Baltch, A L; Smith, R P; Ritz, W
1995-01-01
The susceptibilities of 56 Legionella pneumophila isolates (43 clinical and 15 environmental isolates) to levofloxacin, ofloxacin, erythromycin, and rifampin were studied with buffered charcoal yeast extract (BCYE) agar (inoculum, 10(4) CFU per spot), and the susceptibilities of five isolates were studied with buffered yeast extract (BYE) broth (inoculum, 10(5) CFU/ml). The MICs inhibiting 90% of strains tested on BCYE agar were 0.125, 0.25, 1.0, and < or = 0.004 micrograms/ml for levofloxacin, ofloxacin, erythromycin, and rifampin, respectively. The MICs by the BYE broth dilution method were 1 to 3, 2, 1 to 2, and 1 tube lower than those by the agar dilution method for levofloxacin, ofloxacin, erythromycin, and rifampin, respectively. The MBCs were 1 to 2 tubes higher than the broth dilution MICs for levofloxacin, 1 to 3 tubes higher than the broth dilution MICs for ofloxacin, 1 to 3 tubes higher than the broth dilution MICs for erythromycin, and the same as the broth dilution MICs for rifampin. In kinetic time-kill curve studies, at drug concentrations of 1.0 and 2.0 times the MIC, the most active drugs were levofloxacin and rifampin. At 72 h, concentrations of levofloxacin and rifampin of 2.0 times the MIC demonstrated a bactericidal effect against L. pneumophila. In contrast, at concentrations of 1.0 and 2.0 times the MICs regrowth was observed with ofloxacin and only a gradual decrease in the numbers of CFU per milliliter was observed with erythromycin. Only a minor inhibitory effect was observed with 0.25 or 0.5 time the MICs of all drugs at 24 to 48 h, with regrowth occurring at 72 h. In contrast to erythromycin or ofloxacin plus rifampin at 0.25 time the MICs, only levofloxacin plus rifampin demonstrated synergy. Thus, levofloxacin demonstrated the best inhibitory and bactericidal effects against L. pneumophila when it was studied alone or in a combination with rifampin. PMID:7486896
Cirillo, Daniela M.; Hoffner, Sven; Ismail, Nazir A.; Kaur, Devinder; Lounis, Nacer; Metchock, Beverly; Pfyffer, Gaby E.; Venter, Amour
2016-01-01
The aim of this study was to establish standardized drug susceptibility testing (DST) methodologies and reference MIC quality control (QC) ranges for bedaquiline, a diarylquinoline antimycobacterial, used in the treatment of adults with multidrug-resistant tuberculosis. Two tier-2 QC reproducibility studies of bedaquiline DST were conducted in eight laboratories using Clinical Laboratory and Standards Institute (CLSI) guidelines. Agar dilution and broth microdilution methods were evaluated. Mycobacterium tuberculosis H37Rv was used as the QC reference strain. Bedaquiline MIC frequency, mode, and geometric mean were calculated. When resulting data occurred outside predefined CLSI criteria, the entire laboratory data set was excluded. For the agar dilution MIC, a 4-dilution QC range (0.015 to 0.12 μg/ml) centered around the geometric mean included 95.8% (7H10 agar dilution; 204/213 observations with one data set excluded) or 95.9% (7H11 agar dilution; 232/242) of bedaquiline MICs. For the 7H9 broth microdilution MIC, a 3-dilution QC range (0.015 to 0.06 μg/ml) centered around the mode included 98.1% (207/211, with one data set excluded) of bedaquiline MICs. Microbiological equivalence was demonstrated for bedaquiline MICs determined using 7H10 agar and 7H11 agar but not for bedaquiline MICs determined using 7H9 broth and 7H10 agar or 7H9 broth and 7H11 agar. Bedaquiline DST methodologies and MIC QC ranges against the H37Rv M. tuberculosis reference strain have been established: 0.015 to 0.12 μg/ml for the 7H10 and 7H11 agar dilution MICs and 0.015 to 0.06 μg/ml for the 7H9 broth microdilution MIC. These methodologies and QC ranges will be submitted to CLSI and EUCAST to inform future research and provide guidance for routine clinical bedaquiline DST in laboratories worldwide. PMID:27654337
Ter Laak, E A; Pijpers, A; Noordergraaf, J H; Schoevers, E C; Verheijden, J H
1991-02-01
The MICs of 18 antimicrobial agents used against strains of three porcine Mycoplasma species were determined by a serial broth dilution method. Twenty field strains of M. hyorhinis, ten field strains of M. hyopneumoniae, six field strains of M. flocculare, and the type strains of these species were tested. Twelve field strains and the type strain of M. hyorhinis were also tested by an agar dilution method. Tests were read at various time points. When the broth dilution method was used, the final MIC had to be read 2 days after color changes had stopped. MICs of tetracycline, oxytetracycline, doxycycline, and minocycline were low for the three Mycoplasma species tested. MICs of chlortetracycline were 8 to 16 times higher than MICs of the other tetracyclines. Spiramycin, tylosin, kitasamycin, spectinomycin, tiamulin, lincomycin, and clindamycin were effective against all strains of M. hyorhinis and M. hyopneumoniae. The quinolones were highly effective against M. hyopneumoniae but less effective against M. hyorhinis. The susceptibility patterns for M. hyopneumoniae and M. flocculare were similar.
Ter Laak, E A; Pijpers, A; Noordergraaf, J H; Schoevers, E C; Verheijden, J H
1991-01-01
The MICs of 18 antimicrobial agents used against strains of three porcine Mycoplasma species were determined by a serial broth dilution method. Twenty field strains of M. hyorhinis, ten field strains of M. hyopneumoniae, six field strains of M. flocculare, and the type strains of these species were tested. Twelve field strains and the type strain of M. hyorhinis were also tested by an agar dilution method. Tests were read at various time points. When the broth dilution method was used, the final MIC had to be read 2 days after color changes had stopped. MICs of tetracycline, oxytetracycline, doxycycline, and minocycline were low for the three Mycoplasma species tested. MICs of chlortetracycline were 8 to 16 times higher than MICs of the other tetracyclines. Spiramycin, tylosin, kitasamycin, spectinomycin, tiamulin, lincomycin, and clindamycin were effective against all strains of M. hyorhinis and M. hyopneumoniae. The quinolones were highly effective against M. hyopneumoniae but less effective against M. hyorhinis. The susceptibility patterns for M. hyopneumoniae and M. flocculare were similar. PMID:2024954
Assessment of formulas for calculating critical concentration by the agar diffusion method.
Drugeon, H B; Juvin, M E; Caillon, J; Courtieu, A L
1987-01-01
The critical concentration of antibiotic was calculated by using the agar diffusion method with disks containing different charges of antibiotic. It is currently possible to use different calculation formulas (based on Fick's law) devised by Cooper and Woodman (the best known) and by Vesterdal. The results obtained with the formulas were compared with the MIC results (obtained by the agar dilution method). A total of 91 strains and two cephalosporins (cefotaxime and ceftriaxone) were studied. The formula of Cooper and Woodman led to critical concentrations that were higher than the MIC, but concentrations obtained with the Vesterdal formula were closer to the MIC. The critical concentration was independent of method parameters (dilution, for example). PMID:3619419
Schmalreck, Arno; Willinger, Birgit; Czaika, Viktor; Fegeler, Wolfgang; Becker, Karsten; Blum, Gerhard; Lass-Flörl, Cornelia
2012-12-01
In vitro susceptibility testing of clinically important fungi becomes more and more essential due to the rising number of fungal infections in patients with impaired immune system. Existing standardized microbroth dilution methods for in vitro testing of molds (CLSI, EUCAST) are not intended for routine testing. These methods are very time-consuming and dependent on sporulating of hyphomycetes. In this multicentre study, a new (independent of sporulation) inoculum preparation method (containing a mixture of vegetative cells, hyphae, and conidia) was evaluated. Minimal inhibitory concentrations (MIC) of amphotericin B, posaconazole, and voriconazole of 180 molds were determined with two different culture media (YST and RPMI 1640) according to the DIN (Deutsches Institut für Normung) microdilution assay. 24 and 48 h MIC of quality control strains, tested per each test run, prepared with the new inoculum method were in the range of DIN. YST and RPMI 1640 media showed similar MIC distributions for all molds tested. MIC readings at 48 versus 24 h yield 1 log(2) higher MIC values and more than 90 % of the MICs read at 24 and 48 h were within ± 2 log(2) dilution. MIC end point reading (log(2 MIC-RPMI 1640)-log(2 MIC-YST)) of both media demonstrated a tendency to slightly lower MICs with RPMI 1640 medium. This study reports the results of a new, time-saving, and easy-to-perform method for inoculum preparation for routine susceptibility testing that can be applied for all types of spore-/non-spore and hyphae-forming fungi.
García, M. T.; Pelaz, C.; Giménez, M. J.; Aguilar, L.
2000-01-01
The MICs at which 90% of isolates are inhibited for gemifloxacin, trovafloxacin, and grepafloxacin were low (≤0.01 μg/ml) for 271 Legionella isolates when they were determined by the broth microdilution method but increased (≥6 dilutions) when they were determined by the agar dilution method. This was due to the charcoal in the agar dilution medium, as shown by the progressive decrease in the MICs when the charcoal concentrations decreased. As free drug is the active fraction, charcoal binding should be considered. PMID:10898695
2012-01-01
Background The anaerobic spirochetes Brachyspira hyodysenteriae and Brachyspira pilosicoli cause diarrheal diseases in pigs. Their fastidious nature has hampered standardization of methods for antimicrobial susceptibility testing. For monitoring of antimicrobial susceptibility wild type cutoff values are needed to define where the wild type distribution of MICs ends and no approved cutoffs are available for Brachyspira spp. In this study antimicrobial susceptibility data for both species (in total 906 isolates) were compiled and analyzed and wild type cut off values for B. hyodysenteriae proposed. Methods The MICs of tiamulin, valnemulin, tylosin, tylvalosin, doxycycline and lincomycin were determined by broth dilution in brain heart infusion broth supplemented with 10% fetal calf serum. Results The compiled MICs from the broth dilution tests of the B. hyodysenteriae type strain, B78T (ATCC® 27164T), showed that the method yields reproducible results. In an international perspective the frequencies of isolates with decreased antimicrobial susceptibility were low among both B. hyodysenteriae and B. pilosicoli. However, in B. pilosicoli a constant level of 10-15% isolates with tiamulin MICs >4 μg/ml was detected between 2002 and 2010 and in B. hyodysenteriae a gradual increase in tiamulin MICs was seen between 1990 and 2003 although this increase has ceased during the last years. The wild type cutoff values proposed for B. hyodysenteriae are: tiamulin >0.25 μg/ml, valnemulin >0.125 μg/ml, tylosin >16 μg/ml, tylvalosin >1 μg/ml, lincomycin >1 μg/ml and doxycycline >0.5 μg/ml. Conclusions The broth dilution method used in this study has over the years generated tightly grouped MIC populations for the field isolates and reproducible results for the control strain B78T and is therefore a suitable antimicrobial susceptibility test method for monitoring of Brachyspira spp. Here we propose wild type cutoff values for six antimicrobial agents for B. hyodysenteriae tested by broth dilution based on MIC distributions and the current knowledge on mechanisms of resistance in this species. There are few studies on antimicrobial resistance mechanisms and MIC distributions in B. pilosicoli but to some extent the cutoff values proposed for B. hyodysenteriae may be applicable also for monitoring of antimicrobial susceptibility in B. pilosicoli. PMID:22998753
Gose, Severin; Kong, Carol J; Lee, Yer; Samuel, Michael C; Bauer, Heidi M; Dixon, Paula; Soge, Olusegun O; Lei, John; Pandori, Mark
2013-12-01
We evaluated Neisseria gonorrhoeae Etest minimum inhibitory concentrations (MICs) relative to agar dilution MICs for 664 urethral isolates for ceftriaxone (CRO) and azithromycin (AZM), 351 isolates for cefpodoxime (CPD) and 315 isolates for cefixime (CFM). Etest accurately determined CPD, CFM and AZM MICs, but resulted in higher CRO MICs.
Effect of quinolones and other antimicrobial agents on cell-associated Legionella pneumophila.
Havlichek, D; Saravolatz, L; Pohlod, D
1987-01-01
We evaluated the in vitro susceptibility of Legionella pneumophila ATCC 33152 (serogroup I) to 13 antibiotics alone and in combination with rifampin (0.1 mg/liter) by three methods. Extracellular susceptibility was determined by MIC determinations and time kill curves in buffered yeast extract broth, while intracellular susceptibility was determined by peripheral human monocytes in RPMI 1640 culture medium. Antibiotic concentrations equal to or greater than the broth dilution MIC inhibited or killed L. pneumophila by the time kill method, except this was not the case for trimethoprim-sulfamethoxazole. Antibiotic concentrations below the broth dilution MIC did not inhibit Legionella growth. The only antibiotic-rifampin combinations which produced improved killing of L. pneumophila by the time kill method were those in which the logarithmic growth of L. pneumophila occurred during the experiment (rosoxacin, amifloxacin, cinoxacin, trimethoprim-sulfamethoxazole, clindamycin, and doxycycline). Neither direct MICs nor time kill curve assays accurately predicted intracellular L. pneumophila susceptibility. Rifampin, erythromycin, ciprofloxacin, rosoxacin, enoxacin, amifloxacin, gentamicin, clindamycin, and doxycycline all inhibited intracellular L. pneumophila growth at readily achievable concentrations in serum. Cefoxitin and thienamycin showed no inhibition of growth, although they were present extracellularly at concentrations that were 20 to 1,000 times their broth dilution MICs. Clindamycin was the only antibiotic that was able to inhibit intracellular L. pneumophila growth at an extracellular concentration below its MIC. The gentamicin (5 mg/liter)-rifampin combination was the only antibiotic-rifampin combination which demonstrated decreased cell-associated Legionella survival in this model of in vitro susceptibility. PMID:3435101
Pringle, Märit; Landén, Annica; Unnerstad, Helle Ericsson; Molander, Benedicta; Bengtsson, Björn
2012-09-21
The anaerobic spirochetes Brachyspira hyodysenteriae and Brachyspira pilosicoli cause diarrheal diseases in pigs. Their fastidious nature has hampered standardization of methods for antimicrobial susceptibility testing. For monitoring of antimicrobial susceptibility wild type cutoff values are needed to define where the wild type distribution of MICs ends and no approved cutoffs are available for Brachyspira spp. In this study antimicrobial susceptibility data for both species (in total 906 isolates) were compiled and analyzed and wild type cut off values for B. hyodysenteriae proposed. The MICs of tiamulin, valnemulin, tylosin, tylvalosin, doxycycline and lincomycin were determined by broth dilution in brain heart infusion broth supplemented with 10% fetal calf serum. The compiled MICs from the broth dilution tests of the B. hyodysenteriae type strain, B78T (ATCC® 27164T), showed that the method yields reproducible results. In an international perspective the frequencies of isolates with decreased antimicrobial susceptibility were low among both B. hyodysenteriae and B. pilosicoli. However, in B. pilosicoli a constant level of 10-15% isolates with tiamulin MICs >4 μg/ml was detected between 2002 and 2010 and in B. hyodysenteriae a gradual increase in tiamulin MICs was seen between 1990 and 2003 although this increase has ceased during the last years. The wild type cutoff values proposed for B. hyodysenteriae are: tiamulin >0.25 μg/ml, valnemulin >0.125 μg/ml, tylosin >16 μg/ml, tylvalosin >1 μg/ml, lincomycin >1 μg/ml and doxycycline >0.5 μg/ml. The broth dilution method used in this study has over the years generated tightly grouped MIC populations for the field isolates and reproducible results for the control strain B78T and is therefore a suitable antimicrobial susceptibility test method for monitoring of Brachyspira spp. Here we propose wild type cutoff values for six antimicrobial agents for B. hyodysenteriae tested by broth dilution based on MIC distributions and the current knowledge on mechanisms of resistance in this species. There are few studies on antimicrobial resistance mechanisms and MIC distributions in B. pilosicoli but to some extent the cutoff values proposed for B. hyodysenteriae may be applicable also for monitoring of antimicrobial susceptibility in B. pilosicoli.
Shawar, R; Paetznick, V; Witte, Z; Ensign, L G; Anaissie, E; LaRocco, M
1992-01-01
A study was performed in two laboratories to evaluate the effect of growth medium and test methodology on inter- and intralaboratory variations in the MICs of amphotericin B (AMB), flucytosine (5FC), fluconazole (FLU), itraconazole (ITRA), and the triazole Sch 39304 (SCH) against 14 isolates of Candida albicans. Testing was performed by broth microdilution and semisolid agar dilution with the following media, buffered to pH 7.0 with morpholinepropanesulfonic acid (MOPS): buffered yeast nitrogen base (BYNB), Eagle's minimal essential medium (EMEM), RPMI 1640 medium (RPMI), and synthetic amino acid medium for fungi (SAAMF). Inocula were standardized spectrophotometrically, and endpoints were defined by the complete absence of growth for AMB and by no more than 25% of the growth in the drug-free control for all other agents. Comparative analyses of median MICs, as determined by each test method, were made for all drug-medium combinations. Both methods yielded similar (+/- 1 twofold dilution) median MICs for AMB in EMEM and RPMI, 5FC in all media, and FLU in EMEM, RPMI, and SAAMF. In contrast, substantial between-method variations in median MICs were seen for AMB in BYNB and SAAMF, FLU In BYNB, and ITRA and SCH in all media. Interlaboratory concordance of median MICs was good for AMB, 5FC, and FLU but poor for ITRA and SCH in all media. Endpoint determinations were analyzed by use of kappa statistical analyses for evaluating the strength of observer agreement. Moderate to almost perfect interlaboratory agreement occurred with AMB and 5FC in all media and with FLU in EMEM, RPMI, and SAAMF, irrespective of the test method. Slight to almost perfect interlaboratory agreement occurred with ITRA and SCH in EMEM, RPMI, and SAAMF when tested by semisolid agar dilution but not broth microdilution. Kappa values assessing intralaboratory agreement between methods were high for 5FC in all media, for AMB in BYNB, ENEM, and RPMI, and for FLU in EMEM, RPMI, and SAAMF. One laboratory, but not the other, reported substantial to almost perfect agreement between methods for ITRA, and SCH in EMEM, RPMI, and SAAMF. Both laboratories reported poor agreement between methods for the azoles in BYNB. Discrepancies noted in azole-BYNB combinations were largely due to the greater inhibitory effect of these agents in BYNB than in other media. These results indicate that the semisolid agar dilution and broth microdilution methods with EMEM or RPMI yield equivalent and reproducible MICs for AMB, 5FC, and FLU but not ITRA and SCH. PMID:1500502
Shawar, R; Paetznick, V; Witte, Z; Ensign, L G; Anaissie, E; LaRocco, M
1992-08-01
A study was performed in two laboratories to evaluate the effect of growth medium and test methodology on inter- and intralaboratory variations in the MICs of amphotericin B (AMB), flucytosine (5FC), fluconazole (FLU), itraconazole (ITRA), and the triazole Sch 39304 (SCH) against 14 isolates of Candida albicans. Testing was performed by broth microdilution and semisolid agar dilution with the following media, buffered to pH 7.0 with morpholinepropanesulfonic acid (MOPS): buffered yeast nitrogen base (BYNB), Eagle's minimal essential medium (EMEM), RPMI 1640 medium (RPMI), and synthetic amino acid medium for fungi (SAAMF). Inocula were standardized spectrophotometrically, and endpoints were defined by the complete absence of growth for AMB and by no more than 25% of the growth in the drug-free control for all other agents. Comparative analyses of median MICs, as determined by each test method, were made for all drug-medium combinations. Both methods yielded similar (+/- 1 twofold dilution) median MICs for AMB in EMEM and RPMI, 5FC in all media, and FLU in EMEM, RPMI, and SAAMF. In contrast, substantial between-method variations in median MICs were seen for AMB in BYNB and SAAMF, FLU In BYNB, and ITRA and SCH in all media. Interlaboratory concordance of median MICs was good for AMB, 5FC, and FLU but poor for ITRA and SCH in all media. Endpoint determinations were analyzed by use of kappa statistical analyses for evaluating the strength of observer agreement. Moderate to almost perfect interlaboratory agreement occurred with AMB and 5FC in all media and with FLU in EMEM, RPMI, and SAAMF, irrespective of the test method. Slight to almost perfect interlaboratory agreement occurred with ITRA and SCH in EMEM, RPMI, and SAAMF when tested by semisolid agar dilution but not broth microdilution. Kappa values assessing intralaboratory agreement between methods were high for 5FC in all media, for AMB in BYNB, ENEM, and RPMI, and for FLU in EMEM, RPMI, and SAAMF. One laboratory, but not the other, reported substantial to almost perfect agreement between methods for ITRA, and SCH in EMEM, RPMI, and SAAMF. Both laboratories reported poor agreement between methods for the azoles in BYNB. Discrepancies noted in azole-BYNB combinations were largely due to the greater inhibitory effect of these agents in BYNB than in other media. These results indicate that the semisolid agar dilution and broth microdilution methods with EMEM or RPMI yield equivalent and reproducible MICs for AMB, 5FC, and FLU but not ITRA and SCH.
In vitro sensitivity of Hungarian Actinobaculum suis strains to selected antimicrobials.
Biksi, I; Major, Andrea; Fodor, L; Szenci, O; Vetési, F
2003-01-01
In vitro antimicrobial sensitivity of 12 Hungarian isolates and the type strain ATCC 33144 of Actinobaculum suis to different antimicrobial compounds was determined both by the agar dilution and by the disc diffusion method. By agar dilution, MIC50 values in the range of 0.05-3.125 micrograms/ml were determined for penicillin, ampicillin, ceftiofur, doxycycline, tylosin, pleuromutilins, chloramphenicol, florfenicol, enrofloxacin and lincomycin. The MIC50 value of oxytetracycline and spectinomycin was 6.25 and 12.5 micrograms/ml, respectively. For ofloxacin, flumequine, neomycin, streptomycin, gentamicin, nalidixic acid, nitrofurantoin and sulphamethoxazole + trimethoprim MIC50 values were in the range of 25-100 micrograms/ml. With the disc diffusion method, all strains were sensitive to penicillin, cephalosporins examined, chloramphenicol and florfenicol, tetracyclines examined, pleuromutilins, lincomycin and tylosin. Variable sensitivity was observed for fluoroquinolones (flumequine, enrofloxacin, ofloxacin), most of the strains were susceptible to marbofloxacin. Almost all strains were resistant to aminoglycosides but most of them were sensitive to spectinomycin. A strong correlation was determined for disc diffusion and MIC results (Spearman's rho 0.789, p < 0001). MIC values of the type strain and MIC50 values of other tested strains did not differ significantly. Few strains showed a partially distinct resistance pattern for erythromycin, lincomycin and ampicillin in both methods.
Bougnoux, M.-E.; Accoceberry, I.; Angoulvant, A.; Bailly, E.; Botterel, F.; Chevrier, S.; Chouaki, T.; Dalle, F.; Datry, A.; Dupuis, A.; Fekkar, A.; Gangneux, J. P.; Guitard, J.; Hennequin, C.; Le Govic, Y.; Le Pape, P.; Maubon, D.; Sautour, M.; Sendid, B.; Chandenier, J.
2016-01-01
In vitro susceptibility of 933 Candida isolates, from 16 French hospitals, to micafungin was determined using the Etest in each center. All isolates were then sent to a single center for determination of MICs by the EUCAST reference method. Overall essential agreement between the two tests was 98.5% at ±2 log2 dilutions and 90.2% at ±1 log2 dilutions. Categorical agreement was 98.2%. The Etest is a valuable alternative to EUCAST for the routine determination of micafungin MICs in medical mycology laboratories. PMID:27297480
Gose, Severin; Kong, Carol J; Lee, Yer; Samuel, Michael C; Bauer, Heidi M; Dixon, Paula; Soge, Olusegun O; Lei, John; Pandori, Mark
2013-10-24
We evaluated Neisseria gonorrhoeae Etest minimum inhibitory concentrations (MICs) relative to agar dilution MICs for 664 urethral isolates for ceftriaxone (CRO) and azithromycin (AZM), 351 isolates for cefpodoxime (CPD) and 315 isolates for cefixime (CFM). Etest accurately determined CPD, CFM and AZM MICs, but resulted in higher CRO MICs. © 2013. Published by Elsevier B.V. All rights reserved.
Bougnoux, M-E; Dannaoui, E; Accoceberry, I; Angoulvant, A; Bailly, E; Botterel, F; Chevrier, S; Chouaki, T; Cornet, M; Dalle, F; Datry, A; Dupuis, A; Fekkar, A; Gangneux, J P; Guitard, J; Hennequin, C; Le Govic, Y; Le Pape, P; Maubon, D; Ranque, S; Sautour, M; Sendid, B; Chandenier, J
2016-08-01
In vitro susceptibility of 933 Candida isolates, from 16 French hospitals, to micafungin was determined using the Etest in each center. All isolates were then sent to a single center for determination of MICs by the EUCAST reference method. Overall essential agreement between the two tests was 98.5% at ±2 log2 dilutions and 90.2% at ±1 log2 dilutions. Categorical agreement was 98.2%. The Etest is a valuable alternative to EUCAST for the routine determination of micafungin MICs in medical mycology laboratories. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Rifaximin-resistant Clostridium difficile strains isolated from symptomatic patients.
Reigadas, E; Muñoz-Pacheco, P; Vázquez-Cuesta, S; Alcalá, L; Marín, M; Martin, A; Bouza, E
2017-12-01
Rifaximin has been proposed as an alternative treatment for specific cases of Clostridium difficile infection (CDI) and intestinal decontamination. Rifaximin-resistant C. difficile has occasionally been reported. Antibiotic susceptibility testing relies on anaerobic agar dilution (reference method), which is cumbersome and not routinely used. There is no commercial test for detection of resistance to rifaximin. To assess resistance to rifaximin by C. difficile and to evaluate the correlation between the results of the rifampicin E-test and susceptibility to rifaximin. We compared the in vitro susceptibility of clinical CDI isolates to rifaximin over a 6-month period using the agar dilution method with susceptibility to rifampicin using the E-test. All isolates were characterized using PCR-ribotyping. Clinical data were recorded prospectively. We recovered 276 consecutive C. difficile isolates and found that 32.2% of episodes were caused by rifaximin-resistant strains. The MICs for rifaximin ranged from <0.0009-256 mg/L, with a geometric mean (GM) of 0.256 mg/L, an MIC 50/90 of 0.015/>256 mg/L. Rifaximin and rifampicin MICs were comparable, and all strains classed as resistant by agar dilution were correctly classified as resistant by E-test. The most common ribotypes were 001 (37.2%), 078/126 (14.3%), and 014 (12.0%). Ribotype 001 exhibited the highest MICs for rifaximin. Resistance to rifaximin was common; resistance rates were higher in ribotype 001 strains. Susceptibility to rifaximin determined by agar dilution correlated with susceptibility to rifampicin determined using the E-test, including rifaximin-resistant strains. Our results suggest that the rifampicin E-test is a valid method for the prediction of rifaximin-resistant C. difficile. Copyright © 2017 Elsevier Ltd. All rights reserved.
Spangler, S K; Appelbaum, P C
1993-02-01
The Oxyrase agar dilution method, with exclusion of CO2 from the environment, was compared with the reference agar dilution method recommended by the National Committee for Clinical Laboratory Standards (anaerobic chamber with 10% CO2) to test the susceptibility of 51 gram-negative and 43 gram-positive anaerobes to azithromycin and erythromycin. With the Oxyrase method, anaerobiosis was achieved by incorporation of the O2-binding enzyme Oxyrase in addition to susceptibility test medium, antibiotic, and enzyme substrates into the upper level of a biplate. Plates were covered with a Brewer lid and incubated in ambient air. With azithromycin, Oxyrase yielded an MIC for 50% of strains tested (MIC50) and MIC90 of 2.0 and 8.0 micrograms/ml, compared to 8.0 and > 32.0 micrograms/ml in standard anaerobic conditions. At a breakpoint of 8.0 micrograms/ml, 90.4% of strains were susceptible to azithromycin with Oxyrase, compared to 53.2% in the chamber. The corresponding erythromycin MIC50 and MIC90 were 1.0 and 8.0 micrograms/ml with Oxyrase, compared to 4.0 and > 32.0 micrograms/ml by the reference method, with 89.3% of strains susceptible at a breakpoint of 4 micrograms/ml with Oxyrase, compared to 60.6% in CO2. Exclusion of CO2 from the anaerobic atmosphere when testing for susceptibility to azalides and macrolides yielded lower MICs, which may lead to a reconsideration of the role played by these compounds in treatment of infections caused by these strains.
Matsuo, K; Uete, T
1992-10-01
Antimicrobial activities of cefazolin (CEZ) against 251 strains of various clinical isolates obtained during 1989 and 1990 were determined using the Mueller-Hinton agar dilution method at an inoculum level 10(6) CFU/ml. The reliability of the disk susceptility test was also studied using Mueller-Hinton agar and various disks at inoculum levels of 10(3-4) CFU/cm2 in estimating approximate values of MICs. In addition, antimicrobial activities of CEZ and cefmetazole (CMZ) or flomoxef (FMOX) in combination were investigated against methicillin-sensitive and -resistant Staphylococcus aureus (MSSA and MRSA) using the checkerboard agar dilution MIC method and the disk diffusion test either with the disks contained CEZ, CMZ, and FMOX alone, or CEZ, and CMZ or FMOX in combination. In this study, the MICs of CEZ against S. aureus were distributed with the 3 peak values at 0.39 microgram/ml, 3.13 micrograms/ml and > 100 micrograms/ml. MICs against MSSA were 0.39 microgram/ml to 0.78 microgram/ml, whereas those against MRSA were greater than 0.78 microgram/ml. MICs against majority of strains of Enterococcus faecalis were 25 micrograms/ml. Over 90% of strains of Escherichia coli and Klebsiella pneumoniae were inhibited at the level of 3.13 micrograms/ml. About 60% of isolates of indole negative Proteus spp. were inhibited at the levels of less than 3.13 micrograms/ml and 100% at 6.25 micrograms/ml, but MICs against indole positive Proteus spp., Serratia spp. and Pseudomonas aeruginosa were over 100 micrograms/ml. The antimicrobial activities of CEZ against these clinical isolates were not significantly different compared to those reported about 15-20 years ago, except for S. aureus. Highly resistant strains of S. aureus to CEZ were more prevalent in this study. The inhibitory zones obtained with the disk test were compared with MICs. The results of CEZ disk susceptibility test with 30 micrograms disk (Showa) or 10 micrograms disk (prepared in this laboratory) were well correlated with MICs (r = -0.837 and -0.814, respectively), showing the reliavility of the disk method in estimating approximate values of MICs. In the 4 category classification system currently used in Japan, break points in MIC values proposed are () MIC < or = 3 micrograms/ml, (++) > 3-15 micrograms/ml, (+) > 15-60 micrograms/ml, (-) > 60 micrograms/ml. The results obtained with 30 micrograms disks showed false positive in 7.7% and false negative in 6.8% of the samples. The disk results with E. faecalis showed a higher ratio of false positive results.(ABSTRACT TRUNCATED AT 400 WORDS)
López-Rojas, Rafael; Fernández-Cuenca, Felipe; Serrano-Rocha, Lara; Pascual, Álvaro
2017-01-01
To determine the in vitro activity of a polyhexanide-betaine solution against collection strains and multidrug-resistant (MDR) nosocomial isolates, including high-risk clones. We studied of 8 ATCC and 21 MDR clinical strains of Staphylococcus aureus, Enterococcus faecium, Enterococcus faecalis, Escherichia coli, Enterobacter cloacae, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa, including the multiresistant high-risk clones. The MICs and MBCs of a 0.1% polyhexanide-0.1% betaine solution were determined by microdilution. For each species, strains with the highest MICs were selected for further experiments. The dilution-neutralization test (PrEN 12054) was performed by incubating bacterial inocula of 10 6 CFU/mL for 1min with undiluted 0.1% polyhexanide-betaine solution. The CFUs were counted after neutralization. Growth curves and time-kill curves at concentrations of 0.25, 1, 4, and 8×MIC, were performed. MICs of recovered strains were determined when regrowth was observed in time-kill studies after 24h of incubation. Strains with reduced susceptibility were selected by serial passage on plates with increasing concentrations of polyhexanide-betaine, and MICs were determined. Polyhexanide-betaine MIC range was 0.5-8mg/L. MBCs equalled or were 1 dilution higher than MICs. The dilution-neutralization method showed total inoculum clearance of all strains. In time-kill curves, no regrowth was observed at 4×MIC, except for S. aureus (8×MIC). Increased MICs were not observed in time-kill curves, or after serial passages after exposure to polyhexanide-betaine. Polyhexanide-betaine presented bactericidal activity against all MDR clinical isolates tested, including high-risk clones, at significantly lower concentrations and time of activity than those commercially used. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.
Soleimanpour, Saman; Sedighinia, Fereshteh Sadat; Safipour Afshar, Akbar; Zarif, Reza; Ghazvini, Kiarash
2015-01-01
Objective: In this study, antimicrobial activities of an ethanol extract of Tribulus terrestris aloneand in combination with Capsella bursa-pastoris and Glycyrrhiza glabra were examined in vitro against six pathogens namely Streptococcus mutans, Streptococcus sanguis, Actinomyces viscosus, Enterococcus faecalis Staphylococcus aureus, and Escherichia coli. Materials and methods: Antibacterial activities of the extracts were examined using disc and well diffusion methods and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of ethanol extracts were determined against these microorganisms using agar and broth dilution methods. Chlorhexidine was used as positive control. Results: Tribulus terrestris extract exhibited good antibacterial activity against all bacteria. Antibacterial activity of mixed extract was evaluated and exhibited that mixed extract was more effective against all bacteria than any of the cases alone which indicates the synergistic effect between these three extracts (p˂0.05). No strain showed resistance against these extracts. In agar dilution, Tribulus terrestris exhibited MIC values ranging from 35.0 to 20.0 mg/ml and mixed extract showed MIC values ranging from 12.5 to 5.0 mg/ml. The results of broth dilution method were consistent with the findings of the agar dilution method. Conclusion: This in-vitro study was a preliminary evaluation of antibacterial activity of the plants. It provided scientific evidence to support uses of T. terrestris and its mixture with C. bursa-pastoris and G. glabra for the treatment of oral infections. In-vivo studies are also required to better evaluate the effect of these extracts. PMID:26101754
Miranda, Claudio D; Smith, Peter; Rojas, Rodrigo; Contreras-Lynch, Sergio; Vega, J M Alonso
2016-01-01
Flavobacterium psychrophilum is the most important bacterial pathogen for freshwater farmed salmonids in Chile. The aims of this study were to determine the susceptibility to antimicrobials used in fish farming of Chilean isolates and to calculate their epidemiological cut-off (CO WT ) values. A number of 125 Chilean isolates of F. psychrophilum were isolated from reared salmonids presenting clinical symptoms indicative of flavobacteriosis and their identities were confirmed by 16S rRNA polymerase chain reaction. Susceptibility to antibacterials was tested on diluted Mueller-Hinton by using an agar dilution MIC method and a disk diffusion method. The CO WT values calculated by Normalized Resistance Interpretation (NRI) analysis allow isolates to be categorized either as wild-type fully susceptible (WT) or as manifesting reduced susceptibility (NWT). When MIC data was used, NRI analysis calculated a CO WT of ≤0.125, ≤2, and ≤0.5 μg mL -1 for amoxicillin, florfenicol, and oxytetracycline, respectively. For the quinolones, the CO WT were ≤1, ≤0.5, and ≤0.125 μg mL -1 for oxolinic acid, flumequine, and enrofloxacin, respectively. The disk diffusion data sets obtained in this work were extremely diverse and were spread over a wide range. For the quinolones there was a close agreement between the frequencies of NWT isolates calculated using MIC and disk data. For oxolinic acid, flumequine, and enrofloxacin the frequencies were 45, 39, and 38% using MIC data, and 42, 41, and 44%, when disk data were used. There was less agreement with the other antimicrobials, because NWT frequencies obtained using MIC and disk data, respectively, were 24 and 10% for amoxicillin, 8 and 2% for florfenicol, and 70 and 64% for oxytetracycline. Considering that the MIC data was more precise than the disk diffusion data, MIC determination would be the preferred method for susceptibility testing for this species and the NWT frequencies derived from the MIC data sets should be considered as the more authoritative. Despite the high frequency of isolates showing full susceptibility to florfenicol, the significant frequencies of isolates exhibiting reduced susceptibility to oxytetracycline and quinolones may result in treatment failures when these agents are used.
In vitro susceptibility of Prototheca spp. to gentamicin.
Shahan, T A; Pore, R S
1991-01-01
One hundred strains of Prototheca zopfii, Prototheca wickerhamii, Prototheca moriformis, Prototheca stagnora, and Prototheca ulmnea; five strains of Chlorella protothecoides; and two strains of Candida albicans were obtained from a number of different clinical and environmental sources and were tested for their in vitro susceptibility to the antibacterial agent gentamicin. All Prototheca strains were susceptible to gentamicin at concentrations between 0.3 and 0.9 micrograms/ml. A modified macrobroth dilution MIC assay with a colorimeter and a microbroth dilution assay with a 96-well plate reader were the two methods used to determine the MICs. PMID:1804021
Steward, Christine D.; Stocker, Sheila A.; Swenson, Jana M.; O’Hara, Caroline M.; Edwards, Jonathan R.; Gaynes, Robert P.; McGowan, John E.; Tenover, Fred C.
1999-01-01
Fluoroquinolone resistance appears to be increasing in many species of bacteria, particularly in those causing nosocomial infections. However, the accuracy of some antimicrobial susceptibility testing methods for detecting fluoroquinolone resistance remains uncertain. Therefore, we compared the accuracy of the results of agar dilution, disk diffusion, MicroScan Walk Away Neg Combo 15 conventional panels, and Vitek GNS-F7 cards to the accuracy of the results of the broth microdilution reference method for detection of ciprofloxacin and ofloxacin resistance in 195 clinical isolates of the family Enterobacteriaceae collected from six U.S. hospitals for a national surveillance project (Project ICARE [Intensive Care Antimicrobial Resistance Epidemiology]). For ciprofloxacin, very major error rates were 0% (disk diffusion and MicroScan), 0.9% (agar dilution), and 2.7% (Vitek), while major error rates ranged from 0% (agar dilution) to 3.7% (MicroScan and Vitek). Minor error rates ranged from 12.3% (agar dilution) to 20.5% (MicroScan). For ofloxacin, no very major errors were observed, and major errors were noted only with MicroScan (3.7% major error rate). Minor error rates ranged from 8.2% (agar dilution) to 18.5% (Vitek). Minor errors for all methods were substantially reduced when results with MICs within ±1 dilution of the broth microdilution reference MIC were excluded from analysis. However, the high number of minor errors by all test systems remains a concern. PMID:9986809
Comparative activity of several beta-lactam antibiotics against anaerobes determined by two methods.
Zabransky, R J; Birk, R J
1987-01-01
The susceptibility of 120 strains of several species of anaerobes to a number of second and third generation beta-lactam antibiotics was determined by the National Committee for Clinical Laboratory Standards reference agar dilution and microdilution methods. The antibiotics tested were cefoperazone, cefotaxime, cefotetan, ceftizoxime, cefoxitin, and imipenem. The MIC50s ranged from 0.125 to 16 micrograms/ml. The MIC90s were lowest with imipenem at 0.5 micrograms/ml, followed by cefoxitin at 32 micrograms/ml; they were highest with cefotetan at 128 micrograms/ml and were 64 micrograms/ml with the others. In vitro drug activity varied with the antibiotic, the organism, the method used, and the breakpoint selected. Rates of resistance varied considerably between the taxonomic groups of organisms tested and also among species within a group. Overall, reproducibility with the agar dilution method ranged from 44% to 85%; testing with ceftizoxime was the least reproducible. Microdilution results agreed within +/- 1 dilution of the agar dilution mode 79% to 95% of the time, with some variation between drugs and organisms tested. Because there were distinct differences in the activity of some drugs against certain species, no antibiotic can substitute for others in in vitro testing.
Soleimanpour, Saman; Sedighinia, Fereshteh Sadat; Safipour Afshar, Akbar; Zarif, Reza; Ghazvini, Kiarash
2015-01-01
In this study, antimicrobial activities of an ethanol extract of Tribulus terrestris aloneand in combination with Capsella bursa-pastoris and Glycyrrhiza glabra were examined in vitro against six pathogens namely Streptococcus mutans, Streptococcus sanguis, Actinomyces viscosus, Enterococcus faecalis Staphylococcus aureus, and Escherichia coli. Antibacterial activities of the extracts were examined using disc and well diffusion methods and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of ethanol extracts were determined against these microorganisms using agar and broth dilution methods. Chlorhexidine was used as positive control. Tribulus terrestris extract exhibited good antibacterial activity against all bacteria. Antibacterial activity of mixed extract was evaluated and exhibited that mixed extract was more effective against all bacteria than any of the cases alone which indicates the synergistic effect between these three extracts (p˂0.05). No strain showed resistance against these extracts. In agar dilution, Tribulus terrestris exhibited MIC values ranging from 35.0 to 20.0 mg/ml and mixed extract showed MIC values ranging from 12.5 to 5.0 mg/ml. The results of broth dilution method were consistent with the findings of the agar dilution method. This in-vitro study was a preliminary evaluation of antibacterial activity of the plants. It provided scientific evidence to support uses of T. terrestris and its mixture with C. bursa-pastoris and G. glabra for the treatment of oral infections. In-vivo studies are also required to better evaluate the effect of these extracts.
Shehata, Atef S.; Mukherjee, Pranab K.; Ghannoum, Mahmoud A.
2008-01-01
In this study, we determined the utility of a 2,3-bis(2-methoxy-4-nitro-5-[(sulfenylamino)carbonyl]-2H-tetrazolium hydroxide (XTT)-based assay for determining antifungal susceptibilities of dermatophytes to terbinafine, ciclopirox, and voriconazole in comparison to the Clinical and Laboratory Standards Institute (CLSI) M38-A2 method. Forty-eight dermatophyte isolates, including Trichophyton rubrum (n = 15), Trichophyton mentagrophytes (n = 7), Trichophyton tonsurans (n = 11), and Epidermophyton floccosum (n = 13), and two quality control strains, were tested. In the XTT-based method, MICs were determined spectrophotometrically at 490 nm after addition of XTT and menadione. For the CLSI method, the MICs were determined visually. With T. rubrum, the XTT assay revealed MIC ranges of 0.004 to >64 μg/ml, 0.125 to 0.25 μg/ml, and 0.008 to 0.025 μg/ml for terbinafine, ciclopirox, and voriconazole, respectively. Similar MIC ranges were obtained against T. rubrum by using the CLSI method. Additionally, when tested with T. mentagrophytes, T. tonsurans, and E. floccosum isolates, the XTT and CLSI methods resulted in comparable MIC ranges. Both methods revealed similar lowest drug concentrations that inhibited 90% of the isolates for the majority of tested drug-dermatophyte combinations. The levels of agreement within 1 dilution between both methods were as follows: 100% with terbinafine, 97.8% with ciclopirox, and 89.1% with voriconazole. However, the agreement within 2 dilutions between these two methods was 100% for all tested drugs. Our results revealed that the XTT assay can be a useful tool for antifungal susceptibility testing of dermatophytes. PMID:18832129
Chaves, Sandra; Gadanho, Mário; Tenreiro, Rogério; Cabrita, José
1999-01-01
Metronidazole susceptibility of 100 Helicobacter pylori strains was assessed by determining the inhibition zone diameters by disk diffusion test and the MICs by agar dilution and PDM Epsilometer test (E test). Linear regression analysis was performed, allowing the definition of significant linear relations, and revealed correlations of disk diffusion results with both E-test and agar dilution results (r2 = 0.88 and 0.81, respectively). No significant differences (P = 0.84) were found between MICs defined by E test and those defined by agar dilution, taken as a standard. Reproducibility comparison between E-test and disk diffusion tests showed that they are equivalent and with good precision. Two interpretative susceptibility schemes (with or without an intermediate class) were compared by an interpretative error rate analysis method. The susceptibility classification scheme that included the intermediate category was retained, and breakpoints were assessed for diffusion assay with 5-μg metronidazole disks. Strains with inhibition zone diameters less than 16 mm were defined as resistant (MIC > 8 μg/ml), those with zone diameters equal to or greater than 16 mm but less than 21 mm were considered intermediate (4 μg/ml < MIC ≤ 8 μg/ml), and those with zone diameters of 21 mm or greater were regarded as susceptible (MIC ≤ 4 μg/ml). Error rate analysis applied to this classification scheme showed occurrence frequencies of 1% for major errors and 7% for minor errors, when the results were compared to those obtained by agar dilution. No very major errors were detected, suggesting that disk diffusion might be a good alternative for determining the metronidazole sensitivity of H. pylori strains. PMID:10203543
Liu, Yu; Tortora, George; Ryan, Maria E.; Lee, Hsi-Ming; Golub, Lorne M.
2002-01-01
The broth macrodilution method (BMM) for antifungal susceptibility testing, approved by the National Committee for Clinical Laboratory Standards (NCCLS), was found to have deficiencies in testing of the antifungal activity of a new type of antifungal agent, a nonantibacterial chemically modified tetracycline (CMT-3). The high content of phosphate in the medium was found to greatly increase the MICs of CMT-3. To avoid the interference of phosphate in the test, a new method using potato dextrose agar (PDA) as a culture medium was developed. Eight strains of fungi, including five American Type Culture Collection strains and three clinical isolates, were used to determine the MICs of amphotericin B and itraconazole with both the BMM and the PDA methods. The MICs of the two antifungal agents determined with the PDA method showed 99% agreement with those determined with the BMM method within 1 log2 dilution. Similarly, the overall reproducibility of the MICs with the PDA method was above 97%. Three other antifungal agents, fluconazole, ketoconazole, and CMT-3, were also tested in parallel against yeasts and molds with both the BMM and the PDA methods. The MICs of fluconazole and ketoconazole determined with the PDA method showed 100% agreement within 1 log2 dilution of those obtained with the BMM method. However, the MICs of CMT-3 determined with the BMM method were as high as 128 times those determined with the PDA method. The effect of phosphate on the antifungal activity of CMT-3 was evaluated by adding Na2HPO4 to PDA in the new method. It was found that the MIC of CMT-3 against a Penicillium sp. increased from 0.5 μg/ml (control) to 2.0 μg/ml when the added phosphate was used at a concentration of 0.8 mg/ml, indicating a strong interference of Na2HPO4 with the antifungal activity of CMT-3. Except for fluconazole, all the other antifungal agents demonstrated clear end points among the yeasts and molds tested. Nevertheless, with its high reproducibility, good agreement with NCCLS proposed MIC ranges, and lack of interference of phosphate, the PDA method shows promise as a useful assay for antifungal susceptibility testing and screening for new antifungal agents, especially for drugs that may be affected by high (supraphysiologic) phosphate concentrations. PMID:11959582
Landman, David; Salamera, Julius; Quale, John
2013-12-01
Carbapenem-resistant Enterobacter species are emerging nosocomial pathogens. As with most multidrug-resistant Gram-negative pathogens, the polymyxins are often the only therapeutic option. In this study involving clinical isolates of E. cloacae and E. aerogenes, susceptibility testing methods with polymyxin B were analyzed. All isolates underwent testing by the broth microdilution (in duplicate) and agar dilution (in duplicate) methods, and select isolates were examined by the Etest method. Selected isolates were also examined for heteroresistance by population analysis profiling. Using a susceptibility breakpoint of ≤2 μg/ml, categorical agreement by all four dilution tests (two broth microdilution and two agar dilution) was achieved in only 76/114 (67%) of E. cloacae isolates (65 susceptible, 11 resistant). Thirty-eight (33%) had either conflicting or uninterpretable results (multiple skip wells, i.e., wells that exhibit no growth although growth does occur at higher concentrations). Of the 11 consistently resistant isolates, five had susceptible MICs as determined by Etest. Heteroresistant subpopulations were detected in eight of eight isolates tested, with greater percentages in isolates with uninterpretable MICs. For E. aerogenes, categorical agreement between the four dilution tests was obtained in 48/56 (86%), with conflicting and/or uninterpretable results in 8/56 (14%). For polymyxin susceptibility testing of Enterobacter species, close attention must be paid to the presence of multiple skip wells, leading to uninterpretable results. Susceptibility also should not be assumed based on the results of a single test. Until the clinical relevance of skip wells is defined, interpretation of polymyxin susceptibility tests for Enterobacter species should be undertaken with extreme caution.
Landman, David; Salamera, Julius
2013-01-01
Carbapenem-resistant Enterobacter species are emerging nosocomial pathogens. As with most multidrug-resistant Gram-negative pathogens, the polymyxins are often the only therapeutic option. In this study involving clinical isolates of E. cloacae and E. aerogenes, susceptibility testing methods with polymyxin B were analyzed. All isolates underwent testing by the broth microdilution (in duplicate) and agar dilution (in duplicate) methods, and select isolates were examined by the Etest method. Selected isolates were also examined for heteroresistance by population analysis profiling. Using a susceptibility breakpoint of ≤2 μg/ml, categorical agreement by all four dilution tests (two broth microdilution and two agar dilution) was achieved in only 76/114 (67%) of E. cloacae isolates (65 susceptible, 11 resistant). Thirty-eight (33%) had either conflicting or uninterpretable results (multiple skip wells, i.e., wells that exhibit no growth although growth does occur at higher concentrations). Of the 11 consistently resistant isolates, five had susceptible MICs as determined by Etest. Heteroresistant subpopulations were detected in eight of eight isolates tested, with greater percentages in isolates with uninterpretable MICs. For E. aerogenes, categorical agreement between the four dilution tests was obtained in 48/56 (86%), with conflicting and/or uninterpretable results in 8/56 (14%). For polymyxin susceptibility testing of Enterobacter species, close attention must be paid to the presence of multiple skip wells, leading to uninterpretable results. Susceptibility also should not be assumed based on the results of a single test. Until the clinical relevance of skip wells is defined, interpretation of polymyxin susceptibility tests for Enterobacter species should be undertaken with extreme caution. PMID:24088860
Fritsche, T R; Moet, G J; Jones, R N
2004-09-01
NVP PDF-713 (LBM 415) is a peptide deformylase inhibitor being progressed into clinical trials. Dry-form broth microdilution panels of NVP PDF-713 were compared to reference MIC panels of 552 recent clinical isolates. Most (99.2%) dry-form MIC results were within +/- 1 log(2) dilution of the reference panel MICs. Of the bacteria tested, Streptococcus pneumoniae and Haemophilus influenzae showed a bias towards higher and lower MICs, respectively. Same-day and between-day reproducibility tests showed that 98.9% and 96.7% of MIC values, respectively, were within +/- 1 log(2) dilution step, thereby demonstrating a high degree of reliability of the dry-form MIC product for clinical studies.
Van den Bulck, K.; Decostere, A.; Gruntar, I.; Baele, M.; Krt, B.; Ducatelle, R.; Haesebrouck, F.
2005-01-01
The susceptibilities of Helicobacter felis (15 strains), H. bizzozeronii (7 strains), and H. salomonis (3 strains) to 10 antimicrobial agents were investigated by determination of the MIC using the agar dilution method. No consistent differences were noticed between the different Helicobacter species, which were all highly susceptible to ampicillin, clarithromycin, tetracycline, tylosin, enrofloxacin, gentamicin, and neomycin, as demonstrated by low MICs. Higher MICs were obtained for lincomycin (up to 8 μg/ml) and spectinomycin (up to 4 μg/ml). Two H. felis strains showed a MIC of 16 μg/ml for metronidazole, suggesting acquired resistance to this antimicrobial agent. PMID:15980383
Anvarinejad, Mojtaba; Pouladfar, Gholam Reza; Pourabbas, Bahman; Amin Shahidi, Maneli; Rafaatpour, Noroddin; Dehyadegari, Mohammad Ali; Abbasi, Pejman; Mardaneh, Jalal
2016-04-01
Human salmonellosis continues to be a major international problem, in terms of both morbidity and economic losses. The antibiotic resistance of Salmonella is an increasing public health emergency, since infections from resistant bacteria are more difficult and costly to treat. The aims of the present study were to investigate the isolation of Salmonella spp. with the BACTEC automated system from blood samples during 2008 - 2014 in southern Iran (Shiraz). Detection of subspecies, biogrouping, and antimicrobial susceptibility testing by the disc diffusion and agar dilution methods were performed. A total of 19 Salmonella spp. were consecutively isolated using BACTEC from blood samples of patients between 2008 and 2014 in Shiraz, Iran. The isolates were identified as Salmonella, based on biochemical tests embedded in the API-20E system. In order to characterize the biogroups and subspecies, biochemical testing was performed. Susceptibility testing (disc diffusion and agar dilution) and extended-spectrum β-lactamase (ESBL) detection were performed according to the clinical and laboratory standards institute (CLSI) guidelines. Of the total 19 Salmonella spp. isolates recovered by the BACTEC automated system, all belonged to the Salmonella enterica subsp. houtenae. Five isolates (26.5%) were resistant to azithromycin. Six (31.5%) isolates with the disc diffusion method and five (26.3%) with the agar dilution method displayed resistance to nalidixic acid (minimum inhibitory concentration [MIC] > 32 μg/mL). All nalidixic acid-resistant isolates were also ciprofloxacin-sensitive. All isolates were ESBL-negative. Twenty-one percent of isolates were found to be resistant to chloramphenicol (MIC ≥ 32 μg/mL), and 16% were resistant to ampicillin (MIC ≥ 32 μg/mL). The results indicate that multidrug-resistant (MDR) strains of Salmonella are increasing in number, and fewer antibiotics may be useful for treating S. enterica infections. Routine investigation and reporting of antibiotic MICs in patients presenting with Salmonella infections is suggested.
Antimicrobial activity of honokiol and magnolol isolated from Magnolia officinalis.
Ho, K Y; Tsai, C C; Chen, C P; Huang, J S; Lin, C C
2001-03-01
The antimicrobial activity of honokiol and magnolol, the main constituents of Magnolia officinalis was investigated. The antimicrobial activity was assayed by the agar dilution method using brain heart infusion medium and the minimum inhibitory concentration (MIC) were determined for each compound using a twofold serial dilution assay. The results showed that honokiol and magnolol have a marked antimicrobial effect (MIC = 25 microg/mL) against Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, Micrococcus luteus and Bacillus subtilis, but did not show antimicrobial activity (MIC > or = 100 microg/mL) for Shigella flexneii, Staphylococcus epidermidis, Enterobacter aerogenes, Proteus vulgaris, Escherichia coli and Pseudomonas aeruginosa. Our results indicate that honokiol and magnolol, although less potent than tetracycline, show a significant antimicrobial activity for periodontal pathogens. Hence we suggest that honokiol and magnolol might have the potential to be an adjunct in the treatment of periodontitis. Copyright 2001 John Wiley & Sons, Ltd.
Tan, Hern Tze; Rahman, Rosliza Abdul; Gan, Siew Hua; Halim, Ahmad Sukari; Hassan, Siti Asma'; Sulaiman, Siti Amrah; BS, Kirnpal-Kaur
2009-01-01
Background Antibiotic resistance of bacteria is on the rise, thus the discovery of alternative therapeutic agents is urgently needed. Honey possesses therapeutic potential, including wound healing properties and antimicrobial activity. Although the antimicrobial activity of honey has been effectively established against an extensive spectrum of microorganisms, it differs depending on the type of honey. To date, no extensive studies of the antibacterial properties of tualang (Koompassia excelsa) honey on wound and enteric microorganisms have been conducted. The objectives of this study were to conduct such studies and to compare the antibacterial activity of tualang honey with that of manuka honey. Methods Using a broth dilution method, the antibacterial activity of tualang honey against 13 wound and enteric microorganisms was determined; manuka honey was used as the control. Different concentrations of honey [6.25-25% (w/v)] were tested against each type of microorganism. Briefly, two-fold dilutions of honey solutions were tested to determine the minimum inhibitory concentration (MIC) against each type of microorganism, followed by more assays within a narrower dilution range to obtain more precise MIC values. MICs were determined by both visual inspection and spectrophotometric assay at 620 nm. Minimum bactericidal concentration (MBC) also was determined by culturing on blood agar plates. Results By visual inspection, the MICs of tualang honey ranged from 8.75% to 25% compared to manuka honey (8.75-20%). Spectrophotometric readings of at least 95% inhibition yielded MIC values ranging between 10% and 25% for both types of honey. The lowest MBC for tualang honey was 20%, whereas that for manuka honey was 11.25% for the microorganisms tested. The lowest MIC value (8.75%) for both types of honey was against Stenotrophomonas maltophilia. Tualang honey had a lower MIC (11.25%) against Acinetobacter baumannii compared to manuka honey (12.5%). Conclusion Tualang honey exhibited variable activities against different microorganisms, but they were within the same range as those for manuka honey. This result suggests that tualang honey could potentially be used as an alternative therapeutic agent against certain microorganisms, particularly A. baumannii and S. maltophilia. PMID:19754926
Tanner, A C; Erickson, B Z; Ross, R F
1993-09-01
A broth microdilution technique is described for determining the antimicrobial susceptibility of Mycoplasma hyopneumoniae, using commercially prepared Sensititre plates. Twenty-five field isolates and two reference strains (J & 232), were tested against seven antimicrobials. Field isolates were tested in duplicate and reference strains, four times to estimate reproducibility. Ninety-seven percent of the duplicate MIC results for the field isolates were in agreement, or within one log2 dilution. Similar results were obtained with the reference strains. The isolates were susceptible to lincomycin-spectinomycin, tylosin and oxytetracycline or resistant to amoxycillin, apramycin and erythromycin. Susceptibility to furaltadone varied. This method retains the accuracy and reproducibility of broth MIC determinations, while avoiding the lengthy preparation of antimicrobial dilutions normally associated with more traditional methods.
Antifungal Susceptibility Testing of Fluconazole by Flow Cytometry Correlates with Clinical Outcome
Wenisch, Christoph; Moore, Caroline B.; Krause, Robert; Presterl, Elisabeth; Pichna, Peter; Denning, David W.
2001-01-01
Susceptibility testing of fungi by flow cytometry (also called fluorescence-activated cell sorting [FACS]) using vital staining with FUN-1 showed a good correlation with the standard M27-A procedure for assessing MICs. In this study we determined MICs for blood culture isolates from patients with candidemia by NCCLS M27-A and FACS methods and correlated the clinical outcome of these patients with in vitro antifungal resistance test results. A total of 24 patients with candidemia for whom one or more blood cultures were positive for a Candida sp. were included. Susceptibility testing was performed by NCCLS M27-A and FACS methods. The correlation of MICs (NCCLS M27-A and FACS) and clinical outcome was calculated. In 83% of the cases, the MICs of fluconazole determined by FACS were within 1 dilution of the MICs determined by the NCCLS M27-A method. For proposed susceptibility breakpoints, there was 100% agreement between the M27-A and FACS methods. In the FACS assay, a fluconazole MIC of <1 μg/ml was associated with cure (P < 0.001) whereas an MIC of ≥1 μg/ml was associated with death (P < 0.001). The M27-A-derived fluconazole MICs did not correlate with outcome (P = 1 and P = 0.133). PMID:11427554
Edelstein, P H; Pasiecznik, K A; Yasui, V K; Meyer, R D
1982-01-01
Thirty-three strains of Legionella spp., 29 of which were L. pneumophila, were tested for their susceptibilities to erythromycin (EM), rosaramicin, tylosin, mycinamicin I (Sch-27897), and mycinamicin II (Sch-27896). Testing was performed using an agar dilution method with two different types of media: buffered charcoal yeast extract medium supplemented with 0.1% alpha-ketoglutarate (BCYE alpha) and filter-sterilized yeast extract medium with 0.1% alpha-ketoglutarate (BYE alpha). The minimal inhibitory concentrations (MICs) of the drugs tested relative to the MICs of erythromycin were: rosaramicin, MIC approximately equal to 0.2 EM MIC; tylosin, MIC approximately equal to 2 EM MIC; mycinamicin I, MIC approximately equal to 0.5 EM MIC; and mycinamicin II, MIC approximately equal to EM MIC. Both types of media caused equivalent partial inactivation of the macrolides which was apparently due entirely to pH effect. MICs on BCYE alpha were one to five times more than those observed on BYE alpha; this may be due to poorer growth on BYE alpha. PMID:7125633
Portis, Ellen; Lindeman, Cynthia; Johansen, Lacie; Stoltman, Gillian
2012-09-01
Bovine isolates of Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni, collected from 2000 to 2009, were tested for in vitro susceptibility to ceftiofur, penicillin, danofloxacin, enrofloxacin, florfenicol, tetracycline, tilmicosin, and tulathromycin. Ceftiofur remained very active against all isolates. Penicillin retained good activity against P. multocida and H. somni isolates with no appreciable changes in susceptibility or minimal inhibitory concentration (MIC) distributions with time. While there was no obvious trend, the percent of M. haemolytica that were susceptible to penicillin ranged from 40.9% to 66.7%. Danofloxacin MIC(50) and MIC(90) values for M. haemolytica and P. multocida did not change beyond a single dilution over the 6 years it was included in the testing panel. The MIC(90) for H. somni increased beyond 1 dilution. Enrofloxacin MIC(50) values for the 3 pathogens also did not change over time, unlike the MIC(90) values, which increased by at least 4-doubling dilutions. Ninety percent or more of M. haemolytica and H. somni isolates were susceptible to florfenicol, while susceptibility among P. multocida was 79% or greater. Less than 50% of the isolates tested as susceptible to tetracycline in many of the years. All 3 organisms showed declines in tilmicosin and tulathromycin MIC(50) and MIC(90) values over the years in which they were tested.
Goldstein, Ellie J C; Citron, Diane M; Merriam, C Vreni; Warren, Yumi A; Tyrrell, Kerin L; Fernandez, Helen T; Bryskier, Andre
2005-01-01
A comparative study of the in vitro activities of XRP 2868, a new oral streptogramin, against 266 anaerobic gram-positive clinical isolates using the agar dilution method showed that the XRP 2868 MICs for 95% (254 of 266) of isolates were < or =0.5 microg/ml. XRP 2868 MICs for only two strains, one being Clostridium clostridioforme (MIC, 16 microg/ml) and the other being Clostridium difficile (MIC, 32 microg/ml), were >2 microg/ml. Depending on its pharmacokinetics and pharmacodynamics, XRP 2868 has potential for use against infections with gram-positive anaerobes and deserves further clinical evaluation.
Mohd Nasir, Mohd Desa; Parasakthi, Navaratnam
2004-06-01
The increasing prevalence of penicillin-resistant Streptococuus pneumoniae urges for fast and accurate susceptibility testing methods. This study evaluated the comparability of three commonly used techniques; disk diffusion, E-test and agar dilution, to detect penicillin susceptibility in clinical isolates of S. pneumoniae. Fifty pneumococcal isolates, obtained from patients at the University of Malaya Medical Centre, were selected to include both penicillin-susceptible strains and those that had decreased susceptibility (resistant and intermediate) to penicillin. The minimum inhibitory concentration (MIC) values of penicillin to serve as the reference was determined by the agar dilution method in which, based on the MIC breakpoints recommended by the National Committee for Clinical Laboratory Standards (NCCLS), 27 strains had decreased susceptibility to penicillin with 17 strains resistant and 10 intermediate. Comparing to the agar dilution method, oxacillin disk diffusion test detected all strains with decreased penicillin susceptibility as such while E-test showed a close agreement of susceptibility (92%) of the isolates to penicillin. This confirmed that oxacillin is a good screening test for S. pneumoniae isolates with decreased susceptibility to penicillin while E-test is very reliable for rapid and accurate detection of penicillin susceptibility.
Interpretive criteria of antimicrobial disk susceptibility tests with flomoxef.
Grimm, H
1991-01-01
320 recently isolated pathogens, 20 strains from each of 16 species, were investigated using Mueller-Hinton agar and DIN as well as NCCLS standards. The geometric mean of the agar dilution MICs of flomoxef were 0.44 mg/l for Staphylococcus aureus, 0.05 mg/l (Klebsiella oxytoca) to 12.6 mg/l (Enterobacter spp.) for enterobacteriaceae, 33.1 mg/l for Acinetobacter anitratus, 64 mg/l for Enterococcus faecalis, and more than 256 mg/l for Pseudomonas aeruginosa. For disk susceptibility testing of flomoxef a 30 micrograms disk loading and the following interpretation of inhibition zones using the DIN method were recommended: resistant-up to 22 mm (corresponding to MICs of 8 mg/l or more), moderately susceptible-23 to 29 mm (corresponding to MICs from 1 to 4 mg/l), and susceptible-30 mm or more (corresponding to MICs of 0.5 mg/l or less). The respective values for the NCCLS method using the American high MIC breakpoints are: resistant--up to 14 mm (corresponding to MICs of 32 mg/l or more), moderately susceptible--15 to 17 mm (corresponding to MICs of 16 mg/l), and susceptible--18 mm or more (corresponding to MICs of 8 mg/l or less).
Fritsche, Thomas R; Sader, Helio S; Cleeland, Roy; Jones, Ronald N
2005-04-01
LBM415 (NVP PDF-713) is the first member of the peptide deformylase (PDF) inhibitor class being developed for clinical trials as a parenteral and oral agent for treatment of community-acquired respiratory tract disease and serious infections caused by antimicrobial-resistant gram-positive cocci. In this study susceptibility testing results from 1,306 recent clinical isolates selected to over-represent resistance trends among the species were summarized. All staphylococci (153 strains; MIC at which 90% of isolates were inhibited [MIC90], 2 microg/ml), Streptococcus pneumoniae (170 strains; MIC90, 1 microg/ml), other streptococci (150 strains; MIC90, 1 microg/ml), enterococci (104 strains; MIC90, 4 microg/ml), Moraxella catarrhalis (103 strains; MIC90, 0.5 microg/ml), and Legionella pneumophila (50 strains; MIC90, 0.12 microg/ml) were inhibited at < or = 8 microg of LBM415/ml, as were 97% of Haemophilus influenzae isolates (300 strains; MIC90, 4 to 8 microg/ml). Among other bacterial groups, 100% of gram-positive and -negative anaerobes, including 22 Bacteroides spp. strains (31 strains total; MIC90, 1 microg/ml), were inhibited by < or = 4 microg/ml, whereas Enterobacteriaceae (112 strains) and most nonfermentative bacilli (107 strains) were not inhibited at readily achievable concentrations. The compound was found to have a dominantly bacteriostatic action, and spontaneous single-step mutational rates occurred at low levels (10(-6) to <10(-8)). Drug interaction studies failed to identify any class-specific synergistic interactions, nor were antagonistic interactions observed. Variations in broth and agar MIC test conditions demonstrated that, whereas the agar-based method trended towards a 1-log2 dilution-higher MIC than the broth method and was inoculum dependent, other variations in incubation environment, medium supplements, pH, or calcium concentration had little influence on LBM415 MIC results. Use of the efflux inhibitor phe-arg-beta-naphthylamide showed an average of 1 log2 dilution decrease in H. influenzae MICs, demonstrating the contribution of efflux pumps in influencing susceptibility to PDF inhibitors. The in vitro activity of LBM415 against targeted bacterial species, including resistant subsets, and other laboratory characteristics of this novel compound demonstrate the potential of PDF inhibitors as a new class of antimicrobial agents.
Goldstein, Ellie J. C.; Citron, Diane M.; Merriam, C. Vreni; Warren, Yumi A.; Tyrrell, Kerin L.; Fernandez, Helen T.; Bryskier, Andre
2005-01-01
A comparative study of the in vitro activities of XRP 2868, a new oral streptogramin, against 266 anaerobic gram-positive clinical isolates using the agar dilution method showed that the XRP 2868 MICs for 95% (254 of 266) of isolates were ≤0.5 μg/ml. XRP 2868 MICs for only two strains, one being Clostridium clostridioforme (MIC, 16 μg/ml) and the other being Clostridium difficile (MIC, 32 μg/ml), were >2 μg/ml. Depending on its pharmacokinetics and pharmacodynamics, XRP 2868 has potential for use against infections with gram-positive anaerobes and deserves further clinical evaluation. PMID:15616322
Ghasemian, E; Naghoni, A; Tabaraie, B; Tabaraie, T
2012-12-01
Metal nanoparticles and their uses in various aspects have recently drawn a great deal of attention. One of the major applications is that it can be used as an antimicrobial agent. They can be considered in approaches targeted to decrease the harms caused by microorganisms, specifically fungi, threatening the medical and industrial areas. The aim of this study was to investigate the antifungal activity of synthesized copper nanoparticles (CuNPs) against four filamentous fungi including Alternaria alternata, Aspergillus flavus, Fusarium solani, and Penicillium chrysogenum. Zerovalent copper nanoparticles of mean size 8nm were synthesized by inert gas condensation (IGC) method. The antifungal activity of these synthesized copper nanoparticles was measured against selected fungi by using two different techniques including agar dilution method and XTT reduction assay. The minimal inhibitory concentrations (MICs) for copper nanoparticles by agar dilution method were less or equal to 40mg/L for P. chrysogenum, less or equal to 60mg/L for A. alternata, less or equal to 60mg/L for F. solani, and less or equal to 80mg/L for A. flavus. And also MICs obtained by XTT reduction assay ranged from 40 to 80mg/L. Our data demonstrated that the copper nanoparticles inhibited fungal growth, but the fungal sensitivity to copper nanoparticles varies depending on the fungal species. Therefore, it is advisable that the minimal inhibitory concentrations (MICs) be examined before using these compounds. It is hoped that, in future, copper nanoparticles could replace some antifungal agents, making them applicable to many different medical devices and antimicrobial control system. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
In vitro susceptibility of rabbit strains of Clostridium spiroforme to antimicrobial agents.
Carman, R J; Wilkins, T D
1991-08-30
Using an agar dilution method we measured the minimum inhibitory concentration (MIC) of 12 antimicrobial agents against 11 strains of iota-toxigenic strains of Clostridium spiroforme. Each strain was isolated from a separate outbreak of toxic diarrhoea of rabbits. Vancomycin and bacitracin, both agents used to treat intestinal clostridioses of humans and other animals, had a relatively high MIC (8 micrograms/ml or more). Metronidazole was uniformly active against C. spiroforme. With MIC of 8 micrograms/ml or more, both lincomycin (11 strains) and erythromycin (9 strains) were relatively inactive against C. spiroforme, conversely, penicillin G was active (MIC for 8 strains was 0.5 micrograms/ml or less). Exposure to any one of these drugs has been implicated as a predisposing factor for C. spiroforme mediated diarrhoea of rabbits. The greatest variation in MIC was seen for erythromycin (8-fold), penicillin G (8-fold) and tetracycline (16-fold).
NASA Astrophysics Data System (ADS)
Aminah; Nugraheni, E. R.; Yugatama, A.
2018-03-01
The aim of this study was to evaluate the antibacterial activity from Attacus atlas cocoon extract against Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus) with 3 diffferent solvents polar, semi-polar and non polar which was ethanol, ethyl acetate and chloroform, also to determine the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of the extract. Cocoon was extracted with maceration method using 3 solvents with ratio of sample and solvent 1:10. Antibacterial activity of the Extracts obtained was evaluated with Agar disk diffusion method. The best result was then continued to determine the MIC and MBC of the extract using broth macro-dilution method. The results show that each of the extracts have antibacterial activity with broad spectrum against two different type of bacteria at concentration of 1 g/mL with different clear zone between these extracts. Clear zone from the biggest to the smallest against Escherichia coli was ethyl acetate (10.5 mm), chloroform (9 mm) and ethanol (8 mm). While against Staphylococcus aureus, was obtained by chloroform (12.5 mm), ethyl acetate (10.5 mm) and ethanol (7 mm). The MIC value of extracts can not be determine. The smallest MBC value against both bacteria was obtained by ethyl acetate with concentration of 3.125% b/v as a bactericidal.
Staneck, J L; Allen, S D; Harris, E E; Tilton, R C
1985-01-01
The Sensititre Autoreader is a microcomputer-driven instrument capable of automatically reading antimicrobial susceptibility microdilution trays. The instrument measures the fluorescence liberated by bacterial enzymatic activity on fluorogenic substrates as an indicator of growth in each well. A mathematical algorithm converts the fluorescent signals from an antimicrobial dilution series to an MIC endpoint. A three-center study evaluated the performance of the Autoreader in comparison with MIC determined visually in a duplicate set of control plates lacking fluorogenic substrate. Among 828 isolates of gram-negative bacilli tested against 17 antimicrobial agents, Autoreader 18-h MIC were within +/- 1 twofold dilution of control MIC values (agreement) in 95.3% of instances. In 3.5% of the instances, Autoreader values occurred +/- 2 half-step dilutions from control values (minor discrepancy), and in only 1.2% of instances did Autoreader values deviate from control values by greater than +/- 2 dilution steps (major discrepancy). Agreement, minor discrepancies, and major discrepancies were noted among 148 gram-positive cocci tested against 11 antimicrobial agents in 93.5, 4.8, and 1.7% of the instances, respectively. Over half of the major discrepancies noted with gram-negative bacilli occurred with Proteus mirabilis-beta-lactam combinations, a problem that was resolved when a lower initial inoculum was used. Inter-and intralaboratory reproducibility was excellent. Standard Sensititre susceptibility trays may be instrument read at 18 h reproducibly and accurately with only slight modification of conventional procedures to include fluorogenic enzyme substrates in the incubation broth. PMID:4031033
Masuda, Katsuhiko; Nemoto, Hirotoshi; Nakano, Kazuhiko; Naka, Shuhei; Nomura, Ryota; Ooshima, Takashi
2012-05-01
Infective endocarditis (IE) is known to be a life-threatening disease and invasive dental procedures are considered to be important factors. Oral amoxicillin (AMPC) is widely used for prophylaxis in patients with heart disorders who are at risk for IE. However, there is only limited information regarding the inhibition of oral bacteria by AMPC. Dental plaque specimens were obtained from 120 healthy Japanese adult subjects, then diluted and streaked onto selective medium for oral streptococci. The minimum inhibitory concentration (MIC) of AMPC was evaluated using a macro-dilution method by Clinical Laboratory Standard Institute (2006). Seven strains with an MIC of AMPC of 16μg/mL or more were isolated from 5 subjects. The bacterial species were confirmed by sequence analysis of 16S rRNA from each strain, which demonstrated that most were Streptococcus sanguinis, followed by Streptococcus oralis. Dental plaque specimens collected from these 5 subjects again after an interval of 2-3 months possessed no strains with an MIC of AMPC of 16μg/mL or more. These findings suggest that strains with a high MIC of AMPC are present in the oral cavities of Japanese adults, though they may be transient rather than inhabitants. Copyright © 2012 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.
Linares, Maria José; Solís, Francisco; Casal, Manuel
2005-01-01
A total of 104 Prototheca wickerhamii isolates and two control strains were tested for susceptibility to voriconazole using the Sensititre YeastOne colorimetric antifungal plate and NCCLS reference method. Voriconazole was highly active against all isolates, with an MIC at which 90% of isolates were inhibited of ≤0.5 μg/ml. Comparison of MICs obtained with the Sensititre product and the NCCLS method demonstrated agreement (100% ± 2 log2 dilutions) between the two methods. Voriconazole may offer an option for the treatment of Prototheca sp. infections, and its efficacy should be established through clinical experience. PMID:15872301
Antimicrobial susceptibility of Brachyspira hyodysenteriae isolated from 21 Polish farms.
Zmudzki, J; Szczotka, A; Nowak, A; Strzelecka, H; Grzesiak, A; Pejsak, Z
2012-01-01
Swine dysentery (SD) is a common disease among pigs worldwide, which contributes to major production losses. Antimicrobial susceptibility testing of B. hyodysenteriae, the etiological agent of SD, is mainly performed by the agar dilution method. This method has certain limitations due to difficulties in interpretation of results. The aim of this study was the analysis of antimicrobial susceptibility of Brachyspira hyodysenteriae (B. hyodysenteriae) Polish field isolates by broth microdilution procedure. The study was performed on 21 isolates of B. hyodysenteriae, collected between January 2006 to December 2010 from cases of swine dysentery. VetMIC Brachyspira panels with antimicrobial agents (tiamulin, valnemulin, doxycycline, lincomycin, tylosin and ampicillin) were used for susceptibility testing of B. hyodysenteriae. The minimal inhibitory concentration (MIC) was determined by the broth dilution procedure. The lowest antimicrobial activity was demonstrated for tylosin and lincomycin, with inhibition of bacterial growth using concentrations > 128 microg/ml and 32 microg/ml, respectively. In the case of doxycycline, the MIC values were < or = 2.0 microg/ml. No decreased susceptibility to tiamulin was found among the Polish isolates and MIC values for this antibiotic did not exceed 1.0 microg/ml. The results of the present study confirmed that Polish B. hyodysenteriae isolates were susceptible to the main antibiotics (tiamulin and valnemulin) used in treatment of swine dysentery. Further studies are necessary to evaluate a possible slow decrease in susceptibility to tiamulin and valnemulin of B. hyodysenteriae strains in Poland.
In Vitro Comparison of Terbinafine and Itraconazole against Penicillium marneffei
McGinnis, Michael R.; Nordoff, Nicole G.; Ryder, Neil S.; Nunn, Gary B.
2000-01-01
We evaluated terbinafine and itraconazole against 30 isolates of Penicillium marneffei using a modification of the National Committee for Clinical Laboratory Standards broth macrodilution MIC testing protocol for yeasts. The minimal fungicidal concentration (MFC) was determined by plating 100 μl from each MIC drug dilution having no growth onto Sabouraud glucose agar incubated at 30°C. The MFC was the dilution at which growth was absent at 72 h of incubation. The MICs, in micrograms per milliliter, were as follows: terbinafine, 0.03 to 1.0 (geometric mean titer, 0.09); itraconazole, 0.03 to 0.5 (geometric mean titer, 0.04). The MFCs, in micrograms per milliliter, were as follows: terbinafine, 0.03 to 8 (geometric mean titer, 2.60); itraconazole, 0.03 to 8 (geometric mean titer, 2.45). Primary fungicidal activity (MFC within 2 dilutions of MIC) was observed with terbinafine in eight isolates and with itraconazole in four isolates. The data indicate that terbinafine is active against P. marneffei in vitro and may have a previously unrealized role in the management of infections caused by this fungus. PMID:10770792
Rossi, B.; Soubirou, J. F.; Chau, F.; Massias, L.; Dion, S.; Lepeule, R.; Fantin, B.
2015-01-01
We investigated the efficacies of cefotaxime (CTX) and amoxicillin (AMX)-clavulanate (CLA) (AMC) against extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli in vitro and in a murine model of urinary tract infection (UTI). MICs, the checkerboard dilution method, and time-kill curves were used to explore the in vitro synergism between cefotaxime and amoxicillin-clavulanate against two isogenic E. coli strains—CFT073-RR and its transconjugant, CFT073-RR Tc blaCTX-M-15—harboring a blaCTX-M-15 plasmid and a blaOXA-1 plasmid. For in vivo experiments, mice were separately infected with each strain and treated with cefotaxime, amoxicillin, and clavulanate, alone or in combination, or imipenem, using therapeutic regimens reproducing time of free-drug concentrations above the MIC (fT≥MIC) values close to that obtained in humans. MICs of amoxicillin, cefotaxime, and imipenem were 4/>1,024, 0.125/1,024, and 0.5/0.5 mg/liter, for CFT073-RR and CFT073-RR Tc blaCTX-M-15, respectively. The addition of 2 mg/liter of clavulanate (CLA) restored the susceptibility of CFT073-RR Tc blaCTX-M-15 to CTX (MICs of the CTX-CLA combination, 0.125 mg/liter). The checkerboard dilution method and time-kill curves confirmed an in vitro synergy between amoxicillin-clavulanate and cefotaxime against CFT073-RR Tc blaCTX-M-15. In vivo, this antibiotic combination was similarly active against both strains and as effective as imipenem. In conclusion, the cefotaxime and amoxicillin-clavulanate combination appear to be an effective, easy, and already available alternative to carbapenems for the treatment of UTI due to CTX-M-producing E. coli strains. PMID:26525800
Rossi, B; Soubirou, J F; Chau, F; Massias, L; Dion, S; Lepeule, R; Fantin, B; Lefort, A
2016-01-01
We investigated the efficacies of cefotaxime (CTX) and amoxicillin (AMX)-clavulanate (CLA) (AMC) against extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli in vitro and in a murine model of urinary tract infection (UTI). MICs, the checkerboard dilution method, and time-kill curves were used to explore the in vitro synergism between cefotaxime and amoxicillin-clavulanate against two isogenic E. coli strains-CFT073-RR and its transconjugant, CFT073-RR Tc bla(CTX-M-15)-harboring a bla(CTX-M-15) plasmid and a bla(OXA-1) plasmid. For in vivo experiments, mice were separately infected with each strain and treated with cefotaxime, amoxicillin, and clavulanate, alone or in combination, or imipenem, using therapeutic regimens reproducing time of free-drug concentrations above the MIC (fT≥MIC) values close to that obtained in humans. MICs of amoxicillin, cefotaxime, and imipenem were 4/>1,024, 0.125/1,024, and 0.5/0.5 mg/liter, for CFT073-RR and CFT073-RR Tc bla(CTX-M-15), respectively. The addition of 2 mg/liter of clavulanate (CLA) restored the susceptibility of CFT073-RR Tc bla(CTX-M-15) to CTX (MICs of the CTX-CLA combination, 0.125 mg/liter). The checkerboard dilution method and time-kill curves confirmed an in vitro synergy between amoxicillin-clavulanate and cefotaxime against CFT073-RR Tc bla(CTX-M-15). In vivo, this antibiotic combination was similarly active against both strains and as effective as imipenem. In conclusion, the cefotaxime and amoxicillin-clavulanate combination appear to be an effective, easy, and already available alternative to carbapenems for the treatment of UTI due to CTX-M-producing E. coli strains. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Alvarado-Ramírez, Eidi; Torres-Rodríguez, Josep M
2007-07-01
The in vitro susceptibility of Sporothrix schenckii to antifungal drugs has been determined with three different methods. Nineteen Peruvian clinical isolates of S. schenckii were tested against amphotericin B (AB), flucytosine (FC), fluconazole (FZ), itraconazole (IZ), voriconazole (VZ), and ketoconazole (KZ). Modified NCCLS M38-A, Sensititre YeastOne (SYO), and ATB Fungus 2 (ATBF2) methods were used to determine the MICs. ATCC isolates of Candida parapsilosis, Candida krusei, and Aspergillus flavus were used for quality control. Sporothrix inocula were prepared with the mycelial form growing on potato dextrose agar at 28 +/- 2 degrees C. MICs of AB, FC, FZ, and IZ were determined with all three methods, VZ with M38-A and SYO, and KZ with only SYO. The three methods showed high MICs of FZ and FC (MIC(90) of 0.5 microg/ml), being homogeneously lower than those of IZ and KZ. The M38-A method showed a variable MIC range of VZ (4.0 to 16 microg/ml); the geometric mean (GM) was 9.3 mug/ml. The MIC range of AB was wide (0.06 to 16 microg/ml), but the GM was 1.2 microg/ml, suggesting that the MIC is strain dependent. Agreement (two log(2) dilutions) between commercial techniques and the modified M38-A method was very high with FZ, IZ, and FC. In AB and VZ, the agreement was lower, being related to the antifungal concentrations of each method. The highest activity against S. schenckii was found with IZ and KZ. Lack of activity was observed with FZ, VZ, and FC. When AB is indicated for sporotrichosis, the susceptibility of the strain must be analyzed. Commercial quantitative antifungal methods have a limited usefulness in S. schenckii.
Pankuch, Glenn A; Kelly, Linda M; Lin, Gengrong; Bryskier, Andre; Couturier, Catherine; Jacobs, Michael R; Appelbaum, Peter C
2003-10-01
MIC methodology was used to test the antibacterial activity of XRP 2868, a new oral combination of two semisynthetic streptogramins, RPR 132552A and RPR 202868, compared to activities of other antibacterial agents against pneumococci, Haemophilus influenzae, and Haemophilus parainfluenzae. For 261 pneumococci, XRP 2868 and pristinamycin MICs were similar, irrespective of penicillin G and erythromycin A susceptibilities (MIC at which 50% of isolates were inhibited [MIC(50)], 0.25 micro g/ml; MIC(90), 0.5 micro g/ml), while quinupristin/dalfopristin had MICs which were 1 to 2 dilutions higher. Single components of both XRP 2868 and quinupristin/dalfopristin had higher MICs. Erythromycin A, azithromycin, clarithromycin, and clindamycin MICs were higher for penicillin G-intermediate and -resistant than -susceptible pneumococci. Against 150 H. influenzae strains, all compounds tested had unimodal MIC distributions. XRP 2868 had an overall MIC(50) of 0.25 micro g/ml and an MIC(90) of 1.0 micro g/ml, with no differences between beta-lactamase-positive, beta-lactamase-negative, and beta-lactamase-negative ampicillin-resistant strains. Of note was the similarly low activity of one of its components, RPR 132552A. Pristinamycin and quinupristin/dalfopristin had MICs of 0.125 to 8.0 micro g/ml; quinupristin alone had MICs of 8.0 to >64.0 micro g/ml, and dalfopristin had MICs of 1.0 to >64.0 micro g/ml. Erythromycin A, azithromycin, and clarithromycin had modal MICs of 4.0, 1.0, and 8.0 micro g/ml, respectively. MICs of all compounds against H. parainfluenzae were 1 to 2 dilutions higher than against H. influenzae. XRP 2868 showed potent activity against pneumococci and Haemophilus strains irrespective of their susceptibility to other agents.
Pankuch, Glenn A.; Kelly, Linda M.; Lin, Gengrong; Bryskier, Andre; Couturier, Catherine; Jacobs, Michael R.; Appelbaum, Peter C.
2003-01-01
MIC methodology was used to test the antibacterial activity of XRP 2868, a new oral combination of two semisynthetic streptogramins, RPR 132552A and RPR 202868, compared to activities of other antibacterial agents against pneumococci, Haemophilus influenzae, and Haemophilus parainfluenzae. For 261 pneumococci, XRP 2868 and pristinamycin MICs were similar, irrespective of penicillin G and erythromycin A susceptibilities (MIC at which 50% of isolates were inhibited [MIC50], 0.25 μg/ml; MIC90, 0.5 μg/ml), while quinupristin/dalfopristin had MICs which were 1 to 2 dilutions higher. Single components of both XRP 2868 and quinupristin/dalfopristin had higher MICs. Erythromycin A, azithromycin, clarithromycin, and clindamycin MICs were higher for penicillin G-intermediate and -resistant than -susceptible pneumococci. Against 150 H. influenzae strains, all compounds tested had unimodal MIC distributions. XRP 2868 had an overall MIC50 of 0.25 μg/ml and an MIC90 of 1.0 μg/ml, with no differences between β-lactamase-positive, β-lactamase-negative, and β-lactamase-negative ampicillin-resistant strains. Of note was the similarly low activity of one of its components, RPR 132552A. Pristinamycin and quinupristin/dalfopristin had MICs of 0.125 to 8.0 μg/ml; quinupristin alone had MICs of 8.0 to >64.0 μg/ml, and dalfopristin had MICs of 1.0 to >64.0 μg/ml. Erythromycin A, azithromycin, and clarithromycin had modal MICs of 4.0, 1.0, and 8.0 μg/ml, respectively. MICs of all compounds against H. parainfluenzae were 1 to 2 dilutions higher than against H. influenzae. XRP 2868 showed potent activity against pneumococci and Haemophilus strains irrespective of their susceptibility to other agents. PMID:14506040
Fel'dblium, I V; Zakharova, Iu A; Nikolaeva, A M; Fedotova, O S
2013-01-01
Scientific justification of optimization of epidemiologic diagnostic of suppurative-septic infection (SSI) caused by Pseudomonas aeruginosa based on comparability of antibiotic sensitivity and beta-lactamase production. Intraspecies typing of 37 P. aeruginosa strains isolated during microbiological monitoring of 106 patients and 131 objects of clinical environment of surgical and obstetrician hospitals by using a complex ofphenotypic and molecular-biological methods including determination of sensitivity to antibiotics by serial dilutions method and PCR-diagnostics with determination of TEM, SHV, CTX, OXA, MBL, VIM genes was performed. P. aeruginosa strains combined into groups by isolation location during studies turned out to be heterogeneous by sensitivity to antibiotics and beta-lactamase production that allowed to form subgroups of strains by focality attribute. Isolates recovered from different SSI foci had significant differences in minimal inhibitory concentration (MIC) reaching 1024 times. MIC parameter within subgroups did not exceed 8 - 16 consequent dilutions. Use of a complex of phenotypic and molecular-biologic methods of causative agent typing including determination of sensitivity to antibiotics by serial dilutions method and evaluation of beta-lactamase production allowed to establish a mechanism of development of SSI epidemic process caused by P. aeruginosa, detect origins and reservoirs of infection in hospital, modes and factors of transmission and reach maximum justification of epidemiologic control and prophylaxis measures of localization of foci of nosocomial infections of pseudomonas etiology.
Comparative In Vitro Activities of ABT-773 against 362 Clinical Isolates of Anaerobic Bacteria
Citron, Diane M.; Appleman, Maria D.
2001-01-01
The activity of ABT-773, a novel ketolide antibiotic, against clinical isolates of anaerobic bacteria was determined and compared to the activities of other antimicrobial agents. MICs at which 90% of isolates were inhibited (MIC90s) were ≤0.06 μg/ml for Actinomyces spp., Clostridium perfringens, Peptostreptococcus spp., Propionibacterium spp., and Porphyromonas spp. The MIC50s and MIC90s were ≤0.06 and >32 μg/ml, respectively, for Eubacterium spp., Lactobacillus spp., Clostridium difficile, and Clostridium ramosum. The MIC90 for Bilophila wadsworthia, Bacteroides ureolyticus, and Campylobacter gracilis was 1 μg/ml, and that for Prevotella bivia and other Prevotella spp. was 0.5 μg/ml. The MIC90 for Fusobacterium nucleatum was 8 μg/ml, and that for Fusobacterium mortiferum and Fusobacterium varium was >32 μg/ml. The MIC90s for the Bacteroides fragilis group were as follows: for B. fragilis, 8 μg/ml; for Bacteroides thetaiotaomicron, Bacteroides ovatus, Bacteroides distasonis, and Bacteroides uniformis, >32 μg/ml; and for Bacteroides vulgatus, 4 μg/ml. Telithromycin MICs for the B. fragilis group were usually 1 to 2 dilutions higher than ABT-773 MICs. For all strains, ABT-773 was more active than erythromycin by 4 or more dilutions, and for some strains this drug was more active than clindamycin. PMID:11120995
Klesiewicz, Karolina; Żelaszczyk, Dorota; Trojanowska, Danuta; Bogusz, Bożena; Małek, Marianna; Waszkielewicz, Anna; Szkaradek, Natalia; Karczewska, Elżbieta; Marona, Henryk; Budak, Alicja
2018-06-20
The aim of this study was to preliminary evaluate antifungal activity diverse group of chlorine-containing xanthone and phenoxyethyl amine derivatives - and to select most promising compounds for further studies. The antifungal efficacy of 16 compounds was tested with qualitative and quantitative methods against both reference and clinical strains of dermatophytes, moulds and yeasts. The disc-diffusion method has demonstrated that from 16 tested compounds, 7 possess good antifungal activity against dermatophytes and/or moulds while none of them has shown good efficacy against yeasts or bacterial strains. The most active compounds (2, 4, 10, 11, 12, 15, 16) were tested quantitatively by broth dilution method to obtain MIC values. The MIC values against dermatophytes ranged from 8 to 64 μg/mL. Compound 2 was the most active one against dermatophytes (MIC 50 and MIC 90 were 8 μg/mL). The MIC values for moulds ranged from 16 to 256 μg/mL. Compound 4 was the most active one against moulds, with MIC 50 and MIC 90 values amounting to 32 μg/mL. Among the tested compounds, compound 4 (derivative of xanthone) was the most active one and expressed good antifungal efficacy against clinical strains of dermatophytes and moulds. However, another xanthone derivative (compound 2) was the most active and selective against dermatophytes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
In vitro susceptibility of Helicobacter pullorum strains to different antimicrobial agents.
Ceelen, Liesbeth; Decostere, Annemie; Devriese, Luc A; Ducatelle, Richard; Haesebrouck, Freddy
2005-01-01
The in vitro activity of 13 antimicrobial agents against 23 Helicobacter pullorum strains from poultry (21) and human (two) origin, and one human H. canadensis strain was tested by the agar dilution method. With the H. pullorum strains, monomodal distributions of Minimum Inhibitory Concentrations (MICs) were seen with lincomycin, doxycycline, gentamicin, tobramycin, erythromycin, tylosin, metronidazole, and enrofloxacin in concentration ranges considered as indicating susceptibility in other bacteria. The normal susceptibility level for nalidixic acid was situated at or slightly above the MIC breakpoints proposed for Campylobacteriaceae. Ampicillin, ceftriaxone, and sulphamethoxazole-trimethoprim showed poor activity against H. pullorum. For the H. canadensis strain, a similar susceptibility pattern was seen, except for nalidixic acid and enrofloxacin, whose MIC of >512 and 8 microg/ml, respectively, indicated resistance of this agent. With spectinomycin, a bimodal distribution of the MICs was noted for the tested strains; eight H. pullorum isolates originating from one flock showed acquired resistance (MIC>512 microg/ml).
Activity of semisynthetic penicillins and synergism with mecillinam against Bacteroides species.
Trestman, I; Kaye, D; Levison, M E
1979-01-01
The minimal inhibitory concentrations (MIC) of six penicillins (ampicillin, carbenicillin, ticarcillin, piperacillin, mezlocillin, and Bay k 4999) against 29 clinical isolates of Bacteriodes spp. (including Bacteroides fragilis, Bacteroides thetaiotaomicron, and Bacteroides vulgatus) were determined by an agar dilution method. Bay k 4999 was most active, followed in descending order by ampicillin, piperacillin, mezlocillin, ticarcillin, and carbenicillin. Mecillinam, a 6 beta-amidino-penicillanic acid, inhibited no strains at 50 micrograms/ml, but when compared with ampicillin, a fourfold or greater increase in MIC for ampicillin (antagonism) was noted in 3 of 29 strains, with no effect on MIC for 26 strains, whereas when combined with carbenicillin, a fourfold or greater decrease in MIC for both antibiotics (synergism) was noted in 12 strains, 4 of which had an MIC of greater than or equal to 250 micrograms/ml for carbenicillin alone. These studies demonstrate the increased activity of some newer semisynthetic penicillins and the potential synergy obtained with mecillinam and carbenicillin against Bacteroides sp. PMID:228593
Pamplona-Zomenhan, Lucila Coelho; Pamplona, Beatriz Coelho; da Silva, Cely Barreto; Marcucci, Maria Cristina; Mimica, Lycia Mara Jenné
2011-01-01
Staphylococcus aureus (S. aureus) is one of the most frequent causes of hospital acquired infections. With the increase in multiple drug resistant strains, natural products such as propolis are a stratagem for new product discovery. The aims of this study were: to determine the in vitro antimicrobial activity of an ethanol extract of propolis; to define the MIC50 and MIC90 (Minimal Inhibitory Concentration – MIC) against 210 strains of S. aureus; to characterize a crude sample of propolis and the respective ethanol extract as to the presence of predetermined chemical markers. The agar dilution method was used to define the MIC and the high performance liquid chromatography (HPLC) method was used to characterize the samples of propolis. MIC results ranged from 710 to 2,850 µg/mL. The MIC50 and MIC90 for the 210 strains as well as the individual analysis of American Type Culture Collection (ATCC) strains of Methicillin-susceptible Staphylococcus aureus (MSSA) and Methicillin-resistant Staphylococcus aureus (MRSA) were both 1,420 µg/mL. Based on the chromatographic analysis of the crude sample and ethanol extracted propolis, it was concluded that propolis was a mixture of the BRP (SP/MG) and BRP (PR) types. The results obtained confirm an antimicrobial activity in relation to the strains of the S. aureus tested. PMID:24031749
Mirajkar, Nandita S; Gebhart, Connie J
2016-03-01
Production-limiting diseases in swine caused by Brachyspira are characterized by mucohemorrhagic diarrhea (B. hyodysenteriae and "B. hampsonii") or mild colitis (B. pilosicoli), while B. murdochii is often isolated from healthy pigs. Emergence of novel pathogenic Brachyspira species and strains with reduced susceptibility to commonly used antimicrobials has reinforced the need for standardized susceptibility testing. Two methods are currently used for Brachyspira susceptibility testing: agar dilution (AD) and broth microdilution (BMD). However, these tests have primarily been used for B. hyodysenteriae and rarely for B. pilosicoli. Information on the use of commercial susceptibility testing products such as antibiotic gradient strips is lacking. Our main objective was to validate and compare the susceptibility results, measured as the minimum inhibitory concentration (MIC), of 6 antimicrobials for 4 Brachyspira species (B. hyodysenteriae, "B. hampsonii", B. pilosicoli, and B. murdochii) by BMD and AD (tiamulin, valnemulin, lincomycin, tylosin, and carbadox) or antibiotic gradient strip (doxycycline) methods. In general, the results of a high percentage of all 4 Brachyspira species differed by ±1 log2 dilution or less by BMD and AD for tiamulin, valnemulin, lincomycin, and tylosin, and by BMD and antibiotic gradient strip for doxycycline. The carbadox MICs obtained by BMD were 1-5 doubling dilutions different than those obtained by AD. BMD for Brachyspira was quicker to perform with less ambiguous interpretation of results when compared with AD and antibiotic gradient strip methods, and the results confirm the utility of BMD in routine diagnostics. © 2016 The Author(s).
Bharath, Nagaraj; Sowmya, Nagur Karibasappa; Mehta, Dhoom Singh
2015-01-01
The aim of this study was to evaluate the antibacterial activity of pure green coffee bean extract on periodonto pathogenic bacteria Porphyromonas gingivalis (Pg), Prevotella intermedia (Pi), Fusobacterium nucleatum (Fn) and Aggregatibacter actinomycetemcomitans (Aa). Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBC) were used to assess the antibacterial effect of pure green coffee bean extract against periodonto pathogenic bacteria by micro dilution method and culture method, respectively. MIC values of Pg, Pi and Aa were 0.2 μg/ml whereas Fn showed sensitive at concentration of 3.125 μg/ml. MBC values mirrors the values same as that of MIC. Antimicrobial activity of pure green coffee bean extract against Pg, Pi, Fn and Aa suggests that it could be recommended as an adjunct to mechanical therapy in the management of periodontal disease.
In vitro antianaerobic activity of ertapenem (MK-0826) compared to seven other compounds.
Hoellman, Dianne B; Kelly, Linda M; Credito, Kim; Anthony, Lauren; Ednie, Lois M; Jacobs, Michael R; Appelbaum, Peter C
2002-01-01
Ertapenem, imipenem, meropenem, ceftriaxone, piperacillin, piperacillin-tazobactam, clindamycin, and metronidazole were agar dilution MIC tested against 431 anaerobes. Imipenem, meropenem, and ertapenem were the most active beta-lactams (MICs at which 50% of the strains are inhibited [MIC(50)s], 0.125 to 0.25 microg/ml; MIC(90)s, 1.0 to 2.0 microg/ml). Time-kill studies revealed that ertapenem at two times the MIC was bactericidal for 9 of 10 strains after 48 h. The kinetics for other beta-lactams were similar to those of ertapenem.
Bharath, Nagaraj; Sowmya, Nagur Karibasappa; Mehta, Dhoom Singh
2015-01-01
Background: The aim of this study was to evaluate the antibacterial activity of pure green coffee bean extract on periodonto pathogenic bacteria Porphyromonas gingivalis (Pg), Prevotella intermedia (Pi), Fusobacterium nucleatum (Fn) and Aggregatibacter actinomycetemcomitans (Aa). Materials and Methods: Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBC) were used to assess the antibacterial effect of pure green coffee bean extract against periodonto pathogenic bacteria by micro dilution method and culture method, respectively. Results: MIC values of Pg, Pi and Aa were 0.2 μg/ml whereas Fn showed sensitive at concentration of 3.125 μg/ml. MBC values mirrors the values same as that of MIC. Conclusion: Antimicrobial activity of pure green coffee bean extract against Pg, Pi, Fn and Aa suggests that it could be recommended as an adjunct to mechanical therapy in the management of periodontal disease. PMID:26097349
Mares, Mihai; Minea, Bogdan; Nastasa, Valentin; Rosca, Irina; Bostanaru, Andra-Cristina; Marincu, Iosif; Toma, Vasilica; Cristea, Violeta Corina; Murariu, Carmen; Pinteala, Mariana
2018-06-01
The study presents the echinocandin susceptibility profile of a multi-centre collection of pathogenic yeast isolates from Romanian tertiary hospitals. The 562 isolates were identified using ID32C strips, MALDI-TOF MS and DNA sequencing. Minimal inhibitory concentrations (MICs) of caspofungin (CAS), micafungin (MCA), and anidulafungin (ANI) were assessed and interpreted according to EUCAST guidelines. Minimal fungicidal concentrations (MFC) were determined by plating content from the clear MIC wells. The activity was considered fungicidal at MFC/MIC ≤ 4. The three echinocandins had strongly correlated MICs and high percentages of MIC essential agreement. Most often, MCA had the lowest MICs, followed by CAS and ANI. Against C. parapsilosis and C. kefyr, CAS had the lowest MIC values. The MIC50 values were between 0.03 and 0.25 mg/l, except C. parapsilosis. The MIC90 values were usually one dilution higher. MFCs and MICs were weakly correlated. ANI and MCA had the lowest MFC values. The MFC50 values were between 0.06 and 0.5 mg/l, except C. parapsilosis, C. guilliermondii, and C. dubliniensis. The MFC90 values were usually two dilutions higher. Based on EUCAST breakpoints, 47 isolates (8.4%) were resistant to at least one echinocandin, most often ANI. Most resistant isolates were of C. albicans, C. glabrata, and C. krusei. There were 17 isolates (3%) resistant to echinocandins and fluconazole and most belonged to the same three species. MCA and ANI had the highest rates of fungicidal activity. The high rates of echinocandin resistance and significant multidrug resistance make prophylaxis and empiric therapy difficult.
Ohta, Merime; Toba, Shinsuke; Ito, Akinobu; Nakamura, Rio; Tsuji, Masakatsu
2012-12-01
This study evaluated the in vitro activity of doripenem (DRPM) against 200 Streptococcus pneumoniae and 197 Haemophilus influenzae from children and adults in 2007, 50 H. influenzae type b in 2006, 20 Listeria monocytogenes in 1990-2005, 23 Neisseria meningitidis in 2007-2009 and 83 Bordetella pertussis in 1989-2003. All strains were isolated from Japanese clinical facilities. We also investigated in vitro activity of other carbapenems (meropenem, imipenem, panipenem, biapenem), cephems (ceftriaxone, cefotaxime), ampicillin and clarithromycin. The all MICs were determined by a broth micro dilution method or an agar dilution method according to CLSI. The MIC90(s) of DRPM against S. pneumoniae and H. influenzae from children were 0.25 microg/mL, 1 microg/mL, respectively, which were similar to strains from adults. These results suggested that antibacterial activity of DRPM is not variable by patient's age. DRPM also showed excellent activities against H. influenzae type b, L. monocytogenes and N. meningitidis, which cause purulent meningitis, and B. pertussis causing whooping cough more than the other carbapenems. DRPM showed superior activities against serious strains of pediatric infection diseases.
Antipneumococcal activities of gemifloxacin compared to those of nine other agents.
Davies, T A; Kelly, L M; Pankuch, G A; Credito, K L; Jacobs, M R; Appelbaum, P C
2000-02-01
The activities of gemifloxacin compared to those of nine other agents was tested against a range of penicillin-susceptible and -resistant pneumococci by agar dilution, microdilution, time-kill, and post-antibiotic effect (PAE) methods. Against 64 penicillin-susceptible, 68 penicillin-intermediate, and 75 penicillin-resistant pneumococci (all quinolone susceptible), agar dilution MIC(50)s (MICs at which 50% of isolates are inhibited)/MIC(90)s (in micrograms per milliliter) were as follows: gemifloxacin, 0.03/0.06; ciprofloxacin, 1.0/4.0; levofloxacin, 1.0/2. 0; sparfloxacin, 0.5/1.0; grepafloxacin, 0.125/0.5; trovafloxacin, 0. 125/0.25; amoxicillin, 0.016/0.06 (penicillin-susceptible isolates), 0.125/1.0 (penicillin-intermediate isolates), and 2.0/4.0 (penicillin-resistant isolates); cefuroxime, 0.03/0.25 (penicillin-susceptible isolates), 0.5/2.0 (penicillin-intermediate isolates), and 8.0/16.0 (penicillin-resistant isolates); azithromycin, 0.125/0.5 (penicillin-susceptible isolates), 0. 125/>128.0 (penicillin-intermediate isolates), and 4.0/>128.0 (penicillin-resistant isolates); and clarithromycin, 0.03/0.06 (penicillin-susceptible isolates), 0.03/32.0 (penicillin-intermediate isolates), and 2.0/>128.0 (penicillin-resistant isolates). Against 28 strains with ciprofloxacin MICs of >/=8 microg/ml, gemifloxacin had the lowest MICs (0.03 to 1.0 microg/ml; MIC(90), 0.5 microg/ml), compared with MICs ranging between 0.25 and >32.0 microg/ml (MIC(90)s of 4.0 to >32.0 microg/ml) for other quinolones. Resistance in these 28 strains was associated with mutations in parC, gyrA, parE, and/or gyrB or efflux, with some strains having multiple resistance mechanisms. For 12 penicillin-susceptible and -resistant pneumococcal strains (2 quinolone resistant), time-kill results showed that levofloxacin at the MIC, gemifloxacin and sparfloxacin at two times the MIC, and ciprofloxacin, grepafloxacin, and trovafloxacin at four times the MIC were bactericidal for all strains after 24 h. Gemifloxacin was uniformly bactericidal after 24 h at =0.5 microg/ml. Various degrees of 90 and 99% killing by all quinolones were detected after 3 h. Gemifloxacin and trovafloxacin were both bactericidal at two times the MIC for the two quinolone-resistant pneumococci. Amoxicillin at two times the MIC and cefuroxime at four times the MIC were uniformly bactericidal after 24 h, with some degree of killing at earlier time points. Macrolides gave slower killing against the seven susceptible strains tested, with 99.9% killing of all strains at two to four times the MIC after 24 h. PAEs for five quinolone-susceptible strains were similar (0.3 to 3.0 h) for all quinolones, and significant quinolone PAEs were found for the quinolone-resistant strain.
In Vitro Antianaerobic Activity of Ertapenem (MK-0826) Compared to Seven Other Compounds
Hoellman, Dianne B.; Kelly, Linda M.; Credito, Kim; Anthony, Lauren; Ednie, Lois M.; Jacobs, Michael R.; Appelbaum, Peter C.
2002-01-01
Ertapenem, imipenem, meropenem, ceftriaxone, piperacillin, piperacillin-tazobactam, clindamycin, and metronidazole were agar dilution MIC tested against 431 anaerobes. Imipenem, meropenem, and ertapenem were the most active β-lactams (MICs at which 50% of the strains are inhibited [MIC50s], 0.125 to 0.25 μg/ml; MIC90s, 1.0 to 2.0 μg/ml). Time-kill studies revealed that ertapenem at two times the MIC was bactericidal for 9 of 10 strains after 48 h. The kinetics for other β-lactams were similar to those of ertapenem. PMID:11751138
2010-01-01
Background Use of essential oils for controlling Candida albicans growth has gained significance due to the resistance acquired by pathogens towards a number of widely-used drugs. The aim of this study was to test the antifungal activity of selected essential oils against Candida albicans in liquid and vapour phase and to determine the chemical composition and mechanism of action of most potent essential oil. Methods Minimum Inhibitory concentration (MIC) of different essential oils in liquid phase, assayed through agar plate dilution, broth dilution & 96-well micro plate dilution method and vapour phase activity evaluated through disc volatilization method. Reduction of C. albicans cells with vapour exposure was estimated by kill time assay. Morphological alteration in treated/untreated C. albicans cells was observed by the Scanning electron microscopy (SEM)/Atomic force microscopy (AFM) and chemical analysis of the strongest antifungal agent/essential oil has been done by GC, GC-MS. Results Lemon grass (Cymbopogon citratus) essential oil exhibited the strongest antifungal effect followed by mentha (Mentha piperita) and eucalyptus (Eucalyptus globulus) essential oil. The MIC of lemon grass essential oil in liquid phase (288 mg/l) was significantly higher than that in the vapour phase (32.7 mg/l) and a 4 h exposure was sufficient to cause 100% loss in viability of C. albicans cells. SEM/AFM of C. albicans cells treated with lemon grass essential oil at MIC level in liquid and vapour phase showed prominent shrinkage and partial degradation, respectively, confirming higher efficacy of vapour phase. GC-MS analysis revealed that lemon grass essential oil was dominated by oxygenated monoterpenes (78.2%); α-citral or geranial (36.2%) and β-citral or neral (26.5%), monoterpene hydrocarbons (7.9%) and sesquiterpene hydrocarbons (3.8%). Conclusion Lemon grass essential oil is highly effective in vapour phase against C. albicans, leading to deleterious morphological changes in cellular structures and cell surface alterations. PMID:21067604
Developing an in silico minimum inhibitory concentration panel test for Klebsiella pneumoniae
Nguyen, Marcus; Brettin, Thomas; Long, S. Wesley; ...
2018-01-11
Here, antimicrobial resistant infections are a serious public health threat worldwide. Whole genome sequencing approaches to rapidly identify pathogens and predict antibiotic resistance phenotypes are becoming more feasible and may offer a way to reduce clinical test turnaround times compared to conventional culture-based methods, and in turn, improve patient outcomes. In this study, we use whole genome sequence data from 1668 clinical isolates of Klebsiella pneumoniae to develop a XGBoost-based machine learning model that accurately predicts minimum inhibitory concentrations (MICs) for 20 antibiotics. The overall accuracy of the model, within ± 1 two-fold dilution factor, is 92%. Individual accuracies aremore » >= 90% for 15/20 antibiotics. We show that the MICs predicted by the model correlate with known antimicrobial resistance genes. Importantly, the genome-wide approach described in this study offers a way to predict MICs for isolates without knowledge of the underlying gene content. This study shows that machine learning can be used to build a complete in silico MIC prediction panel for K. pneumoniae and provides a framework for building MIC prediction models for other pathogenic bacteria.« less
Developing an in silico minimum inhibitory concentration panel test for Klebsiella pneumoniae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Marcus; Brettin, Thomas; Long, S. Wesley
Here, antimicrobial resistant infections are a serious public health threat worldwide. Whole genome sequencing approaches to rapidly identify pathogens and predict antibiotic resistance phenotypes are becoming more feasible and may offer a way to reduce clinical test turnaround times compared to conventional culture-based methods, and in turn, improve patient outcomes. In this study, we use whole genome sequence data from 1668 clinical isolates of Klebsiella pneumoniae to develop a XGBoost-based machine learning model that accurately predicts minimum inhibitory concentrations (MICs) for 20 antibiotics. The overall accuracy of the model, within ± 1 two-fold dilution factor, is 92%. Individual accuracies aremore » >= 90% for 15/20 antibiotics. We show that the MICs predicted by the model correlate with known antimicrobial resistance genes. Importantly, the genome-wide approach described in this study offers a way to predict MICs for isolates without knowledge of the underlying gene content. This study shows that machine learning can be used to build a complete in silico MIC prediction panel for K. pneumoniae and provides a framework for building MIC prediction models for other pathogenic bacteria.« less
A survey of Clostridium spiroforme antimicrobial susceptibility in rabbit breeding.
Agnoletti, Fabrizio; Ferro, Tiziana; Guolo, Angela; Marcon, Barbara; Cocchi, Monia; Drigo, Ilenia; Mazzolini, Elena; Bano, Luca
2009-04-14
Rabbit meat breeding may be heavily affected by enterotoxaemia due to Clostridium spiroforme. Data on its antimicrobial susceptibility are insufficient, presumably because of difficulties in cultivating and identifying the pathogen. Our aim is therefore to provide this information to veterinary practitioners by focusing on a panel of therapeutics used in intensive rabbit units. Lincomycin was also checked in order to investigate the origin of resistance to macrolides. Minimal inhibitory concentrations (MICs) were determined with the agar dilution method according to the CLSI M11-A7 protocol (2007). MIC(50) and MIC(90) were, respectively, 64 and 64microg/ml for tiamulin, 32 and 32microg/ml for norfloxacin, 0.063 and 0.125microg/ml for amoxicillin, and 8 and 16microg/ml for doxycycline. MIC(50) and MIC(90) were 256microg/ml for sulphadimethoxine, spiramycin and lincomycin. Our results have shown that intrinsic or acquired antimicrobial resistances are diffuse in the C. spiroforme population and suggest focusing on prevention rather than on treatment of clostridial overgrowth, by reducing risk factors and using antimicrobials prudently.
Assadian, Ojan; Wehse, Katrin; Hübner, Nils-Olaf; Koburger, Torsten; Bagel, Simone; Jethon, Frank; Kramer, Axel
2011-01-01
Background: An in-vitro study was conducted investigating the antimicrobial efficacy of polihexanide and triclosan against clinical isolates and reference laboratory strains of Staphylococcus aureus and Escherichia coli. Methods: The minimal inhibitory concentration (MIC) and the minimal microbicidal concentration (MMC) were determined following DIN 58940-81 using a micro-dilution assay and a quantitative suspension test following EN 1040. Polihexanide was tested in polyethylene glycol 4000, triclosan in aqueous solutions. Results: Against all tested strains the MIC of polihexanide ranged between 1–2 µg/mL. For triclosan the MICs varied depending on strains ranging between 0.5 µg/mL for the reference strains and 64 µg/mL for two clinical isolates. A logRF >5 without and logRF >3 with 0.2% albumin burden was achieved at 0.6 µg/mL triclosan. One exception was S. aureus strain H-5-24, where a triclosan concentration of 0.6 µg/mL required 1 minute without and 10 minutes with albumin burden to achieve the same logRFs. Polihexanide achieved a logRF >5 without and logRF >3 with albumin burden at a concentration of 0.6 µg/mL within 30 sec. The exception was the North-German epidemic MRSA strain, were an application time of 5 minutes was required. Conclusion: The clinical isolates of E. coli generally showed higher MICs against triclosan, both in the micro-dilution assay as well in the quantitative suspension test than comparable reference laboratory strains. For polihexanide and triclosan strain dependant susceptibility was shown. However, both antimicrobial compounds are effective when used in concentrations common in practice. PMID:22242087
2002-01-01
A total of 522 strains belonging to streptococci, enterococci and staphylococci isolated from sub-clinical and clinical cases of bovine mastitis from the west littoral region of Uruguay were analysed for their susceptibility to several antimicrobial agents. The susceptibility patterns were studied by agar disk diffusion methods (ADDM) and broth micro-dilution to determine the minimum inhibitory concentration (MIC). The concentration that inhibits 90% (MIC90) of the analysed strains reported in micrograms per millilitre, for Staphylococcus aureus were > 8, 8, ≤ 0.5, ≤ 4, ≤ 1, ≤ 0.5, > 64, ≤ 0.25, 0.5, ≤ 1 and ≤ 1 to penicillin, ampicillin, oxacillin, cephalotin, gentamicin, erythromycin, oxitetracycline, enrofloxacin, trimethoprim/sulfamethoxazole, neomycin, and clindamycin, respectively. Coagulase-negative staphylococci (CNS) had different values for penicillin (4) and ampicillin (2), while the other antimicrobial agents had the same MIC90 values as reported for S. aureus. The MIC90 values for streptococci were 0.12, 0.25, ≤ 4, 16, ≤ 0.25, 0.5, 0.25 for penicillin, ampicillin, cephalotin, gentamicin, erythromycin, oxytetracycline and trimethoprim-sulfamethoxazole, whereas MIC90 for enterococci were 4, 4, 4, ≤ 0.5, 2, > 8 for penicillin, ampicillin, gentamicin, erythromycin, oxytetracycline and trimethoprim-sulfamethoxazole, respectively. Of 336 strains of S. aureus, 160 (47.6%) were resistant to penicillin. For 41 CNS strains, 10 (27%) presented penicillin-resistance. All the streptococcal strains were susceptible to penicillin, while 3 (7%) of the 43 enteroccocal strains were resistant. Non significant statistical differences were found between the results obtained by ADDM and broth micro-dilution for classifying bacterial isolates as susceptible or resistant according to the National Committee of Clinical Laboratory Standards. PMID:12071114
Essential oils against foodborne pathogens and spoilage bacteria in minced meat.
Barbosa, Lidiane Nunes; Rall, Vera Lucia Mores; Fernandes, Ana Angélica Henrique; Ushimaru, Priscila Ikeda; da Silva Probst, Isabella; Fernandes, Ary
2009-01-01
The antimicrobial activity of essential oils of oregano, thyme, basil, marjoram, lemongrass, ginger, and clove was investigated in vitro by agar dilution method and minimal inhibitory concentration (MIC) determination against Gram-positive (Staphylococcus aureus and Listeria monocytogenes) and Gram-negative strains (Escherichia coli and Salmonella Enteritidis). MIC(90%) values were tested against bacterial strains inoculated experimentally in irradiated minced meat and against natural microbiota (aerobic or facultative, mesophilic, and psychrotrophic bacteria) found in minced meat samples. MIC(90%) values ranged from 0.05%v/v (lemongrass oil) to 0.46%v/v (marjoram oil) to Gram-positive bacteria and from 0.10%v/v (clove oil) to 0.56%v/v (ginger oil) to Gram-negative strains. However, the MIC(90%) assessed on minced meat inoculated experimentally with foodborne pathogen strains and against natural microbiota of meat did not show the same effectiveness, and 1.3 and 1.0 were the highest log CFU/g reduction values obtained against tested microorganisms.
Essential Oils Against Foodborne Pathogens and Spoilage Bacteria in Minced Meat
Barbosa, Lidiane Nunes; Rall, Vera Lucia Mores; Fernandes, Ana Angélica Henrique; Ushimaru, Priscila Ikeda; da Silva Probst, Isabella
2009-01-01
Abstract The antimicrobial activity of essential oils of oregano, thyme, basil, marjoram, lemongrass, ginger, and clove was investigated in vitro by agar dilution method and minimal inhibitory concentration (MIC) determination against Gram-positive (Staphylococcus aureus and Listeria monocytogenes) and Gram-negative strains (Escherichia coli and Salmonella Enteritidis). MIC90% values were tested against bacterial strains inoculated experimentally in irradiated minced meat and against natural microbiota (aerobic or facultative, mesophilic, and psychrotrophic bacteria) found in minced meat samples. MIC90% values ranged from 0.05%v/v (lemongrass oil) to 0.46%v/v (marjoram oil) to Gram-positive bacteria and from 0.10%v/v (clove oil) to 0.56%v/v (ginger oil) to Gram-negative strains. However, the MIC90% assessed on minced meat inoculated experimentally with foodborne pathogen strains and against natural microbiota of meat did not show the same effectiveness, and 1.3 and 1.0 were the highest log CFU/g reduction values obtained against tested microorganisms. PMID:19580445
Castillo-Juárez, Israel; González, Violeta; Jaime-Aguilar, Héctor; Martínez, Gisela; Linares, Edelmira; Bye, Robert; Romero, Irma
2009-03-18
Helicobacter pylori is the major etiological agent of chronic active gastritis and peptic ulcer disease and is linked to gastric carcinoma. Treatment to eradicate the bacteria failed in many cases, mainly due to antibiotic resistance, hence the necessity of developing better therapeutic regimens. Mexico has an enormous unexplored potential of medicinal plants. This work evaluates the in vitro anti-H. pylori activity of 53 plants used in Mexican traditional medicine for gastrointestinal disorders. To test the in vitro antibacterial activity, agar dilution and broth dilution methods were used for aqueous and methanolic extracts, respectively. Aqueous extracts of Artemisia ludoviciana subsp. mexicana, Cuphea aequipetala, Ludwigia repens,and Mentha x piperita (MIC 125 to <250 microg/ml) as well as methanolic extracts of Persea americana, Annona cherimola, Guaiacum coulteri, and Moussonia deppeana (MIC <7.5 to 15.6 microg/ml) showed the highest inhibitory effect. The results contribute to understanding the mode of action of the studied medicinal plants and for detecting plants with high anti-Helicobacter pylori activity.
Li, Z X; Wang, X H; Zhao, J H; Yang, J F; Wang, X
2000-12-01
To evaluate the antibacterial activity of Forsythia suspensa in vitro with different media. MIC determination of Forsythia suspensa against Staphylococci was performed by the agar dilution method. MIC90 of decoction of Forsythia suspensa against Staphylococcus epidermidis in M-H agar was 1:640, but in nutrient agar 1:40, the antibacterial activity with M-H agar being 16 fold higher than nutrient agar. The M-H agar should be recommended to replace nutrient agar as medium in the antibacterial experiment of Traditional Chinese medicine, and it is better to use multipoint inoculating device in the sensitivity test.
NASA Astrophysics Data System (ADS)
Mello, Paola A.; Diehl, Lisarb O.; Oliveira, Jussiane S. S.; Muller, Edson I.; Mesko, Marcia F.; Flores, Erico M. M.
2015-03-01
A systematic study was performed for the determination of inorganic contaminants in polymeric waste from electrical and electronic equipment (EEE) for achieving an efficient digestion to minimize interferences in determination using plasma-based techniques. The determination of As, Br, Cd, Co, Cr, Cu, Ni, Pb, Sb, and Zn by inductively coupled plasma mass spectrometry (ICP-MS) and also by inductively coupled plasma optical emission spectrometry (ICP OES) was carried out after digestion using microwave-induced combustion (MIC). Arsenic and Hg were determined by flow-injection chemical vapor generation inductively coupled plasma mass spectrometry (FI-CVG-ICP-MS). Dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS) with ammonia was also used for Cr determination. The suitability of MIC for digestion of sample masses up to 400 mg was demonstrated using microcrystalline cellulose as aid for combustion of polymers from waste of EEEs that usually contain flame retardants that impair the combustion. The composition and concentration of acid solutions (HNO3 or HNO3 plus HCl) were evaluated for metals and metalloids and NH4OH solutions were investigated for Br absorption. Accuracy was evaluated by comparison of results with those obtained using high pressure microwave-assisted wet digestion (HP-MAWD) and also by the analysis of certified reference material (CRM) of polymer (EC680k-low-density polyethylene). Bromine determination was only feasible using digestion by MIC once losses were observed when HP-MAWD was used. Lower limits of detection were obtained for all analytes using MIC (from 0.005 μg g- 1 for Co by ICP-MS up to 3.120 μg g-1 for Sb by ICP OES) in comparison to HP-MAWD due to the higher sample mass that can be digested (400 mg) and the use of diluted absorbing solutions. The combination of HNO3 and HCl for digestion showed to be crucial for quantitative recovery of some elements, as Cr and Sb. In addition, suitable agreement of Cr to CRM value was only obtained by mixing NH4Cl to samples before combustion. No statistical difference (95% confidence level) was observed between the results obtained for As, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sb, and Zn by MIC and HP-MAWD methods. Agreement with certified values was better than 96% using MIC for all inorganic contaminants. Particularly for Br, MIC was the method of choice for digestion due to the possibility of using diluted alkaline solutions for analyte absorption. Based on the obtained results, MIC can be considered as a suitable method for digestion of polymers from waste of EEEs for further plasma based determination of inorganic contaminants.
Turnbull, L.; Brosnikoff, C.; Cloke, J.
2012-01-01
The M.I.C. Evaluator strip (Thermo Fisher Scientific, Basingstoke, United Kingdom) uses a methodology similar to that of Etest. In this first assessment of the M.I.C. Evaluator device, 409 strains of aerobic Gram-positive bacteria (staphylococci, streptococci, and enterococci) and 325 strains of Enterobacteriaceae, Pseudomonas species, and Acinetobacter species were tested by M.I.C. Evaluator strip, Etest, and broth microdilution as a reference standard. The Gram-positive bacteria included staphylococci (methicillin-resistant Staphylococcus aureus, methicillin-susceptible S. aureus, and coagulase-negative staphylococci), Streptococcus pneumoniae, beta-hemolytic streptococci and viridians group strains, vancomycin-resistant enterococci, and other enterococci. The Gram-negative bacteria included 250 strains of 60 Enterobacteriaceae species plus 50 Pseudomonas and 25 Acinetobacter species. A total of 14 antimicrobial agents (depending on the species) were included. The same methodology and reading format were used for M.I.C. Evaluator strips and Etest. Broth microdilution methodology was performed according to CLSI document M07-A8. For the clinical strains, >95% of results were plus or minus one doubling dilution for all species. There were fewer than 5% minor errors, fewer than 3% major errors, and fewer than 1% very major errors. M.I.C. Evaluator strips and Etest often reported higher MICs than the reference broth microdilution method. The M.I.C. Evaluator strips provided results comparable to those of the predicate Etest device and are of value for the accurate testing of MICs for these important pathogens. PMID:22238441
Antipneumococcal Activities of Gemifloxacin Compared to Those of Nine Other Agents
Davies, Todd A.; Kelly, Linda M.; Pankuch, Glenn A.; Credito, Kim L.; Jacobs, Michael R.; Appelbaum, Peter C.
2000-01-01
The activities of gemifloxacin compared to those of nine other agents was tested against a range of penicillin-susceptible and -resistant pneumococci by agar dilution, microdilution, time-kill, and post-antibiotic effect (PAE) methods. Against 64 penicillin-susceptible, 68 penicillin-intermediate, and 75 penicillin-resistant pneumococci (all quinolone susceptible), agar dilution MIC50s (MICs at which 50% of isolates are inhibited)/MIC90s (in micrograms per milliliter) were as follows: gemifloxacin, 0.03/0.06; ciprofloxacin, 1.0/4.0; levofloxacin, 1.0/2.0; sparfloxacin, 0.5/1.0; grepafloxacin, 0.125/0.5; trovafloxacin, 0.125/0.25; amoxicillin, 0.016/0.06 (penicillin-susceptible isolates), 0.125/1.0 (penicillin-intermediate isolates), and 2.0/4.0 (penicillin-resistant isolates); cefuroxime, 0.03/0.25 (penicillin-susceptible isolates), 0.5/2.0 (penicillin-intermediate isolates), and 8.0/16.0 (penicillin-resistant isolates); azithromycin, 0.125/0.5 (penicillin-susceptible isolates), 0.125/>128.0 (penicillin-intermediate isolates), and 4.0/>128.0 (penicillin-resistant isolates); and clarithromycin, 0.03/0.06 (penicillin-susceptible isolates), 0.03/32.0 (penicillin-intermediate isolates), and 2.0/>128.0 (penicillin-resistant isolates). Against 28 strains with ciprofloxacin MICs of ≥8 μg/ml, gemifloxacin had the lowest MICs (0.03 to 1.0 μg/ml; MIC90, 0.5 μg/ml), compared with MICs ranging between 0.25 and >32.0 μg/ml (MIC90s of 4.0 to >32.0 μg/ml) for other quinolones. Resistance in these 28 strains was associated with mutations in parC, gyrA, parE, and/or gyrB or efflux, with some strains having multiple resistance mechanisms. For 12 penicillin-susceptible and -resistant pneumococcal strains (2 quinolone resistant), time-kill results showed that levofloxacin at the MIC, gemifloxacin and sparfloxacin at two times the MIC, and ciprofloxacin, grepafloxacin, and trovafloxacin at four times the MIC were bactericidal for all strains after 24 h. Gemifloxacin was uniformly bactericidal after 24 h at ≤0.5 μg/ml. Various degrees of 90 and 99% killing by all quinolones were detected after 3 h. Gemifloxacin and trovafloxacin were both bactericidal at two times the MIC for the two quinolone-resistant pneumococci. Amoxicillin at two times the MIC and cefuroxime at four times the MIC were uniformly bactericidal after 24 h, with some degree of killing at earlier time points. Macrolides gave slower killing against the seven susceptible strains tested, with 99.9% killing of all strains at two to four times the MIC after 24 h. PAEs for five quinolone-susceptible strains were similar (0.3 to 3.0 h) for all quinolones, and significant quinolone PAEs were found for the quinolone-resistant strain. PMID:10639354
[Activity of macrolides and fluoroquinolones against intracellular Legionella pneumophila].
Yu, Ling-ling; Hu, Bi-jie; Huang, Sheng-lei; Zhou, Zhao-yan; Tao, Li-li
2011-06-01
To evaluate the activity of macrolides and fluoroquinolones against Legionella pneumophila by intracellular susceptibility testing. Minimum inhibitory concentration (MIC) was determined by standard agar dilution test according to the CLSI. For intracellular assays, legionella pneumonia was used to infect human monocytic cell line THP-1. Erythromycin, azithromycin, levofloxacin and moxifloxacin at 1 × MIC, 4 × MIC, 8 × MIC were added following phagocytosis. Number of viable bacteria was enumerated at 24 h on BCYE (buffered charcoal yeast extract) agar in duplicates using standard plate count method. The result was expressed as percentage inhibition. Mann-Whitney U test was used to determine the significant differences in mean percentage inhibition between agents. Percentage inhibition at 24 h were as follows: Erythromycin 1 × MIC (50.18 ± 27.29)%, 4 × MIC (79.48 ± 20.08)%, 8 × MIC (91.46 ± 8.70)%; Azithromycin 1 × MIC (66.77 ± 26.18)%, 4 × MIC (91.73 ± 8.72)%, 8 × MIC (97.10 ± 3.37)%; Levofloxacin 1 × MIC (99.84 ± 0.25)%, 4 × MIC (99.99 ± 0.02)%, 8 × MIC (99.99 ± 0.01)%; Moxifloxacin 1 × MIC (99.90 ± 0.10)%, 4 × MIC (99.99 ± 0.03)%, 8 × MIC (99.99 ± 0.03)%. The fluoroquinolones showed greater inhibitory activity than macrolides against legionella pneumophila(u = 1.0, 2.0, 5.0, P < 0.05). Levofloxacin and moxifloxacin had the same intracellular activity against legionella pneumophila (u = 190, 183, 217, P > 0.05). Azithromycin was more effective than erythromycin in inhibiting intracellular legionella pneumophila (u = 132, 125, 128, P < 0.05). The fluoroquinolones were more active than macrolides against legionella pneumophila. The intracellular activity of levofloxacin against legionella pneumophila appeared to be similar to moxifloxacin. Azithromycin was demonstrated to have superior activity against legionella pneumophila compared with erythromycin.
Sewell, D L; Pfaller, M A; Barry, A L
1994-01-01
A comparison of the E test, the broth microdilution test, and the reference broth macrodilution susceptibility test of the National Committee for Clinical Laboratory Standards for fluconazole susceptibility testing was performed with 238 clinical isolates of Candida species and Torulopsis (Candida) glabrata. An 80% inhibition endpoint MIC was determined by the reference broth macrodilution method after 48 h of incubation. The MICs obtained by the two study methods were read after 24 and 48 h of incubation. Overall, excellent agreement within 2 doubling dilutions was obtained between the broth microdilution and the broth macrodilution methods for the combined results for all species at both 24 h (93%) and 48 h (94%). The correlation of 24-h MIC endpoints between the E test and the broth macrodilution methods was 37% for T. glabrata, 56% for Candida tropicalis, 93% for Candida albicans, and 90% for other Candida species. The percent agreement at 48 h ranged from 34% for T. glabrata to 97% for Candida species other than C. albicans and C. tropicalis. These initial results support the further evaluation of the E test as an alternative method for fluconazole susceptibility testing of Candida species. PMID:7814531
Screening antimicrobial activity of various extracts of Urtica dioica.
Modarresi-Chahardehi, Amir; Ibrahim, Darah; Fariza-Sulaiman, Shaida; Mousavi, Leila
2012-12-01
Urtica dioica or stinging nettle is traditionally used as an herbal medicine in Western Asia. The current study represents the investigation of antimicrobial activity of U. dioica from nine crude extracts that were prepared using different organic solvents, obtained from two extraction methods: the Soxhlet extractor (Method I), which included the use of four solvents with ethyl acetate and hexane, or the sequential partitions (Method II) with a five solvent system (butanol). The antibacterial and antifungal activities of crude extracts were tested against 28 bacteria, three yeast strains and seven fungal isolates by the disc diffusion and broth dilution methods. Amoxicillin was used as positive control for bacteria strains, vancomycin for Streptococcus sp., miconazole nitrate (30 microg/mL) as positive control for fungi and yeast, and pure methanol (v/v) as negative control. The disc diffusion assay was used to determine the sensitivity of the samples, whilst the broth dilution method was used for the determination of the minimal inhibition concentration (MIC). The ethyl acetate and hexane extract from extraction method I (EA I and HE I) exhibited highest inhibition against some pathogenic bacteria such as Bacillus cereus, MRSA and Vibrio parahaemolyticus. A selection of extracts that showed some activity was further tested for the MIC and minimal bactericidal concentrations (MBC). MIC values of Bacillus subtilis and Methicillin-resistant Staphylococcus aureus (MRSA) using butanol extract of extraction method II (BE II) were 8.33 and 16.33mg/mL, respectively; while the MIC value using ethyl acetate extract of extraction method II (EAE II) for Vibrio parahaemolyticus was 0.13mg/mL. Our study showed that 47.06% of extracts inhibited Gram-negative (8 out of 17), and 63.63% of extracts also inhibited Gram-positive bacteria (7 out of 11); besides, statistically the frequency of antimicrobial activity was 13.45% (35 out of 342) which in this among 21.71% belongs to antimicrobial activity extracts from extraction method I (33 out of 152 of crude extracts) and 6.82% from extraction method II (13 out of 190 of crude extracts). However, crude extracts from method I exhibited better antimicrobial activity against the Gram-positive bacteria than the Gram-negative bacteria. The positive results on medicinal plants screening for antibacterial activity constitutes primary information for further phytochemical and pharmacological studies. Therefore, the extracts could be suitable as antimicrobial agents in pharmaceutical and food industry.
Meletiadis, J; Curfs-Breuker, I; Meis, J F; Mouton, J W
2017-04-01
The in vitro susceptibilities of 1,099 molecularly identified clinical Candida isolates against 8 antifungal drugs were determined using the EUCAST microdilution method. A new simple, objective, and mathematically solid method for determining epidemiological cutoff values (ECOFFs) was developed by derivatizing the MIC distribution and determining the derivatized ECOFF (dECOFF) as the highest MIC with the maximum second derivative. The dECOFFs were similar (95% agreement within 1 dilution) to the EUCAST ECOFFs. Overall, low non-wild-type/resistance rates were found. The highest rates were found for azoles with C. parapsilosis (2.7 to 9.8%), C. albicans (7%), and C. glabrata (1.7 to 2.3%) and for echinocandins with C. krusei (3.3%), C. albicans (1%), and C. tropicalis (1.7%). Copyright © 2017 American Society for Microbiology.
Topcuoglu, Nursen; Ozan, Fatih; Ozyurt, Mustafa; Kulekci, Guven
2012-01-01
Objective: The aim of this study was to evaluate the antibacterial property of glass-ionomer cement (GIC) containing propolis against Streptococcus mutans and its effect on the in vitro S. mutans biofilm formation. Methods: Ethanolic extract of propolis (EEP) was prepared at two concentrations as 25 and 50%. Three different experimental GIC disks were prepared using pure liquid and liquid solutions diluted with 25 and 50 percent of EEP concentrations. Minimum inhibitory concentration (MIC) of EEP on the growth of S. mutans ATCC 25175 was determined by using agar dilution method. Agar diffusion test and an in vitro S. mutans biofilm assay for GIC disks with and without EEP were performed. Results: MIC values of Turkish propolis for S. mutans ATCC 25175 was found as 25 μg/mL. Experimental GICs containing propolis exhibited inhibition zones and their dry biofilm weights were less than the pure GIC. The bacterial density was lower in the GIC containing 50% EEP. Conclusions: A distinct antibacterial and antibiofilm efficacy of propolis containing GIC on S. mutans has been observed. Although further research is needed to show clinical results, antibacterial GIC containing propolis would be a promising material for restoration. PMID:23077424
Evaluation of Antimicrobial Activity of the Methanol Extracts from 8 Traditional Medicinal Plants
Kang, Chang-Geun; Hah, Dae-Sik; Kim, Chung-Hui; Kim, Young-Hwan; Kim, Euikyung
2011-01-01
The methanol extract of 12 medicinal plants were evaluated for its antibacterial activity against Gram-positive (5 strains) and Gram-negative bacteria (10 strains) by assay for minimum inhibitory concentration (MIC) and minimum bacterial concentration (MBC) . The antibacterial activity was determined by an agar dilution method (according to the guidelines of Clinical and Laboratory Standard Institute) . All the compounds (12 extracts) of the 8 medicinal plants (leaf or root) were active against both Gram-negative and Gram-positive bacteria. Gram-negative showed a more potent action than Gram positive bacteria. The MIC concentrations were various ranged from 0.6 μg/ml to 5000 μg/ml. The lowest MIC (0.6 μg/ml) and MBC (1.22 μg/ml) values were obtained with extract on 4 and 3 of the 15 microorganisms tested, respectively. PMID:24278548
Lovgren, M.; Dell’Acqua, L.; Palacio, R.; Echániz-Aviles, G.; Soto-Noguerón, A.; Castañeda, E.; Agudelo, C. I.; Heitmann, I.; Brandileone, M. C.; Zanella, R. C.; Rossi, A.; Pace, J.; Talbot, J. A.
1999-01-01
An international, multicenter study compared trimethoprim-sulfamethoxazole MICs for 743 Streptococcus pneumoniae isolates (107 to 244 isolates per country) by E test, using Mueller-Hinton agar supplemented with 5% defibrinated horse blood or 5% defibrinated sheep blood, with MICs determined by the National Committee for Clinical Laboratory Standards broth microdilution reference method. Agreement within 1 log2 dilution and minor error rates were 69.3 and 15.5%, respectively, on sheep blood-supplemented agar and 76.9 and 13.6%, respectively, with horse blood as the supplement. Significant interlaboratory variability was observed. E test may not be a reliable method for determining the resistance of pneumococci to trimethoprim-sulfamethoxazole. PMID:9854095
Gieseker, Charles M; Crosby, Tina C; Mayer, Tamara D; Bodeis, Sonya M; Stine, Cynthia B
2016-03-01
Flavobacterium columnare and F. psychrophilum are major fish pathogens that cause diseases that may require antimicrobial therapy. Choice of appropriate treatment is dependent upon determining the antimicrobial susceptibility of isolates. Therefore we optimized methods for broth microdilution testing of F. columnare and F. psychrophilum to facilitate standardizing an antimicrobial susceptibility test. We developed adaptations to make reproducible broth inoculums and confirmed the proper incubation time and media composition. We tested the stability of potential quality-control bacteria and compared test results between different operators. Log phase occurred at 48 h for F. columnare and 72-96 h for F. psychrophilum, confirming the test should be incubated at 28°C for approximately 48 h and at 18°C for approximately 96 h, respectively. The most consistent susceptibility results were achieved with plain, 4-g/L, dilute Mueller-Hinton broth supplemented with dilute calcium and magnesium. Supplementing the broth with horse serum did not improve growth. The quality-control strains, Escherichia coli ATCC 25922 and Aeromonas salmonicida subsp. salmonicida ATCC 33658, yielded stable minimal inhibitory concentrations (MIC) against all seven antimicrobials tested after 30 passes at 28°C and 15 passes at 18°C. In comparison tests, most MICs of the isolates agreed 100% within one drug dilution for ampicillin, florfenicol, and oxytetracycline. The agreement was lower with the ormetoprim-sulfdimethoxine combination, but there was at least 75% agreement for all but one isolate. These experiments have provided methods to help standardize antimicrobial susceptibility testing of these nutritionally fastidious aquatic bacteria. Received June 24, 2015; accepted October 2, 2015.
Pathan, Multazim Muradkhan; Bhat, Kishore Gajanan; Joshi, Vinayak Mahableshwar
2017-01-01
Background: Several herbal mouthwash and herbal extracts have been tested in vitro and in vivo in search of a suitable adjunct to mechanical therapy for long-term use. In this study, we aimed to look at the antimicrobial effect of the herbal mouthwash and chlorhexidine (CHX) mouthwash on select organisms in in vitro test and an ex vivo model. Materials and Methods: The antimicrobial effects were determined against standard strains of bacteria that are involved in different stages of periodontal diseases. The in vitro tests included determination of minimum inhibitory concentration (MIC) using broth dilution and agar diffusion. In the ex vivo part of the study supragingival dental plaque were obtained from 20 periodontally healthy adult volunteers. Descriptive analysis was done for the entire quantitative and qualitative variable recorded. Results: The MIC by broth dilution method found no statistically significant difference between the mouthwashes. The agar dilution method showed CHX was more effective as compared to the herbal mouthwash against standard strains of Streptococcus mutans, Streptococcus sanguinis, and Aggregatibacter actinomycetemcomitans. However, no difference was observed between the mouthwashes for Porphyromonas, Pseudomonas aeruginosa, and Fusobacterium nucleatum. The ex vivo results conclude that none of the selected mouthwashes were statistically significantly different from each other. Conclusion: In the present study, CHX showed higher levels of antimicrobial action than the herbal mouthwash against bacterial species. The results reinforce the earlier findings that the in vitro testing is sensitive to methods and due diligence is needed when extrapolating the data for further use. However, long-term use and in vivo effectiveness against the periopathogens need to be tested in well-planned clinical trials. PMID:29456300
Pottumarthy, Sudha; Sader, Helio S; Fritsche, Thomas R; Jones, Ronald N
2005-11-01
Amoxicillin/clavulanate has recently undergone formulation changes (XR and ES-600) that represent 14:1 and 16:1 ratios of amoxicillin/clavulanate. These ratios greatly differ from the 2:1 ratio used in initial formulations and in vitro susceptibility testing. The objective of this study was to determine if the reference method using a 2:1 ratio accurately reflects the susceptibility to the various clinically used amoxicillin/clavulanate formulations and their respective serum concentration ratios. A collection of 330 Haemophilus influenzae strains (300 beta-lactamase-positive and 30 beta-lactamase-negative) and 40 Moraxella catarrhalis strains (30 beta-lactamase-positive and 10 beta-lactamase-negative) were tested by the broth microdilution method against eight amoxicillin/clavulanate combinations (4:1, 5:1, 7:1, 9:1, 14:1, and 16:1 ratios; 0.5 and 2 microg/mL fixed clavulanate concentrations) and the minimum inhibitory concentration (MIC) results were compared with those obtained with the reference 2:1 ratio testing. For the beta-lactamase-negative strains of both genera, there was no demonstrable change in the MIC values obtained for all ratios analyzed (2:1 to 16:1). For the beta-lactamase-positive strains of H. influenzae and M. catarrhalis, at ratios >or=4:1 there was a shift in the central tendency of the MIC scatterplot compared with the results of testing 2:1 ratio. As a result, there was a 2-fold dilution increase in the MIC(50) and MIC(90) values, most evident for H. influenzae and BRO-1-producing M. catarrhalis strains. For beta-lactamase-positive strains of H. influenzae, the shift resulted in a change in the interpretive result for 3 isolates (1.0%) from susceptible using the reference method (2:1 ratio) to resistant (8/4 microg/mL; very major error) at the 16:1 ratio. In addition, the number of isolates with MIC values at or 1 dilution lower than the breakpoint (4/2 microg/mL) increased from 5% at 2:1 ratio to 32-33% for ratios 14:1 and 16:1. Our results indicate that, for the beta-lactamase-positive strains of H. influenzae and M. catarrhalis, the results of the amoxicillin/clavulanate reference 2:1 ratio testing do not accurately represent all the currently licensed formulations. Pharmacokinetic/pharmacodynamic (PK/PD) target attainment might be compromised when higher amoxicillin/clavulanate ratios are used clinically. With a better understanding of PK/PD parameters, reevaluation of the amoxicillin/clavulanate in vitro susceptibility testing should be considered by the standardizing authorities to reflect the licensed formulations and accurately predict clinical outcomes.
Johnson, M. M.; Hill, S. L.; Piddock, Laura J. V.
1999-01-01
The in vitro activities of erythromycin, azithromycin, and clarithromycin against 178 clinical isolates from the lower respiratory tract of patients with chronic obstructive pulmonary disease were determined by an agar dilution method. The plates were incubated in air alone or in 5% carbon dioxide. The MICs measured in air alone were lower for most isolates than those measured in 5% carbon dioxide, illustrating the “pH effect” of incubation in carbon dioxide. Testing of isolates in 5% carbon dioxide on pH-adjusted medium (pH 8.4) resulted in MICs of one or two doubling dilutions lower than those obtained on agar with a neutral pH. A bioassay of the three agents incubated in air and in 5% carbon dioxide resulted in a significant loss of activity of all three agents in the carbon dioxide-enriched atmosphere. However, this loss-of-activity effect was significantly reduced when the bioassay medium was adjusted to pH 8.4 prior to incubation in 5% carbon dioxide. PMID:10428903
Antibacterial Effect of Curcuma longa (Turmeric) Against Staphylococcus aureus and Escherichia coli.
Afrose, R; Saha, S K; Banu, L A; Ahmed, A U; Shahidullah, A S; Gani, A; Sultana, S; Kabir, M R; Ali, M Y
2015-07-01
This observational study was conducted during the period from July 2010 to June 2011 in the Department of Pharmacology in the collaboration of Department of Microbiology, Mymensingh Medical College, Mymensingh to determine the profile of antibacterial effect of Crude Turmeric paste aqueous turmeric extract, and standard antibiotic Amikacin against Staphylococcus aureus and Escherichia coli. Three separate experiments were done e.g. (Expt- I) Inhibitory effect of Crude Turmeric paste incorporated into nutrient agar (NA) media, (Expt- II) Minimum inhibitory concentration of (a) Aqueous Turmeric extract and (b) Amikacin by broth dilution technique and (Expt-III) their subculture study in nutrient agar (NA) media for confirmation of respective results of previous experiments. Inhibitory effects were observed against the growth of Staph Aureus and Esch coli at 10% and 30% respectively of Crude Turmeric paste incorporated into NA media. The broth dilution technique was followed to determine the MIC of Aqueous Turmeric extract and Amikacin. The MIC of Aqueous Turmeric extract was 800 μg/ml against Staph aureus and that against Esch coli was 2000 μg/ml and the MIC of Amikacin was 10 μg/ml for both the bacteria. The MIC of Amikacin was the lowest in comparison to MIC of Aqueous Turmeric extract for complete inhibition of growth of Staph aureus and Esch coli. The subculture study showed similar results with that of previous experiments in terms of inhibitory effects of Crude Turmeric paste and MIC of Aqueous Turmeric extract and Amikacin against all of the organisms studied.
Jorgensen, James H.; Barry, Arthur L.; Traczewski, M. M.; Sahm, Daniel F.; McElmeel, M. Leticia; Crawford, Sharon A.
2000-01-01
The VITEK 2 is a new automated instrument for rapid organism identification and susceptibility testing. It has the capability of performing rapid susceptibility testing of Streptococcus pneumoniae with specially configured cards that contain enriched growth medium and antimicrobial agents relevant for this organism. The present study compared the results of testing of a group of 53 challenge strains of pneumococci with known resistance properties and a collection of clinical isolates examined in two study phases with a total of 402 and 416 isolates, respectively, with a prototype of the VITEK 2. Testing was conducted in three geographically separate laboratories; the challenge collection was tested by all three laboratories, and the unique clinical isolates were tested separately by the individual laboratories. The VITEK 2 results of tests with 10 antimicrobial agents were compared to the results generated by the National Committee for Clinical Laboratory Standards reference broth microdilution MIC test method. Excellent interlaboratory agreement was observed with the challenge strains. The overall agreement within a single twofold dilution of MICs defined by the VITEK 2 and reference method with the clinical isolates was 96.3%, although there were a number of off-scale MICs that could not be compared. The best agreement with the clinical isolates was achieved with ofloxacin and chloramphenicol (100%), and the lowest level of agreement among those drugs with sufficient on-scale MICs occurred with trimethoprim-sulfamethoxazole (89.7%). Overall there were 1.3% very major, 6.6% minor, and no major interpretive category errors encountered with the clinical isolates, although >80% of the minor interpretive errors involved only a single log2 dilution difference. The mean time for generation of susceptibility results with the clinical isolates was 8.1 h. The VITEK 2 provided rapid, reliable susceptibility category determinations with both the challenge and clinical isolates examined in this study. PMID:10921932
[Activity of doripenem against anaerobic bacteria].
Dubreuil, L; Neut, C; Mahieux, S; Muller-Serieys, C; Jean-Pierre, H; Marchandin, H; Soussy, C J; Miara, A
2011-04-01
This study examines the activity of doripenem, a new carbapenem compound compared with amoxicillin-clavulanic acid, piperacillin+tazobactam, imipenem, clindamycin and metronidazole against 316 anaerobes. Inoculum preparation and agar dilution method were performed according to the CLSI method for anaerobes (M11A7). At a concentration of 4μg/ml doripenem and imipenem (IMP) inhibited 122 (96 %) and 126 (99 %) strains of the Bacteroides fragilis group, respectively. In contrast, doripenem appeared more potent than IMP against Gram-positive anaerobes inhibiting at the same concentration of 4μg/ml 145/145 strains (100 %) versus 115/145 for IMP (79.3 %). Against 316 anaerobic strains, the carbapenem doripenem had an MIC(50) of 0.25μg/ml and an MIC(90) of 2μg/ml. Results were similar to those for imipenem (MIC(50) of 0.125μg/ml and MIC(90) of 4μg/ml). If we consider the resistant breakpoints of the two carbapenems as defined by EUCAST, the resistance rate for doripenem (MIC>4μg/ml) 1.6 % is similar to that of imipenem (MIC>8μg/ml) 1.3 %. Thus independently of the PK/PD parameters the two carbapenems demonstrated very close activity; doripenem was more potent on Gram-positive anaerobes and slightly less potent against Gram-negative anaerobes mainly the B. fragilis group. Further clinical studies are needed to assess its usefulness in patients. Copyright © 2010 Elsevier Masson SAS. All rights reserved.
Bruin, Jacob P; Ijzerman, Ed P F; den Boer, Jeroen W; Mouton, Johan W; Diederen, Bram M W
2012-01-01
The purpose of this study was to establish wild-type (WT) distributions and determine the epidemiological cut-off values (ECOFF) in clinical L. pneumophila serogroup 1 isolates for 10 antimicrobials commonly used for the treatment of Legionella infections using a method feasible in a routine clinical laboratory. MICs of 183 clinical L. pneumophila serogroup 1 isolates, collected as part of an outbreak detection program, were tested using E-test methodology on buffered charcoal yeast extract agar supplemented with α-ketoglutarate (BCYE-α). The MICs were read after 2 days of incubation at 35 °C with increased humidity and without CO(2). ECOFFs were determined according to EUCAST methodology and expressed as WT ≤ X mg/L. All antimicrobials showed a WT distribution, although the width varied from 2 two-fold dilutions to 8 dilutions, depending on antibiotic class. The ECOFFs determined were 1.0 mg/L for ciprofloxacin, 0.50 mg/L for levofloxacin, 1.0 mg/L for moxifloxacin, 1.0 mg/L for erythromycin, 1.0 mg/L for azithromycin, 0.50 mg/L for clarithromycin, 1.0 mg/L for cefotaxime, 0.032 mg/L for rifampicin, 16 mg/L for tigecycline, and 8 mg/L for doxycycline. All isolates were inhibited by low concentrations of the fluoroquinolones and macrolides tested, with somewhat higher MICs for the fluoroquinolones. Rifampicin was found to be the most active against L. pneumophila isolates in vitro. These data can be used as a reference for the detection of resistance in clinical L. pneumophila isolates and as a setting of clinical breakpoints. Copyright © 2012 Elsevier Inc. All rights reserved.
Evaluation of antimicrobial activity and bronchodialator effect of a polyherbal drug-Shrishadi.
Kajaria, Divya Kumari; Gangwar, Mayank; Kumar, Dharmendra; Kumar Sharma, Amit; Tilak, Ragini; Nath, Gopal; Tripathi, Yamini Bhusan; Tripathi, J S; Tiwari, S K
2012-11-01
To investigate antimicrobial and bronchodialator effect of hydroalcholic extract of polyherbal drug Shirishadi containing Shirisha (Albezzia lebbeck), Nagarmotha (Cyprus rotandus) & Kantakari (Solanum xanthocarpum). Antimicrobial activity was evaluated by disc diffusion method and MIC, MBC, MFC were calculated by micro dilution method. Hydroalcholic extract of this preparation was investigated for its phytochemical analysis, phenol and flavonoid were determined by spectrophotometric method and in vivo bronchodilator effect was analysed by convulsion time. The phytochemical tests revealed presence of alkaloids, anthraquinones, carbohydrates, flavonoids, saponins and tannins. The antimicrobial result showed the MIC of 6.25 mg/mL against Staphylococcus aureus and 12.5 mg/mL for Escherichia coli and 12.5 mg/mL against remaining bacteria tested, with strong antifungal activity. The maximum inhibition zone is found against Pseudomonas aeruginosa with MIC 16 mg/mL. Drug showed significant bronchodilator effect with 27.86% & 36.13% increase in preconvulsion time of guinea pigs pretreated with 100 & 200 mg/kg body weight of extract. The study reveals that the extracts possess antibacterial activity and antifungal activity in a dose dependent manner. This antimicrobial property may be due to presence of several saponins, further studies are highly needed for the drug development.
In-vitro Antimicrobial Activities of Some Iranian Conifers
Afsharzadeh, Maryam; Naderinasab, Mahboobe; Tayarani Najaran, Zahra; Barzin, Mohammad; Emami, Seyed Ahmad
2013-01-01
Male and female leaves and fruits of eleven different taxons of Iranian conifers (Cupressus sempervirens var. horizontalis, C. sempervirens var. sempervirens, C. sempervirens cv. Cereifeormis, Juniperus communis subsp. hemisphaerica, J. excelsa subsp. excelsa, J. excelsa subsp. polycarpos, J. foetidissima, J. oblonga, J. sabina, Platycladus orientalis and Taxus baccata) were collected from different localities of Iran, dried and extracted with methanol. The extracts were tested for their antimicrobial activity against Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli and Candida albicans. The extracts were screened qualitatively using four different methods, the disc diffusion, hole plate, cylinder agar diffusion and agar dilution methods, whereas the minimum inhibitory concentrations (MIC) of each extract were determined by the agar dilution method. The best result was obtained by means of hole plate method in qualitative determination of antimicrobial activities of extracts and the greatest activity was found against S. aureus in all tested methods. PMID:24250573
Gerchman, Irena; Levisohn, Sharon; Mikula, Inna; Lysnyansky, Inna
2009-06-12
Monitoring of susceptibility to antibiotics in field isolates of pathogenic bovine mycoplasmas is important for appropriate choice of treatment. Our study compared in vitro susceptibility profiles of Mycoplasma bovis clinical strains, isolated during 2005-2007 from Israeli and imported calves. Minimal inhibitory concentration (MIC) values were determined for macrolides by the microbroth dilution test, for aminoglycosides by commercial Etest, and for fluoroquinolones and tetracyclines by both methods. Notably, although correlation between the methods was generally good, it was not possible to determine the MIC endpoint for enrofloxacin-resistant strains (MIC > or =2.5 microg/ml in the microtest) by Etest. Comparison of antibiotic susceptibility profiles between local and imported M. bovis strains revealed that local strains were significantly more resistant to macrolides than most isolates from imported animals, with MIC(50) of 128 microg/ml vs. 2 microg/ml for tilmicosin and 8 microg/ml vs. 1 microg/ml for tylosin, respectively. However, local strains were more susceptible than most imported strains to fluoroquinolones and spectinomycin. Difference in susceptibility to tetracycline, doxycycline and oxytetracycline between local and imported strains was expressed in MIC(90) values for imported strains in the susceptible range compared to intermediate susceptibility for local strains. The marked difference in susceptibility profiles of M. bovis strains isolated from different geographical regions seen in this study emphasizes the necessity for performing of the antimicrobial susceptibility testing periodically and on a regional basis.
Comparison of antimicrobial activities of naphthoquinones from Impatiens balsamina.
Sakunphueak, Athip; Panichayupakaranant, Pharkphoom
2012-01-01
Lawsone (1), lawsone methyl ether (2), and methylene-3,3'-bilawsone (3) are the main naphthoquinones in the leaf extracts of Impatiens balsamina L. (Balsaminaceae). Antimicrobial activities of these three naphthoquinones against dermatophyte fungi, yeast, aerobic bacteria and facultative anaerobic and anaerobic bacteria were evaluated by determination of minimal inhibitory concentrations (MICs) and minimal bactericidal or fungicidal concentrations (MBCs or MFCs) using a modified agar dilution method. Compound 2 showed the highest antimicrobial activity. It showed antifungal activity against dermatophyte fungi and Candida albicans with the MICs and MFCs in the ranges of 3.9-23.4 and 7.8-23.4 µg mL(-1), respectively, and also had some antibacterial activity against aerobic, facultative anaerobic and anaerobic bacteria with MICs in the range of 23.4-93.8, 31.2-62.5 and 125 µg mL(-1), respectively. Compound 1 showed only moderate antimicrobial activity against dermatophytes (MICs and MFCs in the ranges of 62.5-250 and 125-250 µg mL(-1), respectively), but had low potency against aerobic bacteria, and was not active against C. albicans and facultative anaerobic bacteria. In contrast, 3 showed significant antimicrobial activity only against Staphylococus epidermidis and Bacillus subtilis (MIC and MBC of 46.9 and 93.8 µg mL(-1), respectively).
Singh, Pradeep Kumar; Kathuria, Shallu
2015-01-01
We compared EUCAST and CLSI antifungal susceptibility testing (AFST) methods for triazoles and amphotericin B against 124 clinical Mucorales isolates. The EUCAST method yielded MIC values 1- to 3-fold dilutions higher than those of the CLSI method for amphotericin B. The essential agreements between the two methods for triazoles were high, i.e., 99.1% (voriconazole), 98.3% (isavuconazole), and 87% (posaconazole), whereas it was significantly lower for amphotericin B (66.1%). Strategies for harmonization of the two methods for Mucorales AFST are warranted. PMID:26438489
Waites, Ken B; Duffy, Lynn B; Bébéar, Cécile M; Matlow, Anne; Talkington, Deborah F; Kenny, George E; Totten, Patricia A; Bade, Donald J; Zheng, Xiaotian; Davidson, Maureen K; Shortridge, Virginia D; Watts, Jeffrey L; Brown, Steven D
2012-11-01
An international multilaboratory collaborative study was conducted to develop standard media and consensus methods for the performance and quality control of antimicrobial susceptibility testing of Mycoplasma pneumoniae, Mycoplasma hominis, and Ureaplasma urealyticum using broth microdilution and agar dilution techniques. A reference strain from the American Type Culture Collection was designated for each species, which was to be used for quality control purposes. Repeat testing of replicate samples of each reference strain by participating laboratories utilizing both methods and different lots of media enabled a 3- to 4-dilution MIC range to be established for drugs in several different classes, including tetracyclines, macrolides, ketolides, lincosamides, and fluoroquinolones. This represents the first multilaboratory collaboration to standardize susceptibility testing methods and to designate quality control parameters to ensure accurate and reliable assay results for mycoplasmas and ureaplasmas that infect humans.
Slavić, Durđa; Boerlin, Patrick; Fabri, Marta; Klotins, Kim C; Zoethout, Jennifer K; Weir, Pat E; Bateman, Debbie
2011-04-01
Antimicrobial susceptibilities and toxin types were determined for 275 Clostridium perfringens isolates collected in Ontario in the spring of 2005. Minimal inhibitory concentrations (MICs) of C. perfringens isolates for 12 antimicrobials used in therapy, prophylaxis, and/or growth promotion of cattle (n = 40), swine (n = 75), turkeys (n = 50), and chickens (n = 100) were determined using the microbroth dilution method. Statistical analyses and MIC distributions showed reduced susceptibility to bacitracin, clindamycin, erythromycin, florfenicol, and tetracycline for some isolates. Reduced susceptibility to bacitracin was identified in chicken (64%) and turkey (60%) isolates. Swine isolates had predominantly reduced susceptibility to clindamycin (28%) and erythromycin (31%), whereas bovine isolates had reduced susceptibility to clindamycin (10%) and florfenicol (10%). Reduced susceptibility to tetracycline was spread across all species. No clear reduced susceptibility, but elevated MIC(50) for virginiamycin was found in chicken isolates in comparison with isolates from other species. Toxin typing revealed that C. perfringens type A is the dominant toxin type isolated in this study across all 4 host species.
Evaluation of antimicrobial activity and bronchodialator effect of a polyherbal drug-Shrishadi
Kajaria, Divya Kumari; Gangwar, Mayank; Kumar, Dharmendra; Kumar Sharma, Amit; Tilak, Ragini; Nath, Gopal; Tripathi, Yamini Bhusan; Tripathi, JS; Tiwari, SK
2012-01-01
Objective To investigate antimicrobial and bronchodialator effect of hydroalcholic extract of polyherbal drug Shirishadi containing Shirisha (Albezzia lebbeck), Nagarmotha (Cyprus rotandus) & Kantakari (Solanum xanthocarpum). Methods Antimicrobial activity was evaluated by disc diffusion method and MIC, MBC, MFC were calculated by micro dilution method. Hydroalcholic extract of this preparation was investigated for its phytochemical analysis, phenol and flavonoid were determined by spectrophotometric method and in vivo bronchodilator effect was analysed by convulsion time. Results The phytochemical tests revealed presence of alkaloids, anthraquinones, carbohydrates, flavonoids, saponins and tannins. The antimicrobial result showed the MIC of 6.25 mg/mL against Staphylococcus aureus and 12.5 mg/mL for Escherichia coli and 12.5 mg/mL against remaining bacteria tested, with strong antifungal activity. The maximum inhibition zone is found against Pseudomonas aeruginosa with MIC 16 mg/mL. Drug showed significant bronchodilator effect with 27.86% & 36.13% increase in preconvulsion time of guinea pigs pretreated with 100 & 200 mg/kg body weight of extract. Conclusions The study reveals that the extracts possess antibacterial activity and antifungal activity in a dose dependent manner. This antimicrobial property may be due to presence of several saponins, further studies are highly needed for the drug development. PMID:23569869
Bouacha, Mabrouka; Ayed, Hayette; Grara, Nedjoud
2018-04-13
Medicinal benefits of honey bee have been recognized in the medical community since ancient times as a remedy for many diseases and infections. This study aimed to investigate the in vitro susceptibility of 11 multidrug-resistant bacterial strains, isolated from urinary tract infections of pregnant women, to six honey samples collected from different localities in the east of Algeria. The evaluation of the antibacterial activity was performed by the well method followed by the broth dilution method using two-fold dilutions of each honey sample ranging from 2.5 to 80% (w/v). The results obtained in this study revealed that all tested honeys exhibited potent antibacterial activity against the tested strains. The diameters of inhibition ranged from 19.67 to 53.33 mm, with minimum inhibitory concentrations (MICs) ranging from 2.5 to 40% (w/v) and minimum bactericidal concentration (MBCs) varied between 2.5 and 80% (w/v). Gram-positive bacteria were found to be more susceptible than Gram-negative bacteria with diameters ranging from 43.33 to 53.33 mm; MIC and MBC values ranged from 2.5 to 5% (w/v). The P.aeruginosa strain was found to be less susceptible than other strains with inhibitory diameters ranging from 19.67 to 27.33 mm; MICs ranged from 20 to 40% and MBCs ranged from 20 to 80% ( w/v ). This contribution has provided a broad overview of the antibacterial activity of Algerian honey and shown that honey bee has great potential for therapeutic use as an alternative therapy for urinary tract infection treatment which is safe and efficient during pregnancy.
Sackel, Stephen G.; Alpert, Susan; Rosner, Bernard; McCormack, William M.; Finland, Maxwell
1977-01-01
Minimum inhibitory concentrations (MICs) of six penicillins against 95 strains of Neisseria gonorrhoeae from patients with uncomplicated anogenital infections and 22 strains from women with pelvic inflammatory disease were determined by an agar plate dilution method, using an inocula replicator. Against all 117 strains, the order of activity observed was: BL-P1654 > penicillin X > penicillin G > ampicillin > amoxicillin = carbenicillin. MICs against strains isolated from women with gonococcal pelvic inflammatory disease were significantly higher than those against isolates from uncomplicated infections: BL-P1654, P < 0.001; penicillin X, P < 0.001; penicillin G, P < 0.001; ampicillin, P < 0.001; and amoxicillin, P < 0.05. MICs of penicillin G were ≥0.125 μg/ml against 33 (36%) of the 92 strains from patients with uncomplicated infections, as contrasted with 15 (68%) of the 22 isolates from women with pelvic inflammatory disease (P < 0.01). The means of the MICs of penicillin G were 0.06 μg/ml for the former and 0.14 μg/ml for the latter. PMID:407840
[Clinical pharmacokinetics/pharmacodynamics study on pazufloxacin methanesulphonate injection].
Wang, Xian-Gang; Miao, Jia; Liang, De-Rong; Yu, Qin; Liang, Mao-Zhi; Zhang, Shu-Hua
2009-07-01
To identify rational dosage regimen for pazufloxacin methanesulphonate injection through a pharmacokinetics/pharmacodynamics (PK/PD) study. Pazufloxacin methanesulphonate at the doses of 300 mg and 500 mg were injected to 24 healthy volunteers. The plasma concentrations of pazufloxacin were measured by RPHPLC-UV. The MICs of pazufloxacin against 130 strains of 7 species of bacterias, as well as the MPCs of pazufloxacin against 5 species of bacterias were measured by double broth dilution method. The AUC0-24/MIC50 of pazufloxacin methanesulphonate at a stabilized concentration state against methicillin-sensitive Staphylococcus aureus (MSSA) and S. pneumoniae were 215.36 and 107.68 at the dose of 300 mg, and 309.60 and 154.80 at the dose of 500 mg, respectively. The Cmax/MIC50 were 57.52 and 28.76 at the dose of 300 mg, and 81.28 and 40.64 at the dose of 500 mg, respectively. However, the AUC0-24/MIC of pazufloxacin methanesulphonate against methicillin-resistant staphylococcus aureus (MRSA) were far less than 40. Both the AUC0-24/MIC50 and the Cmax/MIC50 of pazufloxacin against P. aeruginosa at the doses of 300 mg and 500 mg exceeded the defined criteria 100 and 10. Whereas the AUC0-24/MIC and Cmax/MIC of pazufloxacin against E. coli, K. pneumoniae and A. baumanii were much less than 100 and 10. The capability of pazufloxacin methanesulphonate to prevent mutations of MSSA was strong at the dose of 500 mg, but not for other pathogenic bacteria either at 300 mg or 500 mg. Pazufloxacin methanesulphonate at the dose of 300 mg and 500 mg have similar efficacy in treating acute bacterial infections. The dosage regimen of 300 mg Q12h intravenous infusion is recommended.
Ceylan, Ozgur; Ugur, Aysel
2015-06-01
In this study, antimicrobial and antibiofilm activities and the chemical composition of Thymus sipyleus BOISS. subsp. sipyleus BOISS. var. davisianus RONNIGER essential oil was evaluated. The essential oil was obtained by hydro-distillation and analyzed by gas chromatography-mass spectrometry. Fourteen compounds were characterized, having as major components thymol (38.31%) and carvacrol (37.95%). Minimum inhibitory concentrations (MICs) of oil and the major components were calculated by serial dilution method, and anti-biofilm effects by microplate biofilm assay against five Gram positive (Staphylococcus aureus MU 38, MU 40, MU 46, MU 47, Stahylococcus epidermidis MU 30) and five Gram negative (Pseudomonas aeruginosa MU 187, MU 188, MU 189, Pseudomonas fluorescens MU 180, MU 181) bacteria. It was found that MICs for essential oil, thymol and carvacrol were between 5 and 50 µl/ml, 0.125-0.5 µg/ml and 0.125-05 µl/ml, respectively. The results showed that doses of MIC produced a greater anti-biofilm influence than 0.5, 0.25 and 0.125 MIC. In the presence of essential oil (MIC), the mean biofilm formation value was equal to 67 ± 5.5% for P. aeruginosa MU 188, and essential oil (MIC) inhibition exceeds 60% for P. aeruginosa biofilms. The results also showed that carvacrol (MIC) was able to induce an inhibition 72.9 ± 4.1% for S.aureus (MU 40) biofilm. In addition, thymol (MIC) showed 68.6 ± 5.3% reduction in biofilm formation of P. fluorescens MU 181. This study demonstrated the antimicrobial and antibiofilm activity of T. sipyleus BOISS. subsp. sipyleus BOISS. var. davisianus RONNIGER essential oil and points out the exceptional efficiency of thymol and carvacrol, which could represent candidates in the treatment of Pseudomonas and Staphylococcus biofilms.
Spectrophotometric reading of EUCAST antifungal susceptibility testing of Aspergillus fumigatus.
Meletiadis, J; Leth Mortensen, K; Verweij, P E; Mouton, J W; Arendrup, M C
2017-02-01
Given the increasing number of antifungal drugs and the emergence of resistant Aspergillus isolates, objective, automated and high-throughput antifungal susceptibility testing is important. The EUCAST E.Def 9.3 reference method for MIC determination of Aspergillus species relies on visual reading. Spectrophotometric reading was not adopted because of concern that non-uniform filamentous growth might lead to unreliable and non-reproducible results. We therefore evaluated spectrophotometric reading for the determination of MICs of antifungal azoles against Aspergillus fumigatus. Eighty-eight clinical isolates of A. fumigatus were tested against four medical azoles (posaconazole, voriconazole, itraconazole, isavuconazole) and one agricultural azole (tebuconazole) with EUCAST E.Def 9.3. The visually determined MICs (complete inhibition of growth) were compared with spectrophotometrically determined MICs and essential (±1 twofold dilution) and categorical (susceptible/intermediate/resistant or wild-type/non-wild-type) agreement was calculated. Spectrophotometric data were analysed with regression analysis using the E max model, and the effective concentration corresponding to 5% (EC 5 ) was estimated. Using the 5% cut-off, high essential (92%-97%) and categorical (93%-99%) agreement (<6% errors) was found between spectrophotometric and visual MICs. The EC 5 also correlated with the visually determined MICs with an essential agreement of 83%-96% and a categorical agreement of 90%-100% (<5% errors). Spectrophotometric determination of MICs of antifungal drugs may increase objectivity, and allow automation and high-throughput of EUCAST E.Def 9.3 antifungal susceptibility testing of Aspergillus species. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Dorey, L; Hobson, S; Lees, P
2017-04-01
Pharmacodynamic properties of marbofloxacin were established for six isolates each of the pig respiratory tract pathogens, Actinobacillus pleuropneumoniae and Pasteurella multocida. Three in vitro indices of potency were determined; Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC) and Mutant Prevention Concentration (MPC). For MIC determination Clinical Laboratory Standards Institute guidelines were modified in three respects: (1) comparison was made between two growth media, an artificial broth and pig serum; (2) a high inoculum count was used to simulate heavy clinical bacteriological loads; and (3) five overlapping sets of two-fold dilutions were used to improve accuracy of determinations. Similar methods were used for MBC and MPC estimations. MIC and MPC serum:broth ratios for A. pleuropneumoniae were 0.79:1 and 0.99:1, respectively, and corresponding values for P. multocida were 1.12:1 and 1.32:1. Serum protein binding of marbofloxacin was 49%, so that fraction unbound (fu) serum MIC values were significantly lower than those predicted by correction for protein binding; fu serum:broth MIC ratios were 0.40:1 (A. pleuropneumoniae) and 0.50:1 (P. multocida). For broth, MPC:MIC ratios were 13.7:1 (A. pleuropneumoniae) and 14.2:1 (P. multocida). Corresponding ratios for serum were similar, 17.2:1 and 18.8:1, respectively. It is suggested that, for dose prediction purposes, serum data might be preferable to potency indices measured in broths. Copyright © 2016 Elsevier Ltd. All rights reserved.
Li, Zhaoping; Summanen, Paula H; Downes, Julia; Corbett, Karen; Komoriya, Tomoe; Henning, Susanne M; Kim, Jenny; Finegold, Sydney M
2015-06-01
We used pomegranate extract (POMx), pomegranate juice (POM juice) and green tea extract (GT) to establish in vitro activities against bacteria implicated in the pathogenesis of acne. Minimum inhibitory concentrations (MIC) of 94 Propionibacterium acnes, Propionibacterium granulosum, Staphylococcus aureus, and Staphylococcus epidermidis strains were determined by Clinical and Laboratory Standards Institute-approved agar dilution technique. Total phenolics content of the phytochemicals was determined using the Folin-Ciocalteu method and the polyphenol composition by HPLC. Bacteria were identified by 16S rRNA sequence analysis. GT MIC of 400 μg/ml or less was obtained for 98% of the strains tested. 64% of P. acnes strains had POMx MICs at 50 μg/ml whereas 36% had MIC >400 μg/ml. POMx, POM juice, and GT showed inhibitory activity against all the P. granulosum strains at ≤100 μg/ml. POMx and GT inhibited all the S. aureus strains at 400 μg/ml or below, and POM juice had an MIC of 200 μg/ml against 17 S. aureus strains. POMx inhibited S. epidermidis strains at 25 μg/ml, whereas POM juice MICs were ≥200 μg/ml. The antibacterial properties of POMx and GT on the most common bacteria associated with the development and progression of acne suggest that these extracts may offer a better preventative/therapeutic regimen with fewer side effects than those currently available.
Effect of essential oils prepared from Thai culinary herbs on sessile Candida albicans cultures.
Hovijitra, Ray S; Choonharuangdej, Suwan; Srithavaj, Theerathavaj
2016-01-01
Although medicinal herbs with fungicidal effects have been ubiquitously employed in traditional medicine, such effects of culinary herbs and spices still have to be elucidated. Therefore, it is noteworthy to determine the antifungal efficacy of some edible herbs used in Thai cuisine against sessile Candida albicans cultures, and to inquire if they can be further utilized as naturally-derived antifungals. Fourteen essential oils extracted from Thai culinary herbs and spices were tested for their antifungal activity against C. albicans using the agar disk diffusion method followed by broth micro-dilution method for the determination of minimum inhibitory concentration (MIC) and minimum fungicidal concentration. The oils with potent antifungal effects against planktonic fungi were then assessed for their effect against sessile fungus (adherent organisms and established biofilm culture). MIC of the oils against sessile C. albicans was evaluated by 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide reduction assay. All selected culinary herbs and spices, except galangal, garlic, and turmeric, exhibited inhibitory effects on planktonic yeast cells. Cinnamon bark and sweet basil leaf essential oils exhibited potent fungicidal effect on planktonic and sessile fungus. Sessile MICs were 8-16 times higher than planktonic MICs. Consequently, both cinnamon bark and sweet basil leaf herbal oils seem to be highly effective anti-Candida choices. (J Oral Sci 58, 365-371, 2016).
Action of Monomeric/Gemini Surfactants on Free Cells and Biofilm of Asaia lannensis.
Koziróg, Anna; Kręgiel, Dorota; Brycki, Bogumił
2017-11-22
We investigated the biological activity of surfactants based on quaternary ammonium compounds: gemini surfactant hexamethylene-1,6-bis-( N,N -dimethyl- N -dodecylammonium bromide) (C6), synthesized by the reaction of N,N -dimethyl- N- dodecylamine with 1,6-dibromohexane, and its monomeric analogue dodecyltrimethylammonium bromide (DTAB). The experiments were performed with bacteria Asaia lannensis , a common spoilage in the beverage industry. The minimal inhibitory concentration (MIC) values were determined using the tube standard two-fold dilution method. The growth and adhesive properties of bacterial cells were studied in different culture media, and the cell viability was evaluated using plate count method. Both of the surfactants were effective against the bacterial strain, but the MIC of gemini compound was significantly lower. Both C6 and DTAB exhibited anti-adhesive abilities. Treatment with surfactants at or below MIC value decreased the number of bacterial cells that were able to form biofilm, however, the gemini surfactant was more effective. The used surfactants were also found to be able to eradicate mature biofilms. After 4 h of treatment with C6 surfactant at concentration 10 MIC, the number of bacterial cells was reduced by 91.8%. The results of this study suggest that the antibacterial activity of the gemini compound could make it an effective microbiocide against the spoilage bacteria Asaia sp. in both planktonic and biofilm stages.
Comparative activity of pradofloxacin against anaerobic bacteria isolated from dogs and cats.
Silley, Peter; Stephan, Bernd; Greife, Heinrich A; Pridmore, Andrew
2007-11-01
To compare the intrinsic activity of pradofloxacin, a new fluoroquinolone developed for use in veterinary medicine, with other fluoroquinolones, against anaerobic bacteria isolated from dogs and cats. One hundred and forty-one anaerobes were isolated from dogs and cats and comparative MICs of pradofloxacin, marbofloxacin, enrofloxacin, difloxacin and ibafloxacin were determined according to standardized agar dilution methodology. Pradofloxacin exerted the greatest antibacterial activity followed by marbofloxacin, enrofloxacin, difloxacin and ibafloxacin. Based on the distinctly lower MIC(50), MIC(90) and mode MIC values, pradofloxacin exhibited a higher in vitro activity than any of the comparator fluoroquinolones. Pradofloxacin, a novel third-generation fluoroquinolone, has broad-spectrum anti-anaerobe activity and offers utility as single-drug therapy for mixed aerobic/anaerobic infections.
Credito, Kim L; Appelbaum, Peter C
2004-11-01
Agar dilution MIC was used to compare activities of OPT-80, linezolid, vancomycin, teicoplanin, quinupristin/dalfopristin, amoxicillin/clavulanate, imipenem, clindamycin, and metronidazole against 350 gram-positive and -negative anaerobes. OPT-80 was active against gram-positive strains only, especially Clostridium spp. (85 strains tested, including 21 strains of C. difficile), with MICs ranging between =0.016 and 0.25 microg/ml.
In vitro antimicrobial properties of coconut oil on Candida species in Ibadan, Nigeria.
Ogbolu, D O; Oni, A A; Daini, O A; Oloko, A P
2007-06-01
The emergence of antimicrobial resistance, coupled with the availability of fewer antifungal agents with fungicidal actions, prompted this present study to characterize Candida species in our environment and determine the effectiveness of virgin coconut oil as an antifungal agent on these species. In 2004, 52 recent isolates of Candida species were obtained from clinical specimens sent to the Medical Microbiology Laboratory, University College Hospital, Ibadan, Nigeria. Their susceptibilities to virgin coconut oil and fluconazole were studied by using the agar-well diffusion technique. Candida albicans was the most common isolate from clinical specimens (17); others were Candida glabrata (nine), Candida tropicalis (seven), Candida parapsilosis (seven), Candida stellatoidea (six), and Candida krusei (six). C. albicans had the highest susceptibility to coconut oil (100%), with a minimum inhibitory concentration (MIC) of 25% (1:4 dilution), while fluconazole had 100% susceptibility at an MIC of 64 microg/mL (1:2 dilution). C. krusei showed the highest resistance to coconut oil with an MIC of 100% (undiluted), while fluconazole had an MIC of > 128 microg/mL. It is noteworthy that coconut oil was active against species of Candida at 100% concentration compared to fluconazole. Coconut oil should be used in the treatment of fungal infections in view of emerging drug-resistant Candida species.
Clark, Catherine; Smith, Kathy; Ednie, Lois; Bogdanovich, Tatiana; Dewasse, Bonifacio; McGhee, Pamela; Appelbaum, Peter C.
2008-01-01
DC-159a yielded MICs of ≤1 μg/ml against 316 strains of both quinolone-susceptible and -resistant pneumococci (resistance was defined as a levofloxacin MIC ≥4 μg/ml). Although the MICs for DC-159a against quinolone-susceptible pneumococci were a few dilutions higher than those of gemifloxacin, the MICs of these two compounds against 28 quinolone-resistant pneumococci were identical. The DC-159a MICs against quinolone-resistant strains did not appear to depend on the number or the type of mutations in the quinolone resistance-determining region. DC-159a, as well as the other quinolones tested, was bactericidal after 24 h at 2× MIC against 11 of 12 strains tested. Two of the strains were additionally tested at 1 and 2 h, and DC-159a at 4× MIC showed significant killing as early as 2 h. Multistep resistance selection studies showed that even after 50 consecutive subcultures of 10 strains in the presence of sub-MICs, DC-159a produced only two mutants with maximum MICs of 1 μg/ml. PMID:17938189
Tatsumi, Yoshiyuki; Yokoo, Mamoru; Arika, Tadashi; Yamaguchi, Hideyo
2001-01-01
The in vitro activity of KP-103, a novel triazole derivative, against pathogenic fungi that cause dermatomycoses and its therapeutic efficacy against plantar tinea pedis and cutaneous candidiasis in guinea pigs were investigated. MICs were determined by a broth microdilution method with morpholinepropanesulfonic acid-buffered RPMI 1640 medium for Candida species and with Sabouraud dextrose broth for dermatophytes and by an agar dilution method with medium C for Malassezia furfur. KP-103 was the most active of all the drugs tested against Candida albicans (geometric mean [GM] MIC, 0.002 μg/ml), other Candida species including Candida parapsilosis and Candida glabrata (GM MICs, 0.0039 to 0.0442 μg/ml), and M. furfur (GM MIC, 0.025 μg/ml). KP-103 (1% solution) was highly effective as a treatment for guinea pigs with cutaneous candidiasis and achieved mycological eradication in 8 of the 10 infected animals, whereas none of the imidazoles tested (1% solutions) was effective in even reducing the levels of the infecting fungi. KP-103 was as active as clotrimazole and neticonazole but was less active than lanoconazole and butenafine against Trichophyton rubrum (MIC at which 80% of isolates are inhibited [MIC80], 0.125 μg/ml) and Trichophyton mentagrophytes (MIC80, 0.25 μg/ml). However, KP-103 (1% solution) exerted therapeutic efficacy superior to that of neticonazole and comparable to those of lanoconazole and butenafine, yielding negative cultures for all samples from guinea pigs with plantar tinea pedis tested. This suggests that KP-103 has better pharmacokinetic properties in skin tissue than the reference drugs. Because the in vitro activity of KP-103, unlike those of the reference drugs, against T. mentagrophytes was not affected by hair as a keratinic substance, its excellent therapeutic efficacy seems to be attributable to good retention of its antifungal activity in skin tissue, in addition to its potency. PMID:11302816
Torey, Angeline; Sasidharan, Sreenivasan; Yeng, Chen; Latha, Lachimanan Yoga
2010-05-10
Quality control standardizations of the various medicinal plants used in traditional medicine is becoming more important today in view of the commercialization of formulations based on these plants. An attempt at standardization of Cassia spectabilis leaf has been carried out with respect to authenticity, assay and chemical constituent analysis. The authentication involved many parameters, including gross morphology, microscopy of the leaves and functional group analysis by Fourier Transform Infrared (FTIR) spectroscopy. The assay part of standardization involved determination of the minimum inhibitory concentration (MIC) of the extract which could help assess the chemical effects and establish curative values. The MIC of the C. spectabilis leaf extracts was investigated using the Broth Dilution Method. The extracts showed a MIC value of 6.25 mg/mL, independent of the extraction time. The chemical constituent aspect of standardization involves quantification of the main chemical components in C. spectabilis. The GCMS method used for quantification of 2,4-(1H,3H)-pyrimidinedione in the extract was rapid, accurate, precise, linear (R(2) = 0.8685), rugged and robust. Hence this method was suitable for quantification of this component in C. spectabilis. The standardization of C. spectabilis is needed to facilitate marketing of medicinal plants, with a view to promoting the export of valuable Malaysian Traditional Medicinal plants such as C. spectabilis.
Betanzos-Cabrera, Gabriel; Montes-Rubio, Perla Y.; Fabela-Illescas, Héctor E.; Belefant-Miller, Helen; Cancino-Diaz, Juan C.
2015-01-01
Background Polyphenols have received a great deal of attention due to their biological functions. Pomegranate (Punica granatum L.) is a polyphenol-rich fruit. In the past decade, studies testing the antimicrobial activity of pomegranates almost exclusively used solvent extracts instead of fresh pomegranate juice (FPJ). The use of FPJ instead of solvent extracts would reduce toxicity issues while increasing patient acceptance. We established a model to test FPJ as a natural antimicrobial agent. Objective To evaluate the antimicrobial activity of FPJ on clinical isolates of multidrug-resistant Staphylococcus epidermidis strains. Design Sixty strains of S. epidermidis isolated from ocular infections were grown in the presence of FPJ, and minimum inhibitory concentration (MIC) was determined by broth and agar dilution methods. Results FPJ at 20% had a MIC equal to 100% (MIC100%) on all 60 strains tested. This inhibition of FPJ was confirmed by the growth kinetics of a multidrug-resistant strain exposed to different concentrations of FPJ. Additionally, the antimicrobial activity of FPJ was compared against commercial beverages containing pomegranate: Ocean Spray® had a MIC100% at 20%, followed by Del Valle® with a MIC15% at 20% concentration only. The beverages Jumex® and Sonrisa® did not have any antimicrobial activity. FPJ had the highest polyphenol content and antioxidant capacity. Conclusions Overall, FPJ had antimicrobial activity, which might be attributed to its high polyphenol content and antioxidant capacity. PMID:25999265
Pijpers, A; Van Klingeren, B; Schoevers, E J; Verheijden, J H; Van Miert, A S
1989-09-01
The minimal inhibitory concentrations (MIC) of five tetracyclines and ten other antimicrobial agents were determined for four porcine bacterial respiratory tract pathogens by the agar dilution method. For the following oxytetracycline-susceptible strains, the MIC50 ranges of the tetracyclines were: P. multocida (n = 17) 0.25-0.5 micrograms/ml; B. bronchiseptica (n = 20) 0.25-1.0 micrograms/ml; H. pleuropneumoniae (n = 20) 0.25-0.5 micrograms/ml; S. suis Type 2 (n = 20) 0.06-0.25 micrograms/ml. For 19 oxytetracycline-resistant P. multocida strains the MIC50 of the tetracyclines varied from 64 micrograms/ml for oxytetracycline to 0.5 micrograms/ml for minocycline. Strikingly, minocycline showed no cross-resistance with oxytetracycline, tetracycline, chlortetracycline and doxycycline in P. multocida and in H. pleuropneumoniae. Moreover, in susceptible strains minocycline showed the highest in vitro activity followed by doxycycline. Low MIC50 values were observed for chloramphenicol, ampicillin, flumequine, ofloxacin and ciprofloxacin against P. multocida and H. pleuropneumoniae. B. bronchiseptica was moderately susceptible or resistant to these compounds. As expected tiamulin, lincomycin, tylosin and spiramycin were not active against H. pleuropneumoniae. Except for flumequine, the MIC50 values of nine antimicrobial agents were low for S. suis Type 2. Six strains of this species showed resistance to the macrolides and lincomycin.
Skovhus, Torben Lund; Eckert, Richard B; Rodrigues, Edgar
2017-08-20
Microbiologically influenced corrosion (MIC) is the terminology applied where the actions of microorganisms influence the corrosion process. In literature, terms such as microbial corrosion, biocorrosion, microbially influenced/induced corrosion, and biodegradation are often applied. MIC research in the oil and gas industry has seen a revolution over the past decade, with the introduction of molecular microbiological methods: (MMM) as well as new industry standards and procedures of sampling biofilm and corrosion products from the process system. This review aims to capture the most important trends the oil and gas industry has seen regarding MIC research over the past decade. The paper starts out with an overview of where in the process stream MIC occurs - from the oil reservoir to the consumer. Both biotic and abiotic corrosion mechanisms are explained in the context of managing MIC using a structured corrosion management (CM) approach. The corrosion management approach employs the elements of a management system to ensure that essential corrosion control activities are carried out in an effective, sustainable, well-planned and properly executed manner. The 3-phase corrosion management approach covering of both biotic and abiotic internal corrosion mechanisms consists of 1) corrosion assessment, 2) corrosion mitigation and 3) corrosion monitoring. Each of the three phases are described in detail with links to recent field cases, methods, industry standards and sampling protocols. In order to manage the corrosion threat, operators commonly use models to support decision making. The models use qualitative, semi-quantitative or quantitative measures to help assess the rate of degradation caused by MIC. The paper reviews four existing models for MIC Threat Assessment and describe a new model that links the threat of MIC in the oil processing system located on an offshore platform with a Risk Based Inspection (RBI) approach. A recent field case highlights and explains the conflicting historic results obtained through serial dilution of culture media using the most probable number (MPN) method as compared to data obtained from corrosion monitoring and the quantitative polymerase chain reaction (qPCR) method. Results from qPCR application in the field case have changed the way MIC is monitored on the oil production facility in the North Sea. A number of high quality resources have been published as technical conference papers, books, educational videos and peer-reviewed scientific papers, and thus we end the review with an updated list of state-of-the-art resources for anyone desiring to become more familiar with the topic of MIC in the upstream oil and gas sector. Copyright © 2017 Elsevier B.V. All rights reserved.
Chowdhary, Anuradha; Singh, Pradeep Kumar; Kathuria, Shallu; Hagen, Ferry; Meis, Jacques F
2015-12-01
We compared EUCAST and CLSI antifungal susceptibility testing (AFST) methods for triazoles and amphotericin B against 124 clinical Mucorales isolates. The EUCAST method yielded MIC values 1- to 3-fold dilutions higher than those of the CLSI method for amphotericin B. The essential agreements between the two methods for triazoles were high, i.e., 99.1% (voriconazole), 98.3% (isavuconazole), and 87% (posaconazole), whereas it was significantly lower for amphotericin B (66.1%). Strategies for harmonization of the two methods for Mucorales AFST are warranted. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Comparative antipneumococcal activities of sulopenem and other drugs.
Kosowska-Shick, Klaudia; Ednie, Lois M; McGhee, Pamela; Appelbaum, Peter C
2009-06-01
For 297 penicillin-susceptible, -intermediate, and -resistant pneumococcal strains, the sulopenem MIC(50)s were 0.008, 0.06, and 0.25, respectively, and the sulopenem MIC(90)s were 0.016, 0.25, and 0.5 microg/ml, respectively. The MIC(50)s of amoxicillin for the corresponding strains were 0.03, 0.25, and 2.0 microg/ml, respectively, and the MIC(90)s were 0.03, 1.0, and 8.0 microg/ml, respectively. The combination of amoxicillin and clavulanate gave MICs similar to those obtained with amoxicillin alone. The sulopenem MICs were similar to those of imipenem and meropenem. The MICs of ss-lactams increased with those of penicillin G, and among the quinolones tested, moxifloxacin had the lowest MICs. Additionally, 45 strains of drug-resistant type 19A pneumococci were tested by agar dilution and gave sulopenem MIC(50)s and MIC(90)s of 1.0 and 2.0 microg/ml, respectively. Both sulopenem and amoxicillin (with and without clavulanate) were bactericidal against all 12 strains tested at 2x MIC after 24 h. Thirty-one strains from 10 countries with various penicillin, amoxicillin, and carbapenems MICs, including those with the highest sulopenem MICs, were selected for sequencing analysis of the pbp1a, pbp2x, and pbp2b regions encoding the transpeptidase active site and MurM. We did not find any correlations between specific penicillin-binding protein-MurM patterns and changes in the MICs.
Comparative Antipneumococcal Activities of Sulopenem and Other Drugs▿
Kosowska-Shick, Klaudia; Ednie, Lois M.; McGhee, Pamela; Appelbaum, Peter C.
2009-01-01
For 297 penicillin-susceptible, -intermediate, and -resistant pneumococcal strains, the sulopenem MIC50s were 0.008, 0.06, and 0.25, respectively, and the sulopenem MIC90s were 0.016, 0.25, and 0.5 μg/ml, respectively. The MIC50s of amoxicillin for the corresponding strains were 0.03, 0.25, and 2.0 μg/ml, respectively, and the MIC90s were 0.03, 1.0, and 8.0 μg/ml, respectively. The combination of amoxicillin and clavulanate gave MICs similar to those obtained with amoxicillin alone. The sulopenem MICs were similar to those of imipenem and meropenem. The MICs of ß-lactams increased with those of penicillin G, and among the quinolones tested, moxifloxacin had the lowest MICs. Additionally, 45 strains of drug-resistant type 19A pneumococci were tested by agar dilution and gave sulopenem MIC50s and MIC90s of 1.0 and 2.0 μg/ml, respectively. Both sulopenem and amoxicillin (with and without clavulanate) were bactericidal against all 12 strains tested at 2× MIC after 24 h. Thirty-one strains from 10 countries with various penicillin, amoxicillin, and carbapenems MICs, including those with the highest sulopenem MICs, were selected for sequencing analysis of the pbp1a, pbp2x, and pbp2b regions encoding the transpeptidase active site and MurM. We did not find any correlations between specific penicillin-binding protein-MurM patterns and changes in the MICs. PMID:19307366
Trespalacios, Alba A; Otero, William; Caminos, Jorge E; Mercado, Marcela M; Avila, Jenny; Rosero, Liliana E; Arévalo, Azucena; Poutou-Piñales, Raúl A; Graham, David Y
2013-08-01
Resistance of Helicobacter pylori to clarithromycin is the most common cause of treatment failure in patients with H. pylori infections. This study describes the MICs and the presence of 23S rRNA mutations of H. pylori isolates from Bogotá, D.C., Colombia. H. pylori were isolated from gastric biopsies from patients with functional dyspepsia. Clarithromycin susceptibility was investigated by agar dilution and strains were considered resistant if the MIC was ≥ 1 μg/ml. DNA sequences of the 23S rRNA gene of strains resistant and sensitive to clarithromycin were determined to identify specific point mutations. Clarithromycin resistance was present in 13.6% of patients by agar dilution. The A2143G, A2142G and A2142C mutations were found in 90.5, 7.1, and 2.4% of H. pylori strains with resistance genotype.The resistant phenotype was associated with 23S rRNA resistance genotype in 85.7% of isolates. The point mutations in 23S rRNA were well correlated with MICs values for clarithromycin.
Yoga Latha, L; Darah, I; Sasidharan, S; Jain, K
2009-09-01
Chemical preservatives have been used in the food industry for many years. However, with increased health concerns, consumers prefer additive-free products or food preservatives based on natural products. This study evaluated antimicrobial activities of extracts from Emilia sonchifolia L. (Common name: lilac tassel flower), Tridax procumbens L. (Common name: tridax daisy) and Vernonia cinerea L. (Common name: Sahadevi), belonging to the Asteracea family, to explore their potential for use against general food spoilage and human pathogens so that new food preservatives may be developed. Three methanol extracts of these plants were tested in vitro against 20 bacterial species, 3 yeast species, and 12 filamentous fungi by the agar diffusion and broth dilution methods. The V. cinerea extract was found to be most effective against all of the tested organisms and the methanol fraction showed the most significant (p < 0.05) antimicrobial activity among all the soluble fractions tested. The minimum inhibitory concentrations (MICs) of extracts determined by the broth dilution method ranged from 1.56 to 100.00mg/mL. The MIC of methanol fraction was the lowest in comparison to the other four extracts. The study findings indicate that bioactive natural products from these plants may be isolated for further testing as leads in the development of new pharmaceuticals in food preservation as well as natural plant-based medicine.
[Mutant prevention concentrations of antibacterial agents to ocular pathogenic bacteria].
Liang, Qing-Feng; Wang, Zhi-Qun; Li, Ran; Luo, Shi-Yun; Deng, Shi-Jing; Sun, Xu-Guang
2009-01-01
To establish a method to measure mutant prevention concentration (MPC) in vitro, and to measure MPC of antibacterial agents for ocular bacteria caused keratitis. It was an experimental study. Forty strains of ocular bacteria were separated from cornea in Beijing Institute of Ophthalmology, which included 8 strains of Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Pseudomonas aeruginosa and Klebsiella pneumoniae respectively. The minimal inhibitory concentration (MIC) of the levofloxacin (LVF), ofloxacin (OFL), ciprofloxacin (CIP), norfloxacin (NFL), tobramycin (TOB) and chloromycetin (CHL) were determined by agar dilution method from National Committee of Clinical Laboratory Standard (NCCLS). The MPC were measured by accumulate-bacterial methods with bacterial population inoculated more than 1.2 x 10(10) colony forming units per milliliter with Mueller-Hinton broth and tryptic soy agar plate. With the software of SPSS 11.0, the datum such as the range of MIC, MPC, MIC90 and MPC90 were calculated, and the selection index (MPC90/ MI90) and mutant selection window (MSW) were obtained. The MI90 of LVF and TOB (4 mg/L) to Staphylococcus aureus strains were the lowest. CIP showed the lowest MIC90 (0.25 mg/L) to Pseudomonas aeruginosa among six kinds of antibacterial agents. The MIC90 of LVF to Staphylococcus epidermidis (256 mg/L), Streptococcus pneumoniae (1 mg/L) and Klebsiella pneumoniae (0.25 mg/L) were lower than other antibacterial agents. The MPC90, MSW and the MPC90/MIC90 of levofloxacin showed lower values compared with other antibacterial medicines. From all the datum, the MIC90 of CHL was the highest and the activity was the weakest. Although the activity of LVF was higher to every kind of bacteria, CIP had the highest activity antibacterial to Pseudomonas aeruginosa. The capacity of CHL and TOB was weaker than Quinolones for restricting resistant mutants on ocular bacteria. LVF had the strongest capacity for restricting resistant mutants among Quinolones. LVF has better antibacterial effects and stronger capacity for restricting the selection of resistant mutants on ocular bacteria than other antibacterial agents.
AL-Ani, Issam; Zimmermann, Stefan; Reichling, Jürgen
2018-01-01
Background: Propolis consists of a complex mixture of resinous substances collected by honeybees from different plant sources. The objective of this study was to investigate the chemical composition, biological activities, and synergistic properties with antibiotics of propolis samples collected from various geographic origins (Germany, Ireland, and Czech Republic). Methods: The chemical composition of the propolis was analyzed by Gas Liquid Chromatography-Mass Spectrometry (GLC-MS) and High-performance liquid chromatography (HPLC). The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were evaluated by the standard broth microdilution method, while synergistic interactions were assessed by checkerboard dilution and time-kill curve assays. Results: HPLC and GLC-MS analyses revealed that ethanol extract of propolis (EEP) and water extracts of propolis (WEP) contained more than 100 different phytochemicals. The most abundant compounds were aromatic alcohols, aromatic acids, cinnamic acid and its esters, fatty acids, and flavanone (chrysin). Czech propolis showed the highest phenolic content (129.83 ± 5.9 mg CAE/g) followed by Irish propolis and German propolis. Furthermore, Irish propolis exhibited the highest value of total flavonoid content (2.86 ± 0.2 mg QE/g) and antioxidant activity (IC50 = 26.45 µg/mL). All propolis samples showed moderate antibacterial effect against Gram-positive microorganisms with MIC ranging from 0.08 mg/mL to 2.5 mg/mL. Moreover, EEP exhibited moderate activity against Gram-negative bacteria with MIC between 0.6 mg/mL to 5 mg/mL. In addition, EEP displayed moderate antifungal activity (MIC values between 0.6–2.5 mg/mL). The results obtained from time kill-kinetic assay and checkerboard dilution test of two-drug combinations between EEP and antibiotics such as vancomycin, oxacillin, and levofloxacin indicate mainly synergistic interactions against drug-resistant microbial pathogens including MRSA and VRE. Conclusions: The propolis extract synergistically enhanced the efficacy of antibiotics, especially those acting on cell wall synthesis (vancomycin and oxacillin) against drug-resistant microorganisms. PMID:29301368
Hammer, K A; Carson, C F; Riley, T V
1998-11-01
The in-vitro activity of a range of essential oils, including tea tree oil, against the yeast candida was examined. Of the 24 essential oils tested by the agar dilution method against Candida albicans ATCC 10231, three did not inhibit C. albicans at the highest concentration tested, which was 2.0% (v/v) oil. Sandalwood oil had the lowest MIC, inhibiting C. albicans at 0.06%. Melaleuca alternifolia (tea tree) oil was investigated for activity against 81 C. albicans isolates and 33 non-albicans Candida isolates. By the broth microdilution method, the minimum concentration of oil inhibiting 90% of isolates for both C. albicans and non-albicans Candida species was 0.25% (v/v). The minimum concentration of oil killing 90% of isolates was 0.25% for C. albicans and 0.5% for non-albicans Candida species. Fifty-seven Candida isolates were tested for sensitivity to tea tree oil by the agar dilution method; the minimum concentration of oil inhibiting 90% of isolates was 0.5%. Tests on three intra-vaginal tea tree oil products showed these products to have MICs and minimum fungicidal concentrations comparable to those of non-formulated tea tree oil, indicating that the tea tree oil contained in these products has retained its anticandidal activity. These data indicate that some essential oils are active against Candida spp., suggesting that they may be useful in the topical treatment of superficial candida infections.
Pujol, I; Guarro, J; Llop, C; Soler, L; Fernández-Ballart, J
1996-09-01
An evaluation of broth dilution antifungal susceptibility tests was performed by determining both the micro- and macrodilution MICs of amphotericin B, fluconazole, ketoconazole, 5-fluorocytosine, miconazole, and itraconazole against representative species of opportunistic hyphomycetes (Fusarium spp. and Cladosporium [Cladophialophora] spp.) and ascomycetes (Chaetomium spp.). A total of 78 strains were tested, the majority of them twice and some three times on different days. Both methods were performed according to the recommendations of the National Committee for Clinical Laboratory Standards (Document M27-P), with the exception of the temperature of incubation, which was 25 degrees C in our case. A spectrophotometric method for inoculum preparation, RPMI 1640 medium buffered with morpholinepropanesulfonic acid (pH 7.0), and an additive drug dilution procedure were used. The MICs obtained by the two methods were read after 48, 72, and 96 h of incubation for Fusarium spp. and after 72, 96, and 120 h for the remaining isolates. The kappa test was used to calculate the degree of agreement. Considering the three fungal groups together, a good agreement between the results of both tests was observed with almost all the drugs at the different incubation times. There were no cases of poor agreement. The highest level (kappa index = 1) was observed with ketoconazole at the second-day reading. These results support the further evaluation of the broth microdilution test as an alternative to the reference broth macrodilution susceptibility test.
Pujol, I; Guarro, J; Llop, C; Soler, L; Fernández-Ballart, J
1996-01-01
An evaluation of broth dilution antifungal susceptibility tests was performed by determining both the micro- and macrodilution MICs of amphotericin B, fluconazole, ketoconazole, 5-fluorocytosine, miconazole, and itraconazole against representative species of opportunistic hyphomycetes (Fusarium spp. and Cladosporium [Cladophialophora] spp.) and ascomycetes (Chaetomium spp.). A total of 78 strains were tested, the majority of them twice and some three times on different days. Both methods were performed according to the recommendations of the National Committee for Clinical Laboratory Standards (Document M27-P), with the exception of the temperature of incubation, which was 25 degrees C in our case. A spectrophotometric method for inoculum preparation, RPMI 1640 medium buffered with morpholinepropanesulfonic acid (pH 7.0), and an additive drug dilution procedure were used. The MICs obtained by the two methods were read after 48, 72, and 96 h of incubation for Fusarium spp. and after 72, 96, and 120 h for the remaining isolates. The kappa test was used to calculate the degree of agreement. Considering the three fungal groups together, a good agreement between the results of both tests was observed with almost all the drugs at the different incubation times. There were no cases of poor agreement. The highest level (kappa index = 1) was observed with ketoconazole at the second-day reading. These results support the further evaluation of the broth microdilution test as an alternative to the reference broth macrodilution susceptibility test. PMID:8878589
Credito, Kim L.; Appelbaum, Peter C.
2004-01-01
Agar dilution MIC was used to compare activities of OPT-80, linezolid, vancomycin, teicoplanin, quinupristin/dalfopristin, amoxicillin/clavulanate, imipenem, clindamycin, and metronidazole against 350 gram-positive and -negative anaerobes. OPT-80 was active against gram-positive strains only, especially Clostridium spp. (85 strains tested, including 21 strains of C. difficile), with MICs ranging between ≤0.016 and 0.25 μg/ml. PMID:15504874
Aliahmadi, Atousa; Mirzajani, Fateme; Ghassempour, Alireza; Sonboli, Ali
2014-01-01
Background: Plants are considered as promising sources of new antibacterial agents as well as bioassay guided fractionation. Objectives: In the present work, the antibacterial properties, especially against methicillin-resistant Staphylococcus aureus (MRSA), of Bromus inermis inflorescence was studied, using the bioassay guided fractionation as well as the bio-autographic method. Materials and Methods: The plant organic extract was prepared via maceration in methanol, followed by the fractionation using n-hexane. The extracts were subjected for minimum inhibitory concentrations (MICs) against some human pathogenic bacteria via standard broth micro-dilution assay. Thereafter, a bio-autographical method was applied using the high performance thin layer chromatography (HPTLC) coupled with agar overlay assays for the primary characterization and identification of bioactive substance (s). Results: Through the bioassay guided fractionation method, the greatest antibacterial activities were related to the n-hexane extract. It was also revealed that the effective anti-MRSA agent of the assessed plant was a relatively polar substance with an MIC value of about 8 μg/mL against the tested MRSA strain (in comparison with the MIC value of 32 μg/mL for chloramphenicol). Conclusions: As a result of the full range UV-Vis scanning of the responsible band in the HPTLC experiments (200-700 nm), the flavonoid was the most imaginable natural compound. PMID:25741430
Sng, L H; Cornish, N; Knapp, C C; Ludwig, M D; Hall, G S; Washington, J A
1998-04-01
Bacteremia due to a vancomycin-dependent enterococcus (VDE) occurred during long-term vancomycin therapy in a renal transplant recipient with underlying pancreatitis and a vancomycin-resistant enterococcal (VRE) wound infection and bacteremia. The VDE was isolated from blood during vancomycin therapy and grew only in the presence of vancomycin and D-alanine-D-alanine (DADA), a substance required for cell-wall synthesis. Colonies beyond the periphery of growth of the VDE around a vancomycin disk contained vancomycin-independent revertant mutants after 48 hours of incubation. Pulsed-field gel electrophoresis of the VDE, revertant mutant, the initial blood culture isolate of VRE, and an autopsy isolate showed that the four strains were identical. Antimicrobial susceptibility testing was performed using standard macrobroth and microbroth dilution methods. DADA was used as a growth supplement for macrobroth dilution susceptibility testing of the VDE isolate. Minimum inhibitory concentrations (MICs) were similar for the VRE isolate and the VDE revertant, which were both resistant to ampicillin, high-level gentamicin, ciprofloxacin, imipenem, vancomycin, and daptomycin, and were susceptible to fusidic acid, high-level streptomycin, rifampin, and a quinupristin-dalfopristin combination. The MICs of teicoplanin were 2 microg/mL or less and 16 microg/mL for the clinical VRE isolate and the VDE revertant, respectively. The autopsy isolate was resistant to all antimicrobials tested and showed a fourfold increase in MICs for quinupristin-dalfopristin compared with that of the original blood isolate. The VDE was susceptible to all drugs tested except vancomycin.
Kulengowski, Brandon; Brignola, Matthew; Gallagher, Chanah; Rutter, W Cliff; Ribes, Julie A; Burgess, David S
2017-01-01
Abstract Background Polymyxins are being revitalized to combat carbapenem-resistant Enterobacteriaceae (CRE). However, evaluating the activity of these agents by traditional broth dilution methods is not practical for busy clinical laboratories. We compared polymyxin B (PMB) activity utilizing two quantitative susceptibility testing methods, Etest® and broth microdilution (BMD), against CRE isolates from patients at an academic medical center. Methods PMB activity against 70 recent CRE clinical isolates was determined by BMD and Etest® according to CLSI guidelines. P. aeruginosa ATCC® 27853 was used as a quality control strain. The CLSI PMB susceptibility breakpoint of non-fermenting gram-negative bacteria (<2 mg/L) was used. Essential agreement between methods was defined as an MIC measured within 1 log2 dilution. Categorical agreement was defined between methods as classification of isolates in the same susceptibility category (susceptible or resistant). Major and very major error rates were calculated, and McNemar’s test was used for determining a difference between methods. Results CRE isolates were primarily Enterobacter spp. (43%), followed by K. pneumoniae (41%) and E. coli (9%). Essential agreement between testing methods was low (9%), but categorical agreement was 81% (P = 0.0002). Although false non-susceptibility was never observed by Etest® (BMD as reference), the rate of very major errors by Etest® was high (19%). Etest® miscalled 87% of PMB-resistant CRE. Conclusion Etest® reporting of false susceptibility may result in inappropriate antibiotic utilization and treatment failure clinically. We do not recommend using Etest® for PMB susceptibility testing for routine patient care. Disclosures All authors: No reported disclosures.
López-Cerero, L; Picón, E; Morillo, C; Hernández, J R; Docobo, F; Pachón, J; Rodríguez-Baño, J; Pascual, A
2010-02-01
A significant inoculum-size effect has been observed with piperacillin-tazobactam, and has been associated with beta-lactamase production in extended-spectrum beta-lactamase (ESBL) producers. This association has not been previously studied in the case of amoxycillin-clavulanate. Piperacillin-tazobactam and amoxycillin-clavulanate were compared, using high inocula of susceptible strains either harbouring ESBLs or not. Two non-ESBL-producing and 15 amoxycillin-clavulanate-susceptible and piperacillin-tazobactam-susceptible ESBL-producing Escherichia coli isolates, and their respective transconjugants, were tested in dilution susceptibility tests using standard and 100-fold higher inocula. Three ESBL-producing strains and E. coli ATCC 25922 were selected for time-kill studies using standard and high initial inocula. At high inocula, MICs of piperacillin increased >eight-fold for non-ESBL-producing strains, and MICs of piperacillin-tazobactam (8:1 ratio or with tazobactam fixed at 4 mg/L) increased>eight-fold for all ESBL-producing strains. However, amoxycillin MICs were not affected by a high inoculum with non-ESBL-producing strains, whereas the MICs of amoxycillin-clavulanate (2:1 and 4:1) increased
In vitro activity of pazufloxacin, tosufloxacin and other quinolones against Legionella species.
Higa, Futoshi; Akamine, Morikazu; Haranaga, Shusaku; Tohyama, Masato; Shinzato, Takashi; Tateyama, Masao; Koide, Michio; Saito, Atsushi; Fujita, Jiro
2005-12-01
The activities of pazufloxacin and tosufloxacin against Legionella spp. were evaluated in vitro and compared with those of other quinolones, macrolides and azithromycin. The conventional MICs were determined by the microbroth dilution method. Intracellular activities of drugs were evaluated by a cfu count. The minimal extracellular concentration inhibiting intracellular growth of bacteria (MIEC) was determined by a colorimetric cytopathic assay. MICs of pazuloxacin and tosufloxacin at which 90% (MIC90) of isolates are inhibited in 76 different Legionella spp. strains (38 ATCC strains and 38 clinical isolates) were 0.032 and 0.016 mg/L, whereas the MIC90s of levofloxacin, ciprofloxacin, garenoxacin, erythromycin, clarithromycin and azithromycin were 0.032, 0.032, 0.032, 2.0, 0.125 and 2.0 mg/L, respectively. Pazufloxacin and tosufloxacin at 4x MIC inhibited intracellular growth of Legionella pneumophila SG1 (80-045 strain), as did other quinolones, clarithromycin and azithromycin, whereas erythromycin at 4x MIC did not. MIECs of pazufloxacin, tosufloxacin, levofloxacin, ciprofloxacin and garenoxacin for the strain were 0.063, 0.004, 0.016, 0.032 and 0.008 mg/L respectively, which were superior to those of macrolides and azithromycin. Pazufloxacin showed potent activity against three additional clinical isolates of L. pneumophila SG1, one clinical isolate each of L. pneumophila SG3 and SG5, as well as Legionella micdadei, Legionella dumoffii and Legionella longbeachae SG1. Pazufloxacin and tosufloxacin, as well as other quinolones, were more potent than macrolides and an azalide. Present data warrant further study on the efficacy of these drugs in the treatment of Legionella infections.
Slavić, Đurđa; Boerlin, Patrick; Fabri, Marta; Klotins, Kim C.; Zoethout, Jennifer K.; Weir, Pat E.; Bateman, Debbie
2011-01-01
Antimicrobial susceptibilities and toxin types were determined for 275 Clostridium perfringens isolates collected in Ontario in the spring of 2005. Minimal inhibitory concentrations (MICs) of C. perfringens isolates for 12 antimicrobials used in therapy, prophylaxis, and/or growth promotion of cattle (n = 40), swine (n = 75), turkeys (n = 50), and chickens (n = 100) were determined using the microbroth dilution method. Statistical analyses and MIC distributions showed reduced susceptibility to bacitracin, clindamycin, erythromycin, florfenicol, and tetracycline for some isolates. Reduced susceptibility to bacitracin was identified in chicken (64%) and turkey (60%) isolates. Swine isolates had predominantly reduced susceptibility to clindamycin (28%) and erythromycin (31%), whereas bovine isolates had reduced susceptibility to clindamycin (10%) and florfenicol (10%). Reduced susceptibility to tetracycline was spread across all species. No clear reduced susceptibility, but elevated MIC50 for virginiamycin was found in chicken isolates in comparison with isolates from other species. Toxin typing revealed that C. perfringens type A is the dominant toxin type isolated in this study across all 4 host species. PMID:21731178
Antimicrobial activity of fresh garlic juice: An in vitro study
Yadav, Seema; Trivedi, Niyati A.; Bhatt, Jagat D.
2015-01-01
Introduction: Antimicrobial resistance has been a global concern. Currently, interest has been focused on exploring antimicrobial properties of plants and herbs. One such botanical is Allium sativum (garlic). Aim: To evaluate the antimicrobial activity of fresh juice of garlic. Materials and Methods: Varying concentrations of fresh garlic juice (FGJ) were tested for their antimicrobial activity against common pathogenic organisms isolated at SSG Hospital, Vadodara, using well diffusion method. Moreover, minimum inhibitory concentration (MIC) and minimum lethal concentration (MLC) of FGJ were tested using broth dilution method. Sensitivity pattern of the conventional antimicrobials against common pathogenic bacteria was tested using disc diffusion method. Results: FGJ produced dose-dependent increase in the zone of inhibition at a concentration of 10% and higher. MIC of FGJ against the pathogens ranged from 4% to 16% v/v whereas MLC value ranged from 4% to 32% v/v with Escherichia coli and Staphylococcus aureus spp. showed highest sensitivity. Conclusion: FGJ has definite antimicrobial activity against common pathogenic organisms isolated at SSG Hospital, Vadodara. Further studies are needed to find out the efficacy, safety, and kinetic data of its active ingredients. PMID:27011724
Pelosini, Lucia; Treffene, Stephanie; Hollick, Emma J
2009-01-01
The antibacterial effect of topical anesthetics may lead to false-negative cultures from corneal specimens of bacterial keratitis. This in vitro study compared the antibacterial effect of 3 unpreserved topical anesthetics to indicate the most appropriate agent for corneal scrapes. Four bacterial strains (Staphylococcus epidermidis, Staphylococcus aureus, Pseudomonas aeruginosa, and Streptococcus pneumoniae) derived from the most frequently isolated microorganisms from corneal ulcers were cultured from stored control stocks and clinical specimens. These strains were used to determine the minimum inhibitory concentration (MIC) of 3 preservative-free anesthetic eyedrops: proxymetacaine 0.5%, oxybuprocaine 0.4%, and tetracaine 1%. There was no inhibition of growth seen with proxymetacaine 0.5% (5000 microg/mL) with any of the organisms except S. epidermidis, which demonstrated an MIC of 2500 microg/mL (equivalent to a dilution of (1/2)). Tetracaine 1% (10,000 microg/mL) produced an MIC ranging between 625 and 1250 microg/mL, inhibiting all 4 strains at the commercially available dilution. Oxybuprocaine 0.4% (4000 microg/mL) resulted to be the second most inhibitory preparation with an MIC ranging between 1000 and 2000 microg/mL. Currently used preservative-free topical anesthetics differ in bacterial growth inhibition. This in vitro study showed that proxymetacaine 0.5% is the least inhibitory on bacterial growth and therefore the most appropriate to be used before corneal scrapes.
Fridlund, Jimmy; Woksepp, Hanna; Schön, Thomas
2016-10-01
Recent studies show that suboptimal blood levels of β-lactam antibiotics are present in intensive care unit (ICU) patients. A common reference method for assessing drug concentrations is liquid chromatography coupled with mass-spectrometry (LC-MS) which is highly accurate but rarely available outside reference centres. Thus, our aim was to develop a microbiological method for monitoring β-lactam antibiotic serum levels which could be used at any hospital with a microbiological laboratory. The method was developed as a 96-well broth microdilution format to assess the concentrations of cefotaxime (CTX), meropenem (MER), and piperacillin (PIP). Patient serum containing antibiotics were diluted in suspensions of bacteria with known minimal inhibitory concentrations (MICs). Serum antibiotic concentrations were calculated by dividing the MIC with the dilution factor at which the serum inhibited growth of the bacterial suspension. Serum (n=88) from ICU patients at four hospitals in south-east Sweden were analysed and compared to LC-MS analysis. The overall accuracy and precision for spiked samples and patient samples was within the pre-set target of ±20.0% for all drugs. There was a significant correlation between the microbiological assay and LC-MS for the patient samples (CTX: r=0.86, n=31; MER: r=0.96, n=11; PIP: r=0.88, n=39) and the agreement around the clinical cut-off for CTX (4.0mg/l), MER (2.0mg/l) and PIP (16.0mg/l) was 90%, 100% and 87%, respectively. The microbiological method has a performance for determination of serum levels of meropenem, piperacillin and cefotaxime suitable for clinical use. It is an inexpensive method applicable in any microbiology laboratory. Copyright © 2016 Elsevier B.V. All rights reserved.
Pemán, Javier; Iñiguez, Carmen; Hervás, David; Lopez-Hontangas, Jose L.; Pina-Vaz, Cidalia; Camarena, Juan J.; Campos-Herrero, Isolina; García-García, Inmaculada; García-Tapia, Ana M.; Guna, Remedios; Merino, Paloma; Pérez del Molino, Luisa; Rubio, Carmen; Suárez, Anabel
2013-01-01
In the absence of clinical breakpoints (CBP), epidemiological cutoff values (ECVs) are useful to separate wild-type (WT) isolates (without mechanisms of resistance) from non-WT isolates (those that can harbor some resistance mechanisms), which is the goal of susceptibility tests. Sensititre YeastOne (SYO) is a widely used method to determine susceptibility of Candida spp. to antifungal agents. The CLSI CBP have been established, but not for the SYO method. The ECVs for four azoles, obtained using MIC distributions determined by the SYO method, were calculated via five methods (three statistical methods and based on the MIC50 and modal MIC). Respectively, the median ECVs (in mg/liter) of the five methods for fluconazole, itraconazole, posaconazole, and voriconazole (in parentheses: the percentage of isolates inhibited by MICs equal to or less than the ECVs; the number of isolates tested) were as follows: 2 (94.4%; 944), 0.5 (96.7%; 942), 0.25 (97.6%; 673), and 0.06 (96.7%; 849) for Candida albicans; 4 (86.1%; 642), 0.5 (99.4%; 642), 0.12 (93.9%; 392), and 0.06 (86.9%; 559) for C. parapsilosis; 8 (94.9%; 175), 1 (93.7%; 175), 2 (93.6%; 125), and 0.25 (90.4%; 167) for C. tropicalis; 128 (98.6%; 212), 4 (95.8%; 212), 4 (96.0%; 173), and 2 (98.5; 205) for C. glabrata; 256 (100%; 53), 1 (98.1%; 53), 1 (100%; 33), and 1 (97.9%; 48) for C. krusei; 4 (89.2%; 93), 0.5 (100%; 93), 0.25 (100%; 33), and 0.06 (87.7%; 73) for C. orthopsilosis. All methods included ≥94% of isolates and yielded similar ECVs (within 1 dilution). These ECVs would be suitable for monitoring emergence of isolates with reduced susceptibility by using the SYO method. PMID:23761155
Garcia-Effron, Guillermo; Park, Steven; Perlin, David S
2011-05-01
Echinocandins are highly bound to serum proteins, altering their antifungal properties. The addition of 50% human serum to the MIC assay improves the identification of echinocandin-resistant Candida spp. harboring fks hot spot mutations. However, this modification cannot readily be applied to the method of the CLSI M27-A3 document due to safety and standardization difficulties. The aim of this study was to evaluate commercial bovine serum albumin (BSA) as a safe and standardized alternative to human serum. A collection of 28 echinocandin-susceptible strains, 10 Candida parapsilosis sensu lato strains (with naturally reduced echinocandin susceptibility), and 40 FKS hot spot mutants was used in this work. When RPMI 1640 was used for susceptibility testing, wild-type strains and fks mutants showed MIC range overlaps (-2, -1, and -3 2-fold-dilution steps separated these populations for anidulafungin, caspofungin, and micafungin, respectively). On the other hand, the addition of BSA to RPMI 1640 differentially increased echinocandin MIC values for these groups of strains, allowing better separation between populations, with no MIC range overlaps for any of the echinocandin drugs tested. Moreover, the use of RPMI-BSA reduced the number of fks hot spot mutant isolates for which MIC values were less than or equal to the upper limit for the wild type (very major errors) from 9, 2, and 7 with RPMI alone to 3, 0, and 3 for anidulafungin, caspofungin, and micafungin, respectively. When RPMI-BSA was used to study the susceptibility of C. parapsilosis sensu lato species to echinocandins, the strains behaved as anidulafungin- and micafungin-resistant isolates (MIC, ≥8 μg/ml). These data support the need for a revision of the CLSI protocol for in vitro testing of echinocandin susceptibility in order to identify all or most of the fks hot spot mutants. Also, caspofungin could be used as a surrogate marker of reduced susceptibility to echinocandins.
Salas, Valentina; Pastor, F Javier; Calvo, Enrique; Alvarez, Eduardo; Sutton, Deanna A; Mayayo, Emilio; Fothergill, Anette W; Rinaldi, Michael G; Guarro, Josep
2012-05-01
The in vitro susceptibility of 17 strains of Mucor circinelloides to amphotericin B and posaconazole was ascertained by using broth microdilution and disk diffusion methods and by determining the minimal fungicidal concentration (MFC). We evaluated the efficacy of posaconazole at 40 mg/kg of body weight/day and amphotericin B at 0.8 mg/kg/day in a neutropenic murine model of disseminated infection by M. circinelloides by using 6 different strains tested previously in vitro. In general, most of the posaconazole MICs were within the range of susceptibility or intermediate susceptibility, while the small inhibition zone diameters (IZDs) were indicative of nonsusceptibility for all isolates tested. The MFCs were ≥ 3 dilutions higher than the corresponding MICs. In contrast, amphotericin B showed good activity against all of the strains tested regardless of the method used. The in vivo studies demonstrated that amphotericin B was effective in prolonging survival and reducing the fungal load. Posaconazole showed poor in vivo efficacy with no correlation with the MIC values. The results suggested that posaconazole should be used with caution in the treatment of infections caused by Mucor circinelloides or by strains of Mucor not identified to the species level.
Gunjal, Shilpa; Ankola, Anil V; Bhat, Kishore
2015-01-01
Antibiotic resistance is a major problem with inadvertent usage. Thus, there is a need to search for new antimicrobial agents of herbal origin to combat antibiotic resistance. One such plant is Morus alba which has a long history of medicinal use in traditional Chinese medicine. To compare the antibacterial activity of ethanolic extract of M. alba leaves with chlorhexidine gluconate against Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Tannerella forsythia. Experimental in vitro study. Crude extract from the leaves of M. alba were prepared by Soxhlet extraction method by using ethanol as a solvent. Minimum inhibitory concentration (MIC) of the extract was assessed against A. actinomycetemcomitans, P. gingivalis and T. forsythia, and compared with that of chlorhexidine gluconate by broth dilution method. P. gingivalis was the most sensitive organism against the M. alba extract with an MIC value of 1.95 mg/ml; while T. forsythia and P. gingivalis both were most sensitive organisms against chlorhexidine gluconate with MIC values of 0.00781 mg/ml. M. alba possess good antibacterial activity against A. actinomycetemcomitans, P. gingivalis and T. forsythia and thus would be beneficial for the prevention and treatment of periodontal disease. However, chlorhexidine gluconate was found to be more effective when compared to M. alba.
Sawatzky, Pam; Martin, Irene; Galarza, Patricia; Carvallo, Marıa Elena Trigoso; Araya Rodriguez, Pamela; Cruz, Olga Marina Sanabria; Hernandez, Alina Llop; Martinez, Mario Fabian; Borthagaray, Graciela; Payares, Daisy; Moreno, José E; Chiappe, Marina; Corredor, Aura Helena; Thakur, Sidharath Dev; Dillon, Jo-Anne R
2018-04-19
A Neisseria gonorrhoeae antimicrobial susceptibility quality control comparison programme was re-established in Latin America and the Caribbean to ensure antimicrobial susceptibility data produced from the region are comparable nationally and internationally. Three panels, consisting of N. gonorrhoeae isolates comprising reference strains and other characterised isolates were sent to 11 participating laboratories between 2013 and 2015. Antimicrobial susceptibilities for these isolates were determined using agar dilution, Etest or disc diffusion methods. Modal minimum inhibitory concentrations (MICs) for each panel isolate/antibiotic combination were calculated. The guidelines of the Clinical and Laboratory Standards Institute were used for interpretations of antimicrobial susceptibility. The agreement of MICs with the modal MICs was determined for each of the participating laboratories as well as for each of the antibiotics tested. Five of 11 laboratories that participated in at least one panel had an overall average agreement between participants' MIC results and modal MICs of >90%. For other laboratories, agreements ranged from 60.0% to 82.4%. The proportion of agreement between interpretations for all the antibiotics, except penicillin and tetracycline, was >90%. The percentages of agreement between MIC results and their modes for erythromycin, spectinomycin, cefixime and azithromycin were >90%. Tetracycline, ceftriaxone and ciprofloxacin agreement ranged from 84.5% to 89.1%, while penicillin had 78.8% agreement between MICs and modal MICs. The participating laboratories had acceptable results, similar to other international quality assurance programmes. It is important to ensure continuation of the International Gonococcal Antimicrobial Susceptibility Quality Control Comparison Programme to ensure that participants can identify and correct any problems in antimicrobial susceptibility testing for N. gonorrhoeae as they arise and continue to generate reproducible and reliable data. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Pharmacokinetics of Levofloxacin in Multidrug- and Extensively Drug-Resistant Tuberculosis Patients
van't Boveneind-Vrubleuskaya, Natasha; Seuruk, Tatiana; van Hateren, Kai; van der Laan, Tridia; Kosterink, Jos G. W.; van der Werf, Tjip S.; van Soolingen, Dick; van den Hof, Susan; Skrahina, Alena
2017-01-01
ABSTRACT Pharmacodynamics are especially important in the treatment of multidrug- and extensively drug-resistant tuberculosis (M/XDR-TB). The free area under the concentration time curve in relation to MIC (fAUC/MIC) is the most relevant pharmacokinetic (PK)-pharmacodynamic (PD) parameter for predicting the efficacy of levofloxacin (LFX). The objective of our study was to assess LFX PK variability in M/XDR-TB patients and its potential consequence for fAUC/MIC ratios. Patients with pulmonary M/XDR-TB received LFX as part of the treatment regimen at a dose of 15 mg/kg administered once daily. Blood samples obtained at steady state before and 1, 2, 3, 4, 7, and 12 h after drug administration were measured by validated liquid chromatography-tandem mass spectrometry. The MIC values of LFX were determined by the agar dilution method on Middlebrook 7H10 and the MGIT960 system. Twenty patients with a mean age of 31 years (interquartile range [IQR] = 27 to 35 years) were enrolled in this study. The median AUC0–24 was 98.8 mg/h/liter (IQR = 84.8 to 159.6 mg/h/liter). The MIC median value for LFX was 0.5 mg/liter with a range of 0.25 to 2.0 mg/liter, and the median fAUC0–24/MIC ratio was 109.5 (IQR = 48.5 to 399.4). In 4 of the 20 patients, the value was below the target value of ≥100. When MICs of 0.25, 0.5, 1.0, and 2.0 mg/liter were applicable, 19, 18, 3, and no patients, respectively, had an fAUC/MIC ratio that exceeded 100. We observed a large variability in AUC. An fAUC0–24/MIC of ≥100 was only observed when the MIC values for LFX were 0.25 to 0.5 mg/liter. Dosages exceeding 15 mg/kg should be considered for target attainment if exposures are assumed to be safe. (This study has been registered at ClinicalTrials.gov under registration no. NCT02169141.) PMID:28507117
Antibacterial activity of endemic Satureja Khuzistanica Jamzad essential oil against oral pathogens
Seghatoleslami, Sogol; Samadi, Nasrin; Salehnia, Ali; Azimi, Shahram
2009-01-01
INTRODUCTION: To assess the antibacterial effects of an Iranian endemic essential oil, Satureja Khuzistanica Jamzad (SKJ) when used as an intracanal antiseptic and interappointment medicament. MATERIALS AND METHODS: Antimicrobial activity and minimum inhibition concentrations (MICs) of SKJ essential oil with and without calcium hydroxide (CH) against eleven aerobic, microaerophilic and anaerobic bacteria were assessed. The evaluation was carried out by agar dilution and well diffusion methods. The results were measured and recorded by an independent observer. Data were analyzed statistically using student t-test. RESULTS: The MIC for eight species was recorded in 0.31 mg/mL of essential oil. Pseudomonas aeruginosa with a MIC value of 1.25 mg/mL appeared to be the most resistant bacterium; while only 0.16 mg/mL of essential oil was sufficient to inhibit the growth of Bacillus subtilis and Staphylococcus aureus. The inhibition zone of the antiseptic oil (at 0.31 mg/mL) with E. faecalis in the well diffusion method was 13 mm; this was comparable with 12.5 mm inhibition zone value of the tetracycline disc (30 µg). No synergistic effect was found in combination of essential oil and CH powder. CONCLUSION: SKJ essential oil with the concentration of 0.31 mg/mL is effective against most of oral pathogens including E. faecalis. PMID:23864870
Antipneumococcal activity of DW-224a, a new quinolone, compared to those of eight other agents.
Kosowska-Shick, Klaudia; Credito, Kim; Pankuch, Glenn A; Lin, Gengrong; Bozdogan, Bülent; McGhee, Pamela; Dewasse, Bonifacio; Choi, Dong-Rack; Ryu, Jei Man; Appelbaum, Peter C
2006-06-01
DW-224a is a new broad-spectrum quinolone with excellent antipneumococcal activity. Agar dilution MIC was used to test the activity of DW-224a compared to those of penicillin, ciprofloxacin, levofloxacin, gatifloxacin, moxifloxacin, gemifloxacin, amoxicillin-clavulanate, cefuroxime, and azithromycin against 353 quinolone-susceptible pneumococci. The MICs of 29 quinolone-resistant pneumococci with defined quinolone resistance mechanisms against seven quinolones and an efflux mechanism were also tested. DW-224a was the most potent quinolone against quinolone-susceptible pneumococci (MIC(50), 0.016 microg/ml; MIC(90), 0.03 microg/ml), followed by gemifloxacin, moxifloxacin, gatifloxacin, levofloxacin, and ciprofloxacin. beta-Lactam MICs rose with those of penicillin G, and azithromycin resistance was seen mainly in strains with raised penicillin G MICs. Against the 29 quinolone-resistant strains, DW-224a had the lowest MICs (0.06 to 1 microg/ml) compared to those of gemifloxacin, clinafloxacin, moxifloxacin, gatifloxacin, levofloxacin, and ciprofloxacin. DW-224a at 2x MIC was bactericidal after 24 h against eight of nine strains tested. Other quinolones gave similar kill kinetics relative to higher MICs. Serial passages of nine strains in the presence of sub-MIC concentrations of DW-224a, moxifloxacin, levofloxacin, ciprofloxacin, gatifloxacin, gemifloxacin, amoxicillin-clavulanate, cefuroxime, and azithromycin were performed. DW-224a yielded resistant clones similar to moxifloxacin and gemifloxacin but also yielded lower MICs. Azithromycin selected resistant clones in three of the five parents tested. Amoxicillin-clavulanate and cefuroxime did not yield resistant clones after 50 days.
Pendland, S L; Martin, S J; Chen, C; Schreckenberger, P C; Danziger, L H
1997-01-01
We compared growth characteristics of 46 Legionella strains grown on buffered charcoal yeast extract alpha (BCYE alpha) agar and buffered starch yeast extract (BSYE) agar and MICs of macrolides, azalides, and fluoroquinolones for these organisms. Growth was poor and not reproducible on BSYE agar. Growth was excellent on BCYE alpha, and MICs were easy to interpret. BCYE alpha is superior to BSYE for testing susceptibilities of Legionella species by agar dilution. PMID:9350781
Jacobus, Nilda V.; McDermott, Laura A.
2016-01-01
We evaluated the in vitro activity of imipenem-relebactam (imipenem-MK7655) against 451 recent clinical isolates within the Bacteroides group and related species. Relebactam did not enhance or inhibit the activity of imipenem against Bacteroides fragilis or other Bacteroides species. No synergistic or antagonistic effect was observed. The MICs of imipenem-relebactam were equal to or within one dilution of the MICs of these isolates to imipenem. PMID:27480858
Kreizinger, Zsuzsa; Grózner, Dénes; Sulyok, Kinga M; Nilsson, Kristin; Hrivnák, Veronika; Benčina, Dušan; Gyuranecz, Miklós
2017-11-17
Mycoplasma synoviae causes infectious synovitis and respiratory diseases in chickens and turkeys and may lead to egg shell apex abnormalities in chickens; hence possesses high economic impact on the poultry industry. Control of the disease consists of eradication, vaccination or medication. The aim of the present study was to determine the in vitro susceptibility to 14 different antibiotics and an antibiotic combination of M. synoviae strains originating from Hungary and other countries of Central and Eastern Europe. Minimal inhibitory concentration (MIC) values of a total of 41 M. synoviae strains were determined by the microbroth dilution method. The strains were collected between 2002 and 2016 and originated from Hungary (n = 26), Austria (n = 3), the Czech Republic (n = 3), Slovenia (n = 3), Ukraine (n = 3), Russia (n = 2) and Serbia (n = 1). Tetracyclines (with MIC 50 values of 0.078 μg/ml, ≤0.25 μg/ml and 0.5 μg/ml for doxycycline, oxytetracycline and chlortetracycline, respectively), macrolides (with MIC 50 values of ≤0.25 μg/ml for tylvalosin, tylosin and tilmicosin), pleuromutilins (with MIC 50 values of 0.078 μg/ml and ≤0.039 μg/ml for tiamulin and valnemulin) and the combination of lincomycin and spectinomycin (MIC 50 1 μg/ml (0.333/0.667 μg/ml)) were found to be the most effective antibiotic agents against M. synoviae in vitro. High MIC values were detected in numerous strains for fluoroquinolones (with MIC 50 values of 1.25 μg/ml and 2.5 μg/ml for enrofloxacin and difloxacin), neomycin (MIC 50 32 μg/ml), spectinomycin (MIC 50 2 μg/ml), lincomycin (MIC 50 0.5 μg/ml) and florfenicol (MIC 50 4 μg/ml). Nevertheless, strains with elevated MIC values were detected for most of the applied antibiotics. In the medical control of M. synoviae infections the preliminary in vitro antibiotic susceptibility testing and the careful evaluation of the data are crucial. Based on the in vitro examinations doxycycline, oxytetracycline, tylvalosin, tylosin and pleuromutilins could be recommended for the therapy of M. synoviae infections in the region.
NASA Technical Reports Server (NTRS)
Jorgensen, James H.; Skweres, Joyce A.; Mishra S. K.; McElmeel, M. Letticia; Maher, Louise A.; Mulder, Ross; Lancaster, Michael V.; Pierson, Duane L.
1997-01-01
Very little is known regarding the affects of the microgravity environment of space flight upon the action of antimicrobial agents on bacterial pathogens. This study was undertaken to develop a simple method for conducting antibacterial susceptibility tests during a Space Shuttle mission. Specially prepared susceptibility test research cards (bioMerieux Vitek, Hazelwood, MO) were designed to include 6-11 serial two-fold dilutions of 14 antimicrobial agents, including penicillins, cephalosporins, a Beta-lactamase inhibitor, vancomycin, erythromycin, tetracycline, gentamicin, ciprofloxacin, and trimethoprim/sulfamethoxazole. Minimal inhibitory concentrations (MICS) of the drugs were determined by visual reading of color endpoints in the Vitek research cards made possible by incorporation of a colorimetric growth indicator (alamarBlue(Trademark), Accumed International, Westlake, OH). This study has demonstrated reproducible susceptibility results when testing isolates of Staphylococcus aurezis, Group A Streptococcus, Enterococcusfaecalis, Escherichia coli (beta-lactamase positive and negative strains), Klebsiella pneumoniae, Enterobacter cloacae, and Pseudomoiias aeruginosa. In some instances, the MICs were comparable to those determined using a standard broth microdilution method, while in some cases the unique test media and format yielded slightly different values, that were themselves reproducible. The proposed in-flight experiment will include inoculation of the Vitek cards on the ground prior to launch of the Space Shuttle, storage of inoculated cards at refrigeration temperature aboard the Space Shuttle until experiment initiation, then incubation of the cards for 18-48 h prior to visual interpretation of MICs by the mission's astronauts. Ground-based studies have shown reproducible MICs following storage of inoculated cards for 7 days at 4-8 C to accommodate the mission's time schedule and the astronauts' activities. For comparison, ground-based control (normal gravity) MIC values will be generated by simultaneous inoculation and incubation of a second set of test cards in a laboratory at the launch site. This procedure can provide a safe and compact experiment that should yield new information on the affects of microgravity on the biological activities of various classes of antibiotics.
[Experimental and clinical evaluation of cefotetan in pediatrics].
Toyonaga, Y; Kurosu, Y; Sugita, M; Kita, A; Yoshino, N; Kouda, N; Kumagai, K; Horiuchi, K; Hori, M; Takahashi, T
1983-06-01
Preclinical and clinical studies were carried out on cefotetan (CTT), a new synthetic cephamycin antibacterial agent. The results are described below. Antibacterial activity The minimum inhibitory concentrations (MICs) of CTT, CEZ, CTM and CMZ were determined against clinical isolates of S. aureus, E. coli, K. pneumoniae and P. mirabilis. To CTT S. aureus, showed its sensitivity peak (in the graphic plot of the MIC distribution) at a concentration range of 3.13-6.25 micrograms/ml when a 100-fold dilution of the pathological specimen was employed as the inoculum. These results were inferior to those with CEZ and CTM by 2-4 concentration tubes. The CTT results were also about 2 tubes inferior to the results with CMZ, which is a cephamycin antibiotic. On the other hand, CTT was found to show very strong antibacterial activity against Gram-negative rods. For example, the sensitivity peak of E. coli, occurred at an antibiotic concentration of less than or equal to 0.1-0.2 microgram/ml, regardless of whether the inoculum was the undiluted pathological specimen or the 100-fold dilution thereof. Similar results were obtained in relation to the K. pneumoniae strains: at a CTT concentration of less than or equal to 0.1 microgram/ml, suppression of growth was achieved in 74% of the strains when the inocula were the undiluted specimens, and 86% when the inocula were the 100-fold dilutions thereof. In addition, against P. mirabilis, when the inoculum consisted of the undiluted pathological specimen the MIC peak for CTT occurred at a concentration range of 0.39-0.78 microgram/ml, whereas the peak occurred at 0.2-0.39 microgram/ml when the bacterial inoculum was the 100-fold dilution of the collected specimen. In contrast, CTM showed slightly stronger antibacterial activity than CTT in relation to P. mirabilis; that is, its MIC peak occurred at less than or equal to 0.1-0.2 microgram/ml when the inoculum was the undiluted pathological specimen, and at less than or equal to 0.1 microgram/ml when the bacterial inoculum was the 100-fold dilution. Otherwise, against these 3 species of bacteria, CTT yielded results which were clearly superior to those achieved with the other 3 antibiotics. Absorption and excretion CTT was administered to children at a dosage of 10 mg/kg and 20 mg/kg as a one-shot intravenous injection or as a 1-hour intravenous drip infusion. Thereafter, the serum concentration of the antibiotic was monitored and it excretion rate in the urine was also determined.(ABSTRACT TRUNCATED AT 400 WORDS)
Antibacterial activity of Citrus limonum fruit juice extract.
Okeke, Malachy Ifeanyi; Okoli, Arinze Stanley; Eze, Edith Nneka; Ekwume, Grace Chinwe; Okosa, Evangelin Uchena; Iroegbu, Christian Ukwuoma
2015-09-01
The fruit juice extract of Citrus limonum was investigated for antibacterial activity. The antibacterial activity of the extract on ten strains of bacteria was determined by both agar well diffusion and macro-broth dilution methods. The extract was variously bacteriostatic and bactericidal against Bacillussubtilis ATCC 6051, Staphylococcus aureus ATCC 12600, Escherichia coli ATCC 11775, Pseudomonas aeruginosa ATCC 10145 as well as locally isolated clinical strains of the above bacteria and Salmonella kintambo (Human: 13, 23: mt:-), Salmonella typhi and Proteus sp. The MICs ranged from 0.78 mg/ml to 50mg/ml; MBCs, 25.0mg/ml to >100mg/ml and MBC/MIC ratios 2.0 to >16.0. These results provide scientific justification for the medicinal use of Citrus limonum fruit juice by Nigerian herbalists in the treatment of diseases in which strains of the test organisms have been implicated as etiologic agents.
Jones, Ronald N; Holliday, Nicole M; Critchley, Ian A
2015-04-01
Ceftaroline, the active metabolite of the ceftaroline fosamil pro-drug, was the first advanced-spectrum cephalosporin with potent activity against methicillin-resistant Staphylococcus aureus to be approved by the US Food and Drug Administration for acute bacterial skin and skin structure infections. After 4 years of clinical use, few ceftaroline commercial susceptibility testing devices other than agar diffusion methods (disks and stable gradient) are available. Here, we validate a broth microdilution product (Sensititre™; Thermo Fisher Scientific, Cleveland, OH, USA) that achieved 99.2% essential agreement (manual and automated reading) and 95.3-100.0% categorical agreement, with high reproducibility (98.0-100.0%). Sensititre™ MIC values for ceftaroline, however, were slightly skewed toward an elevated value (0.5 × log2 dilution step), greatest when testing for streptococci and Enterobacteriaceae. Copyright © 2015 Elsevier Inc. All rights reserved.
Ait Said, L; Zahlane, K; Ghalbane, I; El Messoussi, S; Romane, A; Cavaleiro, C; Salgueiro, L
2015-01-01
The aim of this study was to analyse the composition of the essential oil (EO) of Lavandula coronopifolia from Morocco and to evaluate its in vitro antibacterial activity against antibiotic-resistant bacteria isolated from clinical infections. The antimicrobial activity was assessed by a broth micro-well dilution method using multiresistant clinical isolates of 11 pathogenic bacteria: Klebsiella pneumoniae subsp. pneumoniae, Klebsiella ornithinolytica, Escherichia coli, Enterobacter cloacae, Enterobacter aerogenes, Providencia rettgeri, Citrobacter freundii, Hafnia alvei, Salmonella spp., Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus. The main compounds of the oil were carvacrol (48.9%), E-caryophyllene (10.8%) and caryophyllene oxide (7.7%). The oil showed activity against all tested strains with minimal inhibitory concentration (MIC) values ranging between 1% and 4%. For most of the strains, the MIC value was equivalent to the minimal bactericidal concentration value, indicating a clear bactericidal effect of L. coronopifolia EO.
In vitro activity of flomoxef against rapidly growing mycobacteria.
Tsai, Moan-Shane; Tang, Ya-Fen; Eng, Hock-Liew
2008-06-01
The aim of this study was to determine the in vitro sensitivity of rapidly growing mycobacteria (RGM) to flomoxef in respiratory secretions collected from 61 consecutive inpatients and outpatients at Chang Gung Memorial Hospital-Kaohsiung medical center between July and December, 2005. Minimal inhibitory concentrations (MIC) of flomoxef were determined by the broth dilution method for the 61 clinical isolates of RGMs. The MICs of flomoxef at which 90% of clinical isolates were inhibited was >128 microg/mL in 26 isolates of Mycobacterium abscessus and 4 microg/mL in 31 isolates of M. fortuitum. Three out of 4 clinical M. peregrinum isolates were inhibited by flomoxef at concentrations of 4 microg/mL or less. Although the numbers of the clinical isolates of RGMs were small, these preliminary in vitro results demonstrate the potential activity of flomoxef in the management of infections due to M. fortuitum, and probably M. peregrinum in humans.
Rajan, S; Thirunalasundari, T; Jeeva, S
2011-04-01
To evaluate the phytochemical and anti-bacterial efficacy of the seed kernel extract of Mangifera indica (M. indica) against the enteropathogen, Shigella dysenteriae (S. dysenteriae), isolated from the diarrhoeal stool specimens. The preliminary phytochemical screening was performed by the standard methods as described by Harborne. Cold extraction method was employed to extract the bioactive compounds from mango seed kernel. Disc diffusion method was adopted to screen antibacterial activity. Minimum inhibitory concentration (MIC) was evaluated by agar dilution method. The crude extracts were partially purified by thin layer chromatography (TLC) and the fractions were analyzed by high performance thin layer chromatography (HPTLC) to identify the bioactive compounds. Phytochemical scrutiny of M. indica indicated the presence of phytochemical constituents such as alkaloids, gums, flavanoids, phenols, saponins, steroids, tannins and xanthoproteins. Antibacterial activity was observed in two crude extracts and various fractions viz. hexane, benzene, chloroform, methanol and water. MIC of methanol fraction was found to be (95±11.8) μg/mL. MIC of other fractions ranged from 130-380 μg/mL. The present study confirmed that each crude extracts and fractions of M. indica have significant antimicrobial activity against the isolated pathogen S. dysenteriae. The antibacterial activity may be due to the phytochemical constituents of the mango seed kernel. The phytochemical tannin could be the reason for its antibacterial activity. Copyright © 2011 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Seol, B; Kelneric, Z; Hajsig, D; Madic, J; Naglic, T
1996-03-01
The minimal inhibitory concentrations (MICs) for thirty-three epidemiologicaly unrelated clinical isolates of Streptococcus suis capsular type 2 were determined in relation to ampicillin, ampicillin-sulbactam, amoxicillin, clavulanate-amoxicillin, penicillin G, cephalexin, gentamicin, streptomycin, erythromycin, tylosin and doxycycline, using the microtitre broth dilution procedure described by the U.S. National Committee for Clinical Laboratory Standards (NCCLS). Gentamicin was the most active compound tested, with an MIC for 90% of the strains tested (MIC(90)) of 0.4 mg/L. Overall, 70% of strains were resistant to doxycycline (MIC(90) > or = 100.0 mg/L), followed by penicillin G (51% of strains) (MIC(90) + or = 100.0 mg/L). Resistance to amoxicillin and ampicillin was 36.4% (MIC(90) 12.5 mg/L) and 33.3% (MIC(90) 50.0 mg/L), respectively. 15.2% of S. suis strains were resistant to streptomycin, tylosin and cephalexin with MIC90 values of 25.0 mg/L, 12.5 mg/L and 25.0 mg/L, respectively. A combination of ampicillin and sulbactam (MIC(90) 6.3 mg/L) and a combination of amoxicillin and clavulanate (MIC(90) 3.1 mg/L) as well as erythromycin (1.6 mg/L) were of the same efficacy, with a total of 9.1% resistant S. suis strains. This high percentage of resistance to doxycycline and penicillin G precludes the use of these antibiotics as empiric therapy of swine diseases.
Cartagena, Andrés Felipe; Esmerino, Luís Antonio; Polak-Junior, Rogerio; Olivieri Parreiras, Sibelli; Domingos Michél, Milton; Farago, Paulo Vitor; Campanha, Nara Hellen
2017-02-01
The purpose of this study was to develop a new oral drug delivery system by incorporating polymeric miconazole nitrate (MN) microparticles on an experimental antifungal denture adhesive (DA). Spray drying Eudragit L-100 (E) and Gantrez MS-955 (G) MN-microparticles were incorporated in DA. DAE1, DAG1, DAEG1, DAE2, DAG2, DAEG2 groups were obtained from the combination of polymers used in MN-microparticles (E, G and EG) and concentration of MN into DA (1, for 1% and 2, for 2%). DA with 2% pure MN (DAM) and DA without microparticles or drug (DACT) were both control groups. All groups were evaluated to determine microbiological assay, adhesive force and toxicity. Minimum inhibitory concentration (MIC) against Candida albicans was performed by broth micro-dilution and agar dilution methods in extract of DAs and conventional gel form (Daktarin ® ). Adhesive load testing was made between acrylic resin samples on a universal testing machine after immersion in water. The toxicity of several dilutions of DAs was performed with Artemia salina bioassay after 24 and 48h. Data of adhesive force were evaluated with two-way ANOVA and Bonferroni tests (α=0.05). The concentration required to kill 50% (LC50) was determined using the Provit analysis. DA with polymeric microparticles and pure drug presented MIC between 1.25-5μg/mL similar to MIC values of DAM. DAEG2, DAEG1, DAG20 showed the most actives against C. albicans. The best adhesive properties were exhibited by DAEG2, consisting of high initial adhesive force which was maintained for up to 6h. The extracts of all DA presented low or not toxicity at 24 and 48h. DA containing 2% of MN loaded in microparticles made by Gantrez MS-955 alone or combined with Eudragit L-100 produce effective antifungal activity, good adhesive force, and no toxicity effect being a promising therapeutics for removable denture wearers affected by denture stomatitis. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Enhancement of bismuth antibacterial activity with lipophilic thiol chelators.
Domenico, P; Salo, R J; Novick, S G; Schoch, P E; Van Horn, K; Cunha, B A
1997-01-01
The antibacterial properties of bismuth are greatly enhanced when bismuth is combined with certain lipophilic thiol compounds. Antibacterial activity was enhanced from 25- to 300-fold by the following seven different thiols, in order of decreasing synergy: 1,3-propanedithiol, dimercaprol (BAL), dithiothreitol, 3-mercapto-2-butanol, beta-mercaptoethanol, 1-monothioglycerol, and mercaptoethylamine. The dithiols produced the greatest synergy with bismuth at optimum bismuth-thiol molar ratios of from 3:1 to 1:1. The monothiols were generally not as synergistic and required molar ratios of from 1:1 to 1:4 for optimum antibacterial activity. The most-active mono- or dithiols were also the most soluble in butanol. The intensity of the yellow formed by bismuth-thiol complexes reflected the degree of chelation and correlated with antibacterial potency at high molar ratios. The bismuth-BAL compound (BisBAL) was active against most bacteria, as assessed by broth dilution, agar diffusion, and agar dilution analyses. Staphylococci (MIC, 5 to 7 microM Bi3+) and Helicobacter pylori (MIC, 2.2 microM) were among the most sensitive bacteria. Gram-negative bacteria were sensitive (MIC, < 17 microM). Enterococci were relatively resistant (MIC, 63 microM Bi3+). The MIC range for anaerobes was 15 to 100 microM Bi3+, except for Clostridium difficile (MIC, 7.5 microM). Bactericidal activity averaged 29% above the MIC. Bactericidal activity increased with increasing pH and/or increasing temperature. Bismuth-thiol solubility, stability, and antibacterial activity depended on pH and the bismuth-thiol molar ratio. BisBAL was stable but ineffective against Escherichia coli at pH 4. Activity and instability (reactivity) increased with increasing alkalinity. BisBAL was acid soluble at a molar ratio of greater than 3:2 and alkaline soluble at a molar ratio of less than 2:3. In conclusion, certain lipophilic thiol compounds enhanced bismuth antibacterial activity against a broad spectrum of bacteria. The activity, solubility, and stability of BisBAL were strongly dependent on the pH, temperature, and molar ratio. Chelation of bismuth with certain thiol agents enhanced the solubility and lipophilicity of this cationic heavy metal, thereby significantly enhancing its potency and versatility as an antibacterial agent. PMID:9257744
Cafarchia, Claudia; Iatta, Roberta; Immediato, Davide; Puttilli, Maria Rita; Otranto, Domenico
2015-09-01
This study aims to determine the minimal inhibitory concentration (MIC) distribution and the epidemiological cut-off values (ECVs) of Malassezia pachydermatis and Malassezia furfur isolates for fluconazole (FLZ), itraconazole (ITZ), posaconazole (POS), and voriconazole (VOR). A total of 62 M. pachydermatis strains from dogs with dermatitis and 78 M. furfur strains from humans with bloodstream infections (BSI) were tested by a modified broth microdilution Clinical and Laboratory Standards Institute (CLSI) method. ITZ and POS displayed lower MICs than VOR and FLZ, regardless of the Malassezia species. The MIC data for azoles of M. pachydermatis were four two-fold dilutions lower than those of M. furfur. Based on the ECVs, about 94% of Malassezia strains might be categorized within susceptible population for all azoles, except for FLZ, and azole cross-resistance was detected in association with FLZ in M. pachydermatis but not in M. furfur.The study proposes, for the first time, tentative azole ECVs for M. pachydermatis and M. furfur for monitoring the emergence of isolates with decreased susceptibilities and shows that the azole MIC distribution varied according to the Malassezia species tested, thus suggesting the usefulness of determining the susceptibility profile for effective treatment of each species. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Mawabo, Isabelle K; Noumedem, Jaurès A K; Kuiate, Jules R; Kuete, Victor
2015-01-01
Treatment of infectious diseases with antimicrobials constituted a great achievement in the history of medicine. Unfortunately, the emergence of resistant strains of bacteria to all classes of antimicrobials limited their efficacy. The present study was aimed at evaluating the effect of combinations of antibiotics on multi-drug resistant Gram-negative (MDRGN) bacteria. A liquid micro-broth dilution method was used to evaluate the antibacterial activity of 10 different classes of antimicrobials on 20 bacterial strains belonging to six different species. The antimicrobials were associated with phenylalanine β-naphthylamide (PAβN), an efflux pump inhibitor, and with other antimicrobials at their sub-inhibitory concentrations. The effectiveness of each combination was monitored using the minimal inhibitory concentration (MIC) and the fractional inhibitory concentration (FIC). Most of the antimicrobials tested showed low antibacterial activity with a MIC value of 128 mg/L on a majority of the bacterial strains, justifying their multidrug-resistant (MDR) profile. Synergistic effects were mostly observed (FIC≤0.5) when ampicillin (AMP), cloxacillin (CLX), erythromycin (ERY), chloramphenicol (CHL), kanamycin (KAN) and streptomycin (STR) were combined with tetracycline (TET) at the sub-inhibitory concentration of MIC/5 or MIC/10. The results of the present work suggest that the association of several antimicrobials with TET could improve the fight against MDRGN bacterial species. Copyright © 2014 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.
Antipneumococcal Activity of DW-224a, a New Quinolone, Compared to Those of Eight Other Agents
Kosowska-Shick, Klaudia; Credito, Kim; Pankuch, Glenn A.; Lin, Gengrong; Bozdogan, Bülent; McGhee, Pamela; Dewasse, Bonifacio; Choi, Dong-Rack; Ryu, Jei Man; Appelbaum, Peter C.
2006-01-01
DW-224a is a new broad-spectrum quinolone with excellent antipneumococcal activity. Agar dilution MIC was used to test the activity of DW-224a compared to those of penicillin, ciprofloxacin, levofloxacin, gatifloxacin, moxifloxacin, gemifloxacin, amoxicillin-clavulanate, cefuroxime, and azithromycin against 353 quinolone-susceptible pneumococci. The MICs of 29 quinolone-resistant pneumococci with defined quinolone resistance mechanisms against seven quinolones and an efflux mechanism were also tested. DW-224a was the most potent quinolone against quinolone-susceptible pneumococci (MIC50, 0.016 μg/ml; MIC90, 0.03 μg/ml), followed by gemifloxacin, moxifloxacin, gatifloxacin, levofloxacin, and ciprofloxacin. β-Lactam MICs rose with those of penicillin G, and azithromycin resistance was seen mainly in strains with raised penicillin G MICs. Against the 29 quinolone-resistant strains, DW-224a had the lowest MICs (0.06 to 1 μg/ml) compared to those of gemifloxacin, clinafloxacin, moxifloxacin, gatifloxacin, levofloxacin, and ciprofloxacin. DW-224a at 2× MIC was bactericidal after 24 h against eight of nine strains tested. Other quinolones gave similar kill kinetics relative to higher MICs. Serial passages of nine strains in the presence of sub-MIC concentrations of DW-224a, moxifloxacin, levofloxacin, ciprofloxacin, gatifloxacin, gemifloxacin, amoxicillin-clavulanate, cefuroxime, and azithromycin were performed. DW-224a yielded resistant clones similar to moxifloxacin and gemifloxacin but also yielded lower MICs. Azithromycin selected resistant clones in three of the five parents tested. Amoxicillin-clavulanate and cefuroxime did not yield resistant clones after 50 days. PMID:16723567
Hong, Sung Kuk; Choi, Seung Jun; Shin, Saeam; Lee, Wonmok; Pinto, Naina; Shin, Nari; Lee, Kwangjun; Hong, Seong Geun; Kim, Young Ah; Lee, Hyukmin; Kim, Heejung; Song, Wonkeun; Lee, Sun Hwa; Yong, Dongeun; Lee, Kyungwon; Chong, Yunsop
2015-11-01
Quality control (QC) processes are being performed in the majority of clinical microbiology laboratories to ensure the performance of microbial identification and antimicrobial susceptibility testing by using ATCC strains. To obtain these ATCC strains, some inconveniences are encountered concerning the purchase cost of the strains and the shipping time required. This study was focused on constructing a database of reference strains for QC processes using domestic bacterial strains, concentrating primarily on antimicrobial susceptibility testing. Three strains (Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus) that showed legible results in preliminary testing were selected. The minimal inhibitory concentrations (MICs) and zone diameters (ZDs) of eight antimicrobials for each strain were determined according to the CLSI M23. All resulting MIC and ZD ranges included at least 95% of the data. The ZD QC ranges obtained by using the CLSI method were less than 12 mm, and the MIC QC ranges extended no more than five dilutions. This study is a preliminary attempt to construct a bank of Korean QC strains. With further studies, a positive outcome toward cost and time reduction can be anticipated.
Assessing the antibiotic potential of essential oils against Haemophilus ducreyi.
Lindeman, Zachary; Waggoner, Molly; Batdorff, Audra; Humphreys, Tricia L
2014-05-27
Haemophilus ducreyi is the bacterium responsible for the genital ulcer disease chancroid, a cofactor for the transmission of HIV, and it is resistant to many antibiotics. With the goal of exploring possible alternative treatments, we tested essential oils (EOs) for their efficacy as antimicrobial agents against H. ducreyi. We determine the minimum inhibitory concentration (MIC) of Cinnamomum verum (cinnamon), Eugenia caryophyllus (clove) and Thymus satureioides (thyme) oil against 9 strains of H. ducreyi using the agar dilution method. We also determined the minimum lethal concentration for each oil by subculturing from the MIC plates onto fresh agar without essential oil. For both tests, we used a 2-way ANOVA to evaluate whether antibiotic-resistant strains had a different sensitivity to the oils relative to non-resistant strains. All 3 oils demonstrated excellent activity against H. ducreyi, with MICs of 0.05 to 0.52 mg/mL and MLCs of 0.1-0.5 mg/mL. Antibiotic-resistant strains of H. ducreyi were equally susceptible to these 3 essential oils relative to non-resistant strains (p=0.409). E. caryophyllus, C. verum and T. satureioides oils are promising alternatives to antibiotic treatment for chancroid.
Nicolau, David P; Silberg, Barry N
2017-01-01
Introduction Despite aggressive medical and surgical management, the resolution of skin and skin structure infections is often difficult due to insufficient host response, reduced drug penetration, and a high prevalence of resistance organisms such as methicillin-resistant Staphylococcus aureus (MRSA). As a result of these factors, conventional management often consists of prolonged broad-spectrum systemic antimicrobials. An alternative therapy in development, ultrasonic drug dispersion (UDD), uses a subcutaneous injection followed by external trans-cutaneous ultrasound to deliver high tissue concentrations of cefazolin with limited systemic exposure. While it is postulated that these high concentrations may be suitable to treat more resistant organisms such as MRSA, the cefazolin minimum inhibitory concentration (MIC) distribution for this organism is currently unknown. Materials and methods We assessed the potency of cefazolin against a collection of 1,239 MRSA from 42 US hospitals using Clinical Laboratory Standard Institute-defined broth micro-dilution methodology. Results The cefazolin MIC inhibiting 50% of the isolates was 64 mg/L; 81% had MICs ≤128 and nearly all (99.9%) had MICs ≤512 mg/L. Conclusion The overwhelming majority of MRSA had cefazolin MICs that were considerably lower than achievable tissue concentrations (≥1,000 mg/L) using this novel drug delivery system. While the currently defined cefazolin MRSA phenotypic profile precludes the use of parenteral administration, techniques that deliver local exposures in excess of these inhibitory concentrations may provide a novel treatment strategy for skin and skin structure infections. PMID:28794647
Schmitz, Julia; van der Linden, Mark; Al-Lahham, Adnan; Levina, Natalia; Pletz, Mathias W; Imöhl, Matthias
2017-06-01
Streptococcus pneumoniae is a major cause of bacterial pneumonia, sepsis and meningitis worldwide. Prevalence of levofloxacin-resistant S. pneumoniae isolates in Germany and associated mutations in the quinolone resistance determining regions (QRDRs), as well as serotype distribution and multi locus sequence types (MLST) are shown. 21,764 invasive S. pneumoniae isolates from Germany, isolated in the epidemiological seasons from 2004/05 to 2014/15 were analyzed at the German National Reference Centre for Streptococci (GNRCS) for their levofloxacin resistance by micro broth dilution method. All resistant (minimal inhibitory concentration (MIC) ≥8μg/ml) and intermediate (MIC >2μg/ml and <8μg/ml) isolates were selected for the present study. Additionally, 29 susceptible isolates were randomly selected. A total of ninety isolates were tested for their levofloxacin-MIC by Etest, their serotype and sequence type, as well as for point-mutations at the QRDRs in the genes parC, parE, gyrA and gyrB. Twenty-five isolates exhibited levofloxacin MICs <2μg/ml (Etest) and no mutations in the QRDRs. Four isolates with MICs=2μg/ml had one mutation in parC; isolates with MICs >2μg/ml all had one or more mutations in the QRDRs. Four of nine intermediate isolates had a mutation in either parC or gyrA, and four isolates had mutations in both parC and gyrB. One isolate had mutations in both parC and gyrA. All isolates with MICs ≥8μg/ml (52) had mutations in both topoisomerase IV and gyrase. Serotypes associated with levofloxacin resistance shifted from a majority of PCV13 serotypes before the introduction of the PCV13 vaccine towards non-PCV serotypes. Resistant isolates were almost exclusively found among adults (98.1%). Copyright © 2017. Published by Elsevier GmbH.
Antianaerobic activity of sulopenem compared to six other agents.
Ednie, Lois M; Appelbaum, Peter C
2009-05-01
Agar dilution MIC methodology was used to compare the activity of sulopenem with those of amoxicillin/clavulanate, ampicillin/sulbactam, piperacillin-tazobactam, imipenem, clindamycin, and metronidazole against 431 anaerobes. Overall, MIC(50)/(90) values were as follows: sulopenem, 0.25/1.0 microg/ml; amoxicillin/clavulanate, 0.5/2.0 microg/ml; ampicillin/sulbactam, 0.5/4.0 microg/ml; piperacillin/tazobactam, 0.25/8.0 microg/ml; imipenem, 0.06/1.0 microg/ml; clindamycin, 0.25/16.0 microg/ml; and metronidazole, 1.0/4.0 microg/ml.
Snydman, David R; Jacobus, Nilda V; McDermott, Laura A
2016-10-01
We evaluated the in vitro activity of imipenem-relebactam (imipenem-MK7655) against 451 recent clinical isolates within the Bacteroides group and related species. Relebactam did not enhance or inhibit the activity of imipenem against Bacteroides fragilis or other Bacteroides species. No synergistic or antagonistic effect was observed. The MICs of imipenem-relebactam were equal to or within one dilution of the MICs of these isolates to imipenem. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Anticariogenic activity and phytochemical studies of crude extract from some Indian plant leaves
Barad, Mahesh K.; Ishnava, Kalpesh B.; Chauhan, Jenabhai B.
2014-01-01
Aim: The aim was to screen the selected Indian plants for their antibacterial efficacy against four cariogenic bacteria Lactobacillus acidophilus (LA)(Microbial Type Culture Collection [MTCC]-*447), Lactobacillus casei (LC) (MTCC-1423), Streptococcus mutans (SMU) (MTCC-890) and Staphylococcus aureus (MTCC-96). To identify and characterize active principle present in these plants for the treatment of dental caries. Materials and Methods: The dried plant leaves materials are extracted by cold extraction using hexane, ethyl acetate, methanol, and distilled water. The solvents were evaporated, and the dried masses were suspended in dimethyl sulfoxide and used for anticariogenic activity by agar well diffusion method. Minimum inhibitory concentration (MIC) was evaluated by two-fold serial broth dilution method. Preliminary phytochemical analysis of effective extract was carried out by thin-layer chromatography (TLC) and bioautography. Results: Ethyl acetate and hexane extract of Eucalyptus globules was found most effective against L. acidophilus with MIC value 31 μg/ml and 62 μg/ml, respectively. Ethyl acetate extracts of Acacia nilotica and methanolic extract of E. globules also exhibited antibacterial activity against SMU and L. casei with MIC value of 50 μg/ml. Qualitative analysis of E. globules revealed the presence of alkaloids, terpenoids, phenolic compounds, and cardiac glycosides. The active principle responsible for the anticariogenic activity from E. globules were separated by TLC and subjected to bioautography using SMU, LA and LC. Conclusion: Anticariogenic activity and preliminary phytochemical analysis revealed that E. globule have potential to treat dental caries. PMID:26401353
Smith, Kenneth P; Kirby, James E
2016-09-01
With rapid emergence of multidrug-resistant bacteria, there is often a need to perform susceptibility testing for less commonly used or newer antimicrobial agents. Such testing can often be performed only by using labor-intensive, manual dilution methods and lies outside the capacity of most clinical labs, necessitating reference laboratory testing and thereby delaying the availability of susceptibility data. To address the compelling clinical need for microbiology laboratories to perform such testing in-house, we explored a novel, automated, at-will broth microdilution-based susceptibility testing platform. Specifically, we used the modified inkjet printer technology in the HP D300 digital dispensing system to dispense, directly from stock solutions into a 384-well plate, the 2-fold serial dilution series required for broth microdilution testing. This technology was combined with automated absorbance readings and data analysis to determine MICs. Performance was verified by testing members of the Enterobacteriaceae for susceptibility to ampicillin, cefazolin, ciprofloxacin, colistin, gentamicin, meropenem, and tetracycline in comparison to the results obtained with a broth microdilution reference standard. In precision studies, essential and categorical agreement levels were 96.8% and 98.3%, respectively. Furthermore, significantly fewer D300-based measurements were outside ±1 dilution from the modal MIC, suggesting enhanced reproducibility. In accuracy studies performed using a panel of 80 curated clinical isolates, rates of essential and categorical agreement and very major, major, and minor errors were 94%, 96.6%, 0%, 0%, and 3.4%, respectively. Based on these promising initial results, it is anticipated that the D300-based methodology will enable hospital-based clinical microbiology laboratories to perform at-will broth microdilution testing of antimicrobials and to address a critical testing gap. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
ANTIMICROBIAL EFFECT OF INTRACANAL SUBSTANCES
Carreira, Cláudia de Moura; dos Santos, Silvana Soléo Ferreira; Jorge, Antônio Olavo Cardoso; Lage-Marques, José Luiz
2007-01-01
In some situations, endodontic infections do not respond to therapeutic protocol. In these cases, it is suggested the administration of an alternative intracanal medication that presents a wide spectrum of action and has an in-depth effect on the root canal system. The purpose of this study was to assess the antimicrobial action of ciprofloxacin, metronidazole and polyethylene glycol and natrosol vehicles with different associations and concentrations. The minimum inhibitory concentration (MIC) was determined by using the agar dilution method. The culture media (Müller-Hinton agar) were prepared containing antimicrobial agents at multiple two-fold dilutions of 0.25 to 16 µg/mL, and with the vehicles at the concentrations of 50, 45, 40, 35, 30 and 25%. Twenty-three microbial strains were selected for the study. Metronidazole was not capable of eliminating any of the tested microorganisms. The association of ciprofloxacin with metronidazole resulted in a reduction of the MIC. The vehicle polyethylene glycol inhibited the growth of 100% of the tested strains, while natrosol inhibited 18% of the strains. Ciprofloxacin formulations with polyethylene glycol presented better effects than those of formulations to which metronidazole was added. It was possible to conclude that ciprofloxacin presented antimicrobial action against all tested bacterial strains, and its association with metronidazole was synergic. The vehicle polyethylene glycol showed antimicrobial effect and the ciprofloxacin/polyethylene glycol association was the most effective combination for reducing the tested bacteria and yeasts. PMID:19089178
Kumarasamy, Barani; Manipal, Sunayana; Duraisamy, Prabu; Ahmed, Adil; Mohanaganesh, SP; Jeevika, C
2014-01-01
Objectives: Use of alternative medicine to control oral streptococci is a new topic worthy of further investigation. This study aimed to elucidate the dose-dependent anti-bacterial activity of crude aqueous extract of ripe Morinda citrifolia L. (Family: Rubiaceae) fruits against oral streptococci i.e. Streptococcus mutans and Streptococcus mitis, that cause dental caries in humans. Methods: Fresh ripe M. citrifolia fruits (750g) were ground in an electronic blender with sterile water (500ml). The crude aqueous extract was lyophilized to yield a brown colored powder. Various concentrations (1000-100μg/ ml) of the extract were tested for its antibacterial activity (Kirby and Bauer method) against whole cells of S. mutans and S. mitis. Minimum Inhibitory Concentration (MIC) was determined by micro-dilution method, using serially diluted (2 folds) fruit extract, according to the National Committee for Clinical Laboratory Standards (NCCLS). Results: Crude aqueous extract (1000μg/ ml) of ripe M. citrifolia fruits effectively inhibited the growth of S. mutans (19±0.5 mm) and S. mitis (18.6±0.3 mm) compared to the streptomycin control (21.6±0.3 mm). The growth inhibition was clearly evident with “nil” bacteriostasis, even after 48 hours of incubation at 37°C. The MIC of the extract for S. mutans and S. mitis was 125 μg and 62.5 μg, respectively. Conclusion: Our results suggest that phytochemicals naturally synthesized by M. citrifolia have an inhibitory effect on oral streptococci. Furthermore, purification and molecular characterization of the “bioactive principle” would enable us to formulate a sustainable oral hygiene product. PMID:25628701
Kulengowski, B; Ribes, J A; Burgess, D S
2018-04-16
Polymyxins have been revitalized to combat carbapenem-resistant Enterobacteriaceae (CRE). However, evaluating the activity of these agents by traditional broth dilution methods is not practical for busy clinical laboratories. We compared polymyxin B activity using two quantitative susceptibility testing methods, Etest ® and broth microdilution (BMD), against CRE isolates from patients at an academic medical centre. Polymyxin B activity against 70 CRE clinical isolates was determined by Etest ® according to the manufacturer and by BMD according to CLSI guidelines. Pseudomonas aeruginosa ATCC ® 27853 and Escherichia coli NCTC 13846 served as quality control strains. The EUCAST colistin susceptibility breakpoint of Enterobacteriaceae (≤2 mg/L) was used. Essential agreement was isolates with an MIC within 1 log 2 dilution over total isolates. Categorical agreement was number of isolates in the same susceptibility category (susceptible or resistant) over total isolates. Major and very major error rates were calculated using number of susceptible and number of resistant isolates, respectively, as the denominator. McNemar's test was used for determining a difference in susceptibility between methods. The CRE isolates were primarily Klebsiella spp. (49%) and Enterobacter spp. (36%). Polymyxin B susceptibility was significantly higher by Etest ® compared with BMD (97% versus 77%; p 0.0001). Categorical agreement was 80%, but essential agreement was low (10%). False non-susceptibility was never observed by Etest ® (BMD reference), but the very major errors were high (88%). Etest ® reporting of false susceptibility may result in inappropriate antibiotic use and treatment failure clinically. We do not recommend using Etest ® for polymyxin B susceptibility testing for routine patient care. Copyright © 2018 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Joy Sinha, Dakshita; D S Nandha, Kanwar; Jaiswal, Natasha; Vasudeva, Agrima; Prabha Tyagi, Shashi; Pratap Singh, Udai
2017-01-01
The purpose of this study was to compare the antibacterial properties of Azadirachta indica (neem) or Curcuma longa (turmeric) against Enterococcus faecalis with those of 5% sodium hypochlorite or 2% chlorhexidine as root canal irrigants in vitro. The activity of neem, chlorhexidine, sodium hypochlorite, or turmeric against E. faecalis was measured on agar plates using the agar diffusion method. The tube dilution method was used to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the irrigants used. Chlorhexidine or neem exhibited the greatest antibacterial activity when used as endodontic irrigants against E. faecalis, followed by sodium hypochlorite. No statistically significant difference was observed between neem, sodium hypochlorite, or chlorhexidine. The MIC of neem was 1: 128, which was similar to that of chlorhexidine. The MBC for each of these irrigants was 1: 16. Neem yielded antibacterial activity equivalent to 2% chlorhexidine or sodium hypochlorite against E. faecalis, suggesting that it offers a promising alternative to the other root canal irrigants tested.
NASA Astrophysics Data System (ADS)
Kumar, Arvind; Bhat, Tahir Ahmad; Singh, Rattan Deep
2017-07-01
The study was designed to examine the in vitro antimicrobial efficacy of extracts and isolated compound of Dalbergia stipulacea. Combined extracts (chloroform and methanol) of plant leaves fractionated with n-butanol loaded with column afforded a flavonoid glycoside compound identified as luteolin 4'-rutinoside. Different extracts and isolated compound exhibited pronounced antibacterial and antifungal varied activities against four bacteria (Clostridium acetobutylinium, Bacillus subtilis, Streptococcus mutans, and Pseudomonas sp.) and one fungus (Candida albicans) susceptibility were determined using disc diffusion method. The minimum inhibitory concentration (MIC) of extracts and isolated compounds was determined by broth dilution method. The maximum activity was shown by chloroform extract against C. albicans with a zone of inhibition of 17 mm and minimum activity was displayed by methanolic extract against Pseudomonas sp. with 5 mm. However, isolated compound has shown maximum activity against Pseudomonas sp. with 15 mm. The MIC values higher in methanol extract against Pseudomonas sp. and isolated compound shows good against Pseudomonas sp. and B. subtilis. Our findings indicate that plant could be used as a good antimicrobial agent in food, pharmaceutical and bio-pesticide industries.
The effect of clary sage oil on staphylococci responsible for wound infections
Głowacka, Anna; Poznańska-Kurowska, Katarzyna; Kaszuba, Andrzej; Urbaniak, Anna; Kowalczyk, Edward
2015-01-01
Introduction The spreading of bacterial antibiotic resistance among clinical strains of pathogenic bacteria has made investigators to search for other active antibacterial agents which could provide a valuable complement to the existing therapies. Aim To determine the antibacterial activity of clary sage oil (Salvia sclarea L.) against Staphylococcus clinical strains which were isolated from patients with wound infections. Material and methods A comprehensive evaluation of Staphylococcus clinical strain resistance to antibiotics was performed. The constituents of clary sage oil were assayed by GC-FID-MS analysis. The minimal inhibitory concentration (MIC) of the tested essential oil against staphylococci by the micro-dilution broth method was determined. Results The clary sage oil was active against Staphylococcus aureus, S. epidermidis and S. xylosus with MIC values ranging from 3.75 to 7.00 µl/ml. Conclusions The results of the in vitro tests encourage to use formulations containing sage oil as the active natural antimicrobial agent. Because of its antimicrobial properties clary sage oil may be applied to treat wounds and skin infections. PMID:25821423
Tsao, Shin-Ming; Wang, Wei-Yao; Ko, Wen-Chien; Huang, Cheng-Hua; Lu, Chin-Te; Chuang, Yin-Ching; Liu, Chia-Ying; Liao, Chun-Hsing; Chen, Yao-Shen; Liu, Yung-Ching; Chen, Wei-Yu; Jang, Tsrang-Neng; Lin, Hsiu-Chen; Chen, Chih-Ming; Shi, Zhi-Yuan; Pan, Sung-Ching; Yang, Jia-Ling; Kung, Hsiang-Chi; Liu, Chun-Eng; Cheng, Yu-Jen; Liu, Jien-Wei; Sun, Wu; Wang, Lih-Shinn; Yu, Kwok-Woon; Chiang, Ping-Cherng; Lee, Ming-Hsun; Lee, Chun-Ming; Hsu, Gwo-Jong; Chen, Yen-Hsu; Lu, Po-Liang; Thomas, Chang-Yao Tsao; Hsueh, Po-Ren
2014-10-01
This study was intended to investigate the trend in vancomycin susceptibility and correlation with molecular characteristics of methicillin-resistant Staphylococcus aureus (MRSA) causing invasive infections. A total of 670 MRSA isolates were collected from patients with invasive infections as part of bacterial collection in the Tigecycline in vitro Surveillance in Taiwan (TIST) from 2006 to 2010. MICs of the isolates to vancomycin were determined using the agar dilution method. Characteristics of staphylococcal cassette chromosome mec (SCCmec), mec-associated hypervariable region (dru), and accessory gene regulator (agr) of the isolates were identified by polymerase chain reaction methods. MRSA isolates with SCCmec types I, II, and III were molecularly defined as hospital-associated MRSA (HA-MRSA), and those with SCCmec types IV, V, and VT were assigned as community-associated MRSA (CA-MRSA). All but 1 MRSA isolates exhibited vancomycin MICs ≤1 mg/L. A declining trend in vancomycin MICs among MRSA isolates was noted, which was associated with the decline in proportion of HA-MRSA. The percentage of CA-MRSA increased from 25.6% in 2006 to 46.0% in 2010. An increase in the geometric mean of vancomycin MICs was found in MRSA with particular molecular types such as SCCmec types II and III, agr groups I and II, and dru10-14. A significant correlation among particular molecular types was found, including SCCmecII-agr group II-dru4, SCCmecIII-agr group I-dru11-14, SCCmecIV-agr group II-dru9, and SCCmecVT-agr group I-dru9 and dru11. There was no vancomycin creep among MRSA isolates, and the declining trend of vancomycin MIC against MRSA was attributed to the increasing prevalence of CA-MRSA over time. Copyright © 2014 Elsevier Inc. All rights reserved.
Smith, Ashley B; Renter, David G; Shi, Xiaorong; Cernicchiaro, Natalia; Sahin, Orhan; Nagaraja, T G
2018-03-20
Campylobacter spp. can be pathogenic to humans and often harbor antimicrobial resistance genes. Data on resistance in relation to fluoroquinolone use in beef cattle are scarce. This cross-sectional study of preharvest cattle evaluated Campylobacter prevalence and susceptibility to nalidixic acid and ciprofloxacin in feedlots that previously administered a fluoroquinolone as primary treatment for bovine respiratory disease. Twenty fresh fecal samples were collected from each of 10 pens, in each of five feedlots, 1-2 weeks before harvest. Feces were cultured for Campylobacter using selective enrichment and isolation methods. Genus and species were confirmed via PCR. Minimum inhibitory concentrations (MICs) of ciprofloxacin and nalidixic acid were determined using a micro-broth dilution method and human breakpoints. Antimicrobial use within each pen was recorded. Data were analyzed using generalized linear mixed-models (prevalence) and survival analysis (MICs). Overall, sample-level prevalence of Campylobacter was 27.2% (272/1000) and differed significantly among feedlots (p < 0.01). Campylobacter coli was the most common species (55.1%; 150/272), followed by Campylobacter hyointestinalis (42.6%; 116/272). Within-pen prevalence was not significantly associated with the number of fluoroquinolone treatments, sex, body weight, or metaphylaxis use, but was associated with the number of days cattle were in the feedlot (p = 0.03). The MICs for the majority of Campylobacter isolates were above the breakpoints for nalidixic acid (68.4%; 175/256) and for ciprofloxacin (65.6%; 168/256). Distributions of MICs for nalidixic acid (p ≤ 0.01) and ciprofloxacin (p ≤ 0.05) were significantly different among feedlots, and by Campylobacter species. However, fluoroquinolone treatments, sex, body weight, days on feed, and metaphylaxis were not significantly associated with MIC distributions within pens. We found no evidence that the number of fluoroquinolone treatments within feedlot pens significantly affected the within-pen fecal prevalence or quinolone susceptibilies of Campylobacter in feedlots that used a fluoroquinolone as primary treatment for bovine respiratory disease.
Tibyangye, Julius; Okech, Matilda Angela; Nyabayo, Josephat Maniga; Nakavuma, Jessica Lukanga
2015-01-01
Aims To determine antibacterial activity of Ocimum suave essential oils against bacterial uropathogens. Study Design A cross sectional and experimental study. Place and Duration of Study Six selected hospitals in Bushenyi District, Uganda between June 2012 and July 2013. Methodology Clean catch midstream urine samples were collected and inoculated on Cystine Lysine Electrolyte Deficient (CLED) agar. The plates were incubated at 37°C for 24hrs to 48hrs. The O. suave essential oils were extracted by hydrodistillation of leaves for 4hrs using a Clevenger apparatus. The oil was collected and dried over anhydrous sodium sulphate (Na2SO4) and kept at 4°C till further use. The antimicrobial activity of O. suave essential oils against isolates was determined by agar well method. The MIC of O. suave essential oil extract was carried out by microbroth dilution method. Results Of the three hundred (300) midstream urine samples collected, 67(22.33%) had significant bacterial growth. Escherichia coli is the most common isolate (61.19%, n = 41). The essential oil from O. suave showed activity against isolates of E. coli, K. pneumoniae, S. aureus, E. feacalis, M. morganii, Citrobacter species, Enterobacter species and P. aeruginosa with mean zone of inhibition (ZI) ranging from 10–22 mm. The essential oils had no inhibitory activity on Acinetobacter species. The minimum inhibitory concentration (MIC) for O. suave essential oils ranged from 0.78 to 22 μg/ml. This study showed that O. suave essential oils had MIC value of 0.78 μg/ml against S. aureus and MIC values ranging from 3 to 22 μg/ml against the other tested isolates. Conclusion The most common uropathogen was E. coli (61.19% n = 41). O. suave essential oils exhibited antibacterial activity against majority of the uropathogens, except Acinetobacter species, mean ZI of 10–22 mm and MIC of 0.78 – 22 μg/ml. PMID:26120574
Garcia-Effron, Guillermo; Park, Steven; Perlin, David S.
2011-01-01
Echinocandins are highly bound to serum proteins, altering their antifungal properties. The addition of 50% human serum to the MIC assay improves the identification of echinocandin-resistant Candida spp. harboring fks hot spot mutations. However, this modification cannot readily be applied to the method of the CLSI M27-A3 document due to safety and standardization difficulties. The aim of this study was to evaluate commercial bovine serum albumin (BSA) as a safe and standardized alternative to human serum. A collection of 28 echinocandin-susceptible strains, 10 Candida parapsilosis sensu lato strains (with naturally reduced echinocandin susceptibility), and 40 FKS hot spot mutants was used in this work. When RPMI 1640 was used for susceptibility testing, wild-type strains and fks mutants showed MIC range overlaps (−2, −1, and −3 2-fold-dilution steps separated these populations for anidulafungin, caspofungin, and micafungin, respectively). On the other hand, the addition of BSA to RPMI 1640 differentially increased echinocandin MIC values for these groups of strains, allowing better separation between populations, with no MIC range overlaps for any of the echinocandin drugs tested. Moreover, the use of RPMI-BSA reduced the number of fks hot spot mutant isolates for which MIC values were less than or equal to the upper limit for the wild type (very major errors) from 9, 2, and 7 with RPMI alone to 3, 0, and 3 for anidulafungin, caspofungin, and micafungin, respectively. When RPMI-BSA was used to study the susceptibility of C. parapsilosis sensu lato species to echinocandins, the strains behaved as anidulafungin- and micafungin-resistant isolates (MIC, ≥8 μg/ml). These data support the need for a revision of the CLSI protocol for in vitro testing of echinocandin susceptibility in order to identify all or most of the fks hot spot mutants. Also, caspofungin could be used as a surrogate marker of reduced susceptibility to echinocandins. PMID:21383097
Mohsenipour, Zeinab; Hassanshahian, Mehdi
2015-01-01
Objective: Microorganisms are responsible for many problems in industry and medicine because of biofilm formation. Therefore, this study was aimed to examine the effect of Thymus vulgaris (T. vulgaris) extracts on the planktonic form and biofilm structures of six pathogenic bacteria. Materials and methods: Antimicrobial activities of the plant extracts against the planktonic form of the bacteria were determined using the disc diffusion method. MIC and MBC values were evaluated using macrobroth dilution technique. Anti-biofilm effects were assessed by microtiter plate method. Results: According to disc diffusion test (MIC and MBC), the ability of Thymus vulgaris (T. vulgaris ) extracts for inhibition of bacteria in planktonic form was confirmed. In dealing with biofilm structures, the inhibitory effect of the extracts was directly correlated to their concentration. Except for the inhibition of biofilm formation, efficacy of each extract was independent from type of solvent. Conclusion: According to the potential of Thymus vulgaris (T. vulgaris) extracts to inhibit the test bacteria in planktonic and biofilm form, it can be suggested that Thymus vulgaris (T. vulgaris) extracts can be applied as antimicrobial agents against the pathogenic bacteria particularly in biofilm forms. PMID:26442753
Golparian, Daniel; Limnios, Athena; Whiley, David; Ohnishi, Makoto; Lahra, Monica M.; Tapsall, John W.
2012-01-01
Clinical resistance to the currently recommended extended-spectrum cephalosporins (ESCs), the last remaining treatment options for gonorrhea, is being reported. Gonorrhea may become untreatable, and new treatment options are crucial. We investigated the in vitro activity of ertapenem, relative to ceftriaxone, against N. gonorrhoeae isolates and the effects of ESC resistance determinants on ertapenem. MICs were determined using agar dilution technique or Etest for international reference strains (n = 17) and clinical N. gonorrhoeae isolates (n = 257), which included the two extensively drug-resistant (XDR) strains H041 and F89 and additional isolates with high ESC MICs, clinical ESC resistance, and other types of clinical high-level and multidrug resistance (MDR). Genetic resistance determinants for ESCs (penA, mtrR, and penB) were sequenced. In general, the MICs of ertapenem (MIC50 = 0.032 μg/ml; MIC90 = 0.064 μg/ml) paralleled those of ceftriaxone (MIC50 = 0.032 μg/ml; MIC90 = 0.125 μg/ml). The ESC resistance determinants mainly increased the ertapenem MIC and ceftriaxone MIC at similar levels. However, the MIC ranges for ertapenem (0.002 to 0.125 μg/ml) and ceftriaxone (<0.002 to 4 μg/ml) differed, and the four (1.5%) ceftriaxone-resistant isolates (MIC = 0.5 to 4 μg/ml) had ertapenem MICs of 0.016 to 0.064 μg/ml. Accordingly, ertapenem had in vitro advantages over ceftriaxone for isolates with ceftriaxone resistance. These in vitro results suggest that ertapenem might be an effective treatment option for gonorrhea, particularly for the currently identified ESC-resistant cases and possibly in a dual antimicrobial therapy regimen. However, further knowledge regarding the genetic determinants (and their evolution) conferring resistance to both antimicrobials, and clear correlates between genetic and phenotypic laboratory parameters and clinical treatment outcomes, is essential. PMID:22547617
Perez, Leandro Reus Rodrigues; Dias, Cícero; d'Azevedo, Pedro Alves
2008-08-01
In this study we evaluated the performance of the oxacillin agar screen test, and agar dilution tests using cefoxitin and oxacillin antimicrobials, to detect meticillin resistance in Staphylococcus aureus isolates. The presence of the mecA gene, detected by PCR, was used as the standard to which agar screen and agar dilution tests were compared. The best performance was obtained using the agar dilution test (99.4 % accuracy) with breakpoints of 4 mug ml(-1) for oxacillin and 8 mug ml(-1) for cefoxitin, and using the oxacillin agar screen test. Also, a strong correlation between MIC values of cefoxitin and oxacillin permits the use of either drug for detection of meticillin resistance.
Citron, D M; Merriam, C V; Tyrrell, K L; Warren, Y A; Fernandez, H; Goldstein, E J C
2003-07-01
By using an agar dilution method, the in vitro activities of ramoplanin, teicoplanin, vancomycin, linezolid, and five other agents were determined against 300 gram-positive and 54 gram-negative strains of intestinal anaerobes. Ramoplanin was active at
Goldstein, Ellie J C; Citron, Diane M; Merriam, C Vreni; Warren, Yumi; Tyrrell, Kerin; Fernandez, Helen T
2003-06-01
Dalbavancin is a novel semisynthetic glycopeptide with enhanced activity against gram-positive species. Its comparative in vitro activities and those of nine comparator agents, including daptomycin, vancomycin, linezolid, and quinupristin-dalfopristin, against 290 recent gram-positive clinical isolates strains, as determined by the NCCLS agar dilution method, were studied. The MICs of dalbavancin at which 90% of various isolates tested were inhibited were as follows: Actinomyces spp., 0.5 microg/ml; Clostridium clostridioforme, 8 microg/ml; C. difficile, 0.25 microg/ml; C. innocuum, 0.25 microg/ml; C. perfringens, 0.125 microg/ml; C. ramosum, 1 microg/ml; Eubacterium spp., 1 microg/ml; Lactobacillus spp., >32 microg/ml, Propionibacterium spp., 0.5 microg/ml; and Peptostreptococcus spp., 0.25 microg/ml. Dalbavancin was 1 to 3 dilutions more active than vancomycin against most strains. Dalbavancin exhibited excellent activity against gram-positive strains tested and warrants clinical evaluation.
Thwaites, R T; Frost, J A
1999-01-01
AIMS: To test the sensitivity of strains of Campylobacter species isolated from humans in England and Wales against a range of antimicrobial agents for the purpose of monitoring therapeutic efficacy and as an epidemiological marker. METHODS: An agar dilution breakpoint technique was used to screen isolates against ampicillin, chloramphenicol, gentamicin, kanamycin, neomycin, tetracycline, nalidixic acid, ciprofloxacin, and erythromycin. Minimal inhibitory concentrations (MIC) were also determined for a sample of quinolone resistant strains. RESULTS: Approximately 50% of strains tested were resistant to at least one drug. Strains which were resistant to four or more of the drugs tested were classified as multiresistant; this occurred in 11.3% of C jejuni, 19.9% of C coli, and 63.6% of C lari. Resistance to erythromycin occurred in 1.0% of C jejuni and 12.8% of C coli. Resistance to quinolones occurred in 12% of strains, with a ciprofloxacin MIC of > 8 mg/l and a nalidixic acid MIC of > 256 mg/l; a further 4% of strains had intermediate resistance with a ciprofloxacin MIC of between 0.5 and 2 mg/l (fully sensitive strains, 0.25 mg/l or less) and a nalidixic acid MIC of between 32 and 64 mg/l (fully sensitive strains, 8 mg/l or less). CONCLUSIONS: Resistance to quinolones in campylobacters from human infection may relate to clinical overuse or use of fluoroquinolones in animal husbandry. Both veterinary and clinical use should be reconsidered and fluoroquinolone drugs used only as a treatment for serious infections requiring hospital admission. Erythromycin resistance is still rare in C jejuni but much more common in C coli. PMID:10690169
Koziróg, Anna; Brycki, Bogumił
2015-01-01
Quaternary ammonium salts (QAS) belong to surfactant commonly used both, in the household and in different branches of industry, primarily in the process of cleaning and disinfection. They have several positive features inter alia effectively limiting the development of microorganisms on many surfaces. In the present work, two compounds were used as biocides: hexamethylene-1,6-bis-(N,N-dimethyl-N-dodecylammonium bromide) that belongs to the gemini surfactant (GS), and its single analogue - dodecyl(trimethyl)ammonium bromide (DTAB). Two fold dilution method was used to determine the minimum concentration of compounds (MIC) which inhibit the growth of bacteria: Staphylococcus aureus (ATCC 6538 and an environmental strain), Pseudomonas aeruginosa (ATCC 85327 and an environmental strain), and yeast Candida albicans (ATCC 11509 and an environmental strain). The viability of cells in liquid cultures with addition of these substances at ¼ MIC, ½ MIC and MIC concentrations were also determined. The obtained results show that DTAB inhibits the growth of bacteria at the concentration of 0.126-1.010 µM/ml, and gemini surfactant is active at 0.036-0.029 µM/ml. Therefore, GS is active at more than 17-70-fold lower concentrations than its monomeric analogue. Strains isolated from natural environment are less sensitive upon testing biocides than the references strains. Both compounds at the MIC value reduced the number of cells of all strains. The use of too low concentration of biocides can limit the growth of microorganisms, but often only for a short period of time in case of special environmental strains. Later on, they can adapt to adverse environmental conditions and begin to evolve defence mechanisms.
Antianaerobic Activity of Sulopenem Compared to Six Other Agents ▿
Ednie, Lois M.; Appelbaum, Peter C.
2009-01-01
Agar dilution MIC methodology was used to compare the activity of sulopenem with those of amoxicillin/clavulanate, ampicillin/sulbactam, piperacillin-tazobactam, imipenem, clindamycin, and metronidazole against 431 anaerobes. Overall, MIC50/90 values were as follows: sulopenem, 0.25/1.0 μg/ml; amoxicillin/clavulanate, 0.5/2.0 μg/ml; ampicillin/sulbactam, 0.5/4.0 μg/ml; piperacillin/tazobactam, 0.25/8.0 μg/ml; imipenem, 0.06/1.0 μg/ml; clindamycin, 0.25/16.0 μg/ml; and metronidazole, 1.0/4.0 μg/ml. PMID:19223615
Rastogi, N; Goh, K S; Bryskier, A; Devallois, A
1996-01-01
By using the radiometric BACTEC 460-TB methodology, the inhibitory and bactericidal activity of the optically active L-isomer of ofloxacin (levofloxacin) was compared with those of the D-isomer and the commercially available mixture containing equal amounts of DL-isomers (ofloxacin) against the Mycobacterium tuberculosis complex (type strain H37Rv, a panel of drug-susceptible and -resistant clinical isolates including multidrug-resistant isolates of M. tuberculosis, as well as M. africanum, M. bovis, and M. bovis BCG). Levofloxacin MICs (range 0.50 to 0.75 microgram/ml) were about 1 dilution lower than those of ofloxacin (MIC range, 0.75 to 1.00 microgram/ml) and 5 to 6 dilutions lower than those of the D-isomer (MIC range, 32 to 60 micrograms/ml). The MICs of levofloxacin, ofloxacin, and D-ofloxacin at which 90% of the strains are inhibited were 0.50, 1.00, and 64 micrograms/ml, respectively. The multidrug-resistant M. tuberculosis strains resistant to first-line drugs were as susceptible to quinolones as the wild-type drug-susceptible isolates. Levofloxacin at 0.5 microgram/ml showed bactericidal activity comparable to the activities of 1.0 microgram of ofloxacin per ml and 64 micrograms of D-ofloxacin per ml, with MBCs within the range of 0.5 to 2.0 micrograms/ml, compared with MBCs of 0.75 to 4.0 micrograms of ofloxacin per ml for M. tuberculosis, M. africanum, M. bovis BCG. Combination testing of sub-MICs of levolofoxacin with other first-line (isoniazid, rifampin, and ethambutol) and second-line (amikacin and clofazimine) antituberculous drugs was evaluated with various two-, three-, and four-drug combinations; enhanced drug activity was observed in 8 of 25, 12 of 20, and 8 of 15 tests, respectively, indicating that levofloxacin acts in synergy with other antituberculous drugs. PMID:8807049
Barberio, A; Flaminio, B; De Vliegher, S; Supré, K; Kromker, V; Garbarino, C; Arrigoni, N; Zanardi, G; Bertocchi, L; Gobbo, F; Catania, S; Moroni, P
2016-08-01
The objective of this study was to assess the in vitro antimicrobial susceptibility of 73 isolates of Mycoplasma bovis isolated from milk of dairy cattle herds of Belgium, Germany, and Italy. Minimal inhibitory concentration (MIC) values were determined by the microbroth dilution method for the following antimicrobials: erythromycin, spiramycin, tilmicosin, tylosin, lincomycin, enrofloxacin, doxycycline, oxytetracycline, florfenicol, and tiamulin. Macrolides, florfenicol, oxytetracycline, and enrofloxacin, were chosen because they represent antimicrobials families commonly used in several countries for treatment of M. bovis, and their MIC values in cattle population are reported in several studies, allowing a comparison with previous data. Doxycycline and tiamulin were selected to assess the susceptibility of M. bovis to new antimicrobials, because they are not registered in the European Union for the treatment of dairy cattle. Among the agents of the different antimicrobial classes, the macrolides showed the highest concentration to inhibit 90% of isolates (MIC90), all above the highest concentration tested: >8μg/mL for erythromycin, >16μg/mL for spiramycin, and >32μg/mL for tilmicosin and tylosin. Also the MIC90 of lincomycin was above the highest concentration tested (>32μg/mL), but the distribution of the MIC values was almost perfectly bimodal: 41 isolates had a MIC ≤0.5μg/mL and 30 isolates >32μg/mL. Oxytetracycline had a 2-fold higher concentration to inhibit 50% of isolates (2 vs. 0.5μg/mL) and 1-fold higher MIC90 (4 vs. 2μg/mL) than doxycycline. Enrofloxacin and florfenicol had both a MIC90 of 2μg/mL, whereas tiamulin had a MIC90 of 0.5μg/mL. Significant differences on the MIC values were found among the 3 countries for several antimicrobials: compared with Germany, Belgium and Italy showed significantly higher MIC for lincomycin, spiramycin, and tylosin, and lower for oxytetracycline and florfenicol. The Belgian isolates showed the lowest MIC for enrofloxacin compared with Germany and Italy. The MIC results obtained in our study suggest the presence of a high level of resistance of M. bovis isolates originating from milk to macrolides in all countries involved in this study. On the contrary, a low level of resistance was found against the antimicrobials that are not used in cattle, such as tiamulin and doxycycline, highlighting a possible link between antimicrobial treatments and development of resistance in the studied M. bovis population. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Ayatollahi Mousavi, Seyyed Amin; Salari, Samira; Hadizadeh, Sanaz
2015-01-01
Background Dermatophytosis is the common cutaneous infections in humans and animals, which is caused by the keratinophylic fungus called dermatophytes. In recent years, drugs resistance in pathogenic fungi, including dermatophyte strains to the current antifungals have been increased. Objectives The aim of this study was to evaluate the antifungal efficacy of AgNPs against Microsporum canis, Trichophyton mentagrophytes , and Microsporum gypseum. Materials and Methods The antifungal susceptibility of nanosilver particles compared with griseofulvin (GR). Its efficacy was investigated against three strains of dermatophytes by both agar dilution and broth microdilution test (BMD). Results The average minimum inhibitory concentration (MIC) AgNPs on M. canis, T. mentagrophytes and M. gypseum were 200, 180 and 170 μg.mL-1, respectively. Whereas these strains showed MIC of 25, 100 and 50 μg.mL-1 for GR. Conclusions Our finding indicated that the AgNPs was less active than GR but it had anti-dermatophytic effect. PMID:28959308
Latha, Lachimanan Yoga; Darah, Ibrahim; Kassim, Mohd Jain Noordin Mohd; Sasidharan, Sreenivasan
2010-08-01
The antibacterial activity of Vernonia cinerea (L.) extract was investigated using the broth dilution method. The extract showed a favorable antimicrobial activity against Pseudomonas aeruginosa with a minimum inhibition concentration (MIC) value of 3.13 mg/mL. V. cinerea extract at (1/2), 1, or 2 times the MIC significantly inhibited bacterial growth with a noticeable drop in optical density (OD) of the bacterial culture, thus confirming the antibacterial activity of the extract on P. aeruginosa. Imaging using scanning (SEM) and transmission (TEM) electron microscopy was done to determine the major alterations in the microstructure of the extract-treated P. aeruginosa. The main abnormalities noted via SEM and TEM studies were the alteration in morphology of the bacterial cells. The main reason for this destruction was the severe alterations of the cell wall with the formation of holes, invaginations, and morphological disorganization caused by the extract. The authors conclude that the extract may be used as a candidate for the development of antimicrobial agents.
The effect of clary sage oil on staphylococci responsible for wound infections.
Sienkiewicz, Monika; Głowacka, Anna; Poznańska-Kurowska, Katarzyna; Kaszuba, Andrzej; Urbaniak, Anna; Kowalczyk, Edward
2015-02-01
The spreading of bacterial antibiotic resistance among clinical strains of pathogenic bacteria has made investigators to search for other active antibacterial agents which could provide a valuable complement to the existing therapies. To determine the antibacterial activity of clary sage oil (Salvia sclarea L.) against Staphylococcus clinical strains which were isolated from patients with wound infections. A comprehensive evaluation of Staphylococcus clinical strain resistance to antibiotics was performed. The constituents of clary sage oil were assayed by GC-FID-MS analysis. The minimal inhibitory concentration (MIC) of the tested essential oil against staphylococci by the micro-dilution broth method was determined. The clary sage oil was active against Staphylococcus aureus, S. epidermidis and S. xylosus with MIC values ranging from 3.75 to 7.00 µl/ml. The results of the in vitro tests encourage to use formulations containing sage oil as the active natural antimicrobial agent. Because of its antimicrobial properties clary sage oil may be applied to treat wounds and skin infections.
Cirino, Isis Caroline S; Menezes-Silva, Suellen Maria P; Silva, Helena Tainá D; de Souza, Evandro Leite; Siqueira-Júnior, José P
2014-01-01
In an ongoing project to evaluate essential oils as modulators of antibiotic resistance, the essential oil from Origanum vulgare L. (OVEO), as well as its individual constituents carvacrol (CAR) and thymol (THY), were investigated using Staphylococcus aureus strains possessing efflux mechanisms of resistance to norfloxacin, erythromycin and tetracycline. The minimum inhibitory concentration (MIC) values of the antibiotics were determined by agar dilution method, in the absence and in the presence of subinhibitory concentrations of OVEO, CAR or THY. Along with relevant antistaphylococcal activity, OVEO, CAR and THY modulated the activity of tetracycline, i.e. in combination with antibiotics a reduction in the MIC was observed (up to fourfold). The results presented here represent, as far as we know, the first report of OVEO, CAR and THY as putative efflux pump inhibitors. Broadly, these findings indicate that essential oils could serve as potential sources of compounds capable of modulating drug resistance. © 2015 S. Karger AG, Basel.
Synthesis and Bioactivity Evaluation of Novel 2-Salicyloylbenzofurans as Antibacterial Agents.
Phan, Phuong-Thuy T; Nguyen, Thu-Trang T; Nguyen, Hong-Nhung T; Le, Bao-Khanh N; Vu, Thao T; Tran, Dong C; Pham, Tuan-Anh N
2017-04-25
In order to discover new antibacterial agents, series of 2-salicyloylbenzofuran derivatives were designed, synthesized and evaluated for their antibacterial activities against three Gram-(+) strains (methicillin-sensitive Staphylococcus aureus (MSSA) ATCC 29213, methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300, and Streptococcus faecalis ( S. faecalis ) ATCC 29212) and one Gram-(-) strain ( Escherichia coli (E. coli) ATCC 25922). The 2-salicyloylbenzofuran heterocycles were generated by Rap-Stoermer condensation of salicylaldehydes with phenacyl bromides and then converted to diverse O -ether derivatives by Williamson synthesis. The targeted products were screened for in vitro qualitative (zone of inhibition) and quantitative (MIC) antibacterial activities by agar well diffusion assay and agar dilution method. Amongst the compounds, those bearing carboxylic acid functional group were found to exhibit reasonable activity against Gram-(+) bacterial strains including S. faecalis , MSSA and MRSA with the most potent antibacterial agent 8h (MICs = 0.06-0.12 mM). Besides, the 2-salicyloylbenzofurans partly displayed inhibitory activity against MRSA with the best MICs = 0.14 mM ( 8f ) and 0.12 mM ( 8h ). Finally, the antibacterial results preliminarily suggested that the substituent bearing carboxylic acid group at salicyloyl-C2 and the bromine atoms on the benzofuran moiety seem to be the functionality necessary for antibacterial activities.
Anti-fungal and Anti-Mycobacterial activity of plants of Nuevo Leon, Mexico.
Garza, Blanca Alicia Alanis; Arroyo, Joel López; González, Gloria González; González, Elvira Garza; González, Elvira Garza; de Torres, Noemí Waksman; Aranda, Ricardo Salazar
2017-01-01
Severe fungal infections, particularly those caused by Candida spp, have increased in recent decades and are associated with an extremely high rate of morbidity and mortality. Since plants are an important source of potentially bioactive compounds, in this work the antifungal activity of the methanol extracts of 10 plants (Acacia rigidula, Buddleja cordata, Cephalanthus occidentalis, Juglans nigra, Parkinsonia aculeata, Parthenium hysterophorus, Quercus canbyi, Ricinus communis, Salvia coccinea and Teucrium bicolor) were evaluated. The activity was evaluated according to the micro dilution assay described in CLSI M27-A protocol using some clinical isolates of different species of Candida (C. albicans, C. parapsilosis, C. tropicalis, C. krusei and C. glabrata). All extracts showed MIC values < 31.25μg/mL against at least one of the strains used, which is very interesting because it was crude extracts. Acacia rigidula (0.93-3.75μg/mL) and Quercus canbyi (0.93-7.5μg/mL) had antifungal activity against 7 strains with MIC values <8μg/mL in all cases. Furthermore excerpts activity against Mycobacterium tuberculosis (strain H37rv) was evaluated. Only Salvia coccinea and Teucrium bicolor showed MIC values125μg/mL by the method of MABA.
Scheetz, Marc H.; Qi, Chao; Warren, John R.; Postelnick, Michael J.; Zembower, Teresa; Obias, Arlene; Noskin, Gary A.
2007-01-01
The activities of tigecycline alone and in combination with other antimicrobials are not well defined for carbapenem-intermediate or -resistant Acinetobacter baumannii (CIRA). Pharmacodynamic activity is even less well defined when clinically achievable serum concentrations are considered. Antimicrobial susceptibility testing of clinical CIRA isolates from 2001 to 2005 was performed by broth or agar dilution, as appropriate. Tigecycline concentrations were serially increased in time-kill studies with a representative of the most prevalent carbapenem-resistant clone (strain AA557; imipenem MIC, 64 mg/liter). The in vitro susceptibility of the strain was tested by time-kill studies in duplicate against the average free serum steady-state concentrations of tigecycline alone and in combination with various antimicrobials. Ninety-three CIRA isolates were tested and were found to have the following antimicrobial susceptibility profiles: tigecycline, MIC50 of 1 mg/liter and MIC90 of 2 mg/liter; minocycline, MIC50 of 0.5 mg/liter and MIC90 of 8 mg/liter; doxycycline, MIC50 of 2 mg/liter and MIC90 of ≥32 mg/liter; ampicillin-sulbactam, MIC50 of 48 mg/liter and MIC90 of 96 mg/liter; ciprofloxacin, MIC50 of ≥16 mg/liter and MIC90 of ≥16 mg/liter; rifampin, MIC50 of 4 mg/liter and MIC90 of 8 mg/liter; polymyxin B, MIC50 of 1 mg/liter and MIC90 of 1 mg/liter; amikacin, MIC50 of 32 mg/liter and MIC90 of ≥32 mg/liter; meropenem, MIC50 of 16 mg/liter and MIC90 of ≥128 mg/liter; and imipenem, MIC50 of 4 mg/liter and MIC90 of 64 mg/liter. Among the tetracyclines, the isolates were more susceptible to tigecycline than minocycline and doxycycline, according to FDA breakpoints (95%, 88%, and 71% of the isolates were susceptible to tigecycline, minocycline, and doxycycline, respectively). Concentration escalation studies with tigecycline revealed a maximal killing effect near the MIC, with no additional extent or rate of killing at concentrations 2× to 4× the MIC for tigecycline. Time-kill studies demonstrated indifference for tigecycline in combination with the antimicrobials tested. Polymyxin B, minocycline, and tigecycline are the most active antimicrobials in vitro against CIRA. Concentration escalation studies demonstrate that tigecycline may need to approach concentrations higher than those currently achieved in the bloodstream to adequately treat CIRA bloodstream infections. Future studies should evaluate these findings in vivo. PMID:17307973
Katz, Alan R; Komeya, Alan Y; Kirkcaldy, Robert D; Whelen, A Christian; Soge, Olusegun O; Papp, John R; Kersh, Ellen N; Wasserman, Glenn M; O'Connor, Norman P; O'Brien, Pamela S; Sato, Douglas T; Maningas, Eloisa V; Kunimoto, Gail Y; Tomas, Juval E
2017-09-15
The Centers for Disease Control and Prevention (CDC) currently recommends dual therapy with ceftriaxone and azithromycin for gonorrhea to ensure effective treatment and slow emergence of antimicrobial resistance. Since 2013, the prevalence of reduced azithromycin susceptibility increased in the United States; however, these strains were highly susceptible to cephalosporins. We identified a cluster of Neisseria gonorrhoeae isolates with high-level azithromycin resistance, several of which also demonstrated decreased ceftriaxone susceptibility. Eight N. gonorrhoeae isolates collected from 7 patients on Oahu, Hawaii, seen 21 April 2016 through 10 May 2016 underwent routine Etest antimicrobial susceptibility testing by the Hawaii Department of Health. All demonstrated elevated azithromycin minimum inhibitory concentrations (MICs) >256 μg/mL and elevated ceftriaxone MICs (≥0.125 μg/mL). Isolates were sent to the University of Washington and CDC for confirmatory agar dilution testing; sequence data were sent to CDC for analysis. All patients were interviewed and treated, and when possible, partners were interviewed, tested, and treated. All isolates had azithromycin MICs >16 µg/mL and 5 had ceftriaxone MICs = 0.125 µg/mL by agar dilution. All isolates were β-lactamase positive and were resistant to penicillin, tetracycline, and ciprofloxacin. Genomic analysis revealed genetic relatedness. No patients reported recent travel or antibiotic use, and no male patients reported male sex partners. All patients were successfully treated. This cluster of genetically related gonococcal isolates with decreased ceftriaxone susceptibility and high-level azithromycin resistance may bring the threat of treatment failure in the United States with the current recommended dual therapy one step closer. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
Clark, S M; Loeffler, A; Bond, R
2015-07-01
Increasing multidrug resistance amongst canine pathogenic staphylococci has renewed interest in topical antibacterial therapy for skin infections in the context of responsible veterinary prescribing. We therefore determined the activity in vitro of three clinically relevant topical agents and synergism between two of them against Staphylococcus pseudintermedius and Staphylococcus aureus. The MICs of fusidic acid (n = 199), chlorhexidine (n = 198), miconazole (n = 198) and a 1:1 combination of miconazole/chlorhexidine (n = 198) were determined for canine isolates [50 MRSA and 49 methicillin-resistant S. pseudintermedius (MRSP), 50 MSSA and 50 methicillin-susceptible S. pseudintermedius (MSSP)] collected from the UK and Germany using an agar dilution method (CLSI VET01-A4). Fractional inhibitory concentration (FIC) indices were calculated to assess the interaction of miconazole with chlorhexidine. MICs of each drug/combination were significantly (P < 0.0005) higher for S. aureus when compared with S. pseudintermedius. Most strains (n = 172) had an MIC of fusidic acid of ≤0.03 mg/L (MIC ≥64 mg/L, n = 5 MRSA). All strains had MICs of chlorhexidine of 0.5-4 mg/L, except for one MRSA (MIC = 8 mg/L). All but four strains had MICs of miconazole of 1-4 mg/L (MIC = 16 mg/L, n = 3; MIC = 256 mg/L, n = 1). Miconazole/chlorhexidine (1:1 ratio) had a synergistic effect against 49/50 MRSA, 31/50 MSSA, 12/49 MRSP and 23/49 MSSP. Since the majority of these staphylococci, including methicillin-resistant isolates, had MICs that should be readily exceeded by topical skin application of these agents, their therapeutic efficacy for canine superficial pyoderma should be assessed. The synergistic interaction shown in vitro supports further clinical evaluation of miconazole/chlorhexidine combination therapy for staphylococcal infection. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.
Mehta, Supriya D.; Maclean, Ian; Ndinya-Achola, Jeckoniah O.; Moses, Stephen; Martin, Irene; Ronald, Allan; Agunda, Lawrence; Murugu, Ruth; Bailey, Robert C.; Melendez, Johan; Zenilman, Jonathan M.
2011-01-01
We evaluated antimicrobial resistance in Neisseria gonorrhoeae isolated from men enrolled in a randomized trial of male circumcision to prevent HIV. Urethral specimens from men with discharge were cultured for N. gonorrhoeae. MICs were determined by agar dilution. Clinical and Laboratory Standards Institute (CLSI) criteria defined resistance: penicillin, tetracycline, and azithromycin MICs of ≥2.0 μg/ml; a ciprofloxacin MIC of ≥1.0 μg/ml; and a spectinomycin MIC of ≥128.0 μg/ml. Susceptibility to ceftriaxone and cefixime was shown by an MIC of ≤0.25 μg/ml. Additionally, PCR amplification identified mutations in parC and gyrA genes in selected isolates. From 2002 to 2009, 168 N. gonorrhoeae isolates were obtained from 142 men. Plasmid-mediated penicillin resistance was found in 65%, plasmid-mediated tetracycline resistance in 97%, and 11% were ciprofloxacin resistant (quinolone-resistant N. gonorrhoeae [QRNG]). QRNG appeared in November 2007, increasing from 9.5% in 2007 to 50% in 2009. Resistance was not detected for spectinomycin, cefixime, ceftriaxone, or azithromycin, but MICs of cefixime (P = 0.018), ceftriaxone (P < 0.001), and azithromycin (P = 0.097) increased over time. In a random sample of 51 men, gentamicin MICs were as follows: 4 μg/ml (n = 1), 8 μg/ml (n = 49), and 16 μg/ml (n = 1). QRNG increased rapidly and alternative regimens are required for N. gonorrhoeae treatment in this area. Amid emerging multidrug-resistant N. gonorrhoeae, antimicrobial resistance surveillance is essential for effective drug choice. High levels of plasmid-mediated resistance and increasing MICs for cephalosporins suggest that selective pressure from antibiotic use is a strong driver of resistance emergence. PMID:21606224
Metcalf, Benjamin J.; Chochua, Sopio; Li, Zhongya; Gertz, Robert E.; Walker, Hollis; Hawkins, Paulina A.; Tran, Theresa; Whitney, Cynthia G.; McGee, Lesley; Beall, Bernard W.
2016-01-01
ABSTRACT β-Lactam antibiotics are the drugs of choice to treat pneumococcal infections. The spread of β-lactam-resistant pneumococci is a major concern in choosing an effective therapy for patients. Systematically tracking β-lactam resistance could benefit disease surveillance. Here we developed a classification system in which a pneumococcal isolate is assigned to a “PBP type” based on sequence signatures in the transpeptidase domains (TPDs) of the three critical penicillin-binding proteins (PBPs), PBP1a, PBP2b, and PBP2x. We identified 307 unique PBP types from 2,528 invasive pneumococcal isolates, which had known MICs to six β-lactams based on broth microdilution. We found that increased β-lactam MICs strongly correlated with PBP types containing divergent TPD sequences. The PBP type explained 94 to 99% of variation in MICs both before and after accounting for genomic backgrounds defined by multilocus sequence typing, indicating that genomic backgrounds made little independent contribution to β-lactam MICs at the population level. We further developed and evaluated predictive models of MICs based on PBP type. Compared to microdilution MICs, MICs predicted by PBP type showed essential agreement (MICs agree within 1 dilution) of >98%, category agreement (interpretive results agree) of >94%, a major discrepancy (sensitive isolate predicted as resistant) rate of <3%, and a very major discrepancy (resistant isolate predicted as sensitive) rate of <2% for all six β-lactams. Thus, the PBP transpeptidase signatures are robust indicators of MICs to different β-lactam antibiotics in clinical pneumococcal isolates and serve as an accurate alternative to phenotypic susceptibility testing. PMID:27302760
Angeby, K A; Jureen, P; Giske, C G; Chryssanthou, E; Sturegård, E; Nordvall, M; Johansson, A G; Werngren, J; Kahlmeter, G; Hoffner, S E; Schön, T
2010-05-01
To describe wild-type distributions of the MIC of fluoroquinolones for Mycobacterium tuberculosis in relation to current critical concentrations used for drug susceptibility testing and pharmacokinetic/pharmacodynamic (PK/PD) data. A 96-stick replicator on Middlebrook 7H10 medium was used to define the MICs of ciprofloxacin, ofloxacin, moxifloxacin and levofloxacin for 90 consecutive clinical strains and 24 drug-resistant strains. The MICs were compared with routine BACTEC 460 susceptibility results and with MIC determinations in the BACTEC MGIT 960 system in a subset of strains using ofloxacin as a class representative. PK/PD data for each drug were reviewed in relation to the wild-type MIC distribution. The wild-type MICs of ciprofloxacin, ofloxacin, moxifloxacin and levofloxacin were distributed from 0.125 to 1, 0.25 to 1, 0.032 to 0.5 and 0.125 to 0.5 mg/L, respectively. The MIC data correlated well with the BACTEC 960 MGIT and BACTEC 460 results. PD indices were the most favourable for levofloxacin, followed by moxifloxacin, ofloxacin and ciprofloxacin. We propose S (susceptible)
Maurer, Florian P; Pohle, Philipp; Kernbach, Margrit; Sievert, Daniela; Hillemann, Doris; Rupp, Jan; Hombach, Michael; Kranzer, Katharina
2018-06-12
To determine MIC distributions for Mycobacterium chimaera, Mycobacterium intracellulare, Mycobacterium colombiense and Mycobacterium avium, and to derive tentative epidemiological cutoff (ECOFF) values. 683 bacterial isolates (M. chimaera, n = 203; M. intracellulare; n = 77; M. colombiense, n = 68; M. avium, n = 335) from 627 patients were tested by broth microdilution according to CLSI protocol M24-A2 on Sensititre RAPMYCOI plates. MICs were interpreted based on CLSI breakpoints for clarithromycin, and tentative breakpoints for amikacin, moxifloxacin and linezolid. Tentative ECOFFs were determined by visual approximation and the ECOFFinder algorithm. Modal MIC, MIC 50 and MIC 90 values were within ± one dilution step from the respective aggregated dataset for 47 / 48 (97.9 %), 48 / 48 (100 %), and 48 / 48 (100 %) species-drug combinations. Clarithromycin wild-type populations were mostly classified as susceptible (MIC 90 = 4 to 8 mg / l; S ≤ 8 mg/l). Rifabutin MICs were lower than those of rifampicin. Tentative moxifloxacin, linezolid and amikacin breakpoints split wild-type populations. No ECOFFs could be set for rifampicin, ethambutol, ciprofloxacin, isoniazid, trimethoprim/sulfamethoxazole and doxycycline due to truncation of MIC distributions. Agreement between the visually determined and the modelled 97.5 % ECOFFs was 90.9 %. All 99.0 % ECOFFs were one titer step higher than by visual approximation. Drug susceptibility patterns of M. chimaera are comparable to those of closely related species. Except for clarithromycin, breakpoints for MAIC should be reevaluated. Statistical determination of the 99.0 % ECOFF may be superior to visual approximation. Copyright © 2018. Published by Elsevier Ltd.
Kumarasamy, Barani; Manipal, Sunayana; Duraisamy, Prabu; Ahmed, Adil; Mohanaganesh, Sp; Jeevika, C
2014-11-01
Use of alternative medicine to control oral streptococci is a new topic worthy of further investigation. This study aimed to elucidate the dose-dependent anti-bacterial activity of crude aqueous extract of ripe Morinda citrifolia L. (Family: Rubiaceae) fruits against oral streptococci i.e. Streptococcus mutans and Streptococcus mitis, that cause dental caries in humans. Fresh ripe M. citrifolia fruits (750g) were ground in an electronic blender with sterile water (500ml). The crude aqueous extract was lyophilized to yield a brown colored powder. Various concentrations (1000-100μg/ ml) of the extract were tested for its antibacterial activity (Kirby and Bauer method) against whole cells of S. mutans and S. mitis. Minimum Inhibitory Concentration (MIC) was determined by micro-dilution method, using serially diluted (2 folds) fruit extract, according to the National Committee for Clinical Laboratory Standards (NCCLS). Crude aqueous extract (1000μg/ ml) of ripe M. citrifolia fruits effectively inhibited the growth of S. mutans (19±0.5 mm) and S. mitis (18.6±0.3 mm) compared to the streptomycin control (21.6±0.3 mm). The growth inhibition was clearly evident with "nil" bacteriostasis, even after 48 hours of incubation at 37°C. The MIC of the extract for S. mutans and S. mitis was 125 μg and 62.5 μg, respectively. Our results suggest that phytochemicals naturally synthesized by M. citrifolia have an inhibitory effect on oral streptococci. Furthermore, purification and molecular characterization of the "bioactive principle" would enable us to formulate a sustainable oral hygiene product.
Perumal Samy, R; Pachiappan, A; Gopalakrishnakone, P; Thwin, Maung M; Hian, Yap E; Chow, Vincent TK; Bow, Ho; Weng, Joseph T
2006-01-01
Background Burkholderia pseudomallei are the causative agent of melioidosis. Increasing resistance of the disease to antibiotics is a severe problem in treatment regime and has led to intensification of the search for new drugs. Antimicrobial peptides are the most ubiquitous in nature as part of the innate immune system and host defense mechanism. Methods Here, we investigated a group of venoms (snakes, scorpions and honey bee venoms) for antimicrobial properties against two strains of Gram-negative bacteria Burkholderia pseudomallei by using disc-diffusion assay for in vitro susceptibility testing. The antibacterial activities of the venoms were compared with that of the isolated L-amino acid oxidase (LAAO) and phospholipase A2 (PLA2s) enzymes. MICs were determined using broth dilution method. Bacterial growth was assessed by measurement of optical density at the lowest dilutions (MIC 0.25 mg/ml). The cell viability was measured using tetrazolium salts (XTT) based cytotoxic assay. Results The studied venoms showed high antimicrobial activity. The venoms of C. adamanteus, Daboia russelli russelli, A. halys, P. australis, B. candidus and P. guttata were equally as effective as Chloramphenicol and Ceftazidime (30 μg/disc). Among those tested, phospholipase A2 enzymes (crotoxin B and daboiatoxin) showed the most potent antibacterial activity against Gram-negative (TES) bacteria. Naturally occurring venom peptides and phospholipase A2 proved to possess highly potent antimicrobial activity against Burkholderia pseudomallei. The XTT-assay results showed that the cell survival decreased with increasing concentrations (0.05–10 mg/mL) of Crotalus adamanteus venom, with no effect on the cell viability evident at 0.5 mg/mL. Conclusion This antibacterial profile of snake venoms reported herein will be useful in the search for potential antibacterial agents against drug resistant microorganisms like B. pseudomallei. PMID:16784542
Antifungal mechanisms supporting boric acid therapy of Candida vaginitis.
De Seta, Francesco; Schmidt, Martin; Vu, Bao; Essmann, Michael; Larsen, Bryan
2009-02-01
Boric acid is a commonly cited treatment for recurrent and resistant yeast vaginitis, but data about the extent and mechanism of its antifungal activity are lacking. The aim of this study was to use in vitro methods to understand the spectrum and mechanism of boric acid as a potential treatment for vaginal infection. Yeast and bacterial isolates were tested by agar dilution to determine the intrinsic antimicrobial activity of boric acid. Established microbial physiology methods illuminated the mechanism of the action of boric acid against Candida albicans. C. albicans strains (including fluconazole-resistant strains) were inhibited at concentrations attainable intravaginally; as were bacteria. Broth dilution MICs were between 1563 and 6250 mg/L and boric acid proved fungistatic (also reflected by a decrease in CO(2) generation); prolonged culture at 50,000 mg/L was fungicidal. Several organic acids in yeast nitrogen broth yielded a lower pH than equimolar boric acid and sodium borate but were less inhibitory. Cold or anaerobic incubation protected yeast at high boric acid concentrations. Cells maintained integrity for 6 h in boric acid at 37 degrees C, but after 24 h modest intrusion of propidium iodide occurred; loss of plate count viability preceded uptake of vital stain. Growth at sub-MIC concentrations of boric acid decreased cellular ergosterol. The drug efflux pump CDR1 did not protect Candida as CDR1 expression was abrogated by boric acid. Boric acid interfered with the development of biofilm and hyphal transformation. Boric acid is fungistatic to fungicidal depending on concentration and temperature. Inhibition of oxidative metabolism appears to be a key antifungal mechanism, but inhibition of virulence probably contributes to therapeutic efficacy in vivo.
Fass, R J
1991-01-01
The in vitro activity of RP 59500, a semisynthetic pristinamycin, was compared with the activities of vancomycin, oxacillin, ampicillin, gentamicin, ciprofloxacin, and rifampin against five Staphylococcus species, five Streptococcus species, and four Enterococcus species. For staphylococci, MICs were 0.13 to 1 microgram/ml and the MICs for 90% of the strains tested (MIC90s) were 0.13 to 0.5 microgram/ml; there were no differences between oxacillin-susceptible and -resistant strains. For streptococci, MICs were 0.03 to 4 micrograms/ml and MIC90s were 0.25 to 2 micrograms/ml; viridans group streptococci were the least susceptible streptococci. For enterococci, MICs were 0.25 to 32 micrograms/ml and MIC90s were 2 to 4 micrograms/ml; Enterococcus faecalis was the least susceptible. Vancomycin was the only comparative drug with consistent activity against all species of gram-positive cocci. With RP 59500, raising the inoculum 100-fold, lowering the pH of cation-adjusted Mueller-Hinton broth to 5.5, or omitting cation supplementation had little effect on MICs, but 50% serum increased MICs 2 to 4 dilution steps. The differences between MBCs and MICs were greater for staphylococci and enterococci than for streptococci. Time-kill studies with 24 strains indicated that RP 59500 concentrations 2-, 4-, and 16-fold greater than the MICs usually killed bacteria of each species at similar rates; reductions in CFU per milliliter were less than those observed with oxacillin or vancomycin against staphylococci and less than those observed with ampicillin against enterococci. RP 59500 antagonized the bactericidal activities of oxacillin and gentamicin against Staphylococcus aureus ATCC 29213 and that of ampicillin against E. faecalis ATCC 29212. Against the latter, combination with gentamicin was indifferent. RP 59500 has a broad spectrum of in vitro activity against gram-positive cocci; combining it with other drugs is not advantageous. PMID:1903912
Citron, D. M.; Merriam, C. V.; Tyrrell, K. L.; Warren, Y. A.; Fernandez, H.; Goldstein, E. J. C.
2003-01-01
By using an agar dilution method, the in vitro activities of ramoplanin, teicoplanin, vancomycin, linezolid, and five other agents were determined against 300 gram-positive and 54 gram-negative strains of intestinal anaerobes. Ramoplanin was active at ≤2 μg/ml against 287 of 300 (95.7%) gram-positive organisms, including 18 strains of Clostridium difficile for which MICs of ramoplanin were 0.25 to 0.5 μg/ml; for 3 of these, linezolid MICs were 8 to 16 μg/ml. Nineteen Clostridium innocuum strains for which the vancomycin MIC at which 90% of strains were inhibited was 16 μg/ml were susceptible to ramoplanin at 0.06 to 0.25 μg/ml and to teicoplanin at 0.125 to 1.0 μg/ml. All strains of Eubacterium, Actinomyces, Propionibacterium, and Peptostreptococcus spp. were inhibited by ≤0.25 μg of ramoplanin per ml and ≤1 μg of vancomycin per ml. Ramoplanin was also active at ≤4 μg/ml against 15 of 22 of the Prevotella and Porphyromonas strains tested, but ramoplanin MICs for all 31 strains of the Bacteroides fragilis group, the Fusobacterium mortiferum-Fusobacterium varium group, and Veillonella spp. were ≥256 μg/ml. Ramoplanin displays excellent activity against C. difficile and other gram-positive enteric anaerobes, including vancomycin-resistant strains; however, it has poor activity against most gram-negative anaerobes and thus potentially has a lesser effect on the ecological balance of normal fecal flora. PMID:12821492
Yalcın, Husniye Tansel; Ozen, Mehmet Ozgün; Gocmen, Bayram; Nalbantsoy, Ayse
2014-01-01
Cytotoxic and antimicrobial effects of Montivipera xanthina venom against LNCaP, MCF-7, HT-29, Saos-2, Hep3B, Vero cells and antimicrobial activity against selected bacterial and fungal species: Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, E. coli O157H7, Enterococcus faecalis 29212, Enterococcus faecium DSM 13590, Staphylococcus epidermidis ATCC 12228, S. typhimirium CCM 5445, Proteus vulgaris ATCC 6957 and Candida albicans ATCC 10239 were studied for evaluating the potential medical benefit of this snake venom. Cytotoxicity of venom was determined using MTT assay. Snake venom cytotoxicity was expressed as the venom dose that killed 50 % of the cells (IC50). The antimicrobial activity of venom was studied by minimal inhibitory concentration (MIC) and disc diffusion assay. MIC was determined using broth dilution method. The estimated IC50 values of venom varied from 3.8 to 12.7 or from 1.9 to 7.2 μg/ml after treatment with crude venom for 24 or 48 h for LNCaP, MCF-7, HT-29 and Saos-2 cells. There was no observable cytotoxic effect on Hep3B and Vero cells. Venom exhibited the most potent activity against C. albicans (MIC, 7.8 μg/ml and minimal fungicidal concentration, 62.5 μg/ml) and S. aureus (MIC, 31.25 μg/ml). This study is the first report showing the potential of M. xanthina venom as an alternative therapeutic approach due to its cytotoxic and antimicrobial effects.
Gianecini, Ricardo; Oviedo, Claudia; Irazu, Lucia; Rodríguez, Marcelo; Galarza, Patricia
2018-03-29
Gentamicin is a promising antibiotic for the treatment of multidrug-resistant gonorrhea. The aim of this study was to analyze the suitability and reliably of disk diffusion to monitor the susceptibility to gentamicin. We studied 237 Neisseria gonorrhoeae isolates obtained in 2013 and 2015. Reference MICs were correlated with inhibition zone diameters (in millimeters) of gentamicin 10 µg disks manufactured by BBL and Oxoid. The Pearson correlation between disk diffusion and agar dilution was r = -.68 (P < 0.001) for BBL disk and r = -.71 (P < 0.001) for Oxoid disk. No very major or major discrepancies were detected. However, a high percentage of minor discrepancies was observed (44.7%, BBL disk) and (21.9%, Oxoid disk). By adjusting the susceptible breakpoint to S ≥ 17 mm, the minor discrepancies rate was reduced to 19.4% (BBL disk) and 10.1% (Oxoid disk). The disk diffusion may be a screening method in clinical laboratories to detect the gentamicin susceptibility of N. gonorrhoeae. Copyright © 2018 Elsevier Inc. All rights reserved.
Tiamulin resistance in porcine Brachyspira pilosicoli isolates.
Pringle, M; Landén, A; Franklin, A
2006-02-01
There are few studies on antimicrobial susceptibility of Brachyspira pilosicoli, therefore this study was performed to investigate the situation among isolates from pigs. The tiamulin and tylosin susceptibility was determined by broth dilution for 93 and 86 porcine B. pilosicoli isolates, respectively. The isolates came from clinical samples taken in Swedish pig herds during the years 2002 and 2003. The tylosin minimal inhibitory concentration (MIC) was >16 microg/ml for 50% (n=43) of the isolates tested. A tiamulin MIC >2 microg/ml was obtained for 14% (n=13) of the isolates and these were also tested against doxycycline, salinomycin, valnemulin, lincomycin and aivlosin. For these isolates the susceptibility to salinomycin and doxycycline was high but the MICs for aivlosin varied. The relationship between the 13 tiamulin resistant isolates was analyzed by pulsed-field gel electrophoresis (PFGE). Among the 13 isolates 10 different PFGE patterns were identified.
Shin, Jong Hee; Kim, Mi-Na; Jang, Sook Jin; Ju, Min Young; Kim, Soo Hyun; Shin, Myung Geun; Suh, Soon Pal; Ryang, Dong Wook
2012-06-01
The emerging fungal pathogens Candida haemulonii and Candida pseudohaemulonii often show high-level resistance to amphotericin B (AMB). We compared the utilities of five antifungal susceptibility testing methods, i.e., the Etest using Mueller-Hinton agar supplemented with glucose and methylene blue (Etest-MH), the Etest using RPMI agar supplemented with glucose (Etest-RPG), the Vitek-2 yeast susceptibility system, and the Clinical and Laboratory Standards Institute (CLSI) and European Committee on Antimicrobial Susceptibility Testing (EUCAST) broth microdilution methods, for the detection of AMB-resistant isolates of C. haemulonii and closely related species. Thirty-eight clinical isolates (8 C. haemulonii, 10 C. pseudohaemulonii, and 20 Candida auris isolates) were analyzed. Of the 18 C. haemulonii and C. pseudohaemulonii isolates, 18, 15, 18, 10, and 9 exhibited AMB MICs of >1 μg/ml by the Etest-MH, Etest-RPG, Vitek-2, CLSI, and EUCAST methods, respectively. All 20 C. auris isolates showed AMB MICs of ≤1 μg/ml by all five methods. Of the methods, the Etest-MH generated the broadest distribution of AMB MICs for all 38 isolates and showed the best discrimination between the C. haemulonii and C. pseudohaemulonii isolates (4 to 32 μg/ml) and those of C. auris (0.125 to 0.5 μg/ml). Taking the Etest-MH as the reference method, the essential agreements (within two dilutions) for the Etest-RPG, Vitek-2, CLSI, and EUCAST methods were 84, 92, 55, and 55%, respectively; the categorical agreements were 92, 92, 79, and 76%, respectively. This study provides the first data on the efficacy of the Etest-MH and its excellent agreement with Vitek-2 for discriminating AMB-resistant from AMB-susceptible isolates of these Candida species.
Monte, Daniel F. M.; Tavares, Adassa G.; Albuquerque, Allan R.; Sampaio, Fábio C.; Oliveira, Tereza C. R. M.; Franco, Octavio L.; Souza, Evandro L.; Magnani, Marciane
2014-01-01
Multidrug-resistant Salmonella enterica isolates from human outbreaks or from poultry origin were investigated for their ability to develop direct-tolerance or cross-tolerance to sodium chloride, potassium chloride, lactic acid, acetic acid, and ciprofloxacin after habituation in subinhibitory amounts ( of the minimum inhibitory concentration – (MIC) and of the minimum inhibitory concentration – MIC) of Origanum vulgare L. essential oil (OVEO) at different time intervals. The habituation of S. enterica to OVEO did not induce direct-tolerance or cross-tolerance in the tested strains, as assessed by the modulation of MIC values. However, cells habituated to OVEO maintained or increased susceptibility to the tested antimicrobials agents, with up to fourfold double dilution decrease from previously determined MIC values. This study reports for the first time the non-inductive effect of OVEO on the acquisition of direct-tolerance or cross-tolerance in multidrug-resistant S. enterica strains to antimicrobial agents that are largely used in food preservation, as well as to CIP, the therapeutic drug of salmonellosis. PMID:25566231
Al-Ani, Issam; Zimmermann, Stefan; Reichling, Jürgen; Wink, Michael
2015-02-15
The goal of this study was to investigate the antimicrobial activity of bee venom and its main component, melittin, alone or in two-drug and three-drug combinations with antibiotics (vancomycin, oxacillin, and amikacin) or antimicrobial plant secondary metabolites (carvacrol, benzyl isothiocyanate, the alkaloids sanguinarine and berberine) against drug-sensitive and antibiotic-resistant microbial pathogens. The secondary metabolites were selected corresponding to the molecular targets to which they are directed, being different from those of melittin and the antibiotics. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were evaluated by the standard broth microdilution method, while synergistic or additive interactions were assessed by checkerboard dilution and time-kill curve assays. Bee venom and melittin exhibited a broad spectrum of antibacterial activity against 51 strains of both Gram-positive and Gram-negative bacteria with strong anti-MRSA and anti-VRE activity (MIC values between 6 and 800 µg/ml). Moreover, bee venom and melittin showed significant antifungal activity (MIC values between 30 and 100 µg/ml). Carvacrol displayed bactericidal activity, while BITC exhibited bacteriostatic activity against all MRSA and VRE strains tested (reference strains and clinical isolates), both compounds showed a remarkable fungicidal activity with minimum fungicidal concentration (MFC) values between 30 and 200 µg/ml. The DNA intercalating alkaloid sanguinarine showed bactericidal activity against MRSA NCTC 10442 (MBC 20 µg/ml), while berberine exhibited bacteriostatic activity against MRSA NCTC 10442 (MIC 40 µg/ml). Checkerboard dilution tests mostly revealed synergism of two-drug combinations against all the tested microorganisms with FIC indexes between 0.24 and 0.50, except for rapidly growing mycobacteria in which combinations exerted an additive effect (FICI = 0.75-1). In time-kill assays all three-drug combinations exhibited a powerful bactericidal synergistic effect against MRSA NCTC 10442, VRE ATCC 51299, and E. coli ATCC 25922 with a reduction of more than 3log10 in the colony count after 24 h. Our findings suggest that bee venom and melittin synergistically enhanced the bactericidal effect of several antimicrobial agents when applied in combination especially when the drugs affect several and differing molecular targets. These results could lead to the development of novel or complementary antibacterial drugs against MDR pathogens. Copyright © 2015 Elsevier GmbH. All rights reserved.
Antimicrobial activity of jasmine oil against oral microorganisms
NASA Astrophysics Data System (ADS)
Thaweboon, S.; Thaweboon, B.; Kaypetch, R.
2018-02-01
Jasmine sambac is a species of jasmine indigenous to the tropical and warm temperature regions in particular West and Southeast Asia. Essential oil extracted from the flowers of J. sambac has been shown to have anti-oxidant activity. However, very little information regarding antimicrobial activity especially oral microorganisms exists. Objective: To investigate antimicrobial effect of essential oil extracted from flowers of J. sambac against various oral microorganisms. Materials and Methods: Oral microbial strains used in the study were Streptococcus mutans KPSK2, Staphylococcus aureus ATCC 5638, Lactobacillus casei ATCC 6363, Klebsiella pneumoniae (clinical isolate), Escherichia coli ATCC 25922, Candida albicans ATCC 10231, Candida krusei ATCC 6258, Candida parapsilosis ATCC 22019, Candida tropicalis (clinical isolate), Candida glabrata ATCC 90030, Candida pseudotropicalis (clinical isolate) and Candida stellatoidia (clinical isolate). The potential of microbial growth inhibition of the oil was firstly screened by Kirby-Bauer disk diffusion method and then the minimum inhibitory concentration (MIC) was determined by agar dilution method. Results: Jasmine oil showed antimicrobial activities against S. mutans, L. casei, E. coli and all strains of Candida species with the zones of inhibition ranging from 9 to 26 mm and MIC values of 0.19-1.56 %v/v. Conclusion: Results from the present study are scientific evidence to demonstrate that jasmine oil could be employed as a natural antimicrobial agent against oral microorganisms.
Current status of antifungal susceptibility testing methods.
Arikan, Sevtap
2007-11-01
Antifungal susceptibility testing is a very dynamic field of medical mycology. Standardization of in vitro susceptibility tests by the Clinical and Laboratory Standards Institute (CLSI) and the European Committee for Antimicrobial Susceptibility Testing (EUCAST), and current availability of reference methods constituted the major remarkable steps in the field. Based on the established minimum inhibitory concentration (MIC) breakpoints, it is now possible to determine the susceptibilities of Candida strains to fluconazole, itraconazole, voriconazole, and flucytosine. Moreover, utility of fluconazole antifungal susceptibility tests as an adjunct in optimizing treatment of candidiasis has now been validated. While the MIC breakpoints and clinical significance of susceptibility testing for the remaining fungi and antifungal drugs remain yet unclear, modifications of the available methods as well as other methodologies are being intensively studied to overcome the present drawbacks and limitations. Among the other methods under investigation are Etest, colorimetric microdilution, agar dilution, determination of fungicidal activity, flow cytometry, and ergosterol quantitation. Etest offers the advantage of practical application and favorable agreement rates with the reference methods that are frequently above acceptable limits. However, MIC breakpoints for Etest remain to be evaluated and established. Development of commercially available, standardized colorimetric panels that are based on CLSI method parameters has added more to the antifungal susceptibility testing armamentarium. Flow cytometry, on the other hand, appears to offer rapid susceptibility testing but requires specified equipment and further evaluation for reproducibility and standardization. Ergosterol quantitation is another novel approach, which appears potentially beneficial particularly in discrimination of azole-resistant isolates from heavy trailers. The method is yet investigational and requires to be further studied. Developments in methodology and applications of antifungal susceptibility testing will hopefully provide enhanced utility in clinical guidance of antifungal therapy. However, and particularly in immunosuppressed host, in vitro susceptibility is and will remain only one of several factors that influence clinical outcome.
Synthesis and antibacterial activity of sulfonamides. SAR and DFT studies
NASA Astrophysics Data System (ADS)
Boufas, Wahida; Dupont, Nathalie; Berredjem, Malika; Berrezag, Kamel; Becheker, Imène; Berredjem, Hajira; Aouf, Nour-Eddine
2014-09-01
A series of substituted sulfonamide derivatives were synthesized from chlorosulfonyl isocyanate (CSI) in tree steps (carbamoylation, sulfamoylation and deprotection). Antibacterial activity in vitro of some newly formed compounds investigated against clinical strains Gram-positive and Gram-negative: Escherichia coli and Staphylococcus aureus applying the method of dilution and minimal inhibition concentration (MIC) methods. These compounds have significant bacteriostatic activity with totalities of bacterial strains used. DFT calculations with B3LYP/6-31G(d) level have been used to analyze the electronic and geometric characteristics deduced for the stable structure of three compounds presenting conjugation between a nitrogen atom N through its lone pair and an aromatic ring next to it. The principal quantum chemical descriptors have been correlated with the antibacterial activity.
Neut, C; Mahieux, S; Dubreuil, L J
2017-11-01
The main goal of this study was to determine the in vitro susceptibility of strains collected from marketed probiotics to antibiotics used to treat community-acquired infections. The minimum inhibitory concentrations (MICs) of 16 antibiotics were determined using a gradient strip (E test) or the agar dilution method for fidaxomicin. The probiotics demonstrated various antibiotic patterns. Bacterial probiotics are generally susceptible to most prescribed antibiotics orally administered, whereas yeast probiotics, such as Saccharomyces boulardii, are resistant. Special attention must be paid to co-prescriptions of antibiotics and probiotics to ensure that the probiotic strain is not susceptible. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Antimicrobial susceptibility of Clostridium perfringens strains isolated from broiler chickens
Silva, R. O. S.; Salvarani, F.M.; Assis, R.A.; Martins, N.R.S.; Pires, P.S.; Lobato, F.C.F.
2009-01-01
Clostridium perfringens is a normal inhabitant of the intestinal tract of chickens as well as a potential pathogen that causes necrotic enteritis and colangio hepatitis. The minimum inhibitory concentration (MIC) of seven different compounds used for therapy, growth promotion or prevention of coccidiosis was determined by agar dilution method for 55 C. perfringens strains isolated from the intestines of broiler chickens. All strains showed high susceptibility to penicillin, avilamycin, monensin and narasin. Only 7.3% of the strains showed an intermediated sensitivity to lincomycin, and 49 (89.1%) were considered susceptible. For tetracycline and bacitracin, 41.8% and 47.3% of strains, respectively, were considered resistant. PMID:24031355
Jones, R N; Barry, A L
1987-01-01
The ampicillin-sulbactam combination was evaluated in vitro to determine the optimal susceptibility testing conditions among five combination ratios and four fixed concentrations of sulbactam. The organisms tested were markedly resistant to aminopenicillins and most other beta-lactams. The ratio of 2:1 is recommended to assure recognition of the ampicillin-sulbactam spectrum and minimize false-susceptible results among strains known to be resistant to this combination. Proposed MIC breakpoint concentrations were compatible with levels in serum achieved with recommended clinical doses. Cross-resistance analyses comparing ampicillin-sulbactam and amoxicillin-clavulanate showed comparable activity and spectra. However, the major interpretive disagreement was sufficient to require separate testing of these aminopenicillin-inhibitor combinations. The recommended ampicillin-sulbactam MIC susceptibility breakpoints are as follows: (i) less than or equal to 8.0/4.0 micrograms/ml for tests against members of the family Enterobacteriaceae, anaerobes, nonenteric gram-negative bacilli, staphylococci, Haemophilus influenzae, and Branhamella catarrhalis; (ii) the ampicillin MICs alone interpreted by National Committee for Clinical Laboratory Standards criteria should predict ampicillin-sulbactam susceptibility for the enterococci, streptococci, and Listeria monocytogenes. MIC quality control ranges were determined by multiple laboratory broth microdilution trials for the ampicillin-sulbactam 1:1 and 2:1 ratio tests. PMID:3117843
Enhanced in vitro activity of tigecycline in the presence of chelating agents.
Deitchman, Amelia N; Singh, Ravi Shankar Prasad; Rand, Kenneth H; Derendorf, Hartmut
2018-05-01
The lack of availability of novel antibiotic agents and the rise of resistance to existing therapies has led clinicians to utilise combination therapy to adequately treat bacterial infections. Here we examined how chelators may impact the in vitro activity of tigecycline (TIG) against Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumoniae. Minimum inhibitory concentrations (MICs) were determined by broth dilution with and without various combinations of chelators (EDTA and other tetracyclines) and metal ions (i.e. calcium, magnesium). Trimethoprim (TMP) was used as a non-chelating control. Addition of metal ions led to increases in MICs, whilst addition of EDTA led to decreases in MICs. The chelating effects of EDTA were reversed by addition of magnesium and most profoundly calcium. Similar effects of EDTA and calcium were observed for tetracycline (TET) and TMP. When other tetracyclines (TET, oxytetracycline (OXY) and chlortetracycline (CHL)) were used as chelators at concentrations below their MICs, TIG MICs decreased for P. aeruginosa but not for E. coli. Some decreases in TIG MICs were observed for K. pneumoniae when TET and CHL were added. A dose-dependent decrease in TIG MIC was observed for TET and was reversed by the addition of calcium. The presence of effects of EDTA and calcium on TMP MICs indicates that mechanisms outside of TIG chelation likely play a role in enhanced activity. Full characterisation of an unexpected interaction such as TIG-TET with different microorganisms could provide valuable insights into the underlying mechanisms and design of physiologically viable chelators as candidates for future combinations regimens. Copyright © 2018 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
2017-01-01
The alarming increase in multidrug resistance of pathogenic microorganisms to conventional drugs in recent years has prompted the search for new leads in alternative remedies in natural products. Hence, this study was aimed at evaluating the antimicrobial properties of Phragmanthera capitata, a parasitic mistletoe growing on rubber trees. The in vitro antimicrobial activities of the acetone, methanol, ethanol, and aqueous extracts were investigated using five gram-negative and five gram-positive bacteria and four fungi. A 96-well resazurin broth and agar dilution techniques were used for the determination of the Minimum Inhibitory and Bactericidal Concentrations. The antibacterial activity of the organic extracts had comparative effects on all the bacteria with a MIC of 1.25 to 5 mg/mL and MBC of 2.5 to 10 mg/mL. However, the acetone extract showed higher bactericidal effect while the aqueous extract was not active. The organic solvent extracts also showed antifungal activities on two of the fungi with a MIC of 1.25 mg/mL to 10 mg/mL. However, the aqueous extract had the highest activity inhibiting all the fungi with a MIC of ≤0.3125 to 1.25 mg/mL. The study supports the ethnomedicinal claims of P. capitata as a remedy for the diseases/infections caused by these organisms. PMID:28642934
Nenoff, P; Haustein, U-F; Hittel, N
2004-10-01
The in vitro activity of nadifloxacin (OPC-7251), a novel topical fluoroquinolone, was assessed and compared with those of ofloxacin, oxacillin, flucloxacillin, cefotiam, erythromycin, clindamycin, and gentamicin against 144 Gram-positive bacteria: 28 Staphylococcus aureus, 10 Streptococcus spp., 68 coagulase-negative staphylococci (CNS), 36 Propionibacterium acnes, and 2 Propionibacterium granulosum strains. All strains originated from bacterial-infected skin disease and were isolated from patients with impetigo, secondary infected wounds, folliculitis and sycosis vulgaris, and impetiginized dermatitis. In vitro susceptibility of all clinical isolates was tested by agar dilution procedure and minimum inhibitory concentrations (MICs) were determined. Nadifloxacin was active against all aerobic and anaerobic isolates. MIC(90) (MIC at which 90% of the isolates are inhibited) was 0.1 microg/ml for S. aureus, 0.78 microg/ml for both Streptococcus spp. and CNS, and 0.39 microg/ml for Propionibacterium spp. On the other hand, resistant strains with MICs exceeding 12.5 mug/ml were found in tests with the other antibiotics. For both CNS and Propionibacterium acnes, MIC(90) values > or =100 microg/ml were demonstrated for erythromycin. Ofloxacin, cefotiam, erythromycin, clindamycin and gentamicin exhibited MIC(90) values < or =1 microg/ml for some bacterial species tested. Both oxacillin and flucloxacillin were active against all investigated bacterial species with MIC(90) values < or =1 microg/ml. In summary, nadifloxacin, a topical fluoroquinolone, was found to be highly active against aerobic and anaerobic bacteria isolated from patients with infected skin disease, and seems to be a new alternative for topical antibiotic treatment in bacterial skin infections.
Takahashi, I; Yoshida, T
1989-05-01
In vitro activities of ofloxacin (OFLX), a new quinolone derivative, against 29 strains of Mycoplasma gallisepticum was compared with those of 4 commonly used antimicrobial agents, doxycycline (DOXY), tylosin (TS), spectinomycin (SPCM) and thiamphenicol (TP). Antimycoplasmal activities of the drugs were evaluated on the MIC (final MIC) and MPC (minimum mycoplasmacidal concentration) values which were determined by a broth dilution procedure. The following results were obtained. 1. The MIC90s of OFLX and DOXY were both 0.20 micrograms/ml. The MICs of TS were distributed through a wide range (less than or equal to 0.006 - 0.78 micrograms/ml), and its MIC90 was 0.78 micrograms/ml. Of 29 M. gallisepticum strains, 27.6% were recognized as TS-resistant. The MIC90 values of SPCM and TP were 1.56 micrograms/ml and 3.13 micrograms/ml, respectively. The MIC90 of OFLX was equal to that of DOXY and 4- to 16-fold smaller than the values of the other 3 antibiotics. 2. The MPC of OFLX was the lowest among the antibiotics tested, its MPC90 value was 0.39 micrograms/ml and was followed by DOXY (1.56 micrograms/ml). The MPCs of TS were distributed in a wide range (0.012 - 3.13 micrograms/ml), and its MPC90 was 3.13 micrograms/ml. The MPC90 values of SPCM and TP were both 6.25 micrograms/ml. Therefore, the mycoplasmacidal activity of OFLX evaluated with MPC90 values was 4- to 16-fold greater than those of the other 4 antibiotics.
Conville, Patricia S; Brown-Elliott, Barbara A; Wallace, Richard J; Witebsky, Frank G; Koziol, Deloris; Hall, Geraldine S; Killian, Scott B; Knapp, Cindy C; Warshauer, David; Van, Tam; Wengenack, Nancy L; Deml, Sharon; Woods, Gail L
2012-04-01
Antimicrobial susceptibility testing (AST) of clinical isolates of Nocardia is recommended to detect resistance to commonly used antimicrobial agents; such testing is complicated by difficulties in inoculum preparation and test interpretation. In this study, six laboratories performed repetitive broth microdilution testing on single strains of Nocardia brasiliensis, Nocardia cyriacigeorgica, Nocardia farcinica, Nocardia nova, and Nocardia wallacei. For each isolate, a total of 30 microdilution panels from three different lots were tested at most sites. The goal of the study was to determine the inter- and intralaboratory reproducibility of susceptibility testing of this group of isolates. Acceptable agreement (>90% agreement at ±1 dilution of the MIC mode) was found for amikacin, ciprofloxacin, clarithromycin, and moxifloxacin. After eliminating MIC values from single laboratories whose results showed the greatest deviation from those of the remaining laboratories, acceptable agreement was also found for amoxicillin-clavulanic acid, linezolid, minocycline, and tobramycin. Results showed unsatisfactory reproducibility of broth microdilution testing of ceftriaxone with N. cyriacigeorgica and N. wallacei, tigecycline with N. brasiliensis and N. cyriacigeorgica, and sulfonamides with N. farcinica and N. wallacei. N. nova ATCC BAA-2227 is proposed as a quality control organism for AST of Nocardia sp., and the use of a disk diffusion test for sulfisoxazole is proposed as a check of the adequacy of the inoculum and to confirm sulfonamide MIC results.
Yamada, M; Yoshida, J; Hatou, S; Yoshida, T; Minagawa, Y
2008-01-01
Background: Staphylococcus epidermidis is one of the prominent pathogens in ocular infection. The prevalence of mutations in the quinolone resistance determining region (QRDR) area in S epidermidis isolated from the ocular surface and its association with fluoroquinolone resistance has not been fully elucidated. Methods: Mutations in the QRDR of gyrA, gyrB, parC, and parE genes of 138 isolates of S epidermidis recovered from the human conjunctival flora were analysed. The minimal inhibitory concentrations (MICs) of four fluoroquinolones (levofloxacin, gatifloxacin, moxifloxacin and tosufloxacin) against these isolates were also determined using agar dilution methods. Results: The MIC90 values of levofloxacin, gatifloxacin, moxifloxacin and tosufloxacin were 3.13, 1.56, 0.78 and 3.13 μg/ml, respectively. The MIC values of all fluoroquinolones showed a bimodal distribution (susceptible strain and less susceptible strain). Mutations with amino acid substitution in the QRDR were present in 70 (50.7%) isolates. 19 different combinations of mutations were detected: 3 isolates (2.2%) had four mutations, 8 (5.8%) had three mutations, 43 (31.2%) had double mutations and 16 (11.6%) had single mutations. Isolates with mutations in the QRDR of both gyrA and parC (n = 53) were less susceptible to fluoroquinolones. Conclusions: The present findings show that approximately half the S epidermidis isolates from the normal human conjunctiva have mutation(s) in the QRDR. The presence of mutations in both gyrA and parC is strongly associated with reduced susceptibility to fluoroquinolones. PMID:18460536
Arendrup, Maiken Cavling; Garcia-Effron, Guillermo; Lass-Flörl, Cornelia; Lopez, Alicia Gomez; Rodriguez-Tudela, Juan-Luis; Cuenca-Estrella, Manuel; Perlin, David S.
2010-01-01
This study compared nine susceptibility testing methods and 12 endpoints for anidulafungin, caspofungin, and micafungin with the same collection of blinded FKS hot spot mutant (n = 29) and wild-type isolates (n = 94). The susceptibility tests included EUCAST Edef 7.1, agar dilution, Etest, and disk diffusion with RPMI-1640 plus 2% glucose (2G) and IsoSensitest-2G media and CLSI M27A-3. Microdilution plates were read after 24 and 48 h. The following test parameters were evaluated: fks hot spot mutants overlapping the wild-type distribution, distance between the two populations, number of very major errors (VMEs; fks mutants misclassified as susceptible), and major errors (MEs; wild-type isolates classified as resistant) using a wild-type-upper-limit value (WT-UL) (two twofold-dilutions higher than the MIC50) as the susceptibility breakpoint. The methods with the lowest number of errors (given as VMEs/MEs) across the three echinocandins were CLSI (12%/1%), agar dilution with RPMI-2G medium (14%/0%), and Etest with RPMI-2G medium (8%/3%). The fewest errors overall were observed for anidulafungin (4%/1% for EUCAST, 4%/3% for CLSI, and 3%/9% for Etest with RPMI-2G). For micafungin, VME rates of 10 to 71% were observed. For caspofungin, agar dilution with either medium was superior (VMEs/MEs of 0%/1%), while CLSI, EUCAST with IsoSensitest-2G medium, and Etest were less optimal (VMEs of 7%, 10%, and 10%, respectively). Applying the CLSI breakpoint (S ≤ 2 μg/ml) for CLSI results, 89.2% fks hot spot mutants were classified as anidulafungin susceptible, 60.7% as caspofungin susceptible, and 92.9% as micafungin susceptible. In conclusion, no test was perfect, but anidulafungin susceptibility testing using the WT-UL to define susceptibility reliably identified fks hot spot mutants. PMID:19884370
Essential oil of Algerian Eucalyptus citriodora: Chemical composition, antifungal activity.
Tolba, H; Moghrani, H; Benelmouffok, A; Kellou, D; Maachi, R
2015-12-01
Essential oil of Eucalyptus citriodora is a natural product which has been attributed for various medicinal uses. In the present investigation, E. citriodora essential oil was used to evaluate its antifungal effect against medically important dermatophytes. Essential oil from the Algerian E. citriodora leaves was analyzed by GC and GC/MS. The antifungal effect of E. citriodora essential oil was evaluated against four dermatophytes: Microsporum canis, Microsporum gypseum, Trichophyton mentagrophytes, Trichophyton rubrum using disc diffusion method, disc volatilization method, and agar dilution method. The chemical composition of the oil revealed the presence of 22 compounds accounting for 95.27% of the oil. The dominant compounds were citronellal (69.77%), citronellol (10.63%) and isopulegol (4.66%). The disc diffusion method, MIC and MFC determination, indicated that E. citriodora essential oil had a higher antifungal potential against the tested strains with inhibition zone diameter which varied from (12 to 90mm) and MIC and MFC values ranged from (0.6 to 5μL/mL and 1.25 to 5μL/mL) respectively. The M. gypseum was the most resistant to the oil. The results of the present study indicated that E. citriodora essential oil may be used as a new antifungal agent recommended by the pharmaceutical industries. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Maleki Dizaj, Solmaz; Lotfipour, Farzaneh; Barzegar-Jalali, Mohammad; Zarrintan, Mohammad-Hossein; Adibkia, Khosro
2017-05-01
Ciprofloxacin HCl-loaded calcium carbonate (CaCO 3 ) nanoparticles were prepared via a w/o microemulsion method and characterized by dynamic light scattering, scanning electron microscopy, X-ray powder diffraction (XRPD) analysis, differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR). The in vitro drug release profiles as well as antimicrobial effect against Staphylococcus aureus (S. aureus) were also evaluated. The antibacterial effect was studied using serial dilution technique to determine the minimum inhibitory concentration (MIC) of the nanoparticles and was confirmed by streak cultures. The mean particle size, drug loading and entrapment efficiency were calculated to be 116.09 nm, 20.49% and 44.05%, respectively. PXRD and FTIR studies confirmed that both vaterite and calcite polymorphs of CaCO 3 were formed during the preparation process. In vitro release profiles of the nanoparticles showed slow release pattern for 12 h. The drug-loaded nanoparticles showed similar MICs against S. aureus compared to untreated drug. However, a preserved antimicrobial effect was observed for drug-loaded nanoparticles compared to untreated drug after 2 days of incubation.
Antifungal activity of multifunctional Fe 3O 4-Ag nanocolloids
NASA Astrophysics Data System (ADS)
Chudasama, Bhupendra; Vala, Anjana K.; Andhariya, Nidhi; Upadhyay, R. V.; Mehta, R. V.
2011-05-01
In recent years, rapid increase has been observed in the population of microbes that are resistant to conventionally used antibiotics. Antifungal drug therapy is no exception and now resistance to many of the antifungal agents in use has emerged. Therefore, there is an inevitable and urgent medical need for antibiotics with novel antimicrobial mechanisms. Aspergillus glaucus is the potential cause of fatal brain infections and hypersensitivity pneumonitis in immunocompromised patients and leads to death despite aggressive multidrug antifungal therapy. In the present article, we describe the antifungal activity of multifunctional core-shell Fe 3O 4-Ag nanocolloids against A. glaucus isolates. Controlled experiments are also carried out with Ag nanocolloids in order to understand the role of core (Fe 3O 4) in the antifungal action. The minimum inhibitory concentration (MIC) of nanocolloids is determined by the micro-dilution method. MIC of A. glaucus is 2000 μg/mL. The result is quite promising and requires further investigations in order to develop a treatment methodology against this death causing fungus in immunocompromised patients.
beta-lactamase production by oral pigmented Prevotella species isolated from young children.
Könönen, E; Nyfors, S; Mättö, J; Asikainen, S; Jousimies-Somer, H
1997-09-01
The frequency of beta-lactamase production by oral pigmented Prevotella species isolated from 23 healthy young children and the minimal inhibitory concentrations (MICs) for 186 available beta-lactamase-positive isolates were examined by using the chromogenic cephalosporin disk test (AB BIODISK, Solna, Sweden) and the Etest (AB BIODISK) and/or the agar dilution method of the National Committee for Clinical Laboratory Standards (Villanova, PA, USA), respectively. beta-Lactamase-positive Prevotella melaninogenica strains were isolated from all children, and more than two-thirds of the Prevotella denticola and Prevotella loescheii strains isolated from the children were beta-lactamase-positive. The beta-lactamase-producing Prevotella intermedia group consisted of Prevotella nigrescens and the P. intermedia/ P. nigrescens-like organism (PINLO); P. intermedia was not found. Only two P. nigrescens isolates but most of the PINLO isolates produced beta-lactamase. The MICs for beta-lactamase-producing strains varied between 0.38 and 64 micrograms/mL. beta-Lactamase production by oral pigmented Prevotella species colonizing young children is already frequent. The phenomenon should be taken into account in the treatment of pediatric anaerobic infections of oral origin.
Pilot Study of Antimicrobial Resistance in Northern Bobwhites (Colinus virginianus).
Zhang, Michael; Shen, Zhenyu; Rollins, Dale; Fales, William; Zhang, Shuping
2017-09-01
Antimicrobial resistance (AMR) is an important issue for both wildlife conservation and public health. The purpose of this study was to screen for AMR in fecal bacteria isolated from northern bobwhite (Colinus virginianus), a species that is an ecologically and economically important natural resource in the southern United States. The antimicrobial susceptibility profiles of 45 Escherichia coli isolates, 20 Enterococcus faecalis isolates, and 10 Enterococcus faecium isolates were determined using the Sensititer TM microbroth dilution minimum inhibitory concentration (MIC) plate, AVIAN1F. Overall, E. coli isolates had high MIC values for the following classes of antimicrobials: aminocoumarins, beta-lactams, lincosamides, macrolides, florfenicol, and sulfonamides. Enterococcus faecalis and E. faecium isolates had high MICs for aminocyclitols, aminoglycosides, beta-lactams, lincosamides, and sulfonamides. Enterococcus faecalis isolates also showed high MICs for aminocoumarins, while E. faecium isolates had high MICs for trimethoprim/sulfamethoxazole and tetracycline. Based on available veterinary interpretive criteria, 15% and 33% of E. coli isolates were resistant to sulphathiazole and sulphadimethoxine, respectively. Intermediate susceptibility to florfenicol was seen with 17.8% of E. coli isolates. Twenty percent of E. faecalis and 80% of E. faecium isolates were resistant to high-concentration streptomycin. One third of E. faecalis and 70% of E. faecium isolates were intermediately susceptible to erythromycin. Ten percent of E. faecium isolates were resistant to tetracycline and oxytetracycline. A comparison of available MIC suggests that AMR in wild bobwhite is less severe than in domestic poultry. Further investigation is needed to determine the source of AMR in wild bobwhite.
Famewo, Elizabeth Bosede; Clarke, Anna Maria; Afolayan, Anthony Jide
2017-10-01
In many immunocompromised patients, opportunistic bacterial and fungal infections are common. Polyherbal medicines examined in this study are used by the indigenous people of South Africa for the treatment of tuberculosis (TB) and other opportunistic infections associated with TB. To evaluate the antibacterial and antifungal activity of nine polyherbal remedies against four Gram-positive and Gram-negative bacteria respectively and three fungi. Agar dilution method was used to determine the minimum inhibitory concentration (MIC) of the remedies against the organisms. The inhibitory activity of the polyherbal medicines based on the overall MIC revealed that HBfs and FB remedies were the most active remedies against the bacterial isolates at the concentration of 2.5 mg/mL, followed by HBts remedy at 5.0 mg/mL. However, the MIC valves of KWTa, KWTb, KWTc, HBss, EL and AL remedies were higher than 5.0 mg/mL which was the highest concentration used. Only KWTa remedy showed activity against Aspergillus niger and Aspergillus fumigatus with the MIC value of 2.5 mg/mL. While KWTc and HBts had the highest activity at 1.25 mg/mL against Candida albicans , the remaining remedies were active at 2.5 mg/mL. This study revealed that some of these polyherbal formulations have activities against some of the opportunistic bacterial and fungal isolates associated with TB patients. The capability of these remedies to inhibit the organisms is an indication that they are a potential broad-spectrum antimicrobial agent. However, the remedies that are inactive might contain stimulant effects on the immune system. In the Eastern Cape Province of South Africa, no study has been reported on the effect of polyherbal remedies used for the treatment of TB on the opportunistic pathogen. This study therefore revealed that some of the polyherbal medicines possess activity against bacterial and fungal pathogens. Abbreviations used: TB: Tuberculosis; MIC: Minimum Inhibitory Concentration; CFU/ML: Colony Forming Unit Per Mill.
Characterization of carbapenem-resistant Gram-negative bacteria from Tamil Nadu.
Nachimuthu, Ramesh; Subramani, Ramkumar; Maray, Suresh; Gothandam, K M; Sivamangala, Karthikeyan; Manohar, Prasanth; Bozdogan, Bülent
2016-10-01
Carbapenem resistance is disseminating worldwide among Gram-negative bacteria. The aim of this study was to identify carbapenem-resistance level and to determine the mechanism of carbapenem resistance among clinical isolates from two centres in Tamil Nadu. In the present study, a total of 93 Gram-negative isolates, which is found to be resistant to carbapenem by disk diffusion test in two centres, were included. All isolates are identified at species level by 16S rRNA sequencing. Minimal inhibitory concentrations (MICs) of isolates for Meropenem were tested by agar dilution method. Presence of blaOXA, blaNDM, blaVIM, blaIMP and blaKPC genes was tested by PCR in all isolates. Amplicons were sequenced for confirmation of the genes. Among 93 isolates, 48 (%52) were Escherichia coli, 10 (%11) Klebsiella pneumoniae, nine (%10) Pseudomonas aeruginosa. Minimal inhibitory concentration results showed that of 93 suspected carbapenem-resistant isolates, 27 had meropenem MICs ≥ 2 μg/ml. The MIC range, MIC50 and MIC90 were < 0.06 to >128 μg/ml, 0.12 and 16 μg/ml, respectively. Fig. 1 . Among meropenem-resistant isolates, E. coli were the most common (9/48, 22%), followed by K. pneumoniae (7/9, 77%), P. aeruginosa (6/10, 60%), Acinetobacter baumannii (2/2, 100%), Enterobacter hormaechei (2/3, 67%) and one Providencia rettgeri (1/1, 100%). PCR results showed that 16 of 93 carried blaNDM, three oxa181, and one imp4. Among blaNDM carriers, nine were E. coli, four Klebsiella pneumoniae, two E. hormaechei and one P. rettgeri. Three K. pneumoniae were OXA-181 carriers. The only imp4 carrier was P. aeruginosa. A total of seven carbapenem-resistant isolates were negatives by PCR for the genes studied. All carbapenem-resistance gene-positive isolates had meropenem MICs >2 μg/ml. Our results confirm the dissemination of NDM and emergence of OXA-181 beta-lactamase among Gram-negative bacteria in South India. This study showed the emergence of NDM producer in clinical isolates of E. hormaechei and P. rettgeri in India.
Goldstein, Ellie J C; Citron, Diane M; Merriam, C Vreni; Warren, Yumi A; Tyrrell, Kerin L; Fernandez, Helen T
2004-06-01
Telavancin is a new semisynthetic glycopeptide anti-infective with multiple mechanisms of action, including inhibition of bacterial membrane phospholipid synthesis and inhibition of bacterial cell wall synthesis. We determined the in vitro activities of telavancin, vancomycin, daptomycin, linezolid, quinupristin-dalfopristin, imipenem, piperacillin-tazobactam, and ampicillin against 268 clinical isolates of anaerobic gram-positive organisms and 31 Corynebacterium strains using agar dilution methods according to National Committee for Clinical Laboratory Standards procedures. Plates with daptomycin were supplemented with Ca(2+) to 50 mg/liter. The MICs at which 90% of isolates tested were inhibited (MIC(90)s) for telavancin and vancomycin were as follows: Actinomyces spp. (n = 45), 0.25 and 1 microg/ml, respectively; Clostridium difficile (n = 14), 0.25 and 1 microg/ml, respectively; Clostridium ramosum (n = 16), 1 and 4 microg/ml, respectively; Clostridium innocuum (n = 15), 4 and 16 microg/ml, respectively; Clostridium clostridioforme (n = 15), 8 and 1 microg/ml, respectively; Eubacterium group (n = 33), 0.25 and 2 microg/ml, respectively; Lactobacillus spp. (n = 26), 0.5 and 4 microg/ml, respectively; Propionibacterium spp. (n = 34), 0.125 and 0.5 microg/ml, respectively; Peptostreptococcus spp. (n = 52), 0.125 and 0.5 microg/ml, respectively; and Corynebacterium spp. (n = 31), 0.03 and 0.5 microg/ml, respectively. The activity of TD-6424 was similar to that of quinupristin-dalfopristin for most strains except C. clostridioforme and Lactobacillus casei, where quinupristin-dalfopristin was three- to fivefold more active. Daptomycin had decreased activity (MIC > 4 microg/ml) against 14 strains of Actinomyces spp. and all C. ramosum, Eubacterium lentum, and Lactobacillus plantarum strains. Linezolid showed decreased activity (MIC > 4 microg/ml) against C. ramosum, two strains of C. difficile, and 15 strains of Lactobacillus spp. Imipenem and piperacillin-tazobactam were active against >98% of strains. The MICs of ampicillin for eight Clostridium spp. and three strains of L. casei were >1 microg/ml. The MIC(90) of TD-6424 for all strains tested was =2 microg/ml. TD-6424 has potential for use against infections with gram-positive anaerobes and deserves further clinical evaluation.
Yamaguchi, Keizo; Ishii, Yoshikazu; Iinuma, Yoshitsugu; Yamanaka, Kiyoharu; Ichiyama, Satoshi; Watanabe, Naoki; Uehara, Nobuyuki; Kaku, Mitsuo; Kurokawa, Yukinori; Hayashi, Mutsumu; Hirakata, Yoichi
2003-12-01
The parenteral injection of ciprofloxacin (CPFX), a fluoroquinolone antimicrobial drug, was approved in September 2000 and a re-examination period of 6 years was set at that time. As a special investigation to apply for re-examination of this drug, it has been planned to conduct 3 nationwide surveillances during the re-examination period by collecting clinically isolated bacteria from patients with severe infections, to whom the drug was mainly indicated, and examining drug susceptibilities of the bacteria to various parenteral antimicrobial drugs including CPFX. This time, we determined the minimum inhibitory concentrations (MICs) of various parenteral antimicrobial drugs including CPFX against 1,220 strains isolated from patients with severe infections by the micro-liquid dilution method and compared susceptibilities of various clinically isolated bacteria to CPFX with those to other antimicrobial drugs. Gram-positive bacteria were less susceptible to CPFX than to carbapenems except 2 bacterial species, Enterococcus faecium and Enterococcus avium but susceptibilities of methicillin-susceptible Staphylococcus aureus (MSSA), Staphylococcus epidermidis and Enterococcus faecalis to CPFX were comparable to those to cefozopran. Susceptibility of Streptococcus pneumoniae to CPFX did not differ among ampicillin (ABPC)-susceptible Streptococcus pneumoniae (MIC of ABPC: < 0.25 microgram/ml), ABPC-intermediate S. pneumoniae (MIC of ABPC: 0.25-2 micrograms/ml) and ABPC-resistant S. pneumoniae (MIC of ABPC: > or = 4 micrograms/ml) MIC90 of CPFX: 1 microgram/ml) and a decrease in the antimicrobial activity seen among cephem and carbapenem antimicrobial drugs against penicillin-intermediate strains was not noted with CPFX. Gram-negative bacteria were susceptible to CPFX similarly to carbapenems and the MIC90 values of CPFX were in the range from < or = 0.063 to 2 micrograms/ml against strains except Stenotrophomonas maltophilia and Burkholderia cepacia. Pseudomonas aeruginosa was most susceptible to CPFX among the antibacterial drugs examined and the MIC90 was 2 micrograms/ml. CPFX also showed the lowest MIC90 value (0.5 microgram/ml) against beta-lactam-resistant P. aeruginosa among the drugs examined. When extended-spectrum beta-lactamase (ESBL) production and class B beta-lactamase production were examined in 439 strains of Enterobacteriaceae and 168 strains of glucose non-fermentative bacteria out of the Gram-negative bacteria collected this time, 3 strains (0.49%) producing ESBL and 7 strains (1.15%) producing class B beta-lactamase were found. The MIC range of CPFX to these 10 strains was between < or = 0.063 to 8 micrograms/ml and 5 strains among those showed susceptibilities (MIC of CPFX: 1 microgram/ml) based on the NCCLS breakpoint. CPFX also showed a satisfactory result concerning susceptibilities of major causal bacteria based on the report of the committee of Japan Society of Chemotherapy on the standard method for determination of susceptibility to antimicrobial agents, the breakpoint of pneumonia. Furthermore, susceptibilities of various bacteria isolated clinically from patients with severe infections this time did not differ much from the result of the nationwide surveillance which we conducted in 1997. Thus, it was concluded that the antimicrobial activity of CPFX was maintained in the post-marketing surveillance for its parenteral preparation.
Tomita, Sachiyo; Kasai, Shunsuke; Imamura, Kentaro; Ihara, Yuichiro; Kita, Daichi; Ota, Koki; Sekino, Jin; Nakagawa, Taneaki; Saito, Atsushi
2015-02-01
This study aimed to assess changes in antimicrobial susceptibilities of subgingival bacteria in acute periodontal lesions following systemic administration of a new-generation fluoroquinolone, sitafloxacin and to monitor the occurrence and fate of quinolone low-sensitive strains. Patients with acute phase of chronic periodontitis were subjected to microbiological assessment of their subgingival plaque samples at baseline (A1). Sitafloxacin was then administered systemically (100 mg/day for 5 days). The microbiological examinations were repeated one week after administration (A2). Susceptibilities of clinical isolates from acute sites to various antimicrobials were determined using broth and agar dilution methods. At A2, subgingival bacteria with low sensitivity to levofloxacin were identified in four patients, and they were subjected to a follow-up microbiological examination at on the average 12 months after sitafloxacin administration (A3). The patients received initial and supportive periodontal therapy during the period A2 to A3. From the examined subgingival sites, 8 and 19 clinical isolates were obtained at A2 and A3, respectively. Some Streptococcus strains isolated at A2 were found to be resistant to levofloxacin (MIC 16-64 μg/ml), azithromycin (MIC 2->128 μg/ml) or clarithromycin (MIC 1->32 μg/ml). At A3, isolated streptococci were highly susceptible to levofloxacin (MIC 0.5-2 μg/ml), while those resistant to azithromycin or clarithromycin were still isolated. It is suggested that the presence of the quinolone low-sensitive strains in initially acute lesions after sitafloxacin administration was transient, and they do not persist in the subgingival milieu during the periodontal therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hu, Jiali; Zhang, Jing; Wu, Shi; Zhu, Demei; Huang, Haihui; Chen, Yuancheng; Yang, Yang; Zhang, Yingyuan
2014-12-01
This study evaluated the in vitro anti-anaerobic activity and spectrum of levornidazole, its metabolites and comparators against 375 clinical isolates of anaerobic bacteria, including Gram-negative bacilli (181 strains), Gram-negative cocci (11 strains), Gram-positive bacilli (139 strains) and Gram-positive cocci (44 strains), covering 34 species. Minimum inhibitory concentrations (MICs) of levornidazole, its five metabolites and three comparators against these anaerobic isolates were determined by the agar dilution method. Minimum bactericidal concentrations (MBCs) of levornidazole and metronidazole were measured against 22 strains of Bacteroides fragilis. Levornidazole showed good activity against B. fragilis, other Bacteroides spp., Clostridium difficile, Clostridium perfringens and Peptostreptococcus magnus, evidenced by MIC90 values of 0.5, 1, 0.25, 2 and 1mg/L, respectively. The activity of levornidazole and the comparators was poor for Veillonella spp. Generally, levornidazole displayed activity similar to or slightly higher than that of metronidazole, ornidazole and dextrornidazole against anaerobic Gram-negative bacilli, Gram-positive bacilli and Gram-positive cocci, especially B. fragilis. Favourable anti-anaerobic activity was also seen with levornidazole metabolites M1 and M4 but not M2, M3 or M5. For the 22 clinical B. fragilis strains, MBC50 and MBC90 values of levornidazole were 2mg/L and 4mg/L, respectively. Both MBC50/MIC50 and MBC90/MIC90 ratios of levornidazole were 4, similar to those of metronidazole. Levornidazole is an important anti-anaerobic option in clinical settings in terms of its potent and broad-spectrum in vitro activity, bactericidal property, and the anti-anaerobic activity of its metabolites M1 and M4. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
Zheng, Heping; Wu, Xingzhong; Huang, Jinmei; Qin, Xiaolin; Xue, Yaohua; Zeng, Weiying; Lan, Yinyuan; Ou, Jiangli; Tang, Sanmei; Fang, Mingheng
2015-10-09
Gonococcal antimicrobial resistance is a global problem. Different resistance plasmids have emerged and spread among the isolates of Neisseria gonorrhoeae worldwide and in China. We conducted this study to monitor the plasmid-mediated penicillin and tetracycline resistance among N. gonorrhoeae isolates in Guangzhou from 2002 to 2012. Consecutive isolates of N. gonorrhoeae were collected from outpatients with gonorrhea attending the STD clinic in Guangdong Provincial Centre for Skin Diseases and STIs Control and Prevention. Penicillinase-producing N. gonorrhoeae (PPNG) isolates were analyzed by the paper acidometric method. Plasmid-mediated resistance to tetracycline in N. gonorrhoeae (TRNG) isolates was screened by the agar plate dilution method. Plasmid types were determined for TRNG and PPNG isolates using polymerase chain reaction (PCR). Minimum inhibitory concentrations (MICs) to penicillin and tetracycline were detected by the agar plate dilution. Of 1378 consecutive N. gonorrhoeae isolates, 429 PPNG and 639 TRNG isolates were identified. The prevalence of PPNG, TRNG, and PPNG/TRNG increased from 18.3 to 47.1 % (χ (2) = 31.57, p < 0.001), from 29.4 to 52.1 % (χ (2) = 16.28, p < 0.001) and from 10.0 to 26.2 % (χ (2) = 10.46, p < 0.001) between 2002 and 2012, respectively. Genotyping of plasmids among PPNGs showed that the majority (93.7 %) of the isolates were the Asian type plasmids, while the African type plasmid emerged in 2008 and rapidly increased to 14.0 % in 2012 (χ (2) = 25.03, p < 0.001). For TRNGs, all 639 isolates carried the Dutch type plasmid. MICs of penicillin G and tetracycline persisted at high levels and the MIC90s were 32-fold higher than the resistant cutoff point over 11 years. The prevalence rates of penicillin- and tetracycline-resistant N. gonorrhoeae varied from 90.9 to 91.1 % and from 88.3 to 89.3 % during 2002 to 2012, respectively. Resistance to penicillin and tetracycline among N. gonorrhoeae isolates remained at high levels in Guangzhou. The Asian type PPNG continued to spread and Dutch type TRNG was still the dominant strain. The African type PPNG has emerged and is spreading rapidly.
Boorn, K L; Khor, Y-Y; Sweetman, E; Tan, F; Heard, T A; Hammer, K A
2010-05-01
The aim of this study was to determine the spectrum of antimicrobial activity of 11 samples of stingless bee honey compared to medicinal, table and artificial honeys. Activity was assessed by agar diffusion, agar dilution, broth microdilution and time-kill viability assays. By agar dilution, minimum inhibitory concentration (MIC) ranges were 4% to >10% (w/v) for Gram-positive bacteria, 6% to >16% (w/v) for Gram-negative bacteria and 6% to >10% (w/v) for Candida spp. By broth microdilution, all organisms with the exception of Candida albicans and Candida glabrata were inhibited at
In vitro susceptibility of filamentous fungi from mycotic keratitis to azole drugs.
Shobana, C S; Mythili, A; Homa, M; Galgóczy, L; Priya, R; Babu Singh, Y R; Panneerselvam, K; Vágvölgyi, C; Kredics, L; Narendran, V; Manikandan, P
2015-03-01
The in vitro antifungal activities of azole drugs viz., itraconazole, voriconazole, ketoconazole, econazole and clotrimazole were investigated in order to evaluate their efficacy against filamentous fungi isolated from mycotic keratitis. The specimen collection was carried out from fungal keratitis patients attending Aravind eye hospital and Post-graduate institute of ophthalmology, Coimbatore, India and was subsequently processed for the isolation of fungi. The dilutions of antifungal drugs were prepared in RPMI 1640 medium. Minimum inhibitory concentrations (MICs) were determined and MIC50 and MIC90 were calculated for each drug tested. A total of 60 fungal isolates were identified as Fusarium spp. (n=30), non-sporulating moulds (n=9), Aspergillus flavus (n=6), Bipolaris spp. (n=6), Exserohilum spp. (n=4), Curvularia spp. (n=3), Alternaria spp. (n=1) and Exophiala spp. (n=1). The MICs of ketoconazole, clotrimazole, voriconazole, econazole and itraconazole for all the fungal isolates ranged between 16 μg/mL and 0.03 μg/mL, 4 μg/mL and 0.015 μg/mL, 8 μg/mL and 0.015 μg/mL, 8 μg/mL and 0.015 μg/mL and 32 μg/mL and 0.06 μg/mL respectively. From the MIC50 and MIC90 values, it could be deciphered that in the present study, clotrimazole was more active against the test isolates at lower concentrations (0.12-5 μg/mL) when compared to other drugs tested. The results suggest that amongst the tested azole drugs, clotrimazole followed by voriconazole and econazole had lower MICs against moulds isolated from mycotic keratitis. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Rastogi, N; Bauriaud, R M; Bourgoin, A; Carbonnelle, B; Chippaux, C; Gevaudan, M J; Goh, K S; Moinard, D; Roos, P
1995-01-01
The radiometric BACTEC 460-TB methodology has filled an increased need in the screening of a wide range of antimicrobial agents against Mycobacterium avium (MAC) isolates on a patient-to-patient basis. In this context, a multicenter study involving eight test sites across France was performed to determine the MICs of 10 antimicrobial agents for MAC organisms. The aim of the investigation was to compare the in vitro activities of D-cycloserine, ethambutol, ethionamide, rifampin, amikacin, streptomycin, ciprofloxacin, sparfloxacin, clofazimine, and clarithromycin against MAC isolates. All of the test sites received the same clinical isolates of MAC, and the MICs were determined by a common protocol. The overall interlaboratory reproducibility of the MICs within +/- 1 dilution of the modal MICs varied from 79.70 to 100% (mean, 95.2% +/- 2.1%), whereas overall agreement of the MICs among the test sites varied from a mean of 91% +/- 4.1% to a mean of 98 +/- 1.3%. We confirmed that the proposed methodology is easy, accurate, and sufficiently reproducible to be used routinely in a clinical laboratory. Despite variations in the MICs of the same drug among strains, no link between the origin of MAC isolates (from human immunodeficiency virus-positive or -negative patients) and their drug susceptibilities was established. On the basis of the MICs that inhibited 50 and 90% of isolates tested for the drugs used, clarithromycin, clofazimine, ethambutol, and streptomycin were the most uniformly active against MAC; this was followed by amikacin, rifampin, and sparfloxacin. On the other hand, ciprofloxacin, D-cycloserine, and ethionamide showed only marginal in vitro activities. PMID:7793865
EVALUATION OF THE TEA TREE OIL ACTIVITY TO ANAEROBIC BACTERIA--IN VITRO STUDY.
Ziółkowska-Klinkosz, Marta; Kedzia, Anna; Meissner, Hhenry O; Kedzia, Andrzej W
2016-01-01
The study of the sensitivity to tea tree oil (Australian Company TTD International Pty. Ltd. Sydney) was carried out on 193 strains of anaerobic bacteria isolated from patients with various infections within the oral cavity and respiratory tracts. The susceptibility (MIC) of anaerobes was determined by means of plate dilution technique in Brucella agar supplemented with 5% defibrinated sheep blood, menadione and hemin. Inoculum contained 10(5) CFU per spot was cultured with Steers replicator upon the surface of agar with various tea tree oil concentrations or without oil (anaerobes growth control). Incubation the plates was performed in anaerobic jars under anaerobic conditions at 37 degrees C for 48 h. MIC was defined as the lowest concentrations of the essential oil completely inhibiting growth of anaerobic bacteria. Test results indicate, that among Gram-negative bacteria the most sensitive to essential oil were strains of Veillonella and Porphyromonas species. Essential oil in low concentrations (MIC in the range of = 0.12 - 0.5 mg/mL) inhibited growth of accordingly 80% and 68% strains. The least sensitive were strains of the genus Tannerella, Parabacteroides and Dialister (MIC 1.0 - 2.0 mg/mL). In the case of Gram-positive anaerobic bacteria the tea tree oil was the most active to strains of cocci of the genus Anaerococcus and Ruminococcus (MIC in range = 0.12 - 0.5 mg/mL) or strains of rods of the genus Eubacterium and Eggerthella (MIC = 0.25 mg/mL). Among Gram-positive rods the least sensitive were the strains of the genus Bifidobacterium ( MIC = 2.0 mg/mL). The tea tree oil was more active to Gram-positive than to Gram-negative anaerobic bacteria.
Ryder, Neil S.; Wagner, Sonja; Leitner, Ingrid
1998-01-01
Terbinafine is active in vitro against a wide range of pathogenic fungi, including dermatophytes, molds, dimorphic fungi, and some yeasts, but earlier studies indicated that the drug had little activity against Candida albicans. In contrast, clinical studies have shown topical and oral terbinafine to be active in cutaneous candidiasis and Candida nail infections. In order to define the anti-Candida activity of terbinafine, we tested the drug against 350 fresh clinical isolates and additional strains by using a broth dilution assay standardized according to the guidelines of the National Committee for Clinical Laboratory Standards (NCCLS) M27-A assay. Terbinafine was found to have an MIC of 1 μg/ml for reference C. albicans strains. For 259 clinical isolates, the MIC at which 50% of the isolates are inhibited (MIC50) of terbinafine was 1 μg/ml (fluconazole, 0.5 μg/ml), and the MIC90 was 4 μg/ml (fluconazole, 1 μg/ml). Terbinafine was highly active against Candida parapsilosis (MIC90, 0.125 μg/ml) and showed potentially interesting activity against isolates of Candida dubliniensis, Candida guilliermondii, Candida humicola, and Candida lusitaniae. It was not active against the Candida glabrata, Candida krusei, and Candida tropicalis isolates in this assay. Cryptococcus laurentii and Cryptococcus neoformans were highly susceptible to terbinafine, with MICs of 0.06 to 0.25 μg/ml. The NCCLS macrodilution assay provides reproducible in vitro data for terbinafine against Candida and other yeasts. The MICs for C. albicans and C. parapsilosis are compatible with the known clinical efficacy of terbinafine in cutaneous infections, while the clinical relevance of its activities against the other species has yet to be determined. PMID:9593126
Juréen, P; Angeby, K; Sturegård, E; Chryssanthou, E; Giske, C G; Werngren, J; Nordvall, M; Johansson, A; Kahlmeter, G; Hoffner, S; Schön, T
2010-05-01
The aminoglycosides and cyclic polypeptides are essential drugs in the treatment of multidrug-resistant tuberculosis, underscoring the need for accurate and reproducible drug susceptibility testing (DST). The epidemiological cutoff value (ECOFF) separating wild-type susceptible strains from non-wild-type strains is an important but rarely used tool for indicating susceptibility breakpoints against Mycobacterium tuberculosis. In this study, we established wild-type MIC distributions on Middlebrook 7H10 medium for amikacin, kanamycin, streptomycin, capreomycin, and viomycin using 90 consecutive clinical isolates and 21 resistant strains. Overall, the MIC variation between and within runs did not exceed +/-1 MIC dilution step, and validation of MIC values in Bactec 960 MGIT demonstrated good agreement. Tentative ECOFFs defining the wild type were established for all investigated drugs, including amikacin and viomycin, which currently lack susceptibility breakpoints for 7H10. Five out of seven amikacin- and kanamycin-resistant isolates were classified as susceptible to capreomycin according to the current critical concentration (10 mg/liter) but were non-wild type according to the ECOFF (4 mg/liter), suggesting that the critical concentration may be too high. All amikacin- and kanamycin-resistant isolates were clearly below the ECOFF for viomycin, and two of them were below the ECOFF for streptomycin, indicating that these two drugs may be considered for treatment of amikacin-resistant strains. Pharmacodynamic indices (peak serum concentration [Cmax]/MIC) were more favorable for amikacin and viomycin compared to kanamycin and capreomycin. In conclusion, our data emphasize the importance of establishing wild-type MIC distributions for improving the quality of drug susceptibility testing against Mycobacterium tuberculosis.
Juréen, P.; Ängeby, K.; Sturegård, E.; Chryssanthou, E.; Giske, C. G.; Werngren, J.; Nordvall, M.; Johansson, A.; Kahlmeter, G.; Hoffner, S.; Schön, T.
2010-01-01
The aminoglycosides and cyclic polypeptides are essential drugs in the treatment of multidrug-resistant tuberculosis, underscoring the need for accurate and reproducible drug susceptibility testing (DST). The epidemiological cutoff value (ECOFF) separating wild-type susceptible strains from non-wild-type strains is an important but rarely used tool for indicating susceptibility breakpoints against Mycobacterium tuberculosis. In this study, we established wild-type MIC distributions on Middlebrook 7H10 medium for amikacin, kanamycin, streptomycin, capreomycin, and viomycin using 90 consecutive clinical isolates and 21 resistant strains. Overall, the MIC variation between and within runs did not exceed ±1 MIC dilution step, and validation of MIC values in Bactec 960 MGIT demonstrated good agreement. Tentative ECOFFs defining the wild type were established for all investigated drugs, including amikacin and viomycin, which currently lack susceptibility breakpoints for 7H10. Five out of seven amikacin- and kanamycin-resistant isolates were classified as susceptible to capreomycin according to the current critical concentration (10 mg/liter) but were non-wild type according to the ECOFF (4 mg/liter), suggesting that the critical concentration may be too high. All amikacin- and kanamycin-resistant isolates were clearly below the ECOFF for viomycin, and two of them were below the ECOFF for streptomycin, indicating that these two drugs may be considered for treatment of amikacin-resistant strains. Pharmacodynamic indices (peak serum concentration [Cmax]/MIC) were more favorable for amikacin and viomycin compared to kanamycin and capreomycin. In conclusion, our data emphasize the importance of establishing wild-type MIC distributions for improving the quality of drug susceptibility testing against Mycobacterium tuberculosis. PMID:20237102
Biancalana, Fernanda Simas Corrêa; Lyra, Luzia; Moretti, Maria Luiza; Schreiber, Angélica Zaninelli
2011-12-01
Studies have demonstrated excellent in vivo efficacy of terbinafine combined with other antifungal agents against dematiaceous molds; however, there is a lack of in vitro studies. Most studies evaluated conidia inocula, but susceptibility testing of hyphae could mimic the fungal status in infected tissues and might reflect the therapeutic potential of the agent. We investigated the in vitro susceptibility of terbinafine alone and in combination with amphotericin B, itraconazole, or voriconazole against conidia by microdilution and dynamic measurement of hyphae growth of dematiaceous molds. The MIC values for hyphae were, until 3 dilutions, below the MIC obtained for conidia. The results indicated 100% synergistic interactions between terbinafine and azoles or amphotericin B in all tests, but lower MICs for hyphae. In conclusion, our findings allow us to say that the hyphal form of tested dematiaceous molds showed high susceptibility to all antifungal agents evaluated, alone and in combination with terbinafine. Copyright © 2011 Elsevier Inc. All rights reserved.
Tigecycline activity against metallo-β-lactamase-producing bacteria.
Kumar, Simit; Bandyopadhyay, Maitreyi; Mondal, Soma; Pal, Nupur; Ghosh, Tapashi; Bandyopadhyay, Manas; Banerjee, Parthajit
2013-10-01
[corrected] Treatment of serious life-threatening multi-drug-resistant organisms poses a serious problem due to the limited therapeutic options. Tigecycline has been recently marketed as a broad-spectrum antibiotic with activity against both gram-positive and gram-negative bacteria. Even though many studies have demonstrated the activity of tigecycline against ESBL-producing Enterobacteriaceae, its activity is not well-defined against micro-organisms producing metallo-β-lactamases (MBLs), as there are only a few reports and the number of isolates tested is limited. The aim of the present study was to evaluate the activity of tigecycline against MBL-producing bacterial isolates. The isolates were tested for MBL production by (i) combined-disk test, (ii) double disc synergy test (DDST), (iii) susceptibility to aztreonam (30 μg) disk. Minimum inhibitory concentration to tigecycline was determined according to agar dilution method as per Clinical Laboratory Standards Institute (CLSI) guidelines. Disc diffusion susceptibility testing was also performed for all these isolates using tigecycline (15 μg) discs. Among the total 308 isolates included in the study, 99 were found to be MBL producers. MBL production was observed mostly in isolates from pus samples (40.47%) followed by urine (27.4%) and blood (13.09%). MBL production was observed in E. coli (41.48%), K. pneumoniae (26.67%), Proteus mirabilis (27.78%), Citrobacter spp. (41.67%), Enterobacter spp. (25.08%), and Acinetobacter spp. (27.27%). The result showed that tigecycline activity was unaffected by MBL production and it was showed almost 100% activity against all MBL-producing isolates, with most of the isolates exhibiting an MIC ranging from 0.25-8 μg/ml, except 2 MBL-producing E. coli isolates who had an MIC of 8 μg/ml. To conclude, tigecycline was found to be highly effective against MBL-producing Enterobacteriaceae and acinetobacter isolates, but the presence of resistance among organisms, even before the mass usage of the drug, warrants the need of its usage as a reserve drug. The study also found that the interpretative criteria for the disc diffusion method, recommended by the FDA, correlates well with the MIC detection methods. So, the microbiology laboratories might use the relatively easier method of disc diffusion, as compared to the comparatively tedious method of MIC determination.
AL-Waili, Noori; Al-Ghamdi, Ahmad; Ansari, Mohammad Javed; Al-Attal, Y.; Salom, Khelod
2012-01-01
Background: Propolis and honey are natural bee products with wide range of biological and medicinal properties. The study investigated antimicrobial activity of ethyl alcohol extraction of propolis collected from Saudi Arabia (EEPS) and from Egypt (EEPE), and their synergistic effect when used with honey. Single and polymicrobial cultures of antibiotic resistant human pathogens were tested. Material and methods; Staphylococcus aureus (S. aureus),), Escherichia coli (E. coli) and Candida albicans (C.albicans) were cultured in 10-100% (v/v) honey diluted in broth, or 0.08-1.0% (weight/volume) EEPS and EEPE diluted in broth. Four types of polymicrobial cultures were prepared by culturing the isolates with each other in broth (control) and broth containing various concentrations of honey or propolis. Microbial growth was assessed on solid plate media after 24 h incubation. Results; EEPS and EEPE inhibited antibiotic resistant E.coli, and S.aureus, and C.albicans in single and polymicrobial cultures. S.aureus became more susceptible when it was cultured with E.coli or C.albicans or when all cultured together. C.albicans became more susceptible when it was cultured with S.aureus or with E.coli and S. aureus together. The presence of ethyl alcohol or honey potentiated antimicrobial effect of propolis toward entire microbes tested in single or polymicrobial cultures. EEPS had lower MIC toward E.coli and C.albicans than EEPE. When propolis was mixed with honey, EEPS showed lower MIC than EEPE. In addition, honey showed lower MIC toward entire microbes when mixed with EEPS than when it was mixed with EEPE. Conclusion; 1) propolis prevents the growth of the microorganisms in single and mixed microbial cultures, and has synergistic effect when used with honey or ethyl alcohol, 2) the antimicrobial property of propolis varies with geographical origin, and 3) this study will pave the way to isolate active ingredients from honey and propolis to be further tested individually or in combination against human resistant infections. PMID:23136543
Furustrand Tafin, Ulrika; Meis, Jacques F; Trampuz, Andrej
2012-08-01
We evaluated isothermal microcalorimetry for real-time susceptibility testing of non-Aspergillus molds. MIC and minimal effective concentration (MEC) values of Mucorales (n = 4), Fusarium spp. (n = 4), and Scedosporium spp. (n = 4) were determined by microbroth dilution according to the Clinical Laboratory Standard Institute M38-A2 guidelines. Heat production of molds was measured at 37 °C in Sabouraud dextrose broth inoculated with 2.5 × 10(4) spores/mL in the presence of amphotericin B, voriconazole, posaconazole, caspofungin, and anidulafungin. As determined by microcalorimetry, amphotericin B was the most active agent against Mucorales (MHIC 0.06-0.125 μg/mL) and Fusarium spp. (MHIC 1-4 μg/mL), whereas voriconazole was the most active agent against Scedosporium spp. (MHIC 0.25 to 8 μg/mL). The percentage of agreement (within one 2-fold dilution) between the MHIC and MIC (or MEC) was 67%, 92%, 75%, and 83% for amphotericin B, voriconazole, posaconazole, and caspofungin, respectively. Microcalorimetry provides additional information on timing of antifungal activity, enabling further investigation of drug-mold and drug-drug interaction, and optimization of antifungal treatment. Copyright © 2012 Elsevier Inc. All rights reserved.
Meletiadis, Joseph; Mouton, Johan W.; Meis, Jacques F. G. M.; Bouman, Bianca A.; Donnelly, Peter J.; Verweij, Paul E.
2001-01-01
The susceptibilities of 25 clinical isolates of various Aspergillus species (Aspergillus fumigatus, A. flavus, A. terreus, A. ustus, and A. nidulans) to itraconazole (ITC) and amphotericin B (AMB) were determined using the standard proposed by NCCLS for antifungal susceptibility testing of filamentous fungi, a modification of this method using spectrophotometric readings, and a colorimetric method using the tetrazolium salt 2,3-bis {2-methoxy-4-nitro-5-[(sulfenylamino) carbonyl]-2H-tetrazolium-hydroxide} (XTT). Five MIC end points for ITC (MIC-0, no visible growth or ≤5% the growth control value [GC]; MIC-1, slight growth or 6 to 25% the GC; MIC-2, prominent reduction in growth or 26 to 50% the GC; MIC-3, slight reduction in growth or 51 to 75% the GC; and MIC-4, no reduction in growth or 76 to 100% the GC) and one for AMB (MIC-0) were determined visually by four observers and spectrophotometrically. The intraexperimental (between the observers) and interexperimental (between the experiments) levels of agreement of the NCCLS and XTT methods exceeded 95% for MIC-0 of AMB and MIC-0 and MIC-1 of ITC. The MIC-2 of ITC showed lower reproducibility, although spectrophotometric reading and/or incubation for 48 h increased the interexperimental reproducibility from 85 to >93%. Between visual and spectrophotometric readings, high levels of agreement were found for AMB (≈97%) and MIC-1 (≈92%) and MIC-2 (≈88%) of ITC. Poor agreement was found for MIC-0 of ITC (51% after 24 h), since the spectrophotometric readings resulted in higher MIC-0 values than the visual readings. The agreement was increased to 98% by shifting the threshold level of MIC-0 from 5 to 10% relative optical density and by establishing an optical density of greater than 0.1 for the GC as the validation criterion. No statistically significant differences were found between the NCCLS method and the XTT method, with the levels of agreement exceeding 97% for MIC-0 of AMB and 83% for MIC-0, MIC-1, and MIC-2 of ITC. The XTT method and spectrophotometric readings can increase the sensitivity and the precision, respectively, of in vitro susceptibility testing of Aspergillus species. PMID:11724829
Antimicrobial effects of Thai medicinal plants against acne-inducing bacteria.
Chomnawang, Mullika Traidej; Surassmo, Suvimol; Nukoolkarn, Veena S; Gritsanapan, Wandee
2005-10-03
Propionibacterium acnes and Staphylococcus epidermidis have been recognized as pus-forming bacteria triggering an inflammation in acne. The present study was conducted to evaluate antimicrobial activities of Thai medicinal plants against these etiologic agents of acne vulgaris. Crude extracts were tested for antimicrobial activities by disc diffusion and broth dilution methods. The results from the disc diffusion method showed that 13 medicinal plants could inhibit the growth of Propionibacterium acnes. Among those, Senna alata, Eupatorium odoratum, Garcinia mangostana, and Barleria lupulina had strong inhibitory effects. Based on a broth dilution method, the Garcinia mangostana extract had the greatest antimicrobial effect. The MIC values were the same (0.039 mg/ml) for both bacterial species and the MBC values were 0.039 and 0.156 mg/ml against Propionibacterium acnes and Staphylococcus epidermidis, respectively. In bioautography assay, the Garcinia mangostana extract produced strong inhibition zones against Propionibacterium acnes. Antimicrobial activity from fractions of column chromatography revealed one of the active compounds in Garcinia mangostana could be mangostin, a xanthone derivative. Taken together, our data indicated that Garcinia mangostana had a strong inhibitory effect on Propionibacterium acnes and Staphylococcus epidermidis. Therefore, this plant would be an interesting topic for further study and possibly for an alternative treatment for acne.
Rhodes, Nathaniel J.; Richardson, Chad L.; Heraty, Ryan; Liu, Jiajun; Malczynski, Michael; Qi, Chao
2014-01-01
While a lack of concordance is known between gold standard MIC determinations and Vitek 2, the magnitude of the discrepancy and its impact on treatment decisions for extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli are not. Clinical isolates of ESBL-producing E. coli were collected from blood, tissue, and body fluid samples from January 2003 to July 2009. Resistance genotypes were identified by PCR. Primary analyses evaluated the discordance between Vitek 2 and gold standard methods using cefepime susceptibility breakpoint cutoff values of 8, 4, and 2 μg/ml. The discrepancies in MICs between the methods were classified per convention as very major, major, and minor errors. Sensitivity, specificity, and positive and negative predictive values for susceptibility classifications were calculated. A total of 304 isolates were identified; 59% (179) of the isolates carried blaCTX-M, 47% (143) carried blaTEM, and 4% (12) carried blaSHV. At a breakpoint MIC of 8 μg/ml, Vitek 2 produced a categorical agreement of 66.8% and exhibited very major, major, and minor error rates of 23% (20/87 isolates), 5.1% (8/157 isolates), and 24% (73/304), respectively. The sensitivity, specificity, and positive and negative predictive values for a susceptibility breakpoint of 8 μg/ml were 94.9%, 61.2%, 72.3%, and 91.8%, respectively. The sensitivity, specificity, and positive and negative predictive values for a susceptibility breakpoint of 2 μg/ml were 83.8%, 65.3%, 41%, and 93.3%, respectively. Vitek 2 results in unacceptably high error rates for cefepime compared to those of agar dilution for ESBL-producing E. coli. Clinicians should be wary of making treatment decisions on the basis of Vitek 2 susceptibility results for ESBL-producing E. coli. PMID:24752253
Ahrari, Farzaneh; Eslami, Neda; Rajabi, Omid; Ghazvini, Kiarash; Barati, Sahar
2015-01-01
Background: Metal nanoparticles have been recently applied in dentistry because of their antibacterial properties. This study aimed to evaluate antibacterial effects of colloidal solutions containing zinc oxide (ZnO), copper oxide (CuO), titanium dioxide (TiO2) and silver (Ag) nanoparticles on Streptococcus mutans and Streptococcus sangius and compare the results with those of chlorhexidine and sodium fluoride mouthrinses. Materials and Methods: After adding nanoparticles to a water-based solution, six groups were prepared. Groups I to IV included colloidal solutions containing nanoZnO, nanoCuO, nanoTiO2 and nanoAg, respectively. Groups V and VI consisted of 2.0% sodium fluoride and 0.2% chlorhexidine mouthwashes, respectively as controls. We used serial dilution method to find minimum inhibitory concentrations (MICs) and with subcultures obtained minimum bactericidal concentrations (MBCs) of the solutions against S. mutans and S. sangius. The data were analyzed by analysis of variance and Duncan test and P < 0.05 was considered as significant. Results: The sodium fluoride mouthrinse did not show any antibacterial effect. The nanoTiO2-containing solution had the lowest MIC against both microorganisms and also displayed the lowest MBC against S. mutans (P < 0.05). The colloidal solutions containing nanoTiO2 and nanoZnO showed the lowest MBC against S. sangius (P < 0.05). On the other hand, chlorhexidine showed the highest MIC and MBC against both streptococci (P < 0.05). Conclusion: The nanoTiO2-containing mouthwash proved to be an effective antimicrobial agent and thus it can be considered as an alternative to chlorhexidine or sodium fluoride mouthrinses in the oral cavity provided the lack of cytotoxic and genotoxic effects on biologic tissues. PMID:25709674
Deepak, R; Jayapradha, R
2015-03-01
The aims of the study were to evaluate the effects of a biosurfactant obtained from a novel Bacillus thuringiensis on Fusarium oxysporum to determine the morphological changes in the structure of the fungi and its biofilm in the presence of the biosurfactant and to evaluate the toxicity of the biosurfactant on HEp-2 human epithelial cell lines. The strain was screened and isolated from petroleum contaminated soil based on the E24 emulsification index. The biosurfactant was produced on glycerol, extracted using chloroform:methanol system and purified using HPLC. The purified fraction showing both surface activity (emulsification and oil-spread activity) and anti-fusarial activity (agar well diffusion method) was studied using FT-IR and MALDI-TOF MS, respectively. The minimum inhibitory concentration (MIC) and the biofilm inhibitory concentration (BIC) were determined using dilution method. The effect of biosurfactant on the morphology of Fusarium oxysporum was monitored using light microscopy and confocal laser scanning microscopy (for biofilm). The purified surfactant showed the presence of functional groups like that of surfactin in the FT-IR spectra and MALDI-TOF MS estimated the molecular weight as 700Da. The MIC and BIC were estimated to be 0.05 and 0.5mg/mL, respectively. The molecule was also non-toxic to HEp-2 cell lines at 10× MIC. A non-toxic and effective anti-Fusarium biosurfactant, that is both safe for human use and to the environment, has been characterized. The growth and metabolite production using glycerol (major byproduct of biodiesel and soap industries) also adds up to the efficiency and ecofriendly nature of this biosurfactant. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Antibacterial and leishmanicidal activity of Bolivian propolis.
Nina, N; Lima, B; Feresin, G E; Giménez, A; Salamanca Capusiri, E; Schmeda-Hirschmann, G
2016-03-01
The antimicrobial activity of Bolivian propolis was assessed for the first time on a panel of bacteria and two endemic parasitic protozoa. Ten samples of Bolivian propolis and their main constituents were tested using the micro-broth dilution method against 11 bacterial pathogenic strains as well as against promastigotes of Leishmania amazonensis and L. braziliensis using the XTT-based colorimetric method. The methanolic extracts showed antibacterial effect ranging from inactive (MICs > 1000 μg ml(-1) ) to low (MICs 250-1000 μg ml(-1) ), moderate (62·5-125 μg ml(-1) ) and high antibacterial activity (MIC 31·2 μg ml(-1) ), according to the collection place and chemical composition. The most active samples towards Leishmania species were from Cochabamba and Tarija, with IC50 values of 12·1 and 7·8, 8·0 and 10·9 μg ml(-1) against L. amazonensis and Leishmania brasiliensis respectively. The results show that the best antibacterial and antiprotozoal effect was observed for some phenolic-rich propolis. Propolis is used in Bolivia as an antimicrobial agent. Bolivian propolis from the main production areas was assessed for antibacterial and leishmanicidal effect and the results were compared with the propolis chemical composition. The active antibacterial propolis samples were phenolic-rich while those containing mainly triterpenes were devoid of activity or weakly active. A similar picture was obtained for the effect on Leishmania, with better effect for the phenolic-rich samples. As propolis is used for the same purposes regardless of the production area and composition, our findings indicate the need for the standardization of this natural product as antimicrobial. © 2016 The Society for Applied Microbiology.
Yamada, M; Yoshida, J; Hatou, S; Yoshida, T; Minagawa, Y
2008-06-01
Staphylococcus epidermidis is one of the prominent pathogens in ocular infection. The prevalence of mutations in the quinolone resistance determining region (QRDR) area in S epidermidis isolated from the ocular surface and its association with fluoroquinolone resistance has not been fully elucidated. Mutations in the QRDR of gyrA, gyrB, parC, and parE genes of 138 isolates of S epidermidis recovered from the human conjunctival flora were analysed. The minimal inhibitory concentrations (MICs) of four fluoroquinolones (levofloxacin, gatifloxacin, moxifloxacin and tosufloxacin) against these isolates were also determined using agar dilution methods. The MIC(90) values of levofloxacin, gatifloxacin, moxifloxacin and tosufloxacin were 3.13, 1.56, 0.78 and 3.13 microg/ml, respectively. The MIC values of all fluoroquinolones showed a bimodal distribution (susceptible strain and less susceptible strain). Mutations with amino acid substitution in the QRDR were present in 70 (50.7%) isolates. 19 different combinations of mutations were detected: 3 isolates (2.2%) had four mutations, 8 (5.8%) had three mutations, 43 (31.2%) had double mutations and 16 (11.6%) had single mutations. Isolates with mutations in the QRDR of both gyrA and parC (n = 53) were less susceptible to fluoroquinolones. The present findings show that approximately half the S epidermidis isolates from the normal human conjunctiva have mutation(s) in the QRDR. The presence of mutations in both gyrA and parC is strongly associated with reduced susceptibility to fluoroquinolones.
Mashaly, Ghada El-Saeed; El-Mahdy, Rasha Hassan
2017-09-19
Vancomycin heteroresistance in coagulase negative Staphylococci (CoNS) is a recent health concern especially in serious infections like bloodstream infections as it may lead to failure of therapy. Little information is available about the prevalence vancomycin heteroresistance in CoNS causing bloodstream infections in intensive care units (ICUs) patients of Mansoura University Hospitals (MUHs). This prospective study enrolled 743 blood samples collected from ICUs patients presented with clinical manifestations of bloodstream infections over the period extending from January 2014 to March 2016. Samples were processed, coagulase negative Staphylococci were identified by routine microbiological methods and the absence of coagulase activity. Species were identified by API Staph 32. Oxacillin resistant CoNS were identified by cefoxitin disc diffusion method. Susceptibility testing of isolated CoNS to vancomycin was carried out using vancomycin agar dilution method. Mec A gene detection by PCR was done for oxacillin resistant isolates. Screening for vancomycin heteroresistance was done on brain heart infusion (BHI) agar containing 4 μg/mL vancomycin. Confirmation of vancomycin heteroresistance was carried out by population analysis profile (PAP). A total of 58 isolates were identified as CoNS from patients of clinically suspected bloodstream infections. The identified species were 33 (56.9%) Staphylococcus epidermidis, 12 (20.7%) Staphylococcus capitis, 7 (12.1%) Staphylococcus haemolyticus, and 3 isolates (5.2%) Staphylococcus lugdunesis. Three isolates were unidentified by API Staph 32. Forty-four (75.9%) isolates were oxacillin resistant. Mec A gene was detected in all oxacillin resistant isolates. All isolates had susceptible vancomycin MICs by agar dilution. Nine isolates (15.5%) could grow on BHI agar containing 4 μg/mL vancomycin. These isolates showed heterogeneous profile of resistance to vancomycin by population analysis profile. Vancomycin heteroresistant CoNS causing bloodstream infections is growing unrecognized health hazard in ICUs patients. These isolates have susceptible vancomycin MICs. Screening methods are recommended and should be considered to improve clinical outcome in these high risk patients.
In vitro antifungal activity of silver nanoparticles against ocular pathogenic filamentous fungi.
Xu, Yan; Gao, Chuanwen; Li, Xiaohua; He, Yi; Zhou, Lutan; Pang, Guangren; Sun, Shengtao
2013-03-01
Fungal keratitis is emerging as a major cause of vision loss in a developing country such as China because of higher incidence and the unavailability of effective antifungals. It is urgent to explore broad-spectrum antifungals to effectively suppress ocular fungal pathogens, and to develop new antifungal eye drops to combat this vision-threatening infection. The aim of this study is to investigate the antifungal activity of silver nanoparticles (nano-Ag) in comparison with that of natamycin against ocular pathogenic filamentous fungi in vitro. Susceptibility tests were performed against 216 strains of fungi isolated from patients with fungal keratitis from the Henan Eye Institute in China by broth dilution antifungal susceptibility test of filamentous fungi approved by the Clinical and Laboratory Standards Institute M38-A document. The isolates included 112 Fusarium isolates (82 Fusarium solani species complex, 20 Fusarium verticillioides species complex, and 10 Fusarium oxysporum species complex), 94 Aspergillus isolates (61 Aspergillus flavus species complex, 11 Aspergillus fumigatus species complex, 12 Aspergillus versicolor species complex, and 10 Aspergillus niger species complex), and 10 Alternaria alternata isolates. The minimum inhibitory concentration (MIC) range and mode, the MIC for 50% of the strains tested (MIC50 value), and the MIC90 value were provided for the isolates with the SPSS statistical package. MIC50 value of nano-Ag were 1, 0.5, and 0.5 μg/mL for Fusarium spp., Aspergillus spp., and Al. alternata, respectively. MIC90 values of nano-Ag were 1, 1, and 1 μg/mL for Fusarium spp., Aspergillus spp., and Al. alternata, respectively. MIC50 values of natamycin were 4, 32, and 4 μg/mL for Fusarium spp., Aspergillus spp., and Al. alternata, respectively. MIC90 values of natamycin were 8, 32, and 4 μg/mL for Fusarium spp., Aspergillus spp., and Al. alternata, respectively. Nano-Ag, relative to natamycin, exhibits potent in vitro activity against ocular pathogenic filamentous fungi.
[Antimicrobial susceptibility testing of anaerobic bacteria].
García-Sánchez, José E; García-Sánchez, Enrique; García-García, María Inmaculada
2014-02-01
The anaerobic bacteria resistance to antibiotics is increasing, and even has appeared against the most active of those, like metronidazol and carbapenems. This fact forces to make and periodical sensibility tests -at least in the most aggressive and virulent species, in cases that they are isolated from life locations and in the absence of therapeutic response- to check the local sensibility and to establish suitable empiric therapies, all based on multicentric studies carried out in order to this or well to check the activity of new antibiotics. For the laboratory routine, the easiest sensibility method is the E-test/MIC evaluator. Another alternative is microdilution, that's only normalized for Bacteroides. There are preliminary facts that allow the use of disc diffusion method in some species of Bacteroides and Clostridium. For the temporal and multicentric studies, the procedure is dilution in agar plate, the reference method. Copyright © 2014 Elsevier España, S.L. All rights reserved.
Tshivhandekano, Itani; Ntushelo, Khayalethu; Ngezimana, Wonder; Tshikalange, Thilivhali Emmanuel; Mudau, Fhatuwani Nixwell
2014-09-01
To determine the chemical compositions and evaluate the antimicrobial activity of bush tea (Athrixia phylicoides DC.), special tea (Monsonia burkeana) and synergy (combination of bush tea and special tea). Total polyphenols were determined using the methods reported by Singleton and Rossi (1965) and modified by Waterman and Mole (1994). Tannins were determined using vanillin HCL methods described by Prince et al. (1978). Total antioxidants were determined using the methods described by Awika et al. (2004). The micro dilution technique using 96-well micro-plates, as described by Eloff (1998) was used to obtain the minimum inhibition concentration (MIC) and minimum microbicidal concentration (MMC) values of the ethanol extracts against the microorganisms under study. The microbes strain used was Gram negative bacteria such as Escherichia coli, Klebsiella oxytoca, Proteus vulgaris, Serratia marcescens, Salmonella typhi, Klebsiella pneumonia; Gram positive bacteria such as Bacillus cereus, Staphylococcus aureus and a fungus Candida albicans. The results demonstrated that special tea contains significantly higher content of total polyphenols (8.34 mg/100 g) and total antioxidant (0.83 mg/100 g) as compared to bush tea [total polyphenols (6.41 mg/100g) and total antioxidant (0.63 mg/100g)] and combination of bush tea and special tea [total polyphenols (6.42 mg/100 g) and total antioxidant (0.64 mg/100 g)]. There was no significant difference in tannins between bush tea, special tea and synergy. The results of antimicrobial activity (MIC and MMC) demonstrated that the ethanol extracts of bush tea, special tea and synergy possessed antimicrobial activity against all microorganisms at different zones. The MIC of bush tea ranged from 1.56 to 12.50 mg/mL while the MMC ranged from 0.78 to 12.50 mg/mL. Special tea's MIC ranged from 0.39 to 12.50 mg/mL while the MMC ranged from 0.01 to 12.50 mg/mL. The MIC of synergy ranged from 3.13 to 12.50 mg/mL while the MMC ranged from 3.13 to 12.50 mg/mL without positive synergistic effect recorded. Both bush and special tea contain total polyphenols, total antioxidants and tannins with special tea containing a significantly higher total polyphenols and total antioxidant as compared to bush tea and synergy. Bush tea, special tea and synergy possess antimicrobial activity at various degrees. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Liu, Yi; Zhou, Rongjing; Wu, Hongkun
2015-06-01
This study aims to compare and determine a kind of nano-hydroxyapatite composite material with good antibacterial efficacy on Enterococcusfaecalis (E. faecalis) in vitro. We investigated the antimicrobial activity of four kinds of nano-hydroxyapatite composites, namely, silver/hydroxyapatite composite nanoparticles (Ag/nHA), yttrium/hydroxyapatite composite nanoparticles (Yi/nHA), cerium/hydroxyapatite composite nanoparticles (Ce/nHA), and hydroxyapatite nanoparticles (nHA), against E. faecalis in vitro using the agar diffusion and broth dilution method by measuring the growth inhibition zone and the minimum inhibitory concentration (MIC), respectively. The agar diffusion test results showed that Ag/nHA displayed an obvious growth inhibition zone, whereas Yi/nHA, Ce/nHA, and nHA showed no influence on E. faecalis. The MIC value of Ag/nHA was 1.0 g.L-1, and the three other materials had no effect on E.faecalis even at the high concentration of 32.0 g.L-1. Ag/nHA display a potential antimicrobial efficacy to planktonic E.faecalis. Whereas, the three other kinds of nano-hydroxyapatite composites (Yi/nHA, Ce/nHA, nHA) show no influence.
Piccinelli, Anna Lisa; Pagano, Imma; Esposito, Tiziana; Mencherini, Teresa; Porta, Amalia; Petrone, Anna Maria; Gazzerro, Patrizia; Picerno, Patrizia; Sansone, Francesca; Rastrelli, Luca; Aquino, Rita Patrizia
2016-01-27
Roasted hazelnut skins (RHS) represent a byproduct of kernel industrial processing. In this research, a RHS extract (RHS-M) and its fraction RHS-M-F3 enriched in proanthocyanidins (PAs), with antioxidant activity, were characterized in terms of total phenolic compound and PA contents. RHS-M and RHS-M-F3 showed antifungal properties against Candida albicans SC5314 (MIC2 = 3.00 and 0.10 μg/mL and MIC0 = 5.00 and 0.50 μg/mL, respectively), determined by the microbroth dilution method and Candida albicans morphological analysis. No cytotoxic effect on HEKa and HDFa cell lines was exhibited by RHS-M and RHS-M-F3. The metabolite profiling of RHS-M and RHS-M-F3 was performed by thiolysis followed by HPLC-UV-HRMS analysis and a combination of HRMS-FIA and HPLC-HRMS(n). Extract and fraction contain oligomeric PAs (mDP of 7.3 and 6.0, respectively, and DP up to 10) mainly constituted by B-type oligomers of (epi)-catechin. Also, (epi)-gallocatechin and gallate derivatives were identified as monomer units, and A-type PAs were detected as minor compounds.
Antibacterial activity of Thai herbal extracts on acne involved microorganism.
Niyomkam, P; Kaewbumrung, S; Kaewnpparat, S; Panichayupakaranant, P
2010-04-01
Ethyl acetate and methanol extracts of 18 Thai medicinal plants were investigated for their antibacterial activity against Propionibacterium acnes, Stapylococcus aureus, and S. epidermidis. Thirteen plant extracts were capable of inhibiting the growth of P. acnes and S. epidermidis, while 14 plant extracts exhibited an inhibitory effect on S. aureus. Based on the broth dilution method, the ethyl acetate extract of Alpinia galanga (L.) Wild. (Zingiberaceae) rhizome showed the strongest antibacterial effect against P. acnes, with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 156.0 and 312.0 microg/mL, respectively. On the basis of bioassay-guided purification, the ethyl acetate extract was isolated to afford the antibacterial active compound, which was identified as 1'-acetoxychavicol acetate (1'-ACA). 1'-ACA had a strong inhibitory effect on P. acnes with MIC and MBC values of 62.0 and 250.0 microg/mL, respectively. Thus, 1'-ACA was used as an indicative marker for standardization of A. galanga extract using high performance liquid chromatography. These results suggest that A. galanga extract could be an interesting agent for further studies on an alternative treatment of acne.
Kim, Kang-Ju; Yu, Hyeon-Hee; Jeong, Seung-Il; Cha, Jung-Dan; Kim, Shin-Moo; You, Yong-Ouk
2004-03-01
In the present study, we investigated antimicrobial activity of Caesalpinia sappan against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and effect of Caesalpinia sappan extract on the invasion of MRSA to human mucosal fibroblasts (HMFs). Chloroform, n-butanol, methanol, and aqueous extracts of the Caesalpinia sappan showed antimicrobial activity against standard methicillin-sensitive Staphylococcus aureus (MSSA) as well as MRSA. Methanol extract of Caesalpinia sappan demonstrated a higher inhibitory activity than n-butanol, chloroform, and aqueous extracts. In the checkerboard dilution method, methanol extract of Caesalpinia sappan markedly lowered the minimal inhibitory concentrations (MICs) of ampicillin and oxacillin against MRSA. To determine whether methanol extract of Caesalpinia sappan inhibits the MRSA invasion to HMFs, the cells were treated with various sub-MIC concentrations of methanol extract and bacterial invasion was assayed. MRSA invasion was notably decreased in the presence of 20-80 microg/ml of Caesalpinia sappan extract compared to the control group. The effect of Caesalpinia sappan extract on MRSA invasion appeared dose-dependent. These results suggest that methanol extract of Caesalpinia sappan may have antimicrobial activity and the potential to restore the effectiveness of beta-lactam antibiotics against MRSA, and inhibit the MRSA invasion to HMFs.
Kashimoto, Yoshinori; Kurosaka, Yuichi; Karibe, Yukie; Uoyama, Saori; Fujikawa, Katsuko; Namba, Kenji; Otani, Tsuyoshi; Yamaguchi, Keizo
2009-10-01
The in vitro and in vivo antibacterial activities of levofloxacin (LVFX), a quinolone antibacterial, against clinically isolated Legionella pneumophila were investigated in comparison with those of existing antimicrobial agents approved for legionnaires disease. The minimum inhibitory concentrations (MICs) of the agents against 42 strains of L. pneumophila isolated in Japan were determined using agar dilution methods with buffered starch yeast extract agar. MIC90 of LVFX was 0.03 microg/ml and this activity was similar to ciprofloxacin and pazufloxacin, and higher than telithromycin and minocycline. Therapeutic efficacy of LVFX was studied against a pneumonia model induced by intranasal of L. pneumophila strain suzuki serogoup 1 in DBA/2 mice. Therapeutic doses in mice were selected that would closely match human exposure profile, area under the concentration-time curve (AUC) for a human oral dose of LVFX at 500 mg once a day. LVFX decreased significantly the bacterial burden in the lungs from the next day of commencing treatment. These results, including in vitro antibacterial activity against clinical isolates and therapeutic efficacy of a humanized dosing regimen, provide good evidence to support the use of LVFX at 500 mg once a day for treating patient with legionnaires disease.
Huang, Ay Huey; Wu, Jiunn Jong; Weng, Yu Mei; Ding, Hwia Cheng; Chang, Tsung Chain
1998-01-01
Nonfastidious aerobic gram-negative bacilli (GNB) are commonly isolated from blood cultures. The feasibility of using an electrochemical method for direct antimicrobial susceptibility testing of GNB in positive blood cultures was evaluated. An aliquot (10 μl) of 1:10-diluted positive blood cultures containing GNB was inoculated into the Bactometer module well (bioMérieux Vitek, Hazelwood, Mo.) containing 1 ml of Mueller-Hinton broth supplemented with an antibiotic. Susceptibility tests were performed in a breakpoint broth dilution format, with the results being categorized as resistant, intermediate, or susceptible. Seven antibiotics (ampicillin, cephalothin, gentamicin, amikacin, cefamandole, cefotaxime, and ciprofloxacin) were used in this study, with each agent being tested at the two interpretive breakpoint concentrations. The inoculated modules were incubated at 35°C, and the change in impedance in each well was continuously monitored for 24 h by the Bactometer. The MICs of the seven antibiotics for each blood isolate were also determined by the standardized broth microdilution method. Of 146 positive blood cultures (1,022 microorganism-antibiotic combinations) containing GNB tested by the direct method, the rates of very major, major, and minor errors were 0, 1.1, and 2.5%, respectively. The impedance method was simple; no centrifugation, preincubation, or standardization of the inocula was required, and the susceptibility results were normally available within 3 to 6 h after inoculation. The rapid method may allow proper antimicrobial treatment almost 30 to 40 h before the results of the standard methods are available. PMID:9738038
Bioprospecting and indexing the microalgal diversity of different ecological habitats of India.
Ratha, Sachitra Kumar; Prasanna, Radha; Gupta, Vishal; Dhar, Dolly Wattal; Saxena, Anil Kumar
2012-04-01
Our study reports the collection, biodiversity analyses, isolation and identification of microalgae from different habitats of India. Cyanophyceae and Chlorophyceae were the most dominant algal groups recorded, with the highest number being recorded for non-heterocystous cyanobacteria (48), followed by 44 unicellular forms. Sagar Island, Sunderbans recorded the greatest number of algae, and unicellular/colonial green algae were present in all the samples. Shannon's Diversity Index was highest in Koikhali, Sunderbans, followed by Rushikulya River, Odisha. Selective enrichment, purification through serial dilution followed by plating and regular observations led to the isolation of sixteen strains. Identification was done by using microscopic observations, supported with standard monographs and classified as belonging to seven genera (Chlorella, Chlorococcum, Kirchneria, Scenedesmus, Chlamydomonas, Tetracystis and Ulothrix). 18S rDNA sequencing was undertaken for four strains. The set of sixteen strains were screened under standard cultural conditions for their growth kinetics and Chlorella sorokiniana MIC-G5, followed by Chlorella sp. MIC-G4 exhibited the highest growth rates. The strain Chlorococcum sp. MIC-G2 recorded highest chlorophyll, while MIC-G3 ranked highest for carbohydrates. The study aided in identifying the dominant microalgae in the diverse habitats and characterizing their growth rate and carbohydrate content, providing a valuable germplasm for further utilization in agriculture and industry.
Nicolau, David P; Silberg, Barry N
2017-01-01
Despite aggressive medical and surgical management, the resolution of skin and skin structure infections is often difficult due to insufficient host response, reduced drug penetration, and a high prevalence of resistance organisms such as methicillin-resistant Staphylococcus aureus (MRSA). As a result of these factors, conventional management often consists of prolonged broad-spectrum systemic antimicrobials. An alternative therapy in development, ultrasonic drug dispersion (UDD), uses a subcutaneous injection followed by external trans-cutaneous ultrasound to deliver high tissue concentrations of cefazolin with limited systemic exposure. While it is postulated that these high concentrations may be suitable to treat more resistant organisms such as MRSA, the cefazolin minimum inhibitory concentration (MIC) distribution for this organism is currently unknown. We assessed the potency of cefazolin against a collection of 1,239 MRSA from 42 US hospitals using Clinical Laboratory Standard Institute-defined broth micro-dilution methodology. The cefazolin MIC inhibiting 50% of the isolates was 64 mg/L; 81% had MICs ≤128 and nearly all (99.9%) had MICs ≤512 mg/L. The overwhelming majority of MRSA had cefazolin MICs that were considerably lower than achievable tissue concentrations (≥1,000 mg/L) using this novel drug delivery system. While the currently defined cefazolin MRSA phenotypic profile precludes the use of parenteral administration, techniques that deliver local exposures in excess of these inhibitory concentrations may provide a novel treatment strategy for skin and skin structure infections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopera, Jorge E., E-mail: Lopera@uthscsa.ed; Alvarez, Alex; Trimmer, Clayton
2009-01-15
The purpose of this study was to determine the performance of two balloon-retention-type gastrostomy tubes when the balloons are inflated with two types of contrast materials at different concentrations. Two commonly used balloon-retention-type tubes (MIC and Tri-Funnel) were inflated to the manufacturer's recommended volumes (4 and 20 cm{sup 3}, respectively) with normal saline or normal saline plus different concentrations of contrast material. Five tubes of each brand were inflated with normal saline and 0%, 25%, 50%, 75%, and 100% contrast material dilutions, using either nonionic hyperosmolar contrast, or nonionic iso-osmolar contrast. The tubes were submerged in a glass basin containingmore » a solution with a pH of 4. Every week the tubes were visually inspected to determine the integrity of the balloons, and the diameter of the balloons was measured with a caliper. The tests were repeated every week for a total of 12 weeks. The MIC balloons deflated slightly faster over time than the Tri-Funnel balloons. The Tri-Funnel balloons remained relatively stable over the study period for the different concentrations of contrast materials. The deflation rates of the MIC balloons were proportionally related to the concentration of saline and inversely related to the concentration of the contrast material. At high contrast material concentrations, solidification of the balloons was observed. In conclusion, this in vitro study confirms that the use of diluted amounts of nonionic contrast materials is safe for inflating the balloons of two types of balloon-retention feeding tubes. High concentrations of contrast could result in solidification of the balloons and should be avoided.« less
Dubreuil, L; Behra-Miellet, J; Vouillot, C; Bland, S; Sedallian, A; Mory, F
2003-03-01
This study looked for beta-lactamase production in 100 Prevotella isolates. MICs were determined for amoxycillin, ticarcillin, amoxycillin+clavulanate, cephalothin, cefuroxime, cefixime, cefpodoxime and cefotaxime using the reference agar dilution method (standard M11 A4, NCCLS). Beta-lactamase activity was detected in 58 of the 100 isolates, 24 of 46 black-pigmented Provotella and 34 of 54 non-pigmented Prevotella. All beta-lactamase-negative strains were susceptible to all beta-lactam antibiotics with the exception of cefuroxime and cefixime. Overall, resistance rates of Prevotella strains were lower for ticarcillin (8%) and celefotaxime (12%) than for the other cephalosporins. All Prevotella isolates were susceptible to amoxycillin and were all inhibited by 2 mg/l or less amoxycillin [corrected].
Stephan, Bernd; Greife, Heinrich A; Pridmore, Andrew; Silley, Peter
2008-06-01
Collaborating veterinarians from five European countries collected subgingival bacterial samples from dogs exhibiting clinical periodontal disease. Sterile endodontic paper points were used for collection of the samples, which were transported to a central laboratory for susceptibility testing. Anaerobic bacteria were isolated and Porphyromonas and Prevotella isolates identified to the species level; susceptibility to pradofloxacin and metronidazole was determined using the CLSI agar dilution methodology. A total of 630 isolates, 310 of Porphyromonas spp. and 320 of Prevotella spp., were isolated. Pradofloxacin MIC data for all isolates were in the range of < or =0.016 to 1 microg/ml, the overall MIC(50) was 0.062, and the overall MIC(90) was 0.25 microg/ml. There were no differences in activity against Porphyromonas and Prevotella isolates or in the pradofloxacin susceptibility distributions from the different European countries. All isolates were within the wild-type distribution and were fully susceptible to pradofloxacin. Metronidazole was also highly active against these strains: 316 of 320 Prevotella strains (98.8%) and 309 of 310 Porphyromonas strains (99.7%) were susceptible (MICs of < or =8 microg/ml). However, three Prevotella strains had intermediate metronidazole susceptibility (MICs of 16 microg/ml), while one Prevotella and one Porphyromonas strain were metronidazole resistant (MICs of 128 and 256 microg/ml, respectively). Pradofloxacin, a novel broad-spectrum fluoroquinolone, demonstrates a high degree of antianaerobic activity against strains isolated from clinical cases of periodontal disease and shows activity against metronidazole-resistant isolates. The broad-spectrum activity of pradofloxacin makes it a suitable candidate for the treatment of periodontal disease in dogs.
Stephan, Bernd; Greife, Heinrich A.; Pridmore, Andrew; Silley, Peter
2008-01-01
Collaborating veterinarians from five European countries collected subgingival bacterial samples from dogs exhibiting clinical periodontal disease. Sterile endodontic paper points were used for collection of the samples, which were transported to a central laboratory for susceptibility testing. Anaerobic bacteria were isolated and Porphyromonas and Prevotella isolates identified to the species level; susceptibility to pradofloxacin and metronidazole was determined using the CLSI agar dilution methodology. A total of 630 isolates, 310 of Porphyromonas spp. and 320 of Prevotella spp., were isolated. Pradofloxacin MIC data for all isolates were in the range of ≤0.016 to 1 μg/ml, the overall MIC50 was 0.062, and the overall MIC90 was 0.25 μg/ml. There were no differences in activity against Porphyromonas and Prevotella isolates or in the pradofloxacin susceptibility distributions from the different European countries. All isolates were within the wild-type distribution and were fully susceptible to pradofloxacin. Metronidazole was also highly active against these strains: 316 of 320 Prevotella strains (98.8%) and 309 of 310 Porphyromonas strains (99.7%) were susceptible (MICs of ≤8 μg/ml). However, three Prevotella strains had intermediate metronidazole susceptibility (MICs of 16 μg/ml), while one Prevotella and one Porphyromonas strain were metronidazole resistant (MICs of 128 and 256 μg/ml, respectively). Pradofloxacin, a novel broad-spectrum fluoroquinolone, demonstrates a high degree of antianaerobic activity against strains isolated from clinical cases of periodontal disease and shows activity against metronidazole-resistant isolates. The broad-spectrum activity of pradofloxacin makes it a suitable candidate for the treatment of periodontal disease in dogs. PMID:18411326
Nassar, Farah J; Rahal, Elias A; Sabra, Ahmad; Matar, Ghassan M
2013-09-01
Treatment of Escherichia coli O157:H7 by certain antimicrobial agents often exacerbates the patient's condition by increasing either the release of preformed Shiga toxins (Stx) upon cell lysis or their production through the SOS response-triggered induction of Stx-producing prophages. Recommended subinhibitory concentrations (sub-MICs) of azithromycin (AZI), gentamicin (GEN), imipenem (IMI), and rifampicin (RIF) were evaluated in comparison to norfloxacin (NOR), an SOS-inducer, to assess the role of the SOS response in Stx release. Relative expression of recA (SOS-inducer), Q (late antitermination gene of Stx-producing prophage), stx1, and stx2 genes was assessed at two sub-MICs of the antimicrobials for two different strains of E. coli O157:H7 using reverse transcription-real-time polymerase chain reaction. Both strains at the two sub-MICs were also subjected to Western blotting for LexA protein expression and to reverse passive latex agglutination for Stx detection. For both strains at both sub-MICs, NOR and AZI caused SOS-induced Stx production (high recA, Q, and stx2 gene expression and high Stx2 production), so they should be avoided in E. coli O157:H7 treatment; however, sub-MICs of RIF and IMI induced Stx2 production in an SOS-independent manner except for one strain at the first twofold dilution below MIC of RIF where Stx2 production decreased. Moreover, GEN caused somewhat increased Stx2 production due to its mode of action rather than any effect on gene expression. The choice of antimicrobial therapy should rely on the antimicrobial mode of action, its concentration, and on the nature of the strain.
Hidalgo, Álvaro; Carvajal, Ana; Vester, Birte; Pringle, Märit; Naharro, Germán; Rubio, Pedro
2011-01-01
The antimicrobial susceptibility of clinical isolates of Brachyspira hyodysenteriae in Spain was monitored, and the underlying molecular mechanisms of resistance were investigated. MICs of tylosin, tiamulin, valnemulin, lincomycin, and tylvalosin were determined for 87 B. hyodysenteriae isolates recovered from 2008 to 2009 by broth dilution. Domain V of the 23S rRNA gene and the ribosomal protein L3 gene were sequenced in 20 isolates for which the tiamulin MIC was ≥4 μg/ml, presenting decreased susceptibility, and in 18 tiamulin-susceptible isolates (MIC ≤ 0.125 μg/ml), and all isolates were typed by multiple-locus variable-number tandem repeats analysis. A comparison with antimicrobial susceptibility data from 2000 to 2007 showed an increase in pleuromutilin resistance over time, doubling the number of isolates with decreased susceptibility to tiamulin. No alteration in susceptibility was detected for lincomycin, and the MIC of tylosin remained high (MIC50 > 128 μg/ml). The decreased susceptibility to tylosin and lincomycin can be explained by mutations at position A2058 of the 23S rRNA gene (Escherichia coli numbering). A2058T was the predominant mutation, but A2058G also was found together with a change of the neighboring base pair at positions 2057 to 2611. The role of additional point mutations in the vicinity of the peptidyl transferase center and mutations in the L3 at amino acids 148 and 149 and their possible involvement in antimicrobial susceptibility are considered. An association between G2032A and high levels of tiamulin and lincomycin MICs was found, suggesting an increasing importance of this mutation in antimicrobial resistance of clinical isolates of B. hyodysenteriae. PMID:21555771
Hidalgo, Álvaro; Carvajal, Ana; Vester, Birte; Pringle, Märit; Naharro, Germán; Rubio, Pedro
2011-07-01
The antimicrobial susceptibility of clinical isolates of Brachyspira hyodysenteriae in Spain was monitored, and the underlying molecular mechanisms of resistance were investigated. MICs of tylosin, tiamulin, valnemulin, lincomycin, and tylvalosin were determined for 87 B. hyodysenteriae isolates recovered from 2008 to 2009 by broth dilution. Domain V of the 23S rRNA gene and the ribosomal protein L3 gene were sequenced in 20 isolates for which the tiamulin MIC was ≥ 4 μg/ml, presenting decreased susceptibility, and in 18 tiamulin-susceptible isolates (MIC ≤ 0.125 μg/ml), and all isolates were typed by multiple-locus variable-number tandem repeats analysis. A comparison with antimicrobial susceptibility data from 2000 to 2007 showed an increase in pleuromutilin resistance over time, doubling the number of isolates with decreased susceptibility to tiamulin. No alteration in susceptibility was detected for lincomycin, and the MIC of tylosin remained high (MIC(50) > 128 μg/ml). The decreased susceptibility to tylosin and lincomycin can be explained by mutations at position A2058 of the 23S rRNA gene (Escherichia coli numbering). A2058T was the predominant mutation, but A2058G also was found together with a change of the neighboring base pair at positions 2057 to 2611. The role of additional point mutations in the vicinity of the peptidyl transferase center and mutations in the L3 at amino acids 148 and 149 and their possible involvement in antimicrobial susceptibility are considered. An association between G2032A and high levels of tiamulin and lincomycin MICs was found, suggesting an increasing importance of this mutation in antimicrobial resistance of clinical isolates of B. hyodysenteriae.
Imanirampa, Lawrence; Alele, Paul E
2016-07-08
Cleome gynandra L. (Capparaceae) is an edible weed used in Uganda topically for its presumed antifungal activity against Tinea capitis. The goal of this study was to determine if this plant possesses antifungal activity in vitro, since T. capitis is a pervasive infection among especially rural children. Antifungal activity assay was performed by Broth dilution method, and testing done on clinical isolates of three common Tinea capitis-causing fungal strains. Evaluation of in vitro antifungal activity of the ethanol and water extracts of C. gynandra was done to determine the minimum inhibitory concentrations (MICs) and the minimum fungicidal concentrations (MFCs) of the extracts. The MIC of C. gynandra ethanol extract ranged from 0.0313 to 0.0625 mg/ml for Trichophyton rubrum, and from 0.25 to 0.5 mg/ml for both Microsporum canis and Trichophyton mentagrophytes. The MICs of C. gynandra aqueous extract ranged between 0.125 to 0.25 mg/ml for T. rubrum, and 0.25 to 0.5 mg/ml for both M. canis and T. mentagrophytes. T. rubrum was more sensitive than M. canis (p < 0.002) and more sensitive than T. mentagrophytes (p < 0.035) to the antifungal activity of C. gynandra. T. rubrum was 6.9 times (95 % CL: 1.15 - 41.6) more likely to have a better outcome (more sensitive) than T. mentagrophytes. Cleome gynandra aqueous extract had MFC of ≥0.0313 mg/ml for M. canis, ≥0.0156 mg/ml for T. mentagropyhtes, and ≥0.0625 mg/ml for T. rubrum. Cleome gynandra ethanol extract showed MFCs of ≥0.5 mg/ml for M. canis and T. mentagrophytes, and ≥0.125 mg/ml for T. rubrum. Both plant extracts demonstrated antifungal activity, shown by the MIC and MFC for the different extracts, which varied with the type of organism of the clinical fungal isolates. The ethanol extract exhibited comparable antifungal activity to the aqueous extract indicated by the MIC values seen. Conversely, after subculturing the fungal isolates, MFCs were lower for the aqueous than for the ethanol extract.
Antimicrobial Effects of Garcinia Mangostana on Cariogenic Microorganisms.
Janardhanan, Sunitha; Mahendra, Jaideep; Girija, A S Smiline; Mahendra, Little; Priyadharsini, Vijayashree
2017-01-01
Garcinia mangostana commonly called as Mangosteen fruit has been used as an antibacterial agent since age old times. The mangosteen pericarp has proven to have antibacterial effect, but the effect of the same on cariogenic organisms has not been explored. The present study was an attempt to gain a better understanding of the antibacterial effect of mangosteen pericarp on the cariogenic bacteria, to unravel the therapeutic potential for the same. The aim of the study was to assess the antibacterial efficacy of the crude chloroform extract of mangosteen pericarp against cariogenic bacteria. The study was done under laboratory settings using an in vitro design. The microorganisms namely Streptococcus mutans, Streptococcus sanguis, Streptococcus salivarius, Streptococcus oralis and Lactobacillus acidophilus were procured from American Type Cell Culture (ATCC) and Microbial Type Culture Collection (MTCC) were revived and lawn cultured. The antibacterial effect of mangosteen pericarp was tested using agar well diffusion method on Trypticase Soy Agar-Blood Agar (TSA-BA) and de Man, Rogosa and Sharpe (MRS) agar media. The standard antiplaque agent chlorhexidine was used as the positive control. This cross-sectional, experimental study was done in Central Research laboratory, Meenakshi Ammal Dental College for period of eight weeks. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) values were determined by microbroth dilution method. Statistical analysis was done by calculating the mean of the zones of inhibition on tested microorganisms. Mann-Whitney test was done to compare the zones of inhibition of mangosteen and chlorhexidine. The antibacterial bioassay showed the highest activity for Lactobacillus acidophilus (13.6 mm) and Streptococcus sanguis (13.6 mm), whereas, it showed a medium and low activity for Streptococcus oralis (11.3 mm), Streptococcus mutans (10.6 mm) and Streptococcus salivarius (3 mm) respectively. The MBC and MIC values were lowest for Lactobacillus acidophilus (MIC 25 mg/ml, MBC 50 mg/ml) and Streptococcus oralis (MIC 50 mg/ml, MBC 100 mg/ml). Mangosteen pericarp extract had a higher zone of inhibition against the tested microorganisms which suggests its potent antibacterial action against cariogenic organisms. However, further analytical studies are needed to isolate the key molecules of mangosteen pericarp, to explore its anticariogenic therapeutic potential on gram negative oral microorganisms.
NASA Astrophysics Data System (ADS)
Andrade, Patricia F.; Nakazato, Gerson; Durán, Nelson
2017-06-01
It is known the presence of carbon dots (CDs) in carbohydrate based foods. CDs extracted from coffee grounds and instant coffee was also published. CDs from soluble coffee revealed an average size of 4.4 nm. CDs were well-dispersed in water, fluorescent and we have characterized by XPS, XRD analysis, fluorescence and by FTIR spectra. The MIC value by serial micro-dilution assays for CDs on S. aureus ATCC 25923 was 250 μg/mL and E. coli ATCC 25922 >1000 ug/mL. For silver nanoparticles biogenically synthesized was 6.7 μg/mL. Following the checkerboard assay with combining ½ MIC values of the MICs of 125 μg/mL of carbon dots and 3.4 μg/mL of silver nanoparticles, following the fractionated inhibitory concentration (FIC) index methodology, on S. aureus gave a fractionated inhibitory concentration (FIC) value of 1.0, meaning additive interaction. In general, the unfunctionalized CDs showed to be inefficient as antibacterial compounds, however the CDs extracted from Coffee powder and together silver nanoparticles appeared interesting as antibacterial association.
Pfaller, Michael A; Diekema, Daniel J; Procop, Gary W; Rinaldi, Michael G
2013-09-01
A commercially available, fully automated yeast susceptibility test system (Vitek 2; bioMérieux, Marcy d'Etoile, France) was compared in 3 different laboratories with the Clinical and Laboratory Standards Institute (CLSI) reference microdilution (BMD) method by testing 2 quality control strains, 10 reproducibility strains, and 425 isolates of Candida spp. against fluconazole and voriconazole. Reference CLSI BMD MIC endpoints and Vitek 2 MIC endpoints were read after 24 hours and 9.1-27.1 hours incubation, respectively. Excellent essential agreement (within 2 dilutions) between the reference and Vitek 2 MICs was observed for fluconazole (97.9%) and voriconazole (96.7%). Categorical agreement (CA) between the 2 methods was assessed using the new species-specific clinical breakpoints (CBPs): susceptible (S) ≤2 μg/mL, susceptible dose-dependent (SDD) 4 μg/mL, and resistant (R) ≥8 μg/mL for fluconazole and Candida albicans, Candida tropicalis, and Candida parapsilosis and ≤32 μg/mL (SDD), ≥64 μg/mL (R) for Candida glabrata; S ≤0.12 μg/mL, SDD 0.25-0.5 μg/mL, R ≥1 μg/mL for voriconazole and C. albicans, C. tropicalis, and C. parapsilosis, and ≤0.5 μg/mL (S), 1 μg/mL (SDD), ≥2 μg/mL (R) for Candida krusei. The epidemiological cutoff value (ECV) of 0.5 μg/mL for voriconazole and C. glabrata was used to differentiate wild-type (WT; MIC ≤ ECV) from non-WT (MIC > ECV) strains of this species. Due to the lack of CBPs for the less common species, the ECVs for fluconazole and voriconazole, respectively, were used for Candida lusitaniae (2 μg/mL and 0.03 μg/mL), Candida dubliniensis (0.5 μg/mL and 0.03 μg/mL), Candida guilliermondii (8 μg/mL and 0.25 μg/mL), and Candida pelliculosa (4 μg/mL and 0.25 μg/mL) to categorize isolates of these species as WT and non-WT. CA between the 2 methods was 96.8% for fluconazole and 96.5% for voriconazole with less than 1% very major errors and 1.3-3.0% major errors. The Vitek 2 yeast susceptibility system remains comparable to the CLSI BMD reference method for testing the susceptibility of Candida spp. when using the new (lower) CBPs and ECVs. © 2013.
[Activity of butenafine against ocular pathogenic filamentous fungi in vitro].
Xu, Yan; Pang, Guang-ren; Zhao, Dong-qing; Gao, Chuan-wen; Zhou, Lu-tan; Sun, Sheng-tao; Wang, Bing-liang; Chen, Zu-ji
2010-01-01
To investigate antifungal activity of butenafine in comparison with that of natamycin, amphotericin B and fluconazole against ocular pathogenic filamentous fungi in vitro. It was an experimental study. Susceptibility tests were performed against 260 isolates of ocular pathogenic filamentous fungi by broth dilution antifungal susceptibility test of filamentous fungi approved by the Clinical and Laboratory Standards Institute (CLSI) M38-A document. The isolates included Fusarium spp. (136), Aspergillus spp. (98), Alternaria alternata (9), Curvularia lunata (3), and unusual ocular pathogens (14). Final concentration ranged from 0.008 to 16.000 mg/L for butenafine, from 0.031 to 16.000 mg/L for amphotericin B and natamycin, and from 0.5 to 256.0 mg/L for fluconazole. Following incubation at 35 degrees C for 48 h, minimal inhibitory concentration (MIC) was determined according to the CLSI M38-A document. For amphotericin B and natamycin, the MIC was defined as the lowest drug concentration that prevented any discernible growth. For butenafine and fluconazole, the MIC was defined as the lowest concentration in which an approximately 75% reduction compared to the growth of the control was observed. Candida parapsilosis ATCC22019 was used as quality control strains to validated the results. Mean MIC and MIC range, the MIC at which 50% of the isolates tested were inhibited (MIC(50)) and the MIC at which 90% of the isolates tested were inhibited (MIC(90)), were provided for all the isolates tested by using descriptive statistical analysis with the statistical SPSS package (version 13.0). MIC(90) of butenafine, natamycin, amphotericin B and fluconazole were 4, 8, 2 and 512 mg/L for Fusarium spp., respectively; 0.063, 32.000, 2.000 and 256.000 mg/L for Aspergillus spp., respectively; 0.5, 8.0, 2.0 and 128.0 mg/L for Alternaria alternate, respectively; 0.125, 2.000, 0.500 and 4.000 mg/L for Curvularia lunata, respectively; and 1, 4, 1 and 256 mg/L for unusual ocular pathogens, respectively. Butenafine exhibits potent antifungal activity against a wide variety of ocular pathogenic fungi, especially for Aspergillus spp., Alternaria alternata, Curvularia lunata, and some unusual ocular pathogens and may have a role in future studies of antifungal eye drops and treating fungal keratitis.
Wang, S; Fan, M; Bian, Z
2001-09-01
To screen some Chinese herbal medicines for their inhibitory activity on cariogenic bacteria, and investigate their active ingredients, and measure their minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC). Active components were isolated from every tested Chinese herbal medicine by means of aqueous extraction and ethanolic extraction. Berberine was purified from Coptis chinensis Fra. Disk agar diffusion method was employed in screening herbs with inhibiting effect on cariogenic bacteria. MIC and MBC were determined by broth dilution method. Against Streptococcus mutans Ingbritt, MBCs of Magnolia officinalis ethanolic extract, Berberine, Coptis chinensis Fra aqueous extract and Coptis chinensis Fra ethanolic extract were 0.488, 0.625, 7.800 and 1.950 g/L respectively. Against Streptococcus sobrinus 6715, MBCs of Magnolia extract, Coptis chinensis Fra ethanolic extract, Rhus chinensis Mill ethanolic extract and Phellodendron chinen ethanolic extract were 0.488, 0.625, 1.950, 3.900, 3.900 and 3.900 g/L respectively. Against Actinomyces viscosus ATCC 19246, MBCs of Berberine, Coptis chinensis Fra aqueous extract, Coptis chinensis Fra ethanolic extract, Rheum palmatum L aqueous extract and Rheum palmatum L ethanolic extract were 1.250, 3.900, 3.900, 15.600 and 31.250 g/L respectively. Magnolia officinalis, Coptis chinensis Fran, Rheum palmatum L aqueous extracts exhibit strong inhibition on cariogenic bacteria. Magnolia officinalis ethanolic extract has the strongest bactericidal effects on Streptococcus mutans and Streptococcus sobrinus.
Wei, Lee Seong; Wee, Wendy
2013-06-01
This paper describes chemical composition and antimicrobial activity of Cymbopogon nardus citronella essential oil against Edwardsiella spp. (n = 21), Vibrio spp. (n = 6), Aeromonas spp. (n = 2), Escherichia coli (n = 2), Salmonella spp. (n = 2), Flavobacterium spp. (n = 1), Pseudomonas spp. (n = 1) and Streptococcus spp. (n = 1) isolated from internal organs of aquatic animals. Due to the ban of antibiotics for aquaculture use, this study was carried out to evaluate the potential of citronella essential oil as alternative to commercial antibiotic use against systemic bacteria in cultured aquatic animals. The essential oil of C. nardus was prepared by using the steam distillation method and the chemical composition of the essential oil was analyzed by gas chromatography-mass spectroscopy (GC-MS). Minimum inhibitory concentration (MIC) of the essential oil tested against bacterial isolates from various aquatic animals and ATCC type strains were determined using two-fold broth micro dilution method with kanamycin and eugenol as positive controls. A total of 22 chemical compounds were detected in C. nardus essential oil with 6-octenal, 3, 7-dimethyl- or citronellal representing the major compounds (29.6%). The MIC values of the citronella oil ranged from 0.244 µg/ml to 0.977 µg/ml when tested against the bacterial isolates. The results of the present study revealed the potential of C. nardus essential oil as alternative to commercial antibiotics for aquaculture use.
Wei, Lee Seong; Wee, Wendy
2013-01-01
Background & Objectives This paper describes chemical composition and antimicrobial activity of Cymbopogon nardus citronella essential oil against Edwardsiella spp. (n = 21), Vibrio spp. (n = 6), Aeromonas spp. (n = 2), Escherichia coli (n = 2), Salmonella spp. (n = 2), Flavobacterium spp. (n = 1), Pseudomonas spp. (n = 1) and Streptococcus spp. (n = 1) isolated from internal organs of aquatic animals. Due to the ban of antibiotics for aquaculture use, this study was carried out to evaluate the potential of citronella essential oil as alternative to commercial antibiotic use against systemic bacteria in cultured aquatic animals. Materials & Methods The essential oil of C. nardus was prepared by using the steam distillation method and the chemical composition of the essential oil was analyzed by gas chromatography–mass spectroscopy (GC–MS). Minimum inhibitory concentration (MIC) of the essential oil tested against bacterial isolates from various aquatic animals and ATCC type strains were determined using two-fold broth micro dilution method with kanamycin and eugenol as positive controls. Results A total of 22 chemical compounds were detected in C. nardus essential oil with 6-octenal, 3, 7-dimethyl- or citronellal representing the major compounds (29.6%). The MIC values of the citronella oil ranged from 0.244 µg/ml to 0.977 µg/ml when tested against the bacterial isolates. Conclusion The results of the present study revealed the potential of C. nardus essential oil as alternative to commercial antibiotics for aquaculture use. PMID:23825733
Prüller, Sandra; Rensch, Ulrike; Meemken, Diana; Kaspar, Heike; Kopp, Peter A; Klein, Günter; Kehrenberg, Corinna
2015-01-01
Bordetella bronchiseptica causes infections of the respiratory tract in swine and other mammals and is a precursor for secondary infections with Pasteurella multocida. Treatment of B. bronchiseptica infections is conducted primarily with antimicrobial agents. Therefore it is essential to get an overview of the susceptibility status of these bacteria. The aim of this study was to comparatively analyse broth microdilution susceptibility testing according to CLSI recommendations with an incubation time of 16 to 20 hours and a longer incubation time of 24 hours, as recently proposed to obtain more homogenous MICs. Susceptibility testing against a panel of 22 antimicrobial agents and two fixed combinations was performed with 107 porcine isolates from different farms and regions in Germany and 43 isolates obtained from companion animals in Germany and other European countries. Isolates with increased MICs were investigated by PCR assays for the presence of resistance genes. For ampicillin, all 107 porcine isolates were classified as resistant, whereas only a single isolate was resistant to florfenicol. All isolates obtained from companion animals showed elevated MICs for β-lactam antibiotics and demonstrated an overall low susceptibility to cephalosporines. Extension of the incubation time resulted in 1-2 dilution steps higher MIC50 values of porcine isolates for seven antimicrobial agents tested, while isolates from companion animals exhibited twofold higher MIC50/90 values only for tetracycline and cefotaxime. For three antimicrobial agents, lower MIC50 and MIC90 values were detected for both, porcine and companion animal isolates. Among the 150 isolates tested, the resistance genes blaBOR-1 (n = 147), blaOXA-2, (n = 4), strA and strB (n = 17), sul1 (n = 10), sul2 (n = 73), dfrA7 (n = 3) and tet(A) (n = 8) were detected and a plasmid localisation was identified for several of the resistance genes.
Prüller, Sandra; Rensch, Ulrike; Meemken, Diana; Kaspar, Heike; Kopp, Peter A.; Klein, Günter; Kehrenberg, Corinna
2015-01-01
Bordetella bronchiseptica causes infections of the respiratory tract in swine and other mammals and is a precursor for secondary infections with Pasteurella multocida. Treatment of B. bronchiseptica infections is conducted primarily with antimicrobial agents. Therefore it is essential to get an overview of the susceptibility status of these bacteria. The aim of this study was to comparatively analyse broth microdilution susceptibility testing according to CLSI recommendations with an incubation time of 16 to 20 hours and a longer incubation time of 24 hours, as recently proposed to obtain more homogenous MICs. Susceptibility testing against a panel of 22 antimicrobial agents and two fixed combinations was performed with 107 porcine isolates from different farms and regions in Germany and 43 isolates obtained from companion animals in Germany and other European countries. Isolates with increased MICs were investigated by PCR assays for the presence of resistance genes. For ampicillin, all 107 porcine isolates were classified as resistant, whereas only a single isolate was resistant to florfenicol. All isolates obtained from companion animals showed elevated MICs for β-lactam antibiotics and demonstrated an overall low susceptibility to cephalosporines. Extension of the incubation time resulted in 1–2 dilution steps higher MIC50 values of porcine isolates for seven antimicrobial agents tested, while isolates from companion animals exhibited twofold higher MIC50/90 values only for tetracycline and cefotaxime. For three antimicrobial agents, lower MIC50 and MIC90 values were detected for both, porcine and companion animal isolates. Among the 150 isolates tested, the resistance genes bla BOR-1 (n = 147), bla OXA-2, (n = 4), strA and strB (n = 17), sul1 (n = 10), sul2 (n = 73), dfrA7 (n = 3) and tet(A) (n = 8) were detected and a plasmid localisation was identified for several of the resistance genes. PMID:26275219
First report of qacG, qacH and qacJ genes in Staphylococcus haemolyticus human clinical isolates.
Correa, J E; De Paulis, A; Predari, S; Sordelli, D O; Jeric, P E
2008-11-01
To investigate phenotypically and genotypically the presence of MDR efflux pumps in 21 clinical isolates of Staphylococcus haemolyticus collected over a period of 10 years. MICs of different antibiotics and biocides were determined by the broth dilution method in the presence/absence of carbonyl cyanide-m-chlorophenylhydrazone (CCCP), an efflux pump inhibitor. PCR followed by sequencing was performed to detect the qac genes that encode for antiseptic resistance. Clonal relationships were determined by PFGE SmaI patterns using a standard protocol. All the isolates were resistant to gentamicin, 15 to erythromycin, 18 to ciprofloxacin, 7 to chloramphenicol and 1 to tetracycline. They showed higher susceptibility to antibiotics when they were exposed to CCCP. The MICs of ethidium bromide, SDS and benzalkonium chloride were also decreased, whereas the MIC of triclosan was decreased in only four isolates in the presence CCCP. Of the 21 isolates, qacA/B was detected in 5 isolates, smr in all of the isolates, qacG in 11 isolates, qacH in 10 isolates and qacJ in 4 isolates. PFGE analysis of the 21 isolates clustered them into 14 clones at 90% similarity corresponding to differences of between 7 and 16 bands among the clones. The efflux mechanism seems to be an important mechanism to confer resistance to antibiotics and biocides through MDR pumps. It was observed that several qac genes coexist in some of the isolates and seem to act simultaneously in the removal of different compounds out of the bacterial cell. The qac genes are horizontally spread among different clones.
Wei, Chuanqi; Ni, Wentao; Cai, Xuejiu; Cui, Junchang
2015-01-01
Stenotrophomonas maltophilia has emerged as an important opportunistic pathogen in recent years. Increasing antimicrobial resistance and other contraindications have greatly compromised trimethoprim/sulfamethoxazole (SXT) as the first-line therapeutic option. The objective of this study was to explore other options for treating hospital-acquired pneumonia (HAP) caused by S. maltophilia. A total of 102 strains of S. maltophilia were isolated from sputum and bronchoalveolar lavage (BAL) specimens of patients with HAP in our institution. The minimum inhibitory concentration (MIC) values of minocycline, tigecycline, moxifloxacin, and levofloxacin were determined by the agar dilution method. Based on the MICs and the population pharmacokinetic parameters of the investigated antimicrobials, a Monte Carlo simulation was performed to simulate the pharmacokinetic/pharmacodynamic (PK/PD) indices of different regimens. The probability of target attainment (PTA) was estimated at each MIC value and the cumulative fraction of response (CFR) was calculated to evaluate the efficacy of these regimens. The susceptibility rates to minocycline, tigecycline, moxifloxacin, and levofloxacin were 96.1%, 80.4%, 74.5%, and 69.6%, respectively. The estimated CFRs were 96.2% for minocycline 100 mg twice daily; 50.8%/67.1%/75.4% for tigecycline 50/75/100 mg twice daily; 34.3%/48.0%/56.6% for levofloxacin 500/750/1000 mg once daily; and 45.7% for moxifloxacin 400 mg once daily. The simulation results suggest that minocycline may be a proper choice for treatment of HAP caused by S. maltophilia, while tigecycline, moxifloxacin, and levofloxacin may not be optimal as monotherapy.
Raeisi, Mojtaba; Tajik, Hossein; Razavi Rohani, Seyed Mehdi; Tepe, Bektas; Kiani, Hossein; Khoshbakht, Rahem; Shirzad Aski, Hesamaddin; Tadrisi, Hamed
2016-01-01
Listeria monocytogenes is one of the major causes of infections in developing countries. In this study, chemical composition and anti-listerial effect of the essential oil of Zataria multiflora Boiss. alone and in combination with monolaurin were evaluated at different pH values (5, 6, and 7) and temperatures (5 ˚C and 30 ˚C). Chemical composition of Zataria multiflora Boiss. essential oil was evaluated by gas chromatography-mass spectrometry (GC-MS) analysis. Minimum inhibitory concentration (MIC) of the essential oil and monolaurin were determined using microbroth dilution method and the interactions of essential oil and monolaurin were determined by the evaluation of fractional inhibitory concentrations (FIC) index. Carvacrol (63.20%) and thymol (15.10%) were found as the main components of the essential oil. The MIC values of the oil and monolaurin at pH 7 and 30 ˚C were measured as 312.50 µg mL-1 and 125.00 µg mL-1, respectively. Combination of monolaurin and Z. multiflora essential oil were found to act synergistically (FIC index < 0.5) against L. monocytogenes under different pH and temperature conditions. Decrease in the pH and temperature values have increased the anti-listerial activity of monolaurin and the essential oil. The lowest MIC value of monolaurin and essential oil was observed at pH 5 and 5 ˚C. According to our results, the oil alone or in combination with monolaurin at low pH and temperature conditions showed a promising inhibitory effect on L. monocytogenes. PMID:27226881
Assessing the antibiotic susceptibility of freshwater Cyanobacteria spp.
Dias, Elsa; Oliveira, Micaela; Jones-Dias, Daniela; Vasconcelos, Vitor; Ferreira, Eugénia; Manageiro, Vera; Caniça, Manuela
2015-01-01
Freshwater is a vehicle for the emergence and dissemination of antibiotic resistance. Cyanobacteria are ubiquitous in freshwater, where they are exposed to antibiotics and resistant organisms, but their role on water resistome was never evaluated. Data concerning the effects of antibiotics on cyanobacteria, obtained by distinct methodologies, is often contradictory. This emphasizes the importance of developing procedures to understand the trends of antibiotic susceptibility in cyanobacteria. In this study we aimed to evaluate the susceptibility of four cyanobacterial isolates from different genera (Microcystis aeruginosa, Aphanizomenon gracile, Chrisosporum bergii, Planktothix agradhii), and among them nine isolates from the same specie (M. aeruginosa) to distinct antibiotics (amoxicillin, ceftazidime, ceftriaxone, kanamycine, gentamicine, tetracycline, trimethoprim, nalidixic acid, norfloxacin). We used a method adapted from the bacteria standard broth microdilution. Cyanobacteria were exposed to serial dilution of each antibiotic (0.0015–1.6 mg/L) in Z8 medium (20 ± 1°C; 14/10 h L/D cycle; light intensity 16 ± 4 μEm−2s−1). Cell growth was followed overtime (OD450nm/microscopic examination) and the minimum inhibitory concentrations (MICs) were calculated for each antibiotic/isolate. We found that β-lactams exhibited the lower MICs, aminoglycosides, tetracycline and norfloxacine presented intermediate MICs; none of the isolates were susceptible to trimethoprim and nalidixic acid. The reduced susceptibility of all tested cyanobacteria to some antibiotics suggests that they might be naturally non-susceptible to these compounds, or that they might became non-susceptible due to antibiotic contamination pressure, or to the transfer of genes from resistant bacteria present in the environment. PMID:26322027
Raeisi, Mojtaba; Tajik, Hossein; Razavi Rohani, Seyed Mehdi; Tepe, Bektas; Kiani, Hossein; Khoshbakht, Rahem; Shirzad Aski, Hesamaddin; Tadrisi, Hamed
2016-01-01
Listeria monocytogenes is one of the major causes of infections in developing countries. In this study, chemical composition and anti-listerial effect of the essential oil of Zataria multiflora Boiss. alone and in combination with monolaurin were evaluated at different pH values (5, 6, and 7) and temperatures (5 ˚C and 30 ˚C). Chemical composition of Zataria multiflora Boiss. essential oil was evaluated by gas chromatography-mass spectrometry (GC-MS) analysis. Minimum inhibitory concentration (MIC) of the essential oil and monolaurin were determined using microbroth dilution method and the interactions of essential oil and monolaurin were determined by the evaluation of fractional inhibitory concentrations (FIC) index. Carvacrol (63.20%) and thymol (15.10%) were found as the main components of the essential oil. The MIC values of the oil and monolaurin at pH 7 and 30 ˚C were measured as 312.50 µg mL(-1) and 125.00 µg mL(-1), respectively. Combination of monolaurin and Z. multiflora essential oil were found to act synergistically (FIC index < 0.5) against L. monocytogenes under different pH and temperature conditions. Decrease in the pH and temperature values have increased the anti-listerial activity of monolaurin and the essential oil. The lowest MIC value of monolaurin and essential oil was observed at pH 5 and 5 ˚C. According to our results, the oil alone or in combination with monolaurin at low pH and temperature conditions showed a promising inhibitory effect on L. monocytogenes.
Ali, Nafisa Hassan; Faizi, Shaheen; Kazmi, Shahana Urooj
2011-08-01
Development of resistance in human pathogens against conventional antibiotic necessitates searching indigenous medicinal plants having antibacterial property. Twenty-seven medicinal plants used actively in folklore, ayurvedic and traditional system of medicine were selected for the evaluation of their antimicrobial activity for this study. Eleven plants chosen from these 27 are used as spices in local cuisine. Evaluation of the effectiveness of some medicinal plant extracts against clinical isolates. Nonedible plant parts were extracted with methanol and evaporated in vacuo to obtain residue. Powdered edible parts were boiled three times and cooled in sterile distilled water for 2 min each and filtrate collected. The minimum inhibitory concentration (MIC) of plant extracts and filtrates/antibiotics was evaluated against clinical isolates by microbroth dilution method. Water extract of Syzygium aromaticum L. (Myrtaceae) buds, methanol extracts of Ficus carica L. (Moraceae) and Olea europaea L. (Oleaceae) leaves and Peganum harmala L. (Nitrariaceae) seeds had MIC ranges of 31.25-250 µg/ml. S. aromaticum inhibited growth of Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pyogenes, Salmonella enterica serovar Typhi and Pseudomonas aeruginosa. F. carica and O. europaea inhibited growth of S. aureus, S. epidermidis, and S. pyogenes whereas P. harmala was effective against S. aureus, Acinetobacter calcoaceticus and Candida albicans. Ampicillin, velosef, sulfamethoxazole, tetracycline and ceftazidime, cefotaxime, cefepime, which are used as control, had MIC ≥ 50 and 1.5 µg/ml, respectively, for organisms sensitive to extracts. Mono/multiextract from identified plants will provide an array of safe antimicrobial agents to control infections by drug-resistant bacteria.
Gianecini, Ricardo; Romero, Maria de Las Mercedes; Oviedo, Claudia; Vacchino, Martin; Galarza, Patricia
2017-06-01
The emergence of Neisseria gonorrhoeae strains with decreased susceptibility to cephalosporins represents a major concern globally. The aim of this study was to examine the phenotypic and molecular characteristics of N. gonorrhoeae isolates with decreased susceptibility to ceftriaxone and cefixime in Argentina. A total of 1987 isolates were collected during 2009 and 2013. The susceptibility to penicillin G, tetracycline, ciprofloxacin, cefixime, ceftriaxone, and azithromycin was determined using the agar dilution method. The major extended-spectrum cephalosporin resistance determinants (penA, mtrR, and porB1b) were sequenced in 42 N. gonorrhoeae isolates that showed decreased susceptibility to ceftriaxone (minimum inhibitory concentration [MIC], 0.06-0.125 mg/L) and cefixime (MIC, 0.125-0.25 mg/L). Genotyping by N. gonorrhoeae multiantigen sequence typing (NG-MAST) was performed. Between 2009 and 2013, there was a shift in the modal MICs for ceftriaxone. Among the 42 isolates exhibiting decreased susceptibility to ceftriaxone and cefixime, 95.2% were resistant to penicillin G, 95.2% to tetracycline, 97.6% to ciprofloxacin, and 33.3% to azithromycin. Thirty-five (83.3%) of the 42 isolates had a mosaic penA allele XXXIV, which has been previously associated with resistance to ceftriaxone and cefixime as well as treatment failures. The isolates that contained the mosaic penicillin-binding protein 2 (PBP2) XXXIV were associated with NG-MAST ST1407 or closely related genotypes. In Argentina, N. gonorrhoeae isolates with decreased susceptibility to cefixime and ceftriaxone have now emerged, mostly due to the introduction of the internationally spread multidrug-resistant NG-MAST ST1407.
Poimenidou, Sofia V; Chrysadakou, Marilena; Tzakoniati, Aikaterini; Bikouli, Vasiliki C; Nychas, George-John; Skandamis, Panagiotis N
2016-11-21
Listeria monocytogenes is a foodborne pathogen able to tolerate adverse conditions by forming biofilms or by deploying stress resistant mechanisms, and thus manages to survive for long periods in food processing plants. This study sought to investigate the correlation between biofilm forming ability, tolerance to disinfectants and cell surface characteristics of twelve L. monocytogenes strains. The following attributes were evaluated: (i) biofilm formation by crystal violet staining method on polystyrene, and by standard cell enumeration on stainless steel and polystyrene; (ii) hydrophobicity assay using solvents; (iii) minimum inhibitory concentration (MIC) and biofilm eradication concentration (BEC) of peracetic acid (PAA) and quaternary ammonium compounds (QACs), and (iv) resistance to sanitizers (PAA 2000ppm; QACs 500ppm) of biofilms on polystyrene and stainless steel. After 72h of incubation, higher biofilm levels were formed in TSB at 20°C, followed by TSB at 37°C (P=0.087) and diluted TSB 1/10 at both 20 (P=0.005) and 37°C (P=0.004). Cells grown at 30°C to the stationary phase had significant electron donating nature and a low hydrophobicity, while no significant correlation of cell surface properties to biofilm formation was observed. Strains differed in MIC PAA and BEC PAA by 24- and 15-fold, respectively, while a positive correlation between MIC PAA and BEC PAA was observed (P=0.02). The MIC QACs was positively correlated with the biofilm-forming ability on stainless steel (P=0.03). Regarding the impact of surface type, higher biofilm populations were enumerated on polystyrene than on stainless steel, which were also more tolerant to disinfectants. Among all strains, the greatest biofilm producer was a persistent strain with significant tolerance to QACs. These results may contribute to better understanding of L. monocytogenes behavior and survival on food processing surfaces. Copyright © 2016 Elsevier B.V. All rights reserved.
Bernal, J; Martín, Ma T; Toribio, L; Martín-Hernández, R; Higes, M; Bernal, J L; Nozal, M J
2011-06-01
A LC-MS/MS method has been developed to simultaneously quantify tylosins A, B, C and D in bee larvae, compounds currently used to treat one of the most lethal diseases affecting honey bees around the world, American Foulbrood (AFB). The influence of different aqueous media, temperature and light exposure on the stability of these four compounds was studied. The analytes were extracted from bee larvae with methanol and chromatographic separation was achieved on a Luna C(18) (150 × 4.6 mm i.d.) using a ternary gradient composed of a diluted formic acid, methanol and acetonitrile mobile phase. To facilitate sampling, bee larvae were initially dried at 60°C for 4h and afterwards, they were diluted to avoid problems of pressure. MSD-Ion Trap detection was employed with electrospray ionization (ESI). The calibration curves were linear over a wide range of concentrations and the method was validated as sensitive, precise and accurate within the limits of quantification (LOQ, 1.4-4.0 ng/g). The validated method was successfully employed to study bee larvae in field tests of bee hives treated with two formulations containing tylosin. In both cases it was evident that the minimal inhibitory concentration (MIC) had been reached. Copyright © 2011 Elsevier B.V. All rights reserved.
Credito, K L; Lin, G; Pankuch, G A; Bajaksouzian, S; Jacobs, M R; Appelbaum, P C
2001-01-01
The activity of the ketolide ABT-773 against Haemophilus and Moraxella was compared to those of 11 other agents. Against 210 Haemophilus influenzae strains (39.0% beta-lactamase positive), microbroth dilution tests showed that azithromycin and ABT-773 had the lowest MICs (0.5 to 4.0 and 1.0 to 8.0 microg/ml, respectively), followed by clarithromycin and roxithromycin (4.0 to >32.0 microg/ml). Of the beta-lactams, ceftriaxone had the lowest MICs (=0.004 to 0.016 microg/ml), followed by cefixime and cefpodoxime (0.008 to 0.125 and =0.125 to 0.25 microg/ml, respectively), amoxicillin-clavulanate (0.125 to 4.0 microg/ml), and cefuroxime (0. 25 to 8.0 microg/ml). Amoxicillin was only active against beta-lactamase-negative strains, and cefprozil had the highest MICs of all oral cephalosporins tested (0.5 to >32.0 microg/ml). Against 50 Moraxella catarrhalis strains, all of the compounds except amoxicillin and cefprozil were active. Time-kill studies against 10 H. influenzae strains showed that ABT-773, at two times the MIC, was bactericidal against 9 of 10 strains, with 99% killing of all strains at the MIC after 24 h; at 12 h, ABT-773 gave 90% killing of all strains at two times the MIC. At 3 and 6 h, killing by ABT-773 was slower, with 99.9% killing of four strains at two times the MIC after 6 h. Similar results were found for azithromycin, with slightly slower killing by erythromycin, clarithromycin, and roxithromycin, especially at earlier times. beta-Lactams were bactericidal against 8 to 10 strains at two times the MIC after 24 h, with slower killing at earlier time periods. Most compounds gave good killing of five M. catarrhalis strains, with beta-lactams killing more rapidly than other drugs. ABT-773 and azithromycin gave the longest postantibiotic effects (PAEs) of the ketolide-macrolide-azalide group tested (4.4 to >8.0 h), followed by clarithromycin, erythromycin, and roxithromycin. beta-Lactam PAEs were similar and shorter than those of the ketolide-macrolide-azalide group for all strains tested.
NASA Astrophysics Data System (ADS)
Görmez, Arzu; Yanmiş, Derya; Bozari, Sedat; Gürkök, Sumeyra
2017-04-01
The antibiotic resistance of pathogenic microorganisms has become a worldwide concern to public health. To overcome the current resistance problem, new antimicrobial agents are extremely needed. The aim of the present study was to evaluate the antibacterial activity of Satureja hortensis essential oils against seven clinical pathogens. Chemical compositions of hydro distillated essential oils from S. hortensis were analyzed by GS-MS. The antibacterial activity was investigated against Corynebacterium diphtheria, Salmonella typhimurium, Serratia plymuthica Yersinia enterocolitica, Y. frederiksenii, Y. pseudotuberculosis and Vibrio cholerae by the use of disc diffusion method and broth micro dilution method. The minimum inhibitory concentration (MIC) values of essential oils were found as low as 7.81 µg/mL. Notably, essential oils of S. hortensis exhibited remarkable antimicrobial activities against the tested clinical pathogens. The results indicate that these essential oils can be used in treatment of different infectious diseases.
Stary, Angelika; Heller-Vitouch, Claudia; Binder, Michael; Geusau, Alexandra; Stary, Georg; Rappersberger, Klemens; Komericki, Peter; Hoepfl, Reinhard; Haller, Maria
2015-11-01
The increase in minimum inhibitory concentrations (MICs) of cephalosporins for Neisseria gonorrhoeae has given rise to concerns regarding potentially untreatable gonococcal infections. The goal was to ascertain the prevalence of gonorrhea in a Viennese patient group and determine resistance patterns. Another objective was to evaluate resistance profiles and MIC values of gonococcal isolates in an Austria-wide surveillance project. From 1999 to 2014, 350,000 individuals were tested for gonococci at the Viennese Outpatient Clinic. In addition, from 2010 to 2014, the MICs of recommended antibiotics was determined in 3,584 gonococcal isolates, initially by agar dilution and breakpoint determination, and, from 2012 onwards, by Etest®. During the observation period, the prevalence of gonorrhea increased eightfold, with a significantly greater number of quinolone, penicillin, and tetracycline- resistant strains. In gonococcal strains isolated from across Austria, there was an increase in cefixime and ceftriaxone MICs toward breakpoints. Twenty-one isolates showed cefixime resistance, and while there was an increase in azithromycin resistance from 0.9 % (2013) to 3.2 % (2014), no resistance to ceftriaxone was observed. Currently, there is no imminent risk of untreatable gonorrhea in Austria. However, continuing the use of gonococcal cultures as a diagnostic tool for establishing resistance profiles is essential in order to monitor trends in the development of Neisseria (N.) gonorrhoeae resistance. © 2015 Deutsche Dermatologische Gesellschaft (DDG). Published by John Wiley & Sons Ltd.
Pomegranate extract exhibits in vitro activity against Clostridium difficile.
Finegold, Sydney M; Summanen, Paula H; Corbett, Karen; Downes, Julia; Henning, Susanne M; Li, Zhaoping
2014-10-01
To determine the possible utility of pomegranate extract in the management or prevention of Clostridium difficile infections or colonization. The activity of pomegranate was tested against 29 clinical C. difficile isolates using the Clinical and Laboratory Standards Institute-approved agar dilution technique. Total phenolics content of the pomegranate extract was determined by Folin-Ciocalteau colorimetric method and final concentrations of 6.25 to 400 μg/mL gallic acid equivalent were achieved in the agar. All strains had MICs at 12.5 to 25 mg/mL gallic acid equivalent range. Our results suggest antimicrobial in vitro activity for pomegranate extract against toxigenic C. difficile. Pomegranate extract may be a useful contributor to the management and prevention of C. difficile disease or colonization. Copyright © 2014 Elsevier Inc. All rights reserved.
Vancomycin AUC/MIC ratio and 30-day mortality in patients with Staphylococcus aureus bacteremia.
Holmes, Natasha E; Turnidge, John D; Munckhof, Wendy J; Robinson, J Owen; Korman, Tony M; O'Sullivan, Matthew V N; Anderson, Tara L; Roberts, Sally A; Warren, Sanchia J C; Gao, Wei; Howden, Benjamin P; Johnson, Paul D R
2013-04-01
A ratio of the vancomycin area under the concentration-time curve to the MIC (AUC/MIC) of ≥ 400 has been associated with clinical success when treating Staphylococcus aureus pneumonia, and this target was recommended by recently published vancomycin therapeutic monitoring consensus guidelines for treating all serious S. aureus infections. Here, vancomycin serum trough levels and vancomycin AUC/MIC were evaluated in a "real-world" context by following a cohort of 182 patients with S. aureus bacteremia (SAB) and analyzing these parameters within the critical first 96 h of vancomycin therapy. The median vancomycin trough level at this time point was 19.5 mg/liter. There was a significant difference in vancomycin AUC/MIC when using broth microdilution (BMD) compared with Etest MIC (medians of 436.1 and 271.5, respectively; P < 0.001). Obtaining the recommended vancomycin target AUC/MIC of ≥ 400 using BMD was not associated with lower 30-day all-cause or attributable mortality from SAB (P = 0.132 and P = 0.273, respectively). However, an alternative vancomycin AUC/MIC of >373, derived using classification and regression tree analysis, was associated with reduced mortality (P = 0.043) and remained significant in a multivariable model. This study demonstrated that we obtained vancomycin trough levels in the target therapeutic range early during the course of therapy and that obtaining a higher vancomycin AUC/MIC (in this case, >373) within 96 h was associated with reduced mortality. The MIC test method has a significant impact on vancomycin AUC/MIC estimation. Clinicians should be aware that the current target AUC/MIC of ≥ 400 was derived using the reference BMD method, so adjustments to this target need to be made when calculating AUC/MIC ratio using other MIC testing methods.
Vancomycin AUC/MIC Ratio and 30-Day Mortality in Patients with Staphylococcus aureus Bacteremia
Turnidge, John D.; Munckhof, Wendy J.; Robinson, J. Owen; Korman, Tony M.; O'Sullivan, Matthew V. N.; Anderson, Tara L.; Roberts, Sally A.; Warren, Sanchia J. C.; Gao, Wei; Howden, Benjamin P.; Johnson, Paul D. R.
2013-01-01
A ratio of the vancomycin area under the concentration-time curve to the MIC (AUC/MIC) of ≥400 has been associated with clinical success when treating Staphylococcus aureus pneumonia, and this target was recommended by recently published vancomycin therapeutic monitoring consensus guidelines for treating all serious S. aureus infections. Here, vancomycin serum trough levels and vancomycin AUC/MIC were evaluated in a “real-world” context by following a cohort of 182 patients with S. aureus bacteremia (SAB) and analyzing these parameters within the critical first 96 h of vancomycin therapy. The median vancomycin trough level at this time point was 19.5 mg/liter. There was a significant difference in vancomycin AUC/MIC when using broth microdilution (BMD) compared with Etest MIC (medians of 436.1 and 271.5, respectively; P < 0.001). Obtaining the recommended vancomycin target AUC/MIC of ≥400 using BMD was not associated with lower 30-day all-cause or attributable mortality from SAB (P = 0.132 and P = 0.273, respectively). However, an alternative vancomycin AUC/MIC of >373, derived using classification and regression tree analysis, was associated with reduced mortality (P = 0.043) and remained significant in a multivariable model. This study demonstrated that we obtained vancomycin trough levels in the target therapeutic range early during the course of therapy and that obtaining a higher vancomycin AUC/MIC (in this case, >373) within 96 h was associated with reduced mortality. The MIC test method has a significant impact on vancomycin AUC/MIC estimation. Clinicians should be aware that the current target AUC/MIC of ≥400 was derived using the reference BMD method, so adjustments to this target need to be made when calculating AUC/MIC ratio using other MIC testing methods. PMID:23335735
Vancomycin AUC/MIC and Corresponding Troughs in a Pediatric Population
Lardieri, Allison B.; Heil, Emily L.; Morgan, Jill A.
2017-01-01
OBJECTIVES Adult guidelines suggest an area under the curve/minimum inhibitory concentration (AUC/MIC) > 400 corresponds to a vancomycin trough serum concentration of 15 to 20 mg/L for methicillin-resistant Staphylococcus aureus infections, but obtaining these troughs in children are difficult. The primary objective of this study was to assess the likelihood that 15 mg/kg of vancomycin every 6 hours in a child achieves an AUC/MIC > 400. METHODS This retrospective chart review included pediatric patients >2 months to <18 years with a positive S aureus blood culture and documented MIC who received at least two doses of vancomycin with corresponding trough. Patients were divided into two groups: group 1 initially receiving ≥15 mg/kg every 6 hours, and group 2 initially receiving any other dosing ranges or intervals. AUCs were calculated four times using three pharmacokinetic methods. RESULTS A total of 36 patients with 99 vancomycin trough serum concentrations were assessed. Baseline characteristics were similar between groups. For troughs in group 1 (n = 55), the probability of achieving an AUC/MIC > 400 ranged from 16.4% to 90.9% with a median trough concentration of 11.4 mg/L, while in group 2 (n = 44) the probability of achieving AUC/MIC > 400 ranged from 15.9% to 54.5% with mean trough concentration of 9.2 mg/L. The AUC/MICs were not similar between the different pharmacokinetic methods used; however, a trapezoidal equation (Method A) yielded the highest correlation coefficient (r2 = 0.59). When dosing every 6 hours, an AUC/MIC of 400 correlated to a trough serum concentration of 11 mg/L. CONCLUSIONS The probability of achieving an AUC/MIC > 400 using only a trough serum concentration and an MIC with patients receiving 15 mg/kg every 6 hours is variable based on the method used to calculate the AUC. An AUC/MIC of 400 in children correlated to a trough concentration of 11 mg/L using a trapezoidal Method to calculate AUC. PMID:28337080
In Vitro Anti-Malassezia Activity of Castanea crenata Shell and Oil-Soluble Glycyrrhiza Extracts
Han, Song Hee; Hur, Min Seok; Kim, Min Jung; Jung, Won Hee; Park, Minji; Kim, Jeong Hwan; Shin, Hong Ju; Choe, Yong Beom; Ahn, Kyu Joong
2017-01-01
Background A new shampoo with anti-Malassezia properties obtained from various plants is required to provide seborrheic dermatitis patients with a wider range of treatment options. Objective The aim of this study was to obtain in vitro susceptibility profiles of Malassezia restricta and M. globosa, the most important pathogenic organisms in the development of seborrheic dermatitis, to the plant extracts used in commercial anti-dandruff shampoos. Methods Minimal inhibitory concentrations (MICs) were determined for eight candidate plant extracts and two plant-derived natural products diluted with Leeming and Notman medium to final concentrations of 0.016 to 1 mg/ml. Results Castanea crenata shell, Camellia sinensis leaf, and oil-soluble Glycyrrhiza extracts presented relatively low MIC values (≤0.5 mg/ml) against both strains. The C. crenata shell and oil-soluble Glycyrrhiza extracts demonstrated especially high anti-Malassezia activity, suggesting their potential use in the treatment of seborrheic dermatitis. The extracts also showed fungistatic activity against other common facultative pathogenic yeasts, Cryptococcus and Candida. Conclusion C. crenata shell and oil-soluble Glycyrrhiza extracts could potentially be used as active ingredients in anti-seborrheic and anti-dandruff shampoo formulations. They could be helpful for repeated treatments and regular prophylaxis of scalp seborrheic dermatitis. PMID:28566909
Jayakumar, S; Appalaraju, B
2007-10-01
Multi drug resistant Pseudomonas aeruginosa (MDRPA) and pan drug resistant Pseudomonas aeruginosa (PDRPA) isolates in critically ill patients are often difficult to treat. Prevalence of MDRPA and their antibiotic profile was investigated to select an appropriate empirical therapy. Moreover lack of sufficient data on prevalence of PDRPA in tertiary care hospitals indicated the need for this study. Pseudomonas aeruginosa was isolated in 245 patients over a period of one and half years from various clinical materials and their antibiotic profile was determined. Minimum inhibitory concentration (MIC) for Imipenem and Meropenam was determined by broth dilution method. Phenotypic confirmation test and EDTA double disk synergy test was used to detect Extended spectrum a-lactamase (ESBL) and Metallo-a-lactamase (MBL) producers respectively. Out of 245 isolates, 54 strains (22 %) and 11 strains (4%) were found to be MDRPA and PDRPA respectively. Carbapenem resistant isolates showed MICs ranging from 16 to > 64 microg/ml. Thirty eight strains (15.5%) were ESBL producers and six (54.5%) among 11 PDRPA were MBL producers. Prevalence of MDR and PDR isolates of Pseudomonas aeruginosa was found to be 22% and 4% respectively, which is less compared to other studies. Majority of the PDRPA isolates were MBL producers which have propensity to spread to other bacteria.
Nishiyama, Yayoi; Abe, Michiko; Ikeda, Reiko; Uno, Jun; Oguri, Toyoko; Shibuya, Kazutoshi; Maesaki, Shigefumi; Mohri, Shinobu; Yamada, Tsuyoshi; Ishibashi, Hiroko; Hasumi, Yayoi; Abe, Shigeru
2010-01-01
The Japanese Society for Medical Mycology (JSMM) method used for testing the antifungal susceptibility of yeast, the MIC end point for azole antifungal agents, is currently set at IC(80). It was recently shown, however that there is an inconsistency in the MIC value between the JSMM method and the CLSI M27-A2 (CLSI) method, in which the end- point was to read as IC(50). To resolve this discrepancy and reassess the JSMM method, the MIC for three azoles, fluconazole, itraconazole and voriconazole were compared to 5 strains of each of the following Candida species: C. albicans, C. glabrata, C. tropicalis, C. parapsilosis and C. krusei, for a total of 25 comparisons, using the JSMM method, a modified JSMM method, and the CLSI method. The results showed that when the MIC end- point criterion of the JSMM method was changed from IC(80) to IC(50) (the modified JSMM method) , the MIC value was consistent and compatible with the CLSI method. Finally, it should be emphasized that the JSMM method, using a spectrophotometer for MIC measurement, was superior in both stability and reproducibility, as compared to the CLSI method in which growth was assessed by visual observation.
Antimicrobial compounds from Alpinia conchigera.
Aziz, Ahmad Nazif; Ibrahim, Halijah; Rosmy Syamsir, Devi; Mohtar, Mastura; Vejayan, Jaya; Awang, Khalijah
2013-02-13
The rhizome of Alpinia conchigerahas been used as a condiment in the northern states of Peninsular Malaysia and occasionally in folk medicine in the east coast to treat fungal infections. In some states of Peninsular Malaysia, the rhizomes are consumed as a post-partum medicine and the young shoots are prepared into a vegetable dish. This study aimed to investigate the chemical constituents of the pseudostems and rhizomes of Malaysian Alpinia conchigera and to evaluate the antimicrobial activity of the dichloromethane (DCM) extracts of the pseudostems, rhizomes and the isolated compounds against three selected fungi and five strains of Staphylococcus aureus. The dried and ground pseudostems (0.8kg) and rhizomes (1.0kg) were successively extracted in Soxhlet extractor using n-hexane, dichloromethane (DCM) and methanol. The n-hexane and DCM extracts of the pseudostem and rhizome were subjected to isolation and purification using column chromatography on silica gel using a stepwise gradient system (n-hexane to methanol). Briefly, a serial two fold dilutions of the test materials dissolved in DMSO were prepared prior to addition of 100μl overnight microbial suspension (108 cfu/ml) followed by incubation at 37°C (bacteria) or 26°C (dermatophytes and candida) for 24h. The highest concentration of DMSO remaining after dilution (5%, v/v) caused no inhibition to bacterial/candida/dermatophytes' growth. Antibiotic cycloheximide was used as reference for anticandidal and antidermatophyte comparison while oxacilin was used as reference for antibacterial testing. DMSO served as negative control. Turbidity was taken as indication of growth, thus the lowest concentration which remains clear after macroscopic evaluation was taken as the minimum inhibitory concentration (MIC). The isolation of n-hexane and DCM extracts of the rhizomes and pseudostems of Alpinia conchigera via column chromatography yielded two triterpenes isolated as a mixture of stigmasterol and β-sitosterol: caryophyllene oxide, chavicol acetate 1, p-hydroxy cinnamaldehyde 2, 1'S-1'-acetoxychavicol acetate 3, trans-p-coumaryl diacetate 4, 1'S-1'-acetoxyeugenol acetate 5, 1'-hydroxychavicol acetate 6, p-hydroxycinnamyl acetate 7 and 4-hydroxybenzaldehyde. The DCM extract of the rhizome of Alpinia conchigera indicated potent antifungal activity against Candida albicans, Microsporum canis and Trycophyton rubrum with MIC values of 625μg/ml, 156μg/ml and 156μg/ml, respectively. It also showed significant inhibitory activity with MIC values between 17.88 and 35.75μg/ml against the mutant Staphylococci isolates MSSA, MRSA and Sa7. Amongst the isolated compounds, the lowest inhibition observed were of 1'S-1'-acetoxyeugenol against the dermatophytes (MIC 313μg/ml) followed by trans-p-coumaryl diacetate against both dermatophytes and candida (MIC 625μg/ml). The compound p-hydroxycinnamyl acetate strongly inhibited Staphylococcusaureus strain VISA (MIC 39μg/ml) followed by trans-p-coumaryl diacetate and 1'-hydroxychavicol acetate with MIC value of 156μg/ml. In conclusion, the observed antibacterial, anticandidal and antidermatophyte activity of the extracts and compounds obtained from the rhizome confirm the traditional use of Alpinia cochigera rhizome in the treatment of skin infection. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Alippi, Adriana M; Reynaldi, Francisco J; López, Ana C
2013-01-01
American foulbrood (AFB) is a bacterial disease caused by the spore-forming, grampositive bacterium Paenibacillus larvae, which affects honeybee broods worldwide. The aim of this work was to compare the Epsilometer test (Etest) to the agar dilution method for testing a collection of 22 P. larvae strains to tetracycline by using MYPGP and Iso- Sensitest agars. Results showed that a categorical agreement of 100% was found when using Iso-Sensitest, while a categorical agreement of 86.36% was found (with 3 minor errors) when MYPGP was tested. In conclusion, the Etest could be a rapid and reliable method for testing MIC values of tetracycline in P. larvae only when used in combination with Iso-Sensitest agar. Nevertheless, these results should be confirmed with future studies involving a larger number of isolates. Copyright © 2013 Asociación Argentina de Microbiología. Publicado por Elsevier España. All rights reserved.
Yalçin, Burçe; Kalkanci, Ayşe; Gürelik, Feryal; Fidan, Işil; Kustimur, Semra; Ozdek, Sengül
2010-01-01
Contradictory results such as synergy or indifferent effect, have been reported about the interactions between quinolones and antifungal drugs in different studies. The aim of this study was to investigate the in vitro susceptibilities of Candida spp. to moxifloxacin (MOX) alone and MOX + amphotericin B (AmB) combination. A total of 20 strains were included to the study, of which 19 were clinical isolates (10 Candida albicans, 4 Candida glabrata, 2 Candida parapsilosis, 1 Candida tropicalis, 1 Candida pelliculosa ve 1 Candida sake) and 1 was a standard strain (C. albicans ATCC 90028). In vitro susceptibilities of the strains to MOX with AmB were investigated by broth microdilution method according to the recommendations of the Clinical and Laboratory Standards Institute (CLSI), and in vitro interaction of these drugs were determined by a chequerboard titration method. Minimal inhibitory concentration (MIC) values of Candida spp. for MOX were found > or = 400 microg/ml indicating that MOX, by itself has no antifungal activity. AmB MIC values were found 1 microg/ml in 11 of the clinical isolates, and < or = 0.5 microg/ml in the other 8 clinical isolates and 1 standard strain. The inhibitor activity of AmB was slightly enhanced when combined with MOX, there being a decrease of 1-4 fold dilutions in the AmB MICs against all isolates tested. Synergistic effect between MOX and AmB, defined as a fractional inhibitory concentration (FIC) index as < or = 0.5, was observed in 90% (18/20; all were clinical isolates) of the strains, whereas indifferent effect (FIC = 1) was detected in 10% (2/20; 1 was clinical and 1 was standard strain) of the strains. Antagonistic effect was not observed for this combination even at 48th hours. It was concluded that these preliminary results should be confirmed by large-scaled in vitro and in vivo studies to evaluate MOX + AmB combination as a therapeutic option for the treatment of Candida infections.
Alvarez-Fernandez, M.; Cantón, E.; Carver, P. L.; Chen, S. C.-A.; Eschenauer, G.; Getsinger, D. L.; Gonzalez, G. M.; Grancini, A.; Hanson, K. E.; Kidd, S. E.; Klinker, K.; Kubin, C. J.; Kus, J. V.; Lockhart, S. R.; Meletiadis, J.; Morris, A. J.; Pelaez, T.; Rodriguez-Iglesias, M.; Sánchez-Reus, F.; Shoham, S.; Wengenack, N. L.; Borrell Solé, N.; Echeverria, J.; Esperalba, J.; Gómez-G. de la Pedrosa, E.; García García, I.; Linares, M. J.; Marco, F.; Merino, P.; Pemán, J.; Pérez del Molino, L.; Roselló Mayans, E.; Rubio Calvo, C.; Ruiz Pérez de Pipaon, M.; Yagüe, G.; Garcia-Effron, G.; Perlin, D. S.; Sanguinetti, M.; Shields, R.; Turnidge, J.
2015-01-01
Neither breakpoints (BPs) nor epidemiological cutoff values (ECVs) have been established for Candida spp. with anidulafungin, caspofungin, and micafungin when using the Sensititre YeastOne (SYO) broth dilution colorimetric method. In addition, reference caspofungin MICs have so far proven to be unreliable. Candida species wild-type (WT) MIC distributions (for microorganisms in a species/drug combination with no detectable phenotypic resistance) were established for 6,007 Candida albicans, 186 C. dubliniensis, 3,188 C. glabrata complex, 119 C. guilliermondii, 493 C. krusei, 205 C. lusitaniae, 3,136 C. parapsilosis complex, and 1,016 C. tropicalis isolates. SYO MIC data gathered from 38 laboratories in Australia, Canada, Europe, Mexico, New Zealand, South Africa, and the United States were pooled to statistically define SYO ECVs. ECVs for anidulafungin, caspofungin, and micafungin encompassing ≥97.5% of the statistically modeled population were, respectively, 0.12, 0.25, and 0.06 μg/ml for C. albicans, 0.12, 0.25, and 0.03 μg/ml for C. glabrata complex, 4, 2, and 4 μg/ml for C. parapsilosis complex, 0.5, 0.25, and 0.06 μg/ml for C. tropicalis, 0.25, 1, and 0.25 μg/ml for C. krusei, 0.25, 1, and 0.12 μg/ml for C. lusitaniae, 4, 2, and 2 μg/ml for C. guilliermondii, and 0.25, 0.25, and 0.12 μg/ml for C. dubliniensis. Species-specific SYO ECVs for anidulafungin, caspofungin, and micafungin correctly classified 72 (88.9%), 74 (91.4%), 76 (93.8%), respectively, of 81 Candida isolates with identified fks mutations. SYO ECVs may aid in detecting non-WT isolates with reduced susceptibility to anidulafungin, micafungin, and especially caspofungin, since testing the susceptibilities of Candida spp. to caspofungin by reference methodologies is not recommended. PMID:26282428
Black, L A; Higgins, D P; Govendir, M
2015-11-01
To determine the in vitro susceptibilities of koala isolates of Chlamydia pecorum to enrofloxacin and chloramphenicol, which are frequently used to treat koalas with chlamydiosis, and florfenicol, a derivative of chloramphenicol. The in vitro susceptibilities were determined by culturing three stored isolates and seven clinical swabs of C. pecorum. Susceptibility testing was undertaken using cycloheximide-treated buffalo green monkey kidney cells in 96 well microtitre plates. The minimum inhibitory concentrations (MICs) for all isolates were 0.25-0.50 µg/mL (enrofloxacin), 1-2 µg/mL (chloramphenicol), and 1-2 µg/mL (florfenicol). Minimum bactericidal concentration (MBC) values for five isolates were also determined and were within one two-fold dilution of MICs. The MICs and MBCs of these antimicrobials were within ranges previously reported for other chlamydial species. When combined with previously published pharmacokinetic data, the in vitro susceptibility results support chloramphenicol as a more appropriate treatment option than enrofloxacin for koalas with chlamydiosis. The susceptibility results also indicate florfenicol may be an appropriate treatment option for koalas with chlamydiosis, warranting further investigation. © 2015 Australian Veterinary Association.
Citron, Diane M.; Warren, Yumi A.; Goldstein, Ellie J. C.
2012-01-01
TD-1792 is a multivalent glycopeptide-cephalosporin heterodimer antibiotic with potent activity against Gram-positive bacteria. We tested TD-1792 against 377 anaerobes and 34 strains of Corynebacterium species. Against nearly all Gram-positive strains, TD-1792 had an MIC90 of 0.25 μg/ml and was typically 3 to 7 dilutions more active than vancomycin and daptomycin. PMID:22290981
beta-Lactam resistance of motile Aeromonas isolates from clinical and environmental sources.
Morita, K; Watanabe, N; Kurata, S; Kanamori, M
1994-01-01
The MICs of various beta-lactams for 182 isolates of Aeromonas species, i.e., A. hydrophila (n = 101), A. sobria (n = 69), and A. caviae (n = 12), from clinical and environmental sources were determined by an agar dilution technique. All strains were resistant to ampicillin and susceptible to aztreonam. A. sobria and A. caviae demonstrated lower resistance rates than A. hydrophila. Penicillin-hydrolyzing beta-lactamases were detected in all strains. PMID:8192463
In-vitro and in-vivo anti-Trichophyton activity of essential oils by vapour contact.
Inouye, S; Uchida, K; Yamaguchi, H
2001-05-01
The minimum inhibitory doses (MIDs) of essential oils by vapour contact to inhibit the growth of Trichophyton mentagrophytes and Trichophyton rubrum on agar medium were determined using airtight boxes. Among seven essential oils examined, cinnamon bark oil showed the least MID, followed by lemongrass, thyme and perilla oils. Lavender and tea tree oils showed moderate MID, and citron oil showed the highest MID, being 320 times higher than that of cinnamon bark oil. The MID values were less than the minimum inhibitory concentration (MIC) values determined by agar dilution assay. Furthermore, the minimum agar concentration (MAC) of essential oils absorbed from vapour was determined at the time of MID determination as the second antifungal measure. The MAC value by vapour contact was 1.4 to 4.7 times less than the MAC remaining in the agar at the time of MIC determination by agar dilution assay. Using selected essential oils, the anti-Trichophyton activity by vapour contact was examined in more detail. Lemongrass, thyme and perilla oils killed the conidia, inhibited germination and hyphal elongation at 1-4 micrograms ml-1 air, whereas lavender oil was effective at 40-160 micrograms ml-1 air. The in-vivo efficacy of thyme and perilla oils by vapour contact was shown against an experimental tinea pedis in guinea pigs infected with T. mentagrophytes. These results indicated potent anti-Trichophyton action of essential oils by vapour contact.
Juda, Marek; Helon, Pawel; Malm, Anna
2016-11-01
Biofilm may be formed on wide variety of surfaces, including indwelling medical devices, leading to several infectious diseases, e.g., bacteremia and sepsis. The most,important pathogens related with infections associated with medical devices are coagulase-negative staphylococci, including Staphylococcus haeinolyticus - bacterial species which express quite often the multidrug resistance. The four clinical multiresistant and methicillin-resistant S. haenzolyticus were included in the present study. The evaluation of drug susceptibility was performed by using disc-diffusion method and broth microdilution method according to European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines. The biofilm formation on the Nelaton catheter and the effect of linezolid, vancomycin, tigecycline and daptomycin on the biofilm formation and disruption of mature structure was based on the method with TTC (2,3,5-triphenyltetrazolium chloride). The adhesion process of S. haenzolyticus to the Nelaton catheter was inhibited by antibiotics, as follows: line-zolid at concentration 0.25-0.5 x MIC, vancomycin - concentration 0.5 x MIC, tigecycline - concentration 0.25-4 x MIC and daptomycin - concentration 0.06-1 x MIC, depending on the isolate. Linezolid inhibited the biofilm formation at concentration between 0.5-1 x MIC, vancomycin - 1-2 x MIC, tigecycline - 0.5-4 x MIC and daptomycin - 0.06-2 x MIC. The concentration of linezolid eradicating the mature biofilm was found to be 1-2 x MIC, vancomycin - 2-8 x MIC, tigecycline - 2-4 x MIC and daptomycin - 0.06-2 x MIC. The most active antibiotic against S. haentolyticus biofilm formation and disruption of mature structure seems to be daptomycin.
Zuo, Guo-Ying; Zhang, Xin-Juan; Han, Jun; Li, Yu-Qing; Wang, Gen-Chun
2015-12-01
Methicillin-resistant Staphylococcus aureus (MRSA) is a problematic pathogen posing a serious therapeutic challenge in the clinic. It is often multidrug-resistant (MDR) to conventional classes of antibacterial agents and there is an urgent need to develop new agents or strategies for treatment. Magnolol (ML) and honokiol (HL) are two naturally occurring diallylbiphenols which have been reported to show inhibition of MRSA. In this study their synergistic effects with antibacterial agents were further evaluated via checkerboard and time-kill assays. The susceptibility spectrum of clinical MRSA strains was tested by the disk diffusion method. The minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) of ML and HL were assayed by broth microdilution. The synergy was evaluated through checkerboard microdilution and time-killing experiments. ML and HL showed similar activity against both MSSA and MRSA with MIC/MBC at 16 ~ 64 mg/L, with potency similar to amikacin (AMK) and gentamicin (GEN). When they were used in combination with conventional antibacterial agents, they showed bacteriostatic synergy with FICIs between 0.25 ~ 0.5, leading to the combined MICs decreasing to as low as 1 ~ 2 and 1 ~ 16 mg/L for ML (HL) and the agents, respectively. MIC50 of the combinations decreased from 16 mg/L to 1 ~ 4 mg/L for ML (HL) and 8 ~ 128 mg/L to 2 ~ 64 mg/L for the antibacterial agents, which exhibited a broad spectrum of synergistic action with aminoglycosides (AMK, etilmicin (ETM) and GEN), floroquinolones (levofloxacin (LEV), ciprofloxacin and norfloxacin), fosfomycin (FOS) and piperacillin. The times of dilution (TOD, the extent of decreasing in MIC value) were determined up to 16 for the combined MIC. A more significant synergy after combining was determined as ML (HL) with AMK, ETM, GEN and FOS. ML (HL) combined with antibacterial agents did not show antagonistic effects on any of the ten MRSA strains. Reversal effects of MRSA resistance to AMK and GEN by ML and HL were also observed, respectively. All the combinations also showed better dynamic bactericidal activity against MRSA than any of single ML (HL) or the agents at 24 h incubation. The more significant synergy of combinations were determined as HL (ML) + ETM, HL + LEV and HL + AMK (GEN or FOS), with △LC24 of 2.02 ~ 2.25. ML and HL showed synergistic potentiation of antibacterial agents against clinical isolates of MRSA and warrant further pharmacological investigation.
Shaikh, Sibhghatulla; Rizvi, Syed Mohd Danish; Shakil, Shazi; Hussain, Talib; Alshammari, Thamir M; Ahmad, Waseem; Tabrez, Shams; Al-Qahtani, Mohammad H; Abuzenadah, Adel M
2017-09-01
Multidrug-resistance due to "β lactamases having the expanded spectrum" (ESBLs) in members of Enterobacteriaceae is a matter of continued clinical concern. CTX-M is among the most common ESBLs in Enterobacteriaceae family. In the present study, a nanoformulation of cefotaxime was prepared using gold nanoparticles to combat drug-resistance in ESBL producing strains. Here, two CTX-M-15 positive cefotaxime resistant bacterial strains (i.e., one Escherichia coli and one Klebsiella pneumoniae strain) were used for testing the efficacy of "cefotaxime loaded gold-nanoparticles." Bromelain was used for both reduction and capping in the process of synthesis of gold-nanoparticles. Thereafter, cefotaxime was conjugated onto it with the help of activator 1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide. For characterization of both unconjugated and cefotaxime conjugated gold nanoparticles; UV-Visible spectroscopy, Scanning, and Transmission type Electron Microscopy methods accompanied with Dynamic Light Scattering were used. We used agar diffusion method plus microbroth-dilution method for the estimation of the antibacterial-activity and determination of minimum inhibitory concentration or MIC values, respectively. MIC values of cefotaxime loaded gold nanoparticles against E. coli and K. pneumoniae were obtained as 1.009 and 2.018 mg/L, respectively. These bacterial strains were completely resistant to cefotaxime alone. These results reinforce the utility of conjugating an old unresponsive antibiotic with gold nanoparticles to restore its efficacy against otherwise resistant bacterial pathogens. J. Cell. Biochem. 118: 2802-2808, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Wang, W H; Wong, W M; Dailidiene, D; Berg, D E; Gu, Q; Lai, K C; Lam, S K; Wong, B C Y
2003-01-01
Background and aim: The role of Helicobacter pylori and aspirin in peptic ulcer formation and recurrence remains an important clinical topic. The interaction between aspirin and H pylori in vitro is also not clear. We investigated the effect of aspirin on the growth of H pylori and on the susceptibility of H pylori to antimicrobials. Methods: Time killing studies of H pylori were performed with different concentrations of aspirin and salicylate. Growth of bacteria was assessed spectrophotometrically and by viable colony count. The effects of aspirin on the efficiency of colony formation and on metronidazole induced mutation to rifampicin resistance in H pylori were determined. Minimal inhibitory concentrations (MICs) of aspirin and metronidazole were tested by the standard agar dilution method. MICs of amoxycillin and clarithromycin were determined by the E test method. Results: Aspirin and salicylate inhibited the growth of H pylori in a dose dependent manner and bactericidal activity was due to cell lysis. Aspirin 400 μg/ml caused a 2 logs decrease in colony forming units/ml at 48 hours, and suppressed the normal ability of metronidazole to induce new mutations to rifampicin. The IC90 of aspirin was 512 μg/ml. Increased susceptibility of amoxycillin, clarithromycin, and metronidazole to H pylori was observed at 1 mM (180 μg/ml) aspirin. Conclusions: Aspirin inhibited the growth of H pylori, suppressed the mutagenic effect of metronidazole, and enhanced the susceptibility of H pylori to antimicrobial agents. This mechanism is important in future drug development for effective clearing and overcoming resistance. PMID:12631656
Akilandeswari, K; Ruckmani, K
2016-12-30
Methicillin-resistant Staphylococcus aureus (MRSA) infections are easily spread among infected patients, where resistance has dramatically increased resulted in serious health issues. Therefore, there is a need to develop alternative natural or combination drug therapies. Apigenin (AP) is a natural poly phenolic flavonoid has been found to possess many beneficial biological actions. The aim of this study was to investigate the anti-MRSA efficacy and synergistic effect of apigenin (AP) and in combination with ampicillin (AM) and ceftriaxone (CEF). The antibacterial activity of apigenin was assessed by the broth macro dilution, checkerboard micro dilution method and time-kill assay. The mode of action was studied by outer and inner membrane permeabilisation assays, scanning electron microscopy and transmission electron microscopy. The minimum inhibitory concentration (MIC) of apigenin against gram positive and gram negative strain ranged from 32.5 to 62.5µg/ml. In checkerboard method apigenin markedly reduced the MIC of the antibiotics ampicillin 800 µg/ml shifted to 107 µg/ml (AM+AP) and ceftriaxone 58 µg/ml shifted to 2.6 µg/ml (CEF+AP) against MRSA. The synergistic activity of ampicillin and ceftriaxone plus apigenin combinations with FIC indices (CI) between 0.18-0.47. The modulation of methicillin-resistance by apigenin significantly enhanced the activities of ampicillin and ceftriaxone. The result of time-kill assays of the two drug combinations AM +AP and CEF+AP against MRSA showed significant inhibitory effect and reduced the colony count by approximately 99% after 8 h The results for outer membrane (OM) and inner membrane (IM) permeabilization showed that ampicillin and ceftriaxone in combination with apigenin damaged MRSA cytoplasmic membrane and caused subsequent leakage of intracellular constituents. Electron microscopy clearly showed that the above said combination also caused marked morphological damage of cell wall, cell shape and plasma membrane of this strain. From these results, it can be concluded that apigenin has the synergistic effect with ampicillin and ceftriaxone to reverse bacterial resistance against MRSA.
Increased cefepime MIC for enterobacteriacae clinical isolates.
Najafi, Narges; Alikhani, Ahmad; Babamahmoudi, Farhang; Davoudi, Alireza; Ghasemiyan, Roya; Aliyan, Shahriar; Shoujaiifar, Arman
2013-01-01
Background : Cefepime was used as empirical treatment in ventilator-associated pneumonia (VAP) induced by gram-negative and gram-positive bacteria. This study aimed to determine the antimicrobial susceptibility pattern of cefepime against microorganism causing VAP in Mazandaran, North of Iran. This study was performed on VAP patients diagnosed with clinical pulmonary infection score (CPIS) scores in ICU of two hospitals. For each patient suspected of having VAP, quantitative culture of endotracheal aspiration (QEA) was performed and MIC was determined by micro dilution test. Data were collected and analyzed. Thirty- five cases of enterobacteriaceae were isolated orderly including E coli 13, P. aeruginosa 11, Enterobacter 7 and K. pneumonia 4 cases. All the isolated E. coli, Enterobacter and Klebsiella, 54.5% of P. aeruginosa isolated were fully resistant to cefepime. The results of this study show that cefepime is not a reasonable choice for empirical treatment of nosocomial pneumonia and VAP.
Antimicrobial activity of commercial Olea europaea (olive) leaf extract.
Sudjana, Aurelia N; D'Orazio, Carla; Ryan, Vanessa; Rasool, Nooshin; Ng, Justin; Islam, Nabilah; Riley, Thomas V; Hammer, Katherine A
2009-05-01
The aim of this research was to investigate the activity of a commercial extract derived from the leaves of Olea europaea (olive) against a wide range of microorganisms (n=122). Using agar dilution and broth microdilution techniques, olive leaf extract was found to be most active against Campylobacter jejuni, Helicobacter pylori and Staphylococcus aureus [including meticillin-resistant S. aureus (MRSA)], with minimum inhibitory concentrations (MICs) as low as 0.31-0.78% (v/v). In contrast, the extract showed little activity against all other test organisms (n=79), with MICs for most ranging from 6.25% to 50% (v/v). In conclusion, olive leaf extract was not broad-spectrum in action, showing appreciable activity only against H. pylori, C. jejuni, S. aureus and MRSA. Given this specific activity, olive leaf extract may have a role in regulating the composition of the gastric flora by selectively reducing levels of H. pylori and C. jejuni.
Hassan, Sherif T S; Berchová, Kateřina; Majerová, Michaela; Pokorná, Marie; Švajdlenka, Emil
2016-09-01
Context The increasing problem of drug-resistant strains has led to the failure of current treatment regimens of Helicobacter pylori (HP) infection. Recently, a new treatment strategy has been developed to overcome the problem by using natural products in combination with antibiotics to enhance the treatment efficacy. Objective The antimicrobial combinatory effect of the aqueous extract of Hibiscus sabdariffa L. (Malvaceae) (AEHS) with antibiotics (clarithromycin, CLA; amoxicillin, AMX; metronidazole, MTZ) has been evaluated in vitro against HP strains. Materials and methods Hibiscus calyces (35 g) were brewed in 250 mL of boiled water for 30 min, and minimum inhibitory concentrations (MICs) were determined by agar dilution method. The checkerboard assay was used to evaluate the antimicrobial combinatory effect according to the sum of fractional inhibitory concentration (∑FIC) indices. Results In this study, AEHS exerted remarkable bacteriostatic effect against all HP strains tested with MICs values ranging from 9.18 to 16.68 μg/mL. Synergy effect of AEHS with CLA or MTZ was obtained against four of seven HP strains tested with ∑FIC ranging from 0.21 to 0.39. The additive effect of AEHS with AMX was obtained against five of seven HP strains tested with ∑FIC ranging from 0.61 to 0.91. Conclusion This study presents AEHS as a potent therapeutic candidate alone, or in combination with antibiotics for the treatment of HP infection.
Judy, Barbara M; Whitlock, Gregory C; Torres, Alfredo G; Estes, D Mark
2009-05-09
Burkholderia mallei is a zoonotic Gram negative bacterium which primarily infects solipeds but can cause lethal disease in humans if left untreated. The effect of two antibiotics with different modes of action on Burkholderia mallei strain ATCC23344 was investigated by using in vitro and in vivo studies. Determination of minimal inhibitory concentrations (MICs) in vitro was done by the agar diffusion method and the dilution method. The MICs of levofloxacin and ceftazidime were in the similar range, 2.5 and 5.0 microg/ml, respectively. Intracellular susceptibility of the bacterium to these two antibiotics in J774A.1 mouse macrophages in vitro was also investigated. Macrophages treated with antibiotics demonstrated uptake of the drugs and reduced bacterial loads in vitro. The efficacy of ceftazidime and levofloxacin were studied in BALB/c mice as post-exposure treatment following intranasal B. mallei infection. Intranasal infection with 5 x 10(5) CFUs of B. mallei resulted in 90% death in non-treated control mice. Antibiotic treatments 10 days post-infection proved to be effective in vivo with all antibiotic treated mice surviving to day 34 post-infection. The antibiotics did not result in complete clearance of the bacterial infection and presence of the bacteria was found in lungs and spleens of the survivors, although bacterial burden recovered from levofloxacin treated animals appeared reduced compared to ceftazidime. Both antibiotics demonstrated utility for the treatment of glanders, including the ability for intracellular penetration and clearance of organisms in vitro.
Cira, Nate J; Ho, Jack Y; Dueck, Megan E; Weibel, Douglas B
2012-03-21
This article describes a portable microfluidic technology for determining the minimum inhibitory concentration (MIC) of antibiotics against bacteria. The microfluidic platform consists of a set of chambers molded in poly(dimethylsiloxane) (PDMS) that are preloaded with antibiotic, dried, and reversibly sealed to a second layer of PDMS containing channels that connect the chambers. The assembled device is degassed via vacuum prior to its use, and the absorption of gas by PDMS provides the mechanism for actuating and metering the flow of fluid in the microfluidic channels and chambers. During the operation of the device, degas driven flow introduces a suspension of bacterial cells, dissolves the antibiotic, and isolates cells in individual chambers without cross contamination. The growth of bacteria in the chambers in the presence of a pH indicator produces a colorimetric change that can be detected visually using ambient light. Using this device we measured the MIC of vancomycin, tetracycline, and kanamycin against Enterococcus faecalis 1131, Proteus mirabilis HI4320, Klebsiella pneumoniae, and Escherichia coli MG1655 and report values that are comparable to standard liquid broth dilution measurements. The device provides a simple method for MIC determination of individual antibiotics against human pathogens that will have applications for clinical and point-of-care medicine. Importantly, this device is designed around simplicity: it requires a single pipetting step to introduce the sample, no additional components or external equipment for its operation, and provides a straightforward visual measurement of cell growth. As the device introduces a novel approach for filling and isolating dead-end microfluidic chambers that does not require valves and actuators, this technology should find applications in other portable assays and devices.
Liu, Yen-Hung; Huang, Yu-Tsung; Liao, Chun-Hsing; Hsueh, Po-Ren
2018-05-01
A high prevalence of gonococcal resistance to various antimicrobials and Neisseria gonorrhoeae isolates exhibiting resistance to extended-spectrum cephalosporins have been reported in the past few decades. A total of 226 N. gonorrhoeae isolates obtained from the National Taiwan University Hospital from 2001 to 2013 were evaluated. The minimum inhibitory concentrations (MICs) of the isolates to antimicrobials were determined by the agar dilution method and interpreted using the 2017 clinical breakpoints or epidemiological cut-off values recommended by the Clinical and Laboratory Standards Institute (CLSI) and European Committee on Antimicrobial Susceptibility Testing (EUCAST). The genetic relatedness of these isolates was determined by multilocus sequence typing. None of the isolates was resistant to ceftriaxone and cefotaxime, and the resistance rates to cefixime, spectinomycin, cefpodoxime, ciprofloxacin, and penicillin were 0.4%, 0.4%, 13.3%, 91.6%, and 87.6%, respectively. The rate of isolates resistant to azithromycin was 14.6% (EUCAST criteria), which is higher than in previous surveillance studies. A total of 57 sequence types (ST) were identified, and ST1901, ST7365, and ST1927 prevailed. Isolates of ST8143 emerged after 2011. ST1901 isolates had relatively higher MIC values for ceftriaxone and azithromycin than those of the other STs. In conclusion, ceftriaxone remains an effective drug of choice for gonorrhoeal management in Taiwan. High rates of azithromycin resistance among N. gonorrhoeae isolates were found. The circulating ST1901 strains with high MIC values for ceftriaxone and azithromycin and the emerging ST8143 strains were alarming. Copyright © 2018 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
Jameel, Mohammad; Islamuddin, Mohammad; Ali, Abuzer; Afrin, Farhat; Ali, Mohammed
2014-03-12
Fumaria parviflora Lam. (Fumaraceae) is widely used in traditional as well as folkloric system of medicine from ancient. It is commonly known as 'Pitpapra' or 'Shahtrah' in Indian traditional system of medicine and used for treating numerous ailments like diarrhea, fever, influenza, blood purifier and other complications. The object of the present study was to evaluate the Antileishmanial, antibacterial, antifungal and cytotoxic potential of isolated compound. Methanolic extract of whole plant of Fumaria parviflora was dried under reduced pressure to obtain a dark brown residue which was adsorbed on silica gel column grade (60-120 mesh) to obtain a slurry and chromatographed over silica gel loaded column in petroleum ether-chloroform (3:1, 1:1 and 1:3 v/v). The in vitro antileishmanial evaluation of isolated compound against Leishmania donovani promastigotes was investigated by growth kinetics assay, reversibility assay, analysis of cellular morphology, adverse toxicity and determination of 50% growth inhibitory concentration (GI50). Disc diffusion and broth micro dilution methods were used to study the antibacterial (Gram + Staphylococcus epidermidis and Bacillus subtilis; Gram - Escherichia coli and Salmonella typhimurium) and antifungal (Candida albicans and Aspergillus niger) potential in vitro. Structure elucidation by spectral data analysis revealed a novel compound, n-octacosan-7β-ol (OC), yield (0.471%), having significant antimicrobial activity against Leishmania donovani promastigotes, Staphylococcus epidermidis, Escherichia coli, Candida albicans and Aspergillus niger in vitro with GI50 = 5.35, MIC 250, MIC 250 and MFC 500 and MIC 250 μg ml(-1) respectively. The isolated compound did not show adverse effect against mammalian macrophages. The available evidence of compound suggested that it may be used as antimicrobial agent in future and may provide new platform for drug discovery programmes for leishmaniasis.
Pimentel, M; Cash, B D; Lembo, A; Wolf, R A; Israel, R J; Schoenfeld, P
2017-09-01
Rifaximin has demonstrated efficacy and safety for diarrhea-predominant irritable bowel syndrome (IBS-D). To determine the rifaximin repeat treatment effect on fecal bacterial antibiotic susceptibility. Patients with IBS in Trial 3 (TARGET 3) study who responded to open-label rifaximin 550 mg three times daily for 2 weeks, with symptom recurrence within 18 weeks, were randomized to double-blind treatment: two 2-week repeat courses of rifaximin or placebo, separated by 10 weeks. Prospective stool sample collection occurred before and after open-label rifaximin, before and after the first repeat course, and at the end of the study. Susceptibility testing was performed with 11 antibiotics, including rifaximin and rifampin, using broth microdilution or agar dilution methods. Of 103 patients receiving open-label rifaximin, 73 received double-blind rifaximin (n = 37) or placebo (n = 36). A total of 1429 bacterial and yeast isolates were identified, of which Bacteroidaceae (36.7%) and Enterobacteriaceae (33.9%) were the most common. In the double-blind phase, Clostridium difficile was highly susceptible to rifaximin [minimum inhibitory concentration (MIC) range 0.008-1 µg/mL] and rifampin (MIC range 0.004-0.25 µg/mL). Following double-blind rifaximin treatment, Staphylococcus isolates remained susceptible to rifaximin at all visits (MIC 50 range ≤0.06-32 µg/mL). Rifaximin exposure was not associated with long-term cross-resistance of Bacteroidaceae, Enterobacteriaceae, and Enterococcaceae to rifampin or nonrifamycin antibiotics tested. In this study, short-term repeat treatment with rifaximin has no apparent long-term effect on stool microbial susceptibility to rifaximin, rifampin, and nonrifamycin antibiotics. CLINICALTRIALS. NCT01543178.
Cho, Hye Hyun; Kwon, Gye Cheol; Kim, Semi; Koo, Sun Hoe
2015-07-01
The emergence of carbapenem resistance among Pseudomonas aeruginosa is an increasing problem in many parts of the world. In particular, metallo-β-lactamases (MBLs) and AmpC β- lactamases are responsible for high-level resistance to carbapenem and cephalosporin. We studied the diversity and frequency of β-lactamases and characterized chromosomal AmpC β- lactamase from carbapenem-resistant P. aeruginosa isolates. Sixty-one carbapenem-resistant P. aeruginosa isolates were collected from patients in a tertiary hospital in Daejeon, Korea, from January 2011 to June 2014. Minimum inhibitory concentrations (MICs) of four antimicrobial agents were determined using the agar-dilution method. Polymerase chain reaction and sequencing were used to identify the various β-lactamase genes, class 1 integrons, and chromosomally encoded and plasmid-mediated ampC genes. In addition, the epidemiological relationship was investigated by multilocus sequence typing. Among 61 carbapenem-resistant P. aeruginosa isolates, 25 isolates (41.0%) were MBL producers. Additionally, 30 isolates producing PDC (Pseudomonas-derived cephalosporinase)-2 were highly resistant to ceftazidime (MIC50 = 256 μg/ml) and cefepime (MIC50 = 256 μg/ml). Of all the PDC variants, 25 isolates harboring MBL genes showed high levels of cephalosporin and carbapenem resistance, whereas 36 isolates that did not harbor MBL genes revealed relatively low-level resistance (ceftazidime, p < 0.001; cefepime, p < 0.001; imipenem, p = 0.003; meropenem, p < 0.001). The coexistence of MBLs and AmpC β-lactamases suggests that these may be important contributing factors for cephalosporin and carbapenem resistance. Therefore, efficient detection and intervention to control drug resistance are necessary to prevent the emergence of P. aeruginosa possessing this combination of β-lactamases.
Shen, J L; Fang, Y P
2015-06-18
We explored the mechanism of the development from sensitivity to resistance to carbapenem in Pseudomonas aeruginosa. Two P. aeruginosa strains were collected during treatment with carbapenem. Strain homology was investigated using pulsed-field gel electrophoresis. Porin oprD2 expression was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The minimum inhibitory concentrations (MICs) of imipenem and meropenem with or without MC207110 were determined using the agar dilution method. The expression level of efflux pump mRNA was tested using real-time polymerase chain reaction. Metallo-lactamases (MBLs) were screened using the EDTA-disk synergy test. Genes encoding MBLs were amplified and then analyzed by DNA sequencing. The two treated strains belonged to the same pulsed-field gel electrophoresis type. The SDS-PAGE profile of the P. aeruginosa strains revealed that the 46-kDa membrane protein OprD2 of IMP(R)MEM(R) type strains was lost, whereas OprD2 of 1 IMP(S)MEM(S) strain was normal. With or without MC207110 treatment, the MIC of carbapenem-resistant P. aeruginosa decreased by 4-fold, while the MIC of carbapenem-sensitive P. aeruginosa did not. Compared with the carbapenem-sensitive strain, MexX mRNA expression in the carbapenem-resistant strain increased by 102.5-fold, while the mRNA expression of other efflux pumps did not markedly increase. Neither carbapenem-resistant nor carbapenem-sensitive P. aeruginosa produced MBL. The mechanism of development from sensitivity to resistance of P. aeruginosa to carbapenem during carbapenem treatment is due to porin oprD2 loss and an increased expression level of MexXY-OprM.
Testing of Streptococcus pneumoniae for resistance to penicillin.
Marshall, K J; Musher, D M; Watson, D; Mason, E O
1993-01-01
The increasing prevalence of penicillin-resistant Streptococcus pneumoniae requires antibiotic susceptibility tests that can be done with greater ease and reliability. We measured the MIC of penicillin for pneumococci by the tube macrodilution method with Mueller-Hinton broth (MHB), Haemophilus Test Medium (HTM), Todd-Hewitt broth with 0.5% yeast extract (THY), and MHB with 3% lysed horse blood (LHB). Eight (19%) and 6 (14%) of 42 pneumococcal isolates failed to generate turbid growth in MHB and HTM, respectively, whereas all pneumococcal isolates did so in THY and LHB. For those strains that replicated to turbidity, the mean MICs of penicillin were lower in MHB and HTM than in THY and LHB, with differences being significant (P < 0.05) for comparisons with LHB. Four isolates appeared to be penicillin susceptible in HTM but were actually moderately resistant in THY and LHB, and two isolates appeared to be moderately resistant but were resistant. A similar failure to detect resistance was seen with MHB. S. pneumoniae ATCC 49619, a moderately penicillin-resistant strain that has been proposed for quality control testing, gave variable results in MHB or THM and appeared to be susceptible to penicillin in some assays, whereas the MICs for S. pneumoniae ATCC 49619 in THY or LHB fell within a twofold dilution range, with geometric means of 0.16 and 0.18 micrograms/ml, respectively. Pneumococcal isolates thus may appear falsely susceptible to penicillin when tested in MHB or HTM. LHB remains the standard medium; however, because THY is an easily prepared clear medium that can be used in automated systems and appears to yield results similar to those obtained with LHB, THY deserves consideration for routine use. PMID:8501225
ter Laak, E A; Noordergraaf, J H; Verschure, M H
1993-01-01
The purpose of this study was to determine the susceptibility of various strains of Mycoplasma bovis, Mycoplasma dispar, and Ureaplasma diversum, which are prevalent causes of pneumonia in calves, to 16 antimicrobial agents in vitro. The MICs of the antimicrobial agents were determined by a serial broth dilution method for 16 field strains and the type strain of M. bovis, for 19 field strains and the type strain of M. dispar, and for 17 field strains of U. diversum. Final MICs for M. bovis and M. dispar were read after 7 days and final MICs for U. diversum after 1 to 2 days. All strains tested were susceptible to tylosin, kitasamycin, and tiamulin but were resistant to nifuroquine and streptomycin. Most strains of U. diversum were intermediately susceptible to oxytetracycline but fully susceptible to chlortetracycline; most strains of M. bovis and M. dispar, however, were resistant to both agents. Strains of M. dispar and U. diversum were susceptible to doxycycline and minocycline, but strains of M. bovis were only intermediately susceptible. Susceptibility or resistance to chloramphenicol, spiramycin, spectinomycin, lincomycin, or enrofloxacin depended on the species but was not equal for the three species. The type strains of M. bovis and M. dispar were more susceptible to various antimicrobial agents, including tetracyclines, than the field strains. This finding might indicate that M. bovis and M. dispar strains are becoming resistant to these agents. Antimicrobial agents that are effective in vitro against all three mycoplasma species can be considered for treating mycoplasma infections in pneumonic calves. Therefore, tylosin, kitasamycin, and tiamulin may be preferred over oxytetracycline and chlortetracycline. PMID:8452363
ter Laak, E A; Noordergraaf, J H; Verschure, M H
1993-02-01
The purpose of this study was to determine the susceptibility of various strains of Mycoplasma bovis, Mycoplasma dispar, and Ureaplasma diversum, which are prevalent causes of pneumonia in calves, to 16 antimicrobial agents in vitro. The MICs of the antimicrobial agents were determined by a serial broth dilution method for 16 field strains and the type strain of M. bovis, for 19 field strains and the type strain of M. dispar, and for 17 field strains of U. diversum. Final MICs for M. bovis and M. dispar were read after 7 days and final MICs for U. diversum after 1 to 2 days. All strains tested were susceptible to tylosin, kitasamycin, and tiamulin but were resistant to nifuroquine and streptomycin. Most strains of U. diversum were intermediately susceptible to oxytetracycline but fully susceptible to chlortetracycline; most strains of M. bovis and M. dispar, however, were resistant to both agents. Strains of M. dispar and U. diversum were susceptible to doxycycline and minocycline, but strains of M. bovis were only intermediately susceptible. Susceptibility or resistance to chloramphenicol, spiramycin, spectinomycin, lincomycin, or enrofloxacin depended on the species but was not equal for the three species. The type strains of M. bovis and M. dispar were more susceptible to various antimicrobial agents, including tetracyclines, than the field strains. This finding might indicate that M. bovis and M. dispar strains are becoming resistant to these agents. Antimicrobial agents that are effective in vitro against all three mycoplasma species can be considered for treating mycoplasma infections in pneumonic calves. Therefore, tylosin, kitasamycin, and tiamulin may be preferred over oxytetracycline and chlortetracycline.
Mendes, Elisa Teixeira; Ranzani, Otavio T.; Marchi, Ana Paula; da Silva, Mariama Tomaz; Filho, José Ulysses Amigo; Alves, Tânia; Guimarães, Thais; Levin, Anna S.; Costa, Silvia Figueiredo
2016-01-01
Abstract Health care associated infections (HAIs) are currently among the major challenges to the care of hematopoietic stem cell transplantation (HSCT) patients. The objective of the present study was to evaluate the impact of 2% chlorhexidine (CHG) bathing on the incidence of colonization and infection with vancomycin-resistant Enterococcus (VRE), multidrug-resistant (MDR) gram-negative pathogens, and to evaluate their CHG minimum inhibitory concentration (MIC) after the intervention. A quasi-experimental study with duration of 9 years was conducted. VRE colonization and infection, HAI rates, and MDR gram-negative infection were evaluated by interrupted time series analysis. The antibacterial susceptibility profile and mechanism of resistance to CHG were analyzed in both periods by the agar dilution method in the presence or absence of the efflux pump inhibitor carbonyl cyanide-m-chlorophenyl hydrazone (CCCP) and presence of efflux pumps (qacA/E, qacA, qacE, cepA, AdeA, AdeB, and AdeC) by polymerase chain reaction (PCR). The VRE colonization and infection rates were significantly reduced in the postintervention period (P = 0.001). However, gram-negative MDR rates in the unit increased in the last years of the study. The CHG MICs for VRE increased during the period of exposure to the antiseptic. A higher MIC at baseline period was observed in MDR gram-negative strains. The emergence of a monoclonal Pseudomonas aeruginosa clone was observed in the second period. Concluding, CHG bathing was efficient regarding VRE colonization and infection, whereas no similar results were found with MDR gram-negative bacteria. PMID:27861350
Prevention of gentamicin-induced apoptosis with the mitochondria-targeted antioxidant mitoquinone.
Ojano-Dirain, Carolyn P; Antonelli, Patrick J
2012-11-01
Antioxidants have been shown to protect against aminoglycoside-induced hearing loss. Mitoquinone (MitoQ) is a mitochondria-targeted derivative of the antioxidant ubiquinone. MitoQ is attached to a lipophilic triphenylphosphonium (TPP) cation, which enables its accumulation inside the mitochondria several hundred-fold over the untargeted antioxidant. The goals of this study were to determine if MitoQ attenuates gentamicin-induced activation of caspase-3/7 activity as a marker of apoptosis and to determine if MitoQ impacts aminoglycoside antimicrobial efficacy. Prospective and controlled. Antibiotic efficacy and minimum inhibitory concentrations (MICs) of gentamicin against three strains each of Staphylococcus aureus, Haemophilus influenzae, and Pseudomonas aeruginosa were evaluated with and without MitoQ using broth dilution methods. Apoptosis was assessed by caspase-3/7 activity in untreated HEI-OC1 cells and cells exposed to 2 mM gentamicin for 24 hours, with and without a 24-hour preincubation with 0.5 μM each of MitoQ, idebenone (an untargeted ubiquinone), or decylTPP (positive control). Gentamicin MICs for P aeruginosa and H influenzae were not affected by MitoQ at pharmacological levels. MICs for S aureus were enhanced by MitoQ. Cell viability was significantly lower in the gentamicin-treated cells. A significant increase in caspase-3/7 activity was observed in cells treated with gentamicin or with idebenone + gentamicin (P = .005). Preincubation with MitoQ decreased the gentamicin-induced apoptosis of HEI-OC1 cells to a greater extent compared to idebenone (P = .002). MitoQ attenuates gentamicin-induced apoptosis in HEI-OC1 cells and does not compromise gentamicin antibiotic efficacy. MitoQ holds promise as a means of preventing aminoglycoside ototoxicity. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.
Umar, Sajid; Maiyah, Ana Triana; Shareef, Mehwish; Qadir, Hajra; Nisa, Qamarun; Abbas, Seema
2018-03-01
Antibiotic resistance in avian pathogenic Escherichia coli (APEC) is a common problem in the Indonesian poultry industry. Zoo birds have been postulated as sentinels, reservoirs, and potential spreaders of antibiotic resistance, although much is still unknown about the strains of zoo birds. Disinfection can reduce the infection burden. However, little is known about the presence of resistance against these products. Sixty one APEC strains were isolated from Indonesian zoo birds. The resistance to different classes of antibiotics as well as the minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) of five disinfectants most often used in the poultry industry was determined. Resistance to tetracycline (42.6%), sulfonamides (24.5%), ampicillin (22.9%), gentamicin (19.6), nalidixic acid (18.03%) and streptomycin (16.3%) was high, but resistance to other tested antibiotics was low and none of the isolates were resistant to extended spectrum beta-lactamase (ESBL) producers. Sixteen strains (26.2%) were found positive for multi drug resistance. The MIC of the disinfectants for the APEC strains showed normal distribution, indicating that there was no acquired resistance. MBCs were similar to MICs using the broth dilution method, showing the bactericidal effect of the disinfectants. Phenotypic resistance to commonly used disinfectants could not be found, indicating that the current use of disinfectants in the zoo and aviaries did not select for resistance. Significantly high resistance rates against commonly used antibiotics in Indonesian zoos is worrisome and indicates that widespread use of antibiotics could have negative implications for animal health and the environment. Proper use of antibiotics and surveillance programs to monitor antimicrobial resistance in pathogenic bacteria are warranted.
Phytochemical investigation and anti-microbial activity of Clausena anisata (Willd), Hook.
Agyepong, Nicholas; Agyare, Christian; Adarkwa-Yiadom, Martin; Gbedema, Stephen Yao
2014-01-01
Clausena anisata belongs to the family Rutaceae, a shrub widely used in West Africa for the treatment of bacterial and fungal infections of the skin including boils, ringworm and eczema. The study was designed to evaluate the antimicrobial activity and phytochemical screening of ethanol leaf extract of C. anisata (CLE). Antimicrobial activity of CLE was investigated using agar well diffusion and micro-dilution methods against four Gram-positive bacteria (Bacillus substilis NCTC 10073, Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 29212, Bacillus thuringiensis ATCC 13838) and two Gram-negative bacteria (Pseudomonas aeruginosa ATCC 4853, Proteus vulgaris ATCC 4175) and a clinical isolate of Candida albicans. CLE was active against all test organisms with minimum inhibitory concentration (MIC), range of 0.5 to 7.0 mg/mL against Gram-positive bacteria, 2.5 to 1.0 mg/mL against Gram-negative bacteria and 5.5mg/mL against C. albicans. The MICs of the methanol fraction of CLE were 0.6 mg to 5.0/mL and 1.0 to 3.0 mg/mL for Gram-positive and Gram-negative bacteria respectively. Chloroform fraction had MIC of 3.0 to 7.5 mg/mL and 2.0 to 6.5 mg/mL for Gram-positive and Gram-negative bacteria, respectively and petroleum ether fraction had 4.5 to 8.0 mg/mL for Gram-positive and Gram-negative bacteria. The CLE exhibited static action against all test organisms within a range of 0.5 to 22.0 mg/mL. Phytochemical screening of C. anisata revealed the presence of tannins, flavonoids, steroids, saponins, glycosides and alkaloids. HPLC finger-printing of the CLE and its fractions were determined. These results may justify the medicinal uses of C. anisata for the treatment of microbial infections.
Goldstein, Ellie J C; Citron, Diane M; Merriam, C Vreni; Tyrrell, Kerin L
2013-07-01
Foot infections are the most common infectious complication of diabetes. Moderate to severe diabetic foot infections (DFI) are typically polymicrobial with both aerobic and anaerobic organisms. The role of MRSA in these wounds has become an increasing concern. To determine if the addition of avibactam, a novel non-beta-lactam beta-lactamase inhibitor, to ceftaroline would be more active than ceftaroline alone, we tested 316 aerobic pathogens and 154 anaerobic recovered from patients with moderate to severe DFI, and compared ceftaroline with and without avibactam to other agents. Testing on aerobes was done by broth microdilution and by agar dilution for anaerobes, according to CLSI M11-A8, and M7-A8 standards. Ceftaroline-avibactam MIC90 for all Staphylococcus spp. including MRSA was 0.5 μg/mL, and for enterococci was 1 μg/mL. The MIC90s for enteric Gram-negative rods was 0.125 μg/mL. The addition of avibactam to ceftaroline reduced the ceftaroline MICs for 2 strains of resistant Enterobacter spp. and for 1 strain of Morganella. Against anaerobic Gram-positive cocci ceftaroline-avibactam had an MIC90 0.125 μg/mL and for clostridia 1 μg/mL. Avibactam improved ceftaroline's MIC90s for Bacteroides fragilis from >32 to 2 μg/mL and for Prevotella spp. from >32 to 1 μg/mL. Ceftaroline alone demonstrates excellent in vitro activity against most of the aerobes found in moderate to severe DFI. The addition of avibactam provides an increased spectrum of activity including the beta-lactamase producing Prevotella, Bacteroides fragilis and ceftaroline resistant gram-negative enteric organisms. Copyright © 2013 Elsevier Inc. All rights reserved.
Sources of diversity of carbapenem resistance levels in Klebsiella pneumoniae carrying blaVIM-1.
Loli, A; Tzouvelekis, L S; Tzelepi, E; Carattoli, A; Vatopoulos, A C; Tassios, P T; Miriagou, V
2006-09-01
To elucidate the mechanisms responsible for the diversity of beta-lactam resistance phenotypes among isolates of a VIM-1-producing Klebsiella pneumoniae (VPKP) strain that is endemic in Greek hospitals. Five VPKP clinical isolates were studied. MICs of beta-lactams were determined by agar dilution. PFGE of XbaI-digested genomic DNA was used for typing. Profiles of outer membrane proteins (OMPs) were determined by SDS-PAGE. Selected isolates were transformed with a plasmid encoding the Omp36K porin. beta-Lactamase activities were analysed by IEF and imipenem hydrolysis was assessed by spectrophotometry. VIM-1-encoding, self-transmissible plasmids were characterized by replicon typing, RFLP and hybridization with bla(VIM)- and IS26-specific probes. Characterization of integrons was performed by PCR, cloning and sequencing. Isolates exhibited highly similar PFGE patterns. Imipenem MICs were 2, 4, 16, 32 and 64 mg/L. The isolate with the highest imipenem MIC (Vipm-64) lacked a 36 kDa OMP. Expression of a cloned OmpK36 in this isolate reduced the imipenem MIC to susceptibility levels. Imipenem-hydrolysing activity was significantly higher in Vipm-16 as compared with the other isolates that expressed similar amounts of VIM-1. All isolates transferred beta-lactam resistance to Escherichia coli through conjugative, IncN plasmids that exhibited differences in the RFLP and hybridization patterns with bla(VIM)- and IS26-specific probes. The Vipm-16 plasmid, mediating the higher imipenem MICs among transconjugants, carried two copies of bla(VIM-1). Cloning and sequencing showed In-e541-like integrons truncated at the 5'CS by insertion of IS26 elements at two different positions. A VIM-1-producing strain of K. pneumoniae has evolved through OMP alterations and rearrangements in the bla(VIM-1)-carrying plasmid probably mediated by IS26, generating isolates with imipenem MICs ranging from susceptibility to resistance.
In vitro activity of cefepime/zidebactam (WCK 5222) against Gram-negative bacteria.
Livermore, David M; Mushtaq, Shazad; Warner, Marina; Vickers, Anna; Woodford, Neil
2017-05-01
Diazabicyclooctanes (DBOs) inhibit class A, class C and some class D β-lactamases. A few also bind PBP2, conferring direct antibacterial activity and a β-lactamase-independent 'enhancer' effect, potentiating β-lactams targeting PBP3. We tested a novel DBO, zidebactam, combined with cefepime. CLSI agar dilution MICs were determined with cefepime/zidebactam in a chequerboard format. Bactericidal activity was also measured. Zidebactam MICs were ≤2 mg/L (mostly 0.12-0.5 mg/L) for most Escherichia coli , Klebsiella , Citrobacter and Enterobacter spp., but were >32 mg/L for Proteeae, most Serratia and a few E. coli , Klebsiella and Enterobacter/Citrobacter . The antibacterial activity of zidebactam dominated chequerboard studies for Enterobacteriaceae, but potentiation of cefepime was apparent for zidebactam-resistant isolates with class A and C enzymes, illustrating β-lactamase inhibition. Overall, cefepime/zidebactam inhibited almost all Enterobacteriaceae with AmpC, ESBL, K1, KPC and OXA-48-like β-lactamases at 1 + 1 mg/L and also 29 of 35 isolates with metallo-carbapenemases, including several resistant to zidebactam alone. Zidebactam MICs for 36 of 50 Pseudomonas aeruginosa were 4-16 mg/L, and the majority of AmpC, metallo-β-lactamase-producing and cystic fibrosis isolates were susceptible to cefepime/zidebactam at 8 + 8 mg/L. Zidebactam MICs for Acinetobacter baumannii and Stenotrophomonas maltophilia were >32 mg/L; potentiation of cefepime was frequent for S. maltophilia , but minimal for A. baumannii . Kill curve results largely supported MICs. Zidebactam represents a second triple-action DBO following RG6080, with lower MICs for Enterobacteriaceae and P. aeruginosa . Clinical evaluation of cefepime/zidebactam must critically evaluate the reliance that can be placed on this direct antibacterial activity and on the enhancer effect as well as β-lactamase inhibition. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Vancomycin AUC/MIC and Corresponding Troughs in a Pediatric Population.
Kishk, Omayma A; Lardieri, Allison B; Heil, Emily L; Morgan, Jill A
2017-01-01
Adult guidelines suggest an area under the curve/minimum inhibitory concentration (AUC/MIC) > 400 corresponds to a vancomycin trough serum concentration of 15 to 20 mg/L for methicillin-resistant Staphylococcus aureus infections, but obtaining these troughs in children are difficult. The primary objective of this study was to assess the likelihood that 15 mg/kg of vancomycin every 6 hours in a child achieves an AUC/MIC > 400. This retrospective chart review included pediatric patients >2 months to <18 years with a positive S aureus blood culture and documented MIC who received at least two doses of vancomycin with corresponding trough. Patients were divided into two groups: group 1 initially receiving ≥15 mg/kg every 6 hours, and group 2 initially receiving any other dosing ranges or intervals. AUCs were calculated four times using three pharmacokinetic methods. A total of 36 patients with 99 vancomycin trough serum concentrations were assessed. Baseline characteristics were similar between groups. For troughs in group 1 (n = 55), the probability of achieving an AUC/MIC > 400 ranged from 16.4% to 90.9% with a median trough concentration of 11.4 mg/L, while in group 2 (n = 44) the probability of achieving AUC/MIC > 400 ranged from 15.9% to 54.5% with mean trough concentration of 9.2 mg/L. The AUC/MICs were not similar between the different pharmacokinetic methods used; however, a trapezoidal equation (Method A) yielded the highest correlation coefficient (r 2 = 0.59). When dosing every 6 hours, an AUC/MIC of 400 correlated to a trough serum concentration of 11 mg/L. The probability of achieving an AUC/MIC > 400 using only a trough serum concentration and an MIC with patients receiving 15 mg/kg every 6 hours is variable based on the method used to calculate the AUC. An AUC/MIC of 400 in children correlated to a trough concentration of 11 mg/L using a trapezoidal Method to calculate AUC.
Maiolo, Elena Maryka; Furustrand Tafin, Ulrika; Borens, Olivier
2014-01-01
We investigated the activities of fluconazole, caspofungin, anidulafungin, and amphotericin B against Candida species in planktonic form and biofilms using a highly sensitive assay measuring growth-related heat production (microcalorimetry). C. albicans, C. glabrata, C. krusei, and C. parapsilosis were tested, and MICs were determined by the broth microdilution method. The antifungal activities were determined by isothermal microcalorimetry at 37°C in RPMI 1640. For planktonic Candida, heat flow was measured in the presence of antifungal dilutions for 24 h. Candida biofilm was formed on porous glass beads for 24 h and exposed to serial dilutions of antifungals for 24 h, and heat flow was measured for 48 h. The minimum heat inhibitory concentration (MHIC) was defined as the lowest antifungal concentration reducing the heat flow peak by ≥50% (≥90% for amphotericin B) at 24 h for planktonic Candida and at 48 h for Candida biofilms (measured also at 24 h). Fluconazole (planktonic MHICs, 0.25 to >512 μg/ml) and amphotericin B (planktonic MHICs, 0.25 to 1 μg/ml) showed higher MHICs than anidulafungin (planktonic MHICs, 0.015 to 0.5 μg/ml) and caspofungin (planktonic MHICs, 0.125 to 0.5 μg/ml). Against Candida species in biofilms, fluconazole's activity was reduced by >1,000-fold compared to its activity against the planktonic counterparts, whereas echinocandins and amphotericin B mainly preserved their activities. Fluconazole induced growth of planktonic C. krusei at sub-MICs. At high concentrations of caspofungin (>4 μg/ml), paradoxical growth of planktonic C. albicans and C. glabrata was observed. Microcalorimetry enabled real-time evaluation of antifungal activities against planktonic and biofilm Candida organisms. It can be used in the future to evaluate new antifungals and antifungal combinations and to study resistant strains. PMID:24566186
Werner, H; Heizmann, W; Luft, G
1988-11-01
To assess the in vitro activity of flomoxef (6315-S), moxalactam, cefoxitin, cefotaxime, and clindamycin against anaerobes 197 clinical isolates (27 Bacteroides fragilis, 42 B. thetaiotaomicron, 10 B. vulgatus, 7 B. ovatus, 6 B. uniformis, 6 B. distasonis, 7 Bacteroides melaninogenicus group, 11 Bacteroides oralis group, 21 Clostridium difficile, 7 C. perfringens, 3 C. sporogenes, 3 Clostridium spp., 33 Propionibacterium acnes, 14 Peptococcaceae) were studied by means of agar dilution tests. The MIC90 of B. fragilis was less than 2 micrograms/ml for flomoxef, less than 4 micrograms/ml for moxalactam, less than 16 micrograms/ml for cefoxitin, less than 128 micrograms/ml for cefotaxime and less than 2 micrograms/ml for clindamycin. The respective MIC90's of B. thetaiotaomicron were less than 64, less than 128, less than 32, less than 256 and 8 micrograms/ml. Strains of the other Bacteroides species and groups were more susceptible to flomoxef and the other antibiotics than B. thetaiotaomicron. Against Clostridium difficile flomoxef (MIC90 less than 4 micrograms/ml) proved to be superior to the other agents tested. Most of the Clostridium strains other than C. difficile were also susceptible to flomoxef; anaerobic grampositive cocci and Propionibacterium acnes were very sensitive (MIC90's less than 1 and less than or equal to 0.125 micrograms/ml, respectively). Its anti-anaerobic activity, together with its efficacy against aerobes, should make flomoxef a useful adjunct to the arsenal of modern antibiotic therapy.
Activity of MK-7655 combined with imipenem against Enterobacteriaceae and Pseudomonas aeruginosa.
Livermore, David M; Warner, Marina; Mushtaq, Shazad
2013-10-01
MK-7655 is a novel inhibitor of class A and C β-lactamases. We investigated its potential to protect imipenem. Chequerboard MICs were determined by CLSI agar dilution: (i) for Enterobacteriaceae with carbapenemases; (ii) for Enterobacteriaceae with carbapenem resistance contingent on combinations of impermeability together with an extended-spectrum β-lactamase or AmpC enzyme; and (iii) for Pseudomonas aeruginosa and other non-fermenters. At a concentration of 4 mg/L, MK-7655 reduced imipenem MICs for Enterobacteriaceae with KPC carbapenemases from 16-64 mg/L to 0.12-1 mg/L. Synergy also was seen for Enterobacteriaceae with impermeability-mediated carbapenem resistance, with weaker synergy seen for isolates with the OXA-48 enzyme. On the other hand, MK-7655 failed to potentiate imipenem against Enterobacteriaceae with metallo-carbapenemases. In the case of P. aeruginosa, where endogenous AmpC confers slight protection versus imipenem, 4 mg/L MK-7655 reduced the MIC of imipenem for all isolates, except those with metallo-carbapenemases: the MICs of imipenem fell from 1-2 mg/L to 0.25-0.5 mg/L for imipenem-susceptible P. aeruginosa and from 16-64 mg/L to 1-4 mg/L for OprD-deficient strains. No potentiation was seen for chryseobacteria or for Stenotrophomonas maltophilia. MK-7655 potentiated imipenem against Enterobacteriaceae with KPC carbapenemases or combinations of β-lactamase and impermeability, but not those with metallo-carbapenemases. It augmented the activity of imipenem against P. aeruginosa in general and OprD mutants in particular.
Farrag, Hala Abdallah; A-Karam El-Din, Alzahraa; Mohamed El-Sayed, Zeinab Galal; Abdel-Latifissa, Soheir; Kamal, Mona Mohamed
2015-06-01
Technological advances such as long-term indwelling catheters have created milieu in which infections are a major complication. Thus it is essential to be able to recognize, diagnose, and treat infections occurring in immunocompromised patients. Adherence assay and quantitation of biofilms was performed by a spectrophotometric method, hydrophobicity was evaluated by adhesion to p-xylene. The minimum inhibitory concentration (MIC) of Nystatin was carried out by a well dilution method. Out of 100 bladder cancer patients, 23 pathogenic yeast isolates were identified. The samples were taken from urinary catheters and urine collected from their attached drainage bags. Pathogenic yeast identified were species of Candida, Cryptococcus, Saccharomyces, Blastoschizomyces, Trichosporn, Hansenula, Prototheca and Rhodotorula. With the exception of Rhodotorula minuta, the yeast were sensitive to the antimycotic agent (Nystatin) used before and after in vitro gamma irradiation at 24.41 Gy as measured by a disc diffusion method. All tested yeast strains were slime producers and showed positive adherence reactions. There were considerable differences in adherence measurements after irradiation. An increase in adherence measurement values (using a spectrophotometric method) after irradiation were detected in four strains whereas eight other strains showed a reduction in their adherence reaction. The cell surface hydrophobicity (CSH) was evaluated by adhesion to p-xylene. Candida tropicalis showed a hydrophobic reaction with an increase in the cell surface hydrophobicity after irradiation. Scanning electron microscopy of irradiated C. tropicalis showed marked abnormalities in cell shape and size with significant reduction in adherence ability at the MIC level of Nystatin (4 μg/ml). More basic research at the level of pathogenesis and catheter substance is needed to design novel strategies to prevent fungal adherence and to inhibit biofilm formation.
Prakash, A; Sharma, C; Singh, A; Kumar Singh, P; Kumar, A; Hagen, F; Govender, N P; Colombo, A L; Meis, J F; Chowdhary, A
2016-03-01
Candida auris is a multidrug-resistant nosocomial bloodstream pathogen that has been reported from Asian countries and South Africa. Herein, we studied the population structure and genetic relatedness among 104 global C. auris isolates from India, South Africa and Brazil using multilocus sequence typing (MLST), amplified fragment length polymorphism (AFLP) fingerprinting and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). RPB1, RPB2 and internal transcribed spacer (ITS) and D1/D2 regions of the ribosomal DNA were sequenced for MLST. Further, genetic variation and proteomic assessment was carried out using AFLP and MALDI-TOF MS, respectively. Both MLST and AFLP typing clearly demarcated two major clusters comprising Indian and Brazilian isolates. However, the South African isolates were randomly distributed, suggesting different genotypes. MALDI-TOF MS spectral profiling also revealed evidence of geographical clustering but did not correlate fully with the genotyping methods. Notably, overall the population structure of C. auris showed evidence of geographical clustering by all the three techniques analysed. Antifungal susceptibility testing by the CLSI microbroth dilution method revealed that fluconazole had limited activity against 87% of isolates (MIC90, 64 mg/L). Also, MIC90 of AMB was 4 mg/L. Candida auris is emerging as an important yeast pathogen globally and requires reproducible laboratory methods for identification and typing. Evaluation of MALDI-TOF MS as a typing method for this yeast is warranted. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Rensch, Ulrike; Klein, Guenter; Kehrenberg, Corinna
2013-01-01
The biocide triclosan (TRC) is used in a wide range of household, personal care, veterinary, industrial and medical products to control microbial growth. This extended use raises concerns about a possible association between the application of triclosan and the development of antibiotic resistance. In the present study we determined triclosan mutant prevention concentrations (MPC) for Salmonella enterica isolates of eight serovars and investigated selected mutants for their mechanisms mediating decreased susceptibility to triclosan. MPCTRC values were 8 - 64-fold higher than MIC values and ranged between 1 - 16 µg/ml. The frequencies at which mutants were selected varied between 1.3 x 10-10 - 9.9 x 10-11. Even if MIC values of mutants decreased by 3-7 dilution steps in the presence of the efflux pump inhibitor Phe-Arg-β-naphtylamide, only minor changes were observed in the expression of genes encoding efflux components or regulators, indicating that neither the major multidrug efflux pump AcrAB-TolC nor AcrEF are up-regulated in triclosan-selected mutants. Nucleotide sequence comparisons confirmed the absence of alterations in the regulatory regions acrRA, soxRS, marORAB, acrSE and ramRA of selected mutants. Single bp and deduced Gly93→Val amino acid exchanges were present in fabI, the target gene of triclosan, starting from a concentration of 1 µg/ml TRC used for MPC determinations. The fabI genes were up to 12.4-fold up-regulated. Complementation experiments confirmed the contribution of Gly93→Val exchanges and fabI overexpression to decreased triclosan susceptibility. MIC values of mutants compared to parent strains were even equal or resulted in a more susceptible phenotype (1-2 dilution steps) for the aminoglycoside antibiotics kanamycin and gentamicin as well as for the biocide chlorhexidine. Growth rates of selected mutants were significantly lower and hence, might partly explain the rare occurrence of Salmonella field isolates exhibiting decreased susceptibility to triclosan. PMID:24205194
Mohieldin, Ebtihal Abdalla M; Muddathir, Ali Mahmoud; Mitsunaga, Tohru
2017-04-20
Periodontal diseases are one of the major health problems and among the most important preventable global infectious diseases. Porphyromonas gingivalis is an anaerobic Gram-negative bacterium which has been strongly implicated in the etiology of periodontitis. Additionally, matrix metalloproteinases-9 (MMP-9) is an important factor contributing to periodontal tissue destruction by a variety of mechanisms. The purpose of this study was to evaluate the selected Sudanese medicinal plants against P. gingivalis bacteria and their inhibitory activities on MMP-9. Sixty two methanolic and 50% ethanolic extracts from 24 plants species were tested for antibacterial activity against P. gingivalis using microplate dilution assay method to determine the minimum inhibitory concentration (MIC). The inhibitory activity of seven methanol extracts selected from the 62 extracts against MMP-9 was determined by Colorimetric Drug Discovery Kit. In search of bioactive lead compounds, Combretum hartmannianum bark which was found to be within the most active plant extracts was subjected to various chromatographic (medium pressure liquid chromatography, column chromatography on a Sephadex LH-20, preparative high performance liquid chromatography) and spectroscopic methods (liquid chromatography-mass spectrometry, Nuclear Magnetic Resonance (NMR)) to isolate and characterize flavogalonic acid dilactone and terchebulin as bioactive compounds. About 80% of the crude extracts provided a MIC value ≤4 mg/ml against bacteria. The extracts which revealed the highest potency were: methanolic extracts of Terminalia laxiflora (wood; MIC = 0.25 mg/ml) followed by Acacia totrtilis (bark), Ambrosia maritima (aerial part), Argemone mexicana (seed), C. hartmannianum (bark), Terminalia brownii (wood) and 50% ethanolic extract of T. brownii (bark) with MIC values of 0.5 mg/ml. T. laxiflora (wood) and C. hartmannianum (bark) which belong to combretaceae family showed an inhibitory activity over 50% at the concentration of 10 μg/ml against MMP-9. Additionally, MMP-9 was significantly inhibited by terchebulin with IC 50 value of 6.7 μM. To the best of our knowledge, flavogalonic acid dilactone and terchebulin were isolated from C. hartmannianium bark for the first time in this study. Because of terchebulin and some crude extracts acting on P. gingivalis bacteria and MMP-9 enzyme that would make them promising natural preference for preventing and treating periodontal diseases.
A New Algorithm to Optimize Maximal Information Coefficient
Luo, Feng; Yuan, Zheming
2016-01-01
The maximal information coefficient (MIC) captures dependences between paired variables, including both functional and non-functional relationships. In this paper, we develop a new method, ChiMIC, to calculate the MIC values. The ChiMIC algorithm uses the chi-square test to terminate grid optimization and then removes the restriction of maximal grid size limitation of original ApproxMaxMI algorithm. Computational experiments show that ChiMIC algorithm can maintain same MIC values for noiseless functional relationships, but gives much smaller MIC values for independent variables. For noise functional relationship, the ChiMIC algorithm can reach the optimal partition much faster. Furthermore, the MCN values based on MIC calculated by ChiMIC can capture the complexity of functional relationships in a better way, and the statistical powers of MIC calculated by ChiMIC are higher than those calculated by ApproxMaxMI. Moreover, the computational costs of ChiMIC are much less than those of ApproxMaxMI. We apply the MIC values tofeature selection and obtain better classification accuracy using features selected by the MIC values from ChiMIC. PMID:27333001
Credito, Kim L.; Lin, Gengrong; Pankuch, Glenn A.; Bajaksouzian, Saralee; Jacobs, Michael R.; Appelbaum, Peter C.
2001-01-01
The activity of the ketolide ABT-773 against Haemophilus and Moraxella was compared to those of 11 other agents. Against 210 Haemophilus influenzae strains (39.0% β-lactamase positive), microbroth dilution tests showed that azithromycin and ABT-773 had the lowest MICs (0.5 to 4.0 and 1.0 to 8.0 μg/ml, respectively), followed by clarithromycin and roxithromycin (4.0 to >32.0 μg/ml). Of the β-lactams, ceftriaxone had the lowest MICs (≤0.004 to 0.016 μg/ml), followed by cefixime and cefpodoxime (0.008 to 0.125 and ≤0.125 to 0.25 μg/ml, respectively), amoxicillin-clavulanate (0.125 to 4.0 μg/ml), and cefuroxime (0.25 to 8.0 μg/ml). Amoxicillin was only active against β-lactamase-negative strains, and cefprozil had the highest MICs of all oral cephalosporins tested (0.5 to >32.0 μg/ml). Against 50 Moraxella catarrhalis strains, all of the compounds except amoxicillin and cefprozil were active. Time-kill studies against 10 H. influenzae strains showed that ABT-773, at two times the MIC, was bactericidal against 9 of 10 strains, with 99% killing of all strains at the MIC after 24 h; at 12 h, ABT-773 gave 90% killing of all strains at two times the MIC. At 3 and 6 h, killing by ABT-773 was slower, with 99.9% killing of four strains at two times the MIC after 6 h. Similar results were found for azithromycin, with slightly slower killing by erythromycin, clarithromycin, and roxithromycin, especially at earlier times. β-Lactams were bactericidal against 8 to 10 strains at two times the MIC after 24 h, with slower killing at earlier time periods. Most compounds gave good killing of five M. catarrhalis strains, with β-lactams killing more rapidly than other drugs. ABT-773 and azithromycin gave the longest postantibiotic effects (PAEs) of the ketolide-macrolide-azalide group tested (4.4 to >8.0 h), followed by clarithromycin, erythromycin, and roxithromycin. β-Lactam PAEs were similar and shorter than those of the ketolide-macrolide-azalide group for all strains tested. PMID:11120946
Komape, Nancy Patience Motlalepula; Bagla, Victor Patrick; Kabongo-Kayoka, Prudence; Masoko, Peter
2017-02-24
Tuberculosis is an infectious communicable disease and the causative agent of the disease has over the years developed resistance to streamline chemotherapeutic agents with dire consequences and there is a need for development of new and more potent alternatives. Constituents of leaves material of Combretum heroroense, Citrus lemon and Apodytes dimidiata were serially extracted using solvents of varying polarity. TLC finger print profile of the different extracts were determined by spraying eluted plates with vanillin sulphuric acid and 2, 2- diphenylpicryl hydrazyl (DPPH) for the presence of antioxidant constituents. Presence of different phytochemicals was determined using standard chemical test. Bioautography was used to determine the number of compounds present in sub-fractions active against Mycobacterium smegmatis. Minimum inhibitory concentration (MIC) values extract and sub-fractions were determined using serial microplate dilution method against M. smegmatis (ATCC 1441), M. tuberculosis (ATCC H37Rv) and multi-drug resistant TB (MDR-TB) field strain. Synergy of the crude extracts of the three plants was determined using microplate dilution method against M. smegmatis. Mass extracted by different solvents was less than 6% dry weight for all the plants. Phlobatannins were not detected in A. dimidiata, C. heroroense and C. lemon as well as cardiac glycosides in C. lemon and A. dimidiata, and saponins in C. heroroense. Sub-fractions of the different plants were shown to contain constituents with antioxidant activity with the highest number detected in C. heroroense. Bioautography results reveal the presence of a compound(s) in the ethyle acetate sub-fraction of C. heroroense and butanol, methanol/water, ethyl acetate and water no.2 subfractions of A. dimidiata, active against M. smegmatis that were not shown to have antioxidant capacity. MIC results for different crude extracts of the three plants against M. smegmatis ranges from 0.1 to 3 mg/ml. The average MIC for the synergistic effect of the plants ranged from 0.04 mg/ml to 1.25 mg/ml. An activity greater than that obtained for the reference drugs was shown for the butanol and hexane fractions of A. dimidiata (0.47 mg/ml) against the field strain of MDR-TB while that obtained for the M.TB (ATCC H37Rv) was 0.31 mg/ml. A significant finding shown in this study reveals the potent anti-mycobacteria potential of sub-fractions of A. dimidiata against MDR-TB field strain that can lead to the isolation of compounds that can be used to counter resistant strains of tuberculosis.
Aminnezhad, Sargol; Kermanshahi, Rouha Kasra; Ranjbar, Reza
2015-01-01
Background: The indiscriminate use of antibiotics in the treatment of infectious diseases can increase the development of antibiotic resistance. Therefore, there is a big demand for new sources of antimicrobial agents and alternative treatments for reduction of antibiotic dosage required to decrease the associated side effects. Objectives: In this study, the synergistic action of aminoglycoside antibiotics and cell-free supernatant (CFS) of probiotic (Lactobacillus rahmnosus and L. casei) against Pseudomonas aeruginosa PTCC 1430 was evaluated. Materials and Methods: A growth medium for culturing of probiotic bacteria was separated by centrifugation. The antimicrobial effects of CFS of probiotic bacteria were evaluated using the agar well diffusion assay. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were evaluated using the micro dilution method. Finally, an interaction between CFS and amikacin or gentamicin against P. aeruginosa PTCC 1430 was examined through the checkerboard method and fractional inhibitory concentration (FIC). Furthermore, CFSs from Lactobacillus strains were analyzed by reversed phase HPLC (RP-HPLC) for antimicrobial compounds. Results: The results showed a significant effect of CFS on the growth of P. aeruginosa. The MIC and MBC of CFS from L. casei were 62.5 µL⁄mL while the MIC and MBC of CFS from L. rhamnosus were 62.5 μL⁄mL and 125 μL⁄mL, respectively. Using the FIC indices, synergistic interactions were observed in combination of CFS and antibiotics. Fractional Inhibitory Concentration indices of CFS from L. casei and aminoglycoside antibiotics were 0.124 and 0.312 while FIC indices of CFS from L. rhamnosus and aminoglycoside antibiotics were 0.124 and 0.56, respectively showing a synergism effect. The results of RP-HPLC showed that CFS of Lactobacillus strains contained acetic acid, lactic acid and hydrogen peroxide (H2O2). Conclusions: Our findings indicate that probiotic bacterial strains of Lactobacillus have a significant inhibitory effect on the growth of P. aeruginosa PTCC 1430. The antimicrobial potency of this combination can be useful for designing and developing alternative therapeutic strategies against P. aeruginosa infections. PMID:26034539
What about antibiotic resistance in Neisseria lactamica?
Arreaza, L; Salcedo, C; Alcalá, B; Vázquez, J A
2002-03-01
The in vitro activity of penicillin, ampicillin, cefotaxime, ceftriaxone, rifampicin and ciprofloxacin against 286 Neisseria lactamica isolates was determined by agar dilution and the category of susceptibility was analysed in accordance with the criteria used for Neisseria meningitidis. All isolates were considered to have intermediate susceptibility to penicillin. A total of 1.7% of the isolates were resistant to ampicillin but all were susceptible to cefotaxime and ceftriaxone. Rifampicin MICs ranged between 0.12 and 2 mg/L. Six isolates (2.1%) showed decreased susceptibility to ciprofloxacin.
Screening of Turkish anti-ulcerogenic folk remedies for anti-Helicobacter pylori activity.
Yeşilada, E; Gürbüz, I; Shibata, H
1999-09-01
The anti-Helicobacter pylori effect of the extracts and fractions obtained from seven Turkish plants, which are used in folk medicine for the treatment of gastric ailments including peptic ulcers, were studied against one standard strain and eight clinical isolates of H. pylori by using the agar dilution method. Flowers of Cistus laurifolius and Spartium junceum, cones of Cedrus libani, herbs and flowers of Centaurea solstitialis ssp. solstitialis, fruits of Momordica charantia, herbaceous parts of Sambucus ebulus, and flowering herbs of Hypericum perforatum were evaluated in this study. Results showed that all except one extract from six of these plants showed activity against the microorganism with MICs between 1.95 and 250 microg/ml, with S. junceum being the only inactive species. Amongst the active plants the inhibitory properties of C. laurifolius were found prominent.
Susceptibility of Malassezia pachydermatis to aminoglycosides.
Silva, Freddy Alejandro; Conde-Felipe, Magnolia; Rosario, Inmaculada; Ferrer, Otilia; Real, Fernando; Déniz, Soraya; Acosta, Félix; Padilla, Daniel; Acosta-Hernández, Begoña
2017-12-01
Previous studies have evaluated the action of gentamicin against Malassezia pachydermatis. The aim of this study was to evaluate in vitro susceptibility of M. pachydermatis to the aminoglycosides- gentamicin, tobramycin, netilmicin and framycetin. The minimum inhibitory concentration (MIC) of gentamicin was determined following methods M27-A3 microdilution and Etest ® . The Etest ® was used to determine the minimum inhibitory concentration (MIC) of the tobramycin and netilmicin. The Kirby-Bauer test was used to determine the antibiotic susceptibility to the framycetin. The MIC50 and MIC90 were 8.12 μg/mL and 32.5 μg/mL by microdilution method for gentamicin. The MIC50, determined by the Etest ® , was 8 μg/mL for gentamicin and netilmicin and 64 μg/mL for tobramycin. The MIC90 was 16 and 32 μg/mL for gentamicin and netilmicin respectively. The MIC90 was outside of the detectable limits for tobramycin. To framycetin, 28 strains (40%) of the 70 M. pachydermatis isolates tested showed a diameter of 22 mm, 22 strains (31.42%) showed a diameter of 20 mm, 16 strains showed a diameter of ≤ 18 mm, and only 5.71% of the isolates showed a diameter of ≥ 22 mm. This study provides evidence of high in vitro activity of the aminoglycosides-gentamicin, tobramycin, netilmicin and framycetin against M. pachydermatis. For gentamicin Etest ® showed similar values of MIC50 y MIC90 that the obtained by microdilution method. We considered Etest ® method could be a good method for these calculations with aminoglycosides. © 2017 Blackwell Verlag GmbH.
Simple fluorescence-based high throughput cell viability assay for filamentous fungi.
Chadha, S; Kale, S P
2015-09-01
Filamentous fungi are important model organisms to understand the eukaryotic process and have been frequently exploited in research and industry. These fungi are also causative agents of serious diseases in plants and humans. Disease management strategies include in vitro susceptibility testing of the fungal pathogens to environmental conditions and antifungal agents. Conventional methods used for antifungal susceptibilities are cumbersome, time-consuming and are not suitable for a large-scale analysis. Here, we report a rapid, high throughput microplate-based fluorescence method for investigating the toxicity of antifungal and stress (osmotic, salt and oxidative) agents on Magnaporthe oryzae and compared it with agar dilution method. This bioassay is optimized for the resazurin reduction to fluorescent resorufin by the fungal hyphae. Resazurin bioassay showed inhibitory rates and IC50 values comparable to the agar dilution method and to previously reported IC50 or MICs for M. oryzae and other fungi. The present method can screen range of test agents from different chemical classes with different modes of action for antifungal activities in a simple, sensitive, time and cost effective manner. A simple fluorescence-based high throughput method is developed to test the effects of stress and antifungal agents on viability of filamentous fungus Magnaporthe oryzae. This resazurin fluorescence assay can detect inhibitory effects comparable to those obtained using the growth inhibition assay with added advantages of simplicity, time and cost effectiveness. This high throughput viability assay has a great potential in large-scale screening of the chemical libraries of antifungal agents, for evaluating the effects of environmental conditions and hyphal kinetic studies in mutant and natural populations of filamentous fungi. © 2015 The Society for Applied Microbiology.
Medardus, Julius J; Molla, Bayleyegn Z; Nicol, Matthew; Morrow, W Morgan; Rajala-Schultz, Paivi J; Kazwala, Rudovick; Gebreyes, Wondwossen A
2014-04-01
The study aimed to characterize the role of heavy metal micronutrients in swine feed in emergence of heavy-metal-tolerant and multidrug-resistant Salmonella organisms. We conducted a longitudinal study in 36 swine barns over a 2-year period. The feed and fecal levels of Cu(2+) and Zn(2+) were measured. Salmonella was isolated at early and late finishing. MICs of copper sulfate and zinc chloride were measured using agar dilution. Antimicrobial susceptibility was tested using the Kirby-Bauer method, and 283 isolates were serotyped. We amplified pcoA and czcD genes that encode Cu(2+) and Zn(2+) tolerance, respectively. Of the 283 isolates, 113 (48%) showed Cu(2+) tolerance at 24 mM and 164 (58%) showed Zn(2+) tolerance at 8 mM. In multivariate analysis, serotype and source of isolates were significantly associated with Cu(2+) tolerance (P < 0.001). Fecal isolates were more likely to be Cu(2+) tolerant than those of feed origin (odds ratio [OR], 27.0; 95% confidence interval [CI], 2.8 to 250; P = 0.0042) or environmental origin (OR, 5.8), implying the significance of gastrointestinal selective pressure. Salmonella enterica serotypes Typhimurium and Heidelberg, highly significant for public health, had higher odds of having >20 mM MICs of Cu(2+) than did "other" serotypes. More than 60% of Salmonella isolates with resistance type (R-type) AmStTeKm (32 of 53) carried pcoA; only 5% with R-type AmClStSuTe carried this gene. czcD gene carriage was significantly associated with a higher Zn(2+) MIC (P < 0.05). The odds of having a high Zn(2+) MIC (≥8 mM) were 14.66 times higher in isolates with R-type AmClStSuTe than in those with R-type AmStTeKm (P < 0.05). The findings demonstrate strong association between heavy metal tolerance and antimicrobial resistance, particularly among Salmonella serotypes important in public health.
Medardus, Julius J.; Molla, Bayleyegn Z.; Nicol, Matthew; Morrow, W. Morgan; Rajala-Schultz, Paivi J.; Kazwala, Rudovick
2014-01-01
The study aimed to characterize the role of heavy metal micronutrients in swine feed in emergence of heavy-metal-tolerant and multidrug-resistant Salmonella organisms. We conducted a longitudinal study in 36 swine barns over a 2-year period. The feed and fecal levels of Cu2+ and Zn2+ were measured. Salmonella was isolated at early and late finishing. MICs of copper sulfate and zinc chloride were measured using agar dilution. Antimicrobial susceptibility was tested using the Kirby-Bauer method, and 283 isolates were serotyped. We amplified pcoA and czcD genes that encode Cu2+ and Zn2+ tolerance, respectively. Of the 283 isolates, 113 (48%) showed Cu2+ tolerance at 24 mM and 164 (58%) showed Zn2+ tolerance at 8 mM. In multivariate analysis, serotype and source of isolates were significantly associated with Cu2+ tolerance (P < 0.001). Fecal isolates were more likely to be Cu2+ tolerant than those of feed origin (odds ratio [OR], 27.0; 95% confidence interval [CI], 2.8 to 250; P = 0.0042) or environmental origin (OR, 5.8), implying the significance of gastrointestinal selective pressure. Salmonella enterica serotypes Typhimurium and Heidelberg, highly significant for public health, had higher odds of having >20 mM MICs of Cu2+ than did “other” serotypes. More than 60% of Salmonella isolates with resistance type (R-type) AmStTeKm (32 of 53) carried pcoA; only 5% with R-type AmClStSuTe carried this gene. czcD gene carriage was significantly associated with a higher Zn2+ MIC (P < 0.05). The odds of having a high Zn2+ MIC (≥8 mM) were 14.66 times higher in isolates with R-type AmClStSuTe than in those with R-type AmStTeKm (P < 0.05). The findings demonstrate strong association between heavy metal tolerance and antimicrobial resistance, particularly among Salmonella serotypes important in public health. PMID:24487542
Antifungal susceptibility testing of Malassezia yeast: comparison of two different methodologies.
Rojas, Florencia D; Córdoba, Susana B; de Los Ángeles Sosa, María; Zalazar, Laura C; Fernández, Mariana S; Cattana, María E; Alegre, Liliana R; Carrillo-Muñoz, Alfonso J; Giusiano, Gustavo E
2017-02-01
All Malassezia species are lipophilic; thus, modifications are required in susceptibility testing methods to ensure their growth. Antifungal susceptibility of Malassezia species using agar and broth dilution methods has been studied. Currently, few tests using disc diffusion methods are being performed. The aim was to evaluate the in vitro susceptibility of Malassezia yeast against antifungal agents using broth microdilution and disc diffusion methods, then to compare both methodologies. Fifty Malassezia isolates were studied. Microdilution method was performed as described in reference document and agar diffusion test was performed using antifungal tablets and discs. To support growth, culture media were supplemented. To correlate methods, linear regression analysis and categorical agreement was determined. The strongest linear association was observed for fluconazole and miconazole. The highest agreement between both methods was observed for itraconazole and voriconazole and the lowest for amphotericin B and fluconazole. Although modifications made to disc diffusion method allowed to obtain susceptibility data for Malassezia yeast, variables cannot be associated through a linear correlation model, indicating that inhibition zone values cannot predict MIC value. According to the results, disc diffusion assay may not represent an alternative to determine antifungal susceptibility of Malassezia yeast. © 2016 Blackwell Verlag GmbH.
Salehzadeh, Ali; Asadpour, Leila; Naeemi, Akram Sadat; Houshmand, Elham
2014-01-01
Increase in the emergence of drug -resistant pathogens led to the development of natural antimicrobials. In this study the antimicrobial effect of methanolic extracts of Sambucus ebulus and Urtica dioica on 16 skin and wound infections isolates of methicillin resistant S. aureus have been studied. Solvent extraction procedure was done using soxhlet apparatus for extracting antimicrobial agents from freeze dried plants. Antibacterial activity was measured using agar well diffusion method. The MIC of Sambucus ebulus and Urtica dioica extracts against the standard strain of S. aureus ATCC 6538 were determined using the micro dilution method at 15 mg and 20 mg respectively. All the test bacteria were found sensitive to the Sambucus ebulus extract and only one isolate was resistant to Urtica dioica extract. Extracts of Sambucus ebulus and Urtica dioica possess antibacterial potency against MRSA isolates and may be used as a natural antiseptics and antimicrobial agents in medicine.
Anti-Candida activity and brine shrimp toxicity assay of Ganoderma boninense.
Daruliza, K M A; Fernandez, L; Jegathambigai, R; Sasidharan, S
2012-01-01
Ganoderma (G.) boninense is a white rot fungus, which can be found in the palm oil tree. Several studies have shown that G. boninense has antimicrobial and antagonistic properties. However, there is limited information reported on antifungal properties especially on Candida (C) albicans. Hence, this study was conducted to determine the anti-Candida activity of G. boninense against C albicans. Crude methanolic extracts of G. boninense was obtained by maceration method with 70% methanol. Anti-Candida test was carried out using disc diffusion assay, broth dilution method, time killing profile and brine shrimp toxicity assay. Anti-Candida activity indicated that the mean zone of inhibition was 12.5 +/- 0.6 mm. The MIC value for C. albicans found to be 3.125 mg/ml. The result from time-killing profile showed that the growth of C albicans was inhibited hence decreases its exponential phase. For brine shrimp toxicity assay, the LC50 value was 3.59 mg/ml which proved that the extract of G. boninense is not toxic.
Cengiz, M; Sahinturk, P; Sonal, S; Buyukcangaz, E; Sen, A; Arslan, E
2013-05-04
The objective of this work was to investigate the bactericidal activity of enrofloxacin against gyrA mutant and qnr-containing Escherichia coli isolates from animals. The minimum inhibitory concentrations (MICs) of gyrA mutant and qnr-containing E coli isolates ranged from 1 µg/ml to 32 µg/ml for enrofloxacin. Time-kill experiments were performed using selected E coli isolates. For the time-kill experiments, the colony counts were determined by plating each diluted sample onto plate count agar and an integrated pharmacokinetic/pharmacodynamics area measure (log ratio area) was applied to the colony-forming units (cfu) data. In general, enrofloxacin exhibited bactericidal activity against all the gyrA mutant E coli isolates at all concentrations greater than four times the MIC. However, the bactericidal activity of enrofloxacin for all the qnr-containing E coli isolates was less dependent on concentration. The results of the present study indicated that the genetic mechanism of resistance might account for the different bactericidal activities of enrofloxacin observed for the gyrA mutant and the qnr-containing E coli isolates. Therefore, in addition to MIC assays, genetic mechanism-based pharmacodynamic models should be used to provide accurate predictions of the effects of drugs on resistant bacteria.
Bronner, S; Pompei, D; Elkhaïli, H; Dhoyen, N; Monteil, H; Jehl, F
2001-10-01
The aim of the study was to evaluate the in vitro/ex vivo bactericidal activity of a new coamoxiclav single-dose sachet formulation (1 g amoxicillin + 0.125 g clavulanic acid) against a beta-lactamase-producing strain of Haemophilus influenzae. The evaluation covered the 12 h period after antibiotic administration. Serum specimens from the 12 healthy volunteers included in the pharmacokinetic study were pooled by time point and in equal volumes. Eight of 12 pharmacokinetic sampling time points were included in the study. At time points 0.5, 0.75, 1, 1.5, 2.5, 5, 8 and 12 h post-dosing, the kinetics of bactericidal activity were determined for each of the serial dilutions. Each specimen was serially diluted from 1:2 to 1:256. The index of surviving bacteria (ISB) was subsequently determined for each pharmacokinetic time point. For all the serum samples, bactericidal activity was fast (3-6 h), marked (3-6 log(10) reduction in the initial inoculum) and sustained over the 12 h between-dosing interval. The results obtained also confirmed that the potency of the amoxicillin plus clavulanic acid combination was time dependent against the species under study and that the time interval over which the concentrations were greater than the MIC (t > MIC) was 100% for the strain under study. The data thus generated constitute an interesting prerequisite with a view to using co-amoxiclav 1.125 g in a bd oral regimen.
Chaib, Faiza; Allali, Hocine; Bennaceur, Malika; Flamini, Guido
2017-08-01
In recent years, antimicrobial activities of essential oils have been intensively explored, mainly in researching and developing new antimicrobial agents to overcome microbial resistance. The present study investigates the chemical composition and antimicrobial activities of essential oils obtained from two Asteraceae: Asteriscus graveolens (Forssk.) Less. and Pulicaria incisa (Lam.) DC. Chemical analysis was performed using a combination of capillary GC-FID and GC/MS analytical techniques. The major component of Asteriscus graveolens were cis-chrysanthenyl acetate (31.1%), myrtenyl acetate (15.1%), and kessane (11.5%), while for Pulicaria incisa the main components were chrysanthenone (45.3%) and 2,6-dimethylphenol (12.6%). The oils obtained from the aerial parts were tested against sixteen microbial strains by agar well diffusion technique and dilution methods and showed minimum inhibitory concentrations (MIC) in the range of 19 - 1250 μg/ml. A good antibacterial activity against a common nosocomial pathogen, Acinetobacter baumanniiATCC 19606 was observed, especially from Pulicaria incisa essential oil, with a MIC value up to 19 μg/ml. These results give significant information about the pharmacological activity of these essential oils, which suggest their benefits to human health, having the potential to be used for medical purposes. © 2017 Wiley-VHCA AG, Zurich, Switzerland.
Alcaide, F; Carratala, J; Liñares, J; Gudiol, F; Martin, R
1996-01-01
From January 1988 to December 1994, 66 consecutive blood culture isolates of viridans group streptococci collected from febrile neutropenic cancer patients were tested for antimicrobial susceptibilities by the agar dilution method. The antibiotics studied were erythromycin, clarithromycin, roxithromycin, dirithromycin, azithromycin, josamycin, diacetyl-midecamycin, spiramycin, and quinupristin-dalfopristin. A total of 26 (39.4%) strains were resistant to erythromycin with an MIC range of 0.5 to > 128 micrograms/ml. The strains were classified into three groups according to their penicillin susceptibility: 42 (63.6%) were susceptible, 8 (12.1%) were intermediately resistant, and 16 (24.3%) were highly resistant. The percentages of erythromycin-resistant strains in each group were 23.8, 62.5, and 68.8%, respectively. Streptococcus mitis was the species most frequently isolated (83.3%) and showed the highest rates of penicillin (40%) and erythromycin (43.6%) resistance. MICs of all macrolide antibiotics tested and of quinupristin-dalfopristin were higher for penicillin-resistant strains than for penicillin-susceptible strains. All macrolide antibiotics tested had cross-resistance to erythromycin, which was not observed with quinupristin-dalfopristin. Our study shows a high rate of macrolide resistance among viridans group streptococci isolated from blood samples of neutropenic cancer patients, especially those infected with penicillin-resistant strains. These findings make macrolides unsuitable prophylactic agents against viridans group streptococcal bacteremia in this patient population. PMID:8878591
[Combined action of nitrofuran preparations and bile acids on staphylococci].
Tkachuk, N I
1984-03-01
The effect of cholic, glycocholic and deoxycholic bile acids on the antimicrobial activity of furacin, furadonin, furagin and furoxone was studied with the use of collection strains and fresh isolates of staphylococci. The method of dilutions in liquid media was used. Cholic and glycocholic acids lowered the MIC of furacin, furadonin, furoxone and furagin with respect to the collection strains by 4-16, 5, 4-6 and 22-37 times, respectively. The potentiating effect of deoxycholic acid on the nitrofuran drugs was even more pronounced. Thus, when the nitrofurans were used in combination with deoxycholic acid, their MIC dropped by 16-114 times. A significant increase in the antimicrobial activity of the nitrofurans under the effect of the bile acids was also observed with respect to the fresh isolates of Staphylococcus, while it was somewhat lower. The subbacteriostatic doses of cholic, glycocholic and deoxycholic bile acids also increased the bactericidal effect of the nitrofuran drugs. The minimum bactericidal concentrations (MBC) of furacin, furoxone, furadonin and furagin decreased from 12.5, 2.08, 25.0 and 1.82 to 0.78, 0.26, 2.34 and 0.032 micrograms/ml, respectively. The most pronounced decrease in the MBC was observed under the effect of deoxycholic acid. Therefore, the bile acids potentiated the nitrofuran antistaphylococcal activity. The combinations of deoxycholic acid with furagin or furoxone were the most effective.
Ksouri, S; Djebir, S; Bentorki, A A; Gouri, A; Hadef, Y; Benakhla, A
2017-06-01
The aim of this study is to limit the antibiotic use in mastitis treatment and to find other alternatives. The antifungal activity of the essential oils from Origanum floribundum Munby., Rosmarinus officinalis L. and Thymus ciliatus Desf. is studied in the present work against a Candida albicans reference strain and ten C. albicans isolated strains from bovine clinical mastitis. Essential oils were extracted by hydrodistillation technique using Clevenger apparatus. Their chromatographic analysis was performed with a Gas Chromatograph/Mass Spectrometer (GC/MS). Antifungal activities of essential oils were investigated by macrobroth method of dilution in tubes to determine the Minimum Inhibitory Concentrations (MIC 80%). Analysis of the essential oil showed chemical profile dominated by thymol (50.47 and 62.41%) and P-cymene (24.22 and 15.51%) in the oregano and the thyme respectively, 1, 8-cineol (31.50%) and α-pinene (18.33%) in Rosemary. The three essential oils revealed highly effective anticandidal activity, with an MIC of 80% values ranged from 15.02 to 31.08μg/mL. These results suggest that essential oils studied can be real alternatives in the control of mastitis fungi but deserving studies more in-depth and detailed on their application in vivo. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Miller, Andrew B; Cates, Rex G; Lawrence, Michael; Soria, J Alfonso Fuentes; Espinoza, Luis V; Martinez, Jose Vicente; Arbizú, Dany A
2015-04-01
Essential oils are prevalent in many medicinal plants used for oral hygiene and treatment of diseases. Medicinal plant species were extracted to determine the essential oil content. Those producing sufficient oil were screened for activity against Staphylococcus aureus, Escherichia coli, Streptococcus mutans, Lactobacillus acidophilus, and Candida albicans. Plant samples were collected, frozen, and essential oils were extracted by steam distillation. Minimum inhibitory concentrations (MIC) were determined using a tube dilution assay for those species yielding sufficient oil. Fifty-nine of the 141 plant species produced sufficient oil for collection and 12 species not previously reported to produce essential oils were identified. Essential oil extracts from 32 species exhibited activity against one or more microbes. Oils from eight species were highly inhibitory to S. mutans, four species were highly inhibitory to C. albicans, and 19 species yielded MIC values less than the reference drugs. RESULTS suggest that 11 species were highly inhibitory to the microbes tested and merit further investigation. Oils from Cinnamomum zeylanicum Blume (Lauraceae), Citrus aurantiifolia (Christm.) Swingle (Rutaceae), Lippia graveolens Kunth (Verbenaceae), and Origanum vulgare L. (Lamiaceae) yielded highly significant or moderate activity against all microbes and have potential as antimicrobial agents. Teas prepared by decoction or infusion are known methods for extracting essential oils. Oils from 11 species were highly active against the microbes tested and merit investigation as to their potential for addressing health-related issues and in oral hygiene.
Liu, Qing-Qing; Han, Jun; Zuo, Guo-Ying; Wang, Gen-Chun; Tang, Hua-Shu
2016-05-01
Salvianolate (SAL) is a prescribed medicine from the Chinese herb Danshen (Salvia miltiorrhiza Bunge). It has been widely used in treatment of coronary and other diseases with significant effects. The in vitro antimicrobial activities of SAL against infectious pathogens were assayed and its combined effects on 10 clinical isolates of SCCmec III type methicillin-resistant Staphylococcus aureus (MRSA) with ten antibiotics were evaluated. Susceptibility to each agent alone was tested using a broth microdilution method, and the chequerboard and time-kill experiments were used for the combined activities. The results showed MIC was 128-256 mg/L for SAL used alone against MRSA. Significant synergies were observed for SAL/Ampicillin (Fosfomycin, Erythromycin, Piperacillin-tazobactam or Clindamycin) combination against over half of the isolates, with their MICs reduced by times of dilution (TOD) to 4-32 (FICIs 0.375-0.5), respectively. SAL/AMP combination showed the best combined effect of synergy on bacteriostatic and bactericidal activities, while SAL/AMK combination reversed the resistance of MRSA to AMK. The results demonstrated that SAL enhanced widely the in vitro anti-MRSA efficacy of the ten antibacterial agents, which had potential for combinatory therapy of patients infected with MRSA and warrants further investigations. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.
In vitro antimicrobial activity of Caesalpinia ferrea Martius fruits against oral pathogens.
Sampaio, Fábio C; Pereira, Maria do Socorro V; Dias, Celidarque S; Costa, Vicente Carlos O; Conde, Nikeila C O; Buzalaf, Marília A R
2009-07-15
In the Amazon region of Brazil, the fruits of Caesalpinia ferrea Martius (Brazilian ironwood) are widely used as an antimicrobial and healing medicine in many situations including oral infections. This study aimed to evaluate the antimicrobial activity of Caesalpinia ferrea Martius fruit extract against oral pathogens. Polyphenols estimation and spectral analysis ((1)H NMR) of the methanol extract were carried out. The microorganisms Candida albicans, Streptococcus mutans, Streptococcus salivarius, Streptococcus oralis and Lactobacillus casei were tested using the microdilution method for planktonic cells (MIC) and a multispecies biofilm model. Chlorhexidine was used as positive control. Polyphenols in the extract were estimated at 7.3% and (1)H NMR analysis revealed hydroxy phenols and methoxilated compounds. MIC values for Candida albicans, Streptococcus mutans, Streptococcus salivarius, Streptococcus oralis and Lactobacillus casei were 25.0, 40.0, 66.0, 100.0, 66.0 microg/mL, respectively. For the biofilm assay, chlorhexidine and plant extract showed no growth at 10(-4) and 10(-5) microbial dilution, respectively. At 10(-4) and 10(-5) the growth values (mean+/-SD) of the negative controls (DMSO and saline solution) for Streptococcus mutans, Streptococcus sp. and Candida albicans were 8.1+/-0.7, 7.0+/-0.6 and 5.9+/-0.9 x 10(6)CFU, respectively. Caesalpinia ferrea fruit extract can inhibit in vitro growth of oral pathogens in planktonic and biofilm models supporting its use for oral infections.
Isaiah, Ibeh Nnana; Nche, Bikwe Thomas; Nwagu, Ibeh Georgina; Nwagu, Ibeh Isaiah
2011-01-01
Background: the occurrence of the different types of Extended spectrum beta Lactamase producing Escherichia coli with the, Sulphurhydryl variable, Temonera and the Cefotaximase have been on the rise Aim: The study was to determine the prevalence of extended spectrum beta lactamase gene resistance across the clinical isolates of hospitalized patients. Materials and Method: Three hundred and fifty isolates of Escherichia coli were received from different clinical specimens. The susceptibility profile of the isolates against 10 different antibiotics was examined, the MICs (Minimum Inhibitory Concentration) for ceftazidime were also determined using micro-broth dilution assay. Isolates showing MIC ≥ 6 μg/ml for ceftazidime were screened for ESBL (PCT)phenotypic confirmatory test and subjected to PCR (polymerase chain reaction) to further. Results: By disk diffusion test, there was resistance to ceftazidime and cefotaxime were 180(51.4%) and 120 (34.2%) respectively. However, all strains were susceptible to imipenem. 250 isolates showed MICs≥ 6 μg/ml for ceftazidime of which 180 (72%) were positive for extended spectrum beta lactamase. The prevalence of Sulphurhydryl variable, Temonera and the Cefotaximase among these isolates were 17.1%, 6.6% and 17%, respectively. Conclusion: For the identification of extended spectrum beta lactamase producing isolates it is recommended that clinical laboratories adopt simple test based on Cinical laboratory standard institute recommendation for confirming extended spectrum beta lactamase production in enterobacteriacea species. PMID:22363078
[Confirming the Utility of RAISUS Antifungal Susceptibility Testing by New-Software].
Ono, Tomoko; Suematsu, Hiroyuki; Sawamura, Haruki; Yamagishi, Yuka; Mikamo, Hiroshige
2017-08-15
Clinical and Laboratory Standards Institute (CLSI) methods for susceptibility tests of yeast are used in Japan. On the other hand, the methods have some disadvantage; 1) reading at 24 and 48 h, 2) using unclear scale, approximately 50% inhibition, to determine MICs, 3) calculating trailing growth and paradoxical effects. These makes it difficult to test the susuceptibility for yeasts. Old software of RAISUS, Ver. 6.0 series, resolved problem 1) and 2) but did not resolve problem 3). Recently, new software of RAISUS, Ver. 7.0 series, resolved problem 3). We confirmed that using the new software made it clear whether all these issue were settled or not. Eighty-four Candida isolated from Aichi Medical University was used in this study. We compared the MICs obtained by using RAISUS antifungal susceptibility testing of yeasts RSMY1, RSMY1, with those obtained by using ASTY. The concordance rates (±four-fold of MICs) between the MICs obtained by using ASTY and RSMY1 with the new software were more than 90%, except for miconazole (MCZ). The rate of MCZ was low, but MICs obtained by using CLSI methods and Yeast-like Fungus DP 'EIKEN' methods, E-DP, showed equivalent MICs of RSMY1 using the new software. The frequency of skip effects on RSMY1 using the new software markedly decreased relative to RSMY1 using the old software. In case of showing trailing growth, the new software of RAISUS made it possible to choice the correct MICs and to put up the sign of trailing growth on the result screen. New software of RAISUS enhances its usability and the accuracy of MICs. Using automatic instrument to determine MICs is useful to obtain objective results easily.
Mohsenipour, Zeinab; Hassanshahian, Mehdi
2015-01-01
Background: Garlic is considered a rich source of many compounds, which shows antimicrobial effects. The ability of microorganisms to adhere to both biotic and abiotic surfaces and to form biofilm is responsible for a number of diseases of chronic nature, demonstrating extremely high resistance to antibiotics. Bacterial biofilms are complex communities of sessile microorganisms, embedded in an extracellular matrix and irreversibly attached to various surfaces. Objectives: The present study evaluated the antimicrobial activity of Allium sativum extract against the biofilms of six pathogenic bacteria and their free-living forms. The clinical isolates in this study had not been studied in any other studies, especially in regard to biofilm disruption and inhibition of biofilm cell metabolic activity. Materials and Methods: Antimicrobial activities of A. sativum L. extracts (methanol and ethanol extracts) against planktonic forms of bacteria were determined using the disc diffusion method. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) values were evaluated by a macrobroth dilution technique. The anti-biofilm effects were assessed by microtiter plate method. Results: The results showed that the A. sativum L. extract discs did not have any zone of inhibition for the tested bacteria. However, The MIC values of A. sativum L. extracts (0.078 - 2.5 mg/mL) confirmed the high ability of these extracts for inhibition of planktonic bacteria. A. sativum L. extracts were efficient to inhibit biofilm structures and the concentration of each extract had a direct relation with the inhibitory effect. Conclusions: Finally, it can be suggested that the extracts of this plant be applied as antimicrobial agents against these pathogens, particularly in biofilm forms. PMID:26464762
2013-01-01
Background Aquilaria crassna Pierre ex Lecomte has been traditionally used in Thailand for treatment of infectious diseases such as diarrhoea and skin diseases for a long time. The main objectives of this study were to examine antibacterial activity of the Aquilaria crassna leaf extract against Staphylococcus epidermidis and its underlying mechanism. The antioxidant activity and acute toxicity were studied as well. Methods Antioxidant activities were examined by FRAP, ABTS and DPPH scavenging methods. Antibacterial activity was conducted using disc diffusion assay and the minimum inhibitory concentration (MIC) was determined by dilution method. The minimum bactericidal concentration (MBC) was reported as the lowest concentration producing no growth of microbes in the subcultures. Morphological changes of the microbe were observed by scanning electron microscopy, while an inhibitory effect on biofilm formation was evaluated by phase contrast microscopic analysis. Bacterial cell wall integrity was assessed by transmission electron microscopy. Acute toxicity was conducted in accordance with the OECD for Testing of Chemicals (2001) guidelines. Results The extract exhibited considerable antioxidant activity. Staphylococcus epidermidis was susceptible to the extract with the MIC and MBC of 6 and 12 mg/ml, respectively. The extract caused swelling and distortion of bacterial cells and inhibited bacterial biofilm formation. Rupture of bacterial cell wall occurred after treated with the extract for 24 h. Acute toxicity test in mice showed no sign of toxicity or death at the doses of 2,000 and 15,000 mg/kg body weight. Conclusion The aqueous extract of Aquilaria crassna leaves possesses an in vitro antibacterial activity against Staphylococcus epidermidis, with no sign of acute oral toxicity in mice, probably by interfering with bacterial cell wall synthesis and inhibiting biofilm formation. PMID:23962360
The Antimicrobial Activities of Extract and Compounds Isolated from Brillantaisia lamium
Tamokou, Jean De Dieu; Kuiate, Jules Roger; Tene, Mathieu; Kenla Nwemeguela, Timothée Julbelin; Tane, Pierre
2011-01-01
Background: Brillantaisia lamium is an erect branched herb, which grows to a height of 1.50 m in moist tropical areas, both in full sun and partial shade. In , the aerial part of this plant is used in the treatment of various microbial infections such as skin diseases and infections of urinary tract. The aim of this study was to evaluate the antimicrobial activities of CH2Cl2: MeOH (1:1) extract, fractions and compounds from the aerial part of B. lamium. Methods: The plant was dried and extracted by maceration in CH2Cl2: MeOH (1:1 v/v). Structures of the compounds from the CH2Cl2: MeOH (1:1) soluble fraction were determined by spectroscopic methods and compared with published data. The broth micro dilution method was used to evaluate the antimicrobial activities against bacteria and fungal species. Results: Four known compounds: aurantiamide acetate (1), lupeol (2), lespedin (3), sitosterol 3-O-β-D-glucopyranoside (4) and a mixture of sterols: campesterol (5), stigmasterol (6) and β-sitosterol (7) were isolated from CH2Cl2: MeOH (1:1) extract of B. lamium aerial parts. The crude extract, fractions and isolated compounds exhibited both antibacterial and antifungal activities that varied with microorganism (MIC=6.25 – 1000 µg/ml). Compound 3 was the most active (MIC=6.25 – 100 µg/ml) while Staphylococcus aureus, Enterococcus faecalis, Candida tropicalis and Cryptococcus neoformans were the most sensitive to all the tested compounds. Conclusion: The overall results of this study indicate that the CH2Cl2: MeOH (1:1) extract and some of isolated compounds have interesting antimicrobial properties and can be used for the treatment of fungal and bacterial infections. PMID:23365474
Shahcheraghi, F; Abbasalipour, M; Feizabadi, MM; Ebrahimipour, GH; Akbari, N
2011-01-01
Background and Objective Carbapenems are therapeutic choice against infections caused by gram-negative bacilli including strains of Acinetobacter baumannii. Resistance to these antibiotics is mediated by efflux pumps, porins, PBPs and ß-lactamases. The aim of this study was to determine the possibility of existence of MBLs, OXAs and GES-1 betalactamase genes among clinical isolates of Acinetobacter collected from Tehran hospitals. Material and Methods Two hundred and three Acinetobacter isolates were collected from patient at Tehran hospitals. The isolates were identified using biochemical tests. The susceptibility to different antibiotics was evaluated by disk diffusion method and MICs of imipenem were determined using Micro broth dilution method (CLSI). PCR was performed for detection of bla VIM-2, bla SPM-1, bla IMP-2, bla GES-1, bla OXA-51, bla OXA-23 betalactamase genes. Clonal relatedness was estimated by PFGE with the restriction enzyme SmaI. Results and Conclusion Of 100 isolates of imipenem resistant Acinetobacter spp. collected from Tehran hospitals in 2009 and 2010, 6 isolates produced metallo-beta-lactamases and 94 isolates produced OXA-type carbapenemase. The bla SPM-1, bla GES-1, bla OXA-51, bla OXA-23 genes were detected by PCR among 6, 2, 94 and 84 isolates of A. baumannii, respectively. The MICs of isolates to imipenem were 8–128 µg/mL. PFGE analysis of 29 bla OXA-51 and bla OXA-23-positive A. baumannii isolates gave 6 different patterns. This is the first report of SPM-1 and GES-1 beta-lactamase producing A. baumannii. Production of the OXA-23, OXA-51, GES-1 and SPM-1 enzyme presents an emerging threat of carbapenem resistance among A. baumannii in Iran. PMID:22347585
Angelakis, Emmanouil; Khalil, Jacques Bou; Le Bideau, Marion; Perreal, Celine; La Scola, Bernard; Raoult, Didier
2017-07-01
Coxiella burnetii, the causative agent of Q fever, survives and replicates in the acidic environment of monocytes/macrophages; hydroxychloroquine, through alkalinisation of the acidic vacuoles, is critical for the management of Q fever. In this study, a collection of C. burnetii strains isolated from human samples was tested to evaluate the in vitro minimum inhibitory concentrations (MICs) of doxycycline and hydroxychloroquine. Serial two-fold dilutions of doxycycline (0.25-8 mg/L) and hydroxychloroquine (0.25-4 mg/L) were added to C. burnetii-infected human embryonic lung (HEL) fibroblast cells after 48 h of incubation, in duplicate. DNA was detected by C. burnetii-specific semi-quantitative PCR with primers and probes designed for amplification of the IS1111 and IS30A spacers. A total of 29 C. burnetii isolates obtained from 29 patients were tested. Doxycycline MICs ranged from 0.25 mg/L to 0.5 mg/L and hydroxychloroquine MICs from 0.25 mg/L to >4 mg/L. Four C. burnetii stains had hydroxychloroquine MICs ≤ 1 mg/L. The concentration of hydroxychloroquine was associated with a significant decrease in C. burnetii DNA copies in HEL cells based on linear regression analysis (P= 0.01). Recommended serum concentrations of hydroxychloroquine significantly reduced the growth of C. burnetii. Moreover, some C. burnetii strains presented hydroxychloroquine MICs below the recommended serum concentrations, indicating that, for these cases, hydroxychloroquine treatment alone may even be effective. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
Mohsenipour, Zeinab; Hassanshahian, Mehdi
2015-08-01
Garlic is considered a rich source of many compounds, which shows antimicrobial effects. The ability of microorganisms to adhere to both biotic and abiotic surfaces and to form biofilm is responsible for a number of diseases of chronic nature, demonstrating extremely high resistance to antibiotics. Bacterial biofilms are complex communities of sessile microorganisms, embedded in an extracellular matrix and irreversibly attached to various surfaces. The present study evaluated the antimicrobial activity of Allium sativum extract against the biofilms of six pathogenic bacteria and their free-living forms. The clinical isolates in this study had not been studied in any other studies, especially in regard to biofilm disruption and inhibition of biofilm cell metabolic activity. Antimicrobial activities of A. sativum L. extracts (methanol and ethanol extracts) against planktonic forms of bacteria were determined using the disc diffusion method. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) values were evaluated by a macrobroth dilution technique. The anti-biofilm effects were assessed by microtiter plate method. The results showed that the A. sativum L. extract discs did not have any zone of inhibition for the tested bacteria. However, The MIC values of A. sativum L. extracts (0.078 - 2.5 mg/mL) confirmed the high ability of these extracts for inhibition of planktonic bacteria. A. sativum L. extracts were efficient to inhibit biofilm structures and the concentration of each extract had a direct relation with the inhibitory effect. Finally, it can be suggested that the extracts of this plant be applied as antimicrobial agents against these pathogens, particularly in biofilm forms.
The Epidemiologic and Pharmacodynamic Cutoff Values of Tilmicosin against Haemophilus parasuis.
Zhang, Peng; Hao, Haihong; Li, Jun; Ahmad, Ijaz; Cheng, Guyue; Chen, Dongmei; Tao, Yanfei; Huang, Lingli; Wang, Yulian; Dai, Menghong; Liu, Zhenli; Yuan, Zonghui
2016-01-01
The aim of this study was to establish antimicrobial susceptibility breakpoints for tilmicosin against Haemophilus parasuis, which is an important pathogen of respiratory tract infections. The minimum inhibitory concentrations (MICs) of 103 H. parasuis isolates were determined by the agar dilution method. The wild type (WT) distribution and epidemiologic cutoff value (ECV) were evaluated by statistical analysis. The new bronchoaveolar lavage was used to establish intrapulmonary pharmacokinetic (PK) model in swine. The pharmacokinetic (PK) parameters of tilmicosin, both in pulmonary epithelial lining fluid (PELF) and in plasma, were determined using high performance liquid chromatography method and WinNonlin software. The pharmacodynamic cutoff (COPD) was calculated using Monte Carlo simulation. Our results showed that 100% of WT isolates were covered when the ECV was set at 16 μg/mL. The tilmicosin had concentration-dependent activity against H. parasuis. The PK data indicated that tilmicosin concentrations in PELF was rapidly increased to high levels at 4 h and kept stable until 48 h after drug administration, while the tilmicosin concentration in plasma reached maximum levels at 4 h and continued to decrease during 4-72 h. Using Monte Carlo simulation, COPD was defined as 1 μg/mL. Conclusively, the ECV and COPD of tilmicosin against H. parasuis were established for the first time based on the MIC distribution and PK-PD analysis in the target tissue, respectively. These values are of great importance for detection of tilmicosin-resistant H. parasuis and for effective treatment of clinical intrapulmonary infection caused by H. parasuis.
The Epidemiologic and Pharmacodynamic Cutoff Values of Tilmicosin against Haemophilus parasuis
Zhang, Peng; Hao, Haihong; Li, Jun; Ahmad, Ijaz; Cheng, Guyue; Chen, Dongmei; Tao, Yanfei; Huang, Lingli; Wang, Yulian; Dai, Menghong; Liu, Zhenli; Yuan, Zonghui
2016-01-01
The aim of this study was to establish antimicrobial susceptibility breakpoints for tilmicosin against Haemophilus parasuis, which is an important pathogen of respiratory tract infections. The minimum inhibitory concentrations (MICs) of 103 H. parasuis isolates were determined by the agar dilution method. The wild type (WT) distribution and epidemiologic cutoff value (ECV) were evaluated by statistical analysis. The new bronchoaveolar lavage was used to establish intrapulmonary pharmacokinetic (PK) model in swine. The pharmacokinetic (PK) parameters of tilmicosin, both in pulmonary epithelial lining fluid (PELF) and in plasma, were determined using high performance liquid chromatography method and WinNonlin software. The pharmacodynamic cutoff (COPD) was calculated using Monte Carlo simulation. Our results showed that 100% of WT isolates were covered when the ECV was set at 16 μg/mL. The tilmicosin had concentration-dependent activity against H. parasuis. The PK data indicated that tilmicosin concentrations in PELF was rapidly increased to high levels at 4 h and kept stable until 48 h after drug administration, while the tilmicosin concentration in plasma reached maximum levels at 4 h and continued to decrease during 4–72 h. Using Monte Carlo simulation, COPD was defined as 1 μg/mL. Conclusively, the ECV and COPD of tilmicosin against H. parasuis were established for the first time based on the MIC distribution and PK-PD analysis in the target tissue, respectively. These values are of great importance for detection of tilmicosin-resistant H. parasuis and for effective treatment of clinical intrapulmonary infection caused by H. parasuis. PMID:27047487
Alba, Myriam Arriaga; Sánchez, Roberto Rivera; Pérez, Nancy Jannet Ruíz; Navarrete, Jaime Sánchez; Paz, Rocío Flores; Montoya-Estrada, Araceli; Gómez, Juan José Hicks
2008-01-01
Background Norfloxacin like other fluoroquinolones, is known to be mutagenic for Salmonella typhimurium TA102 strain. This mutagenic effect is due to free oxygen radicals (ROS), because it is inhibited by antioxidants such as β-carotene and naturally occurring antioxidants of Roheo discolor and other plants. The aim of this work was to evaluate combination therapy with norfloxacin and vitamins C and E, to reduce the possible genotoxic risk associated with fluoroquinolones. Method The antimutagenicity of α-tocoferol (Vitamin E) and ascorbic acid (Vitamin C) against norfloxacin-induced mutation was evaluated on S. typhimurium TA102, using the aroclor-1254-induced S9 rat liver homogenate. The minimum inhibitory concentration (MIC) a measure of the bactericidal effect of norfloxacin, was obtained in vitro by the plate dilution method. Results Vitamin E (0.5 mg per Petri dish) induced a statistically significant reduction (P < 0.001) in the mutagenicity of norfloxacin, whereas Vitamin C (1 mg per Petri dish) had no such effect. Neither of these vitamins altered the MIC for norfloxacin against 25 uropathogenic strains of Escherichia coli. Conclusion These results suggest that Vitamin E is a potent antimutagen that would be worthwhile being used in conjunction with fluoroquinolone treatment. The minimal antimutagenic effect of Vitamin C observed under these experimental conditions may have been because Vitamin C in the Ames test induces a Fenton reaction, and if divalent cations are present, it can act as a pro-oxidant rather than an antioxidant. Ascorbic acid should be further evaluated in the presence of different divalent cations concentrations. PMID:18267022
In Vitro Effects of Polyphosphate against Prevotella intermedia in Planktonic Phase and Biofilm
Jang, Eun-Young; Kim, Minjung; Noh, Mi Hee
2015-01-01
Polyphosphate (polyP) has gained a wide interest in the food industry due to its potential as a decontaminating agent. In this study, we examined the effect of sodium tripolyphosphate (polyP3; Na5P3O10) against planktonic and biofilm cells of Prevotella intermedia, a major oral pathogen. The MIC of polyP3 against P. intermedia ATCC 49046 determined by agar dilution method was 0.075%, while 0.05% polyP3 was bactericidal against P. intermedia in time-kill analysis performed using liquid medium. A crystal violet binding assay for the assessment of biofilm formation by P. intermedia showed that sub-MICs of polyP3 significantly decreased biofilm formation. Under the scanning electron microscope, decreased numbers of P. intermedia cells forming the biofilms were observed when the bacterial cells were incubated with 0.025% or higher concentrations of polyP3. Assessment of biofilm viability with LIVE/DEAD staining and viable cell count methods showed that 0.05% or higher concentrations of polyP3 significantly decreased the viability of the preformed biofilms in a concentration-dependent manner. The zone sizes of alpha-hemolysis formed on horse blood agar produced by P. intermedia were decreased in the presence of polyP3. The expression of the genes encoding hemolysins and the genes of the hemin uptake (hmu) locus was downregulated by polyP3. Collectively, our results show that polyP is an effective antimicrobial agent against P. intermedia in biofilms as well as planktonic phase, interfering with the process of hemin acquisition by the bacterium. PMID:26596937
Antifungal activity of Curcuma longa grown in Thailand.
Wuthi-udomlert, M; Grisanapan, W; Luanratana, O; Caichompoo, W
2000-01-01
Curcuma longa Linn. or turmeric (Zingiberaceae) is a medicinal plant widely used and cultivated in tropical regions. According to Thai traditional texts, fresh and dried rhizomes are used as peptic ulcer treatment, carminatives, wound treatment and anti-inflammatory agent. Using hydro distillation, 1.88% and 7.02% (v/w) volatile oils were extracted from fresh and dried rhizomes, respectively, and 6.95% (w/w)crude curcuminoids were extracted from dried rhizomes. Dried powder was extracted with 95% ethanol and yielded 29.52% (w/w) crude ethanol extract composed of curcumin (11.6%), demethoxycurcumin (10.32%) and bisdemethoxycurcumin (10.77%). These extracts were tested for antifungal activity by agar disc diffusion method against 29 clinical strains of dermatophytes. It was found that crude ethanol extract exhibited an inhibition zone range of 6.1 to 26.0 mm. There was no inhibition activity from crude curcuminoids while curcumin, demethoxycurcumin and bisdemethoxycutcumin gave different inhibition zone diameters ranging from 6.1 to 16.0 mm. Although antifungal activity of undiluted freshly distilled oil and 18-month-old oil revealed some differences, the inhibition zone diameters for both extracts varied within 26.1 to 46.0 mm. With 200 mg/ml ketoconazole, the activities of the standard agent were similar to the oil, both freshly distilled and 18-month-old, but were significantly different from those of curcuminoid compounds and crude ethanol extracts (p < 0.01). Turmeric oil was also tested for its minimum inhibitory concentration (MIC) by broth dilution method. The MICs of freshly distilled and 18-month-old oils were 7.8 and 7.2 mg/ml respectively.
NASA Astrophysics Data System (ADS)
Lotfy, Hayam Mahmoud; Fayez, Yasmin Mohammed; Tawakkol, Shereen Mostafa; Fahmy, Nesma Mahmoud; Shehata, Mostafa Abd El-Atty
2017-09-01
Simultaneous determination of miconazole (MIC), mometasone furaoate (MF), and gentamicin (GEN) in their pharmaceutical combination. Gentamicin determination is based on derivatization with of o-phthalaldehyde reagent (OPA) without any interference of other cited drugs, while the spectra of MIC and MF are resolved using both successive and progressive resolution techniques. The first derivative spectrum of MF is measured using constant multiplication or spectrum subtraction, while its recovered zero order spectrum is obtained using derivative transformation. Beside the application of constant value method. Zero order spectrum of MIC is obtained by derivative transformation after getting its first derivative spectrum by derivative subtraction method. The novel method namely, differential amplitude modulation is used to get the concentration of MF and MIC, while the novel graphical method namely, concentration value is used to get the concentration of MIC, MF, and GEN. Accuracy and precision testing of the developed methods show good results. Specificity of the methods is ensured and is successfully applied for the analysis of pharmaceutical formulation of the three drugs in combination. ICH guidelines are used for validation of the proposed methods. Statistical data are calculated, and the results are satisfactory revealing no significant difference regarding accuracy and precision.
Salleh, Wan Mohd Nuzul Hakimi Wan; Ahmad, Farediah; Sirat, Hasnah Mohd; Yen, Khong Heng
2012-01-01
The essential oils obtained by hydrodistillation from the fresh leaf and stem of Piper porphyrophyllum N.E. Br. were analyzed by GC and GC/MS. Thirty four constituents were identified in the leaf oil, while thirty eight constituents were identified in the stems oil. The most abundant components in the leaf oil included bicyclogermacrene (14.7 %), α-copaene (13.2 %) and β-phellandrene (9.5 %) while sabinene (15.5 %), bicyclogermacrene (12.3 %) and α-copaene (8.1 %) were the main constituents in the stem oil. The evaluation of antibacterial activity by using micro-dilution method revealed that both oils were moderately active against all the Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis) and Gram-negative bacteria (Pseudomonas aeruginosa, Pseudomonas putida and Escherichia coli) with minimum inhibitory concentration (MIC) values in the range 125-1000 µg/ml. PMID:27418915
Chen, Zhifen; He, Daohang; Deng, Jingdan; Zhu, Jiaying; Mao, Qiuping
2015-01-01
The essential oil of fresh leaves from Agathis dammara (Lamb.) Rich was extracted using hydro-distillation, and GC-FID and GC-MS were used to analyse the essential oil. Nineteen compounds were identified, among which the major components were limonene (36.81%), β-bisabolene (33.43%) and β-myrcene (25.48%). In the antibacterial test, disc diffusion method and micro-well dilution assay proved that the essential oil had significant antibacterial activities. The inhibition zones against Staphylococcus aureus and Pseudomonas aeruginosa were 23.7 and 23 mm, respectively, which demonstrated that the inhibition effects were greater than positive control (10 μg/disc streptomycin). And the lowest MIC value of the essential oil was found against S. aureus (1.25 mg/mL) and Bacillus subtilis (1.25 mg/mL). This is the first report on the antibacterial activities of A. dammara essential oil.
[Sensitivity of clinical Proteus strains to antibiotics and their combinations].
Sheina, E P; Arutcheva, A A
1978-05-01
In 1976 isolation of Proteus from wounds of patients with various purulent processes amounted to 14.5 per cent. Serotypes 0-10, 0-3 and H-3 predominated among the isolates. Sensitivity of 35 clinical strains of Proteus to 10 antibiotics, furagin and nevigramone was studied by the method of serial dilutions in liquid media. All the isolates were highly resistant to the antibiotics except gentamicin, furagin and nevigramone, the MIC of which for most of the strains was 3.12, 1.6-3.12 and 6.25-12.5 gamma/ml, respectively. The effect of 14 combinations of chemotherapeutics was also studied. The combinations of gentamicin with carbenicillin, gentamicin with ampicillin and monomycin with ampicillin proved to be most effective against the Proteus strains tested. The following combinations may be of practical value: monomycin + carbenicillin, kanamycin + ampicillin, kanamycin + carbenicillin, ampicillin + furagin, gentamicin + nevigramone. The combinations of carbenicillin with furagin and gentamicin with furagin were also rational.
A new antibacterial benzophenone glycoside from Psidium guajava (Linn.) leaves.
Ukwueze, Stanley E; Osadebe, Patience O; Okoye, Festus B C
2015-01-01
Bioactivity-guided fractionation of methanol extract from the leaves of Psidium guajava L. (Myrtaceae) yielded a new benzophenone glycoside, Guajaphenone A (2) together with two known compounds, Garcimangosone D (1) and Guaijaverin (3). Their structures were elucidated by analysis of spectroscopic data including 1D and 2D NMR and electrospray ionisation mass spectrometry (ESI-MS). The isolated compounds were screened against standard strains of Gram-positive and Gram-negative bacteria using broth dilution assay method, and the MIC values determined and compared with reference antibiotic ceftriaxone. They were found to have significant antibacterial activities against Escherichia coli and Staphylococcus aureus with all of them showing better activities against S. aureus, but displaying weaker activities, in comparison to ceftriaxone. However, despite reduced effect of these compounds against the organisms, this work opens the perspective to use these molecules as 'leads' for the design of novel and selective drug candidates for some tropical infectious diseases.
Bhat, Abdul R; Tazeem; Azam, Amir; Choi, Inho; Athar, Fareeda
2011-07-01
A new series of thiadiazoles and intermediate thiosemicarbazones were synthesized from the chloroquinone molecule, with an aim to explore their effect on in vitro growth of microorganisms causing microbial infection. The chemical structures of the compound were elucidated by elemental analysis, FTIR, 1H and 13C NMR and ESI-MS spectral data. In vitro anti-microbial activity was performed against Staphylococcusaureus, Streptococcuspyogenes, Salmonellatyphimurium, and Escherichiacoli. The MIC was detected using the double dilution method. The results were compared by calculating percent inhibit area/μg of the compounds and the standard "amoxicillin". The selected compounds were tested for cytotoxic results using MTT assay H9c2 cardiac myoblasts cell line and the results showed that all the compounds offered remarkable >80% viability to a concentration of 200 μg/mL. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Smart, Jennifer I; Corey, Gordon Ralph; Stryjewski, Martin E; Wang, Whedy; Barriere, Steven L
2016-12-01
The broth microdilution method (BMD) for testing telavancin minimum inhibitory concentrations (MICs) was revised (rBMD) in 2014 to improve the accuracy, precision, and reproducibility of the testing method. The aim of this study was to determine the effect of the revised method on telavancin MIC values for Staphylococcus aureus (S. aureus) clinical isolates obtained from hospital-acquired pneumonia (HAP) patients. Isolates from patients who participated in the phase 3 Assessment of Telavancin for Treatment of HAP Studies were retested using the rBMD method. Retesting of 647 isolates produced a range of telavancin MIC values from 0.015 µg/mL to 0.12 µg/mL with MIC 50/90 values of 0.06/0.06 µg/mL for the total pool of samples. For methicillin-resistant S. aureus (MRSA), MIC 50/90 values were 0.06/0.12 µg/mL. These values are up to 4-fold lower than MIC 50/90 values obtained using the original method. These results were used in part to justify lowering the telavancin breakpoints. All tested isolates remained susceptible to telavancin at the revised susceptibility breakpoint of ≤0.12 µg/mL. Overall, the clinical cure rate for microbiologically evaluable telavancin-treated patients was 78% for S. aureus, 76% for patients with MRSA, and 79% for patients with isolates with reduced susceptibility to vancomycin (MIC ≥1 µg/mL). Results from the rBMD method support the in vitro potency of telavancin against S. aureus. ATTAIN (NCT00107952 and NCT00124020). Theravance Biopharma Antibiotics, Inc.
van Belkum, Alex; Halimi, Diane; Bonetti, Eve-Julie; Renzi, Gesuele; Cherkaoui, Abdessalam; Sauvonnet, Véronique; Martelin, Roland; Durand, Géraldine; Chatellier, Sonia; Zambardi, Gilles; Engelhardt, Anette; Karlsson, Åsa; Schrenzel, Jacques
2015-01-01
Precise assessment of potential therapeutic synergy, antagonism or indifference between antimicrobial agents currently depends on time-consuming and hard-to-standardize in vitro chequerboard titration methods. We here present a method based on a novel two-dimensional antibiotic gradient technique named Xact™. We used a test comprising a combination of perpendicular gradients of meropenem and colistin in a single quadrant. We compared test outcomes with those obtained with classical chequerboard microbroth dilution testing in a study involving 27 unique strains of multidrug-resistant Acinetobacter baumannii from diverse origins. We were able to demonstrate 92% concordance between the new technology and classical chequerboard titration using the A. baumannii collection. Two strains could not be analysed by Xact™ due to their out-of-range MIC of meropenem (>128 mg/L). The new test was shown to be diagnostically useful, easy to implement and less labour intensive than the classical method. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Antibacterial activities of extracts from Ugandan medicinal plants used for oral care.
Ocheng, Francis; Bwanga, Freddie; Joloba, Moses; Borg-Karlson, Ann-Karin; Gustafsson, Anders; Obua, Celestino
2014-08-08
Medicinal plants are widely used for treatment of oral/dental diseases in Uganda. To investigate antibacterial activities of 16 commonly used medicinal plants on microorganisms associated with periodontal diseases (PD) and dental caries (DC). Pulp juice and solvent extracts (hexane, methanol and water) from the plants were tested against Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia associated with PD and Streptococcus mutans, Streptococcus sobrinus, Lactobacillus acidophilus associated with DC. Tests were done using agar well-diffusion (pulp juice) and agar-dilution (Solvent extracts) assays. Pulp juice from Zanthoxylum chalybeum and Euclea latidens showed activity against all the bacteria, Zanthoxylum chalybeum being most active. Hexane extract from aerial part of Helichrysum odoratissimum was most active (MIC: 0.125-0.5 mg/ml). Methanol extract from leaves of Lantana trifolia showed activity against all bacteria (MIC: 0.25-1 mg/ml). Several of the tested plants showed antibacterial activities against bacteria associated with PD and DC, meriting further investigations. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Lorena, Nádia Suely de Oliveira; Pitombo, Marcos Bettini; Côrtes, Patrícia Barbur; Maya, Maria Cristina Araújo; Silva, Marlei Gomes da; Carvalho, Ana Carolina da Silva; Coelho, Fábrice Santana; Miyazaki, Neide Hiromi Tokumaru; Marques, Elizabeth Andrade; Chebabo, Alberto; Freitas, Andréa D'Avila; Lupi, Otília; Duarte, Rafael Silva
2010-10-01
To evaluate the minimum inhibitory concentration (MIC) of GTA against these microorganisms and alternative disinfectants for high-level disinfection (HLD). Reference mycobacteria and clinical M. massiliense strains were included in this study. Active cultures were submitted to susceptibility qualitative tests with GTA dilutions (ranging from 1.5% to 8%), and commercial orthophthaldehyde (OPA) and peracetic acid (PA)-based solutions, during the period of exposure as recommended by National Agency of Sanitary Surveillance for HLD. All reference and M. massiliense non-BRA100 strains, recovered from sputum, were susceptible to any GTA concentration, OPA and PA solutions. M. massiliense BRA100 strains presented MIC of 8% GTA and were susceptible to OPA and PA. M. massiliense BRA100 strain is resistant to high GTA concentrations (up to 7%), which proves that this product is non-effective against specific rapidly growing mycobacteria and should be substituted by OPA or PA-based solutions for HLD.
Rifaximin disc diffusion test for in vitro susceptibility testing of Clostridium difficile
Huhulescu, Steliana; Sagel, Ulrich; Fiedler, Anita; Pecavar, Verena; Blaschitz, Marion; Wewalka, Guenther; Allerberger, Franz
2011-01-01
Rifaximin is a rifampicin derivative, poorly absorbed by the gastro-intestinal tract. We studied the in vitro susceptibility to rifamixin of 1082 Clostridium difficile isolates; among these,184 isolates from a strain collection were tested by an in-house rifaximin disc (40 µg) diffusion test, by an in-house rifaximin broth microdilution test, by rifampicin Etest and by rpoB gene sequencing. In the absence of respective CLSI or EUCAST MIC breakpoints for rifaximin and rifampicin against C. difficile we chose MIC ≥32 µg ml−1 as criterion for reduced in vitro susceptibility. To further validate the disc diffusion test 898 consecutive clinical isolates were analysed using the disc diffusion test, the Etest and rpoB gene sequence analysis for all resistant strains. Rifaximin broth microdilution tests of the 184 reference strains yielded rifaximin MICs ranging from 0.001 (n = 1) to ≥1024 µg ml−1 (n = 61); 62 isolates showed a reduced susceptibility (MIC ≥32 µg ml−1). All of these 62 strains showed rpoB gene mutations producing amino acid substitutions; the rifampicin- and rifaximin-susceptible strains showed either a wild-type sequence or silent amino acid substitutions (19 strains). For 11 arbitrarily chosen isolates with rifaximin MICs of >1024 µg ml−1, rifaximin end-point MICs were determined by broth dilution: 4096 µg ml−1 (n = 2), 8192 µg ml−1 (n = 6), 16 384 µg ml−1 (n = 2) and 32 678 µg ml−1 (n = 1). Rifampicin Etests on the 184 C. difficile reference strains yielded MICs ranging from ≤0.002 (n = 117) to ≥32 µg ml−1 (n = 59). Using a 38 mm inhibition zone as breakpoint for reduced susceptibility the use of rifaximin disc diffusion yielded 59 results correlating with those obtained by use of rifaximin broth microdilution in 98.4 % of the 184 strains tested. Rifampicin Etests performed on the 898 clinical isolates revealed that 67 isolates had MICs of ≥32 µg ml−1. There were no discordant results observed among these isolates with reduced susceptibility using an MIC of ≥32 µg ml−1 as breakpoint for reduced rifampicin susceptibility and a <38 mm inhibition zone as breakpoint for reduced rifaximin susceptibility. The prevalence of reduced susceptibility was 7.5 % for all isolates tested. However, for PCR ribotype 027 the prevalence of reduced susceptibility was 26 %. Susceptibility testing in the microbiology laboratory therefore could have an impact on the care and outcome of patients with infection. Our results show that rifaximin – despite its water-insolubility – may be a suitable candidate for disc diffusion testing. PMID:21292853
Inhibition of Listeria monocytogenes by food antimicrobials applied singly and in combination.
Brandt, Alex L; Castillo, Alejandro; Harris, Kerri B; Keeton, Jimmy T; Hardin, Margaret D; Taylor, Thomas M
2010-01-01
Combining food antimicrobials can enhance inhibition of Listeria monocytogenes in ready-to-eat (RTE) meats. A broth dilution assay was used to compare the inhibition of L. monocytogenes resulting from exposure to nisin, acidic calcium sulfate, ε-poly-L-lysine, and lauric arginate ester applied singly and in combination. Minimum inhibitory concentrations (MICs) were the lowest concentrations of single antimicrobials producing inhibition following 24 h incubation at 35 °C. Minimum bactericidal concentrations (MBCs) were the lowest concentrations that decreased populations by ≥3.0 log(10) CFU/mL. Combinations of nisin with acidic calcium sulfate, nisin with lauric arginate ester, and ɛ-poly-L-lysine with acidic calcium sulfate were prepared using a checkerboard assay to determine optimal inhibitory combinations (OICs). Fractional inhibitory concentrations (FICs) were calculated from OICs and were used to create FIC indices (FIC(I)s) and isobolograms to classify combinations as synergistic (FIC(I) < 1.00), additive/indifferent (FIC(I)= 1.00), or antagonistic (FIC(I) > 1.00). MIC values for nisin ranged from 3.13 to 6.25 μg/g with MBC values at 6.25 μg/g for all strains except for Natl. Animal Disease Center (NADC) 2045. MIC values for ε-poly-L-lysine ranged from 6.25 to 12.50 μg/g with MBCs from 12.50 to 25.00 μg/g. Lauric arginate ester at 12.50 μg/g was the MIC and MBC for all strains; 12.50 mL/L was the MIC and MBC for acidic calcium sulfate. Combining nisin with acidic calcium sulfate synergistically inhibited L. monocytogenes; nisin with lauric arginate ester produced additive-type inhibition, while ε-poly-L-lysine with acidic calcium sulfate produced antagonistic-type inhibition. Applying nisin along with acidic calcium sulfate should be further investigated for efficacy on RTE meat surfaces. © 2010 Institute of Food Technologists®
Dorey, L; Hobson, S; Lees, P
2017-10-01
The pharmacodynamics of oxytetracycline was determined for pig respiratory tract pathogens, Actinobacillus pleuropneumoniae and Pasteurella multocida. Indices of potency were determined for the following: (i) two matrices, broth and pig serum; (ii) five overlapping sets of twofold dilutions; and (iii) a high strength starting culture. For A. pleuropneumoniae, minimum inhibitory concentration (MIC) was similar for the two matrices, but for P. multocida, differences were marked and significantly different. MIC and minimum bactericidal concentration (MBC) serum: broth ratios for A. pleuropneumoniae were 0.83:1 and 1.22:1, respectively, and corresponding values for P. multocida were 22.0:1 and 7.34:1. For mutant prevention concentration (MPC) serum: broth ratios were 0.79:1 (A. pleuropneumoniae) and 20.9:1 (P. multocida). These ratios were corrected for serum protein binding to yield fraction unbound (fu) serum: broth MIC ratios of 0.24:1 (A. pleuropneumoniae) and 6.30:1 (P. multocida). Corresponding fu serum: broth ratios for MPC were almost identical, 0.23:1 and 6.08:1. These corrections for protein binding did not account for potency differences between serum and broth for either species; based on fu serum MICs, potency in serum was approximately fourfold greater than predicted for A. pleuropneumoniae and sixfold smaller than predicted for P. multocida. For both broth and serum and both bacterial species, MICs were also dependent on initial inoculum strength. The killing action of oxytetracycline had the characteristics of codependency for both A. pleuropneumoniae and P. multocida in both growth media. The in vitro potency of oxytetracycline in pig serum is likely to be closer to the in vivo plasma/serum concentration required for efficacy than potency estimated in broths. © 2017 The Authors. Journal of Veterinary Pharmacology and Therapeutics Published by John Wiley & Sons Ltd.
Karlowsky, James A; Kazmierczak, Krystyna M; de Jonge, Boudewijn L M; Hackel, Meredith A; Sahm, Daniel F; Bradford, Patricia A
2017-09-01
The combination of the monobactam aztreonam and the non-β-lactam β-lactamase inhibitor avibactam is currently in clinical development for the treatment of serious infections caused by metallo-β-lactamase (MBL)-producing Enterobacteriaceae , a difficult-to-treat subtype of carbapenem-resistant Enterobacteriaceae for which therapeutic options are currently very limited. The present study tested clinically significant isolates of Enterobacteriaceae ( n = 51,352) and Pseudomonas aeruginosa ( n = 11,842) collected from hospitalized patients in 208 medical center laboratories from 40 countries from 2012 to 2015 for in vitro susceptibility to aztreonam-avibactam, aztreonam, and comparator antimicrobial agents using a standard broth microdilution methodology. Avibactam was tested at a fixed concentration of 4 μg/ml in combination with 2-fold dilutions of aztreonam. The MIC 90 s of aztreonam-avibactam and aztreonam were 0.12 and 64 μg/ml, respectively, for all Enterobacteriaceae isolates; >99.9% of all isolates and 99.8% of meropenem-nonsusceptible isolates ( n = 1,498) were inhibited by aztreonam-avibactam at a concentration of ≤8 μg/ml. PCR and DNA sequencing identified 267 Enterobacteriaceae isolates positive for MBL genes (NDM, VIM, IMP); all Enterobacteriaceae carrying MBLs demonstrated aztreonam-avibactam MICs of ≤8 μg/ml and a MIC 90 of 1 μg/ml. Against all P. aeruginosa isolates tested, the MIC 90 of both aztreonam-avibactam and aztreonam was 32 μg/ml; against MBL-positive P. aeruginosa isolates ( n = 452), MIC 90 values for aztreonam-avibactam and aztreonam were 32 and 64 μg/ml, respectively. The current study demonstrated that aztreonam-avibactam possesses potent in vitro activity against a recent, sizeable global collection of Enterobacteriaceae clinical isolates, including isolates that were meropenem nonsusceptible, and against MBL-positive isolates of Enterobacteriaceae , for which there are few treatment options. Copyright © 2017 American Society for Microbiology.
Karlowsky, James A.; de Jonge, Boudewijn L. M.; Hackel, Meredith A.; Sahm, Daniel F.
2017-01-01
ABSTRACT The combination of the monobactam aztreonam and the non-β-lactam β-lactamase inhibitor avibactam is currently in clinical development for the treatment of serious infections caused by metallo-β-lactamase (MBL)-producing Enterobacteriaceae, a difficult-to-treat subtype of carbapenem-resistant Enterobacteriaceae for which therapeutic options are currently very limited. The present study tested clinically significant isolates of Enterobacteriaceae (n = 51,352) and Pseudomonas aeruginosa (n = 11,842) collected from hospitalized patients in 208 medical center laboratories from 40 countries from 2012 to 2015 for in vitro susceptibility to aztreonam-avibactam, aztreonam, and comparator antimicrobial agents using a standard broth microdilution methodology. Avibactam was tested at a fixed concentration of 4 μg/ml in combination with 2-fold dilutions of aztreonam. The MIC90s of aztreonam-avibactam and aztreonam were 0.12 and 64 μg/ml, respectively, for all Enterobacteriaceae isolates; >99.9% of all isolates and 99.8% of meropenem-nonsusceptible isolates (n = 1,498) were inhibited by aztreonam-avibactam at a concentration of ≤8 μg/ml. PCR and DNA sequencing identified 267 Enterobacteriaceae isolates positive for MBL genes (NDM, VIM, IMP); all Enterobacteriaceae carrying MBLs demonstrated aztreonam-avibactam MICs of ≤8 μg/ml and a MIC90 of 1 μg/ml. Against all P. aeruginosa isolates tested, the MIC90 of both aztreonam-avibactam and aztreonam was 32 μg/ml; against MBL-positive P. aeruginosa isolates (n = 452), MIC90 values for aztreonam-avibactam and aztreonam were 32 and 64 μg/ml, respectively. The current study demonstrated that aztreonam-avibactam possesses potent in vitro activity against a recent, sizeable global collection of Enterobacteriaceae clinical isolates, including isolates that were meropenem nonsusceptible, and against MBL-positive isolates of Enterobacteriaceae, for which there are few treatment options. PMID:28630192
2013-01-01
Background A number of bio-active secondary metabolites have been identified and reported for several Hypericum species. Many studies have reported the potential use of the plant extracts against several pathogens. However, Hypericum triquetrifolium is one of the least studied species for its antimicrobial activity. The aim of the present study was to evaluate the cytotoxic effect of the essential oils of Hypericum triquetrifolium as well as their antimicrobial potential against coxsakievirus B3 and a range of bacterial and fungal strains. Methods The essential oils of Hypericum triquetrifolium harvested from five different Tunisian localities (Fondouk DJedid, Bou Arada, Bahra, Fernana and Dhrea Ben Jouder) were evaluated for their antimicrobial activities by micro-broth dilution methods against bacterial and fungal strains. In addition, the cytotoxic effect and the antiviral activity of these oils were carried out using Vero cell lines and coxsakievirus B3. Results The results showed a good antibacterial activities against a wide range of bacterial strains, MIC values ranging between 0.39-12.50 mg/ml and MBC values between 1.56-25.0 mg/ml. In addition, the essential oils showed promising antifungal activity with MIC values ranging between 0.39 μg/mL and 12.50 μg/mL; MFC values ranged between 3.12 μg/mL and 25.00 μg/mL; a significant anticandidal activity was noted (MIC values comprised between 0.39 μg/mL and 12.50 μg/mL). Although their low cytotoxic effect (CC50 ranged between 0.58 mg/mL and 12.00 mg/mL), the essential oils did not show antiviral activity against coxsakievirus B3. Conclusion The essential oils obtained from Hypericum triquetrifolium can be used as antimicrobial agents and could be safe at non cytotoxic doses. As shown for the tested essential oils, comparative analysis need to be undertaken to better characterize also the antimicrobial activities of Hypericum triquetrifolium extracts with different solvents as well as their purified fractions and their pure secondary metabolites. PMID:23360506
Aminnezhad, Sargol; Kermanshahi, Rouha Kasra; Ranjbar, Reza
2015-04-01
The indiscriminate use of antibiotics in the treatment of infectious diseases can increase the development of antibiotic resistance. Therefore, there is a big demand for new sources of antimicrobial agents and alternative treatments for reduction of antibiotic dosage required to decrease the associated side effects. In this study, the synergistic action of aminoglycoside antibiotics and cell-free supernatant (CFS) of probiotic (Lactobacillus rahmnosus and L. casei) against Pseudomonas aeruginosa PTCC 1430 was evaluated. A growth medium for culturing of probiotic bacteria was separated by centrifugation. The antimicrobial effects of CFS of probiotic bacteria were evaluated using the agar well diffusion assay. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were evaluated using the micro dilution method. Finally, an interaction between CFS and amikacin or gentamicin against P. aeruginosa PTCC 1430 was examined through the checkerboard method and fractional inhibitory concentration (FIC). Furthermore, CFSs from Lactobacillus strains were analyzed by reversed phase HPLC (RP-HPLC) for antimicrobial compounds. The results showed a significant effect of CFS on the growth of P. aeruginosa. The MIC and MBC of CFS from L. casei were 62.5 µL⁄mL while the MIC and MBC of CFS from L. rhamnosus were 62.5 μL⁄mL and 125 μL⁄mL, respectively. Using the FIC indices, synergistic interactions were observed in combination of CFS and antibiotics. Fractional Inhibitory Concentration indices of CFS from L. casei and aminoglycoside antibiotics were 0.124 and 0.312 while FIC indices of CFS from L. rhamnosus and aminoglycoside antibiotics were 0.124 and 0.56, respectively showing a synergism effect. The results of RP-HPLC showed that CFS of Lactobacillus strains contained acetic acid, lactic acid and hydrogen peroxide (H2O2). Our findings indicate that probiotic bacterial strains of Lactobacillus have a significant inhibitory effect on the growth of P. aeruginosa PTCC 1430. The antimicrobial potency of this combination can be useful for designing and developing alternative therapeutic strategies against P. aeruginosa infections.
Saini, V.; Riekerink, R. G. M. Olde; McClure, J. T.; Barkema, H. W.
2011-01-01
Determining the accuracy and precision of a measuring instrument is pertinent in antimicrobial susceptibility testing. This study was conducted to predict the diagnostic accuracy of the Sensititre MIC mastitis panel (Sensititre) and agar disk diffusion (ADD) method with reference to the manual broth microdilution test method for antimicrobial resistance profiling of Escherichia coli (n = 156), Staphylococcus aureus (n = 154), streptococcal (n = 116), and enterococcal (n = 31) bovine clinical mastitis isolates. The activities of ampicillin, ceftiofur, cephalothin, erythromycin, oxacillin, penicillin, the penicillin-novobiocin combination, pirlimycin, and tetracycline were tested against the isolates. Diagnostic accuracy was determined by estimating the area under the receiver operating characteristic curve; intertest essential and categorical agreements were determined as well. Sensititre and the ADD method demonstrated moderate to highly accurate (71 to 99%) and moderate to perfect (71 to 100%) predictive accuracies for 74 and 76% of the isolate-antimicrobial MIC combinations, respectively. However, the diagnostic accuracy was low for S. aureus-ceftiofur/oxacillin combinations and other streptococcus-ampicillin combinations by either testing method. Essential agreement between Sensititre automatic MIC readings and MIC readings obtained by the broth microdilution test method was 87%. Essential agreement between Sensititre automatic and manual MIC reading methods was 97%. Furthermore, the ADD test method and Sensititre MIC method exhibited 92 and 91% categorical agreement (sensitive, intermediate, resistant) of results, respectively, compared with the reference method. However, both methods demonstrated lower agreement for E. coli-ampicillin/cephalothin combinations than for Gram-positive isolates. In conclusion, the Sensititre and ADD methods had moderate to high diagnostic accuracy and very good essential and categorical agreement for most udder pathogen-antimicrobial combinations and can be readily employed in veterinary diagnostic laboratories. PMID:21270215
Bulik, Catharine C.; Fauntleroy, Kathy A.; Jenkins, Stephen G.; Abuali, Mayssa; LaBombardi, Vincent J.; Nicolau, David P.; Kuti, Joseph L.
2010-01-01
We describe the levels of agreement between broth microdilution, Etest, Vitek 2, Sensititre, and MicroScan methods to accurately define the meropenem MIC and categorical interpretation of susceptibility against carbapenemase-producing Klebsiella pneumoniae (KPC). A total of 46 clinical K. pneumoniae isolates with KPC genotypes, all modified Hodge test and blaKPC positive, collected from two hospitals in NY were included. Results obtained by each method were compared with those from broth microdilution (the reference method), and agreement was assessed based on MICs and Clinical Laboratory Standards Institute (CLSI) interpretative criteria using 2010 susceptibility breakpoints. Based on broth microdilution, 0%, 2.2%, and 97.8% of the KPC isolates were classified as susceptible, intermediate, and resistant to meropenem, respectively. Results from MicroScan demonstrated the most agreement with those from broth microdilution, with 95.6% agreement based on the MIC and 2.2% classified as minor errors, and no major or very major errors. Etest demonstrated 82.6% agreement with broth microdilution MICs, a very major error rate of 2.2%, and a minor error rate of 2.2%. Vitek 2 MIC agreement was 30.4%, with a 23.9% very major error rate and a 39.1% minor error rate. Sensititre demonstrated MIC agreement for 26.1% of isolates, with a 3% very major error rate and a 26.1% minor error rate. Application of FDA breakpoints had little effect on minor error rates but increased very major error rates to 58.7% for Vitek 2 and Sensititre. Meropenem MIC results and categorical interpretations for carbapenemase-producing K. pneumoniae differ by methodology. Confirmation of testing results is encouraged when an accurate MIC is required for antibiotic dosing optimization. PMID:20484603
Phenotypes and genes of resistance of pneumococci to penicillin isolated from children.
Kotevska, V; Trajkovska-Dokic, E; Jankoska, G; Kaftandzieva, A; Panovski, N; Petrovska, M
2009-07-01
(Full text is available at http://www.manu.edu.mk/prilozi). In recent decades, the increase of Streptococcus pneumoniae strains resistant to beta-lactams, to other classes of antimicrobial drugs and especially to penicillin (penicillin-resistant pneumococcus - PRP) has further complicated the treatment of pneumococcal infection. Penicillin resistance in pneumococci is due to the development of altered penicillin-binding proteins (PBPs) in the bacterial cell wall. PBPs are known as six different variants (PBP1a, 1b, 2x, 2a, 2b and 3). to compare the presence and types of genes responsible for penicillin resistance in Streptococcus pneumoniae isolates with the minimal inhibitory concentrations (MIC) of penicillin as well as their correlation within the period of childhood. A total of 45 pneumococci obtained from nasal swabs and tracheal aspirates of children treated at the University Paediatric Clinic in Skopje were examined. According to age, the children were grouped as 1-3, 4-6 and 7-10 years. the oxacillin test (1microg) was used as a rapid screening test for the detection of PRP. MIC of penicillin were determined using the agar dilution method and interpreted according to NCCLS as resistant (if MIC are > 2 microg/ml), intermediate resistant (between 0,12-1.0 microg/ml) and susceptible (< 0,06 microg/ml). The genes pbp2b and pbp 2x, which are the genes mainly responsible for the onset of PRP, were detected using polymerase chain reaction (PCR). the oxacillin test showed that 38 pneumococci were resistant and 7 susceptible to penicillin. MIC of penicillin showed that 7 strains were resistant, 33 strains were intermediate resistant (12, 18, and 3 with MIC of 0.5 microg/ml, 0.25 microg/ml and 0.12 microg/ml, respectively) and 5 susceptible. According to MIC, of the total 40 resistant/intermediate resistant pneumococci, in 22 genes pbp2b and/or pbp2x, were confirmed (3 resistant strains with both genes; 7 intermediate resistant and 3 resistant strains with pbp2x genes; whereas 8 intermediate resistance and 1 susceptible strain with pbp2b). In a total of 11 strains (10 intermediate resistant and one resistant according to MIC), pbp2b and/or pbp2x genes were not detected, and their resistance is probably due to some other mechanisms or other genes that code PBP. The largest number of the examined pneumococci (32) were isolated from children aged 1-3 years and in 18 of them either pbp2b or pbp2x genes were detected. the oxacillin test is not suitable for discriminating the intermediate resistant and resistant pneumococci, while it is relevant for the detection of susceptible strains. Penicillin resistance of pneumococci that were causes of infection in children was on a lower level (15.5% resistant strains with MIC 1double dagger2 mg/ml and 73.3% intermediate resistant strains with MIC 0.12double dagger1 microg/ml). Pbp2b and/or pbp2x genes were detected in 22 of the examined strains and all of them except one were intermediate resistant or resistant. The Pbp2b gene is mostly present in the intermediate resistant strains and because it was detected in one susceptible strain, this gene is responsible for a low level of resistance. The pbp2x gene was detected in all the resistant strains and that is why we could conclude that it was coding the high level of resistance. Streptococcus pneumoniae was predominantly isolated from the age group 1-3 years where the PRP were not significant (Chi square; p > 0.05). Key words: Streptococcus pneumoniae, Penicillin resistance, Minimal Inhibitory Concentration (MIC), Genes of Resistance.
Herrera, Melina E; Mobilia, Liliana N; Posse, Graciela R
2011-01-01
The objective of this study is to perform a comparative evaluation of the prediffusion and minimum inhibitory concentration (MIC) methods for the detection of sensitivity to colistin, and to detect Acinetobacter baumanii-calcoaceticus complex (ABC) heteroresistant isolates to colistin. We studied 75 isolates of ABC recovered from clinically significant samples obtained from various centers. Sensitivity to colistin was determined by prediffusion as well as by MIC. All the isolates were sensitive to colistin, with MIC = 2µg/ml. The results were analyzed by dispersion graph and linear regression analysis, revealing that the prediffusion method did not correlate with the MIC values for isolates sensitive to colistin (r² = 0.2017). Detection of heteroresistance to colistin was determined by plaque efficiency of all the isolates with the same initial MICs of 2, 1, and 0.5 µg/ml, which resulted in 14 of them with a greater than 8-fold increase in the MIC in some cases. When the sensitivity of these resistant colonies was determined by prediffusion, the resulting dispersion graph and linear regression analysis yielded an r² = 0.604, which revealed a correlation between the methodologies used.
Lemaire, Sandrine; Tulkens, Paul M.; Van Bambeke, Françoise
2011-01-01
In contrast to currently marketed fluoroquinolones, which are zwitterionic, delafloxacin is an investigational fluoroquinolone with an anionic character that is highly active against Gram-positive bacteria. We have examined the effect of acidic pH on its accumulation in Staphylococcus aureus and in human THP-1 cells, in parallel with its activity against extracellular and intracellular S. aureus. Moxifloxacin was used as a comparator. Delafloxacin showed MICs 3 to 5 log2 dilutions lower than those of moxifloxacin for a collection of 35 strains with relevant resistance mechanisms and also proved to be 10-fold more potent against intracellular S. aureus ATCC 25923. In medium at pH 5.5, this difference was further enhanced, with the MIC decreasing by 5 log2 dilutions. In infected cells incubated in acidic medium, the relative potency was 10-fold higher than that at neutral pH and the maximal relative efficacy reached a bactericidal effect at 24 h. These results can be explained by a 10-fold increase in delafloxacin accumulation in both bacteria and cells at acidic pH, making delafloxacin one of the most efficient drugs tested in this model. Opposite effects were seen for moxifloxacin with respect to both activity and accumulation. As reported for zwitterionic fluoroquinolones, delafloxacin was found associated with the soluble fraction in homogenates of eukaryotic cells. Taken together, these properties may confer to delafloxacin an advantage for the eradication of S. aureus in acidic environments, including intracellular infections. PMID:21135179
Lemaire, Sandrine; Tulkens, Paul M; Van Bambeke, Françoise
2011-02-01
In contrast to currently marketed fluoroquinolones, which are zwitterionic, delafloxacin is an investigational fluoroquinolone with an anionic character that is highly active against Gram-positive bacteria. We have examined the effect of acidic pH on its accumulation in Staphylococcus aureus and in human THP-1 cells, in parallel with its activity against extracellular and intracellular S. aureus. Moxifloxacin was used as a comparator. Delafloxacin showed MICs 3 to 5 log(2) dilutions lower than those of moxifloxacin for a collection of 35 strains with relevant resistance mechanisms and also proved to be 10-fold more potent against intracellular S. aureus ATCC 25923. In medium at pH 5.5, this difference was further enhanced, with the MIC decreasing by 5 log(2) dilutions. In infected cells incubated in acidic medium, the relative potency was 10-fold higher than that at neutral pH and the maximal relative efficacy reached a bactericidal effect at 24 h. These results can be explained by a 10-fold increase in delafloxacin accumulation in both bacteria and cells at acidic pH, making delafloxacin one of the most efficient drugs tested in this model. Opposite effects were seen for moxifloxacin with respect to both activity and accumulation. As reported for zwitterionic fluoroquinolones, delafloxacin was found associated with the soluble fraction in homogenates of eukaryotic cells. Taken together, these properties may confer to delafloxacin an advantage for the eradication of S. aureus in acidic environments, including intracellular infections.
Falcão, Tamires Rocha; de Araújo, Aurigena Antunes; Soares, Luiz Alberto Lira; de Moraes Ramos, Rhayanne Thaís; Bezerra, Isabelle Cristinne Ferraz; Ferreira, Magda Rhayanny Assunção; de Souza Neto, Manoel André; Melo, Maria Celeste Nunes; de Araújo, Raimundo Fernandes; de Aguiar Guerra, Andreza Conceição Véras; de Medeiros, Juliana Silva; Guerra, Gerlane Coelho Bernardo
2018-03-09
This study showed phytochemical composition and evaluates the anti-inflammatory, and analgesic activities of crude extract (CE) and fractions from E. uniflora Linn leaves. Polyphenols present in crude extract (CE), in aqueous fraction (AqF), and ethyl acetate (EAF) treated fractions from E. uniflora Linn leaves were shown by chromatographic analysis in order to conduct a phytochemical characterization. Antibacterial activity was evaluated based on minimum inhibitory concentrations (MICs) determined using the agar dilution method. Doses of 50, 100, and 200 mg/kg of the CE and fractions were applied for conducting in vivo models (male Swiss mice, 8-10 weeks old). The peritonitis experimental model was induced by carrageenan following of Myeloperoxidase activity (MPO), Total glutathione and malondialdehyde (MDA), IL-1β and TNF-α levels by spectroscopic UV/VIS analysis. Antinociceptive activity was evaluated based on an abdominal writhing model and hot plate test. The results were statistically evaluated using one-way analysis of variance (ANOVA), followed by Bonferroni's post-hoc test. The level of statistical significance was p < 0.05. High-performance liquid chromatography with photodiode array detection (HPLC-DAD) detected varying concentrations of gallic acid, ellagic acid, and myricitrin in the CE and fractions obtained from E. uniflora Linn leaves (0.05-0.87%w/w, 0.20-0.32%w/w, and 1.71-6.56%w/w, respectively). In general, the CE had lower MIC values than the fractions, including the lowest MIC against the MRSA strain. The CE and AqF also significantly reduced leukocyte migration and MPO activity (p < 0.05). In addition, AqF significantly reduced IL-1β and TNF-α levels (p < 0.05). Furthermore, the CE and fractions exhibited an antioxidant effect (p < 0.05) and peripheral analgesic activity (p < 0.05). The CE and fractions from the studied E. uniflora Linn leaves exhibited antibacterial, anti-inflammatory, antioxidant, and analgesic activity in the performed assays.
Lovgren, Marguerite; Talbot, James A.; Brandileone, Maria Cristina; Casagrande, Silvana T.; Agudelo, Clara Inés; Castañeda, Elizabeth; Regueira, Mabel; Corso, Alejandra; Heitmann, Ingrid; Maldonado, Aurora; Echániz-Avilés, Gabriela; Soto-Noguerón, Araceli; Hortal, María; Camou, Teresa; Gabastou, Jean-Marc; Fabio, José Luis Di
2007-01-01
In 1993 the Pan American Health Organization initiated a laboratory-based surveillance system, called the SIREVA project, to learn about Streptococcus pneumoniae invasive disease in Latin American children. In 1994, National Laboratories in six countries were trained to perform serotyping and antibiotic susceptibility testing using broth microdilution to determine the MIC for specified antibiotics. An international External Quality Assurance (EQA) program was developed to monitor and support ongoing laboratory performance. The EQA program was coordinated by the National Centre for Streptococcus (NCS), Edmonton, Canada, and included external proficiency testing (EPT) and a validation process requiring regular submission of a sample of isolates from each laboratory to the NCS for verification of the serotype and MIC. In 1999, the EQA program was decentralized to use three of the original laboratories as regional quality control centers to address operational concerns and to accommodate the growth of the laboratory network to more than 20 countries including the Caribbean region. The overall EPT serotyping accuracies for phase I (1993 to 1998) and phase II (1999 to 2005) were 88.0 and 93.8%, respectively; the MIC correlations within ±1 log2 dilution of the expected result were 83.0 and 91.0% and the interpretive category agreements were 89.1 and 95.3%. Overall, the validation process serotyping accuracies for phases I and II were 81.9 and 88.1%, respectively, 80.4 and 90.5% for MIC agreement, and 85.8 and 94.3% for category agreement. These results indicate a high level of testing accuracy in participating National Laboratories and a sustained increase in EQA participation in Latin America and the Caribbean. PMID:17687007
Terminalia ferdinandiana Exell. Extracts inhibit the growth of body odour-forming bacteria.
McManus, K; Wood, A; Wright, M H; Matthews, B; Greene, A C; Cock, I E
2017-10-01
Terminalia ferdinandiana extracts are potent growth inhibitors of many bacterial pathogens. They may also inhibit the growth of malodour-producing bacteria and thus be useful deodorant components, although this is yet to be tested. Terminalia ferdinandiana fruit and leaf solvent extracts were investigated by disc diffusion and liquid dilution MIC assays against the most significant bacterial contributors to axillary and plantar malodour formation. Toxicity was determined using the Artemia franciscana nauplii bioassay. Non-targeted HPLC separation of the methanolic leaf extract coupled to high-resolution time-of-flight (TOF) mass spectroscopy was used for the identification and characterization of individual components in the extract. The T. ferdinandiana leaf extracts were the most potent bacterial growth inhibitors. The leaf methanolic extract was particularly potent, with low MIC values against C. jeikeium (233 μg mL -1 ), S. epidermidis (220 μg mL -1 ), P. acnes (625 μg mL -1 ) and B. linens (523 μg mL -1 ). The aqueous and ethyl acetate leaf extracts were also potent growth inhibitors of C. jeikeium and S. epidermidis (MICs < 1000 μg mL -1 ). In comparison, the fruit extracts were substantially less potent antibacterial agents, although still with MIC values indicative of moderate growth inhibitory activity. All T. ferdinandiana leaf extracts were non-toxic in the Artemia franciscana bioassay. Non-biased phytochemical analysis of the methanolic leaf extract revealed the presence of high levels of and high diversity of tannins and high levels of the flavone luteolin. The low toxicity of the T. ferdinandiana leaf extracts and their potent growth inhibition of axillary and plantar malodour-producing bacteria indicate their potential as deodorant components. © 2017 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Steed, Molly E; Hall, Ashley D; Salimnia, Hossein; Kaatz, Glenn W; Kaye, Keith S; Rybak, Michael J
2013-12-01
Despite studies examining daptomycin non-susceptible (DNS) Staphylococcus aureus, examination of the stability and population profiles is limited. The objective was to evaluate the stability, population profiles, and daptomycin activity against DNS isolates. The stability of 12 consecutive clinical DNS strains was evaluated by minimum inhibitory concentration (MICs) and population analysis profiles before and after 5 days of serial passage. Two pairs of DNS S. aureus having the same daptomycin MIC but different daptomycin population profiles were evaluated via an in vitro pharmacokinetic/pharmacodynamic (PK/PD) model of simulated endocardial vegetations for 96 h against daptomycin 6 and 10 mg/kg/day. The sequence of mprF was determined for these isolates before and after 96 h of daptomycin exposure in the in vitro PK/PD model. Daptomycin MIC values were 2-4 mg/L (via Microscan) for the 12 clinical isolates; 9 were confirmed DNS and 3 were within 1 tube dilution of Microscan (daptomycin MIC 1 mg/L). All were stable to serial passage. There was variation in the isolates susceptibility to daptomycin on population analysis (daptomycin population AUC 14.01-26.85). The killing patterns of daptomycin 6 and 10 mg/kg/day differed between isolates with a left-shift and right-shift population profile to daptomycin. Two strains developed additional mprF mutations during daptomycin exposure in the in vitro PK/PD model resulting in P314L, L826F, S337L and a novel Q326Stop mutation. The collection of DNS isolates was stable and displayed variation in susceptibility to daptomycin on population profile. Further research examining this clinical relevance is warranted.
Antibiotic susceptibility survey of Neisseria gonorrhoeae in Thailand.
Clendennen, T E; Echeverria, P; Saengeur, S; Kees, E S; Boslego, J W; Wignall, F S
1992-01-01
The antibiotic susceptibilities of Neisseria gonorrhoeae isolates obtained from patients attending sexually transmitted disease clinics in Cholburi and Bangkok, Thailand, were determined by agar dilution. Some 28.2% of isolates produced beta-lactamase. A total of 97.9% of beta-lactamase-positive and 51% of beta-lactamase-negative isolates tested were resistant to penicillin (MICs, greater than or equal to 2 micrograms/ml), 70% of isolates tested were resistant to tetracycline (MICs, greater than or equal to 2 micrograms/ml), and 91% of isolates tested were susceptible to spectinomycin (MICs, less than or equal to 64 micrograms/ml). The MICs for 90% of isolates for the other drugs tested were 2 micrograms/ml for erythromycin, 2 micrograms/ml for cefoxitin, 1 micrograms/ml for cefuroxime, 0.125 micrograms/ml for cefpodoxime, 0.06 micrograms/ml for cefotaxime, 0.25 micrograms/ml for ceftazidime, 0.03 micrograms/ml for ceftizoxime, 0.03 micrograms/ml for ceftriaxone, 0.03 micrograms/ml for cefixime, 0.06 micrograms/ml for aztreonam, 0.008 micrograms/ml for ciprofloxacin, 0.125 micrograms/ml for norfloxacin, and 0.075 micrograms/ml for ofloxacin. Fewer than 1.5% of isolates were resistant to the extended-spectrum cephalosporins tested. Some 0.3% or fewer isolates were resistant to broad-spectrum cephalosporins, fluoroquinolones, or the monobactam aztreonam. Antibiotic resistance among N. gonorrhoeae isolates from Cholburi and Bangkok in May 1990 appeared to be primarily limited to penicillin and tetracycline, which are no longer used to control gonorrhea. Spectinomycin, which has been in general use against gonorrhea in Thailand since 1983, has dwindling utility, with resistance at a level of 8.9%. PMID:1416851
Smith, Kenneth P; Kirby, James E
2018-05-21
The observed MIC may depend on the number of bacteria initially inoculated into the assay. This phenomenon is termed the inoculum effect (IE) and is often most pronounced for β-lactams in strains expressing β-lactamase enzymes. The Clinical and Laboratory Standards Institute (CLSI) recommended inoculum is 5 x 10 5 CFU mL -1 with an acceptable range of 2-8 x 10 5 CFU mL -1 IE testing is typically performed using an inoculum 100-fold greater than the CLSI recommended inoculum. Therefore, it remains unknown whether the IE influences MICs during testing performed according to CLSI guidelines. Here, we utilized inkjet printing technology to test the IE on cefepime, meropenem, and ceftazidime-avibactam. First, we determined that inkjet dispense volume correlated well with the number of bacteria delivered to microwells in two-fold (R 2 = 0.99) or 1.1-fold (R 2 = 0.98) serial dilutions. We then quantified the IE by dispensing orthogonal titrations of bacterial cells and antibiotics. For cefepime resistant and susceptible dose-dependent strains, a 2-fold increase in inoculum resulted in a 1.6 Log 2 -fold increase in MIC. For carbapenemase-producing strains, each 2-fold reduction in inoculum resulted in a 1.26 Log 2 -fold reduction in meropenem MIC. At the lower end of the CLSI allowable inoculum range, minor error rates of 34.8% were observed for meropenem when testing a resistant strain set. Ceftazidime-avibactam was not subject to an appreciable IE. Our results suggest that IE is sufficiently pronounced for meropenem and cefepime in multidrug-resistant Gram-negative pathogens to affect categorical interpretations during standard laboratory testing. Copyright © 2018 American Society for Microbiology.
Mushtaq, Shazad; Vickers, Anna; Woodford, Neil; Livermore, David M
2017-06-01
Several diazabicyclooctanes (DBOs) are under development as inhibitors of class A and C β-lactamases. Inhibition of OXA (class D) carbapenemases is variable, with those of Acinetobacter spp. remaining notably resistant. We describe a novel DBO, WCK 4234 (Wockhardt), with distinctive activity against OXA carbapenemases. MICs of imipenem and meropenem were determined by CLSI agar dilution with WCK 4234 added at 4 or 8 mg/L. Test organisms were clinical Enterobacteriaceae, Acinetobacter baumannii and Pseudomonas aeruginosa with carbapenemases or carbapenem resistance via porin loss plus AmpC or ESBL activity. AmpC mutants were also tested. WCK 4234, which lacked direct antibacterial activity, strongly potentiated imipenem and meropenem against Enterobacteriaceae with OXA-48/OXA-181 or KPC enzymes, or with combinations of impermeability and AmpC or ESBL activity, with MICs reduced to ≤2 mg/L in almost all cases. Carbapenems likewise were potentiated against P. aeruginosa ( n = 2) with OXA-181 enzyme, with MICs reduced from 64-128 to 2-8 mg/L and against A. baumannii with OXA carbapenemases, particularly OXA-23 or hyperproduced OXA-51, with MICs reduced to ≤2 mg/L for 9/10 acinetobacters with OXA-23 enzyme. Carbapenems were not potentiated against Enterobacteriaceae or non-fermenters with metallo-β-lactamases. WCK 4234 distinctively overcame resistance mediated by OXA-type carbapenemases, including those of A. baumannii . It behaved similarly to other DBOs against strains with KPC carbapenemases or combinations of impermeability and ESBL or AmpC activity. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Dutta, Subarna; Haq, Sabah; Hasan, Mohammad Rokibul; Haq, Jalaluddin Ashraful
2017-07-20
Melioidosis an infectious disease, caused by a Gram negative bacterium called Burkholderia pseudomallei, is endemic in Bangladesh. This organism is sensitive to limited number of antimicrobial agents and need prolonged treatment. There is no comprehensive data on the antimicrobial susceptibility profile of B. pseudomallei isolated in Bangladesh over last several years. The present study aimed to determine the antimicrobial susceptibility pattern of B. pseudomallei isolated in a tertiary care hospital of Dhaka city from 2009 to 2015. All B. pseudomallei isolated from melioidosis patients over a period of 7 years (2009-2015) in the Department of Microbiology of a 725-bed tertiary care referral hospital in Dhaka city, Bangladesh were included in the study. B. pseudomallei was identified by Gram stain, culture, specific biochemical tests, serology and PCR using specific primers constructed from 16s rRNA region of B. pseudomallei. Antimicrobial susceptibility to specific agents was determined by disk diffusion and minimum inhibitory concentration methods. A total of 20 isolates of B. pseudomallei which were isolated from patients coming from different geographic locations of Bangladesh were included in the study. All the isolates were uniformly sensitive (100%) to ceftazidime, imipenem, piperacillin-tazobactam, amoxicillin-clavulanic acid and tetracycline by both disk diffusion and MIC methods. Two strains were resistant to trimethoprim-sulfamethoxazole by disk diffusion method but were sensitive by MIC method. The MIC 50 and MIC 90 values of the above antimicrobial agents were almost similar. All the isolates were resistant to amikacin by both MIC and disk diffusion methods. The results of the study suggest that B. pseudomallei prevalent in Bangladesh were still susceptible to all recommended antimicrobial agents used for the treatment of melioidosis. However, regular monitoring is needed to detect any emergence of resistance and shifting of MIC 50 and MIC 90 values.
Hannan, Abdul; Asghar, Samra; Naeem, Tahir; Ikram Ullah, Muhammad; Ahmed, Ijaz; Aneela, Syeda; Hussain, Shabbir
2013-07-01
Alternative herbal medicine has been used to treat various infections from centuries. Natural plants contain phytoconstituents having similar chemical properties as of synthetic antibiotics. Typhoid fever is a serious infection and failure of its treatment emerged multi-drug resistant (MDR) bugs of Salmonella typhi. Due to multiple and repeated issues with antibiotics efficacy, it became essential to evaluate biological properties of plants from different geographical origins. Mango leaves have been Reported for various medicinal effects like antioxidant, antimicrobial, antihelminthic, antidiabetic and antiallergic etc. Objective of present study was to investigate anti-typhoid properties of acetone mango leaf extract (AMLE) against antibiotic sensitive and MDR S. typhi isolates. A total of 50 isolates of S. typhi including MDR (n=30) and antibiotic sensitive (n=20) were investigated. Staphylococcus aureus (ATCC 25923) and Salmonella typhimurium (ATCC14028) were used as quality control strains. AMLE was prepared and its antibacterial activity was evaluated by agar well diffusion screening method and minimum inhibitory concentration (MIC), by agar dilution technique. Zone of inhibition (mm) of AMLE against MDR and antibiotic sensitive isolates was 18±1.5mm (Mean±S.D). Zone of S. aureus (ATCC 25923) and S. typhimurium (ATCC14028) was 20±1.5mm (Mean±S.D). MIC of AMLE was Reported in range from 10-50 mg/ml. The present study described the inhibitory effects of mango leaves against S. typhi.
Monteiro, D R; Gorup, L F; Silva, S; Negri, M; de Camargo, E R; Oliveira, R; Barbosa, D B; Henriques, M
2011-08-01
The aim of this study was to evaluate the effect of silver nanoparticles (SN) against Candida albicans and Candida glabrata adhered cells and biofilms. SN (average diameter 5 nm) were synthesized by silver nitrate reduction with sodium citrate and stabilized with ammonia. Minimal inhibitory concentration (MIC) tests were performed for C. albicans (n = 2) and C. glabrata (n = 2) grown in suspension following the Clinical Laboratory Standards Institute microbroth dilution method. SN were applied to adhered cells (2 h) or biofilms (48 h) and after 24 h of contact their effect was assessed by enumeration of colony forming units (CFUs) and quantification of total biomass (by crystal violet staining). The MIC results showed that SN were fungicidal against all strains tested at very low concentrations (0.4-3.3 μg ml(-1)). Furthermore, SN were more effective in reducing biofilm biomass when applied to adhered cells (2 h) than to pre-formed biofilms (48 h), with the exception of C. glabrata ATCC, which in both cases showed a reduction ∼90%. Regarding cell viability, SN were highly effective on adhered C. glabrata and respective biofilms. On C. albicans the effect was not so evident but there was also a reduction in the number of viable biofilm cells. In summary, SN may have the potential to be an effective alternative to conventional antifungal agents for future therapies in Candida-associated denture stomatitis.
Antimicrobial Activity and Possible Mechanism of Action of Citral against Cronobacter sakazakii.
Shi, Chao; Song, Kaikuo; Zhang, Xiaorong; Sun, Yi; Sui, Yue; Chen, Yifei; Jia, Zhenyu; Sun, Huihui; Sun, Zheng; Xia, Xiaodong
2016-01-01
Citral is a flavor component that is commonly used in food, beverage and fragrance industries. Cronobacter sakazakii is a food-borne pathogen associated with severe illness and high mortality in neonates and infants. The objective of the present study was to evaluate antimicrobial effect of citral against C. sakazakii strains. The minimum inhibitory concentration (MIC) of citral against C. sakazakii was determined via agar dilution method, then Gompertz models were used to quantitate the effect of citral on microbial growth kinetics. Changes in intracellular pH (pHin), membrane potential, intracellular ATP concentration, and membrane integrity were measured to elucidate the possible antimicrobial mechanism. Cell morphology changes were also examined using a field emission scanning electron microscope. The MICs of citral against C. sakazakii strains ranged from 0.27 to 0.54 mg/mL, and citral resulted in a longer lag phase and lower growth rate of C. sakazakii compared to the control. Citral affected the cell membrane of C. sakazakii, as evidenced by decreased intracellular ATP concentration, reduced pHin, and cell membrane hyperpolarization. Scanning electron microscopy analysis further confirmed that C. sakazakii cell membranes were damaged by citral. These findings suggest that citral exhibits antimicrobial effect against C. sakazakii strains and could be potentially used to control C. sakazakii in foods. However, how it works in food systems where many other components may interfere with its efficacy should be tested in future research before its real application.
Antimicrobial Activity and Possible Mechanism of Action of Citral against Cronobacter sakazakii
Shi, Chao; Song, Kaikuo; Zhang, Xiaorong; Sun, Yi; Sui, Yue; Chen, Yifei; Jia, Zhenyu; Sun, Huihui; Sun, Zheng; Xia, Xiaodong
2016-01-01
Citral is a flavor component that is commonly used in food, beverage and fragrance industries. Cronobacter sakazakii is a food-borne pathogen associated with severe illness and high mortality in neonates and infants. The objective of the present study was to evaluate antimicrobial effect of citral against C. sakazakii strains. The minimum inhibitory concentration (MIC) of citral against C. sakazakii was determined via agar dilution method, then Gompertz models were used to quantitate the effect of citral on microbial growth kinetics. Changes in intracellular pH (pHin), membrane potential, intracellular ATP concentration, and membrane integrity were measured to elucidate the possible antimicrobial mechanism. Cell morphology changes were also examined using a field emission scanning electron microscope. The MICs of citral against C. sakazakii strains ranged from 0.27 to 0.54 mg/mL, and citral resulted in a longer lag phase and lower growth rate of C. sakazakii compared to the control. Citral affected the cell membrane of C. sakazakii, as evidenced by decreased intracellular ATP concentration, reduced pHin, and cell membrane hyperpolarization. Scanning electron microscopy analysis further confirmed that C. sakazakii cell membranes were damaged by citral. These findings suggest that citral exhibits antimicrobial effect against C. sakazakii strains and could be potentially used to control C. sakazakii in foods. However, how it works in food systems where many other components may interfere with its efficacy should be tested in future research before its real application. PMID:27415761
Tripathi, A; Shukla, S K; Singh, A; Prasad, K N
2016-01-01
To determine the prevalence, genotype, risk factors and mortality in patients having vancomycin-resistant Enterococcus faecalis (VR E. faecalis) and Enterococcus faecium (VR E. faecium) infection or colonisation. A total of 1488 clinical isolates of E. faecalis and E. faecium were tested for vancomycin resistance by phenotypic (disk diffusion, E-test and broth micro-dilution test) and genotypic polymerase chain reaction methods. Records of all 1488 patients who had E. faecalis or E. faecium infection or colonisation were reviewed for the identification of host, hospital and medication related risk factors associated with VR E. faecalis and VR E. faecium. Of 1488 isolates, 118 (7.9%) were vancomycin-resistant and their distributions were as follows: E. faecalis=72 (61%) and E. faecium=46 (39%). All 118 vancomycin-resistant isolates were vanA genotype (minimum inhibitory concentration [MIC] to vancomycin ≥64 μg/ml and MIC to teicoplanin≥32 μg/ml) and none of the isolates was vanB genotype. Multivariate logistic regression analysis identified ventilator support and hospital stay for ≥48 h as independent risk factors associated with VR E. faecalis and VR E. faecium infection or colonisation. Hospital stay≥48 h was the only independent risk factor for mortality in patients infected with vancomycin-resistant enterococci. Strategies to limit the nosocomial infection especially in patients on ventilator support can reduce VRE incidence and related mortality.
Dosler, Sibel; Mataraci, Emel
2013-11-01
Antibiotic therapy for methicillin-resistant Staphylococcus aureus (MRSA) infections is becoming more difficult in hospitals and communities because of strong biofilm-forming properties and multidrug resistance. Biofilm-associated MRSA is not affected by therapeutically achievable concentrations of antibiotics. Therefore, we investigated the in vitro pharmacokinetic activities of antimicrobial cationic peptides (AMPs; indolicidin, cecropin [1-7]-melittin A [2-9] amide [CAMA], and nisin), either alone or in combination with antibiotics (daptomycin, linezolid, teicoplanin, ciprofloxacin, and azithromycin), against standard and 2 clinically obtained MRSA biofilms. The minimum inhibitory concentrations (MIC) and minimum biofilm-eradication concentrations (MBEC) were determined by microbroth dilution technique. The time-kill curve (TKC) method was used to determine the bactericidal activities of the AMPs alone and in combination with the antibiotics against standard and clinically obtained MRSA biofilms. The MIC values of the AMPs and antibiotics ranged between 2 to 16 and 0.25 to 512 mg/L, and their MBEC values were 640 and 512 to 5120 mg/L, respectively. The TKC studies demonstrated that synergistic interactions occurred most frequently when using nisin+daptomycin/ciprofloxacin, indolicidin+teicoplanin, and CAMA+ciprofloxacin combinations. No antagonism was observed with any combination. AMPs appear to be good candidates for the treatment of MRSA biofilms, as they act as both enhancers of anti-biofilm activities and help to prevent or delay the emergence of resistance when used either alone or in combination with antibiotics. Copyright © 2013 Elsevier Inc. All rights reserved.
Randhawa, Mohammad Akram; Alenazy, Awwad Khalaf; Alrowaili, Majed Gorayan; Basha, Jamith
2017-01-01
Thymoquinone (TQ) is the major active principle of Nigella sativa seed (black seed) and is known to control many fungi, bacteria, and some viruses. However, the activity of TQ against anaerobic bacteria is not well demonstrated. Anaerobic bacteria can cause severe infections, including diarrhea, aspiration pneumonia, and brain abscess, particularly in immunodeficient individuals. The present study aimed to investigate the in vitro antimicrobial activity of TQ against some anaerobic pathogens in comparison to metronidazole. Standard, ATCC, strains of four anaerobic bacteria ( Clostridium difficile , Clostridium perfringens , Bacteroides fragilis , and Bacteroides thetaiotaomicron ), were initially isolated on special Brucella agar base (with hemin and vitamin K). Then, minimum inhibitory concentrations (MICs) of TQ and metronidazole were determined against these anaerobes when grown in Brucella agar, using serial agar dilution method according to the recommended guidelines for anaerobic organisms instructed by the Clinical and Laboratory Standards Institute. TQ showed a significant antimicrobial activity against anaerobic bacteria although much weaker than metronidazole. MICs of TQ and metronidazole against various anaerobic human pathogens tested were found to be between 10-160 mg/L and 0.19-6.25 mg/L, respectively. TQ controlled the anaerobic human pathogenic bacteria, which supports the use of N. sativa in the treatment of diarrhea in folk medicine. Further investigations are in need for determination of the synergistic effect of TQ in combination with metronidazole and the activity of derivatives of TQ against anaerobic infections.
da Silva, Vânia Lúcia; Caçador, Natália Cândido; dos Santos Fernandes da Silva, Carolina; Fontes, Cláudia Oliveira; Garcia, Gizele Duarte; Nicoli, Jacques Robert; Diniz, Cláudio Galuppo
2012-01-01
Enterococcus are emerging as important putative pathogens resistant to chemicals that are widely released into the environment, and urban pigeons might act as a natural reservoir contributing to the spread of resistant strains. This study aimed to evaluate the occurrence of Enterococcus in pigeon feces and their antimicrobial and toxic metal susceptibility. Bacteria were isolated and identified from 150 fresh feces by phenotypic and genetic techniques. Antimicrobial and toxic metal susceptibility was determined by the agar dilution method, and the multiple antibiotic resistance index (MAR) was calculated. Out of 120 isolates, no resistance was observed against penicillin and vancomycin, but was observed against gentamicin (55.8%), chloramphenicol (21.7%), tetracycline (13.3%), ciprofloxacin (8.4%) and rifampin (2.5%). 18.3% presented a MAR index ≥0.2, ranging between 0.14 to 0.57, indicating resistance to more than one antimicrobial. All samples were tolerant to >1024 μg mL−1 zinc and chromium. Minimal inhibitory concentration (MIC) of 1,024 μg mL−1 was observed for copper (100%) and nickel (71.4%). Mercury inhibited 88.4% at 32 μg mL−1 and the MIC for cadmium ranged from 0.125–128 μg mL−1. Since pigeons were found to harbor drug-resistant Enterococcus, our data support that their presence in the urban environment may contribute to the spread of resistance, with an impact on public health. PMID:22791051
Sandven, P; Bjørneklett, A; Maeland, A
1993-01-01
All Candida albicans isolates in Norwegian microbiological laboratories in 1991 judged clinically important (except vaginal isolates) were collected. The isolates were tested for susceptibility to fluconazole with an agar dilution test and a commercially available agar diffusion test. A total of 212 strains (95%) were susceptible to fluconazole, and MICs for most of the strains (92%) were < or = 1.56 micrograms/ml. The agar diffusion test using a 15-micrograms tablet and a 48-h incubation period separated resistant from susceptible strains with a wide margin. The only exception was a strain for which the MIC was 6.25 micrograms/ml. The difference in zone size between the resistant and the susceptible populations of strains was 11 mm. Accordingly, it appears that the agar diffusion test is an appropriate method for detecting fluconazole resistance. The 12 fluconazole-resistant isolates originated from eight AIDS patients with oral or esophageal Candida infections. Seven of the patients had been given fluconazole for 1 month or more, often as self medication. Four had infections that were clinically resistant to fluconazole; one additional patient responded only when the dose was increased. All isolates recovered from these patients were analyzed by multilocus enzyme electrophoresis. The 12 C. albicans isolates belonged to five electrophoretic types, but three of four patients attending one hospital had isolates belonging to one electrophoretic type. One possible explanation for this finding could be that a nosocomial spread of resistant strains has occurred. PMID:8285631
Tan, Yen Ee; Ng, Lily S Y; Tan, Thean Yen
2014-10-01
It has been recently reported that ampicillin susceptibility cannot accurately predict piperacillin and imipenem susceptibilities in penicillin-resistant, ampicillin-susceptible (Pen-R, Amp-S) Enterococcus faecalis isolates, contrary to the current Clinical and Laboratory Standards Institute (CLSI) recommendations. This has important therapeutic implications. Such isolates were noted after the use of Vitek-2 Compact system AST-GP67 susceptibility cards in a Singapore general hospital and they were increasing in numbers. The primary aim of this study was to evaluate these clinical isolates against microbroth dilution (MBD) technique and other commonly used antimicrobial susceptibility test (AST) methods for penicillin and ampicillin. The secondary aim was to evaluate whether ampicillin susceptibility could indeed be a reliable surrogate marker for piperacillin and imipenem susceptibilities in E. faecalis isolates that were confirmed Pen-R, Amp-S.From 2009 to 2013, a total of 49 isolates (5%) of 983 non-duplicate E. faecalis tested by Vitek-2 displayed the 'Pen-R, Amp-S' phenotype in a general hospital in Singapore. These were tested against MBD which was the reference method, Etest and disc diffusion for penicillin and ampicillin. Susceptibilities to piperacillin and imipenem were also tested using MBD. In addition, β-lactamase production test was performed. Forty E. faecalis isolates with penicillin-susceptible, ampicillin-susceptible (Pen-S, Amp-S) phenotype were included for comparative purposes.The categorical agreement rate was 100% for all AST methods in ampicillin reporting for the 'Pen-R, Amp-S' group of E. faecalis isolates. However, a large number of isolates (46 isolates, 93.9%) fell into the major error category for penicillin testing by the Vitek-2 system. Penicillin minimum inhibitory concentrations (MICs) generated by the Vitek-2 system for the majority of these isolates were two doubling dilutions higher compared to those obtained by the reference test. The Etest method correlated well with the MBD method. Thirty-two isolates (65.3%) were in categorical agreement with the MBD method when tested by the disc diffusion method for penicillin. Only three E. faecalis isolates (6.1%) were confirmed to have the uncommon penicillin resistance phenotype, with two of them showing resistance to piperacillin and intermediate to imipenem. β-lactamase production test was negative for all isolates. Among the Pen-S, Amp-S E. faecalis isolates, the categorical agreement was 100% for penicillin and ampicillin in all the tested methods.Enterococcus faecalis with 'Pen-R, Amp-S' phenotype reported by the Vitek-2 system using AST-GP67 susceptibility cards must be confirmed with a reference test, the Etest method being a good alternative. The Vitek-2 system generated higher penicillin MIC readings compared to MBD in this study. The actual prevalence of this uncommon penicillin resistance phenotype in E. faecalis was found to be low in this institution. More studies are required to confirm the reliability of ampicillin as a surrogate marker for piperacillin and imipenem susceptibilities in these isolates.
Bogavac, M; Karaman, M; Janjušević, Lj; Sudji, J; Radovanović, B; Novaković, Z; Simeunović, J; Božin, B
2015-09-01
The aims of study were to examine the antibacterial potential of two commercial essential oils (EOs) from coriander (Coriandrum sativum L.) and thyme (Thymus vulgaris L.) against vaginal clinical strains of bacteria and yeast and their chemical composition. Antimicrobial activities of commercial essential oils were determined using macro-diffusion (disc, well) and micro-dilution method in 96-well micro plates against twelve clinical strains of bacteria: Escherichia coli, Proteus mirabilis, Staphylococcus aureus and Enterococcus sp., Staph. aureus ATCC 25923, ATCC 6538 and E. coli 25922 and two clinical Candida albicans strains, including ATTC 10231. Spectrophotometric method was used for determination on C. albicans growth. An antimicrobial effect of EOs was strain specific. Bactericidal activity was higher for coriander EO (minimal inhibitory concentration (MICs) 0·4-45·4 μl ml(-1)) against almost all tested bacteria, except multiple resistant strains of Eneterococcus sp. and Proteus sp. Thyme EO showed slightly better fungicidal activity reaching MIC at 0·11 mg ml(-1) for all C. albicans strains. The effect of EOs on biofilm-forming ability was tested for two strains of Staph. aureus and E. coli, as well as on C. albicans filamentation ability. Brine shrimp lethality bioassay revealed thymus oil total toxicity and coriander oil intoxicity (LC50 = 2·25 mg ml(-1)). The chemical composition of oils was analysed by gas chromatography mass spectrometry showing oxygenated monoterepenes as dominant constituents. The results provide in-vitro scientific support for the safety possible use of Coriander EO against E. coli, Staph. aureus and C. albicans vaginal infections in alternative gynaecological treatment. To examine EOs as possible constituent of naturally based antimicrobial agents in vaginaletes for safety gynaecological application. © 2015 The Society for Applied Microbiology.
Chew, Yik Ling; Mahadi, Adlina Maisarah; Wong, Kak Ming; Goh, Joo Kheng
2018-02-20
Bauhinia kockiana originates from Peninsular Malaysia and it is grown as a garden ornamental plant. Our previous study reported that this plant exhibited fairly strong antioxidant and antimicrobial activities. This paper focused on the assessment of the antibacterial activity of B. kockiana towards methicillin-resistance Staphylococcus aureus (MRSA), to purify and to identify the antibacterial compounds, and to determine the mechanism of antibacterial activity. Antibacterial activity of B. kockiana flower was evaluated qualitatively and quantitatively using disc diffusion assay and microbroth dilution method. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of extracts were examined. Phytochemical analysis was performed to determine the classes of phytochemicals in the extracts. Bioactivity guided isolation was employed to purify the antibacterial agents and identified via various spectroscopy methods. Scanning electron microscopy (SEM) technique was used to evaluate the antibacterial mechanism of extract and compounds isolated. B. kockiana flower was found to exhibit fairly strong antibacterial activity towards both strains of MRSA bacteria used, MIC varies from 62.5-250 μg/mL. Tannins and flavonoids have been detected in the phytochemical analysis. Gallic acid and its ester derivatives purified from ethyl acetate extract could inhibit MRSA at 250-500 μg/mL. SEM revealed that the cells have undergone plasmolysis upon treatment with the extract and compounds. Tannins and polyphenols are the antibacterial components towards MRSA in B. kockiana. Massive leakage of the cell content observed in treated cells showed that the phytochemicals have changed the properties of the cell membranes. Amphiphilic nature of the compounds exhibited the antibacterial activity towards MRSA via three stages: (1) cell membrane attachment; (2) cell membrane fluidity modification; and (3) cell membrane structure disruption.
Mota, Ana S; Martins, M Rosário; Arantes, Sílvia; Lopes, Violeta R; Bettencourt, Eliseu; Pombal, Sofia; Gomes, Arlindo C; Silva, Lúcia A
2015-04-01
The aim of this study was to investigate the chemical composition and antimicrobial activity of essential oils obtained by hydrodistillation from fruits of six fennel accessions collected from wild populations occurring in the centre and south of Portugal. Composition of essential oils was established by Gas Chromatography-Flame Ionization Detector (GC-FID) and Gas Chromatography-Mass Spectrometry (GC-MS) analysis. The obtained yields of the essential oils were found to vary greatly in the range of 1.1 to 2.9% (v/w) and the chemical composition varied with the region of collection. A total of 16 compounds were identified. The main compounds were fenchone (16.9 - 34.7%), estragole (2.5 - 66.0%) and trans-anethole (7.9 - 77.7%). The percentages of these three main compounds were used to determine the relationship between the different oil samples and to group them into four different chemotypes: anethole/fenchone; anethole; estragole and anethole/estragole. Antifungal activity of essential oils was evaluated against six food spoilage fungi: Aspergillus niger, A. japonicus, A. oryzae, Fusarium oxysporum, Rhizophus oryzae and R. stolonifer. Antibacterial activity was assessed against three Gram-positive strains: Enterococcus faecalis ATCC 29212, Staphylococcus epidermidis ATCC 12228 and S. aureus ATCC 28213; and against six Gram-negative strains: Escherichia coli ATCC 25922; Morganella morganii LFG 08; Proteus mirabilis LFG 04; Salmonella enteritidis LFG 05; S. entiritidis serovar typhimurium LFG 06 and Pseudomonas aeruginosa ATCC 27853 by the disc diffusion agar method; the minimal inhibitory concentration (MIC) was determined using the broth macro-dilution method. The MIC values varied from 62.5 (E. coli ATCC 25922) to 2000 µmL (P. aeruginosa ATCC 27853).
2010-01-01
Background Many bacteria among the Enterobacteria family are involved in infectious diseases and diarrhoea. Most of these bacteria become resistant to the most commonly used synthetic drugs in Cameroon. Natural substances seem to be an alternative to this problem. Thus the aim of this research was to investigate the in vitro antibacterial activity of the methanol and aqueous-methanol extracts of Sida rhombifolia Linn (Malvaceae) against seven pathogenic bacteria involved in diarrhoea. Acute toxicity of the most active extract was determined and major bioactive components were screened. Methods The agar disc diffusion and the agar dilution method were used for the determination of inhibition diameters and the Minimum Inhibitory Concentration (MICs) respectively. The acute toxicity study was performed according WHO protocol. Results The aqueous-methanol extract (1v:4v) was the most active with diameters of inhibition zones ranging from 8.7 - 23.6 mm, however at 200 μg/dic this activity was relatively weak compared to gentamycin. The MICs of the aqueous-methanol extract (1v:4v) varied from 49.40 to 78.30 μg/ml. Salmonella dysenteriae was the most sensitive (49.40 μg/ml). For the acute toxicity study, no deaths of rats were recorded. However, significant increase of some biochemical parameters such as aspartate amino-transferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and creatinine (CRT) were found. The phytochemical analysis of the aqueous methanol extract indicated the presence of tannins, polyphenols, alkaloids, glycosides, flavonoids and saponins Conclusion The results showed that the aqueous-methanol extract of S. rhombifolia exhibited moderate antibacterial activity. Some toxic effects were found when rats received more than 8 g/kg bw of extract. Antibacterial; Enterobacteria; Acute toxicity; Phytochemical analysis PMID:20663208
Jose, Gilish; Suresha Kumara, Tholappanavara H; Sowmya, Haliwana B V; Sriram, Dharmarajan; Guru Row, Tayur N; Hosamani, Amar A; More, Sunil S; Janardhan, Bhavya; Harish, B G; Telkar, Sandeep; Ravikumar, Yalegara Siddappa
2017-05-05
In this report, we describe the synthesis and biological evaluation of a new series of pyrrolo[3,2-c]pyridine Mannich bases (7a-v). The Mannich bases were obtained in good yields by one-pot three component condensation of pyrrolo[3,2-c]pyridine scaffold (6a-c) with secondary amines and excess of formaldehyde solution in AcOH. The chemical structures of the compounds were characterized by 1 H NMR, 13 C NMR, LC/MS and elemental analysis. Single crystal X-ray diffraction has been recorded for compound 7k ([C 23 H 29 ClN 4 ] +2 , H 2 O). The in vitro antimicrobial activities of the compounds were evaluated against various bacterial and fungal strains using Agar diffusion method and Broth micro dilution method. Compounds 7e, 7f, 7r, 7t, and 7u were showed good Gram-positive antibacterial activity against S. aureus, B. flexus, C. sporogenes and S. mutans. Furthermore, in vitro antimycobacterial activity was evaluated against Mycobacterium tuberculosis H37Rv (ATCC 27294) using MABA. Compounds 7r, 7t, and 7u were showed good antitubercular activity against Mtb (MIC ≥6.25 μg/mL). Among the tested compounds, 1-((4-chloro-2-(cyclohexylmethyl)-1H-pyrrolo[3,2-c]pyridin-3-yl)methyl)piperidine-3-carboxamide (7t) was showed excellent antimycobacterial activity against Mtb (MIC <0.78 μg/mL) and low cytotoxicity against the HEK-293T cell line (SI >25). Molecular docking of the active compounds against glutamate racemase (MurI) and Mtb glutamine synthetase were explained the structure-activity observed in vitro. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Cytotoxic and antimicrobial activity of selected Cameroonian edible plants
2013-01-01
Background In Cameroon, the use of edible plants is an integral part of dietary behavior. However, evidence of the antimicrobial as well as the cytotoxic effects of many of them has not been investigated. In the present study, aqueous and methanol extracts from barks, seeds, leaves and roots of three Cameroonian edible plants namely Garcina lucida, Fagara heitzii and Hymenocardia lyrata were evaluated for their cytotoxic and antimicrobial activities. Methods Antibacterial and antifungal activities were assessed by the broth micro-dilution method meanwhile the cytotoxicity was performed using sulphorhodamine B assay (SRB) against the human leukemia THP-1, the alveolar epithelial A549, prostate cancer PC-3, breast adenocarcinoma MCF-7 and cervical cancer HeLa cell lines. Results The minimum inhibitory concentration (MIC) values of the seven tested extracts ranged from 62.5 μg/ml to 1000 μg/ml. The methanol (MeOH) extract from the roots of H. lyrata showed the highest antibacterial activity against Gram-positive bacteria S. aureus and S. epidermitis. The best antifungal activity was obtained with the MeOH extract from the leaves of G. lucida against C. tropicalis (MIC value of 62.5 μg/ml). The in vitro antiproliferative activity revealed that, extract from the bark of F. heitzii and extract from H. lyrata roots had significant cytotoxic activity on THP-1 (IC50 8.4 μg/ml) and PC-3 (IC50 9.5 μg/ml) respectively. Conclusion Our findings suggest that Cameroonian spices herein studied could be potentially useful for the development of therapeutic agents against bacterial infections as well as for prostate and leukemia cancer. PMID:23565827
In Vitro Effects of Polyphosphate against Prevotella intermedia in Planktonic Phase and Biofilm.
Jang, Eun-Young; Kim, Minjung; Noh, Mi Hee; Moon, Ji-Hoi; Lee, Jin-Yong
2016-02-01
Polyphosphate (polyP) has gained a wide interest in the food industry due to its potential as a decontaminating agent. In this study, we examined the effect of sodium tripolyphosphate (polyP3; Na5P3O10) against planktonic and biofilm cells of Prevotella intermedia, a major oral pathogen. The MIC of polyP3 against P. intermedia ATCC 49046 determined by agar dilution method was 0.075%, while 0.05% polyP3 was bactericidal against P. intermedia in time-kill analysis performed using liquid medium. A crystal violet binding assay for the assessment of biofilm formation by P. intermedia showed that sub-MICs of polyP3 significantly decreased biofilm formation. Under the scanning electron microscope, decreased numbers of P. intermedia cells forming the biofilms were observed when the bacterial cells were incubated with 0.025% or higher concentrations of polyP3. Assessment of biofilm viability with LIVE/DEAD staining and viable cell count methods showed that 0.05% or higher concentrations of polyP3 significantly decreased the viability of the preformed biofilms in a concentration-dependent manner. The zone sizes of alpha-hemolysis formed on horse blood agar produced by P. intermedia were decreased in the presence of polyP3. The expression of the genes encoding hemolysins and the genes of the hemin uptake (hmu) locus was downregulated by polyP3. Collectively, our results show that polyP is an effective antimicrobial agent against P. intermedia in biofilms as well as planktonic phase, interfering with the process of hemin acquisition by the bacterium. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Ajagannanavar, Sunil Lingaraj; Shamarao, Supreetha; Battur, Hemant; Tikare, Shreyas; Al-Kheraif, Abdulaziz Abdullah; Al Sayed, Mohammed Sayed Al Esawy
2014-01-01
Introduction: Stevia (S. rebaudiana) a herb which has medicinal value and was used in ancient times as a remedy for a great diversity of ailments and sweetener. Leaves of Stevia contain a high concentration of Stevioside and Rebaudioside which are supposed to be sweetening agents. Aim: To compare the efficacy of aqueous and alcoholic S. rebaudiana extract against Streptococcus mutans and Lactobacillus acidophilus in comparison to chlorhexidine. Materials and Methods: In the first part of the study, various concentrations of aqueous and ethanolic Stevia extract were prepared in the laboratory of Pharmacy College. It was then subjected to microbiological assay to determine its zone of inhibition using Agar disk diffusion test and minimum inhibitory concentration (MIC) using serial broth dilution method against Streptococcus mutans and Lactobacillus acidophilus. Chlorhexidine was used as a positive control. One way Analysis of Variance (ANOVA) test was used for multiple group comparisons followed by Tukey post hoc for group wise comparisons. Results: Minimum inhibitory concentration (MIC) of aqueous and ethnolic Stevia extract against Streptococcus mutans and Lactobacillus acidophilus were 25% and 12.5% respectively. Mean zone of inhibition of the aqueous and alcoholic Stevia extracts against Streptococcus mutans at 48 hours were 22.8 mm and 26.7 mm respectively. Mean zone of inhibition of the aqueous and alcoholic Stevia extracts against Lactobacillus acidophilus at 48 hours were 14.4 mm and 15.1 mm respectively. Mean zone of inhibition of the chlorhexidine against Streptococcus mutans and Lactobacillus acidophilus at 48 hours was 20.5 and 13.2 respectively. Conclusion: The inhibitory effect shown by alcoholic Stevia extract against Streptococcus mutans and Lactobacillus acidophilus was superior when compared with that of aqueous form and was inferior when compared with Chlorhexidine. PMID:25558451
Ranjbar, Reza; Arjomandzadegan, Mohammad; Hosseiny, Hossein
2017-07-31
The aim of the study was to examine antibacterial properties of microemulsion structure produced from Aloe vera var. littoralis extract as a new tool of nanoscale drug-like materials. Aloe vera var. littoralis ( A. littoralis ) extract was prepared by distillation method. A nonocarrier structure in the microemulsion system was prepared from the extract. Serial concentrations were prepared from 8 mg/mL extract and the nonocarrier containing 0.1 mg/mL pure extract and were evaluated by a disk diffusion method for 35 Salmonella clinical isolates. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined by microbroth dilution assay using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) method by an enzyme-linked immunosorbent assay(ELISA) Microplate Reader apparatus. Antioxidant activity of the extract was determined by measuring the ferric reducing ability of plasma (FRAP) assay. From 35 clinical isolates of Salmonella , 17 isolates-including resistant isolates of S.E.1103 and S.E.49-had a zone of inhibition (ZI) of 7 to 32 mm in 0.007 mg/mL of the extract. S.E.76 isolate exposed to 30 µg/mL ceftazidime disk had a ZI of 12 mm but had 10 mm in 7µg/mL of A. littoralis extract. The inhibitory effect of a nanocarrier at a concentration of 25 µg/mL by 20 mm ZI was comparable by the ceftazidime (30 µg/mL) effect. MIC 50 was 0.25 mg/mL and MBC 50 was 0.5 mg/mL by MTT method for the extract. It was shown that A.littoralis extract had antioxidant activity of 31.67 µM/mg that could be increased based on concentration. It was concluded that the nanocarrier had a significant effect on the studied isolates in comparison with ordinary antibiotics and had potential for use as a natural antioxidant and antimicrobial material in complementary medicine.
NASA Astrophysics Data System (ADS)
Nascimento, Mariele S.; Mendes, Ana Luiza G.; Henn, Alessandra S.; Picoloto, Rochele S.; Mello, Paola A.; Flores, Erico M. M.
2017-12-01
In this work, a method for the determination of bromine and iodine in medicinal plants by inductively coupled plasma mass spectrometry (ICP-MS) after digestion by microwave-induced combustion (MIC) was developed. Medicinal plants were pressed as pellets and combusted at 20 bar of oxygen. The suitability of absorbing solution (water, 50 mmol L- 1 (NH4)2CO3, 10 mmol L- 1, 25 mmol L- 1, 50 mmol L- 1 or 100 mmol L- 1 NH4OH) was evaluated and a reflux step of 5 min was applied after combustion. The accuracy of the proposed method was evaluated by using certified reference materials (CRMs) of apple leaves and peach leaves and also by spiked samples. Using 50 mmol L- 1 NH4OH as absorbing solution, recoveries close to 100% for bromine and iodine were obtained as well as a low relative standard deviation (5%). No statistical difference (t-test, 95% of confidence level) was observed between the values obtained by ICP-MS after MIC digestion and the certified values. One of the important advantages of the proposed method is that it allowed the use of a relatively high sample mass (1000 mg) of medicinal plant resulting in low limits of quantification (0.033 μg g- 1 and 0.003 μg g- 1 for Br and I, respectively). Blanks were always negligible and only diluted solutions were used, in agreement with current recommendations for analytical methods. A high digestion efficiency was achieved (> 99%) assuring quantitative results. The concentration of analytes in medicinal plants was in the range of 0.17 μg g- 1 to 53.1 μg g- 1 for Br and < 0.003 μg g- 1 to 1.27 μg g- 1 for I. Despite the relatively high Br concentration, it was lower than the maximum limit allowed by the United States Pharmacopeia for medicinal plants (125 μg g- 1).
Mabona, Unathi; Viljoen, Alvaro; Shikanga, Emmanual; Marston, Andrew; Van Vuuren, Sandy
2013-06-21
Ethnobotanical reports on more than 100 southern African medicinal plants with dermatological relevance have been highlighted, yet there is still limited scientific data to support claims for their antimicrobial effectiveness against skin pathogens. Guided by ethnobotanical data, this paper explores the antimicrobial efficacies of southern African medicinal plants used to treat skin ailments. To investigate the antimicrobial properties of southern African medicinal plants against dermatologically relevant pathogens. The study also aimed at providing a scientific rationale for the traditional use of plant combinations to treat skin diseases and the isolation of the bio-active compound from the most active species, Aristea ecklonii (Iridaceae). Organic and aqueous extracts (132) were prepared from 47 plant species and screened for antimicrobial properties against dermatologically relevant pathogens using the micro-titre plate dilution method. Four different plant combinations were investigated for interactive properties and the sum of the fractional inhibitory concentration (ƩFIC) calculated. Isobolograms were used to further investigate the antimicrobial interactive properties of Pentanisia prunelloides combined with Elephantorrhiza elephantina at varied ratios. A bioactivity-guided fractionation process was adopted to fractionate the organic leaf extract of Aristea ecklonii. Plants demonstrating notable broad-spectrum activities (MIC values ≤1.00mg/ml) against the tested pathogens included extracts from Aristea ecklonii, Chenopodium ambrosioides, Diospyros mespiliformis, Elephantorrhiza elephantina, Eucalyptus camaldulensis, Gunnera perpensa, Harpephyllum caffrum, Hypericum perforatum, Melianthus comosus, Terminalia sericea and Warburgia salutaris. The organic extract of Elephantorrhiza elephantina, a plant reportedly used to treat acne vulgaris, demonstrated noteworthy antimicrobial activity (MIC value of 0.05mg/ml) against Propionibacterium acnes. Similarly, Diospyros mespiliformis reported for its traditional use to treat ringworm, also displayed noteworthy antimicrobial activity against Trichophyton mentagrophytes (MIC 0.10mg/ml) and Microsporum canis (MIC 0.50mg/ml). The aqueous root extracts of Pentanisia prunelloides combined (1:1) with Elephantorrhiza elephantina displayed synergistic interactions (ƩFIC values 0.31-0.38) against Staphylococcus aureus, gentamycin-methicillin resistant Staphylococcus aureus, Staphylococcus epidermidis and Candida albicans. Fractionation of Aristea ecklonii resulted in the isolation of the known bio-active compound, plumbagin, displaying noteworthy antimicrobial activity (MIC range between 2.00μg/ml and 16.00μg/ml). Most of the plant extracts demonstrated pathogen specific antimicrobial effects with a few exhibiting broad-spectrum activities. Positive antimicrobial effects noted for plants such as Elephantorrhiza elephantina and Diospyros mespiliformis used for acne vulgaris and ringworm infections, respectively, give some validation to their reported traditiona l uses. Synergistic interactions noted for Pentanisia prunelloides combined with Elephantorrhiza elephantina validate an enhanced antimicrobial effect when used in combination. Noteworthy antimicrobial activities (MIC range between 2.00μg/ml and 16.00μg/ml) were observed for plumbagin isolated from Aristea ecklonii. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Azizi, Arash; Aghayan, Shabnam; Zaker, Saeed; Shakeri, Mahdieh; Entezari, Navid; Lawaf, Shirin
2015-01-01
Background and Objectives. Tooth decay is an infectious disease of microbial origin. Considering the increasing prevalence of antibiotic resistance due to their overuse and also their side effects, medicinal plants are now considered for use against bacterial infections. This study aimed to assess the effects of different concentrations of Zingiber officinale extract on proliferation of Streptococcus mutans and Streptococcus sanguinis in vitro. Materials and Methods. In this experimental study, serial dilutions of the extract were prepared in two sets of 10 test tubes for each bacterium (total of 20). Standard amounts of bacterial suspension were added; 100ƛ of each tube was cultured on prepared solid agar plates and incubated at 37°C for 24 hours. Serial dilutions of the extract were prepared in another 20 tubes and 100ƛ of each tube was added to blood agar culture medium while being prepared. The mixture was transferred to the plates. The bacteria were inoculated on plates and incubated as described. Results. The minimum inhibitory concentration (MIC) was 0.02 mg/mL for S. mutans and 0.3 mg/mL for S. sanguinis. The minimum bactericidal concentration (MBC) was 0.04 mg for S. mutans and 0.6 mg for S. sanguinis. Conclusion. Zingiber officinale extract has significant antibacterial activity against S. mutans and S. sanguinis cariogenic microorganisms.
Azizi, Arash; Aghayan, Shabnam; Zaker, Saeed; Shakeri, Mahdieh; Entezari, Navid; Lawaf, Shirin
2015-01-01
Background and Objectives. Tooth decay is an infectious disease of microbial origin. Considering the increasing prevalence of antibiotic resistance due to their overuse and also their side effects, medicinal plants are now considered for use against bacterial infections. This study aimed to assess the effects of different concentrations of Zingiber officinale extract on proliferation of Streptococcus mutans and Streptococcus sanguinis in vitro. Materials and Methods. In this experimental study, serial dilutions of the extract were prepared in two sets of 10 test tubes for each bacterium (total of 20). Standard amounts of bacterial suspension were added; 100ƛ of each tube was cultured on prepared solid agar plates and incubated at 37°C for 24 hours. Serial dilutions of the extract were prepared in another 20 tubes and 100ƛ of each tube was added to blood agar culture medium while being prepared. The mixture was transferred to the plates. The bacteria were inoculated on plates and incubated as described. Results. The minimum inhibitory concentration (MIC) was 0.02 mg/mL for S. mutans and 0.3 mg/mL for S. sanguinis. The minimum bactericidal concentration (MBC) was 0.04 mg for S. mutans and 0.6 mg for S. sanguinis. Conclusion. Zingiber officinale extract has significant antibacterial activity against S. mutans and S. sanguinis cariogenic microorganisms. PMID:26347778
2013-01-01
Background Vancomycin is the primary treatment for infections caused by methicilin-resistant Staphylococcus aureus (MRSA). The association of vancomycin treatment failures with increased vancomycin minimum inhibitory concentration (MIC) is a well-recognized problem. A number of single-centre studies have identified progressive increases in glycopeptide MICs for S. aureus strains over recent years – a phenomenon known as vancomycin MIC creep. It is unknown if this is a worldwide phenomenon or if it is localized to specific centers. Methods The aim of this study was to evaluate the trend of vancomycin MIC for isolates of MRSA over a 3-year period in a tertiary university hospital in Portugal. MRSA isolates from samples of patients admitted from January 2007 to December 2009 were assessed. Etest method was used to determine the respective vancomycin MIC. Only one isolate per patient was included in the final analysis. Results A total of 93 MRSA isolates were studied. The vancomycin MICs were 0.75, 1, 1.5 and 2 mg/L for 1 (1.1%), 19 (20.4%), 38 (40.9%), 35 (37.6%) isolates, respectively. During the 3 year period, we observed a significant fluctuation in the rate of MRSA with a vancomycin MIC > 1 mg/L (2007: 86.2%; 2008: 93.3%; 2009: 58.8%, p = 0.002). No MRSA isolate presented a MIC > 2 mg/L. Conclusions We were unable to find in our institution data compatible to the presence of vancomycin MIC creep during the study period. This phenomenon seems not to be generalized; as a result each institution should systematically monitor MRSA vancomycin MIC over time. PMID:23422012
Screening of in vitro antimicrobial activity of plants used in traditional Indonesian medicine.
Romulo, Andreas; Zuhud, Ervizal A M; Rondevaldova, Johana; Kokoska, Ladislav
2018-12-01
In many regions of Indonesia, there are numerous traditional herbal preparations for treatment of infectious diseases. However, their antimicrobial potential has been poorly studied by modern laboratory methods. This study investigates in vitro antimicrobial activity of 49 ethanol extracts from 37 plant species used in Indonesian traditional medicine for treatment against Candida albicans, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. The plants were collected from the Biopharmaca collection garden, Bogor, Indonesia. The plant material was dried, finely grounded, extracted using ethanol, concentrated, and the dried residue was dissolved in 100% DMSO. Antimicrobial activity was determined in terms of a minimum inhibitory concentration (MIC) using a broth microdilution method in 96-well microplates. The extract of Orthosiphon aristatus (Blume) Miq. (Lamiaceae) leaf produced the strongest antimicrobial effect, inhibiting the growth of C. albicans (MIC 128 μg/mL), S. aureus (MIC 256 μg/mL), E. faecalis (MIC 256 μg/mL) and P. aeruginosa (MIC 256 μg/mL). The leaf extract of Woodfordia floribunda Salisb. (Lythraceae) also exhibited significant effect against C. albicans (MIC 128 μg/mL), S. aureus (MIC 256 μg/mL) and E. faecalis (MIC 256 μg/mL). Rotheca serrata (L.) Steane & Mabb. (Lamiaceae) leaf extract inhibited the growth of S. aureus (MIC 256 µg/mL) and C. albicans (MIC 256 µg/mL). The leaf extract of O. aristatus and W. floribunda exhibited a significant anti-candidal effect. Therefore, both of these plants can serve as prospective source materials for the development of new anti-candidal agents.
[Effect of Radix scutellariae on the growth and form of Porphyromanus endodontics in vitro].
Tan, Hong; Tang, Yaling; Zhou, Xuedong; Xiao, Xiaorong; Li, Jiyao
2003-07-01
To provide scientific evidence for underpinning the use of Radix Scutellariae in the treatment of pulp and periapical diseases. Using minute amount serial dilution test, this study assessed the minimal inhibitory concentration of Radix Scutellariae extreact against Porphyromanus Endodontics. The forms of Porphyromanus endodontics treated with Radix Scutellariae extract at different concentrations were observed by use of SEM. The MIC of Radix Scutellariae extract was determined to be 1 mg/ml. Radix Scutellariae changed the forms of Porphyromanus endodontics, making them become bigger, longer and crumbled. Radix Scutellariae could inhibit the growth of Porphyromanus Endodontics.
Zhao, Fei; Dai, Jiang-Kun; Liu, Dan; Wang, Shi-Jun; Wang, Jun-Ru
2016-03-21
As part of our continuing research on canthin-6-one antimicrobial agents, a new series of ester derivatives of 10-hydroxycanthin-6-one were synthesized using a simple and effective synthetic route. The structure of each compound was characterized by NMR, ESI-MS, FT-IR, UV, and elemental analysis. The antimicrobial activity of these compounds against three phytopathogenic fungi (Alternaria solani, Fusarium graminearum, and Fusarium solani) and four bacteria (Bacillus cereus, Bacillus subtilis, Ralstonia solanacearum, and Pseudomonas syringae) were evaluated using the mycelium linear growth rate method and micro-broth dilution method, respectively. The structure-activity relationship is discussed. Of the tested compounds, 4 and 7s displayed significant antifungal activity against F. graminearum, with inhibition rates of 100% at a concentration of 50 μg/mL. Compounds 5, 7s, and 7t showed the best inhibitory activity against all the tested bacteria, with minimum inhibitory concentrations (MICs) between 3.91 and 31.25 μg/mL. Thus, 7s emerged as a promising lead compound for the development of novel canthine-6-one antimicrobial agents.
Maki, Katsuyuki; Watabe, Etsuko; Iguchi, Yumi; Nakamura, Hideko; Tomishima, Masaki; Ohki, Hidenori; Yamada, Akira; Matsumoto, Satoru; Ikeda, Fumiaki; Tawara, Shuichi; Mutoh, Seitaro
2006-01-01
To establish an in vitro method of predicting in vivo efficacy of antifungal drugs against Candida albicans and Aspergillus fumigatus, the antifungal activities of fluconazole, itraconazole, and amphotericin B were determined in mouse serum. The minimum inhibitory concentration (MIC) of each drug was measured using mouse serum as a diluent. For C. albicans, the assay endpoint of azoles was defined as inhibition of mycelial extension (mMIC) and for A. fumigatus, as no growth (MIC). The MICs of amphotericin B for both pathogens were defined as the MIC at which no mycelial growth occurred. Serum MIC or mMIC determinations were then used to estimate the concentration of the drugs in serum of mice treated with antifungal drugs by multiplying the antifungal titer of the serum samples by the serum (m)MIC. The serum drug concentrations were also determined by HPLC. The serum concentrations estimated microbiologically showed good agreement with those determined by HPLC, except for itraconazole. Analysis of the serum samples from itraconazole-treated mice by a sensitive bioautography revealed the presence of additional spots, not seen in control samples of itraconazole. The bioautography assay demonstrated that the additional material detected in serum from mice treated with itraconazole was an active metabolite of itraconazole. The data showed that the apparent reduction in the itraconazole serum concentration as determined by HPLC was the result of the formation of an active metabolite, and that the use of a microbiological method to measure serum concentrations of drugs can provide a method for prediction of in vivo efficacy of antifungal drugs.
Soberón, José R; Sgariglia, Melina A; Pastoriza, Ana C; Soruco, Estela M; Jäger, Sebastián N; Labadie, Guillermo R; Sampietro, Diego A; Vattuone, Marta A
2017-05-05
Anagallis arvensis L. (Primulaceae) is used in argentinean northwestern traditional medicine to treat fungal infections. We are reporting the isolation and identification of compounds with antifungal activity against human pathogenic yeast Candida albicans, and toxicity evaluation. to study the antifungal activity of extracts and purified compounds obtained form A. arvensis aerial parts, alone and in combinations with fluconazole (FLU), and to study the toxicity of the active compounds. Disk diffusion assays were used to perform an activity-guided isolation of antifungal compounds from the aerial parts of A. arvensis. Broth dilution checkerboard and viable cell count assays were employed to determine the effects of samples and combinations of FLU + samples against Candida albicans. The chemical structures of active compounds were elucidated by spectroscopic analysis. Genotoxic and haemolytic effects of the isolated compounds were determined. Four triterpenoid saponins (1-4) were identified. Anagallisin C (AnC), exerted the highest inhibitory activity among the assayed compounds against C. albicans reference strain (ATCC 10231), with MIC-0 =1µg/mL. The Fractional Inhibitory Concentration Index (FICI=0.129) indicated a synergistic effect between AnC (0.125µg/mL) and FLU (0.031µg/mL) against C. albicans ATCC 10231. AnC inhibited C. albicans 12-99 FLU resistant strain (MIC-0 =1µg/mL), and the FICI=0.188 indicated a synergistic effect between AnC (0.125µg/mL) and fluconazole (16µg/mL). The combination AnC+ FLU exerted fungicidal activity against both C. albicans strains. AnC exerted inhibitory activity against C. albicans ATCC 10231 sessile cells (MIC 5 0=0.5µg/mL and MIC 80 =1µg/mL) and against C. albicans 12-99 sessile cells (MIC 5 0=0.75µg/mL and MIC 80 =1.25µg/mL). AnC exerted haemolytic effect against human red blood cells at 15µg/mL and did not exerted genotoxic effect on Bacillus subtilis rec strains. The antifungal activity and lack of genotoxic effects of AnC give support to the traditional use of A. arvensis as antifungal and makes AnC a compound of interest to expand the available antifungal drugs. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Alp, Sehnaz; Sancak, Banu; Hascelik, Gulsen; Arikan, Sevtap
2010-11-01
We investigated the incidence of trailing growth with fluconazole in 101 clinical Candida isolates (49 C. albicans and 52 C. tropicalis) and tried to establish the convenient susceptibility testing method and medium for fluconazole minimum inhibitory concentration (MIC) determination. MICs were determined by CLSI M27-A2 broth microdilution (BMD) and Etest methods on RPMI-1640 agar supplemented with 2% glucose (RPG) and on Mueller-Hinton agar supplemented with 2% glucose and 0.5 μg ml(-1) methylene blue (GMB). BMD and Etest MICs were read at 24 and 48 h, and susceptibility categories were compared. All isolates were determined as susceptible with BMD, Etest-RPG and Etest-GMB at 24 h. While all isolates were interpreted as susceptible at 48 h on Etest-RPG and Etest-GMB, one C. albicans isolate was interpreted as susceptible-dose dependent (S-DD) and two C. tropicalis isolates were interpreted as resistant with BMD. On Etest-RPG, trailing growth caused widespread microcolonies within the inhibition zone and resulted in confusion in MIC determination. On Etest-GMB, because of the nearly absence of microcolonies within the zone of inhibition, MICs were evaluated more easily. We conclude that, for the determination of fluconazole MICs of trailing Candida isolates, the Etest method has an advantage over BMD and can be used along with this reference method. Moreover, GMB appears more beneficial than RPG for the fluconazole Etest. © 2009 Blackwell Verlag GmbH.
Loizzo, M R; Tundis, R; Chandrika, U G; Abeysekera, A M; Menichini, F; Frega, N G
2010-06-01
Total water extract, ethyl acetate, and aqueous fractions from the leaves of Artocarpus heterophyllus were evaluated for phenolic content, antioxidant, and antibacterial activities against some foodborne pathogens such as E. coli, Listeria monocytogenes, Salmonella typhimurium, Salmonella enterica, Bacillus cereus, Enterococcus faecalis, and Staphylococcus aureus. The minimum inhibitory concentration (MICs) of extract and fractions determined by the agar dilution method were ranged from 221.9 microg/mL for ethyl acetate fraction to 488.1 microg/mL for total extract. In the agar diffusion method the diameters of inhibition were 12.2 for the total extract, 10.7 and 11.5 for ethyl acetate and aqueous fractions, respectively. A. heterophyllus showed significant antioxidant activity tested in different in vitro systems (DPPH, ABTS, FRAP, and Fe(2+) chelating activity assay). In particular, in DPPH assay A. heterophyllus total extract exhibited a strong antiradical activity with an IC(50) value of 73.5 microg/mL while aqueous fraction exerted the highest activity in FRAP assay (IC(50) value of 72.0 microg/mL). The total phenols content by Folin-Ciocalteau method was determined with the purpose of testing its relationship with the antioxidant and antibacterial activities.
Granato, Gregory E.
2014-01-01
The U.S. Geological Survey (USGS) developed the Stochastic Empirical Loading and Dilution Model (SELDM) in cooperation with the Federal Highway Administration (FHWA) to indicate the risk for stormwater concentrations, flows, and loads to be above user-selected water-quality goals and the potential effectiveness of mitigation measures to reduce such risks. SELDM models the potential effect of mitigation measures by using Monte Carlo methods with statistics that approximate the net effects of structural and nonstructural best management practices (BMPs). In this report, structural BMPs are defined as the components of the drainage pathway between the source of runoff and a stormwater discharge location that affect the volume, timing, or quality of runoff. SELDM uses a simple stochastic statistical model of BMP performance to develop planning-level estimates of runoff-event characteristics. This statistical approach can be used to represent a single BMP or an assemblage of BMPs. The SELDM BMP-treatment module has provisions for stochastic modeling of three stormwater treatments: volume reduction, hydrograph extension, and water-quality treatment. In SELDM, these three treatment variables are modeled by using the trapezoidal distribution and the rank correlation with the associated highway-runoff variables. This report describes methods for calculating the trapezoidal-distribution statistics and rank correlation coefficients for stochastic modeling of volume reduction, hydrograph extension, and water-quality treatment by structural stormwater BMPs and provides the calculated values for these variables. This report also provides robust methods for estimating the minimum irreducible concentration (MIC), which is the lowest expected effluent concentration from a particular BMP site or a class of BMPs. These statistics are different from the statistics commonly used to characterize or compare BMPs. They are designed to provide a stochastic transfer function to approximate the quantity, duration, and quality of BMP effluent given the associated inflow values for a population of storm events. A database application and several spreadsheet tools are included in the digital media accompanying this report for further documentation of methods and for future use. In this study, analyses were done with data extracted from a modified copy of the January 2012 version of International Stormwater Best Management Practices Database, designated herein as the January 2012a version. Statistics for volume reduction, hydrograph extension, and water-quality treatment were developed with selected data. Sufficient data were available to estimate statistics for 5 to 10 BMP categories by using data from 40 to more than 165 monitoring sites. Water-quality treatment statistics were developed for 13 runoff-quality constituents commonly measured in highway and urban runoff studies including turbidity, sediment and solids; nutrients; total metals; organic carbon; and fecal coliforms. The medians of the best-fit statistics for each category were selected to construct generalized cumulative distribution functions for the three treatment variables. For volume reduction and hydrograph extension, interpretation of available data indicates that selection of a Spearman’s rho value that is the average of the median and maximum values for the BMP category may help generate realistic simulation results in SELDM. The median rho value may be selected to help generate realistic simulation results for water-quality treatment variables. MIC statistics were developed for 12 runoff-quality constituents commonly measured in highway and urban runoff studies by using data from 11 BMP categories and more than 167 monitoring sites. Four statistical techniques were applied for estimating MIC values with monitoring data from each site. These techniques produce a range of lower-bound estimates for each site. Four MIC estimators are proposed as alternatives for selecting a value from among the estimates from multiple sites. Correlation analysis indicates that the MIC estimates from multiple sites were weakly correlated with the geometric mean of inflow values, which indicates that there may be a qualitative or semiquantitative link between the inflow quality and the MIC. Correlations probably are weak because the MIC is influenced by the inflow water quality and the capability of each individual BMP site to reduce inflow concentrations.
Impact of Vancomycin MIC on Treatment Outcomes in Invasive Staphylococcus aureus Infections
Song, Kyoung-Ho; Kim, Moonsuk; Kim, Chung Jong; Cho, Jeong Eun; Choi, Yun Jung; Park, Jeong Su; Ahn, Soyeon; Jang, Hee-Chang; Park, Kyung-Hwa; Jung, Sook-In; Yoon, Nara; Kim, Dong-Min; Hwang, Jeong-Hwan; Lee, Chang Seop; Lee, Jae Hoon; Kwak, Yee Gyung; Kim, Eu Suk; Park, Seong Yeon; Park, Yoonseon; Lee, Kkot Sil; Lee, Yeong-Seon
2016-01-01
ABSTRACT There are conflicting data on the association of vancomycin MIC (VAN-MIC) with treatment outcomes in Staphylococcus aureus infections. We investigated the relationship between high VAN-MIC and 30-day mortality and identified the risk factors for mortality in a large cohort of patients with invasive S. aureus (ISA) infections, defined as the isolation of S. aureus from a normally sterile site. Over a 2-year period, 1,027 adult patients with ISA infections were enrolled in 10 hospitals, including 673 (66%) patients with methicillin-resistant S. aureus (MRSA) infections. There were 200 (19.5%) isolates with high VAN-MIC (≥1.5 mg/liter) by Etest and 87 (8.5%) by broth microdilution (BMD). The all-cause 30-day mortality rate was 27.4%. High VAN-MIC by either method was not associated with all-cause 30-day mortality, and this finding was consistent across MIC methodologies and methicillin susceptibilities. We conclude that high VAN-MIC is not associated with increased risk of all-cause 30-day mortality in ISA infections. Our data support the view that VAN-MIC alone is not sufficient evidence to change current clinical practice. PMID:27956430
Mourão, Joana; Novais, Carla; Machado, Jorge; Peixe, Luísa; Antunes, Patrícia
2015-06-01
The occurrence of acquired metal tolerance genes in emerging MDR Salmonella enterica serotype 4,[5],12:i:- clones was assessed and their associated platforms and tolerance phenotype were characterised. Salmonella 4,[5],12:i:- from different sources belonging to European, Spanish and Southern European clones were studied. Screening for copper (pcoA-pcoD/tcrB), silver/copper (silA-silE), mercury (merA), arsenic (arsB) and tellurite (terF) tolerance genes was performed by PCR/sequencing. CuSO(4)/AgNO(3) MICs were determined in aerobic/anaerobic atmospheres by agar dilution. Conjugation assays, genomic location and plasmid analysis were performed by standard procedures. Most isolates from European (98%) and Spanish (74%) clones carried silA-silE, contrasting with the Southern European clone (26%). merA/62% (European and Spanish clones) and pcoA-pcoD/50% (European clone) were also detected. merA±pco+sil were chromosomally located in the European clone, whereas in Spanish and Southern European clones sil±merA were within plasmids, both with antibiotic resistance genes. The pcoA-pcoD/silA-silE(+) isolates showed higher MICCuSO(4) in anaerobiosis than those without these genes (MIC(50)=24-28 vs. 2 mM). Different MICAgNO(3) of silA-silE(+) (MIC(50)=0.25 mM) and silA-silE(-)(MIC(50)=0.16 mM) isolates were observed in both atmospheres, with an MIC increment after prior exposure to silver (>3 vs. 0.08-0.125 mM) in aerobiosis. A high frequency of copper and silver tolerance, particularly among the two major Salmonella 4,[5],12:i:- MDR clones (European/Spanish) circulating in Europe and causing human infections, might facilitate adaptation/expansion of these strains in metal-contaminated environments, particularly copper in anaerobiosis. Furthermore, metal toxic concentrations in food-animal environments can contribute to persistence of genetic platforms carrying metal/antibiotic resistance genes in this foodborne zoonotic pathogen. Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
Gobernado, M; Sanz-Rodríguez, C; Villanueva, R; Torroba, L; Redondo, E; González-Esteban, J
2007-12-01
This study was conducted to assess the in vitro activity of ertapenem against clinical bacterial isolates from patients with community-acquired intra-abdominal and lower tract respiratory infections in Spain in 2003. As the study was conducted before the marketing of ertapenem, it was also useful to define a baseline susceptibility pattern for ertapenem in each of the participating hospitals for later surveillance studies. Each partipating site identified a variable number of aerobic and facultative bacteria isolated from patients with community-acquired intra-abdominal infection or pneumonia using standard procedures. E-test strips were used for determining the minimum inhibitory concentration (MIC) of ertapenem, while for other antimicrobials either quantitative dilution techniques or qualitative diffusion procedures were used according to each microbiology laboratory's routine practice. MIC breakpoints for categorization of susceptibility provided by the CLSI were used for interpreting MIC values. A total of 2,901 recent clinical isolates from patients with community-acquired intra-abdominal infection or pneumonia hospitalized in 69 Spanish medical centers were tested. These isolates included 2,039 Gram-negative bacteria (1,646 Enterobacteriaceae, 216 Haemophilus, 123 non-fermenting Gram-negative bacteria [NFGNB] and 54 others) and 862 Gram-positive bacteria (556 pneumococci, 159 staphylococci, 96 streptococci other than S. pneumoniae, 44 enterococci and 7 others). Ertapenem was very active in vitro against Enterobacteriaceae (99.8% susceptible), Haemophilus (96.3% susceptible), pneumococci (99.6% susceptible, of which 31% were penicillin non-susceptible strains), streptococci other than S. pneumoniae (99.0% susceptible) and methicillin-susceptible staphylococci (94.8% susceptible). For other Gram-positive and Gram-negative pathogens for which ertapenem susceptible breakpoints have not been defined, MIC(90) values were 0.38 and 0.064 mg/l, respectively. As expected, ertapenem had minimal activity in vitro against NFGNB, enterococci and methicillin-resistant staphylococci (MIC(90) of >32 mg/l for all three). Ertapenem was highly active in vitro against most bacteria isolated from patients with community-acquired intra-abdominal and lower respiratory tract infections.
NASA Astrophysics Data System (ADS)
Yusoff, Nik Yusliyana Nik; Mohamad, Suharni; Abdullah, Haswati@Nurhayati; Rahman, Nurhayu Ab
2016-12-01
Malaysian honey and propolis extracts were investigated for their antifungal properties against pathogens implicated in denture stomatitis. Each of the honey and aqueous extracts propolis at net preparation, 1:1 and 1:2 dilutions was evaluated by using agar well diffusion assay and further investigated by minimum inhibitory concentration (MIC) within the range of 500 mg/mL to 62.5 mg/mL against oral fungi. The findings indicated that there was no effect of propolis on Candida spp for both types of propolis based on no inhibition zones was recorded. Meanwhile, for antifungal activity of honey, only honey from Trigona spp has shown activity at net preparation against C. albicans (10.47 ± 0.23 mm), C. tropicalis (12.29 ± 0.23 mm) and C. glabrata (8.69 ± 0.53 mm). For minimum inhibitory concentration, the data indicates that both propolis have shown inhibitory effect at 500 mg/mL. As for honey, Trigona spp was the effective honey that give MIC value at 250 mg/mL against Candida spp. Apis dorsata honey has shown MIC value at 500 mg/mL while Apis mellifera honey had inhibited C.albicans and C.glabrata at 500 mg/mL except for C.tropicalis at 250 mg/mL. It can be concluded that both propolis has shown weaker antifungal activity against oral fungi while only honey produced from Trigona spp had strong antifungal activity compare to other honey against oral fungi implicated in denture stomatitis.
Jayahari, Nidhin Kumar; Niranjan, Nandini T; Kanaparthy, Aruna
2014-05-01
To assess the effectiveness of several concentrations of two forms of passion fruit juice (PFJ) in the elimination of Enterococcus faecalis and to compare the antibacterial property of PFJ with sodium hypochlorite (NaOCl) as an intracanal irrigant. Two types of PFJs, aqueous and alcohol extracts, were prepared and a minimum inhibitory concentration (MIC) test was performed with both the extracts against E. faecalis. Two concentrations of each extract were selected from the results given by the MIC test and subjected to a broth dilution test (BDT) for nine different time periods. After each time period, samples were inoculated in brain-heart infusion agar plates for 24 h at 37°C and results were compared statistically. The MIC test showed that E. faecalis was sensitive to PFJ extracts at various concentrations. The results of the BDT showed a negative growth of E. faecalis by PFJ alcohol 20% at 30 min, PFJ aqueous 20% at 1 h, NaOCl 2.5% at 10 min and NaOCl 5.25% at 1 min. NaOCl showed a much better antibacterial efficacy than PFJ. The PFJ alcoholic and aqueous extracts had an antibacterial effect against E. faecalis. As PFJ shows promising results, further research in this field could lead to much better results as compared to NaOCl. © 2013 Wiley Publishing Asia Pty Ltd.
Effect of multipurpose solutions against Acinetobacter carrying QAC genes.
Boost, Maureen V; Chan, Jessica; Shi, Guang-sen; Cho, Pauline
2014-03-01
Acinetobacter has low virulence but causes infections in subjects with reduced immunity. It has been reported in ocular infections including those of patients using contact lenses. Treatment is difficult because Acinetobacter is frequently multidrug resistant. Antibiotic-resistant strains frequently also harbor genes for antiseptic resistance (quaternary ammonium compound [QAC]) genes. Because Acinetobacter is part of the normal flora, it may contaminate contact lens and accessories. This study aims to investigate carriage rates of QAC genes in household and clinical isolates of Acinetobacter and to determine the effectiveness of two multipurpose solutions (MPSs) for soft lenses against organisms carrying QAC genes. DNA was extracted from 11 bathroom isolates and 15 clinical isolates and amplified by polymerase chain reaction to determine the presence of qacEΔ1. Gene-positive and gene-negative control strains were used to challenge the two MPSs, and minimum inhibitory concentrations (MICs) of these organisms to benzalkonium chloride and chlorhexidine gluconate were determined. More than 90% of isolates carried qacEΔ1. The MICs of clinical isolates were higher than those of isolates of bathrooms. Both MPSs were able to produce a 3-log reduction in the numbers of all isolates. Although most isolates carried qacEΔ1 and elevated MICs to benzalkonium chloride and chlorhexidine gluconate were observed, all were susceptible to both MPSs tested. However, if there were to be poor compliance with care procedures, it is probable that such organisms could survive in the presence of diluted or expired solutions.
Molecular typing and antimicrobial susceptibility of Clostridium perfringens from broiler chickens.
Gharaibeh, Saad; Al Rifai, Rami; Al-Majali, Ahmad
2010-12-01
Clostridium perfringens (Cp) causes necrotic enteritis disease in commercial poultry. Antimicrobials are used to control and treat this disease and sometimes clinical outbreaks do not respond well to certain treatments. This study was designed to isolate Cp from clinical cases, type these isolates by multiplex PCR, and determine their antimicrobial susceptibility by micro-dilution method. A total of 67 Cp isolates were obtained from 155 broiler chicken flocks. All isolates were classified as type A and non-enterotoxin producers. Lincomycin, erythromycins, and tilmicosin showed very high minimal inhibitory concentration (MIC) 50 of ≥256 μg/ml. However, tylosin, amoxicillin, ampicillin, penicillin, florfenicol, danofloxacin, enrofloxacin, chlortetracycline, doxycycline, and oxytetracycline had variable MIC₅₀ of 64, 0.5, 1, 1, 8, 4, 8, 4, 8, 0.5 μg/ml, respectively. It is recommended that Cp infections in Jordan be treated with either penicillins or tetracyclines especially amoxicillin and oxytetracycline. Copyright © 2010 Elsevier Ltd. All rights reserved.
Mothana, Ramzi; Alsaid, Mansour; Khaled, Jamal M; Alharbi, Naiyf S; Alatar, Abdulrahman; Raish, Mohammad; Al-Yahya, Mohammed; Rafatullah, Syed; Parvez, Mohammad Khalid; Ahamad, Syed Rizwan
2016-03-01
This study was designed to investigate the possible antiniciceptive, antipyretic and antimicrobial activities of the essential oil obtained from the fruits of Piper Cubeba (L.). To assess the antinociceptive and antipyretic activities, three doses (150, 300 and 600 mg/kg, i.p.) were tested in acetic acid-induced abdominal writhing, tail flick reaction and hot-plate and Brewer's yeast-induced hyperpyrexia test models in animals. Moreover, the antimicrobial activity was examined using agar diffusion method and broth micro-dilution assay for minimum inhibitory concentrations (MIC). The Piper Cubeba essential oil (PCEO) showed a marked antinociception (17, 30 and 54%) and an increase in reaction time in mice in the flick tailed and hot-plate tests. The brewer's yeast induced hyperpyrexia was decreased in a dose dependent manner. PCEO also exhibited a strong antimicrobial potential. These findings confirm the traditional analgesic indications of P. cubeba oil and provide persuasive evidence and support its use in Arab traditional medicine.
Eum, Seenae; Bergsbaken, Robert L; Harvey, Craig L; Warren, J Bryan; Rotschafer, John C
2016-09-27
This study demonstrated a statistically significant difference in vancomycin minimum inhibitory concentration (MIC) for Staphylococcus aureus between a common automated system (Vitek 2) and the E-test method in patients with S. aureus bloodstream infections. At an area under the serum concentration time curve (AUC) threshold of 400 mg∙h/L, we would have reached the current Infectious Diseases Society of America (IDSA)/American Society of Health System Pharmacists (ASHP)/Society of Infectious Diseases Pharmacists (SIDP) guideline suggested AUC/MIC target in almost 100% of patients while using the Vitek 2 MIC data; however, we could only generate 40% target attainment while using E-test MIC data ( p < 0.0001). An AUC of 450 mg∙h/L or greater was required to achieve 100% target attainment using either Vitek 2 or E-test MIC results.
Shafiei, Zaleha; Haji Abdul Rahim, Zubaidah; Thurairajah, Nalina
2016-01-01
Background Plant extracts mixture (PEM) and its individual constituent plant extracts(Psidium sp., Mangifera sp., Mentha sp.) are known to have an anti-adhering effect towards oral bacteria in the single-species biofilm. To date, the adhering ability of the early and late plaque colonisers (Streptococcus sanguinis and Streptococcus mutans) to PEM-treated experimental pellicle have not been investigated in dual-species biofilms. Methods Fresh leaves of these plants were used in the preparation of the respective aqueous extract decoctions. The minimum inhibitory concentration (MIC) of the extracts towards S. sanguinis ATCC BAA-1455 and S. mutans ATCC 25175 was determined using a two-fold serial microdilution method. The sum of fractional inhibitory concentration (ΣFIC) index of PEM and its constituent plant extracts was calculated using the MIC values of the plants. The minimum bactericidal concentration (MBC) of the plant extracts was also determined. The anti-adherence effect of the plant extracts (individually and mixed) was carried out by developing simulated S. sanguinis and S. mutans respectively in single- and dual-species of biofilms in the Nordini’s Artificial Mouth (NAM) model system in which the experimental pellicle was pretreated with the plant extract before bacterial inoculation. The bacterial population in the respective biofilms was quantified using ten-fold serial dilutions method and expressed as colony forming unit per ml (CFU/ml). The bacterial population was also viewed using Scanning Electron Microscope (SEM). All experiments were done in triplicate. Results The PEM compared with its respective constituent plants showed the lowest MIC towards S. sanguinis (3.81 mg/ml) and S. mutans (1.91 mg/ml) and exhibited a synergistic effect. The Psidium sp. (15.24 mg/ml) and, PEM and Psidium sp. (30.48 mg/ml) showed the lowest MBC towards S. sanguinis and S. mutans respectively. The anti-adherence effect of the PEM and its respective constituent plants (except Psidium sp.) was different for the two bacteria in the single-species biofilm. In the dual-species biofilms, PEM demonstrated similar anti-adherence effect towards S. sanguinis and S. mutans. The proportions of the bacterial population viewed under SEM appeared to be in agreement with the quantified population. Discussion The combination of the active constituents of the individual plant extracts in PEM may contribute to its low MIC giving rise to the synergistic effect. The different anti-adherence effect towards S. sanguinis and S. mutans in both single- and dual-species biofilms could be due to the different proportion of the active constituents of the extracts and the interaction between different bacteria. The better adhering ability of S. sanguinis towards the PEM-treated pellicle when present together with S. mutans in the dual-species biofilms may suggest the potential of PEM in controlling the balance between the early and late colonisers in biofilms. PMID:27761322
Crompton, Jason A.; North, Donald S.; Yoon, MinJung; Steenbergen, Judith N.; Lamp, Kenneth C.; Forrest, Graeme N.
2010-01-01
Objectives Recent recommendations by the Infectious Diseases Society of America for the treatment of Staphylococcus aureus suggest the use of alternative agents when vancomycin MIC values are ≥2 mg/L. This study examines the outcome of patients treated with daptomycin for S. aureus infections with documented vancomycin MICs. Patients and methods All patients with skin, bacteraemia and endocarditis infections due to S. aureus with vancomycin MIC values in CORE 2005–08, a retrospective, multicentre, observational registry, were studied. The outcome (cure, improved, failure or non-evaluable) was the investigator assessment at the end of daptomycin therapy. Success was defined as cure or improved. Results Five hundred and forty-seven clinically evaluable patients were identified with discrete vancomycin MIC values [MIC <2 mg/L: 451 (82%); MIC ≥2 mg/L: 96 (18%)]. The vancomycin MIC groups were well matched for patient characteristics, types of infections, first-line daptomycin use (19%) and prior vancomycin use (58%). Clinical success was reported in 94% of patients. No differences were detected in the daptomycin success rate by the vancomycin MIC group overall or by the infection type. A multivariate logistic regression also failed to identify vancomycin MIC as a predictor of daptomycin failure. Adverse event (AE) rates were not different when analysed by MIC group; both groups had ∼17% of patients with one AE. Conclusions In this diverse population, daptomycin was associated with similar outcomes for patients, regardless of whether the vancomycin MIC was categorized as <2 or ≥2 mg/L. Further studies are warranted. PMID:20554570
Venkatesh, Mohan Pammi; Rong, Liang
2008-09-01
Neonatal sepsis causes significant mortality and morbidity. Coagulase-negative staphylococci (CoNS) and Candida frequently cause neonatal sepsis at >72 h of age. Lactoferrin, which is present in human milk, is a component of innate immunity and has broad-spectrum antimicrobial activity. The synergistic effects of lactoferrin with antibiotics against neonatal isolates have not been systematically evaluated. Here, eight clinical strains (seven neonatal) of CoNS and three strains (two neonatal) of Candida albicans were studied. MIC50 and MIC90 values of human recombinant lactoferrin (talactoferrin; TLF), vancomycin (VAN) and nafcillin (NAF) against CoNS, and of TLF, amphotericin B (AMB) and fluconazole (FLC) against C. albicans, were evaluated according to established guidelines. Antimicrobial combinations of TLF with NAF or VAN against CoNS, and TLF with AMB or FLC against C. albicans, were evaluated by a checkerboard method with serial twofold dilutions. Synergy was evaluated by the median effects principle, and combination indices and dose reduction indices were reported at 50, 75 and 90% inhibitory effect at several drug-dose ratios. It was found that TLF acted synergistically with NAF and VAN against CoNS, and with AMB and FLC against C. albicans, at multiple dose effects and drug-dose ratios with few exceptions. In synergistic combinations, drug reduction indices indicated a significant reduction in doses of antibiotics, which may be clinically relevant. Thus TLF acts synergistically with anti-staphylococcal and anti-Candida agents commonly used in neonatal practice and is a promising agent that needs to be evaluated in clinical studies.
Wu, Benjamin M; Sabarinath, Sreedharan N; Rand, Kenneth; Johnson, Judith; Derendorf, Hartmut
2011-06-01
Current dosing approaches for treating microbial infections ignore resistant subpopulations. A clinical isolate of Pseudomonas aeruginosa was cultured in a dynamic in vitro kill curve system designed to simulate the half-lives of drugs in order to evaluate the drug-microbial response relationship. The first dose of ciprofloxacin (CIP) uses a concentration equivalent to the unbound fraction of a 200mg clinical dose. A second dose of 200mg or 600 mg CIP, or ceftriaxone (CFX) or gentamicin (GEN) was administered at 12h. Dynamics of the minimum inhibitory concentration (MIC) were assessed using Etest strips before and throughout the CIP treatment period. In addition, the microbroth dilution method was used to evaluate drug susceptibility across a wide range of antibiotics using samples from before and after CIP exposure. A significant loss of CIP effects was observed at the second dose. Cross-resistance to many antibiotics (cefoxitin, cefuroxime, cefotetan, ampicillin and ertapenem) was observed. GEN, but not CFX or high-dose CIP, was sufficient to suppress the developed resistant subpopulation following the initial CIP exposure. The CIP MIC increased substantially from 0.13 μg/mL pre dose to 4 μg/mL at 12h after a CIP dose. In addition, aztreonam induced a similar resistance pattern as CIP, indicating that induction of resistance was not limited to fluoroquinolones. In conclusion, the in vitro dynamic kill curve system revealed that aminoglycosides, more than other classes of antibiotics, were effective against the CIP-induced resistant subpopulations. Copyright © 2011 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
2011-01-01
Background The emergence of multi-drug resistant (MDR) phenotypes is a major public health problem today in the treatment of bacterial infections. The present study was designed to evaluate the antibacterial activities of the methanol extracts of eleven Cameroonian spices on a panel of twenty nine Gram negative bacteria including MDR strains. Methods The phytochemical analysis of the extracts was carried out by standard tests meanwhile the liquid micro-broth dilution was used for all antimicrobial assays. Results Phytochemical analysis showed the presence of alkaloids, phenols and tannins in all plants extracts. The results of the antibacterial assays indicated that all tested extracts exert antibacterial activities, with the minimum inhibitory concentration (MIC) values varying from 32 to 1024 μg/ml. The extracts from Dichrostachys glomerata, Beilschmiedia cinnamomea, Aframomum citratum, Piper capense, Echinops giganteus, Fagara xanthoxyloïdes and Olax subscorpioïdea were the most active. In the presence of efflux pump inhibitor, PAßN, the activity of the extract from D. glomerata significantly increased on 69.2% of the tested MDR bacteria. At MIC/5, synergistic effects were noted with the extract of D. glomerata on 75% of the tested bacteria for chloramphenicol (CHL), tetracycline (TET) and norfloxacin (NOR). With B. cinnamomea synergy were observed on 62.5% of the studied MDR bacteria with CHL, cefepime (FEP), NOR and ciprofloxacin (CIP) and 75% with erythromycin (ERY). Conclusion The overall results provide information for the possible use of the studied extracts of the spices in the control of bacterial infections involving MDR phenotypes. PMID:22044718
Antimicrobial steroidal saponin and oleanane-type triterpenoid saponins from Paullinia pinnata.
Lunga, Paul K; Qin, Xu-Jie; Yang, Xing W; Kuiate, Jules-Roger; Du, Zhi Z; Gatsing, Donatien
2014-10-02
Paullinia pinnata L. (Sapindaceae) is an African woody vine, which is widely used in traditional medicine for the treatment of human malaria, erectile dysfunction and bacterial infections. A phytochemical investigation of its methanol leaf and stem extracts led to the isolation of seven compounds which were evaluated for their antimicrobial properties. The extracts were fractionated and compounds were isolated by chromatographic methods. Their structures were elucidated from their spectroscopic data in conjunction with those reported in literature. The antimicrobial activities of the crude extracts, fractions and compounds were evaluated against bacteria, yeasts and dermatophytes using the broth micro-dilution technique. Seven compounds: 2-O-methyl-L-chiro-inositol (1), β-sitosterol (2), friedelin (3), 3β-(β-D-Glucopyranosyloxy) stigmast-5-ene (4), (3β)-3-O-(2'-Acetamido-2'-deoxy-β-D-glucopyranosyl) oleanolic acid (5), (3β,16α-hydroxy)-3-O-(2'-Acetamido-2'-deoxy-β-D-glucopyranosyl) echinocystic acid (6) and (3β)-3-O-[β-D-glucopyranosyl-(1″-3')-2'-acetamido-2'-deoxy-β-D-galactopyranosyl]oleanolic acid (7) were isolated. Compounds 5 and 7 showed the best antibacterial and anti-yeast activities respectively (MIC value range of 0.78-6.25 and 1.56-6.25 μg/ml), while 6 exhibited the best anti-dermatophytic activity (MIC value range of 6.25-25 μg/ml). The results of the present findings could be considered interesting, taking into account the global disease burden of these susceptible microorganisms, in conjunction with the search for alternative and complementary medicines.
Anaruma, Nina Duarte; Schmidt, Flávio Luís; Duarte, Marta Cristina Teixeira; Figueira, Glyn Mara; Delarmelina, Camila; Benato, liane Aparecida; Sartoratto, Adilson
2010-01-01
The use of antibiotics in agriculture is limited when compared to their applications in human and veterinary medicine. On the other hand, the use of antimicrobials in agriculture contributes to the drug resistance of human pathogens and has stimulated the search for new antibiotics from natural products. Essential oils have been shown to exert several biological activities including antibacterial and antifungal actions. The aim of this study was to determine the activity of 28 essential oils from medicinal plants cultivated at CPMA (Medicinal and Aromatic Plants Collection), CPQBA/UNICAMP, against Colletotrichum gloeosporioides (Penz.) Sacc., the anthracnose agent in yellow passion fruit (Passiflora edulis Sims f. flavicarpa Deg), as well as evaluating their effect in the control of post-harvest decay. The oils were obtained by water-distillation using a Clevenger-type system and their minimal inhibitory concentrations (MIC) determined by the micro-dilution method. According to the results, 15 of the 28 essential oils presented activity against Colletotrichum gloeosporioides, and the following four oils presented MIC values between 0.25 and 0.3 mg/mL: Coriandrum sativum, Cymbopogon citratus, Cymbopogon flexuosus and Lippia alba. The evaluation of Cymbopogon citratus essential oil in the control of post-harvest decay in yellow passion fruit showed that the disease index of the samples treated with the essential oil did not differ (P ≤ 0.05) from that of the samples treated with fungicide. The present study shows the potential of Cymbopogon citratus essential oil in the control of the anthracnose agent in yellow passion fruit. PMID:24031465
Tannin-rich fraction from pomegranate rind damages membrane of Listeria monocytogenes.
Li, Guanghui; Xu, Yunfeng; Wang, Xin; Zhang, Baigang; Shi, Chao; Zhang, Weisong; Xia, Xiaodong
2014-04-01
Pomegranate rind has been reported to inhibit several foodborne pathogens, and its antimicrobial activity has been attributed mainly to its tannin fraction. This study aimed to investigate the antimicrobial activity of the tannin-rich fraction from pomegranate rind (TFPR) against Listeria monocytogenes and its mechanism of action. The tannin-related components of TFPR were analyzed by high-performance liquid chromatography and liquid chromatography-mass spectrometry, and the minimum inhibitory concentration (MIC) of TFPR was determined using the agar dilution method. Extracellular potassium concentration, the release of cell constituents, intra- and extracellular ATP concentrations, membrane potential, and intracellular pH (pHin) were measured to elucidate a possible antibacterial mechanism. Punicalagin (64.2%, g/g) and ellagic acid (3.1%, g/g) were detected in TFPR, and the MICs of TFPR were determined to be 1.25-5.0 mg/mL for different L. monocytogenes strains. Treatment with TFPR induced a decrease of the intracellular ATP concentration, an increase of the extracellular concentrations of potassium and ATP, and the release of cell constituents. A reduction of pHin and cell membrane hyperpolarization were observed after treatment. Electron microscopic observations showed that the cell membrane structures of L. monocytogenes were apparently impaired by TFPR. It is concluded that TFPR could destroy the integrity of the cell membrane of L. monocytogenes, leading to a loss of cell homeostasis. These findings indicate that TFPR has the potential to be used as a food preservative in order to control L. monocytogenes contamination in food and reduce the risk of listeriosis.
Survey of metal tolerance in moderately halophilic eubacteria.
Nieto, J J; Fernández-Castillo, R; Márquez, M C; Ventosa, A; Quesada, E; Ruiz-Berraquero, F
1989-09-01
The tolerance patterns, expressed as MICs, for 250 moderately halophilic eubacteria to 10 heavy metals were surveyed by using an agar dilution method. The moderate halophiles tested included 12 culture collection strains and fresh isolates representative of Deleya halophila (37 strains), Acinetobacter sp. (24 strains), Flavobacterium sp. (28 strains), and 149 moderately halophilic gram-positive cocci included in the genera Marinococcus, Sporosarcina, Micrococcus, and Staphylococcus. On the basis of the MICs, the collection strains showed, overall, similar responses to silver, cobalt, mercury, nickel, lead, and zinc. All were sensitive to silver, mercury, and zinc and tolerant of lead. The response to arsenate, cadmium, chromium, and copper was very heterogeneous. The metal susceptibility levels of the 238 freshly isolated strains were, in general, very heterogeneous among the four taxonomic groups as well as within the strains included in each group. The highest toxicities were found with mercury, silver, and zinc, while arsenate showed the lowest activity. All these strains were tolerant of nickel, lead, and chromium and sensitive to silver and mercury. Acinetobacter sp. strains were the most heavy-metal tolerant, with the majority of them showing tolerance of eight different metal ions. In contrast, Flavobacterium sp. strains were the most metal sensitive. The influence of salinity and yeast extract concentrations of the culture medium on the toxicity of the heavy metals tested for some representative strains was also studied. Lowering the salinity, in general, led to enhanced sensitivity to cadmium and, in some cases, to cobalt and copper. However, increasing the salinity resulted in only a slight decrease in the cadmium, copper, and nickel toxicities.(ABSTRACT TRUNCATED AT 250 WORDS)
Anaruma, Nina Duarte; Schmidt, Flávio Luís; Duarte, Marta Cristina Teixeira; Figueira, Glyn Mara; Delarmelina, Camila; Benato, Liane Aparecida; Sartoratto, Adilson
2010-01-01
The use of antibiotics in agriculture is limited when compared to their applications in human and veterinary medicine. On the other hand, the use of antimicrobials in agriculture contributes to the drug resistance of human pathogens and has stimulated the search for new antibiotics from natural products. Essential oils have been shown to exert several biological activities including antibacterial and antifungal actions. The aim of this study was to determine the activity of 28 essential oils from medicinal plants cultivated at CPMA (Medicinal and Aromatic Plants Collection), CPQBA/UNICAMP, against Colletotrichum gloeosporioides (Penz.) Sacc., the anthracnose agent in yellow passion fruit (Passiflora edulis Sims f. flavicarpa Deg), as well as evaluating their effect in the control of post-harvest decay. The oils were obtained by water-distillation using a Clevenger-type system and their minimal inhibitory concentrations (MIC) determined by the micro-dilution method. According to the results, 15 of the 28 essential oils presented activity against Colletotrichum gloeosporioides, and the following four oils presented MIC values between 0.25 and 0.3 mg/mL: Coriandrum sativum, Cymbopogon citratus, Cymbopogon flexuosus and Lippia alba. The evaluation of Cymbopogon citratus essential oil in the control of post-harvest decay in yellow passion fruit showed that the disease index of the samples treated with the essential oil did not differ (P ≤ 0.05) from that of the samples treated with fungicide. The present study shows the potential of Cymbopogon citratus essential oil in the control of the anthracnose agent in yellow passion fruit.
Bouzidi, Amel; Benzarti, Anissa; Arem, Amira El; Mahfoudhi, Adel; Hammami, Saoussen; Gorcii, Mohamed; Mastouri, Maha; Hellal, Ahmed Noureddine; Mighri, Zine
2016-07-01
In the present investigation, extracts obtained from L. guyonianum Durieu ex Boiss. aerial parts were used to evaluate total phenolic, flavonoid and tannin contents. A study of antioxidant activities of the prepared samples was carried out on the basis of 1,1-Diphenyl-2-picrylhydrazyl (DPPH), 2-2'-azino-bis-(3-ethylbenz-thiazoline-6-sulfonic acid) (ABTS+.) and ferric reducing antioxidant power (FRAP) assays. Moreover, the efficiency of methanolic, chloroformic and petroleum ether extracts and the deriving fractions from the methanolic extract was tested against human bacterial and fungal pathogenic strains using micro dilution method in 96 multiwell microtiter plate. Furthermore, leaves and stems extracts were subjected to RP-HPLC for phenolic compounds identification. Results showed that polyphenolic contents and antioxidant activities varied considerably as function of solvent polarity. Moreover, antiradical capacities against DPPH, ABTS(+.) and reducing power were maxima in methanol aerial parts extract which showed the highest polyphenol contents (134mg CE/g DW). The antimicrobial activities showed that methanolic, chloroformic and petroleum ether extracts were found to be most potent against Pseudomonas aeruginosa and Staphylococcus aureus with MIC values of 23 and 46μ.mL(-1), respectively. The fractions F(13) and F(16) have a great antifungal potential against Candida glabrata, Candida krusei and Candida parapsilesis (MIC=39μ.mL(-1)). The RP-HPLC analysis lead the identification of gallic, procatechuic and trans-cinnamic acids, methyl-4-hydroxybenzoate, n-propyl-3,4,5-trihydroxybenzoate, epicatechin, naringin and myricetin in L. guyonianum Durieu ex Boiss. leaves and stems extracts.
Novel phospholipase A2 inhibitors from python serum are potent peptide antibiotics.
Samy, Ramar Perumal; Thwin, Maung Maung; Stiles, Brad G; Satyanarayana-Jois, Seetharama; Chinnathambi, Arunachalam; Zayed, M E; Alharbi, Sulaiman Ali; Siveen, Kodappully Sivaraman; Sikka, Sakshi; Kumar, Alan Prem; Sethi, Gautam; Lim, Lina Hsiu Kim
2015-04-01
Antimicrobial peptides (AMPs) play a vital role in defense against resistant bacteria. In this study, eight different AMPs synthesized from Python reticulatus serum protein were tested for bactericidal activity against various Gram-positive and Gram-negative bacteria (Staphylococcus aureus, Burkholderia pseudomallei (KHW and TES strains), and Proteus vulgaris) using a disc-diffusion method (20 μg/disc). Among the tested peptides, phospholipase A2 inhibitory peptide (PIP)-18[59-76], β-Asp65-PIP[59-67], D-Ala66-PNT.II, and D60,65E-PIP[59-67] displayed the most potent bactericidal activity against all tested pathogens in a dose-dependent manner (100-6.8 μg/ml), with a remarkable activity noted against S. aureus at 6.8 μg/ml dose within 6 h of incubation. Determination of minimum inhibitory concentrations (MICs) by a micro-broth dilution method at 100-3.125 μg/ml revealed that PIP-18[59-76], β-Asp65-PIP[59-67] and D-Ala66-PNT.II peptides exerted a potent inhibitory effect against S. aureus and B. pseudomallei (KHW) (MICs 3.125 μg/ml), while a much less inhibitory potency (MICs 12.5 μg/ml) was noted for β-Asp65-PIP[59-67] and D-Ala66-PNT.II peptides against B. pseudomallei (TES). Higher doses of peptides had no effect on the other two strains (i.e., Klebsiella pneumoniae and Streptococcus pneumoniae). Overall, PIP-18[59-76] possessed higher antimicrobial activity than that of chloramphenicol (CHL), ceftazidime (CF) and streptomycin (ST) (30 μg/disc). When the two most active peptides, PIP-18[59-76] and β-Asp65-PIP[59-67], were applied topically at a 150 mg/kg dose for testing wound healing activity in a mouse model of S. aureus infection, the former accelerates faster wound healing than the latter peptide at 14 days post-treatment. The western blot data suggest that the topical application of peptides (PIP-18[59-67] and β-Asp65-PIP[59-67]) modulates NF-kB mediated wound repair in mice with relatively little haemolytic (100-1.56 μg/ml) and cytotoxic (1000-3.125 μg/ml) effects evident on human cells in vitro. Copyright © 2015. Published by Elsevier B.V.
In vitro effects of Salvia officinalis L. essential oil on Candida albicans
Sookto, Tularat; Srithavaj, Theerathavaj; Thaweboon, Sroisiri; Thaweboon, Boonyanit; Shrestha, Binit
2013-01-01
Objective To determine the anticandidal activities of Salvia officinalis L. (S. officinalis) essential oil against Candida albicans (C. albicans) and the inhibitory effects on the adhesion of C. albicans to polymethyl methacrylate (PMMA) resin surface. Methods Disc diffusion method was first used to test the anticandidal activities of the S. officinalis L. essential oil against the reference strain (ATCC 90028) and 2 clinical strains of C. albicans. Then the minimal inhibitory concentration (MIC) and minimal lethal concentration (MLC) were determined by modified membrane method. The adhesion of C. albicans to PMMA resin surface was assessed after immersion with S. officinalis L. essential oil at various concentrations of 1×MIC, 0.5×MIC and 0.25×MIC at room temperature for 30 min. One-way ANOVA was used to compare the Candida cell adhesion with the pretreatment agents and Tukey's test was used for multiple comparisons. Results S. officinalis L. essential oil exhibited anticandidal activity against all strains of C. albicans with inhibition zone ranging from 40.5 mm to 19.5 mm. The MIC and MLC of the oil were determined as 2.780 g/L against all test strains. According to the effects on C. albicans adhesion to PMMA resin surface, it was found that immersion in the essential oil at concentrations of 1×MIC (2.780 g/L), 0.5×MIC (1.390 g/L) and 0.25×MIC (0.695 g/L) for 30 min significantly reduced the adhesion of all 3 test strains to PMMA resin surface in a dose dependent manner (P<0.05). Conclusions S. officinalis L. essential oil exhibited anticandidal activities against C. albicans and had inhibitory effects on the adhesion of the cells to PMMA resin surface. With further testing and development, S. officinalis essential oil may be used as an antifungal denture cleanser to prevent candidal adhesion and thus reduce the risk of candida-associated denture stomatitis. PMID:23646301
Liu, Yu; Koyutürk, Mehmet; Maxwell, Sean; Xiang, Min; Veigl, Martina; Cooper, Richard S; Tayo, Bamidele O; Li, Li; LaFramboise, Thomas; Wang, Zhenghe; Zhu, Xiaofeng; Chance, Mark R
2014-08-16
Sequences up to several megabases in length have been found to be present in individual genomes but absent in the human reference genome. These sequences may be common in populations, and their absence in the reference genome may indicate rare variants in the genomes of individuals who served as donors for the human genome project. As the reference genome is used in probe design for microarray technology and mapping short reads in next generation sequencing (NGS), this missing sequence could be a source of bias in functional genomic studies and variant analysis. One End Anchor (OEA) and/or orphan reads from paired-end sequencing have been used to identify novel sequences that are absent in reference genome. However, there is no study to investigate the distribution, evolution and functionality of those sequences in human populations. To systematically identify and study the missing common sequences (micSeqs), we extended the previous method by pooling OEA reads from large number of individuals and applying strict filtering methods to remove false sequences. The pipeline was applied to data from phase 1 of the 1000 Genomes Project. We identified 309 micSeqs that are present in at least 1% of the human population, but absent in the reference genome. We confirmed 76% of these 309 micSeqs by comparison to other primate genomes, individual human genomes, and gene expression data. Furthermore, we randomly selected fifteen micSeqs and confirmed their presence using PCR validation in 38 additional individuals. Functional analysis using published RNA-seq and ChIP-seq data showed that eleven micSeqs are highly expressed in human brain and three micSeqs contain transcription factor (TF) binding regions, suggesting they are functional elements. In addition, the identified micSeqs are absent in non-primates and show dynamic acquisition during primate evolution culminating with most micSeqs being present in Africans, suggesting some micSeqs may be important sources of human diversity. 76% of micSeqs were confirmed by a comparative genomics approach. Fourteen micSeqs are expressed in human brain or contain TF binding regions. Some micSeqs are primate-specific, conserved and may play a role in the evolution of primates.
Metcalf, B J; Chochua, S; Gertz, R E; Li, Z; Walker, H; Tran, T; Hawkins, P A; Glennen, A; Lynfield, R; Li, Y; McGee, L; Beall, B
2016-12-01
Our whole genome sequence (WGS) pipeline was assessed for accurate prediction of antimicrobial phenotypes. For 2316 invasive pneumococcal isolates recovered during 2015 we compared WGS pipeline data to broth dilution testing (BDT) for 18 antimicrobials. For 11 antimicrobials categorical discrepancies were assigned when WGS-predicted MICs and BDT MICs predicted different categorizations for susceptibility, intermediate resistance or resistance, ranging from 0.9% (tetracycline) to 2.9% (amoxicillin). For β-lactam antibiotics, the occurrence of at least four-fold differences in MIC ranged from 0.2% (meropenem) to 1.0% (penicillin), although phenotypic retesting resolved 25%-78% of these discrepancies. Non-susceptibility to penicillin, predicted by penicillin-binding protein types, was 2.7% (non-meningitis criteria) and 23.8% (meningitis criteria). Other common resistance determinants included mef (475 isolates), ermB (191 isolates), ermB + mef (48 isolates), tetM (261 isolates) and cat (51 isolates). Additional accessory resistance genes (tetS, tet32, aphA-3, sat4) were rarely detected (one to three isolates). Rare core genome mutations conferring erythromycin-resistance included a two-codon rplD insertion (rplD69-KG-70) and the 23S rRNA A2061G substitution (six isolates). Intermediate cotrimoxazole-resistance was associated with one or two codon insertions within folP (238 isolates) or the folA I100L substitution (38 isolates), whereas full cotrimoxazole-resistance was attributed to alterations in both genes (172 isolates). The two levofloxacin-resistant isolates contained parC and/or gyrA mutations. Of 11 remaining isolates with moderately elevated MICs to both ciprofloxacin and levofloxacin, seven contained parC or gyrA mutations. The two rifampin-resistant isolates contained rpoB mutations. WGS-based antimicrobial phenotype prediction was an informative alternative to BDT for invasive pneumococci. Published by Elsevier Ltd.
Garcia, Laetitia G; Lemaire, Sandrine; Kahl, Barbara C; Becker, Karsten; Proctor, Richard A; Tulkens, Paul M; Van Bambeke, Françoise
2012-12-01
Phagocytosed methicillin-resistant Staphylococcus aureus (MRSA) are susceptible to β-lactams because of an acid-induced conformational change of penicillin-binding protein (PBP) 2a within phagolysosomes. We have examined whether this mechanism applies to menD and hemB small-colony variants (SCVs) of the COL MRSA strain, using cloxacillin, meropenem, doripenem, and vancomycin as comparator. Intracellularly, the change in cfu from post-phagocytosis inoculum was measured after 24 h of incubation with antibiotics combined or not with N-acetylcysteine (NAC; oxidant species scavenger); the relative potency (C(s)) was calculated from the Hill equation of concentration-response curves. Extracellularly, the effect of a pre-incubation with H(2)O(2) was determined on MICs and killing at pH 7.4 and 5.5. Intracellularly, the β-lactam C(s) was similar for the COL strain and the hemB mutant and not modified or slightly decreased (2- to 16-fold) by NAC. In contrast, the C(s) was 100- to 900-fold lower for the menD mutant, but similar to that for the COL strain when NAC was present. Extracellularly, β-lactam MICs were markedly reduced at pH 5.5 for the parental strain and the haemin-supplemented hemB mutant, with limited additional effect of pre-incubation with H(2)O(2). In contrast, MICs remained elevated at pH 5.5 for the menD mutant (supplemented with menadione sodium bisulphite or not), but were 7-10 dilutions lower after pre-incubation with H(2)O(2). Vancomycin MICs were unaltered in all conditions, with no marked effect of NAC on C(s). Cooperation between acidic pH and oxidant species confers high potency to β-lactams against intracellular forms of menD SCVs of MRSA.
Kale-Pradhan, Pramodini B.; Mariani, Nicholas P.; Wilhelm, Sheila M.; Johnson, Leonard B.
2015-01-01
Background: Vancomycin is used to treat serious infections caused by methicillin-resistant Staphylococcus aureus (MRSA). It is unclear whether MRSA isolates with minimum inhibitory concentration (MIC) 1.5 to 2 µg/mL are successfully treated with vancomycin. Objective: Evaluate vancomycin failure rates in MRSA bacteremia with an MIC <1.5 versus ≥1.5 µg/mL, and MIC ≤1 versus ≥2 µg/mL. Methods: A literature search was conducted using MESH terms vancomycin, MRSA, bacteremia, MIC, treatment and vancomycin failure to identify human studies published in English. All studies of patients with MRSA bacteremia treated with vancomycin were included if they evaluated vancomycin failures, defined as mortality, and reported associated MICs determined by E-test. Study sample size, vancomycin failure rates, and corresponding MIC values were extracted and analyzed using RevMan 5.2.5. Results: Thirteen studies including 2955 patients met all criteria. Twelve studies including 2861 patients evaluated outcomes using an MIC cutoff of 1.5 µg/mL. A total of 413 of 1186 (34.8%) patients with an MIC <1.5 and 531 of 1675 (31.7%) patients with an MIC of ≥1.5 µg/mL experienced treatment failure (odds ratio = 0.72, 95% confidence interval = 0.49-1.04, P = .08). Six studies evaluated 728 patients using the cutoffs of ≤1 and ≥2 µg/mL. A total of 384 patients had isolates with MIC ≤1 µg/mL, 344 had an MIC ≥2 µg/mL. Therapeutic failure occurred in 87 and 102 patients, respectively (odds ratio = 0.61, 95% confidence interval = 0.34-1.10, P = .10). As heterogeneity between the studies was high, a random-effects model was used. Conclusion: Vancomycin MIC may not be an optimal sole indicator of vancomycin treatment failure in MRSA bacteremia.
Ozseven, Ayşe Gül; Sesli Çetin, Emel; Ozseven, Levent
2012-07-01
In recent years, owing to the presence of multi-drug resistant nosocomial bacteria, combination therapies are more frequently applied. Thus there is more need to investigate the in vitro activity of drug combinations against multi-drug resistant bacteria. Checkerboard synergy testing is among the most widely used standard technique to determine the activity of antibiotic combinations. It is based on microdilution susceptibility testing of antibiotic combinations. Although this test has a standardised procedure, there are many different methods for interpreting the results. In many previous studies carried out with multi-drug resistant bacteria, different rates of synergy have been reported with various antibiotic combinations using checkerboard technique. These differences might be attributed to the different features of the strains. However, different synergy rates detected by checkerboard method have also been reported in other studies using the same drug combinations and same types of bacteria. It was thought that these differences in synergy rates might be due to the different methods of interpretation of synergy test results. In recent years, multi-drug resistant Acinetobacter baumannii has been the most commonly encountered nosocomial pathogen especially in intensive-care units. For this reason, multidrug resistant A.baumannii has been the subject of a considerable amount of research about antimicrobial combinations. In the present study, the in vitro activities of frequently preferred combinations in A.baumannii infections like imipenem plus ampicillin/sulbactam, and meropenem plus ampicillin/sulbactam were tested by checkerboard synergy method against 34 multi-drug resistant A.baumannii isolates. Minimum inhibitory concentration (MIC) values for imipenem, meropenem and ampicillin/sulbactam were determined by the broth microdilution method. Subsequently the activity of two different combinations were tested in the dilution range of 4 x MIC and 0.03 x MIC in 96-well checkerboard plates. The results were obtained separately using the four different interpretation methods frequently preferred by researchers. Thus, it was aimed to detect to what extent the rates of synergistic, indifferent and antagonistic interactions were affected by different interpretation methods. The differences between the interpretation methods were tested by chi-square analysis for each combination used. Statistically significant differences were detected between the four different interpretation methods for the determination of synergistic and indifferent interactions (p< 0.0001). Highest rates of synergy were observed with both combinations by the method that used the lowest fractional inhibitory concentration index of all the non-turbid wells along the turbidity/non-turbidity interface. There was no statistically significant difference between the four methods for the detection of antagonism (p> 0.05). In conclusion although there is a standard procedure for checkerboard synergy testing it fails to exhibit standard results owing to different methods of interpretation of the results. Thus, there is a need to standardise the interpretation method for checkerboard synergy testing. To determine the most appropriate method of interpretation further studies investigating the clinical benefits of synergic combinations and additionally comparing the consistency of the results obtained from the other standard combination tests like time-kill studies, are required.
Bhuiyan, Bahar Uddin; Rahman, Motiur; Miah, Mohammed Ruhul Amin; Nahar, Shamsun; Islam, Nazrul; Ahmed, Monira; Rahman, Kazi Masihur; Albert, M. John
1999-01-01
Commercial sex workers (CSWs) serve as the most important reservoir of sexually transmitted diseases (STD), including gonorrhea. Periodic monitoring of the antimicrobial susceptibility profile of Neisseria gonorrhoeae in a high-risk population provides essential clues regarding the rapidly changing pattern of antimicrobial susceptibilities. A study concerning the prevalence of gonococcal infection among CSWs was conducted in Bangladesh. The isolates were examined with regards to their antimicrobial susceptibility to, and the MICs of, penicillin, tetracycline, ciprofloxacin, cefuroxime, ceftriaxone, and spectinomycin by disk diffusion and agar dilution methods. The total plasmid profile of the isolates was also analyzed. Of the 224 CSWs, 94 (42%) were culture positive for N. gonorrhoeae. There was a good correlation between the results of the disk diffusion and agar dilution methods. Some 66% of the isolates were resistant to penicillin, and 34% were moderately susceptible to penicillin. Among the resistant isolates, 23.4% were penicillinase-producing N. gonorrhoeae (PPNG). 60.6% of the isolates were resistant and 38.3% were moderately susceptible to tetracycline, 17.5% were tetracycline-resistant N. gonorrhoeae, 11.7% were resistant and 26.6% had reduced susceptibility to ciprofloxacin, 2.1% were resistant and 11.7% had reduced susceptibility to cefuroxime, and 1% were resistant to ceftriaxone. All PPNG isolates contained a 3.2-MDa African type of plasmid, and a 24.2-MDa conjugative plasmid was present in 34.1% of the isolates. Since quinolones such as ciprofloxacin are recommended as the first line of therapy for gonorrhea, the emergence of significant resistance to ciprofloxacin will limit the usefulness of this drug for treatment of gonorrhea in Bangladesh. PMID:10074537
Zorić, Nataša; Kopjar, Nevenka; Kraljić, Klara; Oršolić, Nada; Tomić, Siniša; Kosalec, Ivan
2016-09-01
Olive leaf extract is characterized by a high content of polyphenols (oleuropein, hydroxytyrosol and their derivatives), which is associated with its therapeutic properties. The objective of the present research was to evaluate the antifungal activity of olive leaf extract against Candida albicans ATCC 10231 and C. dubliniensis CBS 7987 strains. Minimum inhibitory concentrations (MIC) of the extract were determined by several in vitro assays. The extract showed a concentration depended effect on the viability of C. albicans with MIC value of 46.875 mg mL-1 and C. dubliniensis with MIC value 62.5 mg mL-1. Most sensitive methods for testing the antifungal effect of the extracts were the trypan blue exclusion method and fluorescent dye exclusion method while MIC could not be determined by the method according to the EUCAST recommendation suggesting that herbal preparations contain compounds that may interfere with this susceptibility testing. The fluorescent dye exclusion method was also used for the assessment of morphological changes in the nuclei of treated cells. According to the obtained results, olive leaf extract is less effective against the tested strains than hydroxytyrosol, an olive plant constituent tested in our previous study.
Pfaller, Michael A; Messer, Shawn A; Rhomberg, Paul R; Jones, Ronald N; Castanheira, Mariana
2016-10-01
The objective of this study was to evaluate the in vitro activity of CD101, a novel echinocandin with a long serum elimination half-life, and comparator (anidulafungin and caspofungin) antifungal agents against a collection of Candida and Aspergillus spp. isolates. CD101 and comparator agents were tested against 106 Candida spp. and 67 Aspergillus spp. isolates, including 27 isolates of Candida harbouring fks hotspot mutations and 12 itraconazole non-WT Aspergillus, using CLSI and EUCAST reference susceptibility broth microdilution (BMD) methods. Against WT and fks mutant Candida albicans, Candida glabrata and Candida tropicalis, the activity of CD101 [MIC90 = 0.06, 0.12 and 0.03 mg/L, respectively (CLSI method values)] was comparable to that of anidulafungin (MIC90 = 0.03, 0.12 and 0.03 mg/L, respectively) and caspofungin (MIC90 = 0.12, 0.25 and 0.12 mg/L, respectively). WT Candida krusei isolates were very susceptible to CD101 (MIC = 0.06 mg/L). CD101 activity (MIC50/90 = 1/2 mg/L) was comparable to that of anidulafungin (MIC50/90 = 2/2 mg/L) against Candida parapsilosis. CD101 (MIC mode = 0.06 mg/L for C. glabrata) was 2- to 4-fold more active against fks hotspot mutants than caspofungin (MIC mode = 0.5 mg/L). CD101 was active against Aspergillus fumigatus, Aspergillus terreus, Aspergillus niger and Aspergillus flavus (MEC90 range = ≤0.008-0.03 mg/L). The essential agreement between CLSI and EUCAST methods for CD101 was 92.0%-100.0% among Candida spp. and 95.0%-100.0% among Aspergillus spp. The activity of CD101 is comparable to that of other members of the echinocandin class for the prevention and treatment of serious fungal infections. Similar results for CD101 activity versus Candida and Aspergillus spp. may be obtained with either CLSI or EUCAST BMD methods. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.
Salem, Mohamed Z M; Elansary, Hosam O; Ali, Hayssam M; El-Settawy, Ahmed A; Elshikh, Mohamed S; Abdel-Salam, Eslam M; Skalicka-Woźniak, Krystyna
2018-01-22
Cupressus macrocarpa Hartw and Corymbia citriodora (Hook.) K.D. Hill & L.A.S. Johnson, widely grown in many subtropical areas, are used for commercial purposes, such as in perfumery, cosmetics, and room fresheners. Their potential as a source of antimicrobial compounds may be useful in different applications. The chemical composition of essential oils (EOs) from C. macrocarpa branchlets and C. citriodora leaves was analyzed by using gas chromatography-mass spectrometry (GC/MS). Antibacterial and antifungal activities were assessed by the micro-dilution method to determine the minimum inhibitory concentrations (MICs), and minimum fungicidal concentrations (MFCs), and minimum bactericidal concentrations (MBCs). Further, the antioxidant capacity of the EOs was determined via 2,2'-diphenypicrylhydrazyl (DPPH) and β-carotene-linoleic acid assays. Terpinen-4-ol (23.7%), α-phellandrene (19.2%), α-citronellol (17.3%), and citronellal were the major constituents of EO from C. macrocarpa branchlets, and α-citronellal (56%), α-citronellol (14.7%), citronellol acetate (12.3%), isopulegol, and eucalyptol were the primary constituents of EO from C. citriodora leaves. Antibacterial activity with MIC values of EO from C. citriodora leaves was ranged from 0.06 mg/mL to 0.20 mg/mL, and MBC from 0.12 mg/mL against E. coli to 0.41 mg/mL. EO from C. macrocarpa branchlets showed less activity against bacterial strains. The MIC values against tested fungi of the EO from C. citriodora ranged from 0.11 to 0.52 mg/mL while for EO from C. macrocarpa from 0.29 to 3.21 mg/mL. The MIC and MFC values of EOs against P. funiculosum were lower than those obtained from Ketoconazole (KTZ) (0.20; 0.45; 0.29 and 0.53 mg/mL, respectively, vs 0.21 and 0.41 mg/mL. Antioxidant activity of the EO from C. citriodora was higher than that of the positive control but lower than that of the standard butylhydroxytoluene (BHT) (IC 50 = 5.1 ± 0.1 μg/mL). The results indicate that the EO from Egyptian trees such as C. citriodora leaves may possesses strong bactericidal and fungicidal activities and can be used as an agrochemical for controlling plant pathogens and in human disease management which will add crop additive value.
Zerva, L; Biedenbach, D J; Jones, R N
1996-01-01
A collection of 300 Haemophilus influenzae clinical strains was used to assess in vitro susceptibility to carbapenems (meropenem, imipenem) by MIC and disk diffusion methods and to compare disk diffusion test results with two potencies of ampicillin disks (2 and 10 micrograms). The isolates included ampicillin-susceptible or- intermediate (167 strains), beta-lactamase-positive (117 strains), and beta-lactamase-negative ampicillin-resistant (BLNAR; 16 strains) organisms. Disk diffusion testing was performed with 10-micrograms meropenem disks from two manufacturers. Meropenem was highly active against H. influenzae strains (MIC50, 0.06 microgram/ml; MIC90, 0.25 microgram/ml; MIC50 and MIC90, MICs at which 50 and 90%, respectively, of strains are inhibited) and was 8- to 16-fold more potent than imipenem (MIC50, 1 microgram/ml; MIC90, 2 micrograms/ml). Five non-imipenem-susceptible strains were identified (MIC, 8 micrograms/ml), but the disk diffusion test indicated susceptibility (zone diameters, 18 to 21 mm). MIC values of meropenem, doxycycline, ceftazidime, and ceftriaxone for BLNAR strains were two- to fourfold greater than those for other strains. The performance of both meropenem disks was comparable and considered acceptable. A single susceptible interpretive zone diameter of > or = 17 mm (MIC, < = or 4 micrograms/ml) was proposed for meropenem. Testing with the 2-micrograms ampicillin disk was preferred because of an excellent correlation between MIC values and zone diameters (r = 0.94) and superior interpretive accuracy with the susceptible criteria at > or = 17 mm (MIC, < or = 1 microgram/ml) and the resistant criteria at < or = 13 mm (MIC, > or = 4 micrograms/ml). Among the BLNAR strains tested, 81.3% were miscategorized as susceptible or intermediate when the 10-micrograms ampicillin disk was used, while the 2-micrograms disk produced only minor interpretive errors (12.5%). Use of these criteria for testing H. influenzae against meropenem and ampicillin should maximize reference test and standardized disk diffusion test performance with the Haemophilus Test Medium. The imipenem disk diffusion test appears compromised and should be used with caution for detecting strains for which imipenem MICs are elevated. PMID:8818892
Antioxidant and antibacterial activity of Thai medicinal plant (Capparis micracantha)
NASA Astrophysics Data System (ADS)
Laoprom, Nonglak; Sangprom, Araya; Chaisri, Patcharaporn
2018-04-01
This work aims to study the antioxidants capacity, Total phenolic content and antibacterial activity of Thai medicinal plant for the treatment of dermatitis-related inflammations, Capparis micracantha. Crude extract from stem of Thai medicinal plant was extracted with hexane, ethyl acetate, methanol and water. The antioxidant activities (IC50) was evaluated with 1,1-diphenyl-1-princylhydrazyl (DPPH) radical scavenging assay. Total phenolic content (TPC) was determined by using Folin-Ciocalteu method. Bacterial activities was tested with four human pathogenic bacteria; Escherichia coli, Listeria monocytogenes, Staphylococcus aureus and Stapylococcus epidermidis by using agar diffusion assay. Minimum Inhibition Concentration (MIC) and Minimum Bactericidal Concentration (MBC) were also determined by broth dilution method. For antioxidant activity, the methanol fraction from stem extract showed the highest activity with an IC50 of 2.4 mg/ml. Water extraction was the high TPC with 10,136.9 mg GAE/g dry weight. Methanol and water extraction showed the remarkable inhibition of bacterial growth was shown against L. monocytogenes and S. aureus. In addition, ethyl acetate, methanol and water fraction from stem extract against S. epidermidis. The present finding suggests that the extract of C. micracantha could be used to discover bioactive natural products that may serve as pharmaceutical products.
Gbadamosi, I T; Egunyomi, A
2012-01-01
In spite of the therapeutic importance of Aristolochia bracteolata Linn. in Nigerian ethnomedicine, it is largely collected from the wild. Owing to the acclaimed potency of the plant and the difficulty in treating candidiasis, the anticandidal activity and in vitro propagation of the plant were investigated. Phytochemical screening and preparation of extracts of the roots were done using standard procedures. Clinical isolates of Candida albicans were screened against extracts and essential oil of Aristolochia bracteolata root using agar-well diffusion method. Minimum Inhibitory Concentration (MIC) of the ethanol extract was determined using broth dilution method. The nodal cuttings of A. bracteolata were cultured on Murashige and Skoog (MS) basal media. A. bracteolata contained alkaloids, saponins and cardenolides. The water extract was inactive on all isolates. The ethanol extract (500 mg/ml) and essential oil (undiluted) exhibited anticandidal activity on 9 out of 10 isolates at 10(1) - 10(6) cfu/ml inoculums concentration. Green growth and callus formation were observed in explants cultured on MS basal media after 30 days. A. bracteolata could be a source of anticandidal phytomedicine and the in vitro propagation confirmed its sustainability as anticandidal agent.
Effects of Vernonia cinerea less methanol extract on growth and morphogenesis of Candida albicans.
Latha, L Yoga; Darah, I; Jain, K; Sasidharan, S
2011-05-01
Vernonia (V.) cinerea Less (Asteraceae) have many therapeutic uses in the practice of traditional medicine. The methanol extract of V cinerea, was screened for antiyeast activity against pathogenic yeast Candida albicans. The antimicrobial activities were studied by using disc diffusion method and broth dilution method. The effect of the extract on the growth profile of the yeast was also examined via time-kill assay. In addition to the fungicidal effects study, microscopic observations using Scanning (SEM) electron microscopy, Transmission (TEM) electron microscopy and light microscopy (LM) were done to determine the major alterations in the microstructure of Candida (C) albicans. The extract showed a favorable antimicrobial activity against C. albicans with a minimum inhibitory concentration (MIC) value of 1.56 mg/mL. Time-kill assay suggested that Vernonia cinerea extract had completely inhibited Candida albicans growth and also exhibited prolonged antiyeast activity. The main abnormalities notes from these microscopic observations were the alterations in morphology and complete collapse of the yeast cells after 36 h of exposure to the extract. The extract of Vernonia cinerea may be an effective agent to treat the Candida albicans infection.
2014-01-01
Background Endophytes, which reside in plant tissues, have the potential to produce novel metabolites with immense benefits for health industry. Cytotoxic and antimicrobial activities of endophytic fungi isolated from Bacopa monnieri (L.) Pennell were investigated. Methods Endophytic fungi were isolated from the Bacopa monnieri. Extracts from liquid cultures were tested for cytotoxicity against a number of cancer cell lines using the MTT assay. Antimicrobial activity was determined using the micro dilution method. Results 22% of the examined extracts showed potent (IC50 of <20 μg/ml) cytotoxic activity against HCT-116 cell line. 5.5%, 11%, 11% of the extracts were found to be cytotoxic for MCF-7, PC-3, and A-549 cell lines respectively. 33% extracts displayed antimicrobial activity against at least one test organism with MIC value 10–100 μg/ml. The isolate B9_Pink showed the most potent cytotoxic activity for all the cell lines examined and maximum antimicrobial activity against the four pathogens examined which was followed by B19. Conclusions Results indicated the potential for production of bioactive agents from endophytes of Bacopa monnieri. PMID:24512530
In Vitro Anti-Malassezia Activity of Castanea crenata Shell and Oil-Soluble Glycyrrhiza Extracts.
Han, Song Hee; Hur, Min Seok; Kim, Min Jung; Jung, Won Hee; Park, Minji; Kim, Jeong Hwan; Shin, Hong Ju; Choe, Yong Beom; Ahn, Kyu Joong; Lee, Yang Won
2017-06-01
A new shampoo with anti- Malassezia properties obtained from various plants is required to provide seborrheic dermatitis patients with a wider range of treatment options. The aim of this study was to obtain in vitro susceptibility profiles of Malassezia restricta and M. globosa , the most important pathogenic organisms in the development of seborrheic dermatitis, to the plant extracts used in commercial anti-dandruff shampoos. Minimal inhibitory concentrations (MICs) were determined for eight candidate plant extracts and two plant-derived natural products diluted with Leeming and Notman medium to final concentrations of 0.016 to 1 mg/ml. Castanea crenata shell, Camellia sinensis leaf, and oil-soluble Glycyrrhiza extracts presented relatively low MIC values (≤0.5 mg/ml) against both strains. The C. crenata shell and oil-soluble Glycyrrhiza extracts demonstrated especially high anti-Malassezia activity, suggesting their potential use in the treatment of seborrheic dermatitis. The extracts also showed fungistatic activity against other common facultative pathogenic yeasts, Cryptococcus and Candida . C. crenata shell and oil-soluble Glycyrrhiza extracts could potentially be used as active ingredients in anti-seborrheic and anti-dandruff shampoo formulations. They could be helpful for repeated treatments and regular prophylaxis of scalp seborrheic dermatitis.
Potential application of Northern Argentine propolis to control some phytopathogenic bacteria.
Ordóñez, R M; Zampini, I C; Moreno, M I Nieva; Isla, M I
2011-10-20
The antimicrobial activity of samples of Northern Argentine propolis (Tucumán, Santiago del Estero and Chaco) against phytopathogenic bacteria was assessed and the most active samples were identified. Minimal inhibitory concentration (MIC) values were determined by agar macrodilution and broth microdilution assays. Strong antibacterial activity was detected against Erwinia carotovora spp carotovora CECT 225, Pseudomonas syringae pvar tomato CECT 126, Pseudomonas corrugata CECT 124 and Xanthomonas campestris pvar vesicatoria CECT 792. The most active propolis extract (Tucumán, T1) was selected to bioguide isolation and identified for antimicrobial compound (2',4'-dihydroxychalcone). The antibacterial chalcone was more active than the propolis ethanolic extract (MIC values of 0.5-1 μg ml(-1) and 9.5-15 μg ml(-1), respectively). Phytotoxicity assays were realized and the propolis extracts did not retard germination of lettuce seeds or the growth of onion roots. Propolis solutions applied as sprays on tomato fruits infected with P. syringae reduced the severity of disease. Application of the Argentine propolis extracts diluted with water may be promising for the management of post harvest diseases of fruits. Copyright © 2010 Elsevier GmbH. All rights reserved.
Inhibition of the NorA multi-drug transporter by oxygenated monoterpenes.
Coêlho, Mayara Ladeira; Ferreira, Josie Haydée Lima; de Siqueira Júnior, José Pinto; Kaatz, Glenn W; Barreto, Humberto Medeiros; de Carvalho Melo Cavalcante, Ana Amélia
2016-10-01
The aim of this study was to investigate intrinsic antimicrobial activity of three monoterpenes nerol, dimethyl octanol and estragole, against bacteria and yeast strains, as well as, investigate if these compounds are able to inhibit the NorA efflux pump related to fluoroquinolone resistance in Staphylococcus aureus. Minimal inhibitory concentrations (MICs) of the monoterpenes against Staphylococcus aureus, Escherichia coli and Candida albicans strains were determined by micro-dilution assay. MICs of the norfloxacin against a S. aureus strain overexpressing the NorA protein were determined in the absence or in the presence of the monoterpenes at subinhibitory concentrations, aiming to verify the ability of this compounds act as efflux pump inhibitors. The monoterpenes were inactive against S. aureus however the nerol was active against E. coli and C. albicans. The addition of the compounds to growth media at sub-inhibitory concentrations enhanced the activity of norfloxacin against S. aureus SA1199-B. This result shows that bioactives tested, especially the nerol, are able to inhibit NorA efflux pump indicating a potential use as adjuvants of norfloxacin for therapy of infections caused by multi-drug resistant S. aureus strains. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shi, Jun-yan; Xu, Ying-chun; Shi, Yi; Lü, Huo-xiang; Liu, Yong; Zhao, Wang-sheng; Chen, Dong-mei; Xi, Li-yan; Zhou, Xin; Wang, He; Guo, Li-na
2010-10-01
During recent years, the incidence of serious infections caused by opportunistic fungi has increased dramatically due to alterations of the immune status of patients with hematological diseases, malignant tumors, transplantations and so forth. Unfortunately, the wide use of triazole antifungal agents to treat these infections has lead to the emergence of Aspergillus spp. resistant to triazoles. The present study was to assess the in vitro activities of five antifungal agents (voriconazole, itraconazole, posaconazole, amphotericin B and caspofungin) against different kinds of Aspergillus spp. that are commonly encountered in the clinical setting. The agar-based Etest MIC method was employed. One hundred and seven strains of Aspergillus spp. (5 species) were collected and prepared according to Etest Technique Manuel. Etest MICs were determined with RPMI agar containing 2% glucose and were read after incubation for 48 hours at 35°C. MIC(50), MIC(90) and MIC range were acquired by Whonet 5.4 software. The MIC(90) of caspofungin against A. fumigatus, A. flavus and A. nidulans was 0.094 µg/ml whereas the MIC(90) against A. niger was 0.19 µg/ml. For these four species, the MIC(90) of caspofungin was the lowest among the five antifungal agents. For A. terrus, the MIC(90) of posaconazole was the lowest. For A. fumigatus and A. flavus, the MIC(90) in order of increasing was caspofungin, posaconazole, voriconazole, itraconazole, and amphotericin B. The MIC of amphotericin B against A. terrus was higher than 32 µg/ml in all 7 strains tested. The in vitro antifungal susceptibility test shows the new drug caspofungin, which is a kind of echinocandins, has good activity against the five species of Aspergillus spp. and all the triazoles tested have better in vitro activity than traditional amphotericin B.
Biswas, Priyanka Paul; Dey, Sangeeta; Sen, Aninda; Adhikari, Luna
2016-01-01
Background: The aim of this study was to find out the correlation between presence of virulence (gelatinase [gel E], enterococcal surface protein [esp], cytolysin A [cyl A], hyaluronidase [hyl], and aggregation substance [asa1]) and vancomycin-resistant genes (van A and van B) in enterococci, with their phenotypic expression. Materials and Methods: A total of 500 isolates (250 each clinical and fecal) were processed. Enterococci were isolated from various clinical samples and from fecal specimens of colonized patients. Various virulence determinants namely asa1, esp, hyl, gel E, and cyl were detected by phenotypic methods. Minimum inhibitory concentration (MIC) of vancomycin was determined by agar dilution method. Multiplex polymerase chain reaction (PCR) was used to detect the presence of virulence and van genes. Results: Out of all the samples processed, 12.0% (60/500) isolates carried van A or van B genes as confirmed by MIC test and PCR methods. Genes responsible for virulence were detected by multiplex PCR and at least one of the five was detected in all the clinical vancomycin-resistant enterococci (VRE) and vancomycin-sensitive enterococci (VSE). gel E, esp, and hyl genes were found to be significantly higher in clinical VRE. Of the fecal isolates, presence of gel E, esp, and asa1 was significantly higher in VRE as compared to VSE. The presence of hyl gene in the clinical VRE was found to be statistically significant (P = 0.043) as against the fecal VRE. Correlation between the presence of virulence genes and their expression as detected by phenotypic tests showed that while biofilm production was seen in 61.1% (22/36) of clinical VRE, the corresponding genes, i.e., asa1 and esp were detected in 30.5% (11/36) and 27.8% (10/36) of strains only. Conclusion: Enterococcus faecium isolates were found to carry esp gene, a phenomenon that has been described previously only for Enterococcus faecalis, but we were unable to correlate the presence of esp with their capacity to form biofilms. PMID:27013840
Hosseiny, Hossein
2017-01-01
The aim of the study was to examine antibacterial properties of microemulsion structure produced from Aloe vera var. littoralis extract as a new tool of nanoscale drug-like materials. Aloe vera var. littoralis (A. littoralis) extract was prepared by distillation method. A nonocarrier structure in the microemulsion system was prepared from the extract. Serial concentrations were prepared from 8 mg/mL extract and the nonocarrier containing 0.1 mg/mL pure extract and were evaluated by a disk diffusion method for 35 Salmonella clinical isolates. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined by microbroth dilution assay using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) method by an enzyme-linked immunosorbent assay(ELISA) Microplate Reader apparatus. Antioxidant activity of the extract was determined by measuring the ferric reducing ability of plasma (FRAP) assay. From 35 clinical isolates of Salmonella, 17 isolates—including resistant isolates of S.E.1103 and S.E.49—had a zone of inhibition (ZI) of 7 to 32 mm in 0.007 mg/mL of the extract. S.E.76 isolate exposed to 30 µg/mL ceftazidime disk had a ZI of 12 mm but had 10 mm in 7µg/mL of A. littoralis extract. The inhibitory effect of a nanocarrier at a concentration of 25 µg/mL by 20 mm ZI was comparable by the ceftazidime (30 µg/mL) effect. MIC50 was 0.25 mg/mL and MBC50 was 0.5 mg/mL by MTT method for the extract. It was shown that A.littoralis extract had antioxidant activity of 31.67 µM/mg that could be increased based on concentration. It was concluded that the nanocarrier had a significant effect on the studied isolates in comparison with ordinary antibiotics and had potential for use as a natural antioxidant and antimicrobial material in complementary medicine. PMID:28758958
Mobasheri, Nasrin; Karimi, Mehrdad; Hamedi, Javad
2018-06-05
New methods to determine antimicrobial susceptibility of bacterial pathogens especially the minimum inhibitory concentration (MIC) of antibiotics have great importance in pharmaceutical industry and treatment procedures. In the present study, the MIC of several antibiotics was determined against some pathogenic bacteria using macrodilution test. In order to accelerate and increase the efficiency of culture-based method to determine antimicrobial susceptibility, the possible relationship between the changes in some physico-chemical parameters including conductivity, electrical potential difference (EPD), pH and total number of test strains was investigated during the logarithmic phase of bacterial growth in presence of antibiotics. The correlation between changes in these physico-chemical parameters and growth of bacteria was statistically evaluated using linear and non-linear regression models. Finally, the calculated MIC values in new proposed method were compared with the MIC derived from macrodilution test. The results represent significant association between the changes in EPD and pH values and growth of the tested bacteria during the exponential phase of bacterial growth. It has been assumed that the proliferation of bacteria can cause the significant changes in EPD values. The MIC values in both conventional and new method were consistent to each other. In conclusion, cost and time effective antimicrobial susceptibility test can be developed based on monitoring the changes in EPD values. The new proposed strategy also can be used in high throughput screening of biocompounds for their antimicrobial activity in a relatively shorter time (6-8 h) in comparison with the conventional methods.
Anti-Candida albicans effectiveness of citral and investigation of mode of action.
Lima, Igara Oliveira; de Medeiros Nóbrega, Fernanda; de Oliveira, Wylly Araújo; de Oliveira Lima, Edeltrudes; Albuquerque Menezes, Everardo; Cunha, Francisco Afrânio; Formiga Melo Diniz, Margareth de Fátima
2012-12-01
Candidiasis is a mycosis caused by Candida species, which is of clinical importance due to the increase in resistant yeasts. Candida infection has been a serious health problem due to the inappropriate use of antibiotics. Therefore, it is necessary to study molecules with an antifungal action. Citral is a monoterpene with known pharmacological properties, including antimicrobial action. The aim of this work was to determine the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of citral and the probable mode of action. The MIC of citral was determined by the broth microdilution method using Sabouraud dextrose medium. Additionally, the interference of citral in cell wall (sorbitol assay) and the binding of citral to ergosterol and cholesterol were studied, carried out by broth microdilution method. The MIC and MFC of citral were 512 and 1024 µg/mL, respectively. The MIC of amphotericin B was 1 µg/mL. The mechanism of action did not involve either the cell wall or ergosterol. However, the presence of cholesterol increased the MIC of citral to 1024 µg/mL, indicating there is some interaction between citral and cholesterol. Amphotericin B was used as the positive control, and it showed a high MIC in the presence of ergosterol (32 µg/mL), while in the presence of cholesterol MIC increased to 4 µg/mL. Citral inhibits the growth of C. albicans. The probable mechanism of action did not involve the cell wall or ergosterol. Citral is able to interact with cholesterol. More studies are necessary to describe their effects completely.
In Vitro Susceptibility Testing Methods for Caspofungin against Aspergillus and Fusarium Isolates
Arikan, Sevtap; Lozano-Chiu, Mario; Paetznick, Victor; Rex, John H.
2001-01-01
We investigated the relevance of prominent reduction in turbidity macroscopically (MIC) and formation of aberrant hyphal tips microscopically (minimum effective concentration; MEC) in measuring the in vitro activity of caspofungin against Aspergillus and Fusarium. Caspofungin generated low MICs and MECs against Aspergillus, but not for Fusarium. While MICs increased inconsistently when the incubation time was prolonged, MEC appeared as a stable and potentially relevant endpoint in testing in vitro caspofungin activity. PMID:11120990
Paterna, A; Tatay-Dualde, J; Amores, J; Prats-van der Ham, M; Sánchez, A; de la Fe, C; Contreras, A; Corrales, J C; Gómez-Martín, Á
2016-08-01
The minimum inhibitory concentration (MIC) and minimum mycoplasmacidal concentration (MMC) of 17 antimicrobials against 41 Spanish caprine isolates of Mycoplasma mycoides subsp. capri (Mmc) obtained from different specimens (milk, external auricular canal and semen) were determined using a liquid microdilution method. For half of the isolates, the MIC was also estimated for seven of the antimicrobials using an epsilometric test (ET), in order to compare both methods and assess the validity of ET. Mutations in genes gyrA, gyrB, parC and parE conferring fluoroquinolone resistance, which have been recently described in Mmc, were investigated using PCR. The anatomical origin of the isolate had no effect on its antimicrobial susceptibility. Moxifloxacin and doxycycline had the lowest MIC values. The rest of the fluoroquinolones studied (except norfloxacin), together with tylosin and clindamycin, also had low MIC values, although the MMC obtained for clindamycin was higher than for the other antimicrobials. For all the aminoglycosides, spiramycin and erythromycin, a notable level of resistance was observed. The ET was in close agreement with broth microdilution at low MICs, but not at intermediate or high MICs. The analysis of the genomic sequences revealed the presence of an amino acid substitution in codon 83 of the gene gyrA, which has not been described previously in Mmc. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mirza, Hasan Cenk; Sancak, Banu; Gür, Deniz
2015-10-01
There are limited data regarding the prevalence of vancomycin-intermediate Staphylococcus aureus (VISA)/heterogeneous VISA (hVISA) among pediatric population. Our objective was to determine the distribution of vancomycin and daptomycin minimum inhibitory concentrations (MICs) and explore the phenomenon of vancomycin MIC creep and the VISA/hVISA prevalence among the methicillin-resistant Staphylococcus aureus (MRSA) strains belonging to pediatric population by population analysis profile-area under the curve (PAP-AUC) and Etest macromethod. Vancomycin and daptomycin susceptibilities of 94 pediatric isolates of MRSA were tested by broth microdilution (BMD) and Etest methods. To determine the prevalence of VISA/hVISA, Etest macromethod and PAP-AUC was performed on all isolates. All isolates were susceptible to vancomycin and daptomycin by both BMD and Etest methods. Twenty-eight (29.8%) isolates had vancomycin MICs of 2 μg/ml by BMD. No increase in vancomycin MICs was observed over time. There were no VISA among 94 MRSA tested but 20 (21.3%) hVISA isolates were identified by PAP-AUC. Results of Etest macromethod were compared to PAP-AUC. Etest macromethod was 60.0% sensitive and 90.5% specific. The hVISA isolates represented 53.6% of isolates with vancomycin MICs of 2 μg/ml. Also, 75% of hVISA isolates had vancomycin MICs of 2 μg/ml. To our knowledge, this is the first study investigating the prevalence of VISA/hVISA among MRSA isolated from pediatric patients by PAP-AUC method. Based on our findings, MRSA isolates, which have vancomycin MIC of 2 μg/ml can be investigated for the presence of hVISA. In this study, daptomycin showed potent activity against all isolates and may represent a therapeutic option for MRSA infections.