions. This paper, for the first time, instead uses Onsager–Stefan–Maxwell concentrated solution theory and themore » generalized Darken relation with PFG-NMR measurements to quantify the degrees of dissociation in electrolyte solutions (LiPF 6 in ethylene carbonate/diethyl carbonate, 1:1 by weight). At LiPF 6 concentrations ranging from 0.1 M to 1.5 M, the salt dissociation degree is found to range from 61% to 37%. Finally, transport properties are then calculated through concentrated solution theory with corrections for these significant levels of ion pairing.« less

  5. Evaluating Transport Properties and Ionic Dissociation of LiPF 6 in Concentrated Electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Zhange; Higa, Kenneth; Han, Kee Sung

    2017-01-01

    The presence of lithium hexafluorophosphate (LiPF6) ion pairs in carbonate-based electrolyte solutions is widely accepted in the field of battery electrolyte research and is expected to affect solution transport properties. No existing techniques are capable of directly quantifying salt dissociation in these solutions. Previous publications by others have provided estimates of dissociation degrees using dilute solution theory and pulsed field gradient nuclear magnetic resonance spectroscopy (PFG-NMR) measurements of self-diffusivity. However, the behavior of a concentrated electrolyte solution can deviate significantly from dilute solution theory predictions. This work, for the first time, instead uses Onsager–Stefan–Maxwell concentrated solution theory and the generalized.more » Darken relation with PFG-NMR measurements to quantify the degrees of dissociation in electrolyte solutions (LiPF6 in ethylene carbonate/diethyl carbonate, 1:1 by weight). At LiPF6 concentrations ranging from 0.1 M to 1.5 M, the salt dissociation degree is found to range from 61% to 37%. Transport properties are then calculated through concentrated solution theory with corrections for these significant levels of ion pairing.« less

  6. Picosecond coherent anti-Stokes Raman scattering (CARS) study of vibrational dephasing of carbon disulfide and benzene in solution

    NASA Technical Reports Server (NTRS)

    Perry, Joseph W.; Woodward, Anne M.; Stephenson, John C.

    1986-01-01

    The vibrational dephasing of the 656/cm mode (nu1, a1g) of CS2 and the 991/cm mode (nu2, a1g) of benzene have been studied as a function of concentration in mixtures with a number of solvents using a ps time-resolved CARS technique. This technique employs two tunable synchronously-pumped mode-locked dye lasers in a stimulated Raman pump, coherent anti-Stokes Raman probe time-resolved experiment. Results are obtained for CS2 in carbon tetrachloride, benzene, nitrobenzene, and ethanol and for benzene nu2 in CS2. The dephasing rates of CS2 nu1 increase on dilution with the polar solvents and decrease or remain constant on dilution with the nonpolar solvents. The CS2/benzene solutions show a contrasting behavior, with the CS2 nu1 dephasing rate being nearly independent of concentration whereas the benzene nu2 dephasing rate decreases on dilution. These results are compared to theoretical models for vibrational dephasing of polyatomic molecules in solution.

  7. Transient Effects in Planar Solidification of Dilute Binary Alloys

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Volz, Martin P.

    2008-01-01

    The initial transient during planar solidification of dilute binary alloys is studied in the framework of the boundary integral method that leads to the non-linear Volterra integral governing equation. An analytical solution of this equation is obtained for the case of a constant growth rate which constitutes the well-known Tiller's formula for the solute transient. The more physically relevant, constant ramping down temperature case has been studied both numerically and analytically. In particular, an asymptotic analytical solution is obtained for the initial transient behavior. A numerical technique to solve the non-linear Volterra equation is developed and the solution is obtained for a family of the governing parameters. For the rapid solidification condition, growth rate spikes have been observed even for the infinite kinetics model. When recirculating fluid flow is included into the analysis, the spike feature is dramatically diminished. Finally, we have investigated planar solidification with a fluctuating temperature field as a possible mechanism for frequently observed solute trapping bands.

  8. Transport properties of dilute α -Fe (X ) solid solutions (X = C, N, O)

    NASA Astrophysics Data System (ADS)

    Schuler, Thomas; Nastar, Maylise

    2016-06-01

    We extend the self-consistent mean field (SCMF) method to the calculation of the Onsager matrix of Fe-based interstitial solid solutions. Both interstitial jumps and substitutional atom-vacancy exchanges are accounted for. A general procedure is introduced to split the Onsager matrix of a dilute solid solution into intrinsic cluster Onsager matrices, and extract from them flux-coupling ratios, mobilities, and association-dissociation rates for each cluster. The formalism is applied to vacancy-interstitial solute pairs in α -Fe (V X pairs, X = C, N, O), with ab initio based thermodynamic and kinetic parameters. Convergence of the cluster mobility contribution gives a controlled estimation of the cluster definition distance, taking into account both its thermodynamic and kinetic properties. Then, the flux-coupling behavior of each V X pair is discussed, and qualitative understanding is achieved from the comparison between various contributions to the Onsager matrix. Also, the effect of low-activation energy second-nearest-neighbor interstitial solute jumps around a vacancy on these results is addressed.

  9. Concentration-discharge relationships for variably sized streams in Florida: Patterns and drivers in long-term catchment studies

    NASA Astrophysics Data System (ADS)

    Diamond, J.; Cohen, M.

    2012-12-01

    Catchment-scale analyses can provide important insight into the processes governing solute sources, transport and storage. Understanding solute dynamics is vital for water management both for accurate predictions of chemical fluxes as well as ecosystem responses to them. This project synthesized long-term (>15 years) hydrochemical data from 80 variably sized (101-105 m2) watersheds in Florida. Our goal was to evaluate scaling effects on flow-solute relationships, and determine the factors that control observed inter-catchment variation. We obtained long term records of a variety of chemical parameters include color, nutrients (N and P), and geogenic solutes (Ca, Si, Mg, Na, Cl) from stations where chemistry and flow data were matched. Catchment attributes (land use, terrain, surface geology) were obtained for each stream as potential covariates. Concentration-discharge relationships were modeled as power functions, the exponents (b) of which were categorized into three end-member scenarios: (1) b>0, or chemodynamic conditions, where increased discharge increases concentration, (2) b=0, or chemostatic conditions, where concentration is independent of discharge, and (3) b<0, or dilution conditions, where increased discharge decreases concentrations. Color was strongly chemodynamic, while geogenic solutes tended to be chemostatic;nutrient-flow relationships varied substantially (from dilution to chemodynamic) suggesting important ancillary controls. To assess between-site variability, power function exponents were compared against land use and catchment area. These results indicate that watersheds dominated by urban land use exhibit stronger dilution effects for most solutes while watersheds dominated by agricultural land use were generally chemostatic particularly for nutrients. This synthesis approach to understanding controls on observed concentration-discharge relationships is crucial to understanding the dynamics and early-warning indicators of anthropogenically-induced transition from dilution to chemostatic behavior.

  10. Dielectric and electrical studies of PVC-PPy blends in dilute solution of THF

    NASA Astrophysics Data System (ADS)

    Sharma, Deepika; Tripathi, Deepti

    2018-05-01

    An influence of adding Polypyrrole (PPy) which is an intrinsically conducting polymer (ICP), on the dielectric dispersion behavior of Polyvinyl chloride (PVC) in dilute solution of Tetrahydrofuran (THF) at low frequency is reported. The blends of PVC with PPy forms colloidal suspension in THF. The dielectric dispersion study of PVC-PPy blends in THF has been carried out in the frequency range of 20 Hz to 2 MHz at temperature of 303K. The effect of increasing PPy concentration on dielectric and electrical parameters such as complex dielectric function [ɛ*(ω)], loss tangent [tan δ], complex electric modulus [M*(ω)], ac conductivity [σac], and complex impedance [Z*(ω)] of PVC - PPy blends in THF solution were studied. The electrode polarization and ionic conduction appears to have dominant influence on the complex dielectric constant in the low frequency region. The relaxation time values corresponding to these two phenomena are also reported.

  11. Solution behavior of metoclopramide in aqueous-alcoholic solutions at 30°C

    NASA Astrophysics Data System (ADS)

    Deosarkar, S. D.; Sawale, R. T.; Tawde, P. D.; Kalyankar, T. M.

    2016-07-01

    Densities (ρ) and refractive indices ( n D) of solutions of antiemetic drug metoclopramide (4-amino-5-chloro- N-(2-(diethylamino)ethyl)-2-methoxybenzamide hydrochloride hydrate) in methanolwater and ethanol-water mixtures of different compositions were measured at 30°C. Apparent molar volume (φv) of the drug was calculated from density data and partial molar volumes (φ v 0 ) were determined from Massons relation. Concentration dependence of nD has been studied to determine refractive indices of solution at infinite dilution ( n D 0 ). Results have been interpreted in terms of solute-solvent interactions.

  12. Effect of solution non-ideality on erythrocyte volume regulation.

    PubMed

    Levin, R L; Cravalho, E G; Huggins, C E

    1977-03-01

    A non-ideal, hydrated, non-dilute pseudo-binary salt-protein-water solution model of the erythrocyte intracellular solution is presented to describe the osmotic behavior of human erythrocytes. Existing experimental activity data for salts and proteins in aqueous solutions are used to formulate van Laar type expressions for the solvent and solute activity coefficients. Reasonable estimates can therefore be made of the non-ideality of the erythrocyte intracellular solution over a wide range of osmolalities. Solution non-ideality is shown to affect significantly the degree of solute polarization within the erythrocyte intracellular solution during freezing. However, the non-ideality has very little effect upon the amount of water retained within erythrocytes cooled at sub-zero temperatures.

  13. Rheological behaviors of an exopolysaccharide from fermentation medium of a Cordyceps sinensis fungus (Cs-HK1).

    PubMed

    Sun, Fengyuan; Huang, Qilin; Wu, Jianyong

    2014-12-19

    The rheological behaviors of an exopolysaccharide (EPS) from a Cordyceps sinensis fungus fermentation were investigated. The intrinsic viscosity of 1986 ± 55 mL/g indicated an extended and rigid chain for EPS. Shear-thinning behavior was observed and became apparent with increasing concentration. According to cross model, two critical transition concentrations (c(*) and c(**)) from dilute solution to semidilute and then to concentrated domain were 0.45 and 6.14 mg/mL. Flow activation energy was calculated by Arrhenius equation and decreased with increasing concentration, indicating a lower sensitivity to temperature. From dynamic frequency sweep, EPS system was classified to three regions including dilution solution (1.25mg/mL), entanglement network (3.75 and 5.00 mg/mL) and weak gel (≥ 7.50 mg/mL). Notably, the increase in η(*) at high frequencies was attributed to a large flow resistance depended on the rigid chain of EPS. Based on Winter-Chambon criterion, EPS formed gel at 2.6 mg/mL (cgel) and showed typical weak gel from temperature ramp and repetitive strain sweep. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Flory-type theories of polymer chains under different external stimuli

    NASA Astrophysics Data System (ADS)

    Budkov, Yu A.; Kiselev, M. G.

    2018-01-01

    In this Review, we present a critical analysis of various applications of the Flory-type theories to a theoretical description of the conformational behavior of single polymer chains in dilute polymer solutions under a few external stimuli. Different theoretical models of flexible polymer chains in the supercritical fluid are discussed and analysed. Different points of view on the conformational behavior of the polymer chain near the liquid-gas transition critical point of the solvent are presented. A theoretical description of the co-solvent-induced coil-globule transitions within the implicit-solvent-explicit-co-solvent models is discussed. Several explicit-solvent-explicit-co-solvent theoretical models of the coil-to-globule-to-coil transition of the polymer chain in a mixture of good solvents (co-nonsolvency) are analysed and compared with each other. Finally, a new theoretical model of the conformational behavior of the dielectric polymer chain under the external constant electric field in the dilute polymer solution with an explicit account for the many-body dipole correlations is discussed. The polymer chain collapse induced by many-body dipole correlations of monomers in the context of statistical thermodynamics of dielectric polymers is analysed.

  15. Flexible polyelectrolyte chain in a strong electrolyte solution: Insight into equilibrium properties and force-extension behavior from mesoscale simulation

    NASA Astrophysics Data System (ADS)

    Malekzadeh Moghani, Mahdy; Khomami, Bamin

    2016-01-01

    Macromolecules with ionizable groups are ubiquitous in biological and synthetic systems. Due to the complex interaction between chain and electrostatic decorrelation lengths, both equilibrium properties and micro-mechanical response of dilute solutions of polyelectrolytes (PEs) are more complex than their neutral counterparts. In this work, the bead-rod micromechanical description of a chain is used to perform hi-fidelity Brownian dynamics simulation of dilute PE solutions to ascertain the self-similar equilibrium behavior of PE chains with various linear charge densities, scaling of the Kuhn step length (lE) with salt concentration cs and the force-extension behavior of the PE chain. In accord with earlier theoretical predictions, our results indicate that for a chain with n Kuhn segments, lE ˜ cs-0.5 as linear charge density approaches 1/n. Moreover, the constant force ensemble simulation results accurately predict the initial non-linear force-extension region of PE chain recently measured via single chain experiments. Finally, inspired by Cohen's extraction of Warner's force law from the inverse Langevin force law, a novel numerical scheme is developed to extract a new elastic force law for real chains from our discrete set of force-extension data similar to Padè expansion, which accurately depicts the initial non-linear region where the total Kuhn length is less than the thermal screening length.

  16. Flexible polyelectrolyte chain in a strong electrolyte solution: Insight into equilibrium properties and force-extension behavior from mesoscale simulation.

    PubMed

    Malekzadeh Moghani, Mahdy; Khomami, Bamin

    2016-01-14

    Macromolecules with ionizable groups are ubiquitous in biological and synthetic systems. Due to the complex interaction between chain and electrostatic decorrelation lengths, both equilibrium properties and micro-mechanical response of dilute solutions of polyelectrolytes (PEs) are more complex than their neutral counterparts. In this work, the bead-rod micromechanical description of a chain is used to perform hi-fidelity Brownian dynamics simulation of dilute PE solutions to ascertain the self-similar equilibrium behavior of PE chains with various linear charge densities, scaling of the Kuhn step length (lE) with salt concentration cs and the force-extension behavior of the PE chain. In accord with earlier theoretical predictions, our results indicate that for a chain with n Kuhn segments, lE ∼ cs (-0.5) as linear charge density approaches 1/n. Moreover, the constant force ensemble simulation results accurately predict the initial non-linear force-extension region of PE chain recently measured via single chain experiments. Finally, inspired by Cohen's extraction of Warner's force law from the inverse Langevin force law, a novel numerical scheme is developed to extract a new elastic force law for real chains from our discrete set of force-extension data similar to Padè expansion, which accurately depicts the initial non-linear region where the total Kuhn length is less than the thermal screening length.

  17. Single polymer dynamics in semi-dilute unentangled and entangled solutions: from molecular conformation to normal stress

    NASA Astrophysics Data System (ADS)

    Schroeder, Charles

    Semi-dilute polymer solutions are encountered in a wide array of applications such as advanced 3D printing technologies. Semi-dilute solutions are characterized by large fluctuations in concentration, such that hydrodynamic interactions, excluded volume interactions, and transient chain entanglements may be important, which greatly complicates analytical modeling and theoretical treatment. Despite recent progress, we still lack a complete molecular-level understanding of polymer dynamics in these systems. In this talk, I will discuss three recent projects in my group to study semi-dilute solutions that focus on single molecule studies of linear and ring polymers and a new method to measure normal stresses in microfluidic devices based on the Stokes trap. In the first effort, we use single polymer techniques to investigate the dynamics of semi-dilute unentangled and semi-dilute entangled DNA solutions in extensional flow, including polymer relaxation from high stretch, transient stretching dynamics in step-strain experiments, and steady-state stretching in flow. In the semi-dilute unentangled regime, our results show a power-law scaling of the longest polymer relaxation time that is consistent with scaling arguments based on the double cross-over regime. Upon increasing concentration, we observe a transition region in dynamics to the entangled regime. We also studied the transient and steady-state stretching dynamics in extensional flow using the Stokes trap, and our results show a decrease in transient polymer stretch and a milder coil-to-stretch transition for semi-dilute polymer solutions compared to dilute solutions, which is interpreted in the context of a critical Weissenberg number Wi at the coil-to-stretch transition. Interestingly, we observe a unique set of polymer conformations in semi-dilute unentangled solutions that are highly suggestive of transient topological entanglements in solutions that are nominally unentangled at equilibrium. Taken together, these results suggest that the transient stretching pathways in semi-dilute solution extensional flows are qualitatively different than for both dilute solutions and for semi-dilute solutions in shear flow. In a second effort, we studied the dynamics of ring polymers in background solutions of semi-dilute linear polymers. Interestingly, we observe strikingly large fluctuations in steady-state polymer extension for ring polymers in flow, which occurs due to the interplay between polymer topology and concentration leading to chain `threading' in flow. In a third effort, we developed a new microfluidic method to measure normal stress and extensional viscosity that can be loosely described as passive yet non-linear microrheology. In particular, we incorporated 3-D particle imaging velocimetry (PIV) with the Stokes trap to study extensional flow-induced particle migration in semi-dilute polymer solutions. Experimental results are analyzed using the framework of a second-order-fluid model, which allows for measurement of normal stress and extensional viscosity in semi-dilute polymer solutions, all of which is a first-of-its-kind demonstration. Microfluidic measurements of extensional viscosity are directly compared to the dripping-onto-substrate or DOS method, and good agreement is generally observed. Overall, our work aims to provide a molecular-level understanding of the role of polymer topology and concentration on bulk rheological properties by using single polymer techniques.

  18. Conversion of depleted uranium hexafluoride to a solid uranium compound

    DOEpatents

    Rothman, Alan B.; Graczyk, Donald G.; Essling, Alice M.; Horwitz, E. Philip

    2001-01-01

    A process for converting UF.sub.6 to a solid uranium compound such as UO.sub.2 and CaF. The UF.sub.6 vapor form is contacted with an aqueous solution of NH.sub.4 OH at a pH greater than 7 to precipitate at least some solid uranium values as a solid leaving an aqueous solution containing NH.sub.4 OH and NH.sub.4 F and remaining uranium values. The solid uranium values are separated from the aqueous solution of NH.sub.4 OH and NH.sub.4 F and remaining uranium values which is then diluted with additional water precipitating more uranium values as a solid leaving trace quantities of uranium in a dilute aqueous solution. The dilute aqueous solution is contacted with an ion-exchange resin to remove substantially all the uranium values from the dilute aqueous solution. The dilute solution being contacted with Ca(OH).sub.2 to precipitate CaF.sub.2 leaving dilute NH.sub.4 OH.

  19. Homogenization Theory for the Prediction of Obstructed Solute Diffusivity in Macromolecular Solutions.

    PubMed

    Donovan, Preston; Chehreghanianzabi, Yasaman; Rathinam, Muruhan; Zustiak, Silviya Petrova

    2016-01-01

    The study of diffusion in macromolecular solutions is important in many biomedical applications such as separations, drug delivery, and cell encapsulation, and key for many biological processes such as protein assembly and interstitial transport. Not surprisingly, multiple models for the a-priori prediction of diffusion in macromolecular environments have been proposed. However, most models include parameters that are not readily measurable, are specific to the polymer-solute-solvent system, or are fitted and do not have a physical meaning. Here, for the first time, we develop a homogenization theory framework for the prediction of effective solute diffusivity in macromolecular environments based on physical parameters that are easily measurable and not specific to the macromolecule-solute-solvent system. Homogenization theory is useful for situations where knowledge of fine-scale parameters is used to predict bulk system behavior. As a first approximation, we focus on a model where the solute is subjected to obstructed diffusion via stationary spherical obstacles. We find that the homogenization theory results agree well with computationally more expensive Monte Carlo simulations. Moreover, the homogenization theory agrees with effective diffusivities of a solute in dilute and semi-dilute polymer solutions measured using fluorescence correlation spectroscopy. Lastly, we provide a mathematical formula for the effective diffusivity in terms of a non-dimensional and easily measurable geometric system parameter.

  20. INORGANIC ELECTROLYTES IN ANHYDROUS ACETONITRILE. Technical Report No. 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janz, G.J.; Marcinkowsky, A.E.

    Research concerned with the properties of inorganic electrolytes in anhydrous acetonitrile is reported. Infor mation related to ionic interactions, solute-solvent interactions and solute-solute interactions is emphasized. The work is differentiated into phases including that pertaining to the region of dilute concentration in which Kl was studied, the region of high concentration in which. AgNO/sub 3/ was studied, and systems which exhibit pronounced complexion behavior for which the cobaltous halide salts were investigated. Discussions of procedures, and result interpretation are included with data. (J.R.D.)

  1. Polymer relaxation and stretching dynamics in semi-dilute DNA solutions: a single molecule study

    NASA Astrophysics Data System (ADS)

    Hsiao, Kai-Wen; Brockman, Christopher; Schroeder, Charles

    2015-03-01

    In this work, we study polymer relaxation and stretching dynamics in semi-dilute DNA solutions using single molecule techniques. Using this approach, we uncover a unique scaling relation for longest polymer relaxation time that falls in the crossover regime described by semi-flexible polymer solutions, which is distinct from truly flexible polymer chains. In addition, we performed a series of step-strain experiments on single polymers in semi-dilute solutions in planar extensional flow using an automated microfluidic trap. In this way, we are able to precisely control the flow strength and the amount of strain applied to single polymer chains, thereby enabling direct observation of the full stretching and relaxation process in semi-dilute solutions during transient start-up and flow cessation. Interestingly, we observe polymer individualism in the conformation of single chains in semi-dilute solutions, which to our knowledge has not yet been observed. In addition, we observe the relaxation data can be explained by a multi-exponential decay process after flow cessation in semi-dilute solutions. Overall, our work reports key advance in non-dilute polymer systems from a molecular perspective via direct observation of dynamics in strong flows. DOW fellowship.

  2. Monte Carlo and mean-field studies of phase evolution in concentrated surfactant solutions

    NASA Astrophysics Data System (ADS)

    Bohbot, Yardena; Ben-Shaul, Avinoam; Granek, Rony; Gelbart, William M.

    1995-11-01

    A two-dimensional lattice model, originally introduced by Granek et al. [J. Chem. Phys. 101, 4331 (1994)], is used to demonstrate the intricate coupling between the intramicellar interactions that determine the optimal aggregation geometry of surfactant molecules in dilute solution, and the intermicellar interactions that govern the phase behavior at higher concentrations. Three very different scenarios of self-assembly and phase evolution are analyzed in detail, based on Monte Carlo studies and theoretical interpretations involving mean-field, Landau-Ginzburg, Bethe-Peierls, and virial expansion schemes. The basic particles in the model are ``unit micelles'' which, due to spontaneous self-assembly or because of excluded area interactions, can fuse to form larger aggregates. These aggregates are envisaged as flat micelles composed of a bilayerlike body surrounded by a curved semitoroidal rim. The system's Hamiltonian involves one- through four-body potentials between the unit micelles, which account for their tendency to form aggregates of different shapes, e.g., elongated vs disklike micelles. Equivalently, the configurational energy of the system is a sum of micellar self-energies involving the packing free energies of the constituent molecules in the bilayer body and in rim segments of different local curvature. The rim energy is a sum of a line tension term and a 1D curvature energy which depends on the rim spontaneous curvature and bending rigidity. Different combinations of these molecular parameters imply different optimal packing geometries and hence different self-assembly and phase behaviors. The emphasis in this paper is on systems of ``curvature loving'' amphiphiles which, in our model, are characterized by negative line tension. The three systems studied are: (i) A dilute solution of stable disklike micelles which, upon increasing the concentration, undergoes a first-order phase transition to a continuous bilayer with isolated hole defects. An intermediate modulated ``checkerboard'' phase appears under certain conditions at low temperatures. (ii) A system of unit micelles which in dilute solution tend to associate into linear micelles. These micelles are rodlike at low temperatures, becoming increasingly more flexible as the temperature increases. Upon increasing the concentration the micelles grow and undergo (in 2D) a continuous transition into nematic and ``stripe'' phases of long rods. At still higher concentrations the micellar stripes fuse into continuous sheets with line defects. (iii) A system in which, already in dilute solution, the micelles favor the formation of branched aggregates, analogous to the branched cylindrical micelles recently observed in certain surfactant solutions. As the concentration increases the micelles associate into networks (``gels'') composed of a mesh of linear micelles linked by ``T-like'' intermicellar junctions. The network may span the entire system or phase separate and coexist with a dilute micellar phase, depending on the details of the molecular packing parameters.

  3. Concentrated Solutions of Single-Chain Nanoparticles: A Simple Model for Intrinsically Disordered Proteins under Crowding Conditions.

    PubMed

    Moreno, Angel J; Lo Verso, Federica; Arbe, Arantxa; Pomposo, José A; Colmenero, Juan

    2016-03-03

    By means of large-scale computer simulations and small-angle neutron scattering (SANS), we investigate solutions of single-chain nanoparticles (SCNPs), covering the whole concentration range from infinite dilution to melt density. The analysis of the conformational properties of the SCNPs reveals that these synthetic nano-objects share basic ingredients with intrinsically disordered proteins (IDPs), as topological polydispersity, generally sparse conformations, and locally compact domains. We investigate the role of the architecture of the SCNPs in their collapse behavior under macromolecular crowding. Unlike in the case of linear macromolecules, which experience the usual transition from self-avoiding to Gaussian random-walk conformations, crowding leads to collapsed conformations of SCNPs resembling those of crumpled globules. This behavior is already found at volume fractions (about 30%) that are characteristic of crowding in cellular environments. The simulation results are confirmed by the SANS experiments. Our results for SCNPs--a model system free of specific interactions--propose a general scenario for the effect of steric crowding on IDPs: collapse from sparse conformations at high dilution to crumpled globular conformations in cell environments.

  4. Dilution and Mixing in transient velocity fields: a first-order analysis

    NASA Astrophysics Data System (ADS)

    Di Dato, Mariaines; de Barros, Felipe, P. J.; Fiori, Aldo; Bellin, Alberto

    2017-04-01

    An appealing remediation technique is in situ oxidation, which effectiveness is hampered by difficulties in obtaining good mixing of the injected oxidant with the contaminant, particularly when the contaminant plume is contained and therefore its deformation is physically constrained. Under such conditions (i.e. containment), mixing may be augmented by inducing temporal fluctuations of the velocity field. The temporal variability of the flow field may increase the deformation of the plume such that diffusive mass flux becomes more effective. A transient periodic velocity field can be obtained by an engineered sequence of injections and extractions from wells, which may serve also as a hydraulic barrier to confine the plume. Assessing the effectiveness of periodic flows to maximize solute mixing is a difficult task given the need to use a 3D setup and the large number of possible flow configurations that should be analyzed in order to identify the optimal one. This is the typical situation in which analytical solutions, though approximated, may assist modelers in screening possible alternative flow configurations such that solute dilution is maximized. To quantify dilution (i.e. a precondition that enables reactive mixing) we utilize the concept of the dilution index [1]. In this presentation, the periodic flow takes place in an aquifer with spatially variable hydraulic conductivity field which is modeled as a Stationary Spatial Random Function. We developed a novel first-order analytical solution of the dilution index under the hypothesis that the flow can be approximated as a sequence of steady state configurations with the mean velocity changing with time in intensity and direction. This is equivalent to assume that the characteristic time of the transient behavior is small compared to the period characterizing the change in time of the mean velocity. A few closed paths have been analyzed quantifying their effectiveness in enhancing dilution and thereby mixing between the resident contaminant and an oxidant. In particular, we considered three different flow configurations: (1) a "circular" pattern, in which the vector of the mean velocity rotates at a constant celerity; (2) a "shake" pattern, in which the velocity has a constant magnitude and changes direction alternatively leading to a "back and forth" type of movement and finally (3) a more general "shake and rotate" pattern, which combines the previous two configurations. The new analytical solution shows that dilution is affected by the configuration of the periodic mean flow. Results show that the dilution index increases when the rotation-shake configuration is adopted. In addition, the dilution index is augmented with the oscillation amplitude of the shake component. This analysis is useful to identify optimal flow configurations that may be approximately reproduced in the field and which efficiency may be checked more accurately by numerical simulations, thereby alleviating the computational burden by efficiently screening among alternative configurations. References [1] Kitanidis, P. K. (1994), The concept of the Dilution Index, Water Resour. Res., 30(7), 2011-2026, doi:10.1029/94WR00762.

  5. The wet solidus of silica: predictions from the scaled particle theory and polarized continuum model.

    PubMed

    Ottonello, G; Richet, P; Vetuschi Zuccolini, M

    2015-02-07

    We present an application of the Scaling Particle Theory (SPT) coupled with an ab initio assessment of the electronic, dispersive, and repulsive energy terms based on the Polarized Continuum Model (PCM) aimed at reproducing the observed solubility behavior of OH2 over the entire compositional range from pure molten silica to pure water and wide pressure and temperature regimes. It is shown that the solution energy is dominated by cavitation terms, mainly entropic in nature, which cause a large negative solution entropy and a consequent marked increase of gas phase fugacity with increasing temperatures. Besides, the solution enthalpy is negative and dominated by electrostatic terms which depict a pseudopotential well whose minimum occurs at a low water fraction (XH2O) of about 6 mol. %. The fine tuning of the solute-solvent interaction is achieved through very limited adjustments of the electrostatic scaling factor γel which, in pure water, is slightly higher than the nominal value (i.e., γel  =  1.224 against 1.2), it attains its minimum at low H2O content (γel = 0.9958) and then rises again at infinite dilution (γel   =  1.0945). The complex solution behavior is interpreted as due to the formation of energetically efficient hydrogen bonding when OH functionals are in appropriate amount and relative positioning with respect to the discrete OH2 molecules, reinforcing in this way the nominal solute-solvent inductive interaction. The interaction energy derived from the SPT-PCM calculations is then recast in terms of a sub-regular Redlich-Kister expansion of appropriate order whereas the thermodynamic properties of the H2O component at its standard state (1-molal solution referred to infinite dilution) are calculated from partial differentiation of the solution energy over the intensive variables.

  6. Structural and magnetic characterization of the complete delafossite solid solution (CuAlO₂)₁-x(CuCrO₂)x.

    PubMed

    Barton, Phillip T; Seshadri, Ram; Knöller, Andrea; Rosseinsky, Matthew J

    2012-01-11

    We have prepared the complete delafossite solid solution series between diamagnetic CuAlO(2) and the t(2g)(3)frustrated antiferromagnet CuCrO(2). The evolution with composition x in CuAl(1-x)Cr(x)O(2) of the crystal structure and magnetic properties has been studied and is reported here. The room-temperature unit cell parameters follow the Végard law and increase with x as expected. The μ(eff) is equal to the Cr(3+) spin-only S = 3/2 value throughout the entire solid solution. Θ(CW) is negative, indicating that the dominant interactions are antiferromagnetic, and its magnitude increases with Cr substitution. For dilute Cr compositions, the nearest-neighbor exchange coupling constant J(BB) was estimated by mean-field theory to be 3.0 meV. Despite the sizable Θ(CW), long-range antiferromagnetic order does not develop until x is almost 1, and is preceded by glassy behavior. The data presented here, and those on dilute Al substitution from Okuda et al, suggest that the reduction in magnetic frustration due to the presence of non-magnetic Al does not have as dominant an effect on magnetism as chemical disorder and dilution of the magnetic exchange. For all samples, the 5 K isothermal magnetization does not saturate in fields up to 5 T and minimal hysteresis is observed. The presence of antiferromagnetic interactions is clearly evident in the sub-Brillouin behavior with a reduced magnetization per Cr atom. An inspection of the scaled Curie plot reveals that significant short-range antiferromagnetic interactions occur in CuCrO(2) above its Néel temperature, consistent with its magnetic frustration. Uncompensated short-range behavior is present in the Al-substituted samples and is likely a result of chemical disorder.

  7. Structural and magnetic characterization of the complete delafossite solid solution (CuAlO2)1-x(CuCrO2)x

    NASA Astrophysics Data System (ADS)

    Barton, Phillip T.; Seshadri, Ram; Knöller, Andrea; Rosseinsky, Matthew J.

    2012-01-01

    We have prepared the complete delafossite solid solution series between diamagnetic CuAlO2 and the t2g3frustrated antiferromagnet CuCrO2. The evolution with composition x in CuAl1-xCrxO2 of the crystal structure and magnetic properties has been studied and is reported here. The room-temperature unit cell parameters follow the Végard law and increase with x as expected. The μeff is equal to the Cr3+ spin-only S = 3/2 value throughout the entire solid solution. ΘCW is negative, indicating that the dominant interactions are antiferromagnetic, and its magnitude increases with Cr substitution. For dilute Cr compositions, the nearest-neighbor exchange coupling constant JBB was estimated by mean-field theory to be 3.0 meV. Despite the sizable ΘCW, long-range antiferromagnetic order does not develop until x is almost 1, and is preceded by glassy behavior. The data presented here, and those on dilute Al substitution from Okuda et al, suggest that the reduction in magnetic frustration due to the presence of non-magnetic Al does not have as dominant an effect on magnetism as chemical disorder and dilution of the magnetic exchange. For all samples, the 5 K isothermal magnetization does not saturate in fields up to 5 T and minimal hysteresis is observed. The presence of antiferromagnetic interactions is clearly evident in the sub-Brillouin behavior with a reduced magnetization per Cr atom. An inspection of the scaled Curie plot reveals that significant short-range antiferromagnetic interactions occur in CuCrO2 above its Néel temperature, consistent with its magnetic frustration. Uncompensated short-range behavior is present in the Al-substituted samples and is likely a result of chemical disorder.

  8. Dilute and Semidilute Solutions of a Nonionic, Rigid, Water-soluble Polymer

    NASA Astrophysics Data System (ADS)

    Russo, Paul; Huberty, Wayne; Zhang, Donghui; Water-Soluble Rodlike Polymer Team Collaboration

    2014-03-01

    The solution physics of random polymer chains was established largely on the behavior of commercial polymers such as polystyrene for organic solvents or nonionic poly(ethyleneoxide) for aqueous solvents. Not only are these materials widely available for industrial use, they can be synthesized to be essentially monodisperse. When it comes to stiff polymers, good choices are few and less prone to be used in industrial applications. Much was learned from polypeptides such as poly(benzylglutamate) or poly(stearylglutamate) in polar organic solvents and nonpolar organic solvents, respectively, but aqueous systems generally require charge. Poly(Nɛ-2-[2-(2-Methoxyethoxy) ethoxy]acetyl-L-Lysine) a.k.a. PEGL was pioneered by Deming and coworkers. In principle, PEGL provides a convenient platform from which to study stiff polymer behavior--phase relations, dynamics, liquid crystal formation and gelation--all with good molecular weight control and uniformity and without electrical charge. Still, a large gap in knowledge exists between PEGL and traditional rodlike polymer systems. To narrow this gap, dynamic and static scattering, circular dichroism, and viscosity measurements have been made in dilute and semidilute solutions as necessary preliminaries for lyotropic liquid crystalline and gel phases. Supported by NSF DMR 1306262. Department of Chemistry and Macromolecular Studies Group. Current address: Georgia Institute of Technology, School of Materials Science and Engineering.

  9. 40 CFR 797.1400 - Fish acute toxicity test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... construction materials, test chambers, and testing apparatus to dilution water or to test solutions prior to... or the leaching of substances from the test facilities into the dilution water or test solution. (5... intermittent passage of test solution or dilution water through a test chamber, or a holding or acclimation...

  10. Hardness behavior of binary and ternary niobium alloys at 77 and 300 K

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1974-01-01

    The effects of alloy additions of zirconium, hafnium, molybdenum, tungsten, rhenium, ruthenium, osmium, rhodium, and iridium on the hardness of niobium was determined. Both binary and ternary alloys were investigated by means of hardness tests at 77 K and 300 K. Results showed that atomic size misfit plays a dominant role in controlling hardness of binary niobium alloys. Alloy softening, which occurred at dilute solute additions, is most likely due to an extrinsic mechanism involving interaction between solute elements and interstitial impurities.

  11. Role of nicotine dose and sensory cues in the regulation of smoke intake.

    PubMed

    Rose, J E; Behm, F M; Levin, E D

    1993-04-01

    We investigated the role of nicotine dose and sensory cues in the regulation of ad lib smoke intake. The smoking behavior of 12 adult male smokers was assessed in three conditions, presenting either high-nicotine cigarette smoke (high nicotine, high sensory), diluted cigarette smoke (low nicotine, low sensory), or an aerosol containing cigarette smoke constituents suspended in solution, which was low in nicotine, yet high in sensory impact. Subjects showed marked compensatory increases in smoking with the dilute smoke conditions, whereas they puffed and inhaled the aerosol to a similar extent as the high-nicotine cigarette. Thus, subjects regulated their smoking behavior to equate sensory intensity rather than nicotine intake. Moreover, the aerosol and high-nicotine cigarette conditions lowered craving to a greater degree than the dilute smoke condition. Other mood indices, such as arousal and negative affect, were more effectively relieved by the high-nicotine dose condition. These results highlight the importance of sensory cues in the regulation of smoke intake and modulation of craving and suggest the clinical application of techniques for providing relief of cigarette craving during smoking cessation.

  12. A modified Lowry protein test for dilute protein solutions

    Treesearch

    Garold F. Gregory; Keith F. Jensen

    1971-01-01

    A modified Lowry protein test for dilute protein solutions modified Lowry protein test was compared with the standard Lowry protein test. The modified test was found to give estimates of protein concentration that were as good as the standard test and has the advange that proteins can be measured in very dilute solutions.

  13. Influence of Collector Surface Composition and Water Chemistry on the Deposition of Cerium Dioxide Nanoparticles: QCM-D and Column Experiment Approaches

    EPA Science Inventory

    The deposition behavior of cerium dioxide (CeO2) nanoparticles (NPs) in dilute NaCl solutions was investigated as a function of collector surface composition, pH, ionic strength, and organic matter (OM). Sensors coated separately with silica, iron oxide, and alumina were applied ...

  14. Science Notes: Dilution of a Weak Acid

    ERIC Educational Resources Information Center

    Talbot, Christopher; Wai, Chooi Khee

    2014-01-01

    This "Science note" arose out of practical work involving the dilution of ethanoic acid, the measurement of the pH of the diluted solutions and calculation of the acid dissociation constant, K[subscript a], for each diluted solution. The students expected the calculated values of K[subscript a] to be constant but they found that the…

  15. Homogenization Theory for the Prediction of Obstructed Solute Diffusivity in Macromolecular Solutions

    PubMed Central

    Donovan, Preston; Chehreghanianzabi, Yasaman; Rathinam, Muruhan; Zustiak, Silviya Petrova

    2016-01-01

    The study of diffusion in macromolecular solutions is important in many biomedical applications such as separations, drug delivery, and cell encapsulation, and key for many biological processes such as protein assembly and interstitial transport. Not surprisingly, multiple models for the a-priori prediction of diffusion in macromolecular environments have been proposed. However, most models include parameters that are not readily measurable, are specific to the polymer-solute-solvent system, or are fitted and do not have a physical meaning. Here, for the first time, we develop a homogenization theory framework for the prediction of effective solute diffusivity in macromolecular environments based on physical parameters that are easily measurable and not specific to the macromolecule-solute-solvent system. Homogenization theory is useful for situations where knowledge of fine-scale parameters is used to predict bulk system behavior. As a first approximation, we focus on a model where the solute is subjected to obstructed diffusion via stationary spherical obstacles. We find that the homogenization theory results agree well with computationally more expensive Monte Carlo simulations. Moreover, the homogenization theory agrees with effective diffusivities of a solute in dilute and semi-dilute polymer solutions measured using fluorescence correlation spectroscopy. Lastly, we provide a mathematical formula for the effective diffusivity in terms of a non-dimensional and easily measurable geometric system parameter. PMID:26731550

  16. Effective conductivity of a periodic dilute composite with perfect contact and its series expansion

    NASA Astrophysics Data System (ADS)

    Pukhtaievych, Roman

    2018-06-01

    We study the asymptotic behavior of the effective thermal conductivity of a periodic two-phase dilute composite obtained by introducing into an infinite homogeneous matrix a periodic set of inclusions of a different material, each of them of size proportional to a positive parameter ɛ . We assume a perfect thermal contact at constituent interfaces, i.e., a continuity of the normal component of the heat flux and of the temperature. For ɛ small, we prove that the effective conductivity can be represented as a convergent power series in ɛ and we determine the coefficients in terms of the solutions of explicit systems of integral equations.

  17. [Formation of oxalate in oxaliplatin injection diluted with infusion solutions].

    PubMed

    Eto, Seiji; Yamamoto, Kie; Shimazu, Kounosuke; Sugiura, Toshimune; Baba, Kaori; Sato, Ayaka; Goromaru, Takeshi; Hagiwara, Yoshiaki; Hara, Keiko; Shinohara, Yoshitake; Takahashi, Kojiro

    2014-01-01

    Oxaliplatin use can cause acute peripheral neuropathy characterized by sensory paresthesias, which are markedly exacerbated by exposure to cold temperatures, and is a dose-limiting factor in the treatment of colorectal cancer.Oxalate is eliminated in a series of nonenzymatic conversions of oxaliplatin in infusion solutions or biological fluids.Elimination of oxalate from oxaliplatin has been suggested as one of the reasons for the development of acute neuropathy.In this study, we developed a high-performance liquid chromatography(HPLC)-based method to detect oxalate formation, and investigated the time dependent formation of oxalate in oxaliplatin diluted with infusion solutions.The results obtained showed that the amount of oxalate in the solution corresponded to 1.6% of oxaliplatin 8 h after oxaliplatin dilution with a 5% glucose solution. On the other hand, oxalate formation from oxaliplatin diluted with a saline solution was ten-fold higher than that from oxaliplatin diluted with the 5% glucose solution.Most patients who were intravenously injected with oxaliplatin experienced venous pain.As a preventive measure against venous pain, dexamethasone was added to the oxaliplatin injection.We measured the amount of oxalate formed in the dexamethasone-containing oxaliplatin injection diluted with a 5% glucose solution.The amount of oxalate formed when dexamethasone was added did not differ significantly from that formed when dexamethasone was not added.Thus, there are no clinical problems associated with the stability of oxaliplatin solutions.

  18. River Mixing in the Amazon as a Driver of Concentration-Discharge Relationships

    NASA Astrophysics Data System (ADS)

    Bouchez, Julien; Moquet, Jean-Sébastien; Espinoza, Jhan Carlo; Martinez, Jean-Michel; Guyot, Jean-Loup; Lagane, Christelle; Filizola, Naziano; Noriega, Luis; Hidalgo Sanchez, Liz; Pombosa, Rodrigo

    2017-11-01

    Large hydrological systems aggregate compositionally different waters derived from a variety of pathways. In the case of continental-scale rivers, such aggregation occurs noticeably at confluences between tributaries. Here we explore how such aggregation can affect solute concentration-discharge (C-Q) relationships and thus obscure the message carried by these relationships in terms of weathering properties of the Critical Zone. We build up a simple model for tributary mixing to predict the behavior of C-Q relationships during aggregation. We test a set of predictions made in the context of the largest world's river, the Amazon. In particular, we predict that the C-Q relationships of the rivers draining heterogeneous catchments should be the most "dilutional" and should display the widest hysteresis loops. To check these predictions, we compute 10 day-periodicity time series of Q and major solute (Si, Ca2+, Mg2+, K+, Na+, Cl-, SO42-) C and fluxes (F) for 13 gauging stations located throughout the Amazon basin. In agreement with the model predictions, C-Q relationships of most solutes shift from a fairly "chemostatic" behavior (nearly constant C) at the Andean mountain front and in pure lowland areas, to more "dilutional" patterns (negative C-Q relationship) toward the system mouth. More prominent C-Q hysteresis loops are also observed at the most downstream stations. Altogether, this study suggests that mixing of water and solutes between different flowpaths exerts a strong control on C-Q relationships of large-scale hydrological systems.

  19. A theoretical framework for modeling dilution enhancement of non-reactive solutes in heterogeneous porous media.

    PubMed

    de Barros, F P J; Fiori, A; Boso, F; Bellin, A

    2015-01-01

    Spatial heterogeneity of the hydraulic properties of geological porous formations leads to erratically shaped solute clouds, thus increasing the edge area of the solute body and augmenting the dilution rate. In this study, we provide a theoretical framework to quantify dilution of a non-reactive solute within a steady state flow as affected by the spatial variability of the hydraulic conductivity. Embracing the Lagrangian concentration framework, we obtain explicit semi-analytical expressions for the dilution index as a function of the structural parameters of the random hydraulic conductivity field, under the assumptions of uniform-in-the-average flow, small injection source and weak-to-mild heterogeneity. Results show how the dilution enhancement of the solute cloud is strongly dependent on both the statistical anisotropy ratio and the heterogeneity level of the porous medium. The explicit semi-analytical solution also captures the temporal evolution of the dilution rate; for the early- and late-time limits, the proposed solution recovers previous results from the literature, while at intermediate times it reflects the increasing interplay between large-scale advection and local-scale dispersion. The performance of the theoretical framework is verified with high resolution numerical results and successfully tested against the Cape Cod field data. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Temperature of maximum density and excess thermodynamics of aqueous mixtures of methanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    González-Salgado, D.; Zemánková, K.; Noya, E. G.

    In this work, we present a study of representative excess thermodynamic properties of aqueous mixtures of methanol over the complete concentration range, based on extensive computer simulation calculations. In addition to test various existing united atom model potentials, we have developed a new force-field which accurately reproduces the excess thermodynamics of this system. Moreover, we have paid particular attention to the behavior of the temperature of maximum density (TMD) in dilute methanol mixtures. The presence of a temperature of maximum density is one of the essential anomalies exhibited by water. This anomalous behavior is modified in a non-monotonous fashion bymore » the presence of fully miscible solutes that partly disrupt the hydrogen bond network of water, such as methanol (and other short chain alcohols). In order to obtain a better insight into the phenomenology of the changes in the TMD of water induced by small amounts of methanol, we have performed a new series of experimental measurements and computer simulations using various force fields. We observe that none of the force-fields tested capture the non-monotonous concentration dependence of the TMD for highly diluted methanol solutions.« less

  1. Stomatal Opening in Isolated Epidermal Strips of Vicia faba. I. Response to Light and to CO2-free Air 1

    PubMed Central

    Fischer, R. A.

    1968-01-01

    This paper reports a consistent and large opening response to light + CO2-free air in living stomata of isolated epidermal strips of Vicia faba. The response was compared to that of non-isolated stomata in leaf discs floating on water; stomatal apertures, guard cell solute potentials and starch contents were similar in the 2 situations. To obtain such stomatal behavior, it was necessary to float epidermal strips on dilute KCl solutions. This suggests that solute uptake is necessary for stomatal opening. The demonstration of normal stomatal behavior in isolated epidermal strips provides a very useful system in which to investigate the mechanism of stomatal opening. It was possible to show independent responses in stomatal aperture to light and to CO2-free air. PMID:16656995

  2. Concentration Fluctuations and Capacitive Response in Dense Ionic Solutions.

    PubMed

    Uralcan, Betul; Aksay, Ilhan A; Debenedetti, Pablo G; Limmer, David T

    2016-07-07

    We use molecular dynamics simulations in a constant potential ensemble to study the effects of solution composition on the electrochemical response of a double layer capacitor. We find that the capacitance first increases with ion concentration following its expected ideal solution behavior but decreases upon approaching a pure ionic liquid in agreement with recent experimental observations. The nonmonotonic behavior of the capacitance as a function of ion concentration results from the competition between the independent motion of solvated ions in the dilute regime and solvation fluctuations in the concentrated regime. Mirroring the capacitance, we find that the characteristic decay length of charge density correlations away from the electrode is also nonmonotonic. The correlation length first decreases with ion concentration as a result of better electrostatic screening but increases with ion concentration as a result of enhanced steric interactions. When charge fluctuations induced by correlated ion-solvent fluctuations are large relative to those induced by the pure ionic liquid, such capacitive behavior is expected to be generic.

  3. Method of quantitating dsDNA

    DOEpatents

    Stark, Peter C.; Kuske, Cheryl R.; Mullen, Kenneth I.

    2002-01-01

    A method for quantitating dsDNA in an aqueous sample solution containing an unknown amount of dsDNA. A first aqueous test solution containing a known amount of a fluorescent dye-dsDNA complex and at least one fluorescence-attenutating contaminant is prepared. The fluorescence intensity of the test solution is measured. The first test solution is diluted by a known amount to provide a second test solution having a known concentration of dsDNA. The fluorescence intensity of the second test solution is measured. Additional diluted test solutions are similarly prepared until a sufficiently dilute test solution having a known amount of dsDNA is prepared that has a fluorescence intensity that is not attenuated upon further dilution. The value of the maximum absorbance of this solution between 200-900 nanometers (nm), referred to herein as the threshold absorbance, is measured. A sample solution having an unknown amount of dsDNA and an absorbance identical to that of the sufficiently dilute test solution at the same chosen wavelength is prepared. Dye is then added to the sample solution to form the fluorescent dye-dsDNA-complex, after which the fluorescence intensity of the sample solution is measured and the quantity of dsDNA in the sample solution is determined. Once the threshold absorbance of a sample solution obtained from a particular environment has been determined, any similarly prepared sample solution taken from a similar environment and having the same value for the threshold absorbance can be quantified for dsDNA by adding a large excess of dye to the sample solution and measuring its fluorescence intensity.

  4. Ficts and facts of epinephrine and norepinephrine stability in injectable solutions.

    PubMed

    Hoellein, Ludwig; Holzgrabe, Ulrike

    2012-09-15

    Epinephrine (EPI) and norepinephrine (NE) play an important role in emergency medicine and acute treatment of hypotension and shocks in the intensive care unit. Injectable solutions can either be provided as proprietary medicinal products or as individually prepared dilutions. Due to the chemical structure of EPI and NE, the stability of the corresponding solutions is limited. Thus, most manufacturers of EPI and NE injectable solutions use sulfites and nitrogen for stabilization, Nevertheless, storage conditions such as temperature and light have to be considered, but are often neglected in the daily hospital routine. In addition, hospital pharmacies prepare EPI and NE solutions and dilute commercially available solutions for individual therapy, especially on ICUs. Since the influence of dilution and the presence of excipients and other preservatives are not systematically explored, we collected published data and investigations on stability on the potency of EPI and NE injectable solutions in order to deduce storage recommendations for diluted EPI and NE solutions of different concentration. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. The wet solidus of silica: Predictions from the scaled particle theory and polarized continuum model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ottonello, G., E-mail: giotto@dipteris.unige.it; Vetuschi Zuccolini, M.; Richet, P.

    2015-02-07

    We present an application of the Scaling Particle Theory (SPT) coupled with an ab initio assessment of the electronic, dispersive, and repulsive energy terms based on the Polarized Continuum Model (PCM) aimed at reproducing the observed solubility behavior of OH{sub 2} over the entire compositional range from pure molten silica to pure water and wide pressure and temperature regimes. It is shown that the solution energy is dominated by cavitation terms, mainly entropic in nature, which cause a large negative solution entropy and a consequent marked increase of gas phase fugacity with increasing temperatures. Besides, the solution enthalpy is negativemore » and dominated by electrostatic terms which depict a pseudopotential well whose minimum occurs at a low water fraction (X{sub H{sub 2O}}) of about 6 mol. %. The fine tuning of the solute-solvent interaction is achieved through very limited adjustments of the electrostatic scaling factor γ{sub el} which, in pure water, is slightly higher than the nominal value (i.e., γ{sub el}  =  1.224 against 1.2), it attains its minimum at low H{sub 2}O content (γ{sub el} = 0.9958) and then rises again at infinite dilution (γ{sub el}   =  1.0945). The complex solution behavior is interpreted as due to the formation of energetically efficient hydrogen bonding when OH functionals are in appropriate amount and relative positioning with respect to the discrete OH{sub 2} molecules, reinforcing in this way the nominal solute-solvent inductive interaction. The interaction energy derived from the SPT-PCM calculations is then recast in terms of a sub-regular Redlich-Kister expansion of appropriate order whereas the thermodynamic properties of the H{sub 2}O component at its standard state (1-molal solution referred to infinite dilution) are calculated from partial differentiation of the solution energy over the intensive variables.« less

  6. Solute-solvent cavity and bridge functions. I. Varying size of the solute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vyalov, I., E-mail: ivan.vyalov@iit.it; Chuev, G., E-mail: genchuev@rambler.ru; Georgi, N., E-mail: georgi@mis.mpg.de

    2014-08-21

    In this work we present the results of the extensive molecular simulations of solute-solvent cavity and bridge functions. The mixtures of Lennard-Jones solvent with Lennard-Jones solute at infinite dilution are considered for different solute-solvent size ratios—up to 4:1. The Percus-Yevick and hypernetted chain closures deviate substantially from simulation results in the investigated temperature and density ranges. We also find that the behavior of the indirect and cavity correlation functions is non-monotonous within the hard-core region, but the latter can be successfully approximated by mean-field theory if the solute-solvent interaction energy is divided into repulsive and attractive contribution, according to Weeks-Chandler-Andersenmore » theory. Furthermore, in spite of the non-monotonous behavior of logarithm of the cavity function and the indirect correlation function, their difference, i.e., the bridge function remains constant within the hard-core region. Such behavior of the bridge and indirect correlation functions at small distances and for small values of indirect correlation function is well known from the Duh-Haymet plots, where the non-unique relationship results in loops of the bridge function vs. indirect correlation function graphs. We show that the same pathological behavior appears also when distance is small and indirect correlation function is large. We further show that the unique functional behavior of the bridge function can be established when bridge is represented as a function of the renormalized, repulsive indirect correlation function.« less

  7. Comparison of the in vitro effects of saline, hypertonic hydroxyethyl starch, hypertonic saline, and two forms of hydroxyethyl starch on whole blood coagulation and platelet function in dogs.

    PubMed

    Wurlod, Virginie A; Howard, Judith; Francey, Thierry; Schweighauser, Ariane; Adamik, Katja N

    2015-01-01

    To compare the in vitro effects of hypertonic solutions and colloids to saline on coagulation in dogs. In vitro experimental study. Veterinary teaching hospital. Twenty-one adult dogs. Blood samples were diluted with saline, 7.2% hypertonic saline solution with 6% hydroxyethylstarch with an average molecular weight of 200 kDa and a molar substitution of 0.4 (HH), 7.2% hypertonic saline (HTS), hydroxyethyl starch (HES) 130/0.4 or hydroxyethyl starch 600/0.75 at ratios of 1:22 and 1:9, and with saline and HES at a ratio of 1:3. Whole blood coagulation was analyzed using rotational thromboelastometry (extrinsic thromboelastometry-cloting time (ExTEM-CT), maximal clot firmness (MCF) and clot formation time (CFT) and fibrinogen function TEM-CT (FibTEM-CT) and MCF) and platelet function was analyzed using a platelet function analyzer (closure time, CTPFA ). All parameters measured were impaired by saline dilution. The CTPFA was prolonged by 7.2% hypertonic saline solution with 6% hydroxyethylstarch with an average molecular weight of 200 kDa and a molar substitution of 0.4 (HH) and HTS but not by HES solutions. At clinical dilutions equivalent to those generally administered for shock (saline 1:3, HES 1:9, and hypertonic solutions 1:22), CTPFA was more prolonged by HH and HTS than other solutions but more by saline than HES. No difference was found between the HES solutions or the hypertonic solutions. ExTEM-CFT and MCF were impaired by HH and HTS but only mildly by HES solutions. At clinically relevant dilutions, no difference was found in ExTEM-CFT between HTS and saline or in ExTEM-MCF between HH and saline. No consistent difference was found between the 2 HES solutions but HH impaired ExTEM-CFT and MCF more than HTS. At high dilutions, FibTEM-CT and -MCF and ExTEM-CT were impaired by HES. Hypertonic solutions affect platelet function and whole blood coagulation to a greater extent than saline and HES. At clinically relevant dilutions, only CTPFA was markedly more affected by hypertonic solutions than by saline. At high dilutions, HES significantly affects coagulation but to no greater extent than saline at clinically relevant dilutions. © Veterinary Emergency and Critical Care Society 2015.

  8. Permanent physico-chemical properties of extremely diluted aqueous solutions of homeopathic medicines.

    PubMed

    Elia, V; Baiano, S; Duro, I; Napoli, E; Niccoli, M; Nonatelli, L

    2004-07-01

    The purpose of this study was to obtain information about the influence of successive dilutions and succussions on the water structure. 'Extremely diluted solutions' (EDS) are solutions obtained through the iteration of two processes: dilution in stages of 1:100 and succussion, typically used in homeopathic medicine. The iteration is repeated until extreme dilutions are reached, so that the chemical composition of the solution is identical to that of the solvent. Nine different preparations, were studied from the 3cH to 30cH (Hahnemannian Centesimal Dilution). Four of those were without the active principle (potentized water). Two different active principles were used: Arsenicum sulphuratum rubrum (ASR), As4S4, 2,4-dichlorophenoxyacetic acid (2,4D). The solvents were: a solution of sodium bicarbonate and of silicic acid at 5 x 10(-5) M (mol/l) each, and solutions of sodium bicarbonate 5 x 10(-5), 7.5 x 10(-5) and 10 x 10(-5) M (mol/l) in double-distilled water. The containers were Pyrex glass to avoid the release of alkaline oxide and silica from the walls. Conductivity measurements of the solutions were carried out as a function of the age of the potencies. We found increases of electrical conductivity compared to untreated solvent. Successive dilution and succussion can permanently alter the physico-chemical properties of the aqueous solvent. But we also detected changes in physio-chemical parameters with time. This has not previously been reported. The modification of the solvent could provide an important support to the validity of homeopathic medicine, that employs 'medicines without molecules'. The nature of the phenomena here described remains still unexplained, nevertheless some significant experimental results were obtained.

  9. A numerical study of the phase behaviors of drug particle/star triblock copolymer mixtures in dilute solutions for drug carrier application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shanhui; Tong, Chaohui; Zhu, Yuejin, E-mail: zhuyuejin@nbu.edu.cn

    The complex microstructures of drug particle/ABA star triblock copolymer in dilute solutions have been investigated by a theoretical approach which combines the self-consistent field theory and the hybrid particle-field theory. Simulation results reveal that, when the volume fraction of drug particles is smaller than the saturation concentration, the drug particle encapsulation efficiency is 100%, and micelle loading capacity increases with increasing particle volume fraction. When the volume fraction of drug particles is equal to the saturation concentration, the micelles attain the biggest size, and micelle loading capacity reaches a maximum value which is independent of the copolymer volume fraction. Whenmore » the volume fraction of drug particles is more than the saturation concentration, drug particle encapsulation efficiency decreases with increasing volume fraction of drug particles. Furthermore, it is found that the saturation concentration scales linearly with the copolymer volume fraction. The above simulation results are in good agreement with experimental results.« less

  10. Coalescence of silver clusters by immersion in diluted HF solution

    NASA Astrophysics Data System (ADS)

    Milazzo, R. G.; Mio, A. M.; D'Arrigo, G.; Grimaldi, M. G.; Spinella, C.; Rimini, E.

    2015-07-01

    The galvanic displacement deposition of silver on H-terminated Si (100) in the time scale of seconds is instantaneous and characterized by a cluster density of 1011-1012 cm-2. The amount of deposited Ag follows a t1/2 dependence in agreement with a Cottrell diffusion limited mechanism. At the same time, during the deposition, the cluster density reduces by a factor 5. This behavior is in contrast with the assumption of immobile clusters. We show in the present work that coalescence and aggregation occur also in the samples immersed in the diluted hydrofluoric acid (HF) solution without the presence of Ag+. Clusters agglomerate according to a process of dynamic coalescence, typical of colloids, followed by atomic redistribution at the contact regions with the generation of multiple internal twins and stacking-faults. The normalized size distributions in terms of r/rmean follow also the prediction of the Smoluchowski ripening mechanism. No variation of the cluster density occurs for samples immersed in pure H2O solution. The different behavior might be associated to the strong attraction of clusters to oxide-terminated Si surface in presence of water. The silver clusters are instead weakly bound to hydrophobic H-terminated Si in presence of HF. HF causes then the detachment of clusters and a random movement on the silicon surface with mobility of about 10-13 cm2/s. Attractive interaction (probably van der Waals) among particles promotes coarsening.

  11. Anomalous Micellization of Pluronic Block Copolymers

    NASA Astrophysics Data System (ADS)

    Leonardi, Amanda; Ryu, Chang Y.

    2014-03-01

    Poly(ethylene oxide) - poly(propylene oxide) - poly(ethylene oxide) (PEO-PPO-PEO) block copolymers, commercially known as Pluronics, are a unique family of amphiphilic triblock polymers, which self-assemble into micelles in aqueous solution. These copolymers have shown promise in therapeutic, biomedical, cosmetic, and nanotech applications. As-received samples of Pluronics contain low molecular weight impurities (introduced during the manufacturing and processing), that are ignored in most applications. It has been observed, however, that in semi-dilute aqueous solutions, at concentrations above 1 wt%, the temperature dependent micellization behavior of the Pluronics is altered. Anomalous behavior includes a shift of the critical micellization temperature and formation of large aggregates at intermediate temperatures before stable sized micelles form. We attribute this behavior to the low molecular weight impurities that are inherent to the Pluronics which interfere with the micellization process. Through the use of Dynamic Light Scattering and HPLC, we compared the anomalous behavior of different Pluronics of different impurity levels to their purified counterparts.

  12. COMPLEX RUTHENIUM ACIDO-NITROS COMPOUNDS (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zvyagintsev, O.E.; Starostin, S.M.

    1961-06-01

    The chemical nature of the water in the complex ruthenium acidonitroso compounds is studied by measuring certain acid properties, reactions, and behaviors of the compounds in aqueous solution. The dependence of molecular electrical conductivity on time and dilution, variations of specific electroconductivity, the optical density, and the light absorption of the compounds at 200 to 800 m mu wave range were investigated and the dissociation constants were calculated. (R.V.J.)

  13. The thermodynamic activity of ZnO in silicate melts

    NASA Astrophysics Data System (ADS)

    Reyes, R. A.; Gaskell, D. R.

    1983-12-01

    The activity of ZnO in ZnO-SiO2 and CaO-ZnO-SiO2 melts has been measured at 1560 °C using a transpiration technique with CO-CO2 mixtures as the carrier gas. The activities of ZnO in dilute solution in 42 wt pct SiO2-38 wt pct CaO-20 wt pct A12O3 in the range 1400° to 1550 °C and in 62 wt pct SiO2-23.3 wt pct CaO-14.7 wt pct A12O3 at 1550 °C have also been measured. The measured free energies of formation of ZnO-SiO2 melts are significantly more negative than published estimated values and this, together with the behavior observed in the system CaO-Al2O3-SiO2, indicate that ZnO is a relatively basic oxide. The results are discussed in terms of the polymerization model of binary silicate melts and ideal silicate mixing in ternary silicate melts. The behavior of ZnO in dilute solution in CaO-Al2O3-SiO2 melts is discussed in terms of the possibility of the fluxing of ZnO by iron blast furnace slags.

  14. Structural and magnetic characterization of the complete delafossite solid solution (CuAlO2)1-x(CuCrO2)x

    NASA Astrophysics Data System (ADS)

    Barton, Phillip; Seshadri, Ram; Knöller, Andrea; Rosseinsky, Matthew

    2012-02-01

    We have prepared the complete delafossite solid solution between diamagnetic CuAlO2 and the t2g^3 frustrated antiferromagnet CuCrO2. The crystal structure and magnetism were studied with powder x-ray diffraction and magnetometry. The unit cell parameters follow the V'egard law and μeff is equal to the Cr^3+ spin-only S = 3/2 value. θCW is negative and its magnitude increases with Cr substitution. For dilute Cr compositions, JBB was estimated by mean-field theory to be 3.0,eV. Despite the sizable θCW, long-range antiferromagnetic order does not develop until x is almost 1, and is preceeded by glassy behavior. For all samples, the 5,isothermal magnetization is sub-Brillouin and does not saturate in fields up to 5,. A scaled inverse susceptibility plot reveals that significant short-range antiferromagnetic interactions occur in CuCrO2 above its N'eel temperature. Additionally, the Al-substituted samples exhibit uncompensated short-range behavior and x = 0.75 shows glassy characteristics. It is suggested that reduction in magnetic frustration due to the presence of non-magnetic Al does not have as dominant an effect on magnetism as do chemical disorder and dilution of magnetic exchange.

  15. Sonic wave separation of invertase from a dilute solution to generated droplets.

    PubMed

    Tanner, R D; Ko, S; Loha, V; Prokop, A

    2000-01-01

    It has previously been shown that a droplet fractionation process, simulated by shaking a separatory funnel containing a dilute protein solution, can generate droplets richer in protein than present in the original dilute solution. In this article, we describe an alternative method that can increase the amount of protein transferred to the droplets. The new method uses ultrasonic waves, enhanced by a bubble gas stream to create the droplets. The amount of protein in these droplets increases by about 50%. In this method, the top layer of the dilute protein solution (of the solution-air interface) becomes enriched in protein when air is bubbled into the solution. This concentrating procedure is called bubble fractionation. Once the protein has passed through the initial buildup, this enriched protein layer is transferred into droplets with the aid of a vacuum above the solution at the same time that ultrasonic waves are introduced. The droplets are then carried over to a condenser and coalesced. We found that this new method provides an easier way to remove the protein-enriched top layer of the dilute solution and generates more droplets within a shorter period than the separatory funnel droplet generation method. The added air creates the bubbles and carries the droplets, and the vacuum helps remove the effluent airstream from the condenser. The maximum partition coefficient, the ratio of the protein concentration in the droplets to that in the residual solution (approx 8.5), occurred at pH 5.0.

  16. Thickness Dependent Effective Viscosity of a Polymer Solution near an Interface Probed by a Quartz Crystal Microbalance with Dissipation Method

    PubMed Central

    Fang, Jiajie; Zhu, Tao; Sheng, Jie; Jiang, Zhongying; Ma, Yuqiang

    2015-01-01

    The solution viscosity near an interface, which affects the solution behavior and the molecular dynamics in the solution, differs from the bulk. This paper measured the effective viscosity of a dilute poly (ethylene glycol) (PEG) solution adjacent to a Au electrode using the quartz crystal microbalance with dissipation (QCM-D) technique. We evidenced that the effect of an adsorbed PEG layer can be ignored, and calculated the zero shear rate effective viscosity to remove attenuation of high shear frequency oscillations. By increasing the overtone n from 3 to 13, the thickness of the sensed polymer solution decreased from ~70 to 30 nm. The zero shear rate effective viscosity of the polymer solution and longest relaxation time of PEG chains within it decrease with increasing solution thickness. The change trends are independent of the relation between the apparent viscosity and shear frequency and the values of the involved parameter, suggesting that the polymer solution and polymer chains closer to a solid substrate have a greater effective viscosity and slower relaxation mode, respectively. This method can study the effect of an interface presence on behavior and phenomena relating to the effective viscosity of polymer solutions, including the dynamics of discrete polymer chains. PMID:25684747

  17. Feeding behavior and social interactions of the Argentine ant Linepithema humile change with sucrose concentration.

    PubMed

    Sola, F J; Josens, R

    2016-08-01

    Liquid sugar baits are well accepted by the Argentine ant Linepithema humile and are suitable for the chemical control of this invasive species. We evaluated how sugar concentrations affect the foraging behavior of L. humile individuals. We quantified feeding variables for individual foragers (ingested load, feeding time and solution intake rate) when feeding on sucrose solutions of different concentrations, as well as post-feeding interactions with nestmates. Solutions of intermediate sucrose concentrations (10-30%) were the most consumed and had the highest intake rates, whereas solutions of high sucrose concentrations (60 and 70%) resulted in extended feeding times, low intake rates and ants having smaller crop loads. In terms of post-feeding interactions, individuals fed solutions of intermediate sucrose concentrations (20%) had the highest probability of conducting trophallaxis and the smallest latency to drop exposure (i.e. lowest time delay). Trophallaxis duration increased with increasing sucrose concentrations. Behavioral motor displays, including contacts with head jerking and walking with a gaster waggle, were lowest for individuals that ingested the more dilute sucrose solution (5%). These behaviors have been previously suggested to act as a communication channel for the activation and/or recruitment of nestmates. We show here that sucrose concentration affects feeding dynamics and modulates decision making related to individual behavior and social interactions of foragers. Our results indicate that intermediate sucrose concentrations (ca. 20%), appear to be most appropriate for toxic baits because they promote rapid foraging cycles, a high crop load per individual, and a high degree of stimulation for recruitment.

  18. Design Rule for Colloidal Crystals of DNA-Functionalized Particles

    NASA Astrophysics Data System (ADS)

    Martinez-Veracoechea, Francisco J.; Mladek, Bianca M.; Tkachenko, Alexei V.; Frenkel, Daan

    2011-07-01

    We report a Monte Carlo simulation study of the phase behavior of colloids coated with long, flexible DNA chains. We find that an important change occurs in the phase diagram when the number of DNAs per colloid is decreased below a critical value. In this case, the triple point disappears and the condensed phase that coexists with the vapor is always liquid. Our simulations thus explain why, in the dilute solutions typically used in experiments, colloids coated with a small number of DNA strands cannot crystallize. We understand this behavior in terms of the discrete nature of DNA binding.

  19. Translating Thermal Response of Triblock Copolymer Assemblies in Dilute Solution to Macroscopic Gelation and Phase Separation

    DOE PAGES

    Sun, Zhe; Tian, Ye; Hom, Wendy L.; ...

    2016-12-28

    The thermal response of semi-dilute solutions (5 w/w%) of two amphiphilic thermoresponsive poly(ethylene oxide)-b-poly(N,N-diethylacrylamide)-b-poly(N,N-dibutylacrylamide) (PEO 45-PDEAm x-PDBAm 12) triblock copolymers, which differ only in the size of the central responsive block, in water was examined in this paper. Aqueous PEO45-PDEAm41-PDBAm12 solutions, which undergo a thermally induced sphere-to-worm transition in dilute solution, were found to reversibly form soft (G'≈10 Pa) free-standing physical gels after 10 min at 55 °C. PEO 45-PDEAm 89-PDBAm 12 copolymer solutions, which undergo a thermally induced transition from spheres to large compound micelles (LCM) in dilute solution, underwent phase separation after heating at 55 °C for 10more » min owing to sedimentation of LCMs. The reversibility of LCM formation was investigated as a non-specific method for removal of a water-soluble dye from aqueous solution. Finally, the composition and size of the central responsive block in these polymers dictate the microscopic and macroscopic response of the polymer solutions as well as the rates of transition between assemblies.« less

  20. Use of vitamin B12 in joint lavage for determination of dilution factors of canine synovial fluid.

    PubMed

    de Bruin, Tanya; de Rooster, Hilde; van Bree, Henri; Cox, Eric

    2005-11-01

    To test a modified saline (0.9% NaCl) solution joint washing (lavage) technique that includes the use of vitamin B12 as an internal marker for the evaluation of synovial fluid dilution in lavage samples from canine joints. 9 plasma samples obtained from blood samples of 9 healthy dogs and 9 synovial fluid samples aspirated from stifle joints of 9 cadaveric dogs. Photometric absorbances of 25% vitamin B12 solution, canine synovial fluid, and canine plasma were measured in a spectrophotometer to establish an optimal wavelength for analysis. Canine synovial fluid and plasma samples were mixed with the 25% vitamin B12 solution to obtain 1%, 3%, 5%, 10%, 20%, and 50% solutions of synovial fluid or plasma. Diluted synovial fluid and plasma samples were used to simulate joint lavage samples and to examine the possible interference of these substances (synovial fluid or plasma) with the absorbance of the 25% vitamin B12 solution in photometric analysis. The optimal wavelength was found to be at 550 nm. Canine synovial fluid and plasma samples did not interfere with the absorbance measurements of the 25% vitamin B12 solution up to a 50% dilution of plasma or synovial fluid. The modified saline solution joint lavage method with the use of a 25% vitamin B12 solution as an internal standard provides an accurate and reliable technique for the evaluation of synovial fluid dilution in lavage samples from canine joints.

  1. Evaluation of an intravenous preparation information system for improving the reconstitution and dilution process.

    PubMed

    Jo, Yun Hee; Shin, Wan Gyoon; Lee, Ju-Yeun; Yang, Bo Ram; Yu, Yun Mi; Jung, Sun Hoi; Kim, Hyang Sook

    2016-10-01

    There are very few studies reporting the impact of providing intravenous (IV) preparation information on quality use of antimicrobials, particularly regarding their reconstitution and dilution. Therefore, to improve these processes in IV antimicrobial administration, an IV preparation information system (IPIS) was implemented in a hospital. We aimed to evaluate the effect of improving reconstitution and dilution by implementing an IPIS in the electronic medical record (EMR) system. Prescriptions and activity records of nurses for injectable antimicrobials that required reconstitution and dilution for IV preparation from January 2008 to December 2013 were retrieved from EMR, and assessed based on packaging label information for reconstituting and diluting solutions. We defined proper reconstitution and dilution as occurring when the reconstitution and dilution solutions prescribed were consistent with the nurses' acting records. The types of intervention in the IPIS were as follows: a pop-up alert for proper reconstitution and passive guidance for proper dilution. We calculated the monthly proper reconstitution rate (PRR) and proper dilution rate (PDR) and evaluated the changes in these rates and trends using interrupted time series analyses. Prior to the initiation of the reconstitution alert and dilution information, the PRR and PDR were 12.7 and 46.1%, respectively. The reconstitution alert of the IPIS rapidly increased the PRR by 41% (p<0.001), after which the PRR decreased by 0.9% (p=0.013) per month after several months. However, there was no significant change in the rate or trend of the PDR during the study period. This study demonstrated that the provision of reconstitution alerts by the IPIS contributed to improving the reconstitution process of IV antimicrobial injection administration. However, providing passive information on dilution solutions was ineffective. Furthermore, solutions to ensure the continuous effectiveness of alert systems are warranted and should be actively sought. Copyright © 2016. Published by Elsevier Ireland Ltd.

  2. Investigations on Mg-borate kinetics and mechanisms during evaporation, dilution and crystallization by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Peng, Jiaoyu; Chen, Jing; Dong, Yaping; Li, Wu

    2018-06-01

    Raman spectra of boron-concentrated, diluted, and corresponding mother solutions of brine were recorded at 298.15 K. The main polyborate anions present and their interactions in brine during evaporation and dilution were proposed according to the Raman spectra. The polyborate anions B(OH)3, B3O3(OH)4-, B5O6(OH)4-, and B6O7(OH)62- were found to be the main forms in boron-concentrated brine with B3O3(OH)4- ion being the principal form. Diluting brines with water accelerated depolymerization of B5O6(OH)4- and B6O7(OH)62- anions into B(OH)3 and B3O3(OH)4- ions and generated OH- ions, causing the pH of the solutions to increase from 4.2 to almost 8.0. Mg-borates precipitated from all diluted solutions could be classified as either hexaborates or triborates. A mechanism of solid phase transformation was also proposed and discussed based on Raman spectra analysis and solid species and solution pH data.

  3. Osmotic Transport across Cell Membranes in Nondilute Solutions: A New Nondilute Solute Transport Equation

    PubMed Central

    Elmoazzen, Heidi Y.; Elliott, Janet A.W.; McGann, Locksley E.

    2009-01-01

    The fundamental physical mechanisms of water and solute transport across cell membranes have long been studied in the field of cell membrane biophysics. Cryobiology is a discipline that requires an understanding of osmotic transport across cell membranes under nondilute solution conditions, yet many of the currently-used transport formalisms make limiting dilute solution assumptions. While dilute solution assumptions are often appropriate under physiological conditions, they are rarely appropriate in cryobiology. The first objective of this article is to review commonly-used transport equations, and the explicit and implicit assumptions made when using the two-parameter and the Kedem-Katchalsky formalisms. The second objective of this article is to describe a set of transport equations that do not make the previous dilute solution or near-equilibrium assumptions. Specifically, a new nondilute solute transport equation is presented. Such nondilute equations are applicable to many fields including cryobiology where dilute solution conditions are not often met. An illustrative example is provided. Utilizing suitable transport equations that fit for two permeability coefficients, fits were as good as with the previous three-parameter model (which includes the reflection coefficient, σ). There is less unexpected concentration dependence with the nondilute transport equations, suggesting that some of the unexpected concentration dependence of permeability is due to the use of inappropriate transport equations. PMID:19348741

  4. A systematical rheological study of polysaccharide from Sophora alopecuroides L. seeds.

    PubMed

    Wu, Yan; Guo, Rui; Cao, Nannan; Sun, Xiangjun; Sui, Zhongquan; Guo, Qingbin

    2018-01-15

    The rheological properties of polysaccharide (SAP) from Sophora alopecuroides L. seeds were systematically investigated by fitting different models. The steady flow testing indicated that SAP exhibited shear-thinning behaviors, which were enhanced with increasing concentration and decreasing temperature. This was demonstrated quantitatively by Williamson and Arrhenius models. According to the generalized Morris equation, SAP exhibited random coil conformation with the potential to form weak gel-like network. On the other hand, multiple results of dynamic tests confirmed the viscoelastic properties of SAP, showing oscillatory behaviors between a dilute solution and an elastic gel. Furthermore, SAP solutions were thermorheologically stable without remarkable energetic interactions or structural heterogeneity, since their rheological patterns were successfully applied to Time-temperature superposition (TTS) principle, modified Cole-Cole analysis and Cox-Merz rule. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. POISON SPIDER FIELD CHEMICAL FLOOD PROJECT, WYOMING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas Arnell; Malcolm Pitts; Jie Qi

    2004-11-01

    A reservoir engineering and geologic study concluded that approximate 7,852,000 bbls of target oil exits in Poison Spider. Field pore volume, OOIP, and initial oil saturation are defined. Potential injection water has a total dissolved solids content of 1,275 mg/L with no measurable divalent cations. If the Lakota water consistently has no measurable cations, the injection water does not require softening to dissolve alkali. Produced water total dissolved solids were 2,835 mg/L and less than 20 mg/L hardness as the sum of divalent cations. Produced water requires softening to dissolve chemicals. Softened produced water was used to dissolve chemicals inmore » these evaluations. Crude oil API gravity varies across the field from 19.7 to 22.2 degrees with a dead oil viscosity of 95 to 280 cp at 75 F. Interfacial tension reductions of up to 21,025 fold (0.001 dyne/cm) were developed with fifteen alkaline-surfactant combinations at some alkali concentration. An additional three alkaline-surfactant combinations reduced the interfacial tension greater than 5,000 fold. NaOH generally produced the lowest interfacial tension values. Interfacial tension values of less than 0.021 dyne/cm were maintained when the solutions were diluted with produced water to about 60%. Na{sub 2}CO{sub 3} when mixed with surfactants did not reduce interfacial tension values to levels at which incremental oil can be expected. NaOH without surfactant interfacial tension reduction is at a level where some additional oil might be recovered. Most of the alkaline-surfactant-polymer solutions producing ultra low interfacial tension gave type II- phase behavior. Only two solutions produced type III phase behavior. Produced water dilution resulted in maintenance of phase type for a number of solutions at produced water dilutions exceeding 80% dilution. The average loss of phase type occurred at 80% dilution. Linear corefloods were performed to determine relative permeability end points, chemical-rock compatibility, polymer injectivity, dynamic chemical retention by rock, and recommended injected polymer concentration. Average initial oil saturation was 0.796 Vp. Produced water injection recovered 53% OOIP leaving an average residual oil saturation of 0.375 Vp. Poison Spider rock was strongly water-wet with a mobility ratio for produced water displacing the 280 cp crude oil of 8.6. Core was not sensitive to either alkali or surfactant injection. Injectivity increased 60 to 80% with alkali plus surfactant injection. Low and medium molecular weight polyacrylamide polymers (Flopaam 3330S and Flopaam 3430S) dissolved in either an alkaline-surfactant solution or softened produced water injected and flowed through Poison Spider rock. Recommended injected polyacrylamide concentration is 2,100 mg/L for both polymers for a unit mobility ratio. Radial corefloods were performed to evaluate oil recovery efficiency of different chemical solutions. Waterflood oil recovery averaged 46.4 OOIP and alkaline-surfactant-polymer flood oil recovery averaged an additional 18.1% OIP for a total of 64.6% OOIP. Oil cut change due to injection of a 1.5 wt% Na{sub 2}CO{sub 3} plus 0.05 wt% Petrostep B-100 plus 0.05 wt% Stepantan AS1216 plus 2100 mg/L Flopaam 3430S was from 2% to a peak of 23.5%. Additional study might determine the impact on oil recovery of a lower polymer concentration. An alkaline-surfactant-polymer flood field implementation outline report was written.« less

  6. Gas nanobubbles and aqueous nanostructures: the crucial role of dynamization.

    PubMed

    Demangeat, Jean-Louis

    2015-04-01

    Nanobubbles (NBs) have been a subject of intensive research over the past decade. Their peculiar characteristics, including extremely low buoyancy, longevity, enhanced solubility of oxygen in water, zeta potentials and burst during collapse, have led to many applications in the industrial, biological and medical fields. NBs may form spontaneously from dissolved gas but the process is greatly enhanced by gas supersaturation and mechanical actions such as dynamization. Therefore, the formation of NBs during the preparation of homeopathic dilutions under atmospheric pressure cannot be ignored. I suggested in 2009 the involvement of NBs in nanometric superstructures revealed in high dilutions using NMR relaxation. These superstructures seemed to increase in size with dilution, well into the ultramolecular range (>12c). I report here new experiments that confirm the involvement of NBs and prove the crucial role of dynamization to create superstructures specific to the solute. A second dynamization was shown to enhance or regenerate these superstructures. I postulate that superstructures result from a nucleation process of NBs around the solute, with shells of highly organized water (with ions and silicates if any) which protect the solute against out-diffusion and behave as nucleation centres for further dilution steps. The sampling tip may play an active role by catching the superstructures and thus carry the encaged solute across the dilution range, possibly up to the ultramolecular range. The superstructures were not observed at low dilution, probably because of a destructuring of the solvent by the solute and/or of an inadequate gas/solute ratio. Copyright © 2015 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.

  7. Partial molar volumes and viscosities of aqueous hippuric acid solutions containing LiCl and MnCl2 · 4H2O at 303.15 K

    NASA Astrophysics Data System (ADS)

    Deosarkar, S. D.; Tawde, P. D.; Zinjade, A. B.; Shaikh, A. I.

    2015-09-01

    Density (ρ) and viscosity (η) of aqueous hippuric acid (HA) solutions containing LiCl and MnCl2 · 4H2O have been studied at 303.15 K in order to understand volumetric and viscometric behavior of these systems. Apparent molar volume (φv) of salts were calculated from density data and fitted to Massons relation and partial molar volumes (φ{v/0}) at infinite dilution were determined. Relative viscosity data has been used to determine viscosity A and B coefficients using Jones-Dole relation. Partial molar volume and viscosity coefficients have been discussed in terms of ion-solvent interactions and overall structural fittings in solution.

  8. New methods allowing the detection of protein aggregates

    PubMed Central

    Demeule, Barthélemy; Palais, Caroline; Machaidze, Gia; Gurny, Robert

    2009-01-01

    Aggregation compromises the safety and efficacy of therapeutic proteins. According to the manufacturer, the therapeutic immunoglobulin trastuzumab (Herceptin®) should be diluted in 0.9% sodium chloride before administration. Dilution in 5% dextrose solutions is prohibited. The reason for the interdiction is not mentioned in the Food and Drug Administration (FDA) documentation, but the European Medicines Agency (EMEA) Summary of Product Characteristics states that dilution of trastuzumab in dextrose solutions results in protein aggregation. In this paper, asymmetrical flow field-flow fractionation (FFF), fluorescence spectroscopy, fluorescence microscopy and transmission electron microscopy (TEM) have been used to characterize trastuzumab samples diluted in 0.9% sodium chloride, a stable infusion solution, as well as in 5% dextrose (a solution prone to aggregation). When trastuzumab samples were injected in the FFF channel using a standard separation method, no difference could be seen between trastuzumab diluted in sodium chloride and trastuzumab diluted in dextrose. However, during FFF measurements made with appropriate protocols, aggregates were detected in 5% dextrose. The parameters enabling the detection of reversible trastuzumab aggregates are described. Aggregates could also be documented by fluorescence microscopy and TEM. Fluorescence spectroscopy data were indicative of conformational changes consistent with increased aggregation and adsorption to surfaces. The analytical methods presented in this study were able to detect and characterize trastuzumab aggregates. PMID:20061815

  9. Sodium perxenate permits rapid oxidation of manganese for easy spectrophotometric determination

    NASA Technical Reports Server (NTRS)

    Bane, R. W.

    1967-01-01

    Sodium perxenate oxidizes manganese to permanganate almost instantaneously in dilute acid solution and without a catalyst. A solution is prepared by dissolving 200 mg of sodium perxenate in distilled water and diluting to 100 ml.

  10. Folding behavior of four silks of giant honey bee reflects the evolutionary conservation of aculeate silk proteins.

    PubMed

    Maitip, Jakkrawut; Trueman, Holly E; Kaehler, Benjamin D; Huttley, Gavin A; Chantawannakul, Panuwan; Sutherland, Tara D

    2015-04-01

    Multiple gene duplication events in the precursor of the Aculeata (bees, ants, hornets) gave rise to four silk genes. Whilst these homologs encode proteins with similar amino acid composition and coiled coil structure, the retention of all four homologs implies they each are important. In this study we identified, produced and characterized the four silk proteins from Apis dorsata, the giant Asian honeybee. The proteins were readily purified, allowing us to investigate the folding behavior of solutions of individual proteins in comparison to mixtures of all four proteins at concentrations where they assemble into their native coiled coil structure. In contrast to solutions of any one protein type, solutions of a mixture of the four proteins formed coiled coils that were stable against dilution and detergent denaturation. The results are consistent with the formation of a heteromeric coiled coil protein complex. The mechanism of silk protein coiled coil formation and evolution is discussed in light of these results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. How the World Changes By Going from One- to Two-Dimensional Polymers in Solution.

    PubMed

    Schlüter, A Dieter; Payamyar, Payam; Öttinger, Hans Christian

    2016-10-01

    Scaling behavior of one-dimensional (1D) and two-dimensional (2D) polymers in dilute solution is discussed with the goal of stimulating experimental work by chemists, physicists, and material scientists in the emerging field of 2D polymers. The arguments are based on renormalization-group theory, which is explained for a general audience. Many ideas and methods successfully applied to 1D polymers are found not to work if one goes to 2D polymers. The role of the various states exhibiting universal behavior is turned upside down. It is expected that solubility will be a serious challenge for 2D polymers. Therefore, given the crucial importance of solutions in characterization and processing, synthetic concepts are proposed that allow the local bending rigidity and the molar mass to be tuned and the long-range interactions to be engineered, all with the goal of preventing the polymer from falling into flat or compact states. © 2016 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Modification of vortex ring formation using dilute polymer solution

    NASA Astrophysics Data System (ADS)

    Jordan, Daniel; Krane, Michael; Peltier, Joel; Patterson, Eric; Fontaine, Arnold

    2006-11-01

    This talk will present the results of an experimental study to determine the effect of dilute polymer solution on the formation of a vortex ring. Experiments were conducted in a large, glass tank, filled with water. Vortex rings were produced by injecting a slug of dilute polymer solution into the tank through a nozzle. The injection was controlled by a prescribed piston motion in the nozzle. For the same piston motion, vortex rings were produced for 3 concentrations of the polymer solution, including one with no polymer. The vortex ring flowfield was measured using DPIV. Differences between the 3 cases of polymer concentration in vortex ring formation time, circulation, size, and convection speed are presented.

  13. Catchment chemostasis revisited: water quality responds differently to variations in weather and climate

    NASA Astrophysics Data System (ADS)

    Godsey, Sarah; Kirchner, James

    2017-04-01

    Solute concentrations in streamflow typically vary systematically with stream discharge, and the resulting concentration-discharge relationships are important signatures of catchment (bio)geochemical processes. Solutes derived from mineral weathering often exhibit decreasing concentrations with increasing flows, suggesting dilution of a kinetically limited weathering flux by a variable flux of water. However, Godsey et al. (2009) showed that concentration-discharge relationships of weathering-derived solutes in 59 headwater catchments were much flatter than this simple dilution model would predict. Instead, their analysis showed that these catchments behaved almost like chemostats, with rates of solute production and/or mobilization that were nearly proportional to water fluxes, on both event and inter-annual time scales. Here we re-examine these findings using data from roughly 1000 catchments, ranging from ˜10 to >1,000,000 km2 in drainage area, and spanning a wide range of lithologic and climatic settings. Concentration-discharge relationships among this much larger set of much larger catchments are broadly consistent with the chemostatic behavior described by Godsey et al. (2009). Among these same catchments, however, site-to-site variations in mean concentrations are strongly (negatively) correlated with long-term average precipitation and discharge, suggesting strong dilution of stream concentrations under long-term leaching of the critical zone. The picture that emerges is one in which, on event and inter-annual time scales, stream solute concentrations are chemostatically buffered by groundwater storage and fast chemical reactions (such as ion exchange), but on much longer time scales, the catchment's chemostatic "set point" is determined by climatically driven critical zone evolution. Examples illustrating the different influences of (short-term) weather and (long-term) climate on water quality will be presented, and their implications will be discussed. Godsey, S.E., J.W. Kirchner and D.W. Clow, Concentration-discharge relationships reflect chemostatic characteristics of US catchments, Hydrological Processes, 23, 1844-1864, 2009.

  14. Antibacterial activity of dilute povidone-iodine solutions used for ocular surface disinfection in dogs.

    PubMed

    Roberts, S M; Severin, G A; Lavach, J D

    1986-06-01

    Bacterial cultures of specimens from healthy canine eyelids and ocular surfaces were found to demonstrate bacterial growth in 69.7% (53/76) of the eyes sampled. Organisms most commonly isolated included: Staphylococcus aureus, alpha-hemolytic Streptococcus sp, S epidermidis, and Escherichia coli. Evaluation of dilute povidone-iodine solutions for effectiveness as ocular surface disinfectants was conducted. Bacterial growth initially detected in 32 of 46 eyes was not detected after disinfection with a 2-minute scrub and 2-minute soaking procedure, using 1:2, 1:10, or 1:50 dilutions of a povidone-iodine solution that contained 1% available iodine. The eyelid and ocular surfaces of 16 eyes were disinfected with 1:100 povidone-iodine solution. Bacterial growth initially present in 10 of 16 eyes was present in 1 eye after disinfection and consisted of a single colony of E coli. After eyes were disinfected with 1:10, 1:50, or 1:100 povidone-iodine solutions, there was no evidence of corneal epithelial edema or sloughing. In 15 eyes subjected to disinfection with the 1:2 dilution, one instance of epithelial corneal edema was noticed. A 1:50 dilution of povidone-iodine is recommended as an ocular surface disinfectant for use in presurgical situations.

  15. Washout and non-washout solutions of a system describing microbial fermentation process under the influence of growth inhibitions and maximal concentration of yeast cells.

    PubMed

    Kasbawati; Gunawan, Agus Yodi; Sidarto, Kuntjoro Adjie

    2017-07-01

    An unstructured model for the growth of yeast cell on glucose due to growth inhibitions by substrate, products, and cell density is discussed. The proposed model describes the dynamical behavior of fermentation system that shows multiple steady states for a certain regime of operating parameters such as inlet glucose and dilution rate. Two types of steady state solutions are found, namely washout and non-washout solutions. Furthermore, different numerical impositions to the two parameters put in evidence three results regarding non-washout solution: a unique locally stable non-washout solution, a unique locally stable non-washout solution towards which other nearby solutions exhibit damped oscillations, and multiple non-washout solutions where one is locally stable while the other is unstable. It is also found an optimal inlet glucose which produces the highest cell and ethanol concentration. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. The effect of calcium hydroxide, alkali dilution and calcium concentration in mitigating the alkali silica reaction using palm oil fuel ash

    NASA Astrophysics Data System (ADS)

    Asrah, Hidayati; Mirasa, Abdul Karim; Bolong, Nurmin

    2018-02-01

    This study investigated the mechanism of how POFA mitigated the ASR expansion. Two types of POFA; the UPOFA and GPOFA with different fineness were used to replace the cement at 20% and 40% and their effects on the mortar bar expansion, calcium hydroxide, alkali dilution, and calcium concentration were investigated. The results showed that UPOFA has a significant ability to mitigate the ASR, even at a lower level of replacement (20%) compared to GPOFA. The mechanism of UPOFA in mitigating the ASR expansion was through a reduction in the calcium hydroxide content, which produced low calcium concentration within the mortar pore solution. Low pore solution alkalinity signified that UPOFA had good alkali dilution effect. Meanwhile, a higher dosage of GPOFA was required to mitigate the ASR expansion. An increase in the pore solution alkalinity of GPOFA mortar indicated higher penetration of alkalis from the NaOH solution, which reduced the alkali dilution effect. However, this was compensated by the increase in the cement dilution effect at higher GPOFA replacement, which controlled the mortar bar expansion below the ASTM limit.

  17. Reusable chelating resins concentrate metal ions from highly dilute solutions

    NASA Technical Reports Server (NTRS)

    Bauman, A. J.; Weetal, H. H.; Weliky, N.

    1966-01-01

    Column chromatographic method uses new metal chelating resins for recovering heavy-metal ions from highly dilute solutions. The absorbed heavy-metal cations may be removed from the chelating resins by acid or base washes. The resins are reusable after the washes are completed.

  18. Diluted povidone-iodine versus saline for dressing metal-skin interfaces in external fixation.

    PubMed

    Chan, C K; Saw, A; Kwan, M K; Karina, R

    2009-04-01

    To compare infection rates associated with 2 dressing solutions for metal-skin interfaces. 60 patients who underwent distraction osteogenesis with external fixators were equally randomised into 2 dressing solution groups (diluted povidone-iodine vs. saline). Fixations were attained using either rigid stainless steel 5-mm diameter half pins or smooth stainless steel 1.8-mm diameter wires. Half-pin fixation had one metal-skin interface, whereas wire fixation had 2 interfaces. Patients were followed up every 2 weeks for 6 months. Of all 788 metal-skin interfaces, 143 (18%) were infected: 72 (19%) of 371 in the diluted povidone-iodine group and 71 (17%) of 417 in the saline group. Dressing solution and patient age did not significantly affect infection rates. Half-pin fixation was more likely to become infected than wire fixation (25% vs 15%). Saline is as effective as diluted povidone-iodine as a dressing solution for metal-skin interfaces of external fixators. Saline is recommended in view of its easy availability and lower costs.

  19. Pinch-off dynamics, extensional viscosity and relaxation time of dilute and ultradilute aqueous polymer solutions

    NASA Astrophysics Data System (ADS)

    Biagioli, Madeleine; Dinic, Jelena; Jimenez, Leidy Nallely; Sharma, Vivek

    Free surface flows and drop formation processes present in printing, jetting, spraying, and coating involve the development of columnar necks that undergo spontaneous surface-tension driven instability, thinning, and pinch-off. Stream-wise velocity gradients that arise within the thinning neck create and extensional flow field, which induces micro-structural changes within complex fluids that contribute elastic stresses, changing the thinning and pinch-off dynamics. In this contribution, we use dripping-onto-substrate (DoS) extensional rheometry technique for visualization and analysis of the pinch-off dynamics of dilute and ultra-dilute aqueous polyethylene oxide (PEO) solutions. Using a range of molecular weights, we study the effect of both elasticity and finite extensibility. Both effective relaxation time and the transient extensional viscosity are found to be strongly concentration-dependent even for highly dilute solutions.

  20. Organotins' fate in lagoon sewage system: dealkylation and sludge sorption/desorption.

    PubMed

    Ophithakorn, Thiwari; Sabah, Aboubakr; Delalonde, Michele; Bancon-Montigny, Chrystelle; Suksaroj, Thunwadee Tachapattaworakul; Wisniewski, Christelle

    2016-11-01

    Organotin compounds (OTs) have been widely used for their biocidal properties and as stabilizers in various industrial applications. Due to their high toxicity, organotins are subject to many studies regarding their behavior in wastewater treatment plant and aquatic environment. However, few studies are available regarding their behavior in lagoon sewage system, although such treatment is commonly used for sewage treatment in low-population areas. The present study aimed at studying the fate of organotins (monobutyltin (MBT), dibutyltin (DBT), and tributyltin (TBT)) in lagoon sewage system. Short-term experiments, carried out at lab scale, consisted in sampling sludge from aerobic stabilization ponds, and then quantifying sorption and desorption of the different organotin species, as well as their respective transformation, under defined operating conditions (e.g., tributyltin spike and dilution) simulating possible change in the surrounding environment of sludge in the lagoon. Results established that a very important percentage of the OTs was localized in the solid phase of the sludge (more than 98 %), whatever the operating conditions may be; however, transformation and locations of the three OT species differed according to the different conditions of sludge dilution, TBT spiking, and test duration. After dilution of lagoon sludge, TBT desorption from sludge was observed; it was supposed that dealkylation of TBT after desorption occurred rapidly and increased dissolved MBT and DBT in liquid phase; MBT sorbed subsequently on solid phase. The nature of the diluent (i.e., tap water or saline solution) appeared to slightly influence the sludge behavior. After TBT spiking, TBT was supposed to be rapidly sorbed but also transformed in DBT and MBT that would as well sorbed on the sludge, which explained the decrease of these species in the liquid phase. Tests aimed at studying long-term effect of TBT spiking demonstrated that the sorbed species could be remobilized and transformed after a dilution.

  1. The CETAC ADX-500 Autodiluter System: A Study of Dilution Performance with the ELAN 6000 ICP-MS and ELAN Software

    USGS Publications Warehouse

    May, T.W.; Wiedmeyer, Ray H.

    1998-01-01

    The CETAC ADX-500 autodiluter system was tested with ELAN?? v 2.1 software and the ELAN 6000 ICP-MS instrument to determine on-line automated dilution performance during analysis of standard solutions containing nine analytes representative of the mass spectral range (mass 9 to mass 238). Two or more dilution schemes were tested for each of 5 test tube designs. Dilution performance was determined by comparison of analyte concentration means of diluted and non-diluted standards. Accurate dilutions resulted with one syringe pump addition of diluent in small diameter round-bottomed (13 mm OD) or conical-tipped (18 mm OD) tubes and one or more syringe pump additions in large diameter (28 mm OD) conical-tipped tubes. Inadequate dilution mixing which produced high analyte concentration means was observed for all dilutions conducted in flat-bottomed tubes, and for dilutions requiring multiple syringe additions of diluent in small diameter round-bottomed and conical tipped tubes. Effective mixing of diluted solutions was found to depend largely upon tube diameter and liquid depth: smaller tube diameters and greater liquid depth resulted in ineffective mixing, whereas greater tube diameter and shallower liquid depth facilitated effective mixing. Two design changes for the autodiluter were suggested that would allow effective mixing to occur using any dilution scheme and tube design.

  2. 40 CFR 180.1196 - Peroxyacetic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD... antimicrobial treatment in solutions containing a diluted end use concentration of peroxyacetic acid up to 100... food commodities when used in sanitizing solutions containing a diluted end-use concentration of...

  3. Sulfuric Acid and Water: Paradoxes of Dilution

    ERIC Educational Resources Information Center

    Leenson, I. A.

    2004-01-01

    On equilibrium properties of aqueous solutions of sulfuric acid, Julius Thomsen has marked that the heat evolved on diluting liquid sulfuric acid with water is a continuous function of the water used, and excluded absolutely the acceptance of definite hydrates as existing in the solution. Information about thermochemical measurement, a discussion…

  4. Profound effects of cardiopulmonary bypass priming solutions on the fibrin part of clot formation: an ex vivo evaluation using rotation thromboelastometry.

    PubMed

    Brinkman, Arinda C M; Romijn, Johannes W A; van Barneveld, Lerau J M; Greuters, Sjoerd; Veerhoek, Dennis; Vonk, Alexander B A; Boer, Christa

    2010-06-01

    Dilutional coagulopathy as a consequence of cardiopulmonary bypass (CPB) system priming may also be affected by the composition of the priming solution. The direct effects of distinct priming solutions on fibrinogen, one of the foremost limiting factors during dilutional coagulopathy, have been minimally evaluated. Therefore, the authors investigated whether hemodilution with different priming solutions distinctly affects the fibrinogen-mediated step in whole blood clot formation. Prospective observational laboratory study. University hospital laboratory. Eight male healthy volunteers. Blood samples diluted with gelatin-, albumin-, or hydroxyethyl starch (HES)-based priming solutions were ex-vivo evaluated for clot formation by rotational thromboelastometry. The intrinsic pathway (INTEM) coagulation time increased from 186 +/- 19 seconds to 205 +/- 16, 220 +/- 17, and 223 +/- 18 seconds after dilution with gelatin-, albumin-, or HES-containing prime solutions (all p < 0.05 v baseline). The extrinsic pathway (EXTEM) coagulation time was only minimally affected by hemodilution. Moreover, all 3 priming solutions significantly reduced the INTEM and EXTEM maximum clot firmness. The HES-containing priming solution induced the largest decrease in the maximum clot firmness attributed to fibrinogen, from 13 +/- 1 mm (baseline) to 6 +/- 1 mm (p < 0.01 v baseline). All studied priming solutions prolonged coagulation time and decreased clot formation, but the fibrinogen-limiting effect was the most profound for the HES-containing priming solution. These results suggest that the composition of priming solutions may distinctly affect blood clot formation, in particular with respect to the fibrinogen component in hemostasis. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Improving the Efficiency of 3-D Hydrogeological Mixers: Dilution Enhancement Via Coupled Engineering-Induced Transient Flows and Spatial Heterogeneity

    NASA Astrophysics Data System (ADS)

    Di Dato, Mariaines; de Barros, Felipe P. J.; Fiori, Aldo; Bellin, Alberto

    2018-03-01

    Natural attenuation and in situ oxidation are commonly considered as low-cost alternatives to ex situ remediation. The efficiency of such remediation techniques is hindered by difficulties in obtaining good dilution and mixing of the contaminant, in particular if the plume deformation is physically constrained by an array of wells, which serves as a containment system. In that case, dilution may be enhanced by inducing an engineered sequence of injections and extractions from such pumping system, which also works as a hydraulic barrier. This way, the aquifer acts as a natural mixer, in a manner similar to the industrialized engineered mixers. Improving the efficiency of hydrogeological mixers is a challenging task, owing to the need to use a 3-D setup while relieving the computational burden. Analytical solutions, though approximated, are a suitable and efficient tool to seek the optimum solution among all possible flow configurations. Here we develop a novel physically based model to demonstrate how the combined spatiotemporal fluctuations of the water fluxes control solute trajectories and residence time distributions and therefore, the effectiveness of contaminant plume dilution and mixing. Our results show how external forcing configurations are capable of inducing distinct time-varying groundwater flow patterns which will yield different solute dilution rates.

  6. Rheological observation of glassy dynamics of dilute polymer solutions near the coil-stretch transition in elongational flows.

    PubMed

    Sridhar, T; Nguyen, D A; Prabhakar, R; Prakash, J Ravi

    2007-04-20

    It has long been conjectured that the macroscopic dynamics of dilute polymer solutions may exhibit a glasslike slowdown caused by ergodicity breaking, in the vicinity of the coil-stretch transition in elongational flows. We report experimental observations using a filament stretching rheometer that confirm the existence of such glassy states. It is observed that different time-dependent elongational strain-rate profiles lead to a pronounced history dependence and aging effects within a narrow range of strain rates. The results have a direct bearing on the analysis and design of processes employing dilute polymer solutions, such as ink-jet printing, surface coating, and turbulent-drag reduction.

  7. 21 CFR 175.270 - Poly(vinyl fluoride) resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...(vinyl fluoride) basic resins have an intrinsic viscosity of not less than 0.75 deciliter per gram as determined by ASTM method D1243-79, “Standard Test Method for Dilute Solution Viscosity of Vinyl Chloride... (ASTM method D1243-79, “Standard Test Method for Dilute Solution Viscosity of Vinyl Chloride Polymers...

  8. Concentration-discharge responses to storm events in coastal California watersheds

    NASA Astrophysics Data System (ADS)

    Aguilera, R.; Melack, J. M.

    2017-12-01

    Storm events in montane catchments are the main cause of mobilization of solutes and particulates into and within stream channels in coastal California. Non-linear behavior of nutrients and suspended sediments during storms is evident in the hysteresis that arises in concentration-discharge (C-Q) relationships. We examined patterns in the C-Q hysteresis of nutrients (NO3-, NH4+, DON and PO43-) and total suspended solids (TSS) during storms across ten sites and water years 2002 to 2015 by quantifying the slope of the C-Q relationship and the rotational pattern of the hysteresis loop. We observed several hysteresis types: constituents associated with sediment transport (PO43- and TSS) were flushed during storm events, whereas nitrogen species had hysteretic responses such as dilution with clockwise rotation in urban sites and enrichment with anti-clockwise rotation in undeveloped sites. The wide range of C-Q responses that occurred among sites and seasons reflected the variable hydrological and biogeochemical characteristics of catchments and storms. Storm responses for nitrate in nested catchments differed in slope and rotation of C-Q hysteresis. Upland undeveloped and lowland urban sites had anti-clockwise rotation at the onset of the rainy season following a dry year, which implied a delay in the transport of this solute to the streams. By the middle of the season, the urban site switched from dilution to enrichment, and then again to dilution with clockwise rotation, which implied high initial concentrations and proximal sources by the end of the season.

  9. Premicellar and micelle formation behavior of dye surfactant ion pairs in aqueous solutions: deprotonation of dye in ion pair micelles.

    PubMed

    Gohain, Biren; Dutta, Robin K

    2008-07-15

    The premicellar and micelle formation behavior of dye surfactant ion pairs in aqueous solutions monitored by surface tension and spectroscopic measurements has been described. The measurements have been made for three anionic sulfonephthalein dyes and cationic surfactants of different chain lengths, head groups, and counterions. The observations have been attributed to the formation of closely packed dye surfactant ion pairs which is similar to nonionic surfactants in very dilute concentrations of the surfactant. These ion pairs dominate in the monolayer at the air-water interface of the aqueous dye surfactant solutions below the CMC of the pure surfactant. It has been shown that the dye in the ion pair deprotonates on micelle formation by the ion pair surfactants at near CMC but submicellar surfactant concentrations. The results of an equilibrium study at varying pH agree with the model of deprotonated 1:1 dye-surfactant ion pair formation in the near CMC submicellar solutions. At concentrations above the CMC of the cationic surfactant the dye is solubilized in normal micelles and the monolayer at the air-water interface consists of the cationic surfactant alone even in the presence of the dyes.

  10. Temperature invariance of NaCl solubility in water: inferences from salt-water cluster behavior of NaCl, KCl, and NH4Cl.

    PubMed

    Bharmoria, Pankaj; Gupta, Hariom; Mohandas, V P; Ghosh, Pushpito K; Kumar, Arvind

    2012-09-27

    The growth and stability of salt-water clusters have been experimentally studied in aqueous solutions of NaCl, KCl, and NH(4)Cl from dilute to near-saturation conditions employing dynamic light scattering and zeta potential measurements. In order to examine cluster stability, the changes in the cluster sizes were monitored as a function of temperature. Compared to the other cases, the average size of NaCl-water clusters remained almost constant over the studied temperature range of 20-70 °C. Information obtained from the temperature-dependent solution compressibility (determined from speed of sound and density measurements), multinuclear NMR ((1)H, (17)O, (35)Cl NMR), and FTIR were utilized to explain the cluster behavior. Comparison of NMR chemical shifts of saturated salt solutions with solid-state NMR data of pure salts, and evaluation of spectral modifications in the OH stretch region of saturated salt solutions as compared to that of pure water, provided important clues on ion pair-water interactions and water structure in the clusters. The high stability and temperature independence of the cluster sizes in aqueous NaCl shed light on the temperature invariance of its solubility.

  11. Liquid-liquid phase separation in dilute solutions of poly(styrene sulfonate) with multivalent cations: Phase diagrams, chain morphology, and impact of temperature

    NASA Astrophysics Data System (ADS)

    Hansch, Markus; Hämisch, Benjamin; Schweins, Ralf; Prévost, Sylvain; Huber, Klaus

    2018-01-01

    The dilute solution behavior of sodium poly(styrene sulfonate) is studied in the presence of trivalent Al3+ and bivalent Ba2+ cations at various levels of excess NaCl. The study evaluates the phase behavior and the morphology of the polyelectrolyte chains with increasing extent of decoration with the Al3+ and Ba2+ cations and analyses the effect of temperature on these decorated chains. The phase behavior is presented in the form of the cation concentration versus the respective poly(styrene sulfonate) concentration, recorded at the onset of precipitation. Whereas poly(styrene sulfonate) with Al3+ exhibits a linear phase boundary, denoted as the "threshold line," which increases with increasing poly(styrene sulfonate) concentration, Ba2+ cations show a threshold line which is independent of the poly(styrene sulfonate) concentration. An additional re-entrant phase, at considerably higher cation content than those of the threshold lines, is observed with Al3+ cations but not with Ba2+ cations. The threshold line and the re-entrant phase boundary form parts of the liquid-liquid phase boundary observed at the limit of low polymer concentration. The dimensions of the polyelectrolyte chains shrink considerably while approaching the respective threshold lines on increase of the Al3+ and Ba2+ cation content. However, subtle differences occur between the morphological transformation induced by Al3+ and Ba2+. Most strikingly, coils decorated with Al3+ respond very differently to temperature variations than coils decorated with Ba2+ do. As the temperature increases, the poly(styrene sulfonate) chains decrease their size in the presence of Al3+ cations but increase in size in the presence of Ba2+ cations.

  12. A model for complex flows of soft glassy materials with application to flows through fixed fiber beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Arijit; Koch, Donald L., E-mail: dlk15@cornell.edu

    2015-11-15

    The soft glassy rheology (SGR) model has successfully described the time dependent simple shear rheology of a broad class of complex fluids including foams, concentrated emulsions, colloidal glasses, and solvent-free nanoparticle-organic hybrid materials (NOHMs). The model considers a distribution of mesoscopic fluid elements that hop from trap to trap at a rate which is enhanced by the work done to strain the fluid element. While an SGR fluid has a broad exponential distribution of trap energies, the rheology of NOHMs is better described by a narrower energy distribution and we consider both types of trap energy distributions in this study.more » We introduce a tensorial version of these models with a hopping rate that depends on the orientation of the element relative to the mean stress field, allowing a range of relative strengths of the extensional and simple shear responses of the fluid. As an application of these models we consider the flow of a soft glassy material through a dilute fixed bed of fibers. The dilute fixed bed exhibits a range of local linear flows which alternate in a chaotic manner with time in a Lagrangian reference frame. It is amenable to an analytical treatment and has been used to characterize the strong flow response of many complex fluids including fiber suspensions, dilute polymer solutions and emulsions. We show that the accumulated strain in the fluid elements has an abrupt nonlinear growth at a Deborah number of order one in a manner similar to that observed for polymer solutions. The exponential dependence of the hopping rate on strain leads to a fluid element deformation that grows logarithmically with Deborah number at high Deborah numbers. SGR fluids having a broad range of trap energies flowing through fixed beds can exhibit a range of rheological behaviors at small Deborah numbers ranging from a yield stress, to a power law response and finally to Newtonian behavior.« less

  13. Separation and concentration of lower alcohols from dilute aqueous solutions

    DOEpatents

    Moore, Raymond H.; Eakin, David E.; Baker, Eddie G.; Hallen, Richard T.

    1991-01-01

    A process for producing, from a dilute aqueous solution of a lower (C.sub.1 -C.sub.5) alcohol, a concentrated liquid solution of the alcohol in an aromatic organic solvent is disclosed. Most of the water is removed from the dilute aqueous solution of alcohol by chilling sufficiently to form ice crystals. Simultaneously, the remaining liquid is extracted at substantially the same low temperature with a liquid organic solvent that is substantially immiscible in aqueous liquids and has an affinity for the alcohol at that temperature, causing the alcohol to transfer to the organic phase. After separating the organic liquid from the ice crystals, the organic liquid can be distilled to enrich the concentration of alcohol therein. Ethanol so separated from water and concentrated in an organic solvent such as toluene is useful as an anti-knock additive for gasoline.

  14. Bidentate organophosphorus solvent extraction process for actinide recovery and partition

    DOEpatents

    Schulz, Wallace W.

    1976-01-01

    A liquid-liquid extraction process for the recovery and partitioning of actinide values from acidic nuclear waste aqueous solutions, the actinide values including trivalent, tetravalent and hexavalent oxidation states is provided and includes the steps of contacting the aqueous solution with a bidentate organophosphorous extractant to extract essentially all of the actinide values into the organic phase. Thereafter the respective actinide fractions are selectively partitioned into separate aqueous solutions by contact with dilute nitric or nitric-hydrofluoric acid solutions. The hexavalent uranium is finally removed from the organic phase by contact with a dilute sodium carbonate solution.

  15. High-throughput ab-initio dilute solute diffusion database.

    PubMed

    Wu, Henry; Mayeshiba, Tam; Morgan, Dane

    2016-07-19

    We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world.

  16. Surface coverage and corrosion inhibition effect of Rosmarinus officinalis and zinc oxide on the electrochemical performance of low carbon steel in dilute acid solutions

    NASA Astrophysics Data System (ADS)

    Loto, Roland Tolulope

    2018-03-01

    Electrochemical analysis of the corrosion inhibition and surface protection properties of the combined admixture of Rosmarinus officinalis and zinc oxide on low carbon steel in 1 M HCl and H2SO4 solution was studied by potentiodynamic polarization, open circuit potential measurement, optical microscopy and ATR-FTIR spectroscopy. Results obtained confirmed the compound to be more effective in HCl solution, with optimal inhibition efficiencies of 93.26% in HCl and 87.7% in H2SO4 acid solutions with mixed type inhibition behavior in both acids. The compound shifts the corrosion potential values of the steel cathodically in HCl and anodically in H2SO4 signifying specific corrosion inhibition behavior without applied potential. Identified functional groups of alcohols, phenols, 1°, 2° amines, amides, carbonyls (general), esters, saturated aliphatic, carboxylic acids, ethers, aliphatic amines, alkenes, aromatics, alkyl halides and alkynes within the compound completely adsorbed onto the steel forming a protective covering. Thermodynamic calculations showed physisorption molecular interaction with the steel's surface according to Langmuir and Frumkin adsorption isotherms. Optical microscopy images of the inhibited and uninhibited steels contrast each other with steel specimens from HCl solution showing a better morphology.

  17. Solubilization of benomyl for xylem injection in vascular wilt disease control

    Treesearch

    Percy McWain; Garold F. Gregory; Garold F. Gregory

    1971-01-01

    Benomyl, in varying amounts, was solubilized in several solvents, thus allowing injection into trees for fungus disease prevention and therapy. A large amount of benomyl can be solubilized in diluted lactic acid. The resulting solution can be infinitely diluted with water without pre-cipitation. These characteristics make it the current solution of choice for our tree...

  18. Dynamics of falling droplet and elongational properties of dilute nonionic surfactant solutions with drag-reducing ability

    NASA Astrophysics Data System (ADS)

    Tamano, Shinji; Ohashi, Yota; Morinishi, Yohei

    2017-05-01

    The dynamics of the falling droplet through a nozzle for dilute nonionic surfactant (oleyl-dimethylamine oxide, ODMAO) aqueous solutions with viscoelastic and drag-reducing properties were investigated at different concentrations of ODMAO solutions Cs = 500, 1000, and 1500 ppm by weight. The effects of the flow rate and tube outer diameter on the length of the filament, which was the distance between the tube exit and the lower end of a droplet at the instant when the droplet almost detached from the tube, were clarified by flow visualization measurements by a high-speed video camera. Two types of breaking-off processes near the base of the droplet and within the filament were classified by the Ohnesorge number Oh and the Weber number We. In the regime of the higher Oh and We, the length of the filament became drastically larger at Cs = 1000 and 1500 ppm, whose high spinnability represented the strong viscoelasticity of ODMAO solutions. In the case where the filament was broken up near the lower end of the neck and thinning in time, the thinning of the diameter of the filament was measured by a light-emitting diode micrometer. As for the elasto-capillary thinning of dilute nonionic surfactant solutions, the initial necking process was similar to that of Newtonian fluids and then followed the exponential thinning like polymer solutions. The apparent elongational viscosity of the dilute nonionic surfactant solution was evaluated in the elasto-capillary thinning regime, in which the elongation rate was almost constant. At Cs = 1000 and 1500 ppm, the Trouton ratio, which was the ratio of the apparent elongational viscosity to the shear viscosity, was found to be several orders of magnitude larger than that of Newtonian fluids, while the shear viscosity measured by the capillary viscometer was almost the same order of the Newtonian fluids. The higher elongational property would be closely related to the higher drag-reducing ability of dilute nonionic surfactant solutions.

  19. Characterizing monoclonal antibody formulations in arginine glutamate solutions using 1H NMR spectroscopy

    PubMed Central

    Kheddo, Priscilla; Cliff, Matthew J.; Uddin, Shahid; van der Walle, Christopher F.; Golovanov, Alexander P.

    2016-01-01

    ABSTRACT Assessing how excipients affect the self-association of monoclonal antibodies (mAbs) requires informative and direct in situ measurements for highly concentrated solutions, without sample dilution or perturbation. This study explores the application of solution nuclear magnetic resonance (NMR) spectroscopy for characterization of typical mAb behavior in formulations containing arginine glutamate. The data show that the analysis of signal intensities in 1D 1H NMR spectra, when compensated for changes in buffer viscosity, is invaluable for identifying conditions where protein-protein interactions are minimized. NMR-derived molecular translational diffusion rates for concentrated solutions are less useful than transverse relaxation rates as parameters defining optimal formulation. Furthermore, NMR reports on the solution viscosity and mAb aggregation during accelerated stability study assessment, generating data consistent with that acquired by size-exclusion chromatography. The methodology developed here offers NMR spectroscopy as a new tool providing complementary information useful to formulation development of mAbs and other large therapeutic proteins. PMID:27589351

  20. Characterizing monoclonal antibody formulations in arginine glutamate solutions using 1H NMR spectroscopy.

    PubMed

    Kheddo, Priscilla; Cliff, Matthew J; Uddin, Shahid; van der Walle, Christopher F; Golovanov, Alexander P

    2016-10-01

    Assessing how excipients affect the self-association of monoclonal antibodies (mAbs) requires informative and direct in situ measurements for highly concentrated solutions, without sample dilution or perturbation. This study explores the application of solution nuclear magnetic resonance (NMR) spectroscopy for characterization of typical mAb behavior in formulations containing arginine glutamate. The data show that the analysis of signal intensities in 1D 1 H NMR spectra, when compensated for changes in buffer viscosity, is invaluable for identifying conditions where protein-protein interactions are minimized. NMR-derived molecular translational diffusion rates for concentrated solutions are less useful than transverse relaxation rates as parameters defining optimal formulation. Furthermore, NMR reports on the solution viscosity and mAb aggregation during accelerated stability study assessment, generating data consistent with that acquired by size-exclusion chromatography. The methodology developed here offers NMR spectroscopy as a new tool providing complementary information useful to formulation development of mAbs and other large therapeutic proteins.

  1. Dielectric dispersion of short single-stranded DNA in aqueous solutions with and without added salt.

    PubMed

    Katsumoto, Yoichi; Omori, Shinji; Yamamoto, Daisuke; Yasuda, Akio; Asami, Koji

    2007-01-01

    Dielectric spectroscopy measurements were performed for aqueous solutions of short single-stranded DNA with 30 to 120 bases of thymine over a frequency range of 10;{5} to 10;{8}Hz . Dielectric dispersion was found to include two relaxation processes in the ranges from 10;{5} to 10;{6} and from 10;{6} to 10;{8}Hz , respectively, with the latter mainly discussed in this study. The dielectric increment and the relaxation time of the high-frequency relaxation of DNA in solutions without added salt exhibited concentration and polymer-length dependences eventually identical to those for dilute polyion solutions described in previous studies. For solutions with added salt, on the other hand, those dielectric parameters were independent of salt concentration up to a certain critical value and started to decrease with further increasing salt concentration. This critical behavior is well explained by our newly extended cell model that takes into account the spatial distribution of loosely bound counterions around DNA molecules as a function of salt concentration.

  2. Nanosized solvent superstructures in ultramolecular aqueous dilutions: twenty years' research using water proton NMR relaxation.

    PubMed

    Demangeat, Jean-Louis

    2013-04-01

    proton nuclear magnetic resonance (NMR) relaxation times T1, T2, T1/T2 are sensitive to motion and organization of water molecules. Especially, increase in T1/T2 reflects a higher degree of structuring. My purpose was to look at physical changes in water in ultrahigh aqueous dilutions. Samples were prepared by iterative centesimal (c) dilution with vigorous agitation, ranging between 3c and 24c (Avogadro limit 12c). Solutes were silica-lactose, histamine, manganese-lactose. Solvents were water, NaCl 0.15 M or LiCl 0.15 M. Solvents underwent strictly similar, simultaneous dilution/agitation, for each level of dilution, as controls. NMR relaxation was studied within 0.02-20 MHz. No changes were observed in controls. Increasing T1 and T1/T2 were found in dilutions, which persisted beyond 9c (manganese-lactose), 10c (histamine) and 12c (silica-lactose). For silica-lactose in LiCl, continuous decrease in T2 with increase in T1/T2 within the 12c-24c range indicated growing structuring of water despite absence of the initial solute. All changes vanished after heating/cooling. These findings were interpreted in terms of nanosized (>4-nm) supramolecular structures involving water, nanobubbles and ions, if any. Additional study of low dilutions of silica-lactose revealed increased T2 and decreased T1/T2 compared to solvent, within the 10(-3)-10(-6) range, reflecting transient solvent destructuring. This could explain findings at high dilution. Proton NMR relaxation demonstrated modifications of the solvent throughout the low to ultramolecular range of dilution. The findings suggested the existence of superstructures that originate stereospecifically around the solute after an initial destructuring of the solvent, developing more upon dilution and persisting beyond 12c. Copyright © 2013 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.

  3. Role of Anisotropic Interactions for Proteins and Patchy Nanoparticles

    PubMed Central

    2015-01-01

    Protein–protein interactions are inherently anisotropic to some degree, with orientation-dependent interactions between repulsive and attractive or complementary regions or “patches” on adjacent proteins. In some cases it has been suggested that such patch–patch interactions dominate the thermodynamics of dilute protein solutions, as captured by the osmotic second virial coefficient (B22), but delineating when this will or will not be the case remains an open question. A series of simplified but exactly solvable models are first used to illustrate that a delicate balance exists between the strength of attractive patch–patch interactions and the patch size, and that repulsive patch–patch interactions contribute significantly to B22 for only those conditions where the repulsions are long-ranged. Finally, B22 is reformulated, without approximations, in terms of the density of states for a given interaction energy and particle–particle distance. Doing so illustrates the inherent balance of entropic and energetic contributions to B22. It highlights that simply having strong patch–patch interactions will only cause anisotropic interactions to dominate B22 solution properties if the unavoidable entropic penalties are overcome, which cannot occur if patches are too small. The results also indicate that the temperature dependence of B22 may be a simple experimental means to assess whether a small number of strongly attractive configurations dominate the dilute solution behavior. PMID:25302767

  4. Investigation of factors affecting in vitro doxorubicin release from PEGylated liposomal doxorubicin for the development of in vitro release testing conditions.

    PubMed

    Shibata, Hiroko; Izutsu, Ken-Ichi; Yomota, Chikako; Okuda, Haruhiro; Goda, Yukihiro

    2015-01-01

    Establishing appropriate drug release testing methods of liposomal products for assuring quality and performance requires the determination of factors affecting in vitro drug release. In this study, we investigated the effects of test conditions (human plasma lot, pH/salt concentration in the test media, dilution factor, temperature, ultrasound irradiation, etc.), and liposomal preparation conditions (pH/concentration of ammonium sulfate solution), on doxorubicin (DXR) release from PEGylated liposomal DXR. Higher temperature and lower pH significantly increased DXR release. The evaluation of DXR solubility indicated that the high DXR release induced by low pH may be attributed to the high solubility of DXR at low pH. Ultrasound irradiation induced rapid DXR release in an amplitude-dependent manner. The salt concentration in the test solution, human plasma lot, and dilution factor had a limited impact on DXR-release. Variations in the ammonium sulfate concentration used in solutions for the formation/hydration of liposomes significantly affected DXR release behavior, whereas differences in pH did not. In addition, heating condition in phosphate-buffered saline at lower pH (<6.5) exhibited higher discriminative ability for the release profiles from various liposomes with different concentrations of ammonium sulfate than did ultrasound irradiation. These results are expected to be helpful in the process of establishing appropriate drug release testing methods for PEGylated liposomal DXR.

  5. Opalescence in monoclonal antibody solutions and its correlation with intermolecular interactions in dilute and concentrated solutions.

    PubMed

    Raut, Ashlesha S; Kalonia, Devendra S

    2015-04-01

    Opalescence indicates physical instability of a formulation because of the presence of aggregates or liquid-liquid phase separation in solution and has been reported for monoclonal antibody (mAb) formulations. Increased solution opalescence can be attributed to attractive protein-protein interactions (PPIs). Techniques including light scattering, AUC, or membrane osmometry are routinely employed to measure PPIs in dilute solutions, whereas opalescence is seen at relatively higher concentrations, where both long- and short-range forces contribute to overall PPIs. The mAb molecule studied here shows a unique property of high opalescence because of liquid-liquid phase separation. In this study, opalescence measurements are correlated to PPIs measured in diluted and concentrated solutions using light scattering (kD ) and high-frequency rheology (G'), respectively. Charges on the molecules were calculated using zeta potential measurements. Results indicate that high opalescence and phase separation are a result of the attractive interactions in solution; however, the presence of attractive interactions do not always imply phase separation. Temperature dependence of opalescence suggests that thermodynamic contribution to opalescence is significant and Tcloud can be utilized as a potential tool to assess attractive interactions in solution. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  6. Study on Latent Heat of Fusion of Ice in Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Kumano, Hiroyuki; Asaoka, Tatsunori; Saito, Akio; Okawa, Seiji

    In this study, latent heat of fusion of ice in aqueous solutions was measured to understand latent heat of fusion of ice slurries. Propylene glycol, ethylene glycol, ethanol, NaCl and NaNO3 solutions were examined as the aqueous solutions. In the measurement, pure ice was put into the solution, and the temperature variation of the solution due to the melting of the ice was measured. Then, the effective latent heat of fusion was calculated from energy balance equation. When ice melts in solution, the concentration of the solution varies due to the melting of the ice, and dilution heat must be considered. Therefore, the latent heat of fusion of ice in aqueous solutions was predicted by considering the effects of dilution and freezing-point depression. The latent heat of fusion was also measured by differential scanning calorimetry(DSC) to compare the results obtained from the experiments with that obtained by DSC. As the result, it was found that the effective latent heat of fusion of ice decreased with the increase of the concentration of solution, and the effective latent heat of fusion was calculated from latent heat of fusion of pure ice and the effects of freezing-point depression and the dilution heat.

  7. Electronic spectra and photophysics of platinum(II) complexes with alpha-diimine ligands - Solid-state effects. I - Monomers and ligand pi dimers

    NASA Technical Reports Server (NTRS)

    Miskowski, Vincent M.; Houlding, Virginia H.

    1989-01-01

    Two types of emission behavior for Pt(II) complexes containing alpha-diimine ligands have been observed in dilute solution. If the complex also has weak field ligands such as chloride, ligand field (d-d) excited states become the lowest energy excited states. If only strong field ligands are present, a diimine 3(pi-pi/asterisk/) state becomes the lowest. In none of the cases studied did metal-to-ligand charge transfer excited state lie lowest.

  8. Croconic acid - An absorber in the Venus clouds?

    NASA Technical Reports Server (NTRS)

    Hartley, Karen K.; Wolff, Andrew R.; Travis, Larry D.

    1989-01-01

    The absorbing species responsible for the UV cloud features and pale yellow hue of the Venus clouds is presently suggested to be the carbon monoxide-polymer croconic acid, which strongly absorbs in the blue and near-UV. Laboratory absorption-coefficient measurements of a dilute solution of croconic acid in sulfuric acid are used as the bases of cloud-scattering models; the Venus planetary albedo's observed behavior in the blue and near-UV are noted to be qualitatively reproduced. Attention is given to a plausible croconic acid-production mechanism for the Venus cloudtop region.

  9. Motor-mediated microtubule self-organization in dilute and semi-dilute filament solutions.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swaminathan, S.; Ziebert, F.; Aranson, I. S.

    We study molecular motor-induced microtubule self-organization in dilute and semi-dilute filament solutions. In the dilute case, we use a probabilistic model of microtubule interaction via molecular motors to investigate microtubule bundle dynamics. Microtubules are modeled as polar rods interacting through fully inelastic, binary collisions. Our model indicates that initially disordered systems of interacting rods exhibit an orientational instability resulting in spontaneous ordering. We study the existence and dynamic interaction of microtubule bundles analytically and numerically. Our results reveal a long term attraction and coalescing of bundles indicating a clear coarsening in the system; microtubule bundles concentrate into fewer orientations onmore » a slow logarithmic time scale. In semi-dilute filament solutions, multiple motors can bind a filament to several others and, for a critical motor density, induce a transition to an ordered phase with a nonzero mean orientation. Motors attach to a pair of filaments and walk along the pair bringing them into closer alignment. We develop a spatially homogenous, mean-field theory that explicitly accounts for a force-dependent detachment rate of motors, which in turn affects the mean and the fluctuations of the net force acting on a filament. We show that the transition to the oriented state can be both continuous and discontinuous when the force-dependent detachment of motors is important.« less

  10. Investigation of Possible Maillard Reaction Between Acyclovir and Dextrose upon Dilution Prior to Parenteral Administration.

    PubMed

    Siahi Shadbad, Mohammad Reza; Ghaderi, Faranak; Hatami, Leila; Monajjemzadeh, Farnaz

    2016-12-01

    In this study the stability of parenteral acyclovir (ACV) when diluted in dextrose (DEX) as large volume intravenous fluid preparation (LVIF) was evaluated and the possible Maillard reaction adducts were monitored in the recommended infusion time. Different physicochemical methods were used to evaluate the Maillard reaction of dextrose with ACV to track the reaction in real infusion condition. Other large volume intravenous fluids were checked regarding the diluted drug stability profile. Differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and mass data proved the reaction of glucose with dextrose. A Maillard-specific high performance liquid chromatography (HPLC) method was used to track the reaction in real infusion condition in vitro. The nucleophilic reaction occurred in diluted parenteral preparations of acyclovir in 5% dextrose solutions. The best diluent solution was also selected as sodium chloride and introduced based on drug stability and also its adsorption onto different infusion sets (PVC or non PVC) to provide an acceptable administration protocol in clinical practices. Although, the Maillard reaction was proved and successfully tracked in diluted solutions, and the level of drug loss when diluted in dextrose was reported to be between 0.27 up to 1.03% of the initial content. There was no drug adsorption to common infusion sets. The best diluent for parenteral acyclovir is sodium chloride large volume intravenous fluid.

  11. High-throughput ab-initio dilute solute diffusion database

    PubMed Central

    Wu, Henry; Mayeshiba, Tam; Morgan, Dane

    2016-01-01

    We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world. PMID:27434308

  12. High throughput workflow for coacervate formation and characterization in shampoo systems.

    PubMed

    Kalantar, T H; Tucker, C J; Zalusky, A S; Boomgaard, T A; Wilson, B E; Ladika, M; Jordan, S L; Li, W K; Zhang, X; Goh, C G

    2007-01-01

    Cationic cellulosic polymers find wide utility as benefit agents in shampoo. Deposition of these polymers onto hair has been shown to mend split-ends, improve appearance and wet combing, as well as provide controlled delivery of insoluble actives. The deposition is thought to be enhanced by the formation of a polymer/surfactant complex that phase-separates from the bulk solution upon dilution. A standard characterization method has been developed to characterize the coacervate formation upon dilution, but the test is time and material prohibitive. We have developed a semi-automated high throughput workflow to characterize the coacervate-forming behavior of different shampoo formulations. A procedure that allows testing of real use shampoo dilutions without first formulating a complete shampoo was identified. This procedure was adapted to a Tecan liquid handler by optimizing the parameters for liquid dispensing as well as for mixing. The high throughput workflow enabled preparation and testing of hundreds of formulations with different types and levels of cationic cellulosic polymers and surfactants, and for each formulation a haze diagram was constructed. Optimal formulations and their dilutions that give substantial coacervate formation (determined by haze measurements) were identified. Results from this high throughput workflow were shown to reproduce standard haze and bench-top turbidity measurements, and this workflow has the advantages of using less material and allowing more variables to be tested with significant time savings.

  13. Highly elastic polymer solutions under shear: Polymer migration, viscoelastic instabilities, and anomalous rheology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, M.J.; Muller, S.J.

    1996-12-31

    The use of highly elastic polymer solutions has been remarkably successful in elucidating the behavior of polymeric materials under flowing conditions. Here, we present the results of an extensive experimental study into the shear behavior of an athermal, dilute, binary polymer solution that is believed to be free of many of these effects. Under extended shearing, we observe the migration of polymer species: after shearing for several hundred hours, concentrations that are more than double the initial uniform value can be achieved. Although the solutions are well-described by dumbbell models in shear flows on short-time scales, theoretical predictions substantially underestimatemore » the rate of migration. Flow visualization and rheometric experiments suggest that the origin of this discrepancy could be the anomalous long-time rheology of these solutions. While these fluids display the well-known elastic instability in cone and plate flow above a critical Deborah number, extended shearing reveals that the toroidal secondary flow is eventually replaced by a purely azimuthal shearing flow. In addition, when sheared below the critical condition for the instability, the solutions exhibit a slow but reversible decay in normal stresses. The shear-induced migration of polymer species has been predicted by numerous theoretical studies. However, observations on the highly elastic polymer solutions that are most likely to show polymer migration, are complicated by a number of different physical processes that occur as a result of shearing. These phenomena, which include shear-induced phase separation, elastically-induced hydrodynamic instabilities, mixed solvent effects, shear-induced aggregation, and anomalous transient shear and normal stress behavior are often observed at times earlier than and at shear rates less than those where migration is predicted to occur; hence, the experimental detection of polymer migration has been thwarted by these other physical processes.« less

  14. Long-term stability study of clofarabine injection concentrate and diluted clofarabine infusion solutions.

    PubMed

    Kaiser, Jeanette; Krämer, Irene

    2012-06-01

    The aim of this study was to investigate the physicochemical stability of clofarabine (CAFdA) injection concentrate and ready-to-use CAFdA infusion solutions over a prolonged period of 28 days. To determine the stability of CAFdA infusion solutions, the injection concentrate (Evoltra®, 1 mg/mL, Genzyme) was diluted either with 0.9% sodium chloride or 5% glucose infusion solution. The resulting concentrations of 0.2 mg/mL or 0.6 mg/mL, respectively, were chosen to represent the lower and upper limit of the ordinary concentration range. Test solutions were stored under refrigeration (2-8°C) or at room temperature either light protected or exposed to light. CAFdA concentrations and pH values were determined at different time intervals throughout a 28-day storage period. Compatibility of diluted CAFdA infusion solutions (0.1-0.4 mg/mL) with different container materials (polyvinyl chloride (PVC), glass, and polypropylene/polyethylene (PP/PE)) was tested over a 48-h storage period. CAFdA concentrations were measured by a stability-indicating reversed phase high-performance liquid chromatography (HPLC) assay with ultraviolet detection. CAFdA injection concentrate and CAFdA infusion solutions remained physicochemically stable (>90% CAFdA) for 4 weeks. Results are independent of storage conditions, drug concentrations (0.2, 0.6, and 1.0 mg/mL) and diluents (0.9% sodium chloride, 5% glucose infusion solution). Adsorption of CAFdA to container material can be excluded. CAFdA injection concentrate and diluted infusion solutions in commonly used vehicles are stable for at least 28 days either refrigerated or at room temperature. Physicochemical stability favors pharmacy-based centralized preparation. Due to microbiological reasons, strict aseptic handling and storage of the products under refrigeration is recommended.

  15. Multiscale Roughness Influencing on Transport Behavior of Passive Solute through a Single Self-affine Fracture

    NASA Astrophysics Data System (ADS)

    Dou, Z.

    2017-12-01

    In this study, the influence of multi-scale roughness on transport behavior of the passive solute through the self-affine fracture was investigated. The single self-affine fracture was constructed by the successive random additions (SRA) and the fracture roughness was decomposed into two different scales (i.e. large-scale primary roughness and small-scale secondary roughness) by the Wavelet analysis technique. The fluid flow in fractures, which was characterized by the Forchheimer's law, showed the non-linear flow behaviors such as eddies and tortuous streamlines. The results indicated that the small-scale secondary roughness was primarily responsible for the non-linear flow behaviors. The direct simulations of asymptotic passive solute transport represented the Non-Fickian transport characteristics (i.e. early arrivals and long tails) in breakthrough curves (BTCs) and residence time distributions (RTDs) with and without consideration of the secondary roughness. Analysis of multiscale BTCs and RTDs showed that the small-scale secondary roughness played a significant role in enhancing the Non-Fickian transport characteristics. We found that removing small-scale secondary roughness led to the lengthening arrival and shortening tail. The peak concentration in BTCs decreased as the secondary roughness was removed, implying that the secondary could also enhance the solute dilution. The estimated BTCs by the Fickian advection-dispersion equation (ADE) yielded errors which decreased with the small-scale secondary roughness being removed. The mobile-immobile model (MIM) was alternatively implemented to characterize the Non-Fickian transport. We found that the MIM was more capable of estimating Non-Fickian BTCs. The small-scale secondary roughness resulted in the decreasing mobile domain fraction and the increasing mass exchange rate between immobile and mobile domains. The estimated parameters from the MIM could provide insight into the inherent mechanism of roughness-induced Non-Fickian transport behaviors.

  16. Process of concentrating ethanol from dilute aqueous solutions thereof

    DOEpatents

    Oulman, C.S.; Chriswell, C.D.

    1981-07-07

    Relatively dilute aqueous solutions of ethanol are concentrated by passage through a bed of a crystalline silica polymorph, such as silicalite, to adsorb the ethanol with residual dilute feed in contact with the bed, which is displaced by passing concentrated aqueous ethanol through the bed without displacing the adsorbed ethanol. A product concentrate is then obtained by removing the adsorbed ethanol from the bed together with at least a portion of the concentrated aqueous ethanol used as the displacer liquid. This process permits ethanol to be concentrated from dilute fermentation beers, which may contain from 6 to 10% ethanol, to obtain a concentrate product at very low energy cost having an ethanol concentration in excess of 95%, such as a concentration of from 98 to 99.5%. 5 figs.

  17. Process of concentrating ethanol from dilute aqueous solutions thereof

    DOEpatents

    Oulman, Charles S. [Ames, IA; Chriswell, Colin D. [Slater, IA

    1981-07-07

    Relatively dilute aqueous solutions of ethanol are concentrated by passage through a bed of a crystalline silica polymorph, such as silicalite, to adsorb the ethanol with residual dilute feed in contact with the bed, which is displaced by passing concentrated aqueous ethanol through the bed without displacing the adsorbed ethanol. A product concentrate is then obtained by removing the adsorbed ethanol from the bed together with at least a portion of the concentrated aqueous ethanol used as the displacer liquid. This process permits ethanol to be concentrated from dilute fermentation beers, which may contain from 6 to 10% ethanol, to obtain a concentrate product at very low energy cost having an ethanol concentration in excess of 95%, such as a concentration of from 98 to 99.5%.

  18. SEPARATION OF THORIUM FROM URANIUM

    DOEpatents

    Bane, R.W.

    1959-09-01

    A description is given for the separation of thorium from uranium by forming an aqueous acidic solution containing ionic species of thorium, uranyl uranium, and hydroxylamine, flowing the solution through a column containing the phenol-formaldehyde type cation exchange resin to selectively adsorb substantially all the thorium values and a portion of the uranium values, flowing a dilute solution of hydrochloric acid through the column to desorb the uranium values, and then flowing a dilute aqueous acidic solution containing an ion, such as bisulfate, which has a complexing effect upon thortum through the column to desorb substantially all of the thorium.

  19. Increase in Ice Nucleation Efficiency of Feldspars, Kaolinite and Mica in Dilute NH3 and NH4+-containing Solutions

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Marcolli, C.; Luo, B.; Krieger, U. K.; Peter, T.

    2017-12-01

    Semivolatile species present in the atmosphere are prone to adhere to mineral dust particle surfaces during long range transport, and could potentially change the particle surface properties and its ice nucleation (IN) efficiency. Immersion freezing experiments were performed with microcline (K-feldspar), known to be highly IN active, suspended in aqueous solutions of ammonia, (NH4)2SO4, NH4HSO4, NH4NO3, NH4Cl, Na2SO4, H2SO4, K2SO4 and KCl to investigate the effect of solutes on the IN efficiency. Freezing of emulsified droplets investigated with a differential scanning calorimeter (DSC) showed that the heterogeneous ice nucleation temperatures deviate from the water activity-based IN theory, describing heterogeneous ice nucleation temperatures as a function of solution water activity by a constant offset with respect to the ice melting point curve (Zobrist et al. 2008). IN temperatures enhanced up to 4.5 K were observed for very dilute NH3 and NH4+-containing solutions while a decrease was observed as the concentration was further increased. For all solutes with cations other than NH4+, the IN efficiency decreased. An increase of the IN efficiency in very dilute NH3 and NH4+-containing solutions followed by a decrease with increasing concentration was also observed for sanidine (K-feldspar) and andesine (Na/Ca-feldspar). This is an important indication towards specific chemical interactions between solutes and the feldspar surface which is not captured by the water activity-based IN theory. A similar trend is present but less pronounced in case of kaolinite and mica, while quartz is barely affected. We hypothesize that the hydrogen bonding of NH3 molecules with surface -OH groups could be the reason for the enhanced freezing temperatures in dilute ammonia and ammonium containing solutions as they could form an ice-like overlayer providing hydrogen bonding groups for ice to nucleate on top of it. This implies to possibilities of enhanced IN efficiency, especially in mixed-phase cloud regime, of ammonium sulfate coated mineral dust particles in the condensation mode when the coating dilutes during cloud droplet activation.

  20. Process for strontium-82 separation

    DOEpatents

    Heaton, Richard C.; Jamriska, Sr., David J.; Taylor, Wayne A.

    1992-01-01

    A process for selective separation of strontium-82 and strontium-85 from proton irradiated molybdenum targets comprises dissolving the molybdenum target in a hydrogen peroxide solution to form a first solution containing ions selected from a group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium, rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, and yttrium; passing the solution through a first cationic resin whereby ions selected from a group consisting of zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium a portion of zirconium and a portion of rubidium are selectively absorbed by the first resin; contacting the first resin with an acid solution to strip and remove the absorbed ions from the first cationic exchange resin to form a second solution; evaporating the second solution for a time sufficient to remove substantially all of the acid and water from the solution whereby a residue remains; dissolving the residue in a dilute acid to form a third solution; passing the third solution through a second cationic resin whereby the ions are absorbed by the second resin; contacting the second resin with a dilute sulfuric acid solution whereby the absorbed ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium and zirconium are selectively removed from the second resin; and contacting the second resin with a dilute acid solution whereby the absorbed strontium ions are selectively removed.

  1. Process for strontium-82 separation

    DOEpatents

    Heaton, R.C.; Jamriska, D.J. Sr.; Taylor, W.A.

    1992-12-01

    A process for selective separation of strontium-82 and strontium-85 from proton irradiated molybdenum targets comprises dissolving the molybdenum target in a hydrogen peroxide solution to form a first solution containing ions selected from a group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium, rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, and yttrium; passing the solution through a first cationic resin whereby ions selected from a group consisting of zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium a portion of zirconium and a portion of rubidium are selectively absorbed by the first resin; contacting the first resin with an acid solution to strip and remove the absorbed ions from the first cationic exchange resin to form a second solution; evaporating the second solution for a time sufficient to remove substantially all of the acid and water from the solution whereby a residue remains; dissolving the residue in a dilute acid to form a third solution; passing the third solution through a second cationic resin whereby the ions are absorbed by the second resin; contacting the second resin with a dilute sulfuric acid solution whereby the absorbed ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium and zirconium are selectively removed from the second resin; and contacting the second resin with a dilute acid solution whereby the absorbed strontium ions are selectively removed. 1 fig.

  2. Concentration-Discharge Responses to Storm Events in Coastal California Watersheds

    NASA Astrophysics Data System (ADS)

    Aguilera, Rosana; Melack, John M.

    2018-01-01

    Storm events in montane catchments are the main cause of mobilization of solutes and particulates into and within stream channels in coastal California. Nonlinear behavior of nutrients and suspended sediments during storms is evident in the hysteresis that arises in concentration-discharge (C-Q) relationships. We examined patterns in the C-Q hysteresis of nutrients (NO3-, NH4+, DON, and PO43-) and total suspended solids (TSS) during storms across 10 sites and water years 2002-2015 by quantifying the slope of the C-Q relationship and the rotational pattern of the hysteresis loop. We observed several hysteresis types in the ˜400 storms included in our study. Concentrations of constituents associated with sediment transport (PO43- and TSS) peaked during high flows. Conversely, nitrogen species had hysteretic responses such as dilution with clockwise rotation in urban sites and enrichment with anticlockwise rotation in undeveloped sites. The wide range of C-Q responses that occurred among sites and seasons reflected the variable hydrological and biogeochemical characteristics of catchments and storms. Responses for nitrate in nested catchments differed in slope and rotation of C-Q hysteresis. Upland undeveloped and lowland urban sites had anticlockwise rotation at the onset of the rainy season following a dry year, which implied a delay in the transport of this solute to the streams. Slopes by the middle of the rainy season showed that the urban site switched from dilution to enrichment, and then again to dilution with clockwise rotation at the end of the season, which implied high initial concentrations and proximal sources.

  3. An isotherm-based thermodynamic model of multicomponent aqueous solutions, applicable over the entire concentration range.

    PubMed

    Dutcher, Cari S; Ge, Xinlei; Wexler, Anthony S; Clegg, Simon L

    2013-04-18

    In previous studies (Dutcher et al. J. Phys. Chem. C 2011, 115, 16474-16487; 2012, 116, 1850-1864), we derived equations for the Gibbs energy, solvent and solute activities, and solute concentrations in multicomponent liquid mixtures, based upon expressions for adsorption isotherms that include arbitrary numbers of hydration layers on each solute. In this work, the long-range electrostatic interactions that dominate in dilute solutions are added to the Gibbs energy expression, thus extending the range of concentrations for which the model can be used from pure liquid solute(s) to infinite dilution in the solvent, water. An equation for the conversion of the reference state for solute activity coefficients to infinite dilution in water has been derived. A number of simplifications are identified, notably the equivalence of the sorption site parameters r and the stoichiometric coefficients of the solutes, resulting in a reduction in the number of model parameters. Solute concentrations in mixtures conform to a modified Zdanovskii-Stokes-Robinson mixing rule, and solute activity coefficients to a modified McKay-Perring relation, when the effects of the long-range (Debye-Hückel) term in the equations are taken into account. Practical applications of the equations to osmotic and activity coefficients of pure aqueous electrolyte solutions and mixtures show both satisfactory accuracy from low to high concentrations, together with a thermodynamically reasonable extrapolation (beyond the range of measurements) to extreme concentration and to the pure liquid solute(s).

  4. Bifurcations of a periodically forced microbial continuous culture model with restrained growth rate

    NASA Astrophysics Data System (ADS)

    Ren, Jingli; Yuan, Qigang

    2017-08-01

    A three dimensional microbial continuous culture model with a restrained microbial growth rate is studied in this paper. Two types of dilution rates are considered to investigate the dynamic behaviors of the model. For the unforced system, fold bifurcation and Hopf bifurcation are detected, and numerical simulations reveal that the system undergoes degenerate Hopf bifurcation. When the system is periodically forced, bifurcation diagrams for periodic solutions of period-one and period-two are given by researching the Poincaré map, corresponding to different bifurcation cases in the unforced system. Stable and unstable quasiperiodic solutions are obtained by Neimark-Sacker bifurcation with different parameter values. Periodic solutions of various periods can occur or disappear and even change their stability, when the Poincaré map of the forced system undergoes Neimark-Sacker bifurcation, flip bifurcation, and fold bifurcation. Chaotic attractors generated by a cascade of period doublings and some phase portraits are given at last.

  5. Nature and consequences of protein-protein interactions in high protein concentration solutions.

    PubMed

    Saluja, Atul; Kalonia, Devendra S

    2008-06-24

    High protein concentration solutions are becoming increasingly important in the pharmaceutical industry. The solution behavior of proteins at high concentrations can markedly differ from that predicted based on dilute solution analysis due to thermodynamic non-ideality in these solutions. The non-ideality observed in these systems is related to the protein-protein interactions (PPI). Different types of forces play a key role in determining the overall nature and extent of these PPI and their relative contributions are affected by solute and solvent properties. However, individual contributions of these forces to the solution properties of concentrated protein solutions are not fully understood. The role of PPI, driven by these intermolecular forces, in governing solution rheology and physical stability of high protein concentration solutions is discussed from the point of view of pharmaceutical product development. Investigation of protein self-association and aggregation in concentrated protein solutions is crucial for ensuring the safety and efficacy of the final product for the duration of the desired product shelf life. Understanding rheology of high concentration protein solutions is critical for addressing issues during product manufacture and administration of final formulation to the patient. To this end, analysis of solution viscoelastic character can also provide an insight into the nature of PPI affecting solution rheology.

  6. Heat aggregation studies of phycobilisomes, ferritin, insulin, and immunoglobulin by dynamic light scattering.

    PubMed

    Singh, B P; Bohidar, H B; Chopra, S

    1991-10-15

    Dynamic laser light scattering studies on the heat aggregation behavior of phycobilisomes (PBS), ferritin, insulin, and immunoglobulin (IgG) in dilute aqueous solutions has been reported. Except for PBS, results are reported for heat aggregation trends in these proteins for three different pH environments (4.0, 7.5, 9.1). For PBS, studies were performed only in the neutral buffer medium (pH 7.5). The experiments were performed in the very dilute concentration regime (between 0.23 and 1.8 gL-1). For all these samples heat aggregation and dissociation trends were found to be linear with temperature. Upon temperature reversal (self-cooling), hysteresis-like behavior observed in insulin was found to be predominantly large at pH 7.5. PBS, ferritin, and IgG showed no such behavior at any of three pH values, and retraced their path of aggregation while dissociating on temperature reversal. Heat aggregation and dissociation processes in ferritin were found to be independent of pH. The IgG samples showed smooth aggregation tendency only up to 35 degrees C in the buffer media pH 4.0 and 9.1, whereas for pH 7.0 the same could be observed until 60 degrees C. Low polydispersity in the correlation spectra was observed in case of all these samples.

  7. Energy drink enhances the behavioral effects of alcohol in adolescent mice.

    PubMed

    Krahe, Thomas E; Filgueiras, Cláudio C; da Silva Quaresma, Renata; Schibuola, Helen Gomes; Abreu-Villaça, Yael; Manhães, Alex C; Ribeiro-Carvalho, Anderson

    2017-06-09

    Mixing alcohol with energy drinks has become increasingly popular among teenagers and young adults due to the prevailing view that the stimulant properties of energy drinks decrease the depressant effects of alcohol. Surprisingly, in spite of energy drinks being heavily marketed to and consumed by adolescents, there is scarcely available preclinical data on the neurobehavioral effects of energy drinks mixed with alcohol during adolescence. Thus, here we examine the effects of the combined exposure to alcohol and energy drink on adolescent mice using a variety of behavioral tasks to assess locomotor activity, righting reflex and motor coordination. At postnatal day 40, male and female Swiss mice were assigned to the following experimental groups: alcohol diluted in energy drink (Ed+Etoh), alcohol diluted in water (Etoh) or controls (Ctrl: energy drink or water). Alcohol and energy drink (Red Bull) concentrations were 4g/kg and 8ml/kg, respectively, and all solutions were administered via oral gavage. When compared to Etoh mice, Ed+Etoh animals displayed greater locomotor activity and increased anxiety-like behaviors in the open-field, lost their righting reflexes sooner and displayed poorer motor coordination in the rotarod. Collectively, our findings indicate that alcohol-induced deficits in adolescent mice are worsened by energy drink and go against the view that the stimulant properties of energy drinks can antagonize the adverse effects of alcohol. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Electrodeionization method

    DOEpatents

    Lin, YuPo J.; Hestekin, Jamie; Arora, Michelle; St. Martin, Edward J.

    2004-09-28

    An electrodeionization method for continuously producing and or separating and/or concentrating ionizable organics present in dilute concentrations in an ionic solution while controlling the pH to within one to one-half pH unit method for continuously producing and or separating and/or concentrating ionizable organics present in dilute concentrations in an ionic solution while controlling the pH to within one to one-half pH unit.

  9. Dilute acid pretreatment of corncob for efficient sugar production

    Treesearch

    G.S. Wang; Jae-Won Lee; Junyong Zhu; Thomas W. Jeffries

    2011-01-01

    Aqueous dilute acid pretreatments of corncob were conducted using cylindrical pressure vessels in an oil bath. Pretreatments were conducted in a temperature range of 160–190 °C with acid-solution-to-solid-corncob ratio of 2. The acid concentration (v/v) in the pretreatment solution was varied from 0% to 0.7%, depending on temperature. This gives acid charge on ovendry-...

  10. Concentration fluctuations and dilution in aquifers

    NASA Astrophysics Data System (ADS)

    Kapoor, Vivek; Kitanidis, Peter K.

    1998-05-01

    The concentration of solute undergoing advection and local dispersion in a random hydraulic conductivity field is analyzed to quantify its variability and dilution. Detailed numerical evaluations of the concentration variance σc2 are compared to an approximate analytical description, which is based on a characteristic variance residence time (VRT), over which local dispersion destroys concentration fluctuations, and effective dispersion coefficients that quantify solute spreading rates. Key features of the analytical description for a finite size impulse input of solute are (1) initially, the concentration fields become more irregular with time, i.e., coefficient of variation, CV=σc/, increases with time ( being the mean concentration); (2) owing to the action of local dispersion, at large times (t > VRT), σc2 is a linear combination of 2 and (∂/∂xi)2, and the CV decreases with time (at the center, CV ≅ (N)1/2 VRT/t, N being the macroscopic dimensionality of the plume); (3) at early time, dilution and spreading can be severely disconnected; however, at large time the volume occupied by solute approaches that apparent from its spatial second moments; and (4) in contrast to the advection-local dispersion case, under advection alone, the CV grows unboundedly with time (at the center, CV ∝ tN/4), and spatial second moment is increasingly disconnected from dilution, as time progresses. The predicted large time evolution of dilution and concentration fluctuation measures is observed in the numerical simulations.

  11. Experimental investigation of the impact of compound-specific dispersion and electrostatic interactions on transient transport and solute breakthrough

    NASA Astrophysics Data System (ADS)

    Muniruzzaman, Muhammad; Rolle, Massimo

    2017-02-01

    This study investigates the effects of compound-specific diffusion/dispersion and electrochemical migration on transient solute transport in saturated porous media. We conducted laboratory bench-scale experiments, under advection-dominated regimes (seepage velocity: 0.5, 5, 25 m/d), in a quasi two-dimensional flow-through setup using pulse injection of multiple tracers (both uncharged and ionic species). Extensive sampling and measurement of solutes' concentrations (˜1500 samples; >3000 measurements) were performed at the outlet of the flow-through setup, at high spatial and temporal resolution. The experimental results show that compound-specific effects and charge-induced Coulombic interactions are important not only at low velocities and/or for steady state plumes but also for transient transport under high flow velocities. Such effects can lead to a remarkably different behavior of measured breakthrough curves also at very high Péclet numbers. To quantitatively interpret the experimental results, we used four modeling approaches: classical advection-dispersion equation (ADE), continuous time random walk (CTRW), dual-domain mass transfer model (DDMT), and a multicomponent ionic dispersion model. The latter is based on the multicomponent formulation of coupled diffusive/dispersive fluxes and was used to describe and explain the electrostatic effects of charged species. Furthermore, we determined experimentally the temporal profiles of the flux-related dilution index. This metric of mixing, used in connection with the traditional solute breakthrough curves, proved to be useful to correctly distinguish between plume spreading and mixing, particularly for the cases in which the sole analysis of integrated concentration breakthrough curves may lead to erroneous interpretation of plume dilution.

  12. [Super Liquid Crystalline Polysaccharides Produced by Ultimately-ecological Microreactors].

    PubMed

    Kaneko, Tatsuo; Okajima, Maiko K

    2018-01-01

     Cyanobacteria fix carbon dioxide and nitrogen from the atmosphere using solar energy to produce various biomolecules, and thus are regarded as ultimately ecological microreactors. Sacran is a cyanobacterial polysaccharide with a very high molecular weight of 29 Mg/mol, which is extracted from Aphanothece sacrum cyanobacterium mass-cultivated in freshwater environments such as river or spring. Sacran is a water-soluble heteropolysaccharide comprising more than 6 kinds of sugar residues and contains 12% sulfate anionic groups and 27% carboxyls. Sacran has a super-absorbent function of water, which can retain 6000 mL for 1 g specimen, due to very long hydrating chains. The value is much higher than hyaluronic acid or conventional super-absorbent polymers. Sacran exhibits self-orienting behavior in dilute solution at a concentration range over 0.25 wt%, which is quite low when compared with conventional liquid crystalline polysaccharides. Mesogenic helical chains of sacrans have extremely high aspect ratios of 1600 for highly persistent lengths of 32 micrometer. Through the liquid crystallinity, sacran solution shows a shear-thinning behavior and the solution spread over a substrate such as biological skin very efficiently to create a thin layer. Applied on atopic dermatitis skin sacran solution exerts excellent moisturizing effect and anti-itching action.

  13. Dynamics of associative polymer solutions: Capillary break-up, jetting and rheology

    NASA Astrophysics Data System (ADS)

    Sharma, Vivek; Serdy, James G.; Threfall-Holmes, Phil; McKinley, Gareth H.

    2011-11-01

    Associative polymer solutions are used in extensively in the formulations for water-borne paints, food, inks, cosmetics, etc to control the rheology and processing behavior of multi-component dispersions. These complex dispersions are processed and used over a broad range of shear and extensional rates. Furthermore, the commercially relevant formulations use dilute solutions of associative polymers, which have low viscosity and short relaxation times, and hence their non-Newtonian response is not apparent in a conventional rheometer. In this talk, we explore several methods for systematically exploring the linear and nonlinear solution rheology of associative polymer dispersions, including: fractional model description of physical gelation, high frequency oscillatory tests at frequencies up to 10 kHz, microfluidic shear rheometry at deformation rates up to 1000000 /s and the influence of transient extensional rheology in the jet breakup. We show that high deformation rates can be obtained in jetting flows, and the growth and evolution of instability during jetting and break-up of these viscoelastic fluids shows the influence of both elasticity and extensibility.

  14. Dynamics of associative polymer solutions: Capillary break-up, jetting and rheology

    NASA Astrophysics Data System (ADS)

    Sharma, Vivek; Serdy, James G.; Threfall-Holmes, Phil; McKinley, Gareth H.

    2010-03-01

    Associative polymer solutions are used in extensively in the formulations for water-borne paints, food, inks, cosmetics, etc to control the rheology and processing behavior of multi-component dispersions. The commercially relevant formulations use dilute solutions of associative polymers, which have low viscosity and short relaxation times, and hence their non-Newtonian response is not apparent in a conventional rheometer. In this talk, we explore several methods for systematically exploring the linear and nonlinear solution rheology of associative polymer dispersions, including: high frequency oscillatory tests at frequencies up to 10 kHz, microfluidic shear rheometry at deformation rates up to 10^6 s-1 and the influence of transientextensional rheology in the jet breakup. The presence of inertial, elastic and viscous effects typically leads to complex dynamics in a necking fluid thread. We show that by carefully controlling the excitation frequency, it is possible to drive the break-up in a particularly simple and symmetric mode, which can be used to extract extensional viscosity information using capillary thinning analysis.

  15. Stern potential and Debye length measurements in dilute ionic solutions with electrostatic force microscopy.

    PubMed

    Kumar, Bharat; Crittenden, Scott R

    2013-11-01

    We demonstrate the ability to measure Stern potential and Debye length in dilute ionic solution with atomic force microscopy. We develop an analytic expression for the second harmonic force component of the capacitive force in an ionic solution from the linearized Poisson-Boltzmann equation. This allows us to calibrate the AFM tip potential and, further, obtain the Stern potential of sample surfaces. In addition, the measured capacitive force is independent of van der Waals and double layer forces, thus providing a more accurate measure of Debye length.

  16. THE INACTIVATION OF DILUTE SOLUTIONS OF CRYSTALLINE TRYPSIN BY X-RADIATION

    PubMed Central

    McDonald, Margaret R.

    1954-01-01

    The activity of dilute solutions of crystalline trypsin is destroyed by x-rays. The inactivation is an exponential function of the radiation dose. The reaction yield of inactivation is independent of the intensity at which the radiation is delivered or the quality of the x-rays. The reaction yield increases with increasing concentration of trypsin, varying from 0.06 to 0.7 micromoles per liter per 1000 r for trypsin solutions ranging from 1 x 10–7 to 2 x 10–4 M. PMID:13192318

  17. Antimicrobial and other properties of a new stabilized alkaline glutaraldehyde disinfectant/sterilizer.

    PubMed

    Miner, N A; McDowell, J W; Willcockson, G W; Bruckner, N I; Stark, R L; Whitmore, E J

    1977-04-01

    The properties of stabilized alkaline 2% glutaraldehyde solution (SGS) are discussed. SGS is discussed with regard to its chemistry, antimicrobial properties, organic soil resistance, toxicity, corrosivity and chemical stability. SGS retains the maximum antimicrobial activity of alkaline glutaraldehyde solutions and the chemical stability heretofore observed only with acidic glutaraldehyde solutions. These improvements, along with the inherent resistance of glutaraldehyde to neutralization by organic soil, allow SGS to be continuously used for 14 days in situations of high dilution, or 28 days in situations of low dilution.

  18. The Effects of Micromixing Two Solutions of Two Concentrations in a Two Tier PDMS Micromixer

    NASA Astrophysics Data System (ADS)

    Sundra, Sargunan; Fhong Soon, Chin; Zainal, Nurfarina; Sek Tee, Kian; Ahmad, Nornabihah; Gan, Siew Hua

    2017-08-01

    Micromixing technology has drastically advanced in the past few decades. Micromixers are one of the elements in integrated microfluidic systems for chemical, analytical chemistry, pharmaceutical, and biological applications. In this study, two tier micromixer was used to mix and dilute two solutions of similar and different concentration in order to investigate performance of micromixer’s mixing. This paper presents the fabrication of a designed micromixer using polydimethylsiloxane (PDMS) and vinyl tape methods which reduce time, cost and complexity of prototyping. The serpentine structure of the microchannels was designed to enhance both mixing and dilution. Two types of food dyes and distilled water were used to investigate the mixing performance of the micromixer followed by spectrophotometry analysis. It is observed that the single dye solution and distilled water shows better mixing performance compared to the micromixing of two dye solutions which was supported by the diffusion theory. 2.00 ml/min was the optimum flow rate that allow optimum mixing and dilution between two different concentrated liquids.

  19. THE PREPARATION AND PROPERTIES OF HIGHLY PURIFIED ASCORBIC ACID OXIDASE

    PubMed Central

    Powers, Wendell H.; Lewis, Stanley; Dawson, Charles R.

    1944-01-01

    1. A method is described for the preparation of a highly purified ascorbic acid oxidase containing 0.24 per cent copper. 2. Using comparable activity measurements, this oxidase is about one and a half times as active on a dry weight basis as the hitherto most highly purified preparation described by Lovett-Janison and Nelson. The latter contained 0.15 per cent copper. 3. The oxidase activity is proportional to the copper content and the proportionality factor is the same as that reported by Lovett-Janison and Nelson. 4. When dialyzed free of salt, the blue concentrated oxidase solutions precipitate a dark green-blue protein which carries the activity. This may be prevented by keeping the concentrated solutions about 0.1 M in Na2HPO4. 5. When highly diluted for activity measurements the oxidase rapidly loses activity (irreversibly) previous to the measurement, unless the dilution is made with a dilute inert protein (gelatin) solution. Therefore activity values obtained using such gelatin-stabilized dilute solutions of the oxidase run considerably higher than values obtained by the Lovett-Janison and Nelson technique. 6. The effect of pH and substrate concentration on the activity of the purified oxidase in the presence and absence of inert protein was studied. PMID:19873382

  20. Z-scan study of thermal nonlinearities in silicon naphthalocyanine-toluene solution with the excitations of the picosecond pulse train and nanosecond pulse

    NASA Astrophysics Data System (ADS)

    Yang, Sidney S.; Wei, Tai-Huei; Huang, Tzer-Hsiang; Chang, Yun-Ching

    2007-02-01

    Using the Z-scan technique, we studied the nonlinear absorption and refraction behaviors of a dilute toluene solution of a silicon naphthalocyanine (Si(OSi(n-hexyl)3)2, SiNc) at 532 nanometer with both a 2.8-nanosecond pulse and a 21-nanosecond (HW1/eM) pulse train containing 11 18-picosecond pulses 7 nanosecond apart. A thermal acoustic model and its steady-state approximation account for the heat generated by the nonradiative relaxations subsequent to the absorption. We found that when the steady-state approximation satisfactorily explained the results obtained with a 21-nanosecond pulse train, only the thermal-acoustic model fit the 2.8-nanosecond experimental results, which supports the approximation criterion established by Kovsh et al.

  1. Evaluation of microbeads of calcium alginate as a fluidized bed medium for affinity chromatography of Aspergillus niger Pectinase.

    PubMed

    Roy, Ipsita; Jain, Sulakshana; Teotia, Sunita; Gupta, Munishwar Nath

    2004-01-01

    Calcium alginate microbeads (212-425 microm) were prepared by spraying 2% (w/v) alginate solution into 1 M CaCl2 solution. The fluidization behavior of these beads was studied, and the bed expansion index and terminal velocity were found to be 4.3 and 1808 cm h(-1), respectively. Residence time distribution curves showed that the dispersion of the protein was much less with these microbeads than with conventionally prepared calcium alginate macrobeads when both kinds of beads were used for chromatography in a fluidized bed format. The fluidized bed of these beads was used for the purification of pectinase from a commercial preparation. The media performed well even with diluted feedstock; 90% activity recovery with 211-fold purification was observed.

  2. Colloid osmotic pressure and extravasation of plasma proteins following infusion of Ringer's acetate and hydroxyethyl starch 130/0.4.

    PubMed

    Zdolsek, J H; Bergek, C; Lindahl, T L; Hahn, R G

    2015-11-01

    During fluid infusion therapy, plasma proteins are diluted and leak from the intravascular space, which alters the colloid osmotic pressure (COP) and potentially affects coagulation. We hypothesised that acetated Ringer's and starch solution, alone or in combination, influence these mechanisms differently. On different occasions, 10 male volunteers were infused with 20 ml/kg acetated Ringer's and 10 ml/kg 6% hyroxyethyl starch 130/0.4 (Voluven(®) ) alone or in combination (first with starch solution followed by Ringer's solution). Blood samples were collected every 30-min for measurements of COP, blood haemoglobin, platelets, and plasma concentrations of albumin, immunoglobulins (IgG and IgM), coagulation factor VII (FVII), fibrinogen, cystatin C, activated partial thromboplastin time (APTT) and prothrombin international normalised ratio (PT-INR). Changes were compared with the haemoglobin-derived plasma dilution. The COP increased by 8.4% (SD 3) with starch and decreased by 26.2% (7.9) with Ringer's. These infusions diluted the plasma by 23.4% (5.3) and 18.7% (4.9) respectively. The COP changes in the combined experiment followed the same pattern as the individual infusions. Albumin and IgG changes in excess of the plasma dilution were very subtle. The intravascular contents of the IgM and platelets decreased, whereas FVII, fibrinogen and cystatin C increased. PT-INR increased by 1/3 of the plasma dilution, whereas changes in APTT did not correlate with the plasma dilution. The starch increased COP and only minor capillary leak occurred in healthy volunteers. The fluid-induced plasma dilution correlated with mild impairment of the extrinsic coagulation pathway but not of the intrinsic pathway. © 2015 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  3. Boiling characteristics of dilute polymer solutions and implications for the suppression of vapor explosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bang, K.H.; Kim, M.H.

    Quenching experiments of hot solid spheres in dilute aqueous solutions of polyethylene oxide polymer have been conducted for the purpose of investigating the physical mechanisms of the suppression of vapor explosions in this polymer solutions. Two spheres of 22.2mm and 9.5mm-diameter were tested in the polymer solutions of various concentrations at 30{degrees}C. Minimum film boiling temperature ({Delta}T{sub MFB}) in this highly-subcooled liquid rapidly decreased from over 700{degrees}c for pure water to about 150{degrees}C as the polymer concentration was increased up to 300ppm for 22.2mm sphere, and it decreased to 350{degrees}C for 9.5mm sphere. This rapid reduction of minimum film boilingmore » temperature in the PEO aqueous solutions can explain its ability of the suppression of spontaneous vapor explosions. The ability of suppression of vapor explosions by dilute polyethylene oxide solutions against an external trigger pressure was tested by dropping molten tin into the polymer solutions at 25{degrees}C. It was observed that in 50ppm solutions more mass fragmented than in pure water, but produced weaker explosion pressures. The explosion was completely suppressed in 300ppm solutions with the external trigger. The debris size distributions of fine fragments smaller than 0.7mm were shown almost identical regardless of the polymer concentrations.« less

  4. Effect of molecular topology on the transport properties of dendrimers in dilute solution at Θ temperature: A Brownian dynamics study

    NASA Astrophysics Data System (ADS)

    Bosko, Jaroslaw T.; Ravi Prakash, J.

    2008-01-01

    Structure and transport properties of dendrimers in dilute solution are studied with the aid of Brownian dynamics simulations. To investigate the effect of molecular topology on the properties, linear chain, star, and dendrimer molecules of comparable molecular weights are studied. A bead-spring chain model with finitely extensible springs and fluctuating hydrodynamic interactions is used to represent polymer molecules under Θ conditions. Structural properties as well as the diffusivity and zero-shear-rate intrinsic viscosity of polymers with varied degrees of branching are analyzed. Results for the free-draining case are compared to and found in very good agreement with the Rouse model predictions. Translational diffusivity is evaluated and the difference between the short-time and long-time behavior due to dynamic correlations is observed. Incorporation of hydrodynamic interactions is found to be sufficient to reproduce the maximum in the intrinsic viscosity versus molecular weight observed experimentally for dendrimers. Results of the nonequilibrium Brownian dynamics simulations of dendrimers and linear chain polymers subjected to a planar shear flow in a wide range of strain rates are also reported. The flow-induced molecular deformation of molecules is found to decrease hydrodynamic interactions and lead to the appearance of shear thickening. Further, branching is found to suppress flow-induced molecular alignment and deformation.

  5. Enzyme stabilization by glass-derived silicates in glass-exposed aqueous solutions

    USGS Publications Warehouse

    Ives, J.A.; Moffett, J.R.; Arun, P.; Lam, D.; Todorov, T.I.; Brothers, A.B.; Anick, D.J.; Centeno, J.; Namboodiri, M.A.A.; Jonas, W.B.

    2010-01-01

    Objectives: To analyze the solutes leaching from glass containers into aqueous solutions, and to show that these solutes have enzyme activity stabilizing effects in very dilute solutions. Methods: Enzyme assays with acetylcholine esterase were used to analyze serially succussed and diluted (SSD) solutions prepared in glass and plastic containers. Aqueous SSD preparations starting with various solutes, or water alone, were prepared under several conditions, and tested for their solute content and their ability to affect enzyme stability in dilute solution. Results: We confirm that water acts to dissolve constituents from glass vials, and show that the solutes derived from the glass have effects on enzymes in the resultant solutions. Enzyme assays demonstrated that enzyme stability in purified and deionized water was enhanced in SSD solutions that were prepared in glass containers, but not those prepared in plastic. The increased enzyme stability could be mimicked in a dose-dependent manner by the addition of silicates to the purified, deionized water that enzymes were dissolved in. Elemental analyses of SSD water preparations made in glass vials showed that boron, silicon, and sodium were present at micromolar concentrations. Conclusions: These results show that silicates and other solutes are present at micromolar levels in all glass-exposed solutions, whether pharmaceutical or homeopathic in nature. Even though silicates are known to have biological activity at higher concentrations, the silicate concentrations we measured in homeopathic preparations were too low to account for any purported in vivo efficacy, but could potentially influence in vitro biological assays reporting homeopathic effects. ?? 2009 The Faculty of Homeopathy.

  6. NUTS and BOLTS: Applications of Fluorescence Detected Sedimentation

    PubMed Central

    Kroe, Rachel R.; Laue, Thomas M.

    2008-01-01

    Analytical ultracentrifugation is a widely used method for characterizing the solution behavior of macromolecules. However, the two commonly used detectors (absorbance and interference) impose some fundamental restrictions on the concentrations and complexity of the solutions that can be analyzed. The recent addition of a fluorescence detector for the XL-I analytical ultracentrifuge (AU-FDS) enables two different types of sedimentation experiments. First, the AU-FDS can detect picomolar concentrations of labeled solutes allowing the characterization of very dilute solutions of macromolecules, applications we call Normal Use Tracer Sedimentation (NUTS). The great sensitivity of NUTS analysis allows the characterization of small quantities of materials and high affinity interactions. Second, AU-FDS allows characterization of trace quantities of labeled molecules in solutions containing high concentrations and complex mixtures of unlabeled molecules, applications we call Biological On Line Tracer Sedimentation (BOLTS). The discrimination of BOLTS enables the size distribution of a labeled macromolecule to be determined in biological milieu such as cell lysates and serum. Examples are presented that embody features of both NUTS and BOLTS applications, along with our observations on these applications. PMID:19103145

  7. Physicochemical Behavior of Some Amino Acids/Glycylglycine in Aqueous D-Galactose Solutions at Different Temperatures

    NASA Astrophysics Data System (ADS)

    Ali, Anwar; Patel, Rajan; Shahjahan; Ansari, Nizamul Haque

    2010-03-01

    The apparent molar volumes {(overline{V_2})} for glycine (Gly), l-alanine (Ala), phenylalanine (Phe), and glycylglycine (Gly-Gly) in 0.10 m aqueous d-galactose solutions have been determined from density measurements at (298.15, 303.15, 308.15, and 313.15) K. The data for {(overline{V_2})} were utilized to estimate the partial molar volume at infinite dilution {(overline{V_2^0})} , and experimental slope {(S_v^ast)} . The transfer volume, {(overline{V2^0}_(tr))} , and hydration number, ( n H) were also evaluated. The viscosity data were used to evaluate A- and B-coefficients of the Jones-Dole equation, the free energy of activation of viscous flow per mole of the solvent {left(Δ μ1^{0ast} right)} and the solute {left(Δ μ 2^{0ast} right)} . The molar refractivity ( R D) was calculated from refractive index data. The results were discussed in terms of hydrophilic-ionic, hydrophilic-hydrophobic, and hydrophobic-hydrophobic interactions, and structure-making/-breaking ability of the solute (AAs/peptide) in aqueous d-galactose solutions.

  8. Ultrasonic speed, densities and viscosities of xylitol in water and in aqueous tyrosine and phenylalanine solutions at different temperatures

    NASA Astrophysics Data System (ADS)

    Ali, A.; Bidhuri, P.; Uzair, S.

    2014-07-01

    Ultrasonic speed u, densities ρ and viscosities η of xylitol in water and in 0.001 m aqueous l-tyrosine (Tyr) and l-phenylalanine (Phe) have been measured at different temperatures. From the density and ultrasonic speed measurements apparent molar isentropic compression κ_{φ}, apparent molar isentropic compressions at infinite dilution κ_{{S,φ}}0 , experimental slope S K , hydration number n H , transfer partial molar isentropic compressibility Δ_{tr} κ_{{S,φ}}0 of xylitol from water to aqueous Tyr and Phe have been obtained. From the viscosity data, B-coefficient and B-coefficient of transfer Δ tr B of xylitol from water to aqueous Phe and Tyr at different temperatures have also been estimated. Gibbs free energies of activation of viscous flow per mole of solvent Δ μ 1 0# and per mole of solute Δ μ 2 0# have been calculated by using Feakins transition state theory for the studied systems. The calculated parameters have been interpreted in terms of solute-solute and solute-solvent interactions and hydration behavior of xylitol.

  9. Experimental Investigations of the Weathering of Suspended Sediment by Alpine Glacial Meltwater

    NASA Astrophysics Data System (ADS)

    Brown, Giles H.; Tranter, M.; Sharp, M. J.

    1996-04-01

    The magnitude and processes of solute acquisition by dilute meltwater in contact with suspended sediment in the channelized component of the hydroglacial system have been investigated through a suite of controlled laboratory experiments. Constrained by field data from Haut Glacier d'Arolla, Valais, Switzerland the effects of the water to rock ratio, particle size, crushing, repeated wetting and the availability of protons on the rate of solute acquisition are demonstrated. These free-drift experiments suggest that the rock flour is extremely geochemically reactive and that dilute quickflow waters are certain to acquire solute from suspended sediment. These data have important implications for hydrological interpretations based on the solute content of glacial meltwater, mixing model calculations, geochemical denudation rates and solute provenance studies.

  10. Protein Aggregation and Molecular Crowding: Perspectives From Multiscale Simulations.

    PubMed

    Musiani, F; Giorgetti, A

    2017-01-01

    Cells are extremely crowded environments, thus the use of diluted salted aqueous solutions containing a single protein is too simplistic to mimic the real situation. Macromolecular crowding might affect protein structure, folding, shape, conformational stability, binding of small molecules, enzymatic activity, interactions with cognate biomolecules, and pathological aggregation. The latter phenomenon typically leads to the formation of amyloid fibrils that are linked to several lethal neurodegenerative diseases, but that can also play a functional role in certain organisms. The majority of molecular simulations performed before the last few years were conducted in diluted solutions and were restricted both in the timescales and in the system dimensions by the available computational resources. In recent years, several computational solutions were developed to get close to physiological conditions. In this review we summarize the main computational techniques used to tackle the issue of protein aggregation both in a diluted and in a crowded environment. © 2017 Elsevier Inc. All rights reserved.

  11. Elastin-like Polypeptide (ELP) Charge Influences Self-Assembly of ELP-mCherry Fusion Proteins.

    PubMed

    Mills, Carolyn E; Michaud, Zachary; Olsen, Bradley D

    2018-05-23

    Self-assembly of protein-polymer bioconjugates presents an elegant strategy for controlling nanostructure and orientation of globular proteins in functional materials. Recent work has shown that genetic fusion of globular protein mCherry to an elastin-like polypeptide (ELP) yields similar self-assembly behavior to these protein-polymer bioconjugates. In the context of studying protein-polymer bioconjugate self-assembly, the mutability of the ELP sequence allows several different properties of the ELP block to be tuned orthogonally while maintaining consistent polypeptide backbone chemistry. This work uses this ELP sequence tunability in combination with the precise control offered by genetic engineering of an amino acid sequence to generate a library of four novel ELP sequences that are used to study the combined effect of charge and hydrophobicity on ELP-mCherry fusion protein self-assembly. Concentrated solution self-assembly is studied by small-angle X-ray scattering (SAXS) and depolarized light scattering (DPLS). These experiments show that fusions containing a negatively charged ELP block do not assemble at all, and fusions with a charge balanced ELP block exhibit a weak propensity for assembly. By comparison, the fusion containing an uncharged ELP block starts to order at 40 wt % in solution and at all concentrations measured has sharper, more intense SAXS peaks than other fusion proteins. These experiments show that charge character of the ELP block is a stronger predictor of self-assembly behavior than the hydrophobicity of the ELP block. Dilute solution small-angle neutron scattering (SANS) on the ELPs alone suggests that all ELPs used in this study (including the uncharged ELP) adopt dilute solution conformations similar to those of traditional polymers, including polyampholytes and polyelectrolytes. Finally, dynamic light scattering studies on ELP-mCherry blends shows that there is no significant complexation between the charged ELPs and mCherry. Therefore, it is proposed that the superior self-assembly of fusion proteins containing uncharged ELP block is due to effective repulsions between charged and uncharged blocks due to local charge correlation effects and, in the case of anionic ELPs, repulsion between like charges within the ELP block.

  12. Recovery of organic acids

    DOEpatents

    Verser, Dan W.; Eggeman, Timothy J.

    2009-10-13

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  13. Recovery of organic acids

    DOEpatents

    Verser, Dan W [Menlo Park, CA; Eggeman, Timothy J [Lakewood, CO

    2011-11-01

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  14. Dilute acid/metal salt hydrolysis of lignocellulosics

    DOEpatents

    Nguyen, Quang A.; Tucker, Melvin P.

    2002-01-01

    A modified dilute acid method of hydrolyzing the cellulose and hemicellulose in lignocellulosic material under conditions to obtain higher overall fermentable sugar yields than is obtainable using dilute acid alone, comprising: impregnating a lignocellulosic feedstock with a mixture of an amount of aqueous solution of a dilute acid catalyst and a metal salt catalyst sufficient to provide higher overall fermentable sugar yields than is obtainable when hydrolyzing with dilute acid alone; loading the impregnated lignocellulosic feedstock into a reactor and heating for a sufficient period of time to hydrolyze substantially all of the hemicellulose and greater than 45% of the cellulose to water soluble sugars; and recovering the water soluble sugars.

  15. Phase Behaviour and Miscibility Studies of Collagen/Silk Fibroin Macromolecular System in Dilute Solutions and Solid State.

    PubMed

    Ghaeli, Ima; de Moraes, Mariana A; Beppu, Marisa M; Lewandowska, Katarzyna; Sionkowska, Alina; Ferreira-da-Silva, Frederico; Ferraz, Maria P; Monteiro, Fernando J

    2017-08-18

    Miscibility is an important issue in biopolymer blends for analysis of the behavior of polymer pairs through the detection of phase separation and improvement of the mechanical and physical properties of the blend. This study presents the formulation of a stable and one-phase mixture of collagen and regenerated silk fibroin (RSF), with the highest miscibility ratio between these two macromolecules, through inducing electrostatic interactions, using salt ions. For this aim, a ternary phase diagram was experimentally built for the mixtures, based on observations of phase behavior of blend solutions with various ratios. The miscibility behavior of the blend solutions in the miscible zones of the phase diagram was confirmed quantitatively by viscosimetric measurements. Assessing the effects of biopolymer mixing ratio and salt ions, before and after dialysis of blend solutions, revealed the importance of ion-specific interactions in the formation of coacervate-based materials containing collagen and RSF blends that can be used in pharmaceutical, drug delivery, and biomedical applications. Moreover, the conformational change of silk fibroin from random coil to beta sheet, in solution and in the final solid films, was detected by circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR), respectively. Scanning electron microscopy (SEM) exhibited alterations of surface morphology for the biocomposite films with different ratios. Surface contact angle measurement illustrated different hydrophobic properties for the blended film surfaces. Differential scanning calorimetry (DSC) showed that the formation of the beta sheet structure of silk fibroin enhances the thermal stability of the final blend films. Therefore, the novel method presented in this study resulted in the formation of biocomposite films whose physico-chemical properties can be tuned by silk fibroin conformational changes by applying different component mixing ratios.

  16. Hydrochemistry of the Lake Magadi basin, Kenya

    USGS Publications Warehouse

    Jones, B.F.; Eugster, H.P.; Rettig, S.L.

    1977-01-01

    New and more complete compositional data are presented for a large number of water samples from the Lake Magadi area, Kenya. These water samples range from dilute inflow (300 g/kg dissolved solids). Five distinct hydrologic stages can be recognized in the evolution of the water compositions: dilute streamflow, dilute ground water, saline ground water (or hot spring reservoir), saturated brines, and residual brines. Based on the assumption that chloride is conserved in the waters during evaporative concentration, these stages are related to each other by the concentration factors of about 1:28:870:7600:16,800. Dilute streamflow is represented by perennial streams entering the Rift Valley from the west. All but one (Ewaso Ngiro) of these streams disappear in the alluvium and do not reach the valley floor. Dilute ground water was collected from shallow pits and wells dug into lake sediments and alluvial channels. Saline ground water is roughly equivalent to the hot springs reservoir postulated by Eugster (1970) and is represented by the hottest of the major springs. Saturated brines represent surficial lake brines just at the point of saturation with respect to trona (Na2CO3.NaHCO3.2H2O), while residual brines are essentially interstitial to the evaporite deposit and have been subjected to a complex history of precipitation and re-solution. The new data confirm the basic hydrologic model presented by Eugster (1970) which has now been refined, particularly with respect to the early stages of evaporative concentration. Budget calculations show that only bromide is conserved as completely as chloride. Sodium follows chloride closely until trona precipitation, whereas silica and sulfate are largely lost during the very first concentration' step (dilute streamflow-dilute ground water). A large fraction of potassium and all calcium plus magnesium are removed during the first two concentration steps (dilute streamflow-dilute ground water-saline ground water). Carbonate and bicarbonate are the dominant anions, and mechanisms by which they are extracted from the solution include precipitation of alkali and alkaline-earth carbonates, and degassing, as well as precipitation and re-solution of efflorescent crusts. Much sulfate is apparently lost from solution by sorption as well as subsurface reduction. Seasonal runoff, principally from the valley floor north of Lake Magadi, is considered to be the principal recharge to the Magadi ground water system. Evaporative concentration is the overall process responsible for the chemical evolution of the brines. This includes not only simple evaporation, but also mineral precipitation as films and cements in the unsaturated zone, re-solution, and reprecipitation of efflorescent crusts, with consequent recycling of salts. In fact, a large fraction of the solutes are acquired through dissolution of efflorescent crusts. Data were obtained for borehole brines from as deep as 297 m. They show the existence of two distinct brine bodies below the present lake, one shallow, coexistent with bedded salts, and highly concentrated (260 g/kg average dissolved solids), and the other deeper in lacustrine sediments or fractured lavas, and only half as concentrated. ?? 1977.

  17. Process for separation of zirconium-88, rubidium-83 and yttrium-88

    DOEpatents

    Heaton, Richard C.; Jamriska, Sr., David J.; Taylor, Wayne A.

    1994-01-01

    A process for selective separation of strontium-82 and strontium-85 from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, passing the first ion-containing solution through a first cationic resin whereby ions selected from the group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium and rubidium remain in the first ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the first resin, contacting the first resin with an acid solution capable of stripping adsorbed ions from the first cationic exchange resin whereby the adsorbed ions are removed from the first resin to form a second ion-containing solution, evaporating the second ion-containing solution for time sufficient to remove substantially all of the acid and water from the second ion-containing solution whereby a residue remains, dissolving the residue from the evaporated second-ion containing solution in a dilute acid to form a third ion-containing solution, said third ion-containing solution having an acid molarity adapted to permit said ions to be adsorbed by a cationic exchange resin, passing the third ion-containing solution through a second cationic resin whereby the ions are adsorbed by the second resin, contacting the second resin with a dilute sulfuric acid solution whereby the adsorbed ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, and zirconium are selectively removed from the second resin, and contacting the second resin with a dilute acid solution whereby the adsorbed strontium ions are selectively removed. Zirconium, rubidium, and yttrium radioisotopes can also be recovered with additional steps.

  18. Rotational dynamics of trehalose in aqueous solutions studied by depolarized light scattering

    NASA Astrophysics Data System (ADS)

    Gallina, M. E.; Comez, L.; Morresi, A.; Paolantoni, M.; Perticaroli, S.; Sassi, P.; Fioretto, D.

    2010-06-01

    High resolution depolarized light scattering spectra, extended from 0.5 to 2×104 GHz by the combined used of a dispersive and an interferometric setup, give evidence of separated solute and solvent dynamics in diluted trehalose aqueous solutions. The slow relaxation process, located in the gigahertz frequency region, is analyzed as a function of temperature and concentration and assigned to the rotational diffusion of the sugar molecule. The results are discussed in comparison with the data obtained on glucose solutions and they are used to clarify the molecular origin of some among the several relaxation processes reported in literature for oligosaccharides solutions. The concentration dependence of relaxation time and of shear viscosity are also discussed, suggesting that the main effect of carbohydrate molecules on the structural relaxation of diluted aqueous solutions is the perturbation induced on the dynamics of the first hydration shell of each solute molecule.

  19. Dilution refrigeration for space applications

    NASA Technical Reports Server (NTRS)

    Israelsson, U. E.; Petrac, D.

    1990-01-01

    Dilution refrigerators are presently used routinely in ground based applications where temperatures below 0.3 K are required. The operation of a conventional dilution refrigerator depends critically on the presence of gravity. To operate a dilution refrigerator in space many technical difficulties must be overcome. Some of the anticipated difficulties are identified in this paper and possible solutions are described. A single cycle refrigerator is described conceptually that uses forces other than gravity to function and the stringent constraints imposed on the design by requiring the refrigerator to function on the earth without using gravity are elaborated upon.

  20. A viscometric approach of pH effect on hydrodynamic properties of human serum albumin in the normal form.

    PubMed

    Monkos, Karol

    2013-03-01

    The paper presents the results of viscosity determinations on aqueous solutions of human serum albumin (HSA) at isoelectric point over a wide range of concentrations and at temperatures ranging from 5°C to 45°C. On the basis of a modified Arrhenius equation and Mooney's formula some hydrodynamic parameters were obtained. They are compared with those previously obtained for HSA in solutions at neutral pH. The activation energy and entropy of viscous flow and the intrinsic viscosity reach a maximum value, and the effective specific volume, the self-crowding factor and the Huggins coefficient a minimum value in solutions at isoelectric point. Using the dimensionless parameter [η]c, the existence of three ranges of concentrations: diluted, semi-diluted and concentrated, was shown. By applying Lefebvre's relation for the relative viscosity in the semi-dilute regime, the Mark-Houvink-Kuhn-Sakurada (MHKS) exponent was established. The analysis of the results obtained from the three ranges of concentrations showed that both conformation and stiffness of HSA molecules in solutions at isoelectric point and at neutral pH are the same.

  1. Automatic numerical evaluation of vacancy-mediated transport for arbitrary crystals: Onsager coefficients in the dilute limit using a Green function approach

    NASA Astrophysics Data System (ADS)

    Trinkle, Dallas R.

    2017-10-01

    A general solution for vacancy-mediated diffusion in the dilute-vacancy/dilute-solute limit for arbitrary crystal structures is derived from the master equation. A general numerical approach to the vacancy lattice Green function reduces to the sum of a few analytic functions and numerical integration of a smooth function over the Brillouin zone for arbitrary crystals. The Dyson equation solves for the Green function in the presence of a solute with arbitrary but finite interaction range to compute the transport coefficients accurately, efficiently and automatically, including cases with very large differences in solute-vacancy exchange rates. The methodology takes advantage of the space group symmetry of a crystal to reduce the complexity of the matrix inversion in the Dyson equation. An open-source implementation of the algorithm is available, and numerical results are presented for the convergence of the integration error of the bare vacancy Green function, and tracer correlation factors for a variety of crystals including wurtzite (hexagonal diamond) and garnet.

  2. An X-ray transparent microfluidic platform for screening of the phase behavior of lipidic mesophases

    PubMed Central

    Khvostichenko, Daria S.; Kondrashkina, Elena; Perry, Sarah L.; Pawate, Ashtamurthy S.; Brister, Keith

    2013-01-01

    Lipidic mesophases are a class of highly ordered soft materials that form when certain lipids are mixed with water. Understanding the relationship between the composition and the microstructure of mesophases is necessary for fundamental studies of self-assembly in amphiphilic systems and for applications, such as crystallization of membrane proteins. However, the laborious formulation protocol for highly viscous mesophases and the large amounts of material required for sample formulation are significant obstacles in such studies. Here we report a microfluidic platform that facilitates investigations of the phase behavior of mesophases by reducing sample consumption, and automating and parallelizing sample formulation. The mesophases were formulated on-chip using less than 40 nL of material per sample and their microstructure was analyzed in situ using small-angle X-ray scattering (SAXS). The 220 μm-thick X-ray compatible platform was comprised of thin polydimethylsiloxane (PDMS) layers sandwiched between cyclic olefin copolymer (COC) sheets. Uniform mesophases were prepared using an active on-chip mixing strategy coupled with periodic cooling of the sample to reduce the viscosity. We validated the platform by preparing and analyzing mesophases of lipid monoolein (MO) mixed with aqueous solutions of different concentrations of β-octylglucoside (βOG), a detergent frequently used in membrane protein crystallization. Four samples were prepared in parallel on chip, by first metering and automatically diluting βOG to obtain detergent solutions of different concentration, then metering MO, and finally mixing by actuation of pneumatic valves. Integration of detergent dilution and subsequent mixing significantly reduced the number of manual steps needed for sample preparation. Three different types of mesophases typical for monoolein were successfully identified in SAXS data from on-chip samples. Microstructural parameters of identical samples formulated in different chips showed excellent agreement. Phase behavior observed on-chip corresponded well with that of samples prepared via the traditional coupled-syringe method (“off-chip”) using 300-fold larger amount of material, further validating the utility of the microfluidic platform for on-chip characterization of mesophase behavior. PMID:23882463

  3. REUSABLE ADSORBENTS FOR DILUTE SOLUTIONS SEPARATION. 6. BATCH AND CONTINUOUS REACTORS FOR ADSORPTION AND DEGRADATION OF 1,2-DICHLOROBENZENE FROM DILUTE WASTEWATER STREAMS USING TITANIA AS A PHOTOCATALYST. (R828598C753)

    EPA Science Inventory

    Two types of external lamp reactors were investigated for the titania catalyzed photodegradation of 1,2-dichlorobenzene (DCB) from a dilute water stream. The first one was a batch mixed slurry reactor and the second one was a semi-batch reactor with continuous feed recycle wit...

  4. Mixed aqueous solutions as dilution media in the determination of residual solvents by static headspace gas chromatography.

    PubMed

    D'Autry, Ward; Zheng, Chao; Wolfs, Kris; Yarramraju, Sitaramaraju; Hoogmartens, Jos; Van Schepdael, Ann; Adams, Erwin

    2011-06-01

    Static headspace (HS) sampling has been commonly used to test for volatile organic chemicals, usually referred to as residual solvents (RS) in pharmaceuticals. If the sample is not soluble in water, organic solvents are used. However, these seriously reduce the sensitivity in the determination of some RS. Here, mixed aqueous dilution media (a mixture of water and an organic solvent like dimethyl formamide, dimethyl sulfoxide or dimethyl acetamide) were studied as alternative media for static HS-gas chromatographic analysis. Although it has been known that mixed aqueous dilution media can often improve sensitivity for many RS, this study used a systematic approach to investigate phase volumes and the organic content in the HS sampling media. Reference solutions using 18 different class 1, 2 and 3 RS were evaluated. The effect of salt addition was also studied in this work. A significant increase in the peak area was observed for all RS using mixed aqueous dilution media, when compared with organic solvents alone. Matrix effects related to the mixed aqueous dilution media were also investigated and reported. Repeatability and linearity obtained with mixed aqueous dilution media were found to be similar to those observed with pure organic solvents. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Taste does not determine daily intake of dilute sugar solutions in mice

    PubMed Central

    Beltran, F.; Benton, L.; Cheng, S.; Gieseke, J.; Gillman, J.; Spain, H. N.

    2010-01-01

    When a rodent licks a sweet-tasting solution, taste circuits in the central nervous system that facilitate stimulus identification, motivate intake, and prepare the body for digestion are activated. Here, we asked whether taste also determines daily intake of sugar solutions in C57BL/6 mice. We tested several dilute concentrations of glucose (167, 250, and 333 mM) and fructose (167, 250, and 333 mM). In addition, we tested saccharin (38 mM), alone and in binary mixture with each of the sugar concentrations, to manipulate sweet taste intensity while holding caloric value constant. In experiment 1, we measured taste responsiveness to the sweetener solutions in two ways: chorda tympani nerve responses and short-term lick tests. For both measures, the mice exhibited the following relative magnitude of responsiveness: binary mixtures > saccharin > individual sugars. In experiment 2, we asked whether the taste measures reliably predicted daily intake of the sweetener solutions. No such relationship was observed. The glucose solutions elicited weak taste responses but high daily intakes, whereas the fructose solutions elicited weak taste responses and low daily intakes. On the other hand, the saccharin + glucose solutions elicited strong taste responses and high daily intakes, while the saccharin + fructose solutions elicited strong taste responses but low daily intakes. Overall, we found that 1) daily intake of the sweetener solutions varied independently of the magnitude of the taste responses and 2) the solutions containing glucose stimulated substantially higher daily intakes than did the solutions containing isomolar concentrations of fructose. Given prior work demonstrating greater postoral stimulation of feeding by glucose than fructose, we propose that the magnitude of postoral nutritive stimulation plays a more important role than does taste in determining daily intake of dilute sugar solutions. PMID:20702804

  6. Semen coagulum liquefaction, sperm activation and cryopreservation of capuchin monkey (Cebus apella) semen in coconut water solution (CWS) and TES-TRIS.

    PubMed

    Oliveira, Karol G; Miranda, Stefania A; Leão, Danuza L; Brito, Adriel B; Santos, Regiane R; Domingues, Sheyla F S

    2011-01-01

    The objectives of the present study were to test the effect of coconut water solution and TES-TRIS on the seminal coagulum liquefaction, sperm activation in fresh diluted semen, and on the cryopreservation of semen from capuchin monkeys (Cebus apella). Semen was collected from six males by electro-ejaculation, diluted in TES-TRIS or coconut water solution (CWS), and incubated at 35°C until the coagulated fraction of the semen was completely liquefied. In the experiment I, after liquefaction, samples were diluted in TES-TRIS or CWS, plus 6 and 10mM/mL of caffeine. Sperm motility and vigor were evaluated during 5h. For experiment II, after liquefaction, semen samples were extended in TES-TRIS (3.5% glycerol in the final solution) or CWS (2.5% glycerol in the final solution), cryopreserved and stored in liquid nitrogen for 1 week. The seminal coagulum was liquefied in (mean±SDM) 4.5±1.7 and 2.8±1.1h in TES-TRIS and CWS, respectively. Sperm were motile in TES-TRIS and CWS for 5.0±1.4 and 1.0±0.5h, respectively. The mean motility in this period was 38±22% (TES-TRIS) and 22.0±16.0 (CWS). Motility increased after caffeine addition only in samples diluted in CWS containing 6mM (22.5±16.0) or 10mM (28.0±19.0) caffeine. Post-thaw live sperm percentage was 26.2% in TES-TRIS and 13.2% in CWS. For cryopreservation of semen from C. apella TES-TRIS (3.5% glycerol) was more appropriate than CWS (2.5% glycerol). CWS+caffeine potentially increase sperm motility and may be useful in artificial insemination of fresh diluted semen. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Aqueous penetration and biological activity of moxifloxacin 0.5% ophthalmic solution and gatifloxacin 0.3% solution in cataract surgery patients.

    PubMed

    Kim, Dianne H; Stark, Walter J; O'Brien, Terrence P; Dick, James D

    2005-11-01

    To measure the achievable perioperative aqueous concentration of the commercially available topically administered fourth generation fluoroquinolones, moxifloxacin 0.5% ophthalmic solution, and gatifloxacin 0.3% ophthalmic solution, and to correlate this concentration with the agents' biological efficacy in the aqueous humor of patients undergoing routine cataract surgery. Prospective, randomized, parallel, double-masked, clinical trial. Fifty patients undergoing cataract extraction. Patients (n = 25) were given perioperative topical moxifloxacin 0.5% or topical gatifloxacin 0.3% (n = 25). One drop of antibiotic was administered every 10 minutes for 4 doses beginning 1 hour prior to surgery. Aqueous humor was sampled via paracentesis and antibiotic concentrations were determined using validated high performance liquid chromatography (HPLC) procedures. Dilution analyses were performed to determine the biological efficacy of the agents in the aqueous against Staphylococcus epidermidis, the most common cause of postcataract endophthalmitis. Aqueous humor antibiotic concentrations were measured using HPLC and microdilution bioassay techniques. Biological activity was measured as minimal inhibitory dilution and minimal bactericidal dilution. Aqueous humor concentrations for moxifloxacin via HPLC analysis were 1.80 (+/-1.21) microg/ml, whereas those for gatifloxacin were 0.48 (+/-0.34) microg/ml. This 3.8-fold difference in aqueous humor antibiotic concentrations was statistically significant (P = 0.00003). Similarly, the biological dilution analysis of the aqueous humor samples showed that moxifloxacin attained an estimated activity of 2.1 microg/ml, whereas the gatifloxacin activity was approximately 0.4 mug/ml, which represented a 4.9-fold difference. This study demonstrated that after topically administered perioperative antibiotics with cataract surgery, moxifloxacin 0.5% ophthalmic solution achieved a statistically significantly higher concentration in aqueous humor compared with gatifloxacin (P = 0.00003). Results from the broth dilution analysis showed that moxifloxacin 0.5% was biologically more active against S. epidermidis than gatifloxacin 0.3% in aqueous humor after topical application. There were no adverse events reported, and incision wounds healed quickly and as expected.

  8. Biocompatibility of hydroxyapatite coatings deposited by pulse electrodeposition technique on the Nitinol superelastic alloy.

    PubMed

    Marashi-Najafi, F; Khalil-Allafi, J; Etminanfar, M R

    2017-07-01

    The present study deals with pulse electrochemical deposition of HA on NiTi alloy and in vitro evaluation of coatings. At first step, a thermo-chemical surface modification process was applied to control the Ni release of the alloy. The electrochemical deposition of CaP coatings was examined at both dilute and concentrated solutions. The morphology and the composition of coatings were studied using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Plate like and needle like morphologies were formed for dilute and concentrated solution respectively and HA phase was formed by increasing the pulse current density for both electrolyte. The thickness of the samples was measured using cross sectioning technique. Fibroblast cell culture test on the coated samples revealed that the HA coating obtained by dilute solution shows the best biocompatibility. Also, MTT assay showed the highest cell density and cell proliferation after 5days for the HA coating of dilute solution. The contact angle of samples was measured and the coated samples showed a hydrophilic surface. Soaking the sample in SBF revealed that the crystallization rate of calcium-phosphate compounds is higher on the plate like HA coating as compared to the needle like morphology. The P release of the HA coated samples was measured in a physiological saline solution and the results show that the ions releasing in the plate like coating are less than the needle like coating. It seems that the stability of the plate like coating in biological environments is responsible for the better biocompatibility of the coating. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Examination of an aloe vera galacturonate polysaccharide capable of in situ gelation for the controlled release of protein therapeutics

    NASA Astrophysics Data System (ADS)

    McConaughy, Shawn David

    A therapeutic delivery platform has been investigated with the ultimate goal of designing a sustained protein release matrix utilizing an in-situ gelling, acidic polysaccharide derived from the Aloe vera plant. The Aloe vera polysaccharide (AvP) has been examined in order to determine how chemical composition, structure, molecular weight and solution behavior affect gelation and protein/peptide delivery. Correlations are drawn between structural characteristics and solution behavior in order to determine the impact of polymer conformation and solvation on gel formation under conditions designed to simulate nasal applications. Steady state and dynamic rheology, classic and dynamic light scattering, zeta potential, pulse field gradient nuclear magnetic resonance and fluorescence spectroscopy have been employed to gain insight into the effects of galacturonic acid content, degree of methylation, entanglement and ionic strength on both solution behavior and the hydrogel state which ultimately governs protein/peptide release. This dissertation is divided into two sections. In the first section, a series of Aloe vera polysaccharides (AvP), from the pectin family have been structurally characterized indicating high galacturonic acid (GalA) content, low degree of methylester substitution (DM), low numbers of rhamnose residues and high molecular weight with respect to pectins extracted from traditional sources. The behavior of AvP was examined utilizing dilute solution, low-shear rheological techniques for specific molecular weight samples at selected conditions of ionic strength. From these dilute aqueous solution studies, the Mark-Houwink-Sakurada (MHS) constants (K and alpha), persistence length (Lp) and inherent chain stiffness (B parameter) were determined, indicating an expanded random coil in aqueous salt solutions. The critical concentration for transition from dilute to concentrated solution, C e, was determined by measuring both the zero shear viscosity and fluorescence emission of the probe molecule 1,8-anilino-1-naphthalene sulphonic acid (1,8-ANS) as a function of polymer concentration. Correlations are drawn between viscosity experiments and measurement of zeta potential. Increased degrees of intermolecular interactions are responsible for a shift of Ce to lower polymer concentrations with increasing ionic strength. Additionally, dynamic rheology data are presented highlighting the ability of AvP to form gels at low polymer and calcium ion concentrations, exemplifying the technological potential of this polysaccharide for in-situ drug delivery. In the second section, properties of Aloe vera galacturonate hydrogels formed via Ca2+ crosslinking have been studied in regard to key parameters influencing gel formation including molecular weight, ionic strength and molar ratio of Ca2+ to COO- functionality. Dynamic oscillatory rheology and pulsed field gradient NMR (PFG-NMR) studies have been conducted on hydrogels formed at specified Ca2+ concentrations in the presence and absence of Na+ and K+ ions, in order to assess the feasibility of in situ gelation for controlled delivery of therapeutics. Aqueous Ca2+ concentrations similar to those present in nasal and subcutaneous fluids induce the formation of elastic Aloe vera polysaccharide (AvP) hydrogel networks. By altering the ratio of Ca2+ to COO- functionality, networks may be tailored to provide elastic modulus (G') values between 20 and 20,000 Pa. The Aloe vera polysaccharide exhibits time dependent phase separation in the presence of monovalent electrolytes. Thus the relative rates of calcium induced gelation and phase separation become major considerations when designing a system for in situ delivery applications where both monovalent (Na+, K+) and divalent (Ca2+) ions are present. PFG-NMR and fluorescence microscopy confirm that distinctly different morphologies are present in gels formed in the presence and absence 0.15 M NaCl. Curve fitting of theoretical models to experimental release profiles of fluorescein labeled dextrans indicate diffusion rates are related to hydrogel morphology. These studies suggest that for efficient in situ release of therapeutic agents, polymer concentrations should be maintained above the critical entanglement concentration (Ce, 0.60 wt%) when [Ca2+]/[COO -] ratios are less than 1. Additionally, the monovalent electrolyte concentration in AvP solutions should not exceed 0.10 M prior to Ca 2+ crosslinking.

  10. An investigation of the critical liquid-vapor properties of dilute KCl solutions

    USGS Publications Warehouse

    Potter, R.W.; Babcock, R.S.; Czamanske, G.K.

    1976-01-01

    The three parameters that define the critical point, temperature, pressure, and volume have been experimentally determined by means of filling studies in a platinum-lined system for five KCl solutions ranging from 0.006 to 0.568 m. The platinum-lined vessels were used to overcome the problems with corrosion experienced by earlier workers. The critical temperature (tc), pressure (Pc), and volume (Vc) were found to fit the equations {Mathematical expression} from infinite dilution to 1.0 m. ?? 1976 Plenum Publishing Corporation.

  11. Cluster growth mechanisms in Lennard-Jones fluids: A comparison between molecular dynamics and Brownian dynamics simulations

    NASA Astrophysics Data System (ADS)

    Jung, Jiyun; Lee, Jumin; Kim, Jun Soo

    2015-03-01

    We present a simulation study on the mechanisms of a phase separation in dilute fluids of Lennard-Jones (LJ) particles as a model of self-interacting molecules. Molecular dynamics (MD) and Brownian dynamics (BD) simulations of the LJ fluids are employed to model the condensation of a liquid droplet in the vapor phase and the mesoscopic aggregation in the solution phase, respectively. With emphasis on the cluster growth at late times well beyond the nucleation stage, we find that the growth mechanisms can be qualitatively different: cluster diffusion and coalescence in the MD simulations and Ostwald ripening in the BD simulations. We also show that the rates of the cluster growth have distinct scaling behaviors during cluster growth. This work suggests that in the solution phase the random Brownian nature of the solute dynamics may lead to the Ostwald ripening that is qualitatively different from the cluster coalescence in the vapor phase.

  12. Inertial and viscoelastic forces on rigid colloids in microfluidic channels.

    PubMed

    Howard, Michael P; Panagiotopoulos, Athanassios Z; Nikoubashman, Arash

    2015-06-14

    We perform hybrid molecular dynamics simulations to study the flow behavior of rigid colloids dispersed in a dilute polymer solution. The underlying Newtonian solvent and the ensuing hydrodynamic interactions are incorporated through multiparticle collision dynamics, while the constituent polymers are modeled as bead-spring chains, maintaining a description consistent with the colloidal nature of our system. We study the cross-stream migration of the solute particles in slit-like channels for various polymer lengths and colloid sizes and find a distinct focusing onto the channel center under specific solvent and flow conditions. To better understand this phenomenon, we systematically measure the effective forces exerted on the colloids. We find that the migration originates from a competition between viscoelastic forces from the polymer solution and hydrodynamically induced inertial forces. Our simulations reveal a significantly stronger fluctuation of the lateral colloid position than expected from thermal motion alone, which originates from the complex interplay between the colloid and polymer chains.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warner-Schmid, D.; Hoshi, Suwaru; Armstrong, D.W.

    Aqueous solutions of nonionic surfactants are known to undergo phase separations at elevated temperatures. This phenomenon is known as clouding,' and the temperature at which it occurs is refereed to as the cloud point. Permethylhydroxypropyl-[beta]-cyclodextrin (PMHP-[beta]-CD) was synthesized and aqueous solutions containing it were found to undergo similar cloud-point behavior. Factors that affect the phase separation of PMHP-[beta]-CD were investigated. Subsequently, the cloud-point extractions of several aromatic compounds (i.e., acetanilide, aniline, 2,2[prime]-dihydroxybiphenyl, N-methylaniline, 2-naphthol, o-nitroaniline, m-nitroaniline, p-nitroaniline, nitrobenzene, o-nitrophenol, m-nitrophenol, p-nitrophenol, 4-phenazophenol, 3-phenylphenol, and 2-phenylbenzimidazole) from dilute aqueous solution were evaluated. Although the extraction efficiency of the compounds varied, mostmore » can be quantitatively extracted if sufficient PMHP-[beta]-CD is used. For those few compounds that are not extracted (e.g., o-nitroacetanilide), the cloud-point procedure may be an effective one-step isolation or purification method. 18 refs., 2 figs., 3 tabs.« less

  14. Formation of cage-like particles by poly(amino acid)-based block copolymers in aqueous solution.

    PubMed Central

    Cudd, A; Bhogal, M; O'Mullane, J; Goddard, P

    1991-01-01

    When dissolved in N,N-dimethylformamide and then dialyzed against phosphate-buffered saline, A-B-A block copolymers composed of poly [N5-(2-hydroxyethyl)-L-glutamine]-block-poly(gamma-benzyl-L-glutamate)- block-poly [N5-(2-hydroxyethyl)-L-glutamine] form particles. The particles are cage-like structures with average diameters of 300 nm (average polydispersity, 0.3-0.5). They are stable in aqueous solution at 4 degrees C for up to 3 weeks, at which time flocculation becomes apparent. Negative staining and freeze-fracture electron microscopy suggest that cage-like particles are formed by selective association of segregated micelle populations. A model of particle formation is presented in which B blocks form micelles in dimethylformamide. On dialysis against an aqueous solution, the extended A blocks then associate intermolecularly to form rod-shaped micelles, which connect the B block micelles. The result is a meshed cage-like particle. The implications of these observations on the aggregation behavior of polymeric surfactants in dilute solution are discussed. Images PMID:11607245

  15. Passive non-linear microrheology for determining extensional viscosity

    NASA Astrophysics Data System (ADS)

    Hsiao, Kai-Wen; Dinic, Jelena; Ren, Yi; Sharma, Vivek; Schroeder, Charles M.

    2017-12-01

    Extensional viscosity is a key property of complex fluids that greatly influences the non-equilibrium behavior and processing of polymer solutions, melts, and colloidal suspensions. In this work, we use microfluidics to determine steady extensional viscosity for polymer solutions by directly observing particle migration in planar extensional flow. Tracer particles are suspended in semi-dilute solutions of DNA and polyethylene oxide, and a Stokes trap is used to confine single particles in extensional flows of polymer solutions in a cross-slot device. Particles are observed to migrate in the direction transverse to flow due to normal stresses, and particle migration is tracked and quantified using a piezo-nanopositioning stage during the microfluidic flow experiment. Particle migration trajectories are then analyzed using a second-order fluid model that accurately predicts that migration arises due to normal stress differences. Using this analytical framework, extensional viscosities can be determined from particle migration experiments, and the results are in reasonable agreement with bulk rheological measurements of extensional viscosity based on a dripping-onto-substrate method. Overall, this work demonstrates that non-equilibrium properties of complex fluids can be determined by passive yet non-linear microrheology.

  16. [Regeneration of the ciliary beat of human ciliated cells].

    PubMed

    Wolf, G; Koidl, B; Pelzmann, B

    1991-10-01

    The influence of an isotonic, alkaline saline solution (diluted "Emser Sole" or brine from the spa of Bad Ems) on the ciliary beat of isolated cultured human ciliated cells of the upper respiratory tract was investigated. The ciliary beat was observed via an inverted phase contrast microscope (Zeiss Axiomat IDPC) and measured microphotometrically under physiological conditions and after the damaging influence of 1% propanal solution. Under physiological conditions the saline solution had a positive, although statistically not significant influence on the frequency of the ciliary beat. After damage of the cultivated cells by 1% propanal solution, the saline solution had a significant better influence on the regeneration of the cultured cells than a physiological sodium chloride solution. It is concluded that diluted brine from Bad Ems has a positive effect on the ciliary beat of the respiratory epithelium and accelerates its regeneration after damage by viral and bacterial infections, surgery or inhaled noxae.

  17. [Bioregeneration of the solutions obtained during the leaching of nonferrous metals from waste slag by acidophilic microorganisms].

    PubMed

    Fomchenko, N V; Murav'ev, M I; Kondrat'eva, T F

    2014-01-01

    The bioregeneration of the solutions obtained after the leaching of copper and zinc from waste slag by sulfuric solutions of ferric sulfate is examined. For bioregeneration, associations of mesophilic and moderately thermqophilic acidophilic chemolithotrophic microorganisms were made. It has been shown that the complete oxidation of iron ions in solutions obtained after the leaching of nonferrous metals from waste slag is possible at a dilution of the pregnant solution with a nutrient medium. It has been found that the maximal rate of oxidation of iron ions is observed at the use of a mesophilic association of microorganisms at a threefold dilution of the pregnant solution with a nutrient medium. The application ofbioregeneration during the production of nonferrous metals from both waste and converter slags would make it possible to approach the technology of their processing using the closed cycle of workflows.

  18. Laboratory studies of 2H evaporator scale dissolution in dilute nitric acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oji, L.

    The rate of 2H evaporator scale solids dissolution in dilute nitric acid has been experimentally evaluated under laboratory conditions in the SRNL shielded cells. The 2H scale sample used for the dissolution study came from the bottom of the evaporator cone section and the wall section of the evaporator cone. The accumulation rate of aluminum and silicon, assumed to be the two principal elemental constituents of the 2H evaporator scale aluminosilicate mineral, were monitored in solution. Aluminum and silicon concentration changes, with heating time at a constant oven temperature of 90 deg C, were used to ascertain the extent ofmore » dissolution of the 2H evaporator scale mineral. The 2H evaporator scale solids, assumed to be composed of mostly aluminosilicate mineral, readily dissolves in 1.5 and 1.25 M dilute nitric acid solutions yielding principal elemental components of aluminum and silicon in solution. The 2H scale dissolution rate constant, based on aluminum accumulation in 1.5 and 1.25 M dilute nitric acid solution are, respectively, 9.21E-04 ± 6.39E-04 min{sup -1} and 1.07E-03 ± 7.51E-05 min{sup -1}. Silicon accumulation rate in solution does track the aluminum accumulation profile during the first few minutes of scale dissolution. It however diverges towards the end of the scale dissolution. This divergence therefore means the aluminum-to-silicon ratio in the first phase of the scale dissolution (non-steady state conditions) is different from the ratio towards the end of the scale dissolution. Possible causes of this change in silicon accumulation in solution as the scale dissolution progresses may include silicon precipitation from solution or the 2H evaporator scale is a heterogeneous mixture of aluminosilicate minerals with several impurities. The average half-life for the decomposition of the 2H evaporator scale mineral in 1.5 M nitric acid is 12.5 hours, while the half-life for the decomposition of the 2H evaporator scale in 1.25 M nitric acid is 10.8 hours. Based on averaging the two half-lives from the 2H scale acid dissolution in 1.25 and 1.5 M nitric acid solutions, a reasonable half-live for the dissolution of 2H scales in dilute nitric acid is 11.7 ± 1.3 hours. The plant operational time for chemically cleaning (soaking) the 2H evaporator with dilute nitric acid is 32 hours. It therefore may require about 3 half-lives or less to completely dissolve most of the scales in the Evaporator pot which come into contact with the dilute nitric acid solution. On a mass basis, the Al-to-Si ratio for the scale dissolution in 1.5 M nitric acid averaged 1.30 ± 0.20 and averaged 1.18 ± 0.10 for the 2H scale dissolution in 1.25 M nitric acid. These aluminum-to-silicon ratios are in fairly good agreement with ratios from previous studies. Therefore, there is still more aluminum in the 2H evaporator scales than silicon which implies that there are no significant changes in scale properties which will exclude nitric acid as a viable protic solvent for aluminosilicate scale buildup dissolution from the 2H evaporator. Overall, the monitoring of the scale decomposition reaction in 1.25 and 1.5 M nitric acid may be better ascertained through the determination of aluminum concentration in solution than monitoring silicon in solution. Silicon solution chemistry may lead to partial precipitating of silicon with time as the scale and acid solution is heated.« less

  19. Dilution, Concentration, and Flotation

    ERIC Educational Resources Information Center

    Liang, Ling; Schmuckler, Joseph S.

    2004-01-01

    As both classroom teaching practice and literature show, many students have difficulties learning science concepts such as density. Here are some investigations that identify the relationship between density and floating through experimenting with successive dilution of a liquid, or the systematic change of concentration of a saltwater solution.…

  20. Micromixer based on viscoelastic flow instability at low Reynolds number.

    PubMed

    Lam, Y C; Gan, H Y; Nguyen, N T; Lie, H

    2009-03-30

    We exploited the viscoelasticity of biocompatible dilute polymeric solutions, namely, dilute poly(ethylene oxide) solutions, to significantly enhance mixing in microfluidic devices at a very small Reynolds number, i.e., Re approximately 0.023, but large Peclet and elasticity numbers. With an abrupt contraction microgeometry (8:1 contraction ratio), two different dilute poly(ethylene oxide) solutions were successfully mixed with a short flow length at a relatively fast mixing time of <10 mus. Microparticle image velocimetry was employed in our investigations to characterize the flow fields. The increase in velocity fluctuation with an increase in flow rate and Deborah number indicates the increase in viscoelastic flow instability. Mixing efficiency was characterized by fluorescent concentration measurements. Our results showed that enhanced mixing can be achieved through viscoelastic flow instability under situations where molecular-diffusion and inertia effects are negligible. This approach bypasses the laminar flow limitation, usually associated with a low Reynolds number, which is not conducive to mixing.

  1. Micromixer based on viscoelastic flow instability at low Reynolds number

    PubMed Central

    Lam, Y. C.; Gan, H. Y.; Nguyen, N. T.; Lie, H.

    2009-01-01

    We exploited the viscoelasticity of biocompatible dilute polymeric solutions, namely, dilute poly(ethylene oxide) solutions, to significantly enhance mixing in microfluidic devices at a very small Reynolds number, i.e., Re≈0.023, but large Peclet and elasticity numbers. With an abrupt contraction microgeometry (8:1 contraction ratio), two different dilute poly(ethylene oxide) solutions were successfully mixed with a short flow length at a relatively fast mixing time of <10 μs. Microparticle image velocimetry was employed in our investigations to characterize the flow fields. The increase in velocity fluctuation with an increase in flow rate and Deborah number indicates the increase in viscoelastic flow instability. Mixing efficiency was characterized by fluorescent concentration measurements. Our results showed that enhanced mixing can be achieved through viscoelastic flow instability under situations where molecular-diffusion and inertia effects are negligible. This approach bypasses the laminar flow limitation, usually associated with a low Reynolds number, which is not conducive to mixing. PMID:19693399

  2. Detection of Toxoplasma oocysts from soil by modified sucrose flotation and PCR methods.

    PubMed

    Matsuo, Junji; Kimura, Daisuke; Rai, Shiba Kumar; Uga, Shoji

    2004-06-01

    A detection method of Toxoplasma gondii oocysts from soil was evaluated using the sucrose flotation technique with modification involving addition of 0.1% gelatin into washing and floating solutions. PCR was performed on untreated samples and after treatment with polyvinylpyrrolidone (PVP), heating and cooling, and NaCl. The addition of gelatin in the sucrose solution yielded a higher number of oocysts. A very thin band was observed when DNA extract was diluted to 1:1024, indicating the presence of PCR inhibitor in the soil. PCR performed on untreated DNA, on PVP-treated, and on PVP-treated with heating and cooling without added bovine serum albumin (BSA) showed a band only at higher dilutions (1:1024 and 1:512) but at a much lower dilution (1:8) with BSA. In contrast, DNA treated with all three agents showed a band at a much lower dilution (1:64), even without added BSA, and no dilution was required when BSA was added. The PCR inhibitors present in the soil were removed by employing various treatment procedures during DNA extraction, and BSA in PCR. Furthermore, the detection limit with the method was 1 oocyst/g of soil, indicating that this method is useful in epidemiological studies.

  3. Assessment of Fenton's reagent and ozonation as pre-treatments for increasing the biodegradability of aqueous diethanolamine solutions from an oil refinery gas sweetening process.

    PubMed

    Durán-Moreno, A; García-González, S A; Gutiérrez-Lara, M R; Rigas, F; Ramírez-Zamora, R M

    2011-02-28

    The aim of this work was to evaluate the efficiency of three chemical oxidation processes for increasing the biodegradability of aqueous diethanolamine solutions (aqueous DEA solutions), to be used as pre-treatments before a biological process. The raw aqueous DEA solution, sourced from a sour gas sweetening plant at a Mexican oil refinery, was first characterized by standardized physico-chemical methods. Then experiments were conducted on diluted aqueous DEA solutions to test the effects of Fenton's reagent, ozone and ozone-hydrogen peroxide on the removal of some physicochemical parameters of these solutions. Lastly, biodegradability tests based on Dissolved Organic Carbon Die Away OECD301-A, were carried out on a dilution of the raw aqueous DEA solution and on the treated aqueous DEA solutions, produced by applying the best experimental conditions determined during the aforementioned oxidation tests. Experimental results showed that for aqueous DEA solutions treated with Fenton's reagent, the best degradation rate (70%) was obtained at pH 2.8, with Fe(2+) and H(2)O(2) at doses of 1000 and 10,000 mg/L respectively. In the ozone process, the best degradation (60%) was observed in aqueous DEA solution (100 mg COD/L), using 100 mg O(3)/L at pH 5. In the ozone-hydrogen peroxide process, no COD or DOC removals were observed. The diluted spent diethanolamine solution showed its greatest increase in biodegradability after a reaction period of 28 days when treated with Fenton's reagent, but after only 15 days in the case of ozonation. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Photophysics of Zinc Porphyrin Aggregates in Dilute Water-Ethanol Solutions.

    PubMed

    Stevens, Amy L; Joshi, Neeraj K; Paige, Matthew F; Steer, Ronald P

    2017-12-14

    Dimeric and multimeric aggregates of a model metalloporphyrin, zinc tetraphenylporphyrin (ZnTPP), have been produced in a controlled manner by incrementally increasing the water content of dilute aqueous ethanol solutions. Steady state absorption, fluorescence emission, and fluorescence excitation spectra have been measured to identify the aggregates present as a function of solvent composition. The dynamics of the excited states of the aggregates produced initially by excitation in the Soret region have been measured by ultrafast fluorescence upconversion techniques. Only the monomer produces measurable emission from S 2 with a picosecond lifetime; all Soret-excited aggregates, including the dimer, decay radiationlessly on a femtosecond time scale. The S 1 state is the only significant product of the radiationless decay of the S 2 state of the excited monomer, and the aggregates also produce substantial quantum yields of S 1 fluorescence when initially excited in the Soret region. The resulting fluorescent aggregates all decay on a subnanosecond time scale, likely by a mechanism that involves dissociation of the excited monomer from the excitonic multimer. The ZnTPP dimers excited at their ground state geometries in the Soret region exhibit a dynamic behavior that is quite different from those produced following noncoherent triplet-triplet annihilation under the same conditions. The important implications of these observations in determining the aggregation conditions promoting efficient photon upconversion by excitonic annihilation in a variety of media are thoroughly discussed.

  5. Rheology and dynamic light scattering of silk fibroin solution extracted from the middle division of Bombyx mori silkworm.

    PubMed

    Ochi, Akie; Hossain, Khandker S; Magoshi, Jun; Nemoto, Norio

    2002-01-01

    Dynamic light scattering (DLS) and rheological measurements were performed on aqueous silk fibroin solutions extracted from the middle division of Bombyx mori silkworm over a wide range of polymer concentration C from 0.08 to 27.5 wt %. DLS results obtained in the dilute region of C less than 1 wt % are consistent with a model that an elementary unit is a large protein complex consisting of silk fibroin and P25 with a 6:1 molar ratio. Rheological measurements in the dilute C region reveal that those units (or clusters) with the hydrodynamic radius of about 100 nm form a network extending over the whole sample volume with small pseudoplateau modulus mainly by ionic bonding between COO(-) ions of the fibroin molecules and divalent metallic ions such as Ca(2+) or Mg(2+) ions present in the sample and also that, after a yield stress is reached, steady plastic flow is induced with viscosity much lower than the zero-shear viscosity estimated from creep and creep recovery measurements by 4-6 orders of magnitude. Angular frequency omega dependencies of the storage and the loss shear moduli, G'(omega) and G' '(omega), measured in the linear viscoelastic region, indicate that all solutions possess the pseudoplateau modulus in the low omega region and samples become highly viscoleastic for C greater, similar 4.2 wt %. Above C = 11.2 wt % another plateau appears at the high omega end accompanied by a distinct maximum of G' ' in the intermediate omega region. The relaxation motion with tau = 0.5 s corresponding to the maximum of G' ' is one of characteristic properties of the fibroin solutions in the high C region. Thermorheological behaviors of the solution with C = 27.5 wt % show that the network structure formed in the MM part of the silk gland is susceptible to temperature and a more stable homogeneous network is realized by raising the temperature up to T = 65 degrees C.

  6. An Approach to Mitigate Particle Formation on the Dilution of a Monoclonal Antibody Drug Product in an IV Administration Fluid.

    PubMed

    Zheng, Songyan; Adams, Monica; Mantri, Rao V

    2016-03-01

    To support dose reduction, low dose of a monoclonal antibody (mAb) was required to be administered via IV infusion at a concentration of 0.1 mg/mL. To achieve the target protein concentration, the infusion solution was prepared by diluting the drug product containing 10-mg/mL mAb with normal saline, a 0.9% sodium chloride injection solution. However, particles were observed in the diluted solution. Particle formation must be avoided to administer the low dose using the existing drug product. To mitigate the particle formation, an unconventional compounding approach was used. With this approach, a stabilizing vehicle containing polysorbate-80 was added to saline before drug-product dilution to maintain suitable surfactant level to prevent precipitation of the mAb. In this way, use of the stabilizing vehicle to support low doses ensured suitable quality across a wider range of mAb concentrations, thereby allowing additional flexibility to the clinical trial. Such an approach may be useful for broader application in early-stage clinical trials where there is an uncertainty regarding doses or the need to revise to lower doses based on clinical observations or other drivers. Copyright © 2016. Published by Elsevier Inc.

  7. Correlation Between Iron and alpha and pi Glutathione-S-Transferase Levels in Humans

    DTIC Science & Technology

    2012-09-01

    assays were performed as described in the Biotrin High Sensitivity Alpha GST EIA kit protocol. First, serum samples were diluted 1:10 with wash solution...immunosorbent assays were performed as described in the Biotrin Pi GST EIA kit protocol. First, plasma samples were diluted 1:5 with sample diluent...immunosorbent assays were performed as described in the AssayMax Human Transferrin ELISA kit protocol. First, serum samples were diluted 1:2000 with MIX

  8. Cellular Response to Doping of High Porosity Foamed Alumina with Ca, P, Mg, and Si.

    PubMed

    Soh, Edwin; Kolos, Elizabeth; Ruys, Andrew J

    2015-03-13

    Foamed alumina was previously synthesised by direct foaming of sulphate salt blends varying ammonium mole fraction (AMF), foaming heating rate and sintering temperature. The optimal product was produced with 0.33AMF, foaming at 100 °C/h and sintering at 1600 °C. This product attained high porosity of 94.39%, large average pore size of 300 µm and the highest compressive strength of 384 kPa. To improve bioactivity, doping of porous alumina by soaking in dilute or saturated solutions of Ca, P, Mg, CaP or CaP + Mg was done. Saturated solutions of Ca, P, Mg, CaP and CaP + Mg were made with excess salt in distilled water and decanted. Dilute solutions were made by diluting the 100% solution to 10% concentration. Doping with Si was done using the sol gel method at 100% concentration only. Cell culture was carried out with MG63 osteosarcoma cells. Cellular response to the Si and P doped samples was positive with high cell populations and cell layer formation. The impact of doping with phosphate produced a result not previously reported. The cellular response showed that both Si and P doping improved the biocompatibility of the foamed alumina.

  9. Influence of entanglements on glass transition temperature of polystyrene

    NASA Astrophysics Data System (ADS)

    Ougizawa, Toshiaki; Kinugasa, Yoshinori

    2013-03-01

    Chain entanglement is essential behavior of polymeric molecules and it seems to affect many physical properties such as not only viscosity of melt state but also glass transition temperature (Tg). But we have not attained the quantitative estimation because the entanglement density is considered as an intrinsic value of the polymer at melt state depending on the chemical structure. Freeze-drying method is known as one of the few ways to make different entanglement density sample from dilute solution. In this study, the influence of entanglements on Tg of polystyrene obtained by the freeze-dried method was estimated quantitatively. The freeze-dried samples showed Tg depression with decreasing the concentration of precursor solution due to the lower entanglement density and their depressed Tg would be saturated when the almost no intermolecular entanglement was formed. The molecular weight dependence of the maximum value of Tg depression was discussed.

  10. Conformational Effects through Hydrogen Bonding in a Constrained γ-Peptide Template: From Intraresidue Seven-Membered Rings to a Gel-Forming Sheet Structure.

    PubMed

    Awada, Hawraà; Grison, Claire M; Charnay-Pouget, Florence; Baltaze, Jean-Pierre; Brisset, François; Guillot, Régis; Robin, Sylvie; Hachem, Ali; Jaber, Nada; Naoufal, Daoud; Yazbeck, Ogaritte; Aitken, David J

    2017-05-05

    A series of three short oligomers (di-, tri-, and tetramers) of cis-2-(aminomethyl)cyclobutane carboxylic acid, a γ-amino acid featuring a cyclobutane ring constraint, were prepared, and their conformational behavior was examined spectroscopically and by molecular modeling. In dilute solutions, these peptides showed a number of low-energy conformers, including ribbonlike structures pleated around a rarely observed series of intramolecular seven-membered hydrogen bonds. In more concentrated solutions, these interactions defer to an organized supramolecular assembly, leading to thermoreversible organogel formation notably for the tripeptide, which produced fibrillar xerogels. In the solid state, the dipeptide adopted a fully extended conformation featuring a one-dimensional network of intermolecularly H-bonded molecules stacked in an antiparallel sheet alignment. This work provides unique insight into the interplay between inter- and intramolecular H-bonded conformer topologies for the same peptide template.

  11. Solvent effects on static and dynamic polarizability and hyperpolarizabilities of acetonitrile

    NASA Astrophysics Data System (ADS)

    Cammi, Roberto; Cossi, Maurizio; Mennucci, Benedetta; Tomasi, Jacopo

    1997-12-01

    An application of the theory recently developed to calculate SCF static and dynamic (hyper)polarizabilities of molecular solutes within the framework of the polarizable continuum model is presented here. The specific system under analysis is given by the acetonitrile molecule both in vacuo and in two different dilute solutions, water and benzene. The numerical results reported in the present paper are focused on an evaluation of the main changes produced by the presence of a solvent on the static and dynamic polarizability, α, and first and second hyperpolarizabilities, β and ρ, with respect to the corresponding quantities in the gas phase. The limits of the present calculations, and the prospects for their refinement, are discussed with a view to giving a preliminary hint and a first tool for future reliable prediction of the behavior of this kind of response function when the molecule is perturbed by the presence of a surrounding medium.

  12. Physics of soft hyaluronic acid-collagen type II double network gels

    NASA Astrophysics Data System (ADS)

    Morozova, Svetlana; Muthukumar, Murugappan

    2015-03-01

    Many biological hydrogels are made up of multiple interpenetrating, charged components. We study the swelling, elastic diffusion, mechanical, and optical behaviors of 100 mol% ionizable hyaluronic acid (HA) and collagen type II fiber networks. Dilute, 0.05-0.5 wt% hyaluronic acid networks are extremely sensitive to solution salt concentration, but are stable at pH above 2. When swelled in 0.1M NaCl, single-network hyaluronic acid gels follow scaling laws relevant to high salt semidilute solutions; the elastic shear modulus G' and diffusion constant D scale with the volume fraction ϕ as G' ~ϕ 9 / 4 and D ~ϕ 3 / 4 , respectively. With the addition of a collagen fiber network, we find that the hyaluronic acid network swells to suspend the rigid collagen fibers, providing extra strength to the hydrogel. Results on swelling equilibria, elasticity, and collective diffusion on these double network hydrogels will be presented.

  13. Tracer-dilution experiments and solute-transport simulations for a mountain stream, Saint Kevin Gulch, Colorado. Water resources investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broshears, R.E.; Bencala, K.E.; Kimball, B.A.

    In 1986, the U.S. Geological Survey began an investigation to characterize within-stream hydrologic, chemical, and biological processes that influence the distribution and transport of hazardous constituents in the headwaters of the Arkansas River. The report describes the results of tracer-dilution experiments and associated solute-transport simulations for a 1804-meter stretch of Saint Kevin Gulch, a stream affected by acid mine drainage in Lake County, Colorado. The report describes transient changes in tracer (lithium chloride) concentration at six instream sites.

  14. New model system in radiation cryochemistry:. hyperquenched glassy water

    NASA Astrophysics Data System (ADS)

    Bednarek, Janusz; Plonka, Andrzej; Hallbrucker, Andreas; Mayer, Erwin

    1999-08-01

    Radicals generated by high-energy irradiation of liquid water, short-lived at ambient temperature, can be studied at cryogenic temperatures after irradiating water and dilute aqueous solutions in their glassy states which can be obtained by so-called hyperquenching of the liquids at cooling rates of ˜10 6-10 7 K s -1. In the glassy states of hyperquenched dilute aqueous solutions there is no problem with phase separation and radiolysis of glassy water is quite distinct from radiolysis of polycrystalline ice obtained from liquid water on slow-cooling in liquid nitrogen.

  15. PRODUCTION OF TRIFLUOROACETIC ACID COMPOUNDS

    DOEpatents

    Haworth, W.N.; Stacey, M.

    1949-08-30

    A process is described for the preparation of trifluoroacetic acid. Acetone vapor diluted wlth nitrogen and fluorine also diluted with nltrogen are fed separately at a temperature of about 210 deg C into a reaction vessel containing a catalyst mass selected from-the group consisting of silver and gold. The temperature in the reaction vessel is maintained in the range of 200 deg to 250 deg C. The reaction product, trifluoroacetyl fluoride, is absorbed in aqueous alkali solution. Trifluoroacetic acid is recovered from the solution by acidification wlth an acid such as sulfuric followed by steam distillation.

  16. Water-based adhesives with tailored hydrophobic association: dilution resistance and improved setting behavior.

    PubMed

    Dundua, Alexander; Landfester, Katharina; Taden, Andreas

    2014-11-01

    Hydrophobic association and stimuli-responsiveness is a powerful tool towards water-based adhesives with strongly improved properties, which is demonstrated based on the example of hydrophobically modified alkali-soluble latexes (HASE) with modulated association. Their rheological properties are highly tunable due to the hydrophobic domains that act as physical crosslinking sites of adjustable interaction strength. Ethanol, propanol, and butanol are used as water-soluble model additives with different hydrophobicity in order to specifically target the association sites and impact the viscoelastic properties and stimuli-responsiveness. The rheological and mechanical property response upon dilution with water can be tailored, and dilution-resistant or even dilution-thickening systems are obtained. The investigations are of high importance for water-based adhesives, as our findings provide insight into general structure-property relationships to improve their setting behavior, especially upon contact with wet substrates. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Perennial flow through convergent hillslopes explains chemodynamic solute behavior in a shale headwater catchment

    NASA Astrophysics Data System (ADS)

    Herndon, E.; Steinhoefel, G.; Dere, A. L. D.; Sullivan, P. L.

    2017-12-01

    Streams experience changing hydrologic connectivity to heterogeneous water sources under different flow regimes. It remains unclear how seasonal flow paths link these different sources and regulate concentration-discharge behavior. Previous research at the Susquehanna Shale Hills Critical Zone Observatory (SSHCZO) in central Pennsylvania, USA identified chemostatic solutes (e.g., K, Mg, Na, Cl) whose concentrations varied little across a wide range of discharge values and chemodynamic solutes (e.g., Fe and Mn) whose concentrations decreased sharply with increasing stream discharge. To elucidate inputs to the stream when concentrations of chemodynamic solutes were high, we investigated stream water and shallow groundwater (< 4 m) chemistry at the SSHCZO in early autumn when discharge was negligible. The stream consisted of isolated puddles that were chemically variable along the length of the channel but similar to underlying shallow groundwater. Chemodynamic solute concentrations in the stream and groundwater were high in the upper catchment but decreased by an order of magnitude towards the outlet. In contrast, chemostatic solute concentrations varied little. Groundwater was minimally connected to the stream in an area of upwelling near the stream headwaters; however, the water table remained over a meter below the stream bed along the rest of the channel. We conclude that well water sampled from the upper catchment is young, shallow interflow that upwells to generate metal-rich stream headwaters during the dry season. High concentrations of chemodynamic solutes measured during low discharge occur when metal-rich headwaters are flushed to the catchment outlet during periodic rain events. Interflow during the dry season originates from water that infiltrates through organic-rich swales; thus, metals in the stream at low flow are ultimately derived from convergent hillslopes where biological processes have concentrated chemodynamic elements. We infer that chemodynamic solutes are diluted at high discharge due to increased flow through planar hillslopes and inputs from regional groundwater that rises to enter the stream. This study highlights how spatially heterogeneous biogeochemistry and seasonally variable flow paths regulate concentration-discharge behavior within catchments.

  18. Vibrational dephasing and frequency shifts of hydrogen-bonded pyridine-water complexes

    NASA Astrophysics Data System (ADS)

    Kalampounias, A. G.; Tsilomelekis, G.; Boghosian, S.

    2015-01-01

    In this paper we present the picosecond vibrational dynamics and Raman shifts of hydrogen-bonded pyridine-water complexes present in aqueous solutions in a wide concentration range from dense to extreme dilute solutions. We studied the vibrational dephasing and vibrational frequency modulation by calculating time correlation functions of vibrational relaxation by fits in the frequency domain. The concentration induced variations in bandwidths, band frequencies and characteristic dephasing times have been estimated and interpreted as effects due to solute-solvent interactions. The time-correlation functions of vibrational dephasing were obtained for the ring breathing mode of both "free" and hydrogen-bonded pyridine molecules and it was found that sufficiently deviate from the Kubo model. There is a general agreement in the whole concentration range with the modeling proposed by the Rothschild approach, which applies to complex liquids. The results have shown that the reorientation of pyridine aqueous solutions is very slow and hence in both scattering geometries only vibrational dephasing is probed. It is proposed that the spectral changes depend on the perturbations induced by the dynamics of the water molecules in the first hydration cell and water in bulk, while at extreme dilution conditions, the number of bulk water molecules increases and the interchange between molecules belonging to the first hydration cell may not be the predominant modulation mechanism. The evolution of several parameters, such as the characteristic times, the percentage of Gaussian character in the peak shape and the a parameter are indicative of drastic variations at extreme dilution revealing changes in the vibrational relaxation of the pyridine complexes in the aqueous environment. The higher dilution is correlated to diffusion of water molecules into the reference pyridine system in agreement with the jump diffusion model, while at extreme dilutions, almost all pyridine molecules are elaborated in hydrogen bonding. The results are discussed in the framework of the current phenomenological status of the field.

  19. SEPARATION OF BARIUM VALUES FROM URANYL NITRATE SOLUTIONS

    DOEpatents

    Tompkins, E.R.

    1959-02-24

    The separation of radioactive barium values from a uranyl nitrate solution of neutron-irradiated uranium is described. The 10 to 20% uranyl nitrate solution is passed through a flrst column of a cation exchange resin under conditions favoring the adsorption of barium and certain other cations. The loaded resin is first washed with dilute sulfuric acid to remove a portion of the other cations, and then wash with a citric acid solution at pH of 5 to 7 to recover the barium along with a lesser amount of the other cations. The PH of the resulting eluate is adjusted to about 2.3 to 3.5 and diluted prior to passing through a smaller second column of exchange resin. The loaded resin is first washed with a citric acid solution at a pH of 3 to elute undesired cations and then with citric acid solution at a pH of 6 to eluts the barium, which is substantially free of undesired cations.

  20. Diluents for stabilization of tuberculin

    PubMed Central

    Magnusson, Mogens; Guld, Johannes; Magnus, Knut; Waaler, Hans

    1958-01-01

    Tuberculin is known to be adsorbed to containers and syringes. In the present paper, the adsorption which takes place in the ampoules has been studied in relation to the diluent for the tuberculin. Adsorption was most evident in dilutions prepared with saline or with phosphate buffer containing dextran. The inclusion in phosphate buffer diluent of small amounts of proteins or synthetic surface-active agents decreased or prevented adsorption. A boric-acid sodium-borate diluent containing gum arabic, previously recommended for the preparation of stabilized tuberculin dilutions, was found to be ineffective. The most suitable diluent for the preparation of stable tuberculin dilutions was a 0.05‰ solution of Tween 80 in phosphate-buffered saline; this diluent appeared to prevent adsorption under a variety of experimental conditions. The inclusion of Tween 80 in the diluent had little or no effect on the general storage stability of purified tuberculin. Sensitization experiments in guinea-pigs, rabbits and humans showed that no sensitization against Tween 80 need be feared when a 0.05‰ solution of Tween 80 in phosphate buffered saline is used in the preparation of tuberculin dilutions. PMID:13618720

  1. Cleaning to prevent the spread of germs

    MedlinePlus

    ... under the furniture. Use the disinfectant or cleaning solution your workplace provides for these purposes. Carefully put ... to clean up spills: Paper towels. Diluted bleach solution (be sure you know how to make this ...

  2. Scaling Theory of Polyelectrolyte Nanogels

    NASA Astrophysics Data System (ADS)

    Qu, Li-Jian

    2017-08-01

    The present paper develops the scaling theory of polyelectrolyte nanogels in dilute and semidilute solutions. The dependencies of the nanogel dimension on branching topology, charge fraction, subchain length, segment number, solution concentration are obtained. For a single polyelectrolyte nanogel in salt free solution, the nanogel may be swelled by the Coulombic repulsion (the so-called polyelectrolyte regime) or the osmotic counterion pressure (the so-called osmotic regime). Characteristics and boundaries between different regimes of a single polyelectrolyte nanogel are summarized. In dilute solution, the nanogels in polyelectrolyte regime will distribute orderly with the increase of concentration. While the nanogels in osmotic regime will always distribute randomly. Different concentration dependencies of the size of a nanogel in polyelectrolyte regime and in osmotic regime are also explored. Supported by China Earthquake Administration under Grant No. 20150112 and National Natural Science Foundation of China under Grant No. 21504014

  3. In-gel multiple displacement amplification of long DNA fragments diluted to the single molecule level.

    PubMed

    Michikawa, Yuichi; Sugahara, Keisuke; Suga, Tomo; Ohtsuka, Yoshimi; Ishikawa, Kenichi; Ishikawa, Atsuko; Shiomi, Naoko; Shiomi, Tadahiro; Iwakawa, Mayumi; Imai, Takashi

    2008-12-15

    The isolation and multiple genotyping of long individual DNA fragments are needed to obtain haplotype information for diploid organisms. Limiting dilution of sample DNA followed by multiple displacement amplification is a useful technique but is restricted to short (<5 kb) DNA fragments. In the current study, a novel modification was applied to overcome these problems. A limited amount of cellular DNA was carefully released from intact cells into a mildly heated alkaline agarose solution and mixed thoroughly. The solution was then gently aliquoted and allowed to solidify while maintaining the integrity of the diluted DNA. Exogenously provided Phi29 DNA polymerase was used to perform consistent genomic amplification with random hexameric oligonucleotides within the agarose gels. Simple heat melting of the gel allowed recovery of the amplified materials in a solution of the polymerase chain reaction (PCR)-ready form. The haplotypes of seven SNPs spanning 240 kb of the DNA surrounding the human ATM gene region on chromosome 11 were determined for 10 individuals, demonstrating the feasibility of this new method.

  4. An in vitro comparison of the effects of voluven (6% hydroxyethyl starch 130/0.4) and hespan (6% hydroxyethyl starch 670/0.75) on measures of blood coagulation in canine blood.

    PubMed

    Griego-Valles, Michelle; Buriko, Yekaterina; Prittie, Jennifer E; Fox, Philip R

    2017-01-01

    To assess primary and secondary hemostasis following in vitro dilution of canine whole blood (WB) with hydroxyethyl starch (HES) 130/0.4 and HES 670/0.75. In vitro experimental study. Private practice, teaching hospital. Twenty-five healthy dogs. Each dog underwent venipuncture and 18 mL of venous blood was sampled once. Collected blood was separated in 4 aliquots. Aliquot A served as baseline sample. The remaining tubes of WB were diluted with 0.9% saline, HES 670/0.75 and HES 130/0.4 at a ratio of 1:5.5. Dilutional effects were evaluated using prothrombin time (PT), activated partial thromboplastin time (aPTT), packed cell volume (PCV), thromboelastography (TEG), and platelet closure time (Ct), which was measured using a platelet function analyzer (PFA). Clot strength (ie, G value) was calculated from measured TEG values. Significant increases in PT (P < 0.05) and aPTT (P < 0.05) were documented following WB dilution with saline. Dilution of WB with HES 670/0.75 and HES 130/0.4 resulted in significant hypocoagulable changes in K, MA and G (P < 0.05) compared to baseline and saline. When comparing saline to HES 670/0.75, both R and K values were significantly increased (P < 0.05). K value was significantly increased (P < 0.05) when comparing baseline to HES 130/0.4 and HES 670/0.75. Ct (P < 0.05) was significantly prolonged after WB dilution with HES solutions but not after saline. Dilution of WB with HES 670/0.75 and HES 130/0.4 resulted in changes in primary and secondary hemostasis. Although there were small differences between saline and HES 670/0.75, no differences between HES solutions were evident in this small study. This may suggest there would be minimal increases in bleeding risk when either solution is administered to dogs at low doses. Clinical relevance of our findings requires further investigation. © Veterinary Emergency and Critical Care Society 2016.

  5. Novel method for early investigation of bioactivity in different borate bio-glasses

    NASA Astrophysics Data System (ADS)

    Abdelghany, A. M.

    Some ternary borate glasses were prepared and corrosion behavior of such ternary borate glasses after immersion in aqueous dilute phosphate solution was studied using different immersion times. Fourier transform infrared (FTIR) absorption spectral measurements were done before and after immersion in the mentioned solution for extended times up to 2 days to justify the appearance of the characteristic FTIR bands due to calcium phosphate (hydroxyapatite (HA)) which is considered as the potential indication of bioactivity. Experimental IR data confirm the beginning of the appearance of FTIR bands at about 580 and 620 cm-1 after 3 days and the complete resolution with its characteristic split form after 1 week and more. Deconvolution analysis technique (DAT) of the FTIR spectrum was employed to investigate the bioactivity of such ternary borate system after a short period of immersion. The corrosion behavior of such glasses is explained in relation to a suggested hydrolysis followed by direct dissolution mechanism. The ease of dissolution of all the borate glasses constituents explains the formation of calcium phosphate and conversion to crystalline hydroxyapatite within the borate glass matrix. X-ray diffraction may be used to retrace the structural changes and degree of crystallinity of the prepared glasses.

  6. Accelerometric comparison of the locomotor pattern of horses sedated with xylazine hydrochloride, detomidine hydrochloride, or romifidine hydrochloride.

    PubMed

    López-Sanromán, F Javier; Holmbak-Petersen, Ronald; Varela, Marta; del Alamo, Ana M; Santiago, Isabel

    2013-06-01

    To evaluate the duration of effects on movement patterns of horses after sedation with equipotent doses of xylazine hydrochloride, detomidine hydrochloride, or romifidine hydrochloride and determine whether accelerometry can be used to quantify differences among drug treatments. 6 healthy horses. Each horse was injected IV with saline (0.9% NaCl) solution (10 mL), xylazine diluted in saline solution (0.5 mg/kg), detomidine diluted in saline solution (0.01 mg/kg), or romifidine diluted in saline solution (0.04 mg/kg) in random order. A triaxial accelerometric device was used for gait assessment 15 minutes before and 5, 15, 30, 45, 60, 75, 90, 105, and 120 minutes after each treatment. Eight variables were calculated, including speed, stride frequency, stride length, regularity, dorsoventral power, propulsive power, mediolateral power, and total power; the force of acceleration and 3 components of power were then calculated. Significant differences were evident in stride frequency and regularity between treatments with saline solution and each α2-adrenoceptor agonist drug; in speed, dorsoventral power, propulsive power, total power, and force values between treatments with saline solution and detomidine or romifidine; and in mediolateral power between treatments with saline solution and detomidine. Stride length did not differ among treatments. Accelerometric evaluation of horses administered α2-adrenoceptor agonist drugs revealed more prolonged sedative effects of romifidine, compared with effects of xylazine or detomidine. Accelerometry could be useful in assessing the effects of other sedatives and analgesics. Accelerometric data may be helpful in drug selection for situations in which a horse's balance and coordination are important.

  7. Synthesis of fast response crosslinked PVA-g-NIPAAm nanohydrogels by very low radiation dose in dilute aqueous solution

    NASA Astrophysics Data System (ADS)

    Fathi, Marziyeh; Reza Farajollahi, Ali; Akbar Entezami, Ali

    2013-05-01

    Nanohydrogels of poly(vinyl alcohol)-g-N-isopropylacrylamide (PVA-g-NIPAAm) are synthesized by PVA and NIPAAm dilute aqueous solution using much less radiation dose of 1-20 Gy via intramolecular crosslinking at ambient temperature. The radiation synthesis of nanohydrogels is performed in the presence of tetrakis (hydroxymethyl) phosphonium chloride (THPC) due to its rapid oxygen scavenging abilities and hydrogen peroxide (H2O2) as a source of hydroxyl radicals. The effect of radiation dose, feed composition ratio of PVA and H2O2 is investigated on swelling properties such as temperature and pH dependence of equilibrium swelling ratio as well as deswelling kinetics. Experimental data exhibit high equilibrium swelling ratio and fast response time for the synthesized nanohydrogels. The average molecular weight between crosslinks (Mc) and crosslinking density (ρx) of the obtained nanohydrogels are calculated from swelling data as a function of radiation dose, H2O2 and PVA amount. Fourier transform infrared spectroscopy (FT-IR), elemental analysis of nitrogen content and thermogravimetric analysis (TGA) are used to confirm the grafting reaction. Lower critical solution temperature (LCST) is measured around 33 °C by differential scanning calorimetry (DSC) for PVA-g-NIPAAm nanohydrogels. Dynamic light scattering (DLS) data demonstrate that the increase of radiation dose leads to the decreasing in dimension of nanohydrogels. Also, rheological studies are confirmed an improvement in the mechanical properties of the nanohydrogels with increasing the radiation dose. A cytotoxicity study exhibits a good biocompatibility for the obtained nanohydrogels. The prepared nanohydrogels show fast swelling/deswelling behavior, high swelling ratio, dual sensitivity and good cytocompatibility, which may find potential applications as biomaterial.

  8. Bias due to Preanalytical Dilution of Rodent Serum for Biochemical Analysis on the Siemens Dimension Xpand Plus

    PubMed Central

    Johns, Jennifer L.; Moorhead, Kaitlin A.; Hu, Jing; Moorhead, Roberta C.

    2018-01-01

    Clinical pathology testing of rodents is often challenging due to insufficient sample volume. One solution in clinical veterinary and exploratory research environments is dilution of samples prior to analysis. However, published information on the impact of preanalytical sample dilution on rodent biochemical data is incomplete. The objective of this study was to evaluate the effects of preanalytical sample dilution on biochemical analysis of mouse and rat serum samples utilizing the Siemens Dimension Xpand Plus. Rats were obtained from end of study research projects. Mice were obtained from sentinel testing programs. For both, whole blood was collected via terminal cardiocentesis into empty tubes and serum was harvested. Biochemical parameters were measured on fresh and thawed frozen samples run straight and at dilution factors 2–10. Dilutions were performed manually, utilizing either ultrapure water or enzyme diluent per manufacturer recommendations. All diluted samples were generated directly from the undiluted sample. Preanalytical dilution caused clinically unacceptable bias in most analytes at dilution factors four and above. Dilution-induced bias in total calcium, creatinine, total bilirubin, and uric acid was considered unacceptable with any degree of dilution, based on the more conservative of two definitions of acceptability. Dilution often caused electrolyte values to fall below assay range precluding evaluation of bias. Dilution-induced bias occurred in most biochemical parameters to varying degrees and may render dilution unacceptable in the exploratory research and clinical veterinary environments. Additionally, differences between results obtained at different dilution factors may confound statistical comparisons in research settings. Comparison of data obtained at a single dilution factor is highly recommended. PMID:29497614

  9. Asymmetric nanoparticle may go "active" at room temperature

    NASA Astrophysics Data System (ADS)

    Sheng, Nan; Tu, YuSong; Guo, Pan; Wan, RongZheng; Wang, ZuoWei; Fang, HaiPing

    2017-04-01

    Using molecular dynamics simulations, we show that an asymmetrically shaped nanoparticle in dilute solution possesses a spontaneously curved trajectory within a finite time interval, instead of the generally expected random walk. This unexpected dynamic behavior has a similarity to that of active matters, such as swimming bacteria, cells, or even fish, but is of a different physical origin. The key to the curved trajectory lies in the non-zero resultant force originated from the imbalance of the collision forces acted by surrounding solvent molecules on the asymmetrically shaped nanoparticle during its orientation regulation. Theoretical formulae based on microscopic observations have been derived to describe this non-zero force and the resulting motion of the asymmetrically shaped nanoparticle.

  10. Miscibility of poly(lactic acid) and poly(ethylene oxide) solvent polymer blends and nanofibers made by solution blow spinning

    USDA-ARS?s Scientific Manuscript database

    The miscibility of blends of poly(lactic acid) (PLA) and poly(ethylene oxide) (PEO) was studied in polymer solutions by dilute solution viscometry and in solution blow spun nanofibers by microscopy (SEM, TEM) and by thermal and spectral analysis. Three blends of PLA and PEO were solution blended in...

  11. DYNAMIC CONDUCTIVITY MEASUREMENTS IN HUMIC AND FULVIC ACID SOLUTIONS. (R828158)

    EPA Science Inventory

    Conductivity changes of dilute aqueous humic and fulvic acids solutions were monitored after the addition of small quantities of Cu, Cd, Pb, and Zn. The solutions were stirred at a constant and reproducible rate, and measurements proceeded until stable conductivities were atta...

  12. Application of Molecular Dynamics Simulations in Molecular Property Prediction II: Diffusion Coefficient

    PubMed Central

    Wang, Junmei; Hou, Tingjun

    2011-01-01

    In this work, we have evaluated how well the General AMBER force field (GAFF) performs in studying the dynamic properties of liquids. Diffusion coefficients (D) have been predicted for 17 solvents, 5 organic compounds in aqueous solutions, 4 proteins in aqueous solutions, and 9 organic compounds in non-aqueous solutions. An efficient sampling strategy has been proposed and tested in the calculation of the diffusion coefficients of solutes in solutions. There are two major findings of this study. First of all, the diffusion coefficients of organic solutes in aqueous solution can be well predicted: the average unsigned error (AUE) and the root-mean-square error (RMSE) are 0.137 and 0.171 ×10−5 cm−2s−1, respectively. Second, although the absolute values of D cannot be predicted, good correlations have been achieved for 8 organic solvents with experimental data (R2 = 0.784), 4 proteins in aqueous solutions (R2 = 0.996) and 9 organic compounds in non-aqueous solutions (R2 = 0.834). The temperature dependent behaviors of three solvents, namely, TIP3P water, dimethyl sulfoxide (DMSO) and cyclohexane have been studied. The major MD settings, such as the sizes of simulation boxes and with/without wrapping the coordinates of MD snapshots into the primary simulation boxes have been explored. We have concluded that our sampling strategy that averaging the mean square displacement (MSD) collected in multiple short-MD simulations is efficient in predicting diffusion coefficients of solutes at infinite dilution. PMID:21953689

  13. [Research to achieve a homeopathic lotion].

    PubMed

    Verbuţă, A; Cojocaru, I

    1996-01-01

    A formulation of homeopathic lotion was elaborated. It uses as mother-solutions: the Calendula tincture and the Fumaria tincture prepared according to the homeopathic rules, and a vegetal soft extract conventionally named by us Pt2a, and the 42 C alcohol was used as a vehicle. All dilutions were made at 3CH. The pH, the refraction index and the electrical conductivity of the three solutions prove a good stability of the preparation. The 2 CH a dilution was well tolerated at the administration with juvenile acne and the simple dry phthiriasis, an improving being noted after 3-4 days of treatment.

  14. Method and apparatus for assaying wood pulp fibers

    DOEpatents

    Gustafson, Richard [Bellevue, WA; Callis, James B [Seattle, WA; Mathews, Jeffrey D [Neenah, WI; Robinson, John [Issaquah, WA; Bruckner, Carsten A [San Mateo, CA; Suvamakich, Kuntinee [Seattle, WA

    2009-05-26

    Paper pulp is added to a stain solution. The stain solution and pulp fibers are mixed to form a slurry. Samples are removed from the slurry and are admixed with dilution water and a bleach. Then, the fibers are moved into a flow cell where they are subjected to a light source adapted to stimulate fluorescence from the stained pulp fiber. Before the fiber slurry enters the flow cell it is mixed with a dilution water of bleach to reduce background fluorescence. The fluorescent light is collimated and directed through a dichroic filter onto a fluorescence splitting dichroic filter.

  15. Phase separation in solution of worm-like micelles: a dilute ? spin-vector model

    NASA Astrophysics Data System (ADS)

    Panizza, Pascal; Cristobal, Galder; Curély, Jacques

    1998-12-01

    We show how the dilute 0953-8984/10/50/006/img2 spin vector model introduced originally by Wheeler and co-workers for describing the polymerization phenomenon in solutions of liquid sulphur and of living polymers may be conveniently adapted for studying phase separation in systems containing long flexible micelles. We draw an isomorphism between the coupling constant appearing in the exchange Hamiltonian and the surfactant energies in the micellar problem. We solve this problem within the mean-field approximation and compare the main results we have obtained with respect to polymer theory and previous theories of phase separation in micellar solutions. We show that the attractive interaction term 0953-8984/10/50/006/img3 between monomers renormalizes the aggregation energy and subsequently the corresponding size distribution. Under these conditions, we observe that the general aspect of the phase diagram in the 0953-8984/10/50/006/img4 plane (where 0953-8984/10/50/006/img5 is the surfactant concentration) is different from previous results. The spinodal line shows a re-entrant behaviour and, at low concentrations, we point out the possibility of specific nucleation phenomena related to the existence of a metastable transition line between a region composed of spherical micelles and another one corresponding to a dilute solution of long flexible micelles.

  16. Characterization and Behavior of Cold Lake Blend and Western Canadian Select Diluted Bitumen Products

    EPA Science Inventory

    Unconventional diluted bitumen (dilbit) oil products present an increasing environmental concern because of extensive transport in North America, recent spills into aquatic habitats, and limited understanding of environmental fate and toxicity. Dilbits are blends of highly weathe...

  17. 40 CFR 797.1600 - Fish early life stage toxicity test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... dilution water or the test solution. (4) “Control” an exposure of test organisms to dilution water only or... (treatment) concentrations of a test substance and one control are required to conduct an early life stage... trays or cups for each test concentration and control (i.e., 30 per embryo cup with 2 replicates); (C...

  18. 40 CFR 797.1600 - Fish early life stage toxicity test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... dilution water or the test solution. (4) “Control” an exposure of test organisms to dilution water only or... (treatment) concentrations of a test substance and one control are required to conduct an early life stage... trays or cups for each test concentration and control (i.e., 30 per embryo cup with 2 replicates); (C...

  19. 40 CFR 797.1600 - Fish early life stage toxicity test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... dilution water or the test solution. (4) “Control” an exposure of test organisms to dilution water only or... (treatment) concentrations of a test substance and one control are required to conduct an early life stage... trays or cups for each test concentration and control (i.e., 30 per embryo cup with 2 replicates); (C...

  20. Ethanol production with dilute acid hydrolysis using partially dried lignocellulosics

    DOEpatents

    Nguyen, Quang A.; Keller, Fred A.; Tucker, Melvin P.

    2003-12-09

    A process of converting lignocellulosic biomass to ethanol, comprising hydrolyzing lignocellulosic materials by subjecting dried lignocellulosic material in a reactor to a catalyst comprised of a dilute solution of a strong acid and a metal salt to lower the activation energy (i.e., the temperature) of cellulose hydrolysis and ultimately obtain higher sugar yields.

  1. Corrosion behavior of ODS steels with several chromium contents in hot nitric acid solutions

    NASA Astrophysics Data System (ADS)

    Tanno, Takashi; Takeuchi, Masayuki; Ohtsuka, Satoshi; Kaito, Takeji

    2017-10-01

    Oxide dispersion strengthened (ODS) steel cladding tubes have been developed for fast reactors. Tempered martensitic ODS steels with 9 and 11 wt% of chromium (9Cr-, 11Cr-ODS steel) are the candidate material in research being carried out at JAEA. In this work, fundamental immersion tests and electrochemical tests of 9 to 12Cr-ODS steels were systematically conducted in various nitric acid solutions at 95 °C. The corrosion rate decreased exponentially with effective solute chromium concentration (Creff) and nitric acid concentration. Addition of vanadium (V) and ruthenium (Ru) also decreased the corrosion rate. The combination of low Creff and dilute nitric acid could not avoid the active mass dissolution during active domain at the beginning of immersion, and the corrosion rate was high. Higher Creff decreased the partial anodic current during the active domain and assisted the passivation of the surface of the steel. Concentrated nitric acid and addition of Ru and V increased partial cathodic current and shifted the corrosion potential to noble side. These effects should have prevented the active mass dissolution and decreased the corrosion rate.

  2. ELECTRODEPOSITION OF PLUTONIUM

    DOEpatents

    Wolter, F.J.

    1957-09-10

    A process of electrolytically recovering plutonium from dilute aqueous solutions containing plutonium ions comprises electrolyzing the solution at a current density of about 0.44 ampere per square centimeter in the presence of an acetate-sulfate buffer while maintaining the pH of the solution at substantially 5 and using a stirred mercury cathode.

  3. Calixarene crown ether solvent composition and use thereof for extraction of cesium from alkaline waste solutions

    DOEpatents

    Moyer, Bruce A.; Sachleben, Richard A.; Bonnesen, Peter V.; Presley, Derek J.

    2001-01-01

    A solvent composition and corresponding method for extracting cesium (Cs) from aqueous neutral and alkaline solutions containing Cs and perhaps other competing metal ions is described. The method entails contacting an aqueous Cs-containing solution with a solvent consisting of a specific class of lipophilic calix[4]arene-crown ether extractants dissolved in a hydrocarbon-based diluent containing a specific class of alkyl-aromatic ether alcohols as modifiers. The cesium values are subsequently recovered from the extractant, and the solvent subsequently recycled, by contacting the Cs-containing organic solution with an aqueous stripping solution. This combined extraction and stripping method is especially useful as a process for removal of the radionuclide cesium-137 from highly alkaline waste solutions which are also very concentrated in sodium and potassium. No pre-treatment of the waste solution is necessary, and the cesium can be recovered using a safe and inexpensive stripping process using water, dilute (millimolar) acid solutions, or dilute (millimolar) salt solutions. An important application for this invention would be treatment of alkaline nuclear tank wastes. Alternatively, the invention could be applied to decontamination of acidic reprocessing wastes containing cesium-137.

  4. Effect of rapid warming of boar semen on sperm morphology and physiology.

    PubMed

    Bamba, K; Cran, D G

    1985-09-01

    The effect of rapid dilution (1:8 with BTS or 1:6.5 with KRP) and temperature change on sperm morphology and physiology were studied using boar spermatozoa pre-diluted in BF5 diluent. Rapid dilution of cold semen (5 degrees C) with a warm solution (37 degrees C) caused marked acrosomal changes which were most prominent in the anterior region. The acrosomal damage appeared to be caused mainly by rapid warming. In contrast to rapid cooling, rapid warming had little effect upon motility, glutamic-oxaloacetic transaminase release and respiration.

  5. Basic research in homeopathy and ultra-high dilutions: what progress is being made?

    PubMed

    Betti, Lucietta; Trebbi, Grazia; Olioso, Debora; Marzotto, Marta; Bellavite, Paolo

    2013-04-01

    This report summarises the latest research developments in the field of high dilutions and homeopathy, as presented at the GIRI symposium of the leading international organisation of scientists in this field, in Florence, Italy in September 2012. The scientific community's early scepticism concerning the possible biological and pharmacological activity of highly diluted solutions, is giving way to a more open-minded attitude that no longer obstructs critical and experimental investigations in this emerging field of biomedicine. Copyright © 2013. Published by Elsevier Ltd.. All rights reserved.

  6. Calorimetric study of water's two glass transitions in the presence of LiCl

    PubMed Central

    Ruiz, Guadalupe N.; Amann-Winkel, Katrin; Bove, Livia E.; Corti, Horacio R.

    2018-01-01

    A DSC study of dilute glassy LiCl aqueous solutions in the water-dominated regime provides direct evidence of a glass-to-liquid transition in expanded high density amorphous (eHDA)-type solutions. Similarly, low density amorphous ice (LDA) exhibits a glass transition prior to crystallization to ice Ic. Both glass transition temperatures are independent of the salt concentration, whereas the magnitude of the heat capacity increase differs. By contrast to pure water, the glass transition endpoint for LDA can be accessed in LiCl aqueous solutions above 0.01 mole fraction. Furthermore, we also reveal the endpoint for HDA's glass transition, solving the question on the width of both glass transitions. This suggests that both equilibrated HDL and LDL can be accessed in dilute LiCl solutions, supporting the liquid–liquid transition scenario to understand water's anomalies. PMID:29442107

  7. Effect of Dilute Apple Juice and Preferred Fluids vs Electrolyte Maintenance Solution on Treatment Failure Among Children With Mild Gastroenteritis: A Randomized Clinical Trial.

    PubMed

    Freedman, Stephen B; Willan, Andrew R; Boutis, Kathy; Schuh, Suzanne

    2016-05-10

    Gastroenteritis is a common pediatric illness. Electrolyte maintenance solution is recommended to treat and prevent dehydration. Its advantage in minimally dehydrated children is unproven. To determine if oral hydration with dilute apple juice/preferred fluids is noninferior to electrolyte maintenance solution in children with mild gastroenteritis. Randomized, single-blind noninferiority trial conducted between the months of October and April during the years 2010 to 2015 in a tertiary care pediatric emergency department in Toronto, Ontario, Canada. Study participants were children aged 6 to 60 months with gastroenteritis and minimal dehydration. Participants were randomly assigned to receive color-matched half-strength apple juice/preferred fluids (n=323) or apple-flavored electrolyte maintenance solution (n=324). Oral rehydration therapy followed institutional protocols. After discharge, the half-strength apple juice/preferred fluids group was administered fluids as desired; the electrolyte maintenance solution group replaced losses with electrolyte maintenance solution. The primary outcome was a composite of treatment failure defined by any of the following occurring within 7 days of enrollment: intravenous rehydration, hospitalization, subsequent unscheduled physician encounter, protracted symptoms, crossover, and 3% or more weight loss or significant dehydration at in-person follow-up. Secondary outcomes included intravenous rehydration, hospitalization, and frequency of diarrhea and vomiting. The noninferiority margin was defined as a difference between groups of 7.5% for the primary outcome and was assessed with a 1-sided α=.025. If noninferiority was established, a 1-sided test for superiority was conducted. Among 647 randomized children (mean age, 28.3 months; 331 boys [51.1%]; 441 (68.2%) without evidence of dehydration), 644 (99.5%) completed follow-up. Children who were administered dilute apple juice experienced treatment failure less often than those given electrolyte maintenance solution (16.7% vs 25.0%; difference, -8.3%; 97.5% CI, -∞ to -2.0%; P < .001 for inferiority and P = .006 for superiority). Fewer children administered apple juice/preferred fluids received intravenous rehydration (2.5% vs 9.0%; difference, -6.5%; 99% CI, -11.6% to -1.8%). Hospitalization rates and diarrhea and vomiting frequency were not significantly different between groups. Among children with mild gastroenteritis and minimal dehydration, initial oral hydration with dilute apple juice followed by their preferred fluids, compared with electrolyte maintenance solution, resulted in fewer treatment failures. In many high-income countries, the use of dilute apple juice and preferred fluids as desired may be an appropriate alternative to electrolyte maintenance fluids in children with mild gastroenteritis and minimal dehydration. clinicaltrials.gov Identifier: NCT01185054.

  8. CHARACTERIZATION OF ACTINIDES IN SIMULATED ALKALINE TANK WASTE SLUDGES AND LEACHATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, Kenneth L.

    In this project, both the fundamental chemistry of actinides in alkaline solutions (relevant to those present in Hanford-style waste storage tanks), and their dissolution from sludge simulants (and interactions with supernatants) have been investigated under representative sludge leaching procedures. The leaching protocols were designed to go beyond conventional alkaline sludge leaching limits, including the application of acidic leachants, oxidants and complexing agents. The simulant leaching studies confirm in most cases the basic premise that actinides will remain in the sludge during leaching with 2-3 M NaOH caustic leach solutions. However, they also confirm significant chances for increased mobility of actinidesmore » under oxidative leaching conditions. Thermodynamic data generated improves the general level of experiemental information available to predict actinide speciation in leach solutions. Additional information indicates that improved Al removal can be achieved with even dilute acid leaching and that acidic Al(NO3)3 solutions can be decontaminated of co-mobilized actinides using conventional separations methods. Both complexing agents and acidic leaching solutions have significant potential to improve the effectiveness of conventional alkaline leaching protocols. The prime objective of this program was to provide adequate insight into actinide behavior under these conditions to enable prudent decision making as tank waste treatment protocols develop.« less

  9. Effect of solute nature on the polyamorphic transition in glassy polyol aqueous solutions.

    PubMed

    Suzuki, Yoshiharu

    2017-08-14

    I examined the polyamorphic behavior of glassy dilute aqueous solutions of polyols (ethylene glycol, glycerol, meso-erythritol, xylitol, and D-sorbitol) under pressure at low temperatures. Although the volume change of the glassy aqueous solution varied continuously against pressure, the rate of the volume change appeared to vary discontinuously at the onset pressure of the gradual polyamorphic transition. It is thought that low-density liquid-like solvent water and high-density liquid-like solvent water coexist during the transition. Moreover, the existence of a solute induces the shift of polyamorphic transition to the lower-pressure side. The effect of a solute on the polyamorphic transition becomes larger in the order ethylene glycol, glycerol, meso-erythritol, xylitol, and D-sorbitol. Therefore, the solute can become a variable controlling the polyamorphic state of liquid water. This experimental result suggests that the metastable-equilibrium phase boundary between the low-density and the high-density amorphs for pure water is likely to be located at 0.22-0.23 GPa at about 150 K, which is slightly larger than the previously estimated pressure. Moreover, the solute-nature dependence on the polyamorphic transition seems to connect to that on the homogeneous nucleation temperature of polyol aqueous solution at ambient pressure. The region in which a low-density liquid appears coincides with the region in which the nucleus of ice Ih appears, suggesting that the formation of a low-density liquid is a precursory phenomenon of the nucleation of ice Ih.

  10. Effect of solute nature on the polyamorphic transition in glassy polyol aqueous solutions

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoshiharu

    2017-08-01

    I examined the polyamorphic behavior of glassy dilute aqueous solutions of polyols (ethylene glycol, glycerol, meso-erythritol, xylitol, and D-sorbitol) under pressure at low temperatures. Although the volume change of the glassy aqueous solution varied continuously against pressure, the rate of the volume change appeared to vary discontinuously at the onset pressure of the gradual polyamorphic transition. It is thought that low-density liquid-like solvent water and high-density liquid-like solvent water coexist during the transition. Moreover, the existence of a solute induces the shift of polyamorphic transition to the lower-pressure side. The effect of a solute on the polyamorphic transition becomes larger in the order ethylene glycol, glycerol, meso-erythritol, xylitol, and D-sorbitol. Therefore, the solute can become a variable controlling the polyamorphic state of liquid water. This experimental result suggests that the metastable-equilibrium phase boundary between the low-density and the high-density amorphs for pure water is likely to be located at 0.22-0.23 GPa at about 150 K, which is slightly larger than the previously estimated pressure. Moreover, the solute-nature dependence on the polyamorphic transition seems to connect to that on the homogeneous nucleation temperature of polyol aqueous solution at ambient pressure. The region in which a low-density liquid appears coincides with the region in which the nucleus of ice Ih appears, suggesting that the formation of a low-density liquid is a precursory phenomenon of the nucleation of ice Ih.

  11. An empirical model to estimate density of sodium hydroxide solution: An activator of geopolymer concretes

    NASA Astrophysics Data System (ADS)

    Rajamane, N. P.; Nataraja, M. C.; Jeyalakshmi, R.; Nithiyanantham, S.

    2016-02-01

    Geopolymer concrete is zero-Portland cement concrete containing alumino-silicate based inorganic polymer as binder. The polymer is obtained by chemical activation of alumina and silica bearing materials, blast furnace slag by highly alkaline solutions such as hydroxide and silicates of alkali metals. Sodium hydroxide solutions of different concentrations are commonly used in making GPC mixes. Often, it is seen that sodium hydroxide solution of very high concentration is diluted with water to obtain SHS of desired concentration. While doing so it was observed that the solute particles of NaOH in SHS tend to occupy lower volumes as the degree of dilution increases. This aspect is discussed in this paper. The observed phenomenon needs to be understood while formulating the GPC mixes since this influences considerably the relationship between concentration and density of SHS. This paper suggests an empirical formula to relate density of SHS directly to concentration expressed by w/w.

  12. Effect of Pineapple Leaf Fibers (PALF) concentration on nanofibers formation by electrospinning

    NASA Astrophysics Data System (ADS)

    Surip, S. N.; Aziz, F. M. Abdul; Bonnia, N. N.; Sekak, K. A.

    2018-01-01

    Electrospinning method has been studied widely in producing nanofibers due to its straightforward and versatile method. In this study, Pineapple Leaf Fibers (PALF) solution were electrospinning to obtain mat of PALF electrospun. PALF were diluted in Trifluoacetic Acid (TFA) into five different concentrations to study the effect of concentration to the nanofibers formation. Raw sample of PALF (PALFraw), PALF after dewax (PALFdewax) and PALF after dilute with TFA (PALFTFA) were analyzed and compared using FTIR to study the structural change occur. TFA solvent has removed and recreated some of the functional group in PALF thus disrupt strong hydrogen bonds that hold hemicellulose, cellulose and lignin together. All the PALF sample has been proceed to electrospinning process. Low concentration of solution cause the solution jet to break up even before reach the collector however high concentration of solution made the solvent volatile faster and the solution dried easily. Therefore, PALF with optimum concentration of 0.02 gml-1 had favors the formation of nanofibers and succeed in forming membrane at the collector.

  13. Focus Article: Oscillatory and long-range monotonic exponential decays of electrostatic interactions in ionic liquids and other electrolytes: The significance of dielectric permittivity and renormalized charges

    NASA Astrophysics Data System (ADS)

    Kjellander, Roland

    2018-05-01

    A unified treatment of oscillatory and monotonic exponential decays of interactions in electrolytes is displayed, which highlights the role of dielectric response of the fluid in terms of renormalized (effective) dielectric permittivity and charges. An exact, but physically transparent statistical mechanical formalism is thereby used, which is presented in a systematic, pedagogical manner. Both the oscillatory and monotonic behaviors are given by an equation for the decay length of screened electrostatic interactions that is very similar to the classical expression for the Debye length. The renormalized dielectric permittivities, which have similar roles for electrolytes as the dielectric constant has for pure polar fluids, consist in general of several entities with different physical meanings. They are connected to dielectric response of the fluid on the same length scale as the decay length of the screened interactions. Only in cases where the decay length is very long, these permittivities correspond approximately to a dielectric response in the long-wavelength limit, like the dielectric constant for polar fluids. Experimentally observed long-range exponentially decaying surface forces are analyzed as well as the oscillatory forces observed for short to intermediate surface separations. Both occur in some ionic liquids and in concentrated as well as very dilute electrolyte solutions. The coexisting modes of decay are in general determined by the bulk properties of the fluid and not by the solvation of the surfaces; in the present cases, they are given by the behavior of the screened Coulomb interaction of the bulk fluid. The surface-fluid interactions influence the amplitudes and signs or phases of the different modes of the decay, but not their decay lengths and wavelengths. The similarities between some ionic liquids and very dilute electrolyte solutions as regards both the long-range monotonic and the oscillatory decays are analyzed.

  14. Digestion of phospholipids after secretion of bile into the duodenum changes the phase behavior of bile components.

    PubMed

    Birru, Woldeamanuel A; Warren, Dallas B; Ibrahim, Ahmed; Williams, Hywel D; Benameur, Hassan; Porter, Christopher J H; Chalmers, David K; Pouton, Colin W

    2014-08-04

    Bile components play a significant role in the absorption of dietary fat, by solubilizing the products of fat digestion. The absorption of poorly water-soluble drugs from the gastrointestinal tract is often enhanced by interaction with the pathways of fat digestion and absorption. These processes can enhance drug absorption. Thus, the phase behavior of bile components and digested lipids is of great interest to pharmaceutical scientists who seek to optimize drug solubilization in the gut lumen. This can be achieved by dosing drugs after food or preferably by formulating the drug in a lipid-based delivery system. Phase diagrams of bile salts, lecithin, and water have been available for many years, but here we investigate the association structures that occur in dilute aqueous solution, in concentrations that are present in the gut lumen. More importantly, we have compared these structures with those that would be expected to be present in the intestine soon after secretion of bile. Phosphatidylcholines are rapidly hydrolyzed by pancreatic enzymes to yield equimolar mixtures of their monoacyl equivalents and fatty acids. We constructed phase diagrams that model the association structures formed by the products of digestion of biliary phospholipids. The micelle-vesicle phase boundary was clearly identifiable by dynamic light scattering and nephelometry. These data indicate that a significantly higher molar ratio of lipid to bile salt is required to cause a transition to lamellar phase (i.e., liposomes in dilute solution). Mixed micelles of digested bile have a higher capacity for solubilization of lipids and fat digestion products and can be expected to have a different capacity to solubilize lipophilic drugs. We suggest that mixtures of lysolecithin, fatty acid, and bile salts are a better model of molecular associations in the gut lumen, and such mixtures could be used to better understand the interaction of drugs with the fat digestion and absorption pathway.

  15. Comparison of the Efficacy of Three Different Mouthrinse Solutions in Decreasing the Level of Streptococcus Mutans in Saliva

    PubMed Central

    Kocak, Mustafa Murat; Ozcan, Suat; Kocak, Sibel; Topuz, Ozgur; Erten, Hulya

    2009-01-01

    Objectives The aim of this study was to evaluate the effectiveness of three different antiseptic mouthrinse solutions on the saliva samples obtained from the individuals, who had high caries activity rate. Methods The efficacy of three antiseptic mouthrinses were evaluated in a study with healthy volunteers. The three antiseptic solutions used in this study were 0.1% octenidine dihydrochloride (Octenisept, Schülke&Mayr, UK), 0.12% chlorhexidine digluconate (Kloroben, Drogsan, Turkey) and an antimicrobial enzymatic rinse (Biotene, Laclede, Inc, USA). A total of 27 adult volunteer subjects were participated in the study. The subjects were stratified into three balanced group. Then the mouth rinses were used by each group according to the manufacturer’s directions. The subjects were restricted for 60 minutes for food intake after using the prescribed mouthrinse. The saliva samples were collected from the volunteers at 1, 10 and 60 minutes after their usage in tubes. The tubes were kept in +4°C in a fridge till the evaluation. 10−3 and 10−5 dilutions were prepared for each solution and S. mutans were evaluated according to total number of colony forming unit (CFU) per ml. The dilutions were spreaded on the surface of Brucella agar plates for anaerobic incubation for 48 hours. The dilutions were 100, 10−3 and 10−5 of the solutions Kloroben, Biotene, Octenisept, and the time factor were 0, 1, 10 and 60 minutes. The statistical analyses were performed by Duncan and Bonferroni tests. Results Octenisept was found to be more effective over S. mutans than the other mouthrinse solutions (P<.05). Conclusions All mouthrinse solutions except Biotene were effective on oral microorganisms. PMID:19262732

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    HEDENGREN, D.C.

    Solubility data for ammonia in water and various dilute solutions are abundant in the literature. However, there is a noticeable lack of ammonia solubility data for high salt, basic solutions of various mixtures of salts including those found in many of the Hanford Washington underground waste tanks. As a result, models based on solubility data for dilute salt solutions have been used to extrapolate to high salt solutions. These significant extrapolations need to be checked against actual laboratory data. Some indirect vapor measurements have been made. A more direct approach is to determine the ratio of solubility of ammonia inmore » water to its solubility in high salt solutions. In various experiments, pairs of solutions, one of which is water and the other a high salt solution, are allowed to come to equilibrium with a common ammonia vapor pressure. The ratio of concentrations of ammonia in the two solutions is equal to the ratio of the respective ammonia solubilities (Henry's Law constants) at a given temperature. This information can then be used to refine the models that predict vapor space compositions of ammonia. Ammonia at Hanford is of concern because of its toxicity in the environment and its contribution to the flammability of vapor space gas mixtures in waste tanks.« less

  17. The dissolution of quartz in dilute aqueous solutions of organic acids at 25°C

    USGS Publications Warehouse

    Bennett, P.C.; Melcer, M.E.; Siegel, D.I.; Hassett, J.P.

    1988-01-01

    The dissolution of quartz in dilute aqueous solutions of organic acids at 25° and standard pressure was investigated by the batch dissolution method. The bulk dissolution rate of quartz in 20 mmole/Kg citrate solutions at pH 7 was 8 to 10 times faster than that in pure water. After 1750 hours the concentration of dissolved silica in the citrate solution was 167 μmole/Kg compared to 50 μmole/Kg in water and a 20 mmole/Kg solution of acetate at pH 7. Solutions of salicylic, oxalic, and humic acids also accelerated the dissolution of quartz in aqueous solution at pH 7. The rate of dissolution in organic acids decreased sharply with decreasing pH.The possibility of a silica-organic acid complex was investigated using UV-difference spectroscopy. Results suggest that dissolved silica is complexed by citrate, oxalate and pyruvate at pH 7 by an electron-donor acceptor complex, whereas no complexation occurs between silica and acetate, lactate, malonate, or succinate. Three models are proposed for the solution and surface complexation of silica by organic acid anions which result in the accelerated dissolution and increased solubility of quartz in organic rich water.

  18. A new scaling for the rotational diffusion of molecular probes in polymer solutions.

    PubMed

    Qing, Jing; Chen, Anpu; Zhao, Nanrong

    2017-12-13

    In the present work, we propose a new scaling form for the rotational diffusion coefficient of molecular probes in semi-dilute polymer solutions, based on a theoretical study. The mean-field theory for depletion effect and semi-empirical scaling equation for the macroscopic viscosity of polymer solutions are properly incorporated to specify the space-dependent concentration and viscosity profiles in the vicinity of the probe surface. Following the scheme of classical fluid mechanics, we numerically evaluate the shear torque exerted on the probes, which then allows us to further calculate the rotational diffusion coefficient D r . Particular attention is given to the scaling behavior of the retardation factor R rot ≡ D/D r with D being the diffusion coefficient in pure solvent. We find that R rot has little relevance to the macroscopic viscosity of the polymer solution, while it can be well featured by the characteristic length scale r h /δ, i.e. the ratio between the hydrodynamic radius of the probe r h and the depletion thickness δ. Correspondingly, we obtain a novel scaling form for the rotational retardation factor, following R rot = exp[a(r h /δ) b ] with rather robust parameters of a ≃ 0.51 and b ≃ 0.56. We apply the theory to an extensive calculation for various probes in specific polymer solutions of poly(ethylene glycol) (PEG) and dextran. Our theoretical results show good agreements with the experimental data, and clearly demonstrate the validity of the new scaling form. In addition, the difference of the scaling behavior between translational and rotational diffusions is clarified, from which we conclude that the depletion effect plays a more significant role on the local rotational diffusion rather than the long-range translation diffusion.

  19. Investigation of the dynamics of aqueous proline solutions using neutron scattering and molecular dynamics simulations.

    PubMed

    Malo de Molina, Paula; Alvarez, Fernando; Frick, Bernhard; Wildes, Andrew; Arbe, Arantxa; Colmenero, Juan

    2017-10-18

    We applied quasielastic neutron scattering (QENS) techniques to samples with two different contrasts (deuterated solute/hydrogenated solvent and the opposite label) to selectively study the component dynamics of proline/water solutions. Results on diluted and concentrated solutions (31 and 6 water molecules/proline molecule, respectively) were analyzed in terms of the susceptibility and considering a recently proposed model for water dynamics [Arbe et al., Phys. Rev. Lett., 2016, 117, 185501] which includes vibrations and the convolution of localized motions and diffusion. We found that proline molecules not only reduce the average diffusion coefficient of water but also extend the time/frequency range of the crossover region ('cage') between the vibrations and purely diffusive behavior. For the high proline concentration we also found experimental evidence of water heterogeneous dynamics and a distribution of diffusion coefficients. Complementary molecular dynamics simulations show that water molecules start to perform rotational diffusion when they escape the cage regime but before the purely diffusive behavior is established. The rotational diffusion regime is also retarded by the presence of proline molecules. On the other hand, a strong coupling between proline and water diffusive dynamics which persists with decreasing temperature is directly observed using QENS. Not only are the temperature dependences of the diffusion coefficients of both components the same, but their absolute values also approach each other with increasing proline concentration. We compared our results with those reported using other techniques, in particular using dielectric spectroscopy (DS). A simple approach based on molecular hydrodynamics and a molecular treatment of DS allows rationalizing the a priori puzzling inconsistency between QENS and dielectric results regarding the dynamic coupling of the two components. The interpretation proposed is based on general grounds and therefore should be applicable to other biomolecular solutions.

  20. Molecular crowding has no effect on the dilution thermodynamics of the biologically relevant cation mixtures.

    PubMed

    Głogocka, Daria; Przybyło, Magdalena; Langner, Marek

    2017-04-01

    The ionic composition of intracellular space is rigorously maintained in the expense of high-energy expenditure. It has been recently postulated that the cytoplasmic ionic composition is optimized so the energy cost of the fluctuations of calcium ion concentration is minimized. Specifically, thermodynamic arguments have been produced to show that the presence of potassium ions at concentrations higher than 100 mM reduce extend of the energy dissipation required for the dilution of calcium cations. No such effect has been measured when sodium ions were present in the solution or when the other divalent cation magnesium was diluted. The experimental observation has been interpreted as the indication of the formation of ionic clusters composed of calcium, chloride and potassium. In order to test the possibility that such clusters may be preserved in biological space, the thermodynamics of ionic mixtures dilution in solutions containing albumins and model lipid bilayers have been measured. Obtained thermograms clearly demonstrate that the energetics of calcium/potassium mixture is qualitatively different from calcium/sodium mixture indicating that the presence of the biologically relevant quantities of proteins and membrane hydrophilic surfaces do not interfere with the properties of the intracellular aqueous phase.

  1. Electron Conduction in Organic Solutions

    DTIC Science & Technology

    1991-11-10

    solutions, both eq(3) and eq(4) are diffusion controlled reactions, in agreement with Geske and Maid’s polarographic study of NB 10 . The decrease in... Geske , D.H., Maki, A. H. J. Am. Chem. Soc. 1960, 82, 2671. 11. Keq is calculated using EI/2 values obtained in dilute solutions (ref. 10) for eq. (3) (El

  2. Determination of the viscosity number of thermoplastics in dilute solution; polyamides (PA)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This West German Standard presents a test used to determine the viscosity number of polyamides and copolyamides which are easily diluted in sulfuric acid, and for other polyamides which are less easily diluted in sulfuric acid, and which are diluted in m-cresol. As formic acid is often used in industry instead of sulfuric acid, this solvent is also presented as an alternative, however, sulfuric acid is preferred because of the thermodynamic solubility characteristics of the polyamides and the handling safety. In addition, it is shown which solvent should be used for each polyamide. Finally, determinations concerning the preparation of the samples are presented. Using the viscosity number, a determination of the molar mass of the polyamides is possible.

  3. Effect of ice growth rate on the measured Workman-Reynolds freezing potential between ice and dilute NaCl solutions.

    PubMed

    Wilson, P W; Haymet, A D J

    2010-10-07

    Workman-Reynolds freezing potentials have been measured across the interface between ice and dilute NaCl solutions as a function of ice growth rate for three salt concentrations. Growth rates of up to 40 μm·s(-1) are used, and it is found that the measured voltage peaks at rates of ∼25 μm·s(-1). Our initial results indicate that the freezing potential can be used as a probe into various aspects of the DC electrical resistance of ice as a function of variables such as salt concentration.

  4. Hydrogen bonding in hydrates with one acetic acid molecule.

    PubMed

    Pu, Liang; Sun, Yueming; Zhang, Zhibing

    2010-10-14

    Hydrogen bonding (H-bond) interaction significantly influences the separation of acetic acid (HAc) from the HAc/H(2)O mixtures, especially the dilute solution, in distillation processes. It has been examined from the HAc mono-, di-, tri-, and tetrahydrates by analyzing the structures, binding energies, and infrared vibrational frequencies from quantum chemical calculations. For the first coordinate shell the 6-membered head-on ring is surely the most favorable structure because it has (1) the most favorable H-bonding parameters, (2) almost the largest binding energy per H-bond, (3) the biggest wavenumber shifts, and (4) the highest ring distribution (the AIMD simulations). Moreover, the comparison of the calculations with the experiments (the X-ray scattering data and IR frequencies) suggests that the possible structures in dilute aqueous solution are those involving two or more coordinate shells. The H-bonding in these water-surrounded HAc hydrates are the origin of the low-efficiency problem of isolating HAc from the dilute HAc/H(2)O mixtures. It is apparently a tougher work to break the H-bonds among HAc and the surrounded H(2)O molecules with respect to the case of more concentrated solutions, where the dominant structures are HAc or H(2)O aggregates.

  5. Effective dilution of surfactants due to thinning of the soap film

    NASA Astrophysics Data System (ADS)

    Sane, Aakash; Mandre, Shreyas; Kim, Ildoo

    2017-11-01

    A flowing soap film is a system whose hydrodynamic properties can be affected by its thickness. Despite abundant experiments performed using soap films, few have examined the dependence of its physical as well as chemical properties with respect to its thickness. We investigate one such property - surface tension of the flowing film and delineate its dependence on the concentration of the soap solution and flow rate per unit width i.e. thickness of the soap film. Using our proposed method to measure the average surface tension in-situ over the whole soap film, we show that the surface tension increases by reducing the thickness of the film and by reducing the concentration of the soap solution. Our data suggests that thinning of the soap film is effectively diluting the solution. Thinning increases the adsorption of surfactants to the surfaces, but it decreases the total number of molecules per unit area. Our work brings new insight into the physics of soap films and we believe that this effective dilution due to thinning is a signature of the flowing soap films, whose surface concentration of surfactants is affected by the thickness.

  6. Quantification of the degree of reaction of fly ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben Haha, M., E-mail: mohsen.ben-haha@empa.c; De Weerdt, K., E-mail: klaartje.de.weerdt@sintef.n; Lothenbach, B.

    2010-11-15

    The quantification of the fly ash (FA) in FA blended cements is an important parameter to understand the effect of the fly ash on the hydration of OPC and on the microstructural development. The FA reaction in two different blended OPC-FA systems was studied using a selective dissolution technique based on EDTA/NaOH, diluted NaOH solution, the portlandite content and by backscattered electron image analysis. The amount of FA determined by selective dissolution using EDTA/NaOH is found to be associated with a significant possible error as different assumptions lead to large differences in the estimate of FA reacted. In addition, atmore » longer hydration times, the reaction of the FA is underestimated by this method due to the presence of non-dissolved hydrates and MgO rich particles. The dissolution of FA in diluted NaOH solution agreed during the first days well with the dissolution as observed by image analysis. At 28 days and longer, the formation of hydrates in the diluted solutions leads to an underestimation. Image analysis appears to give consistent results and to be most reliable technique studied.« less

  7. Diffusion coefficients of nitric oxide in water: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Pokharel, Sunil; Pantha, Nurapati; Adhikari, N. P.

    2016-09-01

    Self-diffusion coefficients along with the mutual diffusion coefficients of nitric oxide (NO) and SPC/E water (H2O) as solute and solvent of the mixture, have been studied within the framework of classical molecular dynamics level of calculations using GROMACS package. The radial distribution function (RDF) of the constituent compounds are calculated to study solute-solute, solute-solvent and solvent-solvent molecular interactions as a function of temperature. A dilute solution of five NO molecules (mole fraction 0.018) and 280 H2O molecules (mole fraction 0.982) has been taken as the sample. The self-diffusion coefficient of the solvent is calculated by using mean square displacement (MSD) where as that for solute (NO) is calculated by using MSD and velocity auto-correlation function (VACF). The results are then compared with the available experimental values. The results from the present work for water come in good agreement, very precise at low temperatures, with the experimental values. The diffusion coefficients of NO, on the other hands, agree well with the available theoretical studies, and also with experiment at low temperatures (up to 310 K). The results at the higher temperatures (up to 333 K), however, deviate significantly with the experimental observations. Also, the mutual diffusion coefficients of NO in water have been calculated by using Darken’s relation. The temperature dependence of the calculated diffusion coefficients follow the Arrhenius behavior.

  8. Determination of diffusion coefficients of various livestock antibiotics in water at infinite dilution

    NASA Astrophysics Data System (ADS)

    Soriano, Allan N.; Adamos, Kristoni G.; Bonifacio, Pauline B.; Adornado, Adonis P.; Bungay, Vergel C.; Vairavan, Rajendaran

    2017-11-01

    The fate of antibiotics entering the environment raised concerns on the possible effect of antimicrobial resistance bacteria. Prediction of the fate and transport of these particles are needed to be determined, significantly the diffusion coefficient of antibiotic in water at infinite dilution. A systematic determination of diffusion coefficient of antibiotic in water at infinite dilution of five different kinds of livestock antibiotics namely: Amtyl, Ciprotyl, Doxylak Forte, Trisullak, and Vetracin Gold in the 293.15 to 313.15 K temperature range are reported through the use of the method involving the electrolytic conductivity measurements. A continuous stirred tank reactor is utilized to measure the electrolytic conductivities of the considered systems. These conductivities are correlated by using the Nernst-Haskell equation to determine the infinite dilution diffusion coefficient. Determined diffusion coefficients are based on the assumption that in dilute solution, these antibiotics behave as strong electrolyte from which H+ cation dissociate from the antibiotic's anion.

  9. Continuous countercurrent membrane column for the separation of solute/solvent and solvent/solvent systems

    DOEpatents

    Nerad, Bruce A.; Krantz, William B.

    1988-01-01

    A reverse osmosis membrane process or hybrid membrane - complementary separator process for producing enriched product or waste streams from concentrated and dilute feed streams for both solvent/solvent and solute/solvent systems is described.

  10. Schistosoma mansoni miracidial behavior: an assay system for chemostimulation.

    PubMed

    Sponholtz, G M; Short, R B

    1975-04-01

    A new system for evaluating the responses of miracidia to chemostimulants is described. The apparatus consists of a translucent plastic block with a center well and a hole in the edge leading to the well. One end of a glass tube, covered with a dialysis membrane, was inserted into the hole. Experimental solutions to be tested were put into the tube and Schistosoma mansoni miracidial behavior was observed in the well on the other side of the permeable membrane. Miracidia were released near the membrane; those which contacted the membrane were scored as to whether they returned (contact with return) or did not return (contact without return) before leaving the field of view. Materials eliciting significantly more contact with return responses than did controls were considered to be stimulatory. In this assay system, snail (Biomphalaria glabrata) conditioned water elicited 75% contact with return as compared to 8% for well water control (P less than 0.05). Tracings from motion pictures showed swimming behavior of miracidia toward snail-conditioned water to be different from behavior toward well water controls. This system permits generation of dilution response curves for chemicals and provides generally quantitative results.

  11. The photophysics of singlet, triplet, and degradation trap states in 4,4-N,N'-dicarbazolyl-1,1'-biphenyl

    NASA Astrophysics Data System (ADS)

    Jankus, Vygintas; Winscom, Chris; Monkman, Andrew P.

    2009-02-01

    In this paper we report the results of optical characterization of 4,4-N,N'-dicarbazolyl-1,1'-biphenyl (CBP), known as a host material for phosphorescent light emitting devices. Using absorption, steady state, and time-resolved spectroscopy, we explore the singlet and triplet states in solid and solution samples of CBP. In solutions we observe two distinct short-lived states with well-resolved emission originating from individual molecule singlet states (at 365 and 380 nm) and "quenching" low energy (LE) states (at 404 and 424 nm). The latter are seen only in saturated solutions and solid samples. Both of those species have different lifetimes. After UV exposure of very concentrated degassed solution the intensities of the LE bands starts to decrease. The longer the solution is exposed to UV, the less emission is seen at 404 and 424 nm, until it is totally gone. The spectrum of the highly concentrated solution is then the same as the spectrum of dilute solution, i.e., only emission at 365 and 380 nm is present. An increase in intensities of the singlet emission peaks correlates with an increase in UV exposure time. Similar behavior is observed in evaporated CBP film. We propose that this behavior is due to chemical instability of the weak N-C bonding of carbazolyl moiety—this creates new degradational species over time which dissociate after exposure to UV. We believe this to be the reason for variation in CBP fluorescence and delayed fluorescence spectra recorded by various research groups. Further, we detected two types of very long-lived states. One of these states (higher energy) is ascribed to molecular phosphorescence emission, the other to emission from low energy triplet trap states which we relate to degradational species. We propose that triplets are more easily caught by these latter sites when their hopping rate increases, and they emit inefficiently from these lower energy sites.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T. B.

    Strip Effluent Hold Tank (SEHT) and Decontaminated Salt Solution Hold Tank (DSSHT) samples from several of the “microbatches” of Integrated Salt Disposition Project (ISDP) Salt Batch (“Macrobatch”) 9 have been analyzed for 238Pu, 90Sr, 137Cs, cations (Inductively Coupled Plasma Emission Spectroscopy - ICPES), and anions (Ion Chromatography Anions - IC-A). The analytical results from the current microbatch samples are similar to those from previous macrobatch samples. The Cs removal continues to be acceptable, with decontamination factors (DF) averaging 25700 (107% RSD). The bulk chemistry of the DSSHT and SEHT samples do not show any signs of unusual behavior, other thanmore » lacking the anticipated degree of dilution that is calculated to occur during Modular Caustic-Side Solvent Extraction Unit (MCU) processing.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T. B.

    Strip Effluent Hold Tank (SEHT) and Decontaminated Salt Solution Hold Tank (DSSHT) samples from several of the “microbatches” of Integrated Salt Disposition Project (ISDP) Salt Batch (“Macrobatch”) 8B have been analyzed for 238Pu, 90Sr, 137Cs, cations (Inductively Coupled Plasma Emission Spectroscopy - ICPES), and anions (Ion Chromatography Anions - IC-A). The analytical results from the current microbatch samples are similar to those from previous macrobatch samples. The Cs removal continues to be excellent, with decontamination factors (DF) averaging 22,100 (114% RSD). The bulk chemistry of the DSSHT and SEHT samples does not show any signs of unusual behavior, other thanmore » lacking the anticipated degree of dilution that is calculated to occur during Modular Caustic-Side Solvent Extraction Unit (MCU) processing.« less

  14. Chemistry of carcinogenic metals.

    PubMed Central

    Martell, A E

    1981-01-01

    The periodic distribution of known and suspected carcinogenic metal ions is described, and the chemical behavior of various types of metal ions is explained in terms of the general theory of hard and soft acids and bases. The chelate effect is elucidated, and the relatively high stability of metal chelates in very dilute solutions is discussed. The concepts employed for the chelate effect are extended to explain the high stabilities of macrocyclic and cryptate complexes. Procedures for the use of equilibrium data to determine the speciation of metal ions and complexes under varying solution conditions are described. Methods for assessing the interferences by hydrogen ion, competing metal ions, hydrolysis, and precipitation are explained, and are applied to systems containing iron(III) chelates of fourteen chelating agents designed for effective binding of the ferric ion. The donor groups available for the building up of multidentate ligands are presented, and the ways in which they may be combined to achieve high affinity and selectivity for certain types of metal ions are explained. PMID:6791915

  15. Corrosion Behavior and Microstructure Influence of Glass-Ceramic Nuclear Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthew Asmussen, R.; Neeway, James J.; Kaspar, Tiffany C.

    Glass ceramic waste forms present a potentially viable technology for the long term immobilization and disposal of liquid nuclear wastes. Through control of chemistry during fabrication, such waste forms can have designed secondary crystalline phases within a borosilicate glass matrix. In this work, a glass ceramic containing powellite and oxyapatite secondary phases was tested for its corrosion properties in dilute conditions using single pass flow through testing (SPFT). Three glass ceramic samples were prepared using different cooling rates to produce samples with varying microstructure sizes. In testing at 90 °C in buffered pH 7 and pH 9 solutions, it wasmore » found that increasing pH and decreasing microstructure size (resulting from rapid cooling during fabrication) both led to a reduction in overall corrosion rate. The phases of the glass ceramic were found, using a combination of solutions analysis, SEM and AFM, to corrode preferably in the order of powellite > bulk glass matrix > oxyapatite.« less

  16. Strengthening of the Coordination Shell by Counter Ions in Aqueous Th 4+ Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atta-Fynn, Raymond; Bylaska, Eric J.; de Jong, Wibe A.

    The presence of counter ions in solutions containing highly charged metal cations can trigger processes such as ion-pair formation, hydrogen bond breakages and subsequent reformation, and ligand exchanges. In this work, it is shown how halide (Cl-, Br-) and perchlorate (ClO4-) anions affect the strength of the primary solvent coordination shells around Th4+ using explicit solvent and finite temperature ab initio molecular dynamics modeling methods. The 9-fold solvent geometry was found to be the most stable hydration structure in each aqueous solution. Relative to the dilute aqueous solution, the presence of the counter ions did not significantly alter the geometrymore » of the primary hydration shell. However, the free energy analyses indicated that the 10-fold hydrated states were thermodynamically accessible in dilute and bromide aqueous solutions within 1 kcal/mol. Analysis of the results showed that the hydrogen bond lifetimes were longer and solvent exchange energy barriers were larger in solutions with counter ions in comparison with the solution with no counter ions. This implies that the presence of the counter ions induces a strengthening of the Th4+ hydration shell.« less

  17. Application of molecular dynamics simulations in molecular property prediction II: diffusion coefficient.

    PubMed

    Wang, Junmei; Hou, Tingjun

    2011-12-01

    In this work, we have evaluated how well the general assisted model building with energy refinement (AMBER) force field performs in studying the dynamic properties of liquids. Diffusion coefficients (D) have been predicted for 17 solvents, five organic compounds in aqueous solutions, four proteins in aqueous solutions, and nine organic compounds in nonaqueous solutions. An efficient sampling strategy has been proposed and tested in the calculation of the diffusion coefficients of solutes in solutions. There are two major findings of this study. First of all, the diffusion coefficients of organic solutes in aqueous solution can be well predicted: the average unsigned errors and the root mean square errors are 0.137 and 0.171 × 10(-5) cm(-2) s(-1), respectively. Second, although the absolute values of D cannot be predicted, good correlations have been achieved for eight organic solvents with experimental data (R(2) = 0.784), four proteins in aqueous solutions (R(2) = 0.996), and nine organic compounds in nonaqueous solutions (R(2) = 0.834). The temperature dependent behaviors of three solvents, namely, TIP3P water, dimethyl sulfoxide, and cyclohexane have been studied. The major molecular dynamics (MD) settings, such as the sizes of simulation boxes and with/without wrapping the coordinates of MD snapshots into the primary simulation boxes have been explored. We have concluded that our sampling strategy that averaging the mean square displacement collected in multiple short-MD simulations is efficient in predicting diffusion coefficients of solutes at infinite dilution. Copyright © 2011 Wiley Periodicals, Inc.

  18. Aluminium. II - A review of deformation properties of high purity aluminium and dilute aluminium alloys.

    NASA Technical Reports Server (NTRS)

    Reed, R. P.

    1972-01-01

    The elastic and plastic deformation behavior of high-purity aluminum and of dilute aluminum alloys is reviewed. Reliable property data, including elastic moduli, elastic coefficients, tensile, creep, fatigue, hardness, and impact are presented. Single crystal tensile results are discussed. Rather comprehensive reference lists, containing publications of the past 20 years, are included for each of the above categories. Defect structures and mechanisms responsible for mechanical behavior are presented. Strengthening techniques (alloys, cold work, irradiation, quenching, composites) and recovery are briefly reviewed.

  19. Revisiting ignited-quenched transition and the non-Newtonian rheology of a sheared dilute gas-solid suspension

    NASA Astrophysics Data System (ADS)

    Saha, Saikat; Alam, Meheboob

    2017-12-01

    The hydrodynamics and rheology of a sheared dilute gas-solid suspension, consisting of inelastic hard-spheres suspended in a gas, are analysed using anisotropic Maxwellian as the single particle distribution function. The closed-form solutions for granular temperature and three invariants of the second-moment tensor are obtained as functions of the Stokes number ($St$), the mean density ($\

  20. Novel Hydrogels from Telechelic Polymers

    NASA Astrophysics Data System (ADS)

    Taribagil, Rajiv R.

    The last two decades have seen telechelic polymers support an increasing number of applications as stabilizers and flow modifiers in fields as varied as pharmaceutics, paints and oil recovery. Mainly consisting of a long hydrophilic block end-capped with hydrophobic blocks, these polymers form gels at modest concentrations, comprising hydrophobic junctions with hydrophilic blocks bridging these junctions. This thesis examines two different types of telechelic polymer hydrogels: concentrated dispersions of telechelic triblock copolymers and dilute solutions of wormlike micelles cross-linked by hydrophobically end-capped polymers. Aqueous gels of telechelic poly(ethylene oxide) (PEO)-based triblock polymers, with homo and hetero combinations of 1,2-polybutadiene (PB) and poly(perfluoropropylene oxide) (PFPO) as hydrophobic end-blocks, were investigated using a combination of cryogenic scanning electron microscopy and small-angle neutron scattering. The PB-b-PEO-b-PB copolymers formed networks of spherical micelles at all concentrations as expected, albeit with significant spatial heterogeneity that diminished with increasing concentration. The PFPO-b-PEO-b-PFPO copolymers also formed networks by aggregation of the end-blocks, but the PFPO blocks tended to adopt disk-like or even sheet-like structures. This is attributed to the extremely high interfacial tension of PFPO with water and is consistent with the "super-strong" segregation regime behavior. The heterotelechelic PB-b-PEO- b-PFPO terpolymers adopted a quite different structure, namely an intricate bicontinuous open-cell foam, with cells on the order of 500 nm in size and cell walls composed of PFPO disks embedded in PB sheets. These various network structures illustrate the potential of using end-block chemistry to manipulate both the morphology and the physical properties of polymer gels. Dilute aqueous solutions containing 1 wt% cetyltrimethylammonium tosylate, a surfactant well recognized to form wormlike micelles, and low concentrations of hydrophobically end-capped poly(ethylene oxide), were investigated using dynamic mechanical spectroscopy and small-angle neutron scattering. The detailed examination shows that addition of as little as 0.1 wt% of the polymer to the dilute wormlike micelle solution leads to a massive enhancement in its viscoelastic response. This phenomenon raises the possibility of significantly reducing the amount of additive required to achieve a desired rheological profile, with concomitant advantages in both cost and environmental impact.

  1. Solutions for the conductivity of multi-coated spheres and spherically symmetric inclusion problems

    NASA Astrophysics Data System (ADS)

    Pham, Duc Chinh

    2018-02-01

    Variational results on the macroscopic conductivity (thermal, electrical, etc.) of the multi-coated sphere assemblage have been used to derive the explicit expression of the respective field (thermal, electrical, etc.) within the spheres in d dimensions (d=2,3). A differential substitution approach has been developed to construct various explicit expressions or determining equations for the effective spherically symmetric inclusion problems, which include those with radially variable conductivity, different radially variable transverse and normal conductivities, and those involving imperfect interfaces, in d dimensions. When the volume proportion of the outermost spherical shell increases toward 1, one obtains the respective exact results for the most important specific cases: the dilute solutions for the compound inhomogeneities suspended in a major matrix phase. Those dilute solution results are also needed for other effective medium approximation schemes.

  2. Workman-Reynolds freezing potential measurements between ice and dilute salt solutions for single ice crystal faces.

    PubMed

    Wilson, P W; Haymet, A D J

    2008-09-18

    Workman-Reynolds freezing potentials have been measured for the first time across the interface between single crystals of ice 1h and dilute electrolyte solutions. The measured electric potential is a strictly nonequilibrium phenomenon and a function of the concentration of salt, freezing rate, orientation of the ice crystal, and time. When all these factors are controlled, the voltage is reproducible to the extent expected with ice growth experiments. Zero voltage is obtained with no growth or melting. For rapidly grown ice 1h basal plane in contact with a solution of 10 (-4) M NaCl the maximum voltage exceeds 30 V and decreases to zero at both high and low salt concentrations. These single-crystal experiments explain much of the data captured on this remarkable phenomenon since 1948.

  3. Kinetics of phase separation and coarsening in dilute surfactant pentaethylene glycol monododecyl ether solutions

    NASA Astrophysics Data System (ADS)

    Tanaka, S.; Kubo, Y.; Yokoyama, Y.; Toda, A.; Taguchi, K.; Kajioka, H.

    2011-12-01

    We investigated the phase separation phenomena in dilute surfactant pentaethylene glycol monodedecyl ether (C12E5) solutions focusing on the growth law of separated domains. The solutions confined between two glass plates were found to exhibit the phase inversion, characteristic of the viscoelastic phase separation; the majority phase (water-rich phase) nucleated as droplets and the minority phase (micelle-rich phase) formed a network temporarily, then they collapsed into an usual sea-island pattern where minority phase formed islands. We found from the real-space microscopic imaging that the dynamic scaling hypothesis did not hold throughout the coarsening process. The power law growth of the domains with the exponent close to 1/3 was observed even though the coarsening was induced mainly by hydrodynamic flow, which was explained by Darcy's law of laminar flow.

  4. Hydration and ion pair formation in aqueous Y(3+)-salt solutions.

    PubMed

    Rudolph, Wolfram W; Irmer, Gert

    2015-11-14

    Raman spectra of aqueous yttrium perchlorate, triflate (trifluoromethanesulfonate), chloride and nitrate solutions were measured over a broad concentration range (0.198-3.252 mol L(-1)). The spectra range from low wavenumbers to 4200 cm(-1). A very weak mode at 384 cm(-1) with a full width at half height at 50 cm(-1) in the isotropic spectrum suggests that the Y(3+)- octa-aqua ion is thermodynamically stable in dilute perchlorate solutions (∼0.5 mol L(-1)) while in concentrated perchlorate solutions outer-sphere ion pairs and contact ion pairs are formed. The octa-hydrate, [Y(OH2)8](3+) was also detected in a 1.10 mol L(-1) aqueous Y(CF3SO3)3 solution. Furthermore, very weak and broad depolarized modes could be detected which are assigned to [Y(OH2)8](3+)(aq) at 100, 166, 234 and 320 cm(-1) confirming that a hexa-hydrate is not compatible with the hydrated species in solution. In yttrium chloride solutions contact ion pair formation was detected over the measured concentration range from 0.479-3.212 mol L(-1). The contact ion pairs in YCl3(aq) are fairly weak and disappear with dilution. At a concentration <0.2 mol L(-1) almost all complexes have disappeared. In YCl3 solutions, with additional HCl, chloro-complexes of the type [Y(OH2)8-nCln](+3-n) (n = 1,2) are formed. The Y(NO3)3(aq) spectra were compared with a spectrum of a dilute NaNO3 solution and it was concluded that in Y(NO3)3(aq) over the concentration range from 2.035-0.198 mol L(-1) nitrato-complexes [Y(OH2)8-n(NO3)ln](+3-n) (n = 1,2) are formed. The nitrato-complexes are weak and disappear with dilution <0.1 mol L(-1). DFT geometry optimizations and frequency calculations are reported for both the yttrium-water cluster in the gas phase and the cluster within a polarizable continuum model in order to implicitly describe the presence of the bulk solvent. The bond distance and angle for the square antiprismatic cluster geometry of [Y(OH2)8](3+) with the polarizable dielectric continuum is in good agreement with data from recent structural experimental measurements. The DFT frequency of the Y-O stretching mode of the [Y(OH2)8](3+) cluster, in a polarizable continuum, is at 372 cm(-1) in satisfactory agreement with the experimental value.

  5. Iodine retention during evaporative volume reduction

    DOEpatents

    Godbee, H.W.; Cathers, G.I.; Blanco, R.E.

    1975-11-18

    An improved method for retaining radioactive iodine in aqueous waste solutions during volume reduction is disclosed. The method applies to evaporative volume reduction processes whereby the decontaminated (evaporated) water can be returned safely to the environment. The method generally comprises isotopically diluting the waste solution with a nonradioactive iodide and maintaining the solution at a high pH during evaporation.

  6. Dilution Jet Behavior in the Turn Section of a Reverse Flow Combuster

    NASA Technical Reports Server (NTRS)

    Riddlebaugh, S. M.; Lipshitz, A.; Greber, I.

    1982-01-01

    Measurements of the temperature field produced by a single jet and a row of dilution jets issued into a reverse flow combustor are presented. The temperature measurements are presented in the form of consecutive normalized temperature profiles, and jet trajectories. Single jet trajectories were swept toward the inner wall of the turn, whether injection was from the inner or outer wall. This behavior is explained by the radially inward velocity component necessary to support irrotational flow through the turn. Comparison between experimental results and model calculations showed poor agreement due to the model's not including the radial velocity component. A widely spaced row of jets produced trajectories similar to single jets at similar test conditions, but as spacing ratio was reduced, penetration was reduced to the point where the dilution jet flow attached to the wall.

  7. The Electrostatic Screening Length in Concentrated Electrolytes Increases with Concentration.

    PubMed

    Smith, Alexander M; Lee, Alpha A; Perkin, Susan

    2016-06-16

    According to classical electrolyte theories interactions in dilute (low ion density) electrolytes decay exponentially with distance, with the Debye screening length the characteristic length scale. This decay length decreases monotonically with increasing ion concentration due to effective screening of charges over short distances. Thus, within the Debye model no long-range forces are expected in concentrated electrolytes. Here we reveal, using experimental detection of the interaction between two planar charged surfaces across a wide range of electrolytes, that beyond the dilute (Debye-Hückel) regime the screening length increases with increasing concentration. The screening lengths for all electrolytes studied-including aqueous NaCl solutions, ionic liquids diluted with propylene carbonate, and pure ionic liquids-collapse onto a single curve when scaled by the dielectric constant. This nonmonotonic variation of the screening length with concentration, and its generality across ionic liquids and aqueous salt solutions, demonstrates an important characteristic of concentrated electrolytes of substantial relevance from biology to energy storage.

  8. Electrokinetic Particle Aggregation and Flow Instabilities in Non-Dilute Colloidal Suspensions

    NASA Astrophysics Data System (ADS)

    Navaneetham, Guru; Posner, Jonathan

    2007-11-01

    An experimental investigation of electrokinetic particle aggregation and flow instabilities of non-dilute colloidal suspensions in microfabricated channels is presented. The addition of charged colloidal particles can alter the solution's conductivity, permittivity as well as the average particle electrophoretic mobility. In this work, a colloid volume fraction gradient is achieved at the intersection of a Y-shaped PDMS microchannel. The solution conductivity and the particle mobility as a function of the particle (500 nm polystyrene) volume fraction are presented. The critical conditions required for particle aggregation and flow instability are given along with a scaling analysis which shows that the flow becomes unstable at a critical electric Rayleigh number for a wide range of applied electric fields and colloid volume fractions. Electrokinetic particle aggregation and instabilities of non-dilute colloidal suspensions may be important for applications such as the electrophoretic deposition of particles to form micropatterned colloidal assemblies, electrorheological devices, and on-chip, electrokinetic manipulation of colloids.

  9. Rheological Characteristics of 2D Titanium Carbide (MXene) Dispersions: A Guide for Processing MXenes.

    PubMed

    Akuzum, Bilen; Maleski, Kathleen; Anasori, Babak; Lelyukh, Pavel; Alvarez, Nicolas Javier; Kumbur, E Caglan; Gogotsi, Yury

    2018-03-27

    Understanding the rheological properties of two-dimensional (2D) materials in suspension is critical for the development of various solution processing and manufacturing techniques. 2D carbides and nitrides (MXenes) constitute one of the largest families of 2D materials with >20 synthesized compositions and applications already ranging from energy storage to medicine to optoelectronics. However, in spite of a report on clay-like behavior, not much is known about their rheological response. In this study, rheological behavior of single- and multilayer Ti 3 C 2 T x in aqueous dispersions was investigated. Viscous and viscoelastic properties of MXene dispersions were studied over a variety of concentrations from colloidal dispersions to high loading slurries, showing that a multilayer MXene suspension with up to 70 wt % can exhibit flowability. Processing guidelines for the fabrication of MXene films, coatings, and fibers have been established based on the rheological properties. Surprisingly, high viscosity was observed at very low concentrations for solutions of single-layer MXene flakes. Single-layer colloidal solutions were found to exhibit partial elasticity even at the lowest tested concentrations (<0.20 mg/mL) due to the presence of strong surface charge and excellent hydrophilicity of MXene, making them amenable to fabrication at dilute concentrations. Overall, the findings of this study provide fundamental insights into the rheological response of this quickly growing 2D family of materials in aqueous environments as well as offer guidelines for processing of MXenes.

  10. Novel method for early investigation of bioactivity in different borate bio-glasses.

    PubMed

    Abdelghany, A M

    2013-01-01

    Some ternary borate glasses were prepared and corrosion behavior of such ternary borate glasses after immersion in aqueous dilute phosphate solution was studied using different immersion times. Fourier transform infrared (FTIR) absorption spectral measurements were done before and after immersion in the mentioned solution for extended times up to 2 days to justify the appearance of the characteristic FTIR bands due to calcium phosphate (hydroxyapatite (HA)) which is considered as the potential indication of bioactivity. Experimental IR data confirm the beginning of the appearance of FTIR bands at about 580 and 620 cm(-1) after 3 days and the complete resolution with its characteristic split form after 1 week and more. Deconvolution analysis technique (DAT) of the FTIR spectrum was employed to investigate the bioactivity of such ternary borate system after a short period of immersion. The corrosion behavior of such glasses is explained in relation to a suggested hydrolysis followed by direct dissolution mechanism. The ease of dissolution of all the borate glasses constituents explains the formation of calcium phosphate and conversion to crystalline hydroxyapatite within the borate glass matrix. X-ray diffraction may be used to retrace the structural changes and degree of crystallinity of the prepared glasses. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Magnetite and magnetite/silver core/shell nanoparticles with diluted magnet-like behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garza-Navarro, Marco; Torres-Castro, Alejandro, E-mail: alejandro.torrescs@uanl.edu.m; Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia, Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon 66600

    2010-01-15

    In the present work is reported the use of the biopolymer chitosan as template for the preparation of magnetite and magnetite/silver core/shell nanoparticles systems, following a two step procedure of magnetite nanoparticles in situ precipitation and subsequent silver ions reduction. The crystalline and morphological characteristics of both magnetite and magnetite/silver core/shell nanoparticles systems were analyzed by high resolution transmission electron microscopy (HRTEM) and nanobeam diffraction patterns (NBD). The results of these studies corroborate the core/shell morphology and the crystalline structure of the magnetite core and the silver shell. Moreover, magnetization temperature dependent, M(T), measurements show an unusual diluted magnetic behaviormore » attributed to the dilution of the magnetic ordering in the magnetite and magnetite/silver core/shell nanoparticles systems. - Graphical abstract: Biopolymer chitosan was used as stabilization media to synthesize both magnetite and magnetite/silver core/shell nanoparticles. Results of HRTEM and NBD patterns confirm core/shell morphology of the obtained nanoparticles. It was found that the composites show diluted magnet-like behavior.« less

  12. Mossbauer effect in dilute iron alloys

    NASA Technical Reports Server (NTRS)

    Singh, J. J.

    1975-01-01

    The effects of variable concentration, x, of Aluminum, Germanium, and Lanthanum atoms in Iron lattice on various Mossbauer parameters was studied. Dilute binary alloys of (Fe-Al), (Fe-Ge), (Fe-Al) containing up to x = 2 a/o of the dilute constituent were prepared in the form of ingots and rolled to a thickness of 0.001 in. Mossbauer spectra of these targets were then studied in transmission geometry to measure changes in the hyperfine field, peak widths isomer shifts as well as the ratio of the intensities of peaks (1,6) to the intensities of peaks (2,5). It was shown that the concept of effective hyperfine structure field in very dilute alloys provides a useful means of studying the effects of progressively increasing the solute concentration on host lattice properties.

  13. Physico-chemical stability of eribulin mesylate containing concentrate and ready-to-administer solutions.

    PubMed

    Spindeldreier, Kirsten; Thiesen, Judith; Lipp, Hans-Peter; Krämer, Irene

    2014-06-01

    The aim of this study was to determine the stability of commercially available eribulin mesylate containing injection solution as well as diluted ready-to-administer solutions stored under refrigeration or at room temperature. Stability was studied by a novel developed stability-indicating reversed-phase high-performance liquid chromatography (RP-HPLC) assay with ultraviolet detection (detection wavelength 200 nm). Triplicate test solutions of eribulin mesylate containing injection concentrate (0.5 mg/mL) and with 0.9% sodium chloride solution diluted ready-to-administer preparations (0.205 mg/mL eribulin mesylate in polypropylene (PP) syringes, 0.020 mg/mL eribulin mesylate in polypropylene/polyethylene (PE) bags) were stored protected from light either at room temperature (25) or under refrigeration (2-8). Samples were withdrawn on day 0 (initial), 1, 3, 5, 7, 14, 21 and 28 of storage and assayed. Physical stability was determined by measuring the pH value once a week and checking for visible precipitations or colour changes. The stability tests revealed that concentrations of eribulin mesylate remained unchanged over a period of 28 days irrespective of concentration, container material or storage temperature. Neither colour changes nor visible particles have been observed. The pH value varied slightly over time but remained in the stability favourable range of 5-9. Eribulin mesylate injection (0.5 mg/mL) is physico-chemically stable over a period of 28 days after first puncture of the vial. After dilution with 0.9% NaCl vehicle solution, ready-to-administer eribulin mesylate injection solutions (0.205 mg/mL in PP syringe) and infusion solutions (0.02 mg/mL in prefilled PP/PE bags) are physico-chemically stable for a period of at least four weeks either refrigerated or stored at room temperature. For microbiological reasons storage under refrigeration is recommended.

  14. The effect of cleaning procedures on fracture properties and corrosion of NiTi files.

    PubMed

    O'Hoy, P Y Z; Messer, H H; Palamara, J E A

    2003-11-01

    To evaluate the effect of repeated cleaning procedures on fracture properties and corrosion of nickel-titanium (NiTi) files. New NiTi instruments were subjected to 2, 5 and 10 cleaning cycles with the use of either diluted bleach (1% NaOCl) or Milton's solution (1% NaOCl plus 19% NaCl) as disinfectant. Each cleaning cycle consisted of scrubbing, rinsing and immersing in NaOCl for 10 min followed by 5 min of ultrasonication. Files were then tested for torsional failure and flexural fatigue, and observed for evidence of corrosion using scanning electron microscope (SEM). Four brands of NiTi files were immersed in either Milton's solution or diluted bleach overnight and evaluated for corrosion. Up to 10 cleaning cycles did not significantly reduce the torque at fracture or number of revolutions to flexural fatigue (P > 0.05, two-way anova), although decreasing values were noted with increasing number of cleaning cycles using Milton's solution. No corrosion was detected on the surface of these files. Files immersed in 1% NaOCl overnight displayed a variety of corrosion patterns. The extent of corrosion was variable amongst different brands of files and amongst files in each brand. Overall, Milton's solution was much more corrosive than diluted bleach. Corrosion of file handles was often extreme. Files can be cleaned up to 10 times without affecting fracture susceptibility or corrosion, but should not be immersed in NaOCl overnight. Milton's solution is much more corrosive than bleach with the same NaOCl concentration.

  15. Tested Demonstrations. The Stepwise Reduction of Permanganate in Alkaline Conditions: A Lecture Demonstration.

    ERIC Educational Resources Information Center

    Ruoff, Peter; Riley, Megan

    1987-01-01

    Describes a chemistry experiment where an alkaline ice-cold permanganate solution is reduced by adding dropwise a cold diluted hydrogen peroxide solution. Outlines the course of the reduction through the various oxidation states of manganese with their characteristic colors. (TW)

  16. Substituent effect on photophysical properties of bi-1,3,4-oxadiazole derivatives in solution

    NASA Astrophysics Data System (ADS)

    Chen, Fangyi; Tian, Taiji; Zhao, Chengxiao; Bai, Binglian; Li, Min; Wang, Haitao

    2016-04-01

    A series of phenyl substituted bi-1,3,4-oxadiazole derivatives were designed and synthesized; the effect of substituent on the photophysical properties and molecular electronic structures was fully studied by the combination of experimental techniques and theoretical calculations. Compared to parent compound without any substituent (BOXD), fluoro-substituent shows little effect on the absorption and emission spectra, whilst a little larger spectral red-shift could be observed for methoxy-, nitro-substituted derivatives and thienyl-substituted bi-1,3,4-oxadiazole (TBOXD). These spectral changes can be well explained by theoretically calculated HOMO and LUMO energy level changes. All these molecules show high fluorescence quantum yield except for nitro-substituted derivative in dilute solutions. The quantum yield of BOXD changes with the concentration and exhibits a high value at the concentrated solution. This work revealed the influence of substituent on the photophysical properties of bi-1,3,4-oxadizaole derivatives in dilute solutions and provided guidance for designing molecules with potential application.

  17. 1H NMR quantification in very dilute toxin solutions: application to anatoxin-a analysis.

    PubMed

    Dagnino, Denise; Schripsema, Jan

    2005-08-01

    A complete procedure is described for the extraction, detection and quantification of anatoxin-a in biological samples. Anatoxin-a is extracted from biomass by a routine acid base extraction. The extract is analysed by GC-MS, without the need of derivatization, with a detection limit of 0.5 ng. A method was developed for the accurate quantification of anatoxin-a in the standard solution to be used for the calibration of the GC analysis. 1H NMR allowed the accurate quantification of microgram quantities of anatoxin-a. The accurate quantification of compounds in standard solutions is rarely discussed, but for compounds like anatoxin-a (toxins with prices in the range of a million dollar a gram), of which generally only milligram quantities or less are available, this factor in the quantitative analysis is certainly not trivial. The method that was developed can easily be adapted for the accurate quantification of other toxins in very dilute solutions.

  18. Heat-induced formation of myosin oligomer-soluble filament complex in high-salt solution.

    PubMed

    Shimada, Masato; Takai, Eisuke; Ejima, Daisuke; Arakawa, Tsutomu; Shiraki, Kentaro

    2015-02-01

    Heat-induced aggregation of myosin into an elastic gel plays an important role in the water-holding capacity and texture of meat products. Here, we investigated thermal aggregation of porcine myosin in high-salt solution over a wide temperature range by dynamic light scattering experiments. The myosin samples were readily dissolved in 1.0 M NaCl at 25 °C followed by dilution into various salt concentrations. The diluted solutions consistently contained both myosin monomers and soluble filaments. The filament size decreased with increasing salt concentration and temperature. High temperatures above Tm led to at least partial dissociation of soluble filaments and thermal unfolding, resulting in the formation of soluble oligomers and binding to the persistently present soluble filaments. Such a complex formation between the oligomers and filaments has never been observed. Our results provide new insight into the heat-induced myosin gelation in high-salt solution. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Emulsifying properties and oil/water (O/W) interface adsorption behavior of heated soy proteins: effects of heating concentration, homogenizer rotating speed, and salt addition level.

    PubMed

    Cui, Zhumei; Chen, Yeming; Kong, Xiangzhen; Zhang, Caimeng; Hua, Yufei

    2014-02-19

    The adsorption of heat-denatured soy proteins at the oil/water (O/W) interface during emulsification was studied. Protein samples were prepared by heating protein solutions at concentrations of 1-5% (w/v) and were then diluted to 0.3% (w/v). The results showed that soy proteins that had been heated at higher concentrations generated smaller droplet size of emulsion. Increase in homogenizer rotating speed resulted in higher protein adsorption percentages and lower surface loads at the O/W interface. Surface loads for both unheated and heated soy proteins were linearly correlated with the unadsorbed proteins' equilibrium concentration at various rotating speeds. With the rise in NaCl addition level, protein adsorption percentage and surface loads of emulsions increased, whereas lower droplet sizes were obtained at the ionic strength of 0.1 M. The aggregates and non-aggregates displayed different adsorption behaviors when rotating speed or NaCl concentration was varied.

  20. Hypochlorous acid-activated carbon: an oxidizing agent capable of producing hydroxylated polychlorinated biphenyls.

    PubMed Central

    Voudrias, E A; Larson, R A; Snoeyink, V L; Chen, A S; Stapleton, P L

    1986-01-01

    Granular activated carbon (GAC), in the presence of dilute aqueous hypochlorite solutions typical of those used in water treatment, was converted to a reagent capable of carrying out free-radical coupling reactions and other oxidations of dilute aqueous solutions of phenols. The products included biphenyls with chlorine and hydroxyl substitution (hydroxylated polychlorinated biphenyls). For example, 2,4-dichlorophenol, a common constituent of wastewaters and also natural waters treated with hypochlorite, was converted to 3,5,5'trichloro-2,4'-dihydroxybiphenyl and several related compounds in significant amounts. It is possible that these products pose more of a health hazard than either the starting phenols or the unhydroxylated polychlorinated biphenyl derivatives. PMID:3028770

  1. Effect of a long-term exposure to concentrated sucrose and maltodextrin solutions on the preference, appetence, feed intake and growth performance of post-weaned piglets.

    PubMed

    Guzmán-Pino, Sergio A; Solà-Oriol, David; Figueroa, Jaime; Dwyer, Dominic M; Pérez, José F

    2015-03-15

    Commercial pigs display an innate attraction for sweet taste compounds. However, the impact of long-term availability to supplementary carbohydrate solutions on their general feeding behavior has not been examined. In this work we assess the effect of 12-days exposure to 16% sucrose and 16% maltodextrin solutions on the feed intake and growth performance of piglets, and on their preference and appetence for sweet or protein solutions. The innate preference of piglets was assessed by an initial choice test between 2% sucrose and 2% animal plasma solutions for a period of three minutes. Piglets showed higher intake and preference for 2% sucrose than for 2% animal plasma. In Experiment 1, piglets were then free-offered a 16% sucrose solution as a supplement to the diet, showing a higher intake of it than water and a reduction in feed intake and weight gain. A similar situation occurred during the last days of free-exposure to a 16% maltodextrin solution in Experiment 2. The choice test between 2% sucrose and 2% animal plasma solution was repeated after the exposure to the concentrated solutions. In both experiments, a reduction in the initial preference for 2% sucrose was observed. Similarly, piglets that had previous access to the 16% sucrose and 16% maltodextrin solutions showed a decrease in the appetence for 2% sucrose in comparison with that for 2% animal plasma, as measured by a one-pan test at the end of the experiments. It is concluded that long-term exposure to concentrated sucrose and maltodextrin solutions reduces feed intake and growth in weanling piglets, and also reverses their innate preference and appetence for dilute sweet over protein solutions. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Behavioral responses and mortality in German cockroaches (Blattodea: Blattellidae) after exposure to dishwashing liquid.

    PubMed

    Szumlas, Daniel E

    2002-04-01

    Behavioral responses and mortality of the German cockroach, Blattella germanica (L.), after exposure to solutions of common household dishwashing liquid diluted in tap water without other known insecticidal active ingredients are described. Soap solutions of 0.05, 0.1, 0.25, 0.5, 1.0, 2.0, 3.0, 4.0, and 5.0% were tested on first and second instars, fifth and sixth instars, and adults. Cockroaches were treated individually or in groups. Behavioral observations after treatment included an immediate knockdown period, an awakening and a struggle period, an unresponsive period, and either death or recovery between 30 min and 18 h after treatment. Probit analysis gave an excellent fit of unresponsive rates 18 h after treatment with the various soap concentrations, and LD50 and LD99 values were calculated to be 0.4 and 3.0% soap, respectively. Adult females were the most difficult to kill, but at soap concentrations of 1% or higher, 95% or greater unresponsiveness and death occurred. Soap concentrations of 3% or greater resulted in 100% unresponsiveness after 3 min, and eventually resulted in 100% mortality within 72 h for all adults and nymphs treated. Observations on the mode and site of action for soap are consistent with the blockage of spiracles and/or tracheae that results in asphyxiation and death. Future investigations into the efficacy of soaps against other arthropod groups are warranted and may be beneficial in certain situations.

  3. Sugar yields from dilute oxalic acid pretreatment of maple wood compared to those with other dilute acids and hot water.

    PubMed

    Zhang, Taiying; Kumar, Rajeev; Wyman, Charles E

    2013-01-30

    Dilute oxalic acid pretreatment was applied to maple wood to improve compatibility with downstream operations, and its performance in pretreatment and subsequent enzymatic hydrolysis was compared to results for hydrothermal and dilute hydrochloric and sulfuric acid pretreatments. The highest total xylose yield of ∼84% of the theoretical maximum was for both 0.5% oxalic and sulfuric acid pretreatment at 160 °C, compared to ∼81% yield for hydrothermal pretreatment at 200 °C and for 0.5% hydrochloric acid pretreatment at 140 °C. The xylooligomer fraction from dilute oxalic acid pretreatment was only 6.3% of the total xylose in solution, similar to results with dilute hydrochloric and sulfuric acids but much lower than the ∼70% value for hydrothermal pretreatment. Combining any of the four pretreatments with enzymatic hydrolysis with 60 FPU cellulase/g of glucan plus xylan in the pretreated maple wood resulted in virtually the same total glucose plus xylose yields of ∼85% of the maximum possible. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Methods of preventing vinorelbine-induced phlebitis: an experimental study in rabbits.

    PubMed

    Kohno, Emiko; Murase, Saori; Nishikata, Mayumi; Okamura, Noboru; Matzno, Sumio; Kuwahara, Takashi; Matsuyama, Kenji

    2008-07-22

    In order to identify methods for preventing phlebitis caused by intravenous administration of vinorelbine (VNR), we established a procedure for estimating the severity of phlebitis in an animal model. Four different factors (administration rate, dilution, flushing, and infusion of fat emulsion) were evaluated for alleviation of phlebitis caused by VNR infusion. VNR was diluted with normal saline to prepare test solutions with concentrations of 0.6 mg/mL or 0.3 mg/mL for infusion into the auricular veins of rabbits. Two days after VNR infusion, the veins were subjected to histopathological examination. VNR did not cause obvious loss of venous endothelial cells, the most sensitive and common feature of phlebitis, but VNR infusion led to inflammatory cell infiltration, edema, and epidermal degeneration. Tissue damage was significantly decreased by shortening the administration time and by diluting the VNR solution for infusion from 0.6 mg/mL to 0.3 mg/mL. However, there was no effect of flushing with normal saline after VNR infusion, while treatment with fat emulsion before and after VNR infusion only had a minimal effect. Rapid infusion and dilution are effective methods of reducing phlebitis caused by the infusion of VNR, but the efficacy of flushing with normal saline or infusion of fat emulsion was not confirmed.

  5. Iterative and variational homogenization methods for filled elastomers

    NASA Astrophysics Data System (ADS)

    Goudarzi, Taha

    Elastomeric composites have increasingly proved invaluable in commercial technological applications due to their unique mechanical properties, especially their ability to undergo large reversible deformation in response to a variety of stimuli (e.g., mechanical forces, electric and magnetic fields, changes in temperature). Modern advances in organic materials science have revealed that elastomeric composites hold also tremendous potential to enable new high-end technologies, especially as the next generation of sensors and actuators featured by their low cost together with their biocompatibility, and processability into arbitrary shapes. This potential calls for an in-depth investigation of the macroscopic mechanical/physical behavior of elastomeric composites directly in terms of their microscopic behavior with the objective of creating the knowledge base needed to guide their bottom-up design. The purpose of this thesis is to generate a mathematical framework to describe, explain, and predict the macroscopic nonlinear elastic behavior of filled elastomers, arguably the most prominent class of elastomeric composites, directly in terms of the behavior of their constituents --- i.e., the elastomeric matrix and the filler particles --- and their microstructure --- i.e., the content, size, shape, and spatial distribution of the filler particles. This will be accomplished via a combination of novel iterative and variational homogenization techniques capable of accounting for interphasial phenomena and finite deformations. Exact and approximate analytical solutions for the fundamental nonlinear elastic response of dilute suspensions of rigid spherical particles (either firmly bonded or bonded through finite size interphases) in Gaussian rubber are first generated. These results are in turn utilized to construct approximate solutions for the nonlinear elastic response of non-Gaussian elastomers filled with a random distribution of rigid particles (again, either firmly bonded or bonded through finite size interphases) at finite concentrations. Three-dimensional finite element simulations are also carried out to gain further insight into the proposed theoretical solutions. Inter alia, we make use of these solutions to examine the effects of particle concentration, mono- and poly-dispersity of the filler particle size, and the presence of finite size interphases on the macroscopic response of filled elastomers. The solutions are found able to explain and describe experimental results that to date have been understood only in part. More generally, the solutions provide a robust tool to efficiently guide the design of filled elastomers with desired macroscopic properties. The homogenization techniques developed in this work are not limited to nonlinear elasticity, but can be readily utilized to study multi-functional properties as well. For demonstration purposes, we work out a novel exact solution for the macroscopic dielectric response of filled elastomers with interphasial space charges.

  6. Using the tracer-dilution discharge method to develop streamflow records for ice-affected streams in Colorado

    USGS Publications Warehouse

    Capesius, Joseph P.; Sullivan, Joseph R.; O'Neill, Gregory B.; Williams, Cory A.

    2005-01-01

    Accurate ice-affected streamflow records are difficult to obtain for several reasons, which makes the management of instream-flow water rights in the wintertime a challenging endeavor. This report documents a method to improve ice-affected streamflow records for two gaging stations in Colorado. In January and February 2002, the U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board, conducted an experiment using a sodium chloride tracer to measure streamflow under ice cover by the tracer-dilution discharge method. The purpose of this study was to determine the feasibility of obtaining accurate ice-affected streamflow records by using a sodium chloride tracer that was injected into the stream. The tracer was injected at two gaging stations once per day for approximately 20 minutes for 25 days. Multiple-parameter water-quality sensors at the two gaging stations monitored background and peak chloride concentrations. These data were used to determine discharge at each site. A comparison of the current-meter streamflow record to the tracer-dilution streamflow record shows different levels of accuracy and precision of the tracer-dilution streamflow record at the two sites. At the lower elevation and warmer site, Brandon Ditch near Whitewater, the tracer-dilution method overestimated flow by an average of 14 percent, but this average is strongly biased by outliers. At the higher elevation and colder site, Keystone Gulch near Dillon, the tracer-dilution method experienced problems with the tracer solution partially freezing in the injection line. The partial freezing of the tracer contributed to the tracer-dilution method underestimating flow by 52 percent at Keystone Gulch. In addition, a tracer-pump-reliability test was conducted to test how accurately the tracer pumps can discharge the tracer solution in conditions similar to those used at the gaging stations. Although the pumps were reliable and consistent throughout the 25-day study period, the pumps underdischarged the tracer by 5.8-15.9 percent as compared to the initial pumping rate setting, which may explain some of the error in the tracer-dilution streamflow record as compared to current-meter streamflow record.

  7. Coupling MD Simulations and X-ray Absorption Spectroscopy to Study Ions in Solution

    NASA Astrophysics Data System (ADS)

    Marcos, E. Sánchez; Beret, E. C.; Martínez, J. M.; Pappalardo, R. R.; Ayala, R.; Muñoz-Páez, A.

    2007-12-01

    The structure of ionic solutions is a key-point in understanding physicochemical properties of electrolyte solutions. Among the reduced number of experimental techniques which can supply direct information on the ion environment, X-ray Absorption techniques (XAS) have gained importance during the last decades although they are not free of difficulties associated to the data analysis leading to provide reliable structures. Computer simulations of ions in solution is a theoretical alternative to provide information on the solvation structure. Thus, the use of computational chemistry can increase the understanding of these systems although an accurate description of ionic solvation phenomena represents nowadays a significant challenge to theoretical chemistry. We present: (a) the assignment of features in the XANES spectrum to well defined structural motif in the ion environment, (b) MD-based evaluation of EXAFS parameters used in the fitting procedure to make easier the structural resolution, and (c) the use of the agreement between experimental and simulated XANES spectra to help in the choice of a given intermolecular potential for Computer Simulations. Chemical problems examined are: (a) the identification of the second hydration shell in dilute aqueous solutions of highly-charged cations, such as Cr3+, Rh3+, Ir3+, (b) the invisibility by XAS of certain structures characterized by Computer Simulations but exhibiting high dynamical behavior and (c) the solvation of Br- in acetonitrile.

  8. Coupling MD Simulations and X-ray Absorption Spectroscopy to Study Ions in Solution

    NASA Astrophysics Data System (ADS)

    Marcos, E. Sánchez; Beret, E. C.; Martínez, J. M.; Pappalardo, R. R.; Ayala, R.; Muñoz-Páez, A.

    2007-11-01

    The structure of ionic solutions is a key-point in understanding physicochemical properties of electrolyte solutions. Among the reduced number of experimental techniques which can supply direct information on the ion environment, X-ray Absorption techniques (XAS) have gained importance during the last decades although they are not free of difficulties associated to the data analysis leading to provide reliable structures. Computer simulations of ions in solution is a theoretical alternative to provide information on the solvation structure. Thus, the use of computational chemistry can increase the understanding of these systems although an accurate description of ionic solvation phenomena represents nowadays a significant challenge to theoretical chemistry. We present: (a) the assignment of features in the XANES spectrum to well defined structural motif in the ion environment, (b) MD-based evaluation of EXAFS parameters used in the fitting procedure to make easier the structural resolution, and (c) the use of the agreement between experimental and simulated XANES spectra to help in the choice of a given intermolecular potential for Computer Simulations. Chemical problems examined are: (a) the identification of the second hydration shell in dilute aqueous solutions of highly-charged cations, such as Cr3+, Rh3+, Ir3+, (b) the invisibility by XAS of certain structures characterized by Computer Simulations but exhibiting high dynamical behavior and (c) the solvation of Br- in acetonitrile.

  9. Process for the disposal of alkali metals

    DOEpatents

    Lewis, Leroy C.

    1977-01-01

    Large quantities of alkali metals may be safely reacted for ultimate disposal by contact with a hot concentrated caustic solution. The alkali metals react with water in the caustic solution in a controlled reaction while steam dilutes the hydrogen formed by the reaction to a safe level.

  10. Functionalized polyethylene fibers for the selective capture of palladium ions from aqueous solution

    NASA Astrophysics Data System (ADS)

    Pang, Li-juan; Li, Rong; Hu, Jiang-tao; Zhang, Lin-juan; Zhang, Ming-xing; Yang, Chen-guang; Wu, Guo-zhong

    2018-03-01

    An innovative ultrahigh molecular weight polyethylene (UHMWPE) fibrous adsorbent was successfully synthesized via radiation grafting and applied to the selective capture of palladium ions from dilute aqueous solutions. The influence of the pH, initial Pd(II) concentration, and temperature on the adsorption performance was examined in a batch adsorption experiment. Pd K-edge extended X-ray absorption fine structure (EXAFS) spectra indicated that Pd(II) was immobilized on the adsorbent surface via a ligand exchange reaction that formed a stable UHMWPE-PMDA-Pd complex. Although the concentrations of coexisting ions (Cu(II), Zn(II), Cr(VI), Fe(III), and Ni(II)) in the solution were much higher than that of Pd(II), the adsorption capacity for Pd(II) of the as-prepared absorbent was significantly greater than that for other metal ions. Kinetic studies showed good correlation with the pseudo-second-order model. The maximum capacity for Pd(II) adsorption was approximately 221.8 mg·g-1 at 298 K. The adsorption behavior conformed to the Langmuir isotherm model. Thermodynamic studies revealed that the adsorption of Pd(II) was a feasible, spontaneous, and endothermic process.

  11. Order of wetting transitions in electrolyte solutions.

    PubMed

    Ibagon, Ingrid; Bier, Markus; Dietrich, S

    2014-05-07

    For wetting films in dilute electrolyte solutions close to charged walls we present analytic expressions for their effective interface potentials. The analysis of these expressions renders the conditions under which corresponding wetting transitions can be first- or second-order. Within mean field theory we consider two models, one with short- and one with long-ranged solvent-solvent and solvent-wall interactions. The analytic results reveal in a transparent way that wetting transitions in electrolyte solutions, which occur far away from their critical point (i.e., the bulk correlation length is less than half of the Debye length) are always first-order if the solvent-solvent and solvent-wall interactions are short-ranged. In contrast, wetting transitions close to the bulk critical point of the solvent (i.e., the bulk correlation length is larger than the Debye length) exhibit the same wetting behavior as the pure, i.e., salt-free, solvent. If the salt-free solvent is governed by long-ranged solvent-solvent as well as long-ranged solvent-wall interactions and exhibits critical wetting, adding salt can cause the occurrence of an ion-induced first-order thin-thick transition which precedes the subsequent continuous wetting as for the salt-free solvent.

  12. X-ray characterization of mesophases of human telomeric G-quadruplexes and other DNA analogues

    DOE PAGES

    Yasar, Selcuk; Schimelman, Jacob B.; Aksoyoglu, M. Alphan; ...

    2016-06-02

    We report that observed in the folds of guanine-rich oligonucleotides, non-canonical G-quadruplex structures are based on G-quartets formed by hydrogen bonding and cation-coordination of guanosines. In dilute 5'-guanosine monophosphate (GMP) solutions, G-quartets form by the self-assembly of four GMP nucleotides. We use x-ray diffraction to characterize the columnar liquid-crystalline mesophases in concentrated solutions of various model G-quadruplexes. We then probe the transitions between mesophases by varying the PEG solution osmotic pressure, thus mimicking in vivo molecular crowding conditions. Using the GMP-quadruplex, built by the stacking of G-quartets with no covalent linking between them, as the baseline, we report the liquid-crystallinemore » phase behaviors of two other related G-quadruplexes: (i) the intramolecular parallel-stranded G-quadruplex formed by the 22-mer four-repeat human telomeric sequence AG 3 (TTAG 3) 3 and (ii) the intermolecular parallel-stranded G-quadruplex formed by the TG(4)T oligonucleotides. Finally, we compare the mesophases of the G-quadruplexes, under PEG-induced crowding conditions, with the corresponding mesophases of the canonical duplex and triplex DNA analogues.« less

  13. Fluids of the Lower Crust: Deep Is Different

    NASA Astrophysics Data System (ADS)

    Manning, Craig E.

    2018-05-01

    Deep fluids are important for the evolution and properties of the lower continental and arc crust in tectonically active settings. They comprise four components: H2O, nonpolar gases, salts, and rock-derived solutes. Contrasting behavior of H2O-gas and H2O-salt mixtures yields immiscibility and potential separation of phases with different chemical properties. Equilibrium thermodynamic modeling of fluid-rock interaction using simple ionic species known from shallow-crustal systems yields solutions too dilute to be consistent with experiments and resistivity surveys, especially if CO2 is added. Therefore, additional species must be present, and H2O-salt solutions likely explain much of the evidence for fluid action in high-pressure settings. At low salinity, H2O-rich fluids are powerful solvents for aluminosilicate rock components that are dissolved as polymerized clusters. Addition of salts changes solubility patterns, but aluminosilicate contents may remain high. Fluids with Xsalt = 0.05 to 0.4 in equilibrium with model crustal rocks have bulk conductivities of 10‑1.5 to 100 S/m at porosity of 0.001. Such fluids are consistent with observed conductivity anomalies and are capable of the mass transfer seen in metamorphic rocks exhumed from the lower crust.

  14. Temporal variability and annual budget of inorganic dissolved matter in Andean Pacific Rivers located along a climate gradient from northern Ecuador to southern Peru

    NASA Astrophysics Data System (ADS)

    Moquet, Jean-Sébastien; Guyot, Jean-Loup; Morera, Sergio; Crave, Alain; Rau, Pedro; Vauchel, Philippe; Lagane, Christelle; Sondag, Francis; Lavado, Casimiro Waldo; Pombosa, Rodrigo; Martinez, Jean-Michel

    2018-01-01

    In Ecuador and Peru, geochemical information from Pacific coastal rivers is limited and scarce. Here, we present an unedited database of major element concentrations from five HYBAM observatory stations monitored monthly between 4 and 10 years, and the discrete sampling of 23 Andean rivers distributed along the climate gradient of the Ecuadorian and Peruvian Pacific coasts. Concentration (C) vs. discharge (Q) relationships of the five monitored basins exhibit a clear dilution behavior for evaporites and/or pyrite solutes, while the solute concentrations delivered by other endmembers are less variable. Spatially, the annual specific fluxes for total dissolved solids (TDS), Ca2+, HCO3-, K+, Mg2+, and SiO2 are controlled on the first order by runoff variability, while Cl-, Na+ and SO42- are controlled by the occurrence of evaporites and/or pyrite. The entire Pacific basin in Ecuador and Peru exported 30 Mt TDS·yr-1, according to a specific flux of ∼70 t·km-2·yr-1. This show that, even under low rainfall conditions, this orogenic context is more active, in terms of solute production, than the global average.

  15. A master dynamic flow diagram for the shear thickening transition in micellar solutions.

    PubMed

    Bautista, F; Tepale, N; Fernández, V V A; Landázuri, G; Hernández, E; Macías, E R; Soltero, J F A; Escalante, J I; Manero, O; Puig, J E

    2016-01-07

    The shear thickening behavior of dilute micellar solutions of hexadecyltrimethylammonium-type surfactants with different counterions (tosylate, 3- and 4-fluorobenzoate, vinylbenzoate and salicylate) and of n-alkyltetradecylammonium bromide (CnTAB), with n = 14, 16 and 18, is examined here. These solutions undergo a shear thickening transition due to the formation of shear-induced structures (SISs) in the shear range studied. Here we report a relationship between the shear thickening intensity and the differences in the hydrophobicity of counterions according to the Hofmeister-like anion series, which leads to a master flow diagram. This master flow diagram is produced by plotting a normalized shear thickening intensity (Iη - 1)/(Imax - 1) versus CD/CD,max, where Iη is the shear-thickening intensity, defined as the largest viscosity obtained in the shear-thickening transition (STT) at a given surfactant concentration CD divided by the Newtonian viscosity η0, and Imax is the largest intensity value obtained in the STT at a surfactant concentration CD,max. The master flow diagram is built using several cetyltrimethylammonium-type surfactants with different counterions, according to a Hofmeister-like series, and by n-alkyltetradecylammonium bromide surfactants with different alkyl chain lengths.

  16. X-ray characterization of mesophases of human telomeric G-quadruplexes and other DNA analogues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasar, Selcuk; Schimelman, Jacob B.; Aksoyoglu, M. Alphan

    We report that observed in the folds of guanine-rich oligonucleotides, non-canonical G-quadruplex structures are based on G-quartets formed by hydrogen bonding and cation-coordination of guanosines. In dilute 5'-guanosine monophosphate (GMP) solutions, G-quartets form by the self-assembly of four GMP nucleotides. We use x-ray diffraction to characterize the columnar liquid-crystalline mesophases in concentrated solutions of various model G-quadruplexes. We then probe the transitions between mesophases by varying the PEG solution osmotic pressure, thus mimicking in vivo molecular crowding conditions. Using the GMP-quadruplex, built by the stacking of G-quartets with no covalent linking between them, as the baseline, we report the liquid-crystallinemore » phase behaviors of two other related G-quadruplexes: (i) the intramolecular parallel-stranded G-quadruplex formed by the 22-mer four-repeat human telomeric sequence AG 3 (TTAG 3) 3 and (ii) the intermolecular parallel-stranded G-quadruplex formed by the TG(4)T oligonucleotides. Finally, we compare the mesophases of the G-quadruplexes, under PEG-induced crowding conditions, with the corresponding mesophases of the canonical duplex and triplex DNA analogues.« less

  17. Dynamic chemistry in the perched groundwater flowing through weathered bedrock underling a steep forested hillslope, north California

    NASA Astrophysics Data System (ADS)

    Kim, H.; Rempe, D. M.; Bishop, J. K.; Dietrich, W.; Fung, I.; Wood, T. J.

    2012-12-01

    The spatial and temporal pattern of groundwater chemistry in the seasonally perched groundwater systems that develop in the weathered bedrock zone under hillslopes have rarely been documented, yet chemical evolution of water here dictates the runoff chemistry to streams in many places. Here we exploit an intensively instrumented hillslope to document water well chemistry at three wells and adjacent stream. We have been sampling groundwater at daily frequency since October 2008 on a forested hillslope, "Rivendell", at the Angelo Coast Range Reserve located at the headwaters of the Eel River, California. The site is typical of California's coastal Mediterranean climate. The groundwater samples have been collected from a depth near the boundary between the weathered and fresh bedrock at three locations along the hillslope: Well 1 (bottom of hillslope), Well 3 (mid-slope), and Well 10 (near the ridge). Bulk rainwater and throughfall samples were collected at a meadow across the hillslope and at the middle of the slope, respectively, as well. Near the ridge (Well 10), during the first significant rainstorms of 2009 (133mm/42.5hours) and 2010 (220mm/42hours), when the water table changed only 0.32m and 0.66m, respectively, the concentration of Ca, Mg, and Na started to increase rapidly compared to the dry season (e.g. 2-6 μM vs 0.02-0.2μM [Mg]/day). However, during these same storms, K concentration sharply increased to 50-60 μM and decreased to 20-30μM, synchronizing with the water table responses. Throughfalls of these storms had at least 10 fold lower Ca, Mg, and Na concentrations than the well water while they had 10 fold higher K compared to the pre-event groundwater values. When the total seasonal cumulative rainfall exceeds 600 mm, the Well 10 solute concentration was diluted nearly 3 fold (e.g. [Mg] 0.3 mM vs. 0.1 mM) and the water table was raised significantly (2-6 meters). Throughout the rainy season, Well10 retained its diluted chemistry signature and on average the water table remained elevated as subsequent rainstorms repeatedly recharged the system. Well10 solute concentration slowly increased at the end of the rainy season when the water table fell. In contrast, at the foot of the hill slope, even though the water table was responsive to each rainfall event, its water chemistry developed a strong dilution signatures only during the intense rainstorms (total rainfall > 70mm); the solute concentration decreased (e.g. [Mg] = 0.1mM) during the rising limb of the well hydrograph and recovered back to its pre-event value (e.g. [Mg] = 0.3mM) during the falling limb of the well hydrograph. During small storms, the solute concentration of Well 1 either did not change or slightly increased. Mid-slope showed similar behavior to Well 1. The Well 3 solute concentration was diluted about 3 fold (e.g. [Mg] 0.3mM to 0.1mM) as the water table rose and increased as the water table receded. However unlike Well 1, the water chemistry of Well 3 did not recover to its pre-event composition at any point during the rainy season and the recovery rate was slower than that of Well 1. These water chemistry observations provide insight into the dynamics of water movement within the fractured, weathered bedrock zone, and point to both vertical and lateral mixing processes that influence the chemical evolution of waters.

  18. A solution algorithm for fluid–particle flows across all flow regimes

    DOE PAGES

    Kong, Bo; Fox, Rodney O.

    2017-05-12

    Many fluid–particle flows occurring in nature and in technological applications exhibit large variations in the local particle volume fraction. For example, in circulating fluidized beds there are regions where the particles are closepacked as well as very dilute regions where particle–particle collisions are rare. Thus, in order to simulate such fluid–particle systems, it is necessary to design a flow solver that can accurately treat all flow regimes occurring simultaneously in the same flow domain. In this work, a solution algorithm is proposed for this purpose. The algorithm is based on splitting the free-transport flux solver dynamically and locally in themore » flow. In close-packed to moderately dense regions, a hydrodynamic solver is employed, while in dilute to very dilute regions a kinetic-based finite-volume solver is used in conjunction with quadrature-based moment methods. To illustrate the accuracy and robustness of the proposed solution algorithm, it is implemented in OpenFOAM for particle velocity moments up to second order, and applied to simulate gravity-driven, gas–particle flows exhibiting cluster-induced turbulence. By varying the average particle volume fraction in the flow domain, it is demonstrated that the flow solver can handle seamlessly all flow regimes present in fluid–particle flows.« less

  19. Delivery of Formulated Industrial Enzymes with Acoustic Technology.

    PubMed

    Hwang, Jennifer Dorcas; Ortiz-Maldonado, Mariliz; Paramonov, Sergey

    2016-02-01

    Industrial enzymes are instrumental in many applications, including carbohydrate processing, fabric and household care, biofuels, food, and animal nutrition, among others. Enzymes have to be active and stable not only in harsh application conditions, but also during shipment and storage. In protein stability studies, formulated concentrated enzyme solutions are frequently diluted gravimetrically prior to enzyme activity measurements, making it challenging to move toward more high-throughput techniques using conventional robotic equipment. Current assay methods pose difficulties when measuring highly concentrated proteins. For example, plastic pipette tips can introduce error because proteins adsorb to the tip surface, despite the presence of detergents, decreasing precision and overall efficiency of protein activity assays. Acoustic liquid handling technology, frequently used for various dilute small-molecule assays, may overcome such problems. Originally shown to effectively deliver dilute solutions of small molecules, this technology is used here as an effective alternative to the aforementioned challenge with viscous concentrated protein solutions. Because the acoustic liquid handler transfers nanoliter quantities of liquids without using pipette tips and without sample loss, it rapidly and uniformly prepares assay plates for enzyme activity measurements within minutes. This increased efficiency transforms the nature of enzyme stability studies toward high precision and throughput. © 2015 Society for Laboratory Automation and Screening.

  20. A solution algorithm for fluid-particle flows across all flow regimes

    NASA Astrophysics Data System (ADS)

    Kong, Bo; Fox, Rodney O.

    2017-09-01

    Many fluid-particle flows occurring in nature and in technological applications exhibit large variations in the local particle volume fraction. For example, in circulating fluidized beds there are regions where the particles are close-packed as well as very dilute regions where particle-particle collisions are rare. Thus, in order to simulate such fluid-particle systems, it is necessary to design a flow solver that can accurately treat all flow regimes occurring simultaneously in the same flow domain. In this work, a solution algorithm is proposed for this purpose. The algorithm is based on splitting the free-transport flux solver dynamically and locally in the flow. In close-packed to moderately dense regions, a hydrodynamic solver is employed, while in dilute to very dilute regions a kinetic-based finite-volume solver is used in conjunction with quadrature-based moment methods. To illustrate the accuracy and robustness of the proposed solution algorithm, it is implemented in OpenFOAM for particle velocity moments up to second order, and applied to simulate gravity-driven, gas-particle flows exhibiting cluster-induced turbulence. By varying the average particle volume fraction in the flow domain, it is demonstrated that the flow solver can handle seamlessly all flow regimes present in fluid-particle flows.

  1. A solution algorithm for fluid–particle flows across all flow regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Bo; Fox, Rodney O.

    Many fluid–particle flows occurring in nature and in technological applications exhibit large variations in the local particle volume fraction. For example, in circulating fluidized beds there are regions where the particles are closepacked as well as very dilute regions where particle–particle collisions are rare. Thus, in order to simulate such fluid–particle systems, it is necessary to design a flow solver that can accurately treat all flow regimes occurring simultaneously in the same flow domain. In this work, a solution algorithm is proposed for this purpose. The algorithm is based on splitting the free-transport flux solver dynamically and locally in themore » flow. In close-packed to moderately dense regions, a hydrodynamic solver is employed, while in dilute to very dilute regions a kinetic-based finite-volume solver is used in conjunction with quadrature-based moment methods. To illustrate the accuracy and robustness of the proposed solution algorithm, it is implemented in OpenFOAM for particle velocity moments up to second order, and applied to simulate gravity-driven, gas–particle flows exhibiting cluster-induced turbulence. By varying the average particle volume fraction in the flow domain, it is demonstrated that the flow solver can handle seamlessly all flow regimes present in fluid–particle flows.« less

  2. On the thermal stability of physical vapor deposited oxide-hardened nanocrystalline gold thin films

    DOE PAGES

    Argibay, Nicolas; Mogonye, J. E.; Michael, Joseph R.; ...

    2015-04-08

    We describe a correlation between electrical resistivity and grain size for PVD synthesized polycrystalline oxide-hardened metal-matrix thin films in oxide-dilute (<5 vol. % oxide phase) compositions. The correlation is based on the Mayadas-Shatzkes (M-S) electron scattering model, predictive of grain size evolution as a function of composition in the oxide-dilute regime for 2 μm thick Au-ZnO films. We describe a technique to investigate grain boundary (GB) mobility and the thermal stability of GBs based on in situelectrical resistivity measurements during annealing experiments, interpreted using a combination of the M-S model and the Michels et al. model describing solute drag stabilizedmore » grain growth kinetics. Using this technique, activation energy and pre-exponential Arrhenius parameter values of E a = 21.6 kJ/mol and A o = 2.3 × 10 -17 m 2/s for Au-1 vol. % ZnO and E a =12.7 kJ/mol and A o = 3.1 × 10 -18 m 2/s for Au-2 vol.% ZnO were determined. In the oxide-dilute regime, the grain size reduction of the Au matrix yielded a maximum hardness of 2.6 GPa for 5 vol. % ZnO. A combined model including percolation behavior and grain refinement is presented that accurately describes the composition dependent change in electrical resistivity throughout the entire composition range for Au-ZnO thin films. As a result, the proposed correlations are supported by microstructural characterization using transmission electron microscopy and electron diffraction mapping for grain size determination.« less

  3. FACTORS INFLUENCING THE ABILITY OF ISOLATED CELL NUCLEI TO FORM GELS IN DILUTE ALKALI

    PubMed Central

    Dounce, Alexander L.; Monty, Kenneth J.

    1955-01-01

    1. Known methods for isolating cell nuclei are divided into two classes, depending on whether or not the nuclei are capable of forming gels in dilute alkali or strong saline solutions. Methods which produce nuclei that can form gels apparently prevent the action of an intramitochondrial enzyme capable of destroying the gel-forming capacity of the nuclei. Methods in the other class are believed to permit this enzyme to act on the nuclei during the isolation procedure, causing detachment of DNA from some nuclear constituent (probably protein). 2. It is shown that heating in alkaline solution and x-irradiation can destroy nuclear gels. Heating in acid or neutral solutions can destroy the capacity of isolated nuclei to form gels. 3. Chemical and biological evidence is summarized in favor of the hypothesis that DNA is normally bound firmly to some nuclear component by non-ionic linkages. PMID:14381437

  4. Elastic instability in stratified core annular flow.

    PubMed

    Bonhomme, Oriane; Morozov, Alexander; Leng, Jacques; Colin, Annie

    2011-06-01

    We study experimentally the interfacial instability between a layer of dilute polymer solution and water flowing in a thin capillary. The use of microfluidic devices allows us to observe and quantify in great detail the features of the flow. At low velocities, the flow takes the form of a straight jet, while at high velocities, steady or advected wavy jets are produced. We demonstrate that the transition between these flow regimes is purely elastic--it is caused by the viscoelasticity of the polymer solution only. The linear stability analysis of the flow in the short-wave approximation supplemented with a kinematic criterion captures quantitatively the flow diagram. Surprisingly, unstable flows are observed for strong velocities, whereas convected flows are observed for low velocities. We demonstrate that this instability can be used to measure the rheological properties of dilute polymer solutions that are difficult to assess otherwise.

  5. Dependence on sphere size of the phase behavior of mixtures of rods and spheres

    NASA Astrophysics Data System (ADS)

    Urakami, Naohito; Imai, Masayuki

    2003-07-01

    By the addition of chondroitin sulfate (Chs) to the aqueous suspension of tobacco mosaic virus (TMV), the aggregation of TMV occurs at very dilute TMV concentration compared with the addition of polyethylene oxide (PEO). The difference of physical behavior between Chs and PEO is the chain conformation in solution. The Chs chain has a semirigid nature, whereas the PEO chain has a flexible nature. In this study, the Chs and PEO chains are simplified to spherical particles having different size, and we use the spherocylinder model for TMV particle. The effect of the sphere size on the phase behaviors in the mixtures of rods and spheres is investigated by Monte Carlo simulations. By the addition of small spheres, the system transforms from the miscible isotropic phase to the miscible nematic phase. On the other hand, by the addition of large spheres, the system changes from the miscible isotropic phase to the immiscible nematic phase through the immiscible isotropic phase. The different phase behaviors between the small and the large spheres originate from the difference of overlapping volume of the depletion zone. In addition, we perform the Monte Carlo simulations in the case that semirigid chains are used as the Chs chain models. The same phase behaviors are observed as the mixtures of rods and large spheres. Thus the sphere model captures the phase behaviors of rod and polymer mixture systems.

  6. Ion Transport in Confined Geometries below the Nanoscale: Access Resistance Dominates Protein Channel Conductance in Diluted Solutions.

    PubMed

    Alcaraz, Antonio; López, M Lidón; Queralt-Martín, María; Aguilella, Vicente M

    2017-10-24

    Synthetic nanopores and mesoscopic protein channels have common traits like the importance of electrostatic interactions between the permeating ions and the nanochannel. Ion transport at the nanoscale occurs under confinement conditions so that the usual assumptions made in microfluidics are challenged, among others, by interfacial effects such as access resistance (AR). Here, we show that a sound interpretation of electrophysiological measurements in terms of channel ion selective properties requires the consideration of interfacial effects, up to the point that they dominate protein channel conductance in diluted solutions. We measure AR in a large ion channel, the bacterial porin OmpF, by means of single-channel conductance measurements in electrolyte solutions containing varying concentrations of high molecular weight PEG, sterically excluded from the pore. Comparison of experiments performed in charged and neutral planar membranes shows that lipid surface charges modify the ion distribution and determine the value of AR, indicating that lipid molecules are more than passive scaffolds even in the case of large transmembrane proteins. We also found that AR may reach up to 80% of the total channel conductance in diluted solutions, where electrophysiological recordings register essentially the AR of the system and depend marginally on the pore characteristics. These findings may have implications for several low aspect ratio biological channels that perform their physiological function in a low ionic strength and macromolecule crowded environment, just the two conditions enhancing the AR contribution.

  7. Efficacy of multipurpose solutions for rigid gas permeable lenses.

    PubMed

    Boost, Maureen; Cho, Pauline; Lai, Sindy

    2006-09-01

    The use of multipurpose solutions for cleaning and disinfecting rigid gas permeable lenses has replaced single purpose solutions, but there are no reports of the efficacy of these multipurpose solutions, or of the effects of storage conditions on their disinfecting capacities. This study investigated activity against four bacterial and two fungal species, and the effects of storage in a refrigerator, at room temperature, at elevated temperature in both dry and humid conditions and with exposure to sunlight. The disinfecting solutions were challenged with the micro-organisms initially upon opening and then at 2-weekly intervals up to 12 weeks after being stored under the different conditions. Solutions were opened daily to simulate use. One solution failed to meet Food and Drug Administration (FDA) criteria to reduce numbers of bacteria by three log dilutions and of fungi by one log dilution. Storage reduced activity of all solutions over the 12-week period, but not below the requirements of the FDA. Storage in the refrigerator tended to reduce disinfecting capacity more quickly. Multipurpose solutions for rigid gas permeable (RGP) lenses lose activity over the 3 months recommended time of use but remain satisfactory for use over this time in the conditions tested. Practitioners need to remind patients to replace their solutions regularly and should advise against storage in the refrigerator. Multipurpose solutions for RGP lenses have simplified cleaning and disinfecting processes and the current formulations have improved disinfecting capacity compared to former disinfecting solutions, which is particularly important for wearers of orthokeratology lenses.

  8. Combination of acoustic levitation with small angle scattering techniques and synchrotron radiation circular dichroism. Application to the study of protein solutions.

    PubMed

    Cristiglio, Viviana; Grillo, Isabelle; Fomina, Margarita; Wien, Frank; Shalaev, Evgenyi; Novikov, Alexey; Brassamin, Séverine; Réfrégiers, Matthieu; Pérez, Javier; Hennet, Louis

    2017-01-01

    The acoustic levitation technique is a useful sample handling method for small solid and liquids samples, suspended in air by means of an ultrasonic field. This method was previously used at synchrotron sources for studying pharmaceutical liquids and protein solutions using x-ray diffraction and small angle x-ray scattering (SAXS). In this work we combined for the first time this containerless method with small angle neutron scattering (SANS) and synchrotron radiation circular dichroism (SRCD) to study the structural behavior of proteins in solutions during the water evaporation. SANS results are also compared with SAXS experiments. The aggregation behavior of 45μl droplets of lysozyme protein diluted in water was followed during the continuous increase of the sample concentration by evaporating the solvent. The evaporation kinetics was followed at different drying stage by SANS and SAXS with a good data quality. In a prospective work using SRCD, we also studied the evolution of the secondary structure of the myoglobin protein in water solution in the same evaporation conditions. Acoustic levitation was applied for the first time with SANS and the high performances of the used neutron instruments made it possible to monitor fast container-less reactions in situ. A preliminary work using SRCD shows the potentiality of its combination with acoustic levitation for studying the evolution of the protein structure with time. This multi-techniques approach could give novel insights into crystallization and self-assembly phenomena of biological compound with promising potential applications in pharmaceutical, food and cosmetics industry. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Glass-water interactions: Effect of high-valence cations on glass structure and chemical durability

    DOE PAGES

    Pierce, Eric M.; Kerisit, Sebastien N.; Charpentier, Thibault; ...

    2016-02-27

    Spectroscopic measurements, dissolution experiments, and Monte Carlo simulations were performed to investigate the effect of high valence cations (HVC) on the mechanisms of glass dissolution under dilute and near-saturated conditions. Raman and NMR spectroscopy were used to determine the structural changes that occur in glass, specifically network formers (e.g., Al, Si, and B), with the addition of the HVC element hafnium in the Na 2O Al 2O 3 B 2O 3 HfO 2 SiO 2 system (e.g., Na/(Al+B) = 1.0 and HfO 2/SiO 2 from 0.0 to 0.42). Spectroscopic measurements revealed that increasing hafnium content decreases N 4 and increasesmore » the amount of Si–O–Hf moieties in the glass. Results from flow through experiments conducted under dilute and near saturated conditions show a decrease of approximately 100 or more in the dissolution rate over the series from 0 to 20 mol% HfO 2. Comparing the average steady-state rates obtained under dilute conditions to the rates obtained for near-saturated conditions reveal a divergence in the magnitude between the average steady state rates measured in these different conditions. The reason for this divergence was investigated more thoroughly using Monte Carlo simulations. Simulations indicate that the divergence in glass dissolution behavior under dilute and near-saturated conditions result from the formation of a low coordination Si sites when Si from the saturated solution adsorbs to Hf on the glass surface. The residence time of the newly formed low coordination Si sites is longer at the glass surface and increases the density of anchor sites from which altered layers with higher Si densities can form than in the absence of Hf. These results illustrate the importance of understanding solid water/solid-fluid interactions by linking macroscopic reaction kinetics to nanometer scale interfacial processes.« less

  10. Physicochemical stability of carfilzomib (Kyprolis®) containing solutions in glass vials, ready-to-administer plastic syringes and infusion bags over a 28-day storage period.

    PubMed

    Kim, Sun Hee; Krämer, Irene

    2017-01-01

    Centralized aseptic preparation of ready-to-administer carfilzomib containing parenteral solutions in plastic syringes and polyolefine (PO) infusion bags needs profound knowledge about the physicochemical stability in order to determine the beyond-use-date of the preparations. Therefore, the purpose of this study was to determine the physicochemical stability of carfilzomib solution marketed as Kyprolis® powder for solution for infusion. Reconstituted solutions and ready-to-administer preparations of Kyprolis® stored under refrigeration (2-8℃) or at room temperature (25℃) were analyzed at predetermined intervals over a maximum storage period of 28 days. Chemical stability of carfilzomib was planned to be determined with a stability-indicating reversed-phase high-performance liquid chromatography assay. Physicochemical stability was planned to be determined by visual inspection of clarity and color as well as pH measurement. The study results show that reconstituted carfilzomib containing parenteral solutions are stable in glass vials as well as diluted solutions in plastic syringes and PO infusion bags over a period of at least 28 days when stored light protected under refrigeration. When stored at room temperature, reconstituted and diluted carfilzomib solutions are physicochemically stable over 14 days and 10 days, respectively. The physicochemical stability of carfilzomib infusion solutions allows cost-saving pharmacy-based centralized preparation of ready-to-administer preparations.

  11. ANALYTICAL METHOD FOR THE ABSORPTIOMETRIC DETERMINATION OF BORON IN AMMONIA SOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1962-01-01

    ABS>A weighed sample is evaporated to dryness with caustic soda solution on a water bath. The residue is dissolved by addlng a solution of curcumin in acetic acid. After adding a mixture of H/sub 2/SO/sub 4/ and acetic acid, the solution is allowed to stand at room temperature for 15 minutes. The solution is then diluted to 100 ml with ethanol, and a portion is filtered and measured absorptiometrically on the residue as the curcumin complex. (P.C.H.)

  12. 21 CFR 175.270 - Poly(vinyl fluoride) resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... polymerization of vinyl fluoride. (b) The poly(vinyl fluoride) basic resins have an intrinsic viscosity of not... Dilute Solution Viscosity of Vinyl Chloride Polymers,” which is incorporated by reference. Copies may be... Solution Viscosity of Vinyl Chloride Polymers,” which is incorporated by reference; see paragraph (b) of...

  13. 21 CFR 175.270 - Poly(vinyl fluoride) resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... polymerization of vinyl fluoride. (b) The poly(vinyl fluoride) basic resins have an intrinsic viscosity of not... Dilute Solution Viscosity of Vinyl Chloride Polymers,” which is incorporated by reference. Copies may be... Solution Viscosity of Vinyl Chloride Polymers,” which is incorporated by reference; see paragraph (b) of...

  14. Temperature Dependence of the Mechanical Properties of Equiatomic Solid Solution Alloys with FCC Crystal Structures

    DOE PAGES

    Wu, Zhenggang; Bei, Hongbin; Pharr, George M.; ...

    2014-10-03

    We found that compared to decades-old theories of strengthening in dilute solid solutions, the mechanical behavior of concentrated solid solutions is relatively poorly understood. A special subset of these materials includes alloys in which the constituent elements are present in equal atomic proportions, including the high-entropy alloys of recent interest. A unique characteristic of equiatomic alloys is the absence of “solvent” and “solute” atoms, resulting in a breakdown of the textbook picture of dislocations moving through a solvent lattice and encountering discrete solute obstacles. Likewise, to clarify the mechanical behavior of this interesting new class of materials, we investigate heremore » a family of equiatomic binary, ternary and quaternary alloys based on the elements Fe, Ni, Co, Cr and Mn that were previously shown to be single-phase face-centered cubic (fcc) solid solutions. The alloys were arc-melted, drop-cast, homogenized, cold-rolled and recrystallized to produce equiaxed microstructures with comparable grain sizes. Tensile tests were performed at an engineering strain rate of 10 -3 s -1 at temperatures in the range 77–673 K. Unalloyed fcc Ni was processed similarly and tested for comparison. The flow stresses depend to varying degrees on temperature, with some (e.g. NiCoCr, NiCoCrMn and FeNiCoCr) exhibiting yield and ultimate strengths that increase strongly with decreasing temperature, while others (e.g. NiCo and Ni) exhibit very weak temperature dependencies. Moreover, to better understand this behavior, the temperature dependencies of the yield strength and strain hardening were analyzed separately. Lattice friction appears to be the predominant component of the temperature-dependent yield stress, possibly because the Peierls barrier height decreases with increasing temperature due to a thermally induced increase of dislocation width. In the early stages of plastic flow (5–13% strain, depending on material), the temperature dependence of strain hardening is due mainly to the temperature dependence of the shear modulus. In all the equiatomic alloys, ductility and strength increase with decreasing temperature down to 77 K. Keywords« less

  15. Carbonate dissolution rates in high salinity brines: Implications for post-Noachian chemical weathering on Mars

    NASA Astrophysics Data System (ADS)

    Phillips-Lander, Charity M.; Parnell, S. R.; McGraw, L. E.; Elwood Madden, M. E.

    2018-06-01

    A diverse suite of carbonate minerals including calcite (CaCO3) and magnesite (MgCO3) have been observed on the martian surface and in meteorites. Terrestrial carbonates usually form via aqueous processes and often record information about the environment in which they formed, including chemical and textural biosignatures. In addition, terrestrial carbonates are often found in association with evaporite deposits on Earth. Similar high salinity environments and processes were likely active on Mars and some areas may contain active high salinity brines today. In this study, we directly compare calcite and magnesite dissolution in ultrapure water, dilute sulfate and chloride solutions, as well as near-saturated sulfate and chloride brines with known activity of water (aH2O) to determine how dissolution rates vary with mineralogy and aH2O, as well as aqueous cation and anion chemistry to better understand how high salinity fluids may have altered carbonate deposits on Mars. We measured both calcite and magnesite initial dissolution rates at 298 K and near neutral pH (6-8) in unbuffered solutions containing ultrapure water (18 MΩ cm-1 UPW; aH2O = 1), dilute (0.1 mol kg-1; aH2O = 1) and near-saturated Na2SO4 (2.5 mol kg-1, aH2O = 0.92), dilute (0.1 mol kg-1, aH2O = 1) and near-saturated NaCl (5.7 mol kg-1, aH2O = 0.75). Calcite dissolution rates were also measured in dilute and near-saturated MgSO4 (0.1 mol kg-1, aH2O = 1 and 2.7 mol kg-1, aH2O = 0.92, respectively) and MgCl2 (0.1 mol kg-1, aH2O = 1 and 3 mol kg-1, aH2O = 0.73, respectively), while magnesite dissolution rates were measured in dilute and near-saturated CaCl2 (0.1 mol kg-1, aH2O = 1 and 9 mol kg-1, aH2O = 0.35). Initial calcite dissolution rates were fastest in near-saturated MgCl2 brine, while magnesite dissolution rates were fastest in dilute (0.1 mol kg-1) NaCl and CaCl2 solutions. Calcite dissolution rates in near-saturated Na2SO4 were similar to those observed in the dilute solutions (-8.00 ± 0.12 log mol m-2 s-1), while dissolution slowed in both NaCl solutions (0.1 mol kg-1; -8.23 ± 0.10 log mol m-2 s-1 and (5.7 mol kg-1; -8.44 ± 0.11 log mol m-2 s-1), as well as near-saturated MgSO4 brine (2.7 mol kg-1; -8.35 ± 0.05 log mol m-2 s-1). The slowest calcite dissolution rates observed in the near-saturated NaCl brine. Magnesite dissolution rates were ∼5 times faster in the dilute salt solutions relative to UPW, but similar to UPW (-8.47 ± 0.06 log mol m-2 s-1) in near-saturated Na2SO4 brines (-8.41 ± 0.18 log mol m-2 s-1). Magnesite dissolution slowed significantly in near-saturated CaCl2 brine (-9.78 ± 0.10 log mol m-2 s-1), likely due to the significantly lower water activity in these experiments. Overall, magnesite dissolution rates are slower than calcite dissolution rates and follow the trend: All dilute salt solutions >2.5 mol kg-1 Na2SO4 ≈ UPW > 5.7 mol kg-1 NaCl >> 9 mol kg-1 CaCl2. Calcite rates follow the trend 3 mol kg-1 MgCl2 > 2.5 mol kg-1 Na2SO4 ≈ UPW ≈ all dilute salt solutions >2.7 mol kg-1 MgSO4 ≈ 5.7 mol kg-1 NaCl. Magnesite dissolution rates in salt solutions generally decrease with decreasing aH2O in both chloride and sulfate brines, which indicates water molecules act as ligands and participate in the rate-limiting magnesite dissolution step. However, there is no general trend associated with water activity observed in the calcite dissolution rates. Calcite dissolution accelerates in near-saturated MgCl2, but slows in near-saturated NaCl brine despite both brines having similar water activities (aH2O = 0.73 and 0.75, respectively). High Mg calcite was observed as a reaction product in the near-saturated MgCl2, indicating Mg2+ from solution likely substituted for Ca2+ in the initial calcite, releasing additional Ca2+ into solution and increasing the observed calcite dissolution rate. Calcite dissolution rates also increase slightly as Na2SO4 concentration increases, while calcite dissolution rates slow slightly with increasing concentration of MgSO4 and NaCl. However, all of the carbonate rates vary by less than 0.5 log units and are within or near the standard deviation observed for each set of replicate experiments. Carbonate mineral lifetimes in high salinity brines indicate magnesite may be preferentially preserved compared to calcite on Mars. Therefore, Mg-carbonates that have experienced post-depositional aqueous alteration are more likely to preserve paleoenvironmental indicators and potential biosignatures. Rapid weathering of carbonates in circum-neutral pH sulfate brines may provide a potential source of cations for abundant sulfate minerals observed on Mars, Ceres, and other planetary bodies.

  16. Mechanical properties of electron-beam-melted molybdenum and dilute molybdenum-rhenium alloys

    NASA Technical Reports Server (NTRS)

    Klopp, W. D.; Witzke, W. R.

    1972-01-01

    A study of molybdenum and three dilute molybdenum-rhenium alloys was undertaken to determine the effects of rhenium on the low temperature ductility and other mechanical properties of molybdenum. Alloys containing 3.9, 5.9, and 7.7 atomic percent rhenium exhibited lower ductile-brittle transition temperatures than did the unalloyed molybdenum. The maximum improvement in the annealed condition was observed for molybdenum - 7.7 rhenium, which had a ductile-brittle transition temperature approximately 200 C (360 F) lower than that for unalloyed molybdenum. Rhenium additions also increased the low and high temperature tensile strengths and the high temperature creep strength of molybdenum. The mechanical behavior of dilute molybdenum-rhenium alloys is similar to that observed for dilute tungsten-rhenium alloys.

  17. Headspace solid phase microextraction and gas chromatography-olfactometry dilution analysis of young and aged Chinese "Yanghe Daqu" liquors.

    PubMed

    Fan, Wenlai; Qian, Michael C

    2005-10-05

    The aroma compounds of young and aged Chinese "Yanghe Daqu" liquor samples were extracted by solid phase microextraction (SPME) and analyzed by gas chromatography (GC)-olfactometry dilution analysis. The original liquor samples were diluted with deionized water to give a final alcohol content of 14% (v/v). The samples were stepwise diluted (1:1) with 14% (by volume) ethanol-water solution and then extracted by headspace SPME. The samples were preequilibrated at 50 degrees C for 15 min and extracted with stirring at the same temperature for 30 min prior to injection into GC. The aroma compounds were identified by both GC-MS and GC-olfactometry using DB-Wax and DB-5 columns. The results suggested that esters were the major contributors to Yanghe Daqu liquor aroma. Ethyl hexanoate, ethyl butanoate, and ethyl pentanoate had very high flavor dilution values in both young and aged liquors (FD > 8192). Methyl hexanoate, ethyl heptanoate, ethyl benzoate, and butyl hexanoate could also be very important because of their high flavor dilution values (FD > or = 256). Moreover, two acetals, 1,1-diethoxyethane and 1,1-diethoxy-3-methylbutane, also were shown high flavor dilution values in Yanghe Daqu liquors (FD > or = 256). Other aroma compounds having moderate flavor dilution values included acetaldehyde, 3-methylbutanol, and 2-pentanol (FD > or = 32). Comparing young and aged liquors, the aroma profiles were similar, but the aroma compounds in the aged sample had higher flavor dilution values than in the young ones.

  18. Conductance of solutions of lithium tris(trifluoromethanesulfonyl) methide in water, acetonitrile, propylene carbonate, N,N-dimethylformamide, and nitromethane at 25 C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croce, F.; D`Aprano, A.; Nanjundiah, C.

    1996-01-01

    In order to determine the solution properties of lithium tris(trifluoromethanesulfonyl) methide (LiMe) in water and the aprotic solvents acetonitrile (AN), propylene carbonate (PC), N,N-dimethylformamide (DMF), and nitromethane (MeNO{sub 2}), conductance measurements have been carried out at 25 C. Molar conductivities at infinite dilution ({Lambda}{degree}) and ion pair association constants (K{sub a}) were obtained analyzing the experimental data with the Fuoss-Hsia conductance equation using the expansion of Fernandez-Prini and Justice with and without inclusion of the Chen effect. The results show that according to the ability of the solvents to solvate lithium ion, ion-pair formation is small or nonexistent in solventsmore » with high donor number (water, PC, DMF, and AN) but fairly moderate in nitromethane. Single-ion molar conductivities at infinite dilution for ClO{sub 4}{sup {minus}}, AsF{sub 6}{sup {minus}}, PF{sub 6}{sup {minus}} CF{sub 3}SO{sub 3}{sup {minus}}, N(CF{sub 3}SO{sub 2}){sub 2}{sup {minus}}, and C(CF{sub 3}SO{sub 2}){sub 3}{sup {minus}} anions, obtained by combining these results with literature data, decrease as expected as the ionic radius increases, and with one exception are always greater than that of the lithium ion. This general trend does not, however, apply in water where the limiting ionic conductance of the lithium cation is greater than that of the methide anion. This anomalous behavior is attributed to significant solvation of the methide ion in water. Voltammetric measurements indicate high electrochemical stability of methide anion. Such anodic stability and the increase in the transference number of lithium ion in LiMe solutions strongly support the use of this electrolyte in high energy, high voltage lithium batteries.« less

  19. PROCESS OF SEPARATING URANIUM FROM AQUEOUS SOLUTION BY SOLVENT EXTRACTION

    DOEpatents

    Warf, J.C.

    1958-08-19

    A process is described for separating uranium values from aqueous uranyl nitrate solutions. The process consists in contacting the uramium bearing solution with an organic solvent, tributyl phosphate, preferably diluted with a less viscous organic liquida whereby the uranyl nitrate is extracted into the organic solvent phase. The uranvl nitrate may be recovered from the solvent phase bv back extracting with an aqueous mediuin.

  20. In vitro effects of 6 % hydroxyethyl starch 130/0.42 solution on feline whole blood coagulation measured by rotational thromboelastometry.

    PubMed

    Albrecht, Nathalie A; Howard, Judith; Kovacevic, Alan; Adamik, Katja N

    2016-07-26

    The artificial colloid, hydroxyethyl starch (HES), is recommended for intravascular volume expansion and colloid-osmotic pressure enhancement in dogs and cats. A well-known side effect of HES solutions in humans and dogs is coagulopathy. However, HES-associated coagulopathy has thus far not been investigated in cats. The goal of this study was to assess the in vitro effects of 6 % HES 130/0.42 on feline whole blood samples using rotational thromboelastometry (ROTEM). A further goal was to develop feline reference intervals for ROTEM at our institution. In this in vitro experimental study, blood samples of 24 adult healthy cats were collected by atraumatic jugular phlebotomy following intramuscular sedation. Baseline ROTEM analyses (using ex-tem, in-tem and fib-tem assays) were performed in duplicate. Additionally, ROTEM analyses were performed on blood samples after dilution with either Ringer's acetate (RA) or 6 % HES 130/0.42 (HES) in a 1:6 dilution (i.e. 1 part solution and 6 parts blood). Coefficients of variation of duplicate measures were below 12 % in all ex-tem assays, 3 of 4 in-tem assays but only 1 of 3 fib-tem assays. Reference intervals were similar albeit somewhat narrower than those previously published. Dilution with both solutions lead to significantly prolonged CT (in-tem), CFT (ex-tem and in-tem), and reduced MCF (ex-tem, in-tem, and fib-tem) and alpha (ex-tem and in-tem). Compared to RA, dilution with HES caused a significant prolongation of CT in fib-tem (P = 0.016), CFT in ex-tem (P = 0.017) and in-tem (P = 0.019), as well as a reduction in MCF in in-tem (P = 0.032) and fib-tem (P = 0.020), and alpha in ex-tem (P = 0.014). However, only a single parameter (CFT in ex-tem) was outside of the established reference interval after dilution with HES. In vitro hemodilution of feline blood with RA and HES causes a small but significant impairment of whole blood coagulation, with HES leading to a significantly greater effect on coagulation than RA. Further studies are necessary to evaluate the in vivo effects and the clinical significance of these findings.

  1. Ultrasound-assisted acid hydrolysis of cellulose to chemical building blocks: Application to furfural synthesis.

    PubMed

    Santos, Daniel; Silva, Ubiratan F; Duarte, Fabio A; Bizzi, Cezar A; Flores, Erico M M; Mello, Paola A

    2018-01-01

    In this work, the use of ultrasound energy for the production of furanic platforms from cellulose was investigated and the synthesis of furfural was demonstrated. Several systems were evaluated, as ultrasound bath, cup horn and probe, in order to investigate microcrystalline cellulose conversion using simply a diluted acid solution and ultrasound. Several acid mixtures were evaluated for hydrolysis, as diluted solutions of HNO 3 , H 2 SO 4 , HCl and H 2 C 2 O 4 . The influence of the following parameters in the ultrasound-assisted acid hydrolysis (UAAH) were studied: sonication temperature (30 to 70°C) and ultrasound amplitude (30 to 70% for a cup horn system) for 4 to 8molL -1 HNO 3 solutions. For each evaluated condition, the products were identified by ultra-performance liquid chromatography with high-resolution time-of-flight mass spectrometry (UPLC-ToF-MS), which provide accurate information regarding the products obtained from biomass conversion. The furfural structure was confirmed by nuclear magnetic resonance ( 1 H and 13 C NMR) spectroscopy. In addition, cellulosic residues from hydrolysis reaction were characterized using scanning electron microscopy (SEM), which contributed for a better understanding of physical-chemical effects caused by ultrasound. After process optimization, a 4molL -1 HNO 3 solution, sonicated for 60min at 30°C in a cup horn system at 50% of amplitude, lead to 78% of conversion to furfural. This mild temperature condition combined to the use of a diluted acid solution represents an important contribution for the selective production of chemical building blocks using ultrasound energy. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Physicochemical stability of oxaliplatin in 5% dextrose injection stored in polyvinyl chloride, polyethylene, and polypropylene infusion bags.

    PubMed

    Eiden, Céline; Philibert, Laurent; Bekhtari, Khedidja; Poujol, Sylvain; Malosse, Francoise; Pinguet, Frédéric

    2009-11-01

    The physicochemical stability of extemporaneous dilutions of oxaliplatin in 5% dextrose injection stored in polyvinyl chloride (PVC), polypropylene, and polyethylene infusion bags was studied. Oxaliplatin 100 mg/20 mL concentrated solution was diluted in 100 mL of 5% dextrose injection in PVC, polypropylene, and polyethylene infusion bags to produce nominal oxaliplatin concentrations of 0.2 and 1.3 mg/mL. The filled bags were stored for 14 days at 20 degrees C and protected from light, at 20 degrees C under normal fluorescent light, and at 4 degrees C. A 1-mL sample was removed from each bag at time 0 and at 24, 48, 72, 120, 168, and 336 hours. The samples were visually inspected for color and clarity, and the pH values of the solutions were measured. High-performance liquid chromatography was used to assay oxaliplatin concentration. Bacterial contamination was assessed on study day 14 after incubation in trypticase soy solution for three days at 37 degrees C. Solutions of oxaliplatin 0.2 and 1.3 mg/mL in 5% dextrose injection were stable in the three container types for at least 14 days at both 4 degrees C and 20 degrees C without regard to light exposure. No color change was detected during the storage period, and pH values remained stable. No microbial contamination was detected in any samples over the study period. Oxaliplatin solutions diluted in 5% dextrose injection to 0.2 and 1.3 mg/mL were stable in PVC and PVC-free infusion bags for at least 14 days at both 4 degrees C and 20 degrees C without regard to light exposure.

  3. Ecotoxicological efficiency of advanced ozonation processes with TiO2 and black light used in the degradation of carbamazepine.

    PubMed

    Oropesa, Ana Lourdes; Beltrán, Fernando Juan; Floro, António Miguel; Sagasti, Juan José Pérez; Palma, Patrícia

    2018-01-01

    The aim of the present study was to evaluate the ecotoxicological efficiency of two advanced ozonation processes (AOzPs), the catalytic ozonation (O 3 /TiO 2 ) and the photocatalytic ozonation (O 3 /TiO 2 /black light), in the remotion of carbamazepine. The ecotoxicological efficiency was assessed through the use of lethal and sublethal assays with species Vibrio fischeri and Daphnia magna. Results demonstrated that the AOzPs presented an efficiency of carbamazepine removal higher than 99% (carbamazepine < 2 μg/L) after 12 min of treatment. Relatively to ecotoxicological evaluation, application of acute assay to V. fischeri and chronic assay to D. magna allowed us to highlight that these technologies may form some transformation products that induce toxicity in the bacteria and the crustacean, once these organisms exposed to the undiluted solutions (100%) showed a decrease in the bioluminescence (vibrio) and end up dying before and during the first reproduction (daphnia). Despite that, when the chronic results obtained with the diluted solutions (50 and 25%; important to assess a more realistic scenario considering the dilution factor at the environment) were analyzed, no mortality at the mothers was observed. Compared to a carbamazepine solution (200 μg/L), diluted solutions improved of the reproduction parameters, and no toxic effects in the juvenoid system and in the embryonic development were observed. Relatively to the ecdysteroid effect of a carbamazepine solution (200 μg/L), only the photocatalytic ozonation treatment was able to remove the action of the drug. These results highlight the importance of complementing chemical analysis with ecotoxicological bioassays to assess the best technology to improve the surface water and effluent quality.

  4. A class of nonideal solutions. 1: Definition and properties

    NASA Technical Reports Server (NTRS)

    Zeleznik, F. J.

    1983-01-01

    A class of nonideal solutions is defined by constructing a function to represent the composition dependence of thermodynamic properties for members of the class, and some properties of these solutions are studied. The constructed function has several useful features: (1) its parameters occur linearly; (2) it contains a logarithmic singularity in the dilute solution region and contains ideal solutions and regular solutions as special cases; and (3) it is applicable to N-ary systems and reduces to M-ary systems (M or = N) in a form-invariant manner.

  5. Structure of the enzymatically synthesized fructan inulin.

    PubMed

    Heyer, A G; Schroeer, B; Radosta, S; Wolff, D; Czapla, S; Springer, J

    1998-12-15

    Construction, purification and characterization of a fusion protein of maltose-binding protein of Escherichia coli and the fructosyltransferase of Streptococcus mutans is described. With the purified protein, in vitro synthesis of inulin was performed. The obtained polysaccharide was characterized by high-performance size-exclusion chromatography (HPSEC) and static light scattering (SLS) in dilute aqueous and dimethyl sulfoxide solution. For all samples very high molecular weights between 60 x 10(6) and 90 x 10(6) g/mol and a remarkable small polydispersity index of 1.1 have been determined. Small root-mean-square radii of gyration point to a compact conformation in dilute solution. No difference between native and enzymatically synthesized inulin was observed by X-ray powder diffraction and thermoanalysis of solid samples.

  6. Remarkably high apparent quantum yield of the overall photocatalytic H2O splitting achieved by utilizing Zn ion added Ga2O3 prepared using dilute CaCl2 solution.

    PubMed

    Sakata, Yoshihisa; Hayashi, Takuya; Yasunaga, Ryō; Yanaga, Nobuyuki; Imamura, Hayao

    2015-08-21

    Remarkably high photocatalytic activity for the overall H2O splitting, where the activity was 32 mmol h(-1) for H2 production and 16 mmol h(-1) for O2 production under irradiation from a 450 W high-pressure Hg lamp and the apparent quantum yield (AQY) was 71% under irradiation at 254 nm, was achieved by utilizing a Rh(0.5)Cr(1.5)O3(Rh; 0.5 wt%)/Zn(3 mol%)-Ga2O3 photocatalyst when Ga2O3 was prepared using dilute CaCl2 aqueous solution having a concentration of 0.001 mol l(-1).

  7. Effects of aspect ratio and concentration on rheology of epoxy suspensions containing model plate-like nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, K. L.; Takahara, A.; Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395

    2015-12-15

    Hexagonal 2-dimensional α-zirconium phosphate crystals were prepared with lateral diameters ranging from 110 nm to 1.5 μm to investigate the effect of particle size on suspension rheology. The nanoplatelets were exfoliated to individual sheets with monodisperse thickness and dispersed in a Newtonian epoxy fluid. The steady shear response of dilute and semi-dilute suspensions was measured and compared to expressions obtained from theory for infinitely dilute suspensions. For suspensions containing the smaller nanoplatelets, aspect ratio ∼160, the low shear rate viscosity and transition to shear thinning behavior were well described by theory for loadings up to 0.5 vol. %. The agreementmore » was improved by assuming a moderate polydispersity in lateral diameter, ∼30%–50%, which is consistent with experimental observation. For the higher aspect ratio nanoplatelets, good agreement between theory and experiment was observed only at high shear rates. At lower shear rate, theory consistently over-predicted viscosity, which was attributed to a progressive shift to non-isotropic initial conditions with increasing particle size. The results suggest that at a fixed Peclet number, there is an increasing tendency for the nanoplatelets to form transient, local stacks as particle size increases. The largest particles, aspect ratio ∼2200, showed unusual shear thinning and thickening behaviors that were attributed to particle flexibility. The findings demonstrate the surprising utility of theory for infinitely dilute suspensions to interpret, and in some cases quantitatively describe, the non-Newtonian viscosity of real suspensions containing high aspect ratio plate-like particles. A simple framework is proposed to interpret deviations from ideal behavior based on the local and collective behavior of the suspended nanoplatelets.« less

  8. 3-D Topo Surface Visualization of Acid-Base Species Distributions: Corner Buttes, Corner Pits, Curving Ridge Crests, and Dilution Plains

    ERIC Educational Resources Information Center

    Smith, Garon C.; Hossain, Md Mainul

    2017-01-01

    Species TOPOS is a free software package for generating three-dimensional (3-D) topographic surfaces ("topos") for acid-base equilibrium studies. This upgrade adds 3-D species distribution topos to earlier surfaces that showed pH and buffer capacity behavior during titration and dilution procedures. It constructs topos by plotting…

  9. Dilution physics modeling: Dissolution/precipitation chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onishi, Y.; Reid, H.C.; Trent, D.S.

    This report documents progress made to date on integrating dilution/precipitation chemistry and new physical models into the TEMPEST thermal-hydraulics computer code. Implementation of dissolution/precipitation chemistry models is necessary for predicting nonhomogeneous, time-dependent, physical/chemical behavior of tank wastes with and without a variety of possible engineered remediation and mitigation activities. Such behavior includes chemical reactions, gas retention, solids resuspension, solids dissolution and generation, solids settling/rising, and convective motion of physical and chemical species. Thus this model development is important from the standpoint of predicting the consequences of various engineered activities, such as mitigation by dilution, retrieval, or pretreatment, that can affectmore » safe operations. The integration of a dissolution/precipitation chemistry module allows the various phase species concentrations to enter into the physical calculations that affect the TEMPEST hydrodynamic flow calculations. The yield strength model of non-Newtonian sludge correlates yield to a power function of solids concentration. Likewise, shear stress is concentration-dependent, and the dissolution/precipitation chemistry calculations develop the species concentration evolution that produces fluid flow resistance changes. Dilution of waste with pure water, molar concentrations of sodium hydroxide, and other chemical streams can be analyzed for the reactive species changes and hydrodynamic flow characteristics.« less

  10. Metal Sorbing Vesicles: Light Scattering Characterization and Metal Sorbtion Behavior.

    NASA Astrophysics Data System (ADS)

    van Zanten, John Hollis

    1992-01-01

    The research described herein consisted of two parts: light scattering characterization of vesicles and kinetic investigations of metal sorbing vesicles. Static light scattering techniques can be used to determine the geometric size, shape and apparent molecular weight of phosphatidylcholine vesicles in aqueous suspension. A Rayleigh-Gans-Debye (RGD) approximation analysis of multiangle scattered light intensity data yields the size and degree of polydispersity of the vesicles in solution, while the Zimm plot technique provides the radius of gyration and apparent weight-average molecular weight. Together the RGD approximation and Zimm plots can be used to confirm the geometric shape of vesicles and can give a good estimate of the vesicle wall thickness in some cases. Vesicles varying from 40 to 115 nm in diameter have been characterized effectively. The static light scattering measurements indicate that, as expected, phosphatidylcholine vesicles in this size range scatter light as isotropic hollow spheres. Additionally, static and dynamic light scattering measurements have been made and compared with one another. The values for geometric radii determined by static light scattering typically agree with those estimated by dynamic light scattering to within a few percent. Interestingly however, dynamic measurements suggest that there is a significant degree of polydispersity present in the vesicle dispersions, while static measurements indicate near size monodisperse dispersions. Metal sorbing vesicles which harbor ionophores, such as antibiotic A23187 and synthetic carriers, in their bilayer membranes have been produced. These vesicles also encapsulate the chelating compound, nitrilotriacetate, to provide the driving force for metal ion uptake. Very dilute dispersions (on the order of 0.03% w/v) of these metal sorbing vesicles were capable of removing Cd ^{2+} and Pb^{2+ } from dilute aqueous solution (5 ppm and less) and concentrating these metal ions several hundred to more than a thousand fold in the vesicle interior in a few minutes time. Synthetic ionophores were found to preferentially transport Pb^{2+} over Cd^{2+}, thus suggesting that engineered vesicle dispersions can be used as selective separations media. The effect of ionophore concentration, solution pH, solution ionic strength, initial metal ion concentration and vesicle concentration have been investigated.

  11. Dial-A-Decon Solution Chemistry GAP Testing

    DTIC Science & Technology

    2012-04-01

    34 The tubes were serially diluted using Buttcrfield’s buffer solution and plated in triplicate on Tryptic Soy Agar. Plates were enumerated the...of 200 uL HD to 10 mL of the surfactant solution. The energy to create the oil in water (O/W) emulsions was provided by magnetic stirring. Solutions...emulsify a mixture of water and oil such as HD, one or more emulsifiers are required. Each surfactant system can be characterized by an HLB value

  12. Molar mass, radius of gyration and second virial coefficient from new static light scattering equations for dilute solutions: application to 21 (macro)molecules.

    PubMed

    Illien, Bertrand; Ying, Ruifeng

    2009-05-11

    New static light scattering (SLS) equations for dilute binary solutions are derived. Contrarily to the usual SLS equations [Carr-Zimm (CZ)], the new equations have no need for the experimental absolute Rayleigh ratio of a reference liquid and solely rely on the ratio of scattered intensities of solutions and solvent. The new equations, which are based on polarizability equations, take into account the usual refractive index increment partial differential n/partial differential rho(2) complemented by the solvent specific polarizability and a term proportional to the slope of the solution density rho versus the solute mass concentration rho(2) (density increment). Then all the equations are applied to 21 (macro)molecules with a wide range of molar mass (0.2500 kg mol(-1)), for which the scattered intensity is no longer independent of the scattering angle, the new equations give the same value of the radius of gyration as the CZ equation and consistent values of the second virial coefficient.

  13. Aqueous Silicate Polymers: An Alternative to `Supercritical' Fluids as Transport Agents in Subduction Zones

    NASA Astrophysics Data System (ADS)

    Mannig, C. E.

    2005-12-01

    The chemistry of subduction-zone fluids is complicated by melt-vapor miscibility and the existence of critical end-points in rock-H2O systems. It is commonly assumed that fluids in subduction zones attain properties intermediate in composition between hydrous silicate liquid and H2O, and that such fluids possess enhanced material transport capabilities. However, the relevance of supercritical, intermediate fluids to subduction zones presents four problems. (1) Albite-H2O is typically used as an analogue system, but the favorable position of its critical curve is not representative; critical curves for polymineralic subduction-zone lithologies lie at substantially higher P. (2) Even if albite-H2O is relevant, jadeite may interfere because of its different solubility and the positive clapeyron slope of its solidus, which points to liquid-structure changes that could cause reappearance of the liquid+vapor field. (3) Critical curves are features of very H2O-rich compositions; low-porosity, H2O-poor natural systems will coexist with intermediate fluids only over a narrow PT interval. (4) Intermediate fluids are expected only over short length scales because their migration will likely result in compositional shifts via reaction and mineral precipitation in the mantle wedge. Although supercritical, intermediate fluids are probably relatively unimportant in subduction zones, they reflect a chemical process that may hold the key to understanding high- P mass transfer. Miscibility in melt-vapor systems is a consequence of polymerization of dissolved components, primarily Si ± Al, Na and Ca. This behavior yields, e.g., aqueous Si-Si, Si-Al, Si-Na-Al, and Si-Ca oxide dimers and other multimers of varying stoichiometry (silicate polymers), even in subcritical, dilute, H2O-rich vapor. Silicate polymers in subcritical aqueous solutions have been inferred from high- P mineral-solubility experiments. The abundance of these species at high P shows that the chemistry of aqueous fluids in subduction-zones differs fundamentally from the more familiar ionic solutions of the upper crust. This has important consequences for minor element transport. Measurements of Fe, phosphorous and Ti solubility reveal that dissolved concentrations rise with increased aqueous albite content at fixed P and T, with maximum enhancements exceeding 10X at melt saturation. Subcritical silicate polymerization thus permits transport of low solubility components via their substitution into sites on aqueous multimers constructed of "polymer formers" such as Na, Al, and Si, even in dilute solutions. The partitioning of elements between the bulk fluid, the polymer network, and the rock matrix likely controls the overall compositional evolution of subduction-zone fluids. Because they form over a wider PT and bulk X range, subcritical silicate polymers in dilute solutions are likely responsible for more mass transfer in subduction zones than intermediate, supercritical fluids.

  14. Partial molar volume of n-alcohols at infinite dilution in water calculated by means of scaled particle theory.

    PubMed

    Graziano, Giuseppe

    2006-04-07

    The partial molar volume of n-alcohols at infinite dilution in water is smaller than the molar volume in the neat liquid phase. It is shown that the formula for the partial molar volume at infinite dilution obtained from the scaled particle theory equation of state for binary hard sphere mixtures is able to reproduce in a satisfactory manner the experimental data over a large temperature range. This finding implies that the packing effects play the fundamental role in determining the partial molar volume at infinite dilution in water also for solutes, such as n-alcohols, forming H bonds with water molecules. Since the packing effects in water are largely related to the small size of its molecules, the latter feature is the ultimate cause of the decrease in partial molar volume associated with the hydrophobic effect.

  15. A comparison of the palatability of flavored oral contrasts.

    PubMed

    Arya, Rajiv; Hansen, Allison; Taira, Breena R; Packy, Theodore; Singer, Adam J

    2009-09-01

    The aim of this study was to compare the taste of computed tomography (CT) oral contrast diluted with various flavored drinks. We performed a prospective, blinded, controlled trial in healthy adult volunteers. Subjects were assigned to ingest four 250-mL aliquots of oral contrast media diluted in water, Crystal Light Lemonade (Kraft Food, Northfield, Ill), Tropical Punch Kool-Aid (Kraft Food), and Tropicana orange juice (Pepsi Bottling Company, Sommers, NY) in random order; and the taste of the solution was measured with a 100-mm visual analogue scale and 5-point Likert scale from very worst to best. Between-group comparison of the taste scores was performed with repeated-measures analysis of variance and pairwise t tests. The study had 80% power to detect an effect size 0.75 SDs. There were 23 subjects; mean (SD) age was 33 (7.7) and 30% were female. The mean (SD) taste scores were water 12 (5), lemonade 37 (21), Kool-Aid 44 (20), and orange juice 40 (20) (P < .05). The proportion of subjects completely ingesting the contrast in water (65%) was significantly less than that with other 3 study solutions (100% each, P < .001). Dilution of oral contrast media with lemonade, fruit punch, or orange juice is tastier than with water. The choice of the specific juice used to dilute the oral contrast should be individualized based on patient preferences and availability.

  16. Methods of preventing vinorelbine-induced phlebitis: an experimental study in rabbits

    PubMed Central

    Kohno, Emiko; Murase, Saori; Nishikata, Mayumi; Okamura, Noboru; Matzno, Sumio; Kuwahara, Takashi; Matsuyama, Kenji

    2008-01-01

    Purpose: In order to identify methods for preventing phlebitis caused by intravenous administration of vinorelbine (VNR), we established a procedure for estimating the severity of phlebitis in an animal model. Methods: Four different factors (administration rate, dilution, flushing, and infusion of fat emulsion) were evaluated for alleviation of phlebitis caused by VNR infusion. VNR was diluted with normal saline to prepare test solutions with concentrations of 0.6 mg/mL or 0.3 mg/mL for infusion into the auricular veins of rabbits. Two days after VNR infusion, the veins were subjected to histopathological examination. Results: VNR did not cause obvious loss of venous endothelial cells, the most sensitive and common feature of phlebitis, but VNR infusion led to inflammatory cell infiltration, edema, and epidermal degeneration. Tissue damage was significantly decreased by shortening the administration time and by diluting the VNR solution for infusion from 0.6 mg/mL to 0.3 mg/mL. However, there was no effect of flushing with normal saline after VNR infusion, while treatment with fat emulsion before and after VNR infusion only had a minimal effect. Conclusion: Rapid infusion and dilution are effective methods of reducing phlebitis caused by the infusion of VNR, but the efficacy of flushing with normal saline or infusion of fat emulsion was not confirmed. PMID:18695742

  17. Self-Recognition Between Two Almost Identical Macroions During Their Assembly: The Effects of pH and Temperature.

    PubMed

    Haso, Fadi; Li, Dong; Garai, Somenath; Pigga, Joseph M; Liu, Tianbo

    2015-09-14

    Two Keplerate-type macroions, [Mo(VI) 72 Fe(III) 30 O252 - (CH3 COO)12 {Mo2 O7 (H2 O)}2 {H2 Mo2 O8 (H2 O)}(H2 O)91 ]⋅ca. 150 H2 O= {Mo72 Fe30 } and [{Na(H2 O)12 }⊂{Mo(VI) 72 Cr(III) 30 O252 (CH3 COO)19 - (H2 O)94 }]⋅ca. 120 H2 O={Mo72 Cr30 }, with identical size and shape but different charge density, can self-assemble into spherical "blackberry"-like structures in aqueous solution by means of electrostatic interactions. These two macroanions can self-recognize each other and self-assemble into two separate types of homogeneous blackberries in their mixed dilute aqueous solution, in which they carry -7 and -5 net charges, respectively. Either adjusting the solution pH or raising temperature is expected to make the self-recognition more difficult, by making the charge densities of the two clusters closer, or by decreasing the activation energy barrier for the blackberry formation, respectively. Amazingly, the self-recognition behavior remains, as confirmed by dynamic and static light scattering, TEM, and energy dispersive spectroscopy techniques. The results prove that the self-recognition behavior of the macroions due to the long-range electrostatic interaction is universal and can be achieved when only minimum differences exist between two types of macroanions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Evaluation of the antifungal effects of bio-oil prepared with lignocellulosic biomass using fast pyrolysis technology.

    PubMed

    Kim, Kwang Ho; Jeong, Han Seob; Kim, Jae-Young; Han, Gyu Seong; Choi, In-Gyu; Choi, Joon Weon

    2012-10-01

    This study was performed to investigate the utility of bio-oil, produced via a fast pyrolysis process, as an antifungal agent against wood-rot fungi. Bio-oil solutions (25-100 wt.%) were prepared by diluting the bio-oil with EtOH. Wood block samples (yellow poplar and pitch pine) were treated with diluted bio-oil solutions and then subjected to a leaching process under hot water (70°C) for 72 h. After the wood block samples were thoroughly dried, they were subjected to a soil block test using Tyromyces palustris and Trametes versicolor. The antifungal effect of the 75% and 100% bio-oil solutions was the highest for both wood blocks. Scanning electron microscopy analysis indicated that some chemical components in the bio-oil solution could agglomerate together to form clusters in the inner part of the wood during the drying process, which could act as a wood preservative against fungal growth. According to GC/MS analysis, the components of the agglomerate were mainly phenolic compounds derived from lignin polymers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Relating runoff generation mechanisms to concentration-discharge relationships in catchments with well-characterized Critical Zone structures and hydrologic dynamics

    NASA Astrophysics Data System (ADS)

    Hahm, W. J.; Wang, J.; Druhan, J. L.; Rempe, D.; Dietrich, W. E.

    2017-12-01

    Stream solute concentration-discharge (C-Q) relationships integrate catchment-scale hydrologic and geochemical processes, potentially yielding valuable information about runoff generation and weathering mechanisms. However, recent compilations have established that chemostasis—the condition where solute concentrations are invariant across large ranges of runoff—is observed in watersheds of diverse lithology, climate, and topography, suggesting an equifinality of the C-Q relationship independent of hydrologic process. Here we explore C-Q signals in contrasting catchments of the Eel River Critical Zone (CZ) Observatory in the Northern California Coast Ranges, where, unlike most watersheds where chemostasis has been observed, hillslope hydrologic processes are well characterized via years of intensive hydrologic monitoring. Our two catchments in the Franciscan Complex have radically different runoff generation mechanisms arising from differences in CZ structure: at Elder Creek (Coastal Belt), rain passes vertically as unsaturated flow through soil, saprolite, and a thick weathered rock zone before perching as groundwater on fresh bedrock and flowing laterally through fractures to generate streamflow, resulting in nearly chemostatic major cation behavior (power law C-Q slopes (B) ≈ 0 to -0.1). At Dry Creek (Central Belt), the thin (2 to 3 m) hydrologically active CZ completely saturates in most storm events, generating saturation overland flow across the landscape. New data from Dry Creek reveal log-log C-Q relationships for major cations that exhibit negative curvature, indicating a trend towards increasing dilution at higher flow rates and a possible C-Q signature of overland flow. High geomorphic channel drainage density (16.9 km/km2) results in short flow paths and, presumably, short water hillslope residence times at high runoff when overland flow dominates (> 50 mm d-1). Surprisingly, even at these high runoff rates, pure dilution does not occur (high runoff B ≈ -0.5), suggesting a role for extremely rapid cation exchange reactions and equilibration as water flows over and through the soil surface, and underscoring limitations on the ability to interpret hydrologic processes from C-Q behavior.

  20. Application of forward osmosis technology in crude glycerol fermentation biorefinery-potential and challenges.

    PubMed

    Kalafatakis, S; Braekevelt, S; Lymperatou, A; Zarebska, A; Hélix-Nielsen, C; Lange, L; Skiadas, I V; Gavala, H N

    2018-04-24

    Forward osmosis (FO) is a low energy-intensive process since the driving force for water transport is the osmotic pressure difference, Δπ, between the feed and draw solutions, separated by the FO membrane, where π draw  > π feed . The potential of FO in wastewater treatment and desalination have been extensively studied; however, regeneration of the draw solution (thereby generating clean water) requires application of an energy-intensive process step like reverse osmosis (RO). In this study, the potential of applying FO for direct water recirculation from diluted fermentation effluent to concentrated feedstock, without the need for an energy-intensive regeneration step (e.g. RO), has been investigated. Butanol production during crude glycerol fermentation by Clostridium pasteurianum, has been selected as a model process and the effect of cross-flow velocity and the dilution of draw solution on the water flux during short-term experiments (200 min), were investigated. Statistical analysis revealed that the dilution of the draw solution is the most influential factor for the water flux. Subsequent modelling of an integrated FO-fermentation process, showed that water recoveries could lead to substantial financial benefits, although the integrated FO-fermentation process demonstrated lower water flux than expected. FTIR analyses of the membrane surface implied that the decrease in water flux was due to the presence of proteins, polysaccharides and other extracellular polymeric substances on the membrane active layer, indicating the presence of a fouling layer. Based on these findings, possible fouling alleviation strategies and future research directions are discussed and proposed.

  1. Effect of Osmotic Shock and Low Salt Concentration on Survival and Density of Bacteriophages T4B and T4Bo1

    PubMed Central

    Leibo, Stanley P.; Mazur, Peter

    1966-01-01

    Measurements of survival and buoyant densities of bacteriophages T4B, T4Bo1, and T4D have demonstrated the following: (a) After suspension in a concentrated salt solution, T4B and T4D are sensitive both to osmotic shock and to subsequent exposure to low monovalent salt concentrations. (b) Sensitivity of T4B to dilution from a concentrated salt solution is dependent on dilution rate, that of T4D is less dependent, and that of T4Bo1 is independent. (c) Sensitivity of all three phages to low salt concentrations depends on initial salt concentrations to a variable extent. (d) Density gradient profiles indicate that nearly half of osmotically shocked T4B retain their DNA. Similar analysis demonstrates that few, if any, T4Bo1 lose DNA when subjected to a treatment causing 90% loss of infectivity. (e) The effective buoyant densities of T4B and T4Bo1 depend significantly on the dilution treatments to which the phages are subjected prior to centrifugation in CsCl gradients. These data are explicable in terms of the different relative permeabilities of the phages to water and solutes, and of alterations in the counterion distribution surrounding the DNA within the phage heads. PMID:5972376

  2. Single-coil properties and concentration effects for polyelectrolyte-like wormlike micelles: a Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Cannavacciuolo, Luigi; Skov Pedersen, Jan; Schurtenberger, Peter

    2002-03-01

    Results of an extensive Monte Carlo (MC) study on both single and many semiflexible charged chains with excluded volume (EV) are summarized. The model employed has been tailored to mimic wormlike micelles in solution. Simulations have been performed at different ionic strengths of added salt, charge densities, chain lengths and volume fractions Φ, covering the dilute to concentrated regime. At infinite dilution the scattering functions can be fitted by the same fitting functions as for uncharged semiflexible chains with EV, provided that an electrostatic contribution bel is added to the bare Kuhn length. The scaling of bel is found to be more complex than the Odijk-Skolnick-Fixman predictions, and qualitatively compatible with more recent variational calculations. Universality in the scaling of the radius of gyration is found if all lengths are rescaled by the total Kuhn length. At finite concentrations, the simple model used is able to reproduce the structural peak in the scattering function S(q) observed in many experiments, as well as other properties of polyelectrolytes (PELs) in solution. Universal behaviour of the forward scattering S(0) is established after a rescaling of Φ. MC data are found to be in very good agreement with experimental scattering measurements with equilibrium PELs, which are giant wormlike micelles formed in mixtures of nonionic and ionic surfactants in dilute aqueous solution, with added salt.

  3. Counterion adsorption theory of dilute polyelectrolyte solutions: Apparent molecular weight, second virial coefficient, and intermolecular structure factor

    PubMed Central

    Muthukumar, M.

    2012-01-01

    Polyelectrolyte chains are well known to be strongly correlated even in extremely dilute solutions in the absence of additional strong electrolytes. Such correlations result in severe difficulties in interpreting light scattering measurements in the determination of the molecular weight, radius of gyration, and the second virial coefficient of charged macromolecules at lower ionic strengths from added strong electrolytes. By accounting for charge-regularization of the polyelectrolyte by the counterions, we present a theory of the apparent molecular weight, second virial coefficient, and the intermolecular structure factor in dilute polyelectrolyte solutions in terms of concentrations of the polymer and the added strong electrolyte. The counterion adsorption of the polyelectrolyte chains to differing levels at different concentrations of the strong electrolyte can lead to even an order of magnitude discrepancy in the molecular weight inferred from light scattering measurements. Based on counterion-mediated charge regularization, the second virial coefficient of the polyelectrolyte and the interchain structure factor are derived self-consistently. The effect of the interchain correlations, dominating at lower salt concentrations, on the inference of the radius of gyration and on molecular weight is derived. Conditions for the onset of nonmonotonic scattering wave vector dependence of scattered intensity upon lowering the electrolyte concentration and interpretation of the apparent radius of gyration are derived in terms of the counterion adsorption mechanism. PMID:22830728

  4. Potential of the octanol-water partition coefficient (logP) to predict the dermal penetration behaviour of amphiphilic compounds in aqueous solutions.

    PubMed

    Korinth, Gintautas; Wellner, Tanja; Schaller, Karl Heinz; Drexler, Hans

    2012-11-23

    Aqueous amphiphilic compounds may exhibit enhanced skin penetration compared with neat compounds. Conventional models do not predict this percutaneous penetration behaviour. We investigated the potential of the octanol-water partition coefficient (logP) to predict dermal fluxes for eight compounds applied neat and as 50% aqueous solutions in diffusion cell experiments using human skin. Data for seven other compounds were accessed from literature. In total, seven glycol ethers, three alcohols, two glycols, and three other chemicals were considered. Of these 15 compounds, 10 penetrated faster through the skin as aqueous solutions than as neat compounds. The other five compounds exhibited larger fluxes as neat applications. For 13 of the 15 compounds, a consistent relationship was identified between the percutaneous penetration behaviour and the logP. Compared with the neat applications, positive logP were associated with larger fluxes for eight of the diluted compounds, and negative logP were associated with smaller fluxes for five of the diluted compounds. Our study demonstrates that decreases or enhancements in dermal penetration upon aqueous dilution can be predicted for many compounds from the sign of logP (i.e., positive or negative). This approach may be suitable as a first approximation in risk assessments of dermal exposure. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. Visualization of Buffer Capacity with 3-D "Topo" Surfaces: Buffer Ridges, Equivalence Point Canyons and Dilution Ramps

    ERIC Educational Resources Information Center

    Smith, Garon C.; Hossain, Md Mainul

    2016-01-01

    BufCap TOPOS is free software that generates 3-D topographical surfaces ("topos") for acid-base equilibrium studies. It portrays pH and buffer capacity behavior during titration and dilution procedures. Topo surfaces are created by plotting computed pH and buffer capacity values above a composition grid with volume of NaOH as the x axis…

  6. Exchangeable hydrogen explains the pH of spodosol Oa horizons

    USGS Publications Warehouse

    Ross, D.S.; David, M.B.; Lawrence, G.B.; Bartlett, R.J.

    1996-01-01

    The chemistry of extremely acid Oa horizons does not conform to traditional pH, Al, and base saturation relationships. Results from two separate studies of northeastern U.S. forested soils were used to investigate relationships between pH in water or dilute salt solutions and other soil characteristics. In Oa horizons with pH below 4, soil pH in dilute CaCl2 solution was correlated with exchangeable H+ measured either by titration (r = -0.88, P = 0.0001, n = 142) or by electrode (r = -0.89, P = 0.0001, n = 45). Exchangeable H+ expressed as a percentage of the cation-exchange capacity (CEC) was linear with pH and showed similar slopes for data from both studies. For all samples, pHw = 4.21 - 1.80 x H+/CEC (R2 = 0.69, n = 194). The reciprocal of the H+/CEC ratio is base saturation with Al added to the bases. Because of the low pH, exchangeable Al does not appear to behave as an acid. Exchangeable H+ remains an operationally defined quantity because of the difficulty in separating exchange and hydrolysis reactions. In a variety of neutral-salt extractants, concentration of H+ were correlated with 0.1 M BaCl2-exchangeable H+ (r > 0.91, P = 0.0001, n = 26) regardless of the strength of the extract. Nine successive extractions with 0.33 mM CaCl2 removed more H+ than was removed by single batch extractions with either 1 M KCl or 0.1 M BaCl2 (average H+ of 70, 43, and 49 mmol kg-1, respectively for 26 samples). The data showed little difference in the chemical behavior of Oa horizons from a variety of geographical sites and vegetation types.

  7. Function, structure, and stability of enzymes confined in agarose gels.

    PubMed

    Kunkel, Jeffrey; Asuri, Prashanth

    2014-01-01

    Research over the past few decades has attempted to answer how proteins behave in molecularly confined or crowded environments when compared to dilute buffer solutions. This information is vital to understanding in vivo protein behavior, as the average spacing between macromolecules in the cell cytosol is much smaller than the size of the macromolecules themselves. In our study, we attempt to address this question using three structurally and functionally different model enzymes encapsulated in agarose gels of different porosities. Our studies reveal that under standard buffer conditions, the initial reaction rates of the agarose-encapsulated enzymes are lower than that of the solution phase enzymes. However, the encapsulated enzymes retain a higher percentage of their activity in the presence of denaturants. Moreover, the concentration of agarose used for encapsulation had a significant effect on the enzyme functional stability; enzymes encapsulated in higher percentages of agarose were more stable than the enzymes encapsulated in lower percentages of agarose. Similar results were observed through structural measurements of enzyme denaturation using an 8-anilinonaphthalene-1-sulfonic acid fluorescence assay. Our work demonstrates the utility of hydrogels to study protein behavior in highly confined environments similar to those present in vivo; furthermore, the enhanced stability of gel-encapsulated enzymes may find use in the delivery of therapeutic proteins, as well as the design of novel strategies for biohybrid medical devices.

  8. Major- and minor-metal composition of three distinct solid material fractions associated with Juan de Fuca hydrothermal fluids (northeast Pacific), and calculation of dilution fluid samples

    USGS Publications Warehouse

    Hinkley, T.K.; Seeley, J.L.; Tatsumoto, M.

    1988-01-01

    Three distinct types of solid material are associated with each sample of the hydrothermal fluid that was collected from the vents of the Southern Juan de Fuca Ridge. The solid materials appear to be representative of deposits on ocean floors near mid-ocean ridges, and interpretation of the chemistry of the hydrothermal solutions requires understanding of them. Sr isotopic evidence indicates that at least two and probably all three of these solid materials were removed from the solution with which they are associated, by precipitation or adsorption. This occurred after the "pure" hydrothermal fluid was diluted and thoroughly mixed with ambient seawater. The three types of solid materials, are, respectively, a coarse Zn- and Fe-rich material with small amounts of Na and Ca; a finer material also rich in Zn and Fe, but with alkali and alkaline-earth metals; and a scum composed of Ba or Zn, with either considerable Fe or Si, and Sr. Mineral identification is uncertain because of uncertain anion composition. Only in the cases of Ba and Zn were metal masses greater in solid materials than in the associated fluids. For all other metals measured, masses in fluids dwarf those in solids. The fluids themselves contain greater concentrations of all metals measured, except Mg, than seawater. We discuss in detail the relative merits of two methods of determining the mixing proportions of "pure" hydrothermal solution and seawater in the fluids, one based on Sr isotopes, and another previously used method based on Mg concentrations. Comparison of solute concentrations in the several samples shows that degree of dilution of "pure" hydrothermal solutions by seawater, and amounts of original solutes that were removed from it as solid materials, are not related. There is no clear evidence that appreciable amounts of solid materials were not conserved (lost) either during or prior to sample collection. ?? 1988.

  9. Nonlocal Electrostatics in Spherical Geometries Using Eigenfunction Expansions of Boundary-Integral Operators.

    PubMed

    Bardhan, Jaydeep P; Knepley, Matthew G; Brune, Peter

    2015-01-01

    In this paper, we present an exact, infinite-series solution to Lorentz nonlocal continuum electrostatics for an arbitrary charge distribution in a spherical solute. Our approach relies on two key steps: (1) re-formulating the PDE problem using boundary-integral equations, and (2) diagonalizing the boundary-integral operators using the fact that their eigenfunctions are the surface spherical harmonics. To introduce this uncommon approach for calculations in separable geometries, we first re-derive Kirkwood's classic results for a protein surrounded concentrically by a pure-water ion-exclusion (Stern) layer and then a dilute electrolyte, which is modeled with the linearized Poisson-Boltzmann equation. The eigenfunction-expansion approach provides a computationally efficient way to test some implications of nonlocal models, including estimating the reasonable range of the nonlocal length-scale parameter λ. Our results suggest that nonlocal solvent response may help to reduce the need for very high dielectric constants in calculating pH-dependent protein behavior, though more sophisticated nonlocal models are needed to resolve this question in full. An open-source MATLAB implementation of our approach is freely available online.

  10. Nonlocal Electrostatics in Spherical Geometries Using Eigenfunction Expansions of Boundary-Integral Operators

    PubMed Central

    Bardhan, Jaydeep P.; Knepley, Matthew G.; Brune, Peter

    2015-01-01

    In this paper, we present an exact, infinite-series solution to Lorentz nonlocal continuum electrostatics for an arbitrary charge distribution in a spherical solute. Our approach relies on two key steps: (1) re-formulating the PDE problem using boundary-integral equations, and (2) diagonalizing the boundary-integral operators using the fact that their eigenfunctions are the surface spherical harmonics. To introduce this uncommon approach for calculations in separable geometries, we first re-derive Kirkwood’s classic results for a protein surrounded concentrically by a pure-water ion-exclusion (Stern) layer and then a dilute electrolyte, which is modeled with the linearized Poisson–Boltzmann equation. The eigenfunction-expansion approach provides a computationally efficient way to test some implications of nonlocal models, including estimating the reasonable range of the nonlocal length-scale parameter λ. Our results suggest that nonlocal solvent response may help to reduce the need for very high dielectric constants in calculating pH-dependent protein behavior, though more sophisticated nonlocal models are needed to resolve this question in full. An open-source MATLAB implementation of our approach is freely available online. PMID:26273581

  11. Linear and ring polymers in confined geometries

    NASA Astrophysics Data System (ADS)

    Usatenko, Zoryana; Kuterba, Piotr; Chamati, Hassan; Romeis, Dirk

    2017-03-01

    A short overview of the theoretical and experimental works on the polymer-colloid mixtures is given. The behaviour of a dilute solution of linear and ring polymers in confined geometries like slit of two parallel walls or in the solution of mesoscopic colloidal particles of big size with different adsorbing or repelling properties in respect to polymers is discussed. Besides, we consider the massive field theory approach in fixed space dimensions d = 3 for the investigation of the interaction between long flexible polymers and mesoscopic colloidal particles of big size and for the calculation of the correspondent depletion interaction potentials and the depletion forces between confining walls. The presented results indicate the interesting and nontrivial behavior of linear and ring polymers in confined geometries and give possibility better to understand the complexity of physical effects arising from confinement and chain topology which plays a significant role in the shaping of individual chromosomes and in the process of their segregation, especially in the case of elongated bacterial cells. The possibility of using linear and ring polymers for production of new types of nano- and micro-electromechanical devices is analyzed.

  12. Controlling the surface density of DNA on gold by electrically induced desorption.

    PubMed

    Arinaga, Kenji; Rant, Ulrich; Knezević, Jelena; Pringsheim, Erika; Tornow, Marc; Fujita, Shozo; Abstreiter, Gerhard; Yokoyama, Naoki

    2007-10-31

    We report on a method to control the packing density of sulfur-bound oligonucleotide layers on metal electrodes by electrical means. In a first step, a dense nucleic acid layer is deposited by self-assembly from solution; in a second step, defined fractions of DNA molecules are released from the surface by applying a series of negative voltage cycles. Systematic investigations of the influence of the applied electrode potentials and oligonucleotide length allow us to identify a sharp desorption onset at -0.65 V versus Ag/AgCl, which is independent of the DNA length. Moreover, our results clearly show the pronounced influence of competitive adsorbents in solution on the desorption behavior, which can prevent the re-adsorption of released DNA molecules, thereby enhancing the desorption efficiency. The method is fully bio-compatible and can be employed to improve the functionality of DNA layers. This is demonstrated in hybridization experiments revealing almost perfect yields for electrically "diluted" DNA layers. The proposed control method is extremely beneficial to the field of DNA-based sensors.

  13. Graphene sheets modified with polyindole for electro-chemical detection of dopamine.

    PubMed

    Kumar, Ashish; Prakash, Rajiv

    2014-03-01

    Oxidized polyindole is coated over graphene surface by in-situ chemical oxidation method in dilute hydrochloric acid solution. Morphology of graphene modified with oxidized polyindole is investigated by scanning electron microscope. The interaction of graphene to polyindole is observed by Raman spectroscopy. The introduction of carboxylate functionality is observed in graphene due to pyrolysis. The association of this functionality with indole monomer and their interactive behaviour led to formation of uniform polyindole over graphene surface in presence of oxidizing agent. Our chemical synthesis results not only formation of uniform polymer thin layer over the graphene sheets but also enhances various properties and processibility of the graphene. Negative surface charge on the composite material is observed at acidic pH, which shows potential for accumulation of positively charged species in the solution. Further it is explored for electro-catalytic and sensing applications and shows cation permselective behavior of dopamine hydrochloride. It is demonstrated by differential pulse voltammetric technique in dopamine concentration range from 10 microM to 1 mM (in presence of 1 mM ascorbic acid).

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draganic, Z.D.; Draganic, I.G.; Shushtarian, M.J.

    A study was made of the radiolytic behavior of dilute, neutral, oxygen-free aqueous solutions of CH/sub 3/CN and C/sub 2/H/sub 5/CN. Small-molecular products were identified as RCHO, NH/sub 3/, CO/sub 2/, and H/sub 2/. The decomposition of nitrile is followed by high yields of formation of the nonvolatile nitrogen-containing compounds, G(N). The ..gamma..-irradiated solutions exhibit a positive biuret reaction. Several amino acids were identified among radiolytic products, and glycine and alanine were found to be the most abundant for CH/sub 3/CN and C/sub 2/H/sub 5/CH, respectively. Their yields increased after strong acid hydrolysis of the irradiated samples. The free radicalsmore » formed by reactions of RCN with H, OH, and e/sub aq/- were found to be important for the phenomena observed. It is suggested that the positive biuret reaction, ir spectra, and the release of amino acids on acid hydrolysis provide some evidence on the formation of peptidic materials and might be of interest for the evaluation of the role that ionizing radiation might have played in prebiotic chemical evolution in aqueous media.« less

  15. Pilot-scale resin adsorption as a means to recover and fractionate apple polyphenols.

    PubMed

    Kammerer, Dietmar R; Carle, Reinhold; Stanley, Roger A; Saleh, Zaid S

    2010-06-09

    The purification and fractionation of phenolic compounds from crude plant extracts using a food-grade acrylic adsorbent were studied at pilot-plant scale. A diluted apple juice concentrate served as a model phenolic solution for column adsorption and desorption trials. Phenolic concentrations were evaluated photometrically using the Folin-Ciocalteu assay and by HPLC-DAD. Recovery rates were significantly affected by increasing phenolic concentrations of the feed solutions applied to the column. In contrast, the flow rate during column loading hardly influenced adsorption efficiency, whereas the temperature and pH value were shown to be crucial parameters determining both total phenolic recovery rates and the adsorption behavior of individual polyphenols. As expected, the eluent composition had the greatest impact on the desorption characteristics of both total and individual phenolic compounds. HPLC analyses revealed significantly different elution profiles of individual polyphenols depending on lipophilicity. This technique allows fractionation of crude plant phenolic extracts, thus providing the opportunity to design the functional properties of the resulting phenolic fractions selectively, and the present study delivers valuable information with regard to the adjustment of individual process parameters.

  16. Growth of plants in solution culture containing low levels of chromium. [Tomato, lettuce, duckweed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huffman, E.W.D. Jr.; Allaway, W.H.

    1973-01-01

    Chromium was not required for normal growth of romaine lettuce (Lactuca sativa L. subsp. longifolia), tomato (Lycopersicon esculentum Mill.), wheat (Triticum aestivum L.), or bean (Phaseolus vulgaris L.) in solution culture containing 3.8 X 10/sup -4/ ..mu..M Cr. Plants grown on this purified nutrient solution contained an average of 22 ng Cr/g dry weight. Duckweed (Lemna sp.) grew and reproduced normally on a dilute nutrient solution containing 3.8 X 20/sup -5/ ..mu..M Cr.

  17. SOLVENT EXTRACTION OF THORIUM VALUES FROM AQUEOUS SOLUTIONS

    DOEpatents

    Warf, J.C.

    1959-04-21

    The separation of thorium values from rare earth metals contained ln aqueous solutions by means of extraction with a water immiscible alkyl phosphate diluted with a hydrocarbon such as hexane is described. While the extraction according to this invention may be carried out from any aqueous salt solution, it is preferred to use solutions containing free mineral acid. Hydrochloric acid and in particular nitric acid are sultable in a concentration ranging from 0.1 to 7 normal. The higher acid concentration results in higher extraction values.

  18. Radiolysis of ethanol and ethanol-water solutions: A tool for studying bioradical reactions

    NASA Astrophysics Data System (ADS)

    Jore, D.; Champion, B.; Kaouadji, N.; Jay-Gerin, J.-P.; Ferradini, C.

    Radiolysis of pure ethanol and ethanol-water solutions is examined in view of its relevance to the study of biological radical mechanisms. On the basis of earlier studies, a consistent reaction scheme is adopted. New data on radical yields are obtained from the radiolysis of dilute solutions of vitamins E and C in these solvents. It is shown that the radiolysis of ethanolic solutions provide an efficient tool to study radical reactions of water-insoluble biomolecules.

  19. Solid solution partitioning of Sr2+, Ba2+, and Cd2+ to calcite

    USGS Publications Warehouse

    Tesoriero, A.J.; Pankow, J.F.

    1996-01-01

    Although solid solutions play important roles in controlling the concentrations of minor metal ions in natural waters, uncertainties regarding their compositions, thermodynamics, and kinetics usually prevent them from being considered. A range of precipitation rates was used here to study the nonequilibrium and equilibrium partitioning behaviors of Sr2+, Ba2+, and Cd2+ to calcite (CaCO3(s)). The distribution coefficient of a divalent metal ion Me2+ for partitioning from an aqueous solution into calcite is given by DMe = (XMeCO3(s)/[Me2+])/(XCaCO3(s)/[Ca 2+]). The X values are solid-phase mole fractions; the bracketed values are the aqueous molal concentrations. In agreement with prior work, at intermediate to high precipitation rates R (nmol/mg-min), DSr, DBa, and DCd were found to depend strongly on R. At low R, the values of DSr, DBa, and DCd became constant with R. At 25??C, the equilibrium values for DSr, DBa, and DCd for dilute solid solutions were estimated to be 0.021 ?? 0.003, 0.012 ?? 0.005, and 1240 ?? 300, respectively. Calculations using these values were made to illustrate the likely importance of partitioning of these ions to calcite in groundwater systems. Due to its large equilibrium DMe value, movement of Cd2+ will be strongly retarded in aquifers containing calcite; Sr2+ and Ba2+ will not be retarded nearly as much.

  20. River mixing in the Amazon as a driver of concentration-discharge relationships

    NASA Astrophysics Data System (ADS)

    Moquet, Jean-Sébastien; Bouchez, Julien; Carlo Espinoza, Jhan; Martinez, Jean-Michel; Guyot, Jean-Loup; Lagane, Christelle; Filizola, Naziano; Aniceto, Keila; Noriega, Luis; Hidalgo Sanchez, Liz; Pombosa, Rodrigo; Fraizy, Pascal; Santini, William; Timouk, Franck; Vauchel, Philippe

    2017-04-01

    Large hydrological systems such as continental-scale river basins aggregate water from compositionally different tributaries. Here we explore how such aggregation can affect solute concentration-discharge (C-Q) relationships and thus obscure the message carried by these relationships in terms of weathering properties of the Critical Zone. We compute 10 day-frequency time series of Q and major solute (Si, Ca2+, Mg2+, K+, Na+, Cl-, SO42-) C and fluxes (F) for 13 gauging stations of the SNO-HYBAM Monitoring Program (Geodynamical, hydrological and Biogeochemical control of erosion/weathering and material transport in the Amazon, Orinoco and Congo basins) located throughout the Amazon basin, the largest river basin in the world. Concentration-discharge relationships vary in a systematic manner, shifting for most solutes from a nearly "chemostatic" behavior (constant C) at the Andean mountain front to a more "dilutional" pattern (negative C-Q relationship) towards the system mouth. Associated to this shift in trend is a shift in shape: C-Q hysteresis becomes more prominent at the most downstream stations. A simple model of tributary mixing allows us to identify the important parameters controlling C-Q trends and shapes in the mixture, and we show that for the Amazon case, the model results are in qualitative agreement with the observations. Altogether, this study suggests that mixing of water and solutes between different flowpaths leads to altered C-Q relationships.

  1. Stability of florfenicol in drinking water.

    PubMed

    Hayes, John M; Eichman, Jonathan; Katz, Terry; Gilewicz, Rosalia

    2003-01-01

    Florfenicol, a broad-spectrum antibiotic, is being developed for veterinary application as an oral concentrate intended for dilution with drinking water. When a drug product is dosed via drinking water in a farm setting, a number of variables, including pH, chlorine content, hardness of the water used for dilution, and container material, may affect its stability, leading to a decrease in drug potency. The stability of florfenicol after dilution of Florfenicol Drinking Water Concentrate Oral Solution, 23 mg/mL, with drinking water was studied. A stability-indicating, validated liquid chromatographic method was used to evaluate florfenicol stability at 25 degrees C at 5, 10, and 24 h after dilution. The results indicate that florfenicol is stable under a range of simulated field conditions, including various pipe materials and conditions of hard or soft and chlorinated or nonchlorinated water at low or high pH. Significant degradation (> 10%) was observed only for isolated combinations in galvanized pipes. Analysis indicated that the florfenicol concentration in 8 of the 12 water samples stored in galvanized pipes remained above 90% of the initial concentration (100 mg/L) for 24 h after dilution.

  2. Determination of gas-liquid partition coefficients of several organic solutes in trihexyl(tetradecyl)phosphonium bromide using capillary gas chromatography columns.

    PubMed

    Ronco, Nicolás R; Menestrina, Fiorella; Romero, Lílian M; Castells, Cecilia B

    2017-06-09

    In this paper, we report gas-liquid partition constants for thirty-five volatile organic solutes in the room temperature ionic liquid trihexyl(tetradecyl)phosphonium bromide measured by gas-liquid chromatography using capillary columns. The relative contribution of gas-liquid partition and interfacial adsorption to retention was evaluated through the use of columns with different the phase ratio. Four capillary columns with exactly known phase ratios were constructed and employed to measure the solute retention factors at four temperatures between 313.15 and 343.15K. The partition coefficients were calculated from the slopes of the linear regression between solute retention factors and the reciprocal of phase ratio at a given temperature according to the gas-liquid chromatographic theory. Gas-liquid interfacial adsorption was detected for a few solutes and it has been considered for the calculations of partition coefficient. Reliable solute's infinite dilution activity coefficients can be obtained when retention data are determined by a unique partitioning mechanism. The partial molar excess enthalpies at infinite dilution have been estimated from the dependence of experimental values of solute activity coefficients with the column temperature. A thorough discussion of the uncertainties of the experimental measurements and the main advantages of the use of capillary columns to acquire the aforementioned relevant thermodynamic information was performed. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Component Analysis of Multipurpose Contact Lens Solutions To Enhance Activity against Pseudomonas aeruginosa and Staphylococcus aureus

    PubMed Central

    Lin, Leo; Kim, Janie; Chen, Hope; Kowalski, Regis

    2016-01-01

    More than 125 million people wear contact lenses worldwide, and contact lens use is the single greatest risk factor for developing microbial keratitis. We tested the antibacterial activity of multipurpose contact lens solutions and their individual component preservatives against the two most common pathogens causing bacterial keratitis, Pseudomonas aeruginosa and Staphylococcus aureus. The in vitro antibacterial activity of five multipurpose contact lens solutions (Opti-Free GP, Boston Simplus, Boston Advance, Menicare GP, and Lobob) was assayed by the standard broth dilution method. Synergy between the preservative components found in the top performing solutions was assayed using checkerboard and time-kill assays. The ISO 14729 criteria and the standard broth dilution method were used to define an optimized contact lens solution formulation against a clinical panel of drug-susceptible and drug-resistant P. aeruginosa and S. aureus strains. Preservatives with the biguanide function group, chlorhexidine and polyaminopropylbiguanide (PAPB), had the best antistaphylococcal activity, while EDTA was the best antipseudomonal preservative. The combination of chlorhexidine and EDTA had excellent synergy against P. aeruginosa. A solution formulation containing chlorhexidine (30 ppm), PAPB (5 ppm), and EDTA (5,000 ppm) had three to seven times more antipseudomonal activity than anything available to consumers today. A multipurpose contact lens solution containing a combination of chlorhexidine, PAPB, and EDTA could help to reduce the incidence of microbial keratitis for contact lens users worldwide. PMID:27139484

  4. Short-time microscopic dynamics of aqueous methanol solutions

    NASA Astrophysics Data System (ADS)

    Kalampounias, A. G.; Tsilomelekis, G.; Boghosian, S.

    2012-12-01

    In this paper we present the picosecond vibrational dynamics of a series of methanol aqueous solutions over a wide concentration range from dense to dilute solutions. We studied the vibrational dephasing and vibrational frequency modulation by calculating the time correlation functions of vibrational relaxation by fits in the frequency domain. This method is applied to aqueous methanol solutions xMeOH-(1 - x)H2O, where x = 0, 0.2, 0.4, 0.6, 0.8 and 1. The important finding is that the vibrational dynamics of the system become slower with increasing methanol concentration. The removal of many-body effects by having the molecules in less-crowded environments seems to be the key factor. The interpretation of the vibrational correlation function in the context of Kubo theory, which is based on the assumption that the environmental modulation arises from a single relaxation process and applied to simple liquids, is inadequate for all solutions studied. We found that the vibrational correlation functions of the solutions over the whole concentration range comply with the Rothschild approach, assuming that the environmental modulation is described by a stretched exponential decay. The evolution of the dispersion parameter α with dilution indicates the deviation of the solutions from the model simple liquid and the results are discussed in the framework of the current phenomenological status of the field.

  5. Accuracy of two osmometers on standard samples: electrical impedance technique and freezing point depression technique

    NASA Astrophysics Data System (ADS)

    García-Resúa, Carlos; Pena-Verdeal, Hugo; Miñones, Mercedes; Gilino, Jorge; Giraldez, Maria J.; Yebra-Pimentel, Eva

    2013-11-01

    High tear fluid osmolarity is a feature common to all types of dry eye. This study was designed to establish the accuracy of two osmometers, a freezing point depression osmometer (Fiske 110) and an electrical impedance osmometer (TearLab™) by using standard samples. To assess the accuracy of the measurements provided by the two instruments we used 5 solutions of known osmolarity/osmolality; 50, 290 and 850 mOsm/kg and 292 and 338 mOsm/L. Fiske 110 is designed to be used in samples of 20 μl, so measurements were made on 1:9, 1:4, 1:1 and 1:0 dilutions of the standards. Tear Lab is addressed to be used in tear film and only a sample of 0.05 μl is required, so no dilutions were employed. Due to the smaller measurement range of the TearLab, the 50 and 850 mOsm/kg standards were not included. 20 measurements per standard sample were used and differences with the reference value was analysed by one sample t-test. Fiske 110 showed that osmolarity measurements differed statistically from standard values except those recorded for 290 mOsm/kg standard diluted 1:1 (p = 0.309), the 292 mOsm/L H2O sample (1:1) and 338 mOsm/L H2O standard (1:4). The more diluted the sample, the higher the error rate. For the TearLab measurements, one-sample t-test indicated that all determinations differed from the theoretical values (p = 0.001), though differences were always small. For undiluted solutions, Fiske 110 shows similar performance than TearLab. However, for the diluted standards, Fiske 110 worsens.

  6. THE ANTIBACTERIAL PROPERTIES OF SULFUR

    PubMed Central

    Weld, Julia T.; Gunther, Anne

    1947-01-01

    1. Saturated solutions of sulfur in alcohol (alcohol-sulfur) when diluted with broth are inhibitory to the growth of various Gram-positive bacteria and to C. hominis. By an arbitrary method of unitage with S. aureus as the test organism, our alcohol-sulfur contains 1,600 to 2,000 units per cc. and one unit contains between 0.24 and 0.34 gamma sulfur. The activity of a preparation is in general directly proportional to its sulfur content. 2. Solutions of sulfur in carbowax (carbowax-sulfur) when diluted with broth are likewise inhibitory to the growth of various Gram-positive bacteria and to C. hominis. When S. aureus is used as test organism, 1 unit contains between 0.1 and 0.2 gamma sulfur. The activity of these preparations is also in general directly proportional to their sulfur content. 3. Carbowax-sulfur when incorporated in agar in 1–500 to 1–2,000 dilution inhibits the growth of various Gram-positive aerobic and anaerobic bacteria, C. hominis, and certain dermatophytes. 4. Our experiments appear to show that both alcohol-sulfur and carbowax-sulfur owe their inhibitory properties to the sulfur particles that are dispersed throughout the medium when these sulfur preparations are diluted with broth. The inhibitory effect of these particles may or may not be due to a combination of the sulfur particles with substances in the medium in which they are suspended. 5. Evidence suggests that the activity of both alcohol-sulfur and carbowax-sulfur is due to sulfur in the same form. The inhibitory effect is characterized by prolonged bacteriostasis with similar activity over a wide range of dilutions. There is no evidence of true bactericidal action even with the highest concentrations used. PMID:19871634

  7. Change of translational-rotational coupling in liquids revealed by field-cycling {sup 1}H NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, R.; Schneider, E.; Rössler, E. A.

    2015-01-21

    Applying the field-cycling nuclear magnetic resonance technique, the frequency dependence of the {sup 1}H spin-lattice relaxation rate, R{sub 1}(ω)=T{sub 1}{sup −1}(ω), is measured for propylene glycol (PG) which is increasingly diluted with deuterated chloroform. A frequency range of 10 kHz–20 MHz and a broad temperature interval from 220 to about 100 K are covered. The results are compared to those of experiments, where glycerol and o-terphenyl are diluted with their deuterated counter-part. Reflecting intra- as well as intermolecular relaxation, the dispersion curves R{sub 1}(ω,x) (x denotes mole fraction PG) allow to extract the rotational time constant τ{sub rot}(T, x) andmore » the self-diffusion coefficient D(T, x) in a single experiment. The Stokes-Einstein-Debye (SED) relation is tested in terms of the quantity D(T, x) τ{sub rot}(T, x) which provides a measure of an effective hydrodynamic radius or equivalently of the spectral separation of the translational and the rotational relaxation contribution. In contrast to o-terphenyl, glycerol and PG show a spectral separation much larger than suggested by the SED relation. In the case of PG/chloroform mixtures, not only an acceleration of the PG dynamics is observed with increasing dilution but also the spectral separation of rotational and translational relaxation contributions continuously decreases. Finally, following a behavior similar to that of o-terphenyl already at about x = 0.6; i.e., while D(T, x) τ{sub rot}(T, x) in the mixture is essentially temperature independent, it strongly increases with x signaling thus a change of translational-rotational coupling. This directly reflects the dissolution of the hydrogen-bond network and thus a change of solution structure.« less

  8. Method of forming a foamed thermoplastic polymer

    DOEpatents

    Duchane, D.V.; Cash, D.L.

    1984-11-21

    A solid thermoplastic polymer is immersed in an immersant solution comprising a compatible carrier solvent and an infusant solution containing an incompatible liquid blowing agent for a time sufficient for the immersant solution to infuse into the polymer. The carrier solvent is then selectively extracted, preferably by a solvent exchange process in which the immersant solution is gradually diluted with and replaced by the infusant solution, so as to selectively leave behind the infustant solution permanently entrapped in the polymer. The polymer is then heated to volatilize the blowing agent and expand the polymer into a foamed state.

  9. Comparison Between Human and Porcine Thromboelastograph Parameters in Response to Ex-Vivo Changes to Platelets, Plasma, and Red Blood Cells

    DTIC Science & Technology

    2013-01-01

    diluted with lactated Ringer’s solution. We demonstrated that the major factor affecting the MA and angle was the platelet count. In fact, reducing...with an accelerant, either kaolin or tissue factor or both as in the case of ‘rapid’ TEG. The TEG tracing represents the cell-based theory of...There are claims in the trauma literature that the pro- longation of the R-time reflects clotting factor deficiency or dilution, prolongation of K

  10. Development of New Decon Green (registered trademark): A How-To Guide for the Rapid Decontamination of CARC Paint

    DTIC Science & Technology

    2008-09-01

    sodium carbonate, and extracted with 2-mL chloroform. The chloroform layer was analyzed for residual agent by Gas Chromatography /Atomic Emission...agent remaining on the panel. Solutions were analyzed by Gas Chromatography /Flame-Ionization Detector (GC/FID) to determine the amounts of agent...transferred to glass scintillation vials. A 100-µL aliquot of the DEP was diluted with 900-µL chloroform (1:10 dilution) in a Gas Chromatography

  11. Molecular Dynamic Simulation of Diffusion Coefficients for Alkanols in Supercritical CO2 1

    NASA Astrophysics Data System (ADS)

    Li, Zhiwei; Lai, Shuhui; Gao, Wei; Chen, Liuping

    2018-07-01

    The infinite dilution diffusion coefficients ( D 12) of methanol, ethanol, 1-propanol, 1-butanol and 1-pentanol in supercritical CO2 (scCO2) at 313.2 K and 10-16 MPa were simulated by molecular dynamics (MD) simulation. The microscopic structure was also analyzed by calculation of the radial distribution function, coordination number (CN) between the center mass of solute and solvent molecules, and the average number of hydrogen bonding of this system. In infinite dilute solution, the probability of forming hydrogen bond between alkanol molecules is greatly reduced relative to pure alkanol fluid, and the weak hydrogen bonds formed between alkanol and CO2 molecules. In general, this work provides a reliable simulation method for transfer properties of solutes in scCO2. The prediction data were provides for the design and development of chemical processing. The results are helpful for one to deeper understand the relationship between microscopic structures of fluid and its transfer properties.

  12. Degradation of chitosan hydrogel dispersed in dilute carboxylic acids by solution plasma and evaluation of anticancer activity of degraded products

    NASA Astrophysics Data System (ADS)

    Chokradjaroen, Chayanaphat; Rujiravanit, Ratana; Theeramunkong, Sewan; Saito, Nagahiro

    2018-01-01

    Chitosan is a polysaccharide that has been extensively studied in the field of biomedicine, especially its water-soluble degraded products called chitooligosaccharides (COS). In this study, COS were produced by the degradation of chitosan hydrogel dispersed in a dilute solution (i.e., 1.55 mM) of various kinds of carboxylic acids using a non-thermal plasma technology called solution plasma (SP). The degradation rates of chitosan were influenced by the type of carboxylic acids, depending on the interaction between chitosan and each carboxylic acid. After SP treatment, the water-soluble degraded products containing COS could be easily separated from the water-insoluble residue of chitosan hydrogel by centrifugation. The production yields of the COS were mostly higher than 55%. Furthermore, the obtained COS products were evaluated for their inhibitory effect as well as their selectivity against human lung cancer cells (H460) and human lung normal cells (MRC-5).

  13. Intravenous iron in clinical concentrations does not impair haemoglobin measurement.

    PubMed

    O'Loughlin, Edmond; Garnett, Peter Bj; Falkner, Nathalie M; Williams, Robin

    2016-03-01

    Intravenous iron is commonly administered to anaemic patients to treat iron deficiency, but due to its ferric colouration, it may interfere with the spectrophotometric assessment of haemoglobin concentrations. This paper investigates the potential interference of three clinically used intravenous iron preparations on the measurement of haemoglobin. Haemoglobin concentration was measured for neat and Hartmann's solution-diluted iron polymaltose, carboxymaltose and sucrose solutions using bedside (Radiometer HemoCue®), point-of-care (Radiometer ABL800 Flex) and laboratory (Abbott CellDyne Sapphire™) devices. Haemoglobin concentration was then assessed with the same devices utilizing anaemic whole blood with the iron solutions added. Neat iron preparations registered clinically significant haemoglobin concentrations on bedside and laboratory measurements. When intravenous iron preparations were diluted to clinical concentrations, their effect on haemoglobin measurements, either in isolation or mixed with anaemic blood, was negligible. Although neat preparations of intravenous iron do interfere with spectrophotometric analysis of haemoglobin, concentrations likely to be seen post iron infusion do not significantly interfere with haemoglobin measurement. © The Author(s) 2015.

  14. Weakly-agglomerated nanocrystalline (ZrO 2) 0.9(Yb 2O 3) 0.1 powders hydrothermally synthesized at low temperature

    NASA Astrophysics Data System (ADS)

    Dell'Agli, Gianfranco; Mascolo, Giuseppe; Mascolo, Maria Cristina; Pagliuca, Concetta

    2006-09-01

    Nanocrystalline ytterbia (10 mol%)-doped cubic zirconia powders were synthesized by hydrothermal treatment of either an amorphous co-precipitate of hydrated ytterbia-zirconia or of zirconia xerogel in mixture with crystalline Yb 2O 3. The treatments were performed at 110 °C in the presence of diluted (0.2 M) or concentrated (2.0 M) solution of (K 2CO 3 + KOH) mineralizer and for different reaction times. The reaction times for the full crystallization of cubic-YbSZ-based products were determined for both the employed precursors and for each mineralizer solution. The various fully crystallized products were characterized in their degree of agglomeration and sintered at 1500 °C for 2 h. The best performance on sintering was achieved with the less agglomerated powder synthesized from the mechanical mixture and in the presence of the diluted solution of the mineralizer. The resulting density was the highest achieved with materials having the same composition.

  15. Flow-induced gelation of living (micellar) polymers

    NASA Technical Reports Server (NTRS)

    Bruinsma, Robijn; Gelbart, William M.; Ben-Shaul, Avinoam

    1992-01-01

    The effect of shear velocity gradients on the size (L) of rodlike micelles in dilute and semidilute solution is considered. A kinetic equation is introduced for the time-dependent concentration of aggregates of length L, consisting of 'bimolecular' combination processes L + L-prime yield (L + L-prime) and unimolecular fragmentations L yield L + (L - L-prime). The former are described by a generalization (from spheres to rods) of the Smoluchowski mechanism for shear-induced coalesence of emulsions, and the latter by incorporating the tension-deformation effects due to flow. Steady-state solutions to the kinetic equation are obtained, with the corresponding mean micellar size evaluated as a function of the Peclet number P (i.e., the dimensionless ratio of the flow rate and the rotational diffusion coefficient). For sufficiently dilute solutions, only a weak dependence of the micellar size on P is found. In the semidilute regime, however, an apparent divergence in the micellar size at P of about 1 suggests a flow-induced first-order gelation phenomenon.

  16. Nonequilibrium thermodynamics of dilute polymer solutions in flow.

    PubMed

    Latinwo, Folarin; Hsiao, Kai-Wen; Schroeder, Charles M

    2014-11-07

    Modern materials processing applications and technologies often occur far from equilibrium. To this end, the processing of complex materials such as polymer melts and nanocomposites generally occurs under strong deformations and flows, conditions under which equilibrium thermodynamics does not apply. As a result, the ability to determine the nonequilibrium thermodynamic properties of polymeric materials from measurable quantities such as heat and work is a major challenge in the field. Here, we use work relations to show that nonequilibrium thermodynamic quantities such as free energy and entropy can be determined for dilute polymer solutions in flow. In this way, we determine the thermodynamic properties of DNA molecules in strong flows using a combination of simulations, kinetic theory, and single molecule experiments. We show that it is possible to calculate polymer relaxation timescales purely from polymer stretching dynamics in flow. We further observe a thermodynamic equivalence between nonequilibrium and equilibrium steady-states for polymeric systems. In this way, our results provide an improved understanding of the energetics of flowing polymer solutions.

  17. Filling the gap in Ca input-output budgets in base-poor forest ecosystems: The contribution of non-crystalline phases evidenced by stable isotopic dilution

    NASA Astrophysics Data System (ADS)

    van der Heijden, Gregory; Legout, Arnaud; Mareschal, Louis; Ranger, Jacques; Dambrine, Etienne

    2017-07-01

    In terrestrial ecosystems, plant-available pools of magnesium and calcium are assumed to be stored in the soil as exchangeable cations adsorbed on the surface of mineral and/or organic particles. The pools of exchangeable magnesium and calcium are measured by ion-exchange soil extractions. These pools are sustained in the long term by the weathering of primary minerals in the soil and atmospheric inputs. This conceptual model is the base of input-output budgets from which soil acidification and the sustainability of soil chemical fertility is inferred. However, this model has been questioned by data from long-term forest ecosystem monitoring sites, particularly for calcium. Quantifying the contribution of atmospheric inputs, ion exchange and weathering of both primary, secondary and non-crystalline phases to tree nutrition in the short term is challenging. In this study, we developed and applied a novel isotopic dilution technique using the stable isotopes of magnesium and calcium to study the contribution of the different soil phases to soil solution chemistry in a very acidic soil. The labile pools of Mg and Ca in the soil (pools in equilibrium with the soil solution) were isotopically labeled by spraying a solution enriched in 26Mg and 44Ca on the soil. Labeled soil columns were then percolated with a dilute acid solution during a 3-month period and the isotopic dilution of the tracers was monitored in the leaching solution, in the exchangeable (2 sequential 1 mol L-1 ammonium acetate extractions) and non-crystalline (2 sequential soil digestions: oxalic acid followed by nitric acid) phases. Significant amounts of Mg and Ca isotope tracer were recovered in the non-crystalline soil phases. These phases represented from 5% to 25% and from 24% to 50%, respectively, of the Mg and Ca labile pools during the experiment. Our results show that non-crystalline phases act as both a source and a sink of calcium and magnesium in the soil, and contribute directly to soil solution chemistry on very short-term time scales. These phases are very abundant in acid soils and, in the present study, represent a substantial calcium pool (equivalent in size to the Ca exchangeable pool). The gradual isotopic dilution of Mg and Ca isotope ratios in the leaching solution during the experiment evidenced an input flux of Mg and Ca originating from a pool other than the labile pool. While the Mg input flux originated primarily from the weathering of primary minerals and secondarily from the non-crystalline phases, the Ca input flux originated primarily from the non-crystalline phases. Our results also show that the net calcium release flux from these phases may represent a significant source of calcium in forest ecosystems and actively contribute to compensating the depletion of Ca exchangeable pools in the soil. Non-crystalline phases therefore should be taken into account when computing input-output nutrient budgets and soil acid neutralizing capacity.

  18. Textbook Forum: Equilibrium Constants of Chemical Reactions Involving Condensed Phases: Pressure Dependence and Choice of Standard State.

    ERIC Educational Resources Information Center

    Perlmutter-Hayman, Berta

    1984-01-01

    Problems of equilibria in condensed phases (particularly those involving solutes in dilute solutions) are encountered by students in their laboratory work; the thermodynamics of these equilibria is neglected in many textbooks. Therefore, several aspects of this topic are explored, focusing on pressure dependence and choice of standard state. (JN)

  19. Strip waves in vibrated shear-thickening wormlike micellar solutions

    NASA Astrophysics Data System (ADS)

    Epstein, T.; Deegan, R. D.

    2010-06-01

    We present an instability in vertically vibrated dilute wormlike micellar solutions. Above a critical driving acceleration the fluid forms elongated solitary domains of high amplitude waves. We model this instability using a Mathieu equation modified to account for the non-Newtonian character of the fluid. We find that our model successfully reproduces the observed transitions.

  20. 21 CFR 640.82 - Tests on final product.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... percent; 5.0 ±0.30 percent; 20.0 ±1.2 percent; and 25.0 ±1.5 percent solution of protein. (b) Protein... solution of the final product diluted to a concentration of 1 percent protein with 0.15 molar sodium... exceed 2 milliequivalents per liter. (f) Heat stability. A final container sample of Albumin (Human...

  1. 21 CFR 640.82 - Tests on final product.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... percent; 5.0 ±0.30 percent; 20.0 ±1.2 percent; and 25.0 ±1.5 percent solution of protein. (b) Protein... solution of the final product diluted to a concentration of 1 percent protein with 0.15 molar sodium... exceed 2 milliequivalents per liter. (f) Heat stability. A final container sample of Albumin (Human...

  2. 21 CFR 640.82 - Tests on final product.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... percent; 5.0 ±0.30 percent; 20.0 ±1.2 percent; and 25.0 ±1.5 percent solution of protein. (b) Protein... solution of the final product diluted to a concentration of 1 percent protein with 0.15 molar sodium... exceed 2 milliequivalents per liter. (f) Heat stability. A final container sample of Albumin (Human...

  3. Abrasive slurry composition for machining boron carbide

    DOEpatents

    Duran, Edward L.

    1985-01-01

    An abrasive slurry particularly suited for use in drilling or machining boron carbide consists essentially of a suspension of boron carbide and/or silicon carbide grit in a carrier solution consisting essentially of a dilute solution of alkylaryl polyether alcohol in octyl alcohol. The alkylaryl polyether alcohol functions as a wetting agent which improves the capacity of the octyl alcohol for carrying the grit in suspension, yet without substantially increasing the viscosity of the carrier solution.

  4. Abrasive slurry composition for machining boron carbide

    DOEpatents

    Duran, E.L.

    1984-11-29

    An abrasive slurry particularly suited for use in drilling or machining boron carbide consists essentially of a suspension of boron carbide and/or silicon carbide grit in a carrier solution consisting essentially of a dilute solution of alkylaryl polyether alcohol in octyl alcohol. The alkylaryl polyether alcohol functions as a wetting agent which improves the capacity of the octyl alcohol for carrying the grit in suspension, yet without substantially increasing the viscosity of the carrier solution.

  5. Influence of natural organic matter (NOM) and synthetic polyelectrolytes on colloidal behavior of metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Ghosh, Saikat

    The colloidal behavior of engineered nanomaterials exposed in an aquatic environment may significantly influence their bioavailability as well as toxicity to different species. Natural organic matter (NOM) is one of the major colloidal materials ubiquitous in the environment with significant structural heterogeneity. Therefore, role of NOM molecules on environmental fate of these engineered NPs needs to be addressed. Colloidal behavior of aluminum (Al2O 3) and magnetic iron oxide (gammaFe2O3) NPs was studied in the presence of structurally different HAs and synthetic polyacrylic acids (PAAs). The conformation behavior of the adsorobed NOM/polyelectrolyte under specific solution conditions were determined with dynamic light scattering, atomic force microscopy measurements. Al2O3 NPs followed the classical DLVO model of colloidal behavior in their pristine state. However, a significant deviation from the classical DLVO model was observed when these NPs were coated with structurally different HAs. Low polar, high molecular weight HA fractions showed much stronger stabilization against Ca2+ induced aggregation. Previously, we observed that these low polar, high molecular weight fractions strongly destabilized the NP suspension when added in a small quantity. A significant transformation in suspension stability was observed possibly due to steric effect of these adsorbed HAs. The colloidal behavior of PAA/NOM coated ferrimagnetic gammaFe 2O3 NPs were investigated. Pure gammaFe2O 3 NPs were extremely unstable in aqueous solution but a significant enhancement in colloidal stability was observed after coating with polyelectrolytes/NOM. The steric as well as electrostatic stabilization introduced by the polyelectrolyte coating strongly dictated the colloidal stability. The alteration of electrosteric stabilization mechanisms by pH-induced conformation change profoundly influences the colloidal stability. Atomic force microscopy (AFM) study revealed a highly stretched conformation of the HA molecular chains adsorbed on gammaFe 2O3 NP surface with increasing pH from 5 to 9 which enhanced the colloidal stability trough long range electrosteric stabilization. The depletion of the polyelectrolytes during dilution of the suspension in the acidic solution conditions and in the presence of Na+ or Ca 2+ decreased the colloidal stability. The conformation of the polyelectrolytes adsorbed on the NP surface altered significantly as a function of substrate surface charge as viewed from the AFM imaging.

  6. Bio-derived Fuel Blend Dilution of Marine Engine Oil and Imapct on Friction and Wear Behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ajayi, Oyelayo O.; Lorenzo-Martin, Cinta; Fenske, George R.

    To reduce the amount of petroleum-derived fuel used in vehicles and vessels powered by internal combustion engines, the addition of bio-derived fuel extenders is a common practice. Ethanol is perhaps the most common bio-derived fuel used for blending, and butanol is being evaluated as a promising alternative. The present study determined the fuel dilution rate of three lubricating oils (E0, E10, and i-B16) in a marine engine operating in on-water conditions with a start-and-stop cycle protocol. The level of fuel dilution increased with the number of cycles for all three fuels. The most dilution was observed with i-B16 fuel, andmore » the least with E10 fuel. In all cases, fuel dilution substantially reduced the oil viscosity. The impacts of fuel dilution and the consequent viscosity reduction on the lubricating capability of the engine oil in terms of friction, wear, and scuffing prevention were evaluated by four different tests protocols. Although the fuel dilution of the engine oil had minimal effect on friction, because the test conditions were under the boundary lubrication regime, significant effects were observed on wear in many cases. Fuel dilution also was observed to reduce the load-carrying capacity of the engine oils in terms of scuffing load reduction.« less

  7. Specific behavior of the p-aminothiophenol--silver sol system in their Ultra-Violet-Visible (UV-Visible) and Surface Enhanced Raman (SERS) spectra.

    PubMed

    Firkala, Tamás; Tálas, Emília; Mihály, Judith; Imre, Tímea; Kristyán, Sándor

    2013-11-15

    The UV-Visible and Surface Enhanced Raman Spectroscopy (SERS) behavior of silver sol (a typical SERS agent) were studied in the presence of different bifunctional thiols such as p-aminothiophenol, p-mercaptobenzoic acid, p-nitrothiophenol, p-aminothiophenol hydrochloride, and 2-mercaptoethylamine hydrochloride in diluted aqueous solution. Our results confirm that the p-aminothiophenol induced aggregation of citrate stabilized silver colloid originates from its electrostatic nature, as well as the azo-bridge formation cannot be the reason of the observed time dependent UV-Visible spectra. Based on our parallel SERS and electrospray ionization mass spectrometry measurements, we have concluded that certain amount of oxidized form of the probe molecule has to be present for the so-called b2-mode enhancement in the SERS spectrum of p-aminothiophenol. Our findings seem to support the idea that the azo-bridge formation is responsible for the b2-mode enhancement in the SERS spectrum of p-aminothiophenol. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. 21 CFR 177.2440 - Polyethersulfone resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... determined by reduced viscosity in dimethyl formamide in accordance with ASTM method D2857-70 (Reapproved 1977), “Standard Test Method for Dilute Solution Viscosity of Polymers,” which is incorporated by...

  9. Self Assembly and Many-Body Effects at Surfaces of Biomedical Relevance

    NASA Astrophysics Data System (ADS)

    Beckerman, Bernard M.

    I present research in systems of biomedical relevance consisting of agents near or comprising surfaces using computational approaches. The research topics include formation of bacterial biofilms, behavior of charged species near stacked, like-charged lamellae, and the conformational behavior of lamellae with strong self-attraction. In chapter 2, I present agent-based simulations and experimental analysis of bacterial surface colonization behavior. Results show that the bacterial population exhibits polyphenic motility despite being genetically homogeneous, and that the deposition of a polysaccharide causes the emergence of distinct bacterial subpopulations that specialize separately in microcolony nucleation and surface exploration. Chapter 3 considers aggregation behavior on a much smaller length scale, wherein an attraction between like-charged cellular lamellae is mediated by the antiviral molecule squalamine. Free-energy calculations along with structural analysis of the resulting compounds reveals that the squalamine molecules form bridging configurations that are highly effective at condensing membranes, and that the strength of this condensation is sufficient to eject the viral protein Rac1 from the lamellae. In chapter 4, I explore the ability of such condensed, charged lamellae to selectively exclude ions as a means to control ionic current. Simulations and theory of ion-selective graphene-oxide paper in series with a bulk salt solution under an applied field show how this exclusion leads to a nonlinear current-voltage relationship. Additionally, geometrical asymmetries are introduced into the system to achieve ionic current rectification. Chapter 5 studies the behavior of dilute graphene oxide sheets in poor solvent. In such a case, the conformations taken by the sheet are determined by a competition between its intrinsic bending rigidity and effective self-attraction. I show how self-attraction of a finite range and sufficient strength can overcome bending energy barriers of 100kBT to allow sheets to spontaneously condense in solution.

  10. Effects of cell volume changes on membrane ionic permeabilities and sodium transport in frog skin (Rana ridibunda).

    PubMed

    Costa, P M; Fernandes, P L; Ferreira, H G; Ferreira, K T; Giraldez, F

    1987-12-01

    1. Membrane potential and conductances and short-circuit current were continuously measured with microelectrodes and conventional electrophysiological techniques in a stripped preparation of frog skin epithelium. The effects of the removal of chloride or sodium ions and the concentration or dilution of the serosal (inner) bathing solution were studied. 2. Chloride- or sodium-free solutions produced a cell depolarization of about 30 mV in parallel with a fall in the short-circuit current. Mucosal and serosal membrane conductances both decreased and the sodium permeability of the mucosal barrier was calculated to fall to about one-half its value in standard Ringer solution. The observed decrease in the short-circuit current is probably related to the combined effect of the decrease in sodium permeability and the decrease in the driving force across the mucosal membrane. 3. The removal of chloride or sodium ions reduced the depolarization caused by serosal perfusion with high-potassium solutions (50 mM-KCl). The ratio of the change in cell membrane potential under short-circuit conditions to the change in the potassium equilibrium potential (delta Ec(s.c.)/delta EK), was 0.59 in standard Ringer solution and 0.26 and 0.24 after the removal of chloride or sodium respectively. The depolarizing effect of barium-containing solutions (2 mM-BaCl2) was also markedly reduced in chloride- or sodium-free solutions, suggesting a decrease of the potassium selectivity of the serosal membrane in these conditions. 4. Increasing the osmolality of the serosal bathing solution produced similar effects, i.e. cell depolarization, fall in the short-circuit current and membrane conductances and reduction of the depolarizing effect of high-potassium and barium solutions. On the contrary, dilution of the serosal bath produced the opposite effects, consistent with an increase in the serosal permeability to potassium. 5. The effects of chloride- or sodium-free solutions were reversed by the dilution of the serosal bath. Cells repolarized when exposed to low-osmolality solutions after being in the absence of serosal chloride or sodium. The repolarization ran in parallel with the restoration of the short-circuit current and the potassium selectivity of the serosal membrane. 6. The results show that the effects produced by the removal of sodium or chloride ions from the serosal bathing solution are most probably mediated by a reduction in cell volume. Cell volume changes would lead to changes in the serosal membrane selectivity to potassium and thus to changes in cell membrane potential and sodium transport.(ABSTRACT TRUNCATED AT 400 WORDS)

  11. Sperm quality and fertility of boar seminal doses after 2 days of storage: does the type of extender really matter?

    PubMed

    Pinart, Elisabeth; Yeste, Marc; Prieto-Martínez, Noelia; Reixach, Josep; Bonet, Sergi

    2015-06-01

    The present approach was designed to evaluate the extender effects on sperm quality and fertility of short-term refrigerated seminal doses from Landrace boars lodged in husbandry-controlled conditions. For this purpose, we analyzed the sperm quality of seminal doses diluted in short-term (Beltsville Thawing Solution) and extra-long-term (Duragen) extenders from Days 0 to 2 of storage at 17 °C during an 8-month period. Pregnancy rates and litter size were evaluated from double inseminations within an interval of 12 hours (36 and 48 hours of refrigeration) of multiparous females using seminal doses diluted in each extender type. Sperm quality was assessed from the analyses of sperm motility and kinetics, sperm viability, expressed as plasma and acrosome membrane integrity, membrane lipid disorder, intracellular calcium levels, and acrosin activity. Results indicated significant differences between the extenders in the sperm quality of seminal doses. Therefore, the seminal doses diluted in Duragen had higher percentages of progressive motile spermatozoa and membrane-intact spermatozoa than those diluted in Beltsville Thawing Solution throughout all the experimental months. Nevertheless, despite these differences in preserving the sperm quality, pregnancy rates (>90%) and litter sizes (>10 piglets born per litter) were similar between the extenders. Our results had great relevance from a practical point of view because they reported lack of an extender effect on the reproductive performance of seminal doses during short-tem storage. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. The geochemical evolution of aqueous sodium in the Black Creek Aquifer, Horry and Georgetown counties, South Carolina

    USGS Publications Warehouse

    Zack, Allen L.; Roberts, Ivan

    1988-01-01

    The Black Creek aquifer contains dilute seawater near the North Carolina State line, probably the result of incomplete flushing of ancient seawater. Data do not indicate that the dilute seawater has migrated toward areas of fresh ground-water withdrawals. The concentration of chloride in ground-water samples ranges from 5 to 720 milligrams per liter and that of sodium from 160 to 690 milligrams per liter. Ion-exchange reactions (sodium for calcium and fluoride for hydroxyl) occur with the calcium carbonate dissolution reaction which produces calcium, bicarbonate, and hydroxyl ions. The reaction sequence and stoichiometry result in an aqueous solution in which the sum of bicarbonate and chloride equivalents per liter is equal to the equivalents per liter of sodium. Calcium ions are exchanged for sodium ions derived from sodium-rich clays upgradient of the dilute seawater. The cation-exchange reaction equilibrates at a sodium concentration of 280 milligrams per liter. Amounts of sodium greater than 280 milligrams per liter are contributed from dilute seawater. The cation-exchange reaction approaches an equilibrium which represents a mass-action limit in terms of the ratio of sodium to calcium in solution versus the ratio of exchangeable sodium to calcium on clay surfaces. Where the limit of calcium carbonate solubility is approached and dissolution ceases, some precipitation of calcite probably takes place. The dissolution of calcite exposes fossil shark teeth which release fluoride ions to the ground water through anion exchange with aqueous hydroxyl ions.

  13. 21 CFR 177.2440 - Polyethersulfone resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... molecular weight is determined by reduced viscosity in dimethyl formamide in accordance with ASTM method D2857-70 (Reapproved 1977), “Standard Test Method for Dilute Solution Viscosity of Polymers,” which is...

  14. 21 CFR 177.2440 - Polyethersulfone resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... molecular weight is determined by reduced viscosity in dimethyl formamide in accordance with ASTM method D2857-70 (Reapproved 1977), “Standard Test Method for Dilute Solution Viscosity of Polymers,” which is...

  15. 21 CFR 177.2440 - Polyethersulfone resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... molecular weight is determined by reduced viscosity in dimethyl formamide in accordance with ASTM method D2857-70 (Reapproved 1977), “Standard Test Method for Dilute Solution Viscosity of Polymers,” which is...

  16. Results of Hg speciation testing on MCU strip effluent hold tank (SEHT) and decontaminated salt solution hold tank (DSSHT) materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, C. J.

    2015-09-17

    The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences, Inc. in Seattle, WA on behalf of the Savannah River Remediation (SRR) Mercury Task Team.i,ii The tenth shipment of samples was designated to include Modular Caustic Side Solvent Extraction Unit (MCU) Strip Effluent Hold Tank (SEHT) and MCU Decontaminated Salt Solution Hold Tank (DSSHT) materials from processing Salt Batch 7b. The MCU SEHT (MCU-15-722) and DSSHT (MCU-15-709) samples were pulled on June 15, 2015. All MCU samples were received at SRNL on June 16, 2015. The DSSHT sample wasmore » moved the same day to refrigeration, while the SEHT sample was placed in the Shielded Cells. On July 9, 2015 it was opened and an aliquot diluted 1:100 with Eurofins deionized water and a portion of the diluted sample transferred to a Teflon® bottle prior to moving it to refrigeration that same day. All samples were kept in the dark and refrigerated until final dilutions were prepared for shipment to Eurofins.« less

  17. Thermodynamic properties of hyperbranched polymer, Boltorn U3000, using inverse gas chromatography.

    PubMed

    Domańska, Urszula; Zołek-Tryznowska, Zuzanna

    2009-11-19

    Mass-fraction activity coefficients at infinite dilution (Omega13(infinity)) of alkanes (C5-C10), cycloalkanes (C5-C8), alkenes (C5-C8), alkynes (C5-C8), aromatic hydrocarbons (benzene, toluene, ethylbenzene, o-, m-, p-xylene, thiophene), alcohols (C1-C5), water, ethers (tetrahydrofuran (THF), methyl-tert-butylether (MTBE), diethyl-, di-n-propyl-, di-n-butyl ether), and ketones (propanone, 2-pentanone, 3-pentanone, 2-hexanone, 3-hexanone, cyclopentanone) in the hyperbranched polymer, Boltorn U3000 (B-U3000), have been determined by inverse gas chromatography (IGC) using the polymer as the stationary phase. The measurements were carried out at different temperatures between 308.15 and 348.15 K. The density and thermophysical properties of polymer were described. The specific retention volume (V(g)), the Flory-Huggins interaction parameter (chi13(infinity)), the molar enthalpy of sorption (the partial molar enthalpies of solute dissolution) (Delta(s)H), the partial molar excess enthalpy at infinite dilution of the solute and polymer (DeltaH1(E,infinity)), the partial molar Gibbs excess energy at infinite dilution (DeltaG1(E,infinity)), and the solubility parameter (delta3) were calculated.

  18. [Antimicrobial Effects of Iodine-Polyvinyl Alcohol Ophthalmic and Eye Washing Solution (PA * IODO) with Special Reference to its Temperature, Concentration and Time and its Preservation Stability].

    PubMed

    Hatano, Hiroshi; Sakamoto, Masako; Hayashi, Kazuo; Kamiya, Seigo

    2015-08-01

    Temperature, concentration and time are the three factors that affect the inactivation capacity of iodine antiseptics. We investigated the effect of these factors on the microbe inactivation of Iodine-Polyvinyl Alcohol ophthalmic and eye washing solution (PA * IODO), and also investigated the preservation conditions on stability of the inactivation activity of the PA * IODO. Test microbes were mixed with PA * IODO, varying the three factors. The live microbes were counted after each reaction. The effects of plugging and preservation temperature were investigated to determine the preserving stability. The inactivation capacity of PA * IODO tended to decrease in almost all microbes tested at 4 degrees C. Twenty times or less diluted PA * IODO killed almost all microbes completely. The time effect was more marked in viruses. Plugging and low-temperature made iodine concentration in diluted PA * IODO remain relatively high. The concentration of PA * IODO affected the inactivation ability more than the temperature and time, although all the three factors correlated positively to the inactivation. For preservation the diluted PA * IODO needed plugging and low temperature.

  19. Selective monovalent cation association and exchange around Keplerate polyoxometalate macroanions in dilute aqueous solutions.

    PubMed

    Pigga, Joseph M; Teprovich, Joseph A; Flowers, Robert A; Antonio, Mark R; Liu, Tianbo

    2010-06-15

    The interaction between water-soluble Keplerate polyoxometalate {Mo(72)Fe(30)} macroions and small countercations is explored by laser light scattering, anomalous small-angle X-ray scattering (ASAXS), and isothermal titration calorimetry (ITC) techniques. The macroions are found to be able to select the type of associated counterions based upon the counterions' valence state and hydrated size, when multiple types of additional cations are present in solution (even among different monovalent cations). The preference goes to the cations with higher valences or smaller hydrated sizes if the valences are identical. This counterion exchange process changes the magnitude of the macroion-counterion interaction and, thus, is reflected in the dimension of the self-assembled {Mo(72)Fe(30)} blackberry supramolecular structures. The hydrophilic macroions exhibit a competitive recognition of various monovalent counterions in dilute solutions. A critical salt concentration (CSC) for each type of cation exists for the blackberry formation of {Mo(72)Fe(30)} macroions, above which the blackberry size increases significantly with the increasing total ionic strength in solution. The CSC values are much smaller for cations with higher valences and also decrease with the cations' hydrated size for various monovalent cations. The change of blackberry size corresponding to the change of ionic strength in solution is reversible.

  20. Understanding Thiel Embalming in Pig Kidneys to Develop a New Circulation Model

    PubMed Central

    Willaert, Wouter; De Vos, Marie; Van Hoof, Tom; Delrue, Louke; Pattyn, Piet; D’Herde, Katharina

    2015-01-01

    The quality of tissue preservation in Thiel embalmed bodies varies. Research on the administered embalming volume and its vascular distribution may elucidate one of the mechanisms of tissue preservation and allow for new applications of Thiel embalming. Vascular embalming with (group 1, n = 15) or without (group 2, n = 20) contrast agent was initiated in pig kidneys. The distribution of Thiel embalming solution in group 1 was visualized using computed tomography. The kidneys in both groups were then immersed in concentrated salt solutions to reduce their weight and volume. Afterwards, to mimic a lifelike circulation in the vessels, group 2 underwent pump-driven reperfusion for 120 minutes with either paraffinum perliquidum or diluted polyethylene glycol. The circulation was imaged with computed tomography. All of the kidneys were adequately preserved. The embalming solution spread diffusely in the kidney, but fluid accumulation was present. Subsequent immersion in concentrated salt solutions reduced weight (P < 0.01) and volume (P < 0.01). Reperfusion for 120 minutes was established in group 2. Paraffinum perliquidum filled both major vessels and renal tissue, whereas diluted polyethylene glycol spread widely in the kidney. There were no increases in weight (P = 0.26) and volume (P = 0.79); and pressure further decreased (P = 0.032) after more than 60 minutes of reperfusion with paraffinum perliquidum, whereas there were increases in weight (P = 0.005), volume (P = 0.032) and pressure (P < 0.0001) after reperfusion with diluted polyethylene glycol. Arterial embalming of kidneys results in successful preservation due to complete parenchymatous spreading. More research is needed to determine whether other factors affect embalming quality. Dehydration is an effective method to regain the organs’ initial status. Prolonged vascular reperfusion with paraffinum perliquidum can be established in this model without increases in weight, volume and pressure. PMID:25806527

  1. Reduction of alcohol induced sleep time in albino mice by potentized Nux vomica prepared with 90% ethanol.

    PubMed

    Sukul, A; Sinhabau, S P; Sukul, N C

    1999-04-01

    Male adult albino mice were administered potentized Nux vomica 30 c (Nux v). The drug was mixed with sterile distilled water at 0.05 ml/2 ml water and given at 0.05 ml/individual. Control consisted of blank ethanol solution. Ethanolic extract from the seeds of Strychnos nuxvomica L was mixed with 90% ethanol 1:100 and sonicated for 30 s at 20 KHz. This was further diluted and sonicated in 30 steps to produce Nux v 30 c. Six hours after treatment, mice were given 25% ethanol i.p. at 4 g/kg body wt. The duration of sleep time starting from the loss of righting reflex until its restoration was recorded for each mouse. The duration of sleep time with ethanol was recorded in four sessions for the same group of mice with an interval of 10 d between sessions. session 1 with control solution, 2 with Nux v (oral), 3 with control solution and 4 with Nux v (i.p.). Nux v (oral) produced the shortest sleep time as compared to other treatments which did not differ from each other significantly with respect to sleep time. In another experiment Nux v 30 c was prepared with distilled water and pure absolute ethanol by the above process of successive dilution and sonication. These two preparations together with Nux v 30 c, prepared with 90% ethanol, were tested on mice for their effect on alcohol-induced sleep time. Only Nux v 30 c prepared with 90% ethanol was effective in reducing the sleep time in mice. It is concluded that the solution structure of ethanol/water mixture carries the specificity of the Nux v at ultra high dilution. It is further concluded that the effect is mediated through oral receptors.

  2. Stability of piritramide in patient-controlled analgesia (PCA) solutions.

    PubMed

    Remane, D; Scriba, G; Meissner, W; Hartmann, M

    2009-06-01

    For patient controlled analgesia, syringes with solutions of 1.5 mg/ml piritramide in 0.9% aqueous sodium chloride are used. The physical and chemical stability for dilutions of the commercially available preparation of piritramide is limited up to 72 hours by the manufacturer. Since application duration for patient-controlled analgesia can exceed that limited time, stability was investigated by HPLC. Our results show that these solutions are chemically stable over a time period of 60 days.

  3. Wet-chemical systems and methods for producing black silicon substrates

    DOEpatents

    Yost, Vernon; Yuan, Hao-Chih; Page, Matthew

    2015-05-19

    A wet-chemical method of producing a black silicon substrate. The method comprising soaking single crystalline silicon wafers in a predetermined volume of a diluted inorganic compound solution. The substrate is combined with an etchant solution that forms a uniform noble metal nanoparticle induced Black Etch of the silicon wafer, resulting in a nanoparticle that is kinetically stabilized. The method comprising combining with an etchant solution having equal volumes acetonitrile/acetic acid:hydrofluoric acid:hydrogen peroxide.

  4. Improved resolution by mounting of tissue sections for laser microdissection.

    PubMed

    van Dijk, M C R F; Rombout, P D M; Dijkman, H B P M; Ruiter, D J; Bernsen, M R

    2003-08-01

    Laser microbeam microdissection has greatly facilitated the procurement of specific cell populations from tissue sections. However, the fact that a coverslip is not used means that the morphology of the tissue sections is often poor. To develop a mounting method that greatly improves the morphological quality of tissue sections for laser microbeam microdissection purposes so that the identification of target cells can be facilitated. Fresh frozen tissue and formalin fixed, paraffin wax embedded tissue specimens were used to test the morphological quality of mounted and unmounted tissue. The mounting solution consisted of an adhesive gum and blue ink diluted in water. Interference of the mounting solution with DNA quality was analysed by the polymerase chain reaction using 10-2000 cells isolated by microdissection from mounted and unmounted tissue. The mounting solution greatly improved the morphology of tissue sections for laser microdissection purposes and had no detrimental effects on the isolation and efficiency of amplification of DNA. One disadvantage was that the mounting solution reduced the cutting efficiency of the ultraviolet laser. To minimise this effect, the mounting solution should be diluted as much as possible. Furthermore, the addition of blue ink to the mounting medium restores the cutting efficiency of the laser. The mounting solution is easy to prepare and apply and can be combined with various staining methods without compromising the quality of the DNA extracted.

  5. Improved resolution by mounting of tissue sections for laser microdissection

    PubMed Central

    van Dijk, M C R F; Rombout, P D M; Dijkman, H B P M; Ruiter, D J; Bernsen, M R

    2003-01-01

    Background: Laser microbeam microdissection has greatly facilitated the procurement of specific cell populations from tissue sections. However, the fact that a coverslip is not used means that the morphology of the tissue sections is often poor. Aims: To develop a mounting method that greatly improves the morphological quality of tissue sections for laser microbeam microdissection purposes so that the identification of target cells can be facilitated. Methods: Fresh frozen tissue and formalin fixed, paraffin wax embedded tissue specimens were used to test the morphological quality of mounted and unmounted tissue. The mounting solution consisted of an adhesive gum and blue ink diluted in water. Interference of the mounting solution with DNA quality was analysed by the polymerase chain reaction using 10–2000 cells isolated by microdissection from mounted and unmounted tissue. Results: The mounting solution greatly improved the morphology of tissue sections for laser microdissection purposes and had no detrimental effects on the isolation and efficiency of amplification of DNA. One disadvantage was that the mounting solution reduced the cutting efficiency of the ultraviolet laser. To minimise this effect, the mounting solution should be diluted as much as possible. Furthermore, the addition of blue ink to the mounting medium restores the cutting efficiency of the laser. Conclusions: The mounting solution is easy to prepare and apply and can be combined with various staining methods without compromising the quality of the DNA extracted. PMID:12890747

  6. 27 CFR 21.104 - Cinchonidine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ....104 Cinchonidine. (a) Melting point. 208° to 210 °C. (b) Color. White powder. (c) Taste. Bitter. (d) Test. A solution of cinchonidine in dilute sulfuric acid shall not have more than a faint blue...

  7. 27 CFR 21.104 - Cinchonidine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ....104 Cinchonidine. (a) Melting point. 208° to 210 °C. (b) Color. White powder. (c) Taste. Bitter. (d) Test. A solution of cinchonidine in dilute sulfuric acid shall not have more than a faint blue...

  8. 27 CFR 21.104 - Cinchonidine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ....104 Cinchonidine. (a) Melting point. 208° to 210 °C. (b) Color. White powder. (c) Taste. Bitter. (d) Test. A solution of cinchonidine in dilute sulfuric acid shall not have more than a faint blue...

  9. 27 CFR 21.104 - Cinchonidine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ....104 Cinchonidine. (a) Melting point. 208° to 210 °C. (b) Color. White powder. (c) Taste. Bitter. (d) Test. A solution of cinchonidine in dilute sulfuric acid shall not have more than a faint blue...

  10. 27 CFR 21.104 - Cinchonidine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....104 Cinchonidine. (a) Melting point. 208° to 210 °C. (b) Color. White powder. (c) Taste. Bitter. (d) Test. A solution of cinchonidine in dilute sulfuric acid shall not have more than a faint blue...

  11. 21 CFR 177.1960 - Vinyl chloride-hexene-1 copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... determined by any suitable analytical procedure of generally accepted applicability. (ii) Inherent viscosity... D1243-79, “Standard Test Method for Dilute Solution Viscosity of Vinyl Chloride Polymers,” which is...

  12. Structural properties of aqueous metoprolol succinate solutions. Density, viscosity, and refractive index at 311 K

    NASA Astrophysics Data System (ADS)

    Deosarkar, S. D.; Kalyankar, T. M.

    2013-06-01

    Density, viscosity and refractive index of aqueous solutions of metoprolol succinate of different concentrations (0.005-0.05 mol dm-3) were measured at 38°C. Apparent molar volume of resultant solutions were calculated and fitted to the Masson's equation and apparent molar volume at infinite dilution was determined graphically. Viscosity data of solutions has been fitted to the Jone-Dole equation and viscosity A- and B-coefficients were determined graphically. Physicochemical data obtained were discussed in terms of molecular interactions.

  13. Automatic photometric titrations of calcium and magnesium in carbonate rocks

    USGS Publications Warehouse

    Shapiro, L.; Brannock, W.W.

    1955-01-01

    Rapid nonsubjective methods have been developed for the determination of calcium and magnesium in carbonate rocks. From a single solution of the sample, calcium is titrated directly, and magnesium is titrated after a rapid removal of R2O3 and precipitation of calcium as the tungstate. A concentrated and a dilute solution of disodium ethylenediamine tetraacetate are used as titrants. The concentrated solution is added almost to the end point, then the weak solution is added in an automatic titrator to determine the end point precisely.

  14. Structure impact of two galactomannan fractions on their viscosity properties in dilute solution, unperturbed state and gel state.

    PubMed

    Gillet, Sébastien; Aguedo, Mario; Petrut, Raul; Olive, Gilles; Anastas, Paul; Blecker, Christophe; Richel, Aurore

    2017-03-01

    Two fractions of carob galactomannans (GM25 and GM80) were extracted at respectively 25°C and 80°C from crude locust bean gum. Those fractions having slightly different chemical structures, previously characterized, were studied for their viscosity properties over a wide range of concentrations: diluted solution, unperturbed state and gel state. For each of the physical properties, links to the chemical fine structure could be established, expanding knowledge on the topic: in dilute solution, GM25 is more soluble in water while GM80 seems to tend to self-association due to its structure as highlighted by intrinsic viscosity measurements ([η] GM25 =9.96dLg -1 and [η] GM80 =4.04dLg -1 ). In unperturbed state, initial viscosities η 0 were more important for GM80 fractions at 1% and 2% due to greater hyperentanglements (η 0(GM80,1%) =9.9Pas; η 0(GM80,2%) =832.0; Pa.s η 0(GM25,1%) =3.1Pas; η 0(GM25,2%) =45.1Pas). In gel state, hydrogels obtained from GM80 were also stronger (hardness GM80 (2%)=0.51N and hardness GM25 (2%)=0.11N), suggesting a much more important number of junction areas within the gel network. The findings discussed herein demonstrate the potential for new applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. High-dilution effects revisited. 1. Physicochemical aspects.

    PubMed

    Bellavite, Paolo; Marzotto, Marta; Olioso, Debora; Moratti, Elisabetta; Conforti, Anita

    2014-01-01

    Several lines of evidence suggest that homeopathic high dilutions (HDs) can effectively have a pharmacological action, and so cannot be considered merely placebos. However, until now there has been no unified explanation for these observations within the dominant paradigm of the dose-response effect. Here the possible scenarios for the physicochemical nature of HDs are reviewed. A number of theoretical and experimental approaches, including quantum physics, conductometric and spectroscopic measurements, thermoluminescence, and model simulations investigated the peculiar features of diluted/succussed solutions. The heterogeneous composition of water could be affected by interactive phenomena such as coherence, epitaxy and formation of colloidal nanobubbles containing gaseous inclusions of oxygen, nitrogen, carbon dioxide, silica and, possibly, the original material of the remedy. It is likely that the molecules of active substance act as nucleation centres, amplifying the formation of supramolecular structures and imparting order to the solvent. Three major models for how this happens are currently being investigated: the water clusters or clathrates, the coherent domains postulated by quantum electrodynamics, and the formation of nanoparticles from the original solute plus solvent components. Other theoretical approaches based on quantum entanglement and on fractal-type self-organization of water clusters are more speculative and hypothetical. The problem of the physicochemical nature of HDs is still far from to be clarified but current evidence strongly supports the notion that the structuring of water and its solutes at the nanoscale can play a key role. Copyright © 2013 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.

  16. Declining ecosystem health and the dilution effect.

    PubMed

    Khalil, Hussein; Ecke, Frauke; Evander, Magnus; Magnusson, Magnus; Hörnfeldt, Birger

    2016-08-08

    The "dilution effect" implies that where species vary in susceptibility to infection by a pathogen, higher diversity often leads to lower infection prevalence in hosts. For directly transmitted pathogens, non-host species may "dilute" infection directly (1) and indirectly (2). Competitors and predators may (1) alter host behavior to reduce pathogen transmission or (2) reduce host density. In a well-studied system, we tested the dilution of the zoonotic Puumala hantavirus (PUUV) in bank voles (Myodes glareolus) by two competitors and a predator. Our study was based on long-term PUUV infection data (2003-2013) in northern Sweden. The field vole (Microtus agrestis) and the common shrew (Sorex araneus) are bank vole competitors and Tengmalm's owl (Aegolius funereus) is a main predator of bank voles. Infection probability in bank voles decreased when common shrew density increased, suggesting that common shrews reduced PUUV transmission. Field voles suppressed bank vole density in meadows and clear-cuts and indirectly diluted PUUV infection. Further, Tengmalm's owl decline in 1980-2013 may have contributed to higher PUUV infection rates in bank voles in 2003-2013 compared to 1979-1986. Our study provides further evidence for dilution effect and suggests that owls may have an important role in reducing disease risk.

  17. "JCE" Classroom Activity #106. Sequestration of Divalent Metal Ion by Superabsorbent Polymer in Diapers

    ERIC Educational Resources Information Center

    Chen, Yueh-Huey; Lin, Jia-Ying; Lin, Li-Pin; Liang, Han; Yaung, Jing-Fun

    2010-01-01

    This activity explores an alternative use of a superabsorbent polymer known as a water absorbing material. A dilute solution of CuCl[subscript 2] is treated with a small piece of unused disposable diaper containing superabsorbent sodium polyacrylates. The polymer is used for the removal of Cu[superscript 2+] ions from the solution. The…

  18. The nature of the in vivo sodium and chloride uptake mechanisms through the epithelium against sodium and of bicarbonate against chloride.

    PubMed

    García Romeu, F; Salibián, A; Pezzani-Hernádez, S

    1969-06-01

    The Chilean frog, Calyptocephallela gayi, placed in dilute NaCl solutions may pump Na(+) and Cl(-) at very different rates depending on the kind of bath solutions in which it was preadapted. Furthermore, Na(+) and Cl(-) may be absorbed from solutions in which the accompanying coion, such as sulfate and choline, respectively, is impermeant. In all these cases it is obligatory to postulate the existence of two ionic exchange mechanisms, Cl(-) and Na(+), being exchanged against endogenous anions and cations, respectively. It has been determined that Na(+) is exchanged against endogenous H(+) and that Cl(-) is exchanged against HCO(3) (-). In animals pumping Na(+) and Cl(-) from dilute NaCl solutions Na(+) or Cl(-) uptake may be selectively inhibited, while the flux of the accompanying ion remains unchanged. This is considered to be an additional proof that both Na(+) and Cl(-) fluxes are always independent. The role of the ionic exchange mechanisms in the direct regulation of the Na(+) and Cl(-) levels in the internal medium is discussed as well as their relationship in the regulation of the acid-base equilibrium; other physioecological considerations have been treated.

  19. The Nature of the In Vivo Sodium and Chloride Uptake Mechanisms through the Epithelium of the Chilean Frog Calyptocephalella gayi (Dum. et Bibr., 1841)

    PubMed Central

    Romeu, Federico García; Salibián, Alfredo; Pezzani-Hernandez, Silvia

    1969-01-01

    The Chilean frog, Calyptocephallela gayi, placed in dilute NaCl solutions may pump Na+ and Cl- at very different rates depending on the kind of bath solutions in which it was preadapted. Furthermore, Na+ and Cl- may be absorbed from solutions in which the accompanying coion, such as sulfate and choline, respectively, is impermeant. In all these cases it is obligatory to postulate the existence of two ionic exchange mechanisms, Cl- and Na+, being exchanged against endogenous anions and cations, respectively. It has been determined that Na+ is exchanged against endogenous H+ and that Cl- is exchanged against HCO3 -. In animals pumping Na+ and Cl- from dilute NaCl solutions Na+ or Cl- uptake may be selectively inhibited, while the flux of the accompanying ion remains unchanged. This is considered to be an additional proof that both Na+ and Cl- fluxes are always independent. The role of the ionic exchange mechanisms in the direct regulation of the Na+ and Cl- levels in the internal medium is discussed as well as their relationship in the regulation of the acid-base equilibrium; other physioecological considerations have been treated. PMID:5822161

  20. A model of the evaporation of binary-fuel clusters of drops

    NASA Technical Reports Server (NTRS)

    Harstad, K.; Bellan, J.

    1991-01-01

    A formulation has been developed to describe the evaporation of dense or dilute clusters of binary-fuel drops. The binary fuel is assumed to be made of a solute and a solvent whose volatility is much lower than that of the solute. Convective flow effects, inducing a circulatory motion inside the drops, are taken into account, as well as turbulence external to the cluster volume. Results obtained with this model show that, similar to the conclusions for single isolated drops, the evaporation of the volatile is controlled by liquid mass diffusion when the cluster is dilute. In contrast, when the cluster is dense, the evaporation of the volatile is controlled by surface layer stripping, that is, by the regression rate of the drop, which is in fact controlled by the evaporation rate of the solvent. These conclusions are in agreement with existing experimental observations. Parametric studies show that these conclusions remain valid with changes in ambient temperature, initial slip velocity between drops and gas, initial drop size, initial cluster size, initial liquid mass fraction of the solute, and various combinations of solvent and solute. The implications of these results for computationally intensive combustor calculations are discussed.

  1. Solute-solvent interactions in 2,4-dihydroxyacetophenone isonicotinoylhydrazone solutions in N, N-dimethylformamide and dimethyl sulfoxide at 298-313 K on ultrasonic and viscometric data

    NASA Astrophysics Data System (ADS)

    Dikkar, A. B.; Pethe, G. B.; Aswar, A. S.

    2016-02-01

    The speed of sound ( u), density (ρ), and viscosity (η) of 2,4-dihydroxyacetophenone isonicotinoylhydrazone (DHAIH) have been measured in N, N-dimethyl formamide and dimethyl sulfoxide at equidistance temperatures 298.15, 303.15, 308.15, and 313.15 K. These data were used to calculate some important ultrasonic and thermodynamic parameters such as apparent molar volume ( V ϕ s st ), apparent molar compressibility ( K ϕ), partial molar volume ( V ϕ 0 ) and partial molar compressibility ( K ϕ 0 ), were estimated by using the values of ( V ϕ 0 ) and ( K ϕ), at infinite dilution. Partial molar expansion at infinite dilution, (ϕ E 0 ) has also been calculated from temperature dependence of partial molar volume V ϕ 0 . The viscosity data have been analyzed using the Jones-Dole equation, and the viscosity, B coefficients are calculated. The activation free energy has been calculated from B coefficients and partial molar volume data. The results have been discussed in the term of solute-solvent interaction occurring in solutions and it was found that DHAIH acts as a structure maker in present systems.

  2. Magnetic Control of Concentration Gradient in Microgravity

    NASA Technical Reports Server (NTRS)

    Leslie, Fred; Ramachandran, Narayanan

    2005-01-01

    A report describes a technique for rapidly establishing a fluid-concentration gradient that can serve as an initial condition for an experiment on solutal instabilities associated with crystal growth in microgravity. The technique involves exploitation of the slight attractive or repulsive forces exerted on most fluids by a magnetic-field gradient. Although small, these forces can dominate in microgravity and therefore can be used to hold fluids in position in preparation for an experiment. The magnetic field is applied to a test cell, while a fluid mixture containing a concentration gradient is prepared by introducing an undiluted solution into a diluting solution in a mixing chamber. The test cell is then filled with the fluid mixture. Given the magnetic susceptibilities of the undiluted and diluting solutions, the magnetic-field gradient must be large enough that the magnetic force exceeds both (1) forces associated with the flow of the fluid mixture during filling of the test cell and (2) forces imposed by any residual gravitation and fluctuations thereof. Once the test cell has been filled with the fluid mixture, the magnetic field is switched off so that the experiment can proceed, starting from the proper initial conditions.

  3. Effect of flow rate and concentration difference on reverse electrodialysis system

    NASA Astrophysics Data System (ADS)

    Kwon, Kilsugn; Han, Jaesuk; Kim, Daejoong

    2013-11-01

    Various energy conversion technologies have been developed to reduce dependency on limited fossil fuels, including wind power, solar power, hydropower, ocean power, and geothermal power. Among them, reverse electrodialysis (RED), which is one type of salinity gradient power (SGP), has received much attention due to high reliability and simplicity without moving parts. Here, we experimentally evaluated the RED performance with several parameters like flow rate of concentrated and dilute solution, concentration difference, and temperature. RED was composed of endplates, electrodes, spacers, anion exchange membrane, and cation exchange membrane. Endplates are made by a polypropylene. It included the electrodes, flow field for the electrode rinse solution, and path to supply a concentrated and dilute solution. Titanium coated by iridium and ruthenium was used as the electrode. The electrode rinse solution based on hexacyanoferrate system is used to reduce the power loss generated by conversion process form ionic current to electric current. Maximum power monotonously increases as increasing flow rate and concentration difference. Net power has optimal point because pumping power consumption increases with flow rate. This work was supported by Basic Science Research Program (Grat No. NRF-2011-0009993) through the National Research Foundation of Korea.

  4. Adsorption of tuberculin PPD to glass and plastic surfaces

    PubMed Central

    Landi, S.; Held, H. R.; Hauschild, A. H. W.; Hilsheimer, R.

    1966-01-01

    For some time it has been known that the adsorption of tuberculin to glass is a source of practical difficulties in tuberculin testing; for example, it leads to a loss of potency in diluted tuberculin PPD preparations used in the intracutaneous method of skin testing. The authors have correlated decreasing biological potency with decreasing radioactivity in solutions of tuberculin PPD labelled with 14C. The decrease in radioactivity is due to adsorption of PPD-14C to the glass or plastic surface of containers; it can be prevented by the addition of 0.0005% Tween 80. The extent of the decrease is affected by the type and size of the containers, the volume of solution used and the storage temperature. It is the same in the presence of 0.3% phenol or 0.01% Chinosol used as preservatives. The concentration of Tween 80 does not affect the size of the tuberculin skin reactions in BCG-sensitized guinea-pigs. It is recommended that an anti-adsorption agent be added to all dilute solutions of tuberculin PPD; in solutions for intracutaneous use containing 50 TU per ml, Tween 80 at a concentration of 0.0005% is satisfactory. PMID:5297556

  5. Odorant Screening and Quantitation of Thiols in Carmenere Red Wine by Gas Chromatography-Olfactometry and Stable Isotope Dilution Assays.

    PubMed

    Pavez, Carolina; Agosin, Eduardo; Steinhaus, Martin

    2016-05-04

    The sensory impact of thiols in Vitis vinifera 'Carmenere' red wines was evaluated. For this purpose, aroma extract dilution analysis was applied to the thiols isolated from a Carmenere red wine by affinity chromatography with a mercurated agarose gel. Results revealed the presence of four odorants, identified as 2-furanylmethanethiol, 3-sulfanylhexyl acetate, 3-sulfanyl-1-hexanol, and 2-methyl-3-sulfanyl-1-butanol, with the latter being described here for the first time in Carmenere red wines. Quantitation of the four thiols in the Carmenere wine screened by aroma extract dilution analysis and in three additional Carmenere wines by stable isotope dilution assays resulted in concentrations above the respective orthonasal odor detection threshold values. Triangle tests applied to wine model solutions with and without the addition of the four thiols showed significant differences, thus suggesting that the compounds do have the potential to influence the overall aroma of red wine.

  6. Infinitely dilute partial molar properties of proteins from computer simulation.

    PubMed

    Ploetz, Elizabeth A; Smith, Paul E

    2014-11-13

    A detailed understanding of temperature and pressure effects on an infinitely dilute protein's conformational equilibrium requires knowledge of the corresponding infinitely dilute partial molar properties. Established molecular dynamics methodologies generally have not provided a way to calculate these properties without either a loss of thermodynamic rigor, the introduction of nonunique parameters, or a loss of information about which solute conformations specifically contributed to the output values. Here we implement a simple method that is thermodynamically rigorous and possesses none of the above disadvantages, and we report on the method's feasibility and computational demands. We calculate infinitely dilute partial molar properties for two proteins and attempt to distinguish the thermodynamic differences between a native and a denatured conformation of a designed miniprotein. We conclude that simple ensemble average properties can be calculated with very reasonable amounts of computational power. In contrast, properties corresponding to fluctuating quantities are computationally demanding to calculate precisely, although they can be obtained more easily by following the temperature and/or pressure dependence of the corresponding ensemble averages.

  7. Method of forming a foamed thermoplastic polymer

    DOEpatents

    Duchane, David V.; Cash, David L.

    1986-01-01

    A method of forming a foamed thermoplastic polymer. A solid thermoplastic lymer is immersed in an immersant solution comprising a compatible carrier solvent and an infusant solution containing an incompatible liquid blowing agent for a time sufficient for the immersant solution to infuse into the polymer. The carrier solvent is then selectively extracted, preferably by a solvent exchange process in which the immersant solution is gradually diluted with and replaced by the infusant solution, so as to selectively leave behind the infusant solution permanently entrapped in the polymer. The polymer is then heated to volatilize the blowing agent and expand the polymer into a foamed state.

  8. Removal of uranium from aqueous HF solutions

    DOEpatents

    Pulley, Howard; Seltzer, Steven F.

    1980-01-01

    This invention is a simple and effective method for removing uranium from aqueous HF solutions containing trace quantities of the same. The method comprises contacting the solution with particulate calcium fluoride to form uranium-bearing particulates, permitting the particulates to settle, and separting the solution from the settled particulates. The CaF.sub.2 is selected to have a nitrogen surface area in a selected range and is employed in an amount providing a calcium fluoride/uranium weight ratio in a selected range. As applied to dilute HF solutions containing 120 ppm uranium, the method removes at least 92% of the uranium, without introducing contaminants to the product solution.

  9. Waters associated with an active basaltic volcano, Kilauea, Hawaii: Variation in solute sources, 1973-1991

    USGS Publications Warehouse

    Tilling, R.I.; Jones, B.F.

    1996-01-01

    Chemical and isotopic analyses of samples collected from a 1262-m-deep research borehole at the summit of Kilauea Volcano provide unique time-series data for composition of waters in the uppermost part of its hydrothermal system. These waters have a distinctive geochemical signature: a very low proportion of chloride relative to other anions compared with other Hawaiian wa-ters - thermal (???30 ??C) or nonthermal (<30 ??C) - and with most thermal waters of the world. Isotope data demonstrate that the borehole waters are of essentially meteoric origin, with minimal magmatic input. The water chemistry exhibits marked temporal variations, including pronounced short-term (days to weeks) effects of rainfall dilution and longer term (months to years) decline of total solutes. The 1973-1974 samples are Na-sulfate-dominant, but samples collected after July 1975 are (Mg + Ca)-bicarbonate-dominant. This compositional shift, probably abrupt, was associated with an increase in the partial pressure of CO2 (PCO2) related to volcanic degassing of CO2 accompanying a large eruption (December 31, 1974) and associated intense seismicity. Following the initial sharp increase, the PCO2 then decreased, approaching preemption values in April 1976. Beginning in mid-1975, solute concentrations of the borehole waters decreased substantially, from ???45 meq/L to <25 meq/L in only eight months; by 1991, total solute concentrations were <17 meq/L. This decline in solutes cannot be attributed to rainfall dilution and is inferred to reflect the decreasing availability with time of the easily leachable salts of alkali metals and sulfate, which originated in sublimates and fumarolic encrustations in fractures and cavities of rocks along the hydrologic flow paths. The overall chemistry of the summit-borehole waters is largely determined by hydrolysis reactions associated with normal weathering of host tholeiitic basalts on a geologic time scale, despite short-term perturbations in composition caused by rainfall dilution or volcanic activity.

  10. Influence of dissolved organic carbon content on modelling natural organic matter acid-base properties.

    PubMed

    Garnier, Cédric; Mounier, Stéphane; Benaïm, Jean Yves

    2004-10-01

    Natural organic matter (NOM) behaviour towards proton is an important parameter to understand NOM fate in the environment. Moreover, it is necessary to determine NOM acid-base properties before investigating trace metals complexation by natural organic matter. This work focuses on the possibility to determine these acid-base properties by accurate and simple titrations, even at low organic matter concentrations. So, the experiments were conducted on concentrated and diluted solutions of extracted humic and fulvic acid from Laurentian River, on concentrated and diluted model solutions of well-known simple molecules (acetic and phenolic acids), and on natural samples from the Seine river (France) which are not pre-concentrated. Titration experiments were modelled by a 6 acidic-sites discrete model, except for the model solutions. The modelling software used, called PROSECE (Programme d'Optimisation et de SpEciation Chimique dans l'Environnement), has been developed in our laboratory, is based on the mass balance equilibrium resolution. The results obtained on extracted organic matter and model solutions point out a threshold value for a confident determination of the studied organic matter acid-base properties. They also show an aberrant decreasing carboxylic/phenolic ratio with increasing sample dilution. This shift is neither due to any conformational effect, since it is also observed on model solutions, nor to ionic strength variations which is controlled during all experiments. On the other hand, it could be the result of an electrode troubleshooting occurring at basic pH values, which effect is amplified at low total concentration of acidic sites. So, in our conditions, the limit for a correct modelling of NOM acid-base properties is defined as 0.04 meq of total analysed acidic sites concentration. As for the analysed natural samples, due to their high acidic sites content, it is possible to model their behaviour despite the low organic carbon concentration.

  11. Nanorod Mobility within Entangled Wormlike Micelle Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jonghun; Grein-Iankovski, Aline; Narayanan, Suresh

    In the semi-dilute regime, wormlike micelles form an isotropic entangled microstructure that is similar to that of an entangled polymer solution with a characteristic, nanometer-scale entanglement mesh size. We report a combined x-ray photon correlation spectroscopy (XPCS) and rheology study to investigate the translational dynamics of gold nanorods in semi-dilute solutions of entangled wormlike micelles formed by the surfactant cetylpyridinium chloride (CPyCl) and the counter-ion sodium salicylate (NaSal). The CPyCl concentration is varied to tune the entanglement mesh size over a range that spans from approximately equal to the nanorod diameter to larger than the nanorod length. The NaSal concentrationmore » is varied along with the CPyCl concentration so that the solutions have the maximum viscosity for given CPyCl concentration. On short time scales the nanorods are localized on a length scale matching that expected from the high-frequency elastic modulus of the solutions as long as the mesh size is smaller than the rod length. On longer time scales, the nanorods undergo free diffusion. At the highest CPyCl concentrations, the nanorod diffusivity approaches the value expected based on the macroscopic viscosity of the solutions, but it increases with decreasing CPyCl concentration more rapidly than expected from the macroscopic viscosity. A recent model by Cai et al. [Cai, L.-H.; Panyukov, S.; Rubinstein, M. Macromolecules 2015, 48, 847-862.] for nanoparticle “hopping” diffusion in entangled polymer solutions accounts quantitatively for this enhanced diffusivity.« less

  12. Macromolecular Crowding Modulates Actomyosin Kinetics.

    PubMed

    Ge, Jinghua; Bouriyaphone, Sherry D; Serebrennikova, Tamara A; Astashkin, Andrei V; Nesmelov, Yuri E

    2016-07-12

    Actomyosin kinetics is usually studied in dilute solutions, which do not reflect conditions in the cytoplasm. In cells, myosin and actin work in a dense macromolecular environment. High concentrations of macromolecules dramatically reduce the amount of free space available for all solutes, which results in an effective increase of the solutes' chemical potential and protein stabilization. Moreover, in a crowded solution, the chemical potential depends on the size of the solute, with larger molecules experiencing a larger excluded volume than smaller ones. Therefore, since myosin interacts with two ligands of different sizes (actin and ATP), macromolecular crowding can modulate the kinetics of individual steps of the actomyosin ATPase cycle. To emulate the effect of crowding in cells, we studied actomyosin cycle reactions in the presence of a high-molecular-weight polymer, Ficoll70. We observed an increase in the maximum velocity of the actomyosin ATPase cycle, and our transient-kinetics experiments showed that virtually all individual steps of the actomyosin cycle were affected by the addition of Ficoll70. The observed effects of macromolecular crowding on the myosin-ligand interaction cannot be explained by the increase of a solute's chemical potential. A time-resolved Förster resonance energy transfer experiment confirmed that the myosin head assumes a more compact conformation in the presence of Ficoll70 than in a dilute solution. We conclude that the crowding-induced myosin conformational change plays a major role in the changed kinetics of actomyosin ATPase. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Nanorod Mobility within Entangled Wormlike Micelle Solutions

    DOE PAGES

    Lee, Jonghun; Grein-Iankovski, Aline; Narayanan, Suresh; ...

    2016-12-20

    In the semi-dilute regime, wormlike micelles form an isotropic entangled microstructure that is similar to that of an entangled polymer solution with a characteristic, nanometer-scale entanglement mesh size. We report a combined x-ray photon correlation spectroscopy (XPCS) and rheology study to investigate the translational dynamics of gold nanorods in semi-dilute solutions of entangled wormlike micelles formed by the surfactant cetylpyridinium chloride (CPyCl) and the counter-ion sodium salicylate (NaSal). The CPyCl concentration is varied to tune the entanglement mesh size over a range that spans from approximately equal to the nanorod diameter to larger than the nanorod length. The NaSal concentrationmore » is varied along with the CPyCl concentration so that the solutions have the maximum viscosity for given CPyCl concentration. On short time scales the nanorods are localized on a length scale matching that expected from the high-frequency elastic modulus of the solutions as long as the mesh size is smaller than the rod length. On longer time scales, the nanorods undergo free diffusion. At the highest CPyCl concentrations, the nanorod diffusivity approaches the value expected based on the macroscopic viscosity of the solutions, but it increases with decreasing CPyCl concentration more rapidly than expected from the macroscopic viscosity. A recent model by Cai et al. [Cai, L.-H.; Panyukov, S.; Rubinstein, M. Macromolecules 2015, 48, 847-862.] for nanoparticle “hopping” diffusion in entangled polymer solutions accounts quantitatively for this enhanced diffusivity.« less

  14. L-edge spectroscopy of dilute, radiation-sensitive systems using a transition-edge-sensor array

    NASA Astrophysics Data System (ADS)

    Titus, Charles J.; Baker, Michael L.; Lee, Sang Jun; Cho, Hsiao-Mei; Doriese, William B.; Fowler, Joseph W.; Gaffney, Kelly; Gard, Johnathon D.; Hilton, Gene C.; Kenney, Chris; Knight, Jason; Li, Dale; Marks, Ronald; Minitti, Michael P.; Morgan, Kelsey M.; O'Neil, Galen C.; Reintsema, Carl D.; Schmidt, Daniel R.; Sokaras, Dimosthenis; Swetz, Daniel S.; Ullom, Joel N.; Weng, Tsu-Chien; Williams, Christopher; Young, Betty A.; Irwin, Kent D.; Solomon, Edward I.; Nordlund, Dennis

    2017-12-01

    We present X-ray absorption spectroscopy and resonant inelastic X-ray scattering (RIXS) measurements on the iron L-edge of 0.5 mM aqueous ferricyanide. These measurements demonstrate the ability of high-throughput transition-edge-sensor (TES) spectrometers to access the rich soft X-ray (100-2000 eV) spectroscopy regime for dilute and radiation-sensitive samples. Our low-concentration data are in agreement with high-concentration measurements recorded by grating spectrometers. These results show that soft-X-ray RIXS spectroscopy acquired by high-throughput TES spectrometers can be used to study the local electronic structure of dilute metal-centered complexes relevant to biology, chemistry, and catalysis. In particular, TES spectrometers have a unique ability to characterize frozen solutions of radiation- and temperature-sensitive samples.

  15. Effects of in vitro hemodilution with crystalloids, colloids, and plasma on canine whole blood coagulation as determined by kaolin-activated thromboelastography.

    PubMed

    Morris, Bari R; deLaforcade, Armelle; Lee, Joyce; Palmisano, Joseph; Meola, Dawn; Rozanski, Elizabeth

    2016-01-01

    To investigate the effects of in vitro hemodilution with lactated Ringers solution (LRS), hetastarch (HES), and fresh frozen plasma (FFP) on whole blood coagulation in dogs as assessed by kaolin-activated thromboelastography. In vitro experimental study. University teaching hospital. Six healthy client-owned dogs. Whole blood was collected and diluted in vitro at a 33% and 67% dilution with either LRS, HES, or FFP. Kaolin-activated thromboelastography was performed on each sample as well as a control. Thromboelastographic parameters R (min), alpha (deg), K (min), and MA (mm) were measured and compared to the sample control for each dilution using mixed model methodology. Prolongation in coagulation times were seen at both dilutions with LRS and HES. There was no significant difference in R times at the 33% dilution, but R time was significantly prolonged at the 67% dilution with HES (P = 0.004). MA was significantly decreased for LRS at both dilutions (P = 0.013, P < 0.001) and more profoundly decreased for HES (P < 0.001, P = 0.006). No significant difference in any parameter was found for FFP. In vitro hemodilution of whole blood with both LRS and HES but not FFP resulted in significant effects on coagulation with HES having a more profound effect. In vivo evaluation of changes in coagulation with various resuscitation fluids is warranted and may be clinically relevant. © Veterinary Emergency and Critical Care Society 2015.

  16. Improvement of pre-treatment method for 36Cl/Cl measurement of Cl in natural groundwater by AMS

    NASA Astrophysics Data System (ADS)

    Nakata, Kotaro; Hasegawa, Takuma

    2011-02-01

    Estimation of 36Cl/Cl by accelerator mass spectrometry (AMS) is a useful method to trace hydrological processes in groundwater. For accurate estimation, separation of SO42- from Cl - in groundwater is required because 36S affects AMS measurement of 36Cl. Previous studies utilized the difference in solubility between BaSO 4 and BaCl 2 (BaSO 4 method) to chemically separate SO42- from Cl -. However, the accuracy of the BaSO 4 method largely depends on operator skill, and consequently Cl - recovery is typically incomplete (70-80%). In addition, the method is time consuming (>1 week), and cannot be applied directly to dilute solutions. In this study, a method based on ion-exchange column chromatography (column method) was developed for separation of Cl - and SO42-. Optimum conditions were determined for the diameter and height of column, type and amount of resin, type and concentration of eluent, and flow rate. The recovery of Cl - was almost 100%, which allowed complete separation from SO42-. The separation procedure was short (<6 h), and was successfully applied to dilute (1 mg/L Cl) solution. Extracted pore water and diluted seawater samples were processed by the column and BaSO 4 methods, and then analyzed by AMS to estimate 36S counts and 36Cl/Cl values. 36S counts in samples processed by the column method were stable and lower than those from the BaSO 4 method. The column method has the following advantages over the BaSO 4 method: (1) complete and stable separation of Cl - and SO42-, (2) less operator influence on results, (3) short processing time (<6 h), (4) high (almost 100%) recovery of Cl -, and (5) concentration of Cl - and separation from SO42- in the one system for dilute solutions.

  17. Thermochemistry of myricetin flavonoid

    NASA Astrophysics Data System (ADS)

    Abil'daeva, A. Z.; Kasenova, Sh. B.; Kasenov, B. K.; Sagintaeva, Zh. I.; Kuanyshbekov, E. E.; Rakhimova, B. B.; Polyakov, V. V.; Adekenov, S. M.

    2014-08-01

    The enthalpies of myricetin dissolution are measured by means of calorimetry with mol dilutions of flavonoid: 96 mol % ethanol equal to 1: 9000, 1: 18000, and 1: 36000. The standard enthalpies of dissolution for the biologically active substance in an infinitely diluted (standard) solution of 96% ethanol are calculated from the experimental data. Physicochemical means of approximation are used to estimate the values of the standard enthalpy of combustion, and the enthalpy of melting is calculated for the investigated flavonoid. Finally, the compound's standard enthalpy of formation is calculated using the Hess cycle.

  18. Hydrocarbon synthesis catalyst and method of preparation

    DOEpatents

    Sapienza, R.S.; Sansone, M.J.; Slegeir, W.A.R.

    1983-08-02

    A catalyst for the synthesis of hydrocarbons from carbon monoxide and hydrogen composed of palladium or platinum and cobalt supported on a solid phase is disclosed. The catalyst is prepared by heating a heterogeneous component of the palladium or platinum deposited on the solid support in a solution of cobalt carbonyl or precursors thereof. The catalyst exhibits excellent activity, stability in air, and produces highly desirable product fractions even with dilute gaseous reactants. The catalyst is preferably used in dilute slurry form, which is desirable from a heat transfer standpoint. 9 figs.

  19. Hydrocarbon synthesis catalyst and method of preparation

    DOEpatents

    Sapienza, Richard S.; Sansone, Michael J.; Slegeir, William A. R.

    1983-08-02

    A catalyst for the synthesis of hydrocarbons from carbon monoxide and hydrogen composed of palladium or platinum and cobalt supported on a solid phase is disclosed. The catalyst is prepared by heating a heterogeneous component of the palladium or platinum deposited on the solid support in a solution of cobalt carbonyl or precursors thereof. The catalyst exhibits excellent activity, stability in air, and produces highly desirable product fractions even with dilute gaseous reactants. The catalyst is preferably used in dilute slurry form, which is desirable from a heat transfer standpoint.

  20. Modeling the Effects of Cu Content and Deformation Variables on the High-Temperature Flow Behavior of Dilute Al-Fe-Si Alloys Using an Artificial Neural Network.

    PubMed

    Shakiba, Mohammad; Parson, Nick; Chen, X-Grant

    2016-06-30

    The hot deformation behavior of Al-0.12Fe-0.1Si alloys with varied amounts of Cu (0.002-0.31 wt %) was investigated by uniaxial compression tests conducted at different temperatures (400 °C-550 °C) and strain rates (0.01-10 s -1 ). The results demonstrated that flow stress decreased with increasing deformation temperature and decreasing strain rate, while flow stress increased with increasing Cu content for all deformation conditions studied due to the solute drag effect. Based on the experimental data, an artificial neural network (ANN) model was developed to study the relationship between chemical composition, deformation variables and high-temperature flow behavior. A three-layer feed-forward back-propagation artificial neural network with 20 neurons in a hidden layer was established in this study. The input parameters were Cu content, temperature, strain rate and strain, while the flow stress was the output. The performance of the proposed model was evaluated using the K-fold cross-validation method. The results showed excellent generalization capability of the developed model. Sensitivity analysis indicated that the strain rate is the most important parameter, while the Cu content exhibited a modest but significant influence on the flow stress.

  1. Modeling the Effects of Cu Content and Deformation Variables on the High-Temperature Flow Behavior of Dilute Al-Fe-Si Alloys Using an Artificial Neural Network

    PubMed Central

    Shakiba, Mohammad; Parson, Nick; Chen, X.-Grant

    2016-01-01

    The hot deformation behavior of Al-0.12Fe-0.1Si alloys with varied amounts of Cu (0.002–0.31 wt %) was investigated by uniaxial compression tests conducted at different temperatures (400 °C–550 °C) and strain rates (0.01–10 s−1). The results demonstrated that flow stress decreased with increasing deformation temperature and decreasing strain rate, while flow stress increased with increasing Cu content for all deformation conditions studied due to the solute drag effect. Based on the experimental data, an artificial neural network (ANN) model was developed to study the relationship between chemical composition, deformation variables and high-temperature flow behavior. A three-layer feed-forward back-propagation artificial neural network with 20 neurons in a hidden layer was established in this study. The input parameters were Cu content, temperature, strain rate and strain, while the flow stress was the output. The performance of the proposed model was evaluated using the K-fold cross-validation method. The results showed excellent generalization capability of the developed model. Sensitivity analysis indicated that the strain rate is the most important parameter, while the Cu content exhibited a modest but significant influence on the flow stress. PMID:28773658

  2. [Determination of solubility parameters for asymmetrical dicationic ionic liquids by inverse gas chromatography].

    PubMed

    Wang, Jun; Yang, Xuzhao; Wu, Jinchao; Song, Hao; Zou, Wenyuan

    2015-12-01

    Inverse gas chromatographic (IGC) technology was used to determine the solubility parameters of three asymmetrical dicationic ionic liquids ([ PyC5Pi] [ NTf2]2, [MpC5Pi] [NTf2]2 and [PyC6Pi] [NTf2]2) at 343.15-363.15 K. Five alkanes were applied as test probes including octane (n-C8) , decane (n-C10), dodecane (n-C12), tetradecane (n-C14), hexadecane (n-C16). Some thermodynamic parameters were obtained by IGC data analysis, such as the specific retention volumes of the solvents (V0(g)), the molar enthalpies of sorption (ΔHs(1)), the partial molar enthalpies of mixing at infinite dilution (ΔH∞91)), the molar enthalpies of vaporization (ΔH)v)), the activity coefficients at infinite dilution (Ω∞(1)), and Flory-Huggins interaction parameters (χ∞(12)) between ionic liquids and probes. The solubility parameters (δ2) of the three dicationic ionic liquids at room temperature (298.15 K) were 28.52-32.66 (J x cm(-3)) ½. The solubility parameters (δ2) of cationic structure with 4-methyl morpholine are bigger than those of the cationic structure with pyridine. The bigger the solubility parameter (δ2) is, the more the carbon numbers of linking group of the ionic liquids are. The results are of great importance to the study of the solution behavior and the applications of ionic liquid.

  3. A natural and readily available crowding agent: NMR studies of proteins in hen egg white.

    PubMed

    Martorell, Gabriel; Adrover, Miquel; Kelly, Geoff; Temussi, Piero Andrea; Pastore, Annalisa

    2011-05-01

    In vitro studies of biological macromolecules are usually performed in dilute, buffered solutions containing one or just a few different biological macromolecules. Under these conditions, the interactions among molecules are diffusion limited. On the contrary, in living systems, macromolecules of a given type are surrounded by many others, at very high total concentrations. In the last few years, there has been an increasing effort to study biological macromolecules directly in natural crowded environments, as in intact bacterial cells or by mimicking natural crowding by adding proteins, polysaccharides, or even synthetic polymers. Here, we propose the use of hen egg white (HEW) as a simple natural medium, with all features of the media of crowded cells, that could be used by any researcher without difficulty and inexpensively. We present a study of the stability and dynamics behavior of model proteins in HEW, chosen as a prototypical, readily accessible natural medium that can mimic cytosol. We show that two typical globular proteins, dissolved in HEW, give NMR spectra very similar to those obtained in dilute buffers, although dynamic parameters are clearly affected by the crowded medium. The thermal stability of one of these proteins, measured in a range comprising both heat and cold denaturation, is also similar to that in buffer. Our data open new possibilities to the study of proteins in natural crowded media. Copyright © 2010 Wiley-Liss, Inc.

  4. 21 CFR 177.1560 - Polyarylsulfone resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... reduced viscosity of 0.40 deciliter per gram in 1-methyl-2-pyrrolidinone in accordance with ASTM method D2857-70 (Reapproved 1977), “Standard Test Method for Dilute Solution Viscosity of Polymers,” which is...

  5. Enhancing wastewater reuse by forward osmosis with self-diluted commercial fertilizers as draw solutes.

    PubMed

    Zou, Shiqiang; He, Zhen

    2016-08-01

    Using fertilizers as draw solutes in forward osmosis (FO) can accomplish wastewater reuse with elimination of recycling draw solute. In this study, three commercial fast-release all-purpose solid fertilizers (F1, F2 and F3) were examined as draw solutes in a submerged FO system for water extraction from either deionized (DI) water or the treated wastewater. Systematic optimizations were conducted to enhance water extraction performance, including operation modes, initial draw concentrations and in-situ chemical fouling control. In the mode of the active layer facing the feed (AL-F or FO), a maximum of 324 mL water was harvested using 1-M F1, which provided 41% of the water need for fertilizer dilution for irrigation. Among the three fertilizers, F1 containing a lower urea content was the most favored because of a higher water extraction and a lower reverse solute flux (RSF) of major nutrients. Using the treated wastewater as a feed solution resulted in a comparable water extraction performance (317 mL) to that of DI water in 72 h and a maximum water flux of 4.2 LMH. Phosphorus accumulation on the feed side was mainly due to the FO membrane solute rejection while total nitrogen and potassium accumulation was mainly due to RSF from the draw solute. Reducing recirculation intensity from 100 to 10 mL min(-1) did not obviously decrease water flux but significantly reduced the energy consumption from 1.86 to 0.02 kWh m(-3). These results have demonstrated the feasibility of using commercial solid fertilizers as draw solutes for extracting reusable water from wastewater, and challenges such as reverse solute flux will need to be further addressed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Comparison and extension of free dendritic growth models through application to silver-15 mass percent copper alloy

    NASA Astrophysics Data System (ADS)

    Onel, Selis

    Modeling free dendritic growth in supercooled alloys is a critical requirement in controlling the microstructure of materials during rapid solidification processing of materials. Recent models developed to predict the growth of a dendrite in a highly supercooled melt adopt modifications that account for the interface kinetics and thermodynamics at high interface velocities, but the assumptions necessary to simplify the mathematical problem impose inherent restrictions. The assumption of straight phase boundaries adopted in early models often loses validity at high supercoolings, where phase boundaries are often curved. The use of equations with Henrian restrictions, such as the Baker-Cahn equation for the interfacial driving force and the Aziz equation for solute trapping confine these models to dilute solutions. Turnbull's collision-limited linear kinetic equation for interface growth may not apply to large interfacial driving forces. Therefore, a useful application and modification of free dendritic growth models require a thorough understanding of their limitations in producing consistent results. One of the objectives of this research is to numerically compare the free dendritic growth models derived from the earlier LGK model developed by Lipton et al. The subsequent LKT model by Lipton et al., the TLK model by Trivedi et al., and the BCT model by Boettinger et al., together with a modification of the TLK model, and the DA model by DiVenuti and Ando are compared through application to an Ag-15 mass % Cu alloy. In addition, a new model to extend the DA model is developed by incorporating a thermodynamic solution model for the calculation of the interfacial driving force, thereby eliminating the Baker-Cahn equation that limits the use of the correct BCT and DA models to dilute solutions. Direct computation of the interfacial driving force by calculating a metastable phase diagram for the Ag-Cu system using a temperature dependent subregular solution model is carried out. Comparison of the results of the new model with the DA model confirms that the Baker-Cahn equation is applicable at low solute concentrations. As a future research direction, the new model can be extended to apply to higher concentration alloys by using a new solute trapping equation to further eliminate the dilute solution limitations.

  7. Environmental Transport and Fate Process Descriptors for Propellant Compounds

    DTIC Science & Technology

    2006-06-01

    compositional changes that occur when propellant pellets and flakes are immersed in stirred aqueous solutions for 0 to 220 hours. ERDC/EL TR-06-7 2... solution , NQ concen- tration remains constant in heated, dilute hydrochloric acid, but will hydrolyze to NH3, N2O, and CO2 at pH greater than 10...with values between 36 and 300 mg/L (Table 2). Hydrolysis of DPA was inferred from decreased Daphnia toxicity when aged (30-day) aqueous solutions

  8. Modeling Hofmeister Effects

    PubMed Central

    Hribar-Lee, Barbara; Vlachy, Vojko; Dill, Ken A.

    2009-01-01

    A two dimensional model of water, so-called Mercedes-Benz model, was used to study effects of the size of hydrophobic solute on the insertion thermodynamics in electrolyte solutions. The model was examined by the constant pressure Monte Carlo computer simulation. The results were compared with the experimental data for noble gasses and methane in water and electrolyte solution. The influence of different ions at infinite dilution on the free energy of transfer was explored. Qualitative agreement with the experimental results was obtained. The mechanism of Hofmeister effects was proposed. PMID:20161468

  9. Modeling Hofmeister Effects.

    PubMed

    Hribar-Lee, Barbara; Vlachy, Vojko; Dill, Ken A

    2009-03-11

    A two dimensional model of water, so-called Mercedes-Benz model, was used to study effects of the size of hydrophobic solute on the insertion thermodynamics in electrolyte solutions. The model was examined by the constant pressure Monte Carlo computer simulation. The results were compared with the experimental data for noble gasses and methane in water and electrolyte solution. The influence of different ions at infinite dilution on the free energy of transfer was explored. Qualitative agreement with the experimental results was obtained. The mechanism of Hofmeister effects was proposed.

  10. Finite-Difference Solutions for Compressible Laminar Boundary-Layer Flows of a Dusty Gas over a Semi-Infinite Flat Plate.

    DTIC Science & Technology

    1986-08-01

    AD-A174 952 FINITE - DIFFERENCE SOLUTIONS FOR CONPRESSIBLE LANINAR 1/2 BOUNDARY-LAYER FLOUS (U) TORONTO UNIV DOWNSVIEW (ONTARIO) INST FOR AEROSPACE...dilute dusty gas over a semi-infinite flat plate. Details are given of the impliit finite , difference schemes as well as the boundary conditions... FINITE - DIFFERENCE SOLUTIONS FOR COMPRESSIBLE LAMINAR BOUNDARY-LAYER FLOWS OF A DUSTY GAS OVER A SEMI-INFINITE FLAT PLATE by B. Y. Wang and I. I

  11. Mineral induced phosphorylation of glycolate ion--a metaphor in chemical evolution

    NASA Technical Reports Server (NTRS)

    Kolb, V.; Zhang, S.; Xu, Y.; Arrhenius, G.

    1997-01-01

    Bilateral surface-active minerals with excess positive charge concentrate glycolate and trimetaphosphate ion from l0(-3) m aqueous solution to half-saturation of the internal surface sites, and induce phosphorylation of glycolate ion in the mineral with trimetaphosphate, sorbed from l0(-2) m solution. By utilizing reactants from dilute solution at near-neutral pH, and eliminating the need for participating organic nitrogen compounds, the reaction comprises several elements considered necessary for geochemical realism in models for molecular evolution.

  12. Interactions in Micellar Solutions of β-Casein

    NASA Astrophysics Data System (ADS)

    Leclerc, E.; Calmettes, P.

    1997-01-01

    β-casein is a flexible amphiphilic milk protein which forms spherical micelles in very dilute solution. The magnitude of the weight-average interactions between the solute particles has been inferred from small-angle neutron scattering experiments. At relatively high protein concentrations the interactions between micelles are repulsive, whatever the temperature. At lower concentration these interactions vanish and become more and more attractive when the critical micelle concentration is approached. Although indispensable for micelle formation, this fact seems to have not been previously reported.

  13. Drop-on-demand drop formation of polyethylene oxide solutions

    NASA Astrophysics Data System (ADS)

    Yan, Xuejia; Carr, Wallace W.; Dong, Hongming

    2011-10-01

    The dynamics of drop-on-demand (DOD) drop formation for solutions containing polyethylene oxide (PEO) have been studied experimentally. Using a piezoelectrical actuated inkjet printhead with the nozzle orifice diameter of 53 μm, experiments were conducted for a series of PEO aqueous solutions with molecular weights ranging from 14 to 1000 kg/mol, polydispersity from 1.02 to 2.5, and concentrations from 0.005 to 10 wt. %. The addition of a small amount of PEO can have a significant effect on the DOD drop formation process, increasing breakup time, decreasing primary drop speed, and decreasing the number of satellite drops in some cases. The effects depend on both molecular weight and concentration. At lower molecular weights (14 and 35 kg/mol), the effect of PEO over the dilute solution regime is insignificant even at concentrations large enough that the solution does not fall in the dilute regime. As PEO molecular weight increased, the effects became significant. For monodispersed PEO solutions, breakup time and primary drop speed closely correlated with effective relaxation time but not for polydispersed PEO. Effective relaxation time depended greatly on molecular weight distribution. Viscosity-average molecular weight, used in calculating effective relaxation time for polydispersed PEO solutions, did not adequately account for high molecular fractions in the molecular weight distribution of the polydispersed PEOs. A mixture rule was developed to calculate the effective relaxation times for aqueous solutions containing mixtures of monodispersed PEO, and breakup times and primary drop speeds correlated well with effective relaxation times. For our experiments, DOD drop formation was limited to Deborah number ≲ 23.

  14. [Physicochemical stability study of injectable solutions of cisatracurium besilate in clinical conditions].

    PubMed

    Pignard, J; Bourdeaux, D; Kauffmann, S; Constantin, J M; Sautou, V

    2014-05-01

    To assess the stability of cisatracurium besilate solution stored at 5°C and 25°C. Cisatracurium solutions at 2, 5 and 0.1mg/mL in 0.9 % sodium chloride or 5 % glucose were exposed to 5°C and 25°C under 60 % relative humidity for seven days. The physicochemical stability was assessed at 24, 48hours and seven days with dosage of the active substance, detection of degradation products and a possible racemization, measuring pH, osmolality and turbidity, assessment of coloration, visible particles and invisible particles count. Cisatracurium besilate present good stability for 24hours at 5°C and 25°C for concentrations between 0.1 and 5mg/mL. Beyond 24hours, the solutions at 2 and 5mg/mL remained stable for seven days at 5°C. At 25°C, potentially toxic degradation products appear in solutions of 0.1mg/mL between 24 and 48hours. No racemization was detected, the drug remains in its active form cis. Cisatracurium solutions at 2 and 5mg/mL may be stored at 5°C or 25°C for seven days. It's advisable to keep the solutions in a dilution of 0.1mg/mL in 0.9 % sodium chloride or 5 % glucose in the refrigerator. No diluted solution should be stored at room temperature beyond 24hours. Copyright © 2014 Société française d’anesthésie et de réanimation (Sfar). Published by Elsevier SAS. All rights reserved.

  15. The Dilution Effect and Information Integration in Perceptual Decision Making

    PubMed Central

    Hotaling, Jared M.; Cohen, Andrew L.; Shiffrin, Richard M.; Busemeyer, Jerome R.

    2015-01-01

    In cognitive science there is a seeming paradox: On the one hand, studies of human judgment and decision making have repeatedly shown that people systematically violate optimal behavior when integrating information from multiple sources. On the other hand, optimal models, often Bayesian, have been successful at accounting for information integration in fields such as categorization, memory, and perception. This apparent conflict could be due, in part, to different materials and designs that lead to differences in the nature of processing. Stimuli that require controlled integration of information, such as the quantitative or linguistic information (commonly found in judgment studies), may lead to suboptimal performance. In contrast, perceptual stimuli may lend themselves to automatic processing, resulting in integration that is closer to optimal. We tested this hypothesis with an experiment in which participants categorized faces based on resemblance to a family patriarch. The amount of evidence contained in the top and bottom halves of each test face was independently manipulated. These data allow us to investigate a canonical example of sub-optimal information integration from the judgment and decision making literature, the dilution effect. Splitting the top and bottom halves of a face, a manipulation meant to encourage controlled integration of information, produced farther from optimal behavior and larger dilution effects. The Multi-component Information Accumulation model, a hybrid optimal/averaging model of information integration, successfully accounts for key accuracy, response time, and dilution effects. PMID:26406323

  16. The Dilution Effect and Information Integration in Perceptual Decision Making.

    PubMed

    Hotaling, Jared M; Cohen, Andrew L; Shiffrin, Richard M; Busemeyer, Jerome R

    2015-01-01

    In cognitive science there is a seeming paradox: On the one hand, studies of human judgment and decision making have repeatedly shown that people systematically violate optimal behavior when integrating information from multiple sources. On the other hand, optimal models, often Bayesian, have been successful at accounting for information integration in fields such as categorization, memory, and perception. This apparent conflict could be due, in part, to different materials and designs that lead to differences in the nature of processing. Stimuli that require controlled integration of information, such as the quantitative or linguistic information (commonly found in judgment studies), may lead to suboptimal performance. In contrast, perceptual stimuli may lend themselves to automatic processing, resulting in integration that is closer to optimal. We tested this hypothesis with an experiment in which participants categorized faces based on resemblance to a family patriarch. The amount of evidence contained in the top and bottom halves of each test face was independently manipulated. These data allow us to investigate a canonical example of sub-optimal information integration from the judgment and decision making literature, the dilution effect. Splitting the top and bottom halves of a face, a manipulation meant to encourage controlled integration of information, produced farther from optimal behavior and larger dilution effects. The Multi-component Information Accumulation model, a hybrid optimal/averaging model of information integration, successfully accounts for key accuracy, response time, and dilution effects.

  17. Solubilization of Tea Seed Oil in a Food-Grade Water-Dilutable Microemulsion

    PubMed Central

    Deng, Lingli; Que, Fei; Wei, Hewen; Xu, Guangwei; Dong, Xiaowei; Zhang, Hui

    2015-01-01

    Food-grade microemulsions containing oleic acid, ethanol, Tween 20, and water were formulated as a carrier system for tea seed oil (Camellia oleifera Abel.). The effect of ethanol on the phase behavior of the microemulsion system was clearly reflected in pseudo-ternary diagrams. The solubilization capacity and solubilization efficiency of tea seed oil dispersions were measured along the dilution line at a 70/30 surfactant/oil mass ratio with Tween 20 as the surfactant and oleic acid and ethanol (1:3, w/w) as the oil phase. The dispersed phase of the microemulsion (1.5% weight ratio of tea seed oil to the total amount of oil, surfactant, and tea seed oil) could be fully diluted with water without phase separation. Differential scanning calorimetry and viscosity measurements indicated that both the carrier and solubilized systems underwent a similar microstructure transition upon dilution. The dispersion phases gradually inverted from the water-in-oil phase (< 35% water) to the bicontinuous phase (40–45% water) and finally to the oil-in-water phase (> 45% water) along the dilution line. PMID:25996147

  18. Solubilization of tea seed oil in a food-grade water-dilutable microemulsion.

    PubMed

    Deng, Lingli; Que, Fei; Wei, Hewen; Xu, Guangwei; Dong, Xiaowei; Zhang, Hui

    2015-01-01

    Food-grade microemulsions containing oleic acid, ethanol, Tween 20, and water were formulated as a carrier system for tea seed oil (Camellia oleifera Abel.). The effect of ethanol on the phase behavior of the microemulsion system was clearly reflected in pseudo-ternary diagrams. The solubilization capacity and solubilization efficiency of tea seed oil dispersions were measured along the dilution line at a 70/30 surfactant/oil mass ratio with Tween 20 as the surfactant and oleic acid and ethanol (1:3, w/w) as the oil phase. The dispersed phase of the microemulsion (1.5% weight ratio of tea seed oil to the total amount of oil, surfactant, and tea seed oil) could be fully diluted with water without phase separation. Differential scanning calorimetry and viscosity measurements indicated that both the carrier and solubilized systems underwent a similar microstructure transition upon dilution. The dispersion phases gradually inverted from the water-in-oil phase (< 35% water) to the bicontinuous phase (40-45% water) and finally to the oil-in-water phase (> 45% water) along the dilution line.

  19. Effect of pH on thermal stability of collagen in the dispersed and aggregated states (Short Communication)

    PubMed Central

    Russell, Allan E.

    1974-01-01

    Thermal stabilities of mature insoluble collagen, salt-precipitated fibrils of acid-soluble collagen and acid-soluble collagen in solution were compared as a function of acid pH. Both insoluble and precipitated collagens showed large parallel destabilization with decrease in pH, whereas the intrinsic stability of individual collagen molecules in dilute solution was comparatively unaffected. PMID:4478066

  20. Rapid Configurational Fluctuations in a Model of Methylcellulose

    NASA Astrophysics Data System (ADS)

    Li, Xiaolan; Dorfman, Kevin

    Methylcellulose is a thermoresponsive polymer that undergoes a phase transition at elevated temperature, forming fibrils of a uniform diameter. However, the gelation mechanism is still unclear, in particular at higher polymer concentrations. We have investigated a coarse-grained model for methylcellulose, proposed by Larson and coworkers, that produces collapsed toroids in dilute solution with a radius close to that in experiments. Using Brownian Dynamics simulations, we demonstrate that this model's dihedral potential generates ``flipping events'', which helps the chain to avoid kinetic traps by undergoing a sudden transition between a coiled and a collapsed state. If the dihedral potential is removed, the chains cannot escape from their collapsed configuration, whereas at high dihedral potentials, the chains cannot stabilize the collapsed state. We will present quantitative results on the effect of the dihedral potential on both chain statistics and dynamic behavior, and discuss the implication of our results on the spontaneous formation of high-aspect ratio fibrils in experiments.

  1. Communication: A coil-stretch transition in planar elongational flow of an entangled polymeric melt

    NASA Astrophysics Data System (ADS)

    Nafar Sefiddashti, Mohammad H.; Edwards, Brian J.; Khomami, Bamin

    2018-04-01

    Virtual experimentation of atomistic entangled polyethylene melts undergoing planar elongational flow revealed an amazingly detailed depiction of individual macromolecular dynamics and the resulting effect on bistable configurational states. A clear coil-stretch transition was evident, in much the same form as first envisioned by de Gennes for dilute solutions of high polymers, resulting in an associated hysteresis in the configurational flow profile over the range of strain rates predicted by theory. Simulations conducted at steady state revealed bimodal distribution functions, in which equilibrium configurational states were simultaneously populated by relatively coiled and stretched molecules which could transition from one conformational mode to the other over a relatively long time scale at critical values of strain rates. The implication of such behavior points to a double-well conformational free energy potential with an activation barrier between the two configurational minima.

  2. Self-assembly of star micelle into vesicle in solvents of variable quality: the star micelle retains its core-shell nanostructure in the vesicle.

    PubMed

    Liu, Nijuan; He, Qun; Bu, Weifeng

    2015-03-03

    Intra- and intermolecular interactions of star polymers in dilute solutions are of fundamental importance for both theoretical interest and hierarchical self-assembly into functional nanostructures. Here, star micelles with a polystyrene corona and a small ionic core bearing platinum(II) complexes have been regarded as a model of star polymers to mimic their intra- and interstar interactions and self-assembled behaviors in solvents of weakening quality. In the chloroform/methanol mixture solvents, the star micelles can self-assemble to form vesicles, in which the star micelles shrink significantly and are homogeneously distributed on the vesicle surface. Unlike the morphological evolution of conventional amphiphiles from micellar to vesicular, during which the amphiphilic molecules are commonly reorganized, the star micelles still retain their core-shell nanostructures in the vesicles and the coronal chains of the star micelle between the ionic cores are fully interpenetrated.

  3. Insight into the ionotropic gelation of chitosan using tripolyphosphate and pyrophosphate as cross-linkers.

    PubMed

    Sacco, Pasquale; Paoletti, Sergio; Cok, Michela; Asaro, Fioretta; Abrami, Michela; Grassi, Mario; Donati, Ivan

    2016-11-01

    Ionotropic gelation of chitosan by means of opposite charged ions represents an efficient alternative to covalent reticulation because of milder condition of use and, in general, higher biocompatibility of the resulting systems. In this work 90° light scattering (turbidimetry), circular dichroism (CD) and 1 H NMR measurements have been performed to study the interactions between the biopolymer and ionic cross-linkers tripolyphosphate (TPP) and pyrophosphate (PPi) in dilute solutions. Thereafter, a dialysis-based technique was exploited to fabricate tridimensional chitosan hydrogels based on both polyanions. Resulting matrices showed a different mechanical behavior because of their peculiar mesh-texture at micro/nano-scale: in the present contribution we demonstrate that TPP and PPi favor the formation of homogeneous and inhomogeneous systems, respectively. The different texture of networks could be exploited in future for the preparation of systems for the controlled release of molecules. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Synthesis and characterization of cellulose acetate from rice husk: eco-friendly condition.

    PubMed

    Das, Archana M; Ali, Abdul A; Hazarika, Manash P

    2014-11-04

    Cellulose acetate was synthesized from rice husk by using a simple, efficient, cost-effective and solvent-free method. Cellulose was isolated from rice husk (RH) using standard pretreatment method with dilute alkaline and acid solutions and bleaching with 2% H2O2. Cellulose acetate (CA) was synthesized successfully with the yield of 66% in presence of acetic anhydride and iodine as a catalyst in eco-friendly solvent-free conditions. The reaction parameters were standardized at 80 °C for 300 min and the optimum results were taken for further study. The extent of acetylation was evaluated from % yield and the degree of substitution (DS), which was determined by (1)H NMR and titrimetrically. The synthesized products were characterized with the help modern analytical techniques like FT-IR, (1)H NMR, XRD, etc. and the thermal behavior was evaluated by TGA and DSC thermograms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. X-ray diffraction, IR spectroscopy and thermal characterization of partially hydrolyzed guar gum.

    PubMed

    Mudgil, Deepak; Barak, Sheweta; Khatkar, B S

    2012-05-01

    Guar gum was hydrolyzed using cellulase from Aspergillus niger at 5.6 pH and 50°C temperature. Hydrolyzed guar gum sample was characterized using Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction, dilute solution viscometry and rotational viscometry. Viscometry analysis of native guar gum showed a molecular weight of 889742.06, whereas, after enzymatic hydrolysis, the resultant product had a molecular weight of 7936.5. IR spectral analysis suggests that after enzymatic hydrolysis of guar gum there was no major transformation of functional group. Thermal analysis revealed no major change in thermal behavior of hydrolyzed guar gum. It was shown that partial hydrolysis of guar gum could be achieved by inexpensive and food grade cellulase (Aspergillus niger) having commercial importance and utilization as a functional soluble dietary fiber for food industry. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Chromium as Resonant Donor Impurity in PbTe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielsen, M.D.; Levin, Evgenii; Jaworski, C.M.

    2012-01-25

    We synthesize and perform structural, thermoelectric, magnetic, and 125Te NMR characterization measurements on chromium-doped PbTe. 125Te NMR and magnetic measurements show that Pb1−xCrxTe is a solid solution up to x = 0.4 at.% and forms an n-type dilute paramagnetic semiconductor. The Cr level is resonant and pins the Fermi level about 100 meV into the conduction band at liquid nitrogen temperatures and below, but it moves into the gap as the temperature increases to 300 K. 125Te NMR spectra exhibit a Knight shift that correlates well with Hall effect measurements and resolve peaks of Te near Cr. Magnetic behavior indicatesmore » that Cr exists mainly as Cr2+. No departure from the Pisarenko relation for PbTe is observed. Secondary Cr2Te3 and Cr3+δTe4 phases are present in samples with x > 0.4%.« less

  7. "Structure-making" ability of Na+ in dilute aqueous solution: an ONIOM-XS MD simulation study.

    PubMed

    Sripa, Pattrawan; Tongraar, Anan; Kerdcharoen, Teerakiat

    2013-02-28

    An ONIOM-XS MD simulation has been performed to characterize the "structure-making" ability of Na(+) in dilute aqueous solution. The region of most interest, i.e., a sphere that includes Na(+) and its surrounding water molecules, was treated at the HF level of accuracy using LANL2DZ and DZP basis sets for the ion and waters, respectively, whereas the rest of the system was described by classical pair potentials. Detailed analyzes of the ONIOM-XS MD trajectories clearly show that Na(+) is able to order the structure of waters in its surroundings, forming two prevalent Na(+)(H(2)O)(5) and Na(+)(H(2)O)(6) species. Interestingly, it is observed that these 5-fold and 6-fold coordinated complexes can convert back and forth with some degrees of flexibility, leading to frequent rearrangements of the Na(+) hydrates as well as numerous attempts of inner-shell water molecules to interchange with waters in the outer region. Such a phenomenon clearly demonstrates the weak "structure-making" ability of Na(+) in aqueous solution.

  8. COBALT-60 Gamma Irradiation of Shrimp.

    NASA Astrophysics Data System (ADS)

    Sullivan, Nancy L. B.

    Meta- and ortho-tyrosine were measured using high performance liquid chromatography (HPLC) in conjunction with electrochemical detection in shrimp irradiated using cobalt-60 gamma radiation in the absorbed dose range 0.8 to 6.0 kGy, in nonirradiated shrimp, and in bovine serum albumin (BSA) irradiated in dilute aqueous solution at 25.0 kGy. Ortho-tyrosine was measured in nonirradiated BSA. Para-, meta-, and ortho-tyrosine were measured using HPLC in conjunction with uv-absorption detection in dilute aqueous solutions of phenylalanine irradiated in the absorbed dose range 16.0 to 195.0 kGy. The measured yields of tyrosine isomers were approximately linear as a function of absorbed dose in shrimp, and in irradiated solutions of phenylalanine up to 37.0 kGy. The occurrence of meta- and ortho-tyrosine, which had formerly been considered unique radiolytic products, has not previously been reported in nonirradiated shrimp or BSA. The conventional hydrolyzation and analytical techniques used in the present study to measure meta- and ortho-tyrosine may provide the basis for a method to detect and determine the dose used in food irradiation.

  9. The molecular properties of biochar carbon released in dilute acidic solution and its effects on maize seed germination.

    PubMed

    Sun, Jingling; Drosos, Marios; Mazzei, Pierluigi; Savy, Davide; Todisco, Daniele; Vinci, Giovanni; Pan, Genxing; Piccolo, Alessandro

    2017-01-15

    It is not yet clear whether the carbon released from biochar in the soil solution stimulates biological activities. Soluble fractions (AQU) from wheat and maize biochars, whose molecular content was thoroughly characterized by FTIR, 13 C and 1 H NMR, and high-resolution ESI-IT-TOF-MS, were separated in dilute acidic solution to simulate soil rhizospheric conditions and their effects evaluated on maize seeds germination activity. Elongation of maize-seeds coleoptile was significantly promoted by maize biochar AQU, whereas it was inhibited by wheat biochar AQU. Both AQU fractions contained relatively small heterocyclic nitrogen compounds, whose structures were accounted by their spectroscopic properties. Point-of-Zero-Charge (PZC) values and van Krevelen plots of identified masses of soluble components suggested that the dissolved carbon from maize biochar behaved as humic-like supramolecular material capable to adhere to seedlings and deliver bioactive molecules. These findings contribute to understand the biostimulation potential of biochars from crop biomasses when applied in agricultural production. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. A novel osmosis membrane bioreactor-membrane distillation hybrid system for wastewater treatment and reuse.

    PubMed

    Nguyen, Nguyen Cong; Nguyen, Hau Thi; Chen, Shiao-Shing; Ngo, Huu Hao; Guo, Wenshan; Chan, Wen Hao; Ray, Saikat Sinha; Li, Chi-Wang; Hsu, Hung-Te

    2016-06-01

    A novel approach was designed to simultaneously enhance nutrient removal and reduce membrane fouling for wastewater treatment using an attached growth biofilm (AGB) integrated with an osmosis membrane bioreactor (OsMBR) system for the first time. In this study, a highly charged organic compound (HEDTA(3-)) was employed as a novel draw solution in the AGB-OsMBR system to obtain a low reverse salt flux, maintain a healthy environment for the microorganisms. The AGB-OsMBR system achieved a stable water flux of 3.62L/m(2)h, high nutrient removal of 99% and less fouling during a 60-day operation. Furthermore, the high salinity of diluted draw solution could be effectively recovered by membrane distillation (MD) process with salt rejection of 99.7%. The diluted draw solution was re-concentrated to its initial status (56.1mS/cm) at recovery of 9.8% after 6h. The work demonstrated that novel multi-barrier systems could produce high quality potable water from impaired streams. Copyright © 2016. Published by Elsevier Ltd.

  11. High-Reynolds-number turbulent-boundary-layer wall-pressure fluctuations with dilute polymer solutions

    NASA Astrophysics Data System (ADS)

    Elbing, Brian R.; Winkel, Eric S.; Ceccio, Steven L.; Perlin, Marc; Dowling, David R.

    2010-08-01

    Wall-pressure fluctuations were investigated within a high-Reynolds-number turbulent boundary layer (TBL) modified by the addition of dilute friction-drag-reducing polymer solutions. The experiment was conducted at the U.S. Navy's Large Cavitation Channel on a 12.9 m long flat-plate test model with the surface hydraulically smooth (k+<0.2) and achieving downstream-distance-based Reynolds numbers to 220×106. The polymer (polyethylene oxide) solution was injected into the TBL through a slot in the surface. The primary flow diagnostics were skin-friction drag balances and an array of flush-mounted dynamic pressure transducers 9.8 m from the model leading edge. Parameters varied included the free-stream speed (6.7, 13.4, and 20.2 m s-1) and the injection condition (polymer molecular weight, injection concentration, and volumetric injection flux). The behavior of the pressure spectra, convection velocity, and coherence, regardless of the injection condition, were determined primarily based on the level of drag reduction. Results were divided into two regimes dependent on the level of polymer drag reduction (PDR), nominally separated at a PDR of 40%. The low-PDR regime is characterized by decreasing mean-square pressure fluctuations and increasing convection velocity with increasing drag reduction. This shows that the decrease in the pressure spectra with increasing drag reduction is due in part to the moving of the turbulent structures from the wall. Conversely, with further increases in drag reduction, the high-PDR regime has negligible variation in the mean-squared pressure fluctuations and convection velocity. The convection velocity remains constant at approximately 10% above the baseline-flow convection velocity, which suggests that the turbulent structures no longer move farther from the wall with increasing drag reduction. In light of recent numerical work, the coherence results indicate that in the low-PDR regime, the turbulent structures are being elongated in the streamwise direction and occurring at decreasing frequency. In the high-PDR regime, the rate of occurrence continues to decrease until large-scale coherent turbulent structures are potentially no longer present.

  12. MINTEQA2

    EPA Science Inventory

    MINTEQA2 is a equilibrium speciation model that can be used to calculate the equilibrium composition of dilute aqueous solutions in the laboratory or in natural aqueous systems. The model is useful for calculating the equilibrium mass distribution among dissolved species, adsorb...

  13. Assessment of boric acid and borax using the IEHR evaluative process for assessing human developmental and reproductive toxicity of agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, J.A.

    This document presents an evaluation of the reproductive and developmental effects of boric acid, H3BO3 (CAS Registry No. 10043-35-3) and disodium tetraborate decahydrate or borax, Na2B4O2O(CAS Registry No. 1303-96-4). The element, boron, does not exist naturally. In dilute aqueous solution and at physiological pH (7.4), the predominant species in undissociated boric acid (greater than 98%), irrespective of whether the initial material was boric acid of borax. Therefore, it is both useful and correct to compare exposures and dosages to boric acid and borax in terms of `boron equivalents`, since both materials form equivalent species in dilute aqueous solution with similarmore » systemic effects. In order to be clear in this document, the term `boron` will refer to `boron equivalents` or percent boron in boric acid and borax.« less

  14. Superfluid thermodynamic cycle refrigerator

    DOEpatents

    Swift, G.W.; Kotsubo, V.Y.

    1992-12-22

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of [sup 3]He in a single phase [sup 3]He-[sup 4]He solution. The [sup 3]He in superfluid [sup 4]He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid [sup 3]He at an initial concentration in superfluid [sup 4]He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of [sup 4]He while restricting passage of [sup 3]He. The [sup 3]He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K. 12 figs.

  15. Crowding Shifts the FMN Recognition Mechanism of Riboswitch Aptamer from Conformational Selection to Induced Fit.

    PubMed

    Rode, Ambadas B; Endoh, Tamaki; Sugimoto, Naoki

    2018-06-04

    In bacteria, the binding between the riboswitch aptamer domain and ligand is regulated by environmental cues, such as low Mg 2+ in macrophages during pathogenesis to ensure spatiotemporal expression of virulence genes. Binding was investigated between the flavin mononucleotide (FMN) riboswitch aptamer and its anionic ligand in the presence of molecular crowding agent without Mg 2+ ion, which mimics pathogenic conditions. Structural, kinetic, and thermodynamic analyses under the crowding revealed more dynamic conformational rearrangements of the FMN riboswitch aptamer compared to dilute Mg 2+ -containing solution. It is hypothesized that under crowding conditions FMN binds through an induced fit mechanism in contrast to the conformational selection mechanism previously demonstrated in dilute Mg 2+ solution. Since these two mechanisms involve different conformational intermediates and rate constants, these findings have practical significance in areas such as drug design and RNA engineering. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Finger-like pattern formation in dilute surfactant pentaethylene glycol monododecyl ether solutions.

    PubMed

    Kubo, Yoshihide; Yokoyama, Yasuhiro; Tanaka, Shinpei

    2013-04-07

    We report here peculiar finger-like patterns observed during the phase separation process of dilute micellar pentaethylene glycol monododecyl ether solutions. The patterns were composed of parallel and periodic threads of micelle-rich domains. Prior to this pattern formation, the phase separation always started with the appearance of water-rich domains rimmed by the micelle-rich domains. It was found that these rims played a significant role in the pattern formation. We explain this pattern formation using a simple simulation model with disconnectable springs. The simulation results suggested that the spatially inhomogeneous elasticity or connectivity of a transient gel of worm-like micelles was responsible for the rim formation. The rims thus formed lead rim-induced nucleation, growth, and elongation of the domains owing to their small mobility and the elastic frustration around them. These rim-induced processes eventually produce the observed finger-like patterns.

  17. Effect of hydrogen on fatigue crack propagation in vanadium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, D.W.; Stoloff, N.S.

    The influence of hydrogen on fatigue crack propagation in unalloyed vanadium and several hydrogen-charged vanadium alloys has been investigated. The Paris--Erdogan equation, da/dN = C(..delta..K)/sup m/, was approximately obeyed for all alloys. Crack growth rates were lowest in vanadium and dilute vanadium-hydrogen alloys, and were not very sensitive to volume fraction of hydrides in more concentrated alloys. The crack growth exponent, m, is inversely proportional to the cyclic strain hardening rate, n', and the rate constant C is inversely proportional to the square of the ultimate tensile stress, sigma/sub UTS/: metallographic examination showed hydride reorientation and growth in the originallymore » hydrided alloys. No stress-induced hydrides were observed in V-H solid-solution alloys. Fractures in hydrided materials exhibited cleavage-like features, while striations were noted in unalloyed vanadium and dilute solid-solution alloys.« less

  18. Effect of hydrogen on fatigue crack propagation in vanadium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, D.W.; Stoloff, N.S.

    The influence of hydrogen on fatigue crack propagation in unalloyed vanadium and several hydrogen-charged vanadium alloys has been investigated. The Paris--Erdogan equation, da/dN = C(..delta..K)/sup m/, was approximately obeyed for all alloys. Crack growth rates were lowest in vanadium and dilute vanadium--hydrogen alloys, and were not very sensitive to volume fraction of hydrides in more concentrated alloys. The crack growth exponent, m, is inversely proportional to the cyclic strain hardening rate, n', and the rate constant C is inversely proportional to the square of the ultimate tensile stress, sigma/sub UTS/: metallographic examination showed hydride reorientation and growth in the originallymore » hydrided alloys. No stress-induced hydrides were observed in V--H solid-solution alloys. Fractures in hydrided materials exhibited cleavage-like features, while striations were noted in unalloyed vanadium and dilute solid-solution alloys.« less

  19. Structural and dynamical properties of the V(3+) ion in dilute aqueous solution: An ab initio QM/MM molecular dynamics simulation.

    PubMed

    Kritayakornupong, Chinapong

    2009-12-01

    A hybrid ab initio QM/MM molecular dynamics simulation at the Hartree-Fock level has been performed to investigate structural and dynamical parameters of the V(3+) ion in dilute aqueous solution. A distorted octahedral structure with the average V(3+)-O distance of 1.99 A is evaluated from the QM/MM simulation, which is in good agreement with the X-ray data. Several structural parameters such as angular distribution functions, theta- and tilt-angle distributions have been determined to obtain the full description of the hydration structure of the hydrated V(3+). The Jahn-Teller distortions of the V(3+) ion are pronounced in the QM/MM simulation. The mean residence time of 14.5 ps is estimated for the ligand exchange processes in the second hydration shell. (c) 2009 Wiley Periodicals, Inc.

  20. Superfluid thermodynamic cycle refrigerator

    DOEpatents

    Swift, Gregory W.; Kotsubo, Vincent Y.

    1992-01-01

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of .sup.3 He in a single phase .sup.3 He-.sup.4 He solution. The .sup.3 He in superfluid .sup.4 He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid .sup.3 He at an initial concentration in superfluid .sup.4 He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of .sup.4 He while restricting passage of .sup.3 He. The .sup.3 He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K.

Top