Heydari, Ali; Razavi, Seyed Mohammad Ali; Irani, Mahdi
2018-03-01
In this paper, influence of temperature (25, 35, 45 and 55°C) and sugars (sucrose and lactose) at different concentrations (0, 5, 10 and 15%) on some molecular parameters of starches from two canary seed varieties (C05041 and CDC Maria) in the dilute regime were investigated in comparison to wheat starch (WS). The results indicated that the intrinsic viscosity ([η]) values of C05041, CDC Maria and WS samples were 1.42, 1.46 and 1.70dl/g at 25°C, respectively. Intrinsic viscosity of selected starches decreased with an increase in temperature, but the effect of high temperatures were somewhat unnoticeable. By increasing the sugar concentration, intrinsic viscosity of each starch solution significantly decreased in comparison with the value determined for sugar free solution. Lactose had more pronounced effect on the intrinsic viscosity reduction of CDC Maria starch and WS at 25°C and 35°C compared with sucrose (P<0.05). But at 55°C, the effect of increasing sucrose on decreasing of [η] of CDC Maria and WS samples were more considerable. The shape factor of starch samples at 25°C were spherical, but increasing temperature from 25°C to 55°C, CSSs and WS samples took an ellipsoidal shape. The interaction between starches and solvent/cosolutes is the predominant factors determining their functional properties in food systems. One of the aspects can help to understand the characteristic of biopolymers such as starches is determination of their dilute solution properties as a function of common additives which are used in food systems. As a matter of fact, dilute solution properties can help to understand the potential applications of biopolymers in food and non-food application. Attentively, dilute solution properties would give some priceless information about molecular properties, biopolymer behavior and its interaction with copolymers. For instance, intrinsic viscosity provides deep insight into fundamental properties of the solute and its interaction with the solvent and/or cosolutes, conformation of flexible chains. There are many studies which investigated the effect of different parameters such as temperature, salts and sugars on dilute solution properties of hydrocolloids, especially gums. Regrettably, few researches scrutinized the influence of various cosolutes on dilute solution properties of starch. Then in this paper, we studied the dilute solution properties of starches from two canary seed varieties (C05041 and CDC Maria), as a new potential source of starch, (CSSs), in comparison to wheat starch at different experimental conditions (temperatures and sugars at different concentrations) in order to shed light on its behavior in real system in comparison to wheat starch. Because of the unique properties of wheat starch, comparison of canary seed starch with wheat starch in dilute regime can help to having better vision of this new starch source. Overall, the intrinsic viscosity, coil dimensions (R coil and V coil ), swollen specific volume, shape function, and hydration parameter of selected starches were determined affected by temperature and sugars concentration treatments. The importance of these results will be cleared when taking into account the influence of crucial additives generally used in food systems, for instance, different sugars and/or frequent processing parameters such as temperature on rheological and functional properties. Copyright © 2017 Elsevier B.V. All rights reserved.
Miner, N A; McDowell, J W; Willcockson, G W; Bruckner, N I; Stark, R L; Whitmore, E J
1977-04-01
The properties of stabilized alkaline 2% glutaraldehyde solution (SGS) are discussed. SGS is discussed with regard to its chemistry, antimicrobial properties, organic soil resistance, toxicity, corrosivity and chemical stability. SGS retains the maximum antimicrobial activity of alkaline glutaraldehyde solutions and the chemical stability heretofore observed only with acidic glutaraldehyde solutions. These improvements, along with the inherent resistance of glutaraldehyde to neutralization by organic soil, allow SGS to be continuously used for 14 days in situations of high dilution, or 28 days in situations of low dilution.
Elia, V; Baiano, S; Duro, I; Napoli, E; Niccoli, M; Nonatelli, L
2004-07-01
The purpose of this study was to obtain information about the influence of successive dilutions and succussions on the water structure. 'Extremely diluted solutions' (EDS) are solutions obtained through the iteration of two processes: dilution in stages of 1:100 and succussion, typically used in homeopathic medicine. The iteration is repeated until extreme dilutions are reached, so that the chemical composition of the solution is identical to that of the solvent. Nine different preparations, were studied from the 3cH to 30cH (Hahnemannian Centesimal Dilution). Four of those were without the active principle (potentized water). Two different active principles were used: Arsenicum sulphuratum rubrum (ASR), As4S4, 2,4-dichlorophenoxyacetic acid (2,4D). The solvents were: a solution of sodium bicarbonate and of silicic acid at 5 x 10(-5) M (mol/l) each, and solutions of sodium bicarbonate 5 x 10(-5), 7.5 x 10(-5) and 10 x 10(-5) M (mol/l) in double-distilled water. The containers were Pyrex glass to avoid the release of alkaline oxide and silica from the walls. Conductivity measurements of the solutions were carried out as a function of the age of the potencies. We found increases of electrical conductivity compared to untreated solvent. Successive dilution and succussion can permanently alter the physico-chemical properties of the aqueous solvent. But we also detected changes in physio-chemical parameters with time. This has not previously been reported. The modification of the solvent could provide an important support to the validity of homeopathic medicine, that employs 'medicines without molecules'. The nature of the phenomena here described remains still unexplained, nevertheless some significant experimental results were obtained.
Sulfuric Acid and Water: Paradoxes of Dilution
ERIC Educational Resources Information Center
Leenson, I. A.
2004-01-01
On equilibrium properties of aqueous solutions of sulfuric acid, Julius Thomsen has marked that the heat evolved on diluting liquid sulfuric acid with water is a continuous function of the water used, and excluded absolutely the acceptance of definite hydrates as existing in the solution. Information about thermochemical measurement, a discussion…
NASA Astrophysics Data System (ADS)
Tamano, Shinji; Ohashi, Yota; Morinishi, Yohei
2017-05-01
The dynamics of the falling droplet through a nozzle for dilute nonionic surfactant (oleyl-dimethylamine oxide, ODMAO) aqueous solutions with viscoelastic and drag-reducing properties were investigated at different concentrations of ODMAO solutions Cs = 500, 1000, and 1500 ppm by weight. The effects of the flow rate and tube outer diameter on the length of the filament, which was the distance between the tube exit and the lower end of a droplet at the instant when the droplet almost detached from the tube, were clarified by flow visualization measurements by a high-speed video camera. Two types of breaking-off processes near the base of the droplet and within the filament were classified by the Ohnesorge number Oh and the Weber number We. In the regime of the higher Oh and We, the length of the filament became drastically larger at Cs = 1000 and 1500 ppm, whose high spinnability represented the strong viscoelasticity of ODMAO solutions. In the case where the filament was broken up near the lower end of the neck and thinning in time, the thinning of the diameter of the filament was measured by a light-emitting diode micrometer. As for the elasto-capillary thinning of dilute nonionic surfactant solutions, the initial necking process was similar to that of Newtonian fluids and then followed the exponential thinning like polymer solutions. The apparent elongational viscosity of the dilute nonionic surfactant solution was evaluated in the elasto-capillary thinning regime, in which the elongation rate was almost constant. At Cs = 1000 and 1500 ppm, the Trouton ratio, which was the ratio of the apparent elongational viscosity to the shear viscosity, was found to be several orders of magnitude larger than that of Newtonian fluids, while the shear viscosity measured by the capillary viscometer was almost the same order of the Newtonian fluids. The higher elongational property would be closely related to the higher drag-reducing ability of dilute nonionic surfactant solutions.
de Barros, F P J; Fiori, A; Boso, F; Bellin, A
2015-01-01
Spatial heterogeneity of the hydraulic properties of geological porous formations leads to erratically shaped solute clouds, thus increasing the edge area of the solute body and augmenting the dilution rate. In this study, we provide a theoretical framework to quantify dilution of a non-reactive solute within a steady state flow as affected by the spatial variability of the hydraulic conductivity. Embracing the Lagrangian concentration framework, we obtain explicit semi-analytical expressions for the dilution index as a function of the structural parameters of the random hydraulic conductivity field, under the assumptions of uniform-in-the-average flow, small injection source and weak-to-mild heterogeneity. Results show how the dilution enhancement of the solute cloud is strongly dependent on both the statistical anisotropy ratio and the heterogeneity level of the porous medium. The explicit semi-analytical solution also captures the temporal evolution of the dilution rate; for the early- and late-time limits, the proposed solution recovers previous results from the literature, while at intermediate times it reflects the increasing interplay between large-scale advection and local-scale dispersion. The performance of the theoretical framework is verified with high resolution numerical results and successfully tested against the Cape Cod field data. Copyright © 2015 Elsevier B.V. All rights reserved.
Responsive Copolymers for Enhanced Petroleum Recovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCormick, C.; Hester, R.
The objectives of this work was to: synthesize responsive copolymer systems; characterize molecular structure and solution behavior; measure rheological properties of aqueous fluids in fixed geometry flow profiles; and to tailor final polymer compositions for in situ rheology control under simulated conditions. This report focuses on the synthesis and characterization of novel stimuli responsive copolymers, the investigation of dilute polymer solutions in extensional flow and the design of a rheometer capable of measuring very dilute aqueous polymer solutions at low torque.
Evaluating Transport Properties and Ionic Dissociation of LiPF 6 in Concentrated Electrolyte
Feng, Zhange; Higa, Kenneth; Han, Kee Sung; ...
2017-08-17
The presence of lithium hexafluorophosphate (LiPF 6) ion pairs in carbonate-based electrolyte solutions is widely accepted in the field of battery electrolyte research and is expected to affect solution transport properties. No existing techniques are capable of directly quantifying salt dissociation in these solutions. Previous publications by others have provided estimates of dissociation degrees using dilute solution theory and pulsed field gradient nuclear magnetic resonance spectroscopy (PFG-NMR) measurements of self-diffusivity. However, the behavior of a concentrated electrolyte solution can deviate significantly from dilute solution theory predictions. This paper, for the first time, instead uses Onsager–Stefan–Maxwell concentrated solution theory and themore » generalized Darken relation with PFG-NMR measurements to quantify the degrees of dissociation in electrolyte solutions (LiPF 6 in ethylene carbonate/diethyl carbonate, 1:1 by weight). At LiPF 6 concentrations ranging from 0.1 M to 1.5 M, the salt dissociation degree is found to range from 61% to 37%. Finally, transport properties are then calculated through concentrated solution theory with corrections for these significant levels of ion pairing.« less
Evaluating Transport Properties and Ionic Dissociation of LiPF 6 in Concentrated Electrolyte
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Zhange; Higa, Kenneth; Han, Kee Sung
2017-01-01
The presence of lithium hexafluorophosphate (LiPF6) ion pairs in carbonate-based electrolyte solutions is widely accepted in the field of battery electrolyte research and is expected to affect solution transport properties. No existing techniques are capable of directly quantifying salt dissociation in these solutions. Previous publications by others have provided estimates of dissociation degrees using dilute solution theory and pulsed field gradient nuclear magnetic resonance spectroscopy (PFG-NMR) measurements of self-diffusivity. However, the behavior of a concentrated electrolyte solution can deviate significantly from dilute solution theory predictions. This work, for the first time, instead uses Onsager–Stefan–Maxwell concentrated solution theory and the generalized.more » Darken relation with PFG-NMR measurements to quantify the degrees of dissociation in electrolyte solutions (LiPF6 in ethylene carbonate/diethyl carbonate, 1:1 by weight). At LiPF6 concentrations ranging from 0.1 M to 1.5 M, the salt dissociation degree is found to range from 61% to 37%. Transport properties are then calculated through concentrated solution theory with corrections for these significant levels of ion pairing.« less
A class of nonideal solutions. 1: Definition and properties
NASA Technical Reports Server (NTRS)
Zeleznik, F. J.
1983-01-01
A class of nonideal solutions is defined by constructing a function to represent the composition dependence of thermodynamic properties for members of the class, and some properties of these solutions are studied. The constructed function has several useful features: (1) its parameters occur linearly; (2) it contains a logarithmic singularity in the dilute solution region and contains ideal solutions and regular solutions as special cases; and (3) it is applicable to N-ary systems and reduces to M-ary systems (M or = N) in a form-invariant manner.
NASA Astrophysics Data System (ADS)
Schroeder, Charles
Semi-dilute polymer solutions are encountered in a wide array of applications such as advanced 3D printing technologies. Semi-dilute solutions are characterized by large fluctuations in concentration, such that hydrodynamic interactions, excluded volume interactions, and transient chain entanglements may be important, which greatly complicates analytical modeling and theoretical treatment. Despite recent progress, we still lack a complete molecular-level understanding of polymer dynamics in these systems. In this talk, I will discuss three recent projects in my group to study semi-dilute solutions that focus on single molecule studies of linear and ring polymers and a new method to measure normal stresses in microfluidic devices based on the Stokes trap. In the first effort, we use single polymer techniques to investigate the dynamics of semi-dilute unentangled and semi-dilute entangled DNA solutions in extensional flow, including polymer relaxation from high stretch, transient stretching dynamics in step-strain experiments, and steady-state stretching in flow. In the semi-dilute unentangled regime, our results show a power-law scaling of the longest polymer relaxation time that is consistent with scaling arguments based on the double cross-over regime. Upon increasing concentration, we observe a transition region in dynamics to the entangled regime. We also studied the transient and steady-state stretching dynamics in extensional flow using the Stokes trap, and our results show a decrease in transient polymer stretch and a milder coil-to-stretch transition for semi-dilute polymer solutions compared to dilute solutions, which is interpreted in the context of a critical Weissenberg number Wi at the coil-to-stretch transition. Interestingly, we observe a unique set of polymer conformations in semi-dilute unentangled solutions that are highly suggestive of transient topological entanglements in solutions that are nominally unentangled at equilibrium. Taken together, these results suggest that the transient stretching pathways in semi-dilute solution extensional flows are qualitatively different than for both dilute solutions and for semi-dilute solutions in shear flow. In a second effort, we studied the dynamics of ring polymers in background solutions of semi-dilute linear polymers. Interestingly, we observe strikingly large fluctuations in steady-state polymer extension for ring polymers in flow, which occurs due to the interplay between polymer topology and concentration leading to chain `threading' in flow. In a third effort, we developed a new microfluidic method to measure normal stress and extensional viscosity that can be loosely described as passive yet non-linear microrheology. In particular, we incorporated 3-D particle imaging velocimetry (PIV) with the Stokes trap to study extensional flow-induced particle migration in semi-dilute polymer solutions. Experimental results are analyzed using the framework of a second-order-fluid model, which allows for measurement of normal stress and extensional viscosity in semi-dilute polymer solutions, all of which is a first-of-its-kind demonstration. Microfluidic measurements of extensional viscosity are directly compared to the dripping-onto-substrate or DOS method, and good agreement is generally observed. Overall, our work aims to provide a molecular-level understanding of the role of polymer topology and concentration on bulk rheological properties by using single polymer techniques.
Infinitely dilute partial molar properties of proteins from computer simulation.
Ploetz, Elizabeth A; Smith, Paul E
2014-11-13
A detailed understanding of temperature and pressure effects on an infinitely dilute protein's conformational equilibrium requires knowledge of the corresponding infinitely dilute partial molar properties. Established molecular dynamics methodologies generally have not provided a way to calculate these properties without either a loss of thermodynamic rigor, the introduction of nonunique parameters, or a loss of information about which solute conformations specifically contributed to the output values. Here we implement a simple method that is thermodynamically rigorous and possesses none of the above disadvantages, and we report on the method's feasibility and computational demands. We calculate infinitely dilute partial molar properties for two proteins and attempt to distinguish the thermodynamic differences between a native and a denatured conformation of a designed miniprotein. We conclude that simple ensemble average properties can be calculated with very reasonable amounts of computational power. In contrast, properties corresponding to fluctuating quantities are computationally demanding to calculate precisely, although they can be obtained more easily by following the temperature and/or pressure dependence of the corresponding ensemble averages.
Consideration of some dilute-solution phenomena based on an expression for the Gibbs free energy
NASA Astrophysics Data System (ADS)
Jonah, D. A.
1986-07-01
Rigorous expressions based on the Lennard-Jones (6 12) potential, are presented for the Gibbs and Helmholtz free energy of a dilute mixture. These expressions give the free energy of the mixture in terms of the thermodynamic properties of the pure solvent, thereby providing a convenient means of correlating dilute mixture behavior with that of the pure solvent. Expressions for the following dilute binary solution properties are derived: Henry's constant, limiting activity coefficients with their derivatives, solid solubilities in supercritical gases, and mixed second virial coefficients. The Henry's constant expression suggests a linear temperature dependence; application to solubility data for various gases in methane and water shows a good agreement between theory and experiment. In the thermodynamic modeling of supercritical fluid extraction, we have demonstrated how to predict new solubility-pressure isotherms from a given isotherm, with encouraging results. The mixed second virial coefficient expression has also been applied to experimental data; the agreement with theory is good.
Effective dilution of surfactants due to thinning of the soap film
NASA Astrophysics Data System (ADS)
Sane, Aakash; Mandre, Shreyas; Kim, Ildoo
2017-11-01
A flowing soap film is a system whose hydrodynamic properties can be affected by its thickness. Despite abundant experiments performed using soap films, few have examined the dependence of its physical as well as chemical properties with respect to its thickness. We investigate one such property - surface tension of the flowing film and delineate its dependence on the concentration of the soap solution and flow rate per unit width i.e. thickness of the soap film. Using our proposed method to measure the average surface tension in-situ over the whole soap film, we show that the surface tension increases by reducing the thickness of the film and by reducing the concentration of the soap solution. Our data suggests that thinning of the soap film is effectively diluting the solution. Thinning increases the adsorption of surfactants to the surfaces, but it decreases the total number of molecules per unit area. Our work brings new insight into the physics of soap films and we believe that this effective dilution due to thinning is a signature of the flowing soap films, whose surface concentration of surfactants is affected by the thickness.
Substituent effect on photophysical properties of bi-1,3,4-oxadiazole derivatives in solution
NASA Astrophysics Data System (ADS)
Chen, Fangyi; Tian, Taiji; Zhao, Chengxiao; Bai, Binglian; Li, Min; Wang, Haitao
2016-04-01
A series of phenyl substituted bi-1,3,4-oxadiazole derivatives were designed and synthesized; the effect of substituent on the photophysical properties and molecular electronic structures was fully studied by the combination of experimental techniques and theoretical calculations. Compared to parent compound without any substituent (BOXD), fluoro-substituent shows little effect on the absorption and emission spectra, whilst a little larger spectral red-shift could be observed for methoxy-, nitro-substituted derivatives and thienyl-substituted bi-1,3,4-oxadiazole (TBOXD). These spectral changes can be well explained by theoretically calculated HOMO and LUMO energy level changes. All these molecules show high fluorescence quantum yield except for nitro-substituted derivative in dilute solutions. The quantum yield of BOXD changes with the concentration and exhibits a high value at the concentrated solution. This work revealed the influence of substituent on the photophysical properties of bi-1,3,4-oxadizaole derivatives in dilute solutions and provided guidance for designing molecules with potential application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Zhange; Higa, Kenneth; Han, Kee Sung
The presence of lithium hexafluorophosphate (LiPF 6) ion pairs in carbonate-based electrolyte solutions is widely accepted in the field of battery electrolyte research and is expected to affect solution transport properties. No existing techniques are capable of directly quantifying salt dissociation in these solutions. Previous publications by others have provided estimates of dissociation degrees using dilute solution theory and pulsed field gradient nuclear magnetic resonance spectroscopy (PFG-NMR) measurements of self-diffusivity. However, the behavior of a concentrated electrolyte solution can deviate significantly from dilute solution theory predictions. This paper, for the first time, instead uses Onsager–Stefan–Maxwell concentrated solution theory and themore » generalized Darken relation with PFG-NMR measurements to quantify the degrees of dissociation in electrolyte solutions (LiPF 6 in ethylene carbonate/diethyl carbonate, 1:1 by weight). At LiPF 6 concentrations ranging from 0.1 M to 1.5 M, the salt dissociation degree is found to range from 61% to 37%. Finally, transport properties are then calculated through concentrated solution theory with corrections for these significant levels of ion pairing.« less
Infinitely Dilute Partial Molar Properties of Proteins from Computer Simulation
2015-01-01
A detailed understanding of temperature and pressure effects on an infinitely dilute protein’s conformational equilibrium requires knowledge of the corresponding infinitely dilute partial molar properties. Established molecular dynamics methodologies generally have not provided a way to calculate these properties without either a loss of thermodynamic rigor, the introduction of nonunique parameters, or a loss of information about which solute conformations specifically contributed to the output values. Here we implement a simple method that is thermodynamically rigorous and possesses none of the above disadvantages, and we report on the method’s feasibility and computational demands. We calculate infinitely dilute partial molar properties for two proteins and attempt to distinguish the thermodynamic differences between a native and a denatured conformation of a designed miniprotein. We conclude that simple ensemble average properties can be calculated with very reasonable amounts of computational power. In contrast, properties corresponding to fluctuating quantities are computationally demanding to calculate precisely, although they can be obtained more easily by following the temperature and/or pressure dependence of the corresponding ensemble averages. PMID:25325571
An investigation of the critical liquid-vapor properties of dilute KCl solutions
Potter, R.W.; Babcock, R.S.; Czamanske, G.K.
1976-01-01
The three parameters that define the critical point, temperature, pressure, and volume have been experimentally determined by means of filling studies in a platinum-lined system for five KCl solutions ranging from 0.006 to 0.568 m. The platinum-lined vessels were used to overcome the problems with corrosion experienced by earlier workers. The critical temperature (tc), pressure (Pc), and volume (Vc) were found to fit the equations {Mathematical expression} from infinite dilution to 1.0 m. ?? 1976 Plenum Publishing Corporation.
Transport properties of dilute α -Fe (X ) solid solutions (X = C, N, O)
NASA Astrophysics Data System (ADS)
Schuler, Thomas; Nastar, Maylise
2016-06-01
We extend the self-consistent mean field (SCMF) method to the calculation of the Onsager matrix of Fe-based interstitial solid solutions. Both interstitial jumps and substitutional atom-vacancy exchanges are accounted for. A general procedure is introduced to split the Onsager matrix of a dilute solid solution into intrinsic cluster Onsager matrices, and extract from them flux-coupling ratios, mobilities, and association-dissociation rates for each cluster. The formalism is applied to vacancy-interstitial solute pairs in α -Fe (V X pairs, X = C, N, O), with ab initio based thermodynamic and kinetic parameters. Convergence of the cluster mobility contribution gives a controlled estimation of the cluster definition distance, taking into account both its thermodynamic and kinetic properties. Then, the flux-coupling behavior of each V X pair is discussed, and qualitative understanding is achieved from the comparison between various contributions to the Onsager matrix. Also, the effect of low-activation energy second-nearest-neighbor interstitial solute jumps around a vacancy on these results is addressed.
Alaeddini, Behzad; Koocheki, Arash; Mohammadzadeh Milani, Jafar; Razavi, Seyed Mohammad Ali; Ghanbarzadeh, Babak
2018-05-01
Alyssum homolocarpum seed gum (AHSG) solution exhibits high viscosity at low shear rates and has anionic features. However there is no information regarding the flow and dynamic properties of this gum in semi-dilute solutions. The present study aimed to investigate the dynamic and steady shear behavior of AHSG in the semi-dilute region. The viscosity profile demonestrated a shear thinning behavior at all temperatures and concentrations. An increase in the AHSG concentration was acompanied by an increase in the pseudoplasticity degree, whereas, by increasing the temperature, the pseudoplasticity of AHSG decreased. At low gum concentration, solutions had more viscosity dependence on temperature. The mechanical spectra obtained from the frequency sweep experiment demonstrated viscoelastic properties for gum solutions. AHSG solutions showed typical weak gel-like behavior, revealing G' greater than G' within the experimental range of frequency (Hz), with slight frequency dependency. The influence of temperature on viscoelastic properties of AHSG solutions was studied during both heating (5-85 °C) and cooling (85-5 °C) processes. The complex viscosity of AHSG was greater compared to the apparent viscosity, indicating the disruption of AHSG network structure under continuous shear rates and deviation from the Cox-Merz rule. During the initial heating, the storage modulus showed a decreasing trend and, with a further increase in temperature, the magnitude of storage modulus increased. The influence of temperature on the storage modulus was considerable when a higher heating rate was applied. AHSG can be applied as a thickening and stabilizing agents in food products that require good stability against temperature. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Thermodynamics of Dilute Solutions.
ERIC Educational Resources Information Center
Jancso, Gabor; Fenby, David V.
1983-01-01
Discusses principles and definitions related to the thermodynamics of dilute solutions. Topics considered include dilute solution, Gibbs-Duhem equation, reference systems (pure gases and gaseous mixtures, liquid mixtures, dilute solutions), real dilute solutions (focusing on solute and solvent), terminology, standard states, and reference systems.…
Raut, Ashlesha S; Kalonia, Devendra S
2015-04-01
Opalescence indicates physical instability of a formulation because of the presence of aggregates or liquid-liquid phase separation in solution and has been reported for monoclonal antibody (mAb) formulations. Increased solution opalescence can be attributed to attractive protein-protein interactions (PPIs). Techniques including light scattering, AUC, or membrane osmometry are routinely employed to measure PPIs in dilute solutions, whereas opalescence is seen at relatively higher concentrations, where both long- and short-range forces contribute to overall PPIs. The mAb molecule studied here shows a unique property of high opalescence because of liquid-liquid phase separation. In this study, opalescence measurements are correlated to PPIs measured in diluted and concentrated solutions using light scattering (kD ) and high-frequency rheology (G'), respectively. Charges on the molecules were calculated using zeta potential measurements. Results indicate that high opalescence and phase separation are a result of the attractive interactions in solution; however, the presence of attractive interactions do not always imply phase separation. Temperature dependence of opalescence suggests that thermodynamic contribution to opalescence is significant and Tcloud can be utilized as a potential tool to assess attractive interactions in solution. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Garnier, Cédric; Mounier, Stéphane; Benaïm, Jean Yves
2004-10-01
Natural organic matter (NOM) behaviour towards proton is an important parameter to understand NOM fate in the environment. Moreover, it is necessary to determine NOM acid-base properties before investigating trace metals complexation by natural organic matter. This work focuses on the possibility to determine these acid-base properties by accurate and simple titrations, even at low organic matter concentrations. So, the experiments were conducted on concentrated and diluted solutions of extracted humic and fulvic acid from Laurentian River, on concentrated and diluted model solutions of well-known simple molecules (acetic and phenolic acids), and on natural samples from the Seine river (France) which are not pre-concentrated. Titration experiments were modelled by a 6 acidic-sites discrete model, except for the model solutions. The modelling software used, called PROSECE (Programme d'Optimisation et de SpEciation Chimique dans l'Environnement), has been developed in our laboratory, is based on the mass balance equilibrium resolution. The results obtained on extracted organic matter and model solutions point out a threshold value for a confident determination of the studied organic matter acid-base properties. They also show an aberrant decreasing carboxylic/phenolic ratio with increasing sample dilution. This shift is neither due to any conformational effect, since it is also observed on model solutions, nor to ionic strength variations which is controlled during all experiments. On the other hand, it could be the result of an electrode troubleshooting occurring at basic pH values, which effect is amplified at low total concentration of acidic sites. So, in our conditions, the limit for a correct modelling of NOM acid-base properties is defined as 0.04 meq of total analysed acidic sites concentration. As for the analysed natural samples, due to their high acidic sites content, it is possible to model their behaviour despite the low organic carbon concentration.
THE PREPARATION AND PROPERTIES OF HIGHLY PURIFIED ASCORBIC ACID OXIDASE
Powers, Wendell H.; Lewis, Stanley; Dawson, Charles R.
1944-01-01
1. A method is described for the preparation of a highly purified ascorbic acid oxidase containing 0.24 per cent copper. 2. Using comparable activity measurements, this oxidase is about one and a half times as active on a dry weight basis as the hitherto most highly purified preparation described by Lovett-Janison and Nelson. The latter contained 0.15 per cent copper. 3. The oxidase activity is proportional to the copper content and the proportionality factor is the same as that reported by Lovett-Janison and Nelson. 4. When dialyzed free of salt, the blue concentrated oxidase solutions precipitate a dark green-blue protein which carries the activity. This may be prevented by keeping the concentrated solutions about 0.1 M in Na2HPO4. 5. When highly diluted for activity measurements the oxidase rapidly loses activity (irreversibly) previous to the measurement, unless the dilution is made with a dilute inert protein (gelatin) solution. Therefore activity values obtained using such gelatin-stabilized dilute solutions of the oxidase run considerably higher than values obtained by the Lovett-Janison and Nelson technique. 6. The effect of pH and substrate concentration on the activity of the purified oxidase in the presence and absence of inert protein was studied. PMID:19873382
Dilution Confusion: Conventions for Defining a Dilution
ERIC Educational Resources Information Center
Fishel, Laurence A.
2010-01-01
Two conventions for preparing dilutions are used in clinical laboratories. The first convention defines an "a:b" dilution as "a" volumes of solution A plus "b" volumes of solution B. The second convention defines an "a:b" dilution as "a" volumes of solution A diluted into a final volume of "b". Use of the incorrect dilution convention could affect…
Monkos, Karol
2013-03-01
The paper presents the results of viscosity determinations on aqueous solutions of human serum albumin (HSA) at isoelectric point over a wide range of concentrations and at temperatures ranging from 5°C to 45°C. On the basis of a modified Arrhenius equation and Mooney's formula some hydrodynamic parameters were obtained. They are compared with those previously obtained for HSA in solutions at neutral pH. The activation energy and entropy of viscous flow and the intrinsic viscosity reach a maximum value, and the effective specific volume, the self-crowding factor and the Huggins coefficient a minimum value in solutions at isoelectric point. Using the dimensionless parameter [η]c, the existence of three ranges of concentrations: diluted, semi-diluted and concentrated, was shown. By applying Lefebvre's relation for the relative viscosity in the semi-dilute regime, the Mark-Houvink-Kuhn-Sakurada (MHKS) exponent was established. The analysis of the results obtained from the three ranges of concentrations showed that both conformation and stiffness of HSA molecules in solutions at isoelectric point and at neutral pH are the same.
Gillet, Sébastien; Aguedo, Mario; Petrut, Raul; Olive, Gilles; Anastas, Paul; Blecker, Christophe; Richel, Aurore
2017-03-01
Two fractions of carob galactomannans (GM25 and GM80) were extracted at respectively 25°C and 80°C from crude locust bean gum. Those fractions having slightly different chemical structures, previously characterized, were studied for their viscosity properties over a wide range of concentrations: diluted solution, unperturbed state and gel state. For each of the physical properties, links to the chemical fine structure could be established, expanding knowledge on the topic: in dilute solution, GM25 is more soluble in water while GM80 seems to tend to self-association due to its structure as highlighted by intrinsic viscosity measurements ([η] GM25 =9.96dLg -1 and [η] GM80 =4.04dLg -1 ). In unperturbed state, initial viscosities η 0 were more important for GM80 fractions at 1% and 2% due to greater hyperentanglements (η 0(GM80,1%) =9.9Pas; η 0(GM80,2%) =832.0; Pa.s η 0(GM25,1%) =3.1Pas; η 0(GM25,2%) =45.1Pas). In gel state, hydrogels obtained from GM80 were also stronger (hardness GM80 (2%)=0.51N and hardness GM25 (2%)=0.11N), suggesting a much more important number of junction areas within the gel network. The findings discussed herein demonstrate the potential for new applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Molecular Dynamic Simulation of Diffusion Coefficients for Alkanols in Supercritical CO2 1
NASA Astrophysics Data System (ADS)
Li, Zhiwei; Lai, Shuhui; Gao, Wei; Chen, Liuping
2018-07-01
The infinite dilution diffusion coefficients ( D 12) of methanol, ethanol, 1-propanol, 1-butanol and 1-pentanol in supercritical CO2 (scCO2) at 313.2 K and 10-16 MPa were simulated by molecular dynamics (MD) simulation. The microscopic structure was also analyzed by calculation of the radial distribution function, coordination number (CN) between the center mass of solute and solvent molecules, and the average number of hydrogen bonding of this system. In infinite dilute solution, the probability of forming hydrogen bond between alkanol molecules is greatly reduced relative to pure alkanol fluid, and the weak hydrogen bonds formed between alkanol and CO2 molecules. In general, this work provides a reliable simulation method for transfer properties of solutes in scCO2. The prediction data were provides for the design and development of chemical processing. The results are helpful for one to deeper understand the relationship between microscopic structures of fluid and its transfer properties.
Nonequilibrium thermodynamics of dilute polymer solutions in flow.
Latinwo, Folarin; Hsiao, Kai-Wen; Schroeder, Charles M
2014-11-07
Modern materials processing applications and technologies often occur far from equilibrium. To this end, the processing of complex materials such as polymer melts and nanocomposites generally occurs under strong deformations and flows, conditions under which equilibrium thermodynamics does not apply. As a result, the ability to determine the nonequilibrium thermodynamic properties of polymeric materials from measurable quantities such as heat and work is a major challenge in the field. Here, we use work relations to show that nonequilibrium thermodynamic quantities such as free energy and entropy can be determined for dilute polymer solutions in flow. In this way, we determine the thermodynamic properties of DNA molecules in strong flows using a combination of simulations, kinetic theory, and single molecule experiments. We show that it is possible to calculate polymer relaxation timescales purely from polymer stretching dynamics in flow. We further observe a thermodynamic equivalence between nonequilibrium and equilibrium steady-states for polymeric systems. In this way, our results provide an improved understanding of the energetics of flowing polymer solutions.
NASA Astrophysics Data System (ADS)
Seo, Dongwan; Na, Jihoon; Lee, Seunghyo; Lim, Sangwoo
2017-03-01
Gallium antimonide (GaSb) and indium antimonide (InSb) have attracted strong attention as new channel materials for transistors due to their excellent electrical properties and lattice matches with various group III-V compound semiconductors. In this study, the surface behavior of GaSb (100) and InSb (100) was investigated and compared in hydrochloric acid/hydrogen peroxide mixture (HPM) and ammonium hydroxide/hydrogen peroxide mixture (APM) solutions. In the acidic HPM solution, surface oxidation was greater and the etching rates of the GaSb and InSb surfaces increased when the solution is concentrated, which indicates that H2O2 plays a key role in the surface oxidation of GaSb and InSb in acidic HPM solution. However, the GaSb and InSb surfaces were hardly oxidized in basic APM solution in the presence of H2O2 because gallium and indium are in the thermodynamically stable forms of H2GaO3- and InO2-, respectively. When the APM solution was diluted, however, the Ga on the GaSb surface was oxidized by H2O, increasing the etching rate. However, the effect of dilution of the APM solution on the oxidation of the InSb surface was minimal; thus, the InSb surface was less oxidized than the GaSb surface and the change in the etching rate of InSb with dilution of the APM solution was not significant. Additionally, the oxidation behavior of gallium and indium was more sensitive to the composition of the HPM and APM solutions than that of antimony. Therefore, the surface properties and etching characteristics of GaSb and InSb in HPM and APM solutions are mainly dependent on the behavior of the group III elements rather than the group V elements.
An overview of self-consistent methods for fiber-reinforced composites
NASA Technical Reports Server (NTRS)
Gramoll, Kurt C.; Freed, Alan D.; Walker, Kevin P.
1991-01-01
The Walker et al. (1989) self-consistent method to predict both the elastic and the inelastic effective material properties of composites is examined and compared with the results of other self-consistent and elastically based solutions. The elastic part of their method is shown to be identical to other self-consistent methods for non-dilute reinforced composite materials; they are the Hill (1965), Budiansky (1965), and Nemat-Nasser et al. (1982) derivations. A simplified form of the non-dilute self-consistent method is also derived. The predicted, elastic, effective material properties for fiber reinforced material using the Walker method was found to deviate from the elasticity solution for the v sub 31, K sub 12, and mu sub 31 material properties (fiber is in the 3 direction) especially at the larger volume fractions. Also, the prediction for the transverse shear modulus, mu sub 12, exceeds one of the accepted Hashin bounds. Only the longitudinal elastic modulus E sub 33 agrees with the elasticity solution. The differences between the Walker and the elasticity solutions are primarily due to the assumption used in the derivation of the self-consistent method, i.e., the strain fields in the inclusions and the matrix are assumed to remain constant, which is not a correct assumption for a high concentration of inclusions.
The effect of cleaning procedures on fracture properties and corrosion of NiTi files.
O'Hoy, P Y Z; Messer, H H; Palamara, J E A
2003-11-01
To evaluate the effect of repeated cleaning procedures on fracture properties and corrosion of nickel-titanium (NiTi) files. New NiTi instruments were subjected to 2, 5 and 10 cleaning cycles with the use of either diluted bleach (1% NaOCl) or Milton's solution (1% NaOCl plus 19% NaCl) as disinfectant. Each cleaning cycle consisted of scrubbing, rinsing and immersing in NaOCl for 10 min followed by 5 min of ultrasonication. Files were then tested for torsional failure and flexural fatigue, and observed for evidence of corrosion using scanning electron microscope (SEM). Four brands of NiTi files were immersed in either Milton's solution or diluted bleach overnight and evaluated for corrosion. Up to 10 cleaning cycles did not significantly reduce the torque at fracture or number of revolutions to flexural fatigue (P > 0.05, two-way anova), although decreasing values were noted with increasing number of cleaning cycles using Milton's solution. No corrosion was detected on the surface of these files. Files immersed in 1% NaOCl overnight displayed a variety of corrosion patterns. The extent of corrosion was variable amongst different brands of files and amongst files in each brand. Overall, Milton's solution was much more corrosive than diluted bleach. Corrosion of file handles was often extreme. Files can be cleaned up to 10 times without affecting fracture susceptibility or corrosion, but should not be immersed in NaOCl overnight. Milton's solution is much more corrosive than bleach with the same NaOCl concentration.
Structure and Properties of Polyurethanes. Part 1,
1979-03-23
solutions or from the investigations of the sorption of vapors by polymers, or from data in mechanical and relaxation properties. PROPERTIES OF DILUTE...well explained independent of a number of short rigid units in molecules by the theories, developed for linear networks. SORPTION PROPERTIES OP...of tue sorption of vapors of solvents by polymers and determination according to the law of Raoult of the effective (seeming) molar fraction of polymer
NASA Astrophysics Data System (ADS)
Cannavacciuolo, Luigi; Skov Pedersen, Jan; Schurtenberger, Peter
2002-03-01
Results of an extensive Monte Carlo (MC) study on both single and many semiflexible charged chains with excluded volume (EV) are summarized. The model employed has been tailored to mimic wormlike micelles in solution. Simulations have been performed at different ionic strengths of added salt, charge densities, chain lengths and volume fractions Φ, covering the dilute to concentrated regime. At infinite dilution the scattering functions can be fitted by the same fitting functions as for uncharged semiflexible chains with EV, provided that an electrostatic contribution bel is added to the bare Kuhn length. The scaling of bel is found to be more complex than the Odijk-Skolnick-Fixman predictions, and qualitatively compatible with more recent variational calculations. Universality in the scaling of the radius of gyration is found if all lengths are rescaled by the total Kuhn length. At finite concentrations, the simple model used is able to reproduce the structural peak in the scattering function S(q) observed in many experiments, as well as other properties of polyelectrolytes (PELs) in solution. Universal behaviour of the forward scattering S(0) is established after a rescaling of Φ. MC data are found to be in very good agreement with experimental scattering measurements with equilibrium PELs, which are giant wormlike micelles formed in mixtures of nonionic and ionic surfactants in dilute aqueous solution, with added salt.
Thermodynamic properties of hyperbranched polymer, Boltorn U3000, using inverse gas chromatography.
Domańska, Urszula; Zołek-Tryznowska, Zuzanna
2009-11-19
Mass-fraction activity coefficients at infinite dilution (Omega13(infinity)) of alkanes (C5-C10), cycloalkanes (C5-C8), alkenes (C5-C8), alkynes (C5-C8), aromatic hydrocarbons (benzene, toluene, ethylbenzene, o-, m-, p-xylene, thiophene), alcohols (C1-C5), water, ethers (tetrahydrofuran (THF), methyl-tert-butylether (MTBE), diethyl-, di-n-propyl-, di-n-butyl ether), and ketones (propanone, 2-pentanone, 3-pentanone, 2-hexanone, 3-hexanone, cyclopentanone) in the hyperbranched polymer, Boltorn U3000 (B-U3000), have been determined by inverse gas chromatography (IGC) using the polymer as the stationary phase. The measurements were carried out at different temperatures between 308.15 and 348.15 K. The density and thermophysical properties of polymer were described. The specific retention volume (V(g)), the Flory-Huggins interaction parameter (chi13(infinity)), the molar enthalpy of sorption (the partial molar enthalpies of solute dissolution) (Delta(s)H), the partial molar excess enthalpy at infinite dilution of the solute and polymer (DeltaH1(E,infinity)), the partial molar Gibbs excess energy at infinite dilution (DeltaG1(E,infinity)), and the solubility parameter (delta3) were calculated.
NASA Astrophysics Data System (ADS)
Kumar, A.; Marcolli, C.; Luo, B.; Krieger, U. K.; Peter, T.
2017-12-01
Semivolatile species present in the atmosphere are prone to adhere to mineral dust particle surfaces during long range transport, and could potentially change the particle surface properties and its ice nucleation (IN) efficiency. Immersion freezing experiments were performed with microcline (K-feldspar), known to be highly IN active, suspended in aqueous solutions of ammonia, (NH4)2SO4, NH4HSO4, NH4NO3, NH4Cl, Na2SO4, H2SO4, K2SO4 and KCl to investigate the effect of solutes on the IN efficiency. Freezing of emulsified droplets investigated with a differential scanning calorimeter (DSC) showed that the heterogeneous ice nucleation temperatures deviate from the water activity-based IN theory, describing heterogeneous ice nucleation temperatures as a function of solution water activity by a constant offset with respect to the ice melting point curve (Zobrist et al. 2008). IN temperatures enhanced up to 4.5 K were observed for very dilute NH3 and NH4+-containing solutions while a decrease was observed as the concentration was further increased. For all solutes with cations other than NH4+, the IN efficiency decreased. An increase of the IN efficiency in very dilute NH3 and NH4+-containing solutions followed by a decrease with increasing concentration was also observed for sanidine (K-feldspar) and andesine (Na/Ca-feldspar). This is an important indication towards specific chemical interactions between solutes and the feldspar surface which is not captured by the water activity-based IN theory. A similar trend is present but less pronounced in case of kaolinite and mica, while quartz is barely affected. We hypothesize that the hydrogen bonding of NH3 molecules with surface -OH groups could be the reason for the enhanced freezing temperatures in dilute ammonia and ammonium containing solutions as they could form an ice-like overlayer providing hydrogen bonding groups for ice to nucleate on top of it. This implies to possibilities of enhanced IN efficiency, especially in mixed-phase cloud regime, of ammonium sulfate coated mineral dust particles in the condensation mode when the coating dilutes during cloud droplet activation.
Connolly, Brian D.; Petry, Chris; Yadav, Sandeep; Demeule, Barthélemy; Ciaccio, Natalie; Moore, Jamie M.R.; Shire, Steven J.; Gokarn, Yatin R.
2012-01-01
Weak protein-protein interactions are thought to modulate the viscoelastic properties of concentrated antibody solutions. Predicting the viscoelastic behavior of concentrated antibodies from their dilute solution behavior is of significant interest and remains a challenge. Here, we show that the diffusion interaction parameter (kD), a component of the osmotic second virial coefficient (B2) that is amenable to high-throughput measurement in dilute solutions, correlates well with the viscosity of concentrated monoclonal antibody (mAb) solutions. We measured the kD of 29 different mAbs (IgG1 and IgG4) in four different solvent conditions (low and high ion normality) and found a linear dependence between kD and the exponential coefficient that describes the viscosity concentration profiles (|R| ≥ 0.9). Through experimentally measured effective charge measurements, under low ion normality where the electroviscous effect can dominate, we show that the mAb solution viscosity is poorly correlated with the mAb net charge (|R| ≤ 0.6). With this large data set, our results provide compelling evidence in support of weak intermolecular interactions, in contrast to the notion that the electroviscous effect is important in governing the viscoelastic behavior of concentrated mAb solutions. Our approach is particularly applicable as a screening tool for selecting mAbs with desirable viscosity properties early during lead candidate selection. PMID:22828333
Sun, Jingling; Drosos, Marios; Mazzei, Pierluigi; Savy, Davide; Todisco, Daniele; Vinci, Giovanni; Pan, Genxing; Piccolo, Alessandro
2017-01-15
It is not yet clear whether the carbon released from biochar in the soil solution stimulates biological activities. Soluble fractions (AQU) from wheat and maize biochars, whose molecular content was thoroughly characterized by FTIR, 13 C and 1 H NMR, and high-resolution ESI-IT-TOF-MS, were separated in dilute acidic solution to simulate soil rhizospheric conditions and their effects evaluated on maize seeds germination activity. Elongation of maize-seeds coleoptile was significantly promoted by maize biochar AQU, whereas it was inhibited by wheat biochar AQU. Both AQU fractions contained relatively small heterocyclic nitrogen compounds, whose structures were accounted by their spectroscopic properties. Point-of-Zero-Charge (PZC) values and van Krevelen plots of identified masses of soluble components suggested that the dissolved carbon from maize biochar behaved as humic-like supramolecular material capable to adhere to seedlings and deliver bioactive molecules. These findings contribute to understand the biostimulation potential of biochars from crop biomasses when applied in agricultural production. Copyright © 2016 Elsevier B.V. All rights reserved.
Mossbauer effect in dilute iron alloys
NASA Technical Reports Server (NTRS)
Singh, J. J.
1975-01-01
The effects of variable concentration, x, of Aluminum, Germanium, and Lanthanum atoms in Iron lattice on various Mossbauer parameters was studied. Dilute binary alloys of (Fe-Al), (Fe-Ge), (Fe-Al) containing up to x = 2 a/o of the dilute constituent were prepared in the form of ingots and rolled to a thickness of 0.001 in. Mossbauer spectra of these targets were then studied in transmission geometry to measure changes in the hyperfine field, peak widths isomer shifts as well as the ratio of the intensities of peaks (1,6) to the intensities of peaks (2,5). It was shown that the concept of effective hyperfine structure field in very dilute alloys provides a useful means of studying the effects of progressively increasing the solute concentration on host lattice properties.
THE ANTIBACTERIAL PROPERTIES OF SULFUR
Weld, Julia T.; Gunther, Anne
1947-01-01
1. Saturated solutions of sulfur in alcohol (alcohol-sulfur) when diluted with broth are inhibitory to the growth of various Gram-positive bacteria and to C. hominis. By an arbitrary method of unitage with S. aureus as the test organism, our alcohol-sulfur contains 1,600 to 2,000 units per cc. and one unit contains between 0.24 and 0.34 gamma sulfur. The activity of a preparation is in general directly proportional to its sulfur content. 2. Solutions of sulfur in carbowax (carbowax-sulfur) when diluted with broth are likewise inhibitory to the growth of various Gram-positive bacteria and to C. hominis. When S. aureus is used as test organism, 1 unit contains between 0.1 and 0.2 gamma sulfur. The activity of these preparations is also in general directly proportional to their sulfur content. 3. Carbowax-sulfur when incorporated in agar in 1–500 to 1–2,000 dilution inhibits the growth of various Gram-positive aerobic and anaerobic bacteria, C. hominis, and certain dermatophytes. 4. Our experiments appear to show that both alcohol-sulfur and carbowax-sulfur owe their inhibitory properties to the sulfur particles that are dispersed throughout the medium when these sulfur preparations are diluted with broth. The inhibitory effect of these particles may or may not be due to a combination of the sulfur particles with substances in the medium in which they are suspended. 5. Evidence suggests that the activity of both alcohol-sulfur and carbowax-sulfur is due to sulfur in the same form. The inhibitory effect is characterized by prolonged bacteriostasis with similar activity over a wide range of dilutions. There is no evidence of true bactericidal action even with the highest concentrations used. PMID:19871634
Conversion of depleted uranium hexafluoride to a solid uranium compound
Rothman, Alan B.; Graczyk, Donald G.; Essling, Alice M.; Horwitz, E. Philip
2001-01-01
A process for converting UF.sub.6 to a solid uranium compound such as UO.sub.2 and CaF. The UF.sub.6 vapor form is contacted with an aqueous solution of NH.sub.4 OH at a pH greater than 7 to precipitate at least some solid uranium values as a solid leaving an aqueous solution containing NH.sub.4 OH and NH.sub.4 F and remaining uranium values. The solid uranium values are separated from the aqueous solution of NH.sub.4 OH and NH.sub.4 F and remaining uranium values which is then diluted with additional water precipitating more uranium values as a solid leaving trace quantities of uranium in a dilute aqueous solution. The dilute aqueous solution is contacted with an ion-exchange resin to remove substantially all the uranium values from the dilute aqueous solution. The dilute solution being contacted with Ca(OH).sub.2 to precipitate CaF.sub.2 leaving dilute NH.sub.4 OH.
NASA Astrophysics Data System (ADS)
Deosarkar, S. D.; Kalyankar, T. M.
2013-06-01
Density, viscosity and refractive index of aqueous solutions of metoprolol succinate of different concentrations (0.005-0.05 mol dm-3) were measured at 38°C. Apparent molar volume of resultant solutions were calculated and fitted to the Masson's equation and apparent molar volume at infinite dilution was determined graphically. Viscosity data of solutions has been fitted to the Jone-Dole equation and viscosity A- and B-coefficients were determined graphically. Physicochemical data obtained were discussed in terms of molecular interactions.
Elastic instability in stratified core annular flow.
Bonhomme, Oriane; Morozov, Alexander; Leng, Jacques; Colin, Annie
2011-06-01
We study experimentally the interfacial instability between a layer of dilute polymer solution and water flowing in a thin capillary. The use of microfluidic devices allows us to observe and quantify in great detail the features of the flow. At low velocities, the flow takes the form of a straight jet, while at high velocities, steady or advected wavy jets are produced. We demonstrate that the transition between these flow regimes is purely elastic--it is caused by the viscoelasticity of the polymer solution only. The linear stability analysis of the flow in the short-wave approximation supplemented with a kinematic criterion captures quantitatively the flow diagram. Surprisingly, unstable flows are observed for strong velocities, whereas convected flows are observed for low velocities. We demonstrate that this instability can be used to measure the rheological properties of dilute polymer solutions that are difficult to assess otherwise.
Głogocka, Daria; Przybyło, Magdalena; Langner, Marek
2017-04-01
The ionic composition of intracellular space is rigorously maintained in the expense of high-energy expenditure. It has been recently postulated that the cytoplasmic ionic composition is optimized so the energy cost of the fluctuations of calcium ion concentration is minimized. Specifically, thermodynamic arguments have been produced to show that the presence of potassium ions at concentrations higher than 100 mM reduce extend of the energy dissipation required for the dilution of calcium cations. No such effect has been measured when sodium ions were present in the solution or when the other divalent cation magnesium was diluted. The experimental observation has been interpreted as the indication of the formation of ionic clusters composed of calcium, chloride and potassium. In order to test the possibility that such clusters may be preserved in biological space, the thermodynamics of ionic mixtures dilution in solutions containing albumins and model lipid bilayers have been measured. Obtained thermograms clearly demonstrate that the energetics of calcium/potassium mixture is qualitatively different from calcium/sodium mixture indicating that the presence of the biologically relevant quantities of proteins and membrane hydrophilic surfaces do not interfere with the properties of the intracellular aqueous phase.
Polymer relaxation and stretching dynamics in semi-dilute DNA solutions: a single molecule study
NASA Astrophysics Data System (ADS)
Hsiao, Kai-Wen; Brockman, Christopher; Schroeder, Charles
2015-03-01
In this work, we study polymer relaxation and stretching dynamics in semi-dilute DNA solutions using single molecule techniques. Using this approach, we uncover a unique scaling relation for longest polymer relaxation time that falls in the crossover regime described by semi-flexible polymer solutions, which is distinct from truly flexible polymer chains. In addition, we performed a series of step-strain experiments on single polymers in semi-dilute solutions in planar extensional flow using an automated microfluidic trap. In this way, we are able to precisely control the flow strength and the amount of strain applied to single polymer chains, thereby enabling direct observation of the full stretching and relaxation process in semi-dilute solutions during transient start-up and flow cessation. Interestingly, we observe polymer individualism in the conformation of single chains in semi-dilute solutions, which to our knowledge has not yet been observed. In addition, we observe the relaxation data can be explained by a multi-exponential decay process after flow cessation in semi-dilute solutions. Overall, our work reports key advance in non-dilute polymer systems from a molecular perspective via direct observation of dynamics in strong flows. DOW fellowship.
NASA Astrophysics Data System (ADS)
Le, Khai Q.; Dang, Ngo Hai
2018-05-01
This paper investigates solvent and concentration effects on photoluminescence (PL) or fluorescence properties of Rhodamine 800 (Rho800) dyes formed in aqueous solution and polymer thin-film. Various commonly used organic solvents including ethanol, methanol and cyclopentanol were studied at a constant dye concentration. There were small changes in the PL spectra for the different solvents in terms of PL intensity and peak wavelength. The highest PL intensity was observed for cyclopentanol and the lowest for ethanol. The longest peak wavelength was found in cyclopentanol (716 nm) and the shortest in methanol (708 nm). Dissolving the dye powder in the methanol solvent and varying the dye concentration in aqueous solution from the high concentrated solution to highly dilute states, the wavelength tunability was observed between about 700 nm in the dilute state and 730 nm at high concentration. Such a large shift may be attributed to the formation of dye aggregates. Rho800 dye-doped polyvinyl alcohol (PVA) polymer thin-film was further investigated. The PL intensity of the dye in the form of thin-film is lower than that of the aqueous solution form whereas the peak wavelength is redshifted due to the presence of PVA. This paper, to our best knowledge, reports the first study of spectroscopic properties of Rho800 dyes in various forms and provides useful guidelines for production of controllable organic luminescence sources.
Foaming and emulsifying properties of pectin isolated from different plant materials
NASA Astrophysics Data System (ADS)
Yancheva, Nikoleta; Markova, Daniela; Murdzheva, Dilyana; Vasileva, Ivelina; Slavov, Anton
2016-03-01
The foaming and emulsifying properties of pectins obtained from waste rose petals, citrus pressings, grapefruit peels and celery were studied. It was found that the highest foaming capacity showed pectin derived from celery. The effect of pectin concentration on the foaming capacity of pectin solutions was investigated. For all the investigated pectins increasing the concentration led to increase of the foaming capacity. Emulsifying activity and emulsion stability of model emulsion systems (50 % oil phase) with 0.6 % pectic solutions were determined. The highest emulsifying activity and stability showed pectin isolated by dilute acid extraction from waste rose petals.
Single- and dual-bead microrheology of semiflexiblefd virus solutions
NASA Astrophysics Data System (ADS)
Addas, Karim M.
Semiflexible polymers are of great biological importance in determining the mechanical properties of cells. Techniques collectively known as microrheology have recently been developed to measure the viscoelastic properties of solutions of sub-microliter volumes. We employ one such technique, which uses single or dual focused laser beams, to trap one or a pair of micron-sized silica beads, and interferometric photodiode detection to measure passively the position fluctuations of the trapped beads with nanometer resolution and high bandwidth of detection. One- and two-bead, frequency-dependent complex shear moduli can be extracted from the position fluctuations via the fluctuation-dissipation theorem. The two-bead method is used to extract the bulk viscoelastic properties of the solution. Using particle tracking microrheology, we report measurements of shear moduli of solutions of fd viruses, which are filamentous, semiflexible, and monodisperse bacteriophages each 0.9 mum long, 7 nm in diameter, and having a persistence length of 2.2 mum. Recent theoretical treatments of semiflexible polymer dynamics provide some quantitative predictions of the rheological properties of such a model system, although the exact limit of short semiflexible rods has not been treated yet. The fd samples measured span the dilute, semi-dilute and concentrated regimes. In the dilute regime the shear modulus is dominated by (rigid rod) rotational relaxation, whereas the high-frequency regime reflects single-semi flexible filament dynamics consistent with the theoretical prediction. Due to the short length of fd viruses used in this study, the intermediate regime does not exhibit a well developed plateau which is expected to occur for long filaments. A dynamic scaling analysis of the shear modulus gives rise to a concentration scaling of c1.36 (r = 0.99) in the transition regime and a frequency scaling of f0.63 (r = 0.98) at high frequencies. One- and two-bead microrheology results agree for this well-defined system of monodisperse virus solutions. The results are also compared with an active microrheology method. In the active method, an oscillatory magnetic force is applied to single micron-sized magnetic beads and the complex shear modulus is derived from the response of the bead. Measurements are also shown for a rotating disk macrorheology technique. The results from the three methods agree within experimental errors.
NASA Astrophysics Data System (ADS)
Bosko, Jaroslaw T.; Ravi Prakash, J.
2008-01-01
Structure and transport properties of dendrimers in dilute solution are studied with the aid of Brownian dynamics simulations. To investigate the effect of molecular topology on the properties, linear chain, star, and dendrimer molecules of comparable molecular weights are studied. A bead-spring chain model with finitely extensible springs and fluctuating hydrodynamic interactions is used to represent polymer molecules under Θ conditions. Structural properties as well as the diffusivity and zero-shear-rate intrinsic viscosity of polymers with varied degrees of branching are analyzed. Results for the free-draining case are compared to and found in very good agreement with the Rouse model predictions. Translational diffusivity is evaluated and the difference between the short-time and long-time behavior due to dynamic correlations is observed. Incorporation of hydrodynamic interactions is found to be sufficient to reproduce the maximum in the intrinsic viscosity versus molecular weight observed experimentally for dendrimers. Results of the nonequilibrium Brownian dynamics simulations of dendrimers and linear chain polymers subjected to a planar shear flow in a wide range of strain rates are also reported. The flow-induced molecular deformation of molecules is found to decrease hydrodynamic interactions and lead to the appearance of shear thickening. Further, branching is found to suppress flow-induced molecular alignment and deformation.
40 CFR 797.1400 - Fish acute toxicity test.
Code of Federal Regulations, 2011 CFR
2011-07-01
... construction materials, test chambers, and testing apparatus to dilution water or to test solutions prior to... or the leaching of substances from the test facilities into the dilution water or test solution. (5... intermittent passage of test solution or dilution water through a test chamber, or a holding or acclimation...
Labetoulle, Marc; Frau, Eric; Offret, Hervé; Nordmann, Patrice; Naas, Thierry
2002-08-01
Some anaesthetics inhibit bacterial growth, and thus may lead to low rates of positive cultures from bacterial keratitis. Antibacterial properties of lidocaine were compared with those of oxybuprocaine or tetracaine, either in current commercial eye lotions or in extemporaneous solutions. Forty-eight bacterial strains were used to determine the minimum inhibitory and bactericidal concentrations of four commercial eye lotions containing oxybuprocaine or tetracaine, of a non-ophthalmic 1% lidocaine commercial solution and of extemporaneously prepared solutions of oxybuprocaine, tetracaine, lidocaine and benzalkonium. Most strains had their growth inhibited by 0.2% oxybuprocaine or 0.4% tetracaine, which corresponds to a 1/2 dilution of the commercial eye-drops. Bacterial growth was still observed with a 1% lidocaine solution. Currently available anaesthetic eye-drops that are used before corneal specimen collection may lead to false-negative bacterial cultures. Conversely, a non-preserved 1% lidocaine solution might be more appropriate in corneal specimen collection.
A modified Lowry protein test for dilute protein solutions
Garold F. Gregory; Keith F. Jensen
1971-01-01
A modified Lowry protein test for dilute protein solutions modified Lowry protein test was compared with the standard Lowry protein test. The modified test was found to give estimates of protein concentration that were as good as the standard test and has the advange that proteins can be measured in very dilute solutions.
INORGANIC ELECTROLYTES IN ANHYDROUS ACETONITRILE. Technical Report No. 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janz, G.J.; Marcinkowsky, A.E.
Research concerned with the properties of inorganic electrolytes in anhydrous acetonitrile is reported. Infor mation related to ionic interactions, solute-solvent interactions and solute-solute interactions is emphasized. The work is differentiated into phases including that pertaining to the region of dilute concentration in which Kl was studied, the region of high concentration in which. AgNO/sub 3/ was studied, and systems which exhibit pronounced complexion behavior for which the cobaltous halide salts were investigated. Discussions of procedures, and result interpretation are included with data. (J.R.D.)
Science Notes: Dilution of a Weak Acid
ERIC Educational Resources Information Center
Talbot, Christopher; Wai, Chooi Khee
2014-01-01
This "Science note" arose out of practical work involving the dilution of ethanoic acid, the measurement of the pH of the diluted solutions and calculation of the acid dissociation constant, K[subscript a], for each diluted solution. The students expected the calculated values of K[subscript a] to be constant but they found that the…
NASA Astrophysics Data System (ADS)
Yamashita, Hiromi; Maekawa, Kazuhiro; Nakao, Hidetoshi; Anpo, Masakazu
2004-10-01
Using a mixture of tetraethylammonium fluoride and dodecylamine as templates, hydrophobic mesoporous silica supports were prepared. The fine anatase TiO 2 photocatalysts were prepared on the fluoride-modified hydrophobic mesoporous silica and the adsorption properties and the photocatalytic degradation of an aqueous 2-propanol or 2-hexanol solution into CO 2 and H 2O have been studied. The amount of adsorption and the photocatalytic reactivities increased with increasing the content of fluoride ions on these photocatalysts. 2-Hexanol diluted in water was adsorbed on the hydrophobic catalysts more efficiently than 2-propanol.
Approximation of Viscoelastic Stresses from Newtonian Turbulent Kinematics
1988-09-01
birefringence of polyethylene oxide solutions in a four roll mill. J.Poly.Sci.:Poly.Phys.Ed. 14, 1111-1119. Dandridge, A., Meeten , G.H., Layec-Raphalen, M.N...flows. Poly. Comm. 25, 144-146. Metzner, A.B., & Astarita, G . 1967 External flow of viscoelastic materials: fluid property restrictions on the use of...dumbbell model for dilute solutions. Rheol.Acta 23, 151-162. Philippoff, W. 1956 Flow-birefringence and stress. Nature 178 , 811-812. Ryskin, G . 1987a
Polyvinyl pyridine microspheres
NASA Technical Reports Server (NTRS)
Rembaum, Alan (Inventor); Gupta, Amitava (Inventor); Volksen, Willi (Inventor)
1980-01-01
Microspheres are produced by cobalt gamma radiation initiated polymerization of a dilute aqueous vinyl pyridine solution. Addition of cross-linking agent provides higher surface area beads. Addition of monomers such as hydroxyethylmethacrylate acrylamide or methacrylamide increases hydrophilic properties and surface area of the beads. High surface area catalytic supports are formed in the presence of controlled pore glass substrate.
Polyvinyl pyridine microspheres
NASA Technical Reports Server (NTRS)
Rembaum, Alan (Inventor); Gupta, Amitava (Inventor); Volksen, Willi (Inventor)
1979-01-01
Microspheres are produced by cobalt gamma radiation initiated polymerization of a dilute aqueous vinyl pyridine solution. Addition of cross-linking agent provides higher surface area beads. Addition of monomers such as hydroxyethylmethacrylate acrylamide or methacrylamide increases hydrophilic properties and surface area of the beads. High surface area catalytic supports are formed in the presence of controlled pore glass substrate.
Metabolic Compartmentation – A System Level Property of Muscle Cells
Saks, Valdur; Beraud, Nathalie; Wallimann, Theo
2008-01-01
Problems of quantitative investigation of intracellular diffusion and compartmentation of metabolites are analyzed. Principal controversies in recently published analyses of these problems for the living cells are discussed. It is shown that the formal theoretical analysis of diffusion of metabolites based on Fick's equation and using fixed diffusion coefficients for diluted homogenous aqueous solutions, but applied for biological systems in vivo without any comparison with experimental results, may lead to misleading conclusions, which are contradictory to most biological observations. However, if the same theoretical methods are used for analysis of actual experimental data, the apparent diffusion constants obtained are orders of magnitude lower than those in diluted aqueous solutions. Thus, it can be concluded that local restrictions of diffusion of metabolites in a cell are a system-level properties caused by complex structural organization of the cells, macromolecular crowding, cytoskeletal networks and organization of metabolic pathways into multienzyme complexes and metabolons. This results in microcompartmentation of metabolites, their channeling between enzymes and in modular organization of cellular metabolic networks. The perspectives of further studies of these complex intracellular interactions in the framework of Systems Biology are discussed. PMID:19325782
[Formation of oxalate in oxaliplatin injection diluted with infusion solutions].
Eto, Seiji; Yamamoto, Kie; Shimazu, Kounosuke; Sugiura, Toshimune; Baba, Kaori; Sato, Ayaka; Goromaru, Takeshi; Hagiwara, Yoshiaki; Hara, Keiko; Shinohara, Yoshitake; Takahashi, Kojiro
2014-01-01
Oxaliplatin use can cause acute peripheral neuropathy characterized by sensory paresthesias, which are markedly exacerbated by exposure to cold temperatures, and is a dose-limiting factor in the treatment of colorectal cancer.Oxalate is eliminated in a series of nonenzymatic conversions of oxaliplatin in infusion solutions or biological fluids.Elimination of oxalate from oxaliplatin has been suggested as one of the reasons for the development of acute neuropathy.In this study, we developed a high-performance liquid chromatography(HPLC)-based method to detect oxalate formation, and investigated the time dependent formation of oxalate in oxaliplatin diluted with infusion solutions.The results obtained showed that the amount of oxalate in the solution corresponded to 1.6% of oxaliplatin 8 h after oxaliplatin dilution with a 5% glucose solution. On the other hand, oxalate formation from oxaliplatin diluted with a saline solution was ten-fold higher than that from oxaliplatin diluted with the 5% glucose solution.Most patients who were intravenously injected with oxaliplatin experienced venous pain.As a preventive measure against venous pain, dexamethasone was added to the oxaliplatin injection.We measured the amount of oxalate formed in the dexamethasone-containing oxaliplatin injection diluted with a 5% glucose solution.The amount of oxalate formed when dexamethasone was added did not differ significantly from that formed when dexamethasone was not added.Thus, there are no clinical problems associated with the stability of oxaliplatin solutions.
Alyssum homolocarpum seed gum: Dilute solution and some physicochemical properties.
Hesarinejad, M A; Razavi, Seyed M A; Koocheki, A
2015-11-01
The objective of this study was to investigate the effect of various temperatures (25-65°C) on some dilute solution properties of Alyssum homolocarpum seed gum (AHSG) as a novel potential source of hydrocolloid. Monosaccharide composition, FTIR analysis and molecular parameters were determined to provide more structural information. The results indicated that AHSG had a low molecular weight (3.66×10(5)Da), medium intrinsic viscosity (18.34dl/g) at 25°C, relatively flexible chain with a chain flexibility parameter of 618.54, and activation energy of 0.51×10(7)J/kgmol. With rise in temperature from 25 to 55°C, the intrinsic viscosity decreased as well as coil radius and volume of AHSG. The shape factor of AHSG macromolecule was spherical at all temperatures. The electrostatic interaction and particle size of AHSG solution were -25.81mV (at neutral pH) and 225.36nm, respectively. The results revealed that AHSG had high total sugar content (85.33%), small amount of uronic acids (5.63%) and it is likely a galactan-type polysaccharide. The FTIR spectra showed that AHSG behaved like a typical polyelectrolyte because of the presence of carboxyl and hydroxyl groups. Copyright © 2015. Published by Elsevier B.V.
Li, Xiaojian; Vogt, Frederick G; Hayes, Don; Mansour, Heidi M
2014-04-01
The purpose was to design and characterize inhalable microparticulate/nanoparticulate dry powders of mannitol with essential particle properties for targeted dry powder delivery for cystic fibrosis mucolytic treatment by dilute organic solution spray drying, and, in addition, to tailor and correlate aerosol dispersion performance delivered as dry powder inhalers based on spray-drying conditions and solid-state physicochemical properties. Organic solution advanced spray drying from dilute solution followed by comprehensive solid-state physicochemical characterization and in vitro dry powder aerosolization were used. The particle size distribution of the spray-dried (SD) powders was narrow, unimodal, and in the range of ∼500 nm to 2.0 μm. The particles possessed spherical particle morphology, relatively smooth surface morphology, low water content and vapor sorption (crystallization occurred at exposure above 65% relative humidity), and retention of crystallinity by polymorphic interconversion. The emitted dose, fine particle fraction (FPF), and respirable fraction (RF) were all relatively high. The mass median aerodynamic diameters were below 4 μm for all SD mannitol aerosols. The in vitro aerosol deposition stage patterns could be tailored based on spray-drying pump rate. Positive linear correlation was observed between both FPF and RF values with spray-drying pump rates. The interplay between various spray-drying conditions, particle physicochemical properties, and aerosol dispersion performance was observed and examined, which enabled tailoring and modeling of high aerosol deposition patterns.
Li, Xiaojian; Vogt, Frederick G.; Hayes, Don
2014-01-01
Abstract Background: The purpose was to design and characterize inhalable microparticulate/nanoparticulate dry powders of mannitol with essential particle properties for targeted dry powder delivery for cystic fibrosis mucolytic treatment by dilute organic solution spray drying, and, in addition, to tailor and correlate aerosol dispersion performance delivered as dry powder inhalers based on spray-drying conditions and solid-state physicochemical properties. Methods: Organic solution advanced spray drying from dilute solution followed by comprehensive solid-state physicochemical characterization and in vitro dry powder aerosolization were used. Results: The particle size distribution of the spray-dried (SD) powders was narrow, unimodal, and in the range of ∼500 nm to 2.0 μm. The particles possessed spherical particle morphology, relatively smooth surface morphology, low water content and vapor sorption (crystallization occurred at exposure above 65% relative humidity), and retention of crystallinity by polymorphic interconversion. The emitted dose, fine particle fraction (FPF), and respirable fraction (RF) were all relatively high. The mass median aerodynamic diameters were below 4 μm for all SD mannitol aerosols. Conclusion: The in vitro aerosol deposition stage patterns could be tailored based on spray-drying pump rate. Positive linear correlation was observed between both FPF and RF values with spray-drying pump rates. The interplay between various spray-drying conditions, particle physicochemical properties, and aerosol dispersion performance was observed and examined, which enabled tailoring and modeling of high aerosol deposition patterns. PMID:24502451
Alcaraz, Antonio; López, M Lidón; Queralt-Martín, María; Aguilella, Vicente M
2017-10-24
Synthetic nanopores and mesoscopic protein channels have common traits like the importance of electrostatic interactions between the permeating ions and the nanochannel. Ion transport at the nanoscale occurs under confinement conditions so that the usual assumptions made in microfluidics are challenged, among others, by interfacial effects such as access resistance (AR). Here, we show that a sound interpretation of electrophysiological measurements in terms of channel ion selective properties requires the consideration of interfacial effects, up to the point that they dominate protein channel conductance in diluted solutions. We measure AR in a large ion channel, the bacterial porin OmpF, by means of single-channel conductance measurements in electrolyte solutions containing varying concentrations of high molecular weight PEG, sterically excluded from the pore. Comparison of experiments performed in charged and neutral planar membranes shows that lipid surface charges modify the ion distribution and determine the value of AR, indicating that lipid molecules are more than passive scaffolds even in the case of large transmembrane proteins. We also found that AR may reach up to 80% of the total channel conductance in diluted solutions, where electrophysiological recordings register essentially the AR of the system and depend marginally on the pore characteristics. These findings may have implications for several low aspect ratio biological channels that perform their physiological function in a low ionic strength and macromolecule crowded environment, just the two conditions enhancing the AR contribution.
Stark, Peter C.; Kuske, Cheryl R.; Mullen, Kenneth I.
2002-01-01
A method for quantitating dsDNA in an aqueous sample solution containing an unknown amount of dsDNA. A first aqueous test solution containing a known amount of a fluorescent dye-dsDNA complex and at least one fluorescence-attenutating contaminant is prepared. The fluorescence intensity of the test solution is measured. The first test solution is diluted by a known amount to provide a second test solution having a known concentration of dsDNA. The fluorescence intensity of the second test solution is measured. Additional diluted test solutions are similarly prepared until a sufficiently dilute test solution having a known amount of dsDNA is prepared that has a fluorescence intensity that is not attenuated upon further dilution. The value of the maximum absorbance of this solution between 200-900 nanometers (nm), referred to herein as the threshold absorbance, is measured. A sample solution having an unknown amount of dsDNA and an absorbance identical to that of the sufficiently dilute test solution at the same chosen wavelength is prepared. Dye is then added to the sample solution to form the fluorescent dye-dsDNA-complex, after which the fluorescence intensity of the sample solution is measured and the quantity of dsDNA in the sample solution is determined. Once the threshold absorbance of a sample solution obtained from a particular environment has been determined, any similarly prepared sample solution taken from a similar environment and having the same value for the threshold absorbance can be quantified for dsDNA by adding a large excess of dye to the sample solution and measuring its fluorescence intensity.
Ficts and facts of epinephrine and norepinephrine stability in injectable solutions.
Hoellein, Ludwig; Holzgrabe, Ulrike
2012-09-15
Epinephrine (EPI) and norepinephrine (NE) play an important role in emergency medicine and acute treatment of hypotension and shocks in the intensive care unit. Injectable solutions can either be provided as proprietary medicinal products or as individually prepared dilutions. Due to the chemical structure of EPI and NE, the stability of the corresponding solutions is limited. Thus, most manufacturers of EPI and NE injectable solutions use sulfites and nitrogen for stabilization, Nevertheless, storage conditions such as temperature and light have to be considered, but are often neglected in the daily hospital routine. In addition, hospital pharmacies prepare EPI and NE solutions and dilute commercially available solutions for individual therapy, especially on ICUs. Since the influence of dilution and the presence of excipients and other preservatives are not systematically explored, we collected published data and investigations on stability on the potency of EPI and NE injectable solutions in order to deduce storage recommendations for diluted EPI and NE solutions of different concentration. Copyright © 2012 Elsevier B.V. All rights reserved.
Kritayakornupong, Chinapong
2009-12-01
A hybrid ab initio QM/MM molecular dynamics simulation at the Hartree-Fock level has been performed to investigate structural and dynamical parameters of the V(3+) ion in dilute aqueous solution. A distorted octahedral structure with the average V(3+)-O distance of 1.99 A is evaluated from the QM/MM simulation, which is in good agreement with the X-ray data. Several structural parameters such as angular distribution functions, theta- and tilt-angle distributions have been determined to obtain the full description of the hydration structure of the hydrated V(3+). The Jahn-Teller distortions of the V(3+) ion are pronounced in the QM/MM simulation. The mean residence time of 14.5 ps is estimated for the ligand exchange processes in the second hydration shell. (c) 2009 Wiley Periodicals, Inc.
Wurlod, Virginie A; Howard, Judith; Francey, Thierry; Schweighauser, Ariane; Adamik, Katja N
2015-01-01
To compare the in vitro effects of hypertonic solutions and colloids to saline on coagulation in dogs. In vitro experimental study. Veterinary teaching hospital. Twenty-one adult dogs. Blood samples were diluted with saline, 7.2% hypertonic saline solution with 6% hydroxyethylstarch with an average molecular weight of 200 kDa and a molar substitution of 0.4 (HH), 7.2% hypertonic saline (HTS), hydroxyethyl starch (HES) 130/0.4 or hydroxyethyl starch 600/0.75 at ratios of 1:22 and 1:9, and with saline and HES at a ratio of 1:3. Whole blood coagulation was analyzed using rotational thromboelastometry (extrinsic thromboelastometry-cloting time (ExTEM-CT), maximal clot firmness (MCF) and clot formation time (CFT) and fibrinogen function TEM-CT (FibTEM-CT) and MCF) and platelet function was analyzed using a platelet function analyzer (closure time, CTPFA ). All parameters measured were impaired by saline dilution. The CTPFA was prolonged by 7.2% hypertonic saline solution with 6% hydroxyethylstarch with an average molecular weight of 200 kDa and a molar substitution of 0.4 (HH) and HTS but not by HES solutions. At clinical dilutions equivalent to those generally administered for shock (saline 1:3, HES 1:9, and hypertonic solutions 1:22), CTPFA was more prolonged by HH and HTS than other solutions but more by saline than HES. No difference was found between the HES solutions or the hypertonic solutions. ExTEM-CFT and MCF were impaired by HH and HTS but only mildly by HES solutions. At clinically relevant dilutions, no difference was found in ExTEM-CFT between HTS and saline or in ExTEM-MCF between HH and saline. No consistent difference was found between the 2 HES solutions but HH impaired ExTEM-CFT and MCF more than HTS. At high dilutions, FibTEM-CT and -MCF and ExTEM-CT were impaired by HES. Hypertonic solutions affect platelet function and whole blood coagulation to a greater extent than saline and HES. At clinically relevant dilutions, only CTPFA was markedly more affected by hypertonic solutions than by saline. At high dilutions, HES significantly affects coagulation but to no greater extent than saline at clinically relevant dilutions. © Veterinary Emergency and Critical Care Society 2015.
Omede, A. A.; Bhuiyan, M. M.; lslam, A. F.; Iji, P. A.
2017-01-01
Objective This study explored the physico-chemical properties of late-incubation egg amniotic fluid and a potential in ovo feed (IOF) supplement. Methods Amniotic fluid was collected from broiler breeders (Ross 308, 51 weeks and Cobb 500, 35 weeks) on day 17 after incubation. A mixture of high-quality soy protein supplement – Hamlet Protein AviStart (HPA) was serially diluted in MilliQ water to obtain solutions ranging from 150 to 9.375 mg/mL. The mixtures were heat-treated (0, 30, 60 minutes) in a waterbath (80°C) and then centrifuged to obtain supernatants. The amniotic fluid and HPA supernatants were analysed for their physico-chemical properties. Results Only viscosity and K+ were significantly (p<0.05) different in both strains. Of all essential amino acids, leucine and lysine were in the highest concentration in both strains. The osmolality, viscosity and pCO2 of the supernatants decreased (p<0.05) with decreasing HPA concentration. Heat treatment significantly (p<0.05) affected osmolality, pH, and pCO2, of the supernatants. The interactions between HPA concentration and heat treatment were significant with regards to osmolality (p<0.01), pH (p<0.01), pCO2 (p<0.05), glucose (p<0.05), lactate (p<0.01) and acid-base status (p<0.01) of HPA solutions. The Ca2+, K+, glucose, and lactate increased with increasing concentration of HPA solution. The protein content of HPA solutions decreased (p<0.05) with reduced HPA solution concentrations. The supernatant from 150 mg/mL HPA solution was richest in glutamic acid, aspartic acid, arginine and lysine. Amino acids concentrations were reduced (p<0.05) with each serial dilution but increased with longer heating. Conclusion The values obtained in the primary solution (highest concentration) are close to the profiles of high-protein ingredients. This supplement, as a solution, hence, may be suitable for use as an IOF supplement and should be tested for this potential. PMID:28183170
Elastic properties of spherically anisotropic piezoelectric composites
NASA Astrophysics Data System (ADS)
Wei, En-Bo; Gu, Guo-Qing; Poon, Ying-Ming
2010-09-01
Effective elastic properties of spherically anisotropic piezoelectric composites, whose spherically anisotropic piezoelectric inclusions are embedded in an infinite non-piezoelectric matrix, are theoretically investigated. Analytical solutions for the elastic displacements and the electric potentials under a uniform external strain are derived exactly. Taking into account of the coupling effects of elasticity, permittivity and piezoelectricity, the formula is derived for estimating the effective elastic properties based on the average field theory in the dilute limit. An elastic response mechanism is revealed, in which the effective elastic properties increase as inclusion piezoelectric properties increase and inclusion dielectric properties decrease. Moreover, a piezoelectric response mechanism, of which the effective piezoelectric response vanishes due to the symmetry of spherically anisotropic composite, is also disclosed.
NASA Astrophysics Data System (ADS)
Malekzadeh Moghani, Mahdy; Khomami, Bamin
2016-01-01
Macromolecules with ionizable groups are ubiquitous in biological and synthetic systems. Due to the complex interaction between chain and electrostatic decorrelation lengths, both equilibrium properties and micro-mechanical response of dilute solutions of polyelectrolytes (PEs) are more complex than their neutral counterparts. In this work, the bead-rod micromechanical description of a chain is used to perform hi-fidelity Brownian dynamics simulation of dilute PE solutions to ascertain the self-similar equilibrium behavior of PE chains with various linear charge densities, scaling of the Kuhn step length (lE) with salt concentration cs and the force-extension behavior of the PE chain. In accord with earlier theoretical predictions, our results indicate that for a chain with n Kuhn segments, lE ˜ cs-0.5 as linear charge density approaches 1/n. Moreover, the constant force ensemble simulation results accurately predict the initial non-linear force-extension region of PE chain recently measured via single chain experiments. Finally, inspired by Cohen's extraction of Warner's force law from the inverse Langevin force law, a novel numerical scheme is developed to extract a new elastic force law for real chains from our discrete set of force-extension data similar to Padè expansion, which accurately depicts the initial non-linear region where the total Kuhn length is less than the thermal screening length.
Malekzadeh Moghani, Mahdy; Khomami, Bamin
2016-01-14
Macromolecules with ionizable groups are ubiquitous in biological and synthetic systems. Due to the complex interaction between chain and electrostatic decorrelation lengths, both equilibrium properties and micro-mechanical response of dilute solutions of polyelectrolytes (PEs) are more complex than their neutral counterparts. In this work, the bead-rod micromechanical description of a chain is used to perform hi-fidelity Brownian dynamics simulation of dilute PE solutions to ascertain the self-similar equilibrium behavior of PE chains with various linear charge densities, scaling of the Kuhn step length (lE) with salt concentration cs and the force-extension behavior of the PE chain. In accord with earlier theoretical predictions, our results indicate that for a chain with n Kuhn segments, lE ∼ cs (-0.5) as linear charge density approaches 1/n. Moreover, the constant force ensemble simulation results accurately predict the initial non-linear force-extension region of PE chain recently measured via single chain experiments. Finally, inspired by Cohen's extraction of Warner's force law from the inverse Langevin force law, a novel numerical scheme is developed to extract a new elastic force law for real chains from our discrete set of force-extension data similar to Padè expansion, which accurately depicts the initial non-linear region where the total Kuhn length is less than the thermal screening length.
Study of the formation of soluble complexes of sodium caseinate and xanthan in solution.
Bouhannache, Bouchra; HadjSadok, Abdelkader; Touabet, Abdelkrim
2017-09-01
The main objective of this work was to determinate the optimum conditions for the formation of soluble complexes between sodium caseinate and xanthan in solution at neutral pH, in the presence of the NaCl. The study of the influence of the concentrations of these three substances showed that salt was the most influent factor. It worsens the thermodynamic incompatibility of the two biopolymers in solution, when they are present at large amounts. However, it contributes to soluble complexes formation, when sodium caseinate concentration is below 5.5%. In this case, gels with enhanced rheological properties were obtained. Infrared spectroscopy confirmed that the complexes formation within these gels involves hydrophobic interactions. On the other hand, dynamic light scattering revealed that dilution cause their dissociation. These soluble complexes are promising ingredients to ensure new texturing properties.
Laboratory studies of 2H evaporator scale dissolution in dilute nitric acid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oji, L.
The rate of 2H evaporator scale solids dissolution in dilute nitric acid has been experimentally evaluated under laboratory conditions in the SRNL shielded cells. The 2H scale sample used for the dissolution study came from the bottom of the evaporator cone section and the wall section of the evaporator cone. The accumulation rate of aluminum and silicon, assumed to be the two principal elemental constituents of the 2H evaporator scale aluminosilicate mineral, were monitored in solution. Aluminum and silicon concentration changes, with heating time at a constant oven temperature of 90 deg C, were used to ascertain the extent ofmore » dissolution of the 2H evaporator scale mineral. The 2H evaporator scale solids, assumed to be composed of mostly aluminosilicate mineral, readily dissolves in 1.5 and 1.25 M dilute nitric acid solutions yielding principal elemental components of aluminum and silicon in solution. The 2H scale dissolution rate constant, based on aluminum accumulation in 1.5 and 1.25 M dilute nitric acid solution are, respectively, 9.21E-04 ± 6.39E-04 min{sup -1} and 1.07E-03 ± 7.51E-05 min{sup -1}. Silicon accumulation rate in solution does track the aluminum accumulation profile during the first few minutes of scale dissolution. It however diverges towards the end of the scale dissolution. This divergence therefore means the aluminum-to-silicon ratio in the first phase of the scale dissolution (non-steady state conditions) is different from the ratio towards the end of the scale dissolution. Possible causes of this change in silicon accumulation in solution as the scale dissolution progresses may include silicon precipitation from solution or the 2H evaporator scale is a heterogeneous mixture of aluminosilicate minerals with several impurities. The average half-life for the decomposition of the 2H evaporator scale mineral in 1.5 M nitric acid is 12.5 hours, while the half-life for the decomposition of the 2H evaporator scale in 1.25 M nitric acid is 10.8 hours. Based on averaging the two half-lives from the 2H scale acid dissolution in 1.25 and 1.5 M nitric acid solutions, a reasonable half-live for the dissolution of 2H scales in dilute nitric acid is 11.7 ± 1.3 hours. The plant operational time for chemically cleaning (soaking) the 2H evaporator with dilute nitric acid is 32 hours. It therefore may require about 3 half-lives or less to completely dissolve most of the scales in the Evaporator pot which come into contact with the dilute nitric acid solution. On a mass basis, the Al-to-Si ratio for the scale dissolution in 1.5 M nitric acid averaged 1.30 ± 0.20 and averaged 1.18 ± 0.10 for the 2H scale dissolution in 1.25 M nitric acid. These aluminum-to-silicon ratios are in fairly good agreement with ratios from previous studies. Therefore, there is still more aluminum in the 2H evaporator scales than silicon which implies that there are no significant changes in scale properties which will exclude nitric acid as a viable protic solvent for aluminosilicate scale buildup dissolution from the 2H evaporator. Overall, the monitoring of the scale decomposition reaction in 1.25 and 1.5 M nitric acid may be better ascertained through the determination of aluminum concentration in solution than monitoring silicon in solution. Silicon solution chemistry may lead to partial precipitating of silicon with time as the scale and acid solution is heated.« less
Yearley, Eric J; Godfrin, Paul D; Perevozchikova, Tatiana; Zhang, Hailiang; Falus, Peter; Porcar, Lionel; Nagao, Michihiro; Curtis, Joseph E; Gawande, Pradad; Taing, Rosalynn; Zarraga, Isidro E; Wagner, Norman J; Liu, Yun
2014-04-15
Monoclonal antibodies (mAbs) are a major class of biopharmaceuticals. It is hypothesized that some concentrated mAb solutions exhibit formation of a solution phase consisting of reversibly self-associated aggregates (or reversible clusters), which is speculated to be responsible for their distinct solution properties. Here, we report direct observation of reversible clusters in concentrated solutions of mAbs using neutron spin echo. Specifically, a stable mAb solution is studied across a transition from dispersed monomers in dilute solution to clustered states at more concentrated conditions, where clusters of a preferred size are observed. Once mAb clusters have formed, their size, in contrast to that observed in typical globular protein solutions, is observed to remain nearly constant over a wide range of concentrations. Our results not only conclusively establish a clear relationship between the undesirable high viscosity of some mAb solutions and the formation of reversible clusters with extended open structures, but also directly observe self-assembled mAb protein clusters of preferred small finite size similar to that in micelle formation that dominate the properties of concentrated mAb solutions. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Fu, Yu-Hang; Bai, Lin; Luo, Kai-Hong; Jin, Yong; Cheng, Yi
2017-04-01
In this work, we propose a general approach for modeling mass transfer and reaction of dilute solute(s) in incompressible three-phase flows by introducing a collision operator in lattice Boltzmann (LB) method. An LB equation was used to simulate the solute dynamics among three different fluids, in which the newly expanded collision operator was used to depict the interface behavior of dilute solute(s). The multiscale analysis showed that the presented model can recover the macroscopic transport equations derived from the Maxwell-Stefan equation for dilute solutes in three-phase systems. Compared with the analytical equation of state of solute and dynamic behavior, these results are proven to constitute a generalized framework to simulate solute distributions in three-phase flows, including compound soluble in one phase, compound adsorbed on single-interface, compound in two phases, and solute soluble in three phases. Moreover, numerical simulations of benchmark cases, such as phase decomposition, multilayered planar interfaces, and liquid lens, were performed to test the stability and efficiency of the model. Finally, the multiphase mass transfer and reaction in Janus droplet transport in a straight microchannel were well reproduced.
Passivation of high temperature superconductors
NASA Technical Reports Server (NTRS)
Vasquez, Richard P. (Inventor)
1991-01-01
The surface of high temperature superconductors such as YBa2Cu3O(7-x) are passivated by reacting the native Y, Ba and Cu metal ions with an anion such as sulfate or oxalate to form a surface film that is impervious to water and has a solubility in water of no more than 10(exp -3) M. The passivating treatment is preferably conducted by immersing the surface in dilute aqueous acid solution since more soluble species dissolve into the solution. The treatment does not degrade the superconducting properties of the bulk material.
NASA Astrophysics Data System (ADS)
Moine, Edouard; Privat, Romain; Sirjean, Baptiste; Jaubert, Jean-Noël
2017-09-01
The Gibbs energy of solvation measures the affinity of a solute for its solvent and is thus a key property for the selection of an appropriate solvent for a chemical synthesis or a separation process. More fundamentally, Gibbs energies of solvation are choice data for developing and benchmarking molecular models predicting solvation effects. The Comprehensive Solvation—CompSol—database was developed with the ambition to propose very large sets of new experimental solvation chemical-potential, solvation entropy, and solvation enthalpy data of pure and mixed components, covering extended temperature ranges. For mixed compounds, the solvation quantities were generated in infinite-dilution conditions by combining experimental values of pure-component and binary-mixture thermodynamic properties. Three types of binary-mixture properties were considered: partition coefficients, activity coefficients at infinite dilution, and Henry's-law constants. A rigorous methodology was implemented with the aim to select data at appropriate conditions of temperature, pressure, and concentration for the estimation of solvation data. Finally, our comprehensive CompSol database contains 21 671 data associated with 1969 pure species and 70 062 data associated with 14 102 binary mixtures (including 760 solvation data related to the ionic-liquid class of solvents). On the basis of the very large amount of experimental data contained in the CompSol database, it is finally discussed how solvation energies are influenced by hydrogen-bonding association effects.
Synthesis and effectiveness of overbased magnesium and calcium petroleum sulfonates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fialkovskii, R.V.; Romanyutina, L.V.; Korbut, L.F.
Overbased sulfonate additives are widely used to improve the service properties of motor oils. This paper describes the preparation of an overbased magnesium sulfonate additive from MSG-8 oil and an investigation of its functional properties. In experiments, the solution of ammonium sulfate, fat diluted with I-20A oil to a 38% concentration, was heated and stirred continuously in the presence of water and excess magnesium oxide for a period of 4 h at 80-120/degree/C while stripping out the liberated ammonia with nitrogen. The resulting oil solution of magnesium sulfonate was dissolved in toluene. The toluene solution after cleanup was held undermore » vacuum to remove the solvent; the residue was an oil solution of overbased magnesium sulfonate. Their properties are tabulated. Comparative data are shown in Table 1 for a calcium sulfonate additive synthesized from the same intermediate (ammonium sulfate), using calcium hydroxide as the base. Test results on M-11 oil containing 5% of the magnesium or calcium additive are listed. It is shown that the magnesium additive gave better results from the calcium additive at the same concentration in terms of oxidation stability, corrosion properties, detergency, and dispersancy. 9 refs.« less
Sonic wave separation of invertase from a dilute solution to generated droplets.
Tanner, R D; Ko, S; Loha, V; Prokop, A
2000-01-01
It has previously been shown that a droplet fractionation process, simulated by shaking a separatory funnel containing a dilute protein solution, can generate droplets richer in protein than present in the original dilute solution. In this article, we describe an alternative method that can increase the amount of protein transferred to the droplets. The new method uses ultrasonic waves, enhanced by a bubble gas stream to create the droplets. The amount of protein in these droplets increases by about 50%. In this method, the top layer of the dilute protein solution (of the solution-air interface) becomes enriched in protein when air is bubbled into the solution. This concentrating procedure is called bubble fractionation. Once the protein has passed through the initial buildup, this enriched protein layer is transferred into droplets with the aid of a vacuum above the solution at the same time that ultrasonic waves are introduced. The droplets are then carried over to a condenser and coalesced. We found that this new method provides an easier way to remove the protein-enriched top layer of the dilute solution and generates more droplets within a shorter period than the separatory funnel droplet generation method. The added air creates the bubbles and carries the droplets, and the vacuum helps remove the effluent airstream from the condenser. The maximum partition coefficient, the ratio of the protein concentration in the droplets to that in the residual solution (approx 8.5), occurred at pH 5.0.
Nature and consequences of protein-protein interactions in high protein concentration solutions.
Saluja, Atul; Kalonia, Devendra S
2008-06-24
High protein concentration solutions are becoming increasingly important in the pharmaceutical industry. The solution behavior of proteins at high concentrations can markedly differ from that predicted based on dilute solution analysis due to thermodynamic non-ideality in these solutions. The non-ideality observed in these systems is related to the protein-protein interactions (PPI). Different types of forces play a key role in determining the overall nature and extent of these PPI and their relative contributions are affected by solute and solvent properties. However, individual contributions of these forces to the solution properties of concentrated protein solutions are not fully understood. The role of PPI, driven by these intermolecular forces, in governing solution rheology and physical stability of high protein concentration solutions is discussed from the point of view of pharmaceutical product development. Investigation of protein self-association and aggregation in concentrated protein solutions is crucial for ensuring the safety and efficacy of the final product for the duration of the desired product shelf life. Understanding rheology of high concentration protein solutions is critical for addressing issues during product manufacture and administration of final formulation to the patient. To this end, analysis of solution viscoelastic character can also provide an insight into the nature of PPI affecting solution rheology.
Castells; Romero; Nardillo
1997-08-01
Thermodynamic properties of solution in 3-methylsydnone (3MS) and of adsorption at the nitrogen/3MS interface were gas chromatographically measured for a group of fifteen hydrocarbons at infinite dilution conditions. Retention volumes were measured at five temperatures within the range 37-52°C in six columns containing different loadings of 3MS on Chromosorb P AW. Partition and adsorption coefficients were calculated and from their temperature dependence the corresponding enthalpies were obtained, although with considerable error; infinite dilution activity coefficients of the hydrocarbons in the bulk and in the surface phases demonstrated a strong correlation. Bulk activity coefficients in 3MS were very much smaller than those previously measured for the same solutes in formamide (FA) and in ethyleneglycol (EG), and were also smaller than what could be predicted on account of 3MS cohesive energy density as estimated from the quotient sigma/v1/3 (sigma, surface tension; v, molar volume). There was not such a large difference between the surface activity coefficients in the three solvents; furthermore, the quotients (surface activity coefficient/bulk activity coefficient) for a given solute in 3MS were twice as large as in FA and about three times larger than in EG. These results make evident the difficulties inherent in the prediction of surface phase properties from those in the bulk and cast doubts on the pertinency of employing the surface tension to compare cohesive energy densities of polar solvents with important chemical differences.
Elastic properties of rigid fiber-reinforced composites
NASA Astrophysics Data System (ADS)
Chen, J.; Thorpe, M. F.; Davis, L. C.
1995-05-01
We study the elastic properties of rigid fiber-reinforced composites with perfect bonding between fibers and matrix, and also with sliding boundary conditions. In the dilute region, there exists an exact analytical solution. Around the rigidity threshold we find the elastic moduli and Poisson's ratio by decomposing the deformation into a compression mode and a rotation mode. For perfect bonding, both modes are important, whereas only the compression mode is operative for sliding boundary conditions. We employ the digital-image-based method and a finite element analysis to perform computer simulations which confirm our analytical predictions.
Electrostatic charge characteristics of jet nebulized aerosols.
Kwok, Philip Chi Lip; Trietsch, Sebastiaan J; Kumon, Michiko; Chan, Hak-Kim
2010-06-01
Liquid droplets can be spontaneously charged in the absence of applied electric fields by spraying. It has been shown by computational simulation that charges may influence particle deposition in the airways. The electrostatic properties of jet nebulized aerosols and their potential effects on lung deposition have hardly been studied. A modified electrical low pressure impactor (ELPI) was employed to characterize the aerosol charges generated from jet nebulized commercial products. The charge and size measurements were conducted at 50% RH and 22 degrees C with a modified ELPI. Ventolin, Bricanyl, and Atrovent were nebulized using PARI LC Plus jet nebulizers coupled to a DeVilbiss Pulmo-Aide compressor. The aerosols were sampled in 30-sec durations. The drug deposits on the impactor stages were assayed chemically using high-performance liquid chromatography (HPLC). The charges of nebulized deionized water, isotonic saline, and the three commercial products diluted with saline were also measured to analyze the contributions of the major nebule ingredients on charging. No mass assays were performed on these runs. All three commercial nebules generated net negative charges. The magnitude of the charges reduced over the period of nebulization. Ventolin and Bricanyl yielded similar charge profiles. Highly variable charges were produced from deionized water. On the other hand, nebulized saline reproducibly generated net positive charges. Diluted commercial nebules showed charge polarity inversion. The charge profiles of diluted salbutamol and terbutaline solutions resembled those of saline, while the charges from diluted ipratropium solutions fluctuated near neutrality. The charge profiles were shown to be influenced by the concentration and physicochemical properties of the drugs, as well as the history of nebulization. The drugs may have unique isoelectric concentrations in saline at which the nebulized droplets would carry near-zero charges. According to results from computational simulation models in the literature, the numbers of elementary charges per droplet estimated from the data were not high enough to potentially affect lung deposition.
Sun, Zhe; Tian, Ye; Hom, Wendy L.; ...
2016-12-28
The thermal response of semi-dilute solutions (5 w/w%) of two amphiphilic thermoresponsive poly(ethylene oxide)-b-poly(N,N-diethylacrylamide)-b-poly(N,N-dibutylacrylamide) (PEO 45-PDEAm x-PDBAm 12) triblock copolymers, which differ only in the size of the central responsive block, in water was examined in this paper. Aqueous PEO45-PDEAm41-PDBAm12 solutions, which undergo a thermally induced sphere-to-worm transition in dilute solution, were found to reversibly form soft (G'≈10 Pa) free-standing physical gels after 10 min at 55 °C. PEO 45-PDEAm 89-PDBAm 12 copolymer solutions, which undergo a thermally induced transition from spheres to large compound micelles (LCM) in dilute solution, underwent phase separation after heating at 55 °C for 10more » min owing to sedimentation of LCMs. The reversibility of LCM formation was investigated as a non-specific method for removal of a water-soluble dye from aqueous solution. Finally, the composition and size of the central responsive block in these polymers dictate the microscopic and macroscopic response of the polymer solutions as well as the rates of transition between assemblies.« less
Use of vitamin B12 in joint lavage for determination of dilution factors of canine synovial fluid.
de Bruin, Tanya; de Rooster, Hilde; van Bree, Henri; Cox, Eric
2005-11-01
To test a modified saline (0.9% NaCl) solution joint washing (lavage) technique that includes the use of vitamin B12 as an internal marker for the evaluation of synovial fluid dilution in lavage samples from canine joints. 9 plasma samples obtained from blood samples of 9 healthy dogs and 9 synovial fluid samples aspirated from stifle joints of 9 cadaveric dogs. Photometric absorbances of 25% vitamin B12 solution, canine synovial fluid, and canine plasma were measured in a spectrophotometer to establish an optimal wavelength for analysis. Canine synovial fluid and plasma samples were mixed with the 25% vitamin B12 solution to obtain 1%, 3%, 5%, 10%, 20%, and 50% solutions of synovial fluid or plasma. Diluted synovial fluid and plasma samples were used to simulate joint lavage samples and to examine the possible interference of these substances (synovial fluid or plasma) with the absorbance of the 25% vitamin B12 solution in photometric analysis. The optimal wavelength was found to be at 550 nm. Canine synovial fluid and plasma samples did not interfere with the absorbance measurements of the 25% vitamin B12 solution up to a 50% dilution of plasma or synovial fluid. The modified saline solution joint lavage method with the use of a 25% vitamin B12 solution as an internal standard provides an accurate and reliable technique for the evaluation of synovial fluid dilution in lavage samples from canine joints.
Gas solubility in dilute solutions: A novel molecular thermodynamic perspective
NASA Astrophysics Data System (ADS)
Chialvo, Ariel A.
2018-05-01
We present an explicit molecular-based interpretation of the thermodynamic phase equilibrium underlying gas solubility in liquids, through rigorous links between the microstructure of the dilute systems and the relevant macroscopic quantities that characterize their solution thermodynamics. We apply the formal analysis to unravel and highlight the molecular-level nature of the approximations behind the widely used Krichevsky-Kasarnovsky [J. Am. Chem. Soc. 57, 2168 (1935)] and Krichevsky-Ilinskaya [Acta Physicochim. 20, 327 (1945)] equations for the modeling of gas solubility. Then, we implement a general molecular-based approach to gas solubility and illustrate it by studying Lennard-Jones binary systems whose microstructure and thermodynamic properties were consistently generated via integral equation calculations. Furthermore, guided by the molecular-based analysis, we propose a novel macroscopic modeling approach to gas solubility, emphasize some usually overlook modeling subtleties, and identify novel interdependences among relevant solubility quantities that can be used as either handy modeling constraints or tools for consistency tests.
Highly emissive platinum(II) metallacages
NASA Astrophysics Data System (ADS)
Yan, Xuzhou; Cook, Timothy R.; Wang, Pi; Huang, Feihe; Stang, Peter J.
2015-04-01
Light-emitting materials, especially those with tunable wavelengths, attract considerable attention for applications in optoelectronic devices, fluorescent probes, sensors and so on. Many species evaluated for these purposes either emit as a dilute solution or on aggregation, with the former often self-quenching at high concentrations, and the latter falling dark when aggregation is disrupted. Here we preserve emissive behaviour at both low- and high-concentration regimes for two discrete supramolecular coordination complexes (SCCs). These tetragonal prismatic SCCs are self-assembled on mixing a metal acceptor, Pt(PEt3)2(OSO2CF3)2, with two organic donors, a pyridyl-decorated tetraphenylethylene and one of two benzene dicarboxylate species. The rigid organization of these fluorescence-active ligands imparts an emissive behaviour to dilute solutions of the resulting assemblies. Furthermore, on aggregation the prisms exhibit variable-wavelength visible-light emission, including rare white-light emission in tetrahydrofuran. The favourable photophysical properties and solvent-dependent aggregation behaviour provide a means to tune emission wavelengths.
Nonlinear transport for a dilute gas in steady Couette flow
NASA Astrophysics Data System (ADS)
Garzó, V.; López de Haro, M.
1997-03-01
Transport properties of a dilute gas subjected to arbitrarily large velocity and temperature gradients (steady planar Couette flow) are determined. The results are obtained from the so-called ellipsoidal statistical (ES) kinetic model, which is an extension of the well-known BGK kinetic model to account for the correct Prandtl number. At a hydrodynamic level, the solution is characterized by constant pressure, and linear velocity and parabolic temperature profiles with respect to a scaled variable. The transport coefficients are explicitly evaluated as nonlinear functions of the shear rate. A comparison with previous results derived from a perturbative solution of the Boltzmann equation as well as from other kinetic models is carried out. Such a comparison shows that the ES predictions are in better agreement with the Boltzmann results than those of the other approximations. In addition, the velocity distribution function is also computed. Although the shear rates required for observing non-Newtonian effects are experimentally unrealizable, the conclusions obtained here may be relevant for analyzing computer results.
Gas solubility in dilute solutions: A novel molecular thermodynamic perspective.
Chialvo, Ariel A
2018-05-07
We present an explicit molecular-based interpretation of the thermodynamic phase equilibrium underlying gas solubility in liquids, through rigorous links between the microstructure of the dilute systems and the relevant macroscopic quantities that characterize their solution thermodynamics. We apply the formal analysis to unravel and highlight the molecular-level nature of the approximations behind the widely used Krichevsky-Kasarnovsky [J. Am. Chem. Soc. 57, 2168 (1935)] and Krichevsky-Ilinskaya [Acta Physicochim. 20, 327 (1945)] equations for the modeling of gas solubility. Then, we implement a general molecular-based approach to gas solubility and illustrate it by studying Lennard-Jones binary systems whose microstructure and thermodynamic properties were consistently generated via integral equation calculations. Furthermore, guided by the molecular-based analysis, we propose a novel macroscopic modeling approach to gas solubility, emphasize some usually overlook modeling subtleties, and identify novel interdependences among relevant solubility quantities that can be used as either handy modeling constraints or tools for consistency tests.
Jo, Yun Hee; Shin, Wan Gyoon; Lee, Ju-Yeun; Yang, Bo Ram; Yu, Yun Mi; Jung, Sun Hoi; Kim, Hyang Sook
2016-10-01
There are very few studies reporting the impact of providing intravenous (IV) preparation information on quality use of antimicrobials, particularly regarding their reconstitution and dilution. Therefore, to improve these processes in IV antimicrobial administration, an IV preparation information system (IPIS) was implemented in a hospital. We aimed to evaluate the effect of improving reconstitution and dilution by implementing an IPIS in the electronic medical record (EMR) system. Prescriptions and activity records of nurses for injectable antimicrobials that required reconstitution and dilution for IV preparation from January 2008 to December 2013 were retrieved from EMR, and assessed based on packaging label information for reconstituting and diluting solutions. We defined proper reconstitution and dilution as occurring when the reconstitution and dilution solutions prescribed were consistent with the nurses' acting records. The types of intervention in the IPIS were as follows: a pop-up alert for proper reconstitution and passive guidance for proper dilution. We calculated the monthly proper reconstitution rate (PRR) and proper dilution rate (PDR) and evaluated the changes in these rates and trends using interrupted time series analyses. Prior to the initiation of the reconstitution alert and dilution information, the PRR and PDR were 12.7 and 46.1%, respectively. The reconstitution alert of the IPIS rapidly increased the PRR by 41% (p<0.001), after which the PRR decreased by 0.9% (p=0.013) per month after several months. However, there was no significant change in the rate or trend of the PDR during the study period. This study demonstrated that the provision of reconstitution alerts by the IPIS contributed to improving the reconstitution process of IV antimicrobial injection administration. However, providing passive information on dilution solutions was ineffective. Furthermore, solutions to ensure the continuous effectiveness of alert systems are warranted and should be actively sought. Copyright © 2016. Published by Elsevier Ireland Ltd.
Formation of protocell-like vesicles in a thermal diffusion column.
Budin, Itay; Bruckner, Raphael J; Szostak, Jack W
2009-07-22
Many of the properties of bilayer membranes composed of simple single-chain amphiphiles seem to be well-suited for a potential role as primitive cell membranes. However, the spontaneous formation of membranes from such amphiphiles is a concentration-dependent process in which a significant critical aggregate concentration (cac) must be reached. Since most scenarios for the prebiotic synthesis of fatty acids and related amphiphiles would result in dilute solutions well below the cac, the identification of mechanisms that would lead to increased local amphiphile concentrations is an important aspect of defining reasonable conditions for the origin of cellular life. Narrow, vertically oriented channels within the mineral precipitates of hydrothermal vent towers have previously been proposed to act as natural Clusius-Dickel thermal diffusion columns, in which a strong transverse thermal gradient concentrates dilute molecules through the coupling of thermophoresis and convection. Here we experimentally demonstrate that a microcapillary acting as a thermal diffusion column can concentrate a solution of oleic acid. Upon concentration, self-assembly of large vesicles occurs in regions where the cac is exceeded. We detected vesicle formation by fluorescence microscopy of encapsulated dye cargoes, which simultaneously concentrated in our channels. Our findings suggest a novel means by which simple physical processes could have led to the spontaneous formation of cell-like structures from a dilute prebiotic reservoir.
NASA Astrophysics Data System (ADS)
Peng, Jiaoyu; Chen, Jing; Dong, Yaping; Li, Wu
2018-06-01
Raman spectra of boron-concentrated, diluted, and corresponding mother solutions of brine were recorded at 298.15 K. The main polyborate anions present and their interactions in brine during evaporation and dilution were proposed according to the Raman spectra. The polyborate anions B(OH)3, B3O3(OH)4-, B5O6(OH)4-, and B6O7(OH)62- were found to be the main forms in boron-concentrated brine with B3O3(OH)4- ion being the principal form. Diluting brines with water accelerated depolymerization of B5O6(OH)4- and B6O7(OH)62- anions into B(OH)3 and B3O3(OH)4- ions and generated OH- ions, causing the pH of the solutions to increase from 4.2 to almost 8.0. Mg-borates precipitated from all diluted solutions could be classified as either hexaborates or triborates. A mechanism of solid phase transformation was also proposed and discussed based on Raman spectra analysis and solid species and solution pH data.
Elmoazzen, Heidi Y.; Elliott, Janet A.W.; McGann, Locksley E.
2009-01-01
The fundamental physical mechanisms of water and solute transport across cell membranes have long been studied in the field of cell membrane biophysics. Cryobiology is a discipline that requires an understanding of osmotic transport across cell membranes under nondilute solution conditions, yet many of the currently-used transport formalisms make limiting dilute solution assumptions. While dilute solution assumptions are often appropriate under physiological conditions, they are rarely appropriate in cryobiology. The first objective of this article is to review commonly-used transport equations, and the explicit and implicit assumptions made when using the two-parameter and the Kedem-Katchalsky formalisms. The second objective of this article is to describe a set of transport equations that do not make the previous dilute solution or near-equilibrium assumptions. Specifically, a new nondilute solute transport equation is presented. Such nondilute equations are applicable to many fields including cryobiology where dilute solution conditions are not often met. An illustrative example is provided. Utilizing suitable transport equations that fit for two permeability coefficients, fits were as good as with the previous three-parameter model (which includes the reflection coefficient, σ). There is less unexpected concentration dependence with the nondilute transport equations, suggesting that some of the unexpected concentration dependence of permeability is due to the use of inappropriate transport equations. PMID:19348741
NASA Astrophysics Data System (ADS)
Zhou, Siwen; Zhu, Guanglai; Kang, Xianqu; Li, Qiang; Sha, Maolin; Cui, Zhifeng; Xu, Xinsheng
2018-06-01
Using molecular dynamics simulation, the research obtained the thermodynamic properties and microstructures of the mixture of N-octylpyridinium tetrafluoroborate and acetonitrile, including density, self-diffusion coefficients, excess properties, radial distribution functions (RDFs) and spatial distribution functions (SDFs). Both RDFs and SDFs indicate that the local microstructure of the polar region is different from the nonpolar region with different mole fraction of ionic liquids. Acetonitrile could increase the order of the polar regions. While with acetonitrile increasing, the orderliness of the nonpolar region increases firstly and then decreases. In relatively dilute solution, ionic liquids were dispersed to form small aggregates wrapped by acetonitrile.
Gas nanobubbles and aqueous nanostructures: the crucial role of dynamization.
Demangeat, Jean-Louis
2015-04-01
Nanobubbles (NBs) have been a subject of intensive research over the past decade. Their peculiar characteristics, including extremely low buoyancy, longevity, enhanced solubility of oxygen in water, zeta potentials and burst during collapse, have led to many applications in the industrial, biological and medical fields. NBs may form spontaneously from dissolved gas but the process is greatly enhanced by gas supersaturation and mechanical actions such as dynamization. Therefore, the formation of NBs during the preparation of homeopathic dilutions under atmospheric pressure cannot be ignored. I suggested in 2009 the involvement of NBs in nanometric superstructures revealed in high dilutions using NMR relaxation. These superstructures seemed to increase in size with dilution, well into the ultramolecular range (>12c). I report here new experiments that confirm the involvement of NBs and prove the crucial role of dynamization to create superstructures specific to the solute. A second dynamization was shown to enhance or regenerate these superstructures. I postulate that superstructures result from a nucleation process of NBs around the solute, with shells of highly organized water (with ions and silicates if any) which protect the solute against out-diffusion and behave as nucleation centres for further dilution steps. The sampling tip may play an active role by catching the superstructures and thus carry the encaged solute across the dilution range, possibly up to the ultramolecular range. The superstructures were not observed at low dilution, probably because of a destructuring of the solvent by the solute and/or of an inadequate gas/solute ratio. Copyright © 2015 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.
Physical properties and antibacterial activity of chitosan/acemannan mixed systems.
Escobedo-Lozano, Amada Yerén; Domard, Alain; Velázquez, Carlos A; Goycoolea, Francisco M; Argüelles-Monal, Waldo M
2015-01-22
The aim of the present study was to investigate the mechanical and thermal properties of mixed chitosan-acemannan (CS-AC) mixed gels and the antibacterial activity of dilute mixed solutions of both polysaccharides. Physical hydrogels of chitosan comprising varying amounts of non-gelling acemannan were prepared by controlled neutralization of chitosan using ammonia. As the overall acemannan concentration in the mixed hydrogel increased while fixing that of CS, the mechanical strength decreased. These results indicate that AC perturbs the formation of elastic junctions and overall connectivity as it occurs in the isolated CS network. Heterotypic associations between CS and AC leading to the formation of more compact microdomains may be at play in reducing the density of the gel network consolidated by CS, possibly due to shorter gel junctions. Micro-DSC studies at pH 12.0 seem consistent with the suggestion that molecular heterotypic associations between CS and AC may be at play in determining the overall physical properties of the mixed gel systems. In dilute solution, CS showed antimicrobial activity against Staphylococcus aureus but not against Escherichia coli; AC did not exert antimicrobial activity against any of the two bacterial species. In blended solutions of both polysaccharides, as the amount of AC increased, the antimicrobial activity of the system against S. aureus ceased. In conclusion, this study demonstrates that it is feasible to incorporate acemannan in chitosan-acemannan gels and that although the mechanical strength decreases due to the presence of AC, the gel network persists even at high amount of AC. This study anticipates that the CS-AC mixed gels may offer promise for the future development of biomaterials such as scaffolds to be used in wound therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.
New methods allowing the detection of protein aggregates
Demeule, Barthélemy; Palais, Caroline; Machaidze, Gia; Gurny, Robert
2009-01-01
Aggregation compromises the safety and efficacy of therapeutic proteins. According to the manufacturer, the therapeutic immunoglobulin trastuzumab (Herceptin®) should be diluted in 0.9% sodium chloride before administration. Dilution in 5% dextrose solutions is prohibited. The reason for the interdiction is not mentioned in the Food and Drug Administration (FDA) documentation, but the European Medicines Agency (EMEA) Summary of Product Characteristics states that dilution of trastuzumab in dextrose solutions results in protein aggregation. In this paper, asymmetrical flow field-flow fractionation (FFF), fluorescence spectroscopy, fluorescence microscopy and transmission electron microscopy (TEM) have been used to characterize trastuzumab samples diluted in 0.9% sodium chloride, a stable infusion solution, as well as in 5% dextrose (a solution prone to aggregation). When trastuzumab samples were injected in the FFF channel using a standard separation method, no difference could be seen between trastuzumab diluted in sodium chloride and trastuzumab diluted in dextrose. However, during FFF measurements made with appropriate protocols, aggregates were detected in 5% dextrose. The parameters enabling the detection of reversible trastuzumab aggregates are described. Aggregates could also be documented by fluorescence microscopy and TEM. Fluorescence spectroscopy data were indicative of conformational changes consistent with increased aggregation and adsorption to surfaces. The analytical methods presented in this study were able to detect and characterize trastuzumab aggregates. PMID:20061815
Sodium perxenate permits rapid oxidation of manganese for easy spectrophotometric determination
NASA Technical Reports Server (NTRS)
Bane, R. W.
1967-01-01
Sodium perxenate oxidizes manganese to permanganate almost instantaneously in dilute acid solution and without a catalyst. A solution is prepared by dissolving 200 mg of sodium perxenate in distilled water and diluting to 100 ml.
COMPLEX RUTHENIUM ACIDO-NITROS COMPOUNDS (in Russian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zvyagintsev, O.E.; Starostin, S.M.
1961-06-01
The chemical nature of the water in the complex ruthenium acidonitroso compounds is studied by measuring certain acid properties, reactions, and behaviors of the compounds in aqueous solution. The dependence of molecular electrical conductivity on time and dilution, variations of specific electroconductivity, the optical density, and the light absorption of the compounds at 200 to 800 m mu wave range were investigated and the dissociation constants were calculated. (R.V.J.)
NASA Technical Reports Server (NTRS)
Rembaum, Alan (Inventor); Gupta, Amitava (Inventor); Volksen, Willi (Inventor)
1981-01-01
Microspheres are produced by cobalt gamma radiation initiated polymerization of a dilute aqueous vinyl pyridine solution. Addition of cross-linking agent provides higher surface area beads. Addition of monomers such as hydroxyethylmethacrylate acrylamide or methacrylamide increases hydrophilic properties and surface area of the beads. High surface area catalytic supports are formed in the presence of controlled pore glass substrate.
Modification of vortex ring formation using dilute polymer solution
NASA Astrophysics Data System (ADS)
Jordan, Daniel; Krane, Michael; Peltier, Joel; Patterson, Eric; Fontaine, Arnold
2006-11-01
This talk will present the results of an experimental study to determine the effect of dilute polymer solution on the formation of a vortex ring. Experiments were conducted in a large, glass tank, filled with water. Vortex rings were produced by injecting a slug of dilute polymer solution into the tank through a nozzle. The injection was controlled by a prescribed piston motion in the nozzle. For the same piston motion, vortex rings were produced for 3 concentrations of the polymer solution, including one with no polymer. The vortex ring flowfield was measured using DPIV. Differences between the 3 cases of polymer concentration in vortex ring formation time, circulation, size, and convection speed are presented.
ERIC Educational Resources Information Center
Pety, Stephen J.; Lu, Hang; Thio, Yonathan S.
2011-01-01
This paper describes a student laboratory experiment to determine the molecular weight of a polymer sample by measuring the viscosity of dilute polymer solutions in a PDMS microfluidic viscometer. Sample data are given for aqueous solutions of poly(ethylene oxide) (PEO). A demonstration of shear thinning behavior using the microviscometer is…
Gentile, Francesco; Coluccio, Maria Laura; Zaccaria, Remo Proietti; Francardi, Marco; Cojoc, Gheorghe; Perozziello, Gerardo; Raimondo, Raffaella; Candeloro, Patrizio; Di Fabrizio, Enzo
2014-07-21
Super-hydrophobic surfaces are bio-inspired interfaces with a superficial texture that, in its most common evolution, is formed by a periodic lattice of silicon micro-pillars. Similar surfaces reveal superior properties compared to conventional flat surfaces, including very low friction coefficients. In this work, we modified meso-porous silicon micro-pillars to incorporate networks of metal nano-particles into the porous matrix. In doing so, we obtained a multifunctional-hierarchical system in which (i) at a larger micrometric scale, the super-hydrophobic pillars bring the molecules dissolved in an ultralow-concentration droplet to the active sites of the device, (ii) at an intermediate meso-scale, the meso-porous silicon film adsorbs the low molecular weight content of the solution and, (iii) at a smaller nanometric scale, the aggregates of silver nano-particles would measure the target molecules with unprecedented sensitivity. In the results, we demonstrated how this scheme can be utilized to isolate and detect small molecules in a diluted solution in very low abundance ranges. The presented platform, coupled to Raman or other spectroscopy techniques, is a realistic candidate for the protein expression profiling of biological fluids.
NASA Astrophysics Data System (ADS)
Jusufi, Arben
2013-11-01
We report on two recent developments in molecular simulations of self-assembly processes of amphiphilic solutions. We focus on the determination of micelle formation of ionic surfactants which exhibit the archetype of self-assembling compounds in solution. The first approach is centred on the challenge in predicting micellisation properties through explicit solvent molecular dynamics simulations. Even with a coarse-grained (CG) approach and the use of highly optimised software packages run on graphics processing unit hardware, it remains in many cases computationally infeasible to directly extract the critical micelle concentration (cmc). However, combined with a recently presented theoretical mean-field model this task becomes resolved. An alternative approach to study self-assembly is through implicit solvent modelling of the surfactants. Here we review some latest results and present new ones regarding capabilities of such a modelling approach in determining the cmc, and the aggregate structures in the dilute regime, that is currently not accessible through explicit solvent simulations, neither through atomistic nor through CG approaches. A special focus is put on surfactant concentration effects and surfactant correlations quantified by scattering intensities that are compared to recently published small-angle X-ray scattering data.
Roberts, S M; Severin, G A; Lavach, J D
1986-06-01
Bacterial cultures of specimens from healthy canine eyelids and ocular surfaces were found to demonstrate bacterial growth in 69.7% (53/76) of the eyes sampled. Organisms most commonly isolated included: Staphylococcus aureus, alpha-hemolytic Streptococcus sp, S epidermidis, and Escherichia coli. Evaluation of dilute povidone-iodine solutions for effectiveness as ocular surface disinfectants was conducted. Bacterial growth initially detected in 32 of 46 eyes was not detected after disinfection with a 2-minute scrub and 2-minute soaking procedure, using 1:2, 1:10, or 1:50 dilutions of a povidone-iodine solution that contained 1% available iodine. The eyelid and ocular surfaces of 16 eyes were disinfected with 1:100 povidone-iodine solution. Bacterial growth initially present in 10 of 16 eyes was present in 1 eye after disinfection and consisted of a single colony of E coli. After eyes were disinfected with 1:10, 1:50, or 1:100 povidone-iodine solutions, there was no evidence of corneal epithelial edema or sloughing. In 15 eyes subjected to disinfection with the 1:2 dilution, one instance of epithelial corneal edema was noticed. A 1:50 dilution of povidone-iodine is recommended as an ocular surface disinfectant for use in presurgical situations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fellinger, Michael R.; Hector, Jr., Louis G.; Trinkle, Dallas R.
In this study, we compute changes in the lattice parameters and elastic stiffness coefficients C ij of body-centered tetragonal (bct) Fe due to Al, B, C, Cu, Mn, Si, and N solutes. Solute strain misfit tensors determine changes in the lattice parameters as well as strain contributions to the changes in the C ij. We also compute chemical contributions to the changes in the C ij, and show that the sum of the strain and chemical contributions agree with more computationally expensive direct calculations that simultaneously incorporate both contributions. Octahedral interstitial solutes, with C being the most important addition inmore » steels, must be present to stabilize the bct phase over the body-centered cubic phase. We therefore compute the effects of interactions between interstitial C solutes and substitutional solutes on the bct lattice parameters and C ij for all possible solute configurations in the dilute limit, and thermally average the results to obtain effective changes in properties due to each solute. Finally, the computed data can be used to estimate solute-induced changes in mechanical properties such as strength and ductility, and can be directly incorporated into mesoscale simulations of multiphase steels to model solute effects on the bct martensite phase.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reimund, Kevin K.; McCutcheon, Jeffrey R.; Wilson, Aaron D.
A general method was developed for estimating the volumetric energy efficiency of pressure retarded osmosis via pressure-volume analysis of a membrane process. The resulting model requires only the osmotic pressure, π, and mass fraction, w, of water in the concentrated and dilute feed solutions to estimate the maximum achievable specific energy density, uu, as a function of operating pressure. The model is independent of any membrane or module properties. This method utilizes equilibrium analysis to specify the volumetric mixing fraction of concentrated and dilute solution as a function of operating pressure, and provides results for the total volumetric energy densitymore » of similar order to more complex models for the mixing of seawater and riverwater. Within the framework of this analysis, the total volumetric energy density is maximized, for an idealized case, when the operating pressure is π/(1+√w⁻¹), which is lower than the maximum power density operating pressure, Δπ/2, derived elsewhere, and is a function of the solute osmotic pressure at a given mass fraction. It was also found that a minimum 1.45 kmol of ideal solute is required to produce 1 kWh of energy while a system operating at “maximum power density operating pressure” requires at least 2.9 kmol. Utilizing this methodology, it is possible to examine the effects of volumetric solution cost, operation of a module at various pressure, and operation of a constant pressure module with various feed.« less
NASA Astrophysics Data System (ADS)
Lach, Adeline; Boulahya, Faïza; André, Laurent; Lassin, Arnault; Azaroual, Mohamed; Serin, Jean-Paul; Cézac, Pierre
2016-07-01
The thermal and volumetric properties of complex aqueous solutions are described according to the Pitzer equation, explicitly taking into account the speciation in the aqueous solutions. The thermal properties are the apparent relative molar enthalpy (Lϕ) and the apparent molar heat capacity (Cp,ϕ). The volumetric property is the apparent molar volume (Vϕ). Equations describing these properties are obtained from the temperature or pressure derivatives of the excess Gibbs energy and make it possible to calculate the dilution enthalpy (∆HD), the heat capacity (cp) and the density (ρ) of aqueous solutions up to high concentrations. Their implementation in PHREEQC V.3 (Parkhurst and Appelo, 2013) is described and has led to a new numerical tool, called PhreeSCALE. It was tested first, using a set of parameters (specific interaction parameters and standard properties) from the literature for two binary systems (Na2SO4-H2O and MgSO4-H2O), for the quaternary K-Na-Cl-SO4 system (heat capacity only) and for the Na-K-Ca-Mg-Cl-SO4-HCO3 system (density only). The results obtained with PhreeSCALE are in agreement with the literature data when the same standard solution heat capacity (Cp0) and volume (V0) values are used. For further applications of this improved computation tool, these standard solution properties were calculated independently, using the Helgeson-Kirkham-Flowers (HKF) equations. By using this kind of approach, most of the Pitzer interaction parameters coming from literature become obsolete since they are not coherent with the standard properties calculated according to the HKF formalism. Consequently a new set of interaction parameters must be determined. This approach was successfully applied to the Na2SO4-H2O and MgSO4-H2O binary systems, providing a new set of optimized interaction parameters, consistent with the standard solution properties derived from the HKF equations.
Chan, T C; Li, H T; Li, K Y
2015-12-24
Diffusivities of basically linear, planar, and spherical solutes at infinite dilution in various solvents are studied to unravel the effects of solute shapes on diffusion. On the basis of the relationship between the reciprocal of diffusivity and the molecular volume of solute molecules with similar shape in a given solvent at constant temperature, the diffusivities of solutes of equal molecular volume but different shapes are evaluated and the effects due to different shapes of two equal-sized solute molecules on diffusion are determined. It is found that the effects are dependent on the size of the solute pairs studied. Evidence of the dependence of the solute-shape effects on solvent properties is also demonstrated and discussed. Here, some new diffusion data of aromatic compounds in methanol at different temperatures are reported. The result for methanol in this study indicates that the effects of solute shape on diffusivity are only weakly dependent on temperature.
Synthesis and supramolecular assembly of biomimetic polymers
NASA Astrophysics Data System (ADS)
Marciel, Amanda Brittany
A grand challenge in materials chemistry is the synthesis of macromolecules and polymers with precise shapes and architectures. Polymer microstructure and architecture strongly affect the resulting functionality of advanced materials, yet understanding the static and dynamic properties of these complex macromolecules in bulk has been difficult due to their inherit polydispersity. Single molecule studies have provided a wealth of information on linear flexible and semi-flexible polymers in dilute solutions. However, few investigations have focused on industrially relevant complex topologies (e.g., star, comb, hyperbranched polymers) in industrially relevant solution conditions (e.g., semi-dilute, concentrated). Therefore, from this perspective there is a strong need to synthesize precision complex architectures for bulk studies as well as complex architectures compatible with current single molecule techniques to study static and dynamic polymer properties. In this way, we developed a hybrid synthetic strategy to produce branched polymer architectures based on chemically modified DNA. Overall, this approach enables control of backbone length and flexibility, as well as branch grafting density and chemical identity. We utilized a two-step scheme based on enzymatic incorporation of non-natural nucleotides containing bioorthogonal dibenzocyclooctyne (DBCO) functional groups along the main polymer backbone, followed by copper-free "click" chemistry to graft synthetic polymer branches or oligonucleotide branches to the DNA backbone, thereby allowing for the synthesis of a variety of polymer architectures, including three-arm stars, H-polymers, graft block copolymers, and comb polymers for materials assembly and single molecule studies. Bulk materials properties are also affected by industrial processing conditions that alter polymer morphology. Therefore, in an alternative strategy we developed a microfluidic-based approach to assemble highly aligned synthetic oligopeptides nanostructures using microscale extensional flows. This strategy enabled reproducible, reliable fabrication of aligned hierarchical constructs that do not form spontaneously in solution. In this way, fluidic-directed assembly of supramolecular structures allows for unprecedented manipulation at the nano- and mesoscale, which has the potential to provide rapid and efficient control of functional materials properties.
Yasuzawa, Mikito; Omura, Yuya; Hiura, Kentaro; Li, Jiang; Fuchiwaki, Yusuke; Tanaka, Masato
2015-01-01
Cellulose nanofiber aqueous solution, which remained virtually transparent for more than one week, was prepared by using the clear upper layer of diluted cellulose nanofiber solution produced by wet jet milling. Glucose oxidase (GOx) was easily dissolved in this solution and GOx-immobilized electrode was easily fabricated by simple repetitious drops of GOx-cellulose solution on the surface of a platinum-iridium electrode. Glucose sensor properties of the obtained electrodes were examined in phosphate buffer solution of pH 7.4 at 40°C. The obtained electrode provided a glucose sensor response with significantly high response speed and good linear relationship between glucose concentration and response current. After an initial decrease of response sensitivity for a few days, relatively constant sensitivity was obtained for about 20 days. Nevertheless, the influence of electroactive compounds such as ascorbic acid, uric acid and acetoaminophen were not negletable.
NASA Astrophysics Data System (ADS)
Asrah, Hidayati; Mirasa, Abdul Karim; Bolong, Nurmin
2018-02-01
This study investigated the mechanism of how POFA mitigated the ASR expansion. Two types of POFA; the UPOFA and GPOFA with different fineness were used to replace the cement at 20% and 40% and their effects on the mortar bar expansion, calcium hydroxide, alkali dilution, and calcium concentration were investigated. The results showed that UPOFA has a significant ability to mitigate the ASR, even at a lower level of replacement (20%) compared to GPOFA. The mechanism of UPOFA in mitigating the ASR expansion was through a reduction in the calcium hydroxide content, which produced low calcium concentration within the mortar pore solution. Low pore solution alkalinity signified that UPOFA had good alkali dilution effect. Meanwhile, a higher dosage of GPOFA was required to mitigate the ASR expansion. An increase in the pore solution alkalinity of GPOFA mortar indicated higher penetration of alkalis from the NaOH solution, which reduced the alkali dilution effect. However, this was compensated by the increase in the cement dilution effect at higher GPOFA replacement, which controlled the mortar bar expansion below the ASTM limit.
Reusable chelating resins concentrate metal ions from highly dilute solutions
NASA Technical Reports Server (NTRS)
Bauman, A. J.; Weetal, H. H.; Weliky, N.
1966-01-01
Column chromatographic method uses new metal chelating resins for recovering heavy-metal ions from highly dilute solutions. The absorbed heavy-metal cations may be removed from the chelating resins by acid or base washes. The resins are reusable after the washes are completed.
Diluted povidone-iodine versus saline for dressing metal-skin interfaces in external fixation.
Chan, C K; Saw, A; Kwan, M K; Karina, R
2009-04-01
To compare infection rates associated with 2 dressing solutions for metal-skin interfaces. 60 patients who underwent distraction osteogenesis with external fixators were equally randomised into 2 dressing solution groups (diluted povidone-iodine vs. saline). Fixations were attained using either rigid stainless steel 5-mm diameter half pins or smooth stainless steel 1.8-mm diameter wires. Half-pin fixation had one metal-skin interface, whereas wire fixation had 2 interfaces. Patients were followed up every 2 weeks for 6 months. Of all 788 metal-skin interfaces, 143 (18%) were infected: 72 (19%) of 371 in the diluted povidone-iodine group and 71 (17%) of 417 in the saline group. Dressing solution and patient age did not significantly affect infection rates. Half-pin fixation was more likely to become infected than wire fixation (25% vs 15%). Saline is as effective as diluted povidone-iodine as a dressing solution for metal-skin interfaces of external fixators. Saline is recommended in view of its easy availability and lower costs.
Ross Swaney; Masood Akhtar; Eric Horn; Michael Lentz; John Klungness; Marc Sabourin
2003-01-01
In this paper we introduce a new technology based on a mild chemical pretreatment process prior to mechanical pulping. Chips are treated with a dilute solution of oxalic acid (OA) for only 10 minute at 130°C, in a typical example. The properties of the pulp produced by this OA process are quite different from those obtained via conventional chemical pretreatments,...
NASA Astrophysics Data System (ADS)
Biagioli, Madeleine; Dinic, Jelena; Jimenez, Leidy Nallely; Sharma, Vivek
Free surface flows and drop formation processes present in printing, jetting, spraying, and coating involve the development of columnar necks that undergo spontaneous surface-tension driven instability, thinning, and pinch-off. Stream-wise velocity gradients that arise within the thinning neck create and extensional flow field, which induces micro-structural changes within complex fluids that contribute elastic stresses, changing the thinning and pinch-off dynamics. In this contribution, we use dripping-onto-substrate (DoS) extensional rheometry technique for visualization and analysis of the pinch-off dynamics of dilute and ultra-dilute aqueous polyethylene oxide (PEO) solutions. Using a range of molecular weights, we study the effect of both elasticity and finite extensibility. Both effective relaxation time and the transient extensional viscosity are found to be strongly concentration-dependent even for highly dilute solutions.
Characterization of a multilayer aquifer using open well dilution tests.
West, L Jared; Odling, Noelle E
2007-01-01
An approach to characterization of multilayer aquifer systems using open well borehole dilution is described. The approach involves measuring observation well flow velocities while a nearby extraction well is pumped by introducing a saline tracer into observation wells and collecting dilution vs. depth profiles. Inspection of tracer profile evolution allows discrete permeable layers within the aquifer to be identified. Dilution profiles for well sections between permeable layers are then converted into vertical borehole flow velocities and their evolution, using an analytic solution to the advection-dispersion equation applied to borehole flow. The dilution approach is potentially able to measure much smaller flow velocities that would be detectable using flowmeters. Vertical flow velocity data from the observation wells are then matched to those generated using a hydraulic model of the aquifer system, "shorted" by the observation wells, to yield the hydraulic properties of the constituent layers. Observation well flow monitoring of pumping tests represents a cost-effective alternative or preliminary approach to pump testing each layer of a multilayer aquifer system separately using straddle packers or screened wells and requires no prior knowledge of permeable layer depths and thicknesses. The modification described here, of using tracer dilution rather than flowmeter logging to obtain well flow velocities, allows the approach to be extended to greater well separations, thus characterizing a larger volume of the aquifer. An example of the application of this approach to a multilayer Chalk Aquifer in Yorkshire, Northeast England, is presented.
Nonlinear optical properties of hybridized CdS/ZnS-PVP sols
NASA Astrophysics Data System (ADS)
Kulagina, A. S.; Evstropiev, S. K.; Khrebtov, A. I.
2017-11-01
Hybrid composites of CdS-core ZnS-shell nanoparticles embedded in polyvinylpyrrolidone (PVP) matrixes have been prepared and characterized. Cadmium sulfide (CdS) nanocrystals were grown in water-propanol-2 solutions containing high-molecular (Ms=1300000) polyvinylpyrrolidone (PVP) at room temperature using cadmium nitrate and sodium sulfide as the cadmium and sulfur sources, respectively. The CdS/ZnS-PVP suspensions have promising optical properties for nanocomposite films based on. Nonlinear optical properties of diluted CdS/ZnS sols were studied at 532 nm and 5 ns laser pulses by using the Z-scan technique. Dependence of the nonlinear-optical coefficients on the CdS weight has been obtained.
May, T.W.; Wiedmeyer, Ray H.
1998-01-01
The CETAC ADX-500 autodiluter system was tested with ELAN?? v 2.1 software and the ELAN 6000 ICP-MS instrument to determine on-line automated dilution performance during analysis of standard solutions containing nine analytes representative of the mass spectral range (mass 9 to mass 238). Two or more dilution schemes were tested for each of 5 test tube designs. Dilution performance was determined by comparison of analyte concentration means of diluted and non-diluted standards. Accurate dilutions resulted with one syringe pump addition of diluent in small diameter round-bottomed (13 mm OD) or conical-tipped (18 mm OD) tubes and one or more syringe pump additions in large diameter (28 mm OD) conical-tipped tubes. Inadequate dilution mixing which produced high analyte concentration means was observed for all dilutions conducted in flat-bottomed tubes, and for dilutions requiring multiple syringe additions of diluent in small diameter round-bottomed and conical tipped tubes. Effective mixing of diluted solutions was found to depend largely upon tube diameter and liquid depth: smaller tube diameters and greater liquid depth resulted in ineffective mixing, whereas greater tube diameter and shallower liquid depth facilitated effective mixing. Two design changes for the autodiluter were suggested that would allow effective mixing to occur using any dilution scheme and tube design.
On-Surface Pseudo-High-Dilution Synthesis of Macrocycles: Principle and Mechanism.
Fan, Qitang; Wang, Tao; Dai, Jingya; Kuttner, Julian; Hilt, Gerhard; Gottfried, J Michael; Zhu, Junfa
2017-05-23
Macrocycles have attracted much attention due to their specific "endless" topology, which results in extraordinary properties compared to related linear (open-chain) molecules. However, challenges still remain in their controlled synthesis with well-defined constitution and geometry. Here, we report the successful application of the (pseudo-)high-dilution method to the conditions of on-surface synthesis in ultrahigh vacuum. This approach leads to high yields (up to 84%) of cyclic hyperbenzene ([18]-honeycombene) via an Ullmann-type reaction from 4,4″-dibromo-meta-terphenyl (DMTP) as precursor on a Ag(111) surface. The mechanism of macrocycle formation was explored in detail using scanning tunneling microscopy and X-ray photoemission spectroscopy. We propose that the dominant pathway for hyperbenzene (MTP) 6 formation is the stepwise desilverization of an organometallic (MTP-Ag) 6 macrocycle, which forms via cyclization of (MTP-Ag) 6 chains under pseudo-high-dilution conditions. The high probability of cyclization on the stage of the organometallic phase results from the reversibility of the C-Ag bond. The case is different from that in solution, in which cyclization typically occurs on the stage of a covalently bonded open-chain precursor. This difference in the cyclization mechanism on a surface compared to that in solution stems mainly from the 2D confinement exerted by the surface template, which hinders the flipping of chain segments necessary for cyclization.
A systematical rheological study of polysaccharide from Sophora alopecuroides L. seeds.
Wu, Yan; Guo, Rui; Cao, Nannan; Sun, Xiangjun; Sui, Zhongquan; Guo, Qingbin
2018-01-15
The rheological properties of polysaccharide (SAP) from Sophora alopecuroides L. seeds were systematically investigated by fitting different models. The steady flow testing indicated that SAP exhibited shear-thinning behaviors, which were enhanced with increasing concentration and decreasing temperature. This was demonstrated quantitatively by Williamson and Arrhenius models. According to the generalized Morris equation, SAP exhibited random coil conformation with the potential to form weak gel-like network. On the other hand, multiple results of dynamic tests confirmed the viscoelastic properties of SAP, showing oscillatory behaviors between a dilute solution and an elastic gel. Furthermore, SAP solutions were thermorheologically stable without remarkable energetic interactions or structural heterogeneity, since their rheological patterns were successfully applied to Time-temperature superposition (TTS) principle, modified Cole-Cole analysis and Cox-Merz rule. Copyright © 2017 Elsevier Ltd. All rights reserved.
Forgie, John C; El Khakani, Soumia; MacNeil, Dean D; Rochefort, Dominic
2013-05-28
Electrolytic solutions of lithium-ion batteries can be modified with additives to improve their stability and safety. Electroactive molecules can be used as such additives to act as an electron (redox) shuttle between the two electrodes to prevent overcharging. The electroactive ionic liquid, 1-ferrocenylmethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide (TFSI), was synthesised and its electrochemical properties were investigated when diluted with ethylene carbonate-diethyl carbonate solvent at various concentrations. Cyclic voltammetry data were gathered to determine the redox potential, diffusion coefficient and heterogeneous rate constants of the electroactive imidazolium TFSI ionic liquid in the carbonate solution. The properties of this molecule as an additive in lithium battery electrolytes were studied in standard coin cells with a metallic Li anode and a Li4Ti5O12 cathode.
40 CFR 180.1196 - Peroxyacetic acid; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2011 CFR
2011-07-01
... AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD... antimicrobial treatment in solutions containing a diluted end use concentration of peroxyacetic acid up to 100... food commodities when used in sanitizing solutions containing a diluted end-use concentration of...
Brinkman, Arinda C M; Romijn, Johannes W A; van Barneveld, Lerau J M; Greuters, Sjoerd; Veerhoek, Dennis; Vonk, Alexander B A; Boer, Christa
2010-06-01
Dilutional coagulopathy as a consequence of cardiopulmonary bypass (CPB) system priming may also be affected by the composition of the priming solution. The direct effects of distinct priming solutions on fibrinogen, one of the foremost limiting factors during dilutional coagulopathy, have been minimally evaluated. Therefore, the authors investigated whether hemodilution with different priming solutions distinctly affects the fibrinogen-mediated step in whole blood clot formation. Prospective observational laboratory study. University hospital laboratory. Eight male healthy volunteers. Blood samples diluted with gelatin-, albumin-, or hydroxyethyl starch (HES)-based priming solutions were ex-vivo evaluated for clot formation by rotational thromboelastometry. The intrinsic pathway (INTEM) coagulation time increased from 186 +/- 19 seconds to 205 +/- 16, 220 +/- 17, and 223 +/- 18 seconds after dilution with gelatin-, albumin-, or HES-containing prime solutions (all p < 0.05 v baseline). The extrinsic pathway (EXTEM) coagulation time was only minimally affected by hemodilution. Moreover, all 3 priming solutions significantly reduced the INTEM and EXTEM maximum clot firmness. The HES-containing priming solution induced the largest decrease in the maximum clot firmness attributed to fibrinogen, from 13 +/- 1 mm (baseline) to 6 +/- 1 mm (p < 0.01 v baseline). All studied priming solutions prolonged coagulation time and decreased clot formation, but the fibrinogen-limiting effect was the most profound for the HES-containing priming solution. These results suggest that the composition of priming solutions may distinctly affect blood clot formation, in particular with respect to the fibrinogen component in hemostasis. Copyright 2010 Elsevier Inc. All rights reserved.
Atomic-scale dynamics of edge dislocations in Ni and concentrated solid solution NiFe alloys
Zhao, Shijun; Osetsky, Yuri N.; Zhang, Yanwen; ...
2017-01-19
Single-phase concentrated solid solution alloys (CSAs), including high entropy alloys, exhibit excellent mechanical properties compared to conventional dilute alloys. However, the origin of this observation is not clear yet because the dislocation properties in CSAs are poorly understood. In this work, the mobility of a <110>{111} edge dislocation in pure Ni and equiatomic solid solution Ni 0.5Fe 0.5 (NiFe) is studied using molecular dynamics simulations with different empirical potentials. The threshold stress to initiate dislocation movement in NiFe is found to be much higher compared to pure Ni. The drag coefficient of the dislocation motion calculated from the linear regimemore » of dislocation velocities versus applied stress suggests that the movement of dislocations in NiFe is strongly damped compared to that in Ni. The present results indicate that the mobility of edge dislocations in fcc CSAs are controlled by the fluctuations in local stacking fault energy caused by the local variation of alloy composition.« less
Passive non-linear microrheology for determining extensional viscosity
NASA Astrophysics Data System (ADS)
Hsiao, Kai-Wen; Dinic, Jelena; Ren, Yi; Sharma, Vivek; Schroeder, Charles M.
2017-12-01
Extensional viscosity is a key property of complex fluids that greatly influences the non-equilibrium behavior and processing of polymer solutions, melts, and colloidal suspensions. In this work, we use microfluidics to determine steady extensional viscosity for polymer solutions by directly observing particle migration in planar extensional flow. Tracer particles are suspended in semi-dilute solutions of DNA and polyethylene oxide, and a Stokes trap is used to confine single particles in extensional flows of polymer solutions in a cross-slot device. Particles are observed to migrate in the direction transverse to flow due to normal stresses, and particle migration is tracked and quantified using a piezo-nanopositioning stage during the microfluidic flow experiment. Particle migration trajectories are then analyzed using a second-order fluid model that accurately predicts that migration arises due to normal stress differences. Using this analytical framework, extensional viscosities can be determined from particle migration experiments, and the results are in reasonable agreement with bulk rheological measurements of extensional viscosity based on a dripping-onto-substrate method. Overall, this work demonstrates that non-equilibrium properties of complex fluids can be determined by passive yet non-linear microrheology.
Lagrange thermodynamic potential and intrinsic variables for He-3 He-4 dilute solutions
NASA Technical Reports Server (NTRS)
Jackson, H. W.
1983-01-01
For a two-fluid model of dilute solutions of He-3 in liquid He-4, a thermodynamic potential is constructed that provides a Lagrangian for deriving equations of motion by a variational procedure. This Lagrangian is defined for uniform velocity fields as a (negative) Legendre transform of total internal energy, and its primary independent variables, together with their thermodynamic conjugates, are identified. Here, similarities between relations in classical physics and quantum statistical mechanics serve as a guide for developing an alternate expression for this function that reveals its character as the difference between apparent kinetic energy and intrinsic internal energy. When the He-3 concentration in the mixtures tends to zero, this expression reduces to Zilsel's formula for the Lagrangian for pure liquid He-4. An investigation of properties of the intrinsic internal energy leads to the introduction of intrinsic chemical potentials along with other intrinsic variables for the mixtures. Explicit formulas for these variables are derived for a noninteracting elementary excitation model of the fluid. Using these formulas and others also derived from quantum statistical mechanics, another equivalent expression for the Lagrangian is generated.
Noroozi, Javad; Paluch, Andrew S
2017-02-23
Molecular dynamics simulations were employed to both estimate the solubility of nonelectrolyte solids, such as acetanilide, acetaminophen, phenacetin, methylparaben, and lidocaine, in supercritical carbon dioxide and understand the underlying molecular-level driving forces. The solubility calculations involve the estimation of the solute's limiting activity coefficient, which may be computed using conventional staged free-energy calculations. For the case of lidocaine, wherein the infinite dilution approximation is not appropriate, we demonstrate how the activity coefficient at finite concentrations may be estimated without additional effort using the dilute solution approximation and how this may be used to further understand the solvation process. Combining with experimental pure-solid properties, namely, the normal melting point and enthalpy of fusion, solubilities were estimated. The results are in good quantitative agreement with available experimental data, suggesting that molecular simulations may be a powerful tool for understanding supercritical processes and the design of carbon dioxide-philic molecular systems. Structural analyses were performed to shed light on the microscopic details of the solvation of different functional groups by carbon dioxide and the observed solubility trends.
Moreno, Angel J; Lo Verso, Federica; Arbe, Arantxa; Pomposo, José A; Colmenero, Juan
2016-03-03
By means of large-scale computer simulations and small-angle neutron scattering (SANS), we investigate solutions of single-chain nanoparticles (SCNPs), covering the whole concentration range from infinite dilution to melt density. The analysis of the conformational properties of the SCNPs reveals that these synthetic nano-objects share basic ingredients with intrinsically disordered proteins (IDPs), as topological polydispersity, generally sparse conformations, and locally compact domains. We investigate the role of the architecture of the SCNPs in their collapse behavior under macromolecular crowding. Unlike in the case of linear macromolecules, which experience the usual transition from self-avoiding to Gaussian random-walk conformations, crowding leads to collapsed conformations of SCNPs resembling those of crumpled globules. This behavior is already found at volume fractions (about 30%) that are characteristic of crowding in cellular environments. The simulation results are confirmed by the SANS experiments. Our results for SCNPs--a model system free of specific interactions--propose a general scenario for the effect of steric crowding on IDPs: collapse from sparse conformations at high dilution to crumpled globular conformations in cell environments.
Ottonello, G; Richet, P; Vetuschi Zuccolini, M
2015-02-07
We present an application of the Scaling Particle Theory (SPT) coupled with an ab initio assessment of the electronic, dispersive, and repulsive energy terms based on the Polarized Continuum Model (PCM) aimed at reproducing the observed solubility behavior of OH2 over the entire compositional range from pure molten silica to pure water and wide pressure and temperature regimes. It is shown that the solution energy is dominated by cavitation terms, mainly entropic in nature, which cause a large negative solution entropy and a consequent marked increase of gas phase fugacity with increasing temperatures. Besides, the solution enthalpy is negative and dominated by electrostatic terms which depict a pseudopotential well whose minimum occurs at a low water fraction (XH2O) of about 6 mol. %. The fine tuning of the solute-solvent interaction is achieved through very limited adjustments of the electrostatic scaling factor γel which, in pure water, is slightly higher than the nominal value (i.e., γel = 1.224 against 1.2), it attains its minimum at low H2O content (γel = 0.9958) and then rises again at infinite dilution (γel = 1.0945). The complex solution behavior is interpreted as due to the formation of energetically efficient hydrogen bonding when OH functionals are in appropriate amount and relative positioning with respect to the discrete OH2 molecules, reinforcing in this way the nominal solute-solvent inductive interaction. The interaction energy derived from the SPT-PCM calculations is then recast in terms of a sub-regular Redlich-Kister expansion of appropriate order whereas the thermodynamic properties of the H2O component at its standard state (1-molal solution referred to infinite dilution) are calculated from partial differentiation of the solution energy over the intensive variables.
Structure and Properties of Polymer Interphases
1988-09-30
substrate primed with a dilute aqueous solution of y -aminopropyltriethoxy- silane (’APS), there was little reaction between the primer and adhesive and...of y -aminopropyltriethoxysilane (- Y -APS) at pH 10.4 for one minute, withdrawn, and blown dry with a stream of nitrogen gas. The resulting primer...cm-1 is due to the C= N stretching mode of imine groups formed by oxidation of the amino groups in the primer. The negative peak near 1740 cm is due
NASA Astrophysics Data System (ADS)
Di Dato, Mariaines; de Barros, Felipe P. J.; Fiori, Aldo; Bellin, Alberto
2018-03-01
Natural attenuation and in situ oxidation are commonly considered as low-cost alternatives to ex situ remediation. The efficiency of such remediation techniques is hindered by difficulties in obtaining good dilution and mixing of the contaminant, in particular if the plume deformation is physically constrained by an array of wells, which serves as a containment system. In that case, dilution may be enhanced by inducing an engineered sequence of injections and extractions from such pumping system, which also works as a hydraulic barrier. This way, the aquifer acts as a natural mixer, in a manner similar to the industrialized engineered mixers. Improving the efficiency of hydrogeological mixers is a challenging task, owing to the need to use a 3-D setup while relieving the computational burden. Analytical solutions, though approximated, are a suitable and efficient tool to seek the optimum solution among all possible flow configurations. Here we develop a novel physically based model to demonstrate how the combined spatiotemporal fluctuations of the water fluxes control solute trajectories and residence time distributions and therefore, the effectiveness of contaminant plume dilution and mixing. Our results show how external forcing configurations are capable of inducing distinct time-varying groundwater flow patterns which will yield different solute dilution rates.
Sridhar, T; Nguyen, D A; Prabhakar, R; Prakash, J Ravi
2007-04-20
It has long been conjectured that the macroscopic dynamics of dilute polymer solutions may exhibit a glasslike slowdown caused by ergodicity breaking, in the vicinity of the coil-stretch transition in elongational flows. We report experimental observations using a filament stretching rheometer that confirm the existence of such glassy states. It is observed that different time-dependent elongational strain-rate profiles lead to a pronounced history dependence and aging effects within a narrow range of strain rates. The results have a direct bearing on the analysis and design of processes employing dilute polymer solutions, such as ink-jet printing, surface coating, and turbulent-drag reduction.
Fortran programs for the time-dependent Gross-Pitaevskii equation in a fully anisotropic trap
NASA Astrophysics Data System (ADS)
Muruganandam, P.; Adhikari, S. K.
2009-10-01
Here we develop simple numerical algorithms for both stationary and non-stationary solutions of the time-dependent Gross-Pitaevskii (GP) equation describing the properties of Bose-Einstein condensates at ultra low temperatures. In particular, we consider algorithms involving real- and imaginary-time propagation based on a split-step Crank-Nicolson method. In a one-space-variable form of the GP equation we consider the one-dimensional, two-dimensional circularly-symmetric, and the three-dimensional spherically-symmetric harmonic-oscillator traps. In the two-space-variable form we consider the GP equation in two-dimensional anisotropic and three-dimensional axially-symmetric traps. The fully-anisotropic three-dimensional GP equation is also considered. Numerical results for the chemical potential and root-mean-square size of stationary states are reported using imaginary-time propagation programs for all the cases and compared with previously obtained results. Also presented are numerical results of non-stationary oscillation for different trap symmetries using real-time propagation programs. A set of convenient working codes developed in Fortran 77 are also provided for all these cases (twelve programs in all). In the case of two or three space variables, Fortran 90/95 versions provide some simplification over the Fortran 77 programs, and these programs are also included (six programs in all). Program summaryProgram title: (i) imagetime1d, (ii) imagetime2d, (iii) imagetime3d, (iv) imagetimecir, (v) imagetimesph, (vi) imagetimeaxial, (vii) realtime1d, (viii) realtime2d, (ix) realtime3d, (x) realtimecir, (xi) realtimesph, (xii) realtimeaxial Catalogue identifier: AEDU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 122 907 No. of bytes in distributed program, including test data, etc.: 609 662 Distribution format: tar.gz Programming language: FORTRAN 77 and Fortran 90/95 Computer: PC Operating system: Linux, Unix RAM: 1 GByte (i, iv, v), 2 GByte (ii, vi, vii, x, xi), 4 GByte (iii, viii, xii), 8 GByte (ix) Classification: 2.9, 4.3, 4.12 Nature of problem: These programs are designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in one-, two- or three-space dimensions with a harmonic, circularly-symmetric, spherically-symmetric, axially-symmetric or anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Solution method: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation, in either imaginary or real time, over small time steps. The method yields the solution of stationary and/or non-stationary problems. Additional comments: This package consists of 12 programs, see "Program title", above. FORTRAN77 versions are provided for each of the 12 and, in addition, Fortran 90/95 versions are included for ii, iii, vi, viii, ix, xii. For the particular purpose of each program please see the below. Running time: Minutes on a medium PC (i, iv, v, vii, x, xi), a few hours on a medium PC (ii, vi, viii, xii), days on a medium PC (iii, ix). Program summary (1)Title of program: imagtime1d.F Title of electronic file: imagtime1d.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 1 GByte Programming language used: Fortran 77 Typical running time: Minutes on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in one-space dimension with a harmonic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems. Program summary (2)Title of program: imagtimecir.F Title of electronic file: imagtimecir.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 1 GByte Programming language used: Fortran 77 Typical running time: Minutes on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in two-space dimensions with a circularly-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems. Program summary (3)Title of program: imagtimesph.F Title of electronic file: imagtimesph.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 1 GByte Programming language used: Fortran 77 Typical running time: Minutes on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with a spherically-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems. Program summary (4)Title of program: realtime1d.F Title of electronic file: realtime1d.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 2 GByte Programming language used: Fortran 77 Typical running time: Minutes on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in one-space dimension with a harmonic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems. Program summary (5)Title of program: realtimecir.F Title of electronic file: realtimecir.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 2 GByte Programming language used: Fortran 77 Typical running time: Minutes on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in two-space dimensions with a circularly-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems. Program summary (6)Title of program: realtimesph.F Title of electronic file: realtimesph.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 2 GByte Programming language used: Fortran 77 Typical running time: Minutes on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with a spherically-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems. Program summary (7)Title of programs: imagtimeaxial.F and imagtimeaxial.f90 Title of electronic file: imagtimeaxial.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 2 GByte Programming language used: Fortran 77 and Fortran 90 Typical running time: Few hours on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with an axially-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems. Program summary (8)Title of program: imagtime2d.F and imagtime2d.f90 Title of electronic file: imagtime2d.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 2 GByte Programming language used: Fortran 77 and Fortran 90 Typical running time: Few hours on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in two-space dimensions with an anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems. Program summary (9)Title of program: realtimeaxial.F and realtimeaxial.f90 Title of electronic file: realtimeaxial.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 4 GByte Programming language used: Fortran 77 and Fortran 90 Typical running time Hours on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with an axially-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems. Program summary (10)Title of program: realtime2d.F and realtime2d.f90 Title of electronic file: realtime2d.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 4 GByte Programming language used: Fortran 77 and Fortran 90 Typical running time: Hours on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in two-space dimensions with an anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems. Program summary (11)Title of program: imagtime3d.F and imagtime3d.f90 Title of electronic file: imagtime3d.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 4 GByte Programming language used: Fortran 77 and Fortran 90 Typical running time: Few days on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with an anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems. Program summary (12)Title of program: realtime3d.F and realtime3d.f90 Title of electronic file: realtime3d.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum Ram Memory: 8 GByte Programming language used: Fortran 77 and Fortran 90 Typical running time: Days on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with an anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems.
Glynn, Colm; Creedon, Donal; Geaney, Hugh; Armstrong, Eileen; Collins, Timothy; Morris, Michael A.; Dwyer, Colm O’
2015-01-01
Solution processed metal oxide thin films are important for modern optoelectronic devices ranging from thin film transistors to photovoltaics and for functional optical coatings. Solution processed techniques such as dip-coating, allow thin films to be rapidly deposited over a large range of surfaces including curved, flexible or plastic substrates without extensive processing of comparative vapour or physical deposition methods. To increase the effectiveness and versatility of dip-coated thin films, alterations to commonly used precursors can be made that facilitate controlled thin film deposition. The effects of polymer assisted deposition and changes in solvent-alkoxide dilution on the morphology, structure, optoelectronic properties and crystallinity of vanadium pentoxide thin films was studied using a dip-coating method using a substrate withdrawal speed within the fast-rate draining regime. The formation of sub-100 nm thin films could be achieved rapidly from dilute alkoxide based precursor solutions with high optical transmission in the visible, linked to the phase and film structure. The effects of the polymer addition was shown to change the crystallized vanadium pentoxide thin films from a granular surface structure to a polycrystalline structure composed of a high density of smaller in-plane grains, resulting in a uniform surface morphology with lower thickness and roughness. PMID:26123117
21 CFR 175.270 - Poly(vinyl fluoride) resins.
Code of Federal Regulations, 2014 CFR
2014-04-01
...(vinyl fluoride) basic resins have an intrinsic viscosity of not less than 0.75 deciliter per gram as determined by ASTM method D1243-79, “Standard Test Method for Dilute Solution Viscosity of Vinyl Chloride... (ASTM method D1243-79, “Standard Test Method for Dilute Solution Viscosity of Vinyl Chloride Polymers...
Nouraei, Mehdi; Acosta, Edgar J
2017-06-01
Fully dilutable microemulsions (μEs), used to design self-microemulsifying delivery system (SMEDS), are formulated as concentrate solutions containing oil and surfactants, without water. As water is added to dilute these systems, various μEs are produced (water-swollen reverse micelles, bicontinuous systems, and oil-swollen micelles), without the onset of phase separation. Currently, the formulation dilutable μEs follows a trial and error approach that has had a limited success. The objective of this work is to introduce the use of the hydrophilic-lipophilic-difference (HLD) and net-average-curvature (NAC) frameworks to predict the solubilisation features of ternary phase diagrams of lecithin-linker μEs and the use of these predictions to guide the formulation of dilutable μEs. To this end, the characteristic curvatures (Cc) of soybean lecithin (surfactant), glycerol monooleate (lipophilic linker) and polyglycerol caprylate (hydrophilic linker) and the equivalent alkane carbon number (EACN) of ethyl caprate (oil) were obtained via phase scans with reference surfactant-oil systems. These parameters were then used to calculate the HLD of lecithin-linkers-ethyl caprate microemulsions. The calculated HLDs were able to predict the phase transitions observed in the phase scans. The NAC was then used to fit and predict phase volumes obtained from salinity phase scans, and to predict the solubilisation features of ternary phase diagrams of the lecithin-linker formulations. The HLD-NAC predictions were reasonably accurate, and indicated that the largest region for dilutable μEs was obtained with slightly negative HLD values. The NAC framework also predicted, and explained, the changes in microemulsion properties along dilution lines. Copyright © 2017 Elsevier Inc. All rights reserved.
Separation and concentration of lower alcohols from dilute aqueous solutions
Moore, Raymond H.; Eakin, David E.; Baker, Eddie G.; Hallen, Richard T.
1991-01-01
A process for producing, from a dilute aqueous solution of a lower (C.sub.1 -C.sub.5) alcohol, a concentrated liquid solution of the alcohol in an aromatic organic solvent is disclosed. Most of the water is removed from the dilute aqueous solution of alcohol by chilling sufficiently to form ice crystals. Simultaneously, the remaining liquid is extracted at substantially the same low temperature with a liquid organic solvent that is substantially immiscible in aqueous liquids and has an affinity for the alcohol at that temperature, causing the alcohol to transfer to the organic phase. After separating the organic liquid from the ice crystals, the organic liquid can be distilled to enrich the concentration of alcohol therein. Ethanol so separated from water and concentrated in an organic solvent such as toluene is useful as an anti-knock additive for gasoline.
Bidentate organophosphorus solvent extraction process for actinide recovery and partition
Schulz, Wallace W.
1976-01-01
A liquid-liquid extraction process for the recovery and partitioning of actinide values from acidic nuclear waste aqueous solutions, the actinide values including trivalent, tetravalent and hexavalent oxidation states is provided and includes the steps of contacting the aqueous solution with a bidentate organophosphorous extractant to extract essentially all of the actinide values into the organic phase. Thereafter the respective actinide fractions are selectively partitioned into separate aqueous solutions by contact with dilute nitric or nitric-hydrofluoric acid solutions. The hexavalent uranium is finally removed from the organic phase by contact with a dilute sodium carbonate solution.
High-throughput ab-initio dilute solute diffusion database.
Wu, Henry; Mayeshiba, Tam; Morgan, Dane
2016-07-19
We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world.
NASA Technical Reports Server (NTRS)
Gupta, D. K.; Seigle, L. L.
1974-01-01
The activity of carbon in the two-phase regions - W + WC and W + W2C was obtained from the carbon content of iron rods equilibrated with mixtures of metal plus carbide powders. From this activity data the standard free energies of formation of WC and W2C were calculated. The temperature of the invariant reaction W2C = W + WC was fixed at 1570 + or - 5K. Using available solubility data for C in solid W, the partial molar free energy of C in the dilute solid solution was also calculated. The heat of solution of C in W, and the excess entropy for the interstitial solid solution, were computed, assuming that the carbon atoms reside in the octahedral interstices of bcc W.
Chitosan-silane sol-gel hybrid thin films with controllable layer thickness and morphology.
Spirk, Stefan; Findenig, Gerald; Doliska, Ales; Reichel, Victoria E; Swanson, Nicole L; Kargl, Rupert; Ribitsch, Volker; Stana-Kleinschek, Karin
2013-03-01
The preparation of thin films of chitosan-silane hybrid materials by combining sol-gel processing and spin coating is reported. A variety of silanes can be used as starting materials for the preparation of such thin films, namely tetraethoxysilane, tri-tert-butoxysilanol, trimethylethoxysilane, p-trifluoromethyltetra-fluorophenyltriethoxysilane, trivinylmethoxysilane, (methoxymethyl)trimethyl-silane, and hexamethoxydisilane. These silanes are subjected to a sol-gel process before they are added to acidic chitosan solutions. The chitosan:silane ratio is kept constant at 6:1 (w/w) and dilutions with ethanol are prepared and spin coated. Depending on the degree of dilution, film thickness can be controlled in a range between 5 and 70 nm. For the determination of additional surface properties, static water contact angle measurements and atomic force microscopy have been employed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hakin, A W; Hedwig, G R
2001-02-15
A recent paper in this journal [Amend and Helgeson, Biophys. Chem. 84 (2000) 105] presented a new group additivity model to calculate various thermodynamic properties of unfolded proteins in aqueous solution. The parameters given for the revised Helgeson-Kirkham-Flowers (HKF) equations of state for all the constituent groups of unfolded proteins can be used, in principle, to calculate the partial molar heat capacity, C(o)p.2, and volume, V2(0), at infinite dilution of any polypeptide. Calculations of the values of C(o)p.2 and V2(0) for several polypeptides have been carried out to test the predictive utility of the HKF group additivity model. The results obtained are in very poor agreement with experimental data, and also with results calculated using a peptide-based group additivity model. A critical assessment of these two additivity models is presented.
Solubilization of benomyl for xylem injection in vascular wilt disease control
Percy McWain; Garold F. Gregory; Garold F. Gregory
1971-01-01
Benomyl, in varying amounts, was solubilized in several solvents, thus allowing injection into trees for fungus disease prevention and therapy. A large amount of benomyl can be solubilized in diluted lactic acid. The resulting solution can be infinitely diluted with water without pre-cipitation. These characteristics make it the current solution of choice for our tree...
Elasticity and expansion test performance of geopolymer as oil well cement
NASA Astrophysics Data System (ADS)
Ridha, S.; Hamid, A. I. Abd; Halim, A. H. Abdul; Zamzuri, N. A.
2018-04-01
History has shown that geopolymer cement provides high compressive strength as compared to Class G cement. However, the research had been done at ambient temperature, not at elevated condition which is the common oil well situation. In this research, the physical and mechanical properties performance of the oil well cement were investigated by laboratory work for two types of cement that are geopolymer and Class G cement. The cement samples were produced by mixing the cement according to the API standards. Class C fly ash was used in this study. The alkaline solution was prepared by mixing sodium silicate with NaOH solution. The NaOH solution was prepared by diluting NaOH pellets with distilled water to 8M. The cement samples were cured at a pressure of 3000 psi and a temperature of 130 °C to simulate the downhole condition. After curing, the physical properties of the cement samples were investigated using OYO Sonic Viewer to determine their elastic properties. Autoclave expansion test and compressive strength tests were conducted to determine the expansion value and the strength of the cement samples, respectively. The results showed that the geopolymer cement has a better physical and mechanical properties as compared with Class G cement at elevated condition.
Transport properties in dilute UN (X ) solid solutions (X =Xe ,Kr )
NASA Astrophysics Data System (ADS)
Claisse, Antoine; Schuler, Thomas; Lopes, Denise Adorno; Olsson, Pär
2016-11-01
Uranium nitride (UN) is a candidate fuel for current GEN III fission reactors, for which it is investigated as an accident-tolerant fuel, as well as for future GEN IV reactors. In this study, we investigate the kinetic properties of gas fission products (Xe and Kr) in UN. Binding and migration energies are obtained using density functional theory, with an added Hubbard correlation to model f electrons, and the occupation matrix control scheme to avoid metastable states. These energies are then used as input for the self-consistent mean field method which enables to determine transport coefficients for vacancy-mediated diffusion of Xe and Kr on the U sublattice. The magnetic ordering of the UN structure is explicitly taken into account, for both energetic and transport properties. Solute diffusivities are compared with experimental measurements and the effect of various parameters on the theoretical model is carefully investigated. We find that kinetic correlations are very strong in this system, and that despite atomic migration anisotropy, macroscopic solute diffusivities show limited anisotropy. Our model indicates that the discrepancy between experimental measurements probably results from different irradiation conditions, and hence different defect concentrations.
Demangeat, Jean-Louis
2013-04-01
proton nuclear magnetic resonance (NMR) relaxation times T1, T2, T1/T2 are sensitive to motion and organization of water molecules. Especially, increase in T1/T2 reflects a higher degree of structuring. My purpose was to look at physical changes in water in ultrahigh aqueous dilutions. Samples were prepared by iterative centesimal (c) dilution with vigorous agitation, ranging between 3c and 24c (Avogadro limit 12c). Solutes were silica-lactose, histamine, manganese-lactose. Solvents were water, NaCl 0.15 M or LiCl 0.15 M. Solvents underwent strictly similar, simultaneous dilution/agitation, for each level of dilution, as controls. NMR relaxation was studied within 0.02-20 MHz. No changes were observed in controls. Increasing T1 and T1/T2 were found in dilutions, which persisted beyond 9c (manganese-lactose), 10c (histamine) and 12c (silica-lactose). For silica-lactose in LiCl, continuous decrease in T2 with increase in T1/T2 within the 12c-24c range indicated growing structuring of water despite absence of the initial solute. All changes vanished after heating/cooling. These findings were interpreted in terms of nanosized (>4-nm) supramolecular structures involving water, nanobubbles and ions, if any. Additional study of low dilutions of silica-lactose revealed increased T2 and decreased T1/T2 compared to solvent, within the 10(-3)-10(-6) range, reflecting transient solvent destructuring. This could explain findings at high dilution. Proton NMR relaxation demonstrated modifications of the solvent throughout the low to ultramolecular range of dilution. The findings suggested the existence of superstructures that originate stereospecifically around the solute after an initial destructuring of the solvent, developing more upon dilution and persisting beyond 12c. Copyright © 2013 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.
Pellegrino, J; Wright, S; Ranvill, J; Amy, G
2005-01-01
Flow-Field Flow Fractionation (FI-FFF) is an idealization of the cross flow membrane filtration process in that, (1) the filtration flux and crossflow velocity are constant from beginning to end of the device, (2) the process is a relatively well-defined laminar-flow hydrodynamic condition, and (3) the solutes are introduced as a pulse-input that spreads due to interactions with each other and the membrane in the dilute-solution limit. We have investigated the potential for relating FI-FFF measurements to membrane fouling. An advection-dispersion transport model was used to provide 'ideal' (defined as spherical, non-interacting solutes) solute residence time distributions (RTDs) for comparison with 'real' RTDs obtained experimentally at different cross-field velocities and solution ionic strength. An RTD moment analysis based on a particle diameter probability density function was used to extract "effective" characteristic properties, rather than uniquely defined characteristics, of the standard solute mixture. A semi-empirical unsteady-state, flux decline model was developed that uses solute property parameters. Three modes of flux decline are included: (1) concentration polarization, (2) cake buildup, and (3) adsorption on/in pores, We have used this model to test the hypothesis-that an analysis of a residence time distribution using FI-FFF can describe 'effective' solute properties or indices that can be related to membrane flux decline in crossflow membrane filtration. Constant flux filtration studies included the changes of transport hydrodynamics (solvent flux to solute back diffusion (J/k) ratios), solution ionic strength, and feed water composition for filtration using a regenerated cellulose ultrafiltration membrane. Tests of the modeling hypothesis were compared with experimental results from the filtration measurements using several correction parameters based on the mean and variance of the solute RTDs. The corrections used to modify the boundary layer mass transfer coefficient and the specific resistance of cake or adsorption layers demonstrated that RTD analysis is potentially useful technique to describe colloid properties but requires improvements.
Olfactory Impact of Higher Alcohols on Red Wine Fruity Ester Aroma Expression in Model Solution.
Cameleyre, Margaux; Lytra, Georgia; Tempere, Sophie; Barbe, Jean-Christophe
2015-11-11
This study focused on the impact of five higher alcohols on the perception of fruity aroma in red wines. Various aromatic reconstitutions were prepared, consisting of 13 ethyl esters and acetates and 5 higher alcohols, all at the average concentrations found in red wine. These aromatic reconstitutions were prepared in several matrices. Sensory analysis revealed the interesting behavior of certain compounds among the five higher alcohols following their individual addition or omission. The "olfactory threshold" of the fruity pool was evaluated in several matrices: dilute alcohol solution, dilute alcohol solution containing 3-methylbutan-1-ol or butan-1-ol individually, and dilute alcohol solution containing the mixture of five higher alcohols, blended together at various concentrations. The presence of 3-methylbutan-1-ol or butan-1-ol alone led to a significant decrease in the "olfactory threshold" of the fruity reconstitution, whereas the mixture of alcohols raised the olfactory threshold. Sensory profiles highlighted changes in the perception of fruity nuances in the presence of the mixture of higher alcohols, with specific perceptive interactions, including a relevant masking effect on fresh- and jammy-fruit notes of the fruity mixture in both dilute alcohol solution and dearomatized red wine matrices. When either 3-methylbutan-1-ol or butan-1-ol was added to the fruity reconstitution in dilute alcohol solution, an enhancement of butyric notes was reported with 3-methylbutan-1-ol and fresh- and jammy-fruit with butan-1-ol. This study, the first to focus on the impact of higher alcohols on fruity aromatic expression, revealed that these compounds participate, both quantitatively and qualitatively, in masking fruity aroma perception in a model fruity wine mixture.
Turbulence of polymer solutions.
Balkovsky, E; Fouxon, A; Lebedev, V
2001-11-01
We investigate high-Reynolds-number turbulence in dilute polymer solutions. We show the existence of a critical value of the Reynolds number, which separates two different regimes. In the first regime, below the transition, the influence of the polymer molecules on the flow is negligible, so they can be regarded as passively embedded in the flow. This case admits a detailed investigation of the statistics of the polymer elongations. The second state is realized when the Reynolds number is larger than the critical value. This regime is characterized by the strong back reaction of polymers on the flow. We establish some properties of the statistics of the stress and velocity in this regime and discuss its relation to the drag reduction phenomenon.
Study on Latent Heat of Fusion of Ice in Aqueous Solutions
NASA Astrophysics Data System (ADS)
Kumano, Hiroyuki; Asaoka, Tatsunori; Saito, Akio; Okawa, Seiji
In this study, latent heat of fusion of ice in aqueous solutions was measured to understand latent heat of fusion of ice slurries. Propylene glycol, ethylene glycol, ethanol, NaCl and NaNO3 solutions were examined as the aqueous solutions. In the measurement, pure ice was put into the solution, and the temperature variation of the solution due to the melting of the ice was measured. Then, the effective latent heat of fusion was calculated from energy balance equation. When ice melts in solution, the concentration of the solution varies due to the melting of the ice, and dilution heat must be considered. Therefore, the latent heat of fusion of ice in aqueous solutions was predicted by considering the effects of dilution and freezing-point depression. The latent heat of fusion was also measured by differential scanning calorimetry(DSC) to compare the results obtained from the experiments with that obtained by DSC. As the result, it was found that the effective latent heat of fusion of ice decreased with the increase of the concentration of solution, and the effective latent heat of fusion was calculated from latent heat of fusion of pure ice and the effects of freezing-point depression and the dilution heat.
Xu, Qi-Xin; Shi, Jun-Jun; Zhang, Jian-Guo; Li, Ling; Jiang, Li; Wei, Zhao-Jun
2016-12-01
Plant polysaccharides are widely used in food industry as thickening and gelling agents and these attributes largely depend on their thermal, emulsifying and rheological properties. As known, the extraction methods always bring about the diversification of property and functions of polysaccharides. Thus, the Vaccinium bracteatum Thunb leaves polysaccharides (VBTLP) were sequentially extracted using hot buffer (HBSS), chelating agent (CHSS), dilute alkaline (DASS) and concentrated alkaline (CASS). The thermal, emulsifying and rheological properties of VBTLP were investigated in the present study. Within the range of 20-225°C, CHSS showed the highest peak temperature, whereas HBSS displayed the highest endothermic enthalpy and highest emulsifying activity, while, CASS showed the longest emulsifying stability. The VBTLP solutions exhibited non-Newtonian shear-thinning behavior within the concentrations of 0.6-2.5%. The apparent viscosity of VBTLP solution decreased under following conditions: acidic pH (4.0), alkaline pH (10.0), in the presence of Ca 2+ and at high temperature, while it increased in the presence of Na + and at freezing conditions. The modulus G' and G″ of VBTLP solutions were increased with increasing oscillation frequency, and the crossover frequency shifted to lower values when the polysaccharide content increased. The above results of thermal, emulsifying and rheological properties of VBTLPs supplied the basis for V. bracteatum leaves in potential industrial applications of foods. Copyright © 2016 Elsevier B.V. All rights reserved.
Thermodynamics of a dilute XX chain in a field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timonin, P. N., E-mail: pntim@live.ru
Gapless phases in ground states of low-dimensional quantum spin systems are rather ubiquitous. Their peculiarity is a remarkable sensitivity to external perturbations due to permanent criticality of such phases manifested by a slow (power-low) decay of pair correlations and the divergence of the corresponding susceptibility. A strong influence of various defects on the properties of the system in such a phase can then be expected. Here, we consider the influence of vacancies on the thermodynamics of the simplest quantum model with a gapless phase, the isotropic spin-1/2 XX chain. The existence of the exact solution of this model gives amore » unique opportunity to describe in detail the dramatic effect of dilution on the gapless phase—the appearance of an infinite series of quantum phase transitions resulting from level crossing under the variation of a longitudinal magnetic field. We calculate the jumps in the field dependences of the ground-state longitudinal magnetization, susceptibility, entropy, and specific heat appearing at these transitions and show that they result in a highly nonlinear temperature dependence of these parameters at low T. Also, the effect of enhancement of the magnetization and longitudinal correlations in the dilute chain is established. The changes of the pair spin correlators under dilution are also analyzed. The universality of the mechanism of the quantum transition generation suggests that similar effects of dilution can also be expected in gapless phases of other low-dimensional quantum spin systems.« less
NASA Astrophysics Data System (ADS)
Fathi, Marziyeh; Reza Farajollahi, Ali; Akbar Entezami, Ali
2013-05-01
Nanohydrogels of poly(vinyl alcohol)-g-N-isopropylacrylamide (PVA-g-NIPAAm) are synthesized by PVA and NIPAAm dilute aqueous solution using much less radiation dose of 1-20 Gy via intramolecular crosslinking at ambient temperature. The radiation synthesis of nanohydrogels is performed in the presence of tetrakis (hydroxymethyl) phosphonium chloride (THPC) due to its rapid oxygen scavenging abilities and hydrogen peroxide (H2O2) as a source of hydroxyl radicals. The effect of radiation dose, feed composition ratio of PVA and H2O2 is investigated on swelling properties such as temperature and pH dependence of equilibrium swelling ratio as well as deswelling kinetics. Experimental data exhibit high equilibrium swelling ratio and fast response time for the synthesized nanohydrogels. The average molecular weight between crosslinks (Mc) and crosslinking density (ρx) of the obtained nanohydrogels are calculated from swelling data as a function of radiation dose, H2O2 and PVA amount. Fourier transform infrared spectroscopy (FT-IR), elemental analysis of nitrogen content and thermogravimetric analysis (TGA) are used to confirm the grafting reaction. Lower critical solution temperature (LCST) is measured around 33 °C by differential scanning calorimetry (DSC) for PVA-g-NIPAAm nanohydrogels. Dynamic light scattering (DLS) data demonstrate that the increase of radiation dose leads to the decreasing in dimension of nanohydrogels. Also, rheological studies are confirmed an improvement in the mechanical properties of the nanohydrogels with increasing the radiation dose. A cytotoxicity study exhibits a good biocompatibility for the obtained nanohydrogels. The prepared nanohydrogels show fast swelling/deswelling behavior, high swelling ratio, dual sensitivity and good cytocompatibility, which may find potential applications as biomaterial.
NASA Astrophysics Data System (ADS)
Lou, Shuai; Lee, Seul Bi; Nam, Dae-Geun; Choi, Yoon Suk
2017-11-01
A filler metal wire, Alloy 625, was cladded on a plate of a low carbon streel, SS400, by gas tungsten arc welding, and the morphology of the weld bead and resulting dilution ratio were investigated under different welding parameter values (the input current, weld speed and wire feed speed). The wire feed speed was found to be most influential in controlling the dilution ratio of the weld bead, and seemed to limit the influence of other welding parameters. Two extreme welding conditions (with the minimum and maximum dilution ratios) were identified, and the corresponding microstructures, hardness and tensile properties near the bond line were compared between the two cases. The weld bead with the minimum dilution ratio showed superior hardness and tensile properties, while the formation lath martensite (due to relatively fast cooling) affected mechanical properties in the heat affected zone of the base metal with the maximum dilution ratio.
Dundua, Alexander; Landfester, Katharina; Taden, Andreas
2014-11-01
Hydrophobic association and stimuli-responsiveness is a powerful tool towards water-based adhesives with strongly improved properties, which is demonstrated based on the example of hydrophobically modified alkali-soluble latexes (HASE) with modulated association. Their rheological properties are highly tunable due to the hydrophobic domains that act as physical crosslinking sites of adjustable interaction strength. Ethanol, propanol, and butanol are used as water-soluble model additives with different hydrophobicity in order to specifically target the association sites and impact the viscoelastic properties and stimuli-responsiveness. The rheological and mechanical property response upon dilution with water can be tailored, and dilution-resistant or even dilution-thickening systems are obtained. The investigations are of high importance for water-based adhesives, as our findings provide insight into general structure-property relationships to improve their setting behavior, especially upon contact with wet substrates. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Motor-mediated microtubule self-organization in dilute and semi-dilute filament solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swaminathan, S.; Ziebert, F.; Aranson, I. S.
We study molecular motor-induced microtubule self-organization in dilute and semi-dilute filament solutions. In the dilute case, we use a probabilistic model of microtubule interaction via molecular motors to investigate microtubule bundle dynamics. Microtubules are modeled as polar rods interacting through fully inelastic, binary collisions. Our model indicates that initially disordered systems of interacting rods exhibit an orientational instability resulting in spontaneous ordering. We study the existence and dynamic interaction of microtubule bundles analytically and numerically. Our results reveal a long term attraction and coalescing of bundles indicating a clear coarsening in the system; microtubule bundles concentrate into fewer orientations onmore » a slow logarithmic time scale. In semi-dilute filament solutions, multiple motors can bind a filament to several others and, for a critical motor density, induce a transition to an ordered phase with a nonzero mean orientation. Motors attach to a pair of filaments and walk along the pair bringing them into closer alignment. We develop a spatially homogenous, mean-field theory that explicitly accounts for a force-dependent detachment rate of motors, which in turn affects the mean and the fluctuations of the net force acting on a filament. We show that the transition to the oriented state can be both continuous and discontinuous when the force-dependent detachment of motors is important.« less
Siahi Shadbad, Mohammad Reza; Ghaderi, Faranak; Hatami, Leila; Monajjemzadeh, Farnaz
2016-12-01
In this study the stability of parenteral acyclovir (ACV) when diluted in dextrose (DEX) as large volume intravenous fluid preparation (LVIF) was evaluated and the possible Maillard reaction adducts were monitored in the recommended infusion time. Different physicochemical methods were used to evaluate the Maillard reaction of dextrose with ACV to track the reaction in real infusion condition. Other large volume intravenous fluids were checked regarding the diluted drug stability profile. Differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and mass data proved the reaction of glucose with dextrose. A Maillard-specific high performance liquid chromatography (HPLC) method was used to track the reaction in real infusion condition in vitro. The nucleophilic reaction occurred in diluted parenteral preparations of acyclovir in 5% dextrose solutions. The best diluent solution was also selected as sodium chloride and introduced based on drug stability and also its adsorption onto different infusion sets (PVC or non PVC) to provide an acceptable administration protocol in clinical practices. Although, the Maillard reaction was proved and successfully tracked in diluted solutions, and the level of drug loss when diluted in dextrose was reported to be between 0.27 up to 1.03% of the initial content. There was no drug adsorption to common infusion sets. The best diluent for parenteral acyclovir is sodium chloride large volume intravenous fluid.
High-throughput ab-initio dilute solute diffusion database
Wu, Henry; Mayeshiba, Tam; Morgan, Dane
2016-01-01
We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world. PMID:27434308
Protein Adsorption to In-Line Filters of Intravenous Administration Sets.
Besheer, Ahmed
2017-10-01
Ensuring compatibility of administered therapeutic proteins with intravenous administration sets is an important regulatory requirement. A low-dose recovery during administration of low protein concentrations is among the commonly observed incompatibilities, and it is mainly due to adsorption to in-line filters. To better understand this phenomenon, we studied the adsorption of 4 different therapeutic proteins (2 IgG1s, 1 IgG4, and 1 Fc fusion protein) diluted to 0.01 mg/mL in 5% glucose (B. Braun EcoFlac; B. Braun Melsungen AG, Melsungen, Germany) or 0.9% sodium chloride (NaCl; Freeflex; Fresenius Kabi, Friedberg, Germany) solutions to 8 in-line filters (5 positively charged and 3 neutral filters made of different polymers and by different suppliers). The results show certain patterns of protein adsorption, which depend to a large extent on the dilution solution and filter material, and to a much lower extent on the proteins' biophysical properties. Investigation of the filter membranes' zeta potential showed a correlation between the observed adsorption pattern in 5% glucose solution and the filter's surface charge, with higher protein adsorption for the strongly negatively charged membranes. In 0.9% NaCl solution, the surface charges are masked, leading to different adsorption patterns. These results contribute to the general understanding of the protein adsorption to IV infusion filters and allow the design of more efficient compatibility studies. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
River Mixing in the Amazon as a Driver of Concentration-Discharge Relationships
NASA Astrophysics Data System (ADS)
Bouchez, Julien; Moquet, Jean-Sébastien; Espinoza, Jhan Carlo; Martinez, Jean-Michel; Guyot, Jean-Loup; Lagane, Christelle; Filizola, Naziano; Noriega, Luis; Hidalgo Sanchez, Liz; Pombosa, Rodrigo
2017-11-01
Large hydrological systems aggregate compositionally different waters derived from a variety of pathways. In the case of continental-scale rivers, such aggregation occurs noticeably at confluences between tributaries. Here we explore how such aggregation can affect solute concentration-discharge (C-Q) relationships and thus obscure the message carried by these relationships in terms of weathering properties of the Critical Zone. We build up a simple model for tributary mixing to predict the behavior of C-Q relationships during aggregation. We test a set of predictions made in the context of the largest world's river, the Amazon. In particular, we predict that the C-Q relationships of the rivers draining heterogeneous catchments should be the most "dilutional" and should display the widest hysteresis loops. To check these predictions, we compute 10 day-periodicity time series of Q and major solute (Si, Ca2+, Mg2+, K+, Na+, Cl-, SO42-) C and fluxes (F) for 13 gauging stations located throughout the Amazon basin. In agreement with the model predictions, C-Q relationships of most solutes shift from a fairly "chemostatic" behavior (nearly constant C) at the Andean mountain front and in pure lowland areas, to more "dilutional" patterns (negative C-Q relationship) toward the system mouth. More prominent C-Q hysteresis loops are also observed at the most downstream stations. Altogether, this study suggests that mixing of water and solutes between different flowpaths exerts a strong control on C-Q relationships of large-scale hydrological systems.
Kaiser, Jeanette; Krämer, Irene
2012-06-01
The aim of this study was to investigate the physicochemical stability of clofarabine (CAFdA) injection concentrate and ready-to-use CAFdA infusion solutions over a prolonged period of 28 days. To determine the stability of CAFdA infusion solutions, the injection concentrate (Evoltra®, 1 mg/mL, Genzyme) was diluted either with 0.9% sodium chloride or 5% glucose infusion solution. The resulting concentrations of 0.2 mg/mL or 0.6 mg/mL, respectively, were chosen to represent the lower and upper limit of the ordinary concentration range. Test solutions were stored under refrigeration (2-8°C) or at room temperature either light protected or exposed to light. CAFdA concentrations and pH values were determined at different time intervals throughout a 28-day storage period. Compatibility of diluted CAFdA infusion solutions (0.1-0.4 mg/mL) with different container materials (polyvinyl chloride (PVC), glass, and polypropylene/polyethylene (PP/PE)) was tested over a 48-h storage period. CAFdA concentrations were measured by a stability-indicating reversed phase high-performance liquid chromatography (HPLC) assay with ultraviolet detection. CAFdA injection concentrate and CAFdA infusion solutions remained physicochemically stable (>90% CAFdA) for 4 weeks. Results are independent of storage conditions, drug concentrations (0.2, 0.6, and 1.0 mg/mL) and diluents (0.9% sodium chloride, 5% glucose infusion solution). Adsorption of CAFdA to container material can be excluded. CAFdA injection concentrate and diluted infusion solutions in commonly used vehicles are stable for at least 28 days either refrigerated or at room temperature. Physicochemical stability favors pharmacy-based centralized preparation. Due to microbiological reasons, strict aseptic handling and storage of the products under refrigeration is recommended.
Wang, Junmei; Hou, Tingjun
2011-01-01
In this work, we have evaluated how well the General AMBER force field (GAFF) performs in studying the dynamic properties of liquids. Diffusion coefficients (D) have been predicted for 17 solvents, 5 organic compounds in aqueous solutions, 4 proteins in aqueous solutions, and 9 organic compounds in non-aqueous solutions. An efficient sampling strategy has been proposed and tested in the calculation of the diffusion coefficients of solutes in solutions. There are two major findings of this study. First of all, the diffusion coefficients of organic solutes in aqueous solution can be well predicted: the average unsigned error (AUE) and the root-mean-square error (RMSE) are 0.137 and 0.171 ×10−5 cm−2s−1, respectively. Second, although the absolute values of D cannot be predicted, good correlations have been achieved for 8 organic solvents with experimental data (R2 = 0.784), 4 proteins in aqueous solutions (R2 = 0.996) and 9 organic compounds in non-aqueous solutions (R2 = 0.834). The temperature dependent behaviors of three solvents, namely, TIP3P water, dimethyl sulfoxide (DMSO) and cyclohexane have been studied. The major MD settings, such as the sizes of simulation boxes and with/without wrapping the coordinates of MD snapshots into the primary simulation boxes have been explored. We have concluded that our sampling strategy that averaging the mean square displacement (MSD) collected in multiple short-MD simulations is efficient in predicting diffusion coefficients of solutes at infinite dilution. PMID:21953689
Clegg, S L; Wexler, A S
2011-04-21
Calculations of the size and density of atmospheric aerosols are complicated by the fact that they can exist at concentrations highly supersaturated with respect to dissolved salts and supercooled with respect to ice. Densities and apparent molar volumes of solutes in aqueous solutions containing the solutes H(2)SO(4), HNO(3), HCl, Na(2)SO(4), NaNO(3), NaCl, (NH(4))(2)SO(4), NH(4)NO(3), and NH(4)Cl have been critically evaluated and represented using fitted equations from 0 to 50 °C or greater and from infinite dilution to concentrations saturated or supersaturated with respect to the dissolved salts. Using extrapolated densities of high-temperature solutions and melts, the relationship between density and concentration is extended to the hypothetical pure liquid solutes. Above a given reference concentration of a few mol kg(-1), it is observed that density increases almost linearly with decreasing temperature, and comparisons with available data below 0 °C suggest that the fitted equations for density can be extrapolated to very low temperatures. As concentration is decreased below the reference concentration, the variation of density with temperature tends to that of water (which decreases as temperature is reduced below 3.98 °C). In this region below the reference concentration, and below 0 °C, densities are calculated using extrapolated apparent molar volumes which are constrained to agree at the reference concentrations with an equation for the directly fitted density. Calculated volume properties agree well with available data at low temperatures, for both concentrated and dilute solutions. Comparisons are made with literature data for temperatures of maximum density. Apparent molar volumes at infinite dilution are consistent, on a single ion basis, to better than ±0.1 cm(3) mol(-1) from 0 to 50 °C. Volume properties of aqueous NaHSO(4), NaOH, and NH(3) have also been evaluated, at 25 °C only. In part 2 of this work (ref 1 ) an ion interaction (Pitzer) model has been used to calculate apparent molar volumes of H(2)SO(4) in 0-3 mol kg(-1) aqueous solutions of the pure acid and to represent directly the effect of the HSO(4)(-) ↔ H(+) + SO(4)(2-) reaction. The results are incorporated into the treatment of aqueous H(2)SO(4) density described here. Densities and apparent molar volumes from -20 to 50 °C, and from 0 to 100 wt % of solute, are tabulated for the electrolytes listed in the title and have also been incorporated into the extended aerosol inorganics model (E-AIM, http://www.aim.env.uea.ac.uk/aim/aim.php) together with densities of the solid salts and hydrates.
Process of concentrating ethanol from dilute aqueous solutions thereof
Oulman, C.S.; Chriswell, C.D.
1981-07-07
Relatively dilute aqueous solutions of ethanol are concentrated by passage through a bed of a crystalline silica polymorph, such as silicalite, to adsorb the ethanol with residual dilute feed in contact with the bed, which is displaced by passing concentrated aqueous ethanol through the bed without displacing the adsorbed ethanol. A product concentrate is then obtained by removing the adsorbed ethanol from the bed together with at least a portion of the concentrated aqueous ethanol used as the displacer liquid. This process permits ethanol to be concentrated from dilute fermentation beers, which may contain from 6 to 10% ethanol, to obtain a concentrate product at very low energy cost having an ethanol concentration in excess of 95%, such as a concentration of from 98 to 99.5%. 5 figs.
Process of concentrating ethanol from dilute aqueous solutions thereof
Oulman, Charles S. [Ames, IA; Chriswell, Colin D. [Slater, IA
1981-07-07
Relatively dilute aqueous solutions of ethanol are concentrated by passage through a bed of a crystalline silica polymorph, such as silicalite, to adsorb the ethanol with residual dilute feed in contact with the bed, which is displaced by passing concentrated aqueous ethanol through the bed without displacing the adsorbed ethanol. A product concentrate is then obtained by removing the adsorbed ethanol from the bed together with at least a portion of the concentrated aqueous ethanol used as the displacer liquid. This process permits ethanol to be concentrated from dilute fermentation beers, which may contain from 6 to 10% ethanol, to obtain a concentrate product at very low energy cost having an ethanol concentration in excess of 95%, such as a concentration of from 98 to 99.5%.
SEPARATION OF THORIUM FROM URANIUM
Bane, R.W.
1959-09-01
A description is given for the separation of thorium from uranium by forming an aqueous acidic solution containing ionic species of thorium, uranyl uranium, and hydroxylamine, flowing the solution through a column containing the phenol-formaldehyde type cation exchange resin to selectively adsorb substantially all the thorium values and a portion of the uranium values, flowing a dilute solution of hydrochloric acid through the column to desorb the uranium values, and then flowing a dilute aqueous acidic solution containing an ion, such as bisulfate, which has a complexing effect upon thortum through the column to desorb substantially all of the thorium.
Djamali, Essmaiil; Chen, Keith; Murray, Richard C; Turner, Peter J; Cobble, James W
2009-02-26
Integral heat of solution measurements of barium chloride to 619.81 K, copper oxide in an excess of perrhenic acid to 585 K, and cobalt perrhenate in perrhenic acid to 573 K were measured in a high dilution calorimeter (< or =10(-3) m) at psat, from which the high temperature thermodynamic properties of aqueous barium chloride, copper perrhenate, and cobalt perrhenate were obtained. From the known differences between the corresponding properties for aqueous perrhenate and chloride ions, the thermodynamic properties of completely ionized aqueous copper and cobalt chloride were obtained from ionic additivity. The enthalpy and derived heat capacity data at higher temperatures (T > 473.15 K) suggest that the ligand field stabilization energy of Co2+(aq) may be disappearing.
Process for strontium-82 separation
Heaton, Richard C.; Jamriska, Sr., David J.; Taylor, Wayne A.
1992-01-01
A process for selective separation of strontium-82 and strontium-85 from proton irradiated molybdenum targets comprises dissolving the molybdenum target in a hydrogen peroxide solution to form a first solution containing ions selected from a group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium, rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, and yttrium; passing the solution through a first cationic resin whereby ions selected from a group consisting of zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium a portion of zirconium and a portion of rubidium are selectively absorbed by the first resin; contacting the first resin with an acid solution to strip and remove the absorbed ions from the first cationic exchange resin to form a second solution; evaporating the second solution for a time sufficient to remove substantially all of the acid and water from the solution whereby a residue remains; dissolving the residue in a dilute acid to form a third solution; passing the third solution through a second cationic resin whereby the ions are absorbed by the second resin; contacting the second resin with a dilute sulfuric acid solution whereby the absorbed ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium and zirconium are selectively removed from the second resin; and contacting the second resin with a dilute acid solution whereby the absorbed strontium ions are selectively removed.
Process for strontium-82 separation
Heaton, R.C.; Jamriska, D.J. Sr.; Taylor, W.A.
1992-12-01
A process for selective separation of strontium-82 and strontium-85 from proton irradiated molybdenum targets comprises dissolving the molybdenum target in a hydrogen peroxide solution to form a first solution containing ions selected from a group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium, rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, and yttrium; passing the solution through a first cationic resin whereby ions selected from a group consisting of zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium a portion of zirconium and a portion of rubidium are selectively absorbed by the first resin; contacting the first resin with an acid solution to strip and remove the absorbed ions from the first cationic exchange resin to form a second solution; evaporating the second solution for a time sufficient to remove substantially all of the acid and water from the solution whereby a residue remains; dissolving the residue in a dilute acid to form a third solution; passing the third solution through a second cationic resin whereby the ions are absorbed by the second resin; contacting the second resin with a dilute sulfuric acid solution whereby the absorbed ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium and zirconium are selectively removed from the second resin; and contacting the second resin with a dilute acid solution whereby the absorbed strontium ions are selectively removed. 1 fig.
Temperature of maximum density and excess thermodynamics of aqueous mixtures of methanol
DOE Office of Scientific and Technical Information (OSTI.GOV)
González-Salgado, D.; Zemánková, K.; Noya, E. G.
In this work, we present a study of representative excess thermodynamic properties of aqueous mixtures of methanol over the complete concentration range, based on extensive computer simulation calculations. In addition to test various existing united atom model potentials, we have developed a new force-field which accurately reproduces the excess thermodynamics of this system. Moreover, we have paid particular attention to the behavior of the temperature of maximum density (TMD) in dilute methanol mixtures. The presence of a temperature of maximum density is one of the essential anomalies exhibited by water. This anomalous behavior is modified in a non-monotonous fashion bymore » the presence of fully miscible solutes that partly disrupt the hydrogen bond network of water, such as methanol (and other short chain alcohols). In order to obtain a better insight into the phenomenology of the changes in the TMD of water induced by small amounts of methanol, we have performed a new series of experimental measurements and computer simulations using various force fields. We observe that none of the force-fields tested capture the non-monotonous concentration dependence of the TMD for highly diluted methanol solutions.« less
Dutcher, Cari S; Ge, Xinlei; Wexler, Anthony S; Clegg, Simon L
2013-04-18
In previous studies (Dutcher et al. J. Phys. Chem. C 2011, 115, 16474-16487; 2012, 116, 1850-1864), we derived equations for the Gibbs energy, solvent and solute activities, and solute concentrations in multicomponent liquid mixtures, based upon expressions for adsorption isotherms that include arbitrary numbers of hydration layers on each solute. In this work, the long-range electrostatic interactions that dominate in dilute solutions are added to the Gibbs energy expression, thus extending the range of concentrations for which the model can be used from pure liquid solute(s) to infinite dilution in the solvent, water. An equation for the conversion of the reference state for solute activity coefficients to infinite dilution in water has been derived. A number of simplifications are identified, notably the equivalence of the sorption site parameters r and the stoichiometric coefficients of the solutes, resulting in a reduction in the number of model parameters. Solute concentrations in mixtures conform to a modified Zdanovskii-Stokes-Robinson mixing rule, and solute activity coefficients to a modified McKay-Perring relation, when the effects of the long-range (Debye-Hückel) term in the equations are taken into account. Practical applications of the equations to osmotic and activity coefficients of pure aqueous electrolyte solutions and mixtures show both satisfactory accuracy from low to high concentrations, together with a thermodynamically reasonable extrapolation (beyond the range of measurements) to extreme concentration and to the pure liquid solute(s).
Lin, YuPo J.; Hestekin, Jamie; Arora, Michelle; St. Martin, Edward J.
2004-09-28
An electrodeionization method for continuously producing and or separating and/or concentrating ionizable organics present in dilute concentrations in an ionic solution while controlling the pH to within one to one-half pH unit method for continuously producing and or separating and/or concentrating ionizable organics present in dilute concentrations in an ionic solution while controlling the pH to within one to one-half pH unit.
Dilute acid pretreatment of corncob for efficient sugar production
G.S. Wang; Jae-Won Lee; Junyong Zhu; Thomas W. Jeffries
2011-01-01
Aqueous dilute acid pretreatments of corncob were conducted using cylindrical pressure vessels in an oil bath. Pretreatments were conducted in a temperature range of 160â190 °C with acid-solution-to-solid-corncob ratio of 2. The acid concentration (v/v) in the pretreatment solution was varied from 0% to 0.7%, depending on temperature. This gives acid charge on ovendry-...
Concentration fluctuations and dilution in aquifers
NASA Astrophysics Data System (ADS)
Kapoor, Vivek; Kitanidis, Peter K.
1998-05-01
The concentration of solute undergoing advection and local dispersion in a random hydraulic conductivity field is analyzed to quantify its variability and dilution. Detailed numerical evaluations of the concentration variance σc2 are compared to an approximate analytical description, which is based on a characteristic variance residence time (VRT), over which local dispersion destroys concentration fluctuations, and effective dispersion coefficients that quantify solute spreading rates. Key features of the analytical description for a finite size impulse input of solute are (1) initially, the concentration fields become more irregular with time, i.e., coefficient of variation, CV=σc/
Role of Anisotropic Interactions for Proteins and Patchy Nanoparticles
2015-01-01
Protein–protein interactions are inherently anisotropic to some degree, with orientation-dependent interactions between repulsive and attractive or complementary regions or “patches” on adjacent proteins. In some cases it has been suggested that such patch–patch interactions dominate the thermodynamics of dilute protein solutions, as captured by the osmotic second virial coefficient (B22), but delineating when this will or will not be the case remains an open question. A series of simplified but exactly solvable models are first used to illustrate that a delicate balance exists between the strength of attractive patch–patch interactions and the patch size, and that repulsive patch–patch interactions contribute significantly to B22 for only those conditions where the repulsions are long-ranged. Finally, B22 is reformulated, without approximations, in terms of the density of states for a given interaction energy and particle–particle distance. Doing so illustrates the inherent balance of entropic and energetic contributions to B22. It highlights that simply having strong patch–patch interactions will only cause anisotropic interactions to dominate B22 solution properties if the unavoidable entropic penalties are overcome, which cannot occur if patches are too small. The results also indicate that the temperature dependence of B22 may be a simple experimental means to assess whether a small number of strongly attractive configurations dominate the dilute solution behavior. PMID:25302767
Djamali, Essmaiil; Chen, Keith; Cobble, James W
2009-08-27
Pabalan and Pitzer (Geochim. Cosmochim. Acta 1988, 52, 2393-2404) reported a comprehensive set of thermodynamic properties of aqueous solutions of sodium sulfate without using ion association or hydrolysis. However, there is now ample evidence available indicating that the ion association cannot be ignored at temperatures T>or=373 K. For example, even at the lowest concentration of their studies (m>or=0.05) and at 573.15 K, less than 20% of SO4(2-)(aq) is available as free ions. In the present study, the integral heats of solution of sodium sulfate were measured to very low concentrations (10(-4) m) up to 573.16 K. The data were analyzed correcting for the hydrolysis of SO4(2-)(aq) and the association of Na+(aq) with SO4(2-)(aq) and NaSO4-(aq) in order to obtain the final standard state thermodynamic properties of completely ionized aqueous sodium sulfate, Na2SO4(aq). From these and the available solubility data, the stoichiometric activity coefficients of saturated aqueous solutions of sodium sulfate were calculated up to 573.15 K and compared with literature data. The stoichiometric activity coefficients of aqueous solutions of sodium sulfate, as a function of temperature at all concentrations (0
Separation processes using expulsion from dilute supercritical solutions
Cochran, Jr., Henry D.
1993-01-01
A process for separating isotopes as well as other mixtures by utilizing the behavior of dilute repulsive or weakly attractive elements of the mixtures as the critical point of the solvent is approached.
Calcium sulphate in ammonium sulphate solution
Sullivan, E.C.
1905-01-01
Calcium sulphate, at 25?? C., is two-thirds as soluble in dilute (o.i mol per liter) and twice as soluble in concentrated (3 mois per liter) ammonium sulphate solution as in water. The specific electric conductivity of concentrated ammonium sulphate solutions is lessened by saturating with calcium sulphate. Assuming that dissociation of ammonium sulphate takes place into 2NH4?? and SO4" and of calcium sulphate into Ca and SO4" only, and that the conductivity is a measure of such dissociation, the solubility of calcium sulphate in dilute ammonium sulphate solutions is greater than required by the mass-law. The conductivity of the dilute mixtures may be accurately calculated by means of Arrhenius' principle of isohydric solutions. In the data obtained in these calculations, the concentration of non-dissociated calcium sulphate decreases with increasing ammonium sulphate. The work as a whole is additional evidence of the fact that we are not yet in possession of all the factors necessary for reconciling the mass-law to the behavior of electrolytes. The measurements above described were made in the chemical laboratory of the University of Michigan.
Kumar, Bharat; Crittenden, Scott R
2013-11-01
We demonstrate the ability to measure Stern potential and Debye length in dilute ionic solution with atomic force microscopy. We develop an analytic expression for the second harmonic force component of the capacitive force in an ionic solution from the linearized Poisson-Boltzmann equation. This allows us to calibrate the AFM tip potential and, further, obtain the Stern potential of sample surfaces. In addition, the measured capacitive force is independent of van der Waals and double layer forces, thus providing a more accurate measure of Debye length.
THE INACTIVATION OF DILUTE SOLUTIONS OF CRYSTALLINE TRYPSIN BY X-RADIATION
McDonald, Margaret R.
1954-01-01
The activity of dilute solutions of crystalline trypsin is destroyed by x-rays. The inactivation is an exponential function of the radiation dose. The reaction yield of inactivation is independent of the intensity at which the radiation is delivered or the quality of the x-rays. The reaction yield increases with increasing concentration of trypsin, varying from 0.06 to 0.7 micromoles per liter per 1000 r for trypsin solutions ranging from 1 x 10–7 to 2 x 10–4 M. PMID:13192318
NASA Technical Reports Server (NTRS)
Paley, M. S.; Frazier, D. O.; Abeledeyem, H.; Mcmanus, S. P.; Zutaut, S. E.
1992-01-01
In the present work two diacetylene derivatives of pyrrole which are predicted by semiempirical AM1 calculations to have very different properties, are synthesized; the polymerizability of these diacetylenes in the solid state is determined, and the results are compared to the computer predictions. Diacetylene 1 is novel in that the monomer is a liquid at room temperature; this may allow for the possibility of polymerization in the liquid state as well as the solid state. Thin poly(diacetylene) films are obtained from compound 1 by growing films of the monomer using vapor deposition and polymerizing with UV light; these films are then characterized. Interestingly, while the poly(diacetylene) from 1 does not possess good nonlinear optical properties, the monomer exhibits very good third-order effects (phase conjugation) in solution. Dilute acetone solutions of the monomer 1 give intensity-dependent refractive indices on the order of 10 exp -6 esu; these are 10 exp 6 times better than for CS2.
A method for predicting optimized processing parameters for surfacing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupont, J.N.; Marder, A.R.
1994-12-31
Welding is used extensively for surfacing applications. To operate a surfacing process efficiently, the variables must be optimized to produce low levels of dilution with the substrate while maintaining high deposition rates. An equation for dilution in terms of the welding variables, thermal efficiency factors, and thermophysical properties of the overlay and substrate was developed by balancing energy and mass terms across the welding arc. To test the validity of the resultant dilution equation, the PAW, GTAW, GMAW, and SAW processes were used to deposit austenitic stainless steel onto carbon steel over a wide range of parameters. Arc efficiency measurementsmore » were conducted using a Seebeck arc welding calorimeter. Melting efficiency was determined based on knowledge of the arc efficiency. Dilution was determined for each set of processing parameters using a quantitative image analysis system. The pertinent equations indicate dilution is a function of arc power (corrected for arc efficiency), filler metal feed rate, melting efficiency, and thermophysical properties of the overlay and substrate. With the aid of the dilution equation, the effect of processing parameters on dilution is presented by a new processing diagram. A new method is proposed for determining dilution from welding variables. Dilution is shown to depend on the arc power, filler metal feed rate, arc and melting efficiency, and the thermophysical properties of the overlay and substrate. Calculated dilution levels were compared with measured values over a large range of processing parameters and good agreement was obtained. The results have been applied to generate a processing diagram which can be used to: (1) predict the maximum deposition rate for a given arc power while maintaining adequate fusion with the substrate, and (2) predict the resultant level of dilution with the substrate.« less
The Effects of Micromixing Two Solutions of Two Concentrations in a Two Tier PDMS Micromixer
NASA Astrophysics Data System (ADS)
Sundra, Sargunan; Fhong Soon, Chin; Zainal, Nurfarina; Sek Tee, Kian; Ahmad, Nornabihah; Gan, Siew Hua
2017-08-01
Micromixing technology has drastically advanced in the past few decades. Micromixers are one of the elements in integrated microfluidic systems for chemical, analytical chemistry, pharmaceutical, and biological applications. In this study, two tier micromixer was used to mix and dilute two solutions of similar and different concentration in order to investigate performance of micromixer’s mixing. This paper presents the fabrication of a designed micromixer using polydimethylsiloxane (PDMS) and vinyl tape methods which reduce time, cost and complexity of prototyping. The serpentine structure of the microchannels was designed to enhance both mixing and dilution. Two types of food dyes and distilled water were used to investigate the mixing performance of the micromixer followed by spectrophotometry analysis. It is observed that the single dye solution and distilled water shows better mixing performance compared to the micromixing of two dye solutions which was supported by the diffusion theory. 2.00 ml/min was the optimum flow rate that allow optimum mixing and dilution between two different concentrated liquids.
The wet solidus of silica: Predictions from the scaled particle theory and polarized continuum model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ottonello, G., E-mail: giotto@dipteris.unige.it; Vetuschi Zuccolini, M.; Richet, P.
2015-02-07
We present an application of the Scaling Particle Theory (SPT) coupled with an ab initio assessment of the electronic, dispersive, and repulsive energy terms based on the Polarized Continuum Model (PCM) aimed at reproducing the observed solubility behavior of OH{sub 2} over the entire compositional range from pure molten silica to pure water and wide pressure and temperature regimes. It is shown that the solution energy is dominated by cavitation terms, mainly entropic in nature, which cause a large negative solution entropy and a consequent marked increase of gas phase fugacity with increasing temperatures. Besides, the solution enthalpy is negativemore » and dominated by electrostatic terms which depict a pseudopotential well whose minimum occurs at a low water fraction (X{sub H{sub 2O}}) of about 6 mol. %. The fine tuning of the solute-solvent interaction is achieved through very limited adjustments of the electrostatic scaling factor γ{sub el} which, in pure water, is slightly higher than the nominal value (i.e., γ{sub el} = 1.224 against 1.2), it attains its minimum at low H{sub 2}O content (γ{sub el} = 0.9958) and then rises again at infinite dilution (γ{sub el} = 1.0945). The complex solution behavior is interpreted as due to the formation of energetically efficient hydrogen bonding when OH functionals are in appropriate amount and relative positioning with respect to the discrete OH{sub 2} molecules, reinforcing in this way the nominal solute-solvent inductive interaction. The interaction energy derived from the SPT-PCM calculations is then recast in terms of a sub-regular Redlich-Kister expansion of appropriate order whereas the thermodynamic properties of the H{sub 2}O component at its standard state (1-molal solution referred to infinite dilution) are calculated from partial differentiation of the solution energy over the intensive variables.« less
ROSSI-FEDELE, Giampiero; de FIGUEIREDO, José Antonio Poli; STEIER, Liviu; CANULLO, Luigi; STEIER, Gabriela; ROBERTS, Adam P.
2010-01-01
Ideally root canal irrigants should have, amongst other properties, antimicrobial action associated with a lack of toxicity against periapical tissues. Sodium hypochlorite (NaOCl) is a widely used root canal irrigant, however it has been shown to have a cytotoxic effect on vital tissue and therefore it is prudent to investigate alternative irrigants. Sterilox's Aquatine Alpha Electrolyte® belongs to the group of the super-oxidized waters; it consists of a mixture of oxidizing substances, and has been suggested to be used as root canal irrigant. Super-oxidized waters have been shown to provide efficient cleaning of root canal walls, and have been proposed to be used for the disinfection of medical equipment. Objective To compare the antimicrobial action against Enterococcus faecalis of NaOCl, Optident Sterilox Electrolyte Solution® and Sterilox's Aquatine Alpha Electrolyte® when used as irrigating solutions in a bovine root canal model. Methodology Root sections were prepared and inoculated with E. faecalis JH2-2. After 10 days of incubation the root canals were irrigated using one of three solutions (NaOCl, Optident Sterilox Electrolyte Solution® and Sterilox's Aquatine Alpha Electrolyte®) and subsequently sampled by grinding dentin using drills. The debris was placed in BHI broth and dilutions were plated onto fresh agar plates to quantify growth. Results Sodium hypochlorite was the only irrigant to eliminate all bacteria. When the dilutions were made, although NaOCl was still statistically superior, Sterilox's Aquatine Alpha Electrolyte® solution was superior to Optident Sterilox Electrolyte Solution®. Conclusion Under the conditions of this study Sterilox's Aquatine Alpha Electrolyte® appeared to have significantly more antimicrobial action compared to the Optident Sterilox Electrolyte Solution® alone, however NaOCl was the only solution able to consistently eradicate E. faecalis in the model. PMID:21085808
Zdolsek, J H; Bergek, C; Lindahl, T L; Hahn, R G
2015-11-01
During fluid infusion therapy, plasma proteins are diluted and leak from the intravascular space, which alters the colloid osmotic pressure (COP) and potentially affects coagulation. We hypothesised that acetated Ringer's and starch solution, alone or in combination, influence these mechanisms differently. On different occasions, 10 male volunteers were infused with 20 ml/kg acetated Ringer's and 10 ml/kg 6% hyroxyethyl starch 130/0.4 (Voluven(®) ) alone or in combination (first with starch solution followed by Ringer's solution). Blood samples were collected every 30-min for measurements of COP, blood haemoglobin, platelets, and plasma concentrations of albumin, immunoglobulins (IgG and IgM), coagulation factor VII (FVII), fibrinogen, cystatin C, activated partial thromboplastin time (APTT) and prothrombin international normalised ratio (PT-INR). Changes were compared with the haemoglobin-derived plasma dilution. The COP increased by 8.4% (SD 3) with starch and decreased by 26.2% (7.9) with Ringer's. These infusions diluted the plasma by 23.4% (5.3) and 18.7% (4.9) respectively. The COP changes in the combined experiment followed the same pattern as the individual infusions. Albumin and IgG changes in excess of the plasma dilution were very subtle. The intravascular contents of the IgM and platelets decreased, whereas FVII, fibrinogen and cystatin C increased. PT-INR increased by 1/3 of the plasma dilution, whereas changes in APTT did not correlate with the plasma dilution. The starch increased COP and only minor capillary leak occurred in healthy volunteers. The fluid-induced plasma dilution correlated with mild impairment of the extrinsic coagulation pathway but not of the intrinsic pathway. © 2015 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bang, K.H.; Kim, M.H.
Quenching experiments of hot solid spheres in dilute aqueous solutions of polyethylene oxide polymer have been conducted for the purpose of investigating the physical mechanisms of the suppression of vapor explosions in this polymer solutions. Two spheres of 22.2mm and 9.5mm-diameter were tested in the polymer solutions of various concentrations at 30{degrees}C. Minimum film boiling temperature ({Delta}T{sub MFB}) in this highly-subcooled liquid rapidly decreased from over 700{degrees}c for pure water to about 150{degrees}C as the polymer concentration was increased up to 300ppm for 22.2mm sphere, and it decreased to 350{degrees}C for 9.5mm sphere. This rapid reduction of minimum film boilingmore » temperature in the PEO aqueous solutions can explain its ability of the suppression of spontaneous vapor explosions. The ability of suppression of vapor explosions by dilute polyethylene oxide solutions against an external trigger pressure was tested by dropping molten tin into the polymer solutions at 25{degrees}C. It was observed that in 50ppm solutions more mass fragmented than in pure water, but produced weaker explosion pressures. The explosion was completely suppressed in 300ppm solutions with the external trigger. The debris size distributions of fine fragments smaller than 0.7mm were shown almost identical regardless of the polymer concentrations.« less
Separation processes using expulsion from dilute supercritical solutions
Cochran, H.D. Jr.
1993-04-20
A process is described for separating isotopes as well as other mixtures by utilizing the behavior of dilute repulsive or weakly attractive elements of the mixtures as the critical point of the solvent is approached.
Enzyme stabilization by glass-derived silicates in glass-exposed aqueous solutions
Ives, J.A.; Moffett, J.R.; Arun, P.; Lam, D.; Todorov, T.I.; Brothers, A.B.; Anick, D.J.; Centeno, J.; Namboodiri, M.A.A.; Jonas, W.B.
2010-01-01
Objectives: To analyze the solutes leaching from glass containers into aqueous solutions, and to show that these solutes have enzyme activity stabilizing effects in very dilute solutions. Methods: Enzyme assays with acetylcholine esterase were used to analyze serially succussed and diluted (SSD) solutions prepared in glass and plastic containers. Aqueous SSD preparations starting with various solutes, or water alone, were prepared under several conditions, and tested for their solute content and their ability to affect enzyme stability in dilute solution. Results: We confirm that water acts to dissolve constituents from glass vials, and show that the solutes derived from the glass have effects on enzymes in the resultant solutions. Enzyme assays demonstrated that enzyme stability in purified and deionized water was enhanced in SSD solutions that were prepared in glass containers, but not those prepared in plastic. The increased enzyme stability could be mimicked in a dose-dependent manner by the addition of silicates to the purified, deionized water that enzymes were dissolved in. Elemental analyses of SSD water preparations made in glass vials showed that boron, silicon, and sodium were present at micromolar concentrations. Conclusions: These results show that silicates and other solutes are present at micromolar levels in all glass-exposed solutions, whether pharmaceutical or homeopathic in nature. Even though silicates are known to have biological activity at higher concentrations, the silicate concentrations we measured in homeopathic preparations were too low to account for any purported in vivo efficacy, but could potentially influence in vitro biological assays reporting homeopathic effects. ?? 2009 The Faculty of Homeopathy.
Chan, Ariel W; Neufeld, Ronald J
2009-10-01
Semisynthetic network alginate polymer (SNAP), synthesized by acetalization of linear alginate with di-aldehyde, is a pH-responsive tetrafunctionally linked 3D gel network, and has potential application in oral delivery of protein therapeutics and active biologicals, and as tissue bioscaffold for regenerative medicine. A constitutive polyelectrolyte gel model based on non-Gaussian polymer elasticity, Flory-Huggins liquid lattice theory, and non-ideal Donnan membrane equilibria was derived, to describe SNAP gel swelling in dilute and ionic solutions containing uni-univalent, uni-bivalent, bi-univalent or bi-bi-valent electrolyte solutions. Flory-Huggins interaction parameters as a function of ionic strength and characteristic ratio of alginates of various molecular weights were determined experimentally to numerically predict SNAP hydrogel swelling. SNAP hydrogel swells pronouncedly to 1000 times in dilute solution, compared to its compact polymer volume, while behaving as a neutral polymer with limited swelling in high ionic strength or low pH solutions. The derived model accurately describes the pH-responsive swelling of SNAP hydrogel in acid and alkaline solutions of wide range of ionic strength. The pore sizes of the synthesized SNAP hydrogels of various crosslink densities were estimated from the derived model to be in the range of 30-450 nm which were comparable to that measured by thermoporometry, and diffusion of bovine serum albumin. The derived equilibrium swelling model can characterize hydrogel structure such as molecular weight between crosslinks and crosslinking density, or can be used as predictive model for swelling, pore size and mechanical properties if gel structural information is known, and can potentially be applied to other point-link network polyelectrolytes such as hyaluronic acid gel.
Conformation of ionizable poly Para phenylene ethynylene in dilute solutions
Wijesinghe, Sidath; Maskey, Sabina; Perahia, Dvora; ...
2015-11-03
The conformation of dinonyl poly para phenylene ethynylenes (PPEs) with carboxylate side chains, equilibrated in solvents of different quality is studied using molecular dynamics simulations. PPEs are of interest because of their tunable electro-optical properties, chemical diversity, and functionality which are essential in wide range of applications. The polymer conformation determines the conjugation length and their assembly mode and affects electro-optical properties which are critical in their current and potential uses. The current study investigates the effect of carboxylate fraction on PPEs side chains on the conformation of chains in the dilute limit, in solvents of different quality. The dinonylmore » PPE chains are modeled atomistically, where the solvents are modeled both implicitly and explicitly. Dinonyl PPEs maintained a stretched out conformation up to a carboxylate fraction f of 0.7 in all solvents studied. The nonyl side chains are extended and oriented away from the PPE backbone in toluene and in implicit good solvent whereas in water and implicit poor solvent, the nonyl side chains are collapsed towards the PPE backbone. Thus, rotation around the aromatic ring is fast and no long range correlations are seen within the backbone.« less
Conformation of ionizable poly Para phenylene ethynylene in dilute solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wijesinghe, Sidath; Maskey, Sabina; Perahia, Dvora
The conformation of dinonyl poly para phenylene ethynylenes (PPEs) with carboxylate side chains, equilibrated in solvents of different quality is studied using molecular dynamics simulations. PPEs are of interest because of their tunable electro-optical properties, chemical diversity, and functionality which are essential in wide range of applications. The polymer conformation determines the conjugation length and their assembly mode and affects electro-optical properties which are critical in their current and potential uses. The current study investigates the effect of carboxylate fraction on PPEs side chains on the conformation of chains in the dilute limit, in solvents of different quality. The dinonylmore » PPE chains are modeled atomistically, where the solvents are modeled both implicitly and explicitly. Dinonyl PPEs maintained a stretched out conformation up to a carboxylate fraction f of 0.7 in all solvents studied. The nonyl side chains are extended and oriented away from the PPE backbone in toluene and in implicit good solvent whereas in water and implicit poor solvent, the nonyl side chains are collapsed towards the PPE backbone. Thus, rotation around the aromatic ring is fast and no long range correlations are seen within the backbone.« less
Dilution and Mixing in transient velocity fields: a first-order analysis
NASA Astrophysics Data System (ADS)
Di Dato, Mariaines; de Barros, Felipe, P. J.; Fiori, Aldo; Bellin, Alberto
2017-04-01
An appealing remediation technique is in situ oxidation, which effectiveness is hampered by difficulties in obtaining good mixing of the injected oxidant with the contaminant, particularly when the contaminant plume is contained and therefore its deformation is physically constrained. Under such conditions (i.e. containment), mixing may be augmented by inducing temporal fluctuations of the velocity field. The temporal variability of the flow field may increase the deformation of the plume such that diffusive mass flux becomes more effective. A transient periodic velocity field can be obtained by an engineered sequence of injections and extractions from wells, which may serve also as a hydraulic barrier to confine the plume. Assessing the effectiveness of periodic flows to maximize solute mixing is a difficult task given the need to use a 3D setup and the large number of possible flow configurations that should be analyzed in order to identify the optimal one. This is the typical situation in which analytical solutions, though approximated, may assist modelers in screening possible alternative flow configurations such that solute dilution is maximized. To quantify dilution (i.e. a precondition that enables reactive mixing) we utilize the concept of the dilution index [1]. In this presentation, the periodic flow takes place in an aquifer with spatially variable hydraulic conductivity field which is modeled as a Stationary Spatial Random Function. We developed a novel first-order analytical solution of the dilution index under the hypothesis that the flow can be approximated as a sequence of steady state configurations with the mean velocity changing with time in intensity and direction. This is equivalent to assume that the characteristic time of the transient behavior is small compared to the period characterizing the change in time of the mean velocity. A few closed paths have been analyzed quantifying their effectiveness in enhancing dilution and thereby mixing between the resident contaminant and an oxidant. In particular, we considered three different flow configurations: (1) a "circular" pattern, in which the vector of the mean velocity rotates at a constant celerity; (2) a "shake" pattern, in which the velocity has a constant magnitude and changes direction alternatively leading to a "back and forth" type of movement and finally (3) a more general "shake and rotate" pattern, which combines the previous two configurations. The new analytical solution shows that dilution is affected by the configuration of the periodic mean flow. Results show that the dilution index increases when the rotation-shake configuration is adopted. In addition, the dilution index is augmented with the oscillation amplitude of the shake component. This analysis is useful to identify optimal flow configurations that may be approximately reproduced in the field and which efficiency may be checked more accurately by numerical simulations, thereby alleviating the computational burden by efficiently screening among alternative configurations. References [1] Kitanidis, P. K. (1994), The concept of the Dilution Index, Water Resour. Res., 30(7), 2011-2026, doi:10.1029/94WR00762.
Wang, Junmei; Hou, Tingjun
2011-12-01
In this work, we have evaluated how well the general assisted model building with energy refinement (AMBER) force field performs in studying the dynamic properties of liquids. Diffusion coefficients (D) have been predicted for 17 solvents, five organic compounds in aqueous solutions, four proteins in aqueous solutions, and nine organic compounds in nonaqueous solutions. An efficient sampling strategy has been proposed and tested in the calculation of the diffusion coefficients of solutes in solutions. There are two major findings of this study. First of all, the diffusion coefficients of organic solutes in aqueous solution can be well predicted: the average unsigned errors and the root mean square errors are 0.137 and 0.171 × 10(-5) cm(-2) s(-1), respectively. Second, although the absolute values of D cannot be predicted, good correlations have been achieved for eight organic solvents with experimental data (R(2) = 0.784), four proteins in aqueous solutions (R(2) = 0.996), and nine organic compounds in nonaqueous solutions (R(2) = 0.834). The temperature dependent behaviors of three solvents, namely, TIP3P water, dimethyl sulfoxide, and cyclohexane have been studied. The major molecular dynamics (MD) settings, such as the sizes of simulation boxes and with/without wrapping the coordinates of MD snapshots into the primary simulation boxes have been explored. We have concluded that our sampling strategy that averaging the mean square displacement collected in multiple short-MD simulations is efficient in predicting diffusion coefficients of solutes at infinite dilution. Copyright © 2011 Wiley Periodicals, Inc.
Experimental Investigations of the Weathering of Suspended Sediment by Alpine Glacial Meltwater
NASA Astrophysics Data System (ADS)
Brown, Giles H.; Tranter, M.; Sharp, M. J.
1996-04-01
The magnitude and processes of solute acquisition by dilute meltwater in contact with suspended sediment in the channelized component of the hydroglacial system have been investigated through a suite of controlled laboratory experiments. Constrained by field data from Haut Glacier d'Arolla, Valais, Switzerland the effects of the water to rock ratio, particle size, crushing, repeated wetting and the availability of protons on the rate of solute acquisition are demonstrated. These free-drift experiments suggest that the rock flour is extremely geochemically reactive and that dilute quickflow waters are certain to acquire solute from suspended sediment. These data have important implications for hydrological interpretations based on the solute content of glacial meltwater, mixing model calculations, geochemical denudation rates and solute provenance studies.
Global Structure of HIV-1 Neutralizing Antibody IgG1 b12 is Asymmetric
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashish, F.; Solanki, A; Boone, C
2010-01-01
Human antibody IgG1 b12 is one of the four antibodies known to neutralize a broad range of human immunodeficiency virus-1. The crystal structure of this antibody displayed an asymmetric disposition of the Fab arms relative to its Fc portion. Comparison of structures solved for other IgG1 antibodies led to a notion that crystal packing forces entrapped a 'snap-shot' of different conformations accessible to this antibody. To elucidate global structure of this unique antibody, we acquired small-angle X-ray scattering data from its dilute solution. Data analysis indicated that b12 adopts a bilobal globular structure in solution with a radius of gyrationmore » and a maximum linear dimension of {approx}54 and {approx}180 {angstrom}, respectively. Extreme similarity between its solution and crystal structure concludes that non-flexible, asymmetric shape is an inherent property of this rare antibody.« less
Huynh, T T; Laidlaw, W S; Singh, B; Gregory, D; Baker, A J M
2008-12-01
Heavy metal concentrations and pH of pore-water in contaminated substrates are important factors in controlling metal uptake by plants. We investigated the effects of phytoextraction on these properties in the solution phase of biosolids and diluted biosolids in a 12-month phytoextraction column experiment. Phytoextraction using Salix and Populus spp. temporarily decreased pore-water pH of the substrates over the experimental period followed by a return to initial pH conditions. Salixxreichardtii and Populus balsamifera effectively extracted Ni, Zn and Cd and actively mobilized these metals from the solid to the solution phase. S.xreichardtii had the stronger effect on mobilization of metals due to its larger root system. Phytoextraction did not affect Cu in the solution phase of the biosolids. Heavy metals were leached down to lower depths of the columns during the phytoextraction process.
Protein Aggregation and Molecular Crowding: Perspectives From Multiscale Simulations.
Musiani, F; Giorgetti, A
2017-01-01
Cells are extremely crowded environments, thus the use of diluted salted aqueous solutions containing a single protein is too simplistic to mimic the real situation. Macromolecular crowding might affect protein structure, folding, shape, conformational stability, binding of small molecules, enzymatic activity, interactions with cognate biomolecules, and pathological aggregation. The latter phenomenon typically leads to the formation of amyloid fibrils that are linked to several lethal neurodegenerative diseases, but that can also play a functional role in certain organisms. The majority of molecular simulations performed before the last few years were conducted in diluted solutions and were restricted both in the timescales and in the system dimensions by the available computational resources. In recent years, several computational solutions were developed to get close to physiological conditions. In this review we summarize the main computational techniques used to tackle the issue of protein aggregation both in a diluted and in a crowded environment. © 2017 Elsevier Inc. All rights reserved.
Preferential diffusion in concentrated solid solution alloys: NiFe, NiCo and NiCoCr
Zhao, Shijun; Osetsky, Yuri; Zhang, Yanwen
2017-02-13
In single-phase concentrated solid-solution alloys (CSAs), including high entropy alloys (HEAs), remarkable mechanical properties are exhibited, as well as extraordinary corrosion and radiation resistance compared to pure metals and dilute alloys. But, the mechanisms responsible for these properties are unknown in many cases. In this work, we employ ab initio molecular dynamics based on density functional theory to study the diffusion of interstitial atoms in Ni and Ni-based face-centered cubic CSAs including NiFe, NiCo and NiCoCr. We model the defect trajectories over >100 ps and estimate tracer diffusion coefficients, correlation factors and activation energies. Furthermore, we found that the diffusionmore » mass transport in CSAs is not only slower than that in pure components, i.e. sluggish diffusion, but also chemically non-homogeneous. The results obtained here can be used in understanding and predicting the atomic segregation and phase separation in CSAs under irradiation conditions.« less
Wang, Jiasheng; Hui, Ni
2018-06-16
A non-fouling electrochemical immunosensor is described for determination of the tumor biomarker carcinoembryonic antigen (CEA). It is based on the use of composite wires made by chemical grafting of hyaluronic acid onto polyaniline nanowires. The modified nanowires possess excellent antifouling property both in single protein solutions and in dilute serum samples. The current of immunoelectrode exhibits a linear response in the 0.01 pg mL -1 to 10,000 pg mL -1 CEA concentration range and 0.0075 pg mL -1 detection limit. This work demonstrates that coating an electrode with hyaluronic acid can largely reduce unspecific adsorption of proteins on the electrode surface. Graphical abstract Schematic of a nonfouling electrochemical immunosensor for the carcinoembryonic antigen. It is based on novel composite wires made through the chemical grafting of easily available hyaluronic acid (HA) onto polyaniline (PANI) nanowires. The HA/PANI demonstrated excellent antifouling property both in single protein solutions and human serum samples.
The enhancement and suppression of immersion mode heterogeneous ice-nucleation by solutes.
Whale, Thomas F; Holden, Mark A; Wilson, Theodore W; O'Sullivan, Daniel; Murray, Benjamin J
2018-05-07
Heterogeneous nucleation of ice from aqueous solutions is an important yet poorly understood process in multiple fields, not least the atmospheric sciences where it impacts the formation and properties of clouds. In the atmosphere ice-nucleating particles are usually, if not always, mixed with soluble material. However, the impact of this soluble material on ice nucleation is poorly understood. In the atmospheric community the current paradigm for freezing under mixed phase cloud conditions is that dilute solutions will not influence heterogeneous freezing. By testing combinations of nucleators and solute molecules we have demonstrated that 0.015 M solutions (predicted melting point depression <0.1 °C) of several ammonium salts can cause suspended particles of feldspars and quartz to nucleate ice up to around 3 °C warmer than they do in pure water. In contrast, dilute solutions of certain alkali metal halides can dramatically depress freezing points for the same nucleators. At 0.015 M, solutes can enhance or deactivate the ice-nucleating ability of a microcline feldspar across a range of more than 10 °C, which corresponds to a change in active site density of more than a factor of 10 5 . This concentration was chosen for a survey across multiple solutes-nucleant combinations since it had a minimal colligative impact on freezing and is relevant for activating cloud droplets. Other nucleators, for instance a silica gel, are unaffected by these 'solute effects', to within experimental uncertainty. This split in response to the presence of solutes indicates that different mechanisms of ice nucleation occur on the different nucleators or that surface modification of relevance to ice nucleation proceeds in different ways for different nucleators. These solute effects on immersion mode ice nucleation may be of importance in the atmosphere as sea salt and ammonium sulphate are common cloud condensation nuclei (CCN) for cloud droplets and are internally mixed with ice-nucleating particles in mixed-phase clouds. In addition, we propose a pathway dependence where activation of CCN at low temperatures might lead to enhanced ice formation relative to pathways where CCN activation occurs at higher temperatures prior to cooling to nucleation temperature.
Verser, Dan W.; Eggeman, Timothy J.
2009-10-13
A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.
Verser, Dan W [Menlo Park, CA; Eggeman, Timothy J [Lakewood, CO
2011-11-01
A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.
Barton, Phillip T; Seshadri, Ram; Knöller, Andrea; Rosseinsky, Matthew J
2012-01-11
We have prepared the complete delafossite solid solution series between diamagnetic CuAlO(2) and the t(2g)(3)frustrated antiferromagnet CuCrO(2). The evolution with composition x in CuAl(1-x)Cr(x)O(2) of the crystal structure and magnetic properties has been studied and is reported here. The room-temperature unit cell parameters follow the Végard law and increase with x as expected. The μ(eff) is equal to the Cr(3+) spin-only S = 3/2 value throughout the entire solid solution. Θ(CW) is negative, indicating that the dominant interactions are antiferromagnetic, and its magnitude increases with Cr substitution. For dilute Cr compositions, the nearest-neighbor exchange coupling constant J(BB) was estimated by mean-field theory to be 3.0 meV. Despite the sizable Θ(CW), long-range antiferromagnetic order does not develop until x is almost 1, and is preceded by glassy behavior. The data presented here, and those on dilute Al substitution from Okuda et al, suggest that the reduction in magnetic frustration due to the presence of non-magnetic Al does not have as dominant an effect on magnetism as chemical disorder and dilution of the magnetic exchange. For all samples, the 5 K isothermal magnetization does not saturate in fields up to 5 T and minimal hysteresis is observed. The presence of antiferromagnetic interactions is clearly evident in the sub-Brillouin behavior with a reduced magnetization per Cr atom. An inspection of the scaled Curie plot reveals that significant short-range antiferromagnetic interactions occur in CuCrO(2) above its Néel temperature, consistent with its magnetic frustration. Uncompensated short-range behavior is present in the Al-substituted samples and is likely a result of chemical disorder.
NASA Astrophysics Data System (ADS)
Barton, Phillip T.; Seshadri, Ram; Knöller, Andrea; Rosseinsky, Matthew J.
2012-01-01
We have prepared the complete delafossite solid solution series between diamagnetic CuAlO2 and the t2g3frustrated antiferromagnet CuCrO2. The evolution with composition x in CuAl1-xCrxO2 of the crystal structure and magnetic properties has been studied and is reported here. The room-temperature unit cell parameters follow the Végard law and increase with x as expected. The μeff is equal to the Cr3+ spin-only S = 3/2 value throughout the entire solid solution. ΘCW is negative, indicating that the dominant interactions are antiferromagnetic, and its magnitude increases with Cr substitution. For dilute Cr compositions, the nearest-neighbor exchange coupling constant JBB was estimated by mean-field theory to be 3.0 meV. Despite the sizable ΘCW, long-range antiferromagnetic order does not develop until x is almost 1, and is preceded by glassy behavior. The data presented here, and those on dilute Al substitution from Okuda et al, suggest that the reduction in magnetic frustration due to the presence of non-magnetic Al does not have as dominant an effect on magnetism as chemical disorder and dilution of the magnetic exchange. For all samples, the 5 K isothermal magnetization does not saturate in fields up to 5 T and minimal hysteresis is observed. The presence of antiferromagnetic interactions is clearly evident in the sub-Brillouin behavior with a reduced magnetization per Cr atom. An inspection of the scaled Curie plot reveals that significant short-range antiferromagnetic interactions occur in CuCrO2 above its Néel temperature, consistent with its magnetic frustration. Uncompensated short-range behavior is present in the Al-substituted samples and is likely a result of chemical disorder.
Dilute acid/metal salt hydrolysis of lignocellulosics
Nguyen, Quang A.; Tucker, Melvin P.
2002-01-01
A modified dilute acid method of hydrolyzing the cellulose and hemicellulose in lignocellulosic material under conditions to obtain higher overall fermentable sugar yields than is obtainable using dilute acid alone, comprising: impregnating a lignocellulosic feedstock with a mixture of an amount of aqueous solution of a dilute acid catalyst and a metal salt catalyst sufficient to provide higher overall fermentable sugar yields than is obtainable when hydrolyzing with dilute acid alone; loading the impregnated lignocellulosic feedstock into a reactor and heating for a sufficient period of time to hydrolyze substantially all of the hemicellulose and greater than 45% of the cellulose to water soluble sugars; and recovering the water soluble sugars.
Hydrochemistry of the Lake Magadi basin, Kenya
Jones, B.F.; Eugster, H.P.; Rettig, S.L.
1977-01-01
New and more complete compositional data are presented for a large number of water samples from the Lake Magadi area, Kenya. These water samples range from dilute inflow (300 g/kg dissolved solids). Five distinct hydrologic stages can be recognized in the evolution of the water compositions: dilute streamflow, dilute ground water, saline ground water (or hot spring reservoir), saturated brines, and residual brines. Based on the assumption that chloride is conserved in the waters during evaporative concentration, these stages are related to each other by the concentration factors of about 1:28:870:7600:16,800. Dilute streamflow is represented by perennial streams entering the Rift Valley from the west. All but one (Ewaso Ngiro) of these streams disappear in the alluvium and do not reach the valley floor. Dilute ground water was collected from shallow pits and wells dug into lake sediments and alluvial channels. Saline ground water is roughly equivalent to the hot springs reservoir postulated by Eugster (1970) and is represented by the hottest of the major springs. Saturated brines represent surficial lake brines just at the point of saturation with respect to trona (Na2CO3.NaHCO3.2H2O), while residual brines are essentially interstitial to the evaporite deposit and have been subjected to a complex history of precipitation and re-solution. The new data confirm the basic hydrologic model presented by Eugster (1970) which has now been refined, particularly with respect to the early stages of evaporative concentration. Budget calculations show that only bromide is conserved as completely as chloride. Sodium follows chloride closely until trona precipitation, whereas silica and sulfate are largely lost during the very first concentration' step (dilute streamflow-dilute ground water). A large fraction of potassium and all calcium plus magnesium are removed during the first two concentration steps (dilute streamflow-dilute ground water-saline ground water). Carbonate and bicarbonate are the dominant anions, and mechanisms by which they are extracted from the solution include precipitation of alkali and alkaline-earth carbonates, and degassing, as well as precipitation and re-solution of efflorescent crusts. Much sulfate is apparently lost from solution by sorption as well as subsurface reduction. Seasonal runoff, principally from the valley floor north of Lake Magadi, is considered to be the principal recharge to the Magadi ground water system. Evaporative concentration is the overall process responsible for the chemical evolution of the brines. This includes not only simple evaporation, but also mineral precipitation as films and cements in the unsaturated zone, re-solution, and reprecipitation of efflorescent crusts, with consequent recycling of salts. In fact, a large fraction of the solutes are acquired through dissolution of efflorescent crusts. Data were obtained for borehole brines from as deep as 297 m. They show the existence of two distinct brine bodies below the present lake, one shallow, coexistent with bedded salts, and highly concentrated (260 g/kg average dissolved solids), and the other deeper in lacustrine sediments or fractured lavas, and only half as concentrated. ?? 1977.
NASA Astrophysics Data System (ADS)
Liu, Peitao; Xing, Weiwei; Cheng, Xiyue; Li, Dianzhong; Li, Yiyi; Chen, Xing-Qiu
2014-07-01
By means of first-principles calculations coupled with the kinetic Monte Carlo simulations, we have systematically investigated the effects of dilute substitutional solutes on the behaviors of carbon in α-Fe. Our results uncover the following. (i) Without the Fe vacancy the interactions between most solutes and carbon are repulsive due to the strain relief, whereas Mn has a weak attractive interaction with its nearest-neighbor carbon due to the local ferromagnetic coupling effect. (ii) The presence of the Fe vacancy results in attractive interactions of all the solutes with carbon. In particular, the Mn-vacancy pair shows an exceptionally large binding energy of -0.81 eV with carbon. (iii) The alloying addition significantly impacts the atomic-scale concentration distributions and chemical potential of carbon in the Fe matrix. Among them, Mn and Cr increase the carbon chemical potential, whereas Al and Si reduce it. (iv) Within the dilute scale of the alloying solution, the solute concentration- and temperature-dependent carbon diffusivities demonstrate that Mn has a little impact on the carbon diffusion, whereas Cr (Al or Si) remarkably retards the carbon diffusion. Our results provide a certain implication for better understanding the experimental observations related with the carbon solubility limit, carbon microsegregation, and carbide precipitations in the ferritic steels.
Process for separation of zirconium-88, rubidium-83 and yttrium-88
Heaton, Richard C.; Jamriska, Sr., David J.; Taylor, Wayne A.
1994-01-01
A process for selective separation of strontium-82 and strontium-85 from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, passing the first ion-containing solution through a first cationic resin whereby ions selected from the group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium and rubidium remain in the first ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the first resin, contacting the first resin with an acid solution capable of stripping adsorbed ions from the first cationic exchange resin whereby the adsorbed ions are removed from the first resin to form a second ion-containing solution, evaporating the second ion-containing solution for time sufficient to remove substantially all of the acid and water from the second ion-containing solution whereby a residue remains, dissolving the residue from the evaporated second-ion containing solution in a dilute acid to form a third ion-containing solution, said third ion-containing solution having an acid molarity adapted to permit said ions to be adsorbed by a cationic exchange resin, passing the third ion-containing solution through a second cationic resin whereby the ions are adsorbed by the second resin, contacting the second resin with a dilute sulfuric acid solution whereby the adsorbed ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, and zirconium are selectively removed from the second resin, and contacting the second resin with a dilute acid solution whereby the adsorbed strontium ions are selectively removed. Zirconium, rubidium, and yttrium radioisotopes can also be recovered with additional steps.
The enhancement and suppression of immersion mode heterogeneous ice-nucleation by solutes
Holden, Mark A.; Wilson, Theodore W.; O'Sullivan, Daniel; Murray, Benjamin J.
2018-01-01
Heterogeneous nucleation of ice from aqueous solutions is an important yet poorly understood process in multiple fields, not least the atmospheric sciences where it impacts the formation and properties of clouds. In the atmosphere ice-nucleating particles are usually, if not always, mixed with soluble material. However, the impact of this soluble material on ice nucleation is poorly understood. In the atmospheric community the current paradigm for freezing under mixed phase cloud conditions is that dilute solutions will not influence heterogeneous freezing. By testing combinations of nucleators and solute molecules we have demonstrated that 0.015 M solutions (predicted melting point depression <0.1 °C) of several ammonium salts can cause suspended particles of feldspars and quartz to nucleate ice up to around 3 °C warmer than they do in pure water. In contrast, dilute solutions of certain alkali metal halides can dramatically depress freezing points for the same nucleators. At 0.015 M, solutes can enhance or deactivate the ice-nucleating ability of a microcline feldspar across a range of more than 10 °C, which corresponds to a change in active site density of more than a factor of 105. This concentration was chosen for a survey across multiple solutes–nucleant combinations since it had a minimal colligative impact on freezing and is relevant for activating cloud droplets. Other nucleators, for instance a silica gel, are unaffected by these ‘solute effects’, to within experimental uncertainty. This split in response to the presence of solutes indicates that different mechanisms of ice nucleation occur on the different nucleators or that surface modification of relevance to ice nucleation proceeds in different ways for different nucleators. These solute effects on immersion mode ice nucleation may be of importance in the atmosphere as sea salt and ammonium sulphate are common cloud condensation nuclei (CCN) for cloud droplets and are internally mixed with ice-nucleating particles in mixed-phase clouds. In addition, we propose a pathway dependence where activation of CCN at low temperatures might lead to enhanced ice formation relative to pathways where CCN activation occurs at higher temperatures prior to cooling to nucleation temperature. PMID:29780544
Rotational dynamics of trehalose in aqueous solutions studied by depolarized light scattering
NASA Astrophysics Data System (ADS)
Gallina, M. E.; Comez, L.; Morresi, A.; Paolantoni, M.; Perticaroli, S.; Sassi, P.; Fioretto, D.
2010-06-01
High resolution depolarized light scattering spectra, extended from 0.5 to 2×104 GHz by the combined used of a dispersive and an interferometric setup, give evidence of separated solute and solvent dynamics in diluted trehalose aqueous solutions. The slow relaxation process, located in the gigahertz frequency region, is analyzed as a function of temperature and concentration and assigned to the rotational diffusion of the sugar molecule. The results are discussed in comparison with the data obtained on glucose solutions and they are used to clarify the molecular origin of some among the several relaxation processes reported in literature for oligosaccharides solutions. The concentration dependence of relaxation time and of shear viscosity are also discussed, suggesting that the main effect of carbohydrate molecules on the structural relaxation of diluted aqueous solutions is the perturbation induced on the dynamics of the first hydration shell of each solute molecule.
Sorption ability of the soil and its impact on environmental contamination
Gargošová, Helena Zlámalová; Vávrová, Milada
2014-01-01
From the physical point of view, soil is a heterogenic polydisperse system. It often becomes a place of a secondary contamination during extinguishing uncontrolled areal fires in nature. Foam extinguishing agents (FEAs), used at these events, basically contain surface active substances and perfluorinated compounds. These tend to be captured in the soil matrix due to their specific properties. Contaminants could be partly flushed out with rainwater, which causes several times dilution of contamination and lower ecotoxic activity. However in the dry season, foam solution infiltrates into the bed soil without any dilution. This study deals with the direct influence of soil the sorption complex on ecotoxicity of five selected FEAs, i.e. Expyrol F 15, Finiflam F 15, Moussol APS F 15, Pyrocool B and Sthamex F 15. The substances tested were prepared in concentration of work solution and then applied on standard soil matrix LUFA 2.3. For experimental purposes, a column infiltration apparatus was designed and compiled. Filtrates were collected and then tested using the plant organisms Sinapis alba and Allium cepa L. The study compared ecotoxicologic effects of filtrates with an original work solution. Moussol APS F 15 seems to be the least ecotoxic of the FEAs tested. A direct influence of soil sorption complex onto ecotoxicity reduction was also established. This finding demonstrates the sorption ability of soil particles and ion exchange activity of the soil matrix. It is a positive finding for biota of aquatic environment, yet at the expense of those in soil. PMID:26109897
Dilution refrigeration for space applications
NASA Technical Reports Server (NTRS)
Israelsson, U. E.; Petrac, D.
1990-01-01
Dilution refrigerators are presently used routinely in ground based applications where temperatures below 0.3 K are required. The operation of a conventional dilution refrigerator depends critically on the presence of gravity. To operate a dilution refrigerator in space many technical difficulties must be overcome. Some of the anticipated difficulties are identified in this paper and possible solutions are described. A single cycle refrigerator is described conceptually that uses forces other than gravity to function and the stringent constraints imposed on the design by requiring the refrigerator to function on the earth without using gravity are elaborated upon.
Morrison, Robert L.
1995-01-01
Biofoam is a rigid, opaque microcellular organic foam made from organic materials derived from natural products and biological organisms. Typical organic materials are agar, agarose, gelatin, algin, alginates, gellan gum, and microcrystalline cellulose. The organic material is dissolved in a polar solvent, typically water, and the solution can be gelled immediately. The gel is frozen and freeze-dried to form the biofoam. Alternatively, a nonpolar solvent is added to the solution and emulsified. The resulting emulsion is then gelled, frozen, and freeze-dried. A variety of crystalline, fibrous, or metallic additives may be added to produce lightweight composite materials with enhanced strength and insulating properties. The amount of dilution of the organic material in the solvent(s) determines the density of the resulting biofoams, which ranges from about 1.0 mg/cm.sup.3 to about 500 mg/cm.sup.3.
NASA Astrophysics Data System (ADS)
Trinkle, Dallas R.
2017-10-01
A general solution for vacancy-mediated diffusion in the dilute-vacancy/dilute-solute limit for arbitrary crystal structures is derived from the master equation. A general numerical approach to the vacancy lattice Green function reduces to the sum of a few analytic functions and numerical integration of a smooth function over the Brillouin zone for arbitrary crystals. The Dyson equation solves for the Green function in the presence of a solute with arbitrary but finite interaction range to compute the transport coefficients accurately, efficiently and automatically, including cases with very large differences in solute-vacancy exchange rates. The methodology takes advantage of the space group symmetry of a crystal to reduce the complexity of the matrix inversion in the Dyson equation. An open-source implementation of the algorithm is available, and numerical results are presented for the convergence of the integration error of the bare vacancy Green function, and tracer correlation factors for a variety of crystals including wurtzite (hexagonal diamond) and garnet.
NASA Astrophysics Data System (ADS)
Diamond, J.; Cohen, M.
2012-12-01
Catchment-scale analyses can provide important insight into the processes governing solute sources, transport and storage. Understanding solute dynamics is vital for water management both for accurate predictions of chemical fluxes as well as ecosystem responses to them. This project synthesized long-term (>15 years) hydrochemical data from 80 variably sized (101-105 m2) watersheds in Florida. Our goal was to evaluate scaling effects on flow-solute relationships, and determine the factors that control observed inter-catchment variation. We obtained long term records of a variety of chemical parameters include color, nutrients (N and P), and geogenic solutes (Ca, Si, Mg, Na, Cl) from stations where chemistry and flow data were matched. Catchment attributes (land use, terrain, surface geology) were obtained for each stream as potential covariates. Concentration-discharge relationships were modeled as power functions, the exponents (b) of which were categorized into three end-member scenarios: (1) b>0, or chemodynamic conditions, where increased discharge increases concentration, (2) b=0, or chemostatic conditions, where concentration is independent of discharge, and (3) b<0, or dilution conditions, where increased discharge decreases concentrations. Color was strongly chemodynamic, while geogenic solutes tended to be chemostatic;nutrient-flow relationships varied substantially (from dilution to chemodynamic) suggesting important ancillary controls. To assess between-site variability, power function exponents were compared against land use and catchment area. These results indicate that watersheds dominated by urban land use exhibit stronger dilution effects for most solutes while watersheds dominated by agricultural land use were generally chemostatic particularly for nutrients. This synthesis approach to understanding controls on observed concentration-discharge relationships is crucial to understanding the dynamics and early-warning indicators of anthropogenically-induced transition from dilution to chemostatic behavior.
Two types of external lamp reactors were investigated for the titania catalyzed photodegradation of 1,2-dichlorobenzene (DCB) from a dilute water stream. The first one was a batch mixed slurry reactor and the second one was a semi-batch reactor with continuous feed recycle wit...
Fluids of the Lower Crust: Deep Is Different
NASA Astrophysics Data System (ADS)
Manning, Craig E.
2018-05-01
Deep fluids are important for the evolution and properties of the lower continental and arc crust in tectonically active settings. They comprise four components: H2O, nonpolar gases, salts, and rock-derived solutes. Contrasting behavior of H2O-gas and H2O-salt mixtures yields immiscibility and potential separation of phases with different chemical properties. Equilibrium thermodynamic modeling of fluid-rock interaction using simple ionic species known from shallow-crustal systems yields solutions too dilute to be consistent with experiments and resistivity surveys, especially if CO2 is added. Therefore, additional species must be present, and H2O-salt solutions likely explain much of the evidence for fluid action in high-pressure settings. At low salinity, H2O-rich fluids are powerful solvents for aluminosilicate rock components that are dissolved as polymerized clusters. Addition of salts changes solubility patterns, but aluminosilicate contents may remain high. Fluids with Xsalt = 0.05 to 0.4 in equilibrium with model crustal rocks have bulk conductivities of 10‑1.5 to 100 S/m at porosity of 0.001. Such fluids are consistent with observed conductivity anomalies and are capable of the mass transfer seen in metamorphic rocks exhumed from the lower crust.
Gavara, Raquel; Lima, João Carlos; Rodríguez, Laura
2016-05-11
The spectroscopic properties of aggregates obtained from the hydrogelator [Au(4-pyridylethynyl)(PTA)] were studied in solvents of different polarities. Inspection of the absorption and emission spectra of diluted solutions showed that the singlet ground state of the monomeric species is sensitive to polarity and is stabilized in more polar solvents whereas the triplet excited state is rather insensitive to changes in polarity. The study of relatively concentrated solutions revealed the presence of new emission and excitation bands at 77 K that was attributed to the presence of different kinds of aggregates. Particularly interesting behaviour was revealed in water where aggregation is observed to be more efficient. For this, absorption, emission quantum yields and luminescence lifetimes of aqueous solutions at different concentrations were investigated in more detail. These data permitted one to correlate the increase of non-radiative and radiative rate constants of the low lying triplet emissive state with concentration, and therefore with the low limit concentration for aggregation, due to the shortening of the AuAu average distances in the aggregates and consequent enhancement of the spin-orbit coupling in the system.
D'Autry, Ward; Zheng, Chao; Wolfs, Kris; Yarramraju, Sitaramaraju; Hoogmartens, Jos; Van Schepdael, Ann; Adams, Erwin
2011-06-01
Static headspace (HS) sampling has been commonly used to test for volatile organic chemicals, usually referred to as residual solvents (RS) in pharmaceuticals. If the sample is not soluble in water, organic solvents are used. However, these seriously reduce the sensitivity in the determination of some RS. Here, mixed aqueous dilution media (a mixture of water and an organic solvent like dimethyl formamide, dimethyl sulfoxide or dimethyl acetamide) were studied as alternative media for static HS-gas chromatographic analysis. Although it has been known that mixed aqueous dilution media can often improve sensitivity for many RS, this study used a systematic approach to investigate phase volumes and the organic content in the HS sampling media. Reference solutions using 18 different class 1, 2 and 3 RS were evaluated. The effect of salt addition was also studied in this work. A significant increase in the peak area was observed for all RS using mixed aqueous dilution media, when compared with organic solvents alone. Matrix effects related to the mixed aqueous dilution media were also investigated and reported. Repeatability and linearity obtained with mixed aqueous dilution media were found to be similar to those observed with pure organic solvents. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Taste does not determine daily intake of dilute sugar solutions in mice
Beltran, F.; Benton, L.; Cheng, S.; Gieseke, J.; Gillman, J.; Spain, H. N.
2010-01-01
When a rodent licks a sweet-tasting solution, taste circuits in the central nervous system that facilitate stimulus identification, motivate intake, and prepare the body for digestion are activated. Here, we asked whether taste also determines daily intake of sugar solutions in C57BL/6 mice. We tested several dilute concentrations of glucose (167, 250, and 333 mM) and fructose (167, 250, and 333 mM). In addition, we tested saccharin (38 mM), alone and in binary mixture with each of the sugar concentrations, to manipulate sweet taste intensity while holding caloric value constant. In experiment 1, we measured taste responsiveness to the sweetener solutions in two ways: chorda tympani nerve responses and short-term lick tests. For both measures, the mice exhibited the following relative magnitude of responsiveness: binary mixtures > saccharin > individual sugars. In experiment 2, we asked whether the taste measures reliably predicted daily intake of the sweetener solutions. No such relationship was observed. The glucose solutions elicited weak taste responses but high daily intakes, whereas the fructose solutions elicited weak taste responses and low daily intakes. On the other hand, the saccharin + glucose solutions elicited strong taste responses and high daily intakes, while the saccharin + fructose solutions elicited strong taste responses but low daily intakes. Overall, we found that 1) daily intake of the sweetener solutions varied independently of the magnitude of the taste responses and 2) the solutions containing glucose stimulated substantially higher daily intakes than did the solutions containing isomolar concentrations of fructose. Given prior work demonstrating greater postoral stimulation of feeding by glucose than fructose, we propose that the magnitude of postoral nutritive stimulation plays a more important role than does taste in determining daily intake of dilute sugar solutions. PMID:20702804
Oliveira, Karol G; Miranda, Stefania A; Leão, Danuza L; Brito, Adriel B; Santos, Regiane R; Domingues, Sheyla F S
2011-01-01
The objectives of the present study were to test the effect of coconut water solution and TES-TRIS on the seminal coagulum liquefaction, sperm activation in fresh diluted semen, and on the cryopreservation of semen from capuchin monkeys (Cebus apella). Semen was collected from six males by electro-ejaculation, diluted in TES-TRIS or coconut water solution (CWS), and incubated at 35°C until the coagulated fraction of the semen was completely liquefied. In the experiment I, after liquefaction, samples were diluted in TES-TRIS or CWS, plus 6 and 10mM/mL of caffeine. Sperm motility and vigor were evaluated during 5h. For experiment II, after liquefaction, semen samples were extended in TES-TRIS (3.5% glycerol in the final solution) or CWS (2.5% glycerol in the final solution), cryopreserved and stored in liquid nitrogen for 1 week. The seminal coagulum was liquefied in (mean±SDM) 4.5±1.7 and 2.8±1.1h in TES-TRIS and CWS, respectively. Sperm were motile in TES-TRIS and CWS for 5.0±1.4 and 1.0±0.5h, respectively. The mean motility in this period was 38±22% (TES-TRIS) and 22.0±16.0 (CWS). Motility increased after caffeine addition only in samples diluted in CWS containing 6mM (22.5±16.0) or 10mM (28.0±19.0) caffeine. Post-thaw live sperm percentage was 26.2% in TES-TRIS and 13.2% in CWS. For cryopreservation of semen from C. apella TES-TRIS (3.5% glycerol) was more appropriate than CWS (2.5% glycerol). CWS+caffeine potentially increase sperm motility and may be useful in artificial insemination of fresh diluted semen. Copyright © 2010 Elsevier B.V. All rights reserved.
Kim, Dianne H; Stark, Walter J; O'Brien, Terrence P; Dick, James D
2005-11-01
To measure the achievable perioperative aqueous concentration of the commercially available topically administered fourth generation fluoroquinolones, moxifloxacin 0.5% ophthalmic solution, and gatifloxacin 0.3% ophthalmic solution, and to correlate this concentration with the agents' biological efficacy in the aqueous humor of patients undergoing routine cataract surgery. Prospective, randomized, parallel, double-masked, clinical trial. Fifty patients undergoing cataract extraction. Patients (n = 25) were given perioperative topical moxifloxacin 0.5% or topical gatifloxacin 0.3% (n = 25). One drop of antibiotic was administered every 10 minutes for 4 doses beginning 1 hour prior to surgery. Aqueous humor was sampled via paracentesis and antibiotic concentrations were determined using validated high performance liquid chromatography (HPLC) procedures. Dilution analyses were performed to determine the biological efficacy of the agents in the aqueous against Staphylococcus epidermidis, the most common cause of postcataract endophthalmitis. Aqueous humor antibiotic concentrations were measured using HPLC and microdilution bioassay techniques. Biological activity was measured as minimal inhibitory dilution and minimal bactericidal dilution. Aqueous humor concentrations for moxifloxacin via HPLC analysis were 1.80 (+/-1.21) microg/ml, whereas those for gatifloxacin were 0.48 (+/-0.34) microg/ml. This 3.8-fold difference in aqueous humor antibiotic concentrations was statistically significant (P = 0.00003). Similarly, the biological dilution analysis of the aqueous humor samples showed that moxifloxacin attained an estimated activity of 2.1 microg/ml, whereas the gatifloxacin activity was approximately 0.4 mug/ml, which represented a 4.9-fold difference. This study demonstrated that after topically administered perioperative antibiotics with cataract surgery, moxifloxacin 0.5% ophthalmic solution achieved a statistically significantly higher concentration in aqueous humor compared with gatifloxacin (P = 0.00003). Results from the broth dilution analysis showed that moxifloxacin 0.5% was biologically more active against S. epidermidis than gatifloxacin 0.3% in aqueous humor after topical application. There were no adverse events reported, and incision wounds healed quickly and as expected.
Marashi-Najafi, F; Khalil-Allafi, J; Etminanfar, M R
2017-07-01
The present study deals with pulse electrochemical deposition of HA on NiTi alloy and in vitro evaluation of coatings. At first step, a thermo-chemical surface modification process was applied to control the Ni release of the alloy. The electrochemical deposition of CaP coatings was examined at both dilute and concentrated solutions. The morphology and the composition of coatings were studied using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Plate like and needle like morphologies were formed for dilute and concentrated solution respectively and HA phase was formed by increasing the pulse current density for both electrolyte. The thickness of the samples was measured using cross sectioning technique. Fibroblast cell culture test on the coated samples revealed that the HA coating obtained by dilute solution shows the best biocompatibility. Also, MTT assay showed the highest cell density and cell proliferation after 5days for the HA coating of dilute solution. The contact angle of samples was measured and the coated samples showed a hydrophilic surface. Soaking the sample in SBF revealed that the crystallization rate of calcium-phosphate compounds is higher on the plate like HA coating as compared to the needle like morphology. The P release of the HA coated samples was measured in a physiological saline solution and the results show that the ions releasing in the plate like coating are less than the needle like coating. It seems that the stability of the plate like coating in biological environments is responsible for the better biocompatibility of the coating. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Suresha, B. L.; Sumantha, H. S.; Salman, K. Mohammed; Pramod, N. G.; Abhiram, J.
2018-04-01
The ionization potential is usually found to be less in acid and more in base. The experiment proves that the ionization potential increases on dilution of acid to base and reduces from base to acid. The potential can be tailored according to the desired properties based on our choice of acid or base. The experimental study establishes a direct relationship between pH and electric potential. This work provides theoretical insights on the need for a basic media of pH 10 in chemical thin film growth techniques called Chemical Bath Deposition Techniques.
NASA Astrophysics Data System (ADS)
Buttgereit, R.; Roths, T.; Honerkamp, J.; Aberle, L. B.
2001-10-01
Dynamic light scattering experiments have become a powerful tool in order to investigate the dynamical properties of complex fluids. In many applications in both soft matter research and industry so-called ``real world'' systems are subject of great interest. Here, the dilution of the investigated system often cannot be changed without getting measurement artifacts, so that one often has to deal with highly concentrated and turbid media. The investigation of such systems requires techniques that suppress the influence of multiple scattering, e.g., cross correlation techniques. However, measurements at turbid as well as highly diluted media lead to data with low signal-to-noise ratio, which complicates data analysis and leads to unreliable results. In this article a multiangle regularization method is discussed, which copes with the difficulties arising from such samples and enhances enormously the quality of the estimated solution. In order to demonstrate the efficiency of this multiangle regularization method we applied it to cross correlation functions measured at highly turbid samples.
Akiyama, Eri; Morimoto, Nobuyuki; Kujawa, Piotr; Ozawa, Yayoi; Winnik, Françoise M; Akiyoshi, Kazunari
2007-08-01
The assembly of cholesteryl derivatives of the highly branched polysaccharide mannan Mw = (5.2 x 104 g/mol) in dilute aqueous solution was investigated by 1H nuclear magnetic resonance (NMR) spectroscopy, size-exclusion chromatography coupled with multiangle laser scattering (SEC-MALLS), dynamic light scattering (DLS), atomic force microscopy (AFM), fluorescence quenching, and fluorescence depolarization measurements. In the dilute regime, cholesteryl-bearing mannans (CHM) containing approximately 1 cholesteryl group per 100 mannopyranose units formed nanogels with a hydrodynamic radius (RH) of approximately 20 nm containing approximately 8 macromolecules held together via hydrophobic nanodomains consisting of approximately 9 cholesteryl groups. Their density Phih ( approximately 0.02) was significantly lower than the density ( approximately 0.16) of nanogels formed by a cholesteryl derivative of the linear polysaccharide pullulan (CHP) of identical molar mass and level of cholesteryl substitution. In the semidilute regime, CHM nanogels formed a macrogel network for concentrations higher than 12.5% w/w, whereas CHP nanogels underwent macrogelation only above a threshold concentration of 8.0% w/w, as revealed by oscillatory and steady-shear viscosity measurements. The differences in the solution properties of CHM and CHP reflect differences in their assembly on the molecular level, in particular, the size and number of hydrophobic nanodomains and the hydration level. They are attributed to differences in the mobility of the cholesteryl groups which, itself, can be traced to the fact that in CHM the cholesteryl groups are predominantly linked to short oligomannopyranose branches, whereas in CHP they are linked to the polymer main chain. Our study provides a novel means to nanoengineer polysaccharide nanogels which may find unique biotechnological applications.
[Regeneration of the ciliary beat of human ciliated cells].
Wolf, G; Koidl, B; Pelzmann, B
1991-10-01
The influence of an isotonic, alkaline saline solution (diluted "Emser Sole" or brine from the spa of Bad Ems) on the ciliary beat of isolated cultured human ciliated cells of the upper respiratory tract was investigated. The ciliary beat was observed via an inverted phase contrast microscope (Zeiss Axiomat IDPC) and measured microphotometrically under physiological conditions and after the damaging influence of 1% propanal solution. Under physiological conditions the saline solution had a positive, although statistically not significant influence on the frequency of the ciliary beat. After damage of the cultivated cells by 1% propanal solution, the saline solution had a significant better influence on the regeneration of the cultured cells than a physiological sodium chloride solution. It is concluded that diluted brine from Bad Ems has a positive effect on the ciliary beat of the respiratory epithelium and accelerates its regeneration after damage by viral and bacterial infections, surgery or inhaled noxae.
Fomchenko, N V; Murav'ev, M I; Kondrat'eva, T F
2014-01-01
The bioregeneration of the solutions obtained after the leaching of copper and zinc from waste slag by sulfuric solutions of ferric sulfate is examined. For bioregeneration, associations of mesophilic and moderately thermqophilic acidophilic chemolithotrophic microorganisms were made. It has been shown that the complete oxidation of iron ions in solutions obtained after the leaching of nonferrous metals from waste slag is possible at a dilution of the pregnant solution with a nutrient medium. It has been found that the maximal rate of oxidation of iron ions is observed at the use of a mesophilic association of microorganisms at a threefold dilution of the pregnant solution with a nutrient medium. The application ofbioregeneration during the production of nonferrous metals from both waste and converter slags would make it possible to approach the technology of their processing using the closed cycle of workflows.
Dilution, Concentration, and Flotation
ERIC Educational Resources Information Center
Liang, Ling; Schmuckler, Joseph S.
2004-01-01
As both classroom teaching practice and literature show, many students have difficulties learning science concepts such as density. Here are some investigations that identify the relationship between density and floating through experimenting with successive dilution of a liquid, or the systematic change of concentration of a saltwater solution.…
Micromixer based on viscoelastic flow instability at low Reynolds number.
Lam, Y C; Gan, H Y; Nguyen, N T; Lie, H
2009-03-30
We exploited the viscoelasticity of biocompatible dilute polymeric solutions, namely, dilute poly(ethylene oxide) solutions, to significantly enhance mixing in microfluidic devices at a very small Reynolds number, i.e., Re approximately 0.023, but large Peclet and elasticity numbers. With an abrupt contraction microgeometry (8:1 contraction ratio), two different dilute poly(ethylene oxide) solutions were successfully mixed with a short flow length at a relatively fast mixing time of <10 mus. Microparticle image velocimetry was employed in our investigations to characterize the flow fields. The increase in velocity fluctuation with an increase in flow rate and Deborah number indicates the increase in viscoelastic flow instability. Mixing efficiency was characterized by fluorescent concentration measurements. Our results showed that enhanced mixing can be achieved through viscoelastic flow instability under situations where molecular-diffusion and inertia effects are negligible. This approach bypasses the laminar flow limitation, usually associated with a low Reynolds number, which is not conducive to mixing.
Micromixer based on viscoelastic flow instability at low Reynolds number
Lam, Y. C.; Gan, H. Y.; Nguyen, N. T.; Lie, H.
2009-01-01
We exploited the viscoelasticity of biocompatible dilute polymeric solutions, namely, dilute poly(ethylene oxide) solutions, to significantly enhance mixing in microfluidic devices at a very small Reynolds number, i.e., Re≈0.023, but large Peclet and elasticity numbers. With an abrupt contraction microgeometry (8:1 contraction ratio), two different dilute poly(ethylene oxide) solutions were successfully mixed with a short flow length at a relatively fast mixing time of <10 μs. Microparticle image velocimetry was employed in our investigations to characterize the flow fields. The increase in velocity fluctuation with an increase in flow rate and Deborah number indicates the increase in viscoelastic flow instability. Mixing efficiency was characterized by fluorescent concentration measurements. Our results showed that enhanced mixing can be achieved through viscoelastic flow instability under situations where molecular-diffusion and inertia effects are negligible. This approach bypasses the laminar flow limitation, usually associated with a low Reynolds number, which is not conducive to mixing. PMID:19693399
NASA Astrophysics Data System (ADS)
Rabinovich, A.; Dagan, G.; Miloh, T.
2013-04-01
In unsteady groundwater flow (or similar processes of heat/electrical conduction), the heterogeneous medium structure is characterized by two random properties, the conductivity K and the specific storativity S. The average head field ⟨H ⟩and the associated effective properties Kef, Sef are determined for a layer with a periodic head drop between boundaries, such that H is periodic in time, and a medium made up of a matrix with a dilute concentration of spherical inclusions. In the common quasi-steady approximation, Kef is equal to the classical steady solution while Sef = SA, the arithmetic mean. We derive expressions for the frequency dependent Kef, Sef, which are generally complex, i.e., dynamic. The main result is the delineation of the ranges of the parameters: dimensionless frequency (ω) and contrasts of conductivity (κ) and storativity (s) between the matrix and the inclusions, for which dynamic effects are significant.
Detection of Toxoplasma oocysts from soil by modified sucrose flotation and PCR methods.
Matsuo, Junji; Kimura, Daisuke; Rai, Shiba Kumar; Uga, Shoji
2004-06-01
A detection method of Toxoplasma gondii oocysts from soil was evaluated using the sucrose flotation technique with modification involving addition of 0.1% gelatin into washing and floating solutions. PCR was performed on untreated samples and after treatment with polyvinylpyrrolidone (PVP), heating and cooling, and NaCl. The addition of gelatin in the sucrose solution yielded a higher number of oocysts. A very thin band was observed when DNA extract was diluted to 1:1024, indicating the presence of PCR inhibitor in the soil. PCR performed on untreated DNA, on PVP-treated, and on PVP-treated with heating and cooling without added bovine serum albumin (BSA) showed a band only at higher dilutions (1:1024 and 1:512) but at a much lower dilution (1:8) with BSA. In contrast, DNA treated with all three agents showed a band at a much lower dilution (1:64), even without added BSA, and no dilution was required when BSA was added. The PCR inhibitors present in the soil were removed by employing various treatment procedures during DNA extraction, and BSA in PCR. Furthermore, the detection limit with the method was 1 oocyst/g of soil, indicating that this method is useful in epidemiological studies.
Durán-Moreno, A; García-González, S A; Gutiérrez-Lara, M R; Rigas, F; Ramírez-Zamora, R M
2011-02-28
The aim of this work was to evaluate the efficiency of three chemical oxidation processes for increasing the biodegradability of aqueous diethanolamine solutions (aqueous DEA solutions), to be used as pre-treatments before a biological process. The raw aqueous DEA solution, sourced from a sour gas sweetening plant at a Mexican oil refinery, was first characterized by standardized physico-chemical methods. Then experiments were conducted on diluted aqueous DEA solutions to test the effects of Fenton's reagent, ozone and ozone-hydrogen peroxide on the removal of some physicochemical parameters of these solutions. Lastly, biodegradability tests based on Dissolved Organic Carbon Die Away OECD301-A, were carried out on a dilution of the raw aqueous DEA solution and on the treated aqueous DEA solutions, produced by applying the best experimental conditions determined during the aforementioned oxidation tests. Experimental results showed that for aqueous DEA solutions treated with Fenton's reagent, the best degradation rate (70%) was obtained at pH 2.8, with Fe(2+) and H(2)O(2) at doses of 1000 and 10,000 mg/L respectively. In the ozone process, the best degradation (60%) was observed in aqueous DEA solution (100 mg COD/L), using 100 mg O(3)/L at pH 5. In the ozone-hydrogen peroxide process, no COD or DOC removals were observed. The diluted spent diethanolamine solution showed its greatest increase in biodegradability after a reaction period of 28 days when treated with Fenton's reagent, but after only 15 days in the case of ozonation. Copyright © 2011 Elsevier B.V. All rights reserved.
Zheng, Songyan; Adams, Monica; Mantri, Rao V
2016-03-01
To support dose reduction, low dose of a monoclonal antibody (mAb) was required to be administered via IV infusion at a concentration of 0.1 mg/mL. To achieve the target protein concentration, the infusion solution was prepared by diluting the drug product containing 10-mg/mL mAb with normal saline, a 0.9% sodium chloride injection solution. However, particles were observed in the diluted solution. Particle formation must be avoided to administer the low dose using the existing drug product. To mitigate the particle formation, an unconventional compounding approach was used. With this approach, a stabilizing vehicle containing polysorbate-80 was added to saline before drug-product dilution to maintain suitable surfactant level to prevent precipitation of the mAb. In this way, use of the stabilizing vehicle to support low doses ensured suitable quality across a wider range of mAb concentrations, thereby allowing additional flexibility to the clinical trial. Such an approach may be useful for broader application in early-stage clinical trials where there is an uncertainty regarding doses or the need to revise to lower doses based on clinical observations or other drivers. Copyright © 2016. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Milshtein, Jarrod D.; Barton, John L.; Darling, Robert M.; Brushett, Fikile R.
2016-09-01
Nonaqueous redox flow batteries (NAqRFBs) that utilize redox active organic molecules are an emerging energy storage concept with the possibility of meeting grid storage requirements. Sporadic and uneven advances in molecular discovery and development, however, have stymied efforts to quantify the performance characteristics of nonaqueous redox electrolytes and flow cells. A need exists for archetypal redox couples, with well-defined electrochemical properties, high solubility in relevant electrolytes, and broad availability, to serve as probe molecules. This work investigates the 4-acetamido-2,2,6,6-tetramethylpiperidine-1-oxyl (AcNH-TEMPO) redox pair for such an application. We report the physicochemical and electrochemical properties of the reduced and oxidized compounds at dilute concentrations for electroanalysis, as well as moderate-to-high concentrations for RFB applications. Changes in conductivity, viscosity, and UV-vis absorbance as a function of state-of-charge are quantified. Cyclic voltammetry investigates the redox potential, reversibility, and diffusion coefficients of dilute solutions, while symmetric flow cell cycling determines the stability of the AcNH-TEMPO redox pair over long experiment times. Finally, single electrolyte flow cell studies demonstrate the utility of this redox couple as a platform chemistry for benchmarking NAqRFB performance.
Mechanical properties of electron-beam-melted molybdenum and dilute molybdenum-rhenium alloys
NASA Technical Reports Server (NTRS)
Klopp, W. D.; Witzke, W. R.
1972-01-01
A study of molybdenum and three dilute molybdenum-rhenium alloys was undertaken to determine the effects of rhenium on the low temperature ductility and other mechanical properties of molybdenum. Alloys containing 3.9, 5.9, and 7.7 atomic percent rhenium exhibited lower ductile-brittle transition temperatures than did the unalloyed molybdenum. The maximum improvement in the annealed condition was observed for molybdenum - 7.7 rhenium, which had a ductile-brittle transition temperature approximately 200 C (360 F) lower than that for unalloyed molybdenum. Rhenium additions also increased the low and high temperature tensile strengths and the high temperature creep strength of molybdenum. The mechanical behavior of dilute molybdenum-rhenium alloys is similar to that observed for dilute tungsten-rhenium alloys.
Self-Consistent Field Theories for the Role of Large Length-Scale Architecture in Polymers
NASA Astrophysics Data System (ADS)
Wu, David
At large length-scales, the architecture of polymers can be described by a coarse-grained specification of the distribution of branch points and monomer types within a molecule. This includes molecular topology (e.g., cyclic or branched) as well as distances between branch points or chain ends. Design of large length-scale molecular architecture is appealing because it offers a universal strategy, independent of monomer chemistry, to tune properties. Non-linear analogs of linear chains differ in molecular-scale properties, such as mobility, entanglements, and surface segregation in blends that are well-known to impact rheological, dynamical, thermodynamic and surface properties including adhesion and wetting. We have used Self-Consistent Field (SCF) theories to describe a number of phenomena associated with large length-scale polymer architecture. We have predicted the surface composition profiles of non-linear chains in blends with linear chains. These predictions are in good agreement with experimental results, including from neutron scattering, on a range of well-controlled branched (star, pom-pom and end-branched) and cyclic polymer architectures. Moreover, the theory allows explanation of the segregation and conformations of branched polymers in terms of effective surface potentials acting on the end and branch groups. However, for cyclic chains, which have no end or junction points, a qualitatively different topological mechanism based on conformational entropy drives cyclic chains to a surface, consistent with recent neutron reflectivity experiments. We have also used SCF theory to calculate intramolecular and intermolecular correlations for polymer chains in the bulk, dilute solution, and trapped at a liquid-liquid interface. Predictions of chain swelling in dilute star polymer solutions compare favorably with existing PRISM theory and swelling at an interface helps explain recent measurements of chain mobility at an oil-water interface. In collaboration with: Renfeng Hu, Colorado School of Mines, and Mark Foster, University of Akron. This work was supported by NSF Grants No. CBET- 0730692 and No. CBET-0731319.
Mazzini, Virginia; Craig, Vincent S J
2017-10-01
The importance of electrolyte solutions cannot be overstated. Beyond the ionic strength of electrolyte solutions the specific nature of the ions present is vital in controlling a host of properties. Therefore ion specificity is fundamentally important in physical chemistry, engineering and biology. The observation that the strengths of the effect of ions often follows well established series suggests that a single predictive and quantitative description of specific-ion effects covering a wide range of systems is possible. Such a theory would revolutionise applications of physical chemistry from polymer precipitation to drug design. Current approaches to understanding specific-ion effects involve consideration of the ions themselves, the solvent and relevant interfaces and the interactions between them. Here we investigate the specific-ion effects trends of standard partial molar volumes and electrostrictive volumes of electrolytes in water and eleven non-aqueous solvents. We choose these measures as they relate to bulk properties at infinite dilution, therefore they are the simplest electrolyte systems. This is done to test the hypothesis that the ions alone exhibit a specific-ion effect series that is independent of the solvent and unrelated to surface properties. The specific-ion effects trends of standard partial molar volumes and normalised electrostrictive volumes examined in this work show a fundamental ion-specific series that is reproduced across the solvents, which is the Hofmeister series for anions and the reverse lyotropic series for cations, supporting the hypothesis. This outcome is important in demonstrating that ion specificity is observed at infinite dilution and demonstrates that the complexity observed in the manifestation of specific-ion effects in a very wide range of systems is due to perturbations of solvent, surfaces and concentration on the underlying fundamental series. This knowledge will guide a general understanding of specific-ion effects and assist in the development of a quantitative predictive theory of ion specificity.
Correlation Between Iron and alpha and pi Glutathione-S-Transferase Levels in Humans
2012-09-01
assays were performed as described in the Biotrin High Sensitivity Alpha GST EIA kit protocol. First, serum samples were diluted 1:10 with wash solution...immunosorbent assays were performed as described in the Biotrin Pi GST EIA kit protocol. First, plasma samples were diluted 1:5 with sample diluent...immunosorbent assays were performed as described in the AssayMax Human Transferrin ELISA kit protocol. First, serum samples were diluted 1:2000 with MIX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohtori, Norikazu, E-mail: ohtori@chem.sc.niigata-u.ac.jp; Ishii, Yoshiki
Explicit expressions of the self-diffusion coefficient, D{sub i}, and shear viscosity, η{sub sv}, are presented for Lennard-Jones (LJ) binary mixtures in the liquid states along the saturated vapor line. The variables necessary for the expressions were derived from dimensional analysis of the properties: atomic mass, number density, packing fraction, temperature, and the size and energy parameters used in the LJ potential. The unknown dependence of the properties on each variable was determined by molecular dynamics (MD) calculations for an equimolar mixture of Ar and Kr at the temperature of 140 K and density of 1676 kg m{sup −3}. The scalingmore » equations obtained by multiplying all the single-variable dependences can well express D{sub i} and η{sub sv} evaluated by the MD simulation for a whole range of compositions and temperatures without any significant coupling between the variables. The equation for D{sub i} can also explain the dual atomic-mass dependence, i.e., the average-mass and the individual-mass dependence; the latter accounts for the “isotope effect” on D{sub i}. The Stokes-Einstein (SE) relation obtained from these equations is fully consistent with the SE relation for pure LJ liquids and that for infinitely dilute solutions. The main differences from the original SE relation are the presence of dependence on the individual mass and on the individual energy parameter. In addition, the packing-fraction dependence turned out to bridge another gap between the present and original SE relations as well as unifying the SE relation between pure liquids and infinitely dilute solutions.« less
Yaroshchuk, Andriy; Boiko, Yuriy; Makovetskiy, Alexandre
2009-08-18
Due to their straight cylindrical pores, nanoporous track-etched membranes are suitable materials for studies of the fundamentals of nanofluidics. In contrast to single nanochannels, the nano/micro interface, in this case, can be quantitatively considered within the scope of macroscopically 1D models. The pressure-induced changes in the concentration of dilute KCl solutions (salt rejection phenomenon) have been studied experimentally with a commercially available nanoporous track-etched membrane of poly (ethylene terephthalate) (pore diameter ca. 21 nm). Besides that, we have also studied the concomitant stationary transmembrane electrical phenomenon (filtration potential) and carried out time-resolved measurements of the electrical response to a rapid pressure switch-off (within 5-10 ms). The latter has enabled us to split the filtration potential into the streaming potential and membrane potential components. In this way, we could also confirm that the observed nonlinearity of filtration potential, as a function of the transmembrane volume flow, was primarily caused by the salt rejection. The results of experimental measurements have been interpreted by means of a space charge model with the surface charge density being a single fitting parameter (the pore size was estimated from the membrane hydraulic permeability). By using the surface charge density fitted to the salt rejection data, the results of electrical measurements could be reproduced theoretically with a typical accuracy of 10% or better. Taking into account the simplifications made in the modeling, this accuracy appears to be good and confirms the quantitative applicability of the basic concept of space charge model to the description of transport properties of dilute electrolyte solutions in nanochannels of ca. 20 nm.
Cellular Response to Doping of High Porosity Foamed Alumina with Ca, P, Mg, and Si.
Soh, Edwin; Kolos, Elizabeth; Ruys, Andrew J
2015-03-13
Foamed alumina was previously synthesised by direct foaming of sulphate salt blends varying ammonium mole fraction (AMF), foaming heating rate and sintering temperature. The optimal product was produced with 0.33AMF, foaming at 100 °C/h and sintering at 1600 °C. This product attained high porosity of 94.39%, large average pore size of 300 µm and the highest compressive strength of 384 kPa. To improve bioactivity, doping of porous alumina by soaking in dilute or saturated solutions of Ca, P, Mg, CaP or CaP + Mg was done. Saturated solutions of Ca, P, Mg, CaP and CaP + Mg were made with excess salt in distilled water and decanted. Dilute solutions were made by diluting the 100% solution to 10% concentration. Doping with Si was done using the sol gel method at 100% concentration only. Cell culture was carried out with MG63 osteosarcoma cells. Cellular response to the Si and P doped samples was positive with high cell populations and cell layer formation. The impact of doping with phosphate produced a result not previously reported. The cellular response showed that both Si and P doping improved the biocompatibility of the foamed alumina.
Morrison, R.L.
1995-01-17
Biofoam is a rigid, opaque microcellular organic foam made from organic materials derived from natural products and biological organisms. Typical organic materials are agar, agarose, gelatin, algin, alginates, gellan gum, and microcrystalline cellulose. The organic material is dissolved in a polar solvent, typically water, and the solution can be gelled immediately. The gel is frozen and freeze-dried to form the biofoam. Alternatively, a nonpolar solvent is added to the solution and emulsified. The resulting emulsion is then gelled, frozen, and freeze-dried. A variety of crystalline, fibrous, or metallic additives may be added to produce lightweight composite materials with enhanced strength and insulating properties. The amount of dilution of the organic material in the solvent(s) determines the density of the resulting biofoams, which ranges from about 1.0 mg/cm[sup 3] to about 500 mg/cm[sup 3]. 4 figures.
Ghaeli, Ima; de Moraes, Mariana A; Beppu, Marisa M; Lewandowska, Katarzyna; Sionkowska, Alina; Ferreira-da-Silva, Frederico; Ferraz, Maria P; Monteiro, Fernando J
2017-08-18
Miscibility is an important issue in biopolymer blends for analysis of the behavior of polymer pairs through the detection of phase separation and improvement of the mechanical and physical properties of the blend. This study presents the formulation of a stable and one-phase mixture of collagen and regenerated silk fibroin (RSF), with the highest miscibility ratio between these two macromolecules, through inducing electrostatic interactions, using salt ions. For this aim, a ternary phase diagram was experimentally built for the mixtures, based on observations of phase behavior of blend solutions with various ratios. The miscibility behavior of the blend solutions in the miscible zones of the phase diagram was confirmed quantitatively by viscosimetric measurements. Assessing the effects of biopolymer mixing ratio and salt ions, before and after dialysis of blend solutions, revealed the importance of ion-specific interactions in the formation of coacervate-based materials containing collagen and RSF blends that can be used in pharmaceutical, drug delivery, and biomedical applications. Moreover, the conformational change of silk fibroin from random coil to beta sheet, in solution and in the final solid films, was detected by circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR), respectively. Scanning electron microscopy (SEM) exhibited alterations of surface morphology for the biocomposite films with different ratios. Surface contact angle measurement illustrated different hydrophobic properties for the blended film surfaces. Differential scanning calorimetry (DSC) showed that the formation of the beta sheet structure of silk fibroin enhances the thermal stability of the final blend films. Therefore, the novel method presented in this study resulted in the formation of biocomposite films whose physico-chemical properties can be tuned by silk fibroin conformational changes by applying different component mixing ratios.
Kistler, Melissa L; Liu, Tianbo; Gouzerh, Pierre; Todea, Ana Maria; Müller, Achim
2009-07-14
We report the self-assembly processes in solution of three Keplerate-type molybdenum-oxide based clusters {Mo72V30}, {Mo72Cr30} and {Mo72Fe30} (all with diameters of approximately 2.5 nm). These clusters behave as unique weak polyprotic acids owing to the external water ligands attached to the non-Mo metal centers. Whereas the Cr and Fe clusters have 30 water ligands attached at the 30 M3+ centers pointing outside, {Mo72V30} has 20 water ligands coordinated to vanadium atoms, of which only 10 are pointing outside. The self-assembly processes of the Keplerates leading to supramolecular blackberry-type structures are influenced by the effective charge densities on the cluster surfaces, which can be tuned by the pH values and solvent properties. As expected, {Mo72Cr30} and {Mo72Fe30} behave similarly in aqueous solution due to their analogous structures and in both cases the self-assembly follows the partial deprotonation of the external water ligands attached to the non-Mo metal centers. However, the M-OH2 functionalities differ not only in acidity but also lability, i.e. in different residence times of the H2O ligands. In contrast to {Mo72Cr30} and {Mo72Fe30}, the {Mo72V30} clusters carry a rather large number of negative charges so that their solution properties are different. They exist as discrete macroions in dilute aqueous solution, and form only in mixed water/organic solvent (like acetone) blackberry-type structures whose size increases with acetone content. The comparison of the properties of the clusters allows more general information about the interesting self-assembly phenomenon to be unveiled.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NATHAN HANCOCK
2013-01-13
The purpose of this study is to design (i) a stripper system where heat is used to strip ammonia (NH{sub 3}) and carbon dioxide (CO{sub 2}) from a diluted draw solution; and (ii) a condensation or absorption system where the stripped NH{sub 3} and CO{sub 2} are captured in condensed water to form a re-concentrated draw solution. This study supports the Industrial Technologies Program of the DOE Office of Energy Efficiency and Renewable Energy and their Industrial Energy Efficiency Grand Challenge award solicitation. Results from this study show that stimulated Oasys draw solutions composed of a complex electrolyte solution associatedmore » with the dissolution of NH{sub 3} and CO{sub 2} gas in water can successfully be stripped and fully condensed under standard atmospheric pressure. Stripper bottoms NH{sub 3} concentration can reliably be reduced to < 1 mg/L, even when starting with liquids that have an NH{sub 3} mass fraction exceeding 6% to stimulate diluted draw solution from the forward osmosis membrane component of the process. Concentrated draw solution produced by fully condensing the stripper tops was show to exceed 6 M-C with nitrogen-to-carbon (N:C) molar ratios on the order of two. Reducing the operating pressure of the stripper column serves to reduce the partial vapor pressure of both NH{sub 3} and CO{sub 2} in solution and enables lower temperature operation towards integration of industrial low-grade of waste heat. Effective stripping of solutes was observed with operating pressures as low as 100 mbar (3-inHg). Systems operating at reduced pressure and temperature require additional design considerations to fully condense and absorb these constituents for reuse within the Oasys EO system context. Comparing empirical data with process stimulation models confirmed that several key parameters related to vapor-liquid equilibrium and intrinsic material properties were not accurate. Additional experiments and refinement of material property databases within the chosen process stimulation software was required to improve the reliability of process simulations for engineering design support. Data from experiments was also employed to calculate critical mass transfer and system design parameters (such as the height equivalent to a theoretical plate (HETP)) to aid in process design. When measured in a less than optimal design state for the stripping of NH{sub 3} and CO{sub 2} from a simulated dilute draw solution the HETP for one type of commercial stripper packing material was 1.88 ft/stage. During this study it was observed that the heat duty required to vaporize the draw solution solutes is substantially affected by the amount of water boilup also produced to achieve a low NH{sub 3} stripper bottoms concentration specification. Additionally, fluid loading of the stripper packing media is a critical performance parameter that affects all facets of optimum stripper column performance. Condensation of the draw solution tops vapor requires additional process considerations if being conducted in sub-atmospheric conditions and low temperature. Future work will focus on the commercialization of the Oasys EO technology platform for numerous applications in water and wastewater treatment as well as harvesting low enthalpy energy with our proprietary osmotic heat engine. Engineering design related to thermal integration of Oasys EO technology for both low and hig-grade heat applications is underway. Novel thermal recovery processes are also being investigated in addition to the conventional approaches described in this report. Oasys Water plans to deploy commercial scale systems into the energy and zero liquid discharge markets in 2013. Additional process refinement will lead to integration of low enthalpy renewable heat sources for municipal desalination applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broshears, R.E.; Bencala, K.E.; Kimball, B.A.
In 1986, the U.S. Geological Survey began an investigation to characterize within-stream hydrologic, chemical, and biological processes that influence the distribution and transport of hazardous constituents in the headwaters of the Arkansas River. The report describes the results of tracer-dilution experiments and associated solute-transport simulations for a 1804-meter stretch of Saint Kevin Gulch, a stream affected by acid mine drainage in Lake County, Colorado. The report describes transient changes in tracer (lithium chloride) concentration at six instream sites.
New model system in radiation cryochemistry:. hyperquenched glassy water
NASA Astrophysics Data System (ADS)
Bednarek, Janusz; Plonka, Andrzej; Hallbrucker, Andreas; Mayer, Erwin
1999-08-01
Radicals generated by high-energy irradiation of liquid water, short-lived at ambient temperature, can be studied at cryogenic temperatures after irradiating water and dilute aqueous solutions in their glassy states which can be obtained by so-called hyperquenching of the liquids at cooling rates of ˜10 6-10 7 K s -1. In the glassy states of hyperquenched dilute aqueous solutions there is no problem with phase separation and radiolysis of glassy water is quite distinct from radiolysis of polycrystalline ice obtained from liquid water on slow-cooling in liquid nitrogen.
PRODUCTION OF TRIFLUOROACETIC ACID COMPOUNDS
Haworth, W.N.; Stacey, M.
1949-08-30
A process is described for the preparation of trifluoroacetic acid. Acetone vapor diluted wlth nitrogen and fluorine also diluted with nltrogen are fed separately at a temperature of about 210 deg C into a reaction vessel containing a catalyst mass selected from-the group consisting of silver and gold. The temperature in the reaction vessel is maintained in the range of 200 deg to 250 deg C. The reaction product, trifluoroacetyl fluoride, is absorbed in aqueous alkali solution. Trifluoroacetic acid is recovered from the solution by acidification wlth an acid such as sulfuric followed by steam distillation.
NASA Astrophysics Data System (ADS)
Marzouk, E. R.; Chenery, S. R.; Young, S. D.
2013-12-01
The Rookhope catchment of Weardale, England, has a diverse legacy of contaminated soils due to extensive lead mining activity over four centuries. We measured the isotopically exchangeable content of Pb, Cd and Zn (E-values) in a large representative subset of the catchment soils (n = 246) using stable isotope dilution. All three metals displayed a wide range of %E-values (c. 1-100%) but relative lability followed the sequence Cd > Pb > Zn. A refinement of the stable isotope dilution approach also enabled detection of non-reactive metal contained within suspended sub-micron (<0.22 μm) colloidal particles (SCP-metal). For most soils, the presence of non-labile SCP-metal caused only minor over-estimation of E-values (<2%) but the effect was greater for soils with particularly large humus or carbonate contents. Approximately 80%, 53% and 66% of the variability in Zn, Cd and Pb %E-values (respectively) could be explained by pH, loss on ignition and total metal content. E-values were affected by the presence of ore minerals at high metal contents leading to an inconsistent trend in the relationship between %E-value and soil metal concentration. Metal solubility, in the soil suspensions used to measure E-values, was predicted using the WHAM geochemical speciation model (versions VI and VII). The use of total and isotopically exchangeable metal as alternative input variables was compared; the latter provided significantly better predictions of solubility, especially in the case of Zn. Lead solubility was less well predicted by either version of WHAM, with over-prediction at low pH and under-prediction at high soil pH values. Quantify the isotopically exchangeable fractions of Zn, Cd and Pb (E-values), and assess their local and regional variability, using multi-element stable isotope dilution, in a diverse range of soil ecosystems within the catchment of an old Pb/Zn mining area. Assess the controlling influences of soil properties on metal lability and develop predictive algorithms for metal lability in the contaminated catchment based on simple soil properties (such as pH, organic matter (LOI), and total metal content). Examine the incidence of non-isotopically-exchangeable metal held within suspended colloidal particles (SCP-metal) in filtered soil solutions (<0.22 μm) by comparing E-values from isotopic abundance in solutions equilibrated with soil and in a resin phase equilibrated with the separated solution. Assess the ability of a geochemical speciation model, WHAM(VII), to predict metal solubility using isotopically exchangeable metal as an input variable.
Ochi, Akie; Hossain, Khandker S; Magoshi, Jun; Nemoto, Norio
2002-01-01
Dynamic light scattering (DLS) and rheological measurements were performed on aqueous silk fibroin solutions extracted from the middle division of Bombyx mori silkworm over a wide range of polymer concentration C from 0.08 to 27.5 wt %. DLS results obtained in the dilute region of C less than 1 wt % are consistent with a model that an elementary unit is a large protein complex consisting of silk fibroin and P25 with a 6:1 molar ratio. Rheological measurements in the dilute C region reveal that those units (or clusters) with the hydrodynamic radius of about 100 nm form a network extending over the whole sample volume with small pseudoplateau modulus mainly by ionic bonding between COO(-) ions of the fibroin molecules and divalent metallic ions such as Ca(2+) or Mg(2+) ions present in the sample and also that, after a yield stress is reached, steady plastic flow is induced with viscosity much lower than the zero-shear viscosity estimated from creep and creep recovery measurements by 4-6 orders of magnitude. Angular frequency omega dependencies of the storage and the loss shear moduli, G'(omega) and G' '(omega), measured in the linear viscoelastic region, indicate that all solutions possess the pseudoplateau modulus in the low omega region and samples become highly viscoleastic for C greater, similar 4.2 wt %. Above C = 11.2 wt % another plateau appears at the high omega end accompanied by a distinct maximum of G' ' in the intermediate omega region. The relaxation motion with tau = 0.5 s corresponding to the maximum of G' ' is one of characteristic properties of the fibroin solutions in the high C region. Thermorheological behaviors of the solution with C = 27.5 wt % show that the network structure formed in the MM part of the silk gland is susceptible to temperature and a more stable homogeneous network is realized by raising the temperature up to T = 65 degrees C.
Vibrational dephasing and frequency shifts of hydrogen-bonded pyridine-water complexes
NASA Astrophysics Data System (ADS)
Kalampounias, A. G.; Tsilomelekis, G.; Boghosian, S.
2015-01-01
In this paper we present the picosecond vibrational dynamics and Raman shifts of hydrogen-bonded pyridine-water complexes present in aqueous solutions in a wide concentration range from dense to extreme dilute solutions. We studied the vibrational dephasing and vibrational frequency modulation by calculating time correlation functions of vibrational relaxation by fits in the frequency domain. The concentration induced variations in bandwidths, band frequencies and characteristic dephasing times have been estimated and interpreted as effects due to solute-solvent interactions. The time-correlation functions of vibrational dephasing were obtained for the ring breathing mode of both "free" and hydrogen-bonded pyridine molecules and it was found that sufficiently deviate from the Kubo model. There is a general agreement in the whole concentration range with the modeling proposed by the Rothschild approach, which applies to complex liquids. The results have shown that the reorientation of pyridine aqueous solutions is very slow and hence in both scattering geometries only vibrational dephasing is probed. It is proposed that the spectral changes depend on the perturbations induced by the dynamics of the water molecules in the first hydration cell and water in bulk, while at extreme dilution conditions, the number of bulk water molecules increases and the interchange between molecules belonging to the first hydration cell may not be the predominant modulation mechanism. The evolution of several parameters, such as the characteristic times, the percentage of Gaussian character in the peak shape and the a parameter are indicative of drastic variations at extreme dilution revealing changes in the vibrational relaxation of the pyridine complexes in the aqueous environment. The higher dilution is correlated to diffusion of water molecules into the reference pyridine system in agreement with the jump diffusion model, while at extreme dilutions, almost all pyridine molecules are elaborated in hydrogen bonding. The results are discussed in the framework of the current phenomenological status of the field.
SEPARATION OF BARIUM VALUES FROM URANYL NITRATE SOLUTIONS
Tompkins, E.R.
1959-02-24
The separation of radioactive barium values from a uranyl nitrate solution of neutron-irradiated uranium is described. The 10 to 20% uranyl nitrate solution is passed through a flrst column of a cation exchange resin under conditions favoring the adsorption of barium and certain other cations. The loaded resin is first washed with dilute sulfuric acid to remove a portion of the other cations, and then wash with a citric acid solution at pH of 5 to 7 to recover the barium along with a lesser amount of the other cations. The PH of the resulting eluate is adjusted to about 2.3 to 3.5 and diluted prior to passing through a smaller second column of exchange resin. The loaded resin is first washed with a citric acid solution at a pH of 3 to elute undesired cations and then with citric acid solution at a pH of 6 to eluts the barium, which is substantially free of undesired cations.
Diluents for stabilization of tuberculin
Magnusson, Mogens; Guld, Johannes; Magnus, Knut; Waaler, Hans
1958-01-01
Tuberculin is known to be adsorbed to containers and syringes. In the present paper, the adsorption which takes place in the ampoules has been studied in relation to the diluent for the tuberculin. Adsorption was most evident in dilutions prepared with saline or with phosphate buffer containing dextran. The inclusion in phosphate buffer diluent of small amounts of proteins or synthetic surface-active agents decreased or prevented adsorption. A boric-acid sodium-borate diluent containing gum arabic, previously recommended for the preparation of stabilized tuberculin dilutions, was found to be ineffective. The most suitable diluent for the preparation of stable tuberculin dilutions was a 0.05‰ solution of Tween 80 in phosphate-buffered saline; this diluent appeared to prevent adsorption under a variety of experimental conditions. The inclusion of Tween 80 in the diluent had little or no effect on the general storage stability of purified tuberculin. Sensitization experiments in guinea-pigs, rabbits and humans showed that no sensitization against Tween 80 need be feared when a 0.05‰ solution of Tween 80 in phosphate buffered saline is used in the preparation of tuberculin dilutions. PMID:13618720
Abdelhameed, Ali Saber; Adams, Gary G; Morris, Gordon A; Almutairi, Fahad M; Duvivier, Pierre; Conrath, Karel; Harding, Stephen E
2016-02-26
Three important physical properties which may affect the performance of glycoconjugate vaccines against serious disease are molar mass (molecular weight), heterogeneity (polydispersity), and conformational flexibility in solution. The dilute solution behaviour of native and activated capsular polyribosylribitol (PRP) polysaccharides extracted from Haemophilus influenzae type b (Hib), and the corresponding glycoconjugate made by conjugating this with the tetanus toxoid (TT) protein have been characterized and compared using a combination of sedimentation equilibrium and sedimentation velocity in the analytical ultracentrifuge with viscometry. The weight average molar mass of the activated material was considerably reduced (Mw ~ 0.24 × 10(6) g.mol(-1)) compared to the native (Mw ~ 1.2 × 10(6) g.mol(-1)). Conjugation with the TT protein yielded large polydisperse structures (of Mw ~ 7.4 × 10(6) g.mol(-1)), but which retained the high degree of flexibility of the native and activated polysaccharide, with frictional ratio, intrinsic viscosity, sedimentation conformation zoning behaviour and persistence length all commensurate with highly flexible coil behaviour and unlike the previously characterised tetanus toxoid protein (slightly extended and hydrodynamically compact structure with an aspect ratio of ~3). This non-protein like behaviour clearly indicates that it is the carbohydrate component which mainly influences the physical behaviour of the glycoconjugate in solution.
Marangoni and Gibbs elasticity of flowing soap films
NASA Astrophysics Data System (ADS)
Kim, Ildoo; Sane, Aakash; Mandre, Shreyas
2017-11-01
A flowing soap film has two elasticities. Marangoni elasticity dynamically stabilizes the film from sudden disturbance, and Gibbs elasticity is an equilibrium property that influences the film's persistence over time. In our experimental investigation, we find that Marangoni elasticity is 22 mN/m independent of the film thickness. On the other hand, Gibbs elasticity depends both on the film thickness and the soap concentration. Interestingly, the soap film made of dilute soap solution has the greater Gibbs elasticity, which is not consistent to the existing theory. Such discrepancy is originated from the flowing nature of our soap films, in which surfactants are continuously replenished.
Cleaning to prevent the spread of germs
... under the furniture. Use the disinfectant or cleaning solution your workplace provides for these purposes. Carefully put ... to clean up spills: Paper towels. Diluted bleach solution (be sure you know how to make this ...
Scaling Theory of Polyelectrolyte Nanogels
NASA Astrophysics Data System (ADS)
Qu, Li-Jian
2017-08-01
The present paper develops the scaling theory of polyelectrolyte nanogels in dilute and semidilute solutions. The dependencies of the nanogel dimension on branching topology, charge fraction, subchain length, segment number, solution concentration are obtained. For a single polyelectrolyte nanogel in salt free solution, the nanogel may be swelled by the Coulombic repulsion (the so-called polyelectrolyte regime) or the osmotic counterion pressure (the so-called osmotic regime). Characteristics and boundaries between different regimes of a single polyelectrolyte nanogel are summarized. In dilute solution, the nanogels in polyelectrolyte regime will distribute orderly with the increase of concentration. While the nanogels in osmotic regime will always distribute randomly. Different concentration dependencies of the size of a nanogel in polyelectrolyte regime and in osmotic regime are also explored. Supported by China Earthquake Administration under Grant No. 20150112 and National Natural Science Foundation of China under Grant No. 21504014
40 CFR 1065.546 - Validation of minimum dilution ratio for PM batch sampling.
Code of Federal Regulations, 2012 CFR
2012-07-01
... chemical balance terms as given in § 1065.655(e). You may determine the raw exhaust flow rate based on the measured intake air and dilute exhaust molar flow rates and the dilute exhaust chemical balance terms as... air, fuel rate measurements, and fuel properties, consistent with good engineering judgment. (b...
40 CFR 1065.546 - Validation of minimum dilution ratio for PM batch sampling.
Code of Federal Regulations, 2013 CFR
2013-07-01
... chemical balance terms as given in § 1065.655(e). You may determine the raw exhaust flow rate based on the measured intake air and dilute exhaust molar flow rates and the dilute exhaust chemical balance terms as... air, fuel rate measurements, and fuel properties, consistent with good engineering judgment. (b...
40 CFR 1065.546 - Verification of minimum dilution ratio for PM batch sampling.
Code of Federal Regulations, 2014 CFR
2014-07-01
... chemical balance terms as given in § 1065.655(e). You may determine the raw exhaust flow rate based on the measured intake air and dilute exhaust molar flow rates and the dilute exhaust chemical balance terms as... air, fuel rate measurements, and fuel properties, consistent with good engineering judgment. (b...
Michikawa, Yuichi; Sugahara, Keisuke; Suga, Tomo; Ohtsuka, Yoshimi; Ishikawa, Kenichi; Ishikawa, Atsuko; Shiomi, Naoko; Shiomi, Tadahiro; Iwakawa, Mayumi; Imai, Takashi
2008-12-15
The isolation and multiple genotyping of long individual DNA fragments are needed to obtain haplotype information for diploid organisms. Limiting dilution of sample DNA followed by multiple displacement amplification is a useful technique but is restricted to short (<5 kb) DNA fragments. In the current study, a novel modification was applied to overcome these problems. A limited amount of cellular DNA was carefully released from intact cells into a mildly heated alkaline agarose solution and mixed thoroughly. The solution was then gently aliquoted and allowed to solidify while maintaining the integrity of the diluted DNA. Exogenously provided Phi29 DNA polymerase was used to perform consistent genomic amplification with random hexameric oligonucleotides within the agarose gels. Simple heat melting of the gel allowed recovery of the amplified materials in a solution of the polymerase chain reaction (PCR)-ready form. The haplotypes of seven SNPs spanning 240 kb of the DNA surrounding the human ATM gene region on chromosome 11 were determined for 10 individuals, demonstrating the feasibility of this new method.
NASA Technical Reports Server (NTRS)
Perry, Joseph W.; Woodward, Anne M.; Stephenson, John C.
1986-01-01
The vibrational dephasing of the 656/cm mode (nu1, a1g) of CS2 and the 991/cm mode (nu2, a1g) of benzene have been studied as a function of concentration in mixtures with a number of solvents using a ps time-resolved CARS technique. This technique employs two tunable synchronously-pumped mode-locked dye lasers in a stimulated Raman pump, coherent anti-Stokes Raman probe time-resolved experiment. Results are obtained for CS2 in carbon tetrachloride, benzene, nitrobenzene, and ethanol and for benzene nu2 in CS2. The dephasing rates of CS2 nu1 increase on dilution with the polar solvents and decrease or remain constant on dilution with the nonpolar solvents. The CS2/benzene solutions show a contrasting behavior, with the CS2 nu1 dephasing rate being nearly independent of concentration whereas the benzene nu2 dephasing rate decreases on dilution. These results are compared to theoretical models for vibrational dephasing of polyatomic molecules in solution.
Griego-Valles, Michelle; Buriko, Yekaterina; Prittie, Jennifer E; Fox, Philip R
2017-01-01
To assess primary and secondary hemostasis following in vitro dilution of canine whole blood (WB) with hydroxyethyl starch (HES) 130/0.4 and HES 670/0.75. In vitro experimental study. Private practice, teaching hospital. Twenty-five healthy dogs. Each dog underwent venipuncture and 18 mL of venous blood was sampled once. Collected blood was separated in 4 aliquots. Aliquot A served as baseline sample. The remaining tubes of WB were diluted with 0.9% saline, HES 670/0.75 and HES 130/0.4 at a ratio of 1:5.5. Dilutional effects were evaluated using prothrombin time (PT), activated partial thromboplastin time (aPTT), packed cell volume (PCV), thromboelastography (TEG), and platelet closure time (Ct), which was measured using a platelet function analyzer (PFA). Clot strength (ie, G value) was calculated from measured TEG values. Significant increases in PT (P < 0.05) and aPTT (P < 0.05) were documented following WB dilution with saline. Dilution of WB with HES 670/0.75 and HES 130/0.4 resulted in significant hypocoagulable changes in K, MA and G (P < 0.05) compared to baseline and saline. When comparing saline to HES 670/0.75, both R and K values were significantly increased (P < 0.05). K value was significantly increased (P < 0.05) when comparing baseline to HES 130/0.4 and HES 670/0.75. Ct (P < 0.05) was significantly prolonged after WB dilution with HES solutions but not after saline. Dilution of WB with HES 670/0.75 and HES 130/0.4 resulted in changes in primary and secondary hemostasis. Although there were small differences between saline and HES 670/0.75, no differences between HES solutions were evident in this small study. This may suggest there would be minimal increases in bleeding risk when either solution is administered to dogs at low doses. Clinical relevance of our findings requires further investigation. © Veterinary Emergency and Critical Care Society 2016.
López-Sanromán, F Javier; Holmbak-Petersen, Ronald; Varela, Marta; del Alamo, Ana M; Santiago, Isabel
2013-06-01
To evaluate the duration of effects on movement patterns of horses after sedation with equipotent doses of xylazine hydrochloride, detomidine hydrochloride, or romifidine hydrochloride and determine whether accelerometry can be used to quantify differences among drug treatments. 6 healthy horses. Each horse was injected IV with saline (0.9% NaCl) solution (10 mL), xylazine diluted in saline solution (0.5 mg/kg), detomidine diluted in saline solution (0.01 mg/kg), or romifidine diluted in saline solution (0.04 mg/kg) in random order. A triaxial accelerometric device was used for gait assessment 15 minutes before and 5, 15, 30, 45, 60, 75, 90, 105, and 120 minutes after each treatment. Eight variables were calculated, including speed, stride frequency, stride length, regularity, dorsoventral power, propulsive power, mediolateral power, and total power; the force of acceleration and 3 components of power were then calculated. Significant differences were evident in stride frequency and regularity between treatments with saline solution and each α2-adrenoceptor agonist drug; in speed, dorsoventral power, propulsive power, total power, and force values between treatments with saline solution and detomidine or romifidine; and in mediolateral power between treatments with saline solution and detomidine. Stride length did not differ among treatments. Accelerometric evaluation of horses administered α2-adrenoceptor agonist drugs revealed more prolonged sedative effects of romifidine, compared with effects of xylazine or detomidine. Accelerometry could be useful in assessing the effects of other sedatives and analgesics. Accelerometric data may be helpful in drug selection for situations in which a horse's balance and coordination are important.
Johns, Jennifer L.; Moorhead, Kaitlin A.; Hu, Jing; Moorhead, Roberta C.
2018-01-01
Clinical pathology testing of rodents is often challenging due to insufficient sample volume. One solution in clinical veterinary and exploratory research environments is dilution of samples prior to analysis. However, published information on the impact of preanalytical sample dilution on rodent biochemical data is incomplete. The objective of this study was to evaluate the effects of preanalytical sample dilution on biochemical analysis of mouse and rat serum samples utilizing the Siemens Dimension Xpand Plus. Rats were obtained from end of study research projects. Mice were obtained from sentinel testing programs. For both, whole blood was collected via terminal cardiocentesis into empty tubes and serum was harvested. Biochemical parameters were measured on fresh and thawed frozen samples run straight and at dilution factors 2–10. Dilutions were performed manually, utilizing either ultrapure water or enzyme diluent per manufacturer recommendations. All diluted samples were generated directly from the undiluted sample. Preanalytical dilution caused clinically unacceptable bias in most analytes at dilution factors four and above. Dilution-induced bias in total calcium, creatinine, total bilirubin, and uric acid was considered unacceptable with any degree of dilution, based on the more conservative of two definitions of acceptability. Dilution often caused electrolyte values to fall below assay range precluding evaluation of bias. Dilution-induced bias occurred in most biochemical parameters to varying degrees and may render dilution unacceptable in the exploratory research and clinical veterinary environments. Additionally, differences between results obtained at different dilution factors may confound statistical comparisons in research settings. Comparison of data obtained at a single dilution factor is highly recommended. PMID:29497614
Drag reducing properties of microalgal exopolymers.
Ramus, J; Kenney, B E; Shaughnessy, E J
1989-01-25
Dilute aqueous solutions of polymers released by marine phytoplankton (microalgae) were shown to effectively reduce drag in capillary pipe flow. Tests were performed in a capillary turbulent flow viscometer which extruded small samples under high pressures. In all, 22 species were screened, and the products of one chlorophyte and four rhodophyte species proved especially effective. The viscoelastic polymers produced by these species delayed the transition from laminar to turbulent flow to significantly higher Re. In general, polymeric regime segments come off the maximum drag reduction asymptote at characteristic retro-onset points, and come to lie approximately parallel to, but displaced upwards from the Prandtl-von Karman line. The delay to transition was shown to be dependent on additive polymer concentration, capillary diameter, and temperature. Ionic concentration, ionic composition, or pH had little effect on drag reducing properties.
Lu, Hailin; Ren, Shanshan; Li, Xing; Guo, Junde; Dong, Guangneng; Li, Jianhui; Gao, Li
2018-08-01
Body fluid is normally the only lubricant after joint replacement surgery, but wear problems have occurred because body fluid has poor lubrication ability. However, traditional lubricant would be diluted by body fluids and then absorbed by the human body. Therefore, an injectable gel with the ability to slow-release lubricant was designed to replace the joint capsule. The proposed gel, poly(ethylene glycol)/chitosan/sodium glycerophosphate (PEG/CS/GP) composite gel was then tested. The tribology results showed that the PEG/CS/GP gel had excellent slow-release properties, especially under pressure, and the PEG played an important role in improving the gel's rheological and mechanical properties. Moreover, this study revealed that the release solution had a good lubrication effect because the PEG and GP could crosslink via the hydrogen bond effect.
USDA-ARS?s Scientific Manuscript database
The miscibility of blends of poly(lactic acid) (PLA) and poly(ethylene oxide) (PEO) was studied in polymer solutions by dilute solution viscometry and in solution blow spun nanofibers by microscopy (SEM, TEM) and by thermal and spectral analysis. Three blends of PLA and PEO were solution blended in...
NASA Astrophysics Data System (ADS)
Purohit, Parag
Surface treatment is very important step in many applications such as fabric finishing, coatings, cosmetics and personal care. Silicone polymers are a class of organic/inorganic materials that show unique properties such as weak intermolecular forces and high flexibility enabling even a very high molecular weight chain to achieve optimal orientation on surfaces. Material properties such as softness, repellency, bounciness and friction can therefore be tailored by using appropriately modified silicone polymers. Despite wide applications, the underlying mechanisms of material modification are unknown and tailoring silicones for applications remains mostly empirical. Thus the objective of this research is to understand the solution and interfacial behavior of functionalized silicone polymers, which govern their performance in material modification. Modified silicones are simultaneously hydrophobic and oleophobic in nature and due to this nearly universal non-compatibility, the studies of these polymers present unusual challenges. Due to this incompatible nature, the functionalized silicone polymers were emulsified into O/W emulsions to study their solution and interfacial properties. The colloidal properties such as electrokinetic and droplet distribution of these emulsions are assumed to play an important role in the observed surface and physical properties of solid substrates (in present study, cellulosic substrates) as well the stability of emulsions itself. To understand the effects of modified silicones on cellulosic substrates a variety of techniques such as frictional analysis, scanning electron microscopy and atomic force microscopy that can probe from macro to nano level were used. It is hypothesized that the size distribution and charge of silicone emulsions as well as the physiochemical conditions such as pH, control silicone conformation which in turn affect the modification of the substrate properties. With bimodal droplet distribution of silicone emulsions, the nano-sized droplets can penetrate deeper into the substrate to provide bounciness, whereas macro-sized droplets can coat the top layer leading to friction reduction. It was observed that at pH 5.5 the silicone treatment resulted in charge reversal of fibers as opposed to treatment at pH 9.5. On a macroscopic scale 20% reduction in frictional coefficient of the fabric was observed after treatment with quaternized (cationically modified) silicones as compared to untreated fibers. It was also observed using AFM that the fibrils treated with quaternized silicones are uniform, well stacked and smoother than the untreated fibers. Spectroscopic analysis of treated fibers using Raman spectroscopy indicated a decrease in fiber stress as a function of modification of silicone polymer and the interaction pH. It is concluded that the protonated amine functional silicone (below pH 7) as well as the quaternized silicone interacts with the negatively charged cellulose fibers primarily through electrostatic interactions. It is proposed that this initial surface coating is a uniform thin film which allows further deposition of polymer from the emulsion. It was observed that at high pH the zetapotential of silicone emulsions decreases drastically and the nano emulsions turn turbid. It is proposed that the observed electrophoretic and nephelometric behavior at high pH is due to flocculation of nanosized droplets to micron size, which eventually leads to droplets coalescing and emulsion destabilization. It is also postulated that the nano emulsion possess a critical dilution concentration (CDC), above which dilution leads to rapid coalescence. This critical dilution phase was further confirmed through polarity parameter and excimer formation studies which show significantly different polymer and surfactant microstructures near the CDC. Hence it is concluded that the observed surface properties of the substrate obtained above the CDC are significantly different than those below the CDC. The results reveal the vital role of physiochemical parameters such as pH, droplet size, and concentration on the emulsion stability as well as the observed physical/chemical properties of the substrates.
DYNAMIC CONDUCTIVITY MEASUREMENTS IN HUMIC AND FULVIC ACID SOLUTIONS. (R828158)
Conductivity changes of dilute aqueous humic and fulvic acids solutions were monitored after the addition of small quantities of Cu, Cd, Pb, and Zn. The solutions were stirred at a constant and reproducible rate, and measurements proceeded until stable conductivities were atta...
Akuzum, Bilen; Maleski, Kathleen; Anasori, Babak; Lelyukh, Pavel; Alvarez, Nicolas Javier; Kumbur, E Caglan; Gogotsi, Yury
2018-03-27
Understanding the rheological properties of two-dimensional (2D) materials in suspension is critical for the development of various solution processing and manufacturing techniques. 2D carbides and nitrides (MXenes) constitute one of the largest families of 2D materials with >20 synthesized compositions and applications already ranging from energy storage to medicine to optoelectronics. However, in spite of a report on clay-like behavior, not much is known about their rheological response. In this study, rheological behavior of single- and multilayer Ti 3 C 2 T x in aqueous dispersions was investigated. Viscous and viscoelastic properties of MXene dispersions were studied over a variety of concentrations from colloidal dispersions to high loading slurries, showing that a multilayer MXene suspension with up to 70 wt % can exhibit flowability. Processing guidelines for the fabrication of MXene films, coatings, and fibers have been established based on the rheological properties. Surprisingly, high viscosity was observed at very low concentrations for solutions of single-layer MXene flakes. Single-layer colloidal solutions were found to exhibit partial elasticity even at the lowest tested concentrations (<0.20 mg/mL) due to the presence of strong surface charge and excellent hydrophilicity of MXene, making them amenable to fabrication at dilute concentrations. Overall, the findings of this study provide fundamental insights into the rheological response of this quickly growing 2D family of materials in aqueous environments as well as offer guidelines for processing of MXenes.
Nicholls, Mathew; Manjoo, Ajay; Shaw, Peter; Niazi, Faizan; Rosen, Jeffrey
2018-01-01
Objective: The inconsistent results within the current literature regarding the efficacy of intra-articular-hyaluronic acid (IA-HA) for the treatment of knee osteoarthritis (OA) have been suggested to be due to intrinsic differences between individual HA products. The purpose of this investigation is to define the rheological differences between currently available HA products in the United States at the time of this study for the treatment of knee OA, which will help elaborate on the appropriateness of classifying HA products as a class opposed to as individual agents. Methods: The rheological parameters for Euflexxa, Orthovisc, Supartz, Monovisc, Synvisc, Synvisc-One, Gel-One, and Hyalgan were obtained with a TA AR 2000 EX Rheometer with a cone-plate geometry (40-mm plate diameter and a 2° cone angle) at room temperature. Results: The bulk rheological parameters of the different products suggest molecular structures traversing the range of dilute solution (Hyalgan, Supartz), semidilute solution (Euflexxa, Orthovisc), entangled solutions (Monovisc, Synvisc, Synvisc-One), and even gel-like (Gel-One) behavior. Conclusions: Due to the differences in rheological properties between IA-HA products, the universal assessment of these products as a class may not be appropriate. Instead, it may be more appropriate to assess each product individually. Future research should aim to link these differences in rheological properties to the differences in clinical efficacy seen across these IA-HA products. PMID:29326532
Su, Yu; Yang, Guoqing; Lu, Kun; Petersen, Elijah J.; Mao, Liang
2017-01-01
Understanding the colloidal stability of graphene is essential for predicting its transport and ecological risks in aquatic environments. We investigated the agglomeration of 14C-labeled few-layer graphene (FLG) at concentrations spanning nearly four orders of magnitude (2 μg/L to 10 mg/L) using dynamic light scattering and sedimentation measurements. FLG agglomerates formed rapidly in deionized water at concentrations > 3 mg/L. From 1 mg/L to 3 mg/L, salt-induced agglomeration was decreased with dilution of FLG suspensions; the critical coagulation concentration of the more concentrated suspension (3 mg/L) was significantly lower than the dilute suspension (1 mg/L) in the presence of NaCl (1.6 mmol/L and 10 mmol/L, respectively). In contrast, FLG underwent slow agglomeration and settling at concentrations ≤ 0.1 mg/L in NaCl solutions and ambient waters with low ionic strength (< 10 mmol/L). Although salt-induced agglomeration led to 67 % reduction in number of small FLG (25 nm to 50 nm) according to atomic force microscopy characterization, transition from concentrated to dilute suspension retarded the removal of the small FLG. Additionally, the small FLG exhibited greater bioaccumulation in zebrafish embryo and stronger chorion penetration ability than larger ones. These findings suggest that FLG at more environmentally relevant concentration is relatively stable and may have implications for exposure of small FLG to ecological receptors. PMID:27720543
Weld Bead Geometry of Ni-Based Alloy Deposited by PTA Process for Pipe Conduction of Shale Gas
NASA Astrophysics Data System (ADS)
Echavarria-Figueroa, C.; García-Vázquez, F.; Ruiz-Mondragón, J.; Hernández-García, H. M.; González-González, D.; Vargas, A.
The transportation of shale gas has the problem that the piping used for the extraction does not resist the erosion generated by the amount of solids causing cracks over the surface and it is necessary to extend the life of the pipelines. Plasma transferred arc (PTA) welded coatings are used to improve the surface properties of mechanical parts. Therefore, in this paper is studied the use of Ni-based filler metal as weld bead deposits on A36 steel substrates by PTA. In order to determine the suitable conditions to ensure coating quality on the substrate a design of experiments (DOE) was determined. Welding current, feed rate, and travel speed were used as input parameters and the dilution percentage as the response variable. The composition and properties of hardfacing or overlay deposited are strongly influenced by the dilution obtained. Control of dilution is important, where typically low dilution is desirable. When the dilution is low, the final deposit composition will be closer to that of the filler metal, and the wear and corrosion resistance of the hardfacing will also be maintained. To evaluate the features on the weld beads/substrate interface a microstructural characterization was performed by using scanning electron microscopy and to evaluate the mechanical properties was carried out hardness test.
[Research to achieve a homeopathic lotion].
Verbuţă, A; Cojocaru, I
1996-01-01
A formulation of homeopathic lotion was elaborated. It uses as mother-solutions: the Calendula tincture and the Fumaria tincture prepared according to the homeopathic rules, and a vegetal soft extract conventionally named by us Pt2a, and the 42 C alcohol was used as a vehicle. All dilutions were made at 3CH. The pH, the refraction index and the electrical conductivity of the three solutions prove a good stability of the preparation. The 2 CH a dilution was well tolerated at the administration with juvenile acne and the simple dry phthiriasis, an improving being noted after 3-4 days of treatment.
Method and apparatus for assaying wood pulp fibers
Gustafson, Richard [Bellevue, WA; Callis, James B [Seattle, WA; Mathews, Jeffrey D [Neenah, WI; Robinson, John [Issaquah, WA; Bruckner, Carsten A [San Mateo, CA; Suvamakich, Kuntinee [Seattle, WA
2009-05-26
Paper pulp is added to a stain solution. The stain solution and pulp fibers are mixed to form a slurry. Samples are removed from the slurry and are admixed with dilution water and a bleach. Then, the fibers are moved into a flow cell where they are subjected to a light source adapted to stimulate fluorescence from the stained pulp fiber. Before the fiber slurry enters the flow cell it is mixed with a dilution water of bleach to reduce background fluorescence. The fluorescent light is collimated and directed through a dichroic filter onto a fluorescence splitting dichroic filter.
Phase separation in solution of worm-like micelles: a dilute ? spin-vector model
NASA Astrophysics Data System (ADS)
Panizza, Pascal; Cristobal, Galder; Curély, Jacques
1998-12-01
We show how the dilute 0953-8984/10/50/006/img2 spin vector model introduced originally by Wheeler and co-workers for describing the polymerization phenomenon in solutions of liquid sulphur and of living polymers may be conveniently adapted for studying phase separation in systems containing long flexible micelles. We draw an isomorphism between the coupling constant appearing in the exchange Hamiltonian and the surfactant energies in the micellar problem. We solve this problem within the mean-field approximation and compare the main results we have obtained with respect to polymer theory and previous theories of phase separation in micellar solutions. We show that the attractive interaction term 0953-8984/10/50/006/img3 between monomers renormalizes the aggregation energy and subsequently the corresponding size distribution. Under these conditions, we observe that the general aspect of the phase diagram in the 0953-8984/10/50/006/img4 plane (where 0953-8984/10/50/006/img5 is the surfactant concentration) is different from previous results. The spinodal line shows a re-entrant behaviour and, at low concentrations, we point out the possibility of specific nucleation phenomena related to the existence of a metastable transition line between a region composed of spherical micelles and another one corresponding to a dilute solution of long flexible micelles.
NASA Astrophysics Data System (ADS)
Cheema, Mohammad Arif; Barbosa, Silvia; Taboada, Pablo; Castro, Emilio; Siddiq, Mohammad; Mosquera, Víctor
2006-09-01
The thermodynamic properties of aqueous solutions of the tricyclic antidepressant amphiphilic phenothiazine drug thioridazine hydrochloride in the temperature range 20-50 °C and in the presence of ethanol have been measured. The phenothiazine tranquillizing drugs have interesting association characteristics that derive from their rigid, tricyclic hydrophobic groups. Thioridazine hydrochloride is a drug used in treatment of mental illness that shows side effects. Therefore, it is interesting to study the change of its physico-chemical properties with temperature and with the surrounding environment to understand the action mechanism of the drug. Densities, conductivities, and surface tension were measured to obtain surface and bulk solution properties. Critical concentrations, cc, at different temperatures and in the presence of ethanol, and partition coefficients, K, have been calculated, the latter using an indirect method based in the pseudophase model with the help of apparent molar volume data. This method has the advantage that allows calculating the distribution coefficients at solubilizate concentrations below the saturation. Conductivity data show two critical concentrations. The second critical concentration is not clear by density data. The effect of the alcohol is to decrease the first critical concentration due to a decrease in headgroup repulsion. The molar apparent volumes at infinite dilution and in the aggregate in water and in presence of ethanol have been also obtained.
NASA Astrophysics Data System (ADS)
Coria-Monroy, C. Selene; Sotelo-Lerma, Mérida; Hu, Hailin
2016-06-01
CdSe is a widely researched material for photovoltaic applications. One of the most important parameters of the synthesis is the pH value, since it determines the kinetics and the mechanism of the reaction and in consequence, the optical and morphological properties of the products. We present the synthesis of CdSe in solution with strict control of pH and the comparison of ammonia and KOH as alkaline sources and diluted HCl as acid medium. CdSe formation was monitored with photoluminescence emission spectra (main peak in 490 nm, bandgap of CdSe nanoparticles). XRD patterns indicated that CdSe nanoparticles are mainly of cubic structure for ammonia and HCl, but the hexagonal planes appear with KOH. Product yield decreases with pH and also decreases with KOH at constant pH value since ammonia has a double function, as complexing agent and alkaline source. Changes in morphology were observed in SEM images as well with the different alkaline source. The effect of alkaline sources on photovoltaic performance of hybrid organic solar cells with CdSe and poly(3-hexylthiophene) as active layers was clearly observed, indicating the importance of synthesis conditions on optoelectronic properties of promising semiconductor nanomaterials for solar cell applications.
Influence of entanglements on glass transition temperature of polystyrene
NASA Astrophysics Data System (ADS)
Ougizawa, Toshiaki; Kinugasa, Yoshinori
2013-03-01
Chain entanglement is essential behavior of polymeric molecules and it seems to affect many physical properties such as not only viscosity of melt state but also glass transition temperature (Tg). But we have not attained the quantitative estimation because the entanglement density is considered as an intrinsic value of the polymer at melt state depending on the chemical structure. Freeze-drying method is known as one of the few ways to make different entanglement density sample from dilute solution. In this study, the influence of entanglements on Tg of polystyrene obtained by the freeze-dried method was estimated quantitatively. The freeze-dried samples showed Tg depression with decreasing the concentration of precursor solution due to the lower entanglement density and their depressed Tg would be saturated when the almost no intermolecular entanglement was formed. The molecular weight dependence of the maximum value of Tg depression was discussed.
NASA Astrophysics Data System (ADS)
Yuan, Yanchao; Sun, Yanxiao; Yan, Shijing; Zhao, Jianqing; Liu, Shumei; Zhang, Mingqiu; Zheng, Xiaoxing; Jia, Lei
2017-03-01
Nondestructive retrieval of expensive carbon fibres (CFs) from CF-reinforced thermosetting advanced composites widely applied in high-tech fields has remained inaccessible as the harsh conditions required to recycle high-performance resin matrices unavoidably damage the structure and properties of CFs. Degradable thermosetting resins with stable covalent structures offer a potential solution to this conflict. Here we design a new synthesis scheme and prepare a recyclable CF-reinforced poly(hexahydrotriazine) resin matrix advanced composite. The multiple recycling experiments and characterization data establish that this composite demonstrates performance comparable to those of its commercial counterparts, and more importantly, it realizes multiple intact recoveries of CFs and near-total recycling of the principal raw materials through gentle depolymerization in certain dilute acid solution. To our best knowledge, this study demonstrates for the first time a feasible and environment-friendly preparation-recycle-regeneration strategy for multiple CF-recycling from CF-reinforced advanced composites.
Reactive solute transport in acidic streams
Broshears, R.E.
1996-01-01
Spatial and temporal profiles of Ph and concentrations of toxic metals in streams affected by acid mine drainage are the result of the interplay of physical and biogeochemical processes. This paper describes a reactive solute transport model that provides a physically and thermodynamically quantitative interpretation of these profiles. The model combines a transport module that includes advection-dispersion and transient storage with a geochemical speciation module based on MINTEQA2. Input to the model includes stream hydrologic properties derived from tracer-dilution experiments, headwater and lateral inflow concentrations analyzed in field samples, and a thermodynamic database. Simulations reproduced the general features of steady-state patterns of observed pH and concentrations of aluminum and sulfate in St. Kevin Gulch, an acid mine drainage stream near Leadville, Colorado. These patterns were altered temporarily by injection of sodium carbonate into the stream. A transient simulation reproduced the observed effects of the base injection.
NASA Astrophysics Data System (ADS)
Şenkuytu, Elif; Tanrıverdi Eçik, Esra
2018-06-01
In the study, the new hexa-bodipy functionalized dendrimeric cyclotriphosphazene conjugates (HBCP 1 and 2) have been successfully synthesized and characterized by using general spectroscopic techniques such as 1H, 13C and 31P NMR spectroscopies. The photophysical and metal sensing properties in THF solutions of dendrimeric cyclotriphosphazene conjugates (HBCP 1 and 2) were investigated by UV-Vis and fluorescence spectroscopies in dilute tetrahydrofuran solutions. These dendrimers showed strong absorption bands 501 and 641 nm at low concentration with high molar extinction coefficients. In addition, the stoichiometry of the complex between the conjugate (HBCP 2) and Co2+ ions were determined by a Job's plot obtained from fluorescence titrations. The metal sensing data showed that the hexa-bodipy functionalized dendrimeric cyclotriphosphazene conjugate (HBCP 2) is a candidate for fluorescent chemosensor for Co2+ ions due to showing high selectivity with a low limit of detection.
Yuan, Yanchao; Sun, Yanxiao; Yan, Shijing; Zhao, Jianqing; Liu, Shumei; Zhang, Mingqiu; Zheng, Xiaoxing; Jia, Lei
2017-03-02
Nondestructive retrieval of expensive carbon fibres (CFs) from CF-reinforced thermosetting advanced composites widely applied in high-tech fields has remained inaccessible as the harsh conditions required to recycle high-performance resin matrices unavoidably damage the structure and properties of CFs. Degradable thermosetting resins with stable covalent structures offer a potential solution to this conflict. Here we design a new synthesis scheme and prepare a recyclable CF-reinforced poly(hexahydrotriazine) resin matrix advanced composite. The multiple recycling experiments and characterization data establish that this composite demonstrates performance comparable to those of its commercial counterparts, and more importantly, it realizes multiple intact recoveries of CFs and near-total recycling of the principal raw materials through gentle depolymerization in certain dilute acid solution. To our best knowledge, this study demonstrates for the first time a feasible and environment-friendly preparation-recycle-regeneration strategy for multiple CF-recycling from CF-reinforced advanced composites.
Du, Jennifer R; Peldszus, Sigrid; Huck, Peter M; Feng, Xianshe
2009-10-01
A commercial poly(vinylidene fluoride) flat sheet membrane was modified by surface coating with a dilute poly(vinyl alcohol) (PVA) aqueous solution followed by solid-vapor interfacial crosslinking. The resulting PVA layer increased membrane smoothness and hydrophilicity and resulted in comparable pure water permeation between the modified and unmodified membranes. Fouling tests using a 5 mg/L protein solution showed that a short period of coating and crosslinking improved the anti-fouling performance. After 18 h ultrafiltration of a surface water with a TOC of approximately 7 mg C/L, the flux of the modified membrane was twice as high as that of the unmodified membrane. The improved fouling resistance of the modified membrane was related to the membrane physiochemical properties, which were confirmed by pure water permeation, X-ray photoelectron spectroscopy, and contact angle, zeta potential and roughness measurements.
Yuan, Yanchao; Sun, Yanxiao; Yan, Shijing; Zhao, Jianqing; Liu, Shumei; Zhang, Mingqiu; Zheng, Xiaoxing; Jia, Lei
2017-01-01
Nondestructive retrieval of expensive carbon fibres (CFs) from CF-reinforced thermosetting advanced composites widely applied in high-tech fields has remained inaccessible as the harsh conditions required to recycle high-performance resin matrices unavoidably damage the structure and properties of CFs. Degradable thermosetting resins with stable covalent structures offer a potential solution to this conflict. Here we design a new synthesis scheme and prepare a recyclable CF-reinforced poly(hexahydrotriazine) resin matrix advanced composite. The multiple recycling experiments and characterization data establish that this composite demonstrates performance comparable to those of its commercial counterparts, and more importantly, it realizes multiple intact recoveries of CFs and near-total recycling of the principal raw materials through gentle depolymerization in certain dilute acid solution. To our best knowledge, this study demonstrates for the first time a feasible and environment-friendly preparation-recycle-regeneration strategy for multiple CF-recycling from CF-reinforced advanced composites. PMID:28251985
Growth Inhibition of Tumour Implants by Associated Surface Active Agents
Altman, R. F. A.; Spoladore, L. G.; Esch, E. L.
1970-01-01
Whereas dilute solutions of surface active agents modify the properties of cell membranes, particularly in relation to their electrical behaviour, moderate and strong solutions provoke more serious structural damage of the membrane, leading to an increase of its permeability and, finally, to cytolysis. These phenomena have inspired some authors to apply detergents as possible cancer chemotherapeuticals so far, however, with only poor results. The disintegrating effect of tumour emboli into single cells by certain detergents, and the ingenious discovery that the mutual adhesiveness between cancer cells is much less than between normal cells, have led the present authors to investigate the action of some biological surface active agents, alone as well as in some of their associations on the “take” of Yoshida sarcoma implants. Certain associations showed, in contradistinction to the separately applied components, surprisingly favourable activity. It could be established that a correlation actually exists between inhibitory effect and surface activity. PMID:4394469
NASA Astrophysics Data System (ADS)
Shimada, Kayori; Kato, Haruhisa; Saito, Takeshi; Matsuyama, Shigetomo; Kinugasa, Shinichi
2005-06-01
Uniform poly(ethylene glycol) (PEG) oligomers, with a degree of polymerization n =1-40, were separated by preparative supercritical fluid chromatography from commercial monodispersed samples. Diffusion coefficients, D, for separated uniform PEG oligomers were measured in dilute solutions of deuterium oxide (D2O) at 30 ° C, using pulsed-field gradient nuclear magnetic resonance. The measured D for each molecular weight was extrapolated to infinite dilution. Diffusion coefficients obtained at infinite dilution follow the scaling behavior of Zimm-type diffusion, even in the lower molecular weight range. Molecular-dynamics simulations for PEG in H2O also showed this scaling behavior, and reproduced close hydrodynamic interactions between PEG and water. These findings suggest that diffusion of PEG in water is dominated by hydrodynamic interaction over a wide molecular weight range, including at low molecular weights around 1000.
Structure Defect Property Relationships in Binary Intermetallics
NASA Astrophysics Data System (ADS)
Medasani, Bharat; Ding, Hong; Chen, Wei; Persson, Kristin; Canning, Andrew; Haranczyk, Maciej; Asta, Mark
2015-03-01
Ordered intermetallics are light weight materials with technologically useful high temperature properties such as creep resistance. Knowledge of constitutional and thermal defects is required to understand these properties. Vacancies and antisites are the dominant defects in the intermetallics and their concentrations and formation enthalpies could be computed by using first principles density functional theory and thermodynamic formalisms such as dilute solution method. Previously many properties of the intermetallics such as melting temperatures and formation enthalpies were statistically analyzed for large number of intermetallics using structure maps and data mining approaches. We undertook a similar exercise to establish the dependence of the defect properties in binary intermetallics on the underlying structural and chemical composition. For more than 200 binary intermetallics comprising of AB, AB2 and AB3 structures, we computed the concentrations and formation enthalpies of vacancies and antisites in a small range of stoichiometries deviating from ideal stoichiometry. The calculated defect properties were datamined to gain predictive capabilities of defect properties as well as to classify the intermetallics for their suitability in high-T applications. Supported by the US DOE under Contract No. DEAC02-05CH11231 under the Materials Project Center grant (Award No. EDCBEE).
40 CFR 797.1600 - Fish early life stage toxicity test.
Code of Federal Regulations, 2013 CFR
2013-07-01
... dilution water or the test solution. (4) “Control” an exposure of test organisms to dilution water only or... (treatment) concentrations of a test substance and one control are required to conduct an early life stage... trays or cups for each test concentration and control (i.e., 30 per embryo cup with 2 replicates); (C...
40 CFR 797.1600 - Fish early life stage toxicity test.
Code of Federal Regulations, 2010 CFR
2010-07-01
... dilution water or the test solution. (4) “Control” an exposure of test organisms to dilution water only or... (treatment) concentrations of a test substance and one control are required to conduct an early life stage... trays or cups for each test concentration and control (i.e., 30 per embryo cup with 2 replicates); (C...
40 CFR 797.1600 - Fish early life stage toxicity test.
Code of Federal Regulations, 2012 CFR
2012-07-01
... dilution water or the test solution. (4) “Control” an exposure of test organisms to dilution water only or... (treatment) concentrations of a test substance and one control are required to conduct an early life stage... trays or cups for each test concentration and control (i.e., 30 per embryo cup with 2 replicates); (C...
Ethanol production with dilute acid hydrolysis using partially dried lignocellulosics
Nguyen, Quang A.; Keller, Fred A.; Tucker, Melvin P.
2003-12-09
A process of converting lignocellulosic biomass to ethanol, comprising hydrolyzing lignocellulosic materials by subjecting dried lignocellulosic material in a reactor to a catalyst comprised of a dilute solution of a strong acid and a metal salt to lower the activation energy (i.e., the temperature) of cellulose hydrolysis and ultimately obtain higher sugar yields.
Antibacterial Properties of Calcium Fluoride-Based Composite Materials: In Vitro Study
Zarzycka, Beata; Grzegorczyk, Janina; Sokołowski, Krzysztof; Półtorak, Konrad; Sokołowski, Jerzy
2016-01-01
The aim of the study was to evaluate antibacterial activity of composite materials modified with calcium fluoride against cariogenic bacteria S. mutans and L. acidophilus. One commercially available conventional light-curing composite material containing fluoride ions (F2) and two commercially available flowable light-curing composite materials (Flow Art and X-Flow) modified with 1.5, 2.5, and 5.0 wt% anhydrous calcium fluoride addition were used in the study. Composite material samples were incubated in 0.95% NaCl at 35°C for 3 days; then dilution series of S. mutans and L. acidophilus strains were made from the eluates. Bacteria dilutions were cultivated on media afterwards. Colony-forming unit per 1 mL of solution (CFU/mL) was calculated. Composite materials modified with calcium fluoride highly reduced (p < 0.001) bacteria growth compared to commercially available composite materials containing fluoride compounds. The greatest reduction in bacteria growth was observed for composite materials modified with 1.5% wt. CaF2. All three tested composite materials showed statistically greater antibacterial activity against L. acidophilus than against S. mutans. PMID:28053976
ELECTRODEPOSITION OF PLUTONIUM
Wolter, F.J.
1957-09-10
A process of electrolytically recovering plutonium from dilute aqueous solutions containing plutonium ions comprises electrolyzing the solution at a current density of about 0.44 ampere per square centimeter in the presence of an acetate-sulfate buffer while maintaining the pH of the solution at substantially 5 and using a stirred mercury cathode.
Moyer, Bruce A.; Sachleben, Richard A.; Bonnesen, Peter V.; Presley, Derek J.
2001-01-01
A solvent composition and corresponding method for extracting cesium (Cs) from aqueous neutral and alkaline solutions containing Cs and perhaps other competing metal ions is described. The method entails contacting an aqueous Cs-containing solution with a solvent consisting of a specific class of lipophilic calix[4]arene-crown ether extractants dissolved in a hydrocarbon-based diluent containing a specific class of alkyl-aromatic ether alcohols as modifiers. The cesium values are subsequently recovered from the extractant, and the solvent subsequently recycled, by contacting the Cs-containing organic solution with an aqueous stripping solution. This combined extraction and stripping method is especially useful as a process for removal of the radionuclide cesium-137 from highly alkaline waste solutions which are also very concentrated in sodium and potassium. No pre-treatment of the waste solution is necessary, and the cesium can be recovered using a safe and inexpensive stripping process using water, dilute (millimolar) acid solutions, or dilute (millimolar) salt solutions. An important application for this invention would be treatment of alkaline nuclear tank wastes. Alternatively, the invention could be applied to decontamination of acidic reprocessing wastes containing cesium-137.
Effect of rapid warming of boar semen on sperm morphology and physiology.
Bamba, K; Cran, D G
1985-09-01
The effect of rapid dilution (1:8 with BTS or 1:6.5 with KRP) and temperature change on sperm morphology and physiology were studied using boar spermatozoa pre-diluted in BF5 diluent. Rapid dilution of cold semen (5 degrees C) with a warm solution (37 degrees C) caused marked acrosomal changes which were most prominent in the anterior region. The acrosomal damage appeared to be caused mainly by rapid warming. In contrast to rapid cooling, rapid warming had little effect upon motility, glutamic-oxaloacetic transaminase release and respiration.
Basic research in homeopathy and ultra-high dilutions: what progress is being made?
Betti, Lucietta; Trebbi, Grazia; Olioso, Debora; Marzotto, Marta; Bellavite, Paolo
2013-04-01
This report summarises the latest research developments in the field of high dilutions and homeopathy, as presented at the GIRI symposium of the leading international organisation of scientists in this field, in Florence, Italy in September 2012. The scientific community's early scepticism concerning the possible biological and pharmacological activity of highly diluted solutions, is giving way to a more open-minded attitude that no longer obstructs critical and experimental investigations in this emerging field of biomedicine. Copyright © 2013. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Dey, Arka; Das, Mrinmay; Datta, Joydeep; Jana, Rajkumar; Dhar, Joydeep; Sil, Sayantan; Biswas, Debasish; Banerjee, Chandan; Ray, Partha Pratim
2016-07-01
Here we have presented the results of large area (30 × 30 cm2) silicon-hydrogen alloy material and solar cell by argon dilution method. As an alternative to hydrogen dilution, argon dilution method has been applied to develop single junction solar cell with appreciable stability. Optimization of deposition conditions revealed that 95% argon dilution gives a nanostructured material with improved transport property and less light induced degradation. The minority carrier diffusion length (L d ) and mobility-lifetime (μτ) product of the material with 95% argon dilution degrades least after light soaking. Also the density of states (DOS) below conduction level reveals that this material is less defective. Solar cell with this argon diluted material has been fabricated with all the layers deposited by argon dilution method. Finally we have compared the argon diluted solar cell results with the optimized hydrogen diluted solar cell. Light soaking study proves that it is possible to develop stable solar cell on large area by argon dilution method and that the degradation of argon diluted solar cell is less than that of hydrogen diluted one. [Figure not available: see fulltext.
The Effect of Dilution on Microsegregation in AWS ER NiCrMo-14 Alloy Welding Claddings
NASA Astrophysics Data System (ADS)
Miná, Émerson Mendonça; da Silva, Yuri Cruz; Dille, Jean; Silva, Cleiton Carvalho
2016-12-01
Dilution and microsegregation are phenomena inherent to claddings, which, in turn, directly affect their main properties. This study evaluated microsegregation in the fusion zone with different dilution levels. The overlays were welded by the TIG cold wire feed process. Dilution was calculated from the geometric characteristics of the claddings and from the conservation of mass equation using chemical composition measurements. Microsegregation was calculated using energy dispersive X-ray spectroscopy measurements of the dendrites and the chemical composition of the fusion zone. The dilution of the claddings was increased by reducing the wire feed rate. Fe showed potential to be incorporated into the solid phase ( k > 1), and this increased with the increase of dilution. Mo, in turn, was segregated into the liquid phase ( k < 1) and also increased with the increase of dilution. However, Cr and W showed a slight decrease in their partition coefficients ( k) with the increase of dilution.
Calorimetric study of water's two glass transitions in the presence of LiCl
Ruiz, Guadalupe N.; Amann-Winkel, Katrin; Bove, Livia E.; Corti, Horacio R.
2018-01-01
A DSC study of dilute glassy LiCl aqueous solutions in the water-dominated regime provides direct evidence of a glass-to-liquid transition in expanded high density amorphous (eHDA)-type solutions. Similarly, low density amorphous ice (LDA) exhibits a glass transition prior to crystallization to ice Ic. Both glass transition temperatures are independent of the salt concentration, whereas the magnitude of the heat capacity increase differs. By contrast to pure water, the glass transition endpoint for LDA can be accessed in LiCl aqueous solutions above 0.01 mole fraction. Furthermore, we also reveal the endpoint for HDA's glass transition, solving the question on the width of both glass transitions. This suggests that both equilibrated HDL and LDL can be accessed in dilute LiCl solutions, supporting the liquid–liquid transition scenario to understand water's anomalies. PMID:29442107
Freedman, Stephen B; Willan, Andrew R; Boutis, Kathy; Schuh, Suzanne
2016-05-10
Gastroenteritis is a common pediatric illness. Electrolyte maintenance solution is recommended to treat and prevent dehydration. Its advantage in minimally dehydrated children is unproven. To determine if oral hydration with dilute apple juice/preferred fluids is noninferior to electrolyte maintenance solution in children with mild gastroenteritis. Randomized, single-blind noninferiority trial conducted between the months of October and April during the years 2010 to 2015 in a tertiary care pediatric emergency department in Toronto, Ontario, Canada. Study participants were children aged 6 to 60 months with gastroenteritis and minimal dehydration. Participants were randomly assigned to receive color-matched half-strength apple juice/preferred fluids (n=323) or apple-flavored electrolyte maintenance solution (n=324). Oral rehydration therapy followed institutional protocols. After discharge, the half-strength apple juice/preferred fluids group was administered fluids as desired; the electrolyte maintenance solution group replaced losses with electrolyte maintenance solution. The primary outcome was a composite of treatment failure defined by any of the following occurring within 7 days of enrollment: intravenous rehydration, hospitalization, subsequent unscheduled physician encounter, protracted symptoms, crossover, and 3% or more weight loss or significant dehydration at in-person follow-up. Secondary outcomes included intravenous rehydration, hospitalization, and frequency of diarrhea and vomiting. The noninferiority margin was defined as a difference between groups of 7.5% for the primary outcome and was assessed with a 1-sided α=.025. If noninferiority was established, a 1-sided test for superiority was conducted. Among 647 randomized children (mean age, 28.3 months; 331 boys [51.1%]; 441 (68.2%) without evidence of dehydration), 644 (99.5%) completed follow-up. Children who were administered dilute apple juice experienced treatment failure less often than those given electrolyte maintenance solution (16.7% vs 25.0%; difference, -8.3%; 97.5% CI, -∞ to -2.0%; P < .001 for inferiority and P = .006 for superiority). Fewer children administered apple juice/preferred fluids received intravenous rehydration (2.5% vs 9.0%; difference, -6.5%; 99% CI, -11.6% to -1.8%). Hospitalization rates and diarrhea and vomiting frequency were not significantly different between groups. Among children with mild gastroenteritis and minimal dehydration, initial oral hydration with dilute apple juice followed by their preferred fluids, compared with electrolyte maintenance solution, resulted in fewer treatment failures. In many high-income countries, the use of dilute apple juice and preferred fluids as desired may be an appropriate alternative to electrolyte maintenance fluids in children with mild gastroenteritis and minimal dehydration. clinicaltrials.gov Identifier: NCT01185054.
Energy drink enhances the behavioral effects of alcohol in adolescent mice.
Krahe, Thomas E; Filgueiras, Cláudio C; da Silva Quaresma, Renata; Schibuola, Helen Gomes; Abreu-Villaça, Yael; Manhães, Alex C; Ribeiro-Carvalho, Anderson
2017-06-09
Mixing alcohol with energy drinks has become increasingly popular among teenagers and young adults due to the prevailing view that the stimulant properties of energy drinks decrease the depressant effects of alcohol. Surprisingly, in spite of energy drinks being heavily marketed to and consumed by adolescents, there is scarcely available preclinical data on the neurobehavioral effects of energy drinks mixed with alcohol during adolescence. Thus, here we examine the effects of the combined exposure to alcohol and energy drink on adolescent mice using a variety of behavioral tasks to assess locomotor activity, righting reflex and motor coordination. At postnatal day 40, male and female Swiss mice were assigned to the following experimental groups: alcohol diluted in energy drink (Ed+Etoh), alcohol diluted in water (Etoh) or controls (Ctrl: energy drink or water). Alcohol and energy drink (Red Bull) concentrations were 4g/kg and 8ml/kg, respectively, and all solutions were administered via oral gavage. When compared to Etoh mice, Ed+Etoh animals displayed greater locomotor activity and increased anxiety-like behaviors in the open-field, lost their righting reflexes sooner and displayed poorer motor coordination in the rotarod. Collectively, our findings indicate that alcohol-induced deficits in adolescent mice are worsened by energy drink and go against the view that the stimulant properties of energy drinks can antagonize the adverse effects of alcohol. Copyright © 2017 Elsevier B.V. All rights reserved.
Kaya, Ismet; Pala, Cigdem Yigit
2014-07-01
In this work, some thermodynamic properties of poly (cyclohexyl methacrylate) were studied by inverse gas chromatography (IGC). For this purpose, the polymeric substance was coated on Chromosorb W and which was filled into a glass column. The retention times (t(r)) of the probes were determined from the interactions of poly (cyclohexyl methacrylate) with n-pentane, n-hexane, n-heptane, n-octane, n-decane, methanol, ethanol, 2-propanol, butanol, acetone, ethyl methyl ketone, benzene, toluene and o-xylene by IGC technique. Then, the specific volume (Vg(0)) was determined for each probe molecule. By using (1/T; lnVg(0)) graphics, the glass transition temperature of poly (cyclohexyl methacrylate) was found to be 373 K. The adsorption heat under the glass transition temperature (deltaH(a)), and partial molar heat of sorption above the glass transition (deltaH1(S)), partial molar free energy of sorption (deltaG1(S)) and partial molar entropy of sorption (deltaS1(S)) belonging to sorption for every probe were calculated. The partial molar heat of mixing at infinite dilution (deltaH1(infinity)), partial molar free energy of mixing at infinite dilution (deltaG1(infinity)), Flory-Huggins interaction parameter (chi12(infinity)) and weight fraction activity coefficient (a1/w1)(infinity) values of polymer-solute systems were calculated at different column temperatures. The solubility parameters (delta2) of the polymer were obtained by IGC technique.
Contact activation of blood-plasma coagulation
NASA Astrophysics Data System (ADS)
Golas, Avantika
Surface engineering of biomaterials with improved hemocompatibility is an imperative, given the widespread global need for cardiovascular devices. Research summarized in this dissertation focuses on contact activation of FXII in buffer and blood plasma frequently referred to as autoactivation. The extant theory of contact activation imparts FXII autoactivation ability to negatively charged, hydrophilic surfaces. According to this theory, contact activation of plasma involves assembly of proteins comprising an "activation complex" on activating surfaces mediated by specific chemical interactions between complex proteins and the surface. This work has made key discoveries that significantly improve our core understanding of contact activation and unravel the existing paradigm of plasma coagulation. It is shown herein that contact activation of blood factor XII (FXII, Hageman factor) in neat-buffer solution exhibits a parabolic profile when scaled as a function of silanized-glass-particle activator surface energy (measured as advancing water adhesion tension t°a=g° Iv costheta in dyne/cm, where g°Iv is water interfacial tension in dyne/cm and theta is the advancing contact angle). Nearly equal activation is observed at the extremes of activator water-wetting properties --36 < t°a < 72 dyne/cm (O° ≤ theta < 120°), falling sharply through a broad minimum within the 20 < t°a < 40 dyne/cm (55° < theta < 75°). Furthermore, contact activation of FXII in buffer solution produces an ensemble of protein fragments exhibiting either procoagulant properties in plasma (proteolysis of blood factor XI or prekallikrein), amidolytic properties (cleavage of s-2302 chromogen), or the ability to suppress autoactivation through currently unknown biochemistry. The relative proportions of these fragments depend on activator surface chemistry/energy. We have also discovered that contact activation is moderated by adsorption of plasma proteins unrelated to coagulation through an "adsorption-dilution" effect that blocks FXII contact with hydrophobic activator surfaces. The adsorption-dilution effect explains the apparent specificity for hydrophilic activators pursued by earlier investigators. Finally a comparison of FXII autoactivation in buffer, serum, protein cocktail, and plasma solutions is shown herein. Activation of blood plasma coagulation in vitro by contact with material surfaces is demonstrably dependent on plasma-volume-to-activator-surface-area ratio. However, activation of factor XII dissolved in buffer, protein cocktail, heat-denatured serum, and FXI deficient plasma does not exhibit activator surface-area dependence. Instead, a highly-variable burst of procoagulant-enzyme yield is measured that exhibits no measurable kinetics, sensitivity to mixing, or solution-temperature dependence. Thus, FXII activation in both buffer and protein-containing solutions does not exhibit characteristics of a biochemical reaction but rather appears to be a "mechanochemical" reaction induced by FXII molecule interactions with hydrophilic activator particles that do not formally adsorb blood proteins from solution. Results strongly suggest that activator surface-area dependence observed in contact activation of plasma coagulation does not solely arise at the FXII activation step of the intrinsic pathway.
Transient Effects in Planar Solidification of Dilute Binary Alloys
NASA Technical Reports Server (NTRS)
Mazuruk, Konstantin; Volz, Martin P.
2008-01-01
The initial transient during planar solidification of dilute binary alloys is studied in the framework of the boundary integral method that leads to the non-linear Volterra integral governing equation. An analytical solution of this equation is obtained for the case of a constant growth rate which constitutes the well-known Tiller's formula for the solute transient. The more physically relevant, constant ramping down temperature case has been studied both numerically and analytically. In particular, an asymptotic analytical solution is obtained for the initial transient behavior. A numerical technique to solve the non-linear Volterra equation is developed and the solution is obtained for a family of the governing parameters. For the rapid solidification condition, growth rate spikes have been observed even for the infinite kinetics model. When recirculating fluid flow is included into the analysis, the spike feature is dramatically diminished. Finally, we have investigated planar solidification with a fluctuating temperature field as a possible mechanism for frequently observed solute trapping bands.
NASA Astrophysics Data System (ADS)
Rajamane, N. P.; Nataraja, M. C.; Jeyalakshmi, R.; Nithiyanantham, S.
2016-02-01
Geopolymer concrete is zero-Portland cement concrete containing alumino-silicate based inorganic polymer as binder. The polymer is obtained by chemical activation of alumina and silica bearing materials, blast furnace slag by highly alkaline solutions such as hydroxide and silicates of alkali metals. Sodium hydroxide solutions of different concentrations are commonly used in making GPC mixes. Often, it is seen that sodium hydroxide solution of very high concentration is diluted with water to obtain SHS of desired concentration. While doing so it was observed that the solute particles of NaOH in SHS tend to occupy lower volumes as the degree of dilution increases. This aspect is discussed in this paper. The observed phenomenon needs to be understood while formulating the GPC mixes since this influences considerably the relationship between concentration and density of SHS. This paper suggests an empirical formula to relate density of SHS directly to concentration expressed by w/w.
Effect of Pineapple Leaf Fibers (PALF) concentration on nanofibers formation by electrospinning
NASA Astrophysics Data System (ADS)
Surip, S. N.; Aziz, F. M. Abdul; Bonnia, N. N.; Sekak, K. A.
2018-01-01
Electrospinning method has been studied widely in producing nanofibers due to its straightforward and versatile method. In this study, Pineapple Leaf Fibers (PALF) solution were electrospinning to obtain mat of PALF electrospun. PALF were diluted in Trifluoacetic Acid (TFA) into five different concentrations to study the effect of concentration to the nanofibers formation. Raw sample of PALF (PALFraw), PALF after dewax (PALFdewax) and PALF after dilute with TFA (PALFTFA) were analyzed and compared using FTIR to study the structural change occur. TFA solvent has removed and recreated some of the functional group in PALF thus disrupt strong hydrogen bonds that hold hemicellulose, cellulose and lignin together. All the PALF sample has been proceed to electrospinning process. Low concentration of solution cause the solution jet to break up even before reach the collector however high concentration of solution made the solvent volatile faster and the solution dried easily. Therefore, PALF with optimum concentration of 0.02 gml-1 had favors the formation of nanofibers and succeed in forming membrane at the collector.
How water manifests the structural regimes in ionic liquids.
Singh, Akhil Pratap; Gardas, Ramesh L; Senapati, Sanjib
2017-03-22
Ionic liquids (ILs) are being considered as greener alternatives to the conventional organic solvents. However, highly viscous nature of ILs often limits their applications. Hence studies on IL/water binary mixtures have received tremendous attention. These mixtures exhibit much lower viscosity, but almost similar density, compressibility and other properties as that of the neat ILs, up to certain water content. Hence, determining the IL-water ratio till which the solution behaves like IL and subsequently changes to a state of solute IL dissolved in continuous water phase is of paramount importance. Noting the very different and characteristic behaviours of neat ILs and pure water over a temperature range, herein, we measured the various thermophysical properties of the binary mixtures of tetramethylguanidinium benzoate/water and tetramethylguanidinium salicylate/water with water content varying from 20 wt% to 95 wt% for a temperature range of 298 K to 343 K. The results show that similar to neat ILs, the measured densities and compressibility of these mixtures display a linear change, and viscosity decreases rapidly as temperature is increased for water content up to 50 wt%. At higher water concentrations, the measured density and compressibility exhibit nonlinear behaviour and the decrease in viscosity with increased temperature is minute, mimicking the behaviour of bulk water. MD simulations were carried out to explain the experimental observations. Simulation results show a greater temperature-induced disintegration of IL ion-water interactions in dense systems, explaining the rapid decay of the properties with temperature. The results also exhibit the presence of a neat, IL-like, H-bond mediated expanded structure in concentrated solution versus a collapsed IL structure in dilute solution.
Self-assembly of polyelectrolyte surfactant complexes using large scale MD simulation
NASA Astrophysics Data System (ADS)
Goswami, Monojoy; Sumpter, Bobby
2014-03-01
Polyelectrolytes (PE) and surfactants are known to form interesting structures with varied properties in aqueous solutions. The morphological details of the PE-surfactant complexes depend on a combination of polymer backbone, electrostatic interactions and hydrophobic interactions. We study the self-assembly of cationic PE and anionic surfactants complexes in dilute condition. The importance of such complexes of PE with oppositely charged surfactants can be found in biological systems, such as immobilization of enzymes in polyelectrolyte complexes or nonspecific association of DNA with protein. Many useful properties of PE surfactant complexes come from the highly ordered structures of surfactant self-assembly inside the PE aggregate which has applications in industry. We do large scale molecular dynamics simulation using LAMMPS to understand the structure and dynamics of PE-surfactant systems. Our investigation shows highly ordered pearl-necklace structures that have been observed experimentally in biological systems. We investigate many different properties of PE-surfactant complexation for different parameter ranges that are useful for pharmaceutical, engineering and biological applications.
Dilution in single pass arc welds
DOE Office of Scientific and Technical Information (OSTI.GOV)
DuPont, J.N.; Marder, A.R.
1996-06-01
A study was conducted on dilution of single pass arc welds of type 308 stainless steel filler metal deposited onto A36 carbon steel by the plasma arc welding (PAW), gas tungsten arc welding (GTAW), gas metal arc welding (GMAW), and submerged arc welding (SAW) processes. Knowledge of the arc and melting efficiency was used in a simple energy balance to develop an expression for dilution as a function of welding variables and thermophysical properties of the filler metal and substrate. Comparison of calculated and experimentally determined dilution values shows the approach provides reasonable predictions of dilution when the melting efficiencymore » can be accurately predicted. The conditions under which such accuracy is obtained are discussed. A diagram is developed from the dilution equation which readily reveals the effect of processing parameters on dilution to aid in parameter optimization.« less
Lawrence, Matthew James; Marsden, Nick; Kaczynski, Jakub; Davies, Gareth; Davies, Nia; Hawkins, Karl; Perumal, Sounder; Brown, Martin Rowan; Morris, Keith; Davidson, Simon J; Williams, Phylip Rhodri; Evans, Phillip Adrian
2016-11-01
Balancing the beneficial effects of resuscitation fluids against their detrimental effect on hemostasis is an important clinical issue. We aim to compare the in vitro effects of 3 different colloid resuscitation fluids (4.5% albumin, hydroxyethyl starch [Voluven 6%], and gelatin [Geloplasma]) on clot microstructure formation using a novel viscoelastic technique, the gel point. This novel hemorheologic technique measures the biophysical properties of the clot and provides an assessment of clot microstructure from its viscoelastic properties. Importantly, in contrast to many assays in routine clinical use, the measurement is performed using unadulterated whole blood in a near-patient setting and provides rapid assessment of coagulation. We hypothesized that different colloids will have a lesser or greater detrimental effect on clot microstructure formation when compared against each other. Healthy volunteers were recruited into the study (n = 104), and a 20-mL sample of whole blood was obtained. Each volunteer was assigned to 1 of the 3 fluids, and the sample was diluted to 1 of 5 different dilutions (baseline, 10%, 20%, 40%, and 60%). The blood was tested using the gel point technique, which measures clot mechanical strength and quantifies clot microstructure (df) at the incipient stages of fibrin formation. df and clot mechanical strength decrease with progressive dilution for all 3 fluids. A significant reduction in df from baseline was recorded at dilutions of 20% for albumin (P < .0001), 40% for starch (P < .0001), and 60% for gelatin (P < .0001). We also observed significant differences, in terms of df, when comparing the different types of colloid (P < .0001). We found that albumin dilution produced the largest changes in clot microstructure, providing the lowest values of df (= 1.41 ± 0.061 at 60% dilution) compared with starch (1.52 ± 0.081) and gelatin (1.58 ± 0.063). We show that dilution with all 3 fluids has a significant effect on coagulation at even relatively low dilution volumes (20% and 40%). Furthermore, we quantify, using a novel viscoelastic technique, how the physiochemical properties of the 3 colloids exert individual changes on clot microstructure.
Kocak, Mustafa Murat; Ozcan, Suat; Kocak, Sibel; Topuz, Ozgur; Erten, Hulya
2009-01-01
Objectives The aim of this study was to evaluate the effectiveness of three different antiseptic mouthrinse solutions on the saliva samples obtained from the individuals, who had high caries activity rate. Methods The efficacy of three antiseptic mouthrinses were evaluated in a study with healthy volunteers. The three antiseptic solutions used in this study were 0.1% octenidine dihydrochloride (Octenisept, Schülke&Mayr, UK), 0.12% chlorhexidine digluconate (Kloroben, Drogsan, Turkey) and an antimicrobial enzymatic rinse (Biotene, Laclede, Inc, USA). A total of 27 adult volunteer subjects were participated in the study. The subjects were stratified into three balanced group. Then the mouth rinses were used by each group according to the manufacturer’s directions. The subjects were restricted for 60 minutes for food intake after using the prescribed mouthrinse. The saliva samples were collected from the volunteers at 1, 10 and 60 minutes after their usage in tubes. The tubes were kept in +4°C in a fridge till the evaluation. 10−3 and 10−5 dilutions were prepared for each solution and S. mutans were evaluated according to total number of colony forming unit (CFU) per ml. The dilutions were spreaded on the surface of Brucella agar plates for anaerobic incubation for 48 hours. The dilutions were 100, 10−3 and 10−5 of the solutions Kloroben, Biotene, Octenisept, and the time factor were 0, 1, 10 and 60 minutes. The statistical analyses were performed by Duncan and Bonferroni tests. Results Octenisept was found to be more effective over S. mutans than the other mouthrinse solutions (P<.05). Conclusions All mouthrinse solutions except Biotene were effective on oral microorganisms. PMID:19262732
Chan, Man Nin; Kreidenweis, Sonia M; Chan, Chak K
2008-05-15
The initial phase (solid or aqueous droplet) of aerosol particles prior to activation is among the critical factors in determining their cloud condensation nuclei (CCN) activity. Single-particle levitation in an electrodynamic balance (EDB)was used to measure the phase transitions and hygroscopic properties of aerosol particles of 11 organic compounds with different solubilities (10(-1) to 102 g solute/100 g water). We use these data and other literature data to relate the CCN activity and hygroscopicity of organic compounds with different solubilities. The EDB data show that glyoxylic acid, 4-methylphthalic acid, monosaccharides (fructose and mannose), and disaccharides (maltose and lactose) did not crystallize and existed as metastable droplets at low relative humidity (RH). Hygroscopic data from this work and in the literature support earlier studies showing that the CCN activities of compounds with solubilities down to the order of 10(-1) g solute/100 g water can be predicted by standard Köhler theory with the assumption of complete dissolution of the solute at activation. We also demonstrate the use of evaporation data (or efflorescence data), which provides information on the water contents of metastable solutions below the compound deliquescence RH that can be extrapolated to higher dilutions, to predict the CCN activity of organic particles, particularly for sparingly soluble organic compounds that do not deliquesce at RH achievable in the EDB and in the hygroscopic tandem differential mobility analyzer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
HEDENGREN, D.C.
Solubility data for ammonia in water and various dilute solutions are abundant in the literature. However, there is a noticeable lack of ammonia solubility data for high salt, basic solutions of various mixtures of salts including those found in many of the Hanford Washington underground waste tanks. As a result, models based on solubility data for dilute salt solutions have been used to extrapolate to high salt solutions. These significant extrapolations need to be checked against actual laboratory data. Some indirect vapor measurements have been made. A more direct approach is to determine the ratio of solubility of ammonia inmore » water to its solubility in high salt solutions. In various experiments, pairs of solutions, one of which is water and the other a high salt solution, are allowed to come to equilibrium with a common ammonia vapor pressure. The ratio of concentrations of ammonia in the two solutions is equal to the ratio of the respective ammonia solubilities (Henry's Law constants) at a given temperature. This information can then be used to refine the models that predict vapor space compositions of ammonia. Ammonia at Hanford is of concern because of its toxicity in the environment and its contribution to the flammability of vapor space gas mixtures in waste tanks.« less
The dissolution of quartz in dilute aqueous solutions of organic acids at 25°C
Bennett, P.C.; Melcer, M.E.; Siegel, D.I.; Hassett, J.P.
1988-01-01
The dissolution of quartz in dilute aqueous solutions of organic acids at 25° and standard pressure was investigated by the batch dissolution method. The bulk dissolution rate of quartz in 20 mmole/Kg citrate solutions at pH 7 was 8 to 10 times faster than that in pure water. After 1750 hours the concentration of dissolved silica in the citrate solution was 167 μmole/Kg compared to 50 μmole/Kg in water and a 20 mmole/Kg solution of acetate at pH 7. Solutions of salicylic, oxalic, and humic acids also accelerated the dissolution of quartz in aqueous solution at pH 7. The rate of dissolution in organic acids decreased sharply with decreasing pH.The possibility of a silica-organic acid complex was investigated using UV-difference spectroscopy. Results suggest that dissolved silica is complexed by citrate, oxalate and pyruvate at pH 7 by an electron-donor acceptor complex, whereas no complexation occurs between silica and acetate, lactate, malonate, or succinate. Three models are proposed for the solution and surface complexation of silica by organic acid anions which result in the accelerated dissolution and increased solubility of quartz in organic rich water.
NASA Astrophysics Data System (ADS)
Shin, Kang Sik; Jang, Eunseok; Cho, Jun-Sik; Yoo, Jinsu; Park, Joo Hyung; Byungsung, O.
2015-09-01
In recent decades, researchers have improved the efficiency of amorphous silicon solar cells in many ways. One of the easiest and most practical methods to improve solar-cell efficiency is adopting a back surface reflector (BSR) as the bottom layer or as the substrate. The BSR reflects the incident light back to the absorber layer in a solar cell, thus elongating the light path and causing the so-called "light trapping effect". The elongation of the light path in certain wavelength ranges can be enhanced with the proper scale of BSR surface structure or morphology. An aluminum substrate with a surface modified by aluminum anodizing is used to improve the optical properties for applications in amorphous silicon solar cells as a BSR in this research due to the high reflectivity and the low material cost. The solar cells with a BSR were formed and analyzed by using the following procedures: First, the surface of the aluminum substrate was degreased by using acetone, ethanol and distilled water, and it was chemically polished in a dilute alkali solution. After the cleaning process, the aluminum surface's morphology was modified by using a controlled anodization in a dilute acid solution to form oxide on the surface. The oxidized film was etched off by using an alkali solution to leave an aluminum surface with randomly-ordered dimple-patterns of approximately one micrometer in size. The anodizing conditions and the anodized aluminum surfaces after the oxide layer had been removed were systematically investigated according to the applied voltage. Finally, amorphous silicon solar cells were deposited on a modified aluminum plate by using dc magnetron sputtering. The surfaces of the anodized aluminum were observed by using field-emission scanning electron microscopy. The total and the diffuse reflectances of the surface-modified aluminum sheets were measured by using UV spectroscopy. We observed that the diffuse reflectances increased with increasing anodizing voltage. The properties of the solar cells on anodized aluminum substrates were analyzed by using a solar simulator.
Electron Conduction in Organic Solutions
1991-11-10
solutions, both eq(3) and eq(4) are diffusion controlled reactions, in agreement with Geske and Maid’s polarographic study of NB 10 . The decrease in... Geske , D.H., Maki, A. H. J. Am. Chem. Soc. 1960, 82, 2671. 11. Keq is calculated using EI/2 values obtained in dilute solutions (ref. 10) for eq. (3) (El
Determination of the viscosity number of thermoplastics in dilute solution; polyamides (PA)
NASA Technical Reports Server (NTRS)
1985-01-01
This West German Standard presents a test used to determine the viscosity number of polyamides and copolyamides which are easily diluted in sulfuric acid, and for other polyamides which are less easily diluted in sulfuric acid, and which are diluted in m-cresol. As formic acid is often used in industry instead of sulfuric acid, this solvent is also presented as an alternative, however, sulfuric acid is preferred because of the thermodynamic solubility characteristics of the polyamides and the handling safety. In addition, it is shown which solvent should be used for each polyamide. Finally, determinations concerning the preparation of the samples are presented. Using the viscosity number, a determination of the molar mass of the polyamides is possible.
Wilson, P W; Haymet, A D J
2010-10-07
Workman-Reynolds freezing potentials have been measured across the interface between ice and dilute NaCl solutions as a function of ice growth rate for three salt concentrations. Growth rates of up to 40 μm·s(-1) are used, and it is found that the measured voltage peaks at rates of ∼25 μm·s(-1). Our initial results indicate that the freezing potential can be used as a probe into various aspects of the DC electrical resistance of ice as a function of variables such as salt concentration.
Properties of NiO thin films deposited by intermittent spray pyrolysis process
NASA Astrophysics Data System (ADS)
Reguig, B. A.; Khelil, A.; Cattin, L.; Morsli, M.; Bernède, J. C.
2007-02-01
NiO thin films have been grown on glass substrates by intermittent spray pyrolysis deposition of NiCl 2·6H 2O diluted in distilled water, using a simple "perfume atomizer". The effect of the solution molarity on their properties was studied and compared to those of NiO thin films deposited with a classical spray system. It is shown that NiO thin films crystallized in the NiO structure are achieved after deposition. Whatever the precursor molarity, the grain size is around 25-30 nm. The crystallites are preferentially oriented along the (1 1 1) direction. All the films are p-type. However, the thickness and the conductivity of the NiO films depend on the precursor contraction. By comparison with the properties of films deposited by classical spray technique, it is shown that the critical precursor concentration, which induces strong thin films properties perturbations, is higher when a perfume atomizer is used. This broader stability domain can be attributed to better chlorides decomposition during the rest time used in the perfume atomizer technique.
Hydrogen bonding in hydrates with one acetic acid molecule.
Pu, Liang; Sun, Yueming; Zhang, Zhibing
2010-10-14
Hydrogen bonding (H-bond) interaction significantly influences the separation of acetic acid (HAc) from the HAc/H(2)O mixtures, especially the dilute solution, in distillation processes. It has been examined from the HAc mono-, di-, tri-, and tetrahydrates by analyzing the structures, binding energies, and infrared vibrational frequencies from quantum chemical calculations. For the first coordinate shell the 6-membered head-on ring is surely the most favorable structure because it has (1) the most favorable H-bonding parameters, (2) almost the largest binding energy per H-bond, (3) the biggest wavenumber shifts, and (4) the highest ring distribution (the AIMD simulations). Moreover, the comparison of the calculations with the experiments (the X-ray scattering data and IR frequencies) suggests that the possible structures in dilute aqueous solution are those involving two or more coordinate shells. The H-bonding in these water-surrounded HAc hydrates are the origin of the low-efficiency problem of isolating HAc from the dilute HAc/H(2)O mixtures. It is apparently a tougher work to break the H-bonds among HAc and the surrounded H(2)O molecules with respect to the case of more concentrated solutions, where the dominant structures are HAc or H(2)O aggregates.
Quantification of the degree of reaction of fly ash
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ben Haha, M., E-mail: mohsen.ben-haha@empa.c; De Weerdt, K., E-mail: klaartje.de.weerdt@sintef.n; Lothenbach, B.
2010-11-15
The quantification of the fly ash (FA) in FA blended cements is an important parameter to understand the effect of the fly ash on the hydration of OPC and on the microstructural development. The FA reaction in two different blended OPC-FA systems was studied using a selective dissolution technique based on EDTA/NaOH, diluted NaOH solution, the portlandite content and by backscattered electron image analysis. The amount of FA determined by selective dissolution using EDTA/NaOH is found to be associated with a significant possible error as different assumptions lead to large differences in the estimate of FA reacted. In addition, atmore » longer hydration times, the reaction of the FA is underestimated by this method due to the presence of non-dissolved hydrates and MgO rich particles. The dissolution of FA in diluted NaOH solution agreed during the first days well with the dissolution as observed by image analysis. At 28 days and longer, the formation of hydrates in the diluted solutions leads to an underestimation. Image analysis appears to give consistent results and to be most reliable technique studied.« less
Unsteady non-Newtonian hydrodynamics in granular gases.
Astillero, Antonio; Santos, Andrés
2012-02-01
The temporal evolution of a dilute granular gas, both in a compressible flow (uniform longitudinal flow) and in an incompressible flow (uniform shear flow), is investigated by means of the direct simulation Monte Carlo method to solve the Boltzmann equation. Emphasis is laid on the identification of a first "kinetic" stage (where the physical properties are strongly dependent on the initial state) subsequently followed by an unsteady "hydrodynamic" stage (where the momentum fluxes are well-defined non-Newtonian functions of the rate of strain). The simulation data are seen to support this two-stage scenario. Furthermore, the rheological functions obtained from simulation are well described by an approximate analytical solution of a model kinetic equation. © 2012 American Physical Society
Hybrid capacitive deionization with anion-exchange membranes for lithium extraction
NASA Astrophysics Data System (ADS)
Siekierka, Anna; Bryjak, Marek
2017-11-01
Lithium is considered to be a critical material for various industrial fields. We present our studies on extraction lithium from diluted aqueous solution by novel hybrid system based on a membrane capacitive deionization and batteries desalination. Hybrid CDI is comprised by a lithium selective adsorbent, activated carbon electrode and anion-exchange membranes. Here, we demonstrated implication of various type of anion-exchange membranes and influence their properties on effective capacity and energy requirements in charge/discharge steps. We described a configuration with anion-exchange membrane characterized by adsorption capacity of 35 mg/g of Li+ with 0.08Wh/g and removal efficiency of 60 % of lithium ions, using novel selective desalination technique.
NASA Astrophysics Data System (ADS)
Lesiak, Piotr; Budaszewski, Daniel; Bednarska, Karolina; Wójcik, Michał; Sobotka, Piotr; Chychłowski, Miłosz; Woliński, Tomasz R.
2017-05-01
In this work we studied a newly reported class of nonlinear effects observed in 5CB liquid crystals doped with gold nanoparticles (GNPs). The size of the GNP was determined by direct TEM imaging and by X-ray scattering of the diluted NP solution. GNPs was coated by thiols with the ratio of mesogenic to n-alkyl thiols varying from 1:2 to 1:1. The research involved comparing properties of both undoped and doped 5CB (nematic LC) by infiltrating LC cell and microholes of the photonic crystal fiber (PCF) separately. In our experiment the PCF fiber type LMA-10 made by NKT Photonics as host material has been used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mostafa, Salwa; Lee, Ida; Islam, Syed K
2011-01-01
In this work, MOSFET-embedded cantilevers are configured as microbial sensors for detection of anthrax simulants, Bacillus thuringiensis. Anthrax simulants attached to the chemically treated gold-coated cantilever cause changes in the MOSFET drain current due to the bending of the cantilever which indicates the detection of anthrax simulant. Electrical properties of the anthrax simulant are also responsible for the change in the drain current. The test results suggest a detection range of 10 L of stimulant test solution (a suspension population of 1.3 107 colony-forming units/mL diluted in 40% ethanol and 60% deionized water) with a linear response of 31 A/more » L.« less
NASA Astrophysics Data System (ADS)
Soriano, Allan N.; Adamos, Kristoni G.; Bonifacio, Pauline B.; Adornado, Adonis P.; Bungay, Vergel C.; Vairavan, Rajendaran
2017-11-01
The fate of antibiotics entering the environment raised concerns on the possible effect of antimicrobial resistance bacteria. Prediction of the fate and transport of these particles are needed to be determined, significantly the diffusion coefficient of antibiotic in water at infinite dilution. A systematic determination of diffusion coefficient of antibiotic in water at infinite dilution of five different kinds of livestock antibiotics namely: Amtyl, Ciprotyl, Doxylak Forte, Trisullak, and Vetracin Gold in the 293.15 to 313.15 K temperature range are reported through the use of the method involving the electrolytic conductivity measurements. A continuous stirred tank reactor is utilized to measure the electrolytic conductivities of the considered systems. These conductivities are correlated by using the Nernst-Haskell equation to determine the infinite dilution diffusion coefficient. Determined diffusion coefficients are based on the assumption that in dilute solution, these antibiotics behave as strong electrolyte from which H+ cation dissociate from the antibiotic's anion.
Hydration shell parameters of aqueous alcohols: THz excess absorption and packing density.
Matvejev, V; Zizi, M; Stiens, J
2012-12-06
Solvation in water requires minimizing the perturbations in its hydrogen bonded network. Hence solutes distort water molecular motions in a surrounding domain, forming a molecule-specific hydration shell. The properties of those hydration shells impact the structure and function of the solubilized molecules, both at the single molecule and at higher order levels. The size of the hydration shell and the picoseconds time-scale water dynamics retardation are revealed by terahertz (THz) absorption coefficient measurements. Room-temperature absorption coefficient at f = 0.28 [THz] is measured as a function of alcohol concentration in aqueous methanol, ethanol, 1,2-propanol, and 1-butanol solutions. Highly diluted alcohol measurements and enhanced overall measurement accuracy are achieved with a THz absorption measurement technique of nL-volume liquids in a capillary tube. In the absorption analysis, bulk and interfacial molecular domains of water and alcohol are considered. THz ideal and excess absorption coefficients are defined in accordance with thermodynamics mixing formulations. The parameter extraction method is developed based on a THz excess absorption model and hydrated solute molecule packing density representation. First, the hydration shell size is deduced from the hydrated solute packing densities at two specific THz excess absorption nonlinearity points: at infinite alcohol dilution (IAD) and at the THz excess absorption extremum (EAE). Consequently, interfacial water and alcohol molecular domain absorptions are deduced from the THz excess absorption model. The hydration shell sizes obtained at the THz excess absorption extremum are in excellent agreement with other reports. The hydration shells of methanol, ethanol, 1- and 2-propanol consist of 13.97, 22.94, 22.99, and 31.10 water molecules, respectively. The hydration shell water absorption is on average 0.774 ± 0.028 times the bulk water absorption. The hydration shell parameters might shed light on hydration dynamics of biomolecules.
Nerad, Bruce A.; Krantz, William B.
1988-01-01
A reverse osmosis membrane process or hybrid membrane - complementary separator process for producing enriched product or waste streams from concentrated and dilute feed streams for both solvent/solvent and solute/solvent systems is described.
Graphene decorated with mu-opioid receptor: the ionic screening effect and detection of enkephalin
NASA Astrophysics Data System (ADS)
Ping, Jinglei; Johnson, A. T. Charlie; Liu, Renyu; A. T. Charlie Johnson Team; Renyu Liu Collaboration
2015-03-01
We investigated the properties of graphene field effect transistors (GFETs) decorated with a computaionally redesigned, water-soluble variant of the human mu-opioid receptor (wsMOR) in physiological buffer solution. The shift of the Fermi level in the GFETs is quantitatively described by chemical-gating effect of charges on the wsMOR that are screened by the ionic solution. Our results suggest that sensitivity to the molecular target is lost when the Debye screening length of the solution is shorter than the distance from the graphene to the wsMOR; thus de-salting may be necessary when wsMOR decorated GFETs are used as biosensors in solution. We used this insight to detect DAMGO, a synthetic analog to the endogenous opioid peptide encephalin, at a concentration of 10 pM (5.1 pg/mL) in artificial cerebrospinal fluid (aCSF) diluted to 5% of its normal salt concentration. When the sensors were measured in a dry state, the limit of detection for DAGMO was 1 pM (0.5 pg/mL), one-third of the baseline in human body.Funding for this work was provided by DARPA.
Oesophageal bioadhesion of sodium alginate suspensions: particle swelling and mucosal retention.
Richardson, J Craig; Dettmar, Peter W; Hampson, Frank C; Melia, Colin D
2004-09-01
This paper describes a prospective bioadhesive liquid dosage form designed to specifically adhere to the oesophageal mucosa. It contains a swelling polymer, sodium alginate, suspended in a water-miscible vehicle and is activated by dilution with saliva to form an adherent layer of polymer on the mucosal surface. The swelling of alginate particles and the bioadhesion of 40% (w/w) sodium alginate suspensions were investigated in a range of vehicles: glycerol, propylene glycol, PEG 200 and PEG 400. Swelling of particles as a function of vehicle dilution with artificial saliva was quantified microscopically using 1,9-dimethyl methylene blue (DMMB) as a visualising agent. The minimum vehicle dilution to initiate swelling varied between vehicles: glycerol required 30% (w/w) dilution whereas PEG 400 required nearly 60% (w/w). Swelling commenced when the Hildebrand solubility parameter of the diluted vehicle was raised to 37 MPa(1/2). The bioadhesive properties of suspensions were examined by quantifying the amount of sodium alginate retained on oesophageal mucosa after washing in artificial saliva. Suspensions exhibited considerable mucoretention and strong correlations were obtained between mucosal retention, the minimum dilution to initiate swelling, and the vehicle Hildebrand solubility parameter. These relationships may allow predictive design of suspensions with specific mucoretentive properties, through judicious choice of vehicle characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, X.; Li, D.; Luett, M.
1998-07-01
This paper reports the synthesis and characterizations of a new water-soluble poly(paraphenylene) (PPP) and its applications in preparing self-assembled multi-layer films. This new water-soluble conducting polymer was prepared through the sulfonation reaction of poly(p-quarterphenylene-2,2{prime}-dicarboxylic acid). The incorporation of sulfonate groups has dramatically improved PPP's solubility in water at a wide pH range, whereas previous PPP is only slightly soluble in basic solutions. Dilute aqueous solutions of this polymer with acidic, neutral or basic pH emit brilliant blue light while irradiated with UV light. The sulfonated PPP emits from 350 nm to 455 nm with a maximum intensity at 380 nm.more » Self-assembled multilayers of this sulfonated PPP were constructed with a positively charged polymer poly(diallyl dimethyl ammonium chloride) and characterized with various surface analyses. Conductive (RuO{sub 2} and ITO), semiconductive (Si wafer), and non-conductive (SiO{sub 2}) substrates were used in the preparation of self-assembled multilayers. Electrical, optical and structural properties of these novel self-assembled thin films will be discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, X.; Li, D.Q.; Luett, M.
1998-03-01
This paper reports the synthesis and characterizations of a new water-soluble poly(para-phenylene) (PPP) and its applications in preparing self-assembled multilayer films. This new water-soluble conducting polymer was prepared through the sulfonation reaction of poly(p-quarterphenylene-2,2{prime}-dicarboxylic acid). The incorporation of sulfonate groups has dramatically improved PPP`s solubility in water at a wide pH range, whereas previous PPP is only slightly soluble in basic solutions. Dilute aqueous solutions of this polymer with acidic, neutral or basic pH emit brilliant blue light while irradiated with UV light. The sulfonated PPP emits from 350 nm to 455 nm with a maximum intensity at 380 nm.more » Self-assembled multilayers of this sulfonated PPP were constructed with a positively charged polymer poly(diallyl dimethyl ammonium chloride) and characterized with various surface analyses. Conductive (RuO{sub 2} and ITO), semiconductive (Si wafer), and non-conductive (SiO{sub 2}) substrates were used in the preparation of self-assembled multilayers. Electrical, optical and structural properties of these novel self-assembled thin films will be discussed.« less
Solubilization, Solution Equilibria, and Biodegradation of PAH's under Thermophilic Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viamajala, S.; Peyton, B. M.; Richards, L. A.
Biodegradation rates of PAHs are typically low at mesophilic conditions and it is believed that the kinetics of degradation is controlled by PAH solubility and mass transfer rates. Solubility tests were performed on phenanthrene, fluorene and fluoranthene at 20 C, 40 C and 60 C and, as expected, a significant increase in the equilibrium solubility concentration and of the rate of dissolution of these polycyclic aromatic hydrocarbons (PAHs) was observed with increasing temperature. A first-order model was used to describe the PAH dissolution kinetics and the thermodynamic property changes associated with the dissolution process (enthalpy, entropy and Gibb's free energymore » of solution) were evaluated. Further, other relevant thermodynamic properties for these PAHs, including the activity coefficients at infinite dilution, Henry's law constants and octanol-water partition coefficients, were calculated in the temperature range 20-60 C. In parallel with the dissolution studies, three thermophilic Geobacilli were isolated from compost that grew on phenanthrene at 60 C and degraded the PAH more rapidly than other reported mesophiles. Our results show that while solubilization rates of PAHs are significantly enhanced at elevated temperatures, the biodegradation of PAHs under thermophilic conditions is likely mass transfer limited due to enhanced degradation rates.« less
Nilchi, A; Khanchi, A; Atashi, H; Bagheri, A; Nematollahi, L
2006-10-11
A description is given of the preparation and properties of potassium hexacyanocobalt (II) ferrate (II) (KCFC) and the composite, potassium hexacyanocobalt (II) ferrate (II)-polyacrylonitrile (KCFC-PAN). The materials were dried at high temperatures and characterized by chemical analysis, scanning electron microscope, X-ray diffraction, inductively coupled plasma and infrared. The ion exchange of alkaline earth metals and molybdenum on a nonstoichiometric compound K(2)[CoFe(CN)(6)] and its PAN based absorber was examined by batch methods. The adsorption of molybdenum from aqueous solutions on KCFC-PAN was investigated and optimized as a function of equilibration time and pH. The materials which were dried at optimum high temperature of 110 degrees C were found to be stable in water, dilute acids, alkaline solutions and relatively high temperature. The distribution coefficient values K(d) for alkaline earth metals, followed the same trend of increase for both sets of absorbers studied, i.e. Ba(2+)>Sr(2+)>Ca(2+)>Mg(2+), which closely resembles to the order of the size of the hydrated cations. However, the K(d) values show a significant increase for PAN based absorbers in comparison to KCFC absorbers.
NASA Astrophysics Data System (ADS)
Tasoglu, Savas; Peters, Jennifer J.; Park, Su Chan; Verguet, Stéphane; Katz, David F.; Szeri, Andrew J.
2011-09-01
A recent study in South Africa has confirmed, for the first time, that a vaginal gel formulation of the antiretroviral drug Tenofovir, when topically applied, significantly inhibits sexual HIV transmission to women [Karim et al., Science 329, 1168 (2010)]. However, the gel for this drug and anti-HIV microbicide gels in general have not been designed using an understanding of how gel spreading and retention in the vagina govern successful drug delivery. Elastohydrodynamic lubrication theory can be applied to model spreading of microbicide gels [Szeri et al., Phys. Fluids 20, 083101 (2008)]. This should incorporate the full rheological behavior of a gel, including how rheological properties change due to contact with, and dilution by, ambient vaginal fluids. Here, we extend our initial analysis, incorporating the effects of gel dilution due to contact with vaginal fluid produced at the gel-tissue interface. Our original model is supplemented with a convective-diffusive transport equation to characterize water transport into the gel and, thus, local gel dilution. The problem is solved using a multi-step scheme in a moving domain. The association between local dilution of gel and rheological properties is obtained experimentally, delineating the way constitutive parameters of a shear-thinning gel are modified by dilution. Results show that dilution accelerates the coating flow by creating a slippery region near the vaginal wall akin to a dilution boundary layer, especially if the boundary flux exceeds a certain value. On the other hand, if the diffusion coefficient of boundary fluid is increased, the slippery region diminishes in extent and the overall rate of gel spreading decreases.
Honey in combination with vacuum impregnation to prevent enzymatic browning of fresh-cut apples.
Jeon, M; Zhao, Y
2005-05-01
This study evaluated the antioxidative capacity of 13 US Northwest honeys from different floral sources and their anti-browning effect on fresh-cut apples. The inhibitory effect of honey on enzymatic browning of fresh-cut apples were studied by simply immersing apple slices in 10% honey solution for 30 min or vacuum impregnating (vacuum at 75 mmHg for 15 min followed with 30 min restoration at atmospheric pressure) in the same honey solution. The 10% diluted high-fructose corn syrup solution was used as a comparison. The surface color of the apple slices was monitored during 14 days of storage at 3 degrees C and 90% relative humidity. Physicochemical properties of the apples immediately after treatment were also evaluated. Wildflower honey had the darkest color and the highest antioxidative capacity among all test honeys. Vacuum impregnation with honey was more effective in controlling browning discoloration than that of simple immersion treatment. Honey in combination with vacuum impregnating operation may have a great potential for developing high-quality fresh-cut fruits.
Mazzini, Virginia
2017-01-01
The importance of electrolyte solutions cannot be overstated. Beyond the ionic strength of electrolyte solutions the specific nature of the ions present is vital in controlling a host of properties. Therefore ion specificity is fundamentally important in physical chemistry, engineering and biology. The observation that the strengths of the effect of ions often follows well established series suggests that a single predictive and quantitative description of specific-ion effects covering a wide range of systems is possible. Such a theory would revolutionise applications of physical chemistry from polymer precipitation to drug design. Current approaches to understanding specific-ion effects involve consideration of the ions themselves, the solvent and relevant interfaces and the interactions between them. Here we investigate the specific-ion effects trends of standard partial molar volumes and electrostrictive volumes of electrolytes in water and eleven non-aqueous solvents. We choose these measures as they relate to bulk properties at infinite dilution, therefore they are the simplest electrolyte systems. This is done to test the hypothesis that the ions alone exhibit a specific-ion effect series that is independent of the solvent and unrelated to surface properties. The specific-ion effects trends of standard partial molar volumes and normalised electrostrictive volumes examined in this work show a fundamental ion-specific series that is reproduced across the solvents, which is the Hofmeister series for anions and the reverse lyotropic series for cations, supporting the hypothesis. This outcome is important in demonstrating that ion specificity is observed at infinite dilution and demonstrates that the complexity observed in the manifestation of specific-ion effects in a very wide range of systems is due to perturbations of solvent, surfaces and concentration on the underlying fundamental series. This knowledge will guide a general understanding of specific-ion effects and assist in the development of a quantitative predictive theory of ion specificity. PMID:29147533
Polymer concentration and properties of elastic turbulence in a von Karman swirling flow
NASA Astrophysics Data System (ADS)
Jun, Yonggun; Steinberg, Victor
2017-10-01
We report detailed experimental studies of statistical, scaling, and spectral properties of elastic turbulence (ET) in a von Karman swirling flow between rotating and stationary disks of polymer solutions in a wide, from dilute to semidilute entangled, range of polymer concentrations ϕ . The main message of the investigation is that the variation of ϕ just weakly modifies statistical, scaling, and spectral properties of ET in a swirling flow. The qualitative difference between dilute and semidilute unentangled versus semidilute entangled polymer solutions is found in the dependence of the critical Weissenberg number Wic of the elastic instability threshold on ϕ . The control parameter of the problem, the Weissenberg number Wi, is defined as the ratio of the nonlinear elastic stress to dissipation via linear stress relaxation and quantifies the degree of polymer stretching. The power-law scaling of the friction coefficient on Wi/Wic characterizes the ET regime with the exponent independent of ϕ . The torque Γ and pressure p power spectra show power-law decays with well-defined exponents, which has values independent of Wi and ϕ separately at 100 ≤ϕ ≤900 ppm and 1600 ≤ϕ ≤2300 ppm ranges. Another unexpected observation is the presence of two types of the boundary layers, horizontal and vertical, distinguished by their role in the energy pumping and dissipation, which has width dependence on Wi and ϕ differs drastically. In the case of the vertical boundary layer near the driving disk, wvv is independent of Wi/Wic and linearly decreases with ϕ /ϕ * , while in the case of the horizontal boundary layer wvh its width is independent of ϕ /ϕ * , linearly decreases with Wi/Wic , and is about five times smaller than wvv. Moreover, these Wi and ϕ dependencies of the vertical and horizontal boundary layer widths are found in accordance with the inverse turbulent intensity calculated inside the boundary layers Vθh/Vθh rms and Vθv/Vθv rms , respectively. Specifically, the dependence of Vθv/Vθv rms in the vertical boundary layer on Wi and ϕ agrees with a recent theoretical prediction [S. Belan, A. Chernych, and V. Lebedev, Boundary layer of elastic turbulence (unpublished)].
Tan, Hern Tze; Rahman, Rosliza Abdul; Gan, Siew Hua; Halim, Ahmad Sukari; Hassan, Siti Asma'; Sulaiman, Siti Amrah; BS, Kirnpal-Kaur
2009-01-01
Background Antibiotic resistance of bacteria is on the rise, thus the discovery of alternative therapeutic agents is urgently needed. Honey possesses therapeutic potential, including wound healing properties and antimicrobial activity. Although the antimicrobial activity of honey has been effectively established against an extensive spectrum of microorganisms, it differs depending on the type of honey. To date, no extensive studies of the antibacterial properties of tualang (Koompassia excelsa) honey on wound and enteric microorganisms have been conducted. The objectives of this study were to conduct such studies and to compare the antibacterial activity of tualang honey with that of manuka honey. Methods Using a broth dilution method, the antibacterial activity of tualang honey against 13 wound and enteric microorganisms was determined; manuka honey was used as the control. Different concentrations of honey [6.25-25% (w/v)] were tested against each type of microorganism. Briefly, two-fold dilutions of honey solutions were tested to determine the minimum inhibitory concentration (MIC) against each type of microorganism, followed by more assays within a narrower dilution range to obtain more precise MIC values. MICs were determined by both visual inspection and spectrophotometric assay at 620 nm. Minimum bactericidal concentration (MBC) also was determined by culturing on blood agar plates. Results By visual inspection, the MICs of tualang honey ranged from 8.75% to 25% compared to manuka honey (8.75-20%). Spectrophotometric readings of at least 95% inhibition yielded MIC values ranging between 10% and 25% for both types of honey. The lowest MBC for tualang honey was 20%, whereas that for manuka honey was 11.25% for the microorganisms tested. The lowest MIC value (8.75%) for both types of honey was against Stenotrophomonas maltophilia. Tualang honey had a lower MIC (11.25%) against Acinetobacter baumannii compared to manuka honey (12.5%). Conclusion Tualang honey exhibited variable activities against different microorganisms, but they were within the same range as those for manuka honey. This result suggests that tualang honey could potentially be used as an alternative therapeutic agent against certain microorganisms, particularly A. baumannii and S. maltophilia. PMID:19754926
Strengthening of the Coordination Shell by Counter Ions in Aqueous Th 4+ Solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atta-Fynn, Raymond; Bylaska, Eric J.; de Jong, Wibe A.
The presence of counter ions in solutions containing highly charged metal cations can trigger processes such as ion-pair formation, hydrogen bond breakages and subsequent reformation, and ligand exchanges. In this work, it is shown how halide (Cl-, Br-) and perchlorate (ClO4-) anions affect the strength of the primary solvent coordination shells around Th4+ using explicit solvent and finite temperature ab initio molecular dynamics modeling methods. The 9-fold solvent geometry was found to be the most stable hydration structure in each aqueous solution. Relative to the dilute aqueous solution, the presence of the counter ions did not significantly alter the geometrymore » of the primary hydration shell. However, the free energy analyses indicated that the 10-fold hydrated states were thermodynamically accessible in dilute and bromide aqueous solutions within 1 kcal/mol. Analysis of the results showed that the hydrogen bond lifetimes were longer and solvent exchange energy barriers were larger in solutions with counter ions in comparison with the solution with no counter ions. This implies that the presence of the counter ions induces a strengthening of the Th4+ hydration shell.« less
Donovan, Preston; Chehreghanianzabi, Yasaman; Rathinam, Muruhan; Zustiak, Silviya Petrova
2016-01-01
The study of diffusion in macromolecular solutions is important in many biomedical applications such as separations, drug delivery, and cell encapsulation, and key for many biological processes such as protein assembly and interstitial transport. Not surprisingly, multiple models for the a-priori prediction of diffusion in macromolecular environments have been proposed. However, most models include parameters that are not readily measurable, are specific to the polymer-solute-solvent system, or are fitted and do not have a physical meaning. Here, for the first time, we develop a homogenization theory framework for the prediction of effective solute diffusivity in macromolecular environments based on physical parameters that are easily measurable and not specific to the macromolecule-solute-solvent system. Homogenization theory is useful for situations where knowledge of fine-scale parameters is used to predict bulk system behavior. As a first approximation, we focus on a model where the solute is subjected to obstructed diffusion via stationary spherical obstacles. We find that the homogenization theory results agree well with computationally more expensive Monte Carlo simulations. Moreover, the homogenization theory agrees with effective diffusivities of a solute in dilute and semi-dilute polymer solutions measured using fluorescence correlation spectroscopy. Lastly, we provide a mathematical formula for the effective diffusivity in terms of a non-dimensional and easily measurable geometric system parameter.
NASA Astrophysics Data System (ADS)
Saha, Saikat; Alam, Meheboob
2017-12-01
The hydrodynamics and rheology of a sheared dilute gas-solid suspension, consisting of inelastic hard-spheres suspended in a gas, are analysed using anisotropic Maxwellian as the single particle distribution function. The closed-form solutions for granular temperature and three invariants of the second-moment tensor are obtained as functions of the Stokes number ($St$), the mean density ($\
NASA Astrophysics Data System (ADS)
Loto, Roland Tolulope
2018-03-01
Electrochemical analysis of the corrosion inhibition and surface protection properties of the combined admixture of Rosmarinus officinalis and zinc oxide on low carbon steel in 1 M HCl and H2SO4 solution was studied by potentiodynamic polarization, open circuit potential measurement, optical microscopy and ATR-FTIR spectroscopy. Results obtained confirmed the compound to be more effective in HCl solution, with optimal inhibition efficiencies of 93.26% in HCl and 87.7% in H2SO4 acid solutions with mixed type inhibition behavior in both acids. The compound shifts the corrosion potential values of the steel cathodically in HCl and anodically in H2SO4 signifying specific corrosion inhibition behavior without applied potential. Identified functional groups of alcohols, phenols, 1°, 2° amines, amides, carbonyls (general), esters, saturated aliphatic, carboxylic acids, ethers, aliphatic amines, alkenes, aromatics, alkyl halides and alkynes within the compound completely adsorbed onto the steel forming a protective covering. Thermodynamic calculations showed physisorption molecular interaction with the steel's surface according to Langmuir and Frumkin adsorption isotherms. Optical microscopy images of the inhibited and uninhibited steels contrast each other with steel specimens from HCl solution showing a better morphology.
Solutions for the conductivity of multi-coated spheres and spherically symmetric inclusion problems
NASA Astrophysics Data System (ADS)
Pham, Duc Chinh
2018-02-01
Variational results on the macroscopic conductivity (thermal, electrical, etc.) of the multi-coated sphere assemblage have been used to derive the explicit expression of the respective field (thermal, electrical, etc.) within the spheres in d dimensions (d=2,3). A differential substitution approach has been developed to construct various explicit expressions or determining equations for the effective spherically symmetric inclusion problems, which include those with radially variable conductivity, different radially variable transverse and normal conductivities, and those involving imperfect interfaces, in d dimensions. When the volume proportion of the outermost spherical shell increases toward 1, one obtains the respective exact results for the most important specific cases: the dilute solutions for the compound inhomogeneities suspended in a major matrix phase. Those dilute solution results are also needed for other effective medium approximation schemes.
Wilson, P W; Haymet, A D J
2008-09-18
Workman-Reynolds freezing potentials have been measured for the first time across the interface between single crystals of ice 1h and dilute electrolyte solutions. The measured electric potential is a strictly nonequilibrium phenomenon and a function of the concentration of salt, freezing rate, orientation of the ice crystal, and time. When all these factors are controlled, the voltage is reproducible to the extent expected with ice growth experiments. Zero voltage is obtained with no growth or melting. For rapidly grown ice 1h basal plane in contact with a solution of 10 (-4) M NaCl the maximum voltage exceeds 30 V and decreases to zero at both high and low salt concentrations. These single-crystal experiments explain much of the data captured on this remarkable phenomenon since 1948.
NASA Astrophysics Data System (ADS)
Tanaka, S.; Kubo, Y.; Yokoyama, Y.; Toda, A.; Taguchi, K.; Kajioka, H.
2011-12-01
We investigated the phase separation phenomena in dilute surfactant pentaethylene glycol monodedecyl ether (C12E5) solutions focusing on the growth law of separated domains. The solutions confined between two glass plates were found to exhibit the phase inversion, characteristic of the viscoelastic phase separation; the majority phase (water-rich phase) nucleated as droplets and the minority phase (micelle-rich phase) formed a network temporarily, then they collapsed into an usual sea-island pattern where minority phase formed islands. We found from the real-space microscopic imaging that the dynamic scaling hypothesis did not hold throughout the coarsening process. The power law growth of the domains with the exponent close to 1/3 was observed even though the coarsening was induced mainly by hydrodynamic flow, which was explained by Darcy's law of laminar flow.
Hydration and ion pair formation in aqueous Y(3+)-salt solutions.
Rudolph, Wolfram W; Irmer, Gert
2015-11-14
Raman spectra of aqueous yttrium perchlorate, triflate (trifluoromethanesulfonate), chloride and nitrate solutions were measured over a broad concentration range (0.198-3.252 mol L(-1)). The spectra range from low wavenumbers to 4200 cm(-1). A very weak mode at 384 cm(-1) with a full width at half height at 50 cm(-1) in the isotropic spectrum suggests that the Y(3+)- octa-aqua ion is thermodynamically stable in dilute perchlorate solutions (∼0.5 mol L(-1)) while in concentrated perchlorate solutions outer-sphere ion pairs and contact ion pairs are formed. The octa-hydrate, [Y(OH2)8](3+) was also detected in a 1.10 mol L(-1) aqueous Y(CF3SO3)3 solution. Furthermore, very weak and broad depolarized modes could be detected which are assigned to [Y(OH2)8](3+)(aq) at 100, 166, 234 and 320 cm(-1) confirming that a hexa-hydrate is not compatible with the hydrated species in solution. In yttrium chloride solutions contact ion pair formation was detected over the measured concentration range from 0.479-3.212 mol L(-1). The contact ion pairs in YCl3(aq) are fairly weak and disappear with dilution. At a concentration <0.2 mol L(-1) almost all complexes have disappeared. In YCl3 solutions, with additional HCl, chloro-complexes of the type [Y(OH2)8-nCln](+3-n) (n = 1,2) are formed. The Y(NO3)3(aq) spectra were compared with a spectrum of a dilute NaNO3 solution and it was concluded that in Y(NO3)3(aq) over the concentration range from 2.035-0.198 mol L(-1) nitrato-complexes [Y(OH2)8-n(NO3)ln](+3-n) (n = 1,2) are formed. The nitrato-complexes are weak and disappear with dilution <0.1 mol L(-1). DFT geometry optimizations and frequency calculations are reported for both the yttrium-water cluster in the gas phase and the cluster within a polarizable continuum model in order to implicitly describe the presence of the bulk solvent. The bond distance and angle for the square antiprismatic cluster geometry of [Y(OH2)8](3+) with the polarizable dielectric continuum is in good agreement with data from recent structural experimental measurements. The DFT frequency of the Y-O stretching mode of the [Y(OH2)8](3+) cluster, in a polarizable continuum, is at 372 cm(-1) in satisfactory agreement with the experimental value.
Iodine retention during evaporative volume reduction
Godbee, H.W.; Cathers, G.I.; Blanco, R.E.
1975-11-18
An improved method for retaining radioactive iodine in aqueous waste solutions during volume reduction is disclosed. The method applies to evaporative volume reduction processes whereby the decontaminated (evaporated) water can be returned safely to the environment. The method generally comprises isotopically diluting the waste solution with a nonradioactive iodide and maintaining the solution at a high pH during evaporation.
The Electrostatic Screening Length in Concentrated Electrolytes Increases with Concentration.
Smith, Alexander M; Lee, Alpha A; Perkin, Susan
2016-06-16
According to classical electrolyte theories interactions in dilute (low ion density) electrolytes decay exponentially with distance, with the Debye screening length the characteristic length scale. This decay length decreases monotonically with increasing ion concentration due to effective screening of charges over short distances. Thus, within the Debye model no long-range forces are expected in concentrated electrolytes. Here we reveal, using experimental detection of the interaction between two planar charged surfaces across a wide range of electrolytes, that beyond the dilute (Debye-Hückel) regime the screening length increases with increasing concentration. The screening lengths for all electrolytes studied-including aqueous NaCl solutions, ionic liquids diluted with propylene carbonate, and pure ionic liquids-collapse onto a single curve when scaled by the dielectric constant. This nonmonotonic variation of the screening length with concentration, and its generality across ionic liquids and aqueous salt solutions, demonstrates an important characteristic of concentrated electrolytes of substantial relevance from biology to energy storage.
Electrokinetic Particle Aggregation and Flow Instabilities in Non-Dilute Colloidal Suspensions
NASA Astrophysics Data System (ADS)
Navaneetham, Guru; Posner, Jonathan
2007-11-01
An experimental investigation of electrokinetic particle aggregation and flow instabilities of non-dilute colloidal suspensions in microfabricated channels is presented. The addition of charged colloidal particles can alter the solution's conductivity, permittivity as well as the average particle electrophoretic mobility. In this work, a colloid volume fraction gradient is achieved at the intersection of a Y-shaped PDMS microchannel. The solution conductivity and the particle mobility as a function of the particle (500 nm polystyrene) volume fraction are presented. The critical conditions required for particle aggregation and flow instability are given along with a scaling analysis which shows that the flow becomes unstable at a critical electric Rayleigh number for a wide range of applied electric fields and colloid volume fractions. Electrokinetic particle aggregation and instabilities of non-dilute colloidal suspensions may be important for applications such as the electrophoretic deposition of particles to form micropatterned colloidal assemblies, electrorheological devices, and on-chip, electrokinetic manipulation of colloids.
Size and diluted magnetic properties of diamond shaped graphene quantum dots: Monte Carlo study
NASA Astrophysics Data System (ADS)
Masrour, R.; Jabar, A.
2018-05-01
The magnetic properties of diamond shaped graphene quantum dots have been investigated by varying their sizes with the Monte Carlo simulation. The magnetizations and magnetic susceptibilities have been studied with dilutions x (magnetic atom), several sizes L (carbon atom) and exchange interaction J between the magnetic atoms. The all magnetic susceptibilities have been situated at the transitions temperatures of each parameters. The obtained values increase when increases the values of x, L and J. The effect of exchanges interactions and crystal field on the magnetization has been discussed. The magnetic hysteresis cycles for several dilutions x, sizes L, exchange interactions J and temperatures T. The magnetic coercive increases with increasing the exchange interactions and decreases when the temperatures values increasing.
Electronic and optical properties of GaSb:N from first principles
NASA Astrophysics Data System (ADS)
Jadaun, Priyamvada; Nair, Hari; Lordi, Vincenzo; Bank, Seth; Banerjee, Sanjay
2014-03-01
We present an ab-initio study of dilute nitride III-Vs, focusing on dilute nitride GaSb (GaSb:N). GaSb:N displays promise towards realization of optoelectronic devices accessing the mid-infrared wavelength regime. Theoretical and experimental results on its electronic and optical properties are however few. To address this, we present a first principles, density functional theory study using the hybrid HSE06 exchange-correlation functional of GaSb doped with 1.6% nitrogen. We conduct a comparative study on GaAs:N, also with 1.6% nitrogen mole fraction, and find that GaSb:N has a smaller band gap and displays more band gap bowing than GaAs:N. In addition we examine the orbital character of the bands, finding the lowest conduction band to be quasi-delocalized, with a large N-3s contribution. At high concentrations, the N atoms interact via the host matrix, forming a dispersive band of their own which governs optoelectronic properties and dominates band gap bowing. While this band drives the optical and electronic properties of GaSb:N, its physics is not captured by traditional models for dilute-nitrides. We thus propose that a complete theory of dilute-nitrides should incorporate orbital character examination, especially at high N concentrations. Texas Advanced Computing Center (TACC), U.S. Department of Energy, Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
Spindeldreier, Kirsten; Thiesen, Judith; Lipp, Hans-Peter; Krämer, Irene
2014-06-01
The aim of this study was to determine the stability of commercially available eribulin mesylate containing injection solution as well as diluted ready-to-administer solutions stored under refrigeration or at room temperature. Stability was studied by a novel developed stability-indicating reversed-phase high-performance liquid chromatography (RP-HPLC) assay with ultraviolet detection (detection wavelength 200 nm). Triplicate test solutions of eribulin mesylate containing injection concentrate (0.5 mg/mL) and with 0.9% sodium chloride solution diluted ready-to-administer preparations (0.205 mg/mL eribulin mesylate in polypropylene (PP) syringes, 0.020 mg/mL eribulin mesylate in polypropylene/polyethylene (PE) bags) were stored protected from light either at room temperature (25) or under refrigeration (2-8). Samples were withdrawn on day 0 (initial), 1, 3, 5, 7, 14, 21 and 28 of storage and assayed. Physical stability was determined by measuring the pH value once a week and checking for visible precipitations or colour changes. The stability tests revealed that concentrations of eribulin mesylate remained unchanged over a period of 28 days irrespective of concentration, container material or storage temperature. Neither colour changes nor visible particles have been observed. The pH value varied slightly over time but remained in the stability favourable range of 5-9. Eribulin mesylate injection (0.5 mg/mL) is physico-chemically stable over a period of 28 days after first puncture of the vial. After dilution with 0.9% NaCl vehicle solution, ready-to-administer eribulin mesylate injection solutions (0.205 mg/mL in PP syringe) and infusion solutions (0.02 mg/mL in prefilled PP/PE bags) are physico-chemically stable for a period of at least four weeks either refrigerated or stored at room temperature. For microbiological reasons storage under refrigeration is recommended.
ERIC Educational Resources Information Center
Ruoff, Peter; Riley, Megan
1987-01-01
Describes a chemistry experiment where an alkaline ice-cold permanganate solution is reduced by adding dropwise a cold diluted hydrogen peroxide solution. Outlines the course of the reduction through the various oxidation states of manganese with their characteristic colors. (TW)
1H NMR quantification in very dilute toxin solutions: application to anatoxin-a analysis.
Dagnino, Denise; Schripsema, Jan
2005-08-01
A complete procedure is described for the extraction, detection and quantification of anatoxin-a in biological samples. Anatoxin-a is extracted from biomass by a routine acid base extraction. The extract is analysed by GC-MS, without the need of derivatization, with a detection limit of 0.5 ng. A method was developed for the accurate quantification of anatoxin-a in the standard solution to be used for the calibration of the GC analysis. 1H NMR allowed the accurate quantification of microgram quantities of anatoxin-a. The accurate quantification of compounds in standard solutions is rarely discussed, but for compounds like anatoxin-a (toxins with prices in the range of a million dollar a gram), of which generally only milligram quantities or less are available, this factor in the quantitative analysis is certainly not trivial. The method that was developed can easily be adapted for the accurate quantification of other toxins in very dilute solutions.
Heat-induced formation of myosin oligomer-soluble filament complex in high-salt solution.
Shimada, Masato; Takai, Eisuke; Ejima, Daisuke; Arakawa, Tsutomu; Shiraki, Kentaro
2015-02-01
Heat-induced aggregation of myosin into an elastic gel plays an important role in the water-holding capacity and texture of meat products. Here, we investigated thermal aggregation of porcine myosin in high-salt solution over a wide temperature range by dynamic light scattering experiments. The myosin samples were readily dissolved in 1.0 M NaCl at 25 °C followed by dilution into various salt concentrations. The diluted solutions consistently contained both myosin monomers and soluble filaments. The filament size decreased with increasing salt concentration and temperature. High temperatures above Tm led to at least partial dissociation of soluble filaments and thermal unfolding, resulting in the formation of soluble oligomers and binding to the persistently present soluble filaments. Such a complex formation between the oligomers and filaments has never been observed. Our results provide new insight into the heat-induced myosin gelation in high-salt solution. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Szewczyk-Nykiel, Aneta; Kazior, Jan
2017-07-01
The general corrosion behavior of sintered 17-4 PH stainless steel processed under different processing conditions in dilute sulfuric acid solution at 25 °C was studied by open-circuit potential measurement and potentiodynamic polarization technique. The corrosion resistance was evaluated based on electrochemical parameters, such as polarization resistance, corrosion potential, corrosion current density as well as corrosion rate. The results showed that the precipitation-hardening treatment could significantly improve the corrosion resistance of the sintered 17-4 PH stainless steel in studied environment. As far as the influence of aging temperature on corrosion behavior of the sintered 17-4 PH stainless steel is concerned, polarization resistance and corrosion rate are reduced with increasing aging temperature from 480 up to 500 °C regardless of the temperature of solution treatment. It can be concluded that the highest corrosion resistance in 0.5 M H2SO4 solution exhibits 17-4 PH after solution treatment at 1040 °C followed by aging at 480 °C.
Anti-site-induced diverse diluted magnetism in LiMgPdSb-type CoMnTiSi alloy
NASA Astrophysics Data System (ADS)
Lin, T. T.; Dai, X. F.; Guo, R. K.; Cheng, Z. X.; Wang, L. Y.; Wang, X. T.; Liu, G. D.
2017-02-01
The effect of three kinds of anti-site disorder to electronic structure and magnetic properties of the LiMgPdSb-type CoMnTiSi alloy are investigated. It was found the Mn-Ti anti-site disorder can induce the diluted magnetism in CoMnTiSi matrix. The magnetic structure has an oscillation between the ferromagnetic and antiferromagnetic states with the different degree of Mn-Ti anti-site disorder. Two novel characteristics: the diluted antiferromagnetic half-metallicity and the diluted zero-gap half-metallity are found in the different degree range of the Mn-Ti anti-site disorder. The Co-Mn and Co-Ti anti-site disorder have little effect on the magnetic properties. The width of energy gap and the intensity of DOS at the Fermi level can be adjusted by the degree of Co-Mn or Co-Ti anti-site disorder. The independent control to the carrier concentration and magnetization can be realized by introducing the different anti-site disorder.
Voudrias, E A; Larson, R A; Snoeyink, V L; Chen, A S; Stapleton, P L
1986-01-01
Granular activated carbon (GAC), in the presence of dilute aqueous hypochlorite solutions typical of those used in water treatment, was converted to a reagent capable of carrying out free-radical coupling reactions and other oxidations of dilute aqueous solutions of phenols. The products included biphenyls with chlorine and hydroxyl substitution (hydroxylated polychlorinated biphenyls). For example, 2,4-dichlorophenol, a common constituent of wastewaters and also natural waters treated with hypochlorite, was converted to 3,5,5'trichloro-2,4'-dihydroxybiphenyl and several related compounds in significant amounts. It is possible that these products pose more of a health hazard than either the starting phenols or the unhydroxylated polychlorinated biphenyl derivatives. PMID:3028770
Zhang, Taiying; Kumar, Rajeev; Wyman, Charles E
2013-01-30
Dilute oxalic acid pretreatment was applied to maple wood to improve compatibility with downstream operations, and its performance in pretreatment and subsequent enzymatic hydrolysis was compared to results for hydrothermal and dilute hydrochloric and sulfuric acid pretreatments. The highest total xylose yield of ∼84% of the theoretical maximum was for both 0.5% oxalic and sulfuric acid pretreatment at 160 °C, compared to ∼81% yield for hydrothermal pretreatment at 200 °C and for 0.5% hydrochloric acid pretreatment at 140 °C. The xylooligomer fraction from dilute oxalic acid pretreatment was only 6.3% of the total xylose in solution, similar to results with dilute hydrochloric and sulfuric acids but much lower than the ∼70% value for hydrothermal pretreatment. Combining any of the four pretreatments with enzymatic hydrolysis with 60 FPU cellulase/g of glucan plus xylan in the pretreated maple wood resulted in virtually the same total glucose plus xylose yields of ∼85% of the maximum possible. Copyright © 2012 Elsevier Ltd. All rights reserved.
Methods of preventing vinorelbine-induced phlebitis: an experimental study in rabbits.
Kohno, Emiko; Murase, Saori; Nishikata, Mayumi; Okamura, Noboru; Matzno, Sumio; Kuwahara, Takashi; Matsuyama, Kenji
2008-07-22
In order to identify methods for preventing phlebitis caused by intravenous administration of vinorelbine (VNR), we established a procedure for estimating the severity of phlebitis in an animal model. Four different factors (administration rate, dilution, flushing, and infusion of fat emulsion) were evaluated for alleviation of phlebitis caused by VNR infusion. VNR was diluted with normal saline to prepare test solutions with concentrations of 0.6 mg/mL or 0.3 mg/mL for infusion into the auricular veins of rabbits. Two days after VNR infusion, the veins were subjected to histopathological examination. VNR did not cause obvious loss of venous endothelial cells, the most sensitive and common feature of phlebitis, but VNR infusion led to inflammatory cell infiltration, edema, and epidermal degeneration. Tissue damage was significantly decreased by shortening the administration time and by diluting the VNR solution for infusion from 0.6 mg/mL to 0.3 mg/mL. However, there was no effect of flushing with normal saline after VNR infusion, while treatment with fat emulsion before and after VNR infusion only had a minimal effect. Rapid infusion and dilution are effective methods of reducing phlebitis caused by the infusion of VNR, but the efficacy of flushing with normal saline or infusion of fat emulsion was not confirmed.
Hanford, Kate L; Mitchem, Laura; Reid, Jonathan P; Clegg, Simon L; Topping, David O; McFiggans, Gordon B
2008-10-02
Aerosol optical tweezers are used to simultaneously characterize and compare the hygroscopic properties of two aerosol droplets, one containing inorganic and organic solutes and the second, referred to as the control droplet, containing a single inorganic salt. The inorganic solute is either sodium chloride or ammonium sulfate and the organic component is glutaric acid. The time variation in the size of each droplet (3-7 microm in radius) is recorded with 1 s time resolution and with nanometre accuracy. The size of the control droplet is used to estimate the relative humidity with an accuracy of better than +/-0.09%. Thus, the Kohler curve of the multicomponent inorganic/organic droplet, which characterizes the variation in equilibrium droplet size with relative humidity, can be determined directly. The measurements presented here focus on high relative humidities, above 97%, in the limit of dilute solutes. The experimental data are compared with theoretical treatments that, while ignoring the interactions between the inorganic and organic components, are based upon accurate representations of the activity-concentration relationships of aqueous solutions of the individual salts. The organic component is treated by a parametrized fit to experimental data or by the UNIFAC model and the water activity of the equilibrium solution droplet is calculated using the approach suggested by Clegg, Seinfeld and Brimblecombe or the Zdanovskii-Stokes-Robinson approximation. It is shown that such an experimental strategy, comparing directly droplets of different composition, enables highly accurate measurements of the hygroscopic properties, allowing the theoretical treatments to be rigorously tested. Typical deviations of the experimental measurements from theoretical predictions are shown to be around 1% in equilibrium size, comparable to the variation between the theoretical frameworks considered.
Capesius, Joseph P.; Sullivan, Joseph R.; O'Neill, Gregory B.; Williams, Cory A.
2005-01-01
Accurate ice-affected streamflow records are difficult to obtain for several reasons, which makes the management of instream-flow water rights in the wintertime a challenging endeavor. This report documents a method to improve ice-affected streamflow records for two gaging stations in Colorado. In January and February 2002, the U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board, conducted an experiment using a sodium chloride tracer to measure streamflow under ice cover by the tracer-dilution discharge method. The purpose of this study was to determine the feasibility of obtaining accurate ice-affected streamflow records by using a sodium chloride tracer that was injected into the stream. The tracer was injected at two gaging stations once per day for approximately 20 minutes for 25 days. Multiple-parameter water-quality sensors at the two gaging stations monitored background and peak chloride concentrations. These data were used to determine discharge at each site. A comparison of the current-meter streamflow record to the tracer-dilution streamflow record shows different levels of accuracy and precision of the tracer-dilution streamflow record at the two sites. At the lower elevation and warmer site, Brandon Ditch near Whitewater, the tracer-dilution method overestimated flow by an average of 14 percent, but this average is strongly biased by outliers. At the higher elevation and colder site, Keystone Gulch near Dillon, the tracer-dilution method experienced problems with the tracer solution partially freezing in the injection line. The partial freezing of the tracer contributed to the tracer-dilution method underestimating flow by 52 percent at Keystone Gulch. In addition, a tracer-pump-reliability test was conducted to test how accurately the tracer pumps can discharge the tracer solution in conditions similar to those used at the gaging stations. Although the pumps were reliable and consistent throughout the 25-day study period, the pumps underdischarged the tracer by 5.8-15.9 percent as compared to the initial pumping rate setting, which may explain some of the error in the tracer-dilution streamflow record as compared to current-meter streamflow record.
Dispersion of nanosized ceramic powders in aqueous suspensions
NASA Astrophysics Data System (ADS)
Chera, L.; Palcevskis, E.; Berzins, M.; Lipe, A.; Jansone, I.
2007-12-01
Seven commercially available dispersants have been applied to produce high concentrated aqueous suspensions of the nanosized alumina and partially stabilized zirconia powders processed by the plasma technique. Simultaneously, the electrokinetic behaviour of powders has been investigated in diluted suspensions by microelectrophoresis method. Zeta potential measurements are used to estimate the influence of selected dispersants on the electrokinetic properties of the powder surface. On the basis of obtained data the correlation between the surface electrokinetic properties in dilute suspensions and reached maximal suspension concentration is discussed.
Process for the disposal of alkali metals
Lewis, Leroy C.
1977-01-01
Large quantities of alkali metals may be safely reacted for ultimate disposal by contact with a hot concentrated caustic solution. The alkali metals react with water in the caustic solution in a controlled reaction while steam dilutes the hydrogen formed by the reaction to a safe level.
Novel Hydrogels from Telechelic Polymers
NASA Astrophysics Data System (ADS)
Taribagil, Rajiv R.
The last two decades have seen telechelic polymers support an increasing number of applications as stabilizers and flow modifiers in fields as varied as pharmaceutics, paints and oil recovery. Mainly consisting of a long hydrophilic block end-capped with hydrophobic blocks, these polymers form gels at modest concentrations, comprising hydrophobic junctions with hydrophilic blocks bridging these junctions. This thesis examines two different types of telechelic polymer hydrogels: concentrated dispersions of telechelic triblock copolymers and dilute solutions of wormlike micelles cross-linked by hydrophobically end-capped polymers. Aqueous gels of telechelic poly(ethylene oxide) (PEO)-based triblock polymers, with homo and hetero combinations of 1,2-polybutadiene (PB) and poly(perfluoropropylene oxide) (PFPO) as hydrophobic end-blocks, were investigated using a combination of cryogenic scanning electron microscopy and small-angle neutron scattering. The PB-b-PEO-b-PB copolymers formed networks of spherical micelles at all concentrations as expected, albeit with significant spatial heterogeneity that diminished with increasing concentration. The PFPO-b-PEO-b-PFPO copolymers also formed networks by aggregation of the end-blocks, but the PFPO blocks tended to adopt disk-like or even sheet-like structures. This is attributed to the extremely high interfacial tension of PFPO with water and is consistent with the "super-strong" segregation regime behavior. The heterotelechelic PB-b-PEO- b-PFPO terpolymers adopted a quite different structure, namely an intricate bicontinuous open-cell foam, with cells on the order of 500 nm in size and cell walls composed of PFPO disks embedded in PB sheets. These various network structures illustrate the potential of using end-block chemistry to manipulate both the morphology and the physical properties of polymer gels. Dilute aqueous solutions containing 1 wt% cetyltrimethylammonium tosylate, a surfactant well recognized to form wormlike micelles, and low concentrations of hydrophobically end-capped poly(ethylene oxide), were investigated using dynamic mechanical spectroscopy and small-angle neutron scattering. The detailed examination shows that addition of as little as 0.1 wt% of the polymer to the dilute wormlike micelle solution leads to a massive enhancement in its viscoelastic response. This phenomenon raises the possibility of significantly reducing the amount of additive required to achieve a desired rheological profile, with concomitant advantages in both cost and environmental impact.
Topcuoglu, Nursen; Ozan, Fatih; Ozyurt, Mustafa; Kulekci, Guven
2012-01-01
Objective: The aim of this study was to evaluate the antibacterial property of glass-ionomer cement (GIC) containing propolis against Streptococcus mutans and its effect on the in vitro S. mutans biofilm formation. Methods: Ethanolic extract of propolis (EEP) was prepared at two concentrations as 25 and 50%. Three different experimental GIC disks were prepared using pure liquid and liquid solutions diluted with 25 and 50 percent of EEP concentrations. Minimum inhibitory concentration (MIC) of EEP on the growth of S. mutans ATCC 25175 was determined by using agar dilution method. Agar diffusion test and an in vitro S. mutans biofilm assay for GIC disks with and without EEP were performed. Results: MIC values of Turkish propolis for S. mutans ATCC 25175 was found as 25 μg/mL. Experimental GICs containing propolis exhibited inhibition zones and their dry biofilm weights were less than the pure GIC. The bacterial density was lower in the GIC containing 50% EEP. Conclusions: A distinct antibacterial and antibiofilm efficacy of propolis containing GIC on S. mutans has been observed. Although further research is needed to show clinical results, antibacterial GIC containing propolis would be a promising material for restoration. PMID:23077424
Characterization of carrier erythrocytes for biosensing applications
NASA Astrophysics Data System (ADS)
Bustamante López, Sandra C.; Meissner, Kenith E.
2017-09-01
Erythrocyte abundance, mobility, and carrying capacity make them attractive as a platform for blood analyte sensing as well as for drug delivery. Sensor-loaded erythrocytes, dubbed erythrosensors, could be reinfused into the bloodstream, excited noninvasively through the skin, and used to provide measurement of analyte levels in the bloodstream. Several techniques to load erythrocytes, thus creating carrier erythrocytes, exist. However, their cellular characteristics remain largely unstudied. Changes in cellular characteristics lead to removal from the bloodstream. We hypothesize that erythrosensors need to maintain native erythrocytes' (NEs) characteristics to serve as a long-term sensing platform. Here, we investigate two loading techniques and the properties of the resulting erythrosensors. For loading, hypotonic dilution requires a hypotonic solution while electroporation relies on electrical pulses to perforate the erythrocyte membrane. We analyze the resulting erythrosensor signal, size, morphology, and hemoglobin content. Although the resulting erythrosensors exhibit morphological changes, their size was comparable with NEs. The hypotonic dilution technique was found to load erythrosensors much more efficiently than electroporation, and the sensors were loaded throughout the volume of the erythrosensors. Finally, both techniques resulted in significant loss of hemoglobin. This study points to the need for continued development of loading techniques that better preserve NE characteristics.
Numerical study of underwater dispersion of dilute and dense sediment-water mixtures
NASA Astrophysics Data System (ADS)
Chan, Ziying; Dao, Ho-Minh; Tan, Danielle S.
2018-05-01
As part of the nodule-harvesting process, sediment tailings are released underwater. Due to the long period of clouding in the water during the settling process, this presents a significant environmental and ecological concern. One possible solution is to release a mixture of sediment tailings and seawater, with the aim of reducing the settling duration as well as the amount of spreading. In this paper, we present some results of numerical simulations using the smoothed particle hydrodynamics (SPH) method to model the release of a fixed volume of pre-mixed sediment-water mixture into a larger body of quiescent water. Both the sediment-water mixture and the “clean” water are modeled as two different fluids, with concentration-dependent bulk properties of the sediment-water mixture adjusted according to the initial solids concentration. This numerical model was validated in a previous study, which indicated significant differences in the dispersion and settling process between dilute and dense mixtures, and that a dense mixture may be preferable. For this study, we investigate a wider range of volumetric concentration with the aim of determining the optimum volumetric concentration, as well as its overall effectiveness compared to the original process (100% sediment).
A solution algorithm for fluid–particle flows across all flow regimes
Kong, Bo; Fox, Rodney O.
2017-05-12
Many fluid–particle flows occurring in nature and in technological applications exhibit large variations in the local particle volume fraction. For example, in circulating fluidized beds there are regions where the particles are closepacked as well as very dilute regions where particle–particle collisions are rare. Thus, in order to simulate such fluid–particle systems, it is necessary to design a flow solver that can accurately treat all flow regimes occurring simultaneously in the same flow domain. In this work, a solution algorithm is proposed for this purpose. The algorithm is based on splitting the free-transport flux solver dynamically and locally in themore » flow. In close-packed to moderately dense regions, a hydrodynamic solver is employed, while in dilute to very dilute regions a kinetic-based finite-volume solver is used in conjunction with quadrature-based moment methods. To illustrate the accuracy and robustness of the proposed solution algorithm, it is implemented in OpenFOAM for particle velocity moments up to second order, and applied to simulate gravity-driven, gas–particle flows exhibiting cluster-induced turbulence. By varying the average particle volume fraction in the flow domain, it is demonstrated that the flow solver can handle seamlessly all flow regimes present in fluid–particle flows.« less
Delivery of Formulated Industrial Enzymes with Acoustic Technology.
Hwang, Jennifer Dorcas; Ortiz-Maldonado, Mariliz; Paramonov, Sergey
2016-02-01
Industrial enzymes are instrumental in many applications, including carbohydrate processing, fabric and household care, biofuels, food, and animal nutrition, among others. Enzymes have to be active and stable not only in harsh application conditions, but also during shipment and storage. In protein stability studies, formulated concentrated enzyme solutions are frequently diluted gravimetrically prior to enzyme activity measurements, making it challenging to move toward more high-throughput techniques using conventional robotic equipment. Current assay methods pose difficulties when measuring highly concentrated proteins. For example, plastic pipette tips can introduce error because proteins adsorb to the tip surface, despite the presence of detergents, decreasing precision and overall efficiency of protein activity assays. Acoustic liquid handling technology, frequently used for various dilute small-molecule assays, may overcome such problems. Originally shown to effectively deliver dilute solutions of small molecules, this technology is used here as an effective alternative to the aforementioned challenge with viscous concentrated protein solutions. Because the acoustic liquid handler transfers nanoliter quantities of liquids without using pipette tips and without sample loss, it rapidly and uniformly prepares assay plates for enzyme activity measurements within minutes. This increased efficiency transforms the nature of enzyme stability studies toward high precision and throughput. © 2015 Society for Laboratory Automation and Screening.
A solution algorithm for fluid-particle flows across all flow regimes
NASA Astrophysics Data System (ADS)
Kong, Bo; Fox, Rodney O.
2017-09-01
Many fluid-particle flows occurring in nature and in technological applications exhibit large variations in the local particle volume fraction. For example, in circulating fluidized beds there are regions where the particles are close-packed as well as very dilute regions where particle-particle collisions are rare. Thus, in order to simulate such fluid-particle systems, it is necessary to design a flow solver that can accurately treat all flow regimes occurring simultaneously in the same flow domain. In this work, a solution algorithm is proposed for this purpose. The algorithm is based on splitting the free-transport flux solver dynamically and locally in the flow. In close-packed to moderately dense regions, a hydrodynamic solver is employed, while in dilute to very dilute regions a kinetic-based finite-volume solver is used in conjunction with quadrature-based moment methods. To illustrate the accuracy and robustness of the proposed solution algorithm, it is implemented in OpenFOAM for particle velocity moments up to second order, and applied to simulate gravity-driven, gas-particle flows exhibiting cluster-induced turbulence. By varying the average particle volume fraction in the flow domain, it is demonstrated that the flow solver can handle seamlessly all flow regimes present in fluid-particle flows.
A solution algorithm for fluid–particle flows across all flow regimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Bo; Fox, Rodney O.
Many fluid–particle flows occurring in nature and in technological applications exhibit large variations in the local particle volume fraction. For example, in circulating fluidized beds there are regions where the particles are closepacked as well as very dilute regions where particle–particle collisions are rare. Thus, in order to simulate such fluid–particle systems, it is necessary to design a flow solver that can accurately treat all flow regimes occurring simultaneously in the same flow domain. In this work, a solution algorithm is proposed for this purpose. The algorithm is based on splitting the free-transport flux solver dynamically and locally in themore » flow. In close-packed to moderately dense regions, a hydrodynamic solver is employed, while in dilute to very dilute regions a kinetic-based finite-volume solver is used in conjunction with quadrature-based moment methods. To illustrate the accuracy and robustness of the proposed solution algorithm, it is implemented in OpenFOAM for particle velocity moments up to second order, and applied to simulate gravity-driven, gas–particle flows exhibiting cluster-induced turbulence. By varying the average particle volume fraction in the flow domain, it is demonstrated that the flow solver can handle seamlessly all flow regimes present in fluid–particle flows.« less
Dielectric and electrical studies of PVC-PPy blends in dilute solution of THF
NASA Astrophysics Data System (ADS)
Sharma, Deepika; Tripathi, Deepti
2018-05-01
An influence of adding Polypyrrole (PPy) which is an intrinsically conducting polymer (ICP), on the dielectric dispersion behavior of Polyvinyl chloride (PVC) in dilute solution of Tetrahydrofuran (THF) at low frequency is reported. The blends of PVC with PPy forms colloidal suspension in THF. The dielectric dispersion study of PVC-PPy blends in THF has been carried out in the frequency range of 20 Hz to 2 MHz at temperature of 303K. The effect of increasing PPy concentration on dielectric and electrical parameters such as complex dielectric function [ɛ*(ω)], loss tangent [tan δ], complex electric modulus [M*(ω)], ac conductivity [σac], and complex impedance [Z*(ω)] of PVC - PPy blends in THF solution were studied. The electrode polarization and ionic conduction appears to have dominant influence on the complex dielectric constant in the low frequency region. The relaxation time values corresponding to these two phenomena are also reported.
FACTORS INFLUENCING THE ABILITY OF ISOLATED CELL NUCLEI TO FORM GELS IN DILUTE ALKALI
Dounce, Alexander L.; Monty, Kenneth J.
1955-01-01
1. Known methods for isolating cell nuclei are divided into two classes, depending on whether or not the nuclei are capable of forming gels in dilute alkali or strong saline solutions. Methods which produce nuclei that can form gels apparently prevent the action of an intramitochondrial enzyme capable of destroying the gel-forming capacity of the nuclei. Methods in the other class are believed to permit this enzyme to act on the nuclei during the isolation procedure, causing detachment of DNA from some nuclear constituent (probably protein). 2. It is shown that heating in alkaline solution and x-irradiation can destroy nuclear gels. Heating in acid or neutral solutions can destroy the capacity of isolated nuclei to form gels. 3. Chemical and biological evidence is summarized in favor of the hypothesis that DNA is normally bound firmly to some nuclear component by non-ionic linkages. PMID:14381437
Efficacy of multipurpose solutions for rigid gas permeable lenses.
Boost, Maureen; Cho, Pauline; Lai, Sindy
2006-09-01
The use of multipurpose solutions for cleaning and disinfecting rigid gas permeable lenses has replaced single purpose solutions, but there are no reports of the efficacy of these multipurpose solutions, or of the effects of storage conditions on their disinfecting capacities. This study investigated activity against four bacterial and two fungal species, and the effects of storage in a refrigerator, at room temperature, at elevated temperature in both dry and humid conditions and with exposure to sunlight. The disinfecting solutions were challenged with the micro-organisms initially upon opening and then at 2-weekly intervals up to 12 weeks after being stored under the different conditions. Solutions were opened daily to simulate use. One solution failed to meet Food and Drug Administration (FDA) criteria to reduce numbers of bacteria by three log dilutions and of fungi by one log dilution. Storage reduced activity of all solutions over the 12-week period, but not below the requirements of the FDA. Storage in the refrigerator tended to reduce disinfecting capacity more quickly. Multipurpose solutions for rigid gas permeable (RGP) lenses lose activity over the 3 months recommended time of use but remain satisfactory for use over this time in the conditions tested. Practitioners need to remind patients to replace their solutions regularly and should advise against storage in the refrigerator. Multipurpose solutions for RGP lenses have simplified cleaning and disinfecting processes and the current formulations have improved disinfecting capacity compared to former disinfecting solutions, which is particularly important for wearers of orthokeratology lenses.
Absorption of mercuric cation by tannins in agricultural residues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waiss, A.C. Jr.; Wiley, M.E.; Kuhnle, J.A.
1973-01-01
Two common environmental pollutants are agricultural residues (skins, pits, husks, tannin bark, grape pomace) and waste streams of water containing only traces of heavy metals (such as mercury at 10 or more ppb) from mining or manufacturing operations. Agricultural residues contain tannins, polyphenolic substances, pectin, and other polymers-all with chemically reactive groups that can chelate, reduce, oxidize, demonstrate ion exchange properties, and aid in removing traces of heavy metals from dilute waste water streams at low cost. Finely ground and water-washed agricultural residues were slurried in water and packed into columns for absorption tests with heavy metals. Solutions of knownmore » concentrations of heavy metals were passed through the packed columns which were then eluted with water or with alkaline or acidic solutions. The fractions and the column absorbents were then analyzed by standard atomic absorption methods. The nature of the physical and chemical forces that are effective in metal absorption from agricultural residues is not clear.« less
Şenkuytu, Elif; Tanrıverdi Eçik, Esra
2018-06-05
In the study, the new hexa-bodipy functionalized dendrimeric cyclotriphosphazene conjugates (HBCP 1 and 2) have been successfully synthesized and characterized by using general spectroscopic techniques such as 1 H, 13 C and 31 P NMR spectroscopies. The photophysical and metal sensing properties in THF solutions of dendrimeric cyclotriphosphazene conjugates (HBCP 1 and 2) were investigated by UV-Vis and fluorescence spectroscopies in dilute tetrahydrofuran solutions. These dendrimers showed strong absorption bands 501 and 641nm at low concentration with high molar extinction coefficients. In addition, the stoichiometry of the complex between the conjugate (HBCP 2) and Co 2+ ions were determined by a Job's plot obtained from fluorescence titrations. The metal sensing data showed that the hexa-bodipy functionalized dendrimeric cyclotriphosphazene conjugate (HBCP 2) is a candidate for fluorescent chemosensor for Co 2+ ions due to showing high selectivity with a low limit of detection. Copyright © 2018 Elsevier B.V. All rights reserved.
Corrosion Behavior and Microstructure Influence of Glass-Ceramic Nuclear Waste Forms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthew Asmussen, R.; Neeway, James J.; Kaspar, Tiffany C.
Glass ceramic waste forms present a potentially viable technology for the long term immobilization and disposal of liquid nuclear wastes. Through control of chemistry during fabrication, such waste forms can have designed secondary crystalline phases within a borosilicate glass matrix. In this work, a glass ceramic containing powellite and oxyapatite secondary phases was tested for its corrosion properties in dilute conditions using single pass flow through testing (SPFT). Three glass ceramic samples were prepared using different cooling rates to produce samples with varying microstructure sizes. In testing at 90 °C in buffered pH 7 and pH 9 solutions, it wasmore » found that increasing pH and decreasing microstructure size (resulting from rapid cooling during fabrication) both led to a reduction in overall corrosion rate. The phases of the glass ceramic were found, using a combination of solutions analysis, SEM and AFM, to corrode preferably in the order of powellite > bulk glass matrix > oxyapatite.« less
Shear History Extensional Rheology Experiment: A Proposed ISS Experiment
NASA Technical Reports Server (NTRS)
Hall, Nancy R.; Logsdon, Kirk A.; Magee, Kevin S.
2007-01-01
The Shear History Extensional Rheology Experiment (SHERE) is a proposed International Space Station (ISS) glovebox experiment designed to study the effect of preshear on the transient evolution of the microstructure and viscoelastic tensile stresses for monodisperse dilute polymer solutions. Collectively referred to as Boger fluids, these polymer solutions have become a popular choice for rheological studies of non-Newtonian fluids and are the non-Newtonian fluid used in this experiment. The SHERE hardware consists of the Rheometer, Camera Arm, Interface Box, Cabling, Keyboard, Tool Box, Fluid Modules, and Stowage Tray. Each component will be described in detail in this paper. In the area of space exploration, the development of in-situ fabrication and repair technology represents a critical element in evolution of autonomous exploration capability. SHERE has the capability to provide data for engineering design tools needed for polymer parts manufacturing systems to ensure their rheological properties have not been impacted in the variable gravity environment and this will be briefly addressed.
Monte Carlo and mean-field studies of phase evolution in concentrated surfactant solutions
NASA Astrophysics Data System (ADS)
Bohbot, Yardena; Ben-Shaul, Avinoam; Granek, Rony; Gelbart, William M.
1995-11-01
A two-dimensional lattice model, originally introduced by Granek et al. [J. Chem. Phys. 101, 4331 (1994)], is used to demonstrate the intricate coupling between the intramicellar interactions that determine the optimal aggregation geometry of surfactant molecules in dilute solution, and the intermicellar interactions that govern the phase behavior at higher concentrations. Three very different scenarios of self-assembly and phase evolution are analyzed in detail, based on Monte Carlo studies and theoretical interpretations involving mean-field, Landau-Ginzburg, Bethe-Peierls, and virial expansion schemes. The basic particles in the model are ``unit micelles'' which, due to spontaneous self-assembly or because of excluded area interactions, can fuse to form larger aggregates. These aggregates are envisaged as flat micelles composed of a bilayerlike body surrounded by a curved semitoroidal rim. The system's Hamiltonian involves one- through four-body potentials between the unit micelles, which account for their tendency to form aggregates of different shapes, e.g., elongated vs disklike micelles. Equivalently, the configurational energy of the system is a sum of micellar self-energies involving the packing free energies of the constituent molecules in the bilayer body and in rim segments of different local curvature. The rim energy is a sum of a line tension term and a 1D curvature energy which depends on the rim spontaneous curvature and bending rigidity. Different combinations of these molecular parameters imply different optimal packing geometries and hence different self-assembly and phase behaviors. The emphasis in this paper is on systems of ``curvature loving'' amphiphiles which, in our model, are characterized by negative line tension. The three systems studied are: (i) A dilute solution of stable disklike micelles which, upon increasing the concentration, undergoes a first-order phase transition to a continuous bilayer with isolated hole defects. An intermediate modulated ``checkerboard'' phase appears under certain conditions at low temperatures. (ii) A system of unit micelles which in dilute solution tend to associate into linear micelles. These micelles are rodlike at low temperatures, becoming increasingly more flexible as the temperature increases. Upon increasing the concentration the micelles grow and undergo (in 2D) a continuous transition into nematic and ``stripe'' phases of long rods. At still higher concentrations the micellar stripes fuse into continuous sheets with line defects. (iii) A system in which, already in dilute solution, the micelles favor the formation of branched aggregates, analogous to the branched cylindrical micelles recently observed in certain surfactant solutions. As the concentration increases the micelles associate into networks (``gels'') composed of a mesh of linear micelles linked by ``T-like'' intermicellar junctions. The network may span the entire system or phase separate and coexist with a dilute micellar phase, depending on the details of the molecular packing parameters.
Donovan, Preston; Chehreghanianzabi, Yasaman; Rathinam, Muruhan; Zustiak, Silviya Petrova
2016-01-01
The study of diffusion in macromolecular solutions is important in many biomedical applications such as separations, drug delivery, and cell encapsulation, and key for many biological processes such as protein assembly and interstitial transport. Not surprisingly, multiple models for the a-priori prediction of diffusion in macromolecular environments have been proposed. However, most models include parameters that are not readily measurable, are specific to the polymer-solute-solvent system, or are fitted and do not have a physical meaning. Here, for the first time, we develop a homogenization theory framework for the prediction of effective solute diffusivity in macromolecular environments based on physical parameters that are easily measurable and not specific to the macromolecule-solute-solvent system. Homogenization theory is useful for situations where knowledge of fine-scale parameters is used to predict bulk system behavior. As a first approximation, we focus on a model where the solute is subjected to obstructed diffusion via stationary spherical obstacles. We find that the homogenization theory results agree well with computationally more expensive Monte Carlo simulations. Moreover, the homogenization theory agrees with effective diffusivities of a solute in dilute and semi-dilute polymer solutions measured using fluorescence correlation spectroscopy. Lastly, we provide a mathematical formula for the effective diffusivity in terms of a non-dimensional and easily measurable geometric system parameter. PMID:26731550
Kim, Sun Hee; Krämer, Irene
2017-01-01
Centralized aseptic preparation of ready-to-administer carfilzomib containing parenteral solutions in plastic syringes and polyolefine (PO) infusion bags needs profound knowledge about the physicochemical stability in order to determine the beyond-use-date of the preparations. Therefore, the purpose of this study was to determine the physicochemical stability of carfilzomib solution marketed as Kyprolis® powder for solution for infusion. Reconstituted solutions and ready-to-administer preparations of Kyprolis® stored under refrigeration (2-8℃) or at room temperature (25℃) were analyzed at predetermined intervals over a maximum storage period of 28 days. Chemical stability of carfilzomib was planned to be determined with a stability-indicating reversed-phase high-performance liquid chromatography assay. Physicochemical stability was planned to be determined by visual inspection of clarity and color as well as pH measurement. The study results show that reconstituted carfilzomib containing parenteral solutions are stable in glass vials as well as diluted solutions in plastic syringes and PO infusion bags over a period of at least 28 days when stored light protected under refrigeration. When stored at room temperature, reconstituted and diluted carfilzomib solutions are physicochemically stable over 14 days and 10 days, respectively. The physicochemical stability of carfilzomib infusion solutions allows cost-saving pharmacy-based centralized preparation of ready-to-administer preparations.
NASA Astrophysics Data System (ADS)
Scheffold, Frank
2014-08-01
To characterize the structural and dynamic properties of soft materials and small particles, information on the relevant mesoscopic length scales is required. Such information is often obtained from traditional static and dynamic light scattering (SLS/DLS) experiments in the single scattering regime. In many dense systems, however, these powerful techniques frequently fail due to strong multiple scattering of light. Here I will discuss some experimental innovations that have emerged over the last decade. New methods such as 3D static and dynamic light scattering (3D LS) as well as diffusing wave spectroscopy (DWS) can cover a much extended range of experimental parameters ranging from dilute polymer solutions, colloidal suspensions to extremely opaque viscoelastic emulsions.
On the response of alloyed ZnCdSeS quantum dot films
NASA Astrophysics Data System (ADS)
Valais, I.; Michail, C.; Fountzoula, C.; Tseles, D.; Yannakopoulos, P.; Nikolopoulos, D.; Bakas, A.; Fountos, G.; Saatsakis, G.; Sianoudis, I.; Kandarakis, I.; Panayiotakis, G.
The aim of this work was to prepare composite ZnCdSeS quantum dot (QD) flexible films and to examine their optical properties under ultraviolet excitation. PMMA/QD ZnCdSeS composite films, with emission covering the visual spectrum (480-630 nm) were prepared with concentrations 10 mg/mL and 20 mg/mL by homogenously diluting dry powder QD samples in toluene and subsequently mixing with a PMMA/MMA polymer solution to the final ZnCdSeS/Toluene mixture. Scanning electron microscopy (SEM) images of the produced films were obtained. The ZnCdSeS films were excited by ultraviolet light of varying intensities and the spectral matching with various optical detectors was estimated.
Respirable form of crystals of cromoglycic acid.
Chan, H K; Gonda, I
1989-02-01
Respirable crystals of cromoglycic acid (CA) were prepared by precipitation of CA with hydrochloric acid from aqueous solutions of cromolyn sodium and subsequent recrystallization from hot water or mixtures of dimethyl sulphoxide and water. The properties of the materials were established by melting point measurements, UV, IR, and NMR spectroscopy, and X-ray diffraction. Aerosols of CA were generated by nebulization of dilute CA suspensions and drying. The aerodynamic size distribution of CA in the dried aerosols was found by cascade impaction, and could be characterized by a logarithmic normal function with a mass median aerodynamic diameter (MMAD) of 0.7 micron and geometric standard deviation (sigma g) of 1.9. The likely advantages and problems of CA aerosols in the prevention of asthma are discussed.
Kinetic equation and nonequilibrium entropy for a quasi-two-dimensional gas.
Brey, J Javier; Maynar, Pablo; García de Soria, M I
2016-10-01
A kinetic equation for a dilute gas of hard spheres confined between two parallel plates separated a distance smaller than two particle diameters is derived. It is a Boltzmann-like equation, which incorporates the effect of the confinement on the particle collisions. A function S(t) is constructed by adding to the Boltzmann expression a confinement contribution. Then it is shown that for the solutions of the kinetic equation, S(t) increases monotonically in time, until the system reaches a stationary inhomogeneous state, when S becomes the equilibrium entropy of the confined system as derived from equilibrium statistical mechanics. From the entropy, other equilibrium properties are obtained, and molecular dynamics simulations are used to verify some of the theoretical predictions.
ANALYTICAL METHOD FOR THE ABSORPTIOMETRIC DETERMINATION OF BORON IN AMMONIA SOLUTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1962-01-01
ABS>A weighed sample is evaporated to dryness with caustic soda solution on a water bath. The residue is dissolved by addlng a solution of curcumin in acetic acid. After adding a mixture of H/sub 2/SO/sub 4/ and acetic acid, the solution is allowed to stand at room temperature for 15 minutes. The solution is then diluted to 100 ml with ethanol, and a portion is filtered and measured absorptiometrically on the residue as the curcumin complex. (P.C.H.)
21 CFR 175.270 - Poly(vinyl fluoride) resins.
Code of Federal Regulations, 2013 CFR
2013-04-01
... polymerization of vinyl fluoride. (b) The poly(vinyl fluoride) basic resins have an intrinsic viscosity of not... Dilute Solution Viscosity of Vinyl Chloride Polymers,” which is incorporated by reference. Copies may be... Solution Viscosity of Vinyl Chloride Polymers,” which is incorporated by reference; see paragraph (b) of...
21 CFR 175.270 - Poly(vinyl fluoride) resins.
Code of Federal Regulations, 2012 CFR
2012-04-01
... polymerization of vinyl fluoride. (b) The poly(vinyl fluoride) basic resins have an intrinsic viscosity of not... Dilute Solution Viscosity of Vinyl Chloride Polymers,” which is incorporated by reference. Copies may be... Solution Viscosity of Vinyl Chloride Polymers,” which is incorporated by reference; see paragraph (b) of...
NASA Astrophysics Data System (ADS)
Phillips-Lander, Charity M.; Parnell, S. R.; McGraw, L. E.; Elwood Madden, M. E.
2018-06-01
A diverse suite of carbonate minerals including calcite (CaCO3) and magnesite (MgCO3) have been observed on the martian surface and in meteorites. Terrestrial carbonates usually form via aqueous processes and often record information about the environment in which they formed, including chemical and textural biosignatures. In addition, terrestrial carbonates are often found in association with evaporite deposits on Earth. Similar high salinity environments and processes were likely active on Mars and some areas may contain active high salinity brines today. In this study, we directly compare calcite and magnesite dissolution in ultrapure water, dilute sulfate and chloride solutions, as well as near-saturated sulfate and chloride brines with known activity of water (aH2O) to determine how dissolution rates vary with mineralogy and aH2O, as well as aqueous cation and anion chemistry to better understand how high salinity fluids may have altered carbonate deposits on Mars. We measured both calcite and magnesite initial dissolution rates at 298 K and near neutral pH (6-8) in unbuffered solutions containing ultrapure water (18 MΩ cm-1 UPW; aH2O = 1), dilute (0.1 mol kg-1; aH2O = 1) and near-saturated Na2SO4 (2.5 mol kg-1, aH2O = 0.92), dilute (0.1 mol kg-1, aH2O = 1) and near-saturated NaCl (5.7 mol kg-1, aH2O = 0.75). Calcite dissolution rates were also measured in dilute and near-saturated MgSO4 (0.1 mol kg-1, aH2O = 1 and 2.7 mol kg-1, aH2O = 0.92, respectively) and MgCl2 (0.1 mol kg-1, aH2O = 1 and 3 mol kg-1, aH2O = 0.73, respectively), while magnesite dissolution rates were measured in dilute and near-saturated CaCl2 (0.1 mol kg-1, aH2O = 1 and 9 mol kg-1, aH2O = 0.35). Initial calcite dissolution rates were fastest in near-saturated MgCl2 brine, while magnesite dissolution rates were fastest in dilute (0.1 mol kg-1) NaCl and CaCl2 solutions. Calcite dissolution rates in near-saturated Na2SO4 were similar to those observed in the dilute solutions (-8.00 ± 0.12 log mol m-2 s-1), while dissolution slowed in both NaCl solutions (0.1 mol kg-1; -8.23 ± 0.10 log mol m-2 s-1 and (5.7 mol kg-1; -8.44 ± 0.11 log mol m-2 s-1), as well as near-saturated MgSO4 brine (2.7 mol kg-1; -8.35 ± 0.05 log mol m-2 s-1). The slowest calcite dissolution rates observed in the near-saturated NaCl brine. Magnesite dissolution rates were ∼5 times faster in the dilute salt solutions relative to UPW, but similar to UPW (-8.47 ± 0.06 log mol m-2 s-1) in near-saturated Na2SO4 brines (-8.41 ± 0.18 log mol m-2 s-1). Magnesite dissolution slowed significantly in near-saturated CaCl2 brine (-9.78 ± 0.10 log mol m-2 s-1), likely due to the significantly lower water activity in these experiments. Overall, magnesite dissolution rates are slower than calcite dissolution rates and follow the trend: All dilute salt solutions >2.5 mol kg-1 Na2SO4 ≈ UPW > 5.7 mol kg-1 NaCl >> 9 mol kg-1 CaCl2. Calcite rates follow the trend 3 mol kg-1 MgCl2 > 2.5 mol kg-1 Na2SO4 ≈ UPW ≈ all dilute salt solutions >2.7 mol kg-1 MgSO4 ≈ 5.7 mol kg-1 NaCl. Magnesite dissolution rates in salt solutions generally decrease with decreasing aH2O in both chloride and sulfate brines, which indicates water molecules act as ligands and participate in the rate-limiting magnesite dissolution step. However, there is no general trend associated with water activity observed in the calcite dissolution rates. Calcite dissolution accelerates in near-saturated MgCl2, but slows in near-saturated NaCl brine despite both brines having similar water activities (aH2O = 0.73 and 0.75, respectively). High Mg calcite was observed as a reaction product in the near-saturated MgCl2, indicating Mg2+ from solution likely substituted for Ca2+ in the initial calcite, releasing additional Ca2+ into solution and increasing the observed calcite dissolution rate. Calcite dissolution rates also increase slightly as Na2SO4 concentration increases, while calcite dissolution rates slow slightly with increasing concentration of MgSO4 and NaCl. However, all of the carbonate rates vary by less than 0.5 log units and are within or near the standard deviation observed for each set of replicate experiments. Carbonate mineral lifetimes in high salinity brines indicate magnesite may be preferentially preserved compared to calcite on Mars. Therefore, Mg-carbonates that have experienced post-depositional aqueous alteration are more likely to preserve paleoenvironmental indicators and potential biosignatures. Rapid weathering of carbonates in circum-neutral pH sulfate brines may provide a potential source of cations for abundant sulfate minerals observed on Mars, Ceres, and other planetary bodies.
Fan, Wenlai; Qian, Michael C
2005-10-05
The aroma compounds of young and aged Chinese "Yanghe Daqu" liquor samples were extracted by solid phase microextraction (SPME) and analyzed by gas chromatography (GC)-olfactometry dilution analysis. The original liquor samples were diluted with deionized water to give a final alcohol content of 14% (v/v). The samples were stepwise diluted (1:1) with 14% (by volume) ethanol-water solution and then extracted by headspace SPME. The samples were preequilibrated at 50 degrees C for 15 min and extracted with stirring at the same temperature for 30 min prior to injection into GC. The aroma compounds were identified by both GC-MS and GC-olfactometry using DB-Wax and DB-5 columns. The results suggested that esters were the major contributors to Yanghe Daqu liquor aroma. Ethyl hexanoate, ethyl butanoate, and ethyl pentanoate had very high flavor dilution values in both young and aged liquors (FD > 8192). Methyl hexanoate, ethyl heptanoate, ethyl benzoate, and butyl hexanoate could also be very important because of their high flavor dilution values (FD > or = 256). Moreover, two acetals, 1,1-diethoxyethane and 1,1-diethoxy-3-methylbutane, also were shown high flavor dilution values in Yanghe Daqu liquors (FD > or = 256). Other aroma compounds having moderate flavor dilution values included acetaldehyde, 3-methylbutanol, and 2-pentanol (FD > or = 32). Comparing young and aged liquors, the aroma profiles were similar, but the aroma compounds in the aged sample had higher flavor dilution values than in the young ones.
Specific features of defect and mass transport in concentrated fcc alloys
Osetsky, Yuri N.; Béland, Laurent K.; Stoller, Roger E.
2016-06-15
We report that diffusion and mass transport are basic properties that control materials performance, such as phase stability, solute decomposition and radiation tolerance. While understanding diffusion in dilute alloys is a mature field, concentrated alloys are much less studied. Here, atomic-scale diffusion and mass transport via vacancies and interstitial atoms are compared in fcc Ni, Fe and equiatomic Ni-Fe alloy. High temperature properties were determined using conventional molecular dynamics on the microsecond timescale, whereas the kinetic activation-relaxation (k-ART) approach was applied at low temperatures. The k-ART was also used to calculate transition states in the alloy and defect transport coefficients.more » The calculations reveal several specific features. For example, vacancy and interstitial defects migrate via different alloy components, diffusion is more sluggish in the alloy and, notably, mass transport in the concentrated alloy cannot be predicted on the basis of diffusion in its pure metal counterparts. Lastly, the percolation threshold for the defect diffusion in the alloy is discussed and it is suggested that this phenomenon depends on the properties and diffusion mechanisms of specific defects.« less
PROCESS OF SEPARATING URANIUM FROM AQUEOUS SOLUTION BY SOLVENT EXTRACTION
Warf, J.C.
1958-08-19
A process is described for separating uranium values from aqueous uranyl nitrate solutions. The process consists in contacting the uramium bearing solution with an organic solvent, tributyl phosphate, preferably diluted with a less viscous organic liquida whereby the uranyl nitrate is extracted into the organic solvent phase. The uranvl nitrate may be recovered from the solvent phase bv back extracting with an aqueous mediuin.
Ehrmann, Steffen; Ruyts, Sanne C; Scherer-Lorenzen, Michael; Bauhus, Jürgen; Brunet, Jörg; Cousins, Sara A O; Deconchat, Marc; Decocq, Guillaume; De Frenne, Pieter; De Smedt, Pallieter; Diekmann, Martin; Gallet-Moron, Emilie; Gärtner, Stefanie; Hansen, Karin; Kolb, Annette; Lenoir, Jonathan; Lindgren, Jessica; Naaf, Tobias; Paal, Taavi; Panning, Marcus; Prinz, Maren; Valdés, Alicia; Verheyen, Kris; Wulf, Monika; Liira, Jaan
2018-01-08
The tick Ixodes ricinus has considerable impact on the health of humans and other terrestrial animals because it transmits several tick-borne pathogens (TBPs) such as B. burgdorferi (sensu lato), which causes Lyme borreliosis (LB). Small forest patches of agricultural landscapes provide many ecosystem services and also the disservice of LB risk. Biotic interactions and environmental filtering shape tick host communities distinctively between specific regions of Europe, which makes evaluating the dilution effect hypothesis and its influence across various scales challenging. Latitude, macroclimate, landscape and habitat properties drive both hosts and ticks and are comparable metrics across Europe. Therefore, we instead assess these environmental drivers as indicators and determine their respective roles for the prevalence of B. burgdorferi in I. ricinus. We sampled I. ricinus and measured environmental properties of macroclimate, landscape and habitat quality of forest patches in agricultural landscapes along a European macroclimatic gradient. We used linear mixed models to determine significant drivers and their relative importance for nymphal and adult B. burgdorferi prevalence. We suggest a new prevalence index, which is pool-size independent. During summer months, our prevalence index varied between 0 and 0.4 per forest patch, indicating a low to moderate disservice. Habitat properties exerted a fourfold larger influence on B. burgdorferi prevalence than macroclimate and landscape properties combined. Increasingly available ecotone habitat of focal forest patches diluted and edge density at landscape scale amplified B. burgdorferi prevalence. Indicators of habitat attractiveness for tick hosts (food resources and shelter) were the most important predictors within habitat patches. More diverse and abundant macro- and microhabitat had a diluting effect, as it presumably diversifies the niches for tick-hosts and decreases the probability of contact between ticks and their hosts and hence the transmission likelihood. Diluting effects of more diverse habitat patches would pose another reason to maintain or restore high biodiversity in forest patches of rural landscapes. We suggest classifying habitat patches by their regulating services as dilution and amplification habitat, which predominantly either decrease or increase B. burgdorferi prevalence at local and landscape scale and hence LB risk. Particular emphasis on promoting LB-diluting properties should be put on the management of those habitats that are frequently used by humans. In the light of these findings, climate change may be of little concern for LB risk at local scales, but this should be evaluated further.
Ionic liquids behave as dilute electrolyte solutions
Gebbie, Matthew A.; Valtiner, Markus; Banquy, Xavier; Fox, Eric T.; Henderson, Wesley A.; Israelachvili, Jacob N.
2013-01-01
We combine direct surface force measurements with thermodynamic arguments to demonstrate that pure ionic liquids are expected to behave as dilute weak electrolyte solutions, with typical effective dissociated ion concentrations of less than 0.1% at room temperature. We performed equilibrium force–distance measurements across the common ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][NTf2]) using a surface forces apparatus with in situ electrochemical control and quantitatively modeled these measurements using the van der Waals and electrostatic double-layer forces of the Derjaguin–Landau–Verwey–Overbeek theory with an additive repulsive steric (entropic) ion–surface binding force. Our results indicate that ionic liquids screen charged surfaces through the formation of both bound (Stern) and diffuse electric double layers, where the diffuse double layer is comprised of effectively dissociated ionic liquid ions. Additionally, we used the energetics of thermally dissociating ions in a dielectric medium to quantitatively predict the equilibrium for the effective dissociation reaction of [C4mim][NTf2] ions, in excellent agreement with the measured Debye length. Our results clearly demonstrate that, outside of the bound double layer, most of the ions in [C4mim][NTf2] are not effectively dissociated and thus do not contribute to electrostatic screening. We also provide a general, molecular-scale framework for designing ionic liquids with significantly increased dissociated charge densities via judiciously balancing ion pair interactions with bulk dielectric properties. Our results clear up several inconsistencies that have hampered scientific progress in this important area and guide the rational design of unique, high–free-ion density ionic liquids and ionic liquid blends. PMID:23716690
Albrecht, Nathalie A; Howard, Judith; Kovacevic, Alan; Adamik, Katja N
2016-07-26
The artificial colloid, hydroxyethyl starch (HES), is recommended for intravascular volume expansion and colloid-osmotic pressure enhancement in dogs and cats. A well-known side effect of HES solutions in humans and dogs is coagulopathy. However, HES-associated coagulopathy has thus far not been investigated in cats. The goal of this study was to assess the in vitro effects of 6 % HES 130/0.42 on feline whole blood samples using rotational thromboelastometry (ROTEM). A further goal was to develop feline reference intervals for ROTEM at our institution. In this in vitro experimental study, blood samples of 24 adult healthy cats were collected by atraumatic jugular phlebotomy following intramuscular sedation. Baseline ROTEM analyses (using ex-tem, in-tem and fib-tem assays) were performed in duplicate. Additionally, ROTEM analyses were performed on blood samples after dilution with either Ringer's acetate (RA) or 6 % HES 130/0.42 (HES) in a 1:6 dilution (i.e. 1 part solution and 6 parts blood). Coefficients of variation of duplicate measures were below 12 % in all ex-tem assays, 3 of 4 in-tem assays but only 1 of 3 fib-tem assays. Reference intervals were similar albeit somewhat narrower than those previously published. Dilution with both solutions lead to significantly prolonged CT (in-tem), CFT (ex-tem and in-tem), and reduced MCF (ex-tem, in-tem, and fib-tem) and alpha (ex-tem and in-tem). Compared to RA, dilution with HES caused a significant prolongation of CT in fib-tem (P = 0.016), CFT in ex-tem (P = 0.017) and in-tem (P = 0.019), as well as a reduction in MCF in in-tem (P = 0.032) and fib-tem (P = 0.020), and alpha in ex-tem (P = 0.014). However, only a single parameter (CFT in ex-tem) was outside of the established reference interval after dilution with HES. In vitro hemodilution of feline blood with RA and HES causes a small but significant impairment of whole blood coagulation, with HES leading to a significantly greater effect on coagulation than RA. Further studies are necessary to evaluate the in vivo effects and the clinical significance of these findings.
Santos, Daniel; Silva, Ubiratan F; Duarte, Fabio A; Bizzi, Cezar A; Flores, Erico M M; Mello, Paola A
2018-01-01
In this work, the use of ultrasound energy for the production of furanic platforms from cellulose was investigated and the synthesis of furfural was demonstrated. Several systems were evaluated, as ultrasound bath, cup horn and probe, in order to investigate microcrystalline cellulose conversion using simply a diluted acid solution and ultrasound. Several acid mixtures were evaluated for hydrolysis, as diluted solutions of HNO 3 , H 2 SO 4 , HCl and H 2 C 2 O 4 . The influence of the following parameters in the ultrasound-assisted acid hydrolysis (UAAH) were studied: sonication temperature (30 to 70°C) and ultrasound amplitude (30 to 70% for a cup horn system) for 4 to 8molL -1 HNO 3 solutions. For each evaluated condition, the products were identified by ultra-performance liquid chromatography with high-resolution time-of-flight mass spectrometry (UPLC-ToF-MS), which provide accurate information regarding the products obtained from biomass conversion. The furfural structure was confirmed by nuclear magnetic resonance ( 1 H and 13 C NMR) spectroscopy. In addition, cellulosic residues from hydrolysis reaction were characterized using scanning electron microscopy (SEM), which contributed for a better understanding of physical-chemical effects caused by ultrasound. After process optimization, a 4molL -1 HNO 3 solution, sonicated for 60min at 30°C in a cup horn system at 50% of amplitude, lead to 78% of conversion to furfural. This mild temperature condition combined to the use of a diluted acid solution represents an important contribution for the selective production of chemical building blocks using ultrasound energy. Copyright © 2017 Elsevier B.V. All rights reserved.
Eiden, Céline; Philibert, Laurent; Bekhtari, Khedidja; Poujol, Sylvain; Malosse, Francoise; Pinguet, Frédéric
2009-11-01
The physicochemical stability of extemporaneous dilutions of oxaliplatin in 5% dextrose injection stored in polyvinyl chloride (PVC), polypropylene, and polyethylene infusion bags was studied. Oxaliplatin 100 mg/20 mL concentrated solution was diluted in 100 mL of 5% dextrose injection in PVC, polypropylene, and polyethylene infusion bags to produce nominal oxaliplatin concentrations of 0.2 and 1.3 mg/mL. The filled bags were stored for 14 days at 20 degrees C and protected from light, at 20 degrees C under normal fluorescent light, and at 4 degrees C. A 1-mL sample was removed from each bag at time 0 and at 24, 48, 72, 120, 168, and 336 hours. The samples were visually inspected for color and clarity, and the pH values of the solutions were measured. High-performance liquid chromatography was used to assay oxaliplatin concentration. Bacterial contamination was assessed on study day 14 after incubation in trypticase soy solution for three days at 37 degrees C. Solutions of oxaliplatin 0.2 and 1.3 mg/mL in 5% dextrose injection were stable in the three container types for at least 14 days at both 4 degrees C and 20 degrees C without regard to light exposure. No color change was detected during the storage period, and pH values remained stable. No microbial contamination was detected in any samples over the study period. Oxaliplatin solutions diluted in 5% dextrose injection to 0.2 and 1.3 mg/mL were stable in PVC and PVC-free infusion bags for at least 14 days at both 4 degrees C and 20 degrees C without regard to light exposure.
Oropesa, Ana Lourdes; Beltrán, Fernando Juan; Floro, António Miguel; Sagasti, Juan José Pérez; Palma, Patrícia
2018-01-01
The aim of the present study was to evaluate the ecotoxicological efficiency of two advanced ozonation processes (AOzPs), the catalytic ozonation (O 3 /TiO 2 ) and the photocatalytic ozonation (O 3 /TiO 2 /black light), in the remotion of carbamazepine. The ecotoxicological efficiency was assessed through the use of lethal and sublethal assays with species Vibrio fischeri and Daphnia magna. Results demonstrated that the AOzPs presented an efficiency of carbamazepine removal higher than 99% (carbamazepine < 2 μg/L) after 12 min of treatment. Relatively to ecotoxicological evaluation, application of acute assay to V. fischeri and chronic assay to D. magna allowed us to highlight that these technologies may form some transformation products that induce toxicity in the bacteria and the crustacean, once these organisms exposed to the undiluted solutions (100%) showed a decrease in the bioluminescence (vibrio) and end up dying before and during the first reproduction (daphnia). Despite that, when the chronic results obtained with the diluted solutions (50 and 25%; important to assess a more realistic scenario considering the dilution factor at the environment) were analyzed, no mortality at the mothers was observed. Compared to a carbamazepine solution (200 μg/L), diluted solutions improved of the reproduction parameters, and no toxic effects in the juvenoid system and in the embryonic development were observed. Relatively to the ecdysteroid effect of a carbamazepine solution (200 μg/L), only the photocatalytic ozonation treatment was able to remove the action of the drug. These results highlight the importance of complementing chemical analysis with ecotoxicological bioassays to assess the best technology to improve the surface water and effluent quality.
Structure of the enzymatically synthesized fructan inulin.
Heyer, A G; Schroeer, B; Radosta, S; Wolff, D; Czapla, S; Springer, J
1998-12-15
Construction, purification and characterization of a fusion protein of maltose-binding protein of Escherichia coli and the fructosyltransferase of Streptococcus mutans is described. With the purified protein, in vitro synthesis of inulin was performed. The obtained polysaccharide was characterized by high-performance size-exclusion chromatography (HPSEC) and static light scattering (SLS) in dilute aqueous and dimethyl sulfoxide solution. For all samples very high molecular weights between 60 x 10(6) and 90 x 10(6) g/mol and a remarkable small polydispersity index of 1.1 have been determined. Small root-mean-square radii of gyration point to a compact conformation in dilute solution. No difference between native and enzymatically synthesized inulin was observed by X-ray powder diffraction and thermoanalysis of solid samples.
Sakata, Yoshihisa; Hayashi, Takuya; Yasunaga, Ryō; Yanaga, Nobuyuki; Imamura, Hayao
2015-08-21
Remarkably high photocatalytic activity for the overall H2O splitting, where the activity was 32 mmol h(-1) for H2 production and 16 mmol h(-1) for O2 production under irradiation from a 450 W high-pressure Hg lamp and the apparent quantum yield (AQY) was 71% under irradiation at 254 nm, was achieved by utilizing a Rh(0.5)Cr(1.5)O3(Rh; 0.5 wt%)/Zn(3 mol%)-Ga2O3 photocatalyst when Ga2O3 was prepared using dilute CaCl2 aqueous solution having a concentration of 0.001 mol l(-1).
Gift, Alan D; Hettenbaugh, Jacob A; Quandahl, Rachel A; Mapes, Madison
2017-11-06
The effects of polymers on the anhydrate-to-hydrate transformation of carbamazepine (CBZ) was investigated. The three types of polymers studied were polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA) and substituted celluloses which included hydroxypropyl methylcellulose (HPMC) and methylcellulose (MC). Anhydrous CBZ was added to dilute aqueous polymer solutions and Raman spectroscopy measurements were collected to monitor the kinetics of the solution-mediated transformation to CBZ dihydrate. Polymers exhibiting the greatest inhibition were able to reduce the growth phase of the solution-mediated transformation and change the habit of the hydrate crystal indicating polymer adsorption to the hydrate crystal surface as the mechanism of inhibition. The results of the various polymers showed that short chain substituted celluloses (HPMC and MC) inhibited the CBZ transformation to a much greater extent than longer chains. The same trend was observed for PVP and PVA, but to a lesser extent. These chain length effects were attributed to changes in polymer confirmation when adsorbed on the crystal surface. Additionally, decreasing the percentage of hydroxyl groups on the PVA polymer backbone reduced the ability of the polymer to inhibit the transformation and changing the degree of substitutions of methyl and hydroxypropyl groups on the cellulosic polymer backbone had no effect on the transformation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gittings, M.R.; Cipelletti, L.; Trappe, V.
2000-05-11
The authors examine the structure of guar as a function of concentration in both H{sub 2}O and D{sub 2}O using several different scattering techniques. The range of scattering vectors spans 5 decades (143 cm{sup {minus}1} < q < 10.3 x 10{sup 6} cm{sup {minus}1}), providing insight into the supramolecular and local organization of the chains. This allows direct characterization of the large-scale aggregate structure of the guar, which can be on the order of 100 {micro}m. The aggregates are most likely loosely interconnected with single chains and other aggregates, and the structure and organization are critical in determining solution viscoelasticmore » properties. The solubility is poorer in D{sub 2}O as evidenced by larger aggregates, higher scattering intensities, a slightly higher fractal dimension, and a sublinear concentration dependence of the intensity. Aggregates were found in dilute neutral guar solutions as well as in cationic guar solutions (in H{sub 2}O), whether screened or unscreened. The presence of aggregates at all concentrations for neutral and charged guar indicates the difficulty in determining a molecular weight of the guar molecule.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haldrup, Kristoffer; Dohn, Asmus O.; Shelby, Megan L.
2016-08-27
Pyrazolate-bridged di-nuclear Pt complexes represent a series of molecules with tunable absorption and emission properties that can be directly modulated by structural factors, such as the Pt-Pt distance. However, direct experimental information regarding the structure of the emissive triplet excited state has remained scarce. Using time-resolved wide angle X-ray scattering (WAXS), the molecular structure of the triplet excited state for one of the complexes [Pt(ppy)(μ-tBu 2pz)] 2 was obtained in a dilute (0.5 mM) toluene solution utilizing the monochromatic X-ray beamline 11IDD of the Advanced Photon Source. The excited state structural analysis was carried out based on the results frommore » both transient WAXS measurements and DFT calculations to shed light on the primary structural changes, in particular the Pt-Pt distance and ligand rotation taking place following the photo-excitation of [Pt(ppy)(μ-tBu 2pz)] 2 in toluene solution. We find that in the triplet excited state a pronounced contraction along the Pt-Pt axis has taken place accompanied by rotational motions of ppy ligands toward one another. Our results suggest that the contraction is larger than what has previously been reported, but are in good agreement with recent theoretical efforts and suggest the ppy moieties as targets for rational synthesis aimed at tuning the excited-state structure and properties« less
van der Waal, S V; Scheres, N; de Soet, J J; Wesselink, P R; Crielaard, W
2015-02-01
To investigate the cytotoxicity of a modified salt solution (MSS) and evaluate the antimicrobial properties of MSS on in vitro biofilm models. In a metabolic assay, fibroblasts derived from periodontal ligaments (PDL) of human extracted teeth were cultured and challenged with MSS or controls. Then, in active attachment biofilm models, the efficacy of MSS in the presence of dentine powder and in eliminating mature biofilms was investigated. In the dentine assay, a biofilm of Enterococcus faecalis was employed. For the final assay, microorganisms were retrieved from infected root canals and cultured to produce biofilms. After the treatments with MSS or the controls, the biofilms were collected, serially diluted and plated. The colony-forming units were counted. One-way anova was used to analyse the differences between the groups. A P < 0.05 was considered significant. The PDL fibroblasts remained metabolically active after challenges with MSS. Dentine powder did not alter the efficacy of MSS (P > 0.05). In endodontic biofilms, the culturable bacteria were equally reduced by MSS, 2% chlorhexidine (CHX) or 2% sodium hypochlorite (NaOCl) (P > 0.05). Modified salt solution is noncytotoxic in vitro and has good antimicrobial properties equal to CHX and NaOCl. Although the results are promising, ex vivo and in vivo studies are needed before its use as an interappointment root canal dressing can be considered. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Wang, Yan Jason; Yang, Bo; Lipsky, Eric M; Robinson, Allen L; Zhang, K Max
2013-01-15
Experimental results from laboratory emission testing have indicated that particulate emission measurements are sensitive to the dilution process of exhaust using fabricated dilution systems. In this paper, we first categorize the dilution parameters into two groups: (1) aerodynamics (e.g., mixing types, mixing enhancers, dilution ratios, residence time); and (2) mixture properties (e.g., temperature, relative humidity, particle size distributions of both raw exhaust and dilution gas). Then we employ the Comprehensive Turbulent Aerosol Dynamics and Gas Chemistry (CTAG) model to investigate the effects of those parameters on a set of particulate emission measurements comparing two dilution tunnels, i.e., a T-mixing lab dilution tunnel and a portable field dilution tunnel with a type of coaxial mixing. The turbulent flow fields and aerosol dynamics of particles are simulated inside two dilution tunnels. Particle size distributions under various dilution conditions predicted by CTAG are evaluated against the experimental data. It is found that in the area adjacent to the injection of exhaust, turbulence plays a crucial role in mixing the exhaust with the dilution air, and the strength of nucleation dominates the level of particle number concentrations. Further downstream, nucleation terminates and the growth of particles by condensation and coagulation continues. Sensitivity studies reveal that a potential unifying parameter for aerodynamics, i.e., the dilution rate of exhaust, plays an important role in new particle formation. The T-mixing lab tunnel tends to favor the nucleation due to a larger dilution rate of the exhaust than the coaxial mixing field tunnel. Our study indicates that numerical simulation tools can be potentially utilized to develop strategies to reduce the uncertainties associated with dilution samplings of emission sources.
Dial-A-Decon Solution Chemistry GAP Testing
2012-04-01
34 The tubes were serially diluted using Buttcrfield’s buffer solution and plated in triplicate on Tryptic Soy Agar. Plates were enumerated the...of 200 uL HD to 10 mL of the surfactant solution. The energy to create the oil in water (O/W) emulsions was provided by magnetic stirring. Solutions...emulsify a mixture of water and oil such as HD, one or more emulsifiers are required. Each surfactant system can be characterized by an HLB value
NASA Technical Reports Server (NTRS)
Reed, R. P.
1972-01-01
The elastic and plastic deformation behavior of high-purity aluminum and of dilute aluminum alloys is reviewed. Reliable property data, including elastic moduli, elastic coefficients, tensile, creep, fatigue, hardness, and impact are presented. Single crystal tensile results are discussed. Rather comprehensive reference lists, containing publications of the past 20 years, are included for each of the above categories. Defect structures and mechanisms responsible for mechanical behavior are presented. Strengthening techniques (alloys, cold work, irradiation, quenching, composites) and recovery are briefly reviewed.
Single-site properties of U impurities doped in La2Zn17 (abstract)
NASA Astrophysics Data System (ADS)
Suzuki, H.; Anzai, K.; Takagi, S.
1997-04-01
Thermodynamic and transport properties of heavy Fermion (HF) U compounds show similar behavior to HF Ce compounds. Although most of the magnetic properties of HF Ce compounds can be qualitatively understood on the basis of the impurity Kondo model, no such consensus for HF U compounds has been reached. In addition to this, the single-site properties of U impurities are not understood so well, in contrast to the case of Ce impurities. Recent works for dilute U systems reported new features as are not seen in dilute Ce systems. We have investigated a dilute-U2Zn17 system of (La1-zUz)2Zn17 in order to reveal the single U ion site properties of this system by preparing single crystals. The impurity contributions to various physical quantities such as ρimp(T), χimp(T), and Cimp(T) can be scaled by the U concentration between z=0.025 and 0.05, and the system is considered as in the dilute limit still for z=0.05. The electrical resistivity shows the typical impurity-Kondo upturn at low temperatures. The electronic specific-heat coefficient is strongly enhanced (γimp≈1.5 J/K2 mole U) and about 4 times as large as that for dense U2Zn17. Suppressions of the Kondo effect by the magnetic field are seen in γimp(H) and magnetoresistance. The relatively large anisotropy in χimp(T) indicates an existence of the crystal field. These features of this system will be explained in terms of the Kondo effect in the presence of the crystal field.
Stoica-Guzun, Anicuta; Stroescu, Marta; Jinga, Sorin Ion; Mihalache, Nicoleta; Botez, Adriana; Matei, Cristian; Berger, Daniela; Damian, Celina Maria; Ionita, Valentin
2016-10-01
In this study bacterial cellulose-magnetite composites were synthesised for the removal of chromium(VI) from aqueous solutions. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis and X-ray Photoelectron Spectroscopy (XPS) were used to characterize the bacterial cellulose-magnetite composites and to reveal the uniform dispersion of nanomagnetite in the BC matrix. Magnetic properties were also measured to confirm the magnetite immobilization on bacterial cellulose membrane. The effects of initial Cr(VI) concentration, solution pH and solid/liquid ratio upon chromium removal were examined using the statistical Box-Behnken Design. Because of the possibility of magnetite dissolution during chromium(VI) adsorption, the degree of iron leaching was also analysed in the same conditions as Cr(VI) adsorption. From the factors affecting chromium(VI) adsorption the most important was solution pH. The highest Cr(VI) removal efficiency was observed at pH 4, accompanied by the lowest iron leaching in the solution. The adsorption experiments also indicated that the adsorption process of chromium(VI) is well described by Freundlich adsorption model. Our results proved that the BC-magnetite composites could be used for an efficient removal of chromium(VI) from diluted solutions with a minimum magnetite dissolution during operation. Copyright © 2016 Elsevier B.V. All rights reserved.
Coupling MD Simulations and X-ray Absorption Spectroscopy to Study Ions in Solution
NASA Astrophysics Data System (ADS)
Marcos, E. Sánchez; Beret, E. C.; Martínez, J. M.; Pappalardo, R. R.; Ayala, R.; Muñoz-Páez, A.
2007-12-01
The structure of ionic solutions is a key-point in understanding physicochemical properties of electrolyte solutions. Among the reduced number of experimental techniques which can supply direct information on the ion environment, X-ray Absorption techniques (XAS) have gained importance during the last decades although they are not free of difficulties associated to the data analysis leading to provide reliable structures. Computer simulations of ions in solution is a theoretical alternative to provide information on the solvation structure. Thus, the use of computational chemistry can increase the understanding of these systems although an accurate description of ionic solvation phenomena represents nowadays a significant challenge to theoretical chemistry. We present: (a) the assignment of features in the XANES spectrum to well defined structural motif in the ion environment, (b) MD-based evaluation of EXAFS parameters used in the fitting procedure to make easier the structural resolution, and (c) the use of the agreement between experimental and simulated XANES spectra to help in the choice of a given intermolecular potential for Computer Simulations. Chemical problems examined are: (a) the identification of the second hydration shell in dilute aqueous solutions of highly-charged cations, such as Cr3+, Rh3+, Ir3+, (b) the invisibility by XAS of certain structures characterized by Computer Simulations but exhibiting high dynamical behavior and (c) the solvation of Br- in acetonitrile.
Coupling MD Simulations and X-ray Absorption Spectroscopy to Study Ions in Solution
NASA Astrophysics Data System (ADS)
Marcos, E. Sánchez; Beret, E. C.; Martínez, J. M.; Pappalardo, R. R.; Ayala, R.; Muñoz-Páez, A.
2007-11-01
The structure of ionic solutions is a key-point in understanding physicochemical properties of electrolyte solutions. Among the reduced number of experimental techniques which can supply direct information on the ion environment, X-ray Absorption techniques (XAS) have gained importance during the last decades although they are not free of difficulties associated to the data analysis leading to provide reliable structures. Computer simulations of ions in solution is a theoretical alternative to provide information on the solvation structure. Thus, the use of computational chemistry can increase the understanding of these systems although an accurate description of ionic solvation phenomena represents nowadays a significant challenge to theoretical chemistry. We present: (a) the assignment of features in the XANES spectrum to well defined structural motif in the ion environment, (b) MD-based evaluation of EXAFS parameters used in the fitting procedure to make easier the structural resolution, and (c) the use of the agreement between experimental and simulated XANES spectra to help in the choice of a given intermolecular potential for Computer Simulations. Chemical problems examined are: (a) the identification of the second hydration shell in dilute aqueous solutions of highly-charged cations, such as Cr3+, Rh3+, Ir3+, (b) the invisibility by XAS of certain structures characterized by Computer Simulations but exhibiting high dynamical behavior and (c) the solvation of Br- in acetonitrile.
40 CFR 1065.546 - Validation of minimum dilution ratio for PM batch sampling.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the raw exhaust flow rate based on the measured intake air molar flow rate and the chemical balance..., fuel rate measurements, and fuel properties, consistent with good engineering judgment. (b) Determine...) and dilute exhaust corrected for any removed water. (c) Use good engineering judgment to develop your...
NASA Astrophysics Data System (ADS)
Houghton, K. A.; Goh, P.; Spangler, R.; Schweitzer, W.; Khaled, K. A., Jr.; Berry, J.; Van Wyngarden, A. L.
2017-12-01
During cloud formation, atmospheric aerosols take up large quantities of water; the ensuing, rapid changes in water content and acidity may cause organic species within these aerosols to undergo various reactions such as hydration, hydrolysis, and/or polymerization. Glyoxal and methylglyoxal are among the most common organic molecules found within atmospheric aerosols, and prior experimental work has demonstrated that their speciation is altered during cloud processing. Due to the low water content of atmospheric aerosols, organics such as glyoxal and methylglyoxal are suspected to be significantly polymerized before cloud formation, as supported by the observation of polymers in ambient aerosols. Some of these polymerization reactions may be reversible; thus, these polymers may be subject to decomposition during cloud formation. The subsequent changes in the speciation of glyoxal and methylglyoxal polymers following cloud processing may alter the climate forcing properties of that aerosol population. The details of which polymers decompose and whether these decomposition reactions occur with sufficient speed to achieve equilibrium during the average lifetime of a cloud droplet remain unclear. Here, we use high resolution quadrupole mass spectrometry to investigate the kinetics of glyoxal and methylglyoxal speciation reactions after dilution, simulating the effects of cloud droplet formation on aerosol particles. Our data reveal that after dilution, polymers (up to the pentamer and octamer for glyoxal and methylglyoxal, respectively) persist in solution for more than 90 minutes. Furthermore, polymer speciation continues to change for hours after dilution, indicating that kinetics of at least some polymer interconversion reactions are slow with respect to a typical cloud droplet lifetime.
Illien, Bertrand; Ying, Ruifeng
2009-05-11
New static light scattering (SLS) equations for dilute binary solutions are derived. Contrarily to the usual SLS equations [Carr-Zimm (CZ)], the new equations have no need for the experimental absolute Rayleigh ratio of a reference liquid and solely rely on the ratio of scattered intensities of solutions and solvent. The new equations, which are based on polarizability equations, take into account the usual refractive index increment partial differential n/partial differential rho(2) complemented by the solvent specific polarizability and a term proportional to the slope of the solution density rho versus the solute mass concentration rho(2) (density increment). Then all the equations are applied to 21 (macro)molecules with a wide range of molar mass (0.2
Graziano, Giuseppe
2006-04-07
The partial molar volume of n-alcohols at infinite dilution in water is smaller than the molar volume in the neat liquid phase. It is shown that the formula for the partial molar volume at infinite dilution obtained from the scaled particle theory equation of state for binary hard sphere mixtures is able to reproduce in a satisfactory manner the experimental data over a large temperature range. This finding implies that the packing effects play the fundamental role in determining the partial molar volume at infinite dilution in water also for solutes, such as n-alcohols, forming H bonds with water molecules. Since the packing effects in water are largely related to the small size of its molecules, the latter feature is the ultimate cause of the decrease in partial molar volume associated with the hydrophobic effect.
A comparison of the palatability of flavored oral contrasts.
Arya, Rajiv; Hansen, Allison; Taira, Breena R; Packy, Theodore; Singer, Adam J
2009-09-01
The aim of this study was to compare the taste of computed tomography (CT) oral contrast diluted with various flavored drinks. We performed a prospective, blinded, controlled trial in healthy adult volunteers. Subjects were assigned to ingest four 250-mL aliquots of oral contrast media diluted in water, Crystal Light Lemonade (Kraft Food, Northfield, Ill), Tropical Punch Kool-Aid (Kraft Food), and Tropicana orange juice (Pepsi Bottling Company, Sommers, NY) in random order; and the taste of the solution was measured with a 100-mm visual analogue scale and 5-point Likert scale from very worst to best. Between-group comparison of the taste scores was performed with repeated-measures analysis of variance and pairwise t tests. The study had 80% power to detect an effect size 0.75 SDs. There were 23 subjects; mean (SD) age was 33 (7.7) and 30% were female. The mean (SD) taste scores were water 12 (5), lemonade 37 (21), Kool-Aid 44 (20), and orange juice 40 (20) (P < .05). The proportion of subjects completely ingesting the contrast in water (65%) was significantly less than that with other 3 study solutions (100% each, P < .001). Dilution of oral contrast media with lemonade, fruit punch, or orange juice is tastier than with water. The choice of the specific juice used to dilute the oral contrast should be individualized based on patient preferences and availability.
Methods of preventing vinorelbine-induced phlebitis: an experimental study in rabbits
Kohno, Emiko; Murase, Saori; Nishikata, Mayumi; Okamura, Noboru; Matzno, Sumio; Kuwahara, Takashi; Matsuyama, Kenji
2008-01-01
Purpose: In order to identify methods for preventing phlebitis caused by intravenous administration of vinorelbine (VNR), we established a procedure for estimating the severity of phlebitis in an animal model. Methods: Four different factors (administration rate, dilution, flushing, and infusion of fat emulsion) were evaluated for alleviation of phlebitis caused by VNR infusion. VNR was diluted with normal saline to prepare test solutions with concentrations of 0.6 mg/mL or 0.3 mg/mL for infusion into the auricular veins of rabbits. Two days after VNR infusion, the veins were subjected to histopathological examination. Results: VNR did not cause obvious loss of venous endothelial cells, the most sensitive and common feature of phlebitis, but VNR infusion led to inflammatory cell infiltration, edema, and epidermal degeneration. Tissue damage was significantly decreased by shortening the administration time and by diluting the VNR solution for infusion from 0.6 mg/mL to 0.3 mg/mL. However, there was no effect of flushing with normal saline after VNR infusion, while treatment with fat emulsion before and after VNR infusion only had a minimal effect. Conclusion: Rapid infusion and dilution are effective methods of reducing phlebitis caused by the infusion of VNR, but the efficacy of flushing with normal saline or infusion of fat emulsion was not confirmed. PMID:18695742
Particle-Laden Liquid Jet Impingement on a Moving Substrate
NASA Astrophysics Data System (ADS)
Rahmani, Hatef; Green, Sheldon
2017-11-01
The impingement of high-speed jets on a moving substrate is salient to a number of industrial processes such as surface coating in the railroad industry. The particular jet fluids studied were dilute suspensions of neutrally buoyant particles in water-glycerin solutions. At these low particle concentrations, the suspensions have Newtonian fluid viscosity. A variety of jet and surface velocities, solution properties, nozzle diameters, mean particle sizes, and volume fractions were studied. It was observed that for jets with very small particles, addition of solids to the jet enhances deposition and postpones splash relative to a particle-free water-glycerin solution with the same viscosity. In contrast, jets with larger particles in suspension were more prone to splash than single phase jets of the same viscosity. It is speculated that the particle diameter, relative to the lamella thickness, is the key parameter to determine whether splash is suppressed or enhanced. An existing splash model for single phase liquid jets was found to be in good agreement with the experimental results, provided that the single fitting parameter in that model is a function of the particle size, volume fraction, and surface roughness.
Topuzogullari, Murat; Elalmis, Yeliz Basaran; Isoglu, Sevil Dincer
2017-04-01
Solution behavior of thermo-responsive polymers and their complexes with biological macromolecules may be affected by environmental conditions, such as the concentration of macromolecular components, pH, ion concentration, etc. Therefore, a thermo-responsive polymer and its complexes should be characterized in detail to observe their responses against possible environments under physiological conditions before biological applications. To briefly indicate this important issue, thermo-responsive block copolymer of quaternized poly(4-vinylpyridine) and poly(oligoethyleneglycol methyl ether methacrylate) as a potential nonviral vector has been synthesized. Polyelectrolyte complexes of this copolymer with the antisense oligonucleotide of c-Myc oncogene are also thermo-responsive but, have lower LCST (lower critical solution temperature) values compared to individual copolymer. LCST values of complexes decrease with molar ratio of macromolecular components and presence of salt. Dilution of solutions also affects solution behavior of complexes and causes a significant decrease in size and an increase in LCST, which indicates possible effects of severe dilutions in the blood stream. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kim, Kwang Ho; Jeong, Han Seob; Kim, Jae-Young; Han, Gyu Seong; Choi, In-Gyu; Choi, Joon Weon
2012-10-01
This study was performed to investigate the utility of bio-oil, produced via a fast pyrolysis process, as an antifungal agent against wood-rot fungi. Bio-oil solutions (25-100 wt.%) were prepared by diluting the bio-oil with EtOH. Wood block samples (yellow poplar and pitch pine) were treated with diluted bio-oil solutions and then subjected to a leaching process under hot water (70°C) for 72 h. After the wood block samples were thoroughly dried, they were subjected to a soil block test using Tyromyces palustris and Trametes versicolor. The antifungal effect of the 75% and 100% bio-oil solutions was the highest for both wood blocks. Scanning electron microscopy analysis indicated that some chemical components in the bio-oil solution could agglomerate together to form clusters in the inner part of the wood during the drying process, which could act as a wood preservative against fungal growth. According to GC/MS analysis, the components of the agglomerate were mainly phenolic compounds derived from lignin polymers. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Baker, Jared Scott
2011-12-01
The development of novel nanomaterials and the understanding of their fundamental physical and chemical properties represent an exciting area of research. These materials are continuously being sought for ever-increasing applications; finding their way into uses that influence mankind on a daily basis. Combining elements from traditional nanoparticle characterization with electrophoretic-based techniques, this dissertation presents the analysis of carbon nanoparticles (CNPs) generated from a novel source (candle soot) as well as a unique perspective on the reactivity and degradation process of magic-sized cadmium chalcogenide nanocrystals. One potential application of CNPs is their use as an alternative fluorophore in a separation-based sensor system. Laser-induced-fluorescence (LIF) is a commonly used manner of detection in this type of platform, but is limited in many cases by problems associated with the fluorophore. Carbon-based nanoparticles have the potential to improve upon traditional fluorophores in applications that make use of LIF as the detection scheme. CNPs were extracted from the carbonaceous material produced by the incomplete combustion of a candle. The soot was submitted to an oxidizing treatment and extraction/filtration procedures rendering watersoluble luminescent species. Electron microscopy was used to identify globular, amorphous structures in the nanometer size-range. An aqueous suspension of CNPs demonstrated excellent stability in terms of its electronic properties, showing little change in absorption and emission spectra upon storage under ambient conditions over a two-year period. Capitalizing on the strengths of capillary electrophoresis (CE) as a characterization technique, we have analyzed the negatively-charged CNPs in terms of charge and size by studying the influence of variable CE conditions on the resulting separation. Separations at different pH revealed a highly complex mixture of CNPs, containing species with large electrophoretic mobilities under a wide range of pH values. The mobility of these nanoparticles as a function of ionic strength was compared to classical electrokinetic theory, suggesting that the species are small, highly charged particles with appreciable zeta potentials, even at low pH. In an attempt to reduce the complexity of the CNP solution, two molecular-weight based fractionation techniques were employed and evaluated. Traditional dialysis and ultracentrifugation filtration techniques were modified to generate multiple CNPs fractions based on size. Analysis of the fractions by absorption and photoluminescence spectroscopy as well as CE revealed specific characteristics for a given sized-fraction. Namely, a strong correlation between the size of the CNPs and their luminescent emission was observed. CE was utilized to characterize each fraction and to ultimately judge the effectiveness of the fractionation techniques. The characterization of the persistence and degradation of magic-sized CdSe nanocrystals (NCs) after their removal from the original reaction mixture and dispersion into basic aqueous solutions was performed by absorption spectroscopy. NCs degraded after dilution into aqueous NaOH, resulting in red-shifted excitonic absorption bands and eventual flocculation. Dilution of NCs into basic aqueous solutions of cysteinate resulted in degradation via a different mechanism with an absence of flocculation; kinetics varied with concentration of cysteinate. The chemical fate of NCs after dilution into basic aqueous solutions containing both Cd2+ and cysteinate varied with the cysteinate-to-Cd 2+ molar ratio, which determined the relative solute mole fractions of various Cd2+-cysteinate complexes. CdSe NCs persisted on long timescales only when dispersed in solutions containing [Cd(cysteinate) 3]4-. Equilibria are presented to account for the observed spectral changes after dilution of CdSe into various basic media. Cadmium(II)-cysteinate complex-formation equilibria influenced the temporal persistence of the nanocrystals; the pathway through which CdSe NCs degraded depended on the concentration of free, uncoordinated cysteinate. These findings indicate that solution-phase chemistry can determine whether NCs remain intact upon removal from their original reaction mixtures. Departing from the analysis of nanomaterials, an additional chapter focuses on the evaluation of a new chromatographic packing material. Two chromatographic columns packed with superficially porous packing material, Kinetex(TM) 1.7 mum and 2.6 mum C18 particles were evaluated in terms of their physical properties and performance characteristics. These columns were compared to a column packed with a sub-2 mum totally porous material and to a Halo(TM) column packed with 2.7 mum C18 superficially porous packing. The columns packed with superficially porous particles displayed a comparably narrower size distribution, which is narrower than the distribution of the totally porous sub-2 mum particles. Physical characteristics of the Kinetex(TM) particles were evaluated in terms of surface area, pore diameter, and specific pore volume. Total, external, internal and shell porosities among the four different columns were evaluated and compared. The specific permeability for the Kinetex columns showed values close to those predicted by the Kozeny-Carman equation. All four columns were evaluated in terms of their chromatographic performance and compared using the Knox equation. The columns packed with the 2.6 mum and 2.7 mum superficially porous materials showed reduced plate heights below 2, while the sub-2 mum particles showed values of 2.2 and above.
Organotins' fate in lagoon sewage system: dealkylation and sludge sorption/desorption.
Ophithakorn, Thiwari; Sabah, Aboubakr; Delalonde, Michele; Bancon-Montigny, Chrystelle; Suksaroj, Thunwadee Tachapattaworakul; Wisniewski, Christelle
2016-11-01
Organotin compounds (OTs) have been widely used for their biocidal properties and as stabilizers in various industrial applications. Due to their high toxicity, organotins are subject to many studies regarding their behavior in wastewater treatment plant and aquatic environment. However, few studies are available regarding their behavior in lagoon sewage system, although such treatment is commonly used for sewage treatment in low-population areas. The present study aimed at studying the fate of organotins (monobutyltin (MBT), dibutyltin (DBT), and tributyltin (TBT)) in lagoon sewage system. Short-term experiments, carried out at lab scale, consisted in sampling sludge from aerobic stabilization ponds, and then quantifying sorption and desorption of the different organotin species, as well as their respective transformation, under defined operating conditions (e.g., tributyltin spike and dilution) simulating possible change in the surrounding environment of sludge in the lagoon. Results established that a very important percentage of the OTs was localized in the solid phase of the sludge (more than 98 %), whatever the operating conditions may be; however, transformation and locations of the three OT species differed according to the different conditions of sludge dilution, TBT spiking, and test duration. After dilution of lagoon sludge, TBT desorption from sludge was observed; it was supposed that dealkylation of TBT after desorption occurred rapidly and increased dissolved MBT and DBT in liquid phase; MBT sorbed subsequently on solid phase. The nature of the diluent (i.e., tap water or saline solution) appeared to slightly influence the sludge behavior. After TBT spiking, TBT was supposed to be rapidly sorbed but also transformed in DBT and MBT that would as well sorbed on the sludge, which explained the decrease of these species in the liquid phase. Tests aimed at studying long-term effect of TBT spiking demonstrated that the sorbed species could be remobilized and transformed after a dilution.
Mussel-inspired histidine-based transient network metal coordination hydrogels
Fullenkamp, Dominic E.; He, Lihong; Barrett, Devin G.; Burghardt, Wesley R.; Messersmith, Phillip B.
2013-01-01
Transient network hydrogels cross-linked through histidine-divalent cation coordination bonds were studied by conventional rheologic methods using histidine-modified star poly(ethylene glycol) (PEG) polymers. These materials were inspired by the mussel, which is thought to use histidine-metal coordination bonds to impart self-healing properties in the mussel byssal thread. Hydrogel viscoelastic mechanical properties were studied as a function of metal, pH, concentration, and ionic strength. The equilibrium metal-binding constants were determined by dilute solution potentiometric titration of monofunctional histidine-modified methoxy-PEG and were found to be consistent with binding constants of small molecule analogs previously studied. pH-dependent speciation curves were then calculated using the equilibrium constants determined by potentiometric titration, providing insight into the pH dependence of histidine-metal ion coordination and guiding the design of metal coordination hydrogels. Gel relaxation dynamics were found to be uncorrelated with the equilibrium constants measured, but were correlated to the expected coordination bond dissociation rate constants. PMID:23441102
Magneto-optical characterization of colloidal dispersions. Application to nickel nanoparticles.
Pascu, Oana; Caicedo, José Manuel; Fontcuberta, Josep; Herranz, Gervasi; Roig, Anna
2010-08-03
We report here on a fast magneto-optical characterization method for colloidal liquid dispersions of magnetic nanoparticles. We have applied our methodology to Ni nanoparticles with size equal or below 15 nm synthesized by a ligand stabilized solution-phase synthesis. We have measured the magnetic circular dichroism (MCD) of colloidal dispersions and found that we can probe the intrinsic magnetic properties within a wide concentration range, from 10(-5) up to 10(-2) M, with sensitivity to concentrations below 1 microg/mL of magnetic Ni particles. We found that the measured MCD signal scales up with the concentration thus providing a means of determining the concentration values of highly diluted dispersions. The methodology presented here exhibits large flexibility and versatility and might be suitable to study either fundamental problems related to properties of nanosize particles including surface related effects which are highly relevant for magnetic colloids in biomedical applications or to be applied to in situ testing and integration in production lines.
Pardo, Beatrice; Ferrer, Nabí; Sempere, Julià; Gonzalez-Olmos, Rafael
2016-11-01
A total of 11 different commercial activated carbons (AC) with well characterized textural properties and oxygen surface content were tested as adsorbents for the removal of aniline as a target water pollutant. The maximum adsorption capacity of aniline for the studied AC was from 138.9 to 257.9 mg g(-1) at 296.15 K and it was observed to be strongly related to the textural properties of the AC, mainly with the BET surface area and the micropore volume. It was not observed any influence of the oxygen surface content of the AC on the maximum adsorption capacity. However, it was found that at low aniline aqueous concentration, the presence of oxygen surface groups plays a dominant role during the adsorption. A high concentration of oxygen surface groups, mainly carboxylic and phenolic groups, decreases the aniline adsorption regardless of the surface area of the AC. Copyright © 2016 Elsevier Ltd. All rights reserved.
DeRosa, Christopher A.; Kerr, Caroline; Fan, Ziyi; Kolpaczynska, Milena; Mathew, Alexander S.; Evans, Ruffin E.; Zhang, Guoqing; Fraser, Cassandra L.
2015-01-01
The dual-emissive properties of solid-state difluoroboron β-diketonate-poly(lactic acid) (BF2bdkPLA) materials have been utilized for biological oxygen sensing. In this work, BF2dbm(X)PLA materials were synthesized, where X = H, F, Cl, Br, and I. The effects of changing the halide substituent and PLA polymer chain length on the optical properties in dilute CH2Cl2 solutions and solid-state polymer films were studied. These luminescent materials show fluorescence, phosphorescence, and lifetime tunability on the basis of molecular weight, as well as lifetime modulation via the halide substituent. Short BF2dbm(Br)PLA (6.0 kDa) and both short and long BF2dbm(I)PLA polymers (6.0 or 20.3 kDa) have fluorescence and intense phosphorescence ideal for ratiometric oxygen sensing. The lighter halide-dye polymers with hydrogen, fluorine, and chlorine substitution have longer phosphorescence lifetimes and can be utilized as ultrasensitive oxygen sensors. Photostability was also analyzed for the polymer films. PMID:26480236
Pang, H L; Zhang, X H; Zhong, X X; Liu, B; Wei, X G; Kuang, Y F; Chen, J H
2008-03-01
Ru-doped SnO2 nanoparticles were prepared by chemical precipitation and calcinations at 823 K. Due to high stability in diluted acidic solution, Ru-doped SnO2 nanoparticles were selected as the catalyst support and second catalyst for methanol electrooxidation. The micrograph, elemental composition, and structure of the Ru-doped SnO2 nanoparticles were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction, respectively. The electrocatalytic properties of the Ru-doped SnO2-supported Pt catalyst (Pt/Ru-doped SnO2) for methanol oxidation have been investigated by cyclic voltammetry. Under the same loading mass of Pt, the Pt/Ru-doped SnO2 catalyst shows better electrocatalytic performance than the Pt/SnO2 catalyst and the best atomic ratio of Ru to Sn in Ru-doped SnO2 is 1/75. Additionally, the Pt/Ru-doped SnO2 catalyst possesses good long-term cycle stability.
Kalafatakis, S; Braekevelt, S; Lymperatou, A; Zarebska, A; Hélix-Nielsen, C; Lange, L; Skiadas, I V; Gavala, H N
2018-04-24
Forward osmosis (FO) is a low energy-intensive process since the driving force for water transport is the osmotic pressure difference, Δπ, between the feed and draw solutions, separated by the FO membrane, where π draw > π feed . The potential of FO in wastewater treatment and desalination have been extensively studied; however, regeneration of the draw solution (thereby generating clean water) requires application of an energy-intensive process step like reverse osmosis (RO). In this study, the potential of applying FO for direct water recirculation from diluted fermentation effluent to concentrated feedstock, without the need for an energy-intensive regeneration step (e.g. RO), has been investigated. Butanol production during crude glycerol fermentation by Clostridium pasteurianum, has been selected as a model process and the effect of cross-flow velocity and the dilution of draw solution on the water flux during short-term experiments (200 min), were investigated. Statistical analysis revealed that the dilution of the draw solution is the most influential factor for the water flux. Subsequent modelling of an integrated FO-fermentation process, showed that water recoveries could lead to substantial financial benefits, although the integrated FO-fermentation process demonstrated lower water flux than expected. FTIR analyses of the membrane surface implied that the decrease in water flux was due to the presence of proteins, polysaccharides and other extracellular polymeric substances on the membrane active layer, indicating the presence of a fouling layer. Based on these findings, possible fouling alleviation strategies and future research directions are discussed and proposed.
Leibo, Stanley P.; Mazur, Peter
1966-01-01
Measurements of survival and buoyant densities of bacteriophages T4B, T4Bo1, and T4D have demonstrated the following: (a) After suspension in a concentrated salt solution, T4B and T4D are sensitive both to osmotic shock and to subsequent exposure to low monovalent salt concentrations. (b) Sensitivity of T4B to dilution from a concentrated salt solution is dependent on dilution rate, that of T4D is less dependent, and that of T4Bo1 is independent. (c) Sensitivity of all three phages to low salt concentrations depends on initial salt concentrations to a variable extent. (d) Density gradient profiles indicate that nearly half of osmotically shocked T4B retain their DNA. Similar analysis demonstrates that few, if any, T4Bo1 lose DNA when subjected to a treatment causing 90% loss of infectivity. (e) The effective buoyant densities of T4B and T4Bo1 depend significantly on the dilution treatments to which the phages are subjected prior to centrifugation in CsCl gradients. These data are explicable in terms of the different relative permeabilities of the phages to water and solutes, and of alterations in the counterion distribution surrounding the DNA within the phage heads. PMID:5972376
Muthukumar, M.
2012-01-01
Polyelectrolyte chains are well known to be strongly correlated even in extremely dilute solutions in the absence of additional strong electrolytes. Such correlations result in severe difficulties in interpreting light scattering measurements in the determination of the molecular weight, radius of gyration, and the second virial coefficient of charged macromolecules at lower ionic strengths from added strong electrolytes. By accounting for charge-regularization of the polyelectrolyte by the counterions, we present a theory of the apparent molecular weight, second virial coefficient, and the intermolecular structure factor in dilute polyelectrolyte solutions in terms of concentrations of the polymer and the added strong electrolyte. The counterion adsorption of the polyelectrolyte chains to differing levels at different concentrations of the strong electrolyte can lead to even an order of magnitude discrepancy in the molecular weight inferred from light scattering measurements. Based on counterion-mediated charge regularization, the second virial coefficient of the polyelectrolyte and the interchain structure factor are derived self-consistently. The effect of the interchain correlations, dominating at lower salt concentrations, on the inference of the radius of gyration and on molecular weight is derived. Conditions for the onset of nonmonotonic scattering wave vector dependence of scattered intensity upon lowering the electrolyte concentration and interpretation of the apparent radius of gyration are derived in terms of the counterion adsorption mechanism. PMID:22830728
Korinth, Gintautas; Wellner, Tanja; Schaller, Karl Heinz; Drexler, Hans
2012-11-23
Aqueous amphiphilic compounds may exhibit enhanced skin penetration compared with neat compounds. Conventional models do not predict this percutaneous penetration behaviour. We investigated the potential of the octanol-water partition coefficient (logP) to predict dermal fluxes for eight compounds applied neat and as 50% aqueous solutions in diffusion cell experiments using human skin. Data for seven other compounds were accessed from literature. In total, seven glycol ethers, three alcohols, two glycols, and three other chemicals were considered. Of these 15 compounds, 10 penetrated faster through the skin as aqueous solutions than as neat compounds. The other five compounds exhibited larger fluxes as neat applications. For 13 of the 15 compounds, a consistent relationship was identified between the percutaneous penetration behaviour and the logP. Compared with the neat applications, positive logP were associated with larger fluxes for eight of the diluted compounds, and negative logP were associated with smaller fluxes for five of the diluted compounds. Our study demonstrates that decreases or enhancements in dermal penetration upon aqueous dilution can be predicted for many compounds from the sign of logP (i.e., positive or negative). This approach may be suitable as a first approximation in risk assessments of dermal exposure. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Malarczyk, Elzbieta; Kochmanska-Rdest, Janina; Jarosz-Wilkolazka, Anna
2009-01-01
Laccase, an enzyme responsible for aerobic transformations of natural phenolics, in industrial applications requires the presence of low-molecular substances known as mediators, which accelerate oxidation processes. However, the use of mediators is limited by their toxicity and the high costs of exploitation. The activation of extracellular laccase in growing fungal culture with highly diluted mediators, ABTS and HBT is described. Two high laccase-producing fungal strains, Trametes versicolor and Cerrena unicolor, were used in this study as a source of enzyme. Selected dilutions of the mediators significantly increased the activity of extracellular laccase during 14 days of cultivation what was distinctly visible in PAGE technique and in colorimetric tests. The same mediator dilutions increased demethylation properties of laccase, which was demonstrated during incubation of enzyme with veratric acid. It was established that the activation effect was assigned to specific dilutions of mediators. Our dose-response dilution process smoothly passes into the range of action of homeopathic dilutions and is of interest for homeopaths. PMID:19732425
Hinkley, T.K.; Seeley, J.L.; Tatsumoto, M.
1988-01-01
Three distinct types of solid material are associated with each sample of the hydrothermal fluid that was collected from the vents of the Southern Juan de Fuca Ridge. The solid materials appear to be representative of deposits on ocean floors near mid-ocean ridges, and interpretation of the chemistry of the hydrothermal solutions requires understanding of them. Sr isotopic evidence indicates that at least two and probably all three of these solid materials were removed from the solution with which they are associated, by precipitation or adsorption. This occurred after the "pure" hydrothermal fluid was diluted and thoroughly mixed with ambient seawater. The three types of solid materials, are, respectively, a coarse Zn- and Fe-rich material with small amounts of Na and Ca; a finer material also rich in Zn and Fe, but with alkali and alkaline-earth metals; and a scum composed of Ba or Zn, with either considerable Fe or Si, and Sr. Mineral identification is uncertain because of uncertain anion composition. Only in the cases of Ba and Zn were metal masses greater in solid materials than in the associated fluids. For all other metals measured, masses in fluids dwarf those in solids. The fluids themselves contain greater concentrations of all metals measured, except Mg, than seawater. We discuss in detail the relative merits of two methods of determining the mixing proportions of "pure" hydrothermal solution and seawater in the fluids, one based on Sr isotopes, and another previously used method based on Mg concentrations. Comparison of solute concentrations in the several samples shows that degree of dilution of "pure" hydrothermal solutions by seawater, and amounts of original solutes that were removed from it as solid materials, are not related. There is no clear evidence that appreciable amounts of solid materials were not conserved (lost) either during or prior to sample collection. ?? 1988.
High Affinity Macrocycle Threading by a Near-Infrared Croconaine Dye with Flanking Polymer Chains
Liu, Wenqi; Peck, Evan M.; Smith, Bradley D.
2016-01-01
Croconaine dyes have narrow and intense absorption bands at ~800 nm, very weak fluorescence, and high photostabilities, which combine to make them very attractive chromophores for absorption-based imaging or laser heating technologies. The physical supramolecular properties of croconaine dyes have rarely been investigated, especially in water. This study focuses on a molecular threading process that encapsulates a croconaine dye inside a tetralactam macrocycle in organic or aqueous solvent. Macrocycle association and rate constant data are reported for a series of croconaine structures with different substituents attached to the ends of the dye. The association constants were highest in water (Ka ~109 M−1), and the threading rate constants (kon) increased in the solvent order H2O > MeOH > CHCl3. Systematic variation of croconaine substituents located just outside the croconaine/macrocycle complexation interface hardly changed Ka but had a strong influence on kon. A croconaine dye with N-propyl groups at each end of the structure exhibited a desirable mixture of macrocycle threading properties; that is, there was rapid and quantitative croconaine/macrocycle complexation at relatively high concentrations in water, and no dissociation of the pre-assembled complex when it was diluted into a solution of fetal bovine serum, even after laser induced photothermal heating of the solution. The combination of favorable near-infrared absorption properties and tunable mechanical stability makes threaded croconaine/macrocycle complexes very attractive as molecular probes or as supramolecular composites for various applications in absorption-based imaging or photothermal therapy. PMID:26807599
NASA Astrophysics Data System (ADS)
Ong, Ernest E. S.; O'Byrne, Sean; Liow, Jong-Leng
2018-04-01
Xanthan gum (XG) is considered one of the most industrially important polysaccharides, with applications ranging from food products such as ice creams and salad dressings to pharmaceuticals and oil well drilling fluids. The wide application of XG is due to its favourable rheological properties and its capability to resist degradation under a high shear or high temperature environment. It is generally accepted that both inter- and intramolecular interactions, including hydrogen bonding (HB), are responsible for its unique properties. To date, there is still a lack of comprehensive examination on the HB mechanism in polysaccharides. Therefore, the study proposed here was conducted using molecular dynamics (MD) simulations that are able to provide insights with an unparalleled temporal and spatial resolution. Since XG is used over a broad range of temperatures, the implications of thermal effect on the structure and molecular interactions of XG in an aqueous solution are discussed in this paper. MD simulations were run at an isobaric-isothermal condition with 1 atm target pressure and five temperatures ranging between 283K and 353K. From the simulation results, an increasingly extended conformation of XG is observed as the temperature rises, and this finding matches qualitatively with the results published in the literature. The radius of gyration, radial pair distribution functions and intramolecular HB of XG were also discussed. The outcomes of the present study may serve as a stepping stone for the future studies on polysaccharides using MD simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Croce, F.; D`Aprano, A.; Nanjundiah, C.
1996-01-01
In order to determine the solution properties of lithium tris(trifluoromethanesulfonyl) methide (LiMe) in water and the aprotic solvents acetonitrile (AN), propylene carbonate (PC), N,N-dimethylformamide (DMF), and nitromethane (MeNO{sub 2}), conductance measurements have been carried out at 25 C. Molar conductivities at infinite dilution ({Lambda}{degree}) and ion pair association constants (K{sub a}) were obtained analyzing the experimental data with the Fuoss-Hsia conductance equation using the expansion of Fernandez-Prini and Justice with and without inclusion of the Chen effect. The results show that according to the ability of the solvents to solvate lithium ion, ion-pair formation is small or nonexistent in solventsmore » with high donor number (water, PC, DMF, and AN) but fairly moderate in nitromethane. Single-ion molar conductivities at infinite dilution for ClO{sub 4}{sup {minus}}, AsF{sub 6}{sup {minus}}, PF{sub 6}{sup {minus}} CF{sub 3}SO{sub 3}{sup {minus}}, N(CF{sub 3}SO{sub 2}){sub 2}{sup {minus}}, and C(CF{sub 3}SO{sub 2}){sub 3}{sup {minus}} anions, obtained by combining these results with literature data, decrease as expected as the ionic radius increases, and with one exception are always greater than that of the lithium ion. This general trend does not, however, apply in water where the limiting ionic conductance of the lithium cation is greater than that of the methide anion. This anomalous behavior is attributed to significant solvation of the methide ion in water. Voltammetric measurements indicate high electrochemical stability of methide anion. Such anodic stability and the increase in the transference number of lithium ion in LiMe solutions strongly support the use of this electrolyte in high energy, high voltage lithium batteries.« less
Shunmugaperumal, Tamilvanan; Kaur, Varinder
2016-06-01
The objectives of the current investigation are (1) to prepare and characterize (particle size, surface charge (potential zeta), surface morphology by transmission electron microscopy, drug content, and drug release) the azithromycin (AZM, 100 mg)-loaded oil-in-water (o/w) macroemulsion, (2) to assess the toxicity of macroemulsion with or without AZM using RBC lysis test in comparison with AZM in phosphate buffer solution of pH 7.4, (3) to compare the in vitro antimicrobial activity (in Escherichia coli using zone inhibition assay) of AZM-loaded macroemulsion with its aqueous solution, and (4) to assess the in vitro anti-inflammatory effect (using egg albumin denaturation bioassay) of the AZM-loaded macroemulsion in comparison with diclofenac sodium in phosphate buffer solution of pH 7.4. The AZM-loaded macroemulsion possessed the dispersed oil droplets with a mean diameter value of 52.40 ± 1.55 μm. A reversal in the zeta potential value from negative (-2.16 ± 0.75 mV) to positive (+6.52 ± 0.96 mV) was noticed when AZM was added into the macroemulsion. At a 1:5 dilution ratio, 2.06 ± 0.03 mg of drug was released from macroemulsion followed by 1.01 ± 0.01 and 0.25 ± 0.08 mg, respectively, for 1:10 and 1:40 dilution ratios. Antimicrobial activity maintenance and significant reduction of RBC lysis property were noticed for AZM after loaded in the macroemulsion. However, an increment in the absorbance values for emulsion-treated samples in comparison to the control samples was noticed in the anti-inflammatory test. This speculates the potential of the AZM-loaded emulsion to manage inflammatory conditions produced at Acne vulgaris.
Growth of plants in solution culture containing low levels of chromium. [Tomato, lettuce, duckweed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huffman, E.W.D. Jr.; Allaway, W.H.
1973-01-01
Chromium was not required for normal growth of romaine lettuce (Lactuca sativa L. subsp. longifolia), tomato (Lycopersicon esculentum Mill.), wheat (Triticum aestivum L.), or bean (Phaseolus vulgaris L.) in solution culture containing 3.8 X 10/sup -4/ ..mu..M Cr. Plants grown on this purified nutrient solution contained an average of 22 ng Cr/g dry weight. Duckweed (Lemna sp.) grew and reproduced normally on a dilute nutrient solution containing 3.8 X 20/sup -5/ ..mu..M Cr.
SOLVENT EXTRACTION OF THORIUM VALUES FROM AQUEOUS SOLUTIONS
Warf, J.C.
1959-04-21
The separation of thorium values from rare earth metals contained ln aqueous solutions by means of extraction with a water immiscible alkyl phosphate diluted with a hydrocarbon such as hexane is described. While the extraction according to this invention may be carried out from any aqueous salt solution, it is preferred to use solutions containing free mineral acid. Hydrochloric acid and in particular nitric acid are sultable in a concentration ranging from 0.1 to 7 normal. The higher acid concentration results in higher extraction values.
Radiolysis of ethanol and ethanol-water solutions: A tool for studying bioradical reactions
NASA Astrophysics Data System (ADS)
Jore, D.; Champion, B.; Kaouadji, N.; Jay-Gerin, J.-P.; Ferradini, C.
Radiolysis of pure ethanol and ethanol-water solutions is examined in view of its relevance to the study of biological radical mechanisms. On the basis of earlier studies, a consistent reaction scheme is adopted. New data on radical yields are obtained from the radiolysis of dilute solutions of vitamins E and C in these solvents. It is shown that the radiolysis of ethanolic solutions provide an efficient tool to study radical reactions of water-insoluble biomolecules.
Stability of florfenicol in drinking water.
Hayes, John M; Eichman, Jonathan; Katz, Terry; Gilewicz, Rosalia
2003-01-01
Florfenicol, a broad-spectrum antibiotic, is being developed for veterinary application as an oral concentrate intended for dilution with drinking water. When a drug product is dosed via drinking water in a farm setting, a number of variables, including pH, chlorine content, hardness of the water used for dilution, and container material, may affect its stability, leading to a decrease in drug potency. The stability of florfenicol after dilution of Florfenicol Drinking Water Concentrate Oral Solution, 23 mg/mL, with drinking water was studied. A stability-indicating, validated liquid chromatographic method was used to evaluate florfenicol stability at 25 degrees C at 5, 10, and 24 h after dilution. The results indicate that florfenicol is stable under a range of simulated field conditions, including various pipe materials and conditions of hard or soft and chlorinated or nonchlorinated water at low or high pH. Significant degradation (> 10%) was observed only for isolated combinations in galvanized pipes. Analysis indicated that the florfenicol concentration in 8 of the 12 water samples stored in galvanized pipes remained above 90% of the initial concentration (100 mg/L) for 24 h after dilution.
Relative density of urine: methods and clinical significance.
Pradella, M; Dorizzi, R M; Rigolin, F
1988-01-01
The physical properties and chemical composition of urine are highly variable and are determined in large measure by the quantity and the type of food consumed. The specific gravity is the ratio of the density to that of water, and it is dependent on the number and weight of solute particles and on the temperature of the sample. The weight of solute particles is constituted mainly of urea (73%), chloride (5.4%), sodium (5.1%), potassium (2.4%), phosphate (2.0%), uric acid (1.7%), and sulfate (1.3%). Nevertheless, urine osmolality depends only on the number of solute particles. The renal production of maximally concentrated urine and formation of dilute urine may be reduced to two basic elements: (1) generation and maintenance of a renal medullary solute concentration hypertonic to plasma and (2) a mechanism for osmotic equilibration between the inner medulla and the collecting duct fluid. The interaction of the renal medullary countercurrent system, circulating levels of antidiuretic hormone, and thirst regulates water metabolism. Renin, aldosterone, prostaglandins, and kinins also play a role. Clinical estimation of the concentrating and diluting capacity can be performed by relatively simple provocative tests. However, urinary specific gravity after taking no fluids for 12 h overnight should be 1.025 or more, so that the second urine in the morning is a useful sample for screening purposes. Many preservation procedures affect specific gravity measurements. The concentration of solids (or water) in urine can be measured by weighing, hydrometer, refractometry, surface tension, osmolality, a reagent strip, or oscillations of a capillary tube. These measurements are interrelated, not identical. Urinary density measurement is useful to assess the disorders of water balance and to discriminate between prerenal azotemia and acute tubular necrosis. The water balance regulates the serum sodium concentration, therefore disorders are revealed by hypo- and hypernatremia. The disturbances are due to renal and nonrenal diseases, mainly liver, cardiovascular, intestinal, endocrine, and iatrogenic. Fluid management is an important topic of intensive care medicine. Moreover, the usefulness of specific gravity measurement of urine lies in interpreting other findings of urinalysis, both chemical and microscopical.
Elastin-like Polypeptide (ELP) Charge Influences Self-Assembly of ELP-mCherry Fusion Proteins.
Mills, Carolyn E; Michaud, Zachary; Olsen, Bradley D
2018-05-23
Self-assembly of protein-polymer bioconjugates presents an elegant strategy for controlling nanostructure and orientation of globular proteins in functional materials. Recent work has shown that genetic fusion of globular protein mCherry to an elastin-like polypeptide (ELP) yields similar self-assembly behavior to these protein-polymer bioconjugates. In the context of studying protein-polymer bioconjugate self-assembly, the mutability of the ELP sequence allows several different properties of the ELP block to be tuned orthogonally while maintaining consistent polypeptide backbone chemistry. This work uses this ELP sequence tunability in combination with the precise control offered by genetic engineering of an amino acid sequence to generate a library of four novel ELP sequences that are used to study the combined effect of charge and hydrophobicity on ELP-mCherry fusion protein self-assembly. Concentrated solution self-assembly is studied by small-angle X-ray scattering (SAXS) and depolarized light scattering (DPLS). These experiments show that fusions containing a negatively charged ELP block do not assemble at all, and fusions with a charge balanced ELP block exhibit a weak propensity for assembly. By comparison, the fusion containing an uncharged ELP block starts to order at 40 wt % in solution and at all concentrations measured has sharper, more intense SAXS peaks than other fusion proteins. These experiments show that charge character of the ELP block is a stronger predictor of self-assembly behavior than the hydrophobicity of the ELP block. Dilute solution small-angle neutron scattering (SANS) on the ELPs alone suggests that all ELPs used in this study (including the uncharged ELP) adopt dilute solution conformations similar to those of traditional polymers, including polyampholytes and polyelectrolytes. Finally, dynamic light scattering studies on ELP-mCherry blends shows that there is no significant complexation between the charged ELPs and mCherry. Therefore, it is proposed that the superior self-assembly of fusion proteins containing uncharged ELP block is due to effective repulsions between charged and uncharged blocks due to local charge correlation effects and, in the case of anionic ELPs, repulsion between like charges within the ELP block.
Ronco, Nicolás R; Menestrina, Fiorella; Romero, Lílian M; Castells, Cecilia B
2017-06-09
In this paper, we report gas-liquid partition constants for thirty-five volatile organic solutes in the room temperature ionic liquid trihexyl(tetradecyl)phosphonium bromide measured by gas-liquid chromatography using capillary columns. The relative contribution of gas-liquid partition and interfacial adsorption to retention was evaluated through the use of columns with different the phase ratio. Four capillary columns with exactly known phase ratios were constructed and employed to measure the solute retention factors at four temperatures between 313.15 and 343.15K. The partition coefficients were calculated from the slopes of the linear regression between solute retention factors and the reciprocal of phase ratio at a given temperature according to the gas-liquid chromatographic theory. Gas-liquid interfacial adsorption was detected for a few solutes and it has been considered for the calculations of partition coefficient. Reliable solute's infinite dilution activity coefficients can be obtained when retention data are determined by a unique partitioning mechanism. The partial molar excess enthalpies at infinite dilution have been estimated from the dependence of experimental values of solute activity coefficients with the column temperature. A thorough discussion of the uncertainties of the experimental measurements and the main advantages of the use of capillary columns to acquire the aforementioned relevant thermodynamic information was performed. Copyright © 2017 Elsevier B.V. All rights reserved.
Lin, Leo; Kim, Janie; Chen, Hope; Kowalski, Regis
2016-01-01
More than 125 million people wear contact lenses worldwide, and contact lens use is the single greatest risk factor for developing microbial keratitis. We tested the antibacterial activity of multipurpose contact lens solutions and their individual component preservatives against the two most common pathogens causing bacterial keratitis, Pseudomonas aeruginosa and Staphylococcus aureus. The in vitro antibacterial activity of five multipurpose contact lens solutions (Opti-Free GP, Boston Simplus, Boston Advance, Menicare GP, and Lobob) was assayed by the standard broth dilution method. Synergy between the preservative components found in the top performing solutions was assayed using checkerboard and time-kill assays. The ISO 14729 criteria and the standard broth dilution method were used to define an optimized contact lens solution formulation against a clinical panel of drug-susceptible and drug-resistant P. aeruginosa and S. aureus strains. Preservatives with the biguanide function group, chlorhexidine and polyaminopropylbiguanide (PAPB), had the best antistaphylococcal activity, while EDTA was the best antipseudomonal preservative. The combination of chlorhexidine and EDTA had excellent synergy against P. aeruginosa. A solution formulation containing chlorhexidine (30 ppm), PAPB (5 ppm), and EDTA (5,000 ppm) had three to seven times more antipseudomonal activity than anything available to consumers today. A multipurpose contact lens solution containing a combination of chlorhexidine, PAPB, and EDTA could help to reduce the incidence of microbial keratitis for contact lens users worldwide. PMID:27139484
Short-time microscopic dynamics of aqueous methanol solutions
NASA Astrophysics Data System (ADS)
Kalampounias, A. G.; Tsilomelekis, G.; Boghosian, S.
2012-12-01
In this paper we present the picosecond vibrational dynamics of a series of methanol aqueous solutions over a wide concentration range from dense to dilute solutions. We studied the vibrational dephasing and vibrational frequency modulation by calculating the time correlation functions of vibrational relaxation by fits in the frequency domain. This method is applied to aqueous methanol solutions xMeOH-(1 - x)H2O, where x = 0, 0.2, 0.4, 0.6, 0.8 and 1. The important finding is that the vibrational dynamics of the system become slower with increasing methanol concentration. The removal of many-body effects by having the molecules in less-crowded environments seems to be the key factor. The interpretation of the vibrational correlation function in the context of Kubo theory, which is based on the assumption that the environmental modulation arises from a single relaxation process and applied to simple liquids, is inadequate for all solutions studied. We found that the vibrational correlation functions of the solutions over the whole concentration range comply with the Rothschild approach, assuming that the environmental modulation is described by a stretched exponential decay. The evolution of the dispersion parameter α with dilution indicates the deviation of the solutions from the model simple liquid and the results are discussed in the framework of the current phenomenological status of the field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, C H
The chemistry of the various types of reactions possible between a carboxyl-terminated butadiene/acrylonitrile (CBTN) liquid copolymer and a diglycidyl ether of bisphenol A (DGEBA) type epoxy resin to prepare a CTBN/DGEBA adduct is discussed. Both a dilution and a non-dilution synthesis techniqu are described. Several properties of the CTBN precursor and the modified epoxy resin were determined and are presented.
NASA Astrophysics Data System (ADS)
García-Resúa, Carlos; Pena-Verdeal, Hugo; Miñones, Mercedes; Gilino, Jorge; Giraldez, Maria J.; Yebra-Pimentel, Eva
2013-11-01
High tear fluid osmolarity is a feature common to all types of dry eye. This study was designed to establish the accuracy of two osmometers, a freezing point depression osmometer (Fiske 110) and an electrical impedance osmometer (TearLab™) by using standard samples. To assess the accuracy of the measurements provided by the two instruments we used 5 solutions of known osmolarity/osmolality; 50, 290 and 850 mOsm/kg and 292 and 338 mOsm/L. Fiske 110 is designed to be used in samples of 20 μl, so measurements were made on 1:9, 1:4, 1:1 and 1:0 dilutions of the standards. Tear Lab is addressed to be used in tear film and only a sample of 0.05 μl is required, so no dilutions were employed. Due to the smaller measurement range of the TearLab, the 50 and 850 mOsm/kg standards were not included. 20 measurements per standard sample were used and differences with the reference value was analysed by one sample t-test. Fiske 110 showed that osmolarity measurements differed statistically from standard values except those recorded for 290 mOsm/kg standard diluted 1:1 (p = 0.309), the 292 mOsm/L H2O sample (1:1) and 338 mOsm/L H2O standard (1:4). The more diluted the sample, the higher the error rate. For the TearLab measurements, one-sample t-test indicated that all determinations differed from the theoretical values (p = 0.001), though differences were always small. For undiluted solutions, Fiske 110 shows similar performance than TearLab. However, for the diluted standards, Fiske 110 worsens.
Method of forming a foamed thermoplastic polymer
Duchane, D.V.; Cash, D.L.
1984-11-21
A solid thermoplastic polymer is immersed in an immersant solution comprising a compatible carrier solvent and an infusant solution containing an incompatible liquid blowing agent for a time sufficient for the immersant solution to infuse into the polymer. The carrier solvent is then selectively extracted, preferably by a solvent exchange process in which the immersant solution is gradually diluted with and replaced by the infusant solution, so as to selectively leave behind the infustant solution permanently entrapped in the polymer. The polymer is then heated to volatilize the blowing agent and expand the polymer into a foamed state.
2013-01-01
diluted with lactated Ringer’s solution. We demonstrated that the major factor affecting the MA and angle was the platelet count. In fact, reducing...with an accelerant, either kaolin or tissue factor or both as in the case of ‘rapid’ TEG. The TEG tracing represents the cell-based theory of...There are claims in the trauma literature that the pro- longation of the R-time reflects clotting factor deficiency or dilution, prolongation of K
2008-09-01
sodium carbonate, and extracted with 2-mL chloroform. The chloroform layer was analyzed for residual agent by Gas Chromatography /Atomic Emission...agent remaining on the panel. Solutions were analyzed by Gas Chromatography /Flame-Ionization Detector (GC/FID) to determine the amounts of agent...transferred to glass scintillation vials. A 100-µL aliquot of the DEP was diluted with 900-µL chloroform (1:10 dilution) in a Gas Chromatography
NASA Astrophysics Data System (ADS)
Chokradjaroen, Chayanaphat; Rujiravanit, Ratana; Theeramunkong, Sewan; Saito, Nagahiro
2018-01-01
Chitosan is a polysaccharide that has been extensively studied in the field of biomedicine, especially its water-soluble degraded products called chitooligosaccharides (COS). In this study, COS were produced by the degradation of chitosan hydrogel dispersed in a dilute solution (i.e., 1.55 mM) of various kinds of carboxylic acids using a non-thermal plasma technology called solution plasma (SP). The degradation rates of chitosan were influenced by the type of carboxylic acids, depending on the interaction between chitosan and each carboxylic acid. After SP treatment, the water-soluble degraded products containing COS could be easily separated from the water-insoluble residue of chitosan hydrogel by centrifugation. The production yields of the COS were mostly higher than 55%. Furthermore, the obtained COS products were evaluated for their inhibitory effect as well as their selectivity against human lung cancer cells (H460) and human lung normal cells (MRC-5).
Intravenous iron in clinical concentrations does not impair haemoglobin measurement.
O'Loughlin, Edmond; Garnett, Peter Bj; Falkner, Nathalie M; Williams, Robin
2016-03-01
Intravenous iron is commonly administered to anaemic patients to treat iron deficiency, but due to its ferric colouration, it may interfere with the spectrophotometric assessment of haemoglobin concentrations. This paper investigates the potential interference of three clinically used intravenous iron preparations on the measurement of haemoglobin. Haemoglobin concentration was measured for neat and Hartmann's solution-diluted iron polymaltose, carboxymaltose and sucrose solutions using bedside (Radiometer HemoCue®), point-of-care (Radiometer ABL800 Flex) and laboratory (Abbott CellDyne Sapphire™) devices. Haemoglobin concentration was then assessed with the same devices utilizing anaemic whole blood with the iron solutions added. Neat iron preparations registered clinically significant haemoglobin concentrations on bedside and laboratory measurements. When intravenous iron preparations were diluted to clinical concentrations, their effect on haemoglobin measurements, either in isolation or mixed with anaemic blood, was negligible. Although neat preparations of intravenous iron do interfere with spectrophotometric analysis of haemoglobin, concentrations likely to be seen post iron infusion do not significantly interfere with haemoglobin measurement. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Dell'Agli, Gianfranco; Mascolo, Giuseppe; Mascolo, Maria Cristina; Pagliuca, Concetta
2006-09-01
Nanocrystalline ytterbia (10 mol%)-doped cubic zirconia powders were synthesized by hydrothermal treatment of either an amorphous co-precipitate of hydrated ytterbia-zirconia or of zirconia xerogel in mixture with crystalline Yb 2O 3. The treatments were performed at 110 °C in the presence of diluted (0.2 M) or concentrated (2.0 M) solution of (K 2CO 3 + KOH) mineralizer and for different reaction times. The reaction times for the full crystallization of cubic-YbSZ-based products were determined for both the employed precursors and for each mineralizer solution. The various fully crystallized products were characterized in their degree of agglomeration and sintered at 1500 °C for 2 h. The best performance on sintering was achieved with the less agglomerated powder synthesized from the mechanical mixture and in the presence of the diluted solution of the mineralizer. The resulting density was the highest achieved with materials having the same composition.
Flow-induced gelation of living (micellar) polymers
NASA Technical Reports Server (NTRS)
Bruinsma, Robijn; Gelbart, William M.; Ben-Shaul, Avinoam
1992-01-01
The effect of shear velocity gradients on the size (L) of rodlike micelles in dilute and semidilute solution is considered. A kinetic equation is introduced for the time-dependent concentration of aggregates of length L, consisting of 'bimolecular' combination processes L + L-prime yield (L + L-prime) and unimolecular fragmentations L yield L + (L - L-prime). The former are described by a generalization (from spheres to rods) of the Smoluchowski mechanism for shear-induced coalesence of emulsions, and the latter by incorporating the tension-deformation effects due to flow. Steady-state solutions to the kinetic equation are obtained, with the corresponding mean micellar size evaluated as a function of the Peclet number P (i.e., the dimensionless ratio of the flow rate and the rotational diffusion coefficient). For sufficiently dilute solutions, only a weak dependence of the micellar size on P is found. In the semidilute regime, however, an apparent divergence in the micellar size at P of about 1 suggests a flow-induced first-order gelation phenomenon.
NASA Astrophysics Data System (ADS)
Fiorilli, Sonia; Rivoira, Luca; Calì, Giada; Appendini, Marta; Bruzzoniti, Maria Concetta; Coïsson, Marco; Onida, Barbara
2017-07-01
Iron oxide clusters were incorporated into amino-functionalized SBA-15 in order to obtain a magnetically recoverable adsorbent. The physical-chemical properties of the material were characterized by FE-SEM, STEM, XRD, TGA, XPS, FT-IR and acid-base titration analysis. Iron oxide nanoparticles were uniformly dispersed into the pore of mesoporous silica and that the adsorbent is characterized high specific surface area (177 m2/g) and accessible porosity. The sorbent was successfully tested for the removal of glyphosate in real water matrices. Despite the significant content of inorganic ions, a quantitative removal of the contaminant was found. The complete regeneration of the sorbent after the adsorption process through diluted NaOH solution was also proved.
The shock sensitivities of nitromethane/methanol mixtures
NASA Astrophysics Data System (ADS)
Dattelbaum, D. M.; Sheffield, S. A.; Bartram, B. D.; Gibson, L. L.; Bowden, P. R.; Schilling, B. F.
2014-05-01
Dilution of liquid explosives with "inert" solvents have been shown previously to affect a degradation in the detonation performance properties of the explosive, and result in a rapid increase in the critical diameter with increasing diluent. To date, the shock sensitivities of liquid explosive-diluent mixtures have not been measured. In this work, we describe the results of a series of gas gun-driven plate impact experiments on nitromethane (NM)-methanol (MeOH) solutions of several concentrations, using in situ electromagnetic gauging to measure the initial shock state (Hugoniot) of the mixture, as well as the overtake-time-to-detonation (Pop-plot). Surprisingly, the shock sensitivities did not fall off dramatically with increasing MeOH concentration. In fact, at some concentrations MeOH appears to sensitize NM, relative to neat NM.
Tong, Hui; Hong, Yuning; Dong, Yongqiang; Ren, Yan; Häussler, Matthias; Lam, Jacky W Y; Wong, Kam Sing; Tang, Ben Zhong
2007-03-01
A chiral pyran derivative containing two cholesteryl groups (1) is synthesized, and its optical properties are investigated. Whereas the isolated molecule of 1 is virtually nonluminescent in dilute solutions, it becomes highly emissive with a 2 orders of magnitude increase in fluorescence quantum yield upon aggregation in poor solvents or in solid state, showing a novel phenomenon of aggregation-induced emission (AIE). The color and efficiency of the AIE of 1 can be tuned by varying the morphology of its aggregates: photoluminescence of its aggregates formed in a tetrahydrofuran/water mixture progressively red-shifts (green --> yellow --> red) with increasing water content of the mixture, with the crystalline aggregates emitting bluer lights in higher efficiencies than their amorphous counterparts.
NASA Astrophysics Data System (ADS)
Mannig, C. E.
2005-12-01
The chemistry of subduction-zone fluids is complicated by melt-vapor miscibility and the existence of critical end-points in rock-H2O systems. It is commonly assumed that fluids in subduction zones attain properties intermediate in composition between hydrous silicate liquid and H2O, and that such fluids possess enhanced material transport capabilities. However, the relevance of supercritical, intermediate fluids to subduction zones presents four problems. (1) Albite-H2O is typically used as an analogue system, but the favorable position of its critical curve is not representative; critical curves for polymineralic subduction-zone lithologies lie at substantially higher P. (2) Even if albite-H2O is relevant, jadeite may interfere because of its different solubility and the positive clapeyron slope of its solidus, which points to liquid-structure changes that could cause reappearance of the liquid+vapor field. (3) Critical curves are features of very H2O-rich compositions; low-porosity, H2O-poor natural systems will coexist with intermediate fluids only over a narrow PT interval. (4) Intermediate fluids are expected only over short length scales because their migration will likely result in compositional shifts via reaction and mineral precipitation in the mantle wedge. Although supercritical, intermediate fluids are probably relatively unimportant in subduction zones, they reflect a chemical process that may hold the key to understanding high- P mass transfer. Miscibility in melt-vapor systems is a consequence of polymerization of dissolved components, primarily Si ± Al, Na and Ca. This behavior yields, e.g., aqueous Si-Si, Si-Al, Si-Na-Al, and Si-Ca oxide dimers and other multimers of varying stoichiometry (silicate polymers), even in subcritical, dilute, H2O-rich vapor. Silicate polymers in subcritical aqueous solutions have been inferred from high- P mineral-solubility experiments. The abundance of these species at high P shows that the chemistry of aqueous fluids in subduction-zones differs fundamentally from the more familiar ionic solutions of the upper crust. This has important consequences for minor element transport. Measurements of Fe, phosphorous and Ti solubility reveal that dissolved concentrations rise with increased aqueous albite content at fixed P and T, with maximum enhancements exceeding 10X at melt saturation. Subcritical silicate polymerization thus permits transport of low solubility components via their substitution into sites on aqueous multimers constructed of "polymer formers" such as Na, Al, and Si, even in dilute solutions. The partitioning of elements between the bulk fluid, the polymer network, and the rock matrix likely controls the overall compositional evolution of subduction-zone fluids. Because they form over a wider PT and bulk X range, subcritical silicate polymers in dilute solutions are likely responsible for more mass transfer in subduction zones than intermediate, supercritical fluids.
NASA Astrophysics Data System (ADS)
van der Heijden, Gregory; Legout, Arnaud; Mareschal, Louis; Ranger, Jacques; Dambrine, Etienne
2017-07-01
In terrestrial ecosystems, plant-available pools of magnesium and calcium are assumed to be stored in the soil as exchangeable cations adsorbed on the surface of mineral and/or organic particles. The pools of exchangeable magnesium and calcium are measured by ion-exchange soil extractions. These pools are sustained in the long term by the weathering of primary minerals in the soil and atmospheric inputs. This conceptual model is the base of input-output budgets from which soil acidification and the sustainability of soil chemical fertility is inferred. However, this model has been questioned by data from long-term forest ecosystem monitoring sites, particularly for calcium. Quantifying the contribution of atmospheric inputs, ion exchange and weathering of both primary, secondary and non-crystalline phases to tree nutrition in the short term is challenging. In this study, we developed and applied a novel isotopic dilution technique using the stable isotopes of magnesium and calcium to study the contribution of the different soil phases to soil solution chemistry in a very acidic soil. The labile pools of Mg and Ca in the soil (pools in equilibrium with the soil solution) were isotopically labeled by spraying a solution enriched in 26Mg and 44Ca on the soil. Labeled soil columns were then percolated with a dilute acid solution during a 3-month period and the isotopic dilution of the tracers was monitored in the leaching solution, in the exchangeable (2 sequential 1 mol L-1 ammonium acetate extractions) and non-crystalline (2 sequential soil digestions: oxalic acid followed by nitric acid) phases. Significant amounts of Mg and Ca isotope tracer were recovered in the non-crystalline soil phases. These phases represented from 5% to 25% and from 24% to 50%, respectively, of the Mg and Ca labile pools during the experiment. Our results show that non-crystalline phases act as both a source and a sink of calcium and magnesium in the soil, and contribute directly to soil solution chemistry on very short-term time scales. These phases are very abundant in acid soils and, in the present study, represent a substantial calcium pool (equivalent in size to the Ca exchangeable pool). The gradual isotopic dilution of Mg and Ca isotope ratios in the leaching solution during the experiment evidenced an input flux of Mg and Ca originating from a pool other than the labile pool. While the Mg input flux originated primarily from the weathering of primary minerals and secondarily from the non-crystalline phases, the Ca input flux originated primarily from the non-crystalline phases. Our results also show that the net calcium release flux from these phases may represent a significant source of calcium in forest ecosystems and actively contribute to compensating the depletion of Ca exchangeable pools in the soil. Non-crystalline phases therefore should be taken into account when computing input-output nutrient budgets and soil acid neutralizing capacity.
Chen, Wen-Hua; Pen, Ben-Li; Yu, Ching-Tsung; Hwang, Wen-Song
2011-02-01
The combined pretreatment of rice straw using dilute-acid and steam explosion followed by enzymatic hydrolysis was investigated and compared with acid-catalyzed steam explosion pretreatment. In addition to measuring the chemical composition, including glucan, xylan and lignin content, changes in rice straw features after pretreatment were investigated in terms of the straw's physical properties. These properties included crystallinity, surface area, mean particle size and scanning electron microscopy imagery. The effect of acid concentration on the acid-catalyzed steam explosion was studied in a range between 1% and 15% acid at 180°C for 2 min. We also investigated the influence of the residence time of the steam explosion in the combined pretreatment and the optimum conditions for the dilute-acid hydrolysis step in order to develop an integrated process for the dilute-acid and steam explosion. The optimum operational conditions for the first dilute-acid hydrolysis step were determined to be 165°C for 2 min with 2% H(2)SO(4) and for the second steam explosion step was to be carried out at 180°C for 20 min; this gave the most favorable combination in terms of an integrated process. We found that rice straw pretreated by the dilute-acid/steam explosions had a higher xylose yield, a lower level of inhibitor in the hydrolysate and a greater degree of enzymatic hydrolysis; this resulted in a 1.5-fold increase in the overall sugar yield when compared to the acid-catalyzed steam explosion. Copyright © 2010 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Perlmutter-Hayman, Berta
1984-01-01
Problems of equilibria in condensed phases (particularly those involving solutes in dilute solutions) are encountered by students in their laboratory work; the thermodynamics of these equilibria is neglected in many textbooks. Therefore, several aspects of this topic are explored, focusing on pressure dependence and choice of standard state. (JN)
Strip waves in vibrated shear-thickening wormlike micellar solutions
NASA Astrophysics Data System (ADS)
Epstein, T.; Deegan, R. D.
2010-06-01
We present an instability in vertically vibrated dilute wormlike micellar solutions. Above a critical driving acceleration the fluid forms elongated solitary domains of high amplitude waves. We model this instability using a Mathieu equation modified to account for the non-Newtonian character of the fluid. We find that our model successfully reproduces the observed transitions.
21 CFR 640.82 - Tests on final product.
Code of Federal Regulations, 2012 CFR
2012-04-01
... percent; 5.0 ±0.30 percent; 20.0 ±1.2 percent; and 25.0 ±1.5 percent solution of protein. (b) Protein... solution of the final product diluted to a concentration of 1 percent protein with 0.15 molar sodium... exceed 2 milliequivalents per liter. (f) Heat stability. A final container sample of Albumin (Human...
21 CFR 640.82 - Tests on final product.
Code of Federal Regulations, 2013 CFR
2013-04-01
... percent; 5.0 ±0.30 percent; 20.0 ±1.2 percent; and 25.0 ±1.5 percent solution of protein. (b) Protein... solution of the final product diluted to a concentration of 1 percent protein with 0.15 molar sodium... exceed 2 milliequivalents per liter. (f) Heat stability. A final container sample of Albumin (Human...
21 CFR 640.82 - Tests on final product.
Code of Federal Regulations, 2014 CFR
2014-04-01
... percent; 5.0 ±0.30 percent; 20.0 ±1.2 percent; and 25.0 ±1.5 percent solution of protein. (b) Protein... solution of the final product diluted to a concentration of 1 percent protein with 0.15 molar sodium... exceed 2 milliequivalents per liter. (f) Heat stability. A final container sample of Albumin (Human...
Abrasive slurry composition for machining boron carbide
Duran, Edward L.
1985-01-01
An abrasive slurry particularly suited for use in drilling or machining boron carbide consists essentially of a suspension of boron carbide and/or silicon carbide grit in a carrier solution consisting essentially of a dilute solution of alkylaryl polyether alcohol in octyl alcohol. The alkylaryl polyether alcohol functions as a wetting agent which improves the capacity of the octyl alcohol for carrying the grit in suspension, yet without substantially increasing the viscosity of the carrier solution.
Abrasive slurry composition for machining boron carbide
Duran, E.L.
1984-11-29
An abrasive slurry particularly suited for use in drilling or machining boron carbide consists essentially of a suspension of boron carbide and/or silicon carbide grit in a carrier solution consisting essentially of a dilute solution of alkylaryl polyether alcohol in octyl alcohol. The alkylaryl polyether alcohol functions as a wetting agent which improves the capacity of the octyl alcohol for carrying the grit in suspension, yet without substantially increasing the viscosity of the carrier solution.
Shaikh, Vasim R; Terdale, Santosh S; Ahamad, Abdul; Gupta, Gaurav R; Dagade, Dilip H; Hundiwale, Dilip G; Patil, Kesharsingh J
2013-12-19
The osmotic coefficient measurements for binary aqueous solutions of 2,2,2-cryptand (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8] hexacosane) in the concentration range of ~0.009 to ~0.24 mol·kg(-1) and in ternary aqueous solutions containing a fixed concentration of 2,2,2-cryptand of ~0.1 mol·kg(-1) with varying concentration of KBr (~0.06 to ~0.16 mol·kg(-1)) have been reported at 298.15 K. The diamine gets hydrolyzed in aqueous solutions and needs proper approach to obtain meaningful thermodynamic properties. The measured osmotic coefficient values are corrected for hydrolysis and are used to determine the solvent activity and mean ionic activity coefficients of solute as a function of concentration. Strong ion-pair formation is observed, and the ion-pair dissociation constant for the species [CrptH](+)[OH(-)] is reported. The excess and mixing thermodynamic properties (Gibbs free energy, enthalpy, and entropy changes) have been obtained using the activity data from this study and the heat data reported in the literature. Further, the data are utilized to compute the partial molal entropies of solvent and solute at finite as well as infinite dilution of 2,2,2-cryptand in water. The concentration dependent non-linear enthalpy-entropy compensation effect has been observed for the studied system, and the compensation temperature along with entropic parameter are reported. Using solute activity coefficient data in ternary solutions, the transfer Gibbs free energies for transfer of the cryptand from water to aqueous KBr as well as transfer of KBr from water to aqueous cryptand were obtained and utilized to obtain the salting constant (ks) and thermodynamic equilibrium constant (log K) values for the complex (2,2,2-cryptand:K(+)) at 298.15 K. The value of log K = 5.8 ± 0.1 obtained in this work is found to be in good agreement with that reported by Lehn and Sauvage. The standard molar entropy for complexation is also estimated for the 2,2,2-cryptand-KBr complex in aqueous medium.
Leo, Norman; Liu, Juan; Archbold, Ian; Tang, Yongan; Zeng, Xiangqun
2017-02-28
The various environmental parameters of packing density, ionic strength, and solution charge were examined for their effects on the properties of the immobilized peptide mimotope CH19 (CGSGSGSQLGPYELWELSH) that binds with the therapeutic antibody Trastuzumab (Herceptin) on a gold substrate. The immobilization of CH19 onto gold was examined with a quartz crystal microbalance (QCM). The QCM data showed the presence of intermolecular interactions resulting in the increase of viscoelastic properties of the peptide self-assembled monolayer (SAM). The CH19 SAM was diluted with CS7 (CGSGSGS) to decrease the packing density as CH19/CS7. The packing density and ionic strength parameters were evaluated by atomic force microscopy (AFM), ellipsometry, and QCM. AFM and ellipsometry showed a distinct conformational difference between CH19 and CH19/CS7, indicating a relationship between packing density and conformational state of the immobilized peptide. The CH19 SAM thickness was 40 Å with a rough topology, while the CH19/CS7 SAM thickness was 20 Å with a smooth topology. The affinity studies showed that the affinity of CH19 and CH19/CS7 to Trastuzumab were both on the order of 10 7 M -1 in undiluted PBS buffer, while the dilution of the buffer by 1000× increased both SAMs affinities to Trastuzumab to the order of 10 15 M -2 and changed the binding behavior from noncooperative to cooperative binding. This indicated that ionic strength had a more pronounced effect on binding properties of the CH19 SAM than packing density. Electrochemical impedance spectroscopy (EIS) was conducted on the CH19/CS7 SAM, which showed an increase in impedance after each EIS measurement cycle. Cyclic voltammetry on the CH19/CS7 SAM decreased impedance to near initial values. The impact of the packing density, buffer ionic strength, and local charge perturbation of the peptide SAM properties was interpreted based on the titratable sites in CH19 that could participate in the proton transfer and water equilibrium.
Effect of solution non-ideality on erythrocyte volume regulation.
Levin, R L; Cravalho, E G; Huggins, C E
1977-03-01
A non-ideal, hydrated, non-dilute pseudo-binary salt-protein-water solution model of the erythrocyte intracellular solution is presented to describe the osmotic behavior of human erythrocytes. Existing experimental activity data for salts and proteins in aqueous solutions are used to formulate van Laar type expressions for the solvent and solute activity coefficients. Reasonable estimates can therefore be made of the non-ideality of the erythrocyte intracellular solution over a wide range of osmolalities. Solution non-ideality is shown to affect significantly the degree of solute polarization within the erythrocyte intracellular solution during freezing. However, the non-ideality has very little effect upon the amount of water retained within erythrocytes cooled at sub-zero temperatures.
21 CFR 177.2440 - Polyethersulfone resins.
Code of Federal Regulations, 2014 CFR
2014-04-01
... determined by reduced viscosity in dimethyl formamide in accordance with ASTM method D2857-70 (Reapproved 1977), “Standard Test Method for Dilute Solution Viscosity of Polymers,” which is incorporated by...
Costa, P M; Fernandes, P L; Ferreira, H G; Ferreira, K T; Giraldez, F
1987-12-01
1. Membrane potential and conductances and short-circuit current were continuously measured with microelectrodes and conventional electrophysiological techniques in a stripped preparation of frog skin epithelium. The effects of the removal of chloride or sodium ions and the concentration or dilution of the serosal (inner) bathing solution were studied. 2. Chloride- or sodium-free solutions produced a cell depolarization of about 30 mV in parallel with a fall in the short-circuit current. Mucosal and serosal membrane conductances both decreased and the sodium permeability of the mucosal barrier was calculated to fall to about one-half its value in standard Ringer solution. The observed decrease in the short-circuit current is probably related to the combined effect of the decrease in sodium permeability and the decrease in the driving force across the mucosal membrane. 3. The removal of chloride or sodium ions reduced the depolarization caused by serosal perfusion with high-potassium solutions (50 mM-KCl). The ratio of the change in cell membrane potential under short-circuit conditions to the change in the potassium equilibrium potential (delta Ec(s.c.)/delta EK), was 0.59 in standard Ringer solution and 0.26 and 0.24 after the removal of chloride or sodium respectively. The depolarizing effect of barium-containing solutions (2 mM-BaCl2) was also markedly reduced in chloride- or sodium-free solutions, suggesting a decrease of the potassium selectivity of the serosal membrane in these conditions. 4. Increasing the osmolality of the serosal bathing solution produced similar effects, i.e. cell depolarization, fall in the short-circuit current and membrane conductances and reduction of the depolarizing effect of high-potassium and barium solutions. On the contrary, dilution of the serosal bath produced the opposite effects, consistent with an increase in the serosal permeability to potassium. 5. The effects of chloride- or sodium-free solutions were reversed by the dilution of the serosal bath. Cells repolarized when exposed to low-osmolality solutions after being in the absence of serosal chloride or sodium. The repolarization ran in parallel with the restoration of the short-circuit current and the potassium selectivity of the serosal membrane. 6. The results show that the effects produced by the removal of sodium or chloride ions from the serosal bathing solution are most probably mediated by a reduction in cell volume. Cell volume changes would lead to changes in the serosal membrane selectivity to potassium and thus to changes in cell membrane potential and sodium transport.(ABSTRACT TRUNCATED AT 400 WORDS)
Jeremy D. Allison; Elizabeth E. Graham; Therese M. Poland; Brian L. Strom
2016-01-01
Several studies have observed that trap captures of longhorned beetles (Coleoptera: Cerambycidae) can be increased by treating the surface of intercept traps with a lubricant. In addition to being expensive, these treatments can alter the spectral properties of intercept traps when applied neat. These surface treatments, particularly Fluon, are commonly used diluted as...
Pinart, Elisabeth; Yeste, Marc; Prieto-Martínez, Noelia; Reixach, Josep; Bonet, Sergi
2015-06-01
The present approach was designed to evaluate the extender effects on sperm quality and fertility of short-term refrigerated seminal doses from Landrace boars lodged in husbandry-controlled conditions. For this purpose, we analyzed the sperm quality of seminal doses diluted in short-term (Beltsville Thawing Solution) and extra-long-term (Duragen) extenders from Days 0 to 2 of storage at 17 °C during an 8-month period. Pregnancy rates and litter size were evaluated from double inseminations within an interval of 12 hours (36 and 48 hours of refrigeration) of multiparous females using seminal doses diluted in each extender type. Sperm quality was assessed from the analyses of sperm motility and kinetics, sperm viability, expressed as plasma and acrosome membrane integrity, membrane lipid disorder, intracellular calcium levels, and acrosin activity. Results indicated significant differences between the extenders in the sperm quality of seminal doses. Therefore, the seminal doses diluted in Duragen had higher percentages of progressive motile spermatozoa and membrane-intact spermatozoa than those diluted in Beltsville Thawing Solution throughout all the experimental months. Nevertheless, despite these differences in preserving the sperm quality, pregnancy rates (>90%) and litter sizes (>10 piglets born per litter) were similar between the extenders. Our results had great relevance from a practical point of view because they reported lack of an extender effect on the reproductive performance of seminal doses during short-tem storage. Copyright © 2015 Elsevier Inc. All rights reserved.
Zack, Allen L.; Roberts, Ivan
1988-01-01
The Black Creek aquifer contains dilute seawater near the North Carolina State line, probably the result of incomplete flushing of ancient seawater. Data do not indicate that the dilute seawater has migrated toward areas of fresh ground-water withdrawals. The concentration of chloride in ground-water samples ranges from 5 to 720 milligrams per liter and that of sodium from 160 to 690 milligrams per liter. Ion-exchange reactions (sodium for calcium and fluoride for hydroxyl) occur with the calcium carbonate dissolution reaction which produces calcium, bicarbonate, and hydroxyl ions. The reaction sequence and stoichiometry result in an aqueous solution in which the sum of bicarbonate and chloride equivalents per liter is equal to the equivalents per liter of sodium. Calcium ions are exchanged for sodium ions derived from sodium-rich clays upgradient of the dilute seawater. The cation-exchange reaction equilibrates at a sodium concentration of 280 milligrams per liter. Amounts of sodium greater than 280 milligrams per liter are contributed from dilute seawater. The cation-exchange reaction approaches an equilibrium which represents a mass-action limit in terms of the ratio of sodium to calcium in solution versus the ratio of exchangeable sodium to calcium on clay surfaces. Where the limit of calcium carbonate solubility is approached and dissolution ceases, some precipitation of calcite probably takes place. The dissolution of calcite exposes fossil shark teeth which release fluoride ions to the ground water through anion exchange with aqueous hydroxyl ions.
21 CFR 177.2440 - Polyethersulfone resins.
Code of Federal Regulations, 2013 CFR
2013-04-01
... molecular weight is determined by reduced viscosity in dimethyl formamide in accordance with ASTM method D2857-70 (Reapproved 1977), “Standard Test Method for Dilute Solution Viscosity of Polymers,” which is...
21 CFR 177.2440 - Polyethersulfone resins.
Code of Federal Regulations, 2012 CFR
2012-04-01
... molecular weight is determined by reduced viscosity in dimethyl formamide in accordance with ASTM method D2857-70 (Reapproved 1977), “Standard Test Method for Dilute Solution Viscosity of Polymers,” which is...
21 CFR 177.2440 - Polyethersulfone resins.
Code of Federal Regulations, 2011 CFR
2011-04-01
... molecular weight is determined by reduced viscosity in dimethyl formamide in accordance with ASTM method D2857-70 (Reapproved 1977), “Standard Test Method for Dilute Solution Viscosity of Polymers,” which is...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bannochie, C. J.
2015-09-17
The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences, Inc. in Seattle, WA on behalf of the Savannah River Remediation (SRR) Mercury Task Team.i,ii The tenth shipment of samples was designated to include Modular Caustic Side Solvent Extraction Unit (MCU) Strip Effluent Hold Tank (SEHT) and MCU Decontaminated Salt Solution Hold Tank (DSSHT) materials from processing Salt Batch 7b. The MCU SEHT (MCU-15-722) and DSSHT (MCU-15-709) samples were pulled on June 15, 2015. All MCU samples were received at SRNL on June 16, 2015. The DSSHT sample wasmore » moved the same day to refrigeration, while the SEHT sample was placed in the Shielded Cells. On July 9, 2015 it was opened and an aliquot diluted 1:100 with Eurofins deionized water and a portion of the diluted sample transferred to a Teflon® bottle prior to moving it to refrigeration that same day. All samples were kept in the dark and refrigerated until final dilutions were prepared for shipment to Eurofins.« less
Hatano, Hiroshi; Sakamoto, Masako; Hayashi, Kazuo; Kamiya, Seigo
2015-08-01
Temperature, concentration and time are the three factors that affect the inactivation capacity of iodine antiseptics. We investigated the effect of these factors on the microbe inactivation of Iodine-Polyvinyl Alcohol ophthalmic and eye washing solution (PA * IODO), and also investigated the preservation conditions on stability of the inactivation activity of the PA * IODO. Test microbes were mixed with PA * IODO, varying the three factors. The live microbes were counted after each reaction. The effects of plugging and preservation temperature were investigated to determine the preserving stability. The inactivation capacity of PA * IODO tended to decrease in almost all microbes tested at 4 degrees C. Twenty times or less diluted PA * IODO killed almost all microbes completely. The time effect was more marked in viruses. Plugging and low-temperature made iodine concentration in diluted PA * IODO remain relatively high. The concentration of PA * IODO affected the inactivation ability more than the temperature and time, although all the three factors correlated positively to the inactivation. For preservation the diluted PA * IODO needed plugging and low temperature.
Pigga, Joseph M; Teprovich, Joseph A; Flowers, Robert A; Antonio, Mark R; Liu, Tianbo
2010-06-15
The interaction between water-soluble Keplerate polyoxometalate {Mo(72)Fe(30)} macroions and small countercations is explored by laser light scattering, anomalous small-angle X-ray scattering (ASAXS), and isothermal titration calorimetry (ITC) techniques. The macroions are found to be able to select the type of associated counterions based upon the counterions' valence state and hydrated size, when multiple types of additional cations are present in solution (even among different monovalent cations). The preference goes to the cations with higher valences or smaller hydrated sizes if the valences are identical. This counterion exchange process changes the magnitude of the macroion-counterion interaction and, thus, is reflected in the dimension of the self-assembled {Mo(72)Fe(30)} blackberry supramolecular structures. The hydrophilic macroions exhibit a competitive recognition of various monovalent counterions in dilute solutions. A critical salt concentration (CSC) for each type of cation exists for the blackberry formation of {Mo(72)Fe(30)} macroions, above which the blackberry size increases significantly with the increasing total ionic strength in solution. The CSC values are much smaller for cations with higher valences and also decrease with the cations' hydrated size for various monovalent cations. The change of blackberry size corresponding to the change of ionic strength in solution is reversible.
Understanding Thiel Embalming in Pig Kidneys to Develop a New Circulation Model
Willaert, Wouter; De Vos, Marie; Van Hoof, Tom; Delrue, Louke; Pattyn, Piet; D’Herde, Katharina
2015-01-01
The quality of tissue preservation in Thiel embalmed bodies varies. Research on the administered embalming volume and its vascular distribution may elucidate one of the mechanisms of tissue preservation and allow for new applications of Thiel embalming. Vascular embalming with (group 1, n = 15) or without (group 2, n = 20) contrast agent was initiated in pig kidneys. The distribution of Thiel embalming solution in group 1 was visualized using computed tomography. The kidneys in both groups were then immersed in concentrated salt solutions to reduce their weight and volume. Afterwards, to mimic a lifelike circulation in the vessels, group 2 underwent pump-driven reperfusion for 120 minutes with either paraffinum perliquidum or diluted polyethylene glycol. The circulation was imaged with computed tomography. All of the kidneys were adequately preserved. The embalming solution spread diffusely in the kidney, but fluid accumulation was present. Subsequent immersion in concentrated salt solutions reduced weight (P < 0.01) and volume (P < 0.01). Reperfusion for 120 minutes was established in group 2. Paraffinum perliquidum filled both major vessels and renal tissue, whereas diluted polyethylene glycol spread widely in the kidney. There were no increases in weight (P = 0.26) and volume (P = 0.79); and pressure further decreased (P = 0.032) after more than 60 minutes of reperfusion with paraffinum perliquidum, whereas there were increases in weight (P = 0.005), volume (P = 0.032) and pressure (P < 0.0001) after reperfusion with diluted polyethylene glycol. Arterial embalming of kidneys results in successful preservation due to complete parenchymatous spreading. More research is needed to determine whether other factors affect embalming quality. Dehydration is an effective method to regain the organs’ initial status. Prolonged vascular reperfusion with paraffinum perliquidum can be established in this model without increases in weight, volume and pressure. PMID:25806527
Sukul, A; Sinhabau, S P; Sukul, N C
1999-04-01
Male adult albino mice were administered potentized Nux vomica 30 c (Nux v). The drug was mixed with sterile distilled water at 0.05 ml/2 ml water and given at 0.05 ml/individual. Control consisted of blank ethanol solution. Ethanolic extract from the seeds of Strychnos nuxvomica L was mixed with 90% ethanol 1:100 and sonicated for 30 s at 20 KHz. This was further diluted and sonicated in 30 steps to produce Nux v 30 c. Six hours after treatment, mice were given 25% ethanol i.p. at 4 g/kg body wt. The duration of sleep time starting from the loss of righting reflex until its restoration was recorded for each mouse. The duration of sleep time with ethanol was recorded in four sessions for the same group of mice with an interval of 10 d between sessions. session 1 with control solution, 2 with Nux v (oral), 3 with control solution and 4 with Nux v (i.p.). Nux v (oral) produced the shortest sleep time as compared to other treatments which did not differ from each other significantly with respect to sleep time. In another experiment Nux v 30 c was prepared with distilled water and pure absolute ethanol by the above process of successive dilution and sonication. These two preparations together with Nux v 30 c, prepared with 90% ethanol, were tested on mice for their effect on alcohol-induced sleep time. Only Nux v 30 c prepared with 90% ethanol was effective in reducing the sleep time in mice. It is concluded that the solution structure of ethanol/water mixture carries the specificity of the Nux v at ultra high dilution. It is further concluded that the effect is mediated through oral receptors.
Stability of piritramide in patient-controlled analgesia (PCA) solutions.
Remane, D; Scriba, G; Meissner, W; Hartmann, M
2009-06-01
For patient controlled analgesia, syringes with solutions of 1.5 mg/ml piritramide in 0.9% aqueous sodium chloride are used. The physical and chemical stability for dilutions of the commercially available preparation of piritramide is limited up to 72 hours by the manufacturer. Since application duration for patient-controlled analgesia can exceed that limited time, stability was investigated by HPLC. Our results show that these solutions are chemically stable over a time period of 60 days.
Wet-chemical systems and methods for producing black silicon substrates
Yost, Vernon; Yuan, Hao-Chih; Page, Matthew
2015-05-19
A wet-chemical method of producing a black silicon substrate. The method comprising soaking single crystalline silicon wafers in a predetermined volume of a diluted inorganic compound solution. The substrate is combined with an etchant solution that forms a uniform noble metal nanoparticle induced Black Etch of the silicon wafer, resulting in a nanoparticle that is kinetically stabilized. The method comprising combining with an etchant solution having equal volumes acetonitrile/acetic acid:hydrofluoric acid:hydrogen peroxide.
Improved resolution by mounting of tissue sections for laser microdissection.
van Dijk, M C R F; Rombout, P D M; Dijkman, H B P M; Ruiter, D J; Bernsen, M R
2003-08-01
Laser microbeam microdissection has greatly facilitated the procurement of specific cell populations from tissue sections. However, the fact that a coverslip is not used means that the morphology of the tissue sections is often poor. To develop a mounting method that greatly improves the morphological quality of tissue sections for laser microbeam microdissection purposes so that the identification of target cells can be facilitated. Fresh frozen tissue and formalin fixed, paraffin wax embedded tissue specimens were used to test the morphological quality of mounted and unmounted tissue. The mounting solution consisted of an adhesive gum and blue ink diluted in water. Interference of the mounting solution with DNA quality was analysed by the polymerase chain reaction using 10-2000 cells isolated by microdissection from mounted and unmounted tissue. The mounting solution greatly improved the morphology of tissue sections for laser microdissection purposes and had no detrimental effects on the isolation and efficiency of amplification of DNA. One disadvantage was that the mounting solution reduced the cutting efficiency of the ultraviolet laser. To minimise this effect, the mounting solution should be diluted as much as possible. Furthermore, the addition of blue ink to the mounting medium restores the cutting efficiency of the laser. The mounting solution is easy to prepare and apply and can be combined with various staining methods without compromising the quality of the DNA extracted.
Improved resolution by mounting of tissue sections for laser microdissection
van Dijk, M C R F; Rombout, P D M; Dijkman, H B P M; Ruiter, D J; Bernsen, M R
2003-01-01
Background: Laser microbeam microdissection has greatly facilitated the procurement of specific cell populations from tissue sections. However, the fact that a coverslip is not used means that the morphology of the tissue sections is often poor. Aims: To develop a mounting method that greatly improves the morphological quality of tissue sections for laser microbeam microdissection purposes so that the identification of target cells can be facilitated. Methods: Fresh frozen tissue and formalin fixed, paraffin wax embedded tissue specimens were used to test the morphological quality of mounted and unmounted tissue. The mounting solution consisted of an adhesive gum and blue ink diluted in water. Interference of the mounting solution with DNA quality was analysed by the polymerase chain reaction using 10–2000 cells isolated by microdissection from mounted and unmounted tissue. Results: The mounting solution greatly improved the morphology of tissue sections for laser microdissection purposes and had no detrimental effects on the isolation and efficiency of amplification of DNA. One disadvantage was that the mounting solution reduced the cutting efficiency of the ultraviolet laser. To minimise this effect, the mounting solution should be diluted as much as possible. Furthermore, the addition of blue ink to the mounting medium restores the cutting efficiency of the laser. Conclusions: The mounting solution is easy to prepare and apply and can be combined with various staining methods without compromising the quality of the DNA extracted. PMID:12890747
Lyotropic Phase Behavior of Polybutadiene-Poly(ethylene oxide) Diblock Copolymers in Ionic Liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simone, Peter M.; Lodge, Timothy P.
2008-08-26
The lyotropic phase behavior of three poly(1,2-butadiene-b-ethylene oxide) diblock copolymers (PB-PEO) with different monomer volume fractions has been studied in two different ionic liquids, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMI][TFSI]) and 1-butyl-3-methylimidazolium hexafluorophosphate ([BMI][PF{sub 6}]), across the complete concentration range. The ordered microstructures present in the solutions were characterized via small-angle X-ray scattering (SAXS). The phase diagrams for the PB-PEO/ionic liquid solutions include regions corresponding to the classical copolymer microstructures: body-centered-cubic lattices of spheres, hexagonally ordered cylinders, and lamellae. Additionally, the phase diagrams also include wide regions of coexisting microstructures and regions apparently corresponding to a disordered network microstructure. The phase behavior ofmore » the PB-PEO copolymers in both ionic liquids was comparable to their previously reported aqueous solution behavior. The temperature dependence of the phase diagrams was very modest, indicative of a highly segregated system. The level of solvent selectivity was also investigated via cryogenic transmission electron microscopy (cryo-TEM) on dilute solutions. On the basis of the morphology of the dilute solution copolymer aggregate structures in the ionic liquid solvents, and on the structural length scales of the concentrated solutions, it was concluded that for PB-PEO [BMI][PF{sub 6}] behaves as a more selective solvent than [EMI][TFSI].« less
Solution behavior of metoclopramide in aqueous-alcoholic solutions at 30°C
NASA Astrophysics Data System (ADS)
Deosarkar, S. D.; Sawale, R. T.; Tawde, P. D.; Kalyankar, T. M.
2016-07-01
Densities (ρ) and refractive indices ( n D) of solutions of antiemetic drug metoclopramide (4-amino-5-chloro- N-(2-(diethylamino)ethyl)-2-methoxybenzamide hydrochloride hydrate) in methanolwater and ethanol-water mixtures of different compositions were measured at 30°C. Apparent molar volume (φv) of the drug was calculated from density data and partial molar volumes (φ v 0 ) were determined from Massons relation. Concentration dependence of nD has been studied to determine refractive indices of solution at infinite dilution ( n D 0 ). Results have been interpreted in terms of solute-solvent interactions.
Fang, Yapeng; Takahashi, Rheo; Nishinari, Katsuyoshi
2004-07-01
Schizophyllan (SPG) with a molecular weight of 2.6x10(6), designated SPG-1, is denatured and then renatured at a concentration of 1.8 wt % by alkalization-neutralization. The prepared denatured-renatured samples (DRSPG-1) are diluted to various concentrations and equilibrated for 10 days before rheological and intrinsic viscosity measurements. When concentration (C(p)) is above 0.75 wt %, DRSPG-1 aqueous systems have weak gel-type rheological properties. However, for 0.28 wt %