Dilution physics modeling: Dissolution/precipitation chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onishi, Y.; Reid, H.C.; Trent, D.S.
This report documents progress made to date on integrating dilution/precipitation chemistry and new physical models into the TEMPEST thermal-hydraulics computer code. Implementation of dissolution/precipitation chemistry models is necessary for predicting nonhomogeneous, time-dependent, physical/chemical behavior of tank wastes with and without a variety of possible engineered remediation and mitigation activities. Such behavior includes chemical reactions, gas retention, solids resuspension, solids dissolution and generation, solids settling/rising, and convective motion of physical and chemical species. Thus this model development is important from the standpoint of predicting the consequences of various engineered activities, such as mitigation by dilution, retrieval, or pretreatment, that can affectmore » safe operations. The integration of a dissolution/precipitation chemistry module allows the various phase species concentrations to enter into the physical calculations that affect the TEMPEST hydrodynamic flow calculations. The yield strength model of non-Newtonian sludge correlates yield to a power function of solids concentration. Likewise, shear stress is concentration-dependent, and the dissolution/precipitation chemistry calculations develop the species concentration evolution that produces fluid flow resistance changes. Dilution of waste with pure water, molar concentrations of sodium hydroxide, and other chemical streams can be analyzed for the reactive species changes and hydrodynamic flow characteristics.« less
Effects of dilution on elastohydrodynamic coating flow of an anti-HIV microbicide vehicle
NASA Astrophysics Data System (ADS)
Szeri, Andrew; Park, Su Chan; Tasoglu, Savas; Katz, David F.
2009-11-01
Elastohydrodynamic lubrication over soft substrates characterizes the drug delivery of anti-HIV topical microbicides carried in gel vehicles. These gels are under development to prevent HIV transmission into vulnerable vaginal mucosa during intercourse. Their effectiveness depends on completeness and durability of coating, as well as on the active ingredients. Here we investigate the influence of dilution by vaginal fluid on the coating flows that serve to protect the user. The effects of dilution by vaginal fluid simulant are assessed through rheological experiments at variable dilution of the gel vehicle. This involves determination of the way parameters in a Carreau model of a shear-thinning gel are modified by dilution. The changes in coating are determined from a computational model, based on dilution rheology measured in the laboratory. The elastohydrodynamic lubrication model of Szeri, et al. Physics of Fluids (2008) is supplemented with a convective-diffusive transport equation to handle dilution, and solved using a multi-step scheme in a moving domain.
Rheology of dilute suspensions of red blood cells: experimental and theoretical approaches
NASA Astrophysics Data System (ADS)
Drochon, A.
2003-05-01
Shear viscosity measurements with dilute suspensions of red blood cells are interpreted using a microrheological model that relates the bulk measurements to the physical properties of the suspended cells. It is thus possible to quantify the average deformability of a RBC population in terms of a mean value of the membrane shear elastic modulus E_s. The values obtained for normal cells are in good agreement with those given in the literature. The method allows to discriminate between normal and altered (diamide or glutaraldehyde treated) cells or pathological cells (scleroderma). The predictions of the microrheological model, based on analytic calculations, are also compared with the numerical results of Ramanujan and Pozrikidis (JFM 361, 1998) for dilute suspensions of capsules in simple shear flow.
2015-10-14
rate Kinetics •14 Species & 12 reactionsCombustion Model •Participating Media Discrete Ordinate Method •WSG model for CO2, H2O and SootRadiation Model...Inhibition of JP-8 Combustion Physical Acting Agents • Dilute heat • Dilute reactants Ex: water, nitrogen Chemical Acting Agents • Reduce flame...Release; distribution is unlimited 5 Overview of Reduced Kinetics Scheme for FM200 • R1: JP-8 + O2 => CO + CO2 + H2O • R2: CO + O2 <=> CO2 • R3: HFP + JP-8
Disposal of Industrial and Domestic Wastes: Land and Sea Alternatives.
1984-01-01
square kilometers. The rough classification of physical, chemical , and biological processes into near field versus far field and short term versus...contaminants by sedimentation is slowed. Chemical Precipitation and Dissolution During the few minutes of the initial dilution of a buoyant plume ...model. Time and space scales of physical, chemical , and biological processes often provide natural divisions in such modeling. Near -field and far-field
NASA Astrophysics Data System (ADS)
Di Dato, Mariaines; de Barros, Felipe P. J.; Fiori, Aldo; Bellin, Alberto
2018-03-01
Natural attenuation and in situ oxidation are commonly considered as low-cost alternatives to ex situ remediation. The efficiency of such remediation techniques is hindered by difficulties in obtaining good dilution and mixing of the contaminant, in particular if the plume deformation is physically constrained by an array of wells, which serves as a containment system. In that case, dilution may be enhanced by inducing an engineered sequence of injections and extractions from such pumping system, which also works as a hydraulic barrier. This way, the aquifer acts as a natural mixer, in a manner similar to the industrialized engineered mixers. Improving the efficiency of hydrogeological mixers is a challenging task, owing to the need to use a 3-D setup while relieving the computational burden. Analytical solutions, though approximated, are a suitable and efficient tool to seek the optimum solution among all possible flow configurations. Here we develop a novel physically based model to demonstrate how the combined spatiotemporal fluctuations of the water fluxes control solute trajectories and residence time distributions and therefore, the effectiveness of contaminant plume dilution and mixing. Our results show how external forcing configurations are capable of inducing distinct time-varying groundwater flow patterns which will yield different solute dilution rates.
Hou, Chang-Yu; Feng, Ling; Seleznev, Nikita; Freed, Denise E
2018-09-01
In this work, we establish an effective medium model to describe the low-frequency complex dielectric (conductivity) dispersion of dilute clay suspensions. We use previously obtained low-frequency polarization coefficients for a charged oblate spheroidal particle immersed in an electrolyte as the building block for the Maxwell Garnett mixing formula to model the dilute clay suspension. The complex conductivity phase dispersion exhibits a near-resonance peak when the clay grains have a narrow size distribution. The peak frequency is associated with the size distribution as well as the shape of clay grains and is often referred to as the characteristic frequency. In contrast, if the size of the clay grains has a broad distribution, the phase peak is broadened and can disappear into the background of the canonical phase response of the brine. To benchmark our model, the low-frequency dispersion of the complex conductivity of dilute clay suspensions is measured using a four-point impedance measurement, which can be reliably calibrated in the frequency range between 0.1 Hz and 10 kHz. By using a minimal number of fitting parameters when reliable information is available as input for the model and carefully examining the issue of potential over-fitting, we found that our model can be used to fit the measured dispersion of the complex conductivity with reasonable parameters. The good match between the modeled and experimental complex conductivity dispersion allows us to argue that our simplified model captures the essential physics for describing the low-frequency dispersion of the complex conductivity of dilute clay suspensions. Copyright © 2018 Elsevier Inc. All rights reserved.
Dundua, Alexander; Landfester, Katharina; Taden, Andreas
2014-11-01
Hydrophobic association and stimuli-responsiveness is a powerful tool towards water-based adhesives with strongly improved properties, which is demonstrated based on the example of hydrophobically modified alkali-soluble latexes (HASE) with modulated association. Their rheological properties are highly tunable due to the hydrophobic domains that act as physical crosslinking sites of adjustable interaction strength. Ethanol, propanol, and butanol are used as water-soluble model additives with different hydrophobicity in order to specifically target the association sites and impact the viscoelastic properties and stimuli-responsiveness. The rheological and mechanical property response upon dilution with water can be tailored, and dilution-resistant or even dilution-thickening systems are obtained. The investigations are of high importance for water-based adhesives, as our findings provide insight into general structure-property relationships to improve their setting behavior, especially upon contact with wet substrates. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Brunet, J L; Cozon, G; Sainte-Laudy, J; Boissel, J P; Delair, S; Peyramond, D
1997-10-01
By measuring the activation of different cell models (lymphocytes and lymphocytic subsets) in the presence of Candida albicans with flow cytometry reading, it is possible to show that successive dilutions of Candida albicans can lead to lymphocyte activation in abnormally-sensitized subjects. In a first trial, 10 subjects were tested in duplicate. The decrease of activity of the dilutions does not appear to be regular in relation to the progression of the dilutions. The activity of the dilutions wanes relatively rapidly with the first dilutions, then recurs later very distinctly, at the 6th dilution, then ebbs, then reappears in similar manner at the 9th, the 14th, and finally, the 19th dilution. Cell reactivity appears to differ depending on the subject. It can be represented through the calculated slope of the regression line, for each series of data. It therefore appears feasible to determine a threshold of reactivity and a scale of sensitivity, to make it possible to specify the degree of abnormal reactivity existing at a given time for a given subject. The constancy of the activity of the different dilutions tested, on 10 cultures of a single cell suspension, is especially well demonstrated in the second trial, showing unusually small standard deviations. Thus, the question arises as to the exact nature of the observed phenomenon and of its analysis from a physical-chemical point of view, with regard to the pharmacological effect of successive dilutions of Candida albicans.
Helicity moduli of three-dimensional dilute XY models
NASA Astrophysics Data System (ADS)
Garg, Anupam; Pandit, Rahul; Solla, Sara A.; Ebner, C.
1984-07-01
The helicity moduli of various dilute, classical XY models on three-dimensional lattices are studied with a view to understanding some aspects of the superfluidity of 4He in Vycor glass. A spinwave calculation is used to obtain the low-temperature helicity modulus of a regularly-diluted XY model. A similar calculation is performed for the randomly bond-diluted and site-diluted XY models in the limit of low dilution. A Monte Carlo simulation is used to obtain the helicity modulus of the randomly bond-diluted XY model over a wide range of temperature and dilution. It is found that the randomly diluted models do agree and the regularly diluted model does not agree with certain experimentally found features of the variation in superfluid fraction with coverage of 4He in Vycor glass.
Perspectives On Dilution Jet Mixing
NASA Technical Reports Server (NTRS)
Holdeman, J. D.; Srinivasan, R.
1990-01-01
NASA recently completed program of measurements and modeling of mixing of transverse jets with ducted crossflow, motivated by need to design or tailor temperature pattern at combustor exit in gas turbine engines. Objectives of program to identify dominant physical mechanisms governing mixing, extend empirical models to provide near-term predictive capability, and compare numerical code calculations with data to guide future analysis improvement efforts.
"Ultra High Dilution 1994" revisited 2015--the state of follow-up research.
Endler, P Christian; Schulte, Jurgen; Stock-Schroeer, Beate; Stephen, Saundra
2015-10-01
The "Ultra High Dilution 1994" project was an endeavour to take stock of the findings and theories on homeopathic extreme dilutions that were under research at the time in areas of biology, biophysics, physics and medicine. The project finally materialized into an anthology assembling contributions of leading scientists in the field. Over the following two decades, it became widely quoted within the homeopathic community and also known in other research communities. The aim of the present project was to re-visit and review the 1994 studies from the perspective of 2015. The original authors from 1994 or close laboratory colleagues were asked to contribute papers covering their research efforts and learnings in the period from 1994 up to 2015. These contributions were edited and cross-referenced, and a selection of further contributions was added. About a dozen contributions reported on follow-up experiments and studies, including further developments in theory. Only few of the models that had seemed promising in 1994 had not been followed up later. Most models presented in the original publication had meanwhile been submitted to intra-laboratory, multicentre or independent scrutiny. The results of the follow-up research seemed to have rewarded the efforts. Furthermore, contributions were provided on new models that had been inspired by the original ones or that may be candidates for further in-depth ultra high dilution (UHD) research. The project "Ultra High Dilution 1994 revisited 2015" is the latest output of what might be considered the "buena vista social club" of homeopathy research. However, it presents new developments and results of the older, established experimental models as well as a general survey of the state of UHD research. Copyright © 2015 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.
Charting the Replica Symmetric Phase
NASA Astrophysics Data System (ADS)
Coja-Oghlan, Amin; Efthymiou, Charilaos; Jaafari, Nor; Kang, Mihyun; Kapetanopoulos, Tobias
2018-02-01
Diluted mean-field models are spin systems whose geometry of interactions is induced by a sparse random graph or hypergraph. Such models play an eminent role in the statistical mechanics of disordered systems as well as in combinatorics and computer science. In a path-breaking paper based on the non-rigorous `cavity method', physicists predicted not only the existence of a replica symmetry breaking phase transition in such models but also sketched a detailed picture of the evolution of the Gibbs measure within the replica symmetric phase and its impact on important problems in combinatorics, computer science and physics (Krzakala et al. in Proc Natl Acad Sci 104:10318-10323, 2007). In this paper we rigorise this picture completely for a broad class of models, encompassing the Potts antiferromagnet on the random graph, the k-XORSAT model and the diluted k-spin model for even k. We also prove a conjecture about the detection problem in the stochastic block model that has received considerable attention (Decelle et al. in Phys Rev E 84:066106, 2011).
NASA Astrophysics Data System (ADS)
Boĭchenko, A. M.; Derzhiev, V. I.; Zhidkov, A. G.; Yakovlenko, Sergei I.
1989-02-01
Kinetic models of active media of an XeCl laser are developed for the case when these media are diluted by various buffer gases (helium, neon, argon) and the laser is pumped by an electron beam. The results of the calculations are in satisfactory agreement with experimental data.
Statistical Analysis of Physiological Signals
NASA Astrophysics Data System (ADS)
Ruiz, María G.; Pérez, Leticia
2003-07-01
In spite of two hundred years of clinical practice, Homeopathy still lacks of scientific basis. Its fundamental laws, similia principle and the activity of the denominated ultra-high dilutions are controversial issues that do not fit into the mainstream medicine or current physical-chemistry field as well. Aside its clinical efficacy, the identification of physical - chemistry parameters, as markers of the homeopathic effect, would allow to construct mathematic models [1], which in turn, could provide clues regarding the involved mechanism.
Chirumbolo, Salvatore; Bjørklund, Geir
2017-07-01
Marzotto et al. showed that homeopathic preparations of Arnica montana L. acted directly on gene expression of Tamm-Horsfall protein-1 (THP-1) monocyte/macrophage cell lines activated with phorbol12-myristate13-acetate and interleukin-4 (IL-4). A. montana homeopathic dilutions are used in complementary and alternative medicine to treat inflammation disorders and post-traumatic events as well as for wound repair. The French Pharmacopoeia of these remedies uses 0.3% ethanol in each centesimal dilution. In this paper, we discuss how ethanol-containing A. montana homeopathic centesimal dilutions can change gene expression in IL-4-treated monocyte/macrophage THP-1. We assessed the role of ethanol in the Arnica homeopathic dilutions containing this alcohol by investigating its action on gene expression of THP-1 cell. Evidence would strongly suggest that the presence of ethanol in these remedies might play a fundamental role in the dilutions ability to affect gene expression, particularly for doses from 5c to 15c. Where, rather than playing a major role in the mesoscopic structure of water, the ethanol might have a chemical-physical role in the induction of THP-1 gene expression, apoptosis, and deoxyribonucleic acid function. This evidence generates a debate about the suggestion that the use of a binary-mixed solvent in homeopathic chemistry, used by Hahnemann since 1810, may be fundamental to explain the activity of homeopathy on cell models.
Organization of Model Systems for Primary Care Practice and Education: Problems and Issues
ERIC Educational Resources Information Center
Seidel, Henry M.
1975-01-01
Lists issues in planning primary care education, e.g. fear of dilution of excellence, competition for resources, delivery of care, the teaching objective, M.D. and new health professional, benefit and service structure, financial structure, physical and administrative locus, marketing. Emphasis is on coordination of educational research, and…
Osmotic Pressure in the Physics Course for Students of the Life Sciences
ERIC Educational Resources Information Center
Hobbie, Russell K.
1974-01-01
Discusses the use of an ideal gas model to explain osmotic equilibrium and nonequilibrium flows through an ideal semipermeable membrane. Included are a justification of the relationship between an ideal gas and a dilute solution, a review of the irreversible thermodynamic flow, and some sample applications to physiology. (CC)
Xinping Li; Xiaolin Luo; Kecheng Li; J.Y. Zhu; J. Dennis Fougere; Kimberley Clarke
2012-01-01
The effects of pretreatment by dilute acid and sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) on substrate morphology, cell wall physical and chemical structures, along with the subsequent enzymatic hydrolysis of lodgepole pine substrate were investigated. FE-SEM and TEM images of substrate structural morphological changes showed that SPORL...
Donovan, Preston; Chehreghanianzabi, Yasaman; Rathinam, Muruhan; Zustiak, Silviya Petrova
2016-01-01
The study of diffusion in macromolecular solutions is important in many biomedical applications such as separations, drug delivery, and cell encapsulation, and key for many biological processes such as protein assembly and interstitial transport. Not surprisingly, multiple models for the a-priori prediction of diffusion in macromolecular environments have been proposed. However, most models include parameters that are not readily measurable, are specific to the polymer-solute-solvent system, or are fitted and do not have a physical meaning. Here, for the first time, we develop a homogenization theory framework for the prediction of effective solute diffusivity in macromolecular environments based on physical parameters that are easily measurable and not specific to the macromolecule-solute-solvent system. Homogenization theory is useful for situations where knowledge of fine-scale parameters is used to predict bulk system behavior. As a first approximation, we focus on a model where the solute is subjected to obstructed diffusion via stationary spherical obstacles. We find that the homogenization theory results agree well with computationally more expensive Monte Carlo simulations. Moreover, the homogenization theory agrees with effective diffusivities of a solute in dilute and semi-dilute polymer solutions measured using fluorescence correlation spectroscopy. Lastly, we provide a mathematical formula for the effective diffusivity in terms of a non-dimensional and easily measurable geometric system parameter.
NASA Astrophysics Data System (ADS)
Reed, K. A.; Jablonowski, C.
2011-02-01
This paper explores the impact of the physical parameterization suite on the evolution of an idealized tropical cyclone within the National Center for Atmospheric Research's (NCAR) Community Atmosphere Model (CAM). The CAM versions 3.1 and 4 are used to study the development of an initially weak vortex in an idealized environment over a 10-day simulation period within an aqua-planet setup. The main distinction between CAM 3.1 and CAM 4 lies within the physical parameterization of deep convection. CAM 4 now includes a dilute plume Convective Available Potential Energy (CAPE) calculation and Convective Momentum Transport (CMT). The finite-volume dynamical core with 26 vertical levels in aqua-planet mode is used at horizontal grid spacings of 1.0°, 0.5° and 0.25°. It is revealed that CAM 4 produces stronger and larger tropical cyclones by day 10 at all resolutions, with a much earlier onset of intensification when compared to CAM 3.1. At the highest resolution CAM 4 also accounts for changes in the storm's vertical structure, such as an increased outward slope of the wind contours with height, when compared to CAM 3.1. An investigation concludes that the new dilute CAPE calculation in CAM 4 is largely responsible for the changes observed in the development, strength and structure of the tropical cyclone.
Cawthon, Peggy M; Orwoll, Eric S; Peters, Katherine E; Ensrud, Kristine E; Cauley, Jane A; Kado, Deborah M; Stefanick, Marcia L; Shikany, James M; Strotmeyer, Elsa S; Glynn, Nancy W; Caserotti, Paolo; Shankaran, Mahalakshmi; Hellerstein, Marc; Cummings, Steven R; Evans, William J
2018-06-12
Direct assessment of skeletal muscle mass in older adults is clinically challenging. Relationships between lean mass and late-life outcomes have been inconsistent. The D3-creatine dilution method provides a direct assessment of muscle mass. Muscle mass was assessed by D3-creatine (D3Cr) dilution in 1,382 men (mean age, 84.2 yrs). Participants completed the Short Physical Performance Battery (SPPB); usual walking speed (6 meters); and DXA lean mass. Men self-reported mobility limitations (difficulty walking 2-3 blocks or climbing 10 steps); recurrent falls (2+); and serious injurious falls in the subsequent year. Across quartiles of D3Cr muscle mass/body mass, multivariate linear models calculated means for SPPB and gait speed; multivariate logistic models calculated odds ratios for incident mobility limitations or falls. Compared to men in the highest quartile, those in the lowest quartile of D3Cr muscle mass/body mass had slower gait speed (Q1: 1.04 vs Q4: 1.17 m/s); lower SPPB (Q1: 8.4 vs Q4: 10.4 points); greater likelihood of incident serious injurious falls (OR Q1 vs Q4: 2.49, 95% CI: 1.37, 4.54); prevalent mobility limitation (OR Q1 vs Q4,: 6.1, 95%CI: 3.7, 10.3) and incident mobility limitation (OR Q1 vs Q4: 2.15 95% CI: 1.42, 3.26); p for trend <.001 for all. Results for incident recurrent falls were in the similar direction (p=0.156). DXA lean mass had weaker associations with the outcomes. Unlike DXA lean mass, low D3Cr muscle mass/body mass is strongly related to physical performance, mobility and incident injurious falls in older me.
Effects of volcano profile on dilute pyroclastic density currents: Numerical simulations
NASA Astrophysics Data System (ADS)
Doronzo, D. M.; Valentine, G. A.; Dellino, P.; de Tullio, M. D.
2012-04-01
Explosive activity and lava dome collapse at stratovolcanoes can lead to pyroclastic density currents (PDCs; mixtures of volcanic gas, air, and volcanic particles) that produce complex deposits and pose a hazard to surrounding populations. Two-dimensional numerical simulations of dilute PDCs (characterized by a turbulent suspended load and deposition through a bed load) are carried out with the Euler-Lagrange approach of multiphase physics. The fluid phase is modeled as a dusty gas (1.88 kg/m3 dense), and the solid phase is modeled as discrete particles (1 mm, 5 mm, and 10 mm; 1500 kg/m3 dense and irregularly-shaped), which are two-way coupled to the gas, i.e. they affect the fluid turbulence. The initial PDC, which enters a volcano domain 5 km long and 1.9 km high, has the following characteristics: thickness of 200 m, velocity of 20 m/s, temperature of 573 K, turbulence of 5 %, and sediment concentration of 3 % by volume. The actual physics of flow boundary zone is simulated at the PDC base, by monitoring the sediment flux toward the substrate, which acts through the flow boundary zone, and the grain-size distribution. Also, the PDC velocity and dynamic pressure are calculated. The simulations show that PDC transport, deposition, and hazard potential are sensitive to the shape of the volcano slope (profile) down which they flow. In particular, three generic volcano profiles, straight, concave-upward, and convex-upward are focused on. Dilute PDCs that flow down a constant slope gradually decelerate over the simulated run-out distance (5 km in the horizontal direction) due to a combination of sedimentation, which reduces the density of the PDC, and mixing with the atmosphere. However, dilute PDCs down a concave-upward slope accelerate high on the volcano flanks and have less sedimentation until they begin to decelerate over the shallow lower slopes. A convex-upward slope causes dilute PDCs to lose relatively more of their pyroclast load on the upper slopes of a volcano, and although they accelerate as they reach the lower, steeper slopes, the acceleration is reduced because of the upstream loss of pyroclasts (lower density contrast with the atmosphere). The dynamic pressure, a measure of the damage that can be caused by PDCs, reflects these complex relations. Details are found in Valentine et al. (2011). Reference Valentine G.A., Doronzo D.M., Dellino P., de Tullio M.D. (2011), Effects of volcano profile on dilute pyroclastic density currents: Numerical simulations, Geology, 39, 947-950.
NASA Astrophysics Data System (ADS)
Chiogna, G.; Cirpka, O. A.; Grathwohl, P.; Rolle, M.
2010-12-01
The correct quantification of mixing is of utmost importance for modeling reactive transport in porous media and, thereby assessing the fate and transport of contaminants in the subsurface. An appropriate measure of mixing in heterogeneous porous formations should correctly capture the effects on mixing intensity of various processes at different scales, such as local dispersion and the effect of mixing enhancement due to heterogeneities. In this work, we use the concept of the flux-related dilution index as a measure of transverse mixing. This quantity expresses the dilution of the mass flux of a tracer solution over the total discharge of the system and is particularly suited to address problems where a compound is continuously injected into the domain. We focus our attention on two-dimensional systems under steady-state flow conditions and investigate both conservative and reactive transport in both homogeneous and heterogeneous porous media at different scales. For mixing-controlled reactive systems, we introduce and illustrate the concept of the critical dilution index, which represents the amount of mixing required for complete degradation of a continuously emitted plume undergoing decay upon mixing with ambient water. We perform two-dimensional numerical experiments at bench and field scales in homogeneous and heterogeneous conductivity fields. These numerical simulations show that the flux-related dilution index quantifies mixing and that the concept of the critical dilution index is a useful measure to relate the mixing of conservative tracers to mixing-controlled turnover of reactive compounds. In the end we define an effective transverse dispersion coefficient which is able to capture the main characteristics of the physical mechanisms controlling reactive transport at the field scale. Furthermore we investigated the influence of compound specific local transverse dispersion coefficients on the flux related dilution index and on the critical dilution index.
Donovan, Preston; Chehreghanianzabi, Yasaman; Rathinam, Muruhan; Zustiak, Silviya Petrova
2016-01-01
The study of diffusion in macromolecular solutions is important in many biomedical applications such as separations, drug delivery, and cell encapsulation, and key for many biological processes such as protein assembly and interstitial transport. Not surprisingly, multiple models for the a-priori prediction of diffusion in macromolecular environments have been proposed. However, most models include parameters that are not readily measurable, are specific to the polymer-solute-solvent system, or are fitted and do not have a physical meaning. Here, for the first time, we develop a homogenization theory framework for the prediction of effective solute diffusivity in macromolecular environments based on physical parameters that are easily measurable and not specific to the macromolecule-solute-solvent system. Homogenization theory is useful for situations where knowledge of fine-scale parameters is used to predict bulk system behavior. As a first approximation, we focus on a model where the solute is subjected to obstructed diffusion via stationary spherical obstacles. We find that the homogenization theory results agree well with computationally more expensive Monte Carlo simulations. Moreover, the homogenization theory agrees with effective diffusivities of a solute in dilute and semi-dilute polymer solutions measured using fluorescence correlation spectroscopy. Lastly, we provide a mathematical formula for the effective diffusivity in terms of a non-dimensional and easily measurable geometric system parameter. PMID:26731550
Elmoazzen, Heidi Y.; Elliott, Janet A.W.; McGann, Locksley E.
2009-01-01
The fundamental physical mechanisms of water and solute transport across cell membranes have long been studied in the field of cell membrane biophysics. Cryobiology is a discipline that requires an understanding of osmotic transport across cell membranes under nondilute solution conditions, yet many of the currently-used transport formalisms make limiting dilute solution assumptions. While dilute solution assumptions are often appropriate under physiological conditions, they are rarely appropriate in cryobiology. The first objective of this article is to review commonly-used transport equations, and the explicit and implicit assumptions made when using the two-parameter and the Kedem-Katchalsky formalisms. The second objective of this article is to describe a set of transport equations that do not make the previous dilute solution or near-equilibrium assumptions. Specifically, a new nondilute solute transport equation is presented. Such nondilute equations are applicable to many fields including cryobiology where dilute solution conditions are not often met. An illustrative example is provided. Utilizing suitable transport equations that fit for two permeability coefficients, fits were as good as with the previous three-parameter model (which includes the reflection coefficient, σ). There is less unexpected concentration dependence with the nondilute transport equations, suggesting that some of the unexpected concentration dependence of permeability is due to the use of inappropriate transport equations. PMID:19348741
Temperature maxima in stable two-dimensional shock waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kum, O.; Hoover, W.G.; Hoover, C.G.
1997-07-01
We use molecular dynamics to study the structure of moderately strong shock waves in dense two-dimensional fluids, using Lucy{close_quote}s pair potential. The stationary profiles show relatively broad temperature maxima, for both the longitudinal and the average kinetic temperatures, just as does Mott-Smith{close_quote}s model for strong shock waves in dilute three-dimensional gases. {copyright} {ital 1997} {ital The American Physical Society}
NASA Astrophysics Data System (ADS)
Lu, Guoping; Sonnenthal, Eric L.; Bodvarsson, Gudmundur S.
2008-12-01
The standard dual-component and two-member linear mixing model is often used to quantify water mixing of different sources. However, it is no longer applicable whenever actual mixture concentrations are not exactly known because of dilution. For example, low-water-content (low-porosity) rock samples are leached for pore-water chemical compositions, which therefore are diluted in the leachates. A multicomponent, two-member mixing model of dilution has been developed to quantify mixing of water sources and multiple chemical components experiencing dilution in leaching. This extended mixing model was used to quantify fracture-matrix interaction in construction-water migration tests along the Exploratory Studies Facility (ESF) tunnel at Yucca Mountain, Nevada, USA. The model effectively recovers the spatial distribution of water and chemical compositions released from the construction water, and provides invaluable data on the matrix fracture interaction. The methodology and formulations described here are applicable to many sorts of mixing-dilution problems, including dilution in petroleum reservoirs, hydrospheres, chemical constituents in rocks and minerals, monitoring of drilling fluids, and leaching, as well as to environmental science studies.
NASA Astrophysics Data System (ADS)
Tasker, M. N.
1984-01-01
Dense gas dispersion is the study of the spreading and dilution of a gas that has a density greater than that of ambient air. Models to predict the dispersion of such dense gases as chlorine, sulfur dioxide, liquefied natural gas, and liquid propane are necessary to prevent a catastrophe in environmental and/or human terms. A basic physical picture of dense gas dispersion is provided. Mathematical and wind tunnel models of dense gas flow are presented and discussed, including the constraints and disadvantages of modelling techniques. Special emphasis is given to heat transfer during dense gas dispersion.
Fast and accurate calculation of dilute quantum gas using Uehling–Uhlenbeck model equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yano, Ryosuke, E-mail: ryosuke.yano@tokiorisk.co.jp
The Uehling–Uhlenbeck (U–U) model equation is studied for the fast and accurate calculation of a dilute quantum gas. In particular, the direct simulation Monte Carlo (DSMC) method is used to solve the U–U model equation. DSMC analysis based on the U–U model equation is expected to enable the thermalization to be accurately obtained using a small number of sample particles and the dilute quantum gas dynamics to be calculated in a practical time. Finally, the applicability of DSMC analysis based on the U–U model equation to the fast and accurate calculation of a dilute quantum gas is confirmed by calculatingmore » the viscosity coefficient of a Bose gas on the basis of the Green–Kubo expression and the shock layer of a dilute Bose gas around a cylinder.« less
On the thermal stability of physical vapor deposited oxide-hardened nanocrystalline gold thin films
Argibay, Nicolas; Mogonye, J. E.; Michael, Joseph R.; ...
2015-04-08
We describe a correlation between electrical resistivity and grain size for PVD synthesized polycrystalline oxide-hardened metal-matrix thin films in oxide-dilute (<5 vol. % oxide phase) compositions. The correlation is based on the Mayadas-Shatzkes (M-S) electron scattering model, predictive of grain size evolution as a function of composition in the oxide-dilute regime for 2 μm thick Au-ZnO films. We describe a technique to investigate grain boundary (GB) mobility and the thermal stability of GBs based on in situelectrical resistivity measurements during annealing experiments, interpreted using a combination of the M-S model and the Michels et al. model describing solute drag stabilizedmore » grain growth kinetics. Using this technique, activation energy and pre-exponential Arrhenius parameter values of E a = 21.6 kJ/mol and A o = 2.3 × 10 -17 m 2/s for Au-1 vol. % ZnO and E a =12.7 kJ/mol and A o = 3.1 × 10 -18 m 2/s for Au-2 vol.% ZnO were determined. In the oxide-dilute regime, the grain size reduction of the Au matrix yielded a maximum hardness of 2.6 GPa for 5 vol. % ZnO. A combined model including percolation behavior and grain refinement is presented that accurately describes the composition dependent change in electrical resistivity throughout the entire composition range for Au-ZnO thin films. As a result, the proposed correlations are supported by microstructural characterization using transmission electron microscopy and electron diffraction mapping for grain size determination.« less
Milgrom, Lionel R
2008-04-01
In criticising papers which recently appeared in Homeopathy, Leick claims that no double blind randomised clinical trials (DBRCTs) show that homeopathy is efficacious, and that specific effects of substances diluted beyond Avogadro's limit are implausible. He states that generalised entanglement models should be able to improve the design of experiments to test ultra-high dilutions, and disparages the authors' understandings of quantum physics. The paper responds to those criticisms. Several DBRCTs have shown that homeopathy has effects which are not due to placebo and these are now supported by preclinical work. This area of theory is in its infancy and it is unreasonable to expect it to have generated experiments at this stage. The authors have used accepted interpretations of quantum theory: Leick's view is coloured by skepticism concerning homeopathy.
A COMPREHENSIVE ANALYSIS OF CHLORINE TRANSPORT AND FATE FOLLOWING A LARGE ENVIRONMENTAL RELEASE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buckley, R.; Hunter, C.; Werth, D.
2011-05-10
A train derailment occurred in Graniteville, South Carolina during the early morning of January 6, 2005, and resulted in the release of a large amount of cryogenic pressurized liquid chlorine to the environment in a short time period. A comprehensive evaluation of the transport and fate of the released chlorine was performed, accounting for dilution, diffusion, transport and deposition into the local environment. This involved the characterization of a three-phased chlorine release, a detailed determination of local atmospheric mechanisms acting on the released chlorine, the establishment of atmospheric-hydrological physical exchange mechanisms, and aquatic dilution and mixing. This presentation will providemore » an overview of the models used in determining the total air-to-water mass transfer estimated to have occurred as a result of the roughly 60 tons of chlorine released into the atmosphere from the train derailment. The assumptions used in the modeling effort will be addressed, along with a comparison with available observational data to validate the model results. Overall, model-estimated chlorine concentrations in the airborne plume compare well with human and animal exposure data collected in the days after the derailment.« less
Electronic and optical properties of GaSb:N from first principles
NASA Astrophysics Data System (ADS)
Jadaun, Priyamvada; Nair, Hari; Lordi, Vincenzo; Bank, Seth; Banerjee, Sanjay
2014-03-01
We present an ab-initio study of dilute nitride III-Vs, focusing on dilute nitride GaSb (GaSb:N). GaSb:N displays promise towards realization of optoelectronic devices accessing the mid-infrared wavelength regime. Theoretical and experimental results on its electronic and optical properties are however few. To address this, we present a first principles, density functional theory study using the hybrid HSE06 exchange-correlation functional of GaSb doped with 1.6% nitrogen. We conduct a comparative study on GaAs:N, also with 1.6% nitrogen mole fraction, and find that GaSb:N has a smaller band gap and displays more band gap bowing than GaAs:N. In addition we examine the orbital character of the bands, finding the lowest conduction band to be quasi-delocalized, with a large N-3s contribution. At high concentrations, the N atoms interact via the host matrix, forming a dispersive band of their own which governs optoelectronic properties and dominates band gap bowing. While this band drives the optical and electronic properties of GaSb:N, its physics is not captured by traditional models for dilute-nitrides. We thus propose that a complete theory of dilute-nitrides should incorporate orbital character examination, especially at high N concentrations. Texas Advanced Computing Center (TACC), U.S. Department of Energy, Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
Toxicity of contaminated sediments in dilution series with control sediments
Nelson, M.K.; Landrum, P.F.; Burton, G.A.; Klaine, S.J.; Crecelius, E.A.; Byl, T.D.; Gossiaux, Duane C.; Tsymbal, V.N.; Cleveland, L.; Ingersoll, Christopher G.; Sasson-Brickson, G.
1993-01-01
The use of dilutions has been the foundation of our approach for assessing contaminated water, and accordingly, it may be important to establish similar or parallel approaches for sediment dilutions. Test organism responses to dilution gradients can identify the degree of necessary sediment alteration to reduce the toxicity. Using whole sediment dilutions to represent the complex interactions of in situ sediments can identify the toxicity, but the selection of the appropriate diluent for the contaminated sediment may affect the results and conclusions drawn. Contaminated whole sediments were examined to evaluate the toxicity of dilutions of sediments with a diversity of test organisms. Dilutions of the contaminated sediments were prepared with differing diluents that varied in organic carbon content, particle size distribution, and volatile solids. Studies were conducted using four macroinvertebrates and a vascular, rooted plant. Responses by some test organisms followed a sigmoidal dose-response curve, but others followed a U-shaped curve. Initial dilutions reduced toxicity as expected, but further dilution resulted in an increase in toxicity. The type of diluent used was an important factor in assessing the sediment toxicity, because the control soil reduced toxicity more effectively than sand as a diluent of the same sediment. Using sediment chemical and physical characteristics as an indicator of sediment dilution may not be as useful as chemical analysis of contaminants, but warrants further investigation.
Reactive solute transport in acidic streams
Broshears, R.E.
1996-01-01
Spatial and temporal profiles of Ph and concentrations of toxic metals in streams affected by acid mine drainage are the result of the interplay of physical and biogeochemical processes. This paper describes a reactive solute transport model that provides a physically and thermodynamically quantitative interpretation of these profiles. The model combines a transport module that includes advection-dispersion and transient storage with a geochemical speciation module based on MINTEQA2. Input to the model includes stream hydrologic properties derived from tracer-dilution experiments, headwater and lateral inflow concentrations analyzed in field samples, and a thermodynamic database. Simulations reproduced the general features of steady-state patterns of observed pH and concentrations of aluminum and sulfate in St. Kevin Gulch, an acid mine drainage stream near Leadville, Colorado. These patterns were altered temporarily by injection of sodium carbonate into the stream. A transient simulation reproduced the observed effects of the base injection.
Dilution and Mixing in transient velocity fields: a first-order analysis
NASA Astrophysics Data System (ADS)
Di Dato, Mariaines; de Barros, Felipe, P. J.; Fiori, Aldo; Bellin, Alberto
2017-04-01
An appealing remediation technique is in situ oxidation, which effectiveness is hampered by difficulties in obtaining good mixing of the injected oxidant with the contaminant, particularly when the contaminant plume is contained and therefore its deformation is physically constrained. Under such conditions (i.e. containment), mixing may be augmented by inducing temporal fluctuations of the velocity field. The temporal variability of the flow field may increase the deformation of the plume such that diffusive mass flux becomes more effective. A transient periodic velocity field can be obtained by an engineered sequence of injections and extractions from wells, which may serve also as a hydraulic barrier to confine the plume. Assessing the effectiveness of periodic flows to maximize solute mixing is a difficult task given the need to use a 3D setup and the large number of possible flow configurations that should be analyzed in order to identify the optimal one. This is the typical situation in which analytical solutions, though approximated, may assist modelers in screening possible alternative flow configurations such that solute dilution is maximized. To quantify dilution (i.e. a precondition that enables reactive mixing) we utilize the concept of the dilution index [1]. In this presentation, the periodic flow takes place in an aquifer with spatially variable hydraulic conductivity field which is modeled as a Stationary Spatial Random Function. We developed a novel first-order analytical solution of the dilution index under the hypothesis that the flow can be approximated as a sequence of steady state configurations with the mean velocity changing with time in intensity and direction. This is equivalent to assume that the characteristic time of the transient behavior is small compared to the period characterizing the change in time of the mean velocity. A few closed paths have been analyzed quantifying their effectiveness in enhancing dilution and thereby mixing between the resident contaminant and an oxidant. In particular, we considered three different flow configurations: (1) a "circular" pattern, in which the vector of the mean velocity rotates at a constant celerity; (2) a "shake" pattern, in which the velocity has a constant magnitude and changes direction alternatively leading to a "back and forth" type of movement and finally (3) a more general "shake and rotate" pattern, which combines the previous two configurations. The new analytical solution shows that dilution is affected by the configuration of the periodic mean flow. Results show that the dilution index increases when the rotation-shake configuration is adopted. In addition, the dilution index is augmented with the oscillation amplitude of the shake component. This analysis is useful to identify optimal flow configurations that may be approximately reproduced in the field and which efficiency may be checked more accurately by numerical simulations, thereby alleviating the computational burden by efficiently screening among alternative configurations. References [1] Kitanidis, P. K. (1994), The concept of the Dilution Index, Water Resour. Res., 30(7), 2011-2026, doi:10.1029/94WR00762.
Mathematical modeling of alignment dynamics in active motor-filament systems
NASA Astrophysics Data System (ADS)
Swaminathan, Sumanth
The formation of the cytoskeleton, via motor-mediated microtubule self-organization, is an important subject of study in the biological sciences as well as in nonequilibrium, soft matter physics. Accurate modeling of the dynamics is a formidable task as it involves intrinsic nonlinearities, structural anisotropies, nonequilibrium processes, and a broad window of time scales, length scales, and densities. In this thesis, we study the ordering dynamics and pattern formations arising from motor-mediated microtubule self-organization in dilute and semi-dilute filament solutions. In the dilute case, we use a probabilistic model in which microtubules interact through motor induced, inelastic binary collisions. This model shows that initially disordered filament solutions exhibit an ordering transition resulting in the emergence of well aligned rod bundles. We study the existence and dynamic interaction of microtubule bundles analytically and numerically. Our results show a long term attraction and coalescing of bundles indicating a clear coarsening in the system; microtubule bundles concentrate into fewer orientations on a slow logarithmic time scale. In the semi-dilute case, multiple motors can bind a filament to several others and, for a critical motor density, induce a transition to an ordered state with a nonzero mean orientation. We develop a spatially homogeneous, mean-field theory that explicitly accounts for motor forcing and thermal fluctuations which enter into the model as multiplicative and additive noises respectively. Our model further incorporates a force-dependent detachment rate of motors, which in turn affects the mean and the fluctuations of the net force acting on a filament. We demonstrate that the transition to the oriented state changes from second order to first order when the force-dependent detachment becomes important. In our final analysis, we add complex spatial inhomogeneities to our mean field theory. The revised model consists of a system of stochastic differential equations governing the time evolution of the orientation and center of mass of each filament; microtubules translate and rotate under the influence of motor forces and intrinsic thermal fluctuations. We show through a molecular dynamics type stochastic simulation that initially disordered systems of microtubules exhibit an ordering transition resulting in the formation of bundles and vortices. This finding is compared with previous binary interaction and hydrodynamic models and shown to be consistent with in vitro experiments on motor-mediated self-organization of microtubules and actin filaments.
Method of phase space beam dilution utilizing bounded chaos generated by rf phase modulation
Pham, Alfonse N.; Lee, S. Y.; Ng, K. Y.
2015-12-10
This paper explores the physics of chaos in a localized phase-space region produced by rf phase modulation applied to a double rf system. The study can be exploited to produce rapid particle bunch broadening exhibiting longitudinal particle distribution uniformity. Hamiltonian models and particle-tracking simulations are introduced to understand the mechanism and applicability of controlled particle diffusion. When phase modulation is applied to the double rf system, regions of localized chaos are produced through the disruption and overlapping of parametric resonant islands and configured to be bounded by well-behaved invariant tori to prevent particle loss. The condition of chaoticity and themore » degree of particle dilution can be controlled by the rf parameters. As a result, the method has applications in alleviating adverse space-charge effects in high-intensity beams, particle bunch distribution uniformization, and industrial radiation-effects experiments.« less
Field measurements and modeling of dilution in the wake of a US navy frigate.
Katz, C N; Chadwick, D B; Rohr, J; Hyman, M; Ondercin, D
2003-08-01
A field measurement and computer modeling effort was made to assess the dilution field of pulped waste materials discharged into the wake of a US Navy frigate. Pulped paper and fluorescein dye were discharged from the frigate's pulper at known rates. The subsequent particle and dye concentration field was then measured throughout the wake by a following vessel using multiple independent measures. Minimum dilution of the pulped paper reached 3.2 x 10(5) within 1900 m behind the frigate, or about 8 min after discharge. Independent measures typically agreed within 25% of one another and within 20% of model predictions. Minimum dilution of dye reached 2.3 x 10(5) at a down-wake distance of approximately 3500 m, or roughly 15 min. Comparison to model measurements were again within 20%. The field test was not only successful at characterizing wake dilution under one set of at-sea conditions, but was successful at validating the computer model used for assessing a wide range of ships and conditions.
Randomly diluted eg orbital-ordered systems.
Tanaka, T; Matsumoto, M; Ishihara, S
2005-12-31
Dilution effects on the long-range ordered state of the doubly degenerate e(g) orbital are investigated. Quenched impurities without the orbital degree of freedom are introduced in the orbital model where the long-range order is realized by the order-from-disorder mechanism. It is shown by Monte Carlo simulations and the cluster-expansion method that a decrease in the orbital-ordering temperature by dilution is substantially larger than that in the randomly diluted spin models. Tilting of orbital pseudospins around impurities is the essence of this dilution effect. The present theory provides a new viewpoint for the recent resonant x-ray scattering experiments in KCu(1-x)Zn(x)F(3).
Irena : tool suite for modeling and analysis of small-angle scattering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilavsky, J.; Jemian, P.
2009-04-01
Irena, a tool suite for analysis of both X-ray and neutron small-angle scattering (SAS) data within the commercial Igor Pro application, brings together a comprehensive suite of tools useful for investigations in materials science, physics, chemistry, polymer science and other fields. In addition to Guinier and Porod fits, the suite combines a variety of advanced SAS data evaluation tools for the modeling of size distribution in the dilute limit using maximum entropy and other methods, dilute limit small-angle scattering from multiple non-interacting populations of scatterers, the pair-distance distribution function, a unified fit, the Debye-Bueche model, the reflectivity (X-ray and neutron)more » using Parratt's formalism, and small-angle diffraction. There are also a number of support tools, such as a data import/export tool supporting a broad sampling of common data formats, a data modification tool, a presentation-quality graphics tool optimized for small-angle scattering data, and a neutron and X-ray scattering contrast calculator. These tools are brought together into one suite with consistent interfaces and functionality. The suite allows robust automated note recording and saving of parameters during export.« less
Lagrange thermodynamic potential and intrinsic variables for He-3 He-4 dilute solutions
NASA Technical Reports Server (NTRS)
Jackson, H. W.
1983-01-01
For a two-fluid model of dilute solutions of He-3 in liquid He-4, a thermodynamic potential is constructed that provides a Lagrangian for deriving equations of motion by a variational procedure. This Lagrangian is defined for uniform velocity fields as a (negative) Legendre transform of total internal energy, and its primary independent variables, together with their thermodynamic conjugates, are identified. Here, similarities between relations in classical physics and quantum statistical mechanics serve as a guide for developing an alternate expression for this function that reveals its character as the difference between apparent kinetic energy and intrinsic internal energy. When the He-3 concentration in the mixtures tends to zero, this expression reduces to Zilsel's formula for the Lagrangian for pure liquid He-4. An investigation of properties of the intrinsic internal energy leads to the introduction of intrinsic chemical potentials along with other intrinsic variables for the mixtures. Explicit formulas for these variables are derived for a noninteracting elementary excitation model of the fluid. Using these formulas and others also derived from quantum statistical mechanics, another equivalent expression for the Lagrangian is generated.
Global thermodynamics of confined inhomogeneous dilute gases: A semi-classical approach
NASA Astrophysics Data System (ADS)
Poveda-Cuevas, F. J.; Reyes-Ayala, I.; Seman, J. A.; Romero-Rochín, V.
2018-04-01
In this work we present our contribution to the Latin American School of Physics "Marcos Moshinsky" 2017 on Quantum Correlations which was held in Mexico City during the summer of 2017. We review the efforts that have been done to construct a global thermodynamic description of ultracold dilute gases confined in inhomogeneous potentials. This is difficult because the presence of this non-uniform trap makes the pressure of the gas to be a spatially dependent variable and its volume an ambiguously defined quantity. In this paper we introduce new global thermodynamic variables, equivalent to pressure and volume, and propose a realistic model of the equation of state of the system. This model is based on a mean-field approach which asymptotically reaches the Thomas-Fermi limit for a weakly interacting Bose gas. We put special emphasis to the transition between the normal and superfluid phases by studying the behavior of the isothermal compressibility across the transition. We reveal how the potential modifies the critical properties of the transition by determining the critical exponents associated to the divergences not of the susceptibilities but of their derivatives.
Unsteady non-Newtonian hydrodynamics in granular gases.
Astillero, Antonio; Santos, Andrés
2012-02-01
The temporal evolution of a dilute granular gas, both in a compressible flow (uniform longitudinal flow) and in an incompressible flow (uniform shear flow), is investigated by means of the direct simulation Monte Carlo method to solve the Boltzmann equation. Emphasis is laid on the identification of a first "kinetic" stage (where the physical properties are strongly dependent on the initial state) subsequently followed by an unsteady "hydrodynamic" stage (where the momentum fluxes are well-defined non-Newtonian functions of the rate of strain). The simulation data are seen to support this two-stage scenario. Furthermore, the rheological functions obtained from simulation are well described by an approximate analytical solution of a model kinetic equation. © 2012 American Physical Society
Chen, Yongqiang; Xie, Quan; Sari, Ahmad; ...
2017-11-21
Wettability of the oil/brine/rock system is an essential petro-physical parameter which governs subsurface multiphase flow behaviour and the distribution of fluids, thus directly affecting oil recovery. Recent studies [1–3] show that manipulation of injected brine composition can enhance oil recovery by shifting wettability from oil-wet to water-wet. However, what factor(s) control system wettability has not been completely elucidated due to incomplete understanding of the geochemical system. To isolate and identify the key factors at play we used in this paper SO 4 2—free solutions to examine the effect of salinity (formation brine/FB, 10 times diluted formation brine/10 dFB, and 100more » times diluted formation brine/100 dFB) on the contact angle of oil droplets at the surface of calcite. We then compared contact angle results with predictions of surface complexation by low salinity water using PHREEQC software. We demonstrate that the conventional dilution approach likely triggers an oil-wet system at low pH, which may explain why the low salinity water EOR-effect is not always observed by injecting low salinity water in carbonated reservoirs. pH plays a fundamental role in the surface chemistry of oil/brine interfaces, and wettability. Our contact angle results show that formation brine triggered a strong water-wet system (35°) at pH 2.55, yet 100 times diluted formation brine led to a strongly oil-wet system (contact angle = 175°) at pH 5.68. Surface complexation modelling correctly predicted the wettability trend with salinity; the bond product sum ([>CaOH 2 +][–COO -] + [>CO 3 -][–NH +] + [>CO 3 -][–COOCa +]) increased with decreasing salinity. Finally, at pH < 6 dilution likely makes the calcite surface oil-wet, particularly for crude oils with high base number. Yet, dilution probably causes water wetness at pH > 7 for crude oils with high acid number.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yongqiang; Xie, Quan; Sari, Ahmad
Wettability of the oil/brine/rock system is an essential petro-physical parameter which governs subsurface multiphase flow behaviour and the distribution of fluids, thus directly affecting oil recovery. Recent studies [1–3] show that manipulation of injected brine composition can enhance oil recovery by shifting wettability from oil-wet to water-wet. However, what factor(s) control system wettability has not been completely elucidated due to incomplete understanding of the geochemical system. To isolate and identify the key factors at play we used in this paper SO 4 2—free solutions to examine the effect of salinity (formation brine/FB, 10 times diluted formation brine/10 dFB, and 100more » times diluted formation brine/100 dFB) on the contact angle of oil droplets at the surface of calcite. We then compared contact angle results with predictions of surface complexation by low salinity water using PHREEQC software. We demonstrate that the conventional dilution approach likely triggers an oil-wet system at low pH, which may explain why the low salinity water EOR-effect is not always observed by injecting low salinity water in carbonated reservoirs. pH plays a fundamental role in the surface chemistry of oil/brine interfaces, and wettability. Our contact angle results show that formation brine triggered a strong water-wet system (35°) at pH 2.55, yet 100 times diluted formation brine led to a strongly oil-wet system (contact angle = 175°) at pH 5.68. Surface complexation modelling correctly predicted the wettability trend with salinity; the bond product sum ([>CaOH 2 +][–COO -] + [>CO 3 -][–NH +] + [>CO 3 -][–COOCa +]) increased with decreasing salinity. Finally, at pH < 6 dilution likely makes the calcite surface oil-wet, particularly for crude oils with high base number. Yet, dilution probably causes water wetness at pH > 7 for crude oils with high acid number.« less
Wang, Yan Jason; Yang, Bo; Lipsky, Eric M; Robinson, Allen L; Zhang, K Max
2013-01-15
Experimental results from laboratory emission testing have indicated that particulate emission measurements are sensitive to the dilution process of exhaust using fabricated dilution systems. In this paper, we first categorize the dilution parameters into two groups: (1) aerodynamics (e.g., mixing types, mixing enhancers, dilution ratios, residence time); and (2) mixture properties (e.g., temperature, relative humidity, particle size distributions of both raw exhaust and dilution gas). Then we employ the Comprehensive Turbulent Aerosol Dynamics and Gas Chemistry (CTAG) model to investigate the effects of those parameters on a set of particulate emission measurements comparing two dilution tunnels, i.e., a T-mixing lab dilution tunnel and a portable field dilution tunnel with a type of coaxial mixing. The turbulent flow fields and aerosol dynamics of particles are simulated inside two dilution tunnels. Particle size distributions under various dilution conditions predicted by CTAG are evaluated against the experimental data. It is found that in the area adjacent to the injection of exhaust, turbulence plays a crucial role in mixing the exhaust with the dilution air, and the strength of nucleation dominates the level of particle number concentrations. Further downstream, nucleation terminates and the growth of particles by condensation and coagulation continues. Sensitivity studies reveal that a potential unifying parameter for aerodynamics, i.e., the dilution rate of exhaust, plays an important role in new particle formation. The T-mixing lab tunnel tends to favor the nucleation due to a larger dilution rate of the exhaust than the coaxial mixing field tunnel. Our study indicates that numerical simulation tools can be potentially utilized to develop strategies to reduce the uncertainties associated with dilution samplings of emission sources.
High-dilution effects revisited. 1. Physicochemical aspects.
Bellavite, Paolo; Marzotto, Marta; Olioso, Debora; Moratti, Elisabetta; Conforti, Anita
2014-01-01
Several lines of evidence suggest that homeopathic high dilutions (HDs) can effectively have a pharmacological action, and so cannot be considered merely placebos. However, until now there has been no unified explanation for these observations within the dominant paradigm of the dose-response effect. Here the possible scenarios for the physicochemical nature of HDs are reviewed. A number of theoretical and experimental approaches, including quantum physics, conductometric and spectroscopic measurements, thermoluminescence, and model simulations investigated the peculiar features of diluted/succussed solutions. The heterogeneous composition of water could be affected by interactive phenomena such as coherence, epitaxy and formation of colloidal nanobubbles containing gaseous inclusions of oxygen, nitrogen, carbon dioxide, silica and, possibly, the original material of the remedy. It is likely that the molecules of active substance act as nucleation centres, amplifying the formation of supramolecular structures and imparting order to the solvent. Three major models for how this happens are currently being investigated: the water clusters or clathrates, the coherent domains postulated by quantum electrodynamics, and the formation of nanoparticles from the original solute plus solvent components. Other theoretical approaches based on quantum entanglement and on fractal-type self-organization of water clusters are more speculative and hypothetical. The problem of the physicochemical nature of HDs is still far from to be clarified but current evidence strongly supports the notion that the structuring of water and its solutes at the nanoscale can play a key role. Copyright © 2013 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.
Zhao, Qi; Liu, Yunchao; Yuan, Xiao; Chitambar, Eric; Ma, Xiongfeng
2018-02-16
Manipulation and quantification of quantum resources are fundamental problems in quantum physics. In the asymptotic limit, coherence distillation and dilution have been proposed by manipulating infinite identical copies of states. In the nonasymptotic setting, finite data-size effects emerge, and the practically relevant problem of coherence manipulation using finite resources has been left open. This Letter establishes the one-shot theory of coherence dilution, which involves converting maximally coherent states into an arbitrary quantum state using maximally incoherent operations, dephasing-covariant incoherent operations, incoherent operations, or strictly incoherent operations. We introduce several coherence monotones with concrete operational interpretations that estimate the one-shot coherence cost-the minimum amount of maximally coherent states needed for faithful coherence dilution. Furthermore, we derive the asymptotic coherence dilution results with maximally incoherent operations, incoherent operations, and strictly incoherent operations as special cases. Our result can be applied in the analyses of quantum information processing tasks that exploit coherence as resources, such as quantum key distribution and random number generation.
NASA Astrophysics Data System (ADS)
Zhao, Qi; Liu, Yunchao; Yuan, Xiao; Chitambar, Eric; Ma, Xiongfeng
2018-02-01
Manipulation and quantification of quantum resources are fundamental problems in quantum physics. In the asymptotic limit, coherence distillation and dilution have been proposed by manipulating infinite identical copies of states. In the nonasymptotic setting, finite data-size effects emerge, and the practically relevant problem of coherence manipulation using finite resources has been left open. This Letter establishes the one-shot theory of coherence dilution, which involves converting maximally coherent states into an arbitrary quantum state using maximally incoherent operations, dephasing-covariant incoherent operations, incoherent operations, or strictly incoherent operations. We introduce several coherence monotones with concrete operational interpretations that estimate the one-shot coherence cost—the minimum amount of maximally coherent states needed for faithful coherence dilution. Furthermore, we derive the asymptotic coherence dilution results with maximally incoherent operations, incoherent operations, and strictly incoherent operations as special cases. Our result can be applied in the analyses of quantum information processing tasks that exploit coherence as resources, such as quantum key distribution and random number generation.
Modeling syngas-fired gas turbine engines with two dilutants
NASA Astrophysics Data System (ADS)
Hawk, Mitchell E.
2011-12-01
Prior gas turbine engine modeling work at the University of Wyoming studied cycle performance and turbine design with air and CO2-diluted GTE cycles fired with methane and syngas fuels. Two of the cycles examined were unconventional and innovative. The work presented herein reexamines prior results and expands the modeling by including the impacts of turbine cooling and CO2 sequestration on GTE cycle performance. The simple, conventional regeneration and two alternative regeneration cycle configurations were examined. In contrast to air dilution, CO2 -diluted cycle efficiencies increased by approximately 1.0 percentage point for the three regeneration configurations examined, while the efficiency of the CO2-diluted simple cycle decreased by approximately 5.0 percentage points. For CO2-diluted cycles with a closed-exhaust recycling path, an optimum CO2-recycle pressure was determined for each configuration that was significantly lower than atmospheric pressure. Un-cooled alternative regeneration configurations with CO2 recycling achieved efficiencies near 50%, which was approximately 3.0 percentage points higher than the conventional regeneration cycle and simple cycle configurations that utilized CO2 recycling. Accounting for cooling of the first two turbine stages resulted in a 2--3 percentage point reduction in un-cooled efficiency, with air dilution corresponding to the upper extreme. Additionally, when the work required to sequester CO2 was accounted for, cooled cycle efficiency decreased by 4--6 percentage points, and was more negatively impacted when syngas fuels were used. Finally, turbine design models showed that turbine blades are shorter with CO2 dilution, resulting in fewer design restrictions.
A facile physical approach to make chitosan soluble in acid-free water.
Fu, Yinghao; Xiao, Congming
2017-10-01
We changed the situation that chitosan was only dissolved in diluted acid through mild physical treatment. In viewing of the usual methods to modify chitosan are chemical ones, we established the approach by using a water-soluble chitosan derivative as the model polymer. Its water-solubility was modulated via changing the concentration of solution and varying the precipitants. Such a physical method was adopted to treat chitiosan. One gram chitosan was dissolved in a mixture of 100mL 10% acetic acid and 50mL methanol, and then precipitated from a precipitant consisted of 10mL ethanol and 90mL acetate ester. The treated chitosan became soluble in acid-free water completely, and its solubility was 8.02mg/mL. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gyrya, V.; Lipnikov, K.; Aranson, I.
2011-05-01
Recently, there has been a number of experimental studies convincingly demonstrating that a suspension of self-propelled bacteria (microswimmers in general) may have an effective viscosity significantly smaller than the viscosity of the ambient fluid. This is in sharp contrast with suspensions of hard passive inclusions, whose presence always increases the viscosity. Here we present a 2D model for a suspension of microswimmers in a fluid and analyze it analytically in the dilute regime (no swimmer-swimmer interactions) and numerically using a Mimetic Finite Difference discretization. Our analysis shows that in the dilute regime (in the absence of rotational diffusion) the effectivemore » shear viscosity is not affected by self-propulsion. But at the moderate concentrations (due to swimmer-swimmer interactions) the effective viscosity decreases linearly as a function of the propulsion strength of the swimmers. These findings prove that (i) a physically observable decrease of viscosity for a suspension of self-propelled microswimmers can be explained purely by hydrodynamic interactions and (ii) self-propulsion and interaction of swimmers are both essential to the reduction of the effective shear viscosity. We also performed a number of numerical experiments analyzing the dynamics of swimmers resulting from pairwise interactions. The numerical results agree with the physically observed phenomena (e.g., attraction of swimmer to swimmer and swimmer to the wall). This is viewed as an additional validation of the model and the numerical scheme.« less
Videodensitometric Methods for Cardiac Output Measurements
NASA Astrophysics Data System (ADS)
Mischi, Massimo; Kalker, Ton; Korsten, Erik
2003-12-01
Cardiac output is often measured by indicator dilution techniques, usually based on dye or cold saline injections. Developments of more stable ultrasound contrast agents (UCA) are leading to new noninvasive indicator dilution methods. However, several problems concerning the interpretation of dilution curves as detected by ultrasound transducers have arisen. This paper presents a method for blood flow measurements based on UCA dilution. Dilution curves are determined by real-time densitometric analysis of the video output of an ultrasound scanner and are automatically fitted by the Local Density Random Walk model. A new fitting algorithm based on multiple linear regression is developed. Calibration, that is, the relation between videodensity and UCA concentration, is modelled by in vitro experimentation. The flow measurement system is validated by in vitro perfusion of SonoVue contrast agent. The results show an accurate dilution curve fit and flow estimation with determination coefficient larger than 0.95 and 0.99, respectively.
Understanding cooperative behavior in structurally disordered populations
NASA Astrophysics Data System (ADS)
Xu, C.; Zhang, W.; Du, P.; Choi, C. W.; Hui, P. M.
2016-06-01
The effects of an inhomogeneous competing environment on the extent of cooperation are studied within the context of a site-diluted evolutionary snowdrift game on a square lattice, with the occupied sites representing the players, both numerically and analytically. The frequency of cooperation ℱ C generally shows a non-monotonic dependence on the fraction of occupied sites ρ, for different values of the payoff parameter r. Slightly diluting a lattice leads to a lower cooperation for small and high values of r. For a range of r, however, dilution leads to an enhanced cooperation. An analytic treatment is developed for ℱC I + ℱC II, with ℱC I emphasizing the importance of the small clusters of players especially for ℱC II from the other players is shown to be inadequate. A local configuration approximation (LCA) that treats the local competing configurations as the variables and amounts to include spatial correlation up to the neighborhood of a player's neighbors is developed. Results of ℱ C ( ρ) and the number of different local configurations from LCA are in good agreement with simulation results. A transparent physical picture of the dynamics stemming from LCA is also presented. The theoretical approach provides a framework that can be readily applied to competing agent-based models in structurally ordered and disordered populations.
DIVERSE MODELS FOR SOLVING CONTRASTING OUTFALL PROBLEMS
Mixing zone initial dilution and far-field models are useful for assuring that water quality criteria will be met when specific outfall discharge criteria are applied. Presented here is a selective review of mixing zone initial dilution models and relatively simple far-field tran...
[Homeopathy and structure of water: a physical model].
Kratky, K W
2004-02-01
Formerly, the author has suggested a relatively simple water model. There, the dynamical structure of a typical water cluster was investigated, being represented by the movement of a ball in an abstract energy landscape. Now the above-mentioned model is investigated in more detail to answer the following question: Are essential claims of homeopathy concerning potentiation (diluting and shaking) in agreement with science? Equations of motion are employed that represent vibrations of clusters. For the computer experiments, the formalism of Nosé-Hoover is used, the surrounding water being interpreted as a heat bath. Diluting corresponds to a shift of the energy landscape towards the pure solvent (water), shaking is accompanied by an increase of the contact to the heat bath. There is a tendency of the ball to be caught in local valleys of the energy landscape (metastable states) if the temperature is not too high and if the liquid is not shaken. Thus, even for a given landscape there are a variety of structures being durable for some time. The computer experiments suggest that the repeated process of potentiation eventually results in a specific metastable state of the pure solvent. The initial substance helps to obtain this goal, but is no longer necessary at last. Copyright 2004 S. Karger GmbH, Freiburg
NASA Astrophysics Data System (ADS)
Paillet, Frederick
2012-08-01
A simple mass-balance code allows effective modeling of conventional fluid column resistivity logs in dilution tests involving column replacement with either distilled water or dilute brine. Modeling a series of column profiles where the inflowing formation water introduces water quality interfaces propagating along the borehole gives effective estimates of the rate of borehole flow. Application of the dilution model yields estimates of borehole flow rates that agree with measurements made with the heat-pulse flowmeter under ambient and pumping conditions. Model dilution experiments are used to demonstrate how dilution logging can extend the range of borehole flow measurement at least an order of magnitude beyond that achieved with flowmeters. However, dilution logging has the same dynamic range limitation encountered with flowmeters because it is difficult to detect and characterize flow zones that contribute a small fraction of total flow when that contribution is superimposed on a larger flow. When the smaller contribution is located below the primary zone, ambient downflow may disguise the zone if pumping is not strong enough to reverse the outflow. This situation can be addressed by increased pumping. But this is likely to make the moveout of water quality interfaces too fast to measure in the upper part of the borehole, so that a combination of flowmeter and dilution method may be more appropriate. Numerical experiments show that the expected weak horizontal flow across the borehole at conductive zones would be almost impossible to recognize if any ambient vertical flow is present. In situations where natural water quality differences occur such as flowing boreholes or injection experiments, the simple mass-balance code can be used to quantitatively model the evolution of fluid column logs. Otherwise, dilution experiments can be combined with high-resolution flowmeter profiles to obtain results not attainable using either method alone.
Transient Effects in Planar Solidification of Dilute Binary Alloys
NASA Technical Reports Server (NTRS)
Mazuruk, Konstantin; Volz, Martin P.
2008-01-01
The initial transient during planar solidification of dilute binary alloys is studied in the framework of the boundary integral method that leads to the non-linear Volterra integral governing equation. An analytical solution of this equation is obtained for the case of a constant growth rate which constitutes the well-known Tiller's formula for the solute transient. The more physically relevant, constant ramping down temperature case has been studied both numerically and analytically. In particular, an asymptotic analytical solution is obtained for the initial transient behavior. A numerical technique to solve the non-linear Volterra equation is developed and the solution is obtained for a family of the governing parameters. For the rapid solidification condition, growth rate spikes have been observed even for the infinite kinetics model. When recirculating fluid flow is included into the analysis, the spike feature is dramatically diminished. Finally, we have investigated planar solidification with a fluctuating temperature field as a possible mechanism for frequently observed solute trapping bands.
PHOTOPHORESIS IN A DILUTE, OPTICALLY THICK MEDIUM AND DUST MOTION IN PROTOPLANETARY DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNally, Colin P.; Hubbard, Alexander, E-mail: cmcnally@nbi.dk, E-mail: ahubbard@amnh.org
2015-11-20
We derive expressions for the photophoretic force on opaque spherical particles in a dilute gas in the optically thick regime where the radiation field is in local thermal equilibrium. Under those conditions, the radiation field has a simple form, leading to well defined analytical approximations for the photophoretic force that also consider both the internal thermal conduction within the particle, and the effects of heat conduction and radiation to the surrounding gas. We derive these results for homogeneous spherical particles; and for the double layered spheres appropriate for modeling solid grains with porous aggregate mantles. Then, as a specific astrophysicalmore » application of these general physical results, we explore the parameter space relevant to the photophoresis driven drift of dust in protoplanetary disks. We show that highly porous silicate grains have sufficiently low thermal conductivities that photophoretic effects, such as significant relative velocities between particles with differing porosity or levitation above the midplane, are expected to occur.« less
NASA Astrophysics Data System (ADS)
Ho, I.-Ting; Seibert, Mark; Meidt, Sharon E.; Kudritzki, Rolf-Peter; Kobayashi, Chiaki; Groves, Brent A.; Kewley, Lisa J.; Madore, Barry F.; Rich, Jeffrey A.; Schinnerer, Eva; D’Agostino, Joshua; Poetrodjojo, Henry
2017-09-01
The spatial distribution of oxygen in the interstellar medium of galaxies is the key to understanding how efficiently metals that are synthesized in massive stars can be redistributed across a galaxy. We present here a case study in the nearby spiral galaxy NGC 1365 using 3D optical data obtained in the TYPHOON Program. We find systematic azimuthal variations of the H II region oxygen abundance imprinted on a negative radial gradient. The 0.2 dex azimuthal variations occur over a wide radial range of 0.3–0.7 R 25 and peak at the two spiral arms in NGC 1365. We show that the azimuthal variations can be explained by two physical processes: gas undergoes localized, sub-kiloparsec-scale self-enrichment when orbiting in the inter-arm region, and experiences efficient, kiloparsec-scale mixing-induced dilution when spiral density waves pass through. We construct a simple chemical evolution model to quantitatively test this picture and find that our toy model can reproduce the observations. This result suggests that the observed abundance variations in NGC 1365 are a snapshot of the dynamical local enrichment of oxygen modulated by spiral-driven, periodic mixing and dilution.
Gluconeogenesis from labeled carbon: estimating isotope dilution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelleher, J.K.
1986-03-01
To estimate the rate of gluconeogenesis from steady-state incorporation of labeled 3-carbon precursors into glucose, isotope dilution must be considered so that the rate of labeling of glucose can be quantitatively converted to the rate of gluconeogenesis. An expression for the value of this isotope dilution can be derived using mathematical techniques and a model of the tricarboxylic acid (TCA) cycle. The present investigation employs a more complex model than that used in previous studies. This model includes the following pathways that may affect the correction for isotope dilution: 1) flux of 3-carbon precursor to the oxaloacetate pool via acetyl-CoAmore » and the TCA cycle; 2) flux of 4- or 5-carbon compounds into the TCA cycle; 3) reversible flux between oxaloacetate (OAA) and pyruvate and between OAA and fumarate; 4) incomplete equilibrium between OAA pools; and 5) isotope dilution of 3-carbon tracers between the experimentally measured pool and the precursor for the TCA-cycle OAA pool. Experimental tests are outlined which investigators can use to determine whether these pathways are significant in a specific steady-state system. The study indicated that flux through these five pathways can significantly affect the correction for isotope dilution. To correct for the effects of these pathways an alternative method for calculating isotope dilution is proposed using citrate to relate the specific activities of acetyl-CoA and OAA.« less
NASA Astrophysics Data System (ADS)
Chang, Soon Yong
2008-04-01
In the recent years, dilute Fermi gases have played the center stage role in the many-body physics. The gas of neutral alkali atoms such as Lithium-6 and Potassium-40 can be trapped at temperatures below the Fermi degeneracy. The most relevant feature of these gases is that the interaction is tunable and strongly interacting superfluid can be artificially created. I will discuss the recent progress in understanding the ground state properties of the dilute Fermi gases at different interaction regimes. First, I will present the case of the spin symmetric systems where the Fermi gas can smoothly crossover from the BCS regime to the BEC regime. Then, I will discuss the case of the spin polarized systems, where different quantum phases can occur as a function of the polarization. In the laboratory, the trapped Fermi gas shows spatial dependence of the different quantum phases. This can be understood in the context of the local variation of the chemical potential. I will present the most accurate quantum ab initio results and the relevant experiments.
Exchange and spin-orbit induced phenomena in diluted (Ga,Mn)As from first principles
NASA Astrophysics Data System (ADS)
Kudrnovský, J.; Drchal, V.; Turek, I.
2016-08-01
Physical properties induced by exchange interactions (Curie temperature and spin stiffness) and spin-orbit coupling (anomalous Hall effect, anisotropic magnetoresistance, and Gilbert damping) in the diluted (Ga,Mn)As ferromagnetic semiconductor are studied from first principles. Recently developed Kubo-Bastin transport theory and nonlocal torque operator formulation of the Gilbert damping as formulated in the tight-binding linear muffin-tin orbital method are used. The first-principles Liechtenstein mapping is employed to construct an effective Heisenberg Hamiltonian and to estimate Curie temperature and spin stiffness in the real-space random-phase approximation. Good agreement of calculated physical quantities with experiments on well-annealed samples containing only a small amount of compensating defects is obtained.
2011-03-02
Woolard, "Far- infrared and Terahertz lasing based upon resonant and interband tunneling in InAs/GaSb heterostructure," Applied Physics Letter, vol. 98...REPORT FINAL REPORT: Magneto-Transpots in interband Resonant Tunneling Diodes (I-RTDs) and Dilute Magnetic Semiconductor (DMS) I-RTDs 14. ABSTRACT 16...diodes (RTDs). This DB-BG-RTD device will utilizes two distinct innovations. First, ultra-fast heavy-hole (HH) interband tunneling is leveraged to
NASA Astrophysics Data System (ADS)
Niu, Q.; Zhang, C.
2017-12-01
Archie's law is an important empirical relationship linking the electrical resistivity of geological materials to their porosity. It has been found experimentally that the porosity exponent m in Archie's law in sedimentary rocks might be related to the degree of cementation, and therefore m is termed as "cementation factor" in most literatures. Despite it has been known for many years, there is lack of well-accepted physical interpretations of the porosity exponent. Some theoretical and experimental evidences have also shown that m may be controlled by the particle and/or pore shape. In this study, we conduct a pore-scale modeling of the porosity exponent that incorporates different geological processes. The evolution of m of eight synthetic samples with different particle sizes and shapes are calculated during two geological processes, i.e., compaction and cementation. The numerical results show that in dilute conditions, m is controlled by the particle shape. As the samples deviate from dilute conditions, m increases gradually due to the strong interaction between particles. When the samples are at static equilibrium, m is noticeably larger than its values at dilution condition. The numerical simulation results also show that both geological compaction and cementation induce a significant increase in m. In addition, the geometric characteristics of these samples (e.g., pore space/throat size, and their distributions) during compaction and cementation are also calculated. Preliminary analysis shows a unique correlation between the pore size broadness and porosity exponent for all eight samples. However, such a correlation is not found between m and other geometric characteristics.
Farthing, William Earl [Pinson, AL; Felix, Larry Gordon [Pelham, AL; Snyder, Todd Robert [Birmingham, AL
2008-02-12
An apparatus and method for diluting and cooling that is extracted from high temperature and/or high pressure industrial processes. Through a feedback process, a specialized, CFD-modeled dilution cooler is employed along with real-time estimations of the point at which condensation will occur within the dilution cooler to define a level of dilution and diluted gas temperature that results in a gas that can be conveyed to standard gas analyzers that contains no condensed hydrocarbon compounds or condensed moisture.
Farthing, William Earl; Felix, Larry Gordon; Snyder, Todd Robert
2009-12-15
An apparatus and method for diluting and cooling that is extracted from high temperature and/or high pressure industrial processes. Through a feedback process, a specialized, CFD-modeled dilution cooler is employed along with real-time estimations of the point at which condensation will occur within the dilution cooler to define a level of dilution and diluted gas temperature that results in a gas that can be conveyed to standard gas analyzers that contains no condensed hydrocarbon compounds or condensed moisture.
Fong, Youyi; Yu, Xuesong
2016-01-01
Many modern serial dilution assays are based on fluorescence intensity (FI) readouts. We study optimal transformation model choice for fitting five parameter logistic curves (5PL) to FI-based serial dilution assay data. We first develop a generalized least squares-pseudolikelihood type algorithm for fitting heteroscedastic logistic models. Next we show that the 5PL and log 5PL functions can approximate each other well. We then compare four 5PL models with different choices of log transformation and variance modeling through a Monte Carlo study and real data. Our findings are that the optimal choice depends on the intended use of the fitted curves. PMID:27642502
Experimental physical methods and theories--then and now.
Schulte, Jurgen
2015-10-01
A first evaluation of fundamental research into the physics and physiology of Ultra high dilutions (UHDs) was conducted by the author in 1994(1). In this paper we revisit methods and theories from back then and follow their paths through their evolution and contribution to new knowledge in UHD research since then. Physical methods and theories discusses in our anthology on UHD in 1994(1) form the basis for tracing ideas and findings along their path of further development and impact on new knowledge in UHD. Experimental approaches to probe physical changes in homeopathic preparations have become more sophisticated over past two decades, so did the desire to report results to a scientific standard that is on par with those in specialist literature. The same cannot be said about underlying supporting theoretical models and simulations. Grant challenges in science often take a more targeted and more concerted approach to formulate a research question and then look for answers. A concerted effort to focus on one hypothesized physical aspect of a well-defined homeopathic preparation may help aligning experimental methods with theoretical models and, in doing so, help to gain a deeper understanding of the whole body of insights and data produced. Copyright © 2015 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.
Disentangling niche competition from grazing mortality in phytoplankton dilution experiments
Weitz, Joshua S.
2017-01-01
The dilution method is the principal tool used to infer in situ microzooplankton grazing rates. However, grazing is the only mortality process considered in the theoretical model underlying the interpretation of dilution method experiments. Here we evaluate the robustness of mortality estimates inferred from dilution experiments when there is concurrent niche competition amongst phytoplankton. Using a combination of mathematical analysis and numerical simulations, we find that grazing rates may be overestimated—the degree of overestimation is related to the importance of niche competition relative to microzooplankton grazing. In response, we propose a conceptual method to disentangle the effects of niche competition and grazing by diluting out microzooplankton, but not phytoplankton. Our theoretical results suggest this revised “Z-dilution” method can robustly infer grazing mortality, regardless of the dominant phytoplankton mortality driver in our system. Further, we show it is possible to independently estimate both grazing mortality and niche competition if the classical and Z-dilution methods can be used in tandem. We discuss the significance of these results for quantifying phytoplankton mortality rates; and the feasibility of implementing the Z-dilution method in practice, whether in model systems or in complex communities with overlap in the size distributions of phytoplankton and microzooplankton. PMID:28505212
Interventions in Early Mathematics: Avoiding Pollution and Dilution.
Sarama, Julie; Clements, Douglas H
2017-01-01
Although specific interventions in early mathematics have been successful, few have been brought to scale successfully, especially across the challenging diversity of populations and contexts in the early childhood system in the United States. In this chapter, we analyze a theoretically based scale-up model for early mathematics that was designed to avoid the pollution and dilution that often plagues efforts to achieve broad success. We elaborate the theoretical framework by noting the junctures that are susceptible to dilution or pollution. Then we expatiate the model's guidelines to describe specifically how they were designed and implemented to mitigate pollution and dilution. Finally, we provide evidence regarding the success of these efforts. © 2017 Elsevier Inc. All rights reserved.
High resolution modelling of the biogeochemical processes in the eutrophic Loire River (France)
NASA Astrophysics Data System (ADS)
Minaudo, Camille; Moatar, Florentina; Curie, Florence; Gassama, Nathalie; Billen, Gilles
2016-04-01
A biogeochemical model was developed, coupling a physically based water temperature model (T-NET) with a semi-mechanistic biogeochemical model (RIVE, used in ProSe and Riverstrahler models) in order to assess at a fine temporal and spatial resolution the biogeochemical processes in the eutrophic Middle Loire hydrosystem (≈10 000 km², 3361 river segments). The code itself allows parallelized computing, which decreased greatly the calculation time (5 hours for simulating 3 years hourly). We conducted a daily survey during the period 2012-2014 at 2 sampling stations located in the Middle Loire of nutrients, chlorophyll pigments, phytoplankton and physic-chemical variables. This database was used as both input data (upstream Loire boundary) and validation data of the model (basin outlet). Diffuse and non-point sources were assessed based on a land cover analysis and WWTP datasets. The results appeared very sensible to the coefficients governing the dynamic of suspended solids and of phosphorus (sorption/desorption processes) within the model and some parameters needed to be estimated numerically. Both the Lagrangian point of view and fluxes budgets at the seasonal and event-based scale evidenced the biogeochemical functioning of the Loire River. Low discharge levels set up favorable physical conditions for phytoplankton growth (long water travel time, limited water depth, suspended particles sedimentation). Conversely, higher discharge levels highly limited the phytoplankton biomass (dilution of the colony, washing-out, limited travel time, remobilization of suspended sediments increasing turbidity), and most biogeochemical species were basically transferred downstream. When hydrological conditions remained favorable for phytoplankton development, P-availability was the critical factor. However, the model evidenced that most of the P in summer was recycled within the water body: on one hand it was assimilated by the algae biomass, and on the other hand it was released by mineralization of the dead cells. The high resolution of the model allowed understanding some fine temporal scale events, especially during some minor flood events occurring in summer. Paradoxically such events played two opposite roles: first it was disturbing the phytoplankton by diluting the biomass and remobilizing suspended sediments; then, it indirectly re-supplied the system with more available phosphorus, mainly because the washed-out phytoplankton could not assimilate the P available upstream. The model also pointed out the significant role played by Corbicula invasive clams in the river biogeochemical functioning, substantially reducing the phytoplankton biomass, and thus impacting the nutrients, oxygen and carbon cycles. However, the temporal and spatial distribution of Corbicula was questioned, and highlighted the need for data collection on this topic.
Molecular Structure and Sequence in Complex Coacervates
NASA Astrophysics Data System (ADS)
Sing, Charles; Lytle, Tyler; Madinya, Jason; Radhakrishna, Mithun
Oppositely-charged polyelectrolytes in aqueous solution can undergo associative phase separation, in a process known as complex coacervation. This results in a polyelectrolyte-dense phase (coacervate) and polyelectrolyte-dilute phase (supernatant). There remain challenges in understanding this process, despite a long history in polymer physics. We use Monte Carlo simulation to demonstrate that molecular features (charge spacing, size) play a crucial role in governing the equilibrium in coacervates. We show how these molecular features give rise to strong monomer sequence effects, due to a combination of counterion condensation and correlation effects. We distinguish between structural and sequence-based correlations, which can be designed to tune the phase diagram of coacervation. Sequence effects further inform the physical understanding of coacervation, and provide the basis for new coacervation models that take monomer-level features into account.
Development of a thermodynamic model for a cold cycle 3He-4He dilution refrigerator
NASA Astrophysics Data System (ADS)
Mueller, B. W.; Miller, F. K.
2016-10-01
A thermodynamic model of a 3He-4He cold cycle dilution refrigerator with no actively-driven mechanical components is developed and investigated. The refrigerator employs a reversible superfluid magnetic pump, passive check valves, a phase separation chamber, and a series of recuperative heat exchangers to continuously circulate 3He-4He and maintain a 3He concentration gradient across the mixing chamber. The model predicts cooling power and mixing chamber temperature for a range of design and operating parameters, allowing an evaluation of feasibility for potential 3He-4He cold cycle dilution refrigerator prototype designs. Model simulations for a prototype refrigerator design are presented.
Number of Siblings and Intellectual Development: The Resource Dilution Explanation.
ERIC Educational Resources Information Center
Downey, Douglas B.
2001-01-01
Resource dilution model suggests that as the number of children increases, parental resources for each child decline. Assesses whether resource dilution could explain the effect of siblings on intellectual development tests. Identifies flaws in recent critiques of this position, discussing it as an explanation for why children with few siblings…
The (Conditional) Resource Dilution Model: State- and Community-Level Modifications.
Gibbs, Benjamin G; Workman, Joseph; Downey, Douglas B
2016-06-01
One of the most consistent patterns in the social sciences is the relationship between sibship size and educational outcomes: those with fewer siblings outperform those with many. The resource dilution (RD) model emphasizes the increasing division of parental resources within the nuclear family as the number of children grows, yet it fails to account for instances when the relationship between sibship size and education is often weak or even positive. To reconcile, we introduce a conditional resource dilution (CRD) model to acknowledge that nonparental investments might aid in children's development and condition the effect of siblings. We revisit the General Social Surveys (1972-2010) and find support for a CRD approach: the relationship between sibship size and educational attainment has declined during the first half of the twentieth century, and this relationship varies across religious groups. Findings suggest that state and community resources can offset the impact of resource dilution-a more sociological interpretation of sibship size patterns than that of the traditional RD model.
Demangeat, Jean-Louis
2013-04-01
proton nuclear magnetic resonance (NMR) relaxation times T1, T2, T1/T2 are sensitive to motion and organization of water molecules. Especially, increase in T1/T2 reflects a higher degree of structuring. My purpose was to look at physical changes in water in ultrahigh aqueous dilutions. Samples were prepared by iterative centesimal (c) dilution with vigorous agitation, ranging between 3c and 24c (Avogadro limit 12c). Solutes were silica-lactose, histamine, manganese-lactose. Solvents were water, NaCl 0.15 M or LiCl 0.15 M. Solvents underwent strictly similar, simultaneous dilution/agitation, for each level of dilution, as controls. NMR relaxation was studied within 0.02-20 MHz. No changes were observed in controls. Increasing T1 and T1/T2 were found in dilutions, which persisted beyond 9c (manganese-lactose), 10c (histamine) and 12c (silica-lactose). For silica-lactose in LiCl, continuous decrease in T2 with increase in T1/T2 within the 12c-24c range indicated growing structuring of water despite absence of the initial solute. All changes vanished after heating/cooling. These findings were interpreted in terms of nanosized (>4-nm) supramolecular structures involving water, nanobubbles and ions, if any. Additional study of low dilutions of silica-lactose revealed increased T2 and decreased T1/T2 compared to solvent, within the 10(-3)-10(-6) range, reflecting transient solvent destructuring. This could explain findings at high dilution. Proton NMR relaxation demonstrated modifications of the solvent throughout the low to ultramolecular range of dilution. The findings suggested the existence of superstructures that originate stereospecifically around the solute after an initial destructuring of the solvent, developing more upon dilution and persisting beyond 12c. Copyright © 2013 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.
Single-site properties of U impurities doped in La2Zn17 (abstract)
NASA Astrophysics Data System (ADS)
Suzuki, H.; Anzai, K.; Takagi, S.
1997-04-01
Thermodynamic and transport properties of heavy Fermion (HF) U compounds show similar behavior to HF Ce compounds. Although most of the magnetic properties of HF Ce compounds can be qualitatively understood on the basis of the impurity Kondo model, no such consensus for HF U compounds has been reached. In addition to this, the single-site properties of U impurities are not understood so well, in contrast to the case of Ce impurities. Recent works for dilute U systems reported new features as are not seen in dilute Ce systems. We have investigated a dilute-U2Zn17 system of (La1-zUz)2Zn17 in order to reveal the single U ion site properties of this system by preparing single crystals. The impurity contributions to various physical quantities such as ρimp(T), χimp(T), and Cimp(T) can be scaled by the U concentration between z=0.025 and 0.05, and the system is considered as in the dilute limit still for z=0.05. The electrical resistivity shows the typical impurity-Kondo upturn at low temperatures. The electronic specific-heat coefficient is strongly enhanced (γimp≈1.5 J/K2 mole U) and about 4 times as large as that for dense U2Zn17. Suppressions of the Kondo effect by the magnetic field are seen in γimp(H) and magnetoresistance. The relatively large anisotropy in χimp(T) indicates an existence of the crystal field. These features of this system will be explained in terms of the Kondo effect in the presence of the crystal field.
A CASE STUDY OF CHLORINE TRANSPORT AND FATE FOLLOWING A LARGE ACCIDENTAL RELEASE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buckley, R.; Hunter, C.; Werth, D.
2012-08-01
A train derailment that occurred in Graniteville, South Carolina during the early morning hours of 06 January, 2005 resulted in the prompt release of approximately 60 tons of chlorine to the environment. Comprehensive modeling of the transport and fate of this release was performed including the characterization of the initial three-phased chlorine release, a detailed determination of the local atmospheric conditions acting to generate, disperse, and deplete the chlorine vapor cloud, the establishment of physical exchange mechanisms between the airborne vapor and local surface waters, and local aquatic dilution and mixing.
Cluster Dynamics Modeling with Bubble Nucleation, Growth and Coalescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Almeida, Valmor F.; Blondel, Sophie; Bernholdt, David E.
The topic of this communication pertains to defect formation in irradiated solids such as plasma-facing tungsten submitted to helium implantation in fusion reactor com- ponents, and nuclear fuel (metal and oxides) submitted to volatile ssion product generation in nuclear reactors. The purpose of this progress report is to describe ef- forts towards addressing the prediction of long-time evolution of defects via continuum cluster dynamics simulation. The di culties are twofold. First, realistic, long-time dynamics in reactor conditions leads to a non-dilute di usion regime which is not accommodated by the prevailing dilute, stressless cluster dynamics theory. Second, long-time dynamics callsmore » for a large set of species (ideally an in nite set) to capture all possible emerging defects, and this represents a computational bottleneck. Extensions beyond the dilute limit is a signi cant undertaking since no model has been advanced to extend cluster dynamics to non-dilute, deformable conditions. Here our proposed approach to model the non-dilute limit is to monitor the appearance of a spatially localized void volume fraction in the solid matrix with a bell shape pro le and insert an explicit geometrical bubble onto the support of the bell function. The newly cre- ated internal moving boundary provides the means to account for the interfacial ux of mobile species into the bubble, and the growth of bubbles allows for coalescence phenomena which captures highly non-dilute interactions. We present a preliminary interfacial kinematic model with associated interfacial di usion transport to follow the evolution of the bubble in any number of spatial dimensions and any number of bubbles, which can be further extended to include a deformation theory. Finally we comment on a computational front-tracking method to be used in conjunction with conventional cluster dynamics simulations in the non-dilute model proposed.« less
ANTIGEN-INDUCED CHANGES IN LYMPHOID CELL HISTONES
Black, Maurice M.; Ansley, Hudson R.
1967-01-01
In this study we have examined the solubility of deoxyribonucleoprotein (DNP) isolated from control and antigen-affected thymocytes. 2-M sodium chloride extracts containing the DNP of rat thymus glands were serially diluted. A comparison was made of the effect of dilution on fiber formation in the control and test series. Fiber formation is usually complete for the control material at a salt concentration between 0.63 and 0.57 M. The test material shows some fiber formation within this range. However, a significant portion of the DNP is precipitated at dilutions of 0.54–0.48 M. Ammoniacal silver (A-S) stains the control fibers a characteristic yellowish color. With the test material, those fibers formed within the control range tended to be stained yellowish brown by A-S, whereas those formed only after greater dilution stained blackish. These data, coupled with our previous observations on altered A-S staining, clearly demonstrate an antigen-induced physical and/or chemical alteration of the histone or histone-DNA complex of lymphoid cell chromatin. PMID:4168881
Many-body physics using cold atoms
NASA Astrophysics Data System (ADS)
Sundar, Bhuvanesh
Advances in experiments on dilute ultracold atomic gases have given us access to highly tunable quantum systems. In particular, there have been substantial improvements in achieving different kinds of interaction between atoms. As a result, utracold atomic gases oer an ideal platform to simulate many-body phenomena in condensed matter physics, and engineer other novel phenomena that are a result of the exotic interactions produced between atoms. In this dissertation, I present a series of studies that explore the physics of dilute ultracold atomic gases in different settings. In each setting, I explore a different form of the inter-particle interaction. Motivated by experiments which induce artificial spin-orbit coupling for cold fermions, I explore this system in my first project. In this project, I propose a method to perform universal quantum computation using the excitations of interacting spin-orbit coupled fermions, in which effective p-wave interactions lead to the formation of a topological superfluid. Motivated by experiments which explore the physics of exotic interactions between atoms trapped inside optical cavities, I explore this system in a second project. I calculate the phase diagram of lattice bosons trapped in an optical cavity, where the cavity modes mediates effective global range checkerboard interactions between the atoms. I compare this phase diagram with one that was recently measured experimentally. In two other projects, I explore quantum simulation of condensed matter phenomena due to spin-dependent interactions between particles. I propose a method to produce tunable spin-dependent interactions between atoms, using an optical Feshbach resonance. In one project, I use these spin-dependent interactions in an ultracold Bose-Fermi system, and propose a method to produce the Kondo model. I propose an experiment to directly observe the Kondo effect in this system. In another project, I propose using lattice bosons with a large hyperfine spin, which have Feshbach-induced spin-dependent interactions, to produce a quantum dimer model. I propose an experiment to detect the ground state in this system. In a final project, I develop tools to simulate the dynamics of fermionic superfluids in which fermions interact via a short-range interaction.
Chang, Victor W C; Hildemann, Lynn M; Chang, Cheng-hisn
2009-06-01
The particle and gaseous pollutants in vehicle exhaust emissions undergo rapid dilution with ambient air after exiting the tailpipe. The rate and extent of this dilution can greatly affect both the size evolution of primary exhaust particles and the potential for formation of ultrafine particles. Dilution ratios were measured inside of a wind tunnel in the region immediately downstream of the tailpipe using model vehicles (approximately one-fifth to one-seventh scale models) representing a light-duty truck, a passenger car, and a heavy-duty tractor head (without the trailer). A tracer gas (ethene) was released at a measured flow rate from the tailpipe, and 60 sampling probes placed downstream of the vehicle simultaneously sampled gas tracer concentrations in the near-wake (first few vehicle heights) and far-wake regions (beyond 10 vehicle heights). Tests using different tunnel wind speeds show the range of dilution ratios that can be expected as a function of vehicle type and downstream distance (i.e., time). The vehicle shape quite strongly influences dilution profiles in the near-wake region but is much less important in the far-wake region. The tractor generally produces higher dilution rates than the automobile and light-duty truck under comparable conditions.
A Novel Approach to Identifying Physical Markers of Cryo-Damage in Bull Spermatozoa
Yoon, Sung-Jae; Kwon, Woo-Sung; Rahman, Md Saidur; Lee, June-Sub; Pang, Myung-Geol
2015-01-01
Cryopreservation is an efficient way to store spermatozoa and plays a critical role in the livestock industry as well as in clinical practice. During cryopreservation, cryo-stress causes substantial damage to spermatozoa. In present study, the effects of cryo-stress at various cryopreservation steps, such as dilution / cooling, adding cryoprtectant, and freezing were studied in spermatozoa collected from 9 individual bull testes. The motility (%), motion kinematics, capacitation status, mitochondrial activity, and viability of bovine spermatozoa at each step of the cryopreservation process were assessed using computer-assisted sperm analysis, Hoechst 33258/chlortetracycline fluorescence, rhodamine 123 staining, and hypo-osmotic swelling test, respectively. The results demonstrate that the cryopreservation steps reduced motility (%), rapid speed (%), and mitochondrial activity, whereas medium/slow speed (%), and the acrosome reaction were increased (P < 0.05). Differences (Δ) of the acrosome reaction were higher in dilution/cooling step (P < 0.05), whereas differences (Δ) of motility, rapid speed, and non-progressive motility were higher in cryoprotectant and freezing as compared to dilution/cooling (P < 0.05). On the other hand, differences (Δ) of mitochondrial activity, viability, and progressive motility were higher in freezing step (P < 0.05) while the difference (Δ) of the acrosome reaction was higher in dilution/cooling (P < 0.05). Based on these results, we propose that freezing / thawing steps are the most critical in cryopreservation and may provide a logical ground of understanding on the cryo-damage. Moreover, these sperm parameters might be used as physical markers of sperm cryo-damage. PMID:25938413
Animal models for studying homeopathy and high dilutions: conceptual critical review.
Bonamin, Leoni Villano; Endler, Peter Christian
2010-01-01
This is a systematic review of the animal models used in studies of high dilutions. The objectives are to analyze methodological quality of papers and reported results, and to highlight key conceptual aspects of high dilution to suggest clues concerning putative mechanisms of action. Papers for inclusion were identified systematically, from the Pubmed-Medline database, using 'Homeopathy' and 'Animal' as keywords. Only original full papers in English published between January 1999 and June 2009 were included, reviews, scientific reports, thesis, older papers, papers extracted from Medline using similar keywords, papers about mixed commercial formulas and books were also considered for discussion only. 31 papers describing 33 experiments were identified for the main analysis and a total of 89 items cited. Systematic analysis of the selected papers yielded evidence of some important intrinsic features of high dilution studies performed in animal models: a) methodological quality was generally adequate, some aspects could be improved; b) convergence between results and materia medica is seen in some studies, pointing toward to the possibility of systematic study of the Similia principle c) both isopathic and Similia models seem useful to understand some complex biological phenomena, such as parasite-host interactions; d) the effects of high dilutions seem to stimulate restoration of a 'stable state', as seen in several experimental models from both descriptive and mathematical points of view. Copyright 2009 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.
Kumar, Deepak; Murthy, Ganti S
2011-09-05
While advantages of biofuel have been widely reported, studies also highlight the challenges in large scale production of biofuel. Cost of ethanol and process energy use in cellulosic ethanol plants are dependent on technologies used for conversion of feedstock. Process modeling can aid in identifying techno-economic bottlenecks in a production process. A comprehensive techno-economic analysis was performed for conversion of cellulosic feedstock to ethanol using some of the common pretreatment technologies: dilute acid, dilute alkali, hot water and steam explosion. Detailed process models incorporating feedstock handling, pretreatment, simultaneous saccharification and co-fermentation, ethanol recovery and downstream processing were developed using SuperPro Designer. Tall Fescue (Festuca arundinacea Schreb) was used as a model feedstock. Projected ethanol yields were 252.62, 255.80, 255.27 and 230.23 L/dry metric ton biomass for conversion process using dilute acid, dilute alkali, hot water and steam explosion pretreatment technologies respectively. Price of feedstock and cellulose enzymes were assumed as $50/metric ton and 0.517/kg broth (10% protein in broth, 600 FPU/g protein) respectively. Capital cost of ethanol plants processing 250,000 metric tons of feedstock/year was $1.92, $1.73, $1.72 and $1.70/L ethanol for process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Ethanol production cost of $0.83, $0.88, $0.81 and $0.85/L ethanol was estimated for production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Water use in the production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment was estimated 5.96, 6.07, 5.84 and 4.36 kg/L ethanol respectively. Ethanol price and energy use were highly dependent on process conditions used in the ethanol production plant. Potential for significant ethanol cost reductions exist in increasing pentose fermentation efficiency and reducing biomass and enzyme costs. The results demonstrated the importance of addressing the tradeoffs in capital costs, pretreatment and downstream processing technologies.
2011-01-01
Background While advantages of biofuel have been widely reported, studies also highlight the challenges in large scale production of biofuel. Cost of ethanol and process energy use in cellulosic ethanol plants are dependent on technologies used for conversion of feedstock. Process modeling can aid in identifying techno-economic bottlenecks in a production process. A comprehensive techno-economic analysis was performed for conversion of cellulosic feedstock to ethanol using some of the common pretreatment technologies: dilute acid, dilute alkali, hot water and steam explosion. Detailed process models incorporating feedstock handling, pretreatment, simultaneous saccharification and co-fermentation, ethanol recovery and downstream processing were developed using SuperPro Designer. Tall Fescue (Festuca arundinacea Schreb) was used as a model feedstock. Results Projected ethanol yields were 252.62, 255.80, 255.27 and 230.23 L/dry metric ton biomass for conversion process using dilute acid, dilute alkali, hot water and steam explosion pretreatment technologies respectively. Price of feedstock and cellulose enzymes were assumed as $50/metric ton and 0.517/kg broth (10% protein in broth, 600 FPU/g protein) respectively. Capital cost of ethanol plants processing 250,000 metric tons of feedstock/year was $1.92, $1.73, $1.72 and $1.70/L ethanol for process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Ethanol production cost of $0.83, $0.88, $0.81 and $0.85/L ethanol was estimated for production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Water use in the production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment was estimated 5.96, 6.07, 5.84 and 4.36 kg/L ethanol respectively. Conclusions Ethanol price and energy use were highly dependent on process conditions used in the ethanol production plant. Potential for significant ethanol cost reductions exist in increasing pentose fermentation efficiency and reducing biomass and enzyme costs. The results demonstrated the importance of addressing the tradeoffs in capital costs, pretreatment and downstream processing technologies. PMID:21892958
Kapo, Katherine E; McDonough, Kathleen; Federle, Thomas; Dyer, Scott; Vamshi, Raghu
2015-06-15
Environmental exposure and associated ecological risk related to down-the-drain chemicals discharged by municipal wastewater treatment plants (WWTPs) are strongly influenced by in-stream dilution of receiving waters which varies by geography, flow conditions and upstream wastewater inputs. The iSTREEM® model (American Cleaning Institute, Washington D.C.) was utilized to determine probabilistic distributions for no decay and decay-based dilution factors in mean annual and low (7Q10) flow conditions. The dilution factors derived in this study are "combined" dilution factors which account for both hydrologic dilution and cumulative upstream effluent contributions that will differ depending on the rate of in-stream decay due to biodegradation, volatilization, sorption, etc. for the chemical being evaluated. The median dilution factors estimated in this study (based on various in-stream decay rates from zero decay to a 1h half-life) for WWTP mixing zones dominated by domestic wastewater flow ranged from 132 to 609 at mean flow and 5 to 25 at low flow, while median dilution factors at drinking water intakes (mean flow) ranged from 146 to 2×10(7) depending on the in-stream decay rate. WWTPs within the iSTREEM® model were used to generate a distribution of per capita wastewater generated in the U.S. The dilution factor and per capita wastewater generation distributions developed by this work can be used to conduct probabilistic exposure assessments for down-the-drain chemicals in influent wastewater, wastewater treatment plant mixing zones and at drinking water intakes in the conterminous U.S. In addition, evaluation of types and abundance of U.S. wastewater treatment processes provided insight into treatment trends and the flow volume treated by each type of process. Moreover, removal efficiencies of chemicals can differ by treatment type. Hence, the availability of distributions for per capita wastewater production, treatment type, and dilution factors at a national level provides a series of practical and powerful tools for building probabilistic exposure models. Copyright © 2015 Elsevier B.V. All rights reserved.
Palenzuela, D O; Benítez, J; Rivero, J; Serrano, R; Ganzó, O
1997-10-13
In the present work a concept proposed in 1992 by Dopotka and Giesendorf was applied to the quantitative analysis of antibodies to the p24 protein of HIV-1 in infected asymptomatic individuals and AIDS patients. Two approaches were analyzed, a linear model OD = b0 + b1.log(titer) and a nonlinear log(titer) = alpha.OD beta, similar to the Dopotka-Giesendorf's model. The above two proposed models adequately fit the dependence of the optical density values at a single point dilution, and titers achieved by the end point dilution method (EPDM). Nevertheless, the nonlinear model better fits the experimental data, according to residuals analysis. Classical EPDM was compared with the new single point dilution method (SPDM) using both models. The best correlation between titers calculated using both models and titers achieved by EPDM was obtained with the nonlinear model. The correlation coefficients for the nonlinear and linear models were r = 0.85 and r = 0.77, respectively. A new correction factor was introduced into the nonlinear model and this reduced the day-to-day variation of titer values. In general, SPDM saves time, reagents and is more precise and sensitive to changes in antibody levels, and therefore has a higher resolution than EPDM.
Dietary change and stable isotopes: a model of growth and dormancy in cave bears.
Lidén, K; Angerbjörn, A
1999-01-01
In order to discuss dietary change over time by the use of stable isotopes, it is necessary to sort out the underlying processes in isotopic variation. Together with the dietary signal other processes have been investigated, namely metabolic processes, collagen turnover and physical growth. However, growth and collagen turnover time have so far been neglected in dietary reconstruction based on stable isotopes. An earlier study suggested that cave bears (Ursus spelaeus) probably gave birth to cubs during dormancy. We provide an estimate of the effect on stable isotopes of growth and metabolism and discuss collagen turnover in a population of cave bears. Based on a quantitative model, we hypothesized that bear cubs lactated their mothers during their first and second winters, but were fed solid food together with lactation during their first summer. This demonstrates the need to include physical growth, metabolism and collagen turnover in dietary reconstruction. Whereas the effects of diet and metabolism are due to fractionation, growth and collagen turnover are dilution processes. PMID:10518325
Effective dilution of surfactants due to thinning of the soap film
NASA Astrophysics Data System (ADS)
Sane, Aakash; Mandre, Shreyas; Kim, Ildoo
2017-11-01
A flowing soap film is a system whose hydrodynamic properties can be affected by its thickness. Despite abundant experiments performed using soap films, few have examined the dependence of its physical as well as chemical properties with respect to its thickness. We investigate one such property - surface tension of the flowing film and delineate its dependence on the concentration of the soap solution and flow rate per unit width i.e. thickness of the soap film. Using our proposed method to measure the average surface tension in-situ over the whole soap film, we show that the surface tension increases by reducing the thickness of the film and by reducing the concentration of the soap solution. Our data suggests that thinning of the soap film is effectively diluting the solution. Thinning increases the adsorption of surfactants to the surfaces, but it decreases the total number of molecules per unit area. Our work brings new insight into the physics of soap films and we believe that this effective dilution due to thinning is a signature of the flowing soap films, whose surface concentration of surfactants is affected by the thickness.
NASA Astrophysics Data System (ADS)
Craco, L.; Laad, M. S.; Müller-Hartmann, E.
2003-12-01
Motivated by a study of various experiments describing the electronic and magnetic properties of the diluted magnetic semiconductor Ga1-xMnxAs, we investigate its physical response in detail using a combination of first-principles band structure with methods based on dynamical mean field theory to incorporate strong, dynamical correlations, and intrinsic as well as extrinsic disorder in one single theoretical picture. We show how ferromagnetism is driven by double exchange (DE), in agreement with very recent observations, along with a good quantitative description of the details of the electronic structure, as probed by scanning tunneling microscopy and optical conductivity. Our results show how ferromagnetism can be driven by DE even in diluted magnetic semiconductors with small carrier concentration.
Motor-mediated microtubule self-organization in dilute and semi-dilute filament solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swaminathan, S.; Ziebert, F.; Aranson, I. S.
We study molecular motor-induced microtubule self-organization in dilute and semi-dilute filament solutions. In the dilute case, we use a probabilistic model of microtubule interaction via molecular motors to investigate microtubule bundle dynamics. Microtubules are modeled as polar rods interacting through fully inelastic, binary collisions. Our model indicates that initially disordered systems of interacting rods exhibit an orientational instability resulting in spontaneous ordering. We study the existence and dynamic interaction of microtubule bundles analytically and numerically. Our results reveal a long term attraction and coalescing of bundles indicating a clear coarsening in the system; microtubule bundles concentrate into fewer orientations onmore » a slow logarithmic time scale. In semi-dilute filament solutions, multiple motors can bind a filament to several others and, for a critical motor density, induce a transition to an ordered phase with a nonzero mean orientation. Motors attach to a pair of filaments and walk along the pair bringing them into closer alignment. We develop a spatially homogenous, mean-field theory that explicitly accounts for a force-dependent detachment rate of motors, which in turn affects the mean and the fluctuations of the net force acting on a filament. We show that the transition to the oriented state can be both continuous and discontinuous when the force-dependent detachment of motors is important.« less
NASA Astrophysics Data System (ADS)
Zhang, Rui; Schweizer, Kenneth S.
2017-05-01
We formulate a microscopic, force-level statistical mechanical theory for the activated diffusion of dilute penetrants in dense liquids, colloidal suspensions, and glasses. The approach explicitly and self-consistently accounts for coupling between penetrant hopping and matrix dynamic displacements that actively facilitate the hopping event. The key new ideas involve two mechanistically (at a stochastic trajectory level) coupled dynamic free energy functions for the matrix and spherical penetrant particles. A single dynamic coupling parameter quantifies how much the matrix displaces relative to the penetrant when the latter reaches its transition state which is determined via the enforcement of a temporal causality or coincidence condition. The theory is implemented for dilute penetrants smaller than the matrix particles, with or without penetrant-matrix attractive forces. Model calculations reveal a rich dependence of the penetrant diffusion constant and degree of dynamic coupling on size ratio, volume fraction, and attraction strength. In the absence of attractions, a near exponential decrease of penetrant diffusivity with size ratio over an intermediate range is predicted, in contrast to the much steeper, non-exponential variation if one assumes local matrix dynamical fluctuations are not correlated with penetrant motion. For sticky penetrants, the relative and absolute influence of caging versus physical bond formation is studied. The conditions for a dynamic crossover from the case where a time scale separation between penetrant and matrix activated hopping exists to a "slaved" or "constraint release" fully coupled regime are determined. The particle mixture model is mapped to treat experimental thermal systems and applied to make predictions for the diffusivity of water, toluene, methanol, and oxygen in polyvinylacetate liquids and glasses. The theory agrees well with experiment with values of the penetrant-matrix size ratio close to their chemically intuitive values.
Schweizer, Kenneth S.
2017-01-01
We formulate a microscopic, force-level statistical mechanical theory for the activated diffusion of dilute penetrants in dense liquids, colloidal suspensions, and glasses. The approach explicitly and self-consistently accounts for coupling between penetrant hopping and matrix dynamic displacements that actively facilitate the hopping event. The key new ideas involve two mechanistically (at a stochastic trajectory level) coupled dynamic free energy functions for the matrix and spherical penetrant particles. A single dynamic coupling parameter quantifies how much the matrix displaces relative to the penetrant when the latter reaches its transition state which is determined via the enforcement of a temporal causality or coincidence condition. The theory is implemented for dilute penetrants smaller than the matrix particles, with or without penetrant-matrix attractive forces. Model calculations reveal a rich dependence of the penetrant diffusion constant and degree of dynamic coupling on size ratio, volume fraction, and attraction strength. In the absence of attractions, a near exponential decrease of penetrant diffusivity with size ratio over an intermediate range is predicted, in contrast to the much steeper, non-exponential variation if one assumes local matrix dynamical fluctuations are not correlated with penetrant motion. For sticky penetrants, the relative and absolute influence of caging versus physical bond formation is studied. The conditions for a dynamic crossover from the case where a time scale separation between penetrant and matrix activated hopping exists to a “slaved” or “constraint release” fully coupled regime are determined. The particle mixture model is mapped to treat experimental thermal systems and applied to make predictions for the diffusivity of water, toluene, methanol, and oxygen in polyvinylacetate liquids and glasses. The theory agrees well with experiment with values of the penetrant-matrix size ratio close to their chemically intuitive values. PMID:28527449
Entrainment vs. Dilution in Tropical Deep Convection
NASA Astrophysics Data System (ADS)
Hannah, W.
2017-12-01
The distinction between entrainment and dilution is investigated with cloud resolving simulations of deep convection in a tropical environment. A method for estimating the rate of dilution by entrainment and detrainment is calculated for a series of bubble simulations with a range of initial radii. Entrainment generally corresponds to dilution of convection, but the two quantities are not well correlated. Core dilution by entrainment is significantly reduced by the presence of a shell of moist air around the core. Entrainment contributes significantly to the total net dilution, but detrainment and the various source/sink terms play large roles depending on the variable in question. Detrainment has a concentrating effect on average that balances out the dilution by entrainment. The experiments are also used to examine whether entrainment or dilution scale with cloud radius. The results support a weak negative relationship for dilution, but not for entrainment. The sensitivity to resolution is briefly discussed. A toy Lagrangian thermal model is used to demonstrate the importance of the cloud shell as a thermodynamic buffer to reduce the dilution of the core by entrainment. The results suggest that explicit cloud heterogeneity may be a useful consideration for future convective parameterization development.
A New Model for the Estimation of Cell Proliferation Dynamics Using CFSE Data
Banks, H.T.; Sutton, Karyn L.; Thompson, W. Clayton; Bocharov, Gennady; Doumic, Marie; Schenkel, Tim; Argilaguet, Jordi; Giest, Sandra; Peligero, Cristina; Meyerhans, Andreas
2011-01-01
CFSE analysis of a proliferating cell population is a popular tool for the study of cell division and division-linked changes in cell behavior. Recently [13, 43, 45], a partial differential equation (PDE) model to describe lymphocyte dynamics in a CFSE proliferation assay was proposed. We present a significant revision of this model which improves the physiological understanding of several parameters. Namely, the parameter γ used previously as a heuristic explanation for the dilution of CFSE dye by cell division is replaced with a more physical component, cellular autofluorescence. The rate at which label decays is also quantified using a Gompertz decay process. We then demonstrate a revised method of fitting the model to the commonly used histogram representation of the data. It is shown that these improvements result in a model with a strong physiological basis which is fully capable of replicating the behavior observed in the data. PMID:21889510
NASA Astrophysics Data System (ADS)
Bian, Qijing; Jathar, Shantanu H.; Kodros, John K.; Barsanti, Kelley C.; Hatch, Lindsay E.; May, Andrew A.; Kreidenweis, Sonia M.; Pierce, Jeffrey R.
2017-04-01
Secondary organic aerosol (SOA) has been shown to form in biomass-burning emissions in laboratory and field studies. However, there is significant variability among studies in mass enhancement, which could be due to differences in fuels, fire conditions, dilution, and/or limitations of laboratory experiments and observations. This study focuses on understanding processes affecting biomass-burning SOA formation in laboratory smog-chamber experiments and in ambient plumes. Vapor wall losses have been demonstrated to be an important factor that can suppress SOA formation in laboratory studies of traditional SOA precursors; however, impacts of vapor wall losses on biomass-burning SOA have not yet been investigated. We use an aerosol-microphysical model that includes representations of volatility and oxidation chemistry to estimate the influence of vapor wall loss on SOA formation observed in the FLAME III smog-chamber studies. Our simulations with base-case assumptions for chemistry and wall loss predict a mean OA mass enhancement (the ratio of final to initial OA mass, corrected for particle-phase wall losses) of 1.8 across all experiments when vapor wall losses are modeled, roughly matching the mean observed enhancement during FLAME III. The mean OA enhancement increases to over 3 when vapor wall losses are turned off, implying that vapor wall losses reduce the apparent SOA formation. We find that this decrease in the apparent SOA formation due to vapor wall losses is robust across the ranges of uncertainties in the key model assumptions for wall-loss and mass-transfer coefficients and chemical mechanisms.We then apply similar assumptions regarding SOA formation chemistry and physics to smoke emitted into the atmosphere. In ambient plumes, the plume dilution rate impacts the organic partitioning between the gas and particle phases, which may impact the potential for SOA to form as well as the rate of SOA formation. We add Gaussian dispersion to our aerosol-microphysical model to estimate how SOA formation may vary under different ambient-plume conditions (e.g., fire size, emission mass flux, atmospheric stability). Smoke from small fires, such as typical prescribed burns, dilutes rapidly, which drives evaporation of organic vapor from the particle phase, leading to more effective SOA formation. Emissions from large fires, such as intense wildfires, dilute slowly, suppressing OA evaporation and subsequent SOA formation in the near field. We also demonstrate that different approaches to the calculation of OA enhancement in ambient plumes can lead to different conclusions regarding SOA formation. OA mass enhancement ratios of around 1 calculated using an inert tracer, such as black carbon or CO, have traditionally been interpreted as exhibiting little or no SOA formation; however, we show that SOA formation may have greatly contributed to the mass in these plumes.In comparison of laboratory and plume results, the possible inconsistency of OA enhancement between them could be in part attributed to the effect of chamber walls and plume dilution. Our results highlight that laboratory and field experiments that focus on the fuel and fire conditions also need to consider the effects of plume dilution or vapor losses to walls.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bian, Qijing; Jathar, Shantanu H.; Kodros, John K.
Secondary organic aerosol (SOA) has been shown to form in biomass-burning emissions in laboratory and field studies. However, there is significant variability among studies in mass enhancement, which could be due to differences in fuels, fire conditions, dilution, and/or limitations of laboratory experiments and observations. This study focuses on understanding processes affecting biomass-burning SOA formation in laboratory smog-chamber experiments and in ambient plumes. Vapor wall losses have been demonstrated to be an important factor that can suppress SOA formation in laboratory studies of traditional SOA precursors; however, impacts of vapor wall losses on biomass-burning SOA have not yet been investigated.more » We use an aerosol-microphysical model that includes representations of volatility and oxidation chemistry to estimate the influence of vapor wall loss on SOA formation observed in the FLAME III smog-chamber studies. Our simulations with base-case assumptions for chemistry and wall loss predict a mean OA mass enhancement (the ratio of final to initial OA mass, corrected for particle-phase wall losses) of 1.8 across all experiments when vapor wall losses are modeled, roughly matching the mean observed enhancement during FLAME III. The mean OA enhancement increases to over 3 when vapor wall losses are turned off, implying that vapor wall losses reduce the apparent SOA formation. We find that this decrease in the apparent SOA formation due to vapor wall losses is robust across the ranges of uncertainties in the key model assumptions for wall-loss and mass-transfer coefficients and chemical mechanisms. We then apply similar assumptions regarding SOA formation chemistry and physics to smoke emitted into the atmosphere. In ambient plumes, the plume dilution rate impacts the organic partitioning between the gas and particle phases, which may impact the potential for SOA to form as well as the rate of SOA formation. We add Gaussian dispersion to our aerosol-microphysical model to estimate how SOA formation may vary under different ambient-plume conditions (e.g., fire size, emission mass flux, atmospheric stability). Smoke from small fires, such as typical prescribed burns, dilutes rapidly, which drives evaporation of organic vapor from the particle phase, leading to more effective SOA formation. Emissions from large fires, such as intense wildfires, dilute slowly, suppressing OA evaporation and subsequent SOA formation in the near field. We also demonstrate that different approaches to the calculation of OA enhancement in ambient plumes can lead to different conclusions regarding SOA formation. OA mass enhancement ratios of around 1 calculated using an inert tracer, such as black carbon or CO, have traditionally been interpreted as exhibiting little or no SOA formation; however, we show that SOA formation may have greatly contributed to the mass in these plumes.In comparison of laboratory and plume results, the possible inconsistency of OA enhancement between them could be in part attributed to the effect of chamber walls and plume dilution. Lastly, our results highlight that laboratory and field experiments that focus on the fuel and fire conditions also need to consider the effects of plume dilution or vapor losses to walls.« less
Bian, Qijing; Jathar, Shantanu H.; Kodros, John K.; ...
2017-04-28
Secondary organic aerosol (SOA) has been shown to form in biomass-burning emissions in laboratory and field studies. However, there is significant variability among studies in mass enhancement, which could be due to differences in fuels, fire conditions, dilution, and/or limitations of laboratory experiments and observations. This study focuses on understanding processes affecting biomass-burning SOA formation in laboratory smog-chamber experiments and in ambient plumes. Vapor wall losses have been demonstrated to be an important factor that can suppress SOA formation in laboratory studies of traditional SOA precursors; however, impacts of vapor wall losses on biomass-burning SOA have not yet been investigated.more » We use an aerosol-microphysical model that includes representations of volatility and oxidation chemistry to estimate the influence of vapor wall loss on SOA formation observed in the FLAME III smog-chamber studies. Our simulations with base-case assumptions for chemistry and wall loss predict a mean OA mass enhancement (the ratio of final to initial OA mass, corrected for particle-phase wall losses) of 1.8 across all experiments when vapor wall losses are modeled, roughly matching the mean observed enhancement during FLAME III. The mean OA enhancement increases to over 3 when vapor wall losses are turned off, implying that vapor wall losses reduce the apparent SOA formation. We find that this decrease in the apparent SOA formation due to vapor wall losses is robust across the ranges of uncertainties in the key model assumptions for wall-loss and mass-transfer coefficients and chemical mechanisms. We then apply similar assumptions regarding SOA formation chemistry and physics to smoke emitted into the atmosphere. In ambient plumes, the plume dilution rate impacts the organic partitioning between the gas and particle phases, which may impact the potential for SOA to form as well as the rate of SOA formation. We add Gaussian dispersion to our aerosol-microphysical model to estimate how SOA formation may vary under different ambient-plume conditions (e.g., fire size, emission mass flux, atmospheric stability). Smoke from small fires, such as typical prescribed burns, dilutes rapidly, which drives evaporation of organic vapor from the particle phase, leading to more effective SOA formation. Emissions from large fires, such as intense wildfires, dilute slowly, suppressing OA evaporation and subsequent SOA formation in the near field. We also demonstrate that different approaches to the calculation of OA enhancement in ambient plumes can lead to different conclusions regarding SOA formation. OA mass enhancement ratios of around 1 calculated using an inert tracer, such as black carbon or CO, have traditionally been interpreted as exhibiting little or no SOA formation; however, we show that SOA formation may have greatly contributed to the mass in these plumes.In comparison of laboratory and plume results, the possible inconsistency of OA enhancement between them could be in part attributed to the effect of chamber walls and plume dilution. Lastly, our results highlight that laboratory and field experiments that focus on the fuel and fire conditions also need to consider the effects of plume dilution or vapor losses to walls.« less
Entrainment versus Dilution in Tropical Deep Convection
Hannah, Walter M.
2017-11-01
In this paper, the distinction between entrainment and dilution is investigated with cloud-resolving simulations of deep convection in a tropical environment. A method for estimating the rate of dilution by entrainment and detrainment is presented and calculated for a series of bubble simulations with a range of initial radii. Entrainment generally corresponds to dilution of convection, but the two quantities are not well correlated. Core dilution by entrainment is significantly reduced by the presence of a shell of moist air around the core. Dilution by entrainment also increases with increasing updraft velocity but only for sufficiently strong updrafts. Entrainment contributesmore » significantly to the total net dilution, but detrainment and the various source/sink terms play large roles depending on the variable in question. Detrainment has a concentrating effect on average that balances out the dilution by entrainment. The experiments are also used to examine whether entrainment or dilution scale with cloud radius. The results support a weak negative relationship for dilution but not for entrainment. The sensitivity to resolution is briefly discussed. A toy Lagrangian thermal model is used to demonstrate the importance of the cloud shell as a thermodynamic buffer to reduce the dilution of the core by entrainment. Finally, the results suggest that explicit cloud heterogeneity may be a useful consideration for future convective parameterization development.« less
Overgaard-Steensen, Christian; Stødkilde-Jørgensen, Hans; Larsson, Anders; Tønnesen, Else; Frøkiaer, Jørgen; Ring, Troels
2016-07-01
What is the central question of this study? The brain response to acute hyponatraemia is usually studied in rodents by intraperitoneal instillation of hypotonic fluids (i.p. model). The i.p. model is described as 'dilutional' and 'syndrome of inappropriate ADH (SIADH)', but the mechanism has not been explored systematically and might affect the brain response. Therefore, in vivo brain and muscle response were studied in pigs. What is the main finding and its importance? The i.p. model induces hypovolaemic hyponatraemia attributable to sodium redistribution, not dilution. A large reduction in brain sodium is observed, probably because of the specific mechanism causing the hyponatraemia. This is not accounted for in current understanding of the brain response to acute hyponatraemia. Hyponatraemia is common clinically, and if it develops rapidly, brain oedema evolves, and severe morbidity and even death may occur. Experimentally, acute hyponatraemia is most frequently studied in small animal models, in which the hyponatraemia is produced by intraperitoneal instillation of hypotonic fluids (i.p. model). This hyponatraemia model is described as 'dilutional' or 'syndrome of inappropriate ADH (SIADH)', but seminal studies contradict this interpretation. To confront this issue, we developed an i.p. model in a large animal (the pig) and studied water and electrolyte responses in brain, muscle, plasma and urine. We hypothesized that hyponatraemia was induced by simple water dilution, with no change in organ sodium content. Moderate hypotonic hyponatraemia was induced by a single i.v. dose of desmopressin and intraperitoneal instillation of 2.5% glucose. All animals were anaesthetized and intensively monitored. In vivo brain and muscle water was determined by magnetic resonance imaging and related to the plasma sodium concentration. Muscle water content increased less than expected as a result of pure dilution, and muscle sodium content decreased significantly (by 28%). Sodium was redistributed to the peritoneal fluid, resulting in a significantly reduced plasma volume. This shows that the i.p. model induces hypovolaemic hyponatraemia and not dilutional/SIADH hyponatraemia. Brain oedema evolved, but brain sodium content decreased significantly (by 21%). To conclude, the i.p. model induces hypovolaemic hyponatraemia attributable to sodium redistribution and not water dilution. The large reduction in brain sodium is probably attributable to the specific mechanism that causes the hyponatraemia. This is not accounted for in the current understanding of the brain response to acute hyponatraemia. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.
Quantifying the dilution effect for models in ecological epidemiology.
Roberts, M G; Heesterbeek, J A P
2018-03-01
The dilution effect , where an increase in biodiversity results in a reduction in the prevalence of an infectious disease, has been the subject of speculation and controversy. Conversely, an amplification effect occurs when increased biodiversity is related to an increase in prevalence. We explore the conditions under which these effects arise, using multi species compartmental models that integrate ecological and epidemiological interactions. We introduce three potential metrics for quantifying dilution and amplification, one based on infection prevalence in a focal host species, one based on the size of the infected subpopulation of that species and one based on the basic reproduction number. We introduce our approach in the simplest epidemiological setting with two species, and show that the existence and strength of a dilution effect is influenced strongly by the choices made to describe the system and the metric used to gauge the effect. We show that our method can be generalized to any number of species and to more complicated ecological and epidemiological dynamics. Our method allows a rigorous analysis of ecological systems where dilution effects have been postulated, and contributes to future progress in understanding the phenomenon of dilution in the context of infectious disease dynamics and infection risk. © 2018 The Author(s).
NASA Astrophysics Data System (ADS)
Weigand, T. M.; Harrison, E.; Miller, C. T.
2017-12-01
A thermodynamically constrained averaging theory (TCAT) model has been developed to simulate non-dilute flow and species transport in porous media. This model has the advantages of a firm connection between the microscale, or pore scale, and the macroscale; a thermodynamically consistent basis; the explicit inclusion of dissipative terms that arise from spatial gradients in pressure and chemical activity; and the ability to describe both high and low concentration displacement. The TCAT model has previously been shown to provide excellent agreement for a set of laboratory data and outperformed existing macroscale models that have been used for non-dilute flow and transport. The examined experimental dataset consisted of stable brine displacements for a large range of fluid properties. This dataset however only examined one type of porous media and had a fixed flow rate for all experiments. In this work, the TCAT model is applied to a dataset that consists of two different porous media types, constant head and flow rate conditions, varying resident fluid concentrations, and internal probes that measured the pressure and salt mass fraction. Parameter estimation is performed on a subset of the experimental data for the TCAT model as well as other existing non-dilute flow and transport models. The optimized parameters are then used for forward simulations and the accuracy of the models is compared.
Dilution of protein-surfactant complexes: a fluorescence study.
Azadi, Glareh; Chauhan, Anuj; Tripathi, Anubhav
2013-09-01
Dilution of protein-surfactant complexes is an integrated step in microfluidic protein sizing, where the contribution of free micelles to the overall fluorescence is reduced by dilution. This process can be further improved by establishing an optimum surfactant concentration and quantifying the amount of protein based on the fluorescence intensity. To this end, we study the interaction of proteins with anionic sodium dodecyl sulfate (SDS) and cationic hexadecyl trimethyl ammonium bromide (CTAB) using a hydrophobic fluorescent dye (sypro orange). We analyze these interactions fluourometrically with bovine serum albumin, carbonic anhydrase, and beta-galactosidase as model proteins. The fluorescent signature of protein-surfactant complexes at various dilution points shows three distinct regions, surfactant dominant, breakdown, and protein dominant region. Based on the dilution behavior of protein-surfactant complexes, we propose a fluorescence model to explain the contribution of free and bound micelles to the overall fluorescence. Our results show that protein peak is observed at 3 mM SDS as the optimum dilution concentration. Furthermore, we study the effect of protein concentration on fluorescence intensity. In a single protein model with a constant dye quantum yield, the peak height increases with protein concentration. Finally, addition of CTAB to the protein-SDS complex at mole fractions above 0.1 shifts the protein peak from 3 mM to 4 mM SDS. The knowledge of protein-surfactant interactions obtained from these studies provides significant insights for novel detection and quantification techniques in microfluidics. © 2013 The Protein Society.
NASA Astrophysics Data System (ADS)
Tasoglu, Savas; Peters, Jennifer J.; Park, Su Chan; Verguet, Stéphane; Katz, David F.; Szeri, Andrew J.
2011-09-01
A recent study in South Africa has confirmed, for the first time, that a vaginal gel formulation of the antiretroviral drug Tenofovir, when topically applied, significantly inhibits sexual HIV transmission to women [Karim et al., Science 329, 1168 (2010)]. However, the gel for this drug and anti-HIV microbicide gels in general have not been designed using an understanding of how gel spreading and retention in the vagina govern successful drug delivery. Elastohydrodynamic lubrication theory can be applied to model spreading of microbicide gels [Szeri et al., Phys. Fluids 20, 083101 (2008)]. This should incorporate the full rheological behavior of a gel, including how rheological properties change due to contact with, and dilution by, ambient vaginal fluids. Here, we extend our initial analysis, incorporating the effects of gel dilution due to contact with vaginal fluid produced at the gel-tissue interface. Our original model is supplemented with a convective-diffusive transport equation to characterize water transport into the gel and, thus, local gel dilution. The problem is solved using a multi-step scheme in a moving domain. The association between local dilution of gel and rheological properties is obtained experimentally, delineating the way constitutive parameters of a shear-thinning gel are modified by dilution. Results show that dilution accelerates the coating flow by creating a slippery region near the vaginal wall akin to a dilution boundary layer, especially if the boundary flux exceeds a certain value. On the other hand, if the diffusion coefficient of boundary fluid is increased, the slippery region diminishes in extent and the overall rate of gel spreading decreases.
Coating flow of an anti-HIV microbicide gel: boundary dilution and yield stress
NASA Astrophysics Data System (ADS)
Szeri, Andrew J.; Tasoglu, Savas; Park, Su Chan; Katz, David F.
2010-11-01
A recent study has confirmed, for the first time, that a vaginal gel formulation of the antiretroviral drug Tenofovir, when topically applied, significantly inhibits sexual HIV transmission to women [1]. However, the gel for this drug, and anti-HIV microbicide gels in general, have not been designed using an understanding of how gel spreading govern successful drug delivery. Elastohydrodynamic lubrication theory can be applied to model spreading of microbicide gels [2]. Here, we extend our initial analysis: we incorporate a yield stress, and we model the effects of gel dilution due to contact with vaginal fluid produced at the gel-tissue interface. Our model developed in [2] is supplemented with a convective-diffusive transport equation to characterize dilution, and solved using a multi-step scheme in a moving domain. The association between local dilution of gel and rheological properties is obtained experimentally. To model the common yield stress property of gels, we proceed by scaling analysis first. This establishes the conditions for validity of lubrication theory of a shear thinning yield stress fluid. This involves further development of the model in [2], incorporating a biviscosity model.[4pt] [1] Karim, et al., Science, 2010.[0pt] [2] Szeri, et al., Phy. of Fluids, 2008.
Taylor, Diane M; Chow, Fotini K; Delkash, Madjid; Imhoff, Paul T
2016-10-01
Landfills are a significant contributor to anthropogenic methane emissions, but measuring these emissions can be challenging. This work uses numerical simulations to assess the accuracy of the tracer dilution method, which is used to estimate landfill emissions. Atmospheric dispersion simulations with the Weather Research and Forecast model (WRF) are run over Sandtown Landfill in Delaware, USA, using observation data to validate the meteorological model output. A steady landfill methane emissions rate is used in the model, and methane and tracer gas concentrations are collected along various transects downwind from the landfill for use in the tracer dilution method. The calculated methane emissions are compared to the methane emissions rate used in the model to find the percent error of the tracer dilution method for each simulation. The roles of different factors are examined: measurement distance from the landfill, transect angle relative to the wind direction, speed of the transect vehicle, tracer placement relative to the hot spot of methane emissions, complexity of topography, and wind direction. Results show that percent error generally decreases with distance from the landfill, where the tracer and methane plumes become well mixed. Tracer placement has the largest effect on percent error, and topography and wind direction both have significant effects, with measurement errors ranging from -12% to 42% over all simulations. Transect angle and transect speed have small to negligible effects on the accuracy of the tracer dilution method. These tracer dilution method simulations provide insight into measurement errors that might occur in the field, enhance understanding of the method's limitations, and aid interpretation of field data. Copyright © 2016 Elsevier Ltd. All rights reserved.
The use of animal models in homeopathic research--a review of 2010-2014 PubMed indexed papers.
Bonamin, Leoni Villano; Cardoso, Thayná Neves; de Carvalho, Aloísio Cunha; Amaral, Juliana Gimenez
2015-10-01
In the 1990s, a study was performed on the effects of highly diluted thyroxine on frog metamorphosis. This model represented one of the most discussed examples of the biological effects of high dilutions over the next two decades. In 2010, another critical conceptual review of the use of animal models in homeopathy and high-dilution research was published. The main contribution of these studies was the elucidation of the biological features and phenomenology of the effects of high dilutions on living systems, representing an important step forward in our understanding of the mechanisms of action of homeopathic medicines. We performed a further review of this line of investigation using the same methods. Fifty-three articles that were indexed in the PubMed database and used 12 different animal species were systematically evaluated. Only a fraction of the studies (29/53) reported herein were performed with "ultra high" dilutions. The other studies were performed with dilutions in ranges below 10(-23) (14/53 articles) or commercial complexes (10/53 articles). Only two articles reported negative results; both used in vivo protocols to test commercial complexes, one in fish and one in bees. The quality of the employed techniques improved in 2010-2014 compared with the studies that were reviewed previously in 2010, with the inclusion of more ethically refined protocols, including in vitro primary cell cultures and ex vivo studies (10/53 articles), often with three or more replicates and analyses of epigenetic mechanisms that were previously unknown in 2010. In our updated review of the past 5 years, we found further demonstrations of the biological effects of homeopathy using more refined animal models and in vitro techniques. Copyright © 2015 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.
Sampling and physical characterization of diesel exhaust aerosols. SAE Paper 770720
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verrant, J.A.; Kittelson, D.A.
Diesel exhaust aerosols are highly dynamic and therefore, difficult to sample without introducing falsification. This paper describes a study of these aerosols using a rapid dilution sampling system and an electrical aerosol analyzer. An Onan single cylinder indirect injection engine was used as an exhaust source. The sampler diluted the exhaust with clean air in ratios of 400:1 to 600:1 in order to prevent sample falsification by condensation and coagulation. The electrical aerosol analyzer was used to determine particle size and concentration. Volume concentration in the exhaust ranged from 2000 to 50,000 ..mu.. m/sup 3/ cm/sup -3/ which correspond tomore » mass loadings of 2.0 to 50 mg m/sup -3/ (assuming a density of 1 gm cm/sup -3/). Volume geometric mean diameters ranged from 0.12 to 0.19 ..mu..m. Evaporation and coagulation effects on diesel aerosols were observed by aging in a Teflon holding bag. A simple evaporation model was fit to the decrease of aerosol volume concentration with time. The fit revealed that the aerosols evaporated as if they were composed of normal paraffins in the 350 to 500 molecular weight range. Although the sample dilution system used in this study may alter the sample somewhat, it is probably analogous to what happens at the tailpipe of a vehicle. Measurements taken on a test track in the exhaust plume of a Peugeot 504 diesel showed aerosol size distributions very similar to those measured in our laboratory studies.« less
Charged excitons in a dilute two-dimensional electron gas in a high magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wojs, Arkadiusz; Institute of Physics, Wroclaw University of Technology, Wroclaw 50-370,; Quinn, John J.
2000-08-15
A theory of charged excitons X{sup -} in a dilute two-dimensional (2D) electron gas in a high-magnetic field is presented. In contrast to previous calculations, three bound X{sup -} states (one singlet and two triplets) are found in a narrow and symmetric GaAs quantum well. The singlet and a ''bright'' triplet are the two optically active states observed in experiments. The bright triplet has the binding energy of about 1 meV, smaller than the singlet and a ''dark'' triplet. The interaction of bound X{sup -}'s with a dilute 2D electron gas is investigated using exact diagonalization techniques. It is foundmore » that the short-range character of the e-X{sup -} interactions effectively isolates bound X{sup -} states from a dilute e-h plasma. This results in the insensitivity of the photoluminescence spectrum to the filling factor {nu}, and a rapid decrease of the oscillator strength of the dark triplet X{sup -} as a function of {nu}{sup -1}. (c) 2000 The American Physical Society.« less
Numerical simulations of detonation propagation in gaseous fuel-air mixtures
NASA Astrophysics Data System (ADS)
Honhar, Praveen; Kaplan, Carolyn; Houim, Ryan; Oran, Elaine
2017-11-01
Unsteady multidimensional numerical simulations of detonation propagation and survival in mixtures of fuel (hydrogen or methane) diluted with air were carried out with a fully compressible Navier-Stokes solver using a simplified chemical-diffusive model (CDM). The CDM was derived using a genetic algorithm combined with the Nelder-Mead optimization algorithm and reproduces physically correct laminar flame and detonation properties. Cases studied are overdriven detonations propagating through confined mediums, with or without gradients in composition. Results from simulations confirm that the survival of the detonation depends on the channel heights. In addition, the simulations show that the propagation of the detonation waves depends on the steepness in composition gradients.
Number of siblings and intellectual development. The resource dilution explanation.
Downey, D B
2001-01-01
The resource dilution model posits that parental resources are finite and that as the number of children in the family increases, the resources accrued by any one child necessarily decline. Siblings are competitors for parents' time, energy, and financial resources and so the fewer the better. Even one sibling is too many. The author describes the general elements of the dilution position and assesses its merits for explaining the effect of siblings on one component of the educational process--tests of intellectual development. The author identifies critical flaws in recent critiques of the dilution position and concludes that dilution continues to provide the most promising explanation for why children with few siblings score higher on tests of cognitive skills than children with many siblings.
NASA Astrophysics Data System (ADS)
Jadaun, Priyamvada; Nair, Hari P.; Bank, Seth R.; Banerjee, Sanjay K.
2012-02-01
We present an ab-initio density functinal theory study of dilute-nitride GaSb. Adding dilute quantities of nitrogen causes rapid reduction in bandgap of GaSb (˜300 meV for 2% N). Due to this rapid reduction in bandgap, dilute-nitrides provide a pathway for extending the emission of GaSb based type-I diode lasers into the mid-infrared wavelength region (3-5 micron). In this study we look at the effect of substitutional N impurity on the electronic properties of our system and compare it with the band-anticrossing model, a phenomenological model, which has been used to explain giant band bowing observed in dilute-nitride alloys. We also study the effect of Sb-N split interstitials which are known to be non-radiative recombination centers. Furthermore we also discuss the stability of the Sb-N split interstitial relative to substitutional nitrogen to determine if the split interstitials can be annihilated using post-growth annealing to improve the radiative lifetime of the material which essential for laser operation.
A simple physical mechanism enables homeostasis in primitive cells
NASA Astrophysics Data System (ADS)
Engelhart, Aaron E.; Adamala, Katarzyna P.; Szostak, Jack W.
2016-05-01
The emergence of homeostatic mechanisms that enable maintenance of an intracellular steady state during growth was critical to the advent of cellular life. Here, we show that concentration-dependent reversible binding of short oligonucleotides, of both specific and random sequence, can modulate ribozyme activity. In both cases, catalysis is inhibited at high concentrations, and dilution activates the ribozyme via inhibitor dissociation, thus maintaining near-constant ribozyme specific activity throughout protocell growth. To mimic the result of RNA synthesis within non-growing protocells, we co-encapsulated high concentrations of ribozyme and oligonucleotides within fatty acid vesicles, and ribozyme activity was inhibited. Following vesicle growth, the resulting internal dilution produced ribozyme activation. This simple physical system enables a primitive homeostatic behaviour: the maintenance of constant ribozyme activity per unit volume during protocell volume changes. We suggest that such systems, wherein short oligonucleotides reversibly inhibit functional RNAs, could have preceded sophisticated modern RNA regulatory mechanisms, such as those involving miRNAs.
NASA Astrophysics Data System (ADS)
Burhani, Dian; Putri, Ary Mauliva Hada; Waluyo, Joko; Nofiana, Yulia; Sudiyani, Yanni
2017-11-01
This study investigated the effect of two-stage pretreatment using dilute H2SO4 followed by dilute NaOH on the physical characteristic of oil palm empty fruit bunch including crystallinity index, chemical bonding and morphology. Its effect on chemical characteristic, especially the sugar recovery have also been observed. The results showed a low crystallinity degree measured from acid-alkaline OPEFB which was confirmed by the FTIR spectra with the decrease intensity of CH2 bending vibration at 1433 cm-1 and crystallinity index in the amount of 57.53 %. Silica-bodies which was noticed from the raw OPEFB was successfully removed after the sequential pretreatment. High cellulose and lignin removal around 90 % and 73.1 %, respectively with a trace of acetic acid and no furfural content were achieved at the end of the pretreatment.
Photometry of icy satellites: How important is multiple scattering in diluting shadows?
NASA Technical Reports Server (NTRS)
Buratti, B.; Veverka, J.
1984-01-01
Voyager observations have shown that the photometric properties of icy satellites are influenced significantly by large-scale roughness elements on the surfaces. While recent progress was made in treating the photometric effects of macroscopic roughness, it is still the case that even the most complete models do not account for the effects of multiple scattering fully. Multiple scattering dilutes shadows caused by large-scale features, yet for any specific model it is difficult to calculate the amount of dilution as a function of albedo. Accordingly, laboratory measurements were undertaken using the Cornell Goniometer to evaluate the magnitude of the effect.
Formulation of Water Quality Models for Streams, Lakes and Reservoirs: Modeler’s Perspective
1989-07-01
dilution of efflu- ent plumes . These mixing models also address the question of whether a pol- lutant has been sufficiently diluted to meet discharge...PS releases, e.g. DISPER or TADPOL (Almquist et al. 1977) for passive mixing in the far field, and various jet and plume mixing models in uniform or...Experiment Station, Vicksburg, MS. Harleman, D. R. F. 1982 (Mar). " Hydrothermal Analysis of Lakes and Reser- voirs, Journal of Hydraulics Division
Physical Interpretation of Mixing Diagrams
NASA Astrophysics Data System (ADS)
Khain, Alexander; Pinsky, Mark; Magaritz-Ronen, L.
2018-01-01
Type of mixing at cloud edges is often determined by means of mixing diagrams showing the dependence of normalized cube of the mean volume radius on the dilution level. The mixing diagrams correspond to the final equilibrium state of mixing between two air volumes. While interpreting in situ measurements, scattering diagrams are plotted in which normalized droplet concentration is used instead of dilution level. Utilization of such scattering diagrams for interpretation of in situ observations faces significant difficulties and often leads to misinterpretation of the mixing process and to uncertain conclusions concerning the mixing type. In this study we analyze the scattering diagrams obtained by means of a Lagrangian-Eulerian model of a stratocumulus cloud. The model consists of 2,000 interacting Largangian parcels which mix with their neighbors during their motion in the atmospheric boundary layer. In the diagram, each parcel is denoted by a point. Changes of microphysical parameters of the parcel are represented by movements of the point in the scattering diagram. The method of plotting the scattering diagrams using the model is in many aspects similar to that used in in situ measurements. It is shown that a scattering diagram shows snapshots of a transient mixing process. The location of points in the scattering diagrams reflects largely the history and the origin of air parcels. Location of points on scattering diagram characterizes intensity of entrainment, and different parameters of droplet size distributions (DSDs) like concentration, mean volume (or effective) radius, and DSD width.
Dilution as a Model of Long-Term Forgetting
ERIC Educational Resources Information Center
Lansdale, Mark; Baguley, Thom
2008-01-01
This article presents a model of long term forgetting based on 3 ideas: (a) Memory for a stimulus can be described by a population of accessible traces; (b) probability of retrieval after a delay is predicted by the proportion of traces in this population that will be defined as correct if sampled; and (c) this population is diluted over time by…
NASA Astrophysics Data System (ADS)
Fu, Yu-Hang; Bai, Lin; Luo, Kai-Hong; Jin, Yong; Cheng, Yi
2017-04-01
In this work, we propose a general approach for modeling mass transfer and reaction of dilute solute(s) in incompressible three-phase flows by introducing a collision operator in lattice Boltzmann (LB) method. An LB equation was used to simulate the solute dynamics among three different fluids, in which the newly expanded collision operator was used to depict the interface behavior of dilute solute(s). The multiscale analysis showed that the presented model can recover the macroscopic transport equations derived from the Maxwell-Stefan equation for dilute solutes in three-phase systems. Compared with the analytical equation of state of solute and dynamic behavior, these results are proven to constitute a generalized framework to simulate solute distributions in three-phase flows, including compound soluble in one phase, compound adsorbed on single-interface, compound in two phases, and solute soluble in three phases. Moreover, numerical simulations of benchmark cases, such as phase decomposition, multilayered planar interfaces, and liquid lens, were performed to test the stability and efficiency of the model. Finally, the multiphase mass transfer and reaction in Janus droplet transport in a straight microchannel were well reproduced.
The effects of sewage discharge on water quality and phytoplankton of Hawai'ian coastal waters.
Parnell, P Ed
2003-05-01
The effects of sewage discharge on algal populations and the quality of Hawai'ian coastal waters were investigated. Two outfalls were studied. One discharges primary treated sewage and the other discharges secondary treated sewage but are otherwise similar. This enabled comparisons of the effects of these different levels of treatment on the water quality and algal productivity of receiving waters. Plumes were followed and repeatedly sampled in a time-series manner. Rhodamine dye was used as a conservative tracer to compare the dilution behavior of the plume constituents MRP, NO(3)+NO(2), NH(4), Silicate, TDP, TDN, total bacteria, PC, and PN. Rates of initial dilution ranged from two to almost three orders of magnitude, and were in reasonable agreement with engineering model predictions. Dilution of plume constituents approximated that of Rhodamine until background concentrations were reached, typically within 10 min of discharge. Chl a concentrations did not increase through time in the primary sewage plume but did increase up to 30% in the secondary sewage plume. However, rates of far-field dilution were so rapid that the increase could not have been due to algal growth. The increase was attributed to the plume mixing with a water mass whose relative chl a concentrations were greater. Rates of secondary dilution ranged from 2 to 3 orders of magnitude resulting in total dilutions of 10(5)-10(6) within 3 h of discharge. These rates of secondary dilution were much greater than model predictions. From a nutrient standpoint, secondary treatment exhibited no advantages over primary treatment because dilutions were so rapid. Copyright 2002 Elsevier Science B.V.
Low probability of a dilution effect for Lyme borreliosis in Belgian forests.
Ruyts, Sanne C; Landuyt, Dries; Ampoorter, Evy; Heylen, Dieter; Ehrmann, Steffen; Coipan, Elena C; Matthysen, Erik; Sprong, Hein; Verheyen, Kris
2018-04-22
An increasing number of studies have investigated the consequences of biodiversity loss for the occurrence of vector-borne diseases such as Lyme borreliosis, the most common tick-borne disease in the northern hemisphere. As host species differ in their ability to transmit the Lyme borreliosis bacteria Borrelia burgdorferi s.l. to ticks, increased host diversity can decrease disease prevalence by increasing the proportion of dilution hosts, host species that transmit pathogens less efficiently. Previous research shows that Lyme borreliosis risk differs between forest types and suggests that a higher diversity of host species might dilute the contribution of small rodents to infect ticks with B. afzelii, a common Borrelia genospecies. However, empirical evidence for a dilution effect in Europe is largely lacking. We tested the dilution effect hypothesis in 19 Belgian forest stands of different forest types along a diversity gradient. We used empirical data and a Bayesian belief network to investigate the impact of the proportion of dilution hosts on the density of ticks infected with B. afzelii, and identified the key drivers determining the density of infected ticks, which is a measure of human infection risk. Densities of ticks and B. afzelii infection prevalence differed between forest types, but the model indicated that the density of infected ticks is hardly affected by dilution. The most important variables explaining variability in disease risk were related to the density of ticks. Combining empirical data with a model-based approach supported decision making to reduce tick-borne disease risk. We found a low probability of a dilution effect for Lyme borreliosis in a north-western European context. We emphasize that under these circumstances, Lyme borreliosis prevention should rather aim at reducing tick-human contact rate instead of attempting to increase the proportion of dilution hosts. Copyright © 2018. Published by Elsevier GmbH.
Low-energy Model for Strongly Correlated Oxides
NASA Astrophysics Data System (ADS)
Liu, Shiu
We provide a detailed derivation of the low-energy model for site-diluted strongly correlated oxides, an example being Zn-diluted La2CuO 4, in the limit of low doping together with a study of the ground-state properties of that model. The generally complicated Hamiltonian on the energy scale of the most relevant atomic orbitals is systematically downfolded to an effective model containing only spin-spin interactions using several techniques. In our study, beginning with the site-diluted three-band Hubbard model for La2ZnxCu(1- x)O4, we first determine the hybridized electronic states of CuO4 and ZnO4 plaquettes within the CuO2 planes utilizing Wannier-orthogonalization of oxygen orbitals and cell-perturbation of the Hamiltonian of each plaquett. Qualitatively, we find that the hybridization of zinc and oxygen orbitals can result in an impurity state with the energy epsilon, which is lower than the effective Hubbard gap U. Then we apply canonical transformation in the limit of the effective hopping integral t << epsilon, U, to obtain the low-energy, spin-only Hamiltonian, which includes terms of the order t2/U, t4/epsilon3, and t 4/Uepsilon2. In other words, besides the usual diluted nearest-neighbor superexchange J-terms of order t2/U, the low-energy model contains impurity-mediated, further-neighbor frustrating interactions among the Cu spins surrounding Zn-sites in an otherwise unfrustrated antiferromagnetic background. These terms, denoted as J'Zn and J''Zn , are of order t4/epsilon3 and can be substantial when epsilon ˜ U/2, the latter value corresponding to the realistic CuO2 parameters. The other further-neighbor Cu spin interactions are of order t 4/U3, which are neglected in both pure and diluted systems, because they are much lesser than J'Zn and J''Zn and independent of impurity concentration. In order to verify this spin-only model, we subsequently apply the T-matrix approach to study the effect of impurities on the antiferromagnetic order parameter. Previous theoretical T-matrix and quantum Monte Carlo (QMC) studies, which include only the dilution effect of impurities, show a large discrepancy with experimental neutron scattering and nuclear quadrupole resonance (NQR) data in the doping dependence of the staggered magnetization at low doping. We demonstrate that this discrepancy is eliminated by including zinc orbitals in the three-band Hubbard model and by including impurity-induced frustrations into the effective spin model with realistic CuO2 parameters. Recent experimental study shows a significantly stronger suppression of spin stiffness in the case of Zn-doped La2CuO4 compared to the Mg-doped case and thus gives a strong support to our theory. Different site-diluting dopants with different electron configurations affect the magnetism of the whole system differently. We argue that the available impurity orbitals are crucial in deriving theoretical models for the site-diluted systems and the proposed impurity-induced frustrations should be important in other strongly correlated oxides and charge-transfer insulators.
Sound, infrasound, and sonic boom absorption by atmospheric clouds.
Baudoin, Michaël; Coulouvrat, François; Thomas, Jean-Louis
2011-09-01
This study quantifies the influence of atmospheric clouds on propagation of sound and infrasound, based on an existing model [Gubaidulin and Nigmatulin, Int. J. Multiphase Flow 26, 207-228 (2000)]. Clouds are considered as a dilute and polydisperse suspension of liquid water droplets within a mixture of dry air and water vapor, both considered as perfect gases. The model is limited to low and medium altitude clouds, with a small ice content. Four physical mechanisms are taken into account: viscoinertial effects, heat transfer, water phase changes (evaporation and condensation), and vapor diffusion. Physical properties of atmospheric clouds (altitude, thickness, water content and droplet size distribution) are collected, along with values of the thermodynamical coefficients. Different types of clouds have been selected. Quantitative evaluation shows that, for low audible and infrasound frequencies, absorption within clouds is several orders of magnitude larger than classical absorption. The importance of phase changes and vapor diffusion is outlined. Finally, numerical simulations for nonlinear propagation of sonic booms indicate that, for thick clouds, attenuation can lead to a very large decay of the boom at the ground level. © 2011 Acoustical Society of America
Assessing the Accuracy of the Tracer Dilution Method with Atmospheric Dispersion Modeling
NASA Astrophysics Data System (ADS)
Taylor, D.; Delkash, M.; Chow, F. K.; Imhoff, P. T.
2015-12-01
Landfill methane emissions are difficult to estimate due to limited observations and data uncertainty. The mobile tracer dilution method is a widely used and cost-effective approach for predicting landfill methane emissions. The method uses a tracer gas released on the surface of the landfill and measures the concentrations of both methane and the tracer gas downwind. Mobile measurements are conducted with a gas analyzer mounted on a vehicle to capture transects of both gas plumes. The idea behind the method is that if the measurements are performed far enough downwind, the methane plume from the large area source of the landfill and the tracer plume from a small number of point sources will be sufficiently well-mixed to behave similarly, and the ratio between the concentrations will be a good estimate of the ratio between the two emissions rates. The mobile tracer dilution method is sensitive to different factors of the setup such as placement of the tracer release locations and distance from the landfill to the downwind measurements, which have not been thoroughly examined. In this study, numerical modeling is used as an alternative to field measurements to study the sensitivity of the tracer dilution method and provide estimates of measurement accuracy. Using topography and wind conditions for an actual landfill, a landfill emissions rate is prescribed in the model and compared against the emissions rate predicted by application of the tracer dilution method. Two different methane emissions scenarios are simulated: homogeneous emissions over the entire surface of the landfill, and heterogeneous emissions with a hot spot containing 80% of the total emissions where the daily cover area is located. Numerical modeling of the tracer dilution method is a useful tool for evaluating the method without having the expense and labor commitment of multiple field campaigns. Factors tested include number of tracers, distance between tracers, distance from landfill to transect path, and location of tracers with respect to the hot spot. Results show that location of the tracers relative to the hot spot of highest landfill emissions makes the largest difference in accuracy of the tracer dilution method.
Ackerman, S B; Kelley, E A
1983-01-01
The performance of a fiberoptic probe colorimeter (model PC800; Brinkmann Instruments, Inc., Westbury, N.Y.) for quantitating enzymatic or colorimetric assays in 96-well microtiter plates was compared with the performances of a spectrophotometer (model 240; Gilford Instrument Laboratories, Inc., Oberlin, Ohio) and a commercially available enzyme immunoassay reader (model MR590; Dynatech Laboratories, Inc., Alexandria, Va.). Alkaline phosphatase-p-nitrophenyl phosphate in 3 M NaOH was used as the chromophore source. Six types of plates were evaluated for use with the probe colorimeter; they generated reproducibility values (100% coefficient of variation) ranging from 91 to 98% when one individual made 24 independent measurements on the same dilution of chromophore on each plate. Eleven individuals each performed 24 measurements with the colorimeter on either a visually light (absorbance of 0.10 at 420 nm) or a dark (absorbance of 0.80 at 420 nm) dilution of chromophore; reproducibilities averaged 87% for the light dilution and 97% for the dark dilution. When one individual measured the same chromophore sample at least 20 times in the colorimeter, in the spectrophotometer or in the enzyme immunoassay reader, reproducibility for each instrument was greater than 99%. Measurements of a dilution series of chromophore in a fixed volume indicated that the optical responses of each instrument were linear in a range of 0.05 to 1.10 absorbance units. Images PMID:6341399
Ackerman, S B; Kelley, E A
1983-03-01
The performance of a fiberoptic probe colorimeter (model PC800; Brinkmann Instruments, Inc., Westbury, N.Y.) for quantitating enzymatic or colorimetric assays in 96-well microtiter plates was compared with the performances of a spectrophotometer (model 240; Gilford Instrument Laboratories, Inc., Oberlin, Ohio) and a commercially available enzyme immunoassay reader (model MR590; Dynatech Laboratories, Inc., Alexandria, Va.). Alkaline phosphatase-p-nitrophenyl phosphate in 3 M NaOH was used as the chromophore source. Six types of plates were evaluated for use with the probe colorimeter; they generated reproducibility values (100% coefficient of variation) ranging from 91 to 98% when one individual made 24 independent measurements on the same dilution of chromophore on each plate. Eleven individuals each performed 24 measurements with the colorimeter on either a visually light (absorbance of 0.10 at 420 nm) or a dark (absorbance of 0.80 at 420 nm) dilution of chromophore; reproducibilities averaged 87% for the light dilution and 97% for the dark dilution. When one individual measured the same chromophore sample at least 20 times in the colorimeter, in the spectrophotometer or in the enzyme immunoassay reader, reproducibility for each instrument was greater than 99%. Measurements of a dilution series of chromophore in a fixed volume indicated that the optical responses of each instrument were linear in a range of 0.05 to 1.10 absorbance units.
Chen, Wen-Hua; Pen, Ben-Li; Yu, Ching-Tsung; Hwang, Wen-Song
2011-02-01
The combined pretreatment of rice straw using dilute-acid and steam explosion followed by enzymatic hydrolysis was investigated and compared with acid-catalyzed steam explosion pretreatment. In addition to measuring the chemical composition, including glucan, xylan and lignin content, changes in rice straw features after pretreatment were investigated in terms of the straw's physical properties. These properties included crystallinity, surface area, mean particle size and scanning electron microscopy imagery. The effect of acid concentration on the acid-catalyzed steam explosion was studied in a range between 1% and 15% acid at 180°C for 2 min. We also investigated the influence of the residence time of the steam explosion in the combined pretreatment and the optimum conditions for the dilute-acid hydrolysis step in order to develop an integrated process for the dilute-acid and steam explosion. The optimum operational conditions for the first dilute-acid hydrolysis step were determined to be 165°C for 2 min with 2% H(2)SO(4) and for the second steam explosion step was to be carried out at 180°C for 20 min; this gave the most favorable combination in terms of an integrated process. We found that rice straw pretreated by the dilute-acid/steam explosions had a higher xylose yield, a lower level of inhibitor in the hydrolysate and a greater degree of enzymatic hydrolysis; this resulted in a 1.5-fold increase in the overall sugar yield when compared to the acid-catalyzed steam explosion. Copyright © 2010 Elsevier Ltd. All rights reserved.
Droplet Deformation in an Extensional Flow: The Role of Surfactant Physical Chemistry
NASA Technical Reports Server (NTRS)
Stebe, Kathleen J.
1996-01-01
Surfactant-induced Marangoni effects strongly alter the stresses exerted along fluid particle interfaces. In low gravity processes, these stresses can dictate the system behavior. The dependence of Marangoni effects on surfactant physical chemistry is not understood, severely impacting our ability to predict and control fluid particle flows. A droplet in an extensional flow allows the controlled study of stretching and deforming interfaces. The deformations of the drop allow both Marangoni stresses, which resist tangential shear, and Marangoni elasticities, which resist surface dilatation, to develop. This flow presents an ideal model system for studying these effects. Prior surfactant-related work in this flow considered a linear dependence of the surface tension on the surface concentration, valid only at dilute surface concentrations, or a non-linear framework at concentrations sufficiently dilute that the linear approximation was valid. The linear framework becomes inadequate for several reasons. The finite dimensions of surfactant molecules must be taken into account with a model that includes surfaces saturation. Nonideal interactions between adsorbed surfactant molecules alter the partitioning of surfactant between the bulk and the interface, the dynamics of surfactant adsorptive/desorptive exchange, and the sensitivity of the surface tension to adsorbed surfactant. For example, cohesion between hydrocarbon chains favors strong adsorption. Cohesion also slows the rate of desorption from interfaces, and decreases the sensitivity of the surface tension to adsorbed surfactant. Strong cohesive interactions result in first order surface phase changes with a plateau in the surface tension vs surface concentration. Within this surface concentration range, the surface tension is decoupled from surface concentration gradients. We are engaged in the study of the role of surfactant physical chemistry in determining the Marangoni stresses on a drop in an extensional flow in a numerical and experimental program. Using surfactants whose dynamics and equilibrium behavior have been characterized in our laboratory, drop deformation will be studied in ground-based experiment. In an accompanying numerical study, predictive drop deformations will be determined based on the isotherm and equation of state determined in our laboratory. This work will improve our abilities to predict and control all fluid particle flows.
USING BIOPLUME IV TO MODEL SUSTAINABILITY OF MNA
At most sites where Monitored Natural Attenuation (MNA) has been selected as a remedy for ground water contamination, dilution and dispersion are not the primary mechanisms responsible for attenuation along the flow path in the aquifer. In most aquifers, dilution and dispersion ...
Lattice Boltzmann accelerated direct simulation Monte Carlo for dilute gas flow simulations.
Di Staso, G; Clercx, H J H; Succi, S; Toschi, F
2016-11-13
Hybrid particle-continuum computational frameworks permit the simulation of gas flows by locally adjusting the resolution to the degree of non-equilibrium displayed by the flow in different regions of space and time. In this work, we present a new scheme that couples the direct simulation Monte Carlo (DSMC) with the lattice Boltzmann (LB) method in the limit of isothermal flows. The former handles strong non-equilibrium effects, as they typically occur in the vicinity of solid boundaries, whereas the latter is in charge of the bulk flow, where non-equilibrium can be dealt with perturbatively, i.e. according to Navier-Stokes hydrodynamics. The proposed concurrent multiscale method is applied to the dilute gas Couette flow, showing major computational gains when compared with the full DSMC scenarios. In addition, it is shown that the coupling with LB in the bulk flow can speed up the DSMC treatment of the Knudsen layer with respect to the full DSMC case. In other words, LB acts as a DSMC accelerator.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).
NASA Astrophysics Data System (ADS)
Srivastava, Priyesh; Sarkar, Kausik
2012-11-01
The shear rheology of moderately concentrated emulsions (5-27% volume fraction) in the presence of inertia is numerically investigated. Typically, an emulsion of viscous drops experiences positive first normal stress difference (N1) and negative second normal stress difference (N2) , as has also been predicted by perturbative analysis (Choi-Schowalter model) and numerical simulation. However, recently using single drop results we have shown [Li and Sarkar, 2005, J. Rheo, 49, 1377] that introduction of inertia reverses the signs of the normal stress difference in the dilute limit. Here, we numerically investigate the effects of interactions between drops in a concentrated system. The simulation is validated against the dilute results as well as analytical relations. It also shows the reversal of signs for N1 and N2 for small Capillary numbers above a critical Reynolds number. The physics is explained by the inertia-induced orientation of the individual drops in shear. Increasing volume fraction increases the critical Reynolds number at which N1 and N2change sign. The breakdown of linearity with volume fraction with increasing concentration is also analyzed. Partially supported by NSF.
Hsu, Sze-Bi; Yang, Ya-Tang
2016-04-01
We present the theory of a microfluidic bioreactor with a two-compartment growth chamber and periodic serial dilution. In the model, coexisting planktonic and biofilm populations exchange by adsorption and detachment. The criteria for coexistence and global extinction are determined by stability analysis of the global extinction state. Stability analysis yields the operating diagram in terms of the dilution and removal ratios, constrained by the plumbing action of the bioreactor. The special case of equal uptake function and logistic growth is analytically solved and explicit growth curves are plotted. The presented theory is applicable to generic microfluidic bioreactors with discrete growth chambers and periodic dilution at discrete time points. Therefore, the theory is expected to assist the design of microfluidic devices for investigating microbial competition and microbial biofilm growth under serial dilution conditions.
Sun, Zhe; Tian, Ye; Hom, Wendy L.; ...
2016-12-28
The thermal response of semi-dilute solutions (5 w/w%) of two amphiphilic thermoresponsive poly(ethylene oxide)-b-poly(N,N-diethylacrylamide)-b-poly(N,N-dibutylacrylamide) (PEO 45-PDEAm x-PDBAm 12) triblock copolymers, which differ only in the size of the central responsive block, in water was examined in this paper. Aqueous PEO45-PDEAm41-PDBAm12 solutions, which undergo a thermally induced sphere-to-worm transition in dilute solution, were found to reversibly form soft (G'≈10 Pa) free-standing physical gels after 10 min at 55 °C. PEO 45-PDEAm 89-PDBAm 12 copolymer solutions, which undergo a thermally induced transition from spheres to large compound micelles (LCM) in dilute solution, underwent phase separation after heating at 55 °C for 10more » min owing to sedimentation of LCMs. The reversibility of LCM formation was investigated as a non-specific method for removal of a water-soluble dye from aqueous solution. Finally, the composition and size of the central responsive block in these polymers dictate the microscopic and macroscopic response of the polymer solutions as well as the rates of transition between assemblies.« less
Granular gases of rod-shaped grains in microgravity.
Harth, K; Kornek, U; Trittel, T; Strachauer, U; Höme, S; Will, K; Stannarius, R
2013-04-05
Granular gases are convenient model systems to investigate the statistical physics of nonequilibrium systems. In the literature, one finds numerous theoretical predictions, but only few experiments. We study a weakly excited dilute gas of rods, confined in a cuboid container in microgravity during a suborbital rocket flight. With respect to a gas of spherical grains at comparable filling fraction, the mean free path is considerably reduced. This guarantees a dominance of grain-grain collisions over grain-wall collisions. No clustering was observed, unlike in similar experiments with spherical grains. Rod positions and orientations were determined and tracked. Translational and rotational velocity distributions are non-Gaussian. Equipartition of kinetic energy between translations and rotations is violated.
2014-01-01
Background There is considerable interest in the conversion of lignocellulosic biomass to liquid fuels to provide substitutes for fossil fuels. Pretreatments, conducted to reduce biomass recalcitrance, usually remove at least some of the hemicellulose and/or lignin in cell walls. The hypothesis that led to this research was that reactor type could have a profound effect on the properties of pretreated materials and impact subsequent cellulose hydrolysis. Results Corn stover was dilute-acid pretreated using commercially relevant reactor types (ZipperClave® (ZC), Steam Gun (SG) and Horizontal Screw (HS)) under the same nominal conditions. Samples produced in the SG and HS achieved much higher cellulose digestibilities (88% and 95%, respectively), compared to the ZC sample (68%). Characterization, by chemical, physical, spectroscopic and electron microscopy methods, was used to gain an understanding of the effects causing the digestibility differences. Chemical differences were small; however, particle size differences appeared significant. Sum-frequency generation vibrational spectra indicated larger inter-fibrillar spacing or randomization of cellulose microfibrils in the HS sample. Simons’ staining indicated increased cellulose accessibility for the SG and HS samples. Electron microscopy showed that the SG and HS samples were more porous and fibrillated because of mechanical grinding and explosive depressurization occurring with these two reactors. These structural changes most likely permitted increased cellulose accessibility to enzymes, enhancing saccharification. Conclusions Dilute-acid pretreatment of corn stover using three different reactors under the same nominal conditions gave samples with very different digestibilities, although chemical differences in the pretreated substrates were small. The results of the physical and chemical analyses of the samples indicate that the explosive depressurization and mechanical grinding with these reactors increased enzyme accessibility. Pretreatment reactors using physical force to disrupt cell walls increase the effectiveness of the pretreatment process. PMID:24713111
ERIC Educational Resources Information Center
Wheatley, John D.; Van Till, Howard J.
1970-01-01
Discusses the definition of temperature and the concept of order in non-mathematical terms. Describes the cooling techniques necessary in low temperature physics research, including magnetic cooling, the use of the Pomeranchuk Effect, and dilution refrigeration. Outlines the types of phenomena observed in matter within various temperature ranges…
IACP (INTEGRATED AIR CANCER PROJECT) EMISSIONS: TRANSFORMATIONS AND FATE
As part of the Integrated Air Cancer Project (IACP), diluted emissions from wood stoves and automobiles were injected into a Teflon smog chamber and irradiated to simulate their photochemical transformation in the atmosphere. Changes in the chemical composition and physical prope...
USING BIOPLUME IV TO MODEL SUSTAINABILITY OF MNA (ABSTRACT ONLY)
At most sites where Monitored Natural Attenuation (MNA) has been selected as a remedy for ground water contamination, dilution and dispersion are not the primary mechanisms responsible for attenuation along the flow path in the aquifer. In most aquifers, dilution and dispersion ...
Development of a second generation biofiltration system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleinheinz, G.T.; McGinnis, G.D.; Niemi, B.A.
1999-07-01
Biofiltration utilizes microbial processes which are immobilized on a solid support to biodegrade contaminants in air. Biofilters traditionally have been utilized in applications where there is a high volume of air containing low levels of compounds. There are several operational problems biofilters are currently encountering. Some of these problems include systems which are very large, microbial breakdown of the solid support, cycling of compounds onto the biofilters (uneven amounts of compounds in the air), and very short residence times in the biofiltration units. This project was undertaken to determine the feasibility of using physical/chemical methods to adsorb and then desorbmore » analytes to convert a dilute, high volume air stream to a more concentrated low volume air stream. The chemical/physical (adsorption/desorption) system will also serve to provide a relatively consistent air stream to the biofiltration units in order to alleviate the perturbations to the system as a result of uneven analyte concentrations. The ability to concentrate a dilute air stream and provide a constant stream of VOCs to the biofiltration unit will allow for smaller, more efficient, and more economical biofilters. Two years of laboratory studies and initial pilot-scale trials on these coupled systems have shown that they are indeed able to efficiently concentrate dilute streams, and the coupled biofilters are able to remove 90+% of the VOCs from the adsorption/desorption unit.« less
Simulation of ion-temperature-gradient turbulence in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, B I; Dimits, A M; Kim, C
Results are presented from nonlinear gyrokinetic simulations of toroidal ion temperature gradient (ITG) turbulence and transport. The gyrokinetic simulations are found to yield values of the thermal diffusivity significantly lower than gyrofluid or IFS-PPPL-model predictions. A new phenomenon of nonlinear effective critical gradients larger than the linear instability threshold gradients is observed, and is associated with undamped flux-surface-averaged shear flows. The nonlinear gyrokineic codes have passed extensive validity tests which include comparison against independent linear calculations, a series of nonlinear convergence tests, and a comparison between two independent nonlinear gyrokinetic codes. Our most realistic simulations to date have actual reconstructedmore » equilibria from experiments and a model for dilution by impurity and beam ions. These simulations highlight the need for still more physics to be included in the simulations« less
NASA Astrophysics Data System (ADS)
Schroeder, Charles
Semi-dilute polymer solutions are encountered in a wide array of applications such as advanced 3D printing technologies. Semi-dilute solutions are characterized by large fluctuations in concentration, such that hydrodynamic interactions, excluded volume interactions, and transient chain entanglements may be important, which greatly complicates analytical modeling and theoretical treatment. Despite recent progress, we still lack a complete molecular-level understanding of polymer dynamics in these systems. In this talk, I will discuss three recent projects in my group to study semi-dilute solutions that focus on single molecule studies of linear and ring polymers and a new method to measure normal stresses in microfluidic devices based on the Stokes trap. In the first effort, we use single polymer techniques to investigate the dynamics of semi-dilute unentangled and semi-dilute entangled DNA solutions in extensional flow, including polymer relaxation from high stretch, transient stretching dynamics in step-strain experiments, and steady-state stretching in flow. In the semi-dilute unentangled regime, our results show a power-law scaling of the longest polymer relaxation time that is consistent with scaling arguments based on the double cross-over regime. Upon increasing concentration, we observe a transition region in dynamics to the entangled regime. We also studied the transient and steady-state stretching dynamics in extensional flow using the Stokes trap, and our results show a decrease in transient polymer stretch and a milder coil-to-stretch transition for semi-dilute polymer solutions compared to dilute solutions, which is interpreted in the context of a critical Weissenberg number Wi at the coil-to-stretch transition. Interestingly, we observe a unique set of polymer conformations in semi-dilute unentangled solutions that are highly suggestive of transient topological entanglements in solutions that are nominally unentangled at equilibrium. Taken together, these results suggest that the transient stretching pathways in semi-dilute solution extensional flows are qualitatively different than for both dilute solutions and for semi-dilute solutions in shear flow. In a second effort, we studied the dynamics of ring polymers in background solutions of semi-dilute linear polymers. Interestingly, we observe strikingly large fluctuations in steady-state polymer extension for ring polymers in flow, which occurs due to the interplay between polymer topology and concentration leading to chain `threading' in flow. In a third effort, we developed a new microfluidic method to measure normal stress and extensional viscosity that can be loosely described as passive yet non-linear microrheology. In particular, we incorporated 3-D particle imaging velocimetry (PIV) with the Stokes trap to study extensional flow-induced particle migration in semi-dilute polymer solutions. Experimental results are analyzed using the framework of a second-order-fluid model, which allows for measurement of normal stress and extensional viscosity in semi-dilute polymer solutions, all of which is a first-of-its-kind demonstration. Microfluidic measurements of extensional viscosity are directly compared to the dripping-onto-substrate or DOS method, and good agreement is generally observed. Overall, our work aims to provide a molecular-level understanding of the role of polymer topology and concentration on bulk rheological properties by using single polymer techniques.
A square-force cohesion model and its extraction from bulk measurements
NASA Astrophysics Data System (ADS)
Liu, Peiyuan; Lamarche, Casey; Kellogg, Kevin; Hrenya, Christine
2017-11-01
Cohesive particles remain poorly understood, with order of magnitude differences exhibited for prior, physical predictions of agglomerate size. A major obstacle lies in the absence of robust models of particle-particle cohesion, thereby precluding accurate prediction of the behavior of cohesive particles. Rigorous cohesion models commonly contain parameters related to surface roughness, to which cohesion shows extreme sensitivity. However, both roughness measurement and its distillation into these model parameters are challenging. Accordingly, we propose a ``square-force'' model, where cohesive force remains constant until a cut-off separation. Via DEM simulations, we demonstrate validity of the square-force model as surrogate of more rigorous models, when its two parameters are selected to match the two key quantities governing dense and dilute granular flows, namely maximum cohesive force and critical cohesive energy, respectively. Perhaps more importantly, we establish a method to extract the parameters in the square-force model via defluidization, due to its ability to isolate the effects of the two parameters. Thus, instead of relying on complicated scans of individual grains, determination of particle-particle cohesion from simple bulk measurements becomes feasible. Dow Corning Corporation.
NASA Astrophysics Data System (ADS)
Gnanadesikan, Anand
1996-05-01
As carbon monoxide within the oceanic surface layer is produced by solar radiation, diluted by mixing, consumed by biota, and outgassed to the atmosphere, it exhibits a diurnal cycle. The effect of dilution and mixing on this cycle is examined using a simple model for production and consumption, coupled to three different mixed layer models. The magnitude and timing of the peak concentration, the magnitude of the average concentration, and the air-sea flux are considered. The models are run through a range of heating and wind stress and compared to experimental data reported by Kettle [1994]. The key to the dynamics is the relative size of four length scales; Dmix, the depth to which mixing occurs over the consumption time; L, the length scale over which production occurs; Lout, the depth to which the mixed layer is ventilated over the consumption time; and Lcomp, the depth to which the diurnal production can maintain a concentration in equilibrium with the atmosphere. If Dmix ≫ L, the actual model parameterization can be important. If the mixed layer is maintained by turbulent diffusion, Dmix can be substantially less than the mixed layer depth. If the mixed layer is parameterized as a homogeneous slab, Dmix is equivalent to the mixed layer depth. If Dmix > Lout, production is balanced by consumption rather than outgassing. The ratio between Dmix and Lcomp determines whether the ocean is a source or a sink for CO. The main thermocline depth H sets an upper limit for Dmix and hence Dmix/L, Dmix/Lout, and Dmix/Lcomp. The models are run to simulate a single day of observations. The mixing parameterization is shown to be very important, with a model which mixes using small-scale diffusion, producing markedly larger surface concentrations than models which homogenize the mixed layer completely and instantaneously.
Hydrocarbon ratios during PEM-WEST A: A model perspective
NASA Astrophysics Data System (ADS)
McKeen, S. A.; Liu, S. C.; Hsie, E.-Y.; Lin, X.; Bradshaw, J. D.; Smyth, S.; Gregory, G. L.; Blake, D. R.
1996-01-01
A useful application of the hydrocarbon measurements collected during the Pacific Exploratory Mission (PEM-West A) is as markers or indices of atmospheric processing. Traditionally, ratios of particular hydrocarbons have been interpreted as photochemical indices, since much of the effect due to atmospheric transport is assumed to cancel by using ratios. However, an ever increasing body of observatonial and theoretical evidence suggests that turbulent mixing associated with atmospheric transport influences certain hydrocarbon ratios significantly. In this study a three-dimensional mesoscale photochemical model is used to study the interaction of photochemistry and atmospheric mixing on select hydrocarbons. In terms of correlations and functional relationships between various alkanes, the model results and PEM-West A hydrocarbon observations share many similar characteristics as well as explainable differences. When the three-dimensional model is applied to inert tracers, hydrocarbon ratios andother relationships exactly follow those expected by simple dilution with model-imposed "background air," and the three-dimensional results for reactive hydrocarbons are quite consistent with a combined influence of photochemistry and simple dilution. Analogous to these model results, relationships between various hydrocarbons collected during the PEM-West A experiment appear to be consistent with this simplified picture of photochemistry and dilution affecting individual air masses. When hydrocarbons are chosen that have negligible contributions to clean background air, unambiguous determinations of the relative contributions to photochemistry and dilution can be estimated from the hydrocarbon samples. Both the three-dimensional model results and the observations imply an average characteristic lifetime for dilution with background air roughly equivalent to the photochemical lifetime of butane for the western Pacific lower troposphere. Moreover, the dominance of OH as the primary photochemical oxidant downwind of anthropogenic source regions can be inferred from correlations between the highly reactive alkane ratios. By incorporating back-trajectory information within the three-dimensional model analysis, a correspondence between time and a particular hydrocarbon or hydrocarbon ratio can be determined, and the influence of atmospheric mixing or photochemistry can be quantified. Results of the three-dimensional model study are compared and applied to the PEM-West A hydrocarbon dataset, yielding a practical methodology for determining average OH concentrations and atmospheric mixing rates from the hydrocarbon measurements. Aircraft data taken below 2 km during wall flights east of Japan imply a diurnal average OH concentration of ˜3 × 106 cm-3. The characteristic time for dilution with background air is estimated to be ˜2.5 days for the two study areas examined in this work.
Scaling and modeling of turbulent suspension flows
NASA Technical Reports Server (NTRS)
Chen, C. P.
1989-01-01
Scaling factors determining various aspects of particle-fluid interactions and the development of physical models to predict gas-solid turbulent suspension flow fields are discussed based on two-fluid, continua formulation. The modes of particle-fluid interactions are discussed based on the length and time scale ratio, which depends on the properties of the particles and the characteristics of the flow turbulence. For particle size smaller than or comparable with the Kolmogorov length scale and concentration low enough for neglecting direct particle-particle interaction, scaling rules can be established in various parameter ranges. The various particle-fluid interactions give rise to additional mechanisms which affect the fluid mechanics of the conveying gas phase. These extra mechanisms are incorporated into a turbulence modeling method based on the scaling rules. A multiple-scale two-phase turbulence model is developed, which gives reasonable predictions for dilute suspension flow. Much work still needs to be done to account for the poly-dispersed effects and the extension to dense suspension flows.
Microbial degradation of Cold Lake Blend and Western Canadian Select Dilbits in Freshwater
Although there are different physical and chemical properties between conventional crude oils and diluted bitumen (dilbit) information on the biodegradation patterns of dilbit is scarce. To address this issue, treatability experiments were conducted with two types of dilbits at 5...
Allison, Stuart A; Pei, Hongxia
2009-06-11
In this work, we examine the viscosity of a dilute suspension of irregularly shaped particles at low shear. A particle is modeled as a rigid array of nonoverlapping beads of variable size and geometry. Starting from a boundary element formalism, approximate account is taken of the variation in hydrodynamic stress over the surface of the individual beads. For a touching dimer of two identical beads, the predicted viscosity is lower than the exact value by 5.2%. The methodology is then applied to several other model systems including tetramers of variable conformation and linear strings of touching beads. An analysis is also carried out of the viscosity and translational diffusion of several dilute amino acids and diglycine in water. It is concluded that continuum hydrodynamic modeling with stick boundary conditions is unable to account for the experimental viscosity and diffusion data simultaneously. A model intermediate between "stick" and "slip" could possibly reconcile theory and experiment.
USDA-ARS?s Scientific Manuscript database
The efficiency of two biomass pretreatment technologies, dilute acid hydrolysis and dissolution in an ionic liquid, are compared in terms of delignification, saccharification efficiency and saccharide yields with switchgrass serving as a model bioenergy crop. When subject to ionic liquid pretreatme...
40 CFR 86.605-88 - Maintenance of records; submittal of information.
Code of Federal Regulations, 2014 CFR
2014-07-01
... of the mixture of exhaust and dilution air entering the positive displacement pump, pressure increase... being collected. (3) Humidity of dilution air. (4) Manufacturer, model, type and serial number. (C... temperature and humidity. (2) Data and time of day. (ii) In lieu of recording test equipment information...
Implementing Inquiry-Based Learning in Teaching Serial Dilutions
ERIC Educational Resources Information Center
Walker, Candace L.; McGill, Michael T.; Buikema, Arthur L., Jr.; Stevens, Ann M.
2008-01-01
The 5E model of inquiry-based learning was incorporated into a sophomore-level microbiology laboratory to increase student understanding of serial dilutions, a concept that is often difficult for most students to comprehend. Quantitative and qualitative assessments were conducted during the semester to determine the value of this approach for…
Miller, Ezer; Huppert, Amit
2013-01-01
Multihost vector-borne infectious diseases form a significant fraction of the global infectious disease burden. In this study we explore the relationship between host diversity, vector behavior, and disease risk. To this end, we have developed a new dynamic model which includes two distinct host species and one vector species with variable preferences. With the aid of the model we were able to compute the basic reproductive rate, R 0, a well-established measure of disease risk that serves as a threshold parameter for disease outbreak. The model analysis reveals that the system has two different qualitative behaviors: (i) the well-known dilution effect, where the maximal R0 is obtained in a community which consists a single host (ii) a new amplification effect, denoted by us as diversity amplification, where the maximal R0 is attained in a community which consists both hosts. The model analysis extends on previous results by underlining the mechanism of both, diversity amplification and the dilution, and specifies the exact conditions for their occurrence. We have found that diversity amplification occurs where the vector prefers the host with the highest transmission ability, and dilution is obtained when the vector does not show any preference, or it prefers to bite the host with the lower transmission ability. The mechanisms of dilution and diversity amplification are able to account for the different and contradictory patterns often observed in nature (i.e., in some cases disease risk is increased while in other is decreased when the diversity is increased). Implication of the diversity amplification mechanism also challenges current premises about the interaction between biodiversity, climate change, and disease risk and calls for retrospective thinking in planning intervention policies aimed at protecting the preferred host species.
Dynamics of atmospheres with a non-dilute condensible component
Ding, Feng
2016-01-01
The diversity of characteristics for the host of recently discovered exoplanets opens up a great deal of fertile new territory for geophysical fluid dynamics, particularly when the fluid flow is coupled to novel thermodynamics, radiative transfer or chemistry. In this paper, we survey one of these new areas—the climate dynamics of atmospheres with a non-dilute condensible component, defined as the situation in which a condensible component of the atmosphere makes up a substantial fraction of the atmospheric mass within some layer. Non-dilute dynamics can occur for a wide range of condensibles, generically applying near both the inner and the outer edges of the conventional habitable zone and in connection with runaway greenhouse phenomena. It also applies in a wide variety of other planetary circumstances. We first present a number of analytical results developing some key features of non-dilute atmospheres, and then show how some of these features are manifest in simulations with a general circulation model adapted to handle non-dilute atmospheres. We find that non-dilute atmospheres have weak horizontal temperature gradients even for rapidly rotating planets, and that their circulations are largely barotropic. The relative humidity of the condensible component tends towards 100% as the atmosphere becomes more non-dilute, which has important implications for runaway greenhouse thresholds. Non-dilute atmospheres exhibit a number of interesting organized convection features, for which there is not yet any adequate theoretical understanding. PMID:27436980
Dynamics of atmospheres with a non-dilute condensible component.
Pierrehumbert, Raymond T; Ding, Feng
2016-06-01
The diversity of characteristics for the host of recently discovered exoplanets opens up a great deal of fertile new territory for geophysical fluid dynamics, particularly when the fluid flow is coupled to novel thermodynamics, radiative transfer or chemistry. In this paper, we survey one of these new areas-the climate dynamics of atmospheres with a non-dilute condensible component, defined as the situation in which a condensible component of the atmosphere makes up a substantial fraction of the atmospheric mass within some layer. Non-dilute dynamics can occur for a wide range of condensibles, generically applying near both the inner and the outer edges of the conventional habitable zone and in connection with runaway greenhouse phenomena. It also applies in a wide variety of other planetary circumstances. We first present a number of analytical results developing some key features of non-dilute atmospheres, and then show how some of these features are manifest in simulations with a general circulation model adapted to handle non-dilute atmospheres. We find that non-dilute atmospheres have weak horizontal temperature gradients even for rapidly rotating planets, and that their circulations are largely barotropic. The relative humidity of the condensible component tends towards 100% as the atmosphere becomes more non-dilute, which has important implications for runaway greenhouse thresholds. Non-dilute atmospheres exhibit a number of interesting organized convection features, for which there is not yet any adequate theoretical understanding.
Large-deviation theory for diluted Wishart random matrices
NASA Astrophysics Data System (ADS)
Castillo, Isaac Pérez; Metz, Fernando L.
2018-03-01
Wishart random matrices with a sparse or diluted structure are ubiquitous in the processing of large datasets, with applications in physics, biology, and economy. In this work, we develop a theory for the eigenvalue fluctuations of diluted Wishart random matrices based on the replica approach of disordered systems. We derive an analytical expression for the cumulant generating function of the number of eigenvalues IN(x ) smaller than x ∈R+ , from which all cumulants of IN(x ) and the rate function Ψx(k ) controlling its large-deviation probability Prob[IN(x ) =k N ] ≍e-N Ψx(k ) follow. Explicit results for the mean value and the variance of IN(x ) , its rate function, and its third cumulant are discussed and thoroughly compared to numerical diagonalization, showing very good agreement. The present work establishes the theoretical framework put forward in a recent letter [Phys. Rev. Lett. 117, 104101 (2016), 10.1103/PhysRevLett.117.104101] as an exact and compelling approach to deal with eigenvalue fluctuations of sparse random matrices.
Suppression of Beneficial Mutations in Dynamic Microbial Populations
NASA Astrophysics Data System (ADS)
Bittihn, Philip; Hasty, Jeff; Tsimring, Lev S.
2017-01-01
Quantitative predictions for the spread of mutations in bacterial populations are essential to interpret evolution experiments and to improve the stability of synthetic gene circuits. We derive analytical expressions for the suppression factor for beneficial mutations in populations that undergo periodic dilutions, covering arbitrary population sizes, dilution factors, and growth advantages in a single stochastic model. We find that the suppression factor grows with the dilution factor and depends nontrivially on the growth advantage, resulting in the preferential elimination of mutations with certain growth advantages. We confirm our results by extensive numerical simulations.
Mafe, Oluwakemi A T; Davies, Scott M; Hancock, John; Du, Chenyu
2015-01-01
This study aims to develop a mathematical model to evaluate the energy required by pretreatment processes used in the production of second generation ethanol. A dilute acid pretreatment process reported by National Renewable Energy Laboratory (NREL) was selected as an example for the model's development. The energy demand of the pretreatment process was evaluated by considering the change of internal energy of the substances, the reaction energy, the heat lost and the work done to/by the system based on a number of simplifying assumptions. Sensitivity analyses were performed on the solid loading rate, temperature, acid concentration and water evaporation rate. The results from the sensitivity analyses established that the solids loading rate had the most significant impact on the energy demand. The model was then verified with data from the NREL benchmark process. Application of this model on other dilute acid pretreatment processes reported in the literature illustrated that although similar sugar yields were reported by several studies, the energy required by the different pretreatments varied significantly.
Interference, focusing and excitation of ultracold atoms
NASA Astrophysics Data System (ADS)
Kandes, M. C.; Fahy, B. M.; Williams, S. R.; Tally, C. H., IV; Bromley, M. W. J.
2011-05-01
One of the pressing technological challenges in atomic physics is to go orders-of-magnitude beyond the limits of photon-based optics by harnessing the wave-nature of dilute clouds of ultracold atoms. We have developed parallelised algorithms to perform numerical calculations of the Gross-Pitaevskii equation in up to three dimensions and with up to three components to simulate Bose-Einstein condensates. A wide-ranging array of the physics associated with atom optics-based systems will be presented including BEC-based Sagnac interferometry in circular waveguides, the focusing of BECs using Laguerre-Gauss beams, and the interactions between BECs and Ince-Gaussian laser beams and their potential applications. One of the pressing technological challenges in atomic physics is to go orders-of-magnitude beyond the limits of photon-based optics by harnessing the wave-nature of dilute clouds of ultracold atoms. We have developed parallelised algorithms to perform numerical calculations of the Gross-Pitaevskii equation in up to three dimensions and with up to three components to simulate Bose-Einstein condensates. A wide-ranging array of the physics associated with atom optics-based systems will be presented including BEC-based Sagnac interferometry in circular waveguides, the focusing of BECs using Laguerre-Gauss beams, and the interactions between BECs and Ince-Gaussian laser beams and their potential applications. Performed on computational resources via NSF grants PHY-0970127, CHE-0947087 and DMS-0923278.
Khan, I.; Hawlader, Sophie Mohammad Delwer Hossain; Arifeen, Shams El; Moore, Sophie; Hills, Andrew P.; Wells, Jonathan C.; Persson, Lars-Åke; Kabir, Iqbal
2012-01-01
The aim of this study was to investigate the validity of the Tanita TBF 300A leg-to-leg bioimpedance analyzer for estimating fat-free mass (FFM) in Bangladeshi children aged 4-10 years and to develop novel prediction equations for use in this population, using deuterium dilution as the reference method. Two hundred Bangladeshi children were enrolled. The isotope dilution technique with deuterium oxide was used for estimation of total body water (TBW). FFM estimated by Tanita was compared with results of deuterium oxide dilution technique. Novel prediction equations were created for estimating FFM, using linear regression models, fitting child's height and impedance as predictors. There was a significant difference in FFM and percentage of body fat (BF%) between methods (p<0.01), Tanita underestimating TBW in boys (p=0.001) and underestimating BF% in girls (p<0.001). A basic linear regression model with height and impedance explained 83% of the variance in FFM estimated by deuterium oxide dilution technique. The best-fit equation to predict FFM from linear regression modelling was achieved by adding weight, sex, and age to the basic model, bringing the adjusted R2 to 89% (standard error=0.90, p<0.001). These data suggest Tanita analyzer may be a valid field-assessment technique in Bangladeshi children when using population-specific prediction equations, such as the ones developed here. PMID:23082630
EPR and Ferromagnetism in Diluted Magnetic Semiconductor Quantum Wells
NASA Astrophysics Data System (ADS)
König, Jürgen; MacDonald, Allan H.
2003-08-01
Motivated by recent measurements of electron paramagnetic resonance spectra in modulation-doped CdMnTe quantum wells [
Sibar, Serhat; Findikcioglu, Kemal; Zinnuroglu, Murat; Cenetoglu, Seyhan
2017-04-01
Today, botulinum toxin is commonly used for cosmetic purposes throughout the world. Despite various agents reducing the efficiency of toxin are well defined, the studies related to increasing the bioavailability are limited. The purpose of our study is to assess the effect of the preparation of toxin by diluting with platelet-poor plasma (PPP) and/or albumin instead of standard dilution (saline) on bioavailability in cosmetic-purpose botulinum toxin applications.In the study, 24 New Zealand rabbits were used. Right anterior auricular muscle was preferred for toxin injections. Subjects were divided in 4 groups and in every group; botulinum A toxin (BTxA) that was prepared by different dilution methods was injected. 2.5 U saline-diluted BTxA was injected to the subjects in group 1, 2.5 U ready-to-use rabbit albumin-diluted BTxA was injected to group 2 and 2.5 U autologous PPP-diluted BTxA was injected to group 3 and pure saline was injected to group 4.Before the injection (0th week) and in the second, sixth, and 12th weeks after the injection, visual and electroneuromyographic evaluations of the ears of the subjects were performed.In the second week, median amplitude levels in group 2 were significantly found lower than other groups.In the sixth week, median amplitude levels in group 1 were significantly found lower than other groups.In 12th week, no significant difference was found among all the groups in terms of median amplitude levels.Visual findings were also correlated with electroneuromyographic findings.It was observed that the dilution of BTxA with albumin had caused a stronger paralysis when compared to dilution with saline or PPP at the beginning (second week); however, in the following weeks (sixth week), it was seen that dilution with saline had maintained paralysis better when compared with other dilution methods.In cosmetic BTxA applications, dilution of the toxin with albumin or PPP instead of standard dilution has no positive effect on bioavailability and such modifications regarding this kind of dilution are found unsuitable. Further studies are needed to directly relate the results with clinical applications.
Short-term landfill methane emissions dependency on wind.
Delkash, Madjid; Zhou, Bowen; Han, Byunghyun; Chow, Fotini K; Rella, Chris W; Imhoff, Paul T
2016-09-01
Short-term (2-10h) variations of whole-landfill methane emissions have been observed in recent field studies using the tracer dilution method for emissions measurement. To investigate the cause of these variations, the tracer dilution method is applied using 1-min emissions measurements at Sandtown Landfill (Delaware, USA) for a 2-h measurement period. An atmospheric dispersion model is developed for this field test site, which is the first application of such modeling to evaluate atmospheric effects on gas plume transport from landfills. The model is used to examine three possible causes of observed temporal emissions variability: temporal variability of surface wind speed affecting whole landfill emissions, spatial variability of emissions due to local wind speed variations, and misaligned tracer gas release and methane emissions locations. At this site, atmospheric modeling indicates that variation in tracer dilution method emissions measurements may be caused by whole-landfill emissions variation with wind speed. Field data collected over the time period of the atmospheric model simulations corroborate this result: methane emissions are correlated with wind speed on the landfill surface with R(2)=0.51 for data 2.5m above ground, or R(2)=0.55 using data 85m above ground, with emissions increasing by up to a factor of 2 for an approximately 30% increase in wind speed. Although the atmospheric modeling and field test are conducted at a single landfill, the results suggest that wind-induced emissions may affect tracer dilution method emissions measurements at other landfills. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ground-State of the Bose-Hubbard Model
NASA Astrophysics Data System (ADS)
Mancini, J. D.; Fessatidis, V.; Bowen, S. P.; Murawski, R. K.; Maly, J.
The Bose-Hubbard Model represents a s simple theoretical model to describe the physics of interacting Boson systems. In particular it has proved to be an effective description of a number of physical systems such as arrays of Josephson arrays as well as dilute alkali gases in optical lattices. Here we wish to study the ground-state of this system using two disparate but related moments calculational schemes: the Lanczos (tridiagonal) method as well as a Generalized moments approach. The Hamiltonian to be studied is given by (in second-quantized notation): H = - t ∑ < i , j > bi†bj +U/2 ∑ ini
den Hoed, M; Westerterp, K R
2008-08-01
Activity-related energy expenditure is the most variable component of total energy expenditure and thus an important determinant of energy balance. To determine whether body composition is related to physical activity in both men and women. A total of 134 healthy participants were recruited (80 women, 54 men; aged 21+/-2 years; body mass index, 22.0+/-2.4). Physical activity was measured for a period of 2 weeks using a triaxial accelerometer for movement registration (Tracmor). Percentage body fat (%BF) was determined by underwater weighing and deuterium dilution according to Siri's three-compartment model. The participant characteristics-body mass, height and gender together explained a substantial part of the variation in %BF (R(2)=0.75, SEE=4.0%). Adding physical activity to the model increased the explained variation in %BF with 4% (R(2)=0.79, SEE=3.7%, P<0.001). Taking seasonality into account by adding the number of daylight hours as an independent variable further increased the explained variation with 1% (R(2)=0.80, SEE=3.7%, P<0.05). In analogy, the association was evaluated for both genders separately. In women, %BF and physical activity were significantly associated (P<0.001). In men, %BF was only associated with physical activity when seasonality was taken into account as well (P<0.05). This probably resulted from men participating more in season bound sports, because an association was found without adjusting for seasonality when only men with a consistent year-round participation in sports were considered. Evidence was found for an association between body composition and physical activity in both genders. A consistent year-round degree of physical activity appears to be a prerequisite to reveal the association. Moreover, Tracmor-assessed physical activity improves the estimate of %BF when a participant's characteristics are taken into account.
Focks, Andreas; Belgers, Dick; van der Steen, Jozef J.M.; Boesten, Jos J.T.I.; Roessink, Ivo
2016-01-01
Estimating the exposure of honeybees to pesticides on a landscape scale requires models of their spatial foraging behaviour. For this purpose, we developed a mechanistic, energetics-based model for a single day of nectar foraging in complex landscape mosaics. Net energetic efficiency determined resource patch choice. In one version of the model a single optimal patch was selected each hour. In another version, recruitment of foragers was simulated and several patches could be exploited simultaneously. Resource availability changed during the day due to depletion and/or intrinsic properties of the resource (anthesis). The model accounted for the impact of patch distance and size, resource depletion and replenishment, competition with other nectar foragers, and seasonal and diurnal patterns in availability of nectar-providing crops and wild flowers. From the model we derived simple rules for resource patch selection, e.g., for landscapes with mass-flowering crops only, net energetic efficiency would be proportional to the ratio of the energetic content of the nectar divided by distance to the hive. We also determined maximum distances at which resources like oilseed rape and clover were still energetically attractive. We used the model to assess the potential for pesticide exposure dilution in landscapes of different composition and complexity. Dilution means a lower concentration in nectar arriving at the hive compared to the concentration in nectar at a treated field and can result from foraging effort being diverted away from treated fields. Applying the model for all possible hive locations over a large area, distributions of dilution factors were obtained that were characterised by their 90-percentile value. For an area for which detailed spatial data on crops and off-field semi-natural habitats were available, we tested three landscape management scenarios that were expected to lead to exposure dilution: providing alternative resources than the target crop (oilseed rape) in the form of (i) other untreated crop fields, (ii) flower strips of different widths at field edges (off-crop in-field resources), and (iii) resources on off-field (semi-natural) habitats. For both model versions, significant dilution occurred only when alternative resource patches were equal or more attractive than oilseed rape, nearby and numerous and only in case of flower strips and off-field habitats. On an area-base, flower strips were more than one order of magnitude more effective than off-field habitats, the main reason being that flower strips had an optimal location. The two model versions differed in the predicted number of resource patches exploited over the day, but mainly in landscapes with numerous small resource patches. In landscapes consisting of few large resource patches (crop fields) both versions predicted the use of a small number of patches. PMID:27602273
NASA Astrophysics Data System (ADS)
Toledo, J.; Manzaneque, T.; Hernando-García, J.; Vazquez, J.; Ababneh, A.; Seidel, H.; Lapuerta, M.; Sánchez-Rojas, J. L.
2013-05-01
In-situ monitoring of the physical properties of liquids is of great interest in the automotive industry. For example, lubricants are subject to dilution with diesel fuel as a consequence of late-injection processes, which are necessary for regenerating diesel particulate filters. This dilution can be determined by tracking the viscosity and the density of the lubricant. Here we report the test of two in-plane movement based resonators to explore their capability to monitor oil dilution with diesel and biodiesel. One of the resonators is the commercially available millimeter-sized quartz tuning fork, working at 32.7 kHz. The second resonator is a state-of-the-art micron-sized AlN-based rectangular plate, actuated in the first extensional mode in the MHz range. Electrical impedance measurements were carried out to characterize the performance of the structures in various liquid media in a wide range of viscosities. These measurements were completed with the development of low-cost electronic circuits to track the resonance frequency and the quality factor automatically, these two parameters allow to obtain the viscosity of various fluids under investigation, as in the case of dilution of lubricant SAE 15W40 and biodiesel.
Effect of mixing method on the mixing degree during the preparation of triturations.
Nakamura, Hitoshi; Yanagihara, Yoshitsugu; Sekiguchi, Hiroko; Komada, Fusao; Kawabata, Haruno; Ohtani, Michiteru; Saitoh, Yukiya; Kariya, Satoru; Suzuki, Hiroshi; Uchino, Katsuyoshi; Iga, Tatsuji
2004-03-01
By using lactose colored with erythrocin, we investigated the effects of mixing methods on mixing degree during the preparation of trituration with a mortar and pestle. The extent of powder dilution was set to 4 to 64 fold in the experiments. We compared the results obtained by using two methods: (1) one-step mixing of powders after addition of diluents and (2) gradual mixing of powders after addition of diluents. As diluents, we used crystallized lactose and powdered lactose for the preparation of trituration. In the preparation of 64-fold trituration, an excellent degree of mixing was obtained, with CV values of less than 6.08%, for both preparation methods and for the two kinds of diluents. The mixing of two kinds of powders whose distributions of particle sizes were similar resulted in much better degree of mixing, with CV values of less than 3.0%. However, the concentration of principal agents in 64-fold trituration was reduced by 20% due to the adsorption of dye to the apparatus. Under conditions in which a much higher dilution rate and/or much better degree of dilution was required, it must be necessary to dilute powders with considering their physicality and to determine the concentrations of principal agents after the mixing.
Lo, Sheng-Ying; Baird, Geoffrey S; Greene, Dina N
2015-12-07
Proper utilization of resources is an important operational objective for clinical laboratories. To reduce unnecessary manual interventions on automated instruments, we conducted a workflow analysis that optimized dilution parameters and reporting of abnormally high chemistry results for the Beckman AU series of chemistry analyzers while maintaining clinically acceptable reportable ranges. Workflow analysis for the Beckman AU680/5812 and DxC800 chemistry analyzers was performed using historical data. Clinical reportable ranges for 53 chemistry analytes were evaluated. Optimized dilution parameters and upper limit of reportable ranges for the AU680/5812 instruments were derived and validated to meet these reportable ranges. The number of specimens that required manual dilutions before and after optimization was determined for both the AU680/5812 and DxC800, with the DxC800 serving as the reference instrument. Retrospective data analysis revealed that 7700 specimens required manual dilutions on the DxC over a 2-y period. Using our optimized AU-specific dilution and reporting parameters, the data-driven simulation analysis showed a 61% reduction in manual dilutions. For the specimens that required manual dilutions on the AU680/5812, we developed standardized dilution procedures to further streamline workflow. We provide a data-driven, practical outline for clinical laboratories to efficiently optimize their use of automated chemistry analyzers. The outcomes can be used to assist laboratories wishing to improve their existing procedures or to facilitate transitioning into a new line of instrumentation, regardless of the instrument model or manufacturer. Copyright © 2015 Elsevier B.V. All rights reserved.
Two-stage, dilute sulfuric acid hydrolysis of wood : an investigation of fundamentals
John F. Harris; Andrew J. Baker; Anthony H. Conner; Thomas W. Jeffries; James L. Minor; Roger C. Pettersen; Ralph W. Scott; Edward L Springer; Theodore H. Wegner; John I. Zerbe
1985-01-01
This paper presents a fundamental analysis of the processing steps in the production of methanol from southern red oak (Quercus falcata Michx.) by two-stage dilute sulfuric acid hydrolysis. Data for hemicellulose and cellulose hydrolysis are correlated using models. This information is used to develop and evaluate a process design.
Probing critical behavior of 2D Ising ferromagnet with diluted bonds using Wang-Landau algorithm
NASA Astrophysics Data System (ADS)
Ridha, N. A.; Mustamin, M. F.; Surungan, T.
2018-03-01
Randomness is an important subject in the study of phase transition as defect and impurity may present in any real material. The pre-existing ordered phase of a pure system can be affected or even ruined by the presence of randomness. Here we study ferromagnetic Ising model on a square lattice with a presence of randomness in the form of bond dilution. The pure system of this model is known to experience second order phase transition, separating between the high temperature paramagnetic and low-temperature ferromagnetic phase. We used Wang-Landau algorithm of Monte Carlo method to obtain the density of states from which we extract the ensemble average of energy and the specific heat. We observed the signature of phase transition indicated by the diverging peak of the specific heat as system sizes increase. These peaks shift to the lower temperature side as the dilution increases. The lower temperature ordered phase preserves up to certain concentration of dilution and is totally ruined when the bonds no longer percolates.
Methods of Oil Detection in Response to the Deepwater Horizon Oil Spill
Detecting oil in the northern Gulf of Mexico following the Deepwater Horizon oil spill presented unique challenges due to the spatial and temporal extent of the spill and the subsequent dilution of oil in the environment. Over time, physical, chemical, and biological processes a...
Polidori, David; Rowley, Clarence
2014-07-22
The indocyanine green dilution method is one of the methods available to estimate plasma volume, although some researchers have questioned the accuracy of this method. We developed a new, physiologically based mathematical model of indocyanine green kinetics that more accurately represents indocyanine green kinetics during the first few minutes postinjection than what is assumed when using the traditional mono-exponential back-extrapolation method. The mathematical model is used to develop an optimal back-extrapolation method for estimating plasma volume based on simulated indocyanine green kinetics obtained from the physiological model. Results from a clinical study using the indocyanine green dilution method in 36 subjects with type 2 diabetes indicate that the estimated plasma volumes are considerably lower when using the traditional back-extrapolation method than when using the proposed back-extrapolation method (mean (standard deviation) plasma volume = 26.8 (5.4) mL/kg for the traditional method vs 35.1 (7.0) mL/kg for the proposed method). The results obtained using the proposed method are more consistent with previously reported plasma volume values. Based on the more physiological representation of indocyanine green kinetics and greater consistency with previously reported plasma volume values, the new back-extrapolation method is proposed for use when estimating plasma volume using the indocyanine green dilution method.
Immunology and Homeopathy. 3. Experimental Studies on Animal Models
Bellavite, Paolo; Ortolani, Riccardo; Conforti, Anita
2006-01-01
A search of the literature and the experiments carried out by the authors of this review show that there are a number of animal models where the effect of homeopathic dilutions or the principles of homeopathic medicine have been tested. The results relate to the immunostimulation by ultralow doses of antigens, the immunological models of the ‘simile’, the regulation of acute or chronic inflammatory processes and the use of homeopathic medicines in farming. The models utilized by different research groups are extremely etherogeneous and differ as the test medicines, the dilutions and the outcomes are concerned. Some experimental lines, particularly those utilizing mice models of immunomodulation and anti-inflammatory effects of homeopathic complex formulations, give support to a real effect of homeopathic high dilutions in animals, but often these data are of preliminary nature and have not been independently replicated. The evidence emerging from animal models is supporting the traditional ‘simile’ rule, according to which ultralow doses of compounds, that in high doses are pathogenic, may have paradoxically a protective or curative effect. Despite a few encouraging observational studies, the effectiveness of the homeopathic prevention or therapy of infections in veterinary medicine is not sufficiently supported by randomized and controlled trials. PMID:16786046
Drag reduction in the turbulent Kolmogorov flow.
Boffetta, Guido; Celani, Antonio; Mazzino, Andrea
2005-03-01
We investigate the phenomenon of drag reduction in a viscoelastic fluid model of dilute polymer solutions. By means of direct numerical simulations of the three-dimensional turbulent Kolmogorov flow we show that drag reduction takes place above a critical Reynolds number Re(c). An explicit expression for the dependence of Re(c) on polymer elasticity and diffusivity is derived. The values of the drag coefficient obtained for different fluid parameters collapse onto a universal curve when plotted as a function of the rescaled Reynolds number Re/ Re(c). The analysis of the momentum budget allows us to gain some insight on the physics of drag reduction, and suggests the existence of a Re-independent value of the drag cofficient--lower than the Newtonian one--for large Reynolds numbers.
NASA Astrophysics Data System (ADS)
Vélez Pérez, José Antonio; Guzmán, Orlando; Navarro-García, Fernando
2013-07-01
Protein translocation from the cytosol to the endoplasmic reticulum (ER) or vice versa, an essential process for cell function, includes the transport of preproteins destined to become secretory, luminal, or integral membrane proteins (translocation) or misfolded proteins returned to the cytoplasm to be degraded (retrotranslocation). An important aspect in this process that has not been fully studied is the molecular crowding at both sides of the ER membrane. By using models of polymers crossing a membrane through a pore, in an environment crowded by either static or dynamic spherical agents, we computed the following transport properties: the free energy, the activation energy, the force, and the transport times for translocation and retrotranslocation. Using experimental protein crowding data for the cytoplasm and ER sides, we showed that dynamic crowding, which resembles biological environments where proteins are translocated or retrotranslocated, increases markedly all the physical properties of translocation and retrotranslocation as compared with translocation in a diluted system. By contrast, transport properties in static crowded systems were similar to those in diluted conditions. In the dynamic regime, the effects of crowding were more notorious in the transport times, leading to a huge difference for large chains. We indicate that this difference is the result of the synergy between the free energy and the diffusivity of the translocating chain. That synergy leads to translocation rates similar to experimental measures in diluted systems, which indicates that the effects of crowding can be measured. Our data also indicate that effects of crowding cannot be neglected when studying translocation because protein dynamic crowding has a relevant steric contribution, which changes the properties of translocation.
Potency and stability of frozen urokinase solutions in syringes.
Dedrick, Stephen C; Ramirez-Rico, José
2004-08-01
The stability and potency of frozen urokinase solutions in syringes were studied. To determine the stability and potency of compounded urokinase dilutions after multiple freeze-thaw cycles, a total of 160 syringes containing five urokinase concentrations (2,500, 5,000, 7,500, 12,500, and 25,000 IU/mL) were prepared. For each of the five concentrations tested, two syringes per concentration were reserved for baseline testing. The remaining 150 syringes were frozen at -30 degrees C. After 7 days, half of the syringes (group 1) were thawed at room temperature, tested, and left at room temperature for 12 hours before refreezing. The other half of the syringes (group 2) were kept frozen for 30 days. Thirty days after initial compounding, all syringes were thawed, and the samples' urokinase potency, pH, and physical appearance were evaluated. Syringes were visually inspected for color, clarity, and precipitation. Descriptive statistics were computed for each concentration group and testing day. The compounded dilutions were stable under each experimental condition, with no physical deterioration or loss of in vitro potency after two freeze-thaw cycles. The reduced waste associated with the ability to refreeze unused urokinase could substantially lower the cost of procedures such as thrombolysis after intraventricular hemorrhage and catheter clearance by as much as 95%. Dilutions of urokinase 2,500-25,000 IU/mL were stable in single-use syringes after being frozen for 7 days, thawed, and refrozen for another 23 days.
Thermo-kinetic instabilities in model reactors. Examples in experimental tests
NASA Astrophysics Data System (ADS)
Lavadera, Marco Lubrano; Sorrentino, Giancarlo; Sabia, Pino; de Joannon, Mara; Cavaliere, Antonio; Ragucci, Raffaele
2017-11-01
The use of advanced combustion technologies (such as MILD, LTC, etc.) is among the most promising methods to reduce emission of pollutants. For such technologies, working temperatures are enough low to boost the formation of several classes of pollutants, such as NOx and soot. To access this temperature range, a significant dilution as well as preheating of reactants is required. Such conditions are usually achieved by a strong recirculation of exhaust gases that simultaneously dilute and pre-heat the fresh reactants. These peculiar operative conditions also imply strong fuel flexibility, thus allowing the use of low calorific value (LCV) energy carriers with high efficiency. However, the intersection of low combustion temperatures and highly diluted mixtures with intense pre-heating alters the evolution of the combustion process with respect to traditional flames, leading to features such as the susceptibility to oscillations, which are undesirable during combustion. Therefore, an effective use of advanced combustion technologies requires a thorough analysis of the combustion kinetic characteristics in order to identify optimal operating conditions and control strategies with high efficiency and low pollutant emissions. The present work experimentally and numerically characterized the ignition and oxidation processes of methane and propane, highly diluted in nitrogen, at atmospheric pressure, in a Plug Flow Reactor and a Perfectly Stirred Reactor under a wide range of operating conditions involving temperatures, mixture compositions and dilution levels. The attention was focused particularly on the chemistry of oscillatory phenomena and multistage ignitions. The global behavior of these systems can be qualitatively and partially quantitatively modeled using the detailed kinetic models available in the literature. Results suggested that, for diluted conditions and lower adiabatic flame temperatures, the competition among several pathways, i.e. intermediate- and high-temperature branching, branching and recombination channels, oxidation and recombination/pyrolysis pathways, is enhanced, thus permitting the onset of phenomena that are generally hidden during conventional combustion processes.
NASA Astrophysics Data System (ADS)
Girijakumari Keerthi, Madhavan; Lengaigne, Matthieu; Levy, Marina; Vialard, Jerome; Parvathi, Vallivattathillam; de Boyer Montégut, Clément; Ethé, Christian; Aumont, Olivier; Suresh, Iyyappan; Parambil Akhil, Valiya; Moolayil Muraleedharan, Pillathu
2017-08-01
The northern Arabian Sea hosts a winter chlorophyll bloom, triggered by convective overturning in response to cold and dry northeasterly monsoon winds. Previous studies of interannual variations of this bloom only relied on a couple of years of data and reached no consensus on the associated processes. The current study aims at identifying these processes using both ˜ 10 years of observations (including remotely sensed chlorophyll data and physical parameters derived from Argo data) and a 20-year-long coupled biophysical ocean model simulation. Despite discrepancies in the estimated bloom amplitude, the six different remotely sensed chlorophyll products analysed in this study display a good phase agreement at seasonal and interannual timescales. The model and observations both indicate that the interannual winter bloom fluctuations are strongly tied to interannual mixed layer depth anomalies ( ˜ 0.6 to 0.7 correlation), which are themselves controlled by the net heat flux at the air-sea interface. Our modelling results suggest that the mixed layer depth control of the bloom amplitude ensues from the modulation of nutrient entrainment into the euphotic layer. In contrast, the model and observations both display insignificant correlations between the bloom amplitude and thermocline depth, which precludes a control of the bloom amplitude by daily dilution down to the thermocline depth, as suggested in a previous study.
NASA Astrophysics Data System (ADS)
Woo, Mino; Wörner, Martin; Tischer, Steffen; Deutschmann, Olaf
2018-03-01
The multicomponent model and the effective diffusivity model are well established diffusion models for numerical simulation of single-phase flows consisting of several components but are seldom used for two-phase flows so far. In this paper, a specific numerical model for interfacial mass transfer by means of a continuous single-field concentration formulation is combined with the multicomponent model and effective diffusivity model and is validated for multicomponent mass transfer. For this purpose, several test cases for one-dimensional physical or reactive mass transfer of ternary mixtures are considered. The numerical results are compared with analytical or numerical solutions of the Maxell-Stefan equations and/or experimental data. The composition-dependent elements of the diffusivity matrix of the multicomponent and effective diffusivity model are found to substantially differ for non-dilute conditions. The species mole fraction or concentration profiles computed with both diffusion models are, however, for all test cases very similar and in good agreement with the analytical/numerical solutions or measurements. For practical computations, the effective diffusivity model is recommended due to its simplicity and lower computational costs.
Long-time dynamics of Rouse-Zimm polymers in dilute solutions with hydrodynamic memory.
Lisy, V; Tothova, J; Zatovsky, A V
2004-12-01
The dynamics of flexible polymers in dilute solutions is studied taking into account the hydrodynamic memory, as a consequence of fluid inertia. As distinct from the Rouse-Zimm (RZ) theory, the Boussinesq friction force acts on the monomers (beads) instead of the Stokes force, and the motion of the solvent is governed by the nonstationary Navier-Stokes equations. The obtained generalized RZ equation is solved approximately using the preaveraging of the Oseen tensor. It is shown that the time correlation functions describing the polymer motion essentially differ from those in the RZ model. The mean-square displacement (MSD) of the polymer coil is at short times approximately t(2) (instead of approximately t). At long times the MSD contains additional (to the Einstein term) contributions, the leading of which is approximately t. The relaxation of the internal normal modes of the polymer differs from the traditional exponential decay. It is displayed in the long-time tails of their correlation functions, the longest lived being approximately t(-3/2) in the Rouse limit and t(-5/2) in the Zimm case, when the hydrodynamic interaction is strong. It is discussed that the found peculiarities, in particular, an effectively slower diffusion of the polymer coil, should be observable in dynamic scattering experiments. (c) 2004 American Institute of Physics
Influences of water and sediment quality and hydrologic processes on mussels in the Clinch River
Johnson, Gregory C.; Krstolic, Jennifer L.; Ostby, Brett J.K.
2014-01-01
Segments of the Clinch River in Virginia have experienced declining freshwater mussel populations during the past 40 years, while other segments of the river continue to support some of the richest mussel communities in the country. The close proximity of these contrasting reaches provides a study area where differences in climate, hydrology, and historic mussel distribution are minimal. The USGS conducted a study between 2009 and 2011 to evaluate possible causes of the mussel declines. Evaluation of mussel habitat showed no differences in physical habitat quality, leaving water and sediment quality as possible causes for declines. Three years of continuous water-quality data showed higher turbidity and specific conductance in the reaches with low-quality mussel assemblages compared to reaches with high-quality mussel assemblages. Discrete water-quality samples showed higher major ions and metals concentrations in the low-quality reach. Base-flow samples contained high major ion and metal concentrations coincident to low-quality mussel populations. These results support a conceptual model of dilution and augmentation where increased concentrations of major ions and other dissolved constituents from mined tributaries result in reaches with declining mussel populations. Tributaries from unmined basins provide water with low concentrations of dissolved constituents, diluting reaches of the Clinch River where high-quality mussel populations occur.
Guélat, Bertrand; Ströhlein, Guido; Lattuada, Marco; Morbidelli, Massimo
2010-08-27
A model for the adsorption equilibrium of proteins in ion-exchange chromatography explicitly accounting for the effect of pH and salt concentration in the limit of highly diluted systems was developed. It is based on the use of DLVO theory to estimate the electrostatic interactions between the charged surface of the ion-exchanger and the proteins. The corresponding charge distributions were evaluated as a function of pH and salt concentration using a molecular approach. The model was verified for the adsorption equilibrium of lysozyme, chymotrypsinogen A and four industrial monoclonal antibodies on two strong cation-exchangers. The adsorption equilibrium constants of these proteins were determined experimentally at various pH values and salt concentrations and the model was fitted with a good agreement using three adjustable parameters for each protein in the whole range of experimental conditions. Despite the simplifications of the model regarding the geometry of the protein-ion-exchanger system, the physical meaning of the parameters was retained. 2010 Elsevier B.V. All rights reserved.
Dilution Jet Behavior in the Turn Section of a Reverse Flow Combuster
NASA Technical Reports Server (NTRS)
Riddlebaugh, S. M.; Lipshitz, A.; Greber, I.
1982-01-01
Measurements of the temperature field produced by a single jet and a row of dilution jets issued into a reverse flow combustor are presented. The temperature measurements are presented in the form of consecutive normalized temperature profiles, and jet trajectories. Single jet trajectories were swept toward the inner wall of the turn, whether injection was from the inner or outer wall. This behavior is explained by the radially inward velocity component necessary to support irrotational flow through the turn. Comparison between experimental results and model calculations showed poor agreement due to the model's not including the radial velocity component. A widely spaced row of jets produced trajectories similar to single jets at similar test conditions, but as spacing ratio was reduced, penetration was reduced to the point where the dilution jet flow attached to the wall.
NASA Astrophysics Data System (ADS)
Sund, Nicole L.; Porta, Giovanni M.; Bolster, Diogo
2017-05-01
The Spatial Markov Model (SMM) is an upscaled model that has been used successfully to predict effective mean transport across a broad range of hydrologic settings. Here we propose a novel variant of the SMM, applicable to spatially periodic systems. This SMM is built using particle trajectories, rather than travel times. By applying the proposed SMM to a simple benchmark problem we demonstrate that it can predict mean effective transport, when compared to data from fully resolved direct numerical simulations. Next we propose a methodology for using this SMM framework to predict measures of mixing and dilution, that do not just depend on mean concentrations, but are strongly impacted by pore-scale concentration fluctuations. We use information from trajectories of particles to downscale and reconstruct pore-scale approximate concentration fields from which mixing and dilution measures are then calculated. The comparison between measurements from fully resolved simulations and predictions with the SMM agree very favorably.
Macronutrient supply, uptake and recycling in the coastal ocean of the west Antarctic Peninsula
NASA Astrophysics Data System (ADS)
Henley, Sian F.; Tuerena, Robyn E.; Annett, Amber L.; Fallick, Anthony E.; Meredith, Michael P.; Venables, Hugh J.; Clarke, Andrew; Ganeshram, Raja S.
2017-05-01
Nutrient supply, uptake and cycling underpin high primary productivity over the continental shelf of the west Antarctic Peninsula (WAP). Here we use a suite of biogeochemical and isotopic data collected over five years in northern Marguerite Bay to examine these macronutrient dynamics and their controlling biological and physical processes in the WAP coastal ocean. We show pronounced nutrient drawdown over the summer months by primary production which drives a net seasonal nitrate uptake of 1.83 mol N m-2 yr-1, equivalent to net carbon uptake of 146 g C m-2 yr-1. High primary production fuelled primarily by deep-sourced macronutrients is diatom-dominated, but non-siliceous phytoplankton also play a role. Strong nutrient drawdown in the uppermost surface ocean has the potential to cause transient nitrogen limitation before nutrient resupply and/or regeneration. Interannual variability in nutrient utilisation corresponds to winter sea ice duration and the degree of upper ocean mixing, implying susceptibility to physical climate change. The nitrogen isotope composition of nitrate (δ15NNO3) shows a utilisation signal during the growing seasons with a community-level net isotope effect of 4.19 ± 0.29‰. We also observe significant deviation of our data from modelled and observed utilisation trends, and argue that this is driven primarily by water column nitrification and meltwater dilution of surface nitrate. This study is important because it provides a detailed description of the nutrient biogeochemistry underlying high primary productivity at the WAP, and shows that surface ocean nutrient inventories in the Antarctic sea ice zone can be affected by intense recycling in the water column, meltwater dilution and sea ice processes, in addition to utilisation in the upper ocean.
The history of the Memory of Water.
Thomas, Yolène
2007-07-01
'Homeopathic dilutions' and 'Memory of Water' are two expressions capable of turning a peaceful and intelligent person into a violently irrational one,' as Michel Schiff points out in the introduction of his book 'The Memory of Water'. The idea of the memory of water arose in the laboratory of Jacques Benveniste in the late 1980s and 20 years later the debate is still ongoing even though an increasing number of scientists report they have confirmed the basic results. This paper, first provides a brief historical overview of the context of the high dilution experiments then moves on to digital biology. One working hypothesis was that molecules can communicate with each other, exchanging information without being in physical contact and that at least some biological functions can be mimicked by certain energetic modes characteristics of a given molecule. These considerations informed exploratory research which led to the speculation that biological signaling might be transmissible by electromagnetic means. Around 1991, the transfer of specific molecular signals to sensitive biological systems was achieved using an amplifier and electromagnetic coils. In 1995, a more sophisticated procedure was established to record, digitize and replay these signals using a multimedia computer. From a physical and chemical perspective, these experiments pose a riddle, since it is not clear what mechanism can sustain such 'water memory' of the exposure to molecular signals. From a biological perspective, the puzzle is what nature of imprinted effect (water structure) can impact biological function. Also, the far-reaching implications of these observations require numerous and repeated experimental tests to rule out overlooked artifacts. Perhaps more important is to have the experiments repeated by other groups and with other models to explore the generality of the effect. In conclusion, we will present some of this emerging independent experimental work.
Parenting as a Dynamic Process: A Test of the Resource Dilution Hypothesis
ERIC Educational Resources Information Center
Strohschein, Lisa; Gauthier, Anne H.; Campbell, Rachel; Kleparchuk, Clayton
2008-01-01
In this paper, we tested the resource dilution hypothesis, which posits that, because parenting resources are finite, the addition of a new sibling depletes parenting resources for other children in the household. We estimated growth curve models on the self-reported parenting practices of mothers using four waves of data collected biennially…
Pyroclastic Density Current Hazards in the Auckland Volcanic Field, New Zealand
NASA Astrophysics Data System (ADS)
Brand, B. D.; Gravley, D.; Clarke, A. B.; Bloomberg, S. H.
2012-12-01
The most dangerous phenomena associated with phreatomagmatic eruptions are dilute pyroclastic density currents (PDCs). These are turbulent, ground-hugging sediment gravity currents that travel radially away from the explosive center at up to 100 m/s. The Auckland Volcanic Field (AVF), New Zealand, consists of approximately 50 eruptive centers, at least 39 of which have had explosive phreatomagmatic behaviour. A primary concern for future AVF eruptions is the impact of dilute PDCs in and around the Auckland area. We combine field observations from the Maungataketake tuff ring, which has one of the best exposures of dilute PDC deposits in the AVF, with a quantitative model for flow of and sedimentation from a radially-spreading, steady-state, depth-averaged dilute PDC (modified from Bursik and Woods, 1996 Bull Volcanol 58:175-193). The model allows us to explore the depositional mechanisms, macroscale current dynamics, and potential impact on societal infrastructure of dilute PDCs from a future AVF eruption. The lower portion of the Maungataketake tuff ring pyroclastic deposits contains trunks, limbs and fragments of Podocarp trees (<1 m in diameter) that were blown down by dilute PDCs up to 0.7-0.9 km from the vent. Beyond this trees were encapsulated and buried in growth position up to the total runout distance of 1.6-1.8 km. This observation suggests that the dynamic pressure of the current quickly dropped as it travelled away from source. Using the tree diameter and yield strength of the wood, we calculate that dynamic pressures (Pdyn) of 10-75 kPa are necessary to topple trees of this size and composition. Thus the two main criteria for model success based on the field evidence include (a) Pdyn must be >10 kPa nearer than 0.9 km to the vent, and <10 kPa beyond 0.9 km, and (b) the total run-out distance must be between 1.6 and 1.8 km. Model results suggest the two main forces controlling the runout distance and Pdyn over the extent of the current are sedimentation rate and entrainment of ambient atmosphere, which are a function of the grain size and initial bulk density, thickness and velocity of a given current. Initial velocities of 60 m s-1, initial bulk densities of 35 kg m-3 and initial current thickness of 70 m are the input parameters that reproduce the best fit to our field data. This preliminary validation of the model allows us to estimate the impact of dilute PDCs from future larger phreatomagmatic eruptions. In the case of a dilute PDC traveling 5-7 km from source: Pdyn >35 kPa can be expected within 3 km from source, ensuring complete destruction of the area; Pdyn > 15 kPa up to 5 km from source, resulting in heavy structural damage to most buildings and near destruction of weaker buildings; and Pdyn <10 kPa at ~6 km from source, resulting in severe damage to weaker structures at least up to this distance. This exercise illustrates our ability to combine field measurements with numerical techniques to explore controlling parameters of dilute PDC dynamics. These tools can be used to understand and estimate the damage potential and extent of past and future eruptions in the AVF or other similar volcanically active regions.
Analysis of the three-dimensional structure of a bubble wake using PIV and Galilean decomposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassan, Y.A.; Schmidl, W.D.; Ortiz-Villafuerte, J.
1999-07-01
Bubbly flow plays a key role in a variety of natural and industrial processes. An accurate and complete description of the phase interactions in two-phase bubbly flow is not available at this time. These phase interactions are, in general, always three-dimensional and unsteady. Therefore, measurement techniques utilized to obtain qualitative and quantitative data from two-phase flow should be able to acquire transient and three-dimensional data, in order to provide information to test theoretical models and numerical simulations. Even for dilute bubble flows, in which bubble interaction is at a minimum, the turbulent motion of the liquid generated by the bubblemore » is yet to be completely understood. For many years, the design of systems with bubbly flows was based primarily on empiricism. Dilute bubbly flows are an extension of single bubble dynamics, and therefore improvements in the description and modeling of single bubble motion, the flow field around the bubble, and the dynamical interactions between the bubble and the flow will consequently improve bubbly flow modeling. The improved understanding of the physical phenomena will have far-reaching benefits in upgrading the operation and efficiency of current processes and in supporting the development of new and innovative approaches. A stereoscopic particle image velocimetry measurement of the flow generated by the passage of a single air-bubble rising in stagnant water, in a circular pipe is presented. Three-dimensional velocity fields within the measurement zone were obtained. Ensemble-averaged instantaneous velocities for a specific bubble path were calculated and interpolated to obtain mean three-dimensional velocity fields. A Galilean velocity decomposition is used to study the vorticity generated in the flow.« less
Bozym, David J; Uralcan, Betül; Limmer, David T; Pope, Michael A; Szamreta, Nicholas J; Debenedetti, Pablo G; Aksay, Ilhan A
2015-07-02
We use electrochemical impedance spectroscopy to measure the effect of diluting a hydrophobic room temperature ionic liquid with miscible organic solvents on the differential capacitance of the glassy carbon-electrolyte interface. We show that the minimum differential capacitance increases with dilution and reaches a maximum value at ionic liquid contents near 5-10 mol% (i.e., ∼1 M). We provide evidence that mixtures with 1,2-dichloroethane, a low-dielectric constant solvent, yield the largest gains in capacitance near the open circuit potential when compared against two traditional solvents, acetonitrile and propylene carbonate. To provide a fundamental basis for these observations, we use a coarse-grained model to relate structural variations at the double layer to the occurrence of the maximum. Our results reveal the potential for the enhancement of double-layer capacitance through dilution.
Montei, Carolyn; McDougal, Susan; Mozola, Mark; Rice, Jennifer
2014-01-01
The Soleris Non-fermenting Total Viable Count method was previously validated for a wide variety of food products, including cocoa powder. A matrix extension study was conducted to validate the method for use with cocoa butter and cocoa liquor. Test samples included naturally contaminated cocoa liquor and cocoa butter inoculated with natural microbial flora derived from cocoa liquor. A probability of detection statistical model was used to compare Soleris results at multiple test thresholds (dilutions) with aerobic plate counts determined using the AOAC Official Method 966.23 dilution plating method. Results of the two methods were not statistically different at any dilution level in any of the three trials conducted. The Soleris method offers the advantage of results within 24 h, compared to the 48 h required by standard dilution plating methods.
Solid state crystal physics at very low temperatures
NASA Technical Reports Server (NTRS)
Davis, W.; Krack, K.; Richard, J. P.; Weber, J.
1980-01-01
The properties of nearly perfect crystals was studied at cryogenic temperatures. A large Helium 3 and Helium 4 dilution refrigerator has been assembled, and is described. A cryostat suitable for cooling a 35 liter volume to .020 Kelvin was designed and constructed, together with instrumentation to observe the properties of nearly perfect crystals.
Dredging for dilution: A simulation based case study in a Tidal River.
Bilgili, Ata; Proehl, Jeffrey A; Swift, M Robinson
2016-02-01
A 2-D hydrodynamic finite element model with a Lagrangian particle module is used to investigate the effects of dredging on the hydrodynamics and the horizontal dilution of pollutant particles originating from a wastewater treatment facility (WWTF) in tidal Oyster River in New Hampshire, USA. The model is driven by the semi-diurnal (M2) tidal component and includes the effect of flooding and drying of riverine mud flats. The particle tracking method consists of tidal advection plus a horizontal random walk model of sub-grid scale turbulent processes. Our approach is to perform continuous pollutant particle releases from the outfall, simulating three different scenarios: a base-case representing the present conditions and two different dredged channel/outfall location configurations. Hydrodynamics are investigated in an Eulerian framework and Lagrangian particle dilution improvement ratios are calculated for all cases. Results show that the simulated hydrodynamics are consistent with observed conditions. Eulerian and Lagrangian residuals predict an outward path suggesting flushing of pollutants on longer (>M2) time scales. Simulated dilution maps show that, in addition to dredging, the relocation of the WWTF outfall into the dredged main channel is required for increased dilution performance. The methodology presented here can be applied to similar managerial problems in all similar systems worldwide with relatively little effort, with the combination of Lagrangian and Eulerian methods working together towards a better solution. The statistical significance brought into methodology, by using a large number of particles (16000 in this case), is to be emphasized, especially with the growing number of networked parallel computer clusters worldwide. This paper improves on the study presented in Bilgili et al., 2006b, by adding an Eulerian analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ducha, N.; Hariani, D.; Budijastuti, W.
2018-01-01
Storage of semen requires diluent to dilute semen and maintain sperm quality. One of the diluent for bull semen was CEP. The purpose of this study was to assess the association of bull spermatozoa quality with the physical and chemical conditions of CEP diluents with the addition of egg yolk before and after the storage process. The study used Limousin bull with 5 replications. The quality of spermatozoa included motility and viability. Physical and chemical conditions included the pH and osmolarity of the diluent. The motility of spermatozoa was observed under a light microscope with 200 X magnification at 37°C by two people. The viability of spermatozoa was observed under a light microscope with 400 X magnification with nigrosine eosin staining. Data were analyzed with ANOVA and continued Duncan’s test. Dilution pH was measured using pH indicator paper ranging from 6-8. The osmolarity of the diluent was measured by electrical osmolarity. The results showed that the addition of egg yolk in the CEP diluent decreased the pH and increased osmolartitas, but the quality of spermatozoa can be kept up to 8 days of storage. The conclusion in this study was the addition of egg yolk in the CEP diluent provided physical and chemical conditions that can maintain the quality of spermatozoa during storage at a temperature of 4-5 ° C.
Tran, C; Yazdanpanah, M; Kyriakopoulou, L; Levandovskiy, V; Zahid, H; Naufer, A; Isbrandt, D; Schulze, A
2014-09-25
To develop an accurate stable isotope dilution assay for simultaneous quantification of creatine metabolites ornithine, arginine, creatine, creatinine, and guanidinoacetate in very small blood sample volumes to study creatine metabolism in mice. Liquid-chromatography (C18) tandem mass spectrometry with butylation was performed in positive ionization mode. Stable isotope dilution assay with external calibration was applied to three different specimen types, plasma, whole blood and dried blood spot (DBS). Analytical separation, sensitivity, accuracy, and linearity of the assay were adequate. The stable isotope dilution assay in plasma revealed no significant bias to gold standard methods for the respective analytes. Compared to plasma, we observed an overestimate of creatine and creatinine (2- to 5-fold and 1.2- to 2-fold, respectively) in whole-blood and DBS, and an underestimate of arginine (2.5-fold) in DBS. Validation of the assay in mouse models of creatine deficiency revealed plasma creatine metabolite pattern in good accordance with those observed in human GAMT and AGAT deficiency. Single dose intraperitoneal application of ornithine in wild-type mice lead to fast ornithine uptake (Tmax ≤ 10 min) and elimination (T1/2=24 min), and a decline of guanidinoacetate. The assay is fast and reliable to study creatine metabolism and pharmacokinetics in mouse models of creatine deficiency. Copyright © 2014 Elsevier B.V. All rights reserved.
The Dilution Effect and Information Integration in Perceptual Decision Making
Hotaling, Jared M.; Cohen, Andrew L.; Shiffrin, Richard M.; Busemeyer, Jerome R.
2015-01-01
In cognitive science there is a seeming paradox: On the one hand, studies of human judgment and decision making have repeatedly shown that people systematically violate optimal behavior when integrating information from multiple sources. On the other hand, optimal models, often Bayesian, have been successful at accounting for information integration in fields such as categorization, memory, and perception. This apparent conflict could be due, in part, to different materials and designs that lead to differences in the nature of processing. Stimuli that require controlled integration of information, such as the quantitative or linguistic information (commonly found in judgment studies), may lead to suboptimal performance. In contrast, perceptual stimuli may lend themselves to automatic processing, resulting in integration that is closer to optimal. We tested this hypothesis with an experiment in which participants categorized faces based on resemblance to a family patriarch. The amount of evidence contained in the top and bottom halves of each test face was independently manipulated. These data allow us to investigate a canonical example of sub-optimal information integration from the judgment and decision making literature, the dilution effect. Splitting the top and bottom halves of a face, a manipulation meant to encourage controlled integration of information, produced farther from optimal behavior and larger dilution effects. The Multi-component Information Accumulation model, a hybrid optimal/averaging model of information integration, successfully accounts for key accuracy, response time, and dilution effects. PMID:26406323
Regression dilution bias: tools for correction methods and sample size calculation.
Berglund, Lars
2012-08-01
Random errors in measurement of a risk factor will introduce downward bias of an estimated association to a disease or a disease marker. This phenomenon is called regression dilution bias. A bias correction may be made with data from a validity study or a reliability study. In this article we give a non-technical description of designs of reliability studies with emphasis on selection of individuals for a repeated measurement, assumptions of measurement error models, and correction methods for the slope in a simple linear regression model where the dependent variable is a continuous variable. Also, we describe situations where correction for regression dilution bias is not appropriate. The methods are illustrated with the association between insulin sensitivity measured with the euglycaemic insulin clamp technique and fasting insulin, where measurement of the latter variable carries noticeable random error. We provide software tools for estimation of a corrected slope in a simple linear regression model assuming data for a continuous dependent variable and a continuous risk factor from a main study and an additional measurement of the risk factor in a reliability study. Also, we supply programs for estimation of the number of individuals needed in the reliability study and for choice of its design. Our conclusion is that correction for regression dilution bias is seldom applied in epidemiological studies. This may cause important effects of risk factors with large measurement errors to be neglected.
2014-01-01
Background The indocyanine green dilution method is one of the methods available to estimate plasma volume, although some researchers have questioned the accuracy of this method. Methods We developed a new, physiologically based mathematical model of indocyanine green kinetics that more accurately represents indocyanine green kinetics during the first few minutes postinjection than what is assumed when using the traditional mono-exponential back-extrapolation method. The mathematical model is used to develop an optimal back-extrapolation method for estimating plasma volume based on simulated indocyanine green kinetics obtained from the physiological model. Results Results from a clinical study using the indocyanine green dilution method in 36 subjects with type 2 diabetes indicate that the estimated plasma volumes are considerably lower when using the traditional back-extrapolation method than when using the proposed back-extrapolation method (mean (standard deviation) plasma volume = 26.8 (5.4) mL/kg for the traditional method vs 35.1 (7.0) mL/kg for the proposed method). The results obtained using the proposed method are more consistent with previously reported plasma volume values. Conclusions Based on the more physiological representation of indocyanine green kinetics and greater consistency with previously reported plasma volume values, the new back-extrapolation method is proposed for use when estimating plasma volume using the indocyanine green dilution method. PMID:25052018
The Dilution Effect and Information Integration in Perceptual Decision Making.
Hotaling, Jared M; Cohen, Andrew L; Shiffrin, Richard M; Busemeyer, Jerome R
2015-01-01
In cognitive science there is a seeming paradox: On the one hand, studies of human judgment and decision making have repeatedly shown that people systematically violate optimal behavior when integrating information from multiple sources. On the other hand, optimal models, often Bayesian, have been successful at accounting for information integration in fields such as categorization, memory, and perception. This apparent conflict could be due, in part, to different materials and designs that lead to differences in the nature of processing. Stimuli that require controlled integration of information, such as the quantitative or linguistic information (commonly found in judgment studies), may lead to suboptimal performance. In contrast, perceptual stimuli may lend themselves to automatic processing, resulting in integration that is closer to optimal. We tested this hypothesis with an experiment in which participants categorized faces based on resemblance to a family patriarch. The amount of evidence contained in the top and bottom halves of each test face was independently manipulated. These data allow us to investigate a canonical example of sub-optimal information integration from the judgment and decision making literature, the dilution effect. Splitting the top and bottom halves of a face, a manipulation meant to encourage controlled integration of information, produced farther from optimal behavior and larger dilution effects. The Multi-component Information Accumulation model, a hybrid optimal/averaging model of information integration, successfully accounts for key accuracy, response time, and dilution effects.
Mechanistic investigations in sono-hybrid techniques for rice straw pretreatment.
Suresh, Kelothu; Ranjan, Amrita; Singh, Shuchi; Moholkar, Vijayanand S
2014-01-01
This paper reports comparative study of two chemical techniques (viz. dilute acid/alkali treatment) and two physical techniques (viz. hot water bath and autoclaving) coupled with sonication, termed as sono-hybrid techniques, for hydrolysis of rice straw. The efficacy of each sono-hybrid technique was assessed on the basis of total sugar and reducing sugar release. The system of biomass pretreatment is revealed to be mass transfer controlled. Higher sugar release is obtained during dilute acid treatment than dilute alkali treatment. Autoclaving alone was found to increase sugar release marginally as compared to hot water bath. Sonication of the biomass solution after autoclaving and stirring resulted in significant rise of sugar release, which is attributed to strong convection generated during sonication that assists effective transport of sugar molecules. Discrimination between individual contributions of ultrasound and cavitation to mass transfer enhancement reveals that contribution of ultrasound (through micro-streaming) is higher. Micro-turbulence as well as acoustic waves generated by cavitation did not contribute much to enhancing of mass transfer in the system. Copyright © 2013 Elsevier B.V. All rights reserved.
W. Zhu; Carl J. Houtman; J.Y. Zhu; Roland Gleisner; K.F. Chen
2012-01-01
A combined hydrolysis factor (CHF) was developed to predict xylan hydrolysis during pretreatments of native aspen (Populus tremuloides) wood chips. A natural extension of previously developed kinetic models allowed us to account for the effect of catalysts by dilute acid and two sulfite pretreatments at different pH values....
Thomas, J.M.; McKay, W.A.; Colec, E.; Landmeyer, J.E.; Bradley, P.M.
2000-01-01
The fate of disinfection byproducts during aquifer storage and recovery (ASR) is evaluated for aquifers in Southern Nevada. Rapid declines of haloacetic acid (HAA) concentrations during ASR, with associated little change in Cl concentration, indicate that HAAs decline primarily by in situ microbial oxidation. Dilution is only a minor contributor to HAA concentration declines during ASR. Trihalomethane (THM) concentrations generally increased during storage of artificial recharge (AR) water and then declined during recovery. The decline of THM concentrations during recovery was primarily from dilution of current season AR water with residual AR water remaining in the aquifer from previous ASR seasons and native ground water. In more recent ASR seasons, for wells with the longest history of ASR, brominated THMs declined during storage and recovery by processes in addition to dilution. These conclusions about THMs are indicated by THM/Cl values and supported by a comparison of measured and model predicted THM concentrations. Geochemical mixing models were constructed using major-ion chemistry of the three end-member waters to calculate predicted THM concentrations. The decline in brominated THM concentrations in addition to that from dilution may result from biotransformation processes.
Tailoring magnetic nanoparticle for transformers application.
Morais, P C; Silva, A S; Leite, E S; Garg, V K; Oliveira, A C; Viali, W R; Sartoratto, P P C
2010-02-01
In this study photoacoustic spectroscopy was used to investigate the effect of dilution of an oil-based magnetic fluid sample on the magnetic nanoparticle surface-coating. Changes of the photoacoustic signal intensity on the band-L region (640 to 830 nm) upon dilution of the stock magnetic fluid sample were discussed in terms of molecular surface desorption. The model proposed here assumes that the driving force taking the molecules out from the nanoparticle surface into the bulk solvent is the gradient of osmotic pressure. This gradient of osmotic pressure is established between the nanoparticle surface and the bulk suspension. It is further assumed that the photoacoustic signal intensity (area under the photoacoustic spectra) scales linearly with the number of coating molecules (surface grafting) at the nanoparticle surface. This model picture provides a non-linear analytical description for the reduction of the surface grafting coefficient upon dilution, which was successfully-used to curve-fit the photoacoustic experimental data.
Lupulescu, Adonis; Frydman, Lucio
2011-10-07
Recent years have witnessed efforts geared at increasing the sensitivity of NMR experiments, by relying on the suitable tailoring and exploitation of relaxation phenomena. These efforts have included the use of paramagnetic agents, enhanced (1)H-(1)H incoherent and coherent transfers processes in 2D liquid state spectroscopy, and homonuclear (13)C-(13)C spin diffusion effects in labeled solids. The present study examines some of the opportunities that could open when exploiting spontaneous (1)H-(1)H spin-diffusion processes, to enhance relaxation and to improve the sensitivity of dilute nuclei in solid state NMR measurements. It is shown that polarization transfer experiments executed under sufficiently fast magic-angle-spinning conditions, enable a selective polarization of the dilute low-γ spins by their immediate neighboring protons. Repolarization of the latter can then occur during the time involved in monitoring the signal emitted by the low-γ nuclei. The basic features involved in the resulting approach, and its potential to improve the effective sensitivity of solid state NMR measurements on dilute nuclei, are analyzed. Experimental tests witness the advantages that could reside from utilizing this kind of approach over conventional cross-polarization processes. These measurements also highlight a number of limitations that will have to be overcome for transforming selective polarization transfers of this kind into analytical methods of choice. © 2011 American Institute of Physics
Murase, Tetsuma; Imaeda, Noriaki; Yamada, Hiroto; Takasu, Masaki; Taguchi, Kazuo; Katoh, Tsutomu
2010-06-01
The present study investigated whether substitution of HEPES for bicarbonate in BTS (BTS-H) used to dilute boar ejaculates immediately after ejaculation could reduce the increased inducibility of the acrosome reaction by calcium and calcium ionophore A23187. When an ejaculate was split, diluted 5-fold with regular BTS (BTS-B) and BTS-H and stored at 17 C for 12 h or 60 h, the extender or storage time had no significant influence on sperm motility or viability measured by the eosin-nigrosin method. When spermatozoa diluted serially with BTS-B and stored (36 h) were stimulated with Ca2+ (3 mM) and A23187 (0.3 microM), the proportion of spermatozoa that underwent the acrosome reaction (% acrosome reactions) significantly increased as the magnifications of dilution increased (bicarbonate content almost unchanged by dilution). By contrast, the % acrosome reactions in spermatozoa similarly diluted and stored with BTS-H decreased with the increasing magnifications of dilution (bicarbonate decreased). Sperm motility immediately after the end of incubation without A23178 tended to be lower for BTS-H than BTS-B, and the ejaculates for BTS-H had a tendency to have a lower total protein in seminal plasma than those for BTS-B. These results implied that the samples for BTS-H could be used as a model for ejaculates possibly collected during summer and showing subfertility. When an ejaculate was split, diluted serially with BTS-B and BTS-H and stored, viability measured by staining with propidium iodide was extremely similar between the 2 extenders and among the different dilution magnifications, regardless of whether spermatozoa were washed (stored for 36-66 h) or not (stored for 66-72 h). These results suggest that boar ejaculate can be stored with BTS-H at least according to the results for sperm motility and viability and that hypersensitivity of spermatozoa to Ca2+ and A23187 potentially associated with boar subfertility could be lessened by diluting ejaculates with BTS-H.
Thermodynamics of a dilute XX chain in a field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timonin, P. N., E-mail: pntim@live.ru
Gapless phases in ground states of low-dimensional quantum spin systems are rather ubiquitous. Their peculiarity is a remarkable sensitivity to external perturbations due to permanent criticality of such phases manifested by a slow (power-low) decay of pair correlations and the divergence of the corresponding susceptibility. A strong influence of various defects on the properties of the system in such a phase can then be expected. Here, we consider the influence of vacancies on the thermodynamics of the simplest quantum model with a gapless phase, the isotropic spin-1/2 XX chain. The existence of the exact solution of this model gives amore » unique opportunity to describe in detail the dramatic effect of dilution on the gapless phase—the appearance of an infinite series of quantum phase transitions resulting from level crossing under the variation of a longitudinal magnetic field. We calculate the jumps in the field dependences of the ground-state longitudinal magnetization, susceptibility, entropy, and specific heat appearing at these transitions and show that they result in a highly nonlinear temperature dependence of these parameters at low T. Also, the effect of enhancement of the magnetization and longitudinal correlations in the dilute chain is established. The changes of the pair spin correlators under dilution are also analyzed. The universality of the mechanism of the quantum transition generation suggests that similar effects of dilution can also be expected in gapless phases of other low-dimensional quantum spin systems.« less
Novel method for on-road emission factor measurements using a plume capture trailer.
Morawska, L; Ristovski, Z D; Johnson, G R; Jayaratne, E R; Mengersen, K
2007-01-15
The method outlined provides for emission factor measurements to be made for unmodified vehicles driving under real world conditions at minimal cost. The method consists of a plume capture trailer towed behind a test vehicle. The trailer collects a sample of the naturally diluted plume in a 200 L conductive bag and this is delivered immediately to a mobile laboratory for subsequent analysis of particulate and gaseous emissions. The method offers low test turnaround times with the potential to complete much larger numbers of emission factor measurements than have been possible using dynamometer testing. Samples can be collected at distances up to 3 m from the exhaust pipe allowing investigation of early dilution processes. Particle size distribution measurements, as well as particle number and mass emission factor measurements, based on naturally diluted plumes are presented. A dilution profile relating the plume dilution ratio to distance from the vehicle tail pipe for a diesel passenger vehicle is also presented. Such profiles are an essential input for new mechanistic roadway air quality models.
de Barros, F P J; Fiori, A; Boso, F; Bellin, A
2015-01-01
Spatial heterogeneity of the hydraulic properties of geological porous formations leads to erratically shaped solute clouds, thus increasing the edge area of the solute body and augmenting the dilution rate. In this study, we provide a theoretical framework to quantify dilution of a non-reactive solute within a steady state flow as affected by the spatial variability of the hydraulic conductivity. Embracing the Lagrangian concentration framework, we obtain explicit semi-analytical expressions for the dilution index as a function of the structural parameters of the random hydraulic conductivity field, under the assumptions of uniform-in-the-average flow, small injection source and weak-to-mild heterogeneity. Results show how the dilution enhancement of the solute cloud is strongly dependent on both the statistical anisotropy ratio and the heterogeneity level of the porous medium. The explicit semi-analytical solution also captures the temporal evolution of the dilution rate; for the early- and late-time limits, the proposed solution recovers previous results from the literature, while at intermediate times it reflects the increasing interplay between large-scale advection and local-scale dispersion. The performance of the theoretical framework is verified with high resolution numerical results and successfully tested against the Cape Cod field data. Copyright © 2015 Elsevier B.V. All rights reserved.
Non-thermal X-ray emission from tidal disruption flares
NASA Astrophysics Data System (ADS)
Stone, Nicholas
2016-09-01
A star that passes too close to a supermassive black hole will be disrupted by the black hole's tidal gravity. The result is a flare of thermal emission at optical and X-ray frequencies. The return rate of stellar debris decreases from highly super-Eddington to sub-Eddington in a few years, making stellar tidal disruptions flares (TDFs) a unique laboratory to study accretion physics. In one class of models, the optical emission is due to reprocessing of the X-ray photons, thus explaining the lack of X-ray detections from optically selected TDFs. After a few years, the outer reprocessing regions will dilute, allowing us to observe any non-thermal emission from the inner disk. Here we propose Chandra observations to measure the luminosity of newly formed accretion disks in two known TDFs.
NASA Technical Reports Server (NTRS)
Odonnell, M.; Miller, J. G.
1981-01-01
The use of a broadband backscatter technique to obtain the frequency dependence of the longitudinal-wave ultrasonic backscatter coefficient from a collection of scatterers in a solid is investigated. Measurements of the backscatter coefficient were obtained over the range of ultrasonic wave vector magnitude-glass sphere radius product between 0.1 and 3.0 from model systems consisting of dilute suspensions of randomly distributed crown glass spheres in hardened polyester resin. The results of these measurements were in good agreement with theoretical prediction. Consequently, broadband measurements of the ultrasonic backscatter coefficient may represent a useful approach toward characterizing the physical properties of scatterers in intrinsically inhomogeneous materials such as composites, metals, and ceramics, and may represent an approach toward nondestructive evaluation of these materials.
Impacts of blending on dilution of negatively buoyant brine discharge in a shallow tidal sea.
Kämpf, Jochen
2009-07-01
A fine-resolution three-dimensional hydrodynamic model is applied to study the dilution of desalination brine discharged into a tidal sea. Based on given inflow rate and salinity excess of discharge brine, this study explores variations in mid-field dilutions when other low-salinity wastewater is added to the discharge. Findings reveal that this blending leads to a decrease in dilution in the mixing zone and therefore to higher levels of pollutants in this zone, while, on the other hand, the mixing zone occupies a smaller area. The reason is that the discharge of brine creates a density-driven flow that operates to partially remove effluent from the discharge location. This removal is less efficient for the decrease in density excess of the discharge. Hence, in an ambient sea of moderate mixing, blending can be expected to increase the risk of marine pollution in the mixing zone.
Scalf, Paige E; Torralbo, Ana; Tapia, Evelina; Beck, Diane M
2013-01-01
Both perceptual load theory and dilution theory purport to explain when and why task-irrelevant information, or so-called distractors are processed. Central to both explanations is the notion of limited resources, although the theories differ in the precise way in which those limitations affect distractor processing. We have recently proposed a neurally plausible explanation of limited resources in which neural competition among stimuli hinders their representation in the brain. This view of limited capacity can also explain distractor processing, whereby the competitive interactions and bias imposed to resolve the competition determine the extent to which a distractor is processed. This idea is compatible with aspects of both perceptual load and dilution models of distractor processing, but also serves to highlight their differences. Here we review the evidence in favor of a biased competition view of limited resources and relate these ideas to both classic perceptual load theory and dilution theory.
Dispersion/dilution enhances phytoplankton blooms in low-nutrient waters
NASA Astrophysics Data System (ADS)
Lehahn, Yoav; Koren, Ilan; Sharoni, Shlomit; D'Ovidio, Francesco; Vardi, Assaf; Boss, Emmanuel
2017-03-01
Spatial characteristics of phytoplankton blooms often reflect the horizontal transport properties of the oceanic turbulent flow in which they are embedded. Classically, bloom response to horizontal stirring is regarded in terms of generation of patchiness following large-scale bloom initiation. Here, using satellite observations from the North Pacific Subtropical Gyre and a simple ecosystem model, we show that the opposite scenario of turbulence dispersing and diluting fine-scale (~1-100 km) nutrient-enriched water patches has the critical effect of regulating the dynamics of nutrients-phytoplankton-zooplankton ecosystems and enhancing accumulation of photosynthetic biomass in low-nutrient oceanic environments. A key factor in determining ecological and biogeochemical consequences of turbulent stirring is the horizontal dilution rate, which depends on the effective eddy diffusivity and surface area of the enriched patches. Implementation of the notion of horizontal dilution rate explains quantitatively plankton response to turbulence and improves our ability to represent ecological and biogeochemical processes in oligotrophic oceans.
Morris, Bari R; deLaforcade, Armelle; Lee, Joyce; Palmisano, Joseph; Meola, Dawn; Rozanski, Elizabeth
2016-01-01
To investigate the effects of in vitro hemodilution with lactated Ringers solution (LRS), hetastarch (HES), and fresh frozen plasma (FFP) on whole blood coagulation in dogs as assessed by kaolin-activated thromboelastography. In vitro experimental study. University teaching hospital. Six healthy client-owned dogs. Whole blood was collected and diluted in vitro at a 33% and 67% dilution with either LRS, HES, or FFP. Kaolin-activated thromboelastography was performed on each sample as well as a control. Thromboelastographic parameters R (min), alpha (deg), K (min), and MA (mm) were measured and compared to the sample control for each dilution using mixed model methodology. Prolongation in coagulation times were seen at both dilutions with LRS and HES. There was no significant difference in R times at the 33% dilution, but R time was significantly prolonged at the 67% dilution with HES (P = 0.004). MA was significantly decreased for LRS at both dilutions (P = 0.013, P < 0.001) and more profoundly decreased for HES (P < 0.001, P = 0.006). No significant difference in any parameter was found for FFP. In vitro hemodilution of whole blood with both LRS and HES but not FFP resulted in significant effects on coagulation with HES having a more profound effect. In vivo evaluation of changes in coagulation with various resuscitation fluids is warranted and may be clinically relevant. © Veterinary Emergency and Critical Care Society 2015.
Button, Mark; Weber, Kela; Nivala, Jaime; Aubron, Thomas; Müller, Roland Arno
2016-03-01
Community-level physiological profiling (CLPP) using BIOLOG® EcoPlates™ has become a popular method for characterizing and comparing the functional diversity, functional potential, and metabolic activity of heterotrophic microbial communities. The method was originally developed for profiling soil communities; however, its usage has expanded into the fields of ecotoxicology, agronomy, and the monitoring and profiling of microbial communities in various wastewater treatment systems, including constructed wetlands for water pollution control. When performing CLPP on aqueous samples from constructed wetlands, a wide variety of sample characteristics can be encountered and challenges may arise due to excessive solids, color, or turbidity. The aim of this study was to investigate the impacts of different sample preparation methods on CLPP performed on a variety of aqueous samples covering a broad range of physical and chemical characteristics. The results show that using filter paper, centrifugation, or settling helped clarify samples for subsequent CLPP analysis, however did not do so as effectively as dilution for the darkest samples. Dilution was able to provide suitable clarity for the darkest samples; however, 100-fold dilution significantly affected the carbon source utilization patterns (CSUPs), particularly with samples that were already partially or fully clear. Ten-fold dilution also had some effect on the CSUPs of samples which were originally clear; however, the effect was minimal. Based on these findings, for this specific set of samples, a 10-fold dilution provided a good balance between ease of use, sufficient clarity (for dark samples), and limited effect on CSUPs. The process and findings outlined here can hopefully serve future studies looking to utilize CLPP for functional analysis of microbial communities and also assist in comparing data from studies where different sample preparation methods were utilized.
Stochastic empirical loading and dilution model (SELDM) version 1.0.0
Granato, Gregory E.
2013-01-01
The Stochastic Empirical Loading and Dilution Model (SELDM) is designed to transform complex scientific data into meaningful information about the risk of adverse effects of runoff on receiving waters, the potential need for mitigation measures, and the potential effectiveness of such management measures for reducing these risks. The U.S. Geological Survey developed SELDM in cooperation with the Federal Highway Administration to help develop planning-level estimates of event mean concentrations, flows, and loads in stormwater from a site of interest and from an upstream basin. Planning-level estimates are defined as the results of analyses used to evaluate alternative management measures; planning-level estimates are recognized to include substantial uncertainties (commonly orders of magnitude). SELDM uses information about a highway site, the associated receiving-water basin, precipitation events, stormflow, water quality, and the performance of mitigation measures to produce a stochastic population of runoff-quality variables. SELDM provides input statistics for precipitation, prestorm flow, runoff coefficients, and concentrations of selected water-quality constituents from National datasets. Input statistics may be selected on the basis of the latitude, longitude, and physical characteristics of the site of interest and the upstream basin. The user also may derive and input statistics for each variable that are specific to a given site of interest or a given area. SELDM is a stochastic model because it uses Monte Carlo methods to produce the random combinations of input variable values needed to generate the stochastic population of values for each component variable. SELDM calculates the dilution of runoff in the receiving waters and the resulting downstream event mean concentrations and annual average lake concentrations. Results are ranked, and plotting positions are calculated, to indicate the level of risk of adverse effects caused by runoff concentrations, flows, and loads on receiving waters by storm and by year. Unlike deterministic hydrologic models, SELDM is not calibrated by changing values of input variables to match a historical record of values. Instead, input values for SELDM are based on site characteristics and representative statistics for each hydrologic variable. Thus, SELDM is an empirical model based on data and statistics rather than theoretical physiochemical equations. SELDM is a lumped parameter model because the highway site, the upstream basin, and the lake basin each are represented as a single homogeneous unit. Each of these source areas is represented by average basin properties, and results from SELDM are calculated as point estimates for the site of interest. Use of the lumped parameter approach facilitates rapid specification of model parameters to develop planning-level estimates with available data. The approach allows for parsimony in the required inputs to and outputs from the model and flexibility in the use of the model. For example, SELDM can be used to model runoff from various land covers or land uses by using the highway-site definition as long as representative water quality and impervious-fraction data are available.
Yager, Richard M.; Plummer, Niel; Kauffman, Leon J.; Doctor, Daniel H.; Nelms, David L.; Schlosser, Peter
2013-01-01
Measured concentrations of environmental tracers in spring discharge from a karst aquifer in the Shenandoah Valley, USA, were used to refine a numerical groundwater flow model. The karst aquifer is folded and faulted carbonate bedrock dominated by diffuse flow along fractures. The numerical model represented bedrock structure and discrete features (fault zones and springs). Concentrations of 3H, 3He, 4He, and CFC-113 in spring discharge were interpreted as binary dilutions of young (0–8 years) water and old (tracer-free) water. Simulated mixtures of groundwater are derived from young water flowing along shallow paths, with the addition of old water flowing along deeper paths through the model domain that discharge to springs along fault zones. The simulated median age of young water discharged from springs (5.7 years) is slightly older than the median age estimated from 3H/3He data (4.4 years). The numerical model predicted a fraction of old water in spring discharge (0.07) that was half that determined by the binary-dilution model using the 3H/3He apparent age and 3H and CFC-113 data (0.14). This difference suggests that faults and lineaments are more numerous or extensive than those mapped and included in the numerical model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roper, V.P.; Kobayashi, R.
1988-02-01
Infinite-dilution fugacity coefficients were obtained for the system fluorene/phenanthrene at thirteen temperatures by fitting total pressure across the entire mole fraction range by a computer routine. A thermodynamically consistent routine, that allowed for both positive and negative pressure deviations from the ideal values, was used to correlate data over the full mole fraction range from 0 to 1. The four-suffix Margules activity coefficient model without modification essentially served this purpose since total pressures and total pressure derivatives with respect to mole fraction were negligible compared to pressure measurement precision. The water/ethanol system and binary systems comprised of aniline, chlorobenzene, acetonitrilemore » and other polar compounds were fit for total pressure across the entire mole fraction range for binary Vapor-Liquid-Equilbria (VLE) using the rigorous, thermodynamically consistent Gibbs-Duhem Relation derived by Ibl and Dodge. Data correlation was performed using a computer least squares procedure. Infinite-dilution fugacity coefficients were obtained using a modified Margules activity coefficient model.« less
Flume tank studies to elucidate the fate and behavior of diluted bitumen spilled at sea.
King, Thomas L; Robinson, Brian; Boufadel, Michel; Lee, Kenneth
2014-06-15
An economical alternative to conventional crudes, Canadian bitumen, harvested as a semi-liquid, is diluted with condensate to make it viable to transport by pipeline to coastal areas where it would be shipped by tankers to global markets. Not much is known about the fate of diluted bitumen (dilbit) when spilled at sea. For this purpose, we conducted dilbit (Access Western Blend; AWB and Cold Lake Blend; CLB) weathering studies for 13 days in a flume tank containing seawater. After six days of weathering, droplets detached from the AWB slick and were dense enough to sink in seawater. The density of CLB also increased, but at a slower rate compared to AWB, which was attributed to the high concentration of alkylated polycyclic aromatic hydrocarbons in it, which are more resistant to weathering. An empirical, Monod-type model was introduced and was found to closely simulate the increase in oil density with time. Such a model could be used within oil spill models. Copyright © 2014 Elsevier Ltd. All rights reserved.
Physical compatibility of plazomicin with select i.v. drugs during simulated Y-site administration.
Asempa, Tomefa E; Avery, Lindsay M; Kidd, James M; Kuti, Joseph L; Nicolau, David P
2018-06-12
The results of a study to determine the physical compatibility of plazomicin sulfate solution during simulated Y-site administration with 92 i.v. drugs are reported. Plazomicin injection solution (500 mg/10 mL) was diluted in 0.9% sodium chloride or 5% dextrose for injection to a final volume of 50 mL (final plazomicin concentration, 24 mg/mL), consistent with a 15-mg/kg dose administered to an 80-kg patient (i.e., 1,200 mg). All other i.v. drugs were reconstituted according to manufacturers' recommendations and diluted with 0.9% sodium chloride or 5% dextrose for injection to the upper range of concentrations used clinically. Y-site conditions were simulated by mixing 5 mL of plazomicin solution with 5 mL of tested drug solutions in a 1:1 ratio. Solutions were assessed for visual (via color and Tyndall beam testing), turbidity (using a laboratory-grade turbidimeter), and pH changes over a 60-minute observation period. Incompatibility was defined a priori as precipitation, color change, a positive Tyndall test, or a turbidity change of ≥0.5 nephelometric turbidity units at any time during the 60-minute observation period. Plazomicin was physically compatible with 79 of the 92 drugs tested. Determinations of physical incompatibility with plazomicin were made for 13 drugs: albumin, amiodarone, amphotericin B deoxycholate, anidulafungin, calcium chloride, daptomycin, esomeprazole, heparin, levofloxacin, methylprednisolone, micafungin, phenytoin, and propofol, CONCLUSION: Plazomicin at a concentration of 24 mg/mL was physically compatible with 85% of the drugs tested, including 31 of 36 antimicrobial agents. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun Yunzhou; Yi Lin; Wysin, G. M.
2008-10-15
The Berezinskii-Kosterlitz-Thouless (BKT) phase transition for the dilute planar rotator model on a triangular lattice is studied by using a hybrid Monte Carlo method. The phase-transition temperatures for different nonmagnetic impurity densities are obtained by three approaches: finite-size scaling of plane magnetic susceptibility, helicity modulus, and Binder's fourth cumulant. It is found that the phase-transition temperature decreases with increasing impurity density {rho} and the BKT phase transition vanishes when the magnetic occupancy falls to the site percolation threshold: 1-{rho}{sub c}=p{sub c}=0.5.
Sawamoto, Takuji; Nakamura, Megumi; Nekomoto, Kenji; Hoshiba, Shinji; Minato, Keiko; Nakayama, Motoo; Osada, Takashi
2016-06-01
In order to refine the national estimate of methane emission from stored cattle slurry, it is important to comprehend the basic characteristics of methane production. Two dairy cattle slurries were obtained from livestock farms located in Hokkaido (a northern island) and Kyushu (a southern island). The slurries were diluted with water into three levels: undiluted, three times diluted, and 10 times diluted. Three hundred mL of the slurries were put into a bottle with a headspace volume of 2.0 L, which was filled with nitrogen gas and then sealed by butyl rubber. Four levels of temperature were used for incubation: 35, 25, 15 and 5 °C. The time course of the cumulative methane production per volatile solid (VS) was satisfactorily expressed by an asymptotic regression model. The effect of dilution on the methane production per VS was not distinctive, but that of temperature was of primary importance. In particular, higher temperature yields a higher potential production and a shorter time when the cumulative production reaches half of the potential production. The inclusive and simple models obtained in this study indicate that the cumulative methane production from stored cattle slurry can be explained by VS, temperature and length of storage. © 2015 Japanese Society of Animal Science.
NASA Astrophysics Data System (ADS)
Pierce, J. R.; Kreidenweis, S. M.; Bian, Q.; Jathar, S.; Kodros, J.; Barsanti, K.; Hatch, L. E.; May, A.
2017-12-01
Secondary organic aerosol (SOA) has been shown to form in biomass-burning emissions in laboratory and field studies. However, there is significant variability among studies in mass enhancement, which could be due to differences in fuels, fire conditions, dilution, and/or limitations of laboratory experiments and observations. This study focuses on understanding processes affecting biomass-burning SOA formation in ambient plumes. The plume dilution rate impacts the organic partitioning between the gas and particle phases, which may impact the potential for SOA to form as well as the rate of SOA formation. We use an aerosol microphysics model that includes representations of volatility and oxidation chemistry to estimate SOA formation in the smoke emitted into the atmosphere. We add Gaussian dispersion to our aerosol microphysical model to estimate how SOA formation may vary under different ambient-plume conditions (e.g. fire size, emission mass flux, atmospheric stability). Smoke from small fires, such as typical prescribed burns, dilutes rapidly, which drives evaporation of organic vapor from the particle phase, leading to more effective SOA formation. Emissions from large fires, such as intense wildfires, dilute slowly, suppressing OA evaporation and subsequent SOA formation in the near field. We also demonstrate that different approaches to the calculation of OA enhancement in ambient plumes can lead to different conclusions regarding SOA formation. Normalized OA mass enhancement ratios of around 1 calculated using an inert tracer, such as black carbon or CO, have traditionally been interpreted as exhibiting little or no SOA formation; however, we show that SOA formation may have greatly contributed to the mass in these plumes.
Zeng, Wen; Ma, Hongan; Liang, Yuntao; Hu, Erjiang
2014-01-01
The ignition delay times of methane/air mixture diluted by N2 and CO2 were experimentally measured in a chemical shock tube. The experiments were performed over the temperature range of 1300–2100 K, pressure range of 0.1–1.0 MPa, equivalence ratio range of 0.5–2.0 and for the dilution coefficients of 0%, 20% and 50%. The results suggest that a linear relationship exists between the reciprocal of temperature and the logarithm of the ignition delay times. Meanwhile, with ignition temperature and pressure increasing, the measured ignition delay times of methane/air mixture are decreasing. Furthermore, an increase in the dilution coefficient of N2 or CO2 results in increasing ignition delays and the inhibition effect of CO2 on methane/air mixture ignition is stronger than that of N2. Simulated ignition delays of methane/air mixture using three kinetic models were compared to the experimental data. Results show that GRI_3.0 mechanism gives the best prediction on ignition delays of methane/air mixture and it was selected to identify the effects of N2 and CO2 on ignition delays and the key elementary reactions in the ignition chemistry of methane/air mixture. Comparisons of the calculated ignition delays with the experimental data of methane/air mixture diluted by N2 and CO2 show excellent agreement, and sensitivity coefficients of chain branching reactions which promote mixture ignition decrease with increasing dilution coefficient of N2 or CO2. PMID:25750753
NASA Astrophysics Data System (ADS)
de Oliveira, Isadora R. N.; Roque, Jussara V.; Maia, Mariza P.; Stringheta, Paulo C.; Teófilo, Reinaldo F.
2018-04-01
A new method was developed to determine the antioxidant properties of red cabbage extract (Brassica oleracea) by mid (MID) and near (NIR) infrared spectroscopies and partial least squares (PLS) regression. A 70% (v/v) ethanolic extract of red cabbage was concentrated to 9° Brix and further diluted (12 to 100%) in water. The dilutions were used as external standards for the building of PLS models. For the first time, this strategy was applied for building multivariate regression models. Reference analyses and spectral data were obtained from diluted extracts. The determinate properties were total and monomeric anthocyanins, total polyphenols and antioxidant capacity by ABTS (2,2-azino-bis(3-ethyl-benzothiazoline-6-sulfonate)) and DPPH (2,2-diphenyl-1-picrylhydrazyl) methods. Ordered predictors selection (OPS) and genetic algorithm (GA) were used for feature selection before PLS regression (PLS-1). In addition, a PLS-2 regression was applied to all properties simultaneously. PLS-1 models provided more predictive models than did PLS-2 regression. PLS-OPS and PLS-GA models presented excellent prediction results with a correlation coefficient higher than 0.98. However, the best models were obtained using PLS and variable selection with the OPS algorithm and the models based on NIR spectra were considered more predictive for all properties. Then, these models provided a simple, rapid and accurate method for determination of red cabbage extract antioxidant properties and its suitability for use in the food industry.
Impact of varying area of polluting surface materials on perceived air quality.
Sakr, W; Knudsen, H N; Gunnarsen, L; Haghighat, F
2003-06-01
A laboratory study was performed to investigate the impact of the concentration of pollutants in the air on emissions from building materials. Building materials were placed in ventilated test chambers. The experimental set-up allowed the concentration of pollution in the exhaust air to be changed either by diluting exhaust air with clean air (changing the dilution factor) or by varying the area of the material inside the chamber when keeping the ventilation rate constant (changing the area factor). Four different building materials and three combinations of two or three building materials were studied in ventilated small-scale test chambers. Each individual material and three of their combinations were examined at four different dilution factors and four different area factors. An untrained panel of 23 subjects assessed the air quality from the chambers. The results show that a certain increase in dilution improves the perceived air quality more than a similar decrease in area. The reason for this may be that the emission rate of odorous pollutants increases when the concentration in the chamber decreases. The results demonstrate that, in some cases the effect of increased ventilation on the air quality may be less than expected from a simple dilution model.
Review of the use of high potencies in basic research on homeopathy.
Clausen, Jürgen; van Wijk, Roeland; Albrecht, Henning
2011-10-01
The HomBRex database includes details of about 1500 basic research experiments in homeopathy. A general overview on the experiments listed in the HomBRex database is presented, focusing on high dilutions and the different settings in which those were used. Though often criticised, many experiments with remedies diluted beyond Avogadro's number demonstrate specific effects. A total of 830 experiments employing high potencies was found; in 745 experiments of these (90%), at least one positive result was reported. Animals represent the most often used model system (n=371), followed by plants (n=201), human material (n=92), bacteria and viruses (n=37) and fungi (n=32). Arsenicum album (Ars.) is the substance most often applied (n=101), followed by Sulphur (Sulph.) and Thuja (Thuj.) (n=65 and 48, respectively). Proving, prophylactic and therapeutic study designs have all been used and appear appropriate for homeopathy basic research using high dilutions. The basic research data set to support specific effects unique to high dilutions and opposite to those observed with low dilutions is, to date, insufficient. Copyright © 2011 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wantz, Olivier; Shellard, E. P. S.
2010-04-01
This is the last in a series of papers on the topological susceptibility in the interacting instanton liquid model (IILM). We will derive improved finite temperature interactions to study the thermodynamic limit of grand canonical Monte Carlo simulations in the quenched and unquenched case with light, physical quark masses. In particular, we will be interested in chiral symmetry breaking. The paper culminates by giving, for the first time, a well-motivated temperature-dependent axion mass. Especially, this work finally provides a computation of the axion mass in the low temperature regime, ma2fa2=1.46×10-3Λ41+0.50 T/Λ1+(3.53 . It connects smoothly to the high temperature dilute gas approximation; the latter is improved by including quark threshold effects. To compare with earlier studies, we also provide the usual power-law ma2=αΛ4fa2(T, where Λ=400 MeV, n=6.68 and α=1.68×10-7.
Steady state and a general scale law of deformation
NASA Astrophysics Data System (ADS)
Huang, Yan
2017-07-01
Steady state deformation has been characterized based on the experimental results for dilute single-phase aluminium alloys. It was found that although characteristic properties such as flow stress and grain size remained constant with time, a continuous loss of grain boundaries occurred as an essential feature at steady state. A physical model, which takes into account the activity of grain boundary dislocations, was developed to describe the kinetics of steady state deformation. According to this model, the steady state as a function of strain rate and temperature defines the limit of the conventional grain size and strength relationship, i.e., the Hall-Petch relation holds when the grain size is larger than that at the steady state, and an inverse Hall-Petch relation takes over if grain size is smaller than the steady state value. The transition between the two relationships relating grain size and strength is a phenomenon that depends on deformation conditions, rather than an intrinsic property as generally perceived. A general scale law of deformation is established accordingly.
Modeling residence-time distribution in horizontal screw hydrolysis reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sievers, David A.; Stickel, Jonathan J.
The dilute-acid thermochemical hydrolysis step used in the production of liquid fuels from lignocellulosic biomass requires precise residence-time control to achieve high monomeric sugar yields. Difficulty has been encountered reproducing residence times and yields when small batch reaction conditions are scaled up to larger pilot-scale horizontal auger-tube type continuous reactors. A commonly used naive model estimated residence times of 6.2-16.7 min, but measured mean times were actually 1.4-2.2 the estimates. Here, this study investigated how reactor residence-time distribution (RTD) is affected by reactor characteristics and operational conditions, and developed a method to accurately predict the RTD based on key parameters.more » Screw speed, reactor physical dimensions, throughput rate, and process material density were identified as major factors affecting both the mean and standard deviation of RTDs. The general shape of RTDs was consistent with a constant value determined for skewness. The Peclet number quantified reactor plug-flow performance, which ranged between 20 and 357.« less
Modeling residence-time distribution in horizontal screw hydrolysis reactors
Sievers, David A.; Stickel, Jonathan J.
2017-10-12
The dilute-acid thermochemical hydrolysis step used in the production of liquid fuels from lignocellulosic biomass requires precise residence-time control to achieve high monomeric sugar yields. Difficulty has been encountered reproducing residence times and yields when small batch reaction conditions are scaled up to larger pilot-scale horizontal auger-tube type continuous reactors. A commonly used naive model estimated residence times of 6.2-16.7 min, but measured mean times were actually 1.4-2.2 the estimates. Here, this study investigated how reactor residence-time distribution (RTD) is affected by reactor characteristics and operational conditions, and developed a method to accurately predict the RTD based on key parameters.more » Screw speed, reactor physical dimensions, throughput rate, and process material density were identified as major factors affecting both the mean and standard deviation of RTDs. The general shape of RTDs was consistent with a constant value determined for skewness. The Peclet number quantified reactor plug-flow performance, which ranged between 20 and 357.« less
Studies of the effects of curvature on dilution jet mixing
NASA Technical Reports Server (NTRS)
Holdeman, James D.; Srinivasan, Ram; Reynolds, Robert S.; White, Craig D.
1992-01-01
An analytical program was conducted using both three-dimensional numerical and empirical models to investigate the effects of transition liner curvature on the mixing of jets injected into a confined crossflow. The numerical code is of the TEACH type with hybrid numerics; it uses the power-law and SIMPLER algorithms, an orthogonal curvilinear coordinate system, and an algebraic Reynolds stress turbulence model. From the results of the numerical calculations, an existing empirical model for the temperature field downstream of single and multiple rows of jets injected into a straight rectangular duct was extended to model the effects of curvature. Temperature distributions, calculated with both the numerical and empirical models, are presented to show the effects of radius of curvature and inner and outer wall injection for single and opposed rows of cool dilution jets injected into a hot mainstream flow.
Sluiter, Amie; Sluiter, Justin; Wolfrum, Ed; ...
2016-05-20
Accurate and precise chemical characterization of biomass feedstocks and process intermediates is a requirement for successful technical and economic evaluation of biofuel conversion technologies. The uncertainty in primary measurements of the fraction insoluble solid (FIS) content of dilute acid pretreated corn stover slurry is the major contributor to uncertainty in yield calculations for enzymatic hydrolysis of cellulose to glucose. This uncertainty is propagated through process models and impacts modeled fuel costs. The challenge in measuring FIS is obtaining an accurate measurement of insoluble matter in the pretreated materials, while appropriately accounting for all biomass derived components. Three methods were testedmore » to improve this measurement. One used physical separation of liquid and solid phases, and two utilized direct determination of dry matter content in two fractions. We offer a comparison of drying methods. Lastly, our results show utilizing a microwave dryer to directly determine dry matter content is the optimal method for determining FIS, based on the low time requirements and the method optimization done using model slurries.« less
Simulation of Carbon Production from Material Surfaces in Fusion Devices
NASA Astrophysics Data System (ADS)
Marian, J.; Verboncoeur, J.
2005-10-01
Impurity production at carbon surfaces by plasma bombardment is a key issue for fusion devices as modest amounts can lead to excessive radiative power loss and/or hydrogenic D-T fuel dilution. Here results of molecular dynamics (MD) simulations of physical and chemical sputtering of hydrocarbons are presented for models of graphite and amorphous carbon, the latter formed by continuous D-T impingement in conditions that mimic fusion devices. The results represent more extensive simulations than we reported last year, including incident energies in the 30-300 eV range for a variety of incident angles that yield a number of different hydrocarbon molecules. The calculated low-energy yields clarify the uncertainty in the complex chemical sputtering rate since chemical bonding and hard-core repulsion are both included in the interatomic potential. Also modeled is hydrocarbon break-up by electron-impact collisions and transport near the surface. Finally, edge transport simulations illustrate the sensitivity of the edge plasma properties arising from moderate changes in the carbon content. The models will provide the impurity background for the TEMPEST kinetic edge code.
Null expectations for disease dynamics in shrinking habitat: dilution or amplification?
McCallum, Hamish I.; Gillespie, Thomas R.
2017-01-01
As biodiversity declines with anthropogenic land-use change, it is increasingly important to understand how changing biodiversity affects infectious disease risk. The dilution effect hypothesis, which points to decreases in biodiversity as critical to an increase in infection risk, has received considerable attention due to the allure of a win–win scenario for conservation and human well-being. Yet some empirical data suggest that the dilution effect is not a generalizable phenomenon. We explore the response of pathogen transmission dynamics to changes in biodiversity that are driven by habitat loss using an allometrically scaled multi-host model. With this model, we show that declining habitat, and thus declining biodiversity, can lead to either increasing or decreasing infectious-disease risk, measured as endemic prevalence. Whether larger habitats, and thus greater biodiversity, lead to a decrease (dilution effect) or increase (amplification effect) in infection prevalence depends upon the pathogen transmission mode and how host competence scales with body size. Dilution effects were detected for most frequency-transmitted pathogens and amplification effects were detected for density-dependent pathogens. Amplification effects were also observed over a particular range of habitat loss in frequency-dependent pathogens when we assumed that host competence was greatest in large-bodied species. By contrast, only amplification effects were observed for density-dependent pathogens; host competency only affected the magnitude of the effect. These models can be used to guide future empirical studies of biodiversity–disease relationships across gradients of habitat loss. The type of transmission, the relationship between host competence and community assembly, the identity of hosts contributing to transmission, and how transmission scales with area are essential factors to consider when elucidating the mechanisms driving disease risk in shrinking habitat. This article is part of the themed issue ‘Conservation, biodiversity and infectious disease: scientific evidence and policy implications'. PMID:28438921
Null expectations for disease dynamics in shrinking habitat: dilution or amplification?
Faust, Christina L; Dobson, Andrew P; Gottdenker, Nicole; Bloomfield, Laura S P; McCallum, Hamish I; Gillespie, Thomas R; Diuk-Wasser, Maria; Plowright, Raina K
2017-06-05
As biodiversity declines with anthropogenic land-use change, it is increasingly important to understand how changing biodiversity affects infectious disease risk. The dilution effect hypothesis, which points to decreases in biodiversity as critical to an increase in infection risk, has received considerable attention due to the allure of a win-win scenario for conservation and human well-being. Yet some empirical data suggest that the dilution effect is not a generalizable phenomenon. We explore the response of pathogen transmission dynamics to changes in biodiversity that are driven by habitat loss using an allometrically scaled multi-host model. With this model, we show that declining habitat, and thus declining biodiversity, can lead to either increasing or decreasing infectious-disease risk, measured as endemic prevalence. Whether larger habitats, and thus greater biodiversity, lead to a decrease (dilution effect) or increase (amplification effect) in infection prevalence depends upon the pathogen transmission mode and how host competence scales with body size. Dilution effects were detected for most frequency-transmitted pathogens and amplification effects were detected for density-dependent pathogens. Amplification effects were also observed over a particular range of habitat loss in frequency-dependent pathogens when we assumed that host competence was greatest in large-bodied species. By contrast, only amplification effects were observed for density-dependent pathogens; host competency only affected the magnitude of the effect. These models can be used to guide future empirical studies of biodiversity-disease relationships across gradients of habitat loss. The type of transmission, the relationship between host competence and community assembly, the identity of hosts contributing to transmission, and how transmission scales with area are essential factors to consider when elucidating the mechanisms driving disease risk in shrinking habitat.This article is part of the themed issue 'Conservation, biodiversity and infectious disease: scientific evidence and policy implications'. © 2017 The Author(s).
Vibrational dephasing and frequency shifts of hydrogen-bonded pyridine-water complexes
NASA Astrophysics Data System (ADS)
Kalampounias, A. G.; Tsilomelekis, G.; Boghosian, S.
2015-01-01
In this paper we present the picosecond vibrational dynamics and Raman shifts of hydrogen-bonded pyridine-water complexes present in aqueous solutions in a wide concentration range from dense to extreme dilute solutions. We studied the vibrational dephasing and vibrational frequency modulation by calculating time correlation functions of vibrational relaxation by fits in the frequency domain. The concentration induced variations in bandwidths, band frequencies and characteristic dephasing times have been estimated and interpreted as effects due to solute-solvent interactions. The time-correlation functions of vibrational dephasing were obtained for the ring breathing mode of both "free" and hydrogen-bonded pyridine molecules and it was found that sufficiently deviate from the Kubo model. There is a general agreement in the whole concentration range with the modeling proposed by the Rothschild approach, which applies to complex liquids. The results have shown that the reorientation of pyridine aqueous solutions is very slow and hence in both scattering geometries only vibrational dephasing is probed. It is proposed that the spectral changes depend on the perturbations induced by the dynamics of the water molecules in the first hydration cell and water in bulk, while at extreme dilution conditions, the number of bulk water molecules increases and the interchange between molecules belonging to the first hydration cell may not be the predominant modulation mechanism. The evolution of several parameters, such as the characteristic times, the percentage of Gaussian character in the peak shape and the a parameter are indicative of drastic variations at extreme dilution revealing changes in the vibrational relaxation of the pyridine complexes in the aqueous environment. The higher dilution is correlated to diffusion of water molecules into the reference pyridine system in agreement with the jump diffusion model, while at extreme dilutions, almost all pyridine molecules are elaborated in hydrogen bonding. The results are discussed in the framework of the current phenomenological status of the field.
Raut, Ashlesha S; Kalonia, Devendra S
2015-04-01
Opalescence indicates physical instability of a formulation because of the presence of aggregates or liquid-liquid phase separation in solution and has been reported for monoclonal antibody (mAb) formulations. Increased solution opalescence can be attributed to attractive protein-protein interactions (PPIs). Techniques including light scattering, AUC, or membrane osmometry are routinely employed to measure PPIs in dilute solutions, whereas opalescence is seen at relatively higher concentrations, where both long- and short-range forces contribute to overall PPIs. The mAb molecule studied here shows a unique property of high opalescence because of liquid-liquid phase separation. In this study, opalescence measurements are correlated to PPIs measured in diluted and concentrated solutions using light scattering (kD ) and high-frequency rheology (G'), respectively. Charges on the molecules were calculated using zeta potential measurements. Results indicate that high opalescence and phase separation are a result of the attractive interactions in solution; however, the presence of attractive interactions do not always imply phase separation. Temperature dependence of opalescence suggests that thermodynamic contribution to opalescence is significant and Tcloud can be utilized as a potential tool to assess attractive interactions in solution. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Dilute acid hydrolysis of paper birch : kinetics studies of xylan and acetyl-group hydrolysis
Mark T. Maloney; Thomas W. Chapman; Andrew J. Baker
1985-03-01
Batch hydrolysis kinetics of paper birch (Betula papyrifera) xylan and its associated acetyl groups in dilute sulfuric acid have been measured for acid concentrations of between 0.04 and 0.18 M and temperatures of between 100 and 170°C. Only 5% of the cellulose was hydrolyzed for up to 85% xylan removal. Rate data were correlated well by a parallel reaction model based...
Pavez, Carolina; Agosin, Eduardo; Steinhaus, Martin
2016-05-04
The sensory impact of thiols in Vitis vinifera 'Carmenere' red wines was evaluated. For this purpose, aroma extract dilution analysis was applied to the thiols isolated from a Carmenere red wine by affinity chromatography with a mercurated agarose gel. Results revealed the presence of four odorants, identified as 2-furanylmethanethiol, 3-sulfanylhexyl acetate, 3-sulfanyl-1-hexanol, and 2-methyl-3-sulfanyl-1-butanol, with the latter being described here for the first time in Carmenere red wines. Quantitation of the four thiols in the Carmenere wine screened by aroma extract dilution analysis and in three additional Carmenere wines by stable isotope dilution assays resulted in concentrations above the respective orthonasal odor detection threshold values. Triangle tests applied to wine model solutions with and without the addition of the four thiols showed significant differences, thus suggesting that the compounds do have the potential to influence the overall aroma of red wine.
Consideration of some dilute-solution phenomena based on an expression for the Gibbs free energy
NASA Astrophysics Data System (ADS)
Jonah, D. A.
1986-07-01
Rigorous expressions based on the Lennard-Jones (6 12) potential, are presented for the Gibbs and Helmholtz free energy of a dilute mixture. These expressions give the free energy of the mixture in terms of the thermodynamic properties of the pure solvent, thereby providing a convenient means of correlating dilute mixture behavior with that of the pure solvent. Expressions for the following dilute binary solution properties are derived: Henry's constant, limiting activity coefficients with their derivatives, solid solubilities in supercritical gases, and mixed second virial coefficients. The Henry's constant expression suggests a linear temperature dependence; application to solubility data for various gases in methane and water shows a good agreement between theory and experiment. In the thermodynamic modeling of supercritical fluid extraction, we have demonstrated how to predict new solubility-pressure isotherms from a given isotherm, with encouraging results. The mixed second virial coefficient expression has also been applied to experimental data; the agreement with theory is good.
Turbulent acidic jets and plumes injected into an alkaline environment
NASA Astrophysics Data System (ADS)
Ulpre, Hendrik
2012-11-01
The characteristics of a strong acidic turbulent jet or plume injected into an alkaline environment comprising of a weak/strong base are examined theoretically and experimentally. A chemistry model is developed to understand how the pH of a fluid parcel of monoprotic acid changes as it is diluted and reacts with the ambient fluid. A standard fluid model, based on a top-hat model for acid concentration and velocity is used to express how the dilution of acid varies with distance from the point of discharge. These models are applied to estimate the point of neutralisation and the travel time with distance within the jet/plume. An experimental study was undertaken to test the theoretical results. These experiments involved injecting jets or vertical plumes of dilute nitric acid into a large tank containing a variety of base salts dissolved in water. The injected fluid contained litmus indicator dye which showed a change in colour from red to blue close to the point of neutralisation. In order to obtain a range of neutralisation distances, additional basic salts were added to the water to increase its pH buffering capacity. The results are applied to discuss the environmental implications of an acidic jet/plume injected into the sea off the South East coast of Great Britain.
[Effect of dilution on aggregation of nanoparticles of polycarboxylic derivative of fullerene C60].
Bobylev, A G; Pen'kov, N V; Troshin, P A; Gudkov, S V
2015-01-01
In this work, we investigated the effect of dilution on aggregation of nanoparticles of the polycarboxylic derivative of fullerene C60. It is shown that the diminution of the concentration of PCDF-1 in aqueous medium leads to a decreased amount of aggregates of fullerene and an increased amount of single molecules. This can potentially interfere with the biological activity of a compound on one molecule basis. Addition of organic and inorganic salts to the aqueous medium with fullerene derivative leads to intense disaggregation of PCDF-1. The data obtained suggest an explanation of non-stoichiometric nature of neutralization of reactive oxygen species by derivatives of fullerenes, as well as provide new insight into the physical meaning of the work on the impact of nanoparticles at ultra-low concentrations on biological objects.
Dilution jet mixing program, supplementary report
NASA Technical Reports Server (NTRS)
Srinivasan, R.; White, C.
1986-01-01
The velocity and temperature distributions predicted by a 3-D numerical model and experimental measurements are compared. Empirical correlations for the jet velocity trajectory developed are presented. The measured velocity distributions for all test cases of phase through phase 3 are presented in the form of contour and oblique plots. quantification of the effects of the following on the jet mixing characteristics with a confined crossflow are: (1) orifice geometry momentum flux ratio and density ratio; (2) nonuniform mainstream temperature and velocity profiles upstream of dilution orifices; (3) cold versus hot jet injection; (4) cross-stream flow are a convergence as encountered in practical dilution zone geometries; (5) 2-D slot versus circular orifices; (6) discrete noncirculcer orifices; (7) single-sided versus opposed jets; (8) single row of jets.
Origin of band gap bowing in dilute GaAs1-xNx and GaP1-xNx alloys: A real-space view
NASA Astrophysics Data System (ADS)
Virkkala, Ville; Havu, Ville; Tuomisto, Filip; Puska, Martti J.
2013-07-01
The origin of the band gap bowing in dilute nitrogen doped gallium based III-V semiconductors is largely debated. In this paper we show the dilute GaAs1-xNx and GaP1-xNx as representative examples that the nitrogen-induced states close to the conduction band minimum propagate along the zigzag chains on the {110} planes. Thereby states originating from different N atoms interact with each other resulting in broadening of the nitrogen-induced states which narrows the band gap. Our modeling based on ab initio theoretical calculations explains the experimentally observed N concentration dependent band gap narrowing both qualitatively and quantitatively.
2017-01-01
Recently a dilute nitric acid extraction (0.43 M) was adopted by ISO (ISO-17586:2016) as standard for extraction of geochemically reactive elements in soil and soil like materials. Here we evaluate the performance of this extraction for a wide range of elements by mechanistic geochemical modeling. Model predictions indicate that the extraction recovers the reactive concentration quantitatively (>90%). However, at low ratios of element to reactive surfaces the extraction underestimates reactive Cu, Cr, As, and Mo, that is, elements with a particularly high affinity for organic matter or oxides. The 0.43 M HNO3 together with more dilute and concentrated acid extractions were evaluated by comparing model-predicted and measured dissolved concentrations in CaCl2 soil extracts, using the different extractions as alternative model-input. Mean errors of the predictions based on 0.43 M HNO3 are generally within a factor three, while Mo is underestimated and Co, Ni and Zn in soils with pH > 6 are overestimated, for which possible causes are discussed. Model predictions using 0.43 M HNO3 are superior to those using 0.1 M HNO3 or Aqua Regia that under- and overestimate the reactive element contents, respectively. Low concentrations of oxyanions in our data set and structural underestimation of their reactive concentrations warrant further investigation. PMID:28164700
DOE Office of Scientific and Technical Information (OSTI.GOV)
FINNEY, Charles E A; Edwards, Kevin Dean; Stoyanov, Miroslav K
2015-01-01
Combustion instabilities in dilute internal combustion engines are manifest in cyclic variability (CV) in engine performance measures such as integrated heat release or shaft work. Understanding the factors leading to CV is important in model-based control, especially with high dilution where experimental studies have demonstrated that deterministic effects can become more prominent. Observation of enough consecutive engine cycles for significant statistical analysis is standard in experimental studies but is largely wanting in numerical simulations because of the computational time required to compute hundreds or thousands of consecutive cycles. We have proposed and begun implementation of an alternative approach to allowmore » rapid simulation of long series of engine dynamics based on a low-dimensional mapping of ensembles of single-cycle simulations which map input parameters to output engine performance. This paper details the use Titan at the Oak Ridge Leadership Computing Facility to investigate CV in a gasoline direct-injected spark-ignited engine with a moderately high rate of dilution achieved through external exhaust gas recirculation. The CONVERGE CFD software was used to perform single-cycle simulations with imposed variations of operating parameters and boundary conditions selected according to a sparse grid sampling of the parameter space. Using an uncertainty quantification technique, the sampling scheme is chosen similar to a design of experiments grid but uses functions designed to minimize the number of samples required to achieve a desired degree of accuracy. The simulations map input parameters to output metrics of engine performance for a single cycle, and by mapping over a large parameter space, results can be interpolated from within that space. This interpolation scheme forms the basis for a low-dimensional metamodel which can be used to mimic the dynamical behavior of corresponding high-dimensional simulations. Simulations of high-EGR spark-ignition combustion cycles within a parametric sampling grid were performed and analyzed statistically, and sensitivities of the physical factors leading to high CV are presented. With these results, the prospect of producing low-dimensional metamodels to describe engine dynamics at any point in the parameter space will be discussed. Additionally, modifications to the methodology to account for nondeterministic effects in the numerical solution environment are proposed« less
Gaikowski, M.P.; Larson, W.J.; Steuer, J.J.; Gingerich, W.H.
2004-01-01
Accurate estimates of drug concentrations in hatchery effluent are critical to assess the environmental risk of hatchery drug discharge resulting from disease treatment. This study validated two dilution simple n models to estimate chloramine-T environmental introduction concentrations by comparing measured and predicted chloramine-T concentrations using the US Geological Survey's Upper Midwest Environmental Sciences Center aquaculture facility effluent as an example. The hydraulic characteristics of our treated raceway and effluent and the accuracy of our water flow rate measurements were confirmed with the marker dye rhodamine WT. We also used the rhodamine WT data to develop dilution models that would (1) estimate the chloramine-T concentration at a given time and location in the effluent system and (2) estimate the average chloramine-T concentration at a given location over the entire discharge period. To test our models, we predicted the chloramine-T concentration at two sample points based on effluent flow and the maintenance of chloramine-T at 20 mg/l for 60 min in the same raceway used with rhodamine WT. The effluent sample points selected (sample points A and B) represented 47 and 100% of the total effluent flow, respectively. Sample point B is-analogous to the discharge of a hatchery that does not have a detention lagoon, i.e. The sample site was downstream of the last dilution water addition following treatment. We then applied four chloramine-T flow-through treatments at 20mg/l for 60 min and measured the chloramine-T concentration in water samples collected every 15 min for about 180 min from the treated raceway and sample points A and B during and after application. The predicted chloramine-T concentration at each sampling interval was similar to the measured chloramine-T concentration at sample points A and B and was generally bounded by the measured 90% confidence intervals. The predicted aver,age chloramine-T concentrations at sample points A or B (2.8 and 1.3 mg/l, respectively) were not significantly different (P > 0.05) from the average measured chloramine-T concentrations (2.7 and 1.3 mg/l, respectively). The close agreement between our predicted and measured chloramine-T concentrations indicate either of the dilution models could be used to adequately predict the chloramine-T environmental introduction concentration in Upper Midwest Environmental Sciences Center effluent. (C) 2003 Elsevier B.V. All rights reserved.
An oil spill decision matrix in response to surface spills of various bitumen blends.
King, Thomas L; Robinson, Brian; Cui, Fangda; Boufadel, Michel; Lee, Kenneth; Clyburne, Jason A C
2017-07-19
Canada's production, transport, and sale of diluted bitumen (dilbit) products are expected to increase by a million barrels per day over the next decade. The anticipated growth in oil production and transport increases the risk of oil spills in aquatic areas and places greater demands on oil spill capabilities to respond to spills, which have raised stakeholder concerns. Current oil spill models only predict the transport of bitumen blends that are used in contingency plans and oil spill response strategies, rather than changes in the oil's physical properties that are relevant to spill response. We conducted weathering studies of five oil products (two conventional oils and three bitumen blends) in the Department of Fisheries and Oceans' flume tank. We also considered two initial oil slick thicknesses, 4.0 mm and 7.0 mm. We found that there is a major difference in the time evolution of oil properties (density and viscosity), raising doubts on weathering models that do not consider the thickness of oil. We also developed empirical expressions for the evolution of the density and viscosity of these oil products. The findings from the 4.0 mm results were incorporated with data from the literature to provide an update on the factors to consider during the decision making for spills of diluted bitumen products. The matrix indicated that most response options, including chemical dispersants, work much more effectively within 48 hours of the initiation of weathering. After this window of opportunity closes, natural attenuation or in situ burning is the only option remaining, but containment of oil is a limiting factor for in situ burning.
[Effect of self-microemulsifying system on cell tight junctions].
Sha, Xian-Yi; Fang, Xiao-Ling
2006-01-01
To study the effect of negatively charged and positively charged self-microemulsifying systems (SMES) on the cellular tight junction complex was to be investigated at molecular cell level. Human intestinal epithelial Caco-2 cell model was established. Effect of formulations on the transepithelial electrical resistance (TEER) and permeability of the paracellular transport marker mannitol were measured to evaluate the cell integrity. Changes in subcellular localization of the tight junction protein zona occludens 1 (ZO-1) and cytoskeleton protein actin by immunofluorescence were also assessed after treatment of two SMESs in different dilutions. The TEER of cell monolayers was not markedly affected by negatively charged SMES in different dilutions. The positively charged SMES could significantly decrease the TEER (P < 0.05) in three dilutions. The full recovery of TEER was found after the treatment of lower dilution for 2 h, then cultured for 48 h, while the recovery of TEER was 81.3% of control in 1 : 50 dilution. Two SMESs could enhance the apparent permeability coefficient of mannitol (2.9 - 64.6 folds), which depended on the dilution times. The immunofluorescent results indicated that the distribution of ZO-1 and actin were discrete in cell membrane after the treatment of formulation. Since the positively charged microemulsion could bind to the epithelial cell membrane by electrostatic interaction, the actin of the cells undergone some kind of stress stimulated by the higher concentration of microemulsion was more markedly affected than the negatively charged SMES. Effect of formulations on ZO-1 and actin relied on the dilution. SMES is able to enhance the paracellular transport marker mannitol. The mechanism of opening of tight junctions by SMES might be the change of distribution of ZO-1 and actin.
Olfactory Impact of Higher Alcohols on Red Wine Fruity Ester Aroma Expression in Model Solution.
Cameleyre, Margaux; Lytra, Georgia; Tempere, Sophie; Barbe, Jean-Christophe
2015-11-11
This study focused on the impact of five higher alcohols on the perception of fruity aroma in red wines. Various aromatic reconstitutions were prepared, consisting of 13 ethyl esters and acetates and 5 higher alcohols, all at the average concentrations found in red wine. These aromatic reconstitutions were prepared in several matrices. Sensory analysis revealed the interesting behavior of certain compounds among the five higher alcohols following their individual addition or omission. The "olfactory threshold" of the fruity pool was evaluated in several matrices: dilute alcohol solution, dilute alcohol solution containing 3-methylbutan-1-ol or butan-1-ol individually, and dilute alcohol solution containing the mixture of five higher alcohols, blended together at various concentrations. The presence of 3-methylbutan-1-ol or butan-1-ol alone led to a significant decrease in the "olfactory threshold" of the fruity reconstitution, whereas the mixture of alcohols raised the olfactory threshold. Sensory profiles highlighted changes in the perception of fruity nuances in the presence of the mixture of higher alcohols, with specific perceptive interactions, including a relevant masking effect on fresh- and jammy-fruit notes of the fruity mixture in both dilute alcohol solution and dearomatized red wine matrices. When either 3-methylbutan-1-ol or butan-1-ol was added to the fruity reconstitution in dilute alcohol solution, an enhancement of butyric notes was reported with 3-methylbutan-1-ol and fresh- and jammy-fruit with butan-1-ol. This study, the first to focus on the impact of higher alcohols on fruity aromatic expression, revealed that these compounds participate, both quantitatively and qualitatively, in masking fruity aroma perception in a model fruity wine mixture.
NASA Astrophysics Data System (ADS)
Chiogna, Gabriele; Cirpka, Olaf A.; Grathwohl, Peter; Rolle, Massimo
2011-02-01
The correct quantification of mixing is of utmost importance for modeling reactive transport in porous media and for assessing the fate and transport of contaminants in the subsurface. An appropriate measure of mixing in heterogeneous porous formations should correctly capture the effects on mixing intensity of various processes at different scales, such as local dispersion and the mixing enhancement due to heterogeneities. In this work, we use the concept of flux-related dilution index as a measure of transverse mixing. This quantity expresses the dilution of the mass flux of a conservative tracer solution over the total discharge of the system, and is particularly suited to address problems where a compound is continuously injected into the domain. We focus our attention on two-dimensional systems under steady state flow conditions and investigate both conservative and reactive transport in homogeneous and heterogeneous porous media at different scales. For mixing-controlled reactive systems, we introduce and illustrate the concept of critical dilution index, which represents the amount of mixing required for complete degradation of a continuously emitted plume undergoing decay upon mixing with ambient water. We perform two-dimensional numerical experiments at bench and field scales in homogeneous and heterogeneous conductivity fields. These numerical simulations show that the flux-related dilution index quantifies mixing and that the concept of critical dilution index is a useful measure to relate the mixing of conservative tracers to mixing-controlled degradation of reactive compounds.
Characterization of a multilayer aquifer using open well dilution tests.
West, L Jared; Odling, Noelle E
2007-01-01
An approach to characterization of multilayer aquifer systems using open well borehole dilution is described. The approach involves measuring observation well flow velocities while a nearby extraction well is pumped by introducing a saline tracer into observation wells and collecting dilution vs. depth profiles. Inspection of tracer profile evolution allows discrete permeable layers within the aquifer to be identified. Dilution profiles for well sections between permeable layers are then converted into vertical borehole flow velocities and their evolution, using an analytic solution to the advection-dispersion equation applied to borehole flow. The dilution approach is potentially able to measure much smaller flow velocities that would be detectable using flowmeters. Vertical flow velocity data from the observation wells are then matched to those generated using a hydraulic model of the aquifer system, "shorted" by the observation wells, to yield the hydraulic properties of the constituent layers. Observation well flow monitoring of pumping tests represents a cost-effective alternative or preliminary approach to pump testing each layer of a multilayer aquifer system separately using straddle packers or screened wells and requires no prior knowledge of permeable layer depths and thicknesses. The modification described here, of using tracer dilution rather than flowmeter logging to obtain well flow velocities, allows the approach to be extended to greater well separations, thus characterizing a larger volume of the aquifer. An example of the application of this approach to a multilayer Chalk Aquifer in Yorkshire, Northeast England, is presented.
Towards the theory of pollinator-mediated gene flow.
Cresswell, James E
2003-01-01
I present a new exposition of a model of gene flow by animal-mediated pollination between a source population and a sink population. The model's parameters describe two elements: (i) the expected portion of the source's paternity that extends to the sink population; and (ii) the dilution of this portion by within-sink pollinations. The model is termed the portion-dilution model (PDM). The PDM is a parametric restatement of the conventional view of animal-mediated pollination. In principle, it can be applied to plant species in general. I formulate a theoretical value of the portion parameter that maximizes gene flow and prescribe this as a benchmark against which to judge the performance of real systems. Existing foraging theory can be used in solving part of the PDM, but a theory for source-to-sink transitions by pollinators is currently elusive. PMID:12831465
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Suan; Guan, Wenjian; Kang, Li
High solid conditions are desirable in pretreatment of lignocellulosic biomass. An advanced dilute-acid pretreatment reactor has been developed at National Renewable Energy Laboratory (NREL). It is a continuous auger-driven reactor that can be operated with high-solid charge at high temperature and with short residence time resulting high productivity and high sugar concentration. Here, we investigated the kinetics of the reactions associated with dilute-acid pretreatment of corn stover, covering the reaction conditions of the NREL reactor operation: 155-185 C, 1-2 wt% sulfuric acid concentration, and 1:2 solid to liquid ratio. The experimental data were fitted to a first-order biphasic model whichmore » assumes that xylan is comprised of two different fragments: fast and slow reacting fractions. Due to the high solid loading condition, significant amount of xylose oligomers was observed during the pretreatment. We also included the oligomers as an intermediate entity in the kinetic model. The effect of acid concentration was incorporated into the pre-exponential factor of Arrhenius equation. The kinetic model with bestfit kinetic parameters has shown good agreement with experimental data. The kinetic parameter values of the proposed model were noticeably different from those previously reported. The activation energies of xylan hydrolysis are lower and the acid exponents are higher than the average of literature values. The proposed model can serve as a useful tool for design and operation of pretreatment system pertaining to corn stover.« less
Shi, Suan; Guan, Wenjian; Kang, Li; ...
2017-09-13
High solid conditions are desirable in pretreatment of lignocellulosic biomass. An advanced dilute-acid pretreatment reactor has been developed at National Renewable Energy Laboratory (NREL). It is a continuous auger-driven reactor that can be operated with high-solid charge at high temperature and with short residence time resulting high productivity and high sugar concentration. Here, we investigated the kinetics of the reactions associated with dilute-acid pretreatment of corn stover, covering the reaction conditions of the NREL reactor operation: 155-185 C, 1-2 wt% sulfuric acid concentration, and 1:2 solid to liquid ratio. The experimental data were fitted to a first-order biphasic model whichmore » assumes that xylan is comprised of two different fragments: fast and slow reacting fractions. Due to the high solid loading condition, significant amount of xylose oligomers was observed during the pretreatment. We also included the oligomers as an intermediate entity in the kinetic model. The effect of acid concentration was incorporated into the pre-exponential factor of Arrhenius equation. The kinetic model with bestfit kinetic parameters has shown good agreement with experimental data. The kinetic parameter values of the proposed model were noticeably different from those previously reported. The activation energies of xylan hydrolysis are lower and the acid exponents are higher than the average of literature values. The proposed model can serve as a useful tool for design and operation of pretreatment system pertaining to corn stover.« less
2012-11-01
proteins: Factor (F)II, FV, FVII , FVIII, F IX, and FX, as well as the anticoagulants antithrombin (AT) and TF pathway inhibi- tor (TFPI). The results...coagulation factors FII, FV, FVII , FVIIa, FVIII, F IX and FX, as well as the anticoagulants TFPI and AT and the throm- bin generation inducer TF. The model...scenario and tissue factor concentration. CONCLUSION: Dilutional effects on thrombin genera- tion in a human population can be predicted from trends
Singh, Jasmeet; Ranganathan, Radha; Hajdu, Joseph
2010-01-01
A novel assay employing D-enantiomers of phospholipids as diluents for characterizing surface kinetics of lipid hydrolysis by phospholipases is introduced. The rationale of the method are: (i) D-enantiomers resist hydrolysis because of the stereoselectivity of the enzymes toward L-enantiomers and (ii) mixtures of L+D-lipids at various L:D ratios but constant L+D-lipid concentrations yield a surface dilution series of variable L-lipid concentration with constant medium properties. Kinetic characterization of bee-venom phospholipase A2 activity at bile salt + phospholipid aggregate-water interfaces was performed using the mixed L+D-lipid surface dilution assay and interface kinetic parameters were obtained. The assay applies to bio-membrane models as well. Activity was measured by pH-Stat methods. Aggregation numbers and interface hydration/microviscosity measured by time resolved fluorescence quenching and electron spin resonance respectively confirmed that interface properties were indeed invariant in a surface dilution series, supporting rationale (ii) and were used to calculate substrate concentrations. Activity data show excellent agreement with a kinetic model derived with D-enantiomers as diluents and also that D-phospholipids bind to the enzyme but resist hydrolysis; underscoring rationale (i). The assay is significant to enabling determination of interface specific kinetic parameters for the first time and thereby characterization of interface specificity of lipolytic enzymes. PMID:20727845
Empirical Temperature Measurement in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Weaver, Erik; Isella, Andrea; Boehler, Yann
2018-02-01
The accurate measurement of temperature in protoplanetary disks is critical to understanding many key features of disk evolution and planet formation, from disk chemistry and dynamics, to planetesimal formation. This paper explores the techniques available to determine temperatures from observations of single, optically thick molecular emission lines. Specific attention is given to issues such as the inclusion of optically thin emission, problems resulting from continuum subtraction, and complications of real observations. Effort is also made to detail the exact nature and morphology of the region emitting a given line. To properly study and quantify these effects, this paper considers a range of disk models, from simple pedagogical models to very detailed models including full radiative transfer. Finally, we show how the use of the wrong methods can lead to potentially severe misinterpretations of data, leading to incorrect measurements of disk temperature profiles. We show that the best way to estimate the temperature of emitting gas is to analyze the line peak emission map without subtracting continuum emission. Continuum subtraction, which is commonly applied to observations of line emission, systematically leads to underestimation of the gas temperature. We further show that once observational effects such as beam dilution and noise are accounted for, the line brightness temperature derived from the peak emission is reliably within 10%–15% of the physical temperature of the emitting region, assuming optically thick emission. The methodology described in this paper will be applied in future works to constrain the temperature, and related physical quantities, in protoplanetary disks observed with ALMA.
Investigation of hypoxia off the Changjiang Estuary using a coupled model of ROMS-CoSiNE
NASA Astrophysics Data System (ADS)
Zhou, Feng; Chai, Fei; Huang, Daji; Xue, Huijie; Chen, Jianfang; Xiu, Peng; Xuan, Jiliang; Li, Jia; Zeng, Dingyong; Ni, Xiaobo; Wang, Kui
2017-12-01
The cause for large variability of hypoxia off the Changjiang Estuary has not been well understood partly due to various nutrient sources and complex physical-biological processes involved. The Regional Ocean Modeling Systems (ROMS) coupled with Carbon, Silicate and Nitrogen Ecosystem (CoSiNE) was used to investigate the 2006 hypoxia in the East China Sea, the largest hypoxia ever recorded. The model performance was evaluated comprehensively by comparing a suite of quantitative metrics, procedures and spatiotemporal patterns between the simulated results and observed data. The simulated results are generally consistent with the observations and are capable of reproducing the development of hypoxia and the observed vertical profiles of dissolved oxygen. Event-scale reduction of hypoxia occurred during the weakening of stratification in mid-July and mid-September, due to strong stirring caused by tropical storms or strong northerly wind. Change in wind direction altered the pathway of Changjiang Diluted Water and consequently caused variation in hypoxic location. Increase in river discharge led to an expansion of hypoxic water during the summer monsoon. Sensitivity analysis suggested that the hypoxia extent was affected by the change in nutrient concentration of the Changjiang as well as that of the Kuroshio. Sensitivity analysis also suggested the importance of sediment oxygen consumption to the size of the hypoxic zone. These results demonstrate that a prognostic 3D model is useful for investigating the highly variable hypoxia, with comprehensive considerations of multiple factors related to both physical and biological processes from the estuary to the shelf break of the East China Sea.
Analysis of boron dilution in a four-loop PWR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, J.G.; Sha, W.T.
1995-03-01
Thermal mixing and boron dilution in a pressurized water reactor were analyzed with COMMIX codes. The reactor system was the four-loop Zion reactor. Two boron dilution scenarios were analyzed. In the first scenario, the plant is in cold shutdown and the reactor coolant system has just been filled after maintenance on the steam generators. To flush the air out of the steam generator tubes, a reactor coolant pump (RCP) is started, with the water in the pump suction line devoid of boron and at the same temperature as the coolant in the system. In the second scenario, the plant ismore » at hot standby and the reactor coolant system has been heated to operating temperature after a long outage. It is assumed that an RCP is started, with the pump suction line filled with cold unborated water, forcing a slug of diluted coolant down the downcomer and subsequently through the reactor core. The subsequent transient thermal mixing and boron dilution that would occur in the reactor system is simulated for these two scenarios. The reactivity insertion rate and the total reactivity are evaluated and a sensitivity study is performed to assess the accuracy of the numerical modeling of the geometry of the reactor coolant system.« less
Ganusov, Vitaly V.; De Boer, Rob J.
2013-01-01
Bromodeoxyuridine (BrdU) is widely used in immunology to detect cell division, and several mathematical models have been proposed to estimate proliferation and death rates of lymphocytes from BrdU labelling and de-labelling curves. One problem in interpreting BrdU data is explaining the de-labelling curves. Because shortly after label withdrawal, BrdU+ cells are expected to divide into BrdU+ daughter cells, one would expect a flat down-slope. As for many cell types, the fraction of BrdU+ cells decreases during de-labelling, previous mathematical models had to make debatable assumptions to be able to account for the data. We develop a mechanistic model tracking the number of divisions that each cell has undergone in the presence and absence of BrdU, and allow cells to accumulate and dilute their BrdU content. From the same mechanistic model, one can naturally derive expressions for the mean BrdU content (MBC) of all cells, or the MBC of the BrdU+ subset, which is related to the mean fluorescence intensity of BrdU that can be measured in experiments. The model is extended to include subpopulations with different rates of division and death (i.e. kinetic heterogeneity). We fit the extended model to previously published BrdU data from memory T lymphocytes in simian immunodeficiency virus-infected and uninfected macaques, and find that the model describes the data with at least the same quality as previous models. Because the same model predicts a modest decline in the MBC of BrdU+ cells, which is consistent with experimental observations, BrdU dilution seems a natural explanation for the observed down-slopes in self-renewing populations. PMID:23034350
Observability of Same-Charge Lepton Topologies in Fully Leptonic Top Quark Pair Events in CMS
NASA Astrophysics Data System (ADS)
Lowette, S.
2007-02-01
At the Large Hadron Collider dileptonic tbar t({+jets}) events can be selected with a relatively high signal-to-noise ratio and efficiency, with background events produced via Standard Model diagrams. Within the clean sample of these events, both isolated leptons have an opposite electric charge. In several models beyond the Standard Model tt/ bar t bar t(+{jets}) topologies are predicted, kinematically similar to the Standard Model tbar t({+jets}) signature, where both leptons have an equal electric charge. Such a signal of new physics can be diluted by the mis-identification of the leptons or their electric charge in Standard Model tbar t({+jets}) events. The observability of an excess of same-charge dilepton signals above the mis-reconstruction of the Standard Model background is presented, assuming the same topology. With an integrated luminosity of 30 fb-1, a same-charge dilepton signature of pp to tt/ bar t bar t events with a cross section larger than 1.2 pb is visible in the measurement of the ratio between same-charge and opposite-charge lepton pair events [J. D'Hondt, S. Lowette, G. Hammad, J. Heyninck, P. Van Mulders, ``Observability of same-charge lepton topology in dileptonic events t bar t'', CERN-CMS-NOTE-2006-065.
Modeling the Effects of Perceptual Load: Saliency, Competitive Interactions, and Top-Down Biases.
Neokleous, Kleanthis; Shimi, Andria; Avraamides, Marios N
2016-01-01
A computational model of visual selective attention has been implemented to account for experimental findings on the Perceptual Load Theory (PLT) of attention. The model was designed based on existing neurophysiological findings on attentional processes with the objective to offer an explicit and biologically plausible formulation of PLT. Simulation results verified that the proposed model is capable of capturing the basic pattern of results that support the PLT as well as findings that are considered contradictory to the theory. Importantly, the model is able to reproduce the behavioral results from a dilution experiment, providing thus a way to reconcile PLT with the competing Dilution account. Overall, the model presents a novel account for explaining PLT effects on the basis of the low-level competitive interactions among neurons that represent visual input and the top-down signals that modulate neural activity. The implications of the model concerning the debate on the locus of selective attention as well as the origins of distractor interference in visual displays of varying load are discussed.
Tiret, Brice; Shestov, Alexander A.; Valette, Julien; Henry, Pierre-Gilles
2017-01-01
Most current brain metabolic models are not capable of taking into account the dynamic isotopomer information available from fine structure multiplets in 13C spectra, due to the difficulty of implementing such models. Here we present a new approach that allows automatic implementation of multi-compartment metabolic models capable of fitting any number of 13C isotopomer curves in the brain. The new automated approach also makes it possible to quickly modify and test new models to best describe the experimental data. We demonstrate the power of the new approach by testing the effect of adding separate pyruvate pools in astrocytes and neurons, and adding a vesicular neuronal glutamate pool. Including both changes reduced the global fit residual by half and pointed to dilution of label prior to entry into the astrocytic TCA cycle as the main source of glutamine dilution. The glutamate-glutamine cycle rate was particularly sensitive to changes in the model. PMID:26553273
Elia, Marinos; Betts, Peter; Jackson, Diane M; Mulligan, Jean
2007-09-01
Intrauterine programming of body composition [percentage body fat (%BF)] has been sparsely examined with multiple independent reference techniques in children. The effects on and consequences of body build (dimensions, mass, and length of body segments) are unclear. The study examined whether percentage fat and relation of percentage fat to body mass index (BMI; in kg/m2) in prepubertal children are programmed during intrauterine development and are dependent on body build. It also aimed to examine the extent to which height can be predicted by parental height and birth weight. Eighty-five white children (44 boys, 41 girls; aged 6.5-9.1 y) had body composition measured with a 4-component model (n = 58), dual-energy X-ray absorptiometry (n = 84), deuterium dilution (n = 81), densitometry (n = 62), and skinfold thicknesses (n = 85). An increase in birth weight of 1 SD was associated with a decrease of 1.95% fat as measured by the 4-component model (P = 0.012) and 0.82-2.75% by the other techniques. These associations were independent of age, sex, socioeconomic status, physical activity, BMI, and body build. Body build did not decrease the strength of the associations. Birth weight was a significantly better predictor of height than was self-reported midparental height, accounting for 19.4% of the variability at 5 y of age and 10.3% at 7.8 y of age (17.8% and 8.8% of which were independent of parental height at these ages, respectively). Consistent trends across body-composition measurement techniques add strength to the suggestion that percentage fat in prepubertal children is programmed in utero (independently of body build and BMI). It also suggests birth weight is a better predictor of prepubertal height than is self-reported midparental height.
Acid rain: Microphysical model
NASA Technical Reports Server (NTRS)
Dingle, A. N.
1980-01-01
A microphysical model was used to simulate the case of a ground cloud without dilution by entrainment and without precipitation. The numerical integration techniques of the model are presented. The droplet size spectra versus time and the droplet molalities for each value of time are discussed.
NASA Astrophysics Data System (ADS)
Liu, Qianqian; Chai, Fei; Dugdale, Richard; Chao, Yi; Xue, Huijie; Rao, Shivanesh; Wilkerson, Frances; Farrara, John; Zhang, Hongchun; Wang, Zhengui; Zhang, Yinglong
2018-06-01
An open source coupled physical-biogeochemical model is developed for San Francisco Bay (SFB) to study nutrient cycling and plankton dynamics as well as to assist ecosystem based management and risk assessment. The biogeochemical model in this study is based on the Carbon, Silicate and Nitrogen Ecosystem (CoSiNE) model, and coupled to the unstructured grid, Semi-Implicit Cross-scale Hydroscience Integrated System Model (SCHISM). The SCHISM-CoSiNE model reproduces the spatial and temporal variability in nutrients and plankton biomass, and its physical and biogeochemical performance is successfully tested using comparisons with shipboard and fixed station observations. The biogeochemical characteristics of the SFB during wet and dry years are investigated by changing the input of the major rivers. River discharges from the Sacramento and San Joaquin Rivers affect the phytoplankton biomass in North SFB through both advection and dilution of nutrient (including ammonium, NH4) concentrations in the river. The reduction in residence time caused by increased inflows can result in decreased biomass accumulation, while the corresponding reduction in NH4 concentration favors the growth of biomass. In addition, the model is used to make a series of sensitivity experiments to examine the response of SFB to changes in 1) nutrient loading from rivers and wastewater treatment plants (WWTPs), 2) a parameter (ψ) defining NH4 inhibition of nitrate (NO3) uptake by phytoplankton, 3) bottom grazing and 4) suspended sediment concentration. The model results show that changes in NH4 input from rivers or WWTPs affect the likelihood of phytoplankton blooms via NH4 inhibition and that the choice of ψ is critical. Bottom grazing simulated here as increased plankton mortality demonstrates the potential for bivalve reduction of chlorophyll biomass and the need to include bivalve grazing in future models. Furthermore, the model demonstrates the need to include sediments and their contribution to turbidity and availability of light. This biogeochemical model is suitable for other estuaries with similar ecological issues and anthropogenic stressors.
Destabilization of Magnetic Order in a Dilute Kitaev Spin Liquid Candidate
Lampen-Kelley, Paige; Banerjee, Arnab; Aczel, Adam A.; ...
2017-12-06
The insulating honeycomb magnet α–RuCl 3 exhibits fractionalized excitations that signal its proximity to a Kitaev quantum spin liquid state; however, at T=0, fragile long-range magnetic order arises from non-Kitaev terms in the Hamiltonian. Spin vacancies in the form of Ir 3+ substituted for Ru are found to destabilize this long-range order. Neutron diffraction and bulk characterization of Ru 1–xIr xCl 3 show that the magnetic ordering temperature is suppressed with increasing x, and evidence of zizag magnetic order is absent for x > 0.3. Inelastic neutron scattering demonstrates that the signature of fractionalized excitations is maintained over the fullmore » range of x investigated. In conclusion, the depleted lattice without magnetic order thus hosts a spin-liquid-like ground state that may indicate the relevance of Kitaev physics in the magnetically dilute limit of RuCl 3.« less
Effects of granularity on the natural classification of loose cover layer rock
NASA Astrophysics Data System (ADS)
Zhang, Shuhui; Wang, Peng; Zhang, Zhiqiang
2018-03-01
In the sublevel caving method, with developing depth of underground mines increasing, the ore loss and dilution is become more and more remarkable that is due to the natural classification of loose cover layer rock. Therefore, this paper researches that granularity are one of the main factors affecting the natural classification, and carries out a physical simulation experiment of loose cover layer rock granularity effects of natural classification. Through the experiment we found that granularity has important effect on natural classification. Under the condition of the same weight, we found the closer of granularities that consist of cover layer rock, the less prone to natural classification. Otherwise, it will be prone to natural classification. This study has a guiding significance for a mine, forming a scientific and reasonable cover layer rock, and reducing the ore loss and dilution in the mining process.
Destabilization of Magnetic Order in a Dilute Kitaev Spin Liquid Candidate
NASA Astrophysics Data System (ADS)
Lampen-Kelley, P.; Banerjee, A.; Aczel, A. A.; Cao, H. B.; Stone, M. B.; Bridges, C. A.; Yan, J.-Q.; Nagler, S. E.; Mandrus, D.
2017-12-01
The insulating honeycomb magnet α -RuCl3 exhibits fractionalized excitations that signal its proximity to a Kitaev quantum spin liquid state; however, at T =0 , fragile long-range magnetic order arises from non-Kitaev terms in the Hamiltonian. Spin vacancies in the form of Ir3 + substituted for Ru are found to destabilize this long-range order. Neutron diffraction and bulk characterization of Ru1 -xIrxCl3 show that the magnetic ordering temperature is suppressed with increasing x , and evidence of zizag magnetic order is absent for x >0.3 . Inelastic neutron scattering demonstrates that the signature of fractionalized excitations is maintained over the full range of x investigated. The depleted lattice without magnetic order thus hosts a spin-liquid-like ground state that may indicate the relevance of Kitaev physics in the magnetically dilute limit of RuCl3 .
The electromigration force in metallic bulk
NASA Astrophysics Data System (ADS)
Lodder, A.; Dekker, J. P.
1998-01-01
The voltage induced driving force on a migrating atom in a metallic system is discussed in the perspective of the Hellmann-Feynman force concept, local screening concepts and the linear-response approach. Since the force operator is well defined in quantum mechanics it appears to be only confusing to refer to the Hellmann-Feynman theorem in the context of electromigration. Local screening concepts are shown to be mainly of historical value. The physics involved is completely represented in ab initio local density treatments of dilute alloys and the implementation does not require additional precautions about screening, being typical for jellium treatments. The linear-response approach is shown to be a reliable guide in deciding about the two contributions to the driving force, the direct force and the wind force. Results are given for the wind valence for electromigration in a number of FCC and BCC metals, calculated using an ab initio KKR-Green's function description of a dilute alloy.
Host polymer influence on dilute polystyrene segmental dynamics
NASA Astrophysics Data System (ADS)
Lutz, T. R.
2005-03-01
We have utilized deuterium NMR to investigate the segmental dynamics of dilute (2%) d3-polystyrene (PS) chains in miscible polymer blends with polybutadiene, poly(vinyl ethylene), polyisoprene, poly(vinyl methylether) and poly(methyl methacrylate). In the dilute limit, we find qualitative differences depending upon whether the host polymer has dynamics that are faster or slower than that of pure PS. In blends where PS is the fast (low Tg) component, segmental dynamics are slowed upon blending and can be fit by the Lodge-McLeish model. When PS is the slow (high Tg) component, PS segmental dynamics speed up upon blending, but cannot be fit by the Lodge-McLeish model unless a temperature dependent self-concentration is employed. These results are qualitatively consistent with a recent suggestion by Kant, Kumar and Colby (Macromolecules, 2003, 10087), based upon data at higher concentrations. Furthermore, as the slow component, we find the segmental dynamics of PS has a temperature dependence similar to that of its host. This suggests viewing the high Tg component dynamics in a miscible blend as similar to a polymer in a low molecular weight solvent.
Baral, Nawa Raj; Shah, Ajay
2017-05-01
Pretreatment is required to destroy recalcitrant structure of lignocelluloses and then transform into fermentable sugars. This study assessed techno-economics of steam explosion, dilute sulfuric acid, ammonia fiber explosion and biological pretreatments, and identified bottlenecks and operational targets for process improvement. Techno-economic models of these pretreatment processes for a cellulosic biorefinery of 113.5 million liters butanol per year excluding fermentation and wastewater treatment sections were developed using a modelling software-SuperPro Designer. Experimental data of the selected pretreatment processes based on corn stover were gathered from recent publications, and used for this analysis. Estimated sugar production costs ($/kg) via steam explosion, dilute sulfuric acid, ammonia fiber explosion and biological methods were 0.43, 0.42, 0.65 and 1.41, respectively. The results suggest steam explosion and sulfuric acid pretreatment methods might be good alternatives at present state of technology and other pretreatment methods require research and development efforts to be competitive with these pretreatment methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
Quantifying non-ergodic dynamics of force-free granular gases.
Bodrova, Anna; Chechkin, Aleksei V; Cherstvy, Andrey G; Metzler, Ralf
2015-09-14
Brownian motion is ergodic in the Boltzmann-Khinchin sense that long time averages of physical observables such as the mean squared displacement provide the same information as the corresponding ensemble average, even at out-of-equilibrium conditions. This property is the fundamental prerequisite for single particle tracking and its analysis in simple liquids. We study analytically and by event-driven molecular dynamics simulations the dynamics of force-free cooling granular gases and reveal a violation of ergodicity in this Boltzmann-Khinchin sense as well as distinct ageing of the system. Such granular gases comprise materials such as dilute gases of stones, sand, various types of powders, or large molecules, and their mixtures are ubiquitous in Nature and technology, in particular in Space. We treat-depending on the physical-chemical properties of the inter-particle interaction upon their pair collisions-both a constant and a velocity-dependent (viscoelastic) restitution coefficient ε. Moreover we compare the granular gas dynamics with an effective single particle stochastic model based on an underdamped Langevin equation with time dependent diffusivity. We find that both models share the same behaviour of the ensemble mean squared displacement (MSD) and the velocity correlations in the limit of weak dissipation. Qualitatively, the reported non-ergodic behaviour is generic for granular gases with any realistic dependence of ε on the impact velocity of particles.
Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review
2011-01-01
Nanofluids, i.e., well-dispersed (metallic) nanoparticles at low- volume fractions in liquids, may enhance the mixture's thermal conductivity, knf, over the base-fluid values. Thus, they are potentially useful for advanced cooling of micro-systems. Focusing mainly on dilute suspensions of well-dispersed spherical nanoparticles in water or ethylene glycol, recent experimental observations, associated measurement techniques, and new theories as well as useful correlations have been reviewed. It is evident that key questions still linger concerning the best nanoparticle-and-liquid pairing and conditioning, reliable measurements of achievable knf values, and easy-to-use, physically sound computer models which fully describe the particle dynamics and heat transfer of nanofluids. At present, experimental data and measurement methods are lacking consistency. In fact, debates on whether the anomalous enhancement is real or not endure, as well as discussions on what are repeatable correlations between knf and temperature, nanoparticle size/shape, and aggregation state. Clearly, benchmark experiments are needed, using the same nanofluids subject to different measurement methods. Such outcomes would validate new, minimally intrusive techniques and verify the reproducibility of experimental results. Dynamic knf models, assuming non-interacting metallic nano-spheres, postulate an enhancement above the classical Maxwell theory and thereby provide potentially additional physical insight. Clearly, it will be necessary to consider not only one possible mechanism but combine several mechanisms and compare predictive results to new benchmark experimental data sets. PMID:21711739
Li, Zhengkai; Lee, Kenneth; King, Thomas; Boufadel, Michel C; Venosa, Albert D
2009-05-01
Testing dispersant effectiveness under conditions similar to that of the open environment is required for improvements in operational procedures and the formulation of regulatory guidelines. To this end, a novel wave tank facility was fabricated to study the dispersion of crude oil under regular non-breaking and irregular breaking wave conditions. This wave tank facility was designed for operation in a flow-through mode to simulate both wave- and current-driven hydrodynamic conditions. We report here an evaluation of the effectiveness of chemical dispersants (Corexit EC9500A and SPC 1000) on two crude oils (Medium South American [MESA] and Alaska North Slope [ANS]) under two different wave conditions (regular non-breaking and plunging breaking waves) in this wave tank. The dispersant effectiveness was assessed by measuring the water column oil concentration and dispersed oil droplet size distribution. In the absence of dispersants, nearly 8-19% of the test crude oils were dispersed and diluted under regular wave and breaking wave conditions. In the presence of dispersants, about 21-36% of the crude oils were dispersed and diluted under regular waves, and 42-62% under breaking waves. Consistently, physical dispersion under regular waves produced large oil droplets (volumetric mean diameter or VMD > or = 300 microm), whereas chemical dispersion under breaking waves created small droplets (VMD < or = 50 microm). The data can provide useful information for developing better operational guidelines for dispersant use and improved predictive models on dispersant effectiveness in the field.
Energy-Efficient Bioalcohol Recovery by Gel Stripping
NASA Astrophysics Data System (ADS)
Godbole, Rutvik; Ma, Lan; Hedden, Ronald
2014-03-01
Design of energy-efficient processes for recovering butanol and ethanol from dilute fermentations is a key challenge facing the biofuels industry due to the high energy consumption of traditional multi-stage distillation processes. Gel stripping is an alternative purification process by which a dilute alcohol is stripped from the fermentation product by passing it through a packed bed containing particles of a selectively absorbent polymeric gel material. The gel must be selective for the alcohol, while swelling to a reasonable degree in dilute alcohol-water mixtures. To accelerate materials optimization, a combinatorial approach is taken to screen a matrix of copolymer gels having orthogonal gradients in crosslinker concentration and hydrophilicity. Using a combination of swelling in pure solvents, the selectivity and distribution coefficients of alcohols in the gels can be predicted based upon multi-component extensions of Flory-Rehner theory. Predictions can be validated by measuring swelling in water/alcohol mixtures and conducting h HPLC analysis of the external liquid. 95% + removal of butanol from dilute aqueous solutions has been demonstrated, and a mathematical model of the unsteady-state gel stripping process has been developed. NSF CMMI Award 1335082.
MINTEQA2 is a equilibrium speciation model that can be used to calculate the equilibrium composition of dilute aqueous solutions in the laboratory or in natural aqueous systems. The model is useful for calculating the equilibrium mass distribution among dissolved species, adsorb...
Esfahanian, Mehri; Shokuhi Rad, Ali; Khoshhal, Saeed; Najafpour, Ghasem; Asghari, Behnam
2016-07-01
In this paper, genetic algorithm was used to investigate mathematical modeling of ethanol fermentation in a continuous conventional bioreactor (CCBR) and a continuous membrane bioreactor (CMBR) by ethanol permselective polydimethylsiloxane (PDMS) membrane. A lab scale CMBR with medium glucose concentration of 100gL(-1) and Saccharomyces cerevisiae microorganism was designed and fabricated. At dilution rate of 0.14h(-1), maximum specific cell growth rate and productivity of 0.27h(-1) and 6.49gL(-1)h(-1) were respectively found in CMBR. However, at very high dilution rate, the performance of CMBR was quite similar to conventional fermentation on account of insufficient incubation time. In both systems, genetic algorithm modeling of cell growth, ethanol production and glucose concentration were conducted based on Monod and Moser kinetic models during each retention time at unsteady condition. The results showed that Moser kinetic model was more satisfactory and desirable than Monod model. Copyright © 2016 Elsevier Ltd. All rights reserved.
Formation of protocell-like vesicles in a thermal diffusion column.
Budin, Itay; Bruckner, Raphael J; Szostak, Jack W
2009-07-22
Many of the properties of bilayer membranes composed of simple single-chain amphiphiles seem to be well-suited for a potential role as primitive cell membranes. However, the spontaneous formation of membranes from such amphiphiles is a concentration-dependent process in which a significant critical aggregate concentration (cac) must be reached. Since most scenarios for the prebiotic synthesis of fatty acids and related amphiphiles would result in dilute solutions well below the cac, the identification of mechanisms that would lead to increased local amphiphile concentrations is an important aspect of defining reasonable conditions for the origin of cellular life. Narrow, vertically oriented channels within the mineral precipitates of hydrothermal vent towers have previously been proposed to act as natural Clusius-Dickel thermal diffusion columns, in which a strong transverse thermal gradient concentrates dilute molecules through the coupling of thermophoresis and convection. Here we experimentally demonstrate that a microcapillary acting as a thermal diffusion column can concentrate a solution of oleic acid. Upon concentration, self-assembly of large vesicles occurs in regions where the cac is exceeded. We detected vesicle formation by fluorescence microscopy of encapsulated dye cargoes, which simultaneously concentrated in our channels. Our findings suggest a novel means by which simple physical processes could have led to the spontaneous formation of cell-like structures from a dilute prebiotic reservoir.
Saha, J K; Panwar, N R; Coumar, M Vassanda
2013-11-01
The present study compares the distribution and nature of heavy metals in composts from 12 cities of India, prepared from different types of processed urban solid wastes, namely mixed wastes (MWC), partially segregated wastes (PSWC), and segregated bio-wastes (BWC). Compost samples were physically fractionated by wet sieving, followed by extraction of heavy metals by dilute HCl and NaOH. Bigger particles (>0.5 mm) constituted the major fraction in all three types of composts and had a relatively lower concentration of organic matter and heavy metals, the effect being more pronounced in MWC and PSWC in which a significant portion of the heavy metals was distributed in finer size fractions. Cd, Ni, Pb, and Zn were extracted to a greater extent by acid than by alkali, the difference being greater in MWC, which contained a higher amount of mineral matter. In contrast, Cu and Cr were extracted to a greater extent by dilute alkali, particularly from BWC containing a higher amount of organic matter. Water-soluble heavy metals were generally related to the water-soluble C or total C content as well as to pH, rather than to their total contents. This study concludes that wet sieving with dilute acid can effectively reduce heavy metal load in MWC and PSWC.
Primary hydrothermal input above nonbuoyant plume level in the water column.
NASA Astrophysics Data System (ADS)
Nakamura, K.
2008-12-01
Accumulating in-situ Eh measurements of seawater by CTD hydrothermal plume chasing above ridges in various oceans suggest that some ill-diluted reduced water can be eventually observed above nonbuoyant plume level, which indicate locations of buoyant rising plume penetration through spread nonbuoyant plume. Such location can even be intentionally detectable by successive three to four orthogonal CTD tow-yo operations. See an example in the South Atlantic (http://www.divediscover.whoi.edu/expedition12/daily/080109.html). Large/rapid voltage drops recorded by in- situ Eh (ORP) electrodes on moving platform like CTD (non-equilibrated measurement) occur when electrodes pass from oxygen-controlled to sulfide-controlled redox condition. Assuming a common chemical compositions of 350 deg C hydrothermal fluid source, the calculated redox potential of mixture of hydrothermal fluid and ambient seawater shows a sharp discontinuity around the dilution factor of 130 (aquatic chemistry textbooks of Morel(1983) p.345, (1993) p.460). In popular turbulent plume models based on Morton, Taylor and Turner (1956, point source and homogeneous dilution by ambient seawater entrainment along by an amount proportional to the vertical velocity in the plume), the dilution factors at the level of zero rising momentum are calculated as 5500 to 10,000 (ex., McDuff, 1995). Evidence of redox anomalies above nonbuoyant plume level contradicts momentum overshoot by popular turbulent plume models and prefers a plume cap overshoot in starting plume (Turner, 1973) or heterogeneous dilution. Turner's starting plume were thought to be generated by on and off of buoyant fluid input. The plume cap is assumed to have vortex structure like thermal and resistant to dilution. In the ridge environment with ocean tide it is likely generated spatially and temporary by semidiurnal to diurnal bottom current direction change. Some recent AUV profiles cross-cutting rising buoyant plume will be also presented to discuss on internal structure of rising plume. The primary hydrothermal input above nonbuoyant plume level is important for vertical chemical and biological transport in the water column as well as exploration strategy to locate vents on the seafloor.
2013-01-01
Introduction Fluid resuscitation in the critically ill often results in a positive fluid balance, potentially diluting the serum creatinine concentration and delaying diagnosis of acute kidney injury (AKI). Methods Dilution during AKI was quantified by combining creatinine and volume kinetics to account for fluid type, and rates of fluid infusion and urine output. The model was refined using simulated patients receiving crystalloids or colloids under four glomerular filtration rate (GFR) change scenarios and then applied to a cohort of critically ill patients following cardiac arrest. Results The creatinine concentration decreased during six hours of fluid infusion at 1 litre-per-hour in simulated patients, irrespective of fluid type or extent of change in GFR (from 0% to 67% reduction). This delayed diagnosis of AKI by 2 to 9 hours. Crystalloids reduced creatinine concentration by 11 to 19% whereas colloids reduced concentration by 36 to 43%. The greatest reduction was at the end of the infusion period. Fluid dilution alone could not explain the rapid reduction of plasma creatinine concentration observed in 39 of 49 patients after cardiac arrest. Additional loss of creatinine production could account for those changes. AKI was suggested in six patients demonstrating little change in creatinine, since a 52 ± 13% reduction in GFR was required after accounting for fluid dilution and reduced creatinine production. Increased injury biomarkers within a few hours of cardiac arrest, including urinary cystatin C and plasma and urinary Neutrophil-Gelatinase-Associated-Lipocalin (biomarker-positive, creatinine-negative patients) also indicated AKI in these patients. Conclusions Creatinine and volume kinetics combined to quantify GFR loss, even in the absence of an increase in creatinine. The model improved disease severity estimation, and demonstrated that diagnostic delays due to dilution are minimally affected by fluid type. Creatinine sampling should be delayed at least one hour following a large fluid bolus to avoid dilution. Unchanged plasma creatinine post cardiac arrest signifies renal injury and loss of function. Trial registration Australian and New Zealand Clinical Trials Registry ACTRN12610001012066. PMID:23327106
The Impact of Hyperthermia and Hypohydration on Circulation, Strength, Endurance, and Health,
1988-02-05
in the laboratory. The authors concluded that pre-exercise passive heating, diuretic use, and prior exercise interact to reduce physical exercise...school and college wrestling coach. Water. Carbohydrate , and Salt Intake Most of the aforementioned strength and endurance studies have examined the...than 1 - 2 hours, however, dilute sugar additives (6 - 8% carbohydrate in solution) may be required to postpone the development of fatigue, to reduce
Hg-Based Epitaxial Materials for Topological Insulators
2014-07-01
Research Laboratory for investigation of properties. 15. SUBJECT TERMS EOARD, topological insulator , diluted magnetic ...topological superconductors and spintronics to quantum computation (e.g. see C.L.Kane and J.E.Moore "Topological Insulators " Physics World (2011) 24...tetradymite semiconductors Bi2Te3, Bi2Se3, and Sb2Te3 which form magnetically ordered insulators when doped with transition metal elements Cr or Fe (Rui Yu et
Wang, Fei; Zhang, Hui; Liang, Jinsheng; Tang, Qingguo; Li, Yanxia; Shang, Zengyao
2017-01-01
In this work, a new organic-inorganic composite filter was prepared. The thickness, pore size, air permeability, bursting strength and microstructure were characterized systematically, proving that coatings had regulatory effect on filters physical properties. Benefitting from the distinct coatings containing 5% sepiolite nanofibers after five times dilution, the physical properties of corresponding air filter exhibits the most favorable performance and meet the standard of air filter. When used as fuel filter, it satisfies the fuel filter standard and achieves the best performance after six times dilution. The contrast test on engine emission was taken based on auto filters coated with/without as prepared nanofibers. An obvious decrease in the emission of carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxide (NOx) can be observed after installation of composite filter on vehicles. Under the high idle condition, gasoline engine emission decreased by 8.13%, 11.35% and 44.91% for CO, HC and NOx, respectively. When tested in the low idle condition, engine emission reduced by 0.43%, 1.14% and 85.67% for CO, HC and NOx, respectively. The diesel engine emissions of CO, NOx and total amount of HC and NOx decreased by 32.26%, 3.28% and 4.66%, respectively. The results illustrate the composite installation exhibits satisfactory emission reduction effect. PMID:28252034
NASA Astrophysics Data System (ADS)
Wang, Fei; Zhang, Hui; Liang, Jinsheng; Tang, Qingguo; Li, Yanxia; Shang, Zengyao
2017-03-01
In this work, a new organic-inorganic composite filter was prepared. The thickness, pore size, air permeability, bursting strength and microstructure were characterized systematically, proving that coatings had regulatory effect on filters physical properties. Benefitting from the distinct coatings containing 5% sepiolite nanofibers after five times dilution, the physical properties of corresponding air filter exhibits the most favorable performance and meet the standard of air filter. When used as fuel filter, it satisfies the fuel filter standard and achieves the best performance after six times dilution. The contrast test on engine emission was taken based on auto filters coated with/without as prepared nanofibers. An obvious decrease in the emission of carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxide (NOx) can be observed after installation of composite filter on vehicles. Under the high idle condition, gasoline engine emission decreased by 8.13%, 11.35% and 44.91% for CO, HC and NOx, respectively. When tested in the low idle condition, engine emission reduced by 0.43%, 1.14% and 85.67% for CO, HC and NOx, respectively. The diesel engine emissions of CO, NOx and total amount of HC and NOx decreased by 32.26%, 3.28% and 4.66%, respectively. The results illustrate the composite installation exhibits satisfactory emission reduction effect.
Assembly kinetics determine the architecture of α-actinin crosslinked F-actin networks.
Falzone, Tobias T; Lenz, Martin; Kovar, David R; Gardel, Margaret L
2012-05-29
The actin cytoskeleton is organized into diverse meshworks and bundles that support many aspects of cell physiology. Understanding the self-assembly of these actin-based structures is essential for developing predictive models of cytoskeletal organization. Here we show that the competing kinetics of bundle formation with the onset of dynamic arrest arising from filament entanglements and crosslinking determine the architecture of reconstituted actin networks formed with α-actinin crosslinks. Crosslink-mediated bundle formation only occurs in dilute solutions of highly mobile actin filaments. As actin polymerization proceeds, filament mobility and bundle formation are arrested concomitantly. By controlling the onset of dynamic arrest, perturbations to actin assembly kinetics dramatically alter the architecture of biochemically identical samples. Thus, the morphology of reconstituted F-actin networks is a kinetically determined structure similar to those formed by physical gels and glasses. These results establish mechanisms controlling the structure and mechanics in diverse semiflexible biopolymer networks.
Wübker, S M; Laurenzis, A; Werner, U; Friedrich, C
1997-08-20
The kinetics of degradation of toluene from a model waste gas and of biomass formation were examined in a bioscrubber operated under different nutrient limitations with a mixed culture. The applicability of the kinetics of continuous cultivation of the mixed culture was examined for a special trickle-bed reactor with a periodically moved filter bed. The efficiency of toluene elimination of the bioscrubber was 50 to 57% and depended on the toluene mass transfer as evident from a constant productivity of 0.026 g dry cell weight/L . h over the dilution rate. Under potassium limitation the biomass productivity was reduced by 60% to 0.011 g dry cell weight/L . h at a dilution rate of 0.013/h. Conversely, at low dilution rates the specific toluene degradation rates increased. Excess biomass in a trickle-bed reactor causes reduction of interfacial area and mass transfer, and increase in pressure drop. To avoid these disadvantages, the trickle-bed was moved periodically and biomass was removed with outflowing medium. The concentration of steady state biomass fixed on polyamide beads decreased hyperbolically with the dilution rate. Also, the efficiency of toluene degradation decreased from 72 to 56% with increasing dilution rate while the productivity increased. Potassium limitation generally caused a reduction in biomass, productivity, and yield while the specific degradation increased with dilution rate. This allowed the application of the principles of the chemostat to the trickle-bed reactor described here, for toluene degradation from waste gases. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 686-692, 1997.
From Solvent-Free to Dilute Electrolytes: Essential Components for a Continuum Theory.
Gavish, Nir; Elad, Doron; Yochelis, Arik
2018-01-04
The increasing number of experimental observations on highly concentrated electrolytes and ionic liquids show qualitative features that are distinct from dilute or moderately concentrated electrolytes, such as self-assembly, multiple-time relaxation, and underscreening, which all impact the emergence of fluid/solid interfaces, and the transport in these systems. Because these phenomena are not captured by existing mean-field models of electrolytes, there is a paramount need for a continuum framework for highly concentrated electrolytes and ionic liquid mixtures. In this work, we present a self-consistent spatiotemporal framework for a ternary composition that comprises ions and solvent employing a free energy that consists of short- and long-range interactions, along with an energy dissipation mechanism obtained by Onsager's relations. We show that the model can describe multiple bulk and interfacial morphologies at steady-state. Thus, the dynamic processes in the emergence of distinct morphologies become equally as important as the interactions that are specified by the free energy. The model equations not only provide insights into transport mechanisms beyond the Stokes-Einstein-Smoluchowski relations but also enable qualitative recovery of three distinct regions in the full range of the nonmonotonic electrical screening length that has been recently observed in experiments in which organic solvent is used to dilute ionic liquids.
NASA Astrophysics Data System (ADS)
Hanschen, Franziska S.; Klopsch, Rebecca; Oliviero, Teresa; Schreiner, Monika; Verkerk, Ruud; Dekker, Matthijs
2017-01-01
Consumption of glucosinolate-rich Brassicales vegetables is associated with a decreased risk of cancer with enzymatic hydrolysis of glucosinolates playing a key role. However, formation of health-promoting isothiocyanates is inhibited by the epithiospecifier protein in favour of nitriles and epithionitriles. Domestic processing conditions, such as changes in pH value, temperature or dilution, might also affect isothiocyanate formation. Therefore, the influences of these three factors were evaluated in accessions of Brassica rapa, Brassica oleracea, and Arabidopsis thaliana. Mathematical modelling was performed to determine optimal isothiocyanate formation conditions and to obtain knowledge on the kinetics of the reactions. At 22 °C and endogenous plant pH, nearly all investigated plants formed nitriles and epithionitriles instead of health-promoting isothiocyanates. Response surface models, however, clearly demonstrated that upon change in pH to domestic acidic (pH 4) or basic pH values (pH 8), isothiocyanate formation considerably increases. While temperature also affects this process, the pH value has the greatest impact. Further, a kinetic model showed that isothiocyanate formation strongly increases due to dilution. Finally, the results show that isothiocyanate intake can be strongly increased by optimizing the conditions of preparation of Brassicales vegetables.
Immune networks: multitasking capabilities near saturation
NASA Astrophysics Data System (ADS)
Agliari, E.; Annibale, A.; Barra, A.; Coolen, A. C. C.; Tantari, D.
2013-10-01
Pattern-diluted associative networks were recently introduced as models for the immune system, with nodes representing T-lymphocytes and stored patterns representing signalling protocols between T- and B-lymphocytes. It was shown earlier that in the regime of extreme pattern dilution, a system with NT T-lymphocytes can manage a number N_B={ {O}}(N_T^\\delta ) of B-lymphocytes simultaneously, with δ < 1. Here we study this model in the extensive load regime NB = αNT, with a high degree of pattern dilution, in agreement with immunological findings. We use graph theory and statistical mechanical analysis based on replica methods to show that in the finite-connectivity regime, where each T-lymphocyte interacts with a finite number of B-lymphocytes as NT → ∞, the T-lymphocytes can coordinate effective immune responses to an extensive number of distinct antigen invasions in parallel. As α increases, the system eventually undergoes a second order transition to a phase with clonal cross-talk interference, where the system’s performance degrades gracefully. Mathematically, the model is equivalent to a spin system on a finitely connected graph with many short loops, so one would expect the available analytical methods, which all assume locally tree-like graphs, to fail. Yet it turns out to be solvable. Our results are supported by numerical simulations.
Colard, Stéphane; O’Connell, Grant; Verron, Thomas; Cahours, Xavier; Pritchard, John D.
2014-01-01
There has been rapid growth in the use of electronic cigarettes (“vaping”) in Europe, North America and elsewhere. With such increased prevalence, there is currently a debate on whether the aerosol exhaled following the use of e-cigarettes has implications for the quality of air breathed by bystanders. Conducting chemical analysis of the indoor environment can be costly and resource intensive, limiting the number of studies which can be conducted. However, this can be modelled reasonably accurately based on empirical emissions data and using some basic assumptions. Here, we present a simplified model, based on physical principles, which considers aerosol propagation, dilution and extraction to determine the potential contribution of a single puff from an e-cigarette to indoor air. From this, it was then possible to simulate the cumulative effect of vaping over time. The model was applied to a virtual, but plausible, scenario considering an e-cigarette user and a non-user working in the same office space. The model was also used to reproduce published experimental studies and showed good agreement with the published values of indoor air nicotine concentration. With some additional refinements, such an approach may be a cost-effective and rapid way of assessing the potential exposure of bystanders to exhaled e-cigarette aerosol constituents. PMID:25547398
Guarini, J.-M.; Gros, P.; Blanchard, G.F.; Bacher, C.
1999-01-01
We formulate a deterministic mathematical model to describe the dynamics of the microphytobenthos of intertidal mudflats. It is 'minimal' because it only takes into account the essential processes governing the functioning of the system: the autotrophic production, the active upward and downward migrations of epipelic microalgae, the saturation of the mud surface by a biofilm of diatoms and the global net loss rates of biomass. According to the photic environment of the benthic diatoms inhabiting intertidal mudflats, and to their migration rhythm, the model is composed of two sub-systems of ordinary differential equations; they describe the simultaneous evolution of the biomass 'S' concentrated in the mud surface biofilm - the photic layer - and of the biomass 'F' diluted in the topmost centimetre of the mud - the aphotic layer. Qualitatively, the model solutions agree fairly well with the in situ observed dynamics of the S + F biomass. The study of the mathematical properties of the model, under some simplifying assumptions, shows the convergence of solutions to a stable cyclic equilibrium, whatever the frequencies of the physical synchronizers of the production. The sensitivity analysis reveals the necessity of a better knowledge of the processes of biomass losses, which so far are uncertain, and may further vary in space and time.
Spectral cumulus parameterization based on cloud-resolving model
NASA Astrophysics Data System (ADS)
Baba, Yuya
2018-02-01
We have developed a spectral cumulus parameterization using a cloud-resolving model. This includes a new parameterization of the entrainment rate which was derived from analysis of the cloud properties obtained from the cloud-resolving model simulation and was valid for both shallow and deep convection. The new scheme was examined in a single-column model experiment and compared with the existing parameterization of Gregory (2001, Q J R Meteorol Soc 127:53-72) (GR scheme). The results showed that the GR scheme simulated more shallow and diluted convection than the new scheme. To further validate the physical performance of the parameterizations, Atmospheric Model Intercomparison Project (AMIP) experiments were performed, and the results were compared with reanalysis data. The new scheme performed better than the GR scheme in terms of mean state and variability of atmospheric circulation, i.e., the new scheme improved positive bias of precipitation in western Pacific region, and improved positive bias of outgoing shortwave radiation over the ocean. The new scheme also simulated better features of convectively coupled equatorial waves and Madden-Julian oscillation. These improvements were found to be derived from the modification of parameterization for the entrainment rate, i.e., the proposed parameterization suppressed excessive increase of entrainment, thus suppressing excessive increase of low-level clouds.
NASA Astrophysics Data System (ADS)
Cheng, Zhen; Chauchat, Julien; Hsu, Tian-Jian; Calantoni, Joseph
2018-01-01
A Reynolds-averaged Euler-Lagrange sediment transport model (CFDEM-EIM) was developed for steady sheet flow, where the inter-granular interactions were resolved and the flow turbulence was modeled with a low Reynolds number corrected k - ω turbulence closure modified for two-phase flows. To model the effect of turbulence on the sediment suspension, the interaction between the turbulent eddies and particles was simulated with an eddy interaction model (EIM). The EIM was first calibrated with measurements from dilute suspension experiments. We demonstrated that the eddy-interaction model was able to reproduce the well-known Rouse profile for suspended sediment concentration. The model results were found to be sensitive to the choice of the coefficient, C0, associated with the turbulence-sediment interaction time. A value C0 = 3 was suggested to match the measured concentration in the dilute suspension. The calibrated CFDEM-EIM was used to model a steady sheet flow experiment of lightweight coarse particles and yielded reasonable agreements with measured velocity, concentration and turbulence kinetic energy profiles. Further numerical experiments for sheet flow suggested that when C0 was decreased to C0 < 3, the simulation under-predicted the amount of suspended sediment in the dilute region and the Schmidt number is over-predicted (Sc > 1.0). Additional simulations for a range of Shields parameters between 0.3 and 1.2 confirmed that CFDEM-EIM was capable of predicting sediment transport rates similar to empirical formulations. Based on the analysis of sediment transport rate and transport layer thickness, the EIM and the resulting suspended load were shown to be important when the fall parameter is less than 1.25.
Correlated impurities and intrinsic spin-liquid physics in the kagome material herbertsmithite
Han, Tian-Heng; Norman, M. R.; Wen, J. -J.; ...
2016-08-18
Low energy inelastic neutron scattering on single crystals of the kagome spin-liquid compound ZnCu 3(OD) 6Cl 2 (herbertsmithite) reveals in this paper antiferromagnetic correlations between impurity spins for energy transfers h(with stroke)ω < 0.8 meV (~ J/20). The momentum dependence differs significantly from higher energy scattering which arises from the intrinsic kagome spins. The low energy fluctuations are characterized by diffuse scattering near wave vectors (100) and (00 3/2), which is consistent with antiferromagnetic correlations between pairs of nearest-neighbor Cu impurities on adjacent triangular (Zn) interlayers. The corresponding impurity lattice resembles a simple cubic lattice in the dilute limit belowmore » the percolation threshold. Such an impurity model can describe prior neutron, NMR, and specific heat data. The low energy neutron data are consistent with the presence of a small spin gap (Δ ~ 0.7 meV) in the kagome layers, similar to that recently observed by NMR. Finally, the ability to distinguish the scattering due to Cu impurities from that of the planar kagome Cu spins provides an important avenue for probing intrinsic spin-liquid physics.« less
Locally adaptive methods for KDE-based random walk models of reactive transport in porous media
NASA Astrophysics Data System (ADS)
Sole-Mari, G.; Fernandez-Garcia, D.
2017-12-01
Random Walk Particle Tracking (RWPT) coupled with Kernel Density Estimation (KDE) has been recently proposed to simulate reactive transport in porous media. KDE provides an optimal estimation of the area of influence of particles which is a key element to simulate nonlinear chemical reactions. However, several important drawbacks can be identified: (1) the optimal KDE method is computationally intensive and thereby cannot be used at each time step of the simulation; (2) it does not take advantage of the prior information about the physical system and the previous history of the solute plume; (3) even if the kernel is optimal, the relative error in RWPT simulations typically increases over time as the particle density diminishes by dilution. To overcome these problems, we propose an adaptive branching random walk methodology that incorporates the physics, the particle history and maintains accuracy with time. The method allows particles to efficiently split and merge when necessary as well as to optimally adapt their local kernel shape without having to recalculate the kernel size. We illustrate the advantage of the method by simulating complex reactive transport problems in randomly heterogeneous porous media.
A stoichiometric organic matter decomposition model in a chemostat culture.
Kong, Jude D; Salceanu, Paul; Wang, Hao
2018-02-01
Biodegradation, the disintegration of organic matter by microorganism, is essential for the cycling of environmental organic matter. Understanding and predicting the dynamics of this biodegradation have increasingly gained attention from the industries and government regulators. Since changes in environmental organic matter are strenuous to measure, mathematical models are essential in understanding and predicting the dynamics of organic matters. Empirical evidence suggests that grazers' preying activity on microorganism helps to facilitate biodegradation. In this paper, we formulate and investigate a stoichiometry-based organic matter decomposition model in a chemostat culture that incorporates the dynamics of grazers. We determine the criteria for the uniform persistence and extinction of the species and chemicals. Our results show that (1) if at the unique internal steady state, the per capita growth rate of bacteria is greater than the sum of the bacteria's death and dilution rates, then the bacteria will persist uniformly; (2) if in addition to this, (a) the grazers' per capita growth rate is greater than the sum of the dilution rate and grazers' death rate, and (b) the death rate of bacteria is less than some threshold, then the grazers will persist uniformly. These conditions can be achieved simultaneously if there are sufficient resources in the feed bottle. As opposed to the microcosm decomposition models' results, in a chemostat culture, chemicals always persist. Besides the transcritical bifurcation observed in microcosm models, our chemostat model exhibits Hopf bifurcation and Rosenzweig's paradox of enrichment phenomenon. Our sensitivity analysis suggests that the most effective way to facilitate degradation is to decrease the dilution rate.
Effect of particle entrainment on the runout of pyroclastic density currents
NASA Astrophysics Data System (ADS)
Fauria, Kristen E.; Manga, Michael; Chamberlain, Michael
2016-09-01
Pyroclastic density currents (PDCs) can erode soil and bedrock, yet we currently lack a mechanistic understanding of particle entrainment that can be incorporated into models and used to understand how PDC bulking affects runout. Here we quantify how particle splash, the ejection of particles due to impact by a projectile, entrains particles into dilute PDCs. We use scaled laboratory experiments to measure the mass of sand ejected by impacts of pumice, wood, and nylon spheres. We then derive an expression for particle splash that we validate with our experimental results as well as results from seven other studies. We find that the number of ejected particles scales with the kinetic energy of the impactor and the depth of the crater generated by the impactor. Last, we use a one-dimensional model of a dilute, compressible density current—where runout distance is controlled by air entrainment and particle exchange with the substrate—to examine how particle entrainment by splash affects PDC density and runout. Splash-driven particle entrainment can increase the runout distance of dilute PDCs by an order of magnitude. Furthermore, the temperature of entrained particles greatly affects runout and PDCs that entrain ambient temperature particles runout farther than those that entrain hot particles. Particle entrainment by splash therefore not only increases the runout of dilute PDCs but demonstrates that the temperature and composition of the lower boundary have consequences for PDC density, temperature, runout, hazards and depositional record.
Butterworth, Alice S; Robertson, Alan J; Ho, Mei-Fong; Gatton, Michelle L; McCarthy, James S; Trenholme, Katharine R
2011-04-18
Obtaining single parasite clones is required for many techniques in malaria research. Cloning by limiting dilution using microscopy-based assessment for parasite growth is an arduous and labor-intensive process. An alternative method for the detection of parasite growth in limiting dilution assays is using a commercial ELISA histidine-rich protein II (HRP2) detection kit. Detection of parasite growth was undertaken using HRP2 ELISA and compared to thick film microscopy. An HRP2 protein standard was used to determine the detection threshold of the HRP2 ELISA assay, and a HRP2 release model was used to extrapolate the amount of parasite growth required for a positive result. The HRP2 ELISA was more sensitive than microscopy for detecting parasite growth. The minimum level of HRP2 protein detection of the ELISA was 0.11 ng/ml. Modeling of HRP2 release determined that 2,116 parasites are required to complete a full erythrocytic cycle to produce sufficient HRP2 to be detected by the ELISA. Under standard culture conditions this number of parasites is likely to be reached between 8 to 14 days of culture. This method provides an accurate and simple way for the detection of parasite growth in limiting dilution assays, reducing time and resources required in traditional methods. Furthermore the method uses spent culture media instead of the parasite-infected red blood cells, enabling culture to continue. © 2011 Butterworth et al; licensee BioMed Central Ltd.
"Micro to macro (M2M)"--A novel approach for intravenous delivery of propofol.
Damitz, Robert; Chauhan, Anuj
2015-10-15
Propofol emulsions have limited shelf life and safety concerns for injection. Microemulsions of propofol are thermodynamically stable and simpler to manufacture, but cause additional pain on injection. We propose a novel micro to macro (M2M) approach of destabilizing a microemulsion immediately prior to injection. Microemulsions of propofol were prepared at two to three times the drug loadings of commercial formulations. We determined suitable microemulsion compositions which destabilize into macroemulsions after two or three fold dilutions with water. Droplet growth after dilution was measured with dynamic light scattering. Increasing solution turbidity after dilution was also measured optically with millisecond resolution. Experimental data was analyzed in the context of a coalescence model. Microemulsions rapidly coalesce into larger droplet size macroemulsions after dilution according to the phase diagram shift. The resulting macroemulsions are metastable retaining their droplet size for several hours. Droplet growth occurs on the order of seconds and a metastable size of about 1 micron is reached in minutes. Rates of droplet growth and metastable droplet sizes depend on the surfactant composition. The coalescence model predicts droplet growth with good agreement but only after accounting for the finite probability of coalescence from each collision. The M2M concept has been demonstrated for the anesthetic drug propofol which may improve stability and manufacturability in addition to reducing pain on injection. This approach could be adapted to other hydrophobic vesicant drugs as well. Copyright © 2015 Elsevier B.V. All rights reserved.
Testing the Predictive Power of Coulomb Stress on Aftershock Sequences
NASA Astrophysics Data System (ADS)
Woessner, J.; Lombardi, A.; Werner, M. J.; Marzocchi, W.
2009-12-01
Empirical and statistical models of clustered seismicity are usually strongly stochastic and perceived to be uninformative in their forecasts, since only marginal distributions are used, such as the Omori-Utsu and Gutenberg-Richter laws. In contrast, so-called physics-based aftershock models, based on seismic rate changes calculated from Coulomb stress changes and rate-and-state friction, make more specific predictions: anisotropic stress shadows and multiplicative rate changes. We test the predictive power of models based on Coulomb stress changes against statistical models, including the popular Short Term Earthquake Probabilities and Epidemic-Type Aftershock Sequences models: We score and compare retrospective forecasts on the aftershock sequences of the 1992 Landers, USA, the 1997 Colfiorito, Italy, and the 2008 Selfoss, Iceland, earthquakes. To quantify predictability, we use likelihood-based metrics that test the consistency of the forecasts with the data, including modified and existing tests used in prospective forecast experiments within the Collaboratory for the Study of Earthquake Predictability (CSEP). Our results indicate that a statistical model performs best. Moreover, two Coulomb model classes seem unable to compete: Models based on deterministic Coulomb stress changes calculated from a given fault-slip model, and those based on fixed receiver faults. One model of Coulomb stress changes does perform well and sometimes outperforms the statistical models, but its predictive information is diluted, because of uncertainties included in the fault-slip model. Our results suggest that models based on Coulomb stress changes need to incorporate stochastic features that represent model and data uncertainty.
Barium Stars and Thermohaline Mixing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husti, Laura
2008-01-24
Barium stars are formed in binary systems through mass transfer from the carbon and s-element rich primary in the AGB phase, to the secondary star which is in a less evolved evolutionary stage. The mixing of the accreted material from the AGB donor with the envelope of the secondary results in a dilution of the s-element abundances. Dilution in red giants is explained by the occurence of the first dredge up, while in case of dwarfs thermohaline mixing would determine it. A comparison between the theoretical predictions of the AGB stellar models and the spectroscopical observations of a large samplemore » of barium stars has been made. Dilution due to thermohaline mixing was taken into account when searching for best fits of the observational data. The importance of thermohaline mixing in barium dwarfs is discussed.« less
The asymmetrical force of persuasive knowledge across the positive-negative divide.
Nordmo, Mads; Selart, Marcus
2015-01-01
In two experimental studies we explore to what extent the general effects of positive and negative framing also apply to positive and negative persuasion. Our results reveal that negative persuasion induces substantially higher levels of skepticism and awareness of being subjected to a persuasion attempt. Furthermore, we demonstrate that in positive persuasion, more claims lead to stronger persuasion, while in negative persuasion, the numerosity of claims carries no significant effect. We interpret this finding along the lines of a satiety-model of persuasion. Finally, using diluted, or low strength claims in a persuasion attempt, we reveal a significant interaction between dispositional reactance and dilution of claims on persuasion knowledge. The interaction states that diluted claims increase the awareness of being subjected to a persuasion attempt, but only for those with a high dispositional level of reactance.
The asymmetrical force of persuasive knowledge across the positive–negative divide
Nordmo, Mads; Selart, Marcus
2015-01-01
In two experimental studies we explore to what extent the general effects of positive and negative framing also apply to positive and negative persuasion. Our results reveal that negative persuasion induces substantially higher levels of skepticism and awareness of being subjected to a persuasion attempt. Furthermore, we demonstrate that in positive persuasion, more claims lead to stronger persuasion, while in negative persuasion, the numerosity of claims carries no significant effect. We interpret this finding along the lines of a satiety-model of persuasion. Finally, using diluted, or low strength claims in a persuasion attempt, we reveal a significant interaction between dispositional reactance and dilution of claims on persuasion knowledge. The interaction states that diluted claims increase the awareness of being subjected to a persuasion attempt, but only for those with a high dispositional level of reactance. PMID:26388821
Wheat and ultra high diluted gibberellic acid--further experiments and re-analysis of data.
Endler, Peter Christian; Scherer-Pongratz, Waltraud; Lothaller, Harald; Stephen, Saundra
2015-10-01
Following studies (a) on wheat seedlings and ultra high diluted silver nitrate, and (b) on amphibians and an ultra high diluted hormone, (c) a bio-assay on wheat and extremely diluted gibberellic acid was standardized. This assay was intended to combine the easy-to-handle aspect of (a) and biologically interesting aspects of (b). The purpose of the data analysis presented here was to investigate the influence of an extreme dilution of gibberellic acid on wheat stalk length and to determine the influence of external factors on the experimental outcome. Grains of winter wheat (Triticum aestivum, Capo variety) were observed under the influence of extremely diluted gibberellic acid (10(-30)) prepared by stepwise dilution and agitation according to a protocol derived from homeopathy ('G30x'). Analogously prepared water was used for control ('W30x'). 16 experiments including 8000+8000 grains were performed by 9 researchers. Experiments that were performed between January and April showed inconsistent results, whereas most of the experiments performed between September and December showed shorter stalks in the G30x group. This was confirmed by correlation analysis (p<0.01). Thus winter/spring experiments and autumn experiments were analysed separately. When all 10 autumn experiments were pooled, mean stalk lengths (mm) were 48.3±21.4 for the verum group and 52.1±20.4 for control (mean±SD) at grain level (N=5000 per group) and ±5.3 and ±5.1 respectively at dish level. In other words, verum stalk length (92.67%) was 7.33% smaller than control stalk length (100%). The effect size is small when calculation is done on the basis of grains (d=0.18) but, due to the smaller SD at dish level, medium when done on the basis of dishes (d=0.73). The inhibiting effect was observed by 6 of the 6 researchers who performed the autumn experiments. The model may be useful for further research as there exists a theoretical justification due to previous studies with wheat and extremely diluted silver nitrate, as well as to previous studies with amphibians and diluted hormones, and its methods are well standardized. Data confirm the hypothesis that information can be stored in the test liquid, even at a dilution of the original substance beyond Avogadro's value; and that the wheat bio-assay is sensitive to such information. Copyright © 2015 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.
Heat transfer optimization for air-mist cooling between a stack of parallel plates
NASA Astrophysics Data System (ADS)
Issa, Roy J.
2010-06-01
A theoretical model is developed to predict the upper limit heat transfer between a stack of parallel plates subject to multiphase cooling by air-mist flow. The model predicts the optimal separation distance between the plates based on the development of the boundary layers for small and large separation distances, and for dilute mist conditions. Simulation results show the optimal separation distance to be strongly dependent on the liquid-to-air mass flow rate loading ratio, and reach a limit for a critical loading. For these dilute spray conditions, complete evaporation of the droplets takes place. Simulation results also show the optimal separation distance decreases with the increase in the mist flow rate. The proposed theoretical model shall lead to a better understanding of the design of fins spacing in heat exchangers where multiphase spray cooling is used.
Dilution Confusion: Conventions for Defining a Dilution
ERIC Educational Resources Information Center
Fishel, Laurence A.
2010-01-01
Two conventions for preparing dilutions are used in clinical laboratories. The first convention defines an "a:b" dilution as "a" volumes of solution A plus "b" volumes of solution B. The second convention defines an "a:b" dilution as "a" volumes of solution A diluted into a final volume of "b". Use of the incorrect dilution convention could affect…
Nakamura, Shinichiro; Kondo, Yasushi; Matsubae, Kazuyo; Nakajima, Kenichi; Tasaki, Tomohiro; Nagasaka, Tetsuya
2012-09-04
Metals can in theory be infinitely recycled in a closed-loop without any degradation in quality. In reality, however, open-loop recycling is more typical for metal scrap recovered from end-of-life (EoL) products because mixing of different metal species results in scrap quality that no longer matches the originals. Further losses occur when meeting the quality requirement of the target product requires dilution of the secondary material by adding high purity materials. Standard LCA usually does not address these losses. This paper presents a novel approach to quantifying quality- and dilution losses, by means of hybrid input-output analysis. We focus on the losses associated with the recycling of ferrous materials from end-of-life vehicle (ELV) due to the mixing of copper, a typical contaminant in steel recycling. Given the quality of scrap in terms of copper density, the model determines the ratio by which scrap needs to be diluted in an electric arc furnace (EAF), and the amount of demand for EAF steel including those quantities needed for dilution. Application to a high-resolution Japanese IO table supplemented with data on ferrous materials including different grades of scrap indicates that a nationwide avoidance of these losses could result in a significant reduction of CO(2) emissions.
Aspects of Cool-Flame Supported Droplet Combustion in Microgravity
NASA Technical Reports Server (NTRS)
Nayagam, Vedha; Dietrich, Daniel L.; Williams, Forman A.
2015-01-01
Droplet combustion experiments performed on board the International Space Station have shown that normal-alkane fuels with negative temperature coefficient (NTC) chemistry can support quasi-steady, low-temperature combustion without any visible flame. Here we review the results for n-decane, n-heptane, and n-octane droplets burning in carbon dioxidehelium diluted environments at different pressures and initial droplet sizes. Experimental results for cool-flame burning rates, flame standoff ratios, and extinction diameters are compared against simplified theoretical models of the phenomenon. A simplified quasi-steady model based on the partial-burning regime of Lin predicts the burning rate, and flame standoff ratio reasonably well for all three normal alkanes. The second-stage cool-flame burning and extinction following the first-stage hot-flame combustion, however, shows a small dependence on the initial droplet size, thus deviating from the quasi-steady results. An asymptotic model that estimates the oxygen depletion by the hot flame and its influence on cool-flame burning rates is shown to correct the quasi-steady results and provide a better comparison with the measured burning-rate results.This work was supported by the NASA Space Life and Physical Sciences Research and Applications Program and the International Space Station Program.
From atoms to steps: The microscopic origins of crystal evolution
NASA Astrophysics Data System (ADS)
Patrone, Paul N.; Einstein, T. L.; Margetis, Dionisios
2014-07-01
The Burton-Cabrera-Frank (BCF) theory of crystal growth has been successful in describing a wide range of phenomena in surface physics. Typical crystal surfaces are slightly misoriented with respect to a facet plane; thus, the BCF theory views such systems as composed of staircase-like structures of steps separating terraces. Adsorbed atoms (adatoms), which are represented by a continuous density, diffuse on terraces, and steps move by absorbing or emitting these adatoms. Here we shed light on the microscopic origins of the BCF theory by deriving a simple, one-dimensional (1D) version of the theory from an atomistic, kinetic restricted solid-on-solid (KRSOS) model without external material deposition. We define the time-dependent adatom density and step position as appropriate ensemble averages in the KRSOS model, thereby exposing the non-equilibrium statistical mechanics origins of the BCF theory. Our analysis reveals that the BCF theory is valid in a low adatom-density regime, much in the same way that an ideal gas approximation applies to dilute gasses. We find conditions under which the surface remains in a low-density regime and discuss the microscopic origin of corrections to the BCF model.
Stochastic bifurcations in the nonlinear parallel Ising model.
Bagnoli, Franco; Rechtman, Raúl
2016-11-01
We investigate the phase transitions of a nonlinear, parallel version of the Ising model, characterized by an antiferromagnetic linear coupling and ferromagnetic nonlinear one. This model arises in problems of opinion formation. The mean-field approximation shows chaotic oscillations, by changing the couplings or the connectivity. The spatial model shows bifurcations in the average magnetization, similar to that seen in the mean-field approximation, induced by the change of the topology, after rewiring short-range to long-range connection, as predicted by the small-world effect. These coherent periodic and chaotic oscillations of the magnetization reflect a certain degree of synchronization of the spins, induced by long-range couplings. Similar bifurcations may be induced in the randomly connected model by changing the couplings or the connectivity and also the dilution (degree of asynchronism) of the updating. We also examined the effects of inhomogeneity, mixing ferromagnetic and antiferromagnetic coupling, which induces an unexpected bifurcation diagram with a "bubbling" behavior, as also happens for dilution.
Phonon Dispersion and the Competition between Pairing and Charge Order
NASA Astrophysics Data System (ADS)
Costa, N. C.; Blommel, T.; Chiu, W.-T.; Batrouni, G.; Scalettar, R. T.
2018-05-01
The Holstein model describes the interaction between fermions and a collection of local (dispersionless) phonon modes. In the dilute limit, the phonon degrees of freedom dress the fermions, giving rise to polaron and bipolaron formation. At higher densities, the phonons mediate collective superconducting (SC) and charge-density wave (CDW) phases. Quantum Monte Carlo (QMC) simulations have considered both these limits but have not yet focused on the physics of more general phonon spectra. Here we report QMC studies of the role of phonon dispersion on SC and CDW order in such models. We quantify the effect of finite phonon bandwidth and curvature on the critical temperature Tcdw for CDW order and also uncover several novel features of diagonal long-range order in the phase diagram, including a competition between charge patterns at momenta q =(π ,π ) and q =(0 ,π ) which lends insight into the relationship between Fermi surface nesting and the wave vector at which charge order occurs. We also demonstrate SC order at half filling in situations where a nonzero bandwidth sufficiently suppresses Tcdw.
Stewart, Frank M.; Levin, Bruce R.
1977-01-01
A mathematical model for the population dynamics of conjugationally transmitted plasmids in bacterial populations is presented and its properties analyzed. Consideration is given to nonbacteriocinogenic factors that are incapable of incorporation into the chromosome of their host cells, and to bacterial populations maintained in either continuous (chemostat) or discrete (serial transfer) culture. The conditions for the establishment and maintenance of these infectious extrachromosomal elements and equilibrium frequencies of cells carrying them are presented for different values of the biological parameters: population growth functions, conjugational transfer and segregation rate constants. With these parameters in a biologically realistic range, the theory predicts a broad set of physical conditions, resource concentrations and dilution rates, where conjugationally transmitted plasmids can become established and where cells carrying them will maintain high frequencies in bacterial populations. This can occur even when plasmid-bearing cells are much less fit (i.e., have substantially lower growth rates) than cells free of these factors. The implications of these results and the reality and limitations of the model are discussed and the values of its parameters in natural populations speculated upon. PMID:17248761
Surface density: a new parameter in the fundamental metallicity relation of star-forming galaxies
NASA Astrophysics Data System (ADS)
Hashimoto, Tetsuya; Goto, Tomotsugu; Momose, Rieko
2018-04-01
Star-forming galaxies display a close relation among stellar mass, metallicity, and star formation rate (or molecular-gas mass). This is known as the fundamental metallicity relation (FMR) (or molecular-gas FMR), and it has a profound implication on models of galaxy evolution. However, there still remains a significant residual scatter around the FMR. We show here that a fourth parameter, the surface density of stellar mass, reduces the dispersion around the molecular-gas FMR. In a principal component analysis of 29 physical parameters of 41 338 star-forming galaxies, the surface density of stellar mass is found to be the fourth most important parameter. The new 4D fundamental relation forms a tighter hypersurface that reduces the metallicity dispersion to 50 per cent of that of the molecular-gas FMR. We suggest that future analyses and models of galaxy evolution should consider the FMR in a 4D space that includes surface density. The dilution time-scale of gas inflow and the star-formation efficiency could explain the observational dependence on surface density of stellar mass.
Riek, A; Klinkert, A; Gerken, M; Hummel, J; Moors, E; Südekum, K-H
2013-03-01
Despite the fact that llamas have become increasingly popular as companion and farm animals in both Europe and North America, scientific knowledge on their nutrient requirements is scarce. Compared with other livestock species, relatively little is known especially about the nutrient and energy requirements for lactating llamas. Therefore, we aimed to measure milk output in llama dams using an isotope dilution technique and relate it to energy intakes at different stages of lactation. We also validated the dilution technique by measuring total water turnover (TWT) directly and comparing it with values estimated by the isotope dilution technique. Our study involved 5 lactating llama dams and their suckling young. Milk output and TWT were measured at 4 stages of lactation (wk 3, 10, 18, and 26 postpartum). The method involved the application of the stable hydrogen isotope deuterium ((2)H) to the lactating dam. Drinking water intake and TWT decreased significantly with lactation stage, whether estimated by the isotope dilution technique or calculated from drinking water and water ingested from feeds. In contrast, lactation stage had no effect on dry matter intake, metabolizable energy (ME) intake, or the milk water fraction (i.e., the ratio between milk water excreted and TWT). The ratios between TWT measured and TWT estimated (by isotope dilution) did not differ with lactation stage and were close to 100% in all measurement weeks, indicating that the D(2)O dilution technique estimated TWT with high accuracy and only small variations. Calculating the required ME intakes for lactation from milk output data and gross energy content of milk revealed that, with increasing lactation stage, ME requirements per day for lactation decreased but remained constant per kilogram of milk output. Total measured ME intakes at different stages of lactation were similar to calculated ME intakes from published recommendation models for llamas. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Asfora, Kattyenne Kabbaz; Santos, Maria do Carmo Moreira da Silva; Montes, Marcos Antonio Japiassú Resende; de Castro, Célia Maria Machado Barbosa
2005-02-01
The purpose of this study was to evaluate the biocompatibility of the most used bleaching materials for pulpless teeth, sodium perborate and 30% hydrogen peroxide, in an experimental model of macrophages, through analysis of the adherence index and the cellular morphology. Inflammatory macrophages were obtained from peritoneal washed of Wistar rats. The evaluation of the adherence capacity of these cells to the plastic surface was conducted in Eppendorf tubes containing RPMI, after treatment with the bleaching agents diluted in 1:10, 1:100 and 1:1000 for 15 and 30 min, and incubation at 37 degrees C and humidified atmosphere of 5% CO(2) in air. The cellular morphology was verified after incubation of the cells treated with the bleaching agents in culture plaques and compared with normal cells in culture medium. Results showed that sodium perborate neither increased the adherence index, nor altered the cellular morphology when compared to the control group. The distribution, cellular morphology, cytoplasmatic and nuclear characteristics, reproduced the aspects observed in normal macrophages. However, the treatment with 30% hydrogen peroxide presented an increase in adherence index when compared to the control group (RPMI), in all dilutions, according to Mann-Whitney test (n=08 and p=0.001 for dilutions 1:10 and 1:100, and n=08 and p=0.004 for dilution 1:1000). The morphology of the cells treated with this product presented structural alterations proportionally greater, depending on the dilution of this bleaching agent, and even in the highest dilution (1:1000) the cells presented very evident alterations. This irreversible cellular damage as well as the elevation of the adherence index, characterizes the aggressive potential of 30% hydrogen peroxide, regardless of its dilution. Sodium perborate, on the other hand, showed biocompatibitity, since, no morphological nor functional alteration was observed in macrophages.
Hossain, Mirza Akram; Friciu, Mihaela; Aubin, Sebastien; Leclair, Grégoire
2014-04-15
The stability of penicillin G sodium solutions stored in polyvinyl chloride (PVC) bags or elastomeric pump containers was studied. Test samples were prepared by diluting powdered penicillin G sodium (10 million units/10-mL vial) to solutions of 2,500 or 50,000 units/mL with 0.9% sodium chloride injection or 5% dextrose injection. The preparations were transferred to 250-mL PVC bags and elastomeric pump containers. All samples were prepared in triplicate and stored at 5°C. Chemical stability was measured by a stability-indicating high-performance liquid chromatographic (HPLC) assay and by pH evaluation. Particulate matter was evaluated according to compendial standards using a light-obscuration particle count test. Preparations were visually examined throughout the study. After 21 days of storage, all test samples remained chemically stable, with an HPLC assay recovery value of more than 90% of the initial value. After 28 days, all samples prepared with either diluent and stored in PVC bags, as well as the samples diluted to 2,500 units/mL with sodium chloride injection and stored in elastomeric pump containers, did not meet the recovery acceptance limit. For all test samples, the mean pH consistently decreased during storage, from about 6.4 to about 5.5. Particle counts remained acceptable throughout the study, and no change in appearance was observed. Penicillin G for injection (2,500 and 50,000 units/mL) diluted in 0.9% sodium chloride injection or 5% dextrose injection and stored at 5°C in PVC containers or elastomeric pump containers was physically and chemically stable for a period of at least 21 days.
Dilution-Induced Formation of Hybrid Perovskite Nanoplatelets.
Tong, Yu; Ehrat, Florian; Vanderlinden, Willem; Cardenas-Daw, Carlos; Stolarczyk, Jacek K; Polavarapu, Lakshminarayana; Urban, Alexander S
2016-12-27
Perovskite nanocrystals (NCs) are an important extension to the fascinating field of hybrid halide perovskites. Showing significantly enhanced photoluminescence (PL) efficiency and emission wavelengths tunable through halide content and size, they hold great promise for light-emitting applications. Despite the rapid advancement in this field, the physical nature and size-dependent excitonic properties have not been well investigated due to the challenges associated with their preparation. Herein we report the spontaneous formation of highly luminescent, quasi-2D organic-inorganic hybrid perovskite nanoplatelets (NPls) upon dilution of a dispersion of bulk-like NCs. The fragmentation of the large NCs is attributed to osmotic swelling induced by the added solvent. An excess of organic ligands in the solvent quickly passivates the newly formed surfaces, stabilizing the NPls in the process. The thickness of the NPls can be controlled both by the dilution level and by the ligand concentration. Such colloidal NPls and their thin films were found to be extremely stable under continuous UV light irradiation. Full tunability of the NPl emission wavelength is achieved by varying the halide ion used (bromide, iodide). Additionally, time-resolved PL measurements reveal an increasing radiative decay rate with decreasing thickness of the NPls, likely due to an increasing exciton binding energy. Similarly, measurements on iodide-containing NPls show a transformation from biexponential to monoexponential PL decay with decreasing thickness, likely due to an increasing fraction of excitonic recombination. This interesting phenomenon of change in fluorescence upon dilution is a result of the intricate nature of the perovskite material itself and is uncommon in inorganic materials. Our findings enable the synthesis of halide perovskite NCs with high quantum efficiency and good stability as well as a tuning of both their optical and morphological properties.
Enhancing coherence in molecular spin qubits via atomic clock transitions
NASA Astrophysics Data System (ADS)
Shiddiq, Muhandis; Komijani, Dorsa; Duan, Yan; Gaita-Ariño, Alejandro; Coronado, Eugenio; Hill, Stephen
2016-03-01
Quantum computing is an emerging area within the information sciences revolving around the concept of quantum bits (qubits). A major obstacle is the extreme fragility of these qubits due to interactions with their environment that destroy their quantumness. This phenomenon, known as decoherence, is of fundamental interest. There are many competing candidates for qubits, including superconducting circuits, quantum optical cavities, ultracold atoms and spin qubits, and each has its strengths and weaknesses. When dealing with spin qubits, the strongest source of decoherence is the magnetic dipolar interaction. To minimize it, spins are typically diluted in a diamagnetic matrix. For example, this dilution can be taken to the extreme of a single phosphorus atom in silicon, whereas in molecular matrices a typical ratio is one magnetic molecule per 10,000 matrix molecules. However, there is a fundamental contradiction between reducing decoherence by dilution and allowing quantum operations via the interaction between spin qubits. To resolve this contradiction, the design and engineering of quantum hardware can benefit from a ‘bottom-up’ approach whereby the electronic structure of magnetic molecules is chemically tailored to give the desired physical behaviour. Here we present a way of enhancing coherence in solid-state molecular spin qubits without resorting to extreme dilution. It is based on the design of molecular structures with crystal field ground states possessing large tunnelling gaps that give rise to optimal operating points, or atomic clock transitions, at which the quantum spin dynamics become protected against dipolar decoherence. This approach is illustrated with a holmium molecular nanomagnet in which long coherence times (up to 8.4 microseconds at 5 kelvin) are obtained at unusually high concentrations. This finding opens new avenues for quantum computing based on molecular spin qubits.
Modes of self-organization of diluted bubbly liquids in acoustic fields: One-dimensional theory.
Gumerov, Nail A; Akhatov, Iskander S
2017-02-01
The paper is dedicated to mathematical modeling of self-organization of bubbly liquids in acoustic fields. A continuum model describing the two-way interaction of diluted polydisperse bubbly liquids and acoustic fields in weakly-nonlinear approximation is studied analytically and numerically in the one-dimensional case. It is shown that the regimes of self-organization of monodisperse bubbly liquids can be controlled by only a few dimensionless parameters. Two basic modes, clustering and propagating shock waves of void fraction (acoustically induced transparency), are identified and criteria for their realization in the space of parameters are proposed. A numerical method for solving of one-dimensional self-organization problems is developed. Computational results for mono- and polydisperse systems are discussed.
New model system in radiation cryochemistry:. hyperquenched glassy water
NASA Astrophysics Data System (ADS)
Bednarek, Janusz; Plonka, Andrzej; Hallbrucker, Andreas; Mayer, Erwin
1999-08-01
Radicals generated by high-energy irradiation of liquid water, short-lived at ambient temperature, can be studied at cryogenic temperatures after irradiating water and dilute aqueous solutions in their glassy states which can be obtained by so-called hyperquenching of the liquids at cooling rates of ˜10 6-10 7 K s -1. In the glassy states of hyperquenched dilute aqueous solutions there is no problem with phase separation and radiolysis of glassy water is quite distinct from radiolysis of polycrystalline ice obtained from liquid water on slow-cooling in liquid nitrogen.
NASA Technical Reports Server (NTRS)
Distefano, S.; Gupta, A.; Ingham, J. D.
1983-01-01
A rhodium-based catalyst was prepared and preliminary experiments were completed where the catalyst appeared to decarboxylate dilute acids at concentrations of 1 to 10 vol%. Electron spin resonance spectroscoy was used to characterize the catalyst as a first step leading toward modeling and optimization of rhodium catalysts. Also, a hybrid chemical/biological process for the production of hydrocarbons has been assessed. These types of catalysts could greatly increase energy efficiency of this process.
NASA Astrophysics Data System (ADS)
Dioguardi, Fabio; Dellino, Pierfrancesco
2017-04-01
Dilute pyroclastic density currents (DPDC) are ground-hugging turbulent gas-particle flows that move down volcano slopes under the combined action of density contrast and gravity. DPDCs are dangerous for human lives and infrastructures both because they exert a dynamic pressure in their direction of motion and transport volcanic ash particles, which remain in the atmosphere during the waning stage and after the passage of a DPDC. Deposits formed by the passage of a DPDC show peculiar characteristics that can be linked to flow field variables with sedimentological models. Here we present PYFLOW_2.0, a significantly improved version of the code of Dioguardi and Dellino (2014) that was already extensively used for the hazard assessment of DPDCs at Campi Flegrei and Vesuvius (Italy). In the latest new version the code structure, the computation times and the data input method have been updated and improved. A set of shape-dependent drag laws have been implemented as to better estimate the aerodynamic drag of particles transported and deposited by the flow. A depositional model for calculating the deposition time and rate of the ash and lapilli layer formed by the pyroclastic flow has also been included. This model links deposit (e.g. componentry, grainsize) to flow characteristics (e.g. flow average density and shear velocity), the latter either calculated by the code itself or given in input by the user. The deposition rate is calculated by summing the contributions of each grainsize class of all components constituting the deposit (e.g. juvenile particles, crystals, etc.), which are in turn computed as a function of particle density, terminal velocity, concentration and deposition probability. Here we apply the concept of deposition probability, previously introduced for estimating the deposition rates of turbidity currents (Stow and Bowen, 1980), to DPDCs, although with a different approach, i.e. starting from what is observed in the deposit (e.g. the weight fractions ratios between the different grainsize classes). In this way, more realistic estimates of the deposition rate can be obtained, as the deposition probability of different grainsize constituting the DPDC deposit could be different and not necessarily equal to unity. Calculations of the deposition rates of large-scale experiments, previously computed with different methods, have been performed as experimental validation and are presented. Results of model application to DPDCs and turbidity currents will also be presented. Dioguardi, F, and P. Dellino (2014), PYFLOW: A computer code for the calculation of the impact parameters of Dilute Pyroclastic Density Currents (DPDC) based on field data, Powder Technol., 66, 200-210, doi:10.1016/j.cageo.2014.01.013 Stow, D. A. V., and A. J. Bowen (1980), A physical model for the transport and sorting of fine-grained sediment by turbidity currents, Sedimentology, 27, 31-46
Modeling the Effects of Perceptual Load: Saliency, Competitive Interactions, and Top-Down Biases
Neokleous, Kleanthis; Shimi, Andria; Avraamides, Marios N.
2016-01-01
A computational model of visual selective attention has been implemented to account for experimental findings on the Perceptual Load Theory (PLT) of attention. The model was designed based on existing neurophysiological findings on attentional processes with the objective to offer an explicit and biologically plausible formulation of PLT. Simulation results verified that the proposed model is capable of capturing the basic pattern of results that support the PLT as well as findings that are considered contradictory to the theory. Importantly, the model is able to reproduce the behavioral results from a dilution experiment, providing thus a way to reconcile PLT with the competing Dilution account. Overall, the model presents a novel account for explaining PLT effects on the basis of the low-level competitive interactions among neurons that represent visual input and the top-down signals that modulate neural activity. The implications of the model concerning the debate on the locus of selective attention as well as the origins of distractor interference in visual displays of varying load are discussed. PMID:26858668
Theoretical approaches to the steady-state statistical physics of interacting dissipative units
NASA Astrophysics Data System (ADS)
Bertin, Eric
2017-02-01
The aim of this review is to provide a concise overview of some of the generic approaches that have been developed to deal with the statistical description of large systems of interacting dissipative ‘units’. The latter notion includes, e.g. inelastic grains, active or self-propelled particles, bubbles in a foam, low-dimensional dynamical systems like driven oscillators, or even spatially extended modes like Fourier modes of the velocity field in a fluid. We first review methods based on the statistical properties of a single unit, starting with elementary mean-field approximations, either static or dynamic, that describe a unit embedded in a ‘self-consistent’ environment. We then discuss how this basic mean-field approach can be extended to account for spatial dependences, in the form of space-dependent mean-field Fokker-Planck equations, for example. We also briefly review the use of kinetic theory in the framework of the Boltzmann equation, which is an appropriate description for dilute systems. We then turn to descriptions in terms of the full N-body distribution, starting from exact solutions of one-dimensional models, using a matrix-product ansatz method when correlations are present. Since exactly solvable models are scarce, we also present some approximation methods which can be used to determine the N-body distribution in a large system of dissipative units. These methods include the Edwards approach for dense granular matter and the approximate treatment of multiparticle Langevin equations with colored noise, which models systems of self-propelled particles. Throughout this review, emphasis is put on methodological aspects of the statistical modeling and on formal similarities between different physical problems, rather than on the specific behavior of a given system.
Beauvais, Francis
2017-02-01
In previous articles, a description of 'unconventional' experiments (e.g. in vitro or clinical studies based on high dilutions, 'memory of water' or homeopathy) using quantum-like probability was proposed. Because the mathematical formulations of quantum logic are frequently an obstacle for physicians and biologists, a modified modeling that rests on classical probability is described in the present article. This modeling is inspired from a relational interpretation of quantum physics that applies not only to microscopic objects, but also to macroscopic structures, including experimental devices and observers. In this framework, any outcome of an experiment is not an absolute property of the observed system as usually considered but is expressed relatively to an observer. A team of interacting observers is thus described from an external view point based on two principles: the outcomes of experiments are expressed relatively to each observer and the observers agree on outcomes when they interact with each other. If probability fluctuations are also taken into account, correlations between 'expected' and observed outcomes emerge. Moreover, quantum-like correlations are predicted in experiments with local blind design but not with centralized blind design. No assumption on 'memory' or other physical modification of water is necessary in the present description although such hypotheses cannot be formally discarded. In conclusion, a simple modeling of 'unconventional' experiments based on classical probability is now available and its predictions can be tested. The underlying concepts are sufficiently intuitive to be spread into the homeopathy community and beyond. It is hoped that this modeling will encourage new studies with optimized designs for in vitro experiments and clinical trials. Copyright © 2017 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dey, Arka; Das, Mrinmay; Datta, Joydeep; Jana, Rajkumar; Dhar, Joydeep; Sil, Sayantan; Biswas, Debasish; Banerjee, Chandan; Ray, Partha Pratim
2016-07-01
Here we have presented the results of large area (30 × 30 cm2) silicon-hydrogen alloy material and solar cell by argon dilution method. As an alternative to hydrogen dilution, argon dilution method has been applied to develop single junction solar cell with appreciable stability. Optimization of deposition conditions revealed that 95% argon dilution gives a nanostructured material with improved transport property and less light induced degradation. The minority carrier diffusion length (L d ) and mobility-lifetime (μτ) product of the material with 95% argon dilution degrades least after light soaking. Also the density of states (DOS) below conduction level reveals that this material is less defective. Solar cell with this argon diluted material has been fabricated with all the layers deposited by argon dilution method. Finally we have compared the argon diluted solar cell results with the optimized hydrogen diluted solar cell. Light soaking study proves that it is possible to develop stable solar cell on large area by argon dilution method and that the degradation of argon diluted solar cell is less than that of hydrogen diluted one. [Figure not available: see fulltext.
Dynamics of Crust Dissolution and Gas Release in Tank 241-SY-101
DOE Office of Scientific and Technical Information (OSTI.GOV)
SD Rassat; CW Stewart; BE Wells
2000-01-26
Due primarily to an increase in floating crust layer thickness, the waste level in Hanford Tank 241-SY-101 (SY-101) has grown appreciably, and the flammable gas volume stored in the crust has become a potential hazard. To remediate gas retention in the crust and the potential for buoyant displacement gas releases from the nonconnective layer at the bottom of the tank, SY-101 will be diluted to dissolve a large fraction of the solids that allow the waste to retain gas. In this work we develop understanding of the state of the tank waste and some of its physical properties, investigate howmore » added water will be distributed in the tank and affect the waste, and use the information to evaluate mechanisms and rates of waste solids dissolution and gas release. This work was completed to address these questions and in support of planning and development of controls for the SY-101 Surface Level Rise Remediation Project. Particular emphasis is given to dissolution of and gas release from the crust, although the effects of back-dilution on all waste layers are addressed. The magnitude and rates of plausible gas release scenarios are investigated, and it is demonstrated that none of the identified mechanisms of continuous (dissolution-driven) or sudden gas release, even with conservative assumptions, lead to domespace hydrogen concentrations exceeding the lower flammability limit. This report documents the results of studies performed in 1999 to address the issues of the dynamics, of crust dissolution and gas release in SY-101. It contains a brief introduction to the issues at hand; a summary of our knowledge of the SY-101 crust and other waste properties, including gas fractions, strength and volubility; a description of the buoyancy and dissolution models that are applied to predict the crust response to waste transfers and back dilution; and a discussion of the effectiveness of mixing for water added below the crust and the limited potential for significant stratification resulting from such additions. The effect of the mixer pump on stratified fluid layers below the crust, should they form, is also addressed. It is hypothesized that the crust may sink after the most gaseous portion near the base of the crust is dissolved and after the liquid layer below the crust is diluted sufficiently. Then we discuss the consequences of crust sinking in terms of gas release, the ability of the in-tank mixer pump to remobilize it, and the potential for recurrence of buoyant displacement gas release events.« less
Johns, Jennifer L.; Moorhead, Kaitlin A.; Hu, Jing; Moorhead, Roberta C.
2018-01-01
Clinical pathology testing of rodents is often challenging due to insufficient sample volume. One solution in clinical veterinary and exploratory research environments is dilution of samples prior to analysis. However, published information on the impact of preanalytical sample dilution on rodent biochemical data is incomplete. The objective of this study was to evaluate the effects of preanalytical sample dilution on biochemical analysis of mouse and rat serum samples utilizing the Siemens Dimension Xpand Plus. Rats were obtained from end of study research projects. Mice were obtained from sentinel testing programs. For both, whole blood was collected via terminal cardiocentesis into empty tubes and serum was harvested. Biochemical parameters were measured on fresh and thawed frozen samples run straight and at dilution factors 2–10. Dilutions were performed manually, utilizing either ultrapure water or enzyme diluent per manufacturer recommendations. All diluted samples were generated directly from the undiluted sample. Preanalytical dilution caused clinically unacceptable bias in most analytes at dilution factors four and above. Dilution-induced bias in total calcium, creatinine, total bilirubin, and uric acid was considered unacceptable with any degree of dilution, based on the more conservative of two definitions of acceptability. Dilution often caused electrolyte values to fall below assay range precluding evaluation of bias. Dilution-induced bias occurred in most biochemical parameters to varying degrees and may render dilution unacceptable in the exploratory research and clinical veterinary environments. Additionally, differences between results obtained at different dilution factors may confound statistical comparisons in research settings. Comparison of data obtained at a single dilution factor is highly recommended. PMID:29497614
Heymsfield, Steven B.; Ebbeling, Cara B.; Zheng, Jolene; Pietrobelli, Angelo; Strauss, Boyd J.; Silva, Analiza M.; Ludwig, David S.
2015-01-01
Excess adiposity is the main phenotypic feature that defines human obesity and that plays a pathophysiological role in most chronic diseases. Measuring the amount of fat mass present is thus a central aspect of studying obesity at the individual and population levels. Nevertheless, a consensus is lacking among investigators on a single accepted “reference” approach for quantifying fat mass in vivo. While the research community generally relies on the multicomponent body-volume class of “reference” models for quantifying fat mass, no definable guide discerns among different applied equations for partitioning the four (fat, water, protein, and mineral mass) or more quantified components, standardizes “adjustment” or measurement system approaches for model-required labeled water dilution volumes and bone mineral mass estimates, or firmly establishes the body temperature at which model physical properties are assumed. The resulting differing reference strategies for quantifying body composition in vivo leads to small but under some circumstances important differences in the amount of measured body fat. Recent technological advances highlight opportunities to expand model applications to new subject groups and measured components such as total body protein. The current report reviews the historical evolution of multicomponent body volume-based methods in the context of prevailing uncertainties and future potential. PMID:25645009
ANALYSIS OF BORON DILUTION TRANSIENTS IN PWRS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DIAMOND,D.J.BROMLEY,B.P.ARONSON,A.L.
2004-02-04
A study has been carried out with PARCS/RELAP5 to understand the consequences of hypothetical boron dilution events in pressurized water reactors. The scenarios of concern start with a small-break loss-of-coolant accident. If the event leads to boiling in the core and then the loss of natural circulation, a boron-free condensate can accumulate in the cold leg. The dilution event happens when natural circulation is re-established or a reactor coolant pump (RCP) is restarted in violation of operating procedures. This event is of particular concern in B&W reactors with a lowered-loop design and is a Generic Safety Issue for the U.S.more » Nuclear Regulatory Commission. The results of calculations with the reestablishment of natural circulation show that there is no unacceptable fuel damage. This is determined by calculating the maximum fuel pellet enthalpy, based on the three-dimensional model, and comparing it with the criterion for damage. The calculation is based on a model of a B&W reactor at beginning of the fuel cycle. If an RCP is restarted, unacceptable fuel damage may be possible in plants with sufficiently large volumes of boron-free condensate in the cold leg.« less
Rudd, Robert E; Cabot, William H; Caspersen, Kyle J; Greenough, Jeffrey A; Richards, David F; Streitz, Frederick H; Miller, Paul L
2012-03-01
We use molecular dynamics (MD) to simulate diffusion in molten aluminum-copper (AlCu) alloys. The self-diffusivities and Maxwell-Stefan diffusivities are calculated for AlCu mixtures using the Green-Kubo formulas at temperatures from 1000 to 4000 K and pressures from 0 to 25 GPa, along with additional points at higher temperatures and pressures. The diffusivities are corrected for finite-size effects. The Maxwell-Stefan diffusivity is compared to the diffusivity calculated from the self-diffusivities using a generalization of the Darken equation. We find that the effects of cross-correlation are small. Using the calculated self-diffusivities, we have assessed whether dilute hard-sphere and dilute Lennard-Jones models apply to the molten mixture. Neither of the two dilute gas diffusivities describes the diffusivity in molten Al and Cu. We report generalized analytic models for the self-diffusivities and interdiffusivity (mutual diffusivity) that fit the MD results well. The MD-derived transport coefficients are in good agreement with the available experimental data. We also report MD calculations of the viscosity and an analytic fit to those results. The ionic thermal conductivity is discussed briefly.
Experimental neuropharmacology of Gelsemium sempervirens: Recent advances and debated issues.
Bellavite, Paolo; Bonafini, Clara; Marzotto, Marta
Gelsemium sempervirens L. (Gelsemium) is traditionally used for its anxiolytic-like properties and its action mechanism in laboratory models are under scrutiny. Evidence from rodent models was reported suggesting the existence of a high sensitivity of central nervous system to anxiolytic power of Gelsemium extracts and Homeopathic dilutions. In vitro investigation of extremely low doses of this plant extract showed a modulation of gene expression of human neurocytes. These studies were criticized in a few commentaries, generated a debate in literature and were followed by further experimental studies from various laboratories. Toxic doses of Gelsemium cause neurological signs characterized by marked weakness and convulsions, while ultra-low doses or high Homeopathic dilutions counteract seizures induced by lithium and pilocarpine, decrease anxiety after stress and increases the anti-stress allopregnanolone hormone, through glycine receptors. Low (non-Homeopathic) doses of this plant or its alkaloids decrease neuropathic pain and c-Fos expression in mice brain and oxidative stress. Due to the complexity of the matter, several aspects deserve interpretation and the main controversial topics, with a focus on the issues of high dilution pharmacology, are discussed and clarified. Copyright © 2017 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rudd, Robert E.; Cabot, William H.; Caspersen, Kyle J.; Greenough, Jeffrey A.; Richards, David F.; Streitz, Frederick H.; Miller, Paul L.
2012-03-01
We use molecular dynamics (MD) to simulate diffusion in molten aluminum-copper (AlCu) alloys. The self-diffusivities and Maxwell-Stefan diffusivities are calculated for AlCu mixtures using the Green-Kubo formulas at temperatures from 1000 to 4000 K and pressures from 0 to 25 GPa, along with additional points at higher temperatures and pressures. The diffusivities are corrected for finite-size effects. The Maxwell-Stefan diffusivity is compared to the diffusivity calculated from the self-diffusivities using a generalization of the Darken equation. We find that the effects of cross-correlation are small. Using the calculated self-diffusivities, we have assessed whether dilute hard-sphere and dilute Lennard-Jones models apply to the molten mixture. Neither of the two dilute gas diffusivities describes the diffusivity in molten Al and Cu. We report generalized analytic models for the self-diffusivities and interdiffusivity (mutual diffusivity) that fit the MD results well. The MD-derived transport coefficients are in good agreement with the available experimental data. We also report MD calculations of the viscosity and an analytic fit to those results. The ionic thermal conductivity is discussed briefly.
NASA Astrophysics Data System (ADS)
Liang, Yimin; Lan, Junkang; Wen, Zhixiong
2018-01-01
In order to predict the pollution of underground aquifers and rivers by the proposed project, Specialized hydrogeological investigation was carried out. After hydrogeological surveying and mapping, drilling, and groundwater level monitoring, the scope of the hydrogeological unit and the regional hydrogeological condition were found out. The permeability coefficients of the aquifers were also obtained by borehole water injection tests. In order to predict the impact on groundwater environment by the project, a GMS software was used in numerical simulation. The simulation results show that when unexpected sewage leakage accident happened, the pollutants will be gradually diluted by groundwater, and the diluted contaminants will slowly spread to southeast with groundwater flow, eventually they are discharged into Gantang River. However, the process of the pollutants discharging into the river is very long, the long-term dilution of the river water will keep Gantang River from being polluted.
Charge Transfer and Collection in Dilute Organic Donor-Acceptor Heterojunction Blends.
Ding, Kan; Liu, Xiao; Forrest, Stephen R
2018-05-09
Experimental and theoretical approaches are used to understand the role of nanomorphology on exciton dissociation and charge collection at dilute donor-acceptor (D-A) organic heterojunctions (HJs). Specifically, two charge transfer (CT) states in D-A mixed HJs comprising nanocrystalline domains of tetraphenyldibenzoperiflanthene (DBP) as the donor and C 70 as the acceptor are unambiguously related to the nanomorphology of the mixed layer. Alternating DBP:C 70 multilayer stacks are used to identify and control the optical properties of the CT states, as well as to simulate the dilute mixed heterojunctions. A kinetic Monte Carlo model along with photoluminescence spectroscopy and scanning transmission electron microscopy are used to quantitatively evaluate the layer morphology under various growth conditions. As a result, we are able to understand the counterintuitive observation of high charge extraction efficiency and device performance of DBP:C 70 mixed layer photovoltaics at surprisingly low (∼10%) donor concentrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hare, C.T.
The project included measurement of emissions from four light-duty diesel automobiles operated on nine test fuels, and additional test work at non-standard (both advanced and retarded) injection timing using four of the nine fuels. The four test vehicles were a Mercedes 240D, Oldsmobile 5.7-liter, Peugeot 2.3-liter, and Volkswagen 1.6-liter, all 1982 models. Pre-identified fuel parameters intentionally varied among the test fuels included aromaticity, 10% distilled temperature, and 90% distilled temperature. Two steady-state test conditions (30 mph cruise and 56 BMEP/1700 rpm) were used. Visible smoke, dilute hydrocarbons, dilute CO/sub 2/, and dilute NO/sub x/ were measured continuously during all themore » tests, with key mode data tabulation for FTP (light-duty transient) cycles.« less
NASA Astrophysics Data System (ADS)
Evrard, Olivier; Laceby, J. Patrick; Onda, Yuichi; Wakiyama, Yoshifumi; Jaegler, Hugo; Lefèvre, Irène
2016-10-01
Fallout from the Fukushima Dai-ichi nuclear power plant accident resulted in a 3000-km2 radioactive contamination plume. Here, we model the progressive dilution of the radiocesium contamination in 327 sediment samples from two neighboring catchments with different timing of soil decontamination. Overall, we demonstrate that there has been a ~90% decrease of the contribution of upstream contaminated soils to sediment transiting the coastal plains between 2012 (median - M - contribution of 73%, mean absolute deviation - MAD - of 27%) and 2015 (M 9%, MAD 6%). The occurrence of typhoons and the progress of decontamination in different tributaries of the Niida River resulted in temporary increases in local contamination. However, the much lower contribution of upstream contaminated soils to coastal plain sediment in November 2015 demonstrates that the source of the easily erodible, contaminated material has potentially been removed by decontamination, diluted by subsoils, or eroded and transported to the Pacific Ocean.
Głogocka, Daria; Przybyło, Magdalena; Langner, Marek
2017-04-01
The ionic composition of intracellular space is rigorously maintained in the expense of high-energy expenditure. It has been recently postulated that the cytoplasmic ionic composition is optimized so the energy cost of the fluctuations of calcium ion concentration is minimized. Specifically, thermodynamic arguments have been produced to show that the presence of potassium ions at concentrations higher than 100 mM reduce extend of the energy dissipation required for the dilution of calcium cations. No such effect has been measured when sodium ions were present in the solution or when the other divalent cation magnesium was diluted. The experimental observation has been interpreted as the indication of the formation of ionic clusters composed of calcium, chloride and potassium. In order to test the possibility that such clusters may be preserved in biological space, the thermodynamics of ionic mixtures dilution in solutions containing albumins and model lipid bilayers have been measured. Obtained thermograms clearly demonstrate that the energetics of calcium/potassium mixture is qualitatively different from calcium/sodium mixture indicating that the presence of the biologically relevant quantities of proteins and membrane hydrophilic surfaces do not interfere with the properties of the intracellular aqueous phase.
Cytotoxic effects of ultra-diluted remedies on breast cancer cells.
Frenkel, Moshe; Mishra, Bal Mukund; Sen, Subrata; Yang, Peiying; Pawlus, Alison; Vence, Luis; Leblanc, Aimee; Cohen, Lorenzo; Banerji, Pratip; Banerji, Prasanta
2010-02-01
The use of ultra-diluted natural products in the management of disease and treatment of cancer has generated a lot of interest and controversy. We conducted an in vitro study to determine if products prescribed by a clinic in India have any effect on breast cancer cell lines. We studied four ultra-diluted remedies (Carcinosin, Phytolacca, Conium and Thuja) against two human breast adenocarcinoma cell lines (MCF-7 and MDA-MB-231) and a cell line derived from immortalized normal human mammary epithelial cells (HMLE). The remedies exerted preferential cytotoxic effects against the two breast cancer cell lines, causing cell cycle delay/arrest and apoptosis. These effects were accompanied by altered expression of the cell cycle regulatory proteins, including downregulation of phosphorylated Rb and upregulation of the CDK inhibitor p27, which were likely responsible for the cell cycle delay/arrest as well as induction of the apoptotic cascade that manifested in the activation of caspase 7 and cleavage of PARP in the treated cells. The findings demonstrate biological activity of these natural products when presented at ultra-diluted doses. Further in-depth studies with additional cell lines and animal models are warranted to explore the clinical applicability of these agents.
Bulk viscosity of molecular fluids
NASA Astrophysics Data System (ADS)
Jaeger, Frederike; Matar, Omar K.; Müller, Erich A.
2018-05-01
The bulk viscosity of molecular models of gases and liquids is determined by molecular simulations as a combination of a dilute gas contribution, arising due to the relaxation of internal degrees of freedom, and a configurational contribution, due to the presence of intermolecular interactions. The dilute gas contribution is evaluated using experimental data for the relaxation times of vibrational and rotational degrees of freedom. The configurational part is calculated using Green-Kubo relations for the fluctuations of the pressure tensor obtained from equilibrium microcanonical molecular dynamics simulations. As a benchmark, the Lennard-Jones fluid is studied. Both atomistic and coarse-grained force fields for water, CO2, and n-decane are considered and tested for their accuracy, and where possible, compared to experimental data. The dilute gas contribution to the bulk viscosity is seen to be significant only in the cases when intramolecular relaxation times are in the μs range, and for low vibrational wave numbers (<1000 cm-1); This explains the abnormally high values of bulk viscosity reported for CO2. In all other cases studied, the dilute gas contribution is negligible and the configurational contribution dominates the overall behavior. In particular, the configurational term is responsible for the enhancement of the bulk viscosity near the critical point.
Measurement of plasma unbound unconjugated bilirubin.
Ahlfors, C E
2000-03-15
A method is described for measuring the unconjugated fraction of the unbound bilirubin concentration in plasma by combining the peroxidase method for determining unbound bilirubin with a diazo method for measuring conjugated and unconjugated bilirubin. The accuracy of the unbound bilirubin determination is improved by decreasing sample dilution, eliminating interference by conjugated bilirubin, monitoring changes in bilirubin concentration using diazo derivatives, and correcting for rate-limiting dissociation of bilirubin from albumin. The unbound unconjugated bilirubin concentration by the combined method in plasma from 20 jaundiced newborns was significantly greater than and poorly correlated with the unbound bilirubin determined by the existing peroxidase method (r = 0.7), possibly due to differences in sample dilution between the methods. The unbound unconjugated bilirubin was an unpredictable fraction of the unbound bilirubin in plasma samples from patients with similar total bilirubin concentrations but varying levels of conjugated bilirubin. A bilirubin-binding competitor was readily detected at a sample dilution typically used for the combined test but not at the dilution used for the existing peroxidase method. The combined method is ideally suited to measuring unbound unconjugated bilirubin in jaundiced human newborns or animal models of kernicterus. Copyright 2000 Academic Press.
Magnetic polarons in a nonequilibrium polariton condensate
NASA Astrophysics Data System (ADS)
Mietki, Paweł; Matuszewski, Michał
2017-09-01
We consider a condensate of exciton polaritons in a diluted magnetic semiconductor microcavity. Such a system may exhibit magnetic self-trapping in the case of sufficiently strong coupling between polaritons and magnetic ions embedded in the semiconductor. We investigate the effect of the nonequilibrium nature of exciton polaritons on the physics of the resulting self-trapped magnetic polarons. We find that multiple polarons can exist at the same time, and we derive a critical condition for self-trapping that is different from the one predicted previously in the equilibrium case. Using the Bogoliubov-de Gennes approximation, we calculate the excitation spectrum and provide a physical explanation in terms of the effective magnetic attraction between polaritons, mediated by the ion subsystem.
Separating Dark Physics from Physical Darkness: Minimalist Modified Gravity vs. Dark Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huterer, Dragan; Linder, Eric V.
The acceleration of the cosmic expansion may be due to a new component of physical energy density or a modification of physics itself. Mapping the expansion of cosmic scales and the growth of large scale structure in tandem can provide insights to distinguish between the two origins. Using Minimal Modified Gravity (MMG) - a single parameter gravitational growth index formalism to parameterize modified gravity theories - we examine the constraints that cosmological data can place on the nature of the new physics. For next generation measurements combining weak lensing, supernovae distances, and the cosmic microwave background we can extend themore » reach of physics to allow for fitting gravity simultaneously with the expansion equation of state, diluting the equation of state estimation by less than 25percent relative to when general relativity is assumed, and determining the growth index to 8percent. For weak lensing we examine the level of understanding needed of quasi- and nonlinear structure formation in modified gravity theories, and the trade off between stronger precision but greater susceptibility to bias as progressively more nonlinear information is used.« less
Separating dark physics from physical darkness: Minimalist modified gravity versus dark energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huterer, Dragan; Linder, Eric V.
The acceleration of the cosmic expansion may be due to a new component of physical energy density or a modification of physics itself. Mapping the expansion of cosmic scales and the growth of large scale structure in tandem can provide insights to distinguish between the two origins. Using Minimal Modified Gravity (MMG) - a single parameter gravitational growth index formalism to parametrize modified gravity theories - we examine the constraints that cosmological data can place on the nature of the new physics. For next generation measurements combining weak lensing, supernovae distances, and the cosmic microwave background we can extend themore » reach of physics to allow for fitting gravity simultaneously with the expansion equation of state, diluting the equation of state estimation by less than 25% relative to when general relativity is assumed, and determining the growth index to 8%. For weak lensing we examine the level of understanding needed of quasi- and nonlinear structure formation in modified gravity theories, and the trade off between stronger precision but greater susceptibility to bias as progressively more nonlinear information is used.« less
Takahashi, Masao
2010-01-01
The theoretical study of magnetic semiconductors using the dynamical coherent potential approximation (dynamical CPA) is briefly reviewed. First, we give the results for ferromagnetic semiconductors (FMSs) such as EuO and EuS by applying the dynamical CPA to the s-f model. Next, applying the dynamical CPA to a simple model for A1−xMnxB-type diluted magnetic semiconductors (DMSs), we show the results for three typical cases to clarify the nature and properties of the carrier states in DMSs. On the basis of this model, we discuss the difference in the optical band edges between II-V DMSs and III-V-based DMSs, and show that two types of ferromagnetism can occur in DMSs when carriers are introduced. The carrier-induced ferromagnetism of Ga1−xMnxAs is ascribed to a double-exchange (DE)-like mechanism realized in the magnetic impurity band/or in the band tail.
Risley, John C.; Granato, Gregory E.
2014-01-01
6. An analysis of the use of grab sampling and nonstochastic upstream modeling methods was done to evaluate the potential effects on modeling outcomes. Additional analyses using surrogate water-quality datasets for the upstream basin and highway catchment were provided for six Oregon study sites to illustrate the risk-based information that SELDM will produce. These analyses show that the potential effects of highway runoff on receiving-water quality downstream of the outfall depends on the ratio of drainage areas (dilution), the quality of the receiving water upstream of the highway, and the concentration of the criteria of the constituent of interest. These analyses also show that the probability of exceeding a water-quality criterion may depend on the input statistics used, thus careful selection of representative values is important.
Dilution jets in accelerated cross flows. Ph.D. Thesis Final Report
NASA Technical Reports Server (NTRS)
Lipshitz, A.; Greber, I.
1984-01-01
Results of flow visualization experiments and measurements of the temperature field produced by a single jet and a row of dilution jets issued into a reverse flow combustor are presented. The flow in such combustors is typified by transverse and longitudinal acceleration during the passage through its bending section. The flow visualization experiments are designed to examine the separate effects of longitudinal and transverse acceleration on the jet trajectory and spreading rate. A model describing a dense single jet in a lighter accelerating cross flow is developed. The model is based on integral conservation equations, including the pressure terms appropriate to accelerating flows. It uses a modified entrainment correlation obtained from previous experiments of a jet in a cross stream. The flow visualization results are compared with the model calculations in terms of trajectories and spreading rates. Each experiment is typified by a set of three parameters: momentum ratio, density ratio and the densimetric Froude number.
The role of particle collisions in pneumatic transport
NASA Technical Reports Server (NTRS)
Mastorakos, E.; Louge, M.; Jenkins, J. T.
1989-01-01
A model of dilute gas-solid flow in vertical risers is developed in which the particle phase is treated as a granular material, the balance equations for rapid granular flow are modified to incorporate the drag force from the gas, and boundary conditions, based on collisional exchanges of momentum and energy at the wall, are employed. In this model, it is assumed that the particle fluctuations are determined by inter-particle collisions only and that the turbulence of the gas is unaffected by the presence of the particles. The model is developed in the context of, but not limited to, steady, fully developed flow. A numerical solution of the resulting governing equations provides concentration profiles generally observed in dilute pneumatic flow, velocity profiles in good agreement with the measurements of Tsuji, et al. (1984), and an explanation for the enhancement of turbulence that they observed.
Garnier, Cédric; Mounier, Stéphane; Benaïm, Jean Yves
2004-10-01
Natural organic matter (NOM) behaviour towards proton is an important parameter to understand NOM fate in the environment. Moreover, it is necessary to determine NOM acid-base properties before investigating trace metals complexation by natural organic matter. This work focuses on the possibility to determine these acid-base properties by accurate and simple titrations, even at low organic matter concentrations. So, the experiments were conducted on concentrated and diluted solutions of extracted humic and fulvic acid from Laurentian River, on concentrated and diluted model solutions of well-known simple molecules (acetic and phenolic acids), and on natural samples from the Seine river (France) which are not pre-concentrated. Titration experiments were modelled by a 6 acidic-sites discrete model, except for the model solutions. The modelling software used, called PROSECE (Programme d'Optimisation et de SpEciation Chimique dans l'Environnement), has been developed in our laboratory, is based on the mass balance equilibrium resolution. The results obtained on extracted organic matter and model solutions point out a threshold value for a confident determination of the studied organic matter acid-base properties. They also show an aberrant decreasing carboxylic/phenolic ratio with increasing sample dilution. This shift is neither due to any conformational effect, since it is also observed on model solutions, nor to ionic strength variations which is controlled during all experiments. On the other hand, it could be the result of an electrode troubleshooting occurring at basic pH values, which effect is amplified at low total concentration of acidic sites. So, in our conditions, the limit for a correct modelling of NOM acid-base properties is defined as 0.04 meq of total analysed acidic sites concentration. As for the analysed natural samples, due to their high acidic sites content, it is possible to model their behaviour despite the low organic carbon concentration.
Designing of mouse model: a new approach for studying sulphur mustard-induced skin lesions.
Lomash, Vinay; Deb, Utsab; Rai, Renuka; Jadhav, Sunil E; Vijayaraghavan, R; Pant, S C
2011-08-01
This study was planned to design a mouse model for studying sulphur mustard (SM)-induced skin injury. SM was applied dermally at dose of 5 or 10 mg kg(-1) in polyethyleneglycol-300 (PEG-300) or dimethylsulphoxide (DMSO) or acetone once. The changes in body weight, organ body weight indices (OBWI) and haematological and oxidative stress parameters were investigated over a period of 3-7 days and supported by histopathological observations. Exposure to SM in PEG-300 or DMSO resulted in a significant depletion in body weight, OBWI, hepatic glutathione (GSH) and elevation in hepatic lipid peroxidation, without affecting the blood GSH and hepatic oxidised glutathione (GSSG) levels. Interestingly, no aforesaid change was observed after dermal application of SM diluted in acetone. These biochemical changes were supported by the histological observations, which revealed pronounced toxic effect and damage to liver, kidney and spleen after dermal application of SM diluted in PEG-300 or DMSO. The skin showed similar microscopic changes after dermal application of SM in all the three diluents, however; the severity of lesions was found to be time and dose dependent. It can be concluded that dermal exposure of SM diluted in acetone can be used to mimic SM-induced skin toxicity without systemic toxicity in a mouse model. Copyright © 2010 Elsevier Ltd and ISBI. All rights reserved.
A review on Black-Scholes model in pricing warrants in Bursa Malaysia
NASA Astrophysics Data System (ADS)
Gunawan, Nur Izzaty Ilmiah Indra; Ibrahim, Siti Nur Iqmal; Rahim, Norhuda Abdul
2017-01-01
This paper studies the accuracy of the Black-Scholes (BS) model and the dilution-adjusted Black-Scholes (DABS) model to pricing some warrants traded in the Malaysian market. Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) are used to compare the two models. Results show that the DABS model is more accurate than the BS model for the selected data.
Parker, H M; McDaniel, C D
2006-01-01
The sperm quality index (SQI) is a tool used to predict overall rooster semen quality, fertility, and hatchability. However, semen must be diluted before SQI analysis, and research has shown that the SQI is most predictive of fertility at lower semen dilutions. Therefore, the present study was undertaken to determine why the SQI is not as predictive of fertility at higher semen dilutions and whether semen diluent type alters the SQI, adenosine triphosphate (ATP) utilization, gas exchange, and ionic balance of broiler breeder sperm. Semen was diluted with saline, seminal plasma, or minimum essential medium (MEM) from 2- to 200-fold. The following parameters were measured for each diluent type at each dilution: SQI, ATP, Na+, Ca2+, K+, Cl-, CO2, and O2. To examine the rate of sperm motility, the SQI was expressed as SQI/million sperm per mL (SQI/sperm). There was an interaction between diluent type and dilution for the SQI, SQI/sperm, CO2 generated, O2 used, as well as Na+, Ca2+, and K+ internalization. For sperm diluted with saline, the SQI declined more rapidly with increasing dilution. However, SQI/sperm increased rapidly when semen was diluted with MEM or SP. Sperm diluted in SP used ATP with increasing dilution whereas sperm diluted with saline and MEM generated ATP. Neat semen contained no free O2; however, each diluent type contained abundant O2 resulting in more O2 available as semen was diluted. Sperm diluted in SP produced more CO2 and used more O2 than semen diluted in saline or MEM. For SQI/sperm, ATP and CO2 generated, as well as Na+ and Ca2+ internalization, differences between diluent types occurred when semen was diluted 50-fold and greater. In conclusion, it appears that sperm motility, ATP utilization, gas exchange, and ionic balance are altered by diluent type and rate of dilution. These alterations in semen quality are exacerbated at semen dilutions of 50-fold and greater yielding an SQI that is not indicative of sperm motility or fertility.
NASA Astrophysics Data System (ADS)
Seegers, Bridget N.; Teel, Elizabeth N.; Kudela, Raphael M.; Caron, David A.; Jones, Burton H.
2017-02-01
The Orange County Sanitation District (OCSD) diverted wastewater discharge (5.3 × 108 l d-1) from its primary deep (56 m) outfall 8 km offshore, to a secondary shallower (16 m) outfall 1.6 km offshore for a period of three weeks. It was anticipated that the low salinity and density of the effluent would cause it to rise to the surface with limited dilution, elevating nutrient concentrations in near-surface waters and stimulating phytoplankton blooms in the region. Three Teledyne Webb Slocum gliders and a Liquid Robotics surface wave glider were deployed on transects near the outfalls to acquire high spatial and temporal coverage of physical and chemical parameters before, during, and after the wastewater diversion. Combined autonomous underwater vehicle (AUV) and MODIS-Aqua satellite ocean color data indicated that phytoplankton biomass increased in the upper water column in response to the diversion, but that the magnitude of the response was spatially patchy and significantly less than expected. Little evidence of the plume or its effects was detectable 72 h following the diversion. The effluent plume exhibited high rates of dilution and mixed throughout the upper 20 m and occasionally throughout the upper 40 m during the diversion. Rapid plume advection and dilution appeared to contribute to the muted impact of the nutrient-rich effluent on the phytoplankton community in this coastal ecosystem.
Interaction between colloidal particles on an oil-water interface in dilute and dense phases.
Parolini, Lucia; Law, Adam D; Maestro, Armando; Buzza, D Martin A; Cicuta, Pietro
2015-05-20
The interaction between micron-sized charged colloidal particles at polar/non-polar liquid interfaces remains surprisingly poorly understood for a relatively simple physical chemistry system. By measuring the pair correlation function g(r) for different densities of polystyrene particles at the decane-water interface, and using a powerful predictor-corrector inversion scheme, effective pair-interaction potentials can be obtained up to fairly high densities, and these reproduce the experimental g(r) in forward simulations, so are self consistent. While at low densities these potentials agree with published dipole-dipole repulsion, measured by various methods, an apparent density dependence and long range attraction are obtained when the density is higher. This condition is thus explored in an alternative fashion, measuring the local mobility of colloids when confined by their neighbors. This method of extracting interaction potentials gives results that are consistent with dipolar repulsion throughout the concentration range, with the same magnitude as in the dilute limit. We are unable to rule out the density dependence based on the experimental accuracy of our data, but we show that incomplete equilibration of the experimental system, which would be possible despite long waiting times due to the very strong repulsions, is a possible cause of artefacts in the inverted potentials. We conclude that to within the precision of these measurements, the dilute pair potential remains valid at high density in this system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bang, K.H.; Kim, M.H.
Quenching experiments of hot solid spheres in dilute aqueous solutions of polyethylene oxide polymer have been conducted for the purpose of investigating the physical mechanisms of the suppression of vapor explosions in this polymer solutions. Two spheres of 22.2mm and 9.5mm-diameter were tested in the polymer solutions of various concentrations at 30{degrees}C. Minimum film boiling temperature ({Delta}T{sub MFB}) in this highly-subcooled liquid rapidly decreased from over 700{degrees}c for pure water to about 150{degrees}C as the polymer concentration was increased up to 300ppm for 22.2mm sphere, and it decreased to 350{degrees}C for 9.5mm sphere. This rapid reduction of minimum film boilingmore » temperature in the PEO aqueous solutions can explain its ability of the suppression of spontaneous vapor explosions. The ability of suppression of vapor explosions by dilute polyethylene oxide solutions against an external trigger pressure was tested by dropping molten tin into the polymer solutions at 25{degrees}C. It was observed that in 50ppm solutions more mass fragmented than in pure water, but produced weaker explosion pressures. The explosion was completely suppressed in 300ppm solutions with the external trigger. The debris size distributions of fine fragments smaller than 0.7mm were shown almost identical regardless of the polymer concentrations.« less
Goodell, Christa K.; Zhang, Jianqiang; Strait, Erin; Harmon, Karen; Patnayak, Devi; Otterson, Tracy; Culhane, Marie; Christopher-Hennings, Jane; Clement, Travis; Leslie-Steen, Pamela; Hesse, Richard; Anderson, Joe; Skarbek, Kevin; Vincent, Amy; Kitikoon, Pravina; Swenson, Sabrina; Jenkins-Moore, Melinda; McGill, Jodi; Rauh, Rolf; Nelson, William; O’Connell, Catherine; Shah, Rohan; Wang, Chong; Main, Rodger; Zimmerman, Jeffrey J.
2016-01-01
The probability of detecting influenza A virus (IAV) in oral fluid (OF) specimens was calculated for each of 13 assays based on real-time reverse-transcription polymerase chain reaction (rRT-PCR) and 7 assays based on virus isolation (VI). The OF specimens were inoculated with H1N1 or H3N2 IAV and serially diluted 10-fold (10−1 to 10−8). Eight participating laboratories received 180 randomized OF samples (10 replicates × 8 dilutions × 2 IAV subtypes plus 20 IAV-negative samples) and performed the rRT-PCR and VI procedure(s) of their choice. Analysis of the results with a mixed-effect logistic-regression model identified dilution and assay as variables significant (P < 0.0001) for IAV detection in OF by rRT-PCR or VI. Virus subtype was not significant for IAV detection by either rRT-PCR (P = 0.457) or VI (P = 0.101). For rRT-PCR the cycle threshold (Ct) values increased consistently with dilution but varied widely. Therefore, it was not possible to predict VI success on the basis of Ct values. The success of VI was inversely related to the dilution of the sample; the assay was generally unsuccessful at lower virus concentrations. Successful swine health monitoring and disease surveillance require assays with consistent performance, but significant differences in reproducibility were observed among the assays evaluated. PMID:26733728
MODELS FOR SUBMARINE OUTFALL - VALIDATION AND PREDICTION UNCERTAINTIES
This address reports on some efforts to verify and validate dilution models, including those found in Visual Plumes. This is done in the context of problem experience: a range of problems, including different pollutants such as bacteria; scales, including near-field and far-field...
Gas solubility in dilute solutions: A novel molecular thermodynamic perspective
NASA Astrophysics Data System (ADS)
Chialvo, Ariel A.
2018-05-01
We present an explicit molecular-based interpretation of the thermodynamic phase equilibrium underlying gas solubility in liquids, through rigorous links between the microstructure of the dilute systems and the relevant macroscopic quantities that characterize their solution thermodynamics. We apply the formal analysis to unravel and highlight the molecular-level nature of the approximations behind the widely used Krichevsky-Kasarnovsky [J. Am. Chem. Soc. 57, 2168 (1935)] and Krichevsky-Ilinskaya [Acta Physicochim. 20, 327 (1945)] equations for the modeling of gas solubility. Then, we implement a general molecular-based approach to gas solubility and illustrate it by studying Lennard-Jones binary systems whose microstructure and thermodynamic properties were consistently generated via integral equation calculations. Furthermore, guided by the molecular-based analysis, we propose a novel macroscopic modeling approach to gas solubility, emphasize some usually overlook modeling subtleties, and identify novel interdependences among relevant solubility quantities that can be used as either handy modeling constraints or tools for consistency tests.
Gas solubility in dilute solutions: A novel molecular thermodynamic perspective.
Chialvo, Ariel A
2018-05-07
We present an explicit molecular-based interpretation of the thermodynamic phase equilibrium underlying gas solubility in liquids, through rigorous links between the microstructure of the dilute systems and the relevant macroscopic quantities that characterize their solution thermodynamics. We apply the formal analysis to unravel and highlight the molecular-level nature of the approximations behind the widely used Krichevsky-Kasarnovsky [J. Am. Chem. Soc. 57, 2168 (1935)] and Krichevsky-Ilinskaya [Acta Physicochim. 20, 327 (1945)] equations for the modeling of gas solubility. Then, we implement a general molecular-based approach to gas solubility and illustrate it by studying Lennard-Jones binary systems whose microstructure and thermodynamic properties were consistently generated via integral equation calculations. Furthermore, guided by the molecular-based analysis, we propose a novel macroscopic modeling approach to gas solubility, emphasize some usually overlook modeling subtleties, and identify novel interdependences among relevant solubility quantities that can be used as either handy modeling constraints or tools for consistency tests.
Hamonts, Kelly; Kuhn, Thomas; Vos, Johan; Maesen, Miranda; Kalka, Harald; Smidt, Hauke; Springael, Dirk; Meckenstock, Rainer U; Dejonghe, Winnie
2012-04-15
Chlorinated aliphatic hydrocarbons (CAHs) often discharge into rivers as contaminated groundwater baseflow. Biotransformation, sorption and dilution of CAHs in the impacted river sediments have been reported to reduce discharge, but the effect of temporal variations in environmental conditions on the occurrence and extent of those processes in river sediments is largely unknown. We monitored the reduction of CAH discharge into the Zenne River during a 21-month period. Despite a relatively stable influx of CAHs from the groundwater, the total reduction in CAH discharge from 120 to 20 cm depth in the river sediments, on average 74 ± 21%, showed moderate to large temporal variations, depending on the riverbed location. High organic carbon and anaerobic conditions in the river sediments allowed microbial reductive dechlorination of both chlorinated ethenes and chlorinated ethanes. δ(13)C values of the CAHs showed that this biotransformation was remarkably stable over time, despite fluctuating pore water temperatures. Daughter products of the CAHs, however, were not detected in stoichiometric amounts and suggested the co-occurrence of a physical process reducing the concentrations of CAHs in the riverbed. This process was the main process causing temporal variations in natural attenuation of the CAHs and was most likely dilution by surface water-mixing. However, higher spatial resolution monitoring of flow transients in the riverbed is required to prove dilution contributions due to dynamic surface water-groundwater flow exchanges. δ(13)C values and a site-specific isotope enrichment factor for reductive dechlorination of the main groundwater pollutant vinyl chloride (VC) allowed assessment of changes over time in the extent of both biotransformation and dilution of VC for different scenarios in which those processes either occurred consecutively or simultaneously between 120 and 20 cm depth in the riverbed. The extent of reductive dechlorination of VC ranged from 27 to 89% and differed spatially but was remarkably stable over time, whereas the extent of VC reduction by dilution ranged from 6 to 94%, showed large temporal variations, and was often the main process contributing to the reduction of VC discharge into the river. Copyright © 2012 Elsevier Ltd. All rights reserved.
Holmén, Britt A; Ayala, Alberto
2002-12-01
This paper addresses how current technologies effective for reducing PM emissions of heavy-duty engines may affect the physical characteristics of the particles emitted. Three in-use transit bus configurations were compared in terms of submicron particle size distributions using simultaneous SMPS measurements under two dilution conditions, a minidiluter and the legislated constant volume sampler (CVS). The compressed natural gas (CNG)-fueled and diesel particulate filter (DPF)-equipped diesel configurations are two "green" alternatives to conventional diesel engines. The CNG bus in this study did not have an oxidation catalyst whereas the diesel configurations (with and without particulate filter) employed catalysts. The DPF was a continuously regenerating trap (CRT). Particle size distributions were collected between 6 and 237 nm using 2-minute SMPS scans during idle and 55 mph steady-state cruise operation. Average particle size distributions collected during idle operation of the diesel baseline bus operating on ultralow sulfur fuel showed evidence for nanoparticle growth under CVS dilution conditions relative to the minidiluter. The CRT effectively reduced both accumulation and nuclei mode concentrations by factors of 10-100 except under CVS dilution conditions where nuclei mode concentrations were measured during 55 mph steady-state cruise that exceeded baseline diesel concentrations. The CVS data suggest some variability in trap performance. The CNG bus had accumulation mode concentrations 10-100x lower than the diesel baseline but often displayed large nuclei modes, especially under CVS dilution conditions. Partly this may be explained by the lack of an oxidation catalyst on the CNG, but differences between the minidiluter and CVS size distributions suggest that dilution ratio, temperature-related wall interactions, and differences in tunnel background between the diluters contributed to creating nanoparticle concentrations that sometimes exceeded diesel baseline concentrations when driving under load. The results do not support use of CVS dilution methodology for ultrafine particle sampling, and, despite attention to collection of tunnel blanks in this study, results indicate that a protocol needs to be determined and prescribed for taking into account tunnel blank "emissions" to obtain meaningful comparisons between different technologies. Of critical importance is determining how temperature differences between tunnel blank and test cycle sampling compare in terms of background particle numbers. Total particle number concentrations for the minidiluter sampling point were not significantly different for the two alternative technologies when considering all the steady-cycle data collected. Concentrations ranged from 0.8 to 3 x 10(6) for the baseline bus operating on ultralow sulfur fuel, from 0.5 to 9 x 10(4) for the diesel bus equipped with the CRT filter, and from 1 to 8 x 10(4) particles/cc for the CNG bus.
Stability of piritramide in patient-controlled analgesia (PCA) solutions.
Remane, D; Scriba, G; Meissner, W; Hartmann, M
2009-06-01
For patient controlled analgesia, syringes with solutions of 1.5 mg/ml piritramide in 0.9% aqueous sodium chloride are used. The physical and chemical stability for dilutions of the commercially available preparation of piritramide is limited up to 72 hours by the manufacturer. Since application duration for patient-controlled analgesia can exceed that limited time, stability was investigated by HPLC. Our results show that these solutions are chemically stable over a time period of 60 days.
Cares-Pacheco, M G; Vaca-Medina, G; Calvet, R; Espitalier, F; Letourneau, J-J; Rouilly, A; Rodier, E
2014-11-20
Nowadays, it is well known that surface interactions play a preponderant role in mechanical operations, which are fundamental in pharmaceutical processing and formulation. Nevertheless, it is difficult to correlate surface behaviour in processes to physical properties measurement. Indeed, most pharmaceutical solids have multiple surface energies because of varying forms, crystal faces and impurities contents or physical defects, among others. In this paper, D-mannitol polymorphs (α, β and δ) were studied through different characterization techniques highlighting bulk and surface behaviour differences. Due to the low adsorption behaviour of β and δ polymorphs, special emphasis has been paid to surface energy analysis by inverse gas chromatography, IGC. Surface energy behaviour has been studied in Henry's domain showing that, for some organic solids, the classical IGC infinite dilution zone is never reached. IGC studies highlighted, without precedent in literature, dispersive surface energy differences between α and β mannitol, with a most energetically active α form with a γ(s)(d) of 74.9 mJ·m⁻². Surface heterogeneity studies showed a highly heterogeneous α mannitol with a more homogeneous β (40.0 mJ·m⁻²) and δ mannitol (40.3 mJ·m⁻²). Moreover, these last two forms behaved similarly considering surface energy at different probe concentrations. Copyright © 2014 Elsevier B.V. All rights reserved.
Oscillations and chaos in neural networks: an exactly solvable model.
Wang, L P; Pichler, E E; Ross, J
1990-01-01
We consider a randomly diluted higher-order network with noise, consisting of McCulloch-Pitts neurons that interact by Hebbian-type connections. For this model, exact dynamical equations are derived and solved for both parallel and random sequential updating algorithms. For parallel dynamics, we find a rich spectrum of different behaviors including static retrieving and oscillatory and chaotic phenomena in different parts of the parameter space. The bifurcation parameters include first- and second-order neuronal interaction coefficients and a rescaled noise level, which represents the combined effects of the random synaptic dilution, interference between stored patterns, and additional background noise. We show that a marked difference in terms of the occurrence of oscillations or chaos exists between neural networks with parallel and random sequential dynamics. Images PMID:2251287
Thermodynamics of Dilute Solutions.
ERIC Educational Resources Information Center
Jancso, Gabor; Fenby, David V.
1983-01-01
Discusses principles and definitions related to the thermodynamics of dilute solutions. Topics considered include dilute solution, Gibbs-Duhem equation, reference systems (pure gases and gaseous mixtures, liquid mixtures, dilute solutions), real dilute solutions (focusing on solute and solvent), terminology, standard states, and reference systems.…
Plasma fluorination of vertically aligned carbon nanotubes: functionalization and thermal stability.
Struzzi, Claudia; Scardamaglia, Mattia; Hemberg, Axel; Petaccia, Luca; Colomer, Jean-François; Snyders, Rony; Bittencourt, Carla
2015-01-01
Grafting of fluorine species on carbon nanostructures has attracted interest due to the effective modification of physical and chemical properties of the starting materials. Various techniques have been employed to achieve a controlled fluorination yield; however, the effect of contaminants is rarely discussed, although they are often present. In the present work, the fluorination of vertically aligned multiwalled carbon nanotubes was performed using plasma treatment in a magnetron sputtering chamber with fluorine diluted in an argon atmosphere with an Ar/F2 ratio of 95:5. The effect of heavily diluted fluorine in the precursor gas mixture is investigated by evaluating the modifications in the nanotube structure and the electronic properties upon plasma treatment. The existence of oxygen-based grafted species is associated with background oxygen species present in the plasma chamber in addition to fluorine. The thermal stability and desorption process of the fluorine species grafted on the carbon nanotubes during the fluorine plasma treatment were evaluated by combining different spectroscopic techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saygin, H.; Hebert, A.
The calculation of a dilution cross section {bar {sigma}}{sub e} is the most important step in the self-shielding formalism based on the equivalence principle. If a dilution cross section that accurately characterizes the physical situation can be calculated, it can then be used for calculating the effective resonance integrals and obtaining accurate self-shielded cross sections. A new technique for the calculation of equivalent cross sections based on the formalism of Riemann integration in the resolved energy domain is proposed. This new method is compared to the generalized Stamm`ler method, which is also based on an equivalence principle, for a two-regionmore » cylindrical cell and for a small pressurized water reactor assembly in two dimensions. The accuracy of each computing approach is obtained using reference results obtained from a fine-group slowing-down code named CESCOL. It is shown that the proposed method leads to slightly better performance than the generalized Stamm`ler approach.« less
Sewage outfall plume dispersion observations with an autonomous underwater vehicle.
Ramos, P; Cunha, S R; Neves, M V; Pereira, F L; Quintaneiro, I
2005-01-01
This work represents one of the first successful applications of Autonomous Underwater Vehicles (AUVs) for interdisciplinary coastal research. A monitoring mission to study the shape and estimate the initial dilution of the S. Jacinto sewage outfall plume using an AUV was performed on July 2002. An efficient sampling strategy enabling greater improvements in spatial and temporal range of detection demonstrated that the sewage effluent plume can be clearly traced using naturally occurring tracers in the wastewater. The outfall plume was found at the surface highly influenced by the weak stratification and low currents. Dilution varying with distance downstream was estimated from the plume rise over the outfall diffuser until a nearly constant value of 130:1, 60 m from the diffuser, indicating the near field end. Our results demonstrate that AUVs can provide high-quality measurements of physical properties of effluent plumes in a very effective manner and valuable considerations about the initial mixing processes under real oceanic conditions can be further investigated.
Preparation and characterization of silica aerogels from diatomite via ambient pressure drying
NASA Astrophysics Data System (ADS)
Wang, Baomin; Ma, Hainan; Song, Kai
2014-07-01
The silica aerogels were successfully fabricated under ambient pressure from diatomite. The influence of different dilution ratios of diatomite filtrate on physical properties of aerogels were studied. The microstructure, surface functional groups, thermal stability, morphology and mechanical properties of silica aerogels based on diatomite were investigated by BET adsorption, FT-IR, DTA-TG, FESEM, TEM, and nanoindentation methods. The results indicate that the filtrate diluted with distilled water in a proportion of 1: 2 could give silica aerogels in the largest size with highest transparency. The obtained aerogels with density of 0.122-0.203 g/m3 and specific surface area of 655.5-790.7 m2/g are crack free amorphous solids and exhibited a sponge-like structure. Moreover, the peak pore size resided at 9 nm. The initial aerogels were hydrophobic, when being heat-treated around 400°C, the aerogels were transformed into hydrophilic ones. The obtained aerogel has good mechanical properties.
Lower pressure heating steam is practical for the distributed dry dilute sulfuric acid pretreatment.
Shao, Shuai; Zhang, Jian; Hou, Weiliang; Qureshi, Abdul Sattar; Bao, Jie
2017-08-01
Most studies paid more attention to the pretreatment temperature and the resulted pretreatment efficiency, while ignored the heating media and their scalability to an industry scale. This study aimed to use a relative low pressure heating steam easily provided by steam boiler to meet the requirement of distributed dry dilute acid pretreatment. The results showed that the physical properties of the pretreated corn stover were maintained stable using the steam pressure varying from 1.5, 1.7, 1.9 to 2.1MPa. Enzymatic hydrolysis and high solids loading simultaneous saccharification and fermentation (SSF) results were also satisfying. CFD simulation indicated that the high injection velocity of the low pressure steam resulted in a high steam holdup and made the mixing time of steam and solid corn stover during pretreatment much shorter in comparison with the higher pressure steam. This study provides a design basis for the boiler requirement in distributed pretreatment concept. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shen, Jiacheng; Agblevor, Foster A
2010-03-01
An operable batch model of simultaneous saccharification and fermentation (SSF) for ethanol production from cellulose has been developed. The model includes four ordinary differential equations that describe the changes of cellobiose, glucose, yeast, and ethanol concentrations with respect to time. These equations were used to simulate the experimental data of the four main components in the SSF process of ethanol production from microcrystalline cellulose (Avicel PH101). The model parameters at 95% confidence intervals were determined by a MATLAB program based on the batch experimental data of the SSF. Both experimental data and model simulations showed that the cell growth was the rate-controlling step at the initial period in a series of reactions of cellulose to ethanol, and later, the conversion of cellulose to cellobiose controlled the process. The batch model was extended to the continuous and fed-batch operating models. For the continuous operation in the SSF, the ethanol productivities increased with increasing dilution rate, until a maximum value was attained, and rapidly decreased as the dilution rate approached the washout point. The model also predicted a relatively high ethanol mass for the fed-batch operation than the batch operation.
Ultracold Gas Theory from the Top-Down and Bottom-Up
NASA Astrophysics Data System (ADS)
Colussi, Victor E.
Advances in trapping and cooling of ultracold gases over the last several decades have made it possible to test many formerly outstanding predictions from disparate branches of physics. This thesis touches on three historical problems that have found new life recently in the context of ultracold Bose gases of alkali atoms. The first problem revolves around an outstanding prediction from Boltzmann over a century and half old that the breathing mode of a isotropically trapped classical gas should oscillate indefinitely. I analyze recent experimental results, and attribute observed damping sources to trap imperfections. The second question is about the analogue of first and second sound modes from liquid helium in trapped dilute gases. I present the results of a joint theoretical/experimental investigation of the breathing mode of a finite temperature Bose-Einstein condensate (BEC), attributing a striking collapse revival behavior of the resultant oscillation to in-phase and out-of-phase normal modes of the thermal cloud and condensate. The third problem is that of the formation of Borromean ring-like three-body bound states, referred to as Efimov trimers, in strongly-interacting few-body systems. I extend the predicted spectrum of Efimov states into the realm of many degenerate internal levels, and investigate the difficult three-body elastic scattering problem. These questions are part of the broader theme of this thesis: How can our understanding of few-body physics in the ultracold limit be translated into statements about the bulk behavior of an ultracold gas? For weakly-interacting Bose gases, this translation is well-known: the many-body properties of the gas are well-described by the tracking just the one and two particle correlations. I analyze a generalization of this procedure to higher order correlations, the general connection between few-body physics and correlations in a dilute gas, and results for the emergence of Efimov physics in the magnetic phase of the strongly-interacting Bose gas.
Representative Atmospheric Plume Development for Elevated Releases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eslinger, Paul W.; Lowrey, Justin D.; McIntyre, Justin I.
2014-02-01
An atmospheric explosion of a low-yield nuclear device will produce a large number of radioactive isotopes, some of which can be measured with airborne detection systems. However, properly equipped aircraft may not arrive in the region where an explosion occurred for a number of hours after the event. Atmospheric conditions will have caused the radioactive plume to move and diffuse before the aircraft arrives. The science behind predicting atmospheric plume movement has advanced enough that the location of the maximum concentrations in the plume can be determined reasonably accurately in real time, or near real time. Given the assumption thatmore » an aircraft can follow a plume, this study addresses the amount of atmospheric dilution expected to occur in a representative plume as a function of time past the release event. The approach models atmospheric transport of hypothetical releases from a single location for every day in a year using the publically available HYSPLIT code. The effective dilution factors for the point of maximum concentration in an elevated plume based on a release of a non-decaying, non-depositing tracer can vary by orders of magnitude depending on the day of the release, even for the same number of hours after the release event. However, the median of the dilution factors based on releases for 365 consecutive days at one site follows a power law relationship in time, as shown in Figure S-1. The relationship is good enough to provide a general rule of thumb for estimating typical future dilution factors in a plume starting at the same point. However, the coefficients of the power law function may vary for different release point locations. Radioactive decay causes the effective dilution factors to decrease more quickly with the time past the release event than the dilution factors based on a non-decaying tracer. An analytical expression for the dilution factors of isotopes with different half-lives can be developed given the power law expression for the non-decaying tracer. If the power-law equation for the median dilution factor, Df, based on a non-decaying tracer has the general form Df=a(×t)^(-b) for time t after the release event, then the equation has the form Df=e^(-λt)×a×t^(-b) for a radioactive isotope, where λ is the decay constant for the isotope.« less
NASA-Chinese Aeronautical Establishment (CAE) Symposium
NASA Technical Reports Server (NTRS)
1986-01-01
Several topics relative to combustion research are discussed. A numerical study of combustion processes in afterburners; the modeling of turbulent, reactive flow; gas turbine research; modeling of dilution jet flow fields; and chemical shock tubes as tools for studying high-temperature chemical kinetics are among the topics covered.
Ferromagnetic clusters induced by a nonmagnetic random disorder in diluted magnetic semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bui, Dinh-Hoi; Physics Department, Hue University’s College of Education, 34 Le Loi, Hue; Phan, Van-Nham, E-mail: phanvannham@dtu.edu.vn
In this work, we analyze the nonmagnetic random disorder leading to a formation of ferromagnetic clusters in diluted magnetic semiconductors. The nonmagnetic random disorder arises from randomness in the host lattice. Including the disorder to the Kondo lattice model with random distribution of magnetic dopants, the ferromagnetic–paramagnetic transition in the system is investigated in the framework of dynamical mean-field theory. At a certain low temperature one finds a fraction of ferromagnetic sites transiting to the paramagnetic state. Enlarging the nonmagnetic random disorder strength, the paramagnetic regimes expand resulting in the formation of the ferromagnetic clusters.
[Influence of dissolved gases on highly diluted aqueous media].
Belovolova, L V; Glushkov, M V; Vinogradov, E A
2014-01-01
In the experiments on redox potential measurement for a series of identical samples of purified and presettled water it was found that the response to ultraviolet irradiation varies appreciably within a few days after treatment, including stepwise changes. In a few hours after exposure, leading to a higher content of reactive oxygen species as compared with the equilibrium values, long-term changes including variations in redox potential and optical system parameters are recorded in water and diluted aqueous media. We propose a heuristic organization model of the water-gas system with an increased content of reactive oxygen species.
Microgravity experiments on vibrated granular gases in a dilute regime: non-classical statistics
NASA Astrophysics Data System (ADS)
Leconte, M.; Garrabos, Y.; Falcon, E.; Lecoutre-Chabot, C.; Palencia, F.; Évesque, P.; Beysens, D.
2006-07-01
We report on an experimental study of a dilute gas of steel spheres colliding inelastically and excited by a piston performing sinusoidal vibration, in low gravity. Using improved experimental apparatus, here we present some results concerning the collision statistics of particles on a wall of the container. We also propose a simple model where the non-classical statistics obtained from our data are attributed to the boundary condition playing the role of a 'velostat' instead of a thermostat. The significant differences from the kinetic theory of usual gas are related to the inelasticity of collisions.
FAST TRACK COMMUNICATION: A Temperley-Lieb quantum chain with two- and three-site interactions
NASA Astrophysics Data System (ADS)
Ikhlef, Y.; Jacobsen, J. L.; Saleur, H.
2009-07-01
We study the phase diagram of a quantum chain of spin-1/2 particles whose world lines form a dense loop gas with loop weight n. In addition to the usual two-site interaction corresponding to the XXZ spin chain, we introduce a three-site interaction. The resulting model contains a Majumdar-Ghosh-like gapped phase and a new integrable point, which we solve exactly. We also locate a critical line realizing dilute O(n) criticality, without introducing explicit dilution in the loops. Our results have implications for anisotropic spin chains, as well as anyonic quantum chains.
Aerothermal modeling program, phase 1
NASA Technical Reports Server (NTRS)
Srinivasan, R.; Reynolds, R.; Ball, I.; Berry, R.; Johnson, K.; Mongia, H.
1983-01-01
The combustor performance submodels for complex flows are evaluated. The benchmark test cases for complex nonswirling flows are identified and analyzed. The introduction of swirl into the flow creates much faster mixing, caused by radial pressure gradients and increase in turbulence generation. These phenomena are more difficult to predict than the effects due to geometrical streamline curvatures, like the curved duct, and sudden expansion. Flow fields with swirl, both confined and unconfined are studied. The role of the dilution zone to achieve the turbine inlet radial profile plays an important part, therefore temperature field measurements were made in several idealized dilution zone configurations.
The Effect of Dilution on the Structure of Microbial Communities
NASA Technical Reports Server (NTRS)
Mills, Aaron L.
2000-01-01
To determine how dilution of microbial communities affects the diversity of the diluted assemblage a series of numerical simulations were conducted that determined the theoretical change in diversity, richness, and evenness of the community with serial dilution. The results of the simulation suggested that the effects are non linear with a high degree of dependence on the initial evenness of the community being diluted. A series of incubation experiments using a range of dilutions of raw sewage as an inoculum into sterile sewage was used for comparison to the simulations. The diluted communities were maintained in batch fed reactors (three day retention time) for nine days. The communities were harvested and examined by conventional plating and by molecular analysis of the whole-community DNA using AFLP and T-RFLP. Additional, CLPP analysis was also applied. The effects on richness predicted by the numerical simulations were confirmed by the analyses used. The diluted communities fell into three groups, a low dilution, intermediate dilution, and high dilution group, which corresponded well with the groupings obtained for community richness in simulation. The grouping demonstrated the non-linear nature of dilution of whole communities. Furthermore, the results implied that the undiluted community consisted of a few dominant types accompanied by a number of rare (low abundance) types as is typical in unevenly distributed communities.
Li, Mengqing; Forest, Jean-Marc; Coursol, Christian; Leclair, Grégoire
2011-09-01
The stability of cyclosporine diluted to 0.2 or 2.5 mg/mL with 0.9% sodium chloride injection or 5% dextrose injection and stored in polypropylene-polyolefin containers or polypropylene syringes was evaluated. Intravenous cyclosporine solutions (0.2 and 2.5 mg/mL) were aseptically prepared and transferred to 250-mL polypropylene-polyolefin bags or 60-mL polypropylene syringes. Chemical stability was measured using a stability-indicating high-performance liquid chromatography (HPLC) assay. Physical stability was assessed by visual inspection and a dynamic light scattering (DLS) method. After 14 days, HPLC assay showed that the samples of i.v. cyclosporine stored in polypropylene-polyolefin bags remained chemically stable (>98% of initial amount remaining); the physical stability of the samples was confirmed by DLS and visual inspection. The samples stored in polypropylene syringes were found to contain an impurity (attributed to leaching of a syringe component by the solution) that could be detected by HPLC after 1 day; on further investigation, no leaching was detected when the syringes were exposed to undiluted i.v. cyclosporine 50 mg/mL for 10 minutes. Samples of i.v. cyclosporine solutions of 0.2 and 2.5 mg/mL diluted in 0.9% sodium chloride injection or 5% dextrose injection and stored at 25 °C in polypropylene-polyolefin bags were physically and chemically stable for at least 14 days. When stored in polypropylene syringes, the samples were contaminated by an impurity within 1 day; however, the short-term (i.e., ≤10 minutes) use of the syringes for the preparation and transfer of i.v. cyclosporine solution is considered safe.
Physical properties and antibacterial activity of chitosan/acemannan mixed systems.
Escobedo-Lozano, Amada Yerén; Domard, Alain; Velázquez, Carlos A; Goycoolea, Francisco M; Argüelles-Monal, Waldo M
2015-01-22
The aim of the present study was to investigate the mechanical and thermal properties of mixed chitosan-acemannan (CS-AC) mixed gels and the antibacterial activity of dilute mixed solutions of both polysaccharides. Physical hydrogels of chitosan comprising varying amounts of non-gelling acemannan were prepared by controlled neutralization of chitosan using ammonia. As the overall acemannan concentration in the mixed hydrogel increased while fixing that of CS, the mechanical strength decreased. These results indicate that AC perturbs the formation of elastic junctions and overall connectivity as it occurs in the isolated CS network. Heterotypic associations between CS and AC leading to the formation of more compact microdomains may be at play in reducing the density of the gel network consolidated by CS, possibly due to shorter gel junctions. Micro-DSC studies at pH 12.0 seem consistent with the suggestion that molecular heterotypic associations between CS and AC may be at play in determining the overall physical properties of the mixed gel systems. In dilute solution, CS showed antimicrobial activity against Staphylococcus aureus but not against Escherichia coli; AC did not exert antimicrobial activity against any of the two bacterial species. In blended solutions of both polysaccharides, as the amount of AC increased, the antimicrobial activity of the system against S. aureus ceased. In conclusion, this study demonstrates that it is feasible to incorporate acemannan in chitosan-acemannan gels and that although the mechanical strength decreases due to the presence of AC, the gel network persists even at high amount of AC. This study anticipates that the CS-AC mixed gels may offer promise for the future development of biomaterials such as scaffolds to be used in wound therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.
On the macroscopic modeling of dilute emulsions under flow in the presence of particle inertia
NASA Astrophysics Data System (ADS)
Mwasame, Paul M.; Wagner, Norman J.; Beris, Antony N.
2018-03-01
Recently, Mwasame et al. ["On the macroscopic modeling of dilute emulsions under flow," J. Fluid Mech. 831, 433 (2017)] developed a macroscopic model for the dynamics and rheology of a dilute emulsion with droplet morphology in the limit of negligible particle inertia using the bracket formulation of non-equilibrium thermodynamics of Beris and Edwards [Thermodynamics of Flowing Systems: With Internal Microstructure (Oxford University Press on Demand, 1994)]. Here, we improve upon that work to also account for particle inertia effects. This advance is facilitated by using the bracket formalism in its inertial form that allows for the natural incorporation of particle inertia effects into macroscopic level constitutive equations, while preserving consistency to the previous inertialess approximation in the limit of zero inertia. The parameters in the resultant Particle Inertia Thermodynamically Consistent Ellipsoidal Emulsion (PITCEE) model are selected by utilizing literature-available mesoscopic theory for the rheology at small capillary and particle Reynolds numbers. At steady state, the lowest level particle inertia effects can be described by including an additional non-affine inertial term into the evolution equation for the conformation tensor, thereby generalizing the Gordon-Schowalter time derivative. This additional term couples the conformation and vorticity tensors and is a function of the Ohnesorge number. The rheological and microstructural predictions arising from the PITCEE model are compared against steady-shear simulation results from the literature. They show a change in the signs of the normal stress differences that is accompanied by a change in the orientation of the major axis of the emulsion droplet toward the velocity gradient direction with increasing Reynolds number, capturing the two main signatures of particle inertia reported in simulations.
Assays of homeopathic remedies in rodent behavioural and psychopathological models.
Bellavite, Paolo; Magnani, Paolo; Marzotto, Marta; Conforti, Anita
2009-10-01
The first part of this paper reviews the effects of homeopathic remedies on several models of anxiety-like behaviours developed and described in rodents. The existing literature in this field comprises some fifteen exploratory studies, often published in non-indexed and non-peer-reviewed journals. Only a few results have been confirmed by multiple laboratories, and concern Ignatia, Gelsemium, Chamomilla (in homeopathic dilutions/potencies). Nevertheless, there are some interesting results pointing to the possible efficacy of other remedies, and confirming a statistically significant effect of high dilutions of neurotrophic molecules and antibodies. In the second part of this paper we report some recent results obtained in our laboratory, testing Aconitum, Nux vomica, Belladonna, Argentum nitricum, Tabacum (all 5CH potency) and Gelsemium (5, 7, 9 and 30CH potencies) on mice using ethological models of behaviour. The test was performed using coded drugs and controls in double blind (operations and calculations). After an initial screening that showed all the tested remedies (except for Belladonna) to have some effects on the behavioural parameters (light-dark test and open-field test), but with high experimental variability, we focused our study on Gelsemium, and carried out two complete series of experiments. The results showed that Gelsemium had several effects on the exploratory behaviour of mice, which in some models were highly statistically significant (p < 0.001), in all the dilutions/dynamizations used, but with complex differences according to the experimental conditions and test performed. Finally, some methodological issues of animal research in this field of homeopathy are discussed. The "Gelsemium model" - encompassing experimental studies in vitro and in vivo from different laboratories and with different methods, including significant effects of its major active principle gelsemine - may play a pivotal rule for investigations on other homeopathic remedies.
A rational approach to improving productivity in recombinant Pichia pastoris fermentation.
d'Anjou, M C; Daugulis, A J
2001-01-05
A Mut(S) Pichia pastoris strain that had been genetically modified to produce and secrete sea raven antifreeze protein was used as a model system to demonstrate the implementation of a rational, model-based approach to improve process productivity. A set of glycerol/methanol mixed-feed continuous stirred-tank reactor (CSTR) experiments was performed at the 5-L scale to characterize the relationship between the specific growth rate and the cell yield on methanol, the specific methanol consumption rate, the specific recombinant protein formation rate, and the productivity based on secreted protein levels. The range of dilution rates studied was 0. 01 to 0.10 h(-1), and the residual methanol concentration was kept constant at approximately 2 g/L (below the inhibitory level). With the assumption that the cell yield on glycerol was constant, the cell yield on methanol increased from approximately 0.5 to 1.5 over the range studied. A maximum specific methanol consumption rate of 20 mg/g. h was achieved at a dilution rate of 0.06 h(-1). The specific product formation rate and the volumetric productivity based on product continued to increase over the range of dilution rates studied, and the maximum values were 0.06 mg/g. h and 1.7 mg/L. h, respectively. Therefore, no evidence of repression by glycerol was observed over this range, and operating at the highest dilution rate studied maximized productivity. Fed-batch mass balance equations, based on Monod-type kinetics and parameters derived from data collected during the CSTR work, were then used to predict cell growth and recombinant protein production and to develop an exponential feeding strategy using two carbon sources. Two exponential fed-batch fermentations were conducted according to the predicted feeding strategy at specific growth rates of 0.03 h(-1) and 0.07 h(-1) to verify the accuracy of the model. Cell growth was accurately predicted in both fed-batch runs; however, the model underestimated recombinant product concentration. The overall volumetric productivity of both runs was approximately 2.2 mg/L. h, representing a tenfold increase in the productivity compared with a heuristic feeding strategy. Copyright 2001 John Wiley & Sons, Inc.
Transient swelling, spreading, and drug delivery by a dissolved anti-HIV microbicide-bearing film
NASA Astrophysics Data System (ADS)
Tasoglu, Savas; Rohan, Lisa C.; Katz, David F.; Szeri, Andrew J.
2013-03-01
There is a widespread agreement that more effective drug delivery vehicles with more alternatives, as well as better active pharmaceutical ingredients (APIs), must be developed to improve the efficacy of microbicide products. For instance, in tropical regions, films are more appropriate than gels due to better stability of drugs at extremes of moisture and temperature. Here, we apply fundamental fluid mechanical and physicochemical transport theory to help better understand how successful microbicide API delivery depends upon properties of a film and the human reproductive tract environment. Several critical components of successful drug delivery are addressed. Among these are: elastohydrodynamic flow of a dissolved non-Newtonian film; mass transfer due to inhomogeneous dilution of the film by vaginal fluid contacting it along a moving boundary (the locally deforming vaginal epithelial surface); and drug absorption by the epithelium. Local rheological properties of the film are dependent on local volume fraction of the vaginal fluid. We evaluated this experimentally, delineating the way that constitutive parameters of a shear-thinning dissolved film are modified by dilution. To develop the mathematical model, we integrate the Reynolds lubrication equation with a mass conservation equation to model diluting fluid movement across the moving vaginal epithelial surface and into the film. This is a complex physicochemical phenomenon that is not well understood. We explore time- and space-varying boundary flux model based upon osmotic gradients. Results show that the model produces fluxes that are comparable to experimental data. Further experimental characterization of the vaginal wall is required for a more precise set of parameters and a more sophisticated theoretical treatment of epithelium.
Response Functions for the Two-Dimensional Ultracold Fermi Gas: Dynamical BCS Theory and Beyond
NASA Astrophysics Data System (ADS)
Vitali, Ettore; Shi, Hao; Qin, Mingpu; Zhang, Shiwei
2017-12-01
Response functions are central objects in physics. They provide crucial information about the behavior of physical systems, and they can be directly compared with scattering experiments involving particles such as neutrons or photons. Calculations of such functions starting from the many-body Hamiltonian of a physical system are challenging and extremely valuable. In this paper, we focus on the two-dimensional (2D) ultracold Fermi atomic gas which has been realized experimentally. We present an application of the dynamical BCS theory to obtain response functions for different regimes of interaction strengths in the 2D gas with zero-range attractive interaction. We also discuss auxiliary-field quantum Monte Carlo (AFQMC) methods for the calculation of imaginary time correlations in these dilute Fermi gas systems. Illustrative results are given and comparisons are made between AFQMC and dynamical BCS theory results to assess the accuracy of the latter.
May, T.W.; Wiedmeyer, Ray H.
1998-01-01
The CETAC ADX-500 autodiluter system was tested with ELAN?? v 2.1 software and the ELAN 6000 ICP-MS instrument to determine on-line automated dilution performance during analysis of standard solutions containing nine analytes representative of the mass spectral range (mass 9 to mass 238). Two or more dilution schemes were tested for each of 5 test tube designs. Dilution performance was determined by comparison of analyte concentration means of diluted and non-diluted standards. Accurate dilutions resulted with one syringe pump addition of diluent in small diameter round-bottomed (13 mm OD) or conical-tipped (18 mm OD) tubes and one or more syringe pump additions in large diameter (28 mm OD) conical-tipped tubes. Inadequate dilution mixing which produced high analyte concentration means was observed for all dilutions conducted in flat-bottomed tubes, and for dilutions requiring multiple syringe additions of diluent in small diameter round-bottomed and conical tipped tubes. Effective mixing of diluted solutions was found to depend largely upon tube diameter and liquid depth: smaller tube diameters and greater liquid depth resulted in ineffective mixing, whereas greater tube diameter and shallower liquid depth facilitated effective mixing. Two design changes for the autodiluter were suggested that would allow effective mixing to occur using any dilution scheme and tube design.
[Griscelli syndrome in a Mexican girl].
Ayala de la Cruz, María del Carmen; Ramírez Campos, Jorge; Govea Sifuentes, Jesús; González Cabello, Diana; Calderón Garcidueñas, Ana Laura; Moreno, Laura; Vargas Almanza, Griselda Nelly
2002-01-01
Griscelli syndrome is an infrequent disease first described in 1978. It is inherited in autosomal recessive form, and is distinguished by partial albinism, pigmentation dilution, cellular immunodeficiency, neurological involvement and uncontrolled phases of macrophage and lymphocyte activation. We report the case of a female child who started with ataxic gait when she was 23 months old. At physical examination a phenotype with brown skin and silvery gray hair, eyebrows and eyelashes was observed. Neurological evolution was with remissions and exacerbations, with cerebellar and, finally, bulbar compromise.
Tunable Magnetic Exchange Interactions in Manganese-Doped Inverted Core-Shell ZnSe-CdSe Nanocrystals
2009-01-01
exchange coupling even for a singlemagnetic dopant atom12,17. Whereas magnetically doped monocomponent nanocrystals are well established16, wavefunction...Solid State Commun. 114, 547–550 (2000). 13. Radovanovic, P. V. & Gamelin, D. R. Electronic absorption spectroscopy of cobalt ions in diluted magnetic...D. R. Inorganic cluster syntheses of TM2+-doped quantum dots (CdSe, CdS, CdSe/CdS): Physical property dependence on dopant locale. J. Am. Chem. Soc
21 CFR 864.5240 - Automated blood cell diluting apparatus.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Automated blood cell diluting apparatus. 864.5240... § 864.5240 Automated blood cell diluting apparatus. (a) Identification. An automated blood cell diluting apparatus is a fully automated or semi-automated device used to make appropriate dilutions of a blood sample...
21 CFR 864.5240 - Automated blood cell diluting apparatus.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Automated blood cell diluting apparatus. 864.5240... § 864.5240 Automated blood cell diluting apparatus. (a) Identification. An automated blood cell diluting apparatus is a fully automated or semi-automated device used to make appropriate dilutions of a blood sample...
Hybridizing pines with diluted pollen
Robert Z. Callaham
1967-01-01
Diluted pollens would have many uses by the tree breeder. Dilutions would be particularly advantageous in making many controlled pollinations with a limited amount of pollen. They also would be useful in artificial mass pollinations of orchards or single trees. Diluted pollens might help overcome troublesome genetic barriers to crossing. Feasibility o,f using diluted...
NASA Astrophysics Data System (ADS)
Peng, Liying; Jiang, Dandan; Wang, Zhenxin; Liu, Jiwei; Li, Haiyang
2016-03-01
Exhaled nitric oxide (NO) is one of the most promising breath markers for respiratory diseases. Its profile for exhalation and the respiratory NO production sites can provide useful information for medical disease diagnosis and therapeutic procedures. However, the high-level moisture in exhaled gas always leads to the poor selectivity and sensitivity for ion spectrometric techniques. Herein, a method based on fast non-equilibrium dilution ion mobility spectrometry (NED-IMS) was firstly proposed to directly monitor the exhaled NO profile on line. The moisture interference was eliminated by turbulently diluting the original moisture to 21% of the original with the drift gas and dilution gas. Weak enhancement was observed for humid NO response and its limit of detection at 100% relative humidity was down to 0.58 ppb. The NO concentrations at multiple exhalation flow rates were measured, while its respiratory production sites were determined by using two-compartment model (2CM) and Högman and Meriläinen algorithm (HMA). Last but not the least, the NO production sites were analyzed hourly to tentatively investigate the daily physiological process of NO. The results demonstrated the capacity of NED-IMS in the real-time analysis of exhaled NO and its production sites for clinical diagnosis and assessment.
Jugnia, Louis-B; Sime-Ngando, Télesphore; Gilbert, Daniel
2006-10-01
The growth rate and losses of bacterioplankton in the epilimnion of an oligo-mesotrophic reservoir were simultaneously estimated using three different methods for each process. Bacterial production was determined by means of the tritiated thymidine incorporation method, the dialysis bag method and the dilution method, while bacterial mortality was assessed with the dilution method, the disappearance of thymidine-labeled natural cells and ingestion of fluorescent bacterial tracers by heterotrophic flagellates. The different methods used to estimate bacterial growth rates yielded similar results. On the other hand, the mortality rates obtained with the dilution method were significantly lower than those obtained with the use of thymidine-labeled natural cells. The bacterial ingestion rate by flagellates accounted on average for 39% of total bacterial mortality estimated by the dilution method, but this value fell to 5% when the total mortality was measured by the thymidine-labeling method. Bacterial abundance and production varied in opposite phase to flagellate abundance and the various bacterial mortality rates. All this points to the critical importance of methodological aspects in the elaboration of quantitative models of matter and energy flows over the time through microbial trophic networks in aquatic systems, and highlights the role of bacterioplankton as a source of carbon for higher trophic levels in the studied system.
CONVECTION IN CONDENSIBLE-RICH ATMOSPHERES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, F.; Pierrehumbert, R. T., E-mail: fding@uchicago.edu
2016-05-01
Condensible substances are nearly ubiquitous in planetary atmospheres. For the most familiar case—water vapor in Earth’s present climate—the condensible gas is dilute, in the sense that its concentration is everywhere small relative to the noncondensible background gases. A wide variety of important planetary climate problems involve nondilute condensible substances. These include planets near or undergoing a water vapor runaway and planets near the outer edge of the conventional habitable zone, for which CO{sub 2} is the condensible. Standard representations of convection in climate models rely on several approximations appropriate only to the dilute limit, while nondilute convection differs in fundamentalmore » ways from dilute convection. In this paper, a simple parameterization of convection valid in the nondilute as well as dilute limits is derived and used to discuss the basic character of nondilute convection. The energy conservation properties of the scheme are discussed in detail and are verified in radiative-convective simulations. As a further illustration of the behavior of the scheme, results for a runaway greenhouse atmosphere for both steady instellation and seasonally varying instellation corresponding to a highly eccentric orbit are presented. The latter case illustrates that the high thermal inertia associated with latent heat in nondilute atmospheres can damp out the effects of even extreme seasonal forcing.« less
NASA Astrophysics Data System (ADS)
Porkolab, M.; Ennever, P.; Baek, S. G.; Creely, A. J.; Edlund, E. M.; Hughes, J.; Rice, J. E.; Rost, J. C.; White, A. E.; Reinke, M. L.; Staebler, G.; Candy, J.; Alcator C-Mod Team
2016-10-01
Recent experiments on C-Mod ohmic plasmas and gyrokinetic studies indicated that dilution of deuterium plasmas by injection of nitrogen decreased the ion diffusivity and may also alter the direction of intrinsic toroidal rotation. Simulations with TGLF and GYRO showed that dilution of deuterium ions in low density (LOC) plasmas increased the critical ion temperature gradient, while in high density (SOC) plasmas it decreased the stiffness. The density fluctuation spectrum measured in low q95 plasmas with Phase Contrast Imaging (PCI), and corroborated with spatially localized reflectometer measurements show a reduction of turbulence near r/a = 0.8 with kρs <= 1, in agreement with modeling predictions in this region where the ion turbulence is well above marginal stability. Measurements also indicate that reversal of the toroidal rotation direction near the SOC-LOC transition may depend on ion collisionality rather than that of electrons. New experiments with neon seeding, which may be more relevant to ITER than with nitrogen seeding, show similar results. The impact of dilution on Te turbulence as measured with CECE diagnostic will also be presented. Supported by US DOE Awards DE-FG02-94-ER54235 and DE-FC02-99-ER54512.
Critical hematocrit and oxygen partial pressure in the beating heart of pigs.
Hiebl, B; Mrowietz, C; Ploetze, K; Matschke, K; Jung, F
2010-12-01
In cardiac surgery the substitution of lost blood volume by plasma substitutes is a common therapeutical approach. None of the currently available blood substitutes has a sufficient oxygen transport capacity. This can limit the functional integrity of the myocardium known as highly oxygen consumptive. The study was aimed to get information about the minimal hematocrit, also known as critical hematocrit (cHct), which guarantees a stable and adequate oxygen partial pressure in the myocardium (pO2). In adult female pigs (n=7) the hematocrit was reduced by isovolemic blood dilution with an intravenous infusion of isotonic 4% gelatine polysuccinate solution, The substituted blood volume ranged between 3000ml and 7780ml (mean: 5254±1672ml). In all animals the pO2 of the myocardium of the beating heart and of the resting skeletal muscle increased until blood dilution resulted in a Hct decrease down to 15%. Further blood dilution resulted in a decrease of the pO2. Only after the Hct was <10% the pO2 was lower than before blood dilution and accompanied by a lethal ischemia of the myocardium. These data indicate a cHct of about 10% in the pig animal model. Copyright © 2010 Elsevier Inc. All rights reserved.
Methods of preventing vinorelbine-induced phlebitis: an experimental study in rabbits.
Kohno, Emiko; Murase, Saori; Nishikata, Mayumi; Okamura, Noboru; Matzno, Sumio; Kuwahara, Takashi; Matsuyama, Kenji
2008-07-22
In order to identify methods for preventing phlebitis caused by intravenous administration of vinorelbine (VNR), we established a procedure for estimating the severity of phlebitis in an animal model. Four different factors (administration rate, dilution, flushing, and infusion of fat emulsion) were evaluated for alleviation of phlebitis caused by VNR infusion. VNR was diluted with normal saline to prepare test solutions with concentrations of 0.6 mg/mL or 0.3 mg/mL for infusion into the auricular veins of rabbits. Two days after VNR infusion, the veins were subjected to histopathological examination. VNR did not cause obvious loss of venous endothelial cells, the most sensitive and common feature of phlebitis, but VNR infusion led to inflammatory cell infiltration, edema, and epidermal degeneration. Tissue damage was significantly decreased by shortening the administration time and by diluting the VNR solution for infusion from 0.6 mg/mL to 0.3 mg/mL. However, there was no effect of flushing with normal saline after VNR infusion, while treatment with fat emulsion before and after VNR infusion only had a minimal effect. Rapid infusion and dilution are effective methods of reducing phlebitis caused by the infusion of VNR, but the efficacy of flushing with normal saline or infusion of fat emulsion was not confirmed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucachick, Glenn; Curran, Scott; Storey, John Morse
Our work explores the volatility of particles produced from two diesel low temperature combustion (LTC) modes proposed for high-efficiency compression ignition engines. It also explores mechanisms of particulate formation and growth upon dilution in the near-tailpipe environment. Moreover, the number distribution of exhaust particles from low- and mid-load dual-fuel reactivity controlled compression ignition (RCCI) and single-fuel premixed charge compression ignition (PPCI) modes were experimentally studied over a gradient of dilution temperature. Particle volatility of select particle diameters was investigated using volatility tandem differential mobility analysis (V-TDMA). Evaporation rates for exhaust particles were compared with V-TDMA results for candidate pure n-alkanesmore » to identify species with similar volatility characteristics. The results show that LTC particles are mostly comprised of material with volatility similar to engine oil alkanes. V-TDMA results were used as inputs to an aerosol condensation and evaporation model to support the finding that smaller particles in the distribution are comprised of lower volatility material than large particles under primary dilution conditions. Although the results show that saturation levels are high enough to drive condensation of alkanes onto existing particles under the dilution conditions investigated, they are not high We conclude that observed particles from LTC operation must grow from low concentrations of highly non-volatile compounds present in the exhaust.« less
Antiferromagnetic instability in Sr3Ru2O7: stabilized and revealed by dilute Mn impurities
NASA Astrophysics Data System (ADS)
Hossain, Muhammed; Bohnenbuck, B.; Chuang, Y.-D.; Cruz, E.; Wu, H.-H.; Tjeng, L. H.; Elfimov, I. S.; Hussain, Z.; Keimer, B.; Sawatzky, G. A.; Damascelli, A.
2009-03-01
X-ray Absorption Spectroscopy (XAS) and Resonant Elastic Soft X-ray Scattering (RESXS) studies have been performed on Mn-doped Sr3Ru2O7, both on the Ru and Mn L-edges, to investigate the origin of the metal insulator transition. Extensive simulations based on our experimental findings point toward an intrinsic antiferromagnetic instability in the parent Sr3Ru2O7 compound that is stabilized by the dilute Mn impurities. We show that the metal-insulator transition is a direct consequence of the antiferromagnetic order and we propose a phenomenological model that may be applicable also to metal-insulator transitions seen in other oxides. Moreover, a comparison of Ru and Mn L-edge data on 5% Mn doped system reveals that dilute Mn impurities are generating much more intense signal than Ru which is occupying 95% of the lattice sites. This suggests the embedding of dilute impurities as a powerful mean to probe weak and, possibly, spatially inhomogeneous order in solid-state systems. In collaboration with: Y. Yoshida (AIST), J. Geck, D.G. Hawthorn (UBC), M.W. Haverkort, Z. Hu, C. Sch"ußler-Langeheine (Cologne), R. Mathieu, Y. Tokura, S. Satow, H. Takagi (Tokyo), J.D. Denlinger (ALS).
Liang, Shuhua; Bishop, Christopher B.; Moreo, Adriana; ...
2015-09-21
The phase diagram of electron-doped pnictides is studied varying the temperature, electronic density, and isotropic in-plane quenched disorder strength and dilution by means of computational techniques applied to a three-orbital (xz,yz,xy) spin-fermion model with lattice degrees of freedom. In experiments, chemical doping introduces disorder but in theoretical studies the relationship between electronic doping and the randomly located dopants, with their associated quenched disorder, is difficult to address. Moreover, in this publication, the use of computational techniques allows us to study independently the effects of electronic doping, regulated by a global chemical potential, and impurity disorder at randomly selected sites. Surprisingly,more » our Monte Carlo simulations reveal that the fast reduction with doping of the N eel T N and the structural T S transition temperatures, and the concomitant stabilization of a robust nematic state, is primarily controlled in our model by the magnetic dilution associated with the in-plane isotropic disorder introduced by Fe substitution. In the doping range studied, changes in the Fermi surface produced by electron doping affect only slightly both critical temperatures. Our results also suggest that the specific material-dependent phase diagrams experimentally observed could be explained as a consequence of the variation in disorder profiles introduced by the different dopants. Finally, our findings are also compatible with neutron scattering and scanning tunneling microscopy, unveiling a patchy network of locally magnetically ordered clusters with anisotropic shapes, even though the quenched disorder is locally isotropic. Our study reveals a remarkable and unexpected degree of complexity in pnictides: the fragile tendency to nematicity intrinsic of translational invariant electronic systems needs to be supplemented by quenched disorder and dilution to stabilize the robust nematic phase experimentally found in electron-doped 122 compounds.« less
Madenjian, Charles P.; Jensen, Olaf P.; Rediske, Richard R.; O'Keefe, James P.; Vastano, Anthony R.; Pothoven, Steven A.
2016-01-01
Comparison of polychlorinated biphenyl (PCB) concentrations between the sexes of mature fish may reveal important behavioral and physiological differences between the sexes. We determined whole-fish PCB concentrations in 23 female summer flounder Paralichthys dentatus and 27 male summer flounder from New Jersey coastal waters. To investigate the potential for differences in diet or habitat utilization between the sexes, carbon and nitrogen stable isotope ratios were also determined. In 5 of the 23 female summer flounder, PCB concentrations in the somatic tissue and ovaries were determined. In addition, we used bioenergetics modeling to assess the contribution of the growth dilution effect to the observed difference in PCB concentrations between the sexes. Whole-fish PCB concentrations for females and males averaged 87 and 124 ng/g, respectively; thus males were 43% higher in PCB concentration compared with females. Carbon and nitrogen stable isotope ratios did not significantly differ between the sexes, suggesting that diet composition and habitat utilization did not vary between the sexes. Based on PCB determinations in the somatic tissue and ovaries, we predicted that PCB concentration of females would increase by 0.6%, on average, immediately after spawning due to release of eggs. Thus, the change in PCB concentration due to release of eggs did not explain the higher PCB concentrations observed in males. Bioenergetics modeling results indicated that the growth dilution effect could account for males being 19% higher in PCB concentration compared with females. Thus, the bulk of the observed difference in PCB concentrations between the sexes was not explained by growth dilution. We concluded that a higher rate of energy expenditure in males, stemming from greater activity and a greater resting metabolic rate, was most likely the primary driver for the observed difference in PCB concentrations between the sexes.
NASA Astrophysics Data System (ADS)
Liang, Shuhua; Bishop, Christopher B.; Moreo, Adriana; Dagotto, Elbio
2015-09-01
The phase diagram of electron-doped pnictides is studied varying the temperature, electronic density, and isotropic in-plane quenched disorder strength and dilution by means of computational techniques applied to a three-orbital (x z ,y z ,x y ) spin-fermion model with lattice degrees of freedom. In experiments, chemical doping introduces disorder but in theoretical studies the relationship between electronic doping and the randomly located dopants, with their associated quenched disorder, is difficult to address. In this publication, the use of computational techniques allows us to study independently the effects of electronic doping, regulated by a global chemical potential, and impurity disorder at randomly selected sites. Surprisingly, our Monte Carlo simulations reveal that the fast reduction with doping of the Néel TN and the structural TS transition temperatures, and the concomitant stabilization of a robust nematic state, is primarily controlled in our model by the magnetic dilution associated with the in-plane isotropic disorder introduced by Fe substitution. In the doping range studied, changes in the Fermi surface produced by electron doping affect only slightly both critical temperatures. Our results also suggest that the specific material-dependent phase diagrams experimentally observed could be explained as a consequence of the variation in disorder profiles introduced by the different dopants. Our findings are also compatible with neutron scattering and scanning tunneling microscopy, unveiling a patchy network of locally magnetically ordered clusters with anisotropic shapes, even though the quenched disorder is locally isotropic. This study reveals a remarkable and unexpected degree of complexity in pnictides: the fragile tendency to nematicity intrinsic of translational invariant electronic systems needs to be supplemented by quenched disorder and dilution to stabilize the robust nematic phase experimentally found in electron-doped 122 compounds.
Madenjian, Charles P; Jensen, Olaf P; Rediske, Richard R; O'Keefe, James P; Vastano, Anthony R; Pothoven, Steven A
2016-01-01
Comparison of polychlorinated biphenyl (PCB) concentrations between the sexes of mature fish may reveal important behavioral and physiological differences between the sexes. We determined whole-fish PCB concentrations in 23 female summer flounder Paralichthys dentatus and 27 male summer flounder from New Jersey coastal waters. To investigate the potential for differences in diet or habitat utilization between the sexes, carbon and nitrogen stable isotope ratios were also determined. In 5 of the 23 female summer flounder, PCB concentrations in the somatic tissue and ovaries were determined. In addition, we used bioenergetics modeling to assess the contribution of the growth dilution effect to the observed difference in PCB concentrations between the sexes. Whole-fish PCB concentrations for females and males averaged 87 and 124 ng/g, respectively; thus males were 43% higher in PCB concentration compared with females. Carbon and nitrogen stable isotope ratios did not significantly differ between the sexes, suggesting that diet composition and habitat utilization did not vary between the sexes. Based on PCB determinations in the somatic tissue and ovaries, we predicted that PCB concentration of females would increase by 0.6%, on average, immediately after spawning due to release of eggs. Thus, the change in PCB concentration due to release of eggs did not explain the higher PCB concentrations observed in males. Bioenergetics modeling results indicated that the growth dilution effect could account for males being 19% higher in PCB concentration compared with females. Thus, the bulk of the observed difference in PCB concentrations between the sexes was not explained by growth dilution. We concluded that a higher rate of energy expenditure in males, stemming from greater activity and a greater resting metabolic rate, was most likely the primary driver for the observed difference in PCB concentrations between the sexes.
Madenjian, Charles P.; Jensen, Olaf P.; Rediske, Richard R.; O’Keefe, James P.; Vastano, Anthony R.; Pothoven, Steven A.
2016-01-01
Comparison of polychlorinated biphenyl (PCB) concentrations between the sexes of mature fish may reveal important behavioral and physiological differences between the sexes. We determined whole-fish PCB concentrations in 23 female summer flounder Paralichthys dentatus and 27 male summer flounder from New Jersey coastal waters. To investigate the potential for differences in diet or habitat utilization between the sexes, carbon and nitrogen stable isotope ratios were also determined. In 5 of the 23 female summer flounder, PCB concentrations in the somatic tissue and ovaries were determined. In addition, we used bioenergetics modeling to assess the contribution of the growth dilution effect to the observed difference in PCB concentrations between the sexes. Whole-fish PCB concentrations for females and males averaged 87 and 124 ng/g, respectively; thus males were 43% higher in PCB concentration compared with females. Carbon and nitrogen stable isotope ratios did not significantly differ between the sexes, suggesting that diet composition and habitat utilization did not vary between the sexes. Based on PCB determinations in the somatic tissue and ovaries, we predicted that PCB concentration of females would increase by 0.6%, on average, immediately after spawning due to release of eggs. Thus, the change in PCB concentration due to release of eggs did not explain the higher PCB concentrations observed in males. Bioenergetics modeling results indicated that the growth dilution effect could account for males being 19% higher in PCB concentration compared with females. Thus, the bulk of the observed difference in PCB concentrations between the sexes was not explained by growth dilution. We concluded that a higher rate of energy expenditure in males, stemming from greater activity and a greater resting metabolic rate, was most likely the primary driver for the observed difference in PCB concentrations between the sexes. PMID:26794728
Rigrod laser-pumped-laser resonator model: II. Application to thin and optically-dilute laser media
NASA Astrophysics Data System (ADS)
Brown, D. C.
2014-08-01
In part I of this paper, and to set the foundation for this part II, we derived the resonator equations describing the normalized intensities, output power, gain, and extraction efficiency for a standard resonator incorporating two dielectric mirrors and a gain element. We then generalized the results to include an absorbing region representing a second laser crystal characterized by a small-signal transmission T0. Explicit expressions were found for the output power extracted into absorption by the second laser crystal and the extraction efficiency, and the limits to each were discussed. It was shown that efficient absorption by a thin or dilute second laser crystal can be realized in resonators in which the mirror reflectivities were high and in which the single-pass absorption was low, due to the finite photon lifetime and multi-passing of the absorbing laser element. In this paper, we apply the model derived in part I to thin or dilute laser materials, concentrating on a Yb, Er:glass intracavity pumped by a 946 nm Nd:YAG laser, a Yb, Er:glass laser-pumped intracavity by a 977 nm diode laser, and an Er:YAG laser-pumped intracavity to a 1530 nm diode laser. It is shown that efficient absorption can be obtained in all cases examined.
Gupta, Nautasha; Kluge, Matt; Chadik, Paul A; Townsend, Timothy G
2018-02-01
Recycled Concrete Aggregate (RCA) is often used as a replacement for natural aggregate in road construction activities because of its excellent mechanical properties, and this trend should increase as more transportation departments include RCA in specifications and design manuals. Concerns raised by some engineers and contractors include impacts from leachate generated by RCA, both from transport of metals to water sources and the impact of a high pH leachate on corrosion of underlying metal drainage pipes. In this study, RCA collected from various regions of Florida exhibited pH ranging from 10.5 to 12.3. Concentrations of Al, Ba, Cr, Fe, Mo, Na, Ni, Sb, and Sr measured using batch leaching tests exceeded applicable risk-based thresholds on at least some occasions, but the concentrations measured suggest that risk to water supplies should be controlled because of dilution and attenuation. Two mechanisms of pH neutralization were evaluated. Soil acidity plays a role, but laboratory testing and chemical modeling found that at higher liquid-to-solid ratios the acidity is exhausted. If high pH leachate did reach groundwater, chemical modeling indicated that groundwater dilution and carbonation would mitigate groundwater pH effects. Copyright © 2017 Elsevier Ltd. All rights reserved.
Phase separation in solution of worm-like micelles: a dilute ? spin-vector model
NASA Astrophysics Data System (ADS)
Panizza, Pascal; Cristobal, Galder; Curély, Jacques
1998-12-01
We show how the dilute 0953-8984/10/50/006/img2 spin vector model introduced originally by Wheeler and co-workers for describing the polymerization phenomenon in solutions of liquid sulphur and of living polymers may be conveniently adapted for studying phase separation in systems containing long flexible micelles. We draw an isomorphism between the coupling constant appearing in the exchange Hamiltonian and the surfactant energies in the micellar problem. We solve this problem within the mean-field approximation and compare the main results we have obtained with respect to polymer theory and previous theories of phase separation in micellar solutions. We show that the attractive interaction term 0953-8984/10/50/006/img3 between monomers renormalizes the aggregation energy and subsequently the corresponding size distribution. Under these conditions, we observe that the general aspect of the phase diagram in the 0953-8984/10/50/006/img4 plane (where 0953-8984/10/50/006/img5 is the surfactant concentration) is different from previous results. The spinodal line shows a re-entrant behaviour and, at low concentrations, we point out the possibility of specific nucleation phenomena related to the existence of a metastable transition line between a region composed of spherical micelles and another one corresponding to a dilute solution of long flexible micelles.
Immunology and Homeopathy. 2. Cells of the Immune System and Inflammation
Bellavite, Paolo; Conforti, Anita; Pontarollo, Francesco; Ortolani, Riccardo
2006-01-01
Here we describe the results of some experimental laboratory studies aimed at verifying the efficacy of high dilutions of substances and of homeopathic medicines in models of inflammation and immunity. Studies carried out on basophils, lymphocytes, granulocytes and fibroblasts are reviewed. This approach may help to test under controlled conditions the main principles of homeopathy such as ‘similarity’ of drug action at the cellular level and the effects of dilution/dynamization on the drug activity. The current situation is that few and rather small groups are working on laboratory models for homeopathy. Regarding the interpretation of data in view of the simile principle, we observe that there are different levels of similarity and that the laboratory data give support to this principle, but have not yet yielded the ultimate answer to the action mechanism of homeopathy. Evidence of the biological activity in vitro of highly diluted-dynamized solutions is slowly accumulating, with some conflicting reports. It is our hope that this review of literature unknown to most people will give an original and useful insight into the ‘state-of-the-art’ of homeopathy, without final conclusions ‘for’ or ‘against’ this modality. This kind of uncertainty may be difficult to accept, but is conceivably the most open-minded position now. PMID:16550219
Model for the Prediction of the Hydriding Thermodynamics of Pd-Rh-Co Ternary Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teter, D.F.; Thoma, D.J.
1999-03-01
A dilute solution model (with respect to the substitutional alloying elements) has been developed, which accurately predicts the hydride formation and decomposition thermodynamics and the storage capacities of dilute ternary Pd-Rh-Co alloys. The effect of varying the rhodium and cobalt compositions on the thermodynamics of hydride formation and decomposition and hydrogen capacity of several palladium-rhodium-cobalt ternary alloys has been investigated using pressure-composition (PC) isotherms. Alloying in the dilute regime (<10 at.%) causes the enthalpy for hydride formation to linearly decrease with increasing alloying content. Cobalt has a stronger effect on the reduction in enthalpy than rhodium for equivalent alloying amounts.more » Also, cobalt reduces the hydrogen storage capacity with increasing alloying content. The plateau thermodynamics are strongly linked to the lattice parameters of the alloys. A near-linear dependence of the enthalpy of hydride formation on the lattice parameter was observed for both the binary Pd-Rh and Pd-Co alloys, as well as for the ternary Pd-Rh-Co alloys. The Pd-5Rh-3Co (at. %) alloy was found to have similar plateau thermodynamics as a Pd-10Rh alloy, however, this ternary alloy had a diminished hydrogen storage capacity relative to Pd-10Rh.« less
Study on the engine oil's wear based on the flash point
NASA Astrophysics Data System (ADS)
Niculescu, R.; Iorga-Simăn, V.; Trică, A.; Clenci, A.
2016-08-01
Increasing energy performance of internal combustion engines is largely influenced by frictional forces that arise between moving parts. Thus, in this respect, the nature and quality of the engine oil used is an important factor. Equally important is the effect of various engine injection strategies upon the oil quality. In other words, it's of utmost importance to maintain the quality of engine oil during engine's operation. Oil dilution is one of the most common causes that lead to its wear, creating lubrication problems. Moreover, at low temperatures operating conditions, the oil dilution with diesel fuel produces wax. When starting the engine, this may lead to lubrication deficiencies and even oil starvation with negative consequences on the engine mechanism parts wear (piston, rings and cylinders) but also crankcase bearings wear.Engine oil dilution with diesel fuel have several causes: wear of rings and/or injectors, late post-injection strategy for the sake of particulate filter regeneration, etc.This paper presents a study on the degree of deterioration of engine oils as a result of dilution with diesel fuel. The analysed oils used for this study were taken from various models of engines equipped with diesel particulate filter. The assessment is based on the determination of oil flash point and dilution degree using the apparatus Eraflash produced by Eralytics, Austria. Eraflash measurement is directly under the latest and safest standards ASTM D6450 & D7094), which are in excellent correlation with ASTM D93 Pensky - Martens ASTM D56 TAG methods; it uses the Continuous Closed Cup method for finding the Flash Point (CCCFP).
Milholland, Matthew T; Castro-Arellano, Iván; Arellano, Elizabeth; Nava-García, Elizabeth; Rangel-Altamirano, Guadalupe; Gonzalez-Cozatl, Francisco X; Suzán, Gerardo; Schountz, Tony; González-Padrón, Shiara; Vigueras, Ana; Rubio, André V; Maikis, Troy J; Westrich, Bradford J; Martinez, Jose A; Esteve-Gassent, Maria D; Torres, Madison; Rodriguez-Ruiz, Erick R; Hahn, Dittmar; Lacher, Thomas E
2017-12-15
Recent models suggest a relationship exists between community diversity and pathogen prevalence, the proportion of individuals in a population that are infected by a pathogen, with most inferences tied to assemblage structure. Two contrasting outcomes of this relationship have been proposed: the "dilution effect" and the "amplification effect." Small mammal assemblage structure in disturbed habitats often differs from assemblages in sylvan environments, and hantavirus prevalence is often negatively correlated with habitats containing high species diversity via dilution effect dynamics. As species richness increases, prevalence of infection often is decreased. However, anthropogenic changes to sylvan landscapes have been shown to decrease species richness and/or increase phylogenetic similarities within assemblages. Between January 2011 and January 2016, we captured and tested 2406 individual small mammals for hantavirus antibodies at 20 sites across Texas and México and compared differences in hantavirus seroprevalence, species composition, and assemblage structure between sylvan and disturbed habitats. We found 313 small mammals positive for antibodies against hantaviruses, evincing an overall prevalence of 9.7% across all sites. In total, 40 species of small mammals were identified comprising 2 taxonomic orders (Rodentia and Eulipotyphla). By sampling both habitat types concurrently, we were able to make real-world inferences into the efficacy of dilution effect theory in terms of hantavirus ecology. Our hypothesis predicting greater species richness higher in sylvan habitats compared to disturbed areas was not supported, suggesting the characteristics of assemblage structure do not adhere to current conceptions of species richness negatively influencing prevalence via a dilution effect.
Chen, Zhe; Cave, Kyle R
2014-08-01
Distractor interference is subject to dilution from other nontarget elements, and the level of dilution is affected by attention. This study explores the nature of dilution when the location and color of the target is known in advance. Experiments 1 and 2 show that attention is effectively limited to the precued region, so that it is the nontarget letters appearing at the cued locations that are responsible for most of the dilution, and not those appearing at the uncued locations. Furthermore, this dilution occurs relatively early in processing. Experiment 3 demonstrates that top-down attentional control can prevent dilution, because foreknowledge of the target color leads to quick attention shifts. Experiment 4 illustrates bottom-up attentional control in preventing dilution when the distractor is a color singleton that is segregated from the diluting nontargets. The results show that dilution is modulated by both top-down and bottom-up factors, that it can occur even when attention is restricted to a relatively small region, and that it occurs early in processing, but not so early that it avoids the effects of attention. They provide new challenges for earlier accounts suggesting that dilution is widespread and unfettered by attention. Likewise, some parts of the results are difficult to reconcile with the alternative perceptual load theory, but they do support a form of dilution that is limited by attentional boundaries. Because of that link to attention, dilution is a useful tool for measuring how attention is guided by information about target location and color. Copyright © 2014 Elsevier Ltd. All rights reserved.
Watanabe, Evandro; Tanomaru, Juliane Maria Guerreiro; Nascimento, Andresa Piacezzi; Matoba, Fumio; Tanomaru, Mario; Ito, Izabel Yoko
2008-01-01
The aim of this in vitro study was to determine the maximum inhibitory dilution (MID) of four cetylpyridinium chloride (CPC)-based mouthwashes: CPC+Propolis, CPC+Malva, CPC+Eucaliptol+Juá+Romã+Propolis (Natural Honey®) and CPC (Cepacol®), against 28 Staphylococcus aureus field strains, using the agar dilution method. Decimal dilutions ranging from 1/10 to 1/ 655,360 were prepared and added to Mueller Hinton Agar. Strains were inoculated using Steers multipoint inoculator. The inocula were seeded onto the surface of the culture medium in Petri dishes containing different dilutions of the mouthwashes. The dishes were incubated at 37°C for 24 h. For readings, the MID was considered as the maximum dilution of mouthwash still capable of inhibiting microbial growth. The obtained data showed that CPC+Propolis had antimicrobial activity against 27 strains at 1/320 dilution and against all 28 strains at 1/160 dilution, CPC+Malva inhibited the growth of all 28 strains at 1/320 dilution, CPC+Eucaliptol+Juá+Romã+Propolis inhibited the growth of 2 strains at 1/640 dilution and all 28 strains at 1/320 dilution, and Cepacol® showed antimicrobial activity against 3 strains at 1/320 dilution and against all 28 strains at 1/160 dilution. Data were submitted to Kruskal-Wallis test, showing that the MID of Cepacol® was lower than that determined for the other products (p<0.05). In conclusion, CPC-mouthwashes showed antimicrobial activity against S. aureus and the addition of other substances to CPC improved its antimicrobial effect. PMID:19089260
Dutcher, Cari S; Ge, Xinlei; Wexler, Anthony S; Clegg, Simon L
2013-04-18
In previous studies (Dutcher et al. J. Phys. Chem. C 2011, 115, 16474-16487; 2012, 116, 1850-1864), we derived equations for the Gibbs energy, solvent and solute activities, and solute concentrations in multicomponent liquid mixtures, based upon expressions for adsorption isotherms that include arbitrary numbers of hydration layers on each solute. In this work, the long-range electrostatic interactions that dominate in dilute solutions are added to the Gibbs energy expression, thus extending the range of concentrations for which the model can be used from pure liquid solute(s) to infinite dilution in the solvent, water. An equation for the conversion of the reference state for solute activity coefficients to infinite dilution in water has been derived. A number of simplifications are identified, notably the equivalence of the sorption site parameters r and the stoichiometric coefficients of the solutes, resulting in a reduction in the number of model parameters. Solute concentrations in mixtures conform to a modified Zdanovskii-Stokes-Robinson mixing rule, and solute activity coefficients to a modified McKay-Perring relation, when the effects of the long-range (Debye-Hückel) term in the equations are taken into account. Practical applications of the equations to osmotic and activity coefficients of pure aqueous electrolyte solutions and mixtures show both satisfactory accuracy from low to high concentrations, together with a thermodynamically reasonable extrapolation (beyond the range of measurements) to extreme concentration and to the pure liquid solute(s).
NASA Astrophysics Data System (ADS)
Shi, Jie; Liu, Yi; Mao, Xinyan; Guo, Xinyu; Wei, Hao; Gao, Huiwang
2017-07-01
The interannual variations of the start timing, magnitude and duration of the spring phytoplankton bloom (SPB) in the central southern Yellow Sea (SYS) were studied using the satellite-derived surface chlorophyll-a concentrations (Chl-a) from 2000 to 2014. The correlations between the characteristics of SPB and the generation rate of turbulent kinetic energy (TKERT) supplied from the atmosphere to the ocean were examined. The start timing of SPB was delayed in years with high TKERT supplied to the ocean before SPB. The TKERT during SPB had no relationship with the magnitude of SPB, but had positive correlation with the duration. A 1-D physical-biological model was used to examine the influencing mechanisms of the TKERT on the characteristics of SPB quantitatively. The wind speeds and related TKERT before the start of SPB were stronger in 2010 than in 2008. Comparison of the model results forced by winds in the two years suggested that the enhanced physical dilution of phytoplankton caused by the stronger TKERT in 2010 induced a later start timing of SPB. When increasing the winds during SPB period, more phytoplankton was taken downward from the surface layer by the enhanced vertical mixing. Meanwhile, more nutrients were pumped upward to the surface layer and supported more net growth of phytoplankton. These two contrary processes led to the independence of the magnitude of SPB on the TKERT during the SPB period. However, larger TKERT along with stronger wind resulted in a longer duration of SPB because of more nutrients supply by stronger vertical mixing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gul, Banat, E-mail: banatgul@gmail.com; Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp; Aman-ur-Rehman, E-mail: amansadiq@gmail.com
Fluid model has been applied to perform a comparative study of hydrogen bromide (HBr)/He and HBr/Ar capacitively coupled plasma discharges that are being used for anisotropic etching process. This model has been used to identify the most dominant species in HBr based plasmas. Our simulation results show that the neutral species like H and Br, which are the key player in chemical etching, have bell shape distribution, while ions like HBr{sup +}, Br{sup +}, which play a dominant rule in the physical etching, have double humped distribution and show peaks near electrodes. It was found that the dilution of HBrmore » by Ar and/or He results in an increase in electron density and electron temperature, which results in more ionization and dissociation and hence higher densities of neutral and charged species can be achieved. The ratio of positive ion flux to the neutral flux increases with an increase in additive gas fraction. Compare to HBr/He plasma, the HBr/Ar plasma shows a maximum change in the ion density and flux and hence the etching rate can be considered in the ion-assisted and in the ion-flux etch regime in HBr/Ar discharge. The densities of electron and other dominant species in HBr/Ar plasma are higher than those of HBr/He plasma. The densities and fluxes of the active neutrals and positive ions for etching and subsequently chemical etching versus physical sputtering in HBr/Ar and HBr/He plasmas discharge can be controlled by tuning gas mixture ratio and the desire etching can be achieved.« less
NASA Astrophysics Data System (ADS)
Soti, G.; Wauters, F.; Breitenfeldt, M.; Finlay, P.; Herzog, P.; Knecht, A.; Köster, U.; Kraev, I. S.; Porobic, T.; Prashanth, P. N.; Towner, I. S.; Tramm, C.; Zákoucký, D.; Severijns, N.
2014-09-01
Background: Precision measurements at low energy search for physics beyond the standard model in a way complementary to searches for new particles at colliders. In the weak sector the most general β-decay Hamiltonian contains, besides vector and axial-vector terms, also scalar, tensor, and pseudoscalar terms. Current limits on the scalar and tensor coupling constants from neutron and nuclear β decay are on the level of several percent. Purpose: Extracting new information on tensor coupling constants by measuring the β-asymmetry parameter in the pure Gamow-Teller decay of Cu67, thereby testing the V-A structure of the weak interaction. Method: An iron sample foil into which the radioactive nuclei were implanted was cooled down to mK temperatures in a 3He-4He dilution refrigerator. An external magnetic field of 0.1 T, in combination with the internal hyperfine magnetic field, oriented the nuclei. The anisotropic β radiation was observed with planar high-purity germanium detectors operating at a temperature of about 10 K. An on-line measurement of the β asymmetry of Cu68 was performed as well for normalization purposes. Systematic effects were investigated using geant4 simulations. Results: The experimental value, Ã=0.587(14), is in agreement with the standard model value of 0.5991(2) and is interpreted in terms of physics beyond the standard model. The limits obtained on possible tensor-type charged currents in the weak interaction Hamiltonian are -0.045<(CT+CT')/CA<0.159 (90% C.L.). Conclusions: The obtained limits are comparable to limits from other correlation measurements in nuclear β decay and contribute to further constraining tensor coupling constants.
Dynamics of associative polymer solutions: Capillary break-up, jetting and rheology
NASA Astrophysics Data System (ADS)
Sharma, Vivek; Serdy, James G.; Threfall-Holmes, Phil; McKinley, Gareth H.
2011-11-01
Associative polymer solutions are used in extensively in the formulations for water-borne paints, food, inks, cosmetics, etc to control the rheology and processing behavior of multi-component dispersions. These complex dispersions are processed and used over a broad range of shear and extensional rates. Furthermore, the commercially relevant formulations use dilute solutions of associative polymers, which have low viscosity and short relaxation times, and hence their non-Newtonian response is not apparent in a conventional rheometer. In this talk, we explore several methods for systematically exploring the linear and nonlinear solution rheology of associative polymer dispersions, including: fractional model description of physical gelation, high frequency oscillatory tests at frequencies up to 10 kHz, microfluidic shear rheometry at deformation rates up to 1000000 /s and the influence of transient extensional rheology in the jet breakup. We show that high deformation rates can be obtained in jetting flows, and the growth and evolution of instability during jetting and break-up of these viscoelastic fluids shows the influence of both elasticity and extensibility.
The imaging and modelling of the physical processes involved in digestion and absorption.
Schulze, K S
2015-02-01
The mechanical activity of the gastro-intestinal tract serves to store, propel and digest food. Contractions disperse particles and transform solids and secretions into the two-phase slurry called chyme; movements of the intestine deliver nutrients to mucosal sites of absorption, and from the submucosa into the lymphatic and portal venous circulation. Colonic motor activity helps to extract fluid and electrolytes from chyme and to compound and compact luminal debris into faeces for elimination. We outline how dynamic imaging by ultrasound and magnetic resonance can demonstrate intestinal flow processes critical to digestion like mixing, dilution, swelling, dispersion and elution. Computational fluid mechanics enables a numerical rendition of the forces promoting digestion: pressure and flow fields, the shear stresses dispersing particles or the effectiveness of bolus mixing can be calculated. These technologies provide new insights into the mechanical processes that promote digestion and absorption. © 2014 This article is a U.S. Government work and is in the public domain in the USA.
Quantum turbulence in cold multicomponent matter
NASA Astrophysics Data System (ADS)
Pshenichnyuk, Ivan A.
2018-02-01
Quantum vortices are pivotal for understanding of phenomena in quantum hydrodynamics. Vortices were observed in different physical systems like trapped dilute Bose-Einstein condensates, liquid helium, exciton-polariton condensates and other types of systems. Foreign particles attached to the vortices often serve for a visualization of the vortex shape and kinematics in superfluid experiments. Fascinating discoveries were made in the field of cold quantum mixtures, where vortices created in one component may interact with the other component. This works raise the fundamental question of the interaction between quantum vortices and matter. The generalized nonlinear Schrodinger equation based formalism is applied here to model three different processes involving the interaction of quantum vortices with foreign particles: propagation of a fast classical particle in a superfluid under the influence of sound waves, scattering of a single fermion by a quantized vortex line and dynamics of vortex pairs doped with heavy bosonic matter. The obtained results allow to to clarify the details of recent experiments and acquire a better understanding of the multicomponent quantum turbulence.
Liu, Zeliang; Moore, John A.; Liu, Wing Kam
2016-05-03
Inclusions comprised on filler particles and interphase regions commonly form complex morphologies in polymer nanocomposites. Addressing these morphologies as systems of overlapping simple shapes allows for the study of dilute particles, clustered particles, and interacting interphases all in one general modeling framework. To account for the material properties in these overlapping geometries, weighted-mean and additive overlapping conditions are introduced and the corresponding inclusion-wise integral equations are formulated. An extended micromechanics method based on these overlapping conditions for linear elastic and viscoelastic heterogeneous material is then developed. An important feature of the proposed approach is that the effect of both themore » geometric overlapping (clustered particles) and physical overlapping (interacting interphases) on the effective properties can be distinguished. Lastly, we apply the extended micromechanics method to a viscoelastic polymer nanocomposite with interphase regions, and estimate the properties and thickness of the interphase region based on experimental data for carbon-black filled styrene butadiene rubbers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zeliang; Moore, John A.; Liu, Wing Kam
Inclusions comprised on filler particles and interphase regions commonly form complex morphologies in polymer nanocomposites. Addressing these morphologies as systems of overlapping simple shapes allows for the study of dilute particles, clustered particles, and interacting interphases all in one general modeling framework. To account for the material properties in these overlapping geometries, weighted-mean and additive overlapping conditions are introduced and the corresponding inclusion-wise integral equations are formulated. An extended micromechanics method based on these overlapping conditions for linear elastic and viscoelastic heterogeneous material is then developed. An important feature of the proposed approach is that the effect of both themore » geometric overlapping (clustered particles) and physical overlapping (interacting interphases) on the effective properties can be distinguished. Lastly, we apply the extended micromechanics method to a viscoelastic polymer nanocomposite with interphase regions, and estimate the properties and thickness of the interphase region based on experimental data for carbon-black filled styrene butadiene rubbers.« less
Assembly Kinetics Determine the Architecture of α-actinin Crosslinked F-actin Networks
Falzone, Tobias T.; Lenz, Martin; Kovar, David R.; Gardel, Margaret L.
2013-01-01
The actin cytoskeleton is organized into diverse meshworks and bundles that support many aspects of cell physiology. Understanding the self-assembly of these actin-based structures is essential for developing predictive models of cytoskeletal organization. Here we show that the competing kinetics of bundle formation with the onset of dynamic arrest arising from filament entanglements and cross-linking determine the architecture of reconstituted actin networks formed with α-actinin cross-links. Cross-link mediated bundle formation only occurs in dilute solutions of highly mobile actin filaments. As actin polymerization proceeds, filament mobility and bundle formation are arrested concomitantly. By controlling the onset of dynamic arrest, perturbations to actin assembly kinetics dramatically alter the architecture of biochemically identical samples. Thus, the morphology of reconstituted F-actin networks is a kinetically determined structure similar to those formed by physical gels and glasses. These results establish mechanisms controlling the structure and mechanics in diverse semi-flexible biopolymer networks. PMID:22643888
Appleton, A; Singh, S; Eady, N; Buszewicz, M
2017-07-28
There is no consensus regarding the optimal content of the undergraduate psychiatry curriculum as well as factors contributing to young doctors choosing a career in psychiatry. Our aim was to explore factors which had influenced psychiatry trainees' attitudes towards mental health and career choice. Qualitative in-depth interviews with 21 purposively sampled London psychiatry trainees analysed using the Framework method. Early exposure and sufficient time in undergraduate psychiatry placements were important in influencing psychiatry as a career choice and positive role models were often very influential. Integration of psychiatry with teaching about physical health was viewed positively, although concerns were raised about the potential dilution of psychiatry teaching. Foundation posts in psychiatry were very valuable in positively impacting career choice. Other suggestions included raising awareness at secondary school level, challenging negative attitudes amongst all medical educators, and promoting integration within medical specialties. Improvements in teaching psychiatry could improve medical attitudes and promote recruitment into psychiatry.
The Chemical Behavior of Fluids Released during Deep Subduction Based on Fluid Inclusions
NASA Astrophysics Data System (ADS)
Frezzotti, M. L.; Ferrando, S.
2014-12-01
We present a review of current research on fluid inclusions in (HP-) UHP metamorphic rocks that, combined with existing experimental research and thermodynamic models, allow us to investigate the chemical and physical properties of fluids released during deep subduction, their solvent and element transport capacity, and the subsequent implications for the element recycling in the mantle wedge. An impressive number of fluid inclusion studies indicate three main populations of fluid inclusions in HP and UHP metamorphic rocks: i) aqueous and/or non-polar gaseous fluid inclusions (FI), ii) multiphase solid inclusions (MSI), and iii) melt inclusions (MI). Chemical data from preserved fluid inclusions in rocks match with and implement "model" fluids by experiments and thermodynamics, revealing a continuity behind the extreme variations of physico-chemical properties of subduction-zone fluids. From fore-arc to sub-arc depths, fluids released by progressive devolatilization reactions from slab lithologies change from relatively diluted chloride-bearing aqueous solutions (± N2), mainly influenced by halide ligands, to (alkali) aluminosilicate-rich aqueous fluids, in which polymerization probably governs the solubility and transport of major (e.g., Si and Al) and trace elements (including C). Fluid inclusion data implement the petrological models explaining deep volatile liberation in subduction zones, and their flux into the mantle wedge.
A random walk model to simulate the atmospheric dispersion of radionuclide
NASA Astrophysics Data System (ADS)
Zhuo, Jun; Huang, Liuxing; Niu, Shengli; Xie, Honggang; Kuang, Feihong
2018-01-01
To investigate the atmospheric dispersion of radionuclide in large-medium scale, a numerical simulation method based on random walk model for radionuclide atmospheric dispersion was established in the paper. The route of radionuclide migration and concentration distribution of radionuclide can be calculated out by using the method with the real-time or historical meteorological fields. In the simulation, a plume of radionuclide is treated as a lot of particles independent of each other. The particles move randomly by the fluctuations of turbulence, and disperse, so as to enlarge the volume of the plume and dilute the concentration of radionuclide. The dispersion of the plume over time is described by the variance of the particles. Through statistical analysis, the relationships between variance of the particles and radionuclide dispersion characteristics can be derived. The main mechanisms considered in the physical model are: (1) advection of radionuclide by mean air motion, (2) mixing of radionuclide by atmospheric turbulence, (3) dry and wet deposition, (4) disintegration. A code named RADES was developed according the method. And then, the European Tracer Experiment (ETEX) in 1994 is simulated by the RADES and FLEXPART codes, the simulation results of the concentration distribution of tracer are in good agreement with the experimental data.
Osmotic pressure beyond concentration restrictions.
Grattoni, Alessandro; Merlo, Manuele; Ferrari, Mauro
2007-10-11
Osmosis is a fundamental physical process that involves the transit of solvent molecules across a membrane separating two liquid solutions. Osmosis plays a role in many biological processes such as fluid exchange in animal cells (Cell Biochem. Biophys. 2005, 42, 277-345;1 J. Periodontol. 2007, 78, 757-7632) and water transport in plants. It is also involved in many technological applications such as drug delivery systems (Crit. Rev. Ther. Drug. 2004, 21, 477-520;3 J. Micro-Electromech. Syst. 2004, 13, 75-824) and water purification. Extensive attention has been dedicated in the past to the modeling of osmosis, starting with the classical theories of van't Hoff and Morse. These are predictive, in the sense that they do not involve adjustable parameters; however, they are directly applicable only to limited regimes of dilute solute concentrations. Extensions beyond the domains of validity of these classical theories have required recourse to fitting parameters, transitioning therefore to semiempirical, or nonpredictive models. A novel approach was presented by Granik et al., which is not a priori restricted in concentration domains, presents no adjustable parameters, and is mechanistic, in the sense that it is based on a coupled diffusion model. In this work, we examine the validity of predictive theories of osmosis, by comparison with our new experimental results, and a meta-analysis of literature data.
NASA Astrophysics Data System (ADS)
Onel, Selis
Modeling free dendritic growth in supercooled alloys is a critical requirement in controlling the microstructure of materials during rapid solidification processing of materials. Recent models developed to predict the growth of a dendrite in a highly supercooled melt adopt modifications that account for the interface kinetics and thermodynamics at high interface velocities, but the assumptions necessary to simplify the mathematical problem impose inherent restrictions. The assumption of straight phase boundaries adopted in early models often loses validity at high supercoolings, where phase boundaries are often curved. The use of equations with Henrian restrictions, such as the Baker-Cahn equation for the interfacial driving force and the Aziz equation for solute trapping confine these models to dilute solutions. Turnbull's collision-limited linear kinetic equation for interface growth may not apply to large interfacial driving forces. Therefore, a useful application and modification of free dendritic growth models require a thorough understanding of their limitations in producing consistent results. One of the objectives of this research is to numerically compare the free dendritic growth models derived from the earlier LGK model developed by Lipton et al. The subsequent LKT model by Lipton et al., the TLK model by Trivedi et al., and the BCT model by Boettinger et al., together with a modification of the TLK model, and the DA model by DiVenuti and Ando are compared through application to an Ag-15 mass % Cu alloy. In addition, a new model to extend the DA model is developed by incorporating a thermodynamic solution model for the calculation of the interfacial driving force, thereby eliminating the Baker-Cahn equation that limits the use of the correct BCT and DA models to dilute solutions. Direct computation of the interfacial driving force by calculating a metastable phase diagram for the Ag-Cu system using a temperature dependent subregular solution model is carried out. Comparison of the results of the new model with the DA model confirms that the Baker-Cahn equation is applicable at low solute concentrations. As a future research direction, the new model can be extended to apply to higher concentration alloys by using a new solute trapping equation to further eliminate the dilute solution limitations.
Measuring Dilution of Microbicide Gels with Optical Imaging
Drake, Tyler K.; Shah, Tejen; Peters, Jennifer J.; Wax, Adam; Katz, David F.
2013-01-01
We present a novel approach for measuring topical microbicide gel dilution using optical imaging. The approach compares gel thickness measurements from fluorimetry and multiplexed low coherence interferometry in order to calculate dilution of a gel. As a microbicide gel becomes diluted at fixed thickness, its mLCI thickness measurement remains constant, while the fluorimetry signal decreases in intensity. The difference between the two measurements is related to the extent of gel dilution. These two optical modalities are implemented in a single endoscopic instrument that enables simultaneous data collection. A preliminary validation study was performed with in vitro placebo gel measurements taken in a controlled test socket. It was found that change in slope of the regression line between fluorimetry and mLCI based measurements indicates dilution. A dilution calibration curve was then generated by repeating the test socket measurements with serial dilutions of placebo gel with vaginal fluid simulant. This methodology can provide valuable dilution information on candidate microbicide products, which could substantially enhance our understanding of their in vivo functioning. PMID:24340006
Structural transformations in diluted micellar and lamellar systems
NASA Astrophysics Data System (ADS)
Zelaya-Rincon, Blanca
The role of dilution by artificial hard water on nanostructures present in body wash samples provided by Procter and Gamble were investigated using time-resolved cryogenic transmission electron microscopy (cryo-TEM). Samples with and without perfume were examined at 10X, 20X, and 50X dilution. Micellar samples transformed to mostly unilamellar vesicles at 50X dilution, in contrast to the micelle to monomer transition seen in typical samples. At lower dilutions, a change in morphology from spherical to wormlike micelles was observed. For lamellar samples, lower dilution ratios show tightly packed multilamellar vesicles, while higher dilution ratios show more dispersed vesicles with less bilayers. Nanostructural transformations upon dilution were attributed to changes in curvature/packing parameters, which occurred due to dilution with hard water and addition of perfume. The systems experience changes in curvature in order to maintain equilibrium. Also, the addition of perfume in the lamellar samples caused an increase in the number of bilayers present in multilamellar vesicles, because of its role in increasing the packing parameter in the system.
Alagandula, Ravali; Zhou, Xiang; Guo, Baochuan
2017-01-15
Liquid chromatography/tandem mass spectrometry (LC/MS/MS) is the gold standard of urine drug testing. However, current LC-based methods are time consuming, limiting the throughput of MS-based testing and increasing the cost. This is particularly problematic for quantification of drugs such as phenobarbital, which is often analyzed in a separate run because they must be negatively ionized. This study examined the feasibility of using a dilute-and-shoot flow-injection method without LC separation to quantify drugs with phenobarbital as a model system. Briefly, a urine sample containing phenobarbital was first diluted by 10 times, followed by flow injection of the diluted sample to mass spectrometer. Quantification and detection of phenobarbital were achieved by an electrospray negative ionization MS/MS system operated in the multiple reaction monitoring (MRM) mode with the stable-isotope-labeled drug as internal standard. The dilute-and-shoot flow-injection method developed was linear with a dynamic range of 50-2000 ng/mL of phenobarbital and correlation coefficient > 0.9996. The coefficients of variation and relative errors for intra- and inter-assays at four quality control (QC) levels (50, 125, 445 and 1600 ng/mL) were 3.0% and 5.0%, respectively. The total run time to quantify one sample was 2 min, and the sensitivity and specificity of the method did not deteriorate even after 1200 consecutive injections. Our method can accurately and robustly quantify phenobarbital in urine without LC separation. Because of its 2 min run time, the method can process 720 samples per day. This feasibility study shows that the dilute-and-shoot flow-injection method can be a general way for fast analysis of drugs in urine. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
2014-01-01
Background Gelsemium sempervirens L. (Gelsemium s.) is a traditional medicinal plant, employed as an anxiolytic at ultra-low doses and animal models recently confirmed this activity. However the mechanisms by which it might operate on the nervous system are largely unknown. This work investigates the gene expression of a human neurocyte cell line treated with increasing dilutions of Gelsemium s. extract. Methods Starting from the crude extract, six 100 × (centesimal, c) dilutions of Gelsemium s. (2c, 3c, 4c, 5c, 9c and 30c) were prepared according to the French homeopathic pharmacopoeia. Human SH-SY5Y neuroblastoma cells were exposed for 24 h to test dilutions, and their transcriptome compared by microarray to that of cells treated with control vehicle solutions. Results Exposure to the Gelsemium s. 2c dilution (the highest dose employed, corresponding to a gelsemine concentration of 6.5 × 10-9 M) significantly changed the expression of 56 genes, of which 49 were down-regulated and 7 were overexpressed. Several of the down-regulated genes belonged to G-protein coupled receptor signaling pathways, calcium homeostasis, inflammatory response and neuropeptide receptors. Fisher exact test, applied to the group of 49 genes down-regulated by Gelsemium s. 2c, showed that the direction of effects was significantly maintained across the treatment with high homeopathic dilutions, even though the size of the differences was distributed in a small range. Conclusions The study shows that Gelsemium s., a medicinal plant used in traditional remedies and homeopathy, modulates a series of genes involved in neuronal function. A small, but statistically significant, response was detected even to very low doses/high dilutions (up to 30c), indicating that the human neurocyte genome is extremely sensitive to this regulation. PMID:24642002
Ahumada, Luis Armando Carvajal; González, Marco Xavier Rivera; Sandoval, Oscar Leonardo Herrera; Olmedo, José Javier Serrano
2016-01-01
The main objective of this article is to demonstrate through experimental means the capacity of the quartz crystal resonator (QCR) to characterize biological samples of aqueous dilutions of hyaluronic acid according to their viscosity and how this capacity may be useful in the potential diagnosis of arthritic diseases. The synovial fluid is viscous due to the presence of hyaluronic acid, synthesized by synovial lining cells (type B), and secreted into the synovial fluid thus making the fluid viscous. In consequence, aqueous dilutions of hyaluronic acid may be used as samples to emulate the synovial fluid. Due to the viscoelastic and pseudo-plastic behavior of hyaluronic acid, it is necessary to use the Rouse model in order to obtain viscosity values comparable with viscometer measures. A Fungilab viscometer (rheometer) was used to obtain reference measures of the viscosity in each sample in order to compare them with the QCR prototype measures. PMID:27879675
Evrard, Olivier; Laceby, J. Patrick; Onda, Yuichi; Wakiyama, Yoshifumi; Jaegler, Hugo; Lefèvre, Irène
2016-01-01
Fallout from the Fukushima Dai-ichi nuclear power plant accident resulted in a 3000-km2 radioactive contamination plume. Here, we model the progressive dilution of the radiocesium contamination in 327 sediment samples from two neighboring catchments with different timing of soil decontamination. Overall, we demonstrate that there has been a ~90% decrease of the contribution of upstream contaminated soils to sediment transiting the coastal plains between 2012 (median – M – contribution of 73%, mean absolute deviation – MAD – of 27%) and 2015 (M 9%, MAD 6%). The occurrence of typhoons and the progress of decontamination in different tributaries of the Niida River resulted in temporary increases in local contamination. However, the much lower contribution of upstream contaminated soils to coastal plain sediment in November 2015 demonstrates that the source of the easily erodible, contaminated material has potentially been removed by decontamination, diluted by subsoils, or eroded and transported to the Pacific Ocean. PMID:27694832
The Electrostatic Screening Length in Concentrated Electrolytes Increases with Concentration.
Smith, Alexander M; Lee, Alpha A; Perkin, Susan
2016-06-16
According to classical electrolyte theories interactions in dilute (low ion density) electrolytes decay exponentially with distance, with the Debye screening length the characteristic length scale. This decay length decreases monotonically with increasing ion concentration due to effective screening of charges over short distances. Thus, within the Debye model no long-range forces are expected in concentrated electrolytes. Here we reveal, using experimental detection of the interaction between two planar charged surfaces across a wide range of electrolytes, that beyond the dilute (Debye-Hückel) regime the screening length increases with increasing concentration. The screening lengths for all electrolytes studied-including aqueous NaCl solutions, ionic liquids diluted with propylene carbonate, and pure ionic liquids-collapse onto a single curve when scaled by the dielectric constant. This nonmonotonic variation of the screening length with concentration, and its generality across ionic liquids and aqueous salt solutions, demonstrates an important characteristic of concentrated electrolytes of substantial relevance from biology to energy storage.
Viscosity of a concentrated suspension of rigid monosized particles
NASA Astrophysics Data System (ADS)
Brouwers, H. J. H.
2010-05-01
This paper addresses the relative viscosity of concentrated suspensions loaded with unimodal hard particles. So far, exact equations have only been put forward in the dilute limit, e.g., by Einstein [A. Einstein, Ann. Phys. 19, 289 (1906) (in German); Ann. Phys. 34, 591 (1911) (in German)] for spheres. For larger concentrations, a number of phenomenological models for the relative viscosity was presented, which depend on particle concentration only. Here, an original and exact closed form expression is derived based on geometrical considerations that predicts the viscosity of a concentrated suspension of monosized particles. This master curve for the suspension viscosity is governed by the relative viscosity-concentration gradient in the dilute limit (for spheres the Einstein limit) and by random close packing of the unimodal particles in the concentrated limit. The analytical expression of the relative viscosity is thoroughly compared with experiments and simulations reported in the literature, concerning both dilute and concentrated suspensions of spheres, and good agreement is found.
Tokitomo, Yukiko; Steinhaus, Martin; Büttner, Andrea; Schieberle, Peter
2005-07-01
By application of aroma extract dilution analysis (AEDA) to an aroma distillate prepared from fresh pineapple using solvent-assisted flavor evaporation (SAFE), 29 odor-active compounds were detected in the flavor dilution (FD) factor range of 2 to 4,096. Quantitative measurements performed by stable isotope dilution assays (SIDA) and a calculation of odor activity values (OAVs) of 12 selected odorants revealed the following compounds as key odorants in fresh pineapple flavor: 4-hydroxy-2,5-dimethyl-3(2H)-furanone (HDF; sweet, pineapple-like, caramel-like), ethyl 2-methylpropanoate (fruity), ethyl 2-methylbutanoate (fruity) followed by methyl 2-methylbutanoate (fruity, apple-like) and 1-(E,Z)-3,5-undecatriene (fresh, pineapple-like). A mixture of these 12 odorants in concentrations equal to those in the fresh pineapple resulted in an odor profile similar to that of the fresh juice. Furthermore, the results of omission tests using the model mixture showed that HDF and ethyl 2-methylbutanoate are character impact odorants in fresh pineapple.
Pekalski, A A; Zevenbergen, J F; Braithwaite, M; Lemkowitz, S M; Pasman, H J
2005-02-14
Experimental and theoretical investigation of explosive decomposition of ethylene oxide (EO) at fixed initial experimental parameters (T=100 degrees C, P=4 bar) in a 20-l sphere was conducted. Safety-related parameters, namely the maximum explosion pressure, the maximum rate of pressure rise, and the Kd values, were experimentally determined for pure ethylene oxide and ethylene oxide diluted with nitrogen. The influence of the ignition energy on the explosion parameters was also studied. All these dependencies are quantified in empirical formulas. Additionally, the effect of turbulence on explosive decomposition of ethylene oxide was investigated. In contrast to previous studies, it is found that turbulence significantly influences the explosion severity parameters, mostly the rate of pressure rise. Thermodynamic models are used to calculate the maximum explosion pressure of pure and of nitrogen-diluted ethylene oxide, at different initial temperatures. Soot formation was experimentally observed. Relation between the amounts of soot formed and the explosion pressure was experimentally observed and was calculated.
Measurement of bronchial blood flow in the sheep by video dilution technique.
Link, D P; Parsons, G H; Lantz, B M; Gunther, R A; Green, J F; Cross, C E
1985-01-01
Bronchial blood flow was determined in five adult anaesthetised sheep by the video dilution technique. This is a new fluoroscopic technique for measuring blood flow that requires only arterial catheterisation. Catheters were placed into the broncho-oesophageal artery and ascending aorta from the femoral arteries for contrast injections and subsequent videotape recording. The technique yields bronchial blood flow as a percentage of cardiac output. The average bronchial artery blood flow was 0.6% (SD 0.20%) of cardiac output. In one sheep histamine (90 micrograms) injected directly into the bronchial artery increased bronchial blood flow by a factor of 6 and histamine (90 micrograms) plus methacholine (4.5 micrograms) augmented flow by a factor of 7.5 while leaving cardiac output unchanged. This study confirms the high degree of reactivity of the bronchial circulation and demonstrates the feasibility of using the video dilution technique to investigate the determinants of total bronchial artery blood flow in a stable animal model avoiding thoracotomy. Images PMID:3883564
Capsize of polarization in dilute photonic crystals.
Gevorkian, Zhyrair; Hakhoumian, Arsen; Gasparian, Vladimir; Cuevas, Emilio
2017-11-29
We investigate, experimentally and theoretically, polarization rotation effects in dilute photonic crystals with transverse permittivity inhomogeneity perpendicular to the traveling direction of waves. A capsize, namely a drastic change of polarization to the perpendicular direction is observed in a one-dimensional photonic crystal in the frequency range 10 ÷ 140 GHz. To gain more insights into the rotational mechanism, we have developed a theoretical model of dilute photonic crystal, based on Maxwell's equations with a spatially dependent two dimensional inhomogeneous dielectric permittivity. We show that the polarization's rotation can be explained by an optical splitting parameter appearing naturally in Maxwell's equations for magnetic or electric fields components. This parameter is an optical analogous of Rashba like spin-orbit interaction parameter present in quantum waves, introduces a correction to the band structure of the two-dimensional Bloch states, creates the dynamical phase shift between the waves propagating in the orthogonal directions and finally leads to capsizing of the initial polarization. Excellent agreement between theory and experiment is found.
Andersen, S T; Erichsen, A C; Mark, O; Albrechtsen, H-J
2013-12-01
Quantitative microbial risk assessments (QMRAs) often lack data on water quality leading to great uncertainty in the QMRA because of the many assumptions. The quantity of waste water contamination was estimated and included in a QMRA on an extreme rain event leading to combined sewer overflow (CSO) to bathing water where an ironman competition later took place. Two dynamic models, (1) a drainage model and (2) a 3D hydrodynamic model, estimated the dilution of waste water from source to recipient. The drainage model estimated that 2.6% of waste water was left in the system before CSO and the hydrodynamic model estimated that 4.8% of the recipient bathing water came from the CSO, so on average there was 0.13% of waste water in the bathing water during the ironman competition. The total estimated incidence rate from a conservative estimate of the pathogenic load of five reference pathogens was 42%, comparable to 55% in an epidemiological study of the case. The combination of applying dynamic models and exposure data led to an improved QMRA that included an estimate of the dilution factor. This approach has not been described previously.
NASA Astrophysics Data System (ADS)
Hixson, J.; Ward, A. S.; Schmadel, N.; McConville, M.; Remucal, C.
2016-12-01
The transport and fate of contaminants of emerging concern through the environment is complicated by the heterogeneity of natural systems and the unique reaction pathways of individual compounds. Our current evaluation of risk is often simplified to controls assumed to be homogeneous in space and time. However, we know spatial heterogeneity and time-variable reaction rates complicate predictions of environmental transport and fate, and therefore risk. These complications are the result of the interactions between the physical and chemical systems and the time-variable equilibrium that exists between the two. Compounds that interact with both systems, such as photolytic compounds, require that both components are fully understood in order to predict transport and fate. Release of photolytic compounds occurs through both unintentional releases and intentional loadings. Evaluating risks associated with unintentional releases and implementing best management practices for intentional releases requires an in-depth understanding of the sensitivity of photolytic compounds to external controls. Lampricides, such as 3-trifluoromethyl-4-nitrophenol (TFM), are broadly applied in the Great Lakes system to control the population of invasive sea lamprey. Over-dosing can yield fish kills and other detrimental impacts. Still, planning accounts for time of passage and dilution, but not the interaction of the physical and chemical systems (i.e., storage in the hyporheic zone and time-variable decay rates). In this study, we model a series of TFM applications to test the efficacy of dosing as a function of system characteristics. Overall, our results demonstrate the complexity associated with photo-sensitive compounds through stream-hyporheic systems, and highlight the need to better understand how physical and chemical systems interact to control transport and fate in the environment.
Modeling and Classification of Kinetic Patterns of Dynamic Metabolic Biomarkers in Physical Activity
Breit, Marc; Netzer, Michael
2015-01-01
The objectives of this work were the classification of dynamic metabolic biomarker candidates and the modeling and characterization of kinetic regulatory mechanisms in human metabolism with response to external perturbations by physical activity. Longitudinal metabolic concentration data of 47 individuals from 4 different groups were examined, obtained from a cycle ergometry cohort study. In total, 110 metabolites (within the classes of acylcarnitines, amino acids, and sugars) were measured through a targeted metabolomics approach, combining tandem mass spectrometry (MS/MS) with the concept of stable isotope dilution (SID) for metabolite quantitation. Biomarker candidates were selected by combined analysis of maximum fold changes (MFCs) in concentrations and P-values resulting from statistical hypothesis testing. Characteristic kinetic signatures were identified through a mathematical modeling approach utilizing polynomial fitting. Modeled kinetic signatures were analyzed for groups with similar behavior by applying hierarchical cluster analysis. Kinetic shape templates were characterized, defining different forms of basic kinetic response patterns, such as sustained, early, late, and other forms, that can be used for metabolite classification. Acetylcarnitine (C2), showing a late response pattern and having the highest values in MFC and statistical significance, was classified as late marker and ranked as strong predictor (MFC = 1.97, P < 0.001). In the class of amino acids, highest values were shown for alanine (MFC = 1.42, P < 0.001), classified as late marker and strong predictor. Glucose yields a delayed response pattern, similar to a hockey stick function, being classified as delayed marker and ranked as moderate predictor (MFC = 1.32, P < 0.001). These findings coincide with existing knowledge on central metabolic pathways affected in exercise physiology, such as β-oxidation of fatty acids, glycolysis, and glycogenolysis. The presented modeling approach demonstrates high potential for dynamic biomarker identification and the investigation of kinetic mechanisms in disease or pharmacodynamics studies using MS data from longitudinal cohort studies. PMID:26317529
40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.
Code of Federal Regulations, 2010 CFR
2010-07-01
... interval. You may use the difference between a diluted exhaust flow meter and a dilution air meter to.... We recommend that you use a diluted exhaust flow meter that meets the specifications in Table 1 of... verification in § 1065.307 and the calibration and verifications in § 1065.340 and § 1065.341. You may use the...
Nonlinear transport for a dilute gas in steady Couette flow
NASA Astrophysics Data System (ADS)
Garzó, V.; López de Haro, M.
1997-03-01
Transport properties of a dilute gas subjected to arbitrarily large velocity and temperature gradients (steady planar Couette flow) are determined. The results are obtained from the so-called ellipsoidal statistical (ES) kinetic model, which is an extension of the well-known BGK kinetic model to account for the correct Prandtl number. At a hydrodynamic level, the solution is characterized by constant pressure, and linear velocity and parabolic temperature profiles with respect to a scaled variable. The transport coefficients are explicitly evaluated as nonlinear functions of the shear rate. A comparison with previous results derived from a perturbative solution of the Boltzmann equation as well as from other kinetic models is carried out. Such a comparison shows that the ES predictions are in better agreement with the Boltzmann results than those of the other approximations. In addition, the velocity distribution function is also computed. Although the shear rates required for observing non-Newtonian effects are experimentally unrealizable, the conclusions obtained here may be relevant for analyzing computer results.
Jæger, Mads Meier
2012-01-01
Studies on family background often explain the negative effect of sibship size on educational attainment by one of two theories: the Confluence Model (CM) or the Resource Dilution Hypothesis (RDH). However, as both theories – for substantively different reasons – predict that sibship size should have a negative effect on educational attainment most studies cannot distinguish empirically between the CM and the RDH. In this paper, I use the different theoretical predictions in the CM and RDH on the role of cognitive ability as a partial or complete mediator of the effect of sibship size to distinguish the two theories and to identify a unique RDH effect on educational attainment. Using sibling data from the Wisconsin Longitudinal Study (WLS) and a random effect Instrumental Variable model I find that, in addition to a negative effect on cognitive ability, sibship size also has a strong negative effect on educational attainment which is uniquely explained by the RDH. PMID:22468016
Bond Dilution Effects on Bethe Lattice the Spin-1 Blume-Capel Model
NASA Astrophysics Data System (ADS)
Albayrak, Erhan
2017-09-01
The bond dilution effects are investigated for the spin-1 Blume-Capel model on the Bethe lattice by using the exact recursion relations. The bilinear interaction parameter is either turned on ferromagnetically with probability p or turned off with probability 1 - p between the nearest-neighbor spins. The thermal variations of the order-parameters are studied in detail to obtain the phase diagrams on the possible planes spanned by the temperature (T), probability (p) and crystal field (D) for the coordination numbers q = 3, 4, and 6. The lines of the second-order phase transitions, Tc-lines, combined with the first-order ones, Tt-lines, at the tricritical points (TCP) are always found for any p and q on the (T, D)-planes. It is also found that the model gives only Tc-lines, Tc-lines combined with the Tt-lines at the TCP’s and only Tt-lines with the consecutively decreasing values of D on the (T, p)-planes for all q.
A novel MLPH variant in dogs with coat colour dilution.
Bauer, A; Kehl, A; Jagannathan, V; Leeb, T
2018-02-01
Coat colour dilution may be the result of altered melanosome transport in melanocytes. Loss-of-function variants in the melanophilin gene (MLPH) cause a recessively inherited form of coat colour dilution in many mammalian and avian species including the dog. MLPH corresponds to the D locus in many domestic animals, and recessive alleles at this locus are frequently denoted with d. In this study, we investigated dilute coloured Chow Chows whose coat colour could not be explained by their genotype at the previously known MLPH:c.-22G>A variant. Whole genome sequencing of such a dilute Chow Chow revealed another variant in the MLPH gene: MLPH:c.705G>C. We propose to designate the corresponding mutant alleles at these two variants d 1 and d 2 . We performed an association study in a cohort of 15 dilute and 28 non-dilute Chow Chows. The dilute dogs were all either compound heterozygous d 1 /d 2 or homozygous d 2 /d 2 , whereas the non-dilute dogs carried at least one wildtype allele D. The d 2 allele did not occur in 417 dogs from diverse other breeds. However, when we genotyped a Sloughi family, in which a dilute coloured puppy had been born out of non-dilute parents, we again observed perfect co-segregation of the newly discovered d 2 allele with coat colour dilution. Finally, we identified a blue Thai Ridgeback with the d 1 /d 2 genotype. Thus, our data identify the MLPH:c.705G>C as a variant explaining a second canine dilution allele. Although relatively rare overall, this d 2 allele is segregating in at least three dog breeds, Chow Chows, Sloughis and Thai Ridgebacks. © 2018 Stichting International Foundation for Animal Genetics.
Impact of the impurity seeding for divertor protection on the performance of fusion reactors
NASA Astrophysics Data System (ADS)
Siccinio, Mattia; Fable, Emiliano; Angioni, Clemente; Saarelma, Samuli; Scarabosio, Andrea; Zohm, Hartmut
2017-10-01
A 0D divertor and scrape-off layer (SOL) model has been coupled to the 1.5D core transport code ASTRA. The resulting numerical tool has been employed for various parameter scans in order to identify the most convenient choices for the operation of electricity producing fusion devices with seeded impurities for the divertor protection. In particular, the repercussions of such radiative species on the main plasma through the fuel dilution have been taken into account. The main result we found is that, when the limits on the maximum tolerable divertor heat flux are enforced, the curves at constant electrical power output are closed on themselves in the R-BT plane, i.e. no improvement would descend from a further increase of R or BT once the maximum has been reached. This occurrence appears as an intrinsic physical limit for all devices where a radiative SOL is needed to deal with the power exhaust. Furthermore, the relative importance of the different power loss channels (e.g. hydrogen radiation, charge exchange, perpendicular transport and impurity radiation), through which the power entering the SOL is dissipated before reaching the target plate, is investigated with our model.
NASA Technical Reports Server (NTRS)
Alexander, J. Iwan D.; Ouazzani, Jalil
1988-01-01
It has become clear from measurements of the acceleration environment in the Spacelab that the residual gravity levels on board a spacecraft in low Earth orbit can be significant and should be of concern to experimenters who wish to take advantage of the low gravity conditions on future Spacelab missions and on board the Space Station. The basic goals are to better understand the low gravity tolerance of three classes of materials science experiments: crystal growth from a melt, a vapor, and a solution. The results of the research will provide guidance toward the determination of the sensitivity of the low gravity environment, the design of the laboratory facilites, and the timelining of materials science experiments. To data, analyses of the effects of microgravity environment were, with a few exceptions, restricted to order of magnitude estimates. Preliminary results obtained from numerical models of the effects of residual steady and time dependent acceleration are reported on: heat, mass, and momentum transport during the growth of a dilute alloy by the Bridgman-Stockbarger technique, and the response of a simple fluid physics experiment involving buoyant convection in a square cavity.
Colman, John A.; Massey, Andrew J.; Brandt, Sara L.
2011-09-16
Dilution of aluminum discharged to reservoirs in filter-backwash effluents at water-treatment facilities in Massachusetts was investigated by a field study and computer simulation. Determination of dilution is needed so that permits for discharge ensure compliance with water-quality standards for aquatic life. The U.S. Environmental Protection Agency chronic standard for aluminum, 87 micrograms per liter (μg/L), rather than the acute standard, 750 μg/L, was used in this investigation because the time scales of chronic exposure (days) more nearly match rates of change in reservoir concentrations than do the time scales of acute exposure (hours).Whereas dilution factors are routinely computed for effluents discharged to streams solely on the basis of flow of the effluent and flow of the receiving stream, dilution determination for effluents discharged to reservoirs is more complex because (1), compared to streams, additional water is available for dilution in reservoirs during low flows as a result of reservoir flushing and storage during higher flows, and (2) aluminum removal in reservoirs occurs by aluminum sedimentation during the residence time of water in the reservoir. Possible resuspension of settled aluminum was not considered in this investigation. An additional concern for setting discharge standards is the substantial concentration of aluminum that can be naturally present in ambient surface waters, usually in association with dissolved organic carbon (DOC), which can bind aluminum and keep it in solution.A method for dilution determination was developed using a mass-balance equation for aluminum and considering sources of aluminum from groundwater, surface water, and filter-backwash effluents and losses caused by sedimentation, water withdrawal, and spill discharge from the reservoir. The method was applied to 13 reservoirs. Data on aluminum and DOC concentrations in reservoirs and influent water were collected during the fall of 2009. Complete reservoir volume was determined to be available for mixing on the basis of vertical and horizontal aluminum-concentration profiling. Losses caused by settling of aluminum were assumed to be proportional to aluminum concentration and reservoir area. The constant of proportionality, as a function of DOC concentration, was established by simulations in each of five reservoirs that differed in DOC concentration.In addition to computing dilution factors, the project determined dilution factors that would be protective with the same statistical basis (frequency of exceedance of the chronic standard) as dilutions computed for streams at the 7-day-average 10-year-recurrence annual low flow (the 7Q10). Low-flow dilutions are used for permitting so that receiving waters are protected even at the worst-case flow levels. The low-flow dilution factors that give the same statistical protection are the lowest annual 7-day-average dilution factors with a recurrence of 10 years, termed 7DF10s. Determination of 7DF10 values for reservoirs required that long periods of record be simulated so that dilution statistics could be determined. Dilution statistics were simulated for 13 reservoirs from 1960 to 2004 using U.S. Geological Survey Firm-Yield Estimator software to model reservoir inputs and outputs and present-day values of filter-effluent discharge and aluminum concentration.Computed settling velocities ranged from 0 centimeters per day (cm/d) at DOC concentrations of 15.5 milligrams per liter (mg/L) to 21.5 cm/d at DOC concentrations of 2.7 mg/L. The 7DF10 values were a function of aluminum effluent discharged. At current (2009) effluent discharge rates, the 7DF10 values varied from 1.8 to 115 among the 13 reservoirs. In most cases, the present-day (2009) discharge resulted in receiving water concentrations that did not exceed the standard at the 7DF10. Exceptions were one reservoir with a very small area and three reservoirs with high concentrations of DOC. Maximum permissible discharges were determined for water-treatment plants by adjusting discharges upward in simulations until the 7DF10 resulted in reservoir concentrations that just met the standard. In terms of aluminum flux, these discharges ranged from 0 to 28 kilograms of aluminum per day.
Gillet, Sébastien; Aguedo, Mario; Petrut, Raul; Olive, Gilles; Anastas, Paul; Blecker, Christophe; Richel, Aurore
2017-03-01
Two fractions of carob galactomannans (GM25 and GM80) were extracted at respectively 25°C and 80°C from crude locust bean gum. Those fractions having slightly different chemical structures, previously characterized, were studied for their viscosity properties over a wide range of concentrations: diluted solution, unperturbed state and gel state. For each of the physical properties, links to the chemical fine structure could be established, expanding knowledge on the topic: in dilute solution, GM25 is more soluble in water while GM80 seems to tend to self-association due to its structure as highlighted by intrinsic viscosity measurements ([η] GM25 =9.96dLg -1 and [η] GM80 =4.04dLg -1 ). In unperturbed state, initial viscosities η 0 were more important for GM80 fractions at 1% and 2% due to greater hyperentanglements (η 0(GM80,1%) =9.9Pas; η 0(GM80,2%) =832.0; Pa.s η 0(GM25,1%) =3.1Pas; η 0(GM25,2%) =45.1Pas). In gel state, hydrogels obtained from GM80 were also stronger (hardness GM80 (2%)=0.51N and hardness GM25 (2%)=0.11N), suggesting a much more important number of junction areas within the gel network. The findings discussed herein demonstrate the potential for new applications. Copyright © 2016 Elsevier B.V. All rights reserved.
A novel technique to determine cobalt exchangeability in soils using isotope dilution.
Wendling, Laura A; Kirby, Jason K; McLaughlin, Michael J
2008-01-01
The environmental risk posed by Co contamination is largely a function of its oxidation state. Our objective was to assess the potential biological availability of Co and the reactions and fate of soluble Co(II) after addition to soils with varying physical and chemical characteristics. A potential risk in quantifying exchangeable Co in soils using isotope dilution techniques is the possible presence of two species of Co in soil solution and adsorbed on soil solid phases [Co(II) and Co(III)], coupled with the possibility that when an isotope of Co is added it may undergo a change in oxidation state during the measurement phase. In this study, we have utilized an isotope dilution technique with cation exchange and high-performance liquid chromatography-inductively coupled plasma-mass spectrometry to determine the isotopically exchangeable Co fraction in several soils with varying characteristics such as differing Al, Fe, and Mn oxide content; pH; and organic carbon content. The application of the cation exchange procedure adjusts measurements of isotopically exchangeable Co to correct for the presence of non-exchangeable 57Co not in equilibrium with the solution phase. Results indicated that oxidation of added 57Co(II) to 57Co(III) or precipitation of 57Co(II) may occur on the surfaces of some soils, particularly those with a high pH or substantial quantities of Mn oxide minerals. No detectable Co(III)(aq) was found in the aqueous extracts of the soils examined.
Gangwar, Jitendra; Gupta, Tarun; Gupta, Sudhir; Agarwal, Avinash K
2011-07-01
The diesel tailpipe emissions typically undergo substantial physical and chemical transformations while traveling through the tailpipe, which tend to modify the original characteristics of the diesel exhaust. Most of the health-related attention for diesel exhaust has focused on the carcinogenic potential of inhaled exhaust components, particularly the highly respirable diesel particulate matter (DPM). In the current study, parametric investigations were made using a modern automotive common rail direct injection (CRDI) sports utility vehicle (SUV) diesel engine operated at different loads at constant engine speed (2400 rpm), employing diesel and 20% biodiesel blends (B20) produced from karanja oil. A partial flow dilution tunnel was employed to measure the mass of the primary particulates from diesel and biodiesel blend on a 47-mm quartz substrate. This was followed by chemical analysis of the particulates collected on the substrate for benzene-soluble organic fraction (BSOF) (marker of toxicity). BSOF results showed decrease in its level with increasing engine load for both diesel and biodiesel. In addition, real-time measurements for organic carbon/elemental carbon (OC/EC), and polycyclic aromatic hydrocarbons (PAHs) (marker of toxicity) were carried out on the diluted primary exhaust coming out of the partial flow dilution tunnel. PAH concentrations were found to be the maximum at 20% rated engine load for both the fuels. The collected particulates from diesel and biodiesel-blend exhaust were also analyzed for concentration of trace metals (marker of toxicity), which revealed some interesting results.
Self-bound droplets of a dilute magnetic quantum liquid
NASA Astrophysics Data System (ADS)
Schmitt, Matthias; Wenzel, Matthias; Böttcher, Fabian; Ferrier-Barbut, Igor; Pfau, Tilman
2016-11-01
Self-bound many-body systems are formed through a balance of attractive and repulsive forces and occur in many physical scenarios. Liquid droplets are an example of a self-bound system, formed by a balance of the mutual attractive and repulsive forces that derive from different components of the inter-particle potential. It has been suggested that self-bound ensembles of ultracold atoms should exist for atom number densities that are 108 times lower than in a helium droplet, which is formed from a dense quantum liquid. However, such ensembles have been elusive up to now because they require forces other than the usual zero-range contact interaction, which is either attractive or repulsive but never both. On the basis of the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term, it was predicted that three-dimensional self-bound quantum droplets of magnetic atoms should exist. Here we report the observation of such droplets in a trap-free levitation field. We find that this dilute magnetic quantum liquid requires a minimum, critical number of atoms, below which the liquid evaporates into an expanding gas as a result of the quantum pressure of the individual constituents. Consequently, around this critical atom number we observe an interaction-driven phase transition between a gas and a self-bound liquid in the quantum degenerate regime with ultracold atoms. These droplets are the dilute counterpart of strongly correlated self-bound systems such as atomic nuclei and helium droplets.
Self-bound droplets of a dilute magnetic quantum liquid.
Schmitt, Matthias; Wenzel, Matthias; Böttcher, Fabian; Ferrier-Barbut, Igor; Pfau, Tilman
2016-11-10
Self-bound many-body systems are formed through a balance of attractive and repulsive forces and occur in many physical scenarios. Liquid droplets are an example of a self-bound system, formed by a balance of the mutual attractive and repulsive forces that derive from different components of the inter-particle potential. It has been suggested that self-bound ensembles of ultracold atoms should exist for atom number densities that are 10 8 times lower than in a helium droplet, which is formed from a dense quantum liquid. However, such ensembles have been elusive up to now because they require forces other than the usual zero-range contact interaction, which is either attractive or repulsive but never both. On the basis of the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term, it was predicted that three-dimensional self-bound quantum droplets of magnetic atoms should exist. Here we report the observation of such droplets in a trap-free levitation field. We find that this dilute magnetic quantum liquid requires a minimum, critical number of atoms, below which the liquid evaporates into an expanding gas as a result of the quantum pressure of the individual constituents. Consequently, around this critical atom number we observe an interaction-driven phase transition between a gas and a self-bound liquid in the quantum degenerate regime with ultracold atoms. These droplets are the dilute counterpart of strongly correlated self-bound systems such as atomic nuclei and helium droplets.
Phase transition in nonuniform Josephson arrays: Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Lozovik, Yu. E.; Pomirchy, L. M.
1994-01-01
Disordered 2D system with Josephson interactions is considered. Disordered XY-model describes the granular films, Josephson arrays etc. Two types of disorder are analyzed: (1) randomly diluted system: Josephson coupling constants J ij are equal to J with probability p or zero (bond percolation problem); (2) coupling constants J ij are positive and distributed randomly and uniformly in some interval either including the vicinity of zero or apart from it. These systems are simulated by Monte Carlo method. Behaviour of potential energy, specific heat, phase correlation function and helicity modulus are analyzed. The phase diagram of the diluted system in T c-p plane is obtained.
High-throughput ab-initio dilute solute diffusion database.
Wu, Henry; Mayeshiba, Tam; Morgan, Dane
2016-07-19
We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world.
Competition for Resources: A Reexamination of Sibship Composition Models of Parental Investment
ERIC Educational Resources Information Center
Lee, Kristen Schultz
2009-01-01
The predictions of resource dilution and sibship gender composition models of educational investment are tested using the Japanese Nationwide Survey on Families (N = 6,985). Japan is an important case because of its postindustrial economy, coupled with high levels of dependence on parental investment to attend a university and persisting gender…
Technique for ranking potential predictor layers for use in remote sensing analysis
Andrew Lister; Mike Hoppus; Rachel Riemann
2004-01-01
Spatial modeling using GIS-based predictor layers often requires that extraneous predictors be culled before conducting analysis. In some cases, using extraneous predictor layers might improve model accuracy but at the expense of increasing complexity and interpretability. In other cases, using extraneous layers can dilute the relationship between predictors and target...
CONFIRMATION OF HOT JUPITER KEPLER-41b VIA PHASE CURVE ANALYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quintana, Elisa V.; Rowe, Jason F.; Caldwell, Douglas A.
We present high precision photometry of Kepler-41, a giant planet in a 1.86 day orbit around a G6V star that was recently confirmed through radial velocity measurements. We have developed a new method to confirm giant planets solely from the photometric light curve, and we apply this method herein to Kepler-41 to establish the validity of this technique. We generate a full phase photometric model by including the primary and secondary transits, ellipsoidal variations, Doppler beaming, and reflected/emitted light from the planet. Third light contamination scenarios that can mimic a planetary transit signal are simulated by injecting a full rangemore » of dilution values into the model, and we re-fit each diluted light curve model to the light curve. The resulting constraints on the maximum occultation depth and stellar density combined with stellar evolution models rules out stellar blends and provides a measurement of the planet's mass, size, and temperature. We expect about two dozen Kepler giant planets can be confirmed via this method.« less
NASA Astrophysics Data System (ADS)
Zarlenga, Antonio; de Barros, Felipe; Fiori, Aldo
2016-04-01
We present a probabilistic framework for assessing human health risk due to groundwater contamination. Our goal is to quantify how physical hydrogeological and biochemical parameters control the magnitude and uncertainty of human health risk. Our methodology captures the whole risk chain from the aquifer contamination to the tap water assumption by human population. The contaminant concentration, the key parameter for the risk estimation, is governed by the interplay between the large-scale advection, caused by heterogeneity and the degradation processes strictly related to the local scale dispersion processes. The core of the hazard identification and of the methodology is the reactive transport model: erratic displacement of contaminant in groundwater, due to the spatial variability of hydraulic conductivity (K), is characterized by a first-order Lagrangian stochastic model; different dynamics are considered as possible ways of biodegradation in aerobic and anaerobic conditions. With the goal of quantifying uncertainty, the Beta distribution is assumed for the concentration probability density function (pdf) model, while different levels of approximation are explored for the estimation of the one-point concentration moments. The information pertaining the flow and transport is connected with a proper dose response assessment which generally involves the estimation of physiological parameters of the exposed population. Human health response depends on the exposed individual metabolism (e.g. variability) and is subject to uncertainty. Therefore, the health parameters are intrinsically a stochastic. As a consequence, we provide an integrated in a global probabilistic human health risk framework which allows the propagation of the uncertainty from multiple sources. The final result, the health risk pdf, is expressed as function of a few relevant, physically-based parameters such as the size of the injection area, the Péclet number, the K structure metrics and covariance shape, reaction parameters pertaining to aerobic and anaerobic degradation processes respectively as well as the dose response parameters. Even though the final result assumes a relatively simple form, few numerical quadratures are required in order to evaluate the trajectory moments of the solute plume. In order to perform a sensitivity analysis we apply the methodology to a hypothetical case study. The scenario investigated is made by an aquifer which constitutes a water supply for a population where a continuous source of NAPL contaminant feeds a steady plume. The risk analysis is limited to carcinogenic compounds for which the well-known linear relation for human risk is assumed. Analysis performed shows few interesting findings: the risk distribution is strictly dependent on the pore scale dynamics that trigger dilution and mixing; biodegradation may involve a significant reduction of the risk.
The Effect of Dilution on Microsegregation in AWS ER NiCrMo-14 Alloy Welding Claddings
NASA Astrophysics Data System (ADS)
Miná, Émerson Mendonça; da Silva, Yuri Cruz; Dille, Jean; Silva, Cleiton Carvalho
2016-12-01
Dilution and microsegregation are phenomena inherent to claddings, which, in turn, directly affect their main properties. This study evaluated microsegregation in the fusion zone with different dilution levels. The overlays were welded by the TIG cold wire feed process. Dilution was calculated from the geometric characteristics of the claddings and from the conservation of mass equation using chemical composition measurements. Microsegregation was calculated using energy dispersive X-ray spectroscopy measurements of the dendrites and the chemical composition of the fusion zone. The dilution of the claddings was increased by reducing the wire feed rate. Fe showed potential to be incorporated into the solid phase ( k > 1), and this increased with the increase of dilution. Mo, in turn, was segregated into the liquid phase ( k < 1) and also increased with the increase of dilution. However, Cr and W showed a slight decrease in their partition coefficients ( k) with the increase of dilution.
NASA Astrophysics Data System (ADS)
Wolfe, Gordon V.; Levasseur, Maurice; Cantin, Guy; Michaud, Sonia
2000-12-01
We adapted the dilution technique to study microzooplankton grazing of algal dimethylsulfoniopropionate (DMSP) vs. Chl a, and to estimate the impact of microzooplankton grazing on dimethyl sulfide (DMS) production in the Labrador Sea. Phytoplankton numbers were dominated by autotrophic nanoflagellates in the Labrador basin, but diatoms and colonial Phaeocystis pouchetii contributed significantly to phytomass at several high chlorophyll stations and on the Newfoundland and Greenland shelfs. Throughout the region, growth of algal Chl a and DMSP was generally high (0.2-1 d -1), but grazing rates were lower and more variable, characteristic of the early spring bloom period. Production and consumption of Chl a vs. DMSP followed no clear pattern, and sometimes diverged greatly, likely because of their differing distributions among algal prey taxa and size class. In several experiments where Phaeocystis was abundant, we observed DMS production proportional to grazing rate, and we found clear evidence of DMS production by this haptophyte following physical stress such as sparging or filtration. It is possible that grazing-activated DMSP cleavage by Phaeocystis contributes to grazer deterrence: protozoa and copepods apparently avoided healthy colonies (as judged by relative growth and grazing rates of Chl a and DMSP), and grazing of Phaeocystis was significant only at one station where cells were in poor condition. Although we hoped to examine selective grazing on or against DMSP-containing algal prey, the dilution technique cannot differentiate selective ingestion and varying digestion rates of Chl a and DMSP. We also found that the dilution method alone was poorly suited for assessing the impact of grazing on dissolved sulfur pools, because of rapid microbial consumption and the artifactual release of DMSP and DMS during filtration. Measuring and understanding the many processes affecting organosulfur cycling by the microbial food web in natural populations remain a technical challenge that will likely require a combination of techniques to address.
Potential tracers for tracking septic tank effluent discharges in watercourses.
Richards, Samia; Withers, Paul J A; Paterson, Eric; McRoberts, Colin W; Stutter, Marc
2017-09-01
Septic tank effluent (STE) contributes to catchment nutrient and pollutant loads. To assess the role of STE discharges in impairment of surface water, it is essential to identify the sources of pollution by tracing contaminants in watercourses. We examined tracers that were present in STE to establish their potential for identifying STE contamination in two stream systems (low and high dilution levels) against the background of upstream sources. The studied tracers were microbial, organic matter fluorescence, caffeine, artificial sweeteners and effluent chemical concentrations. The results revealed that tracer concentration ratios Cl/EC, Cl/NH 4 -N, Cl/TN, Cl/TSS, Cl/turbidity, Cl/total coliforms, Cl/sucralose, Cl/saccharin and Cl/Zn had potential as tracers in the stream with low dilution level (P < 0.05). Fluorescence spectroscopy could detect STE inputs through the presence of the tryptophan-like peak, but was limited to water courses with low level of dilution and was positively correlated with stream Escherichia coli (E. coli) and soluble reactive phosphorus (SRP). The results also suggested that caffeine and artificial sweeteners can be suitable tracers for effluent discharge in streams with low and high level of dilution. Caffeine and saccharin were positively correlated with faecal coliforms, E. coli, total P and SRP, indicating their potential to trace discharge of a faecal origin and to be a marker for effluent P. Caffeine and SRP had similar attenuation behaviour in the receiving stream waters suggesting caffeine's potential role as a surrogate indicator for the behaviour of P downstream of effluent inputs. Taken together, results suggest that a single tracer alone was not sufficient to evaluate STE contamination of watercourses, but rather a combination of multiple chemical and physical tracing approaches should be employed. A multiple tracing approach would help to identify individual and cumulative STE inputs that pose risks to stream waters in order to prioritise and target effective mitigation measures. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sprague, Michael A.; Stickel, Jonathan J.; Sitaraman, Hariswaran
In this paper we develop a computational model for the mixing and transport of a dilute biomass slurry. The objective was to create a sufficiently simple and efficient model for biomass transport that can be coupled with reaction models for the study of conversion of cellulosic biomass into fermentable sugars. Our target system is 5%-by-mass ..alpha..-cellulose, which is our proxy for more complex lignocellulosic biomass. In the authors' previous work, an experimental investigation with ..alpha..-cellulose under two vane-mixer configurations showed a bifurcation between a settling regime, for which settling effects dominate, and a suspended regime, for which solids are mostlymore » suspended. Here, a mixed-fluid model was chosen, for which the model for the mixture-velocity field is the incompressible Navier-Stokes equations under the Boussinesq approximation for buoyancy. Solids transport includes solids motion due to diffusion, settling, advection, and shear. Comparison of simulated and experimental results show good agreement in the suspended regime, and in capturing the bifurcation rate. While the model captured well the distribution of solids in the settling regime, the model was incapable of capturing the high torque values seen in experiments with vanishing mixer rotation rate.« less
Sprague, Michael A.; Stickel, Jonathan J.; Sitaraman, Hariswaran; ...
2018-02-17
In this paper we develop a computational model for the mixing and transport of a dilute biomass slurry. The objective was to create a sufficiently simple and efficient model for biomass transport that can be coupled with reaction models for the study of conversion of cellulosic biomass into fermentable sugars. Our target system is 5%-by-mass ..alpha..-cellulose, which is our proxy for more complex lignocellulosic biomass. In the authors' previous work, an experimental investigation with ..alpha..-cellulose under two vane-mixer configurations showed a bifurcation between a settling regime, for which settling effects dominate, and a suspended regime, for which solids are mostlymore » suspended. Here, a mixed-fluid model was chosen, for which the model for the mixture-velocity field is the incompressible Navier-Stokes equations under the Boussinesq approximation for buoyancy. Solids transport includes solids motion due to diffusion, settling, advection, and shear. Comparison of simulated and experimental results show good agreement in the suspended regime, and in capturing the bifurcation rate. While the model captured well the distribution of solids in the settling regime, the model was incapable of capturing the high torque values seen in experiments with vanishing mixer rotation rate.« less
Model predictions of higher-order normal alkane ignition from dilute shock-tube experiments
NASA Astrophysics Data System (ADS)
Rotavera, B.; Petersen, E. L.
2013-07-01
Shock-induced oxidation of two higher-order linear alkanes was measured using a heated shock tube facility. Experimental overlap in stoichiometric ignition delay times obtained under dilute (99 % Ar) conditions near atmospheric pressure was observed in the temperature-dependent ignition trends of n-nonane ( n-C9H20) and n-undecane ( n-C11H24). Despite the overlap, model predictions of ignition using two different detailed chemical kinetics mechanisms show discrepancies relative to both the measured data as well as to one another. The present study therefore focuses on the differences observed in the modeled, high-temperature ignition delay times of higher-order n-alkanes, which are generally regarded to have identical ignition behavior for carbon numbers above C7. Comparisons are drawn using experimental data from the present study and from recent work by the authors relative to two existing chemical kinetics mechanisms. Time histories from the shock-tube OH* measurements are also compared to the model predictions; a double-peaked structure observed in the data shows that the time response of the detector electronics is crucial for properly capturing the first, incipient peak near time zero. Calculations using the two mechanisms were carried out at the dilution level employed in the shock-tube experiments for lean {({φ} = 0.5)}, stoichiometric, and rich {({φ} = 2.0)} equivalence ratios, 1230-1620 K, and for both 1.5 and 10 atm. In general, the models show differing trends relative to both measured data and to one another, indicating that agreement among chemical kinetics models for higher-order n-alkanes is not consistent. For example, under certain conditions, one mechanism predicts the ignition delay times to be virtually identical between the n-nonane and n-undecane fuels (in fact, also for all alkanes between at least C8 and C12), which is in agreement with the experiment, while the other mechanism predicts the larger fuels to ignite progressively more slowly.
Novak, Matthew T.; Yuan, Fan; Reichert, William M.
2013-01-01
Background Tissue response to indwelling glucose sensors remains a confounding barrier to clinical application. While the effects of fully formed capsular tissue on sensor response have been studied, little has been done to understand how tissue interactions occurring before capsule formation hinder sensor performance. Upon insertion in subcutaneous tissue, the sensor is initially exposed to blood, blood borne constituents, and interstitial fluid. Using human whole blood as a simple ex vivo experimental system, the effects of protein accumulation at the sensor surface (biofouling effects) and cellular consumption of glucose in both the biofouling layer and in the bulk (metabolic effects) on sensor response were assessed. Methods Medtronic MiniMed SofSensor glucose sensors were incubated in whole blood, plasma-diluted whole blood, and cell-free platelet-poor plasma (PPP) to analyze the impact of different blood constituents on sensor function. Experimental conditions were then simulated using MATLAB to predict the relative impacts of biofouling and metabolic effects on the observed sensor responses. Results Protein biofouling in PPP in both the experiments and the simulations was found to have no interfering effect upon sensor response. Experimental results obtained with whole and dilute blood showed that the sensor response was markedly affected by blood borne glucose-consuming cells accumulated in the biofouling layer and in the surrounding bulk. Conclusions The physical barrier to glucose transport presented by protein biofouling does not hinder glucose movement to the sensor surface, and the consumption of glucose by inflammatory cells, and not erythrocytes, proximal to the sensor surface has a substantial effect on sensor response and may be the main culprit for anomalous sensor behavior immediately following implantation. PMID:24351181
Nanoparticles and Ocean Optics
2005-09-30
ANSI Std Z39-18 control infection by the dilution process. Subsequent dilution experiments used eukaryotic hosts ( Emiliania huxleyi) and its...Results of dilution experiment with Emiliania huxleyi (strain 88E) and its virus. In this experiment, infection rate is controlled by the dilution
NASA Astrophysics Data System (ADS)
Zimmermann, R.; Dittmar, G.; Kanashova, T.; Buters, J.; Öder, S.; Paur, H. R.; Mülhopt, S.; Dilger, M.; Weiss, C.; Harndorf, H.; Stengel, B.; Hirvonen, M. R.; Jokiniemi, J.; Hiller, K.; Sapcariu, S.; Sippula, O.; Streibel, T.; Karg, E.; Weggler, B.; Schnelle-Kreis, J.; Lintelmann, J.; Sklorz, M.; Orasche, J.; Müller, L.; Passig, J.; Gröger, T.; BéruBé, K.; Krebs, T.
2016-12-01
Combustion emissions cause health effects. The HICE-Aerosol and Health project team studies the physicochemical properties as well as biological and toxicological effects on lung cells of combustion particle emissions. The chemical composition and physical parameters thoroughly characterized. Human lung cells are exposed to the diluted combustion exhaust fumes at the air-liquid interface (ALI), allowing a realistic lung-cell exposure by simulation of the lung situation. After exposure, cellular responses of the exposed lung cells are studied by multi-omics molecular biological analyses on transcriptomic, proteomic and metabolomic level. Emissions of wood combustion (log wood, pellet heater), ship diesel engines and car gasoline engines are addressed. Special field deployable ALI-exposition systems in a mobile S2-biological laboratory were set up and applied. Human alveolar epithelial cells (A549, BEAS2B and primary cells) as well as murine macrophages were ALI-exposed to diluted emissions. The cellular effects were then comprehensively characterized (viability, cyto-toxicology, multi-omics effects monitoring) and put in context with the chemical and physical aerosol data. The following order of overall cellular response-strength was observed: A relatively mild cellular effect is observed for the diluted wood combustion emissions. Interestingly the effects-strength for log-wood and pellet burner emissions are similar, although PM-concentrations are much higher for the log-wood heater. Similar mild biological effects are observed for the gasoline car emissions. The ship diesel engine emissions induced the most intense biological responses. A surprising result in this context is, that heavy fuel oil (HFO)-emissions showed lower biological effect strengths than the supposedly cleaner diesel fuel emissions (DF). The HFO-emission contain high concentrations of known toxicants (transition metals, polycyclic aromatics). This result was recently confirmed by experiments with murine RAW macrophages. Detailed analyses of the activated cellular response pathways, such as pro-inflammatory responses, xenobiotic metabolism, phagocytosis and oxidative stress were performed. The data is suggesting a large difference in relative toxicity for different combustion sources.
Aqueous Ethanol Ignition and Engine Studies, Phase I
DOT National Transportation Integrated Search
2010-09-01
Our objectives were to design a micro-dilution tunnel for monitoring engine emissions, measure ignition temperature and heat release from ethanol-water-air mixtures on platinum, and initiate a computational fluid dynamics model of a catalytic igniter...
Electronic bandstructure of semiconductor dilute bismide structures
NASA Astrophysics Data System (ADS)
Erucar, T.; Nutku, F.; Donmez, O.; Erol, A.
2017-02-01
In this work electronic band structure of dilute bismide GaAs/GaAs1-xBix quantum well structures with 1.8% and 3.75% bismuth compositions have been investigated both experimentally and theoretically. Photoluminescence (PL) measurements reveal that effective bandgap of the samples decreases approximately 65 meV per bismuth concentration. Temperature dependence of the effective bandgap is obtained to be higher for the sample with higher bismuth concentration. Moreover, both asymmetric characteristic at the low energy tail of the PL and full width at half maximum (FWHM) of PL peak increase with increasing bismuth composition as a result of increased Bi related defects located above valence band (VB). In order to explain composition dependence of the effective bandgap quantitatively, valence band anti-crossing (VBAC) model is used. Bismuth composition and temperature dependence of effective bandgap in a quantum well structure is modeled by solving Schrödinger equation and compared with experimental PL data.
Adherence to stainless steel by foodborne microorganisms during growth in model food systems.
Hood, S K; Zottola, E A
1997-07-22
Biofilm formation on stainless steel by Salmonella typhimurium, Listeria monocytogenes, Escherichia coli O157:H7, Pseudomonas fragi and Pseudomonas fluorescens during growth in model food systems was studied. Test growth media included tryptic soy broth (TSB), diluted TSB (dTSB), 1% reconstituted skim milk (RSM) and diluted meat juice (DMJ). Adherent cells were stained with acridine orange and enumerated using epifluorescent microscopy and computerized image analysis. Cells were observed on the stainless steel surface after 1 h in all of the media. However, the increases in the number of adherent cells over time was seen only with S. typhimurium in DMJ, E. coli O157:H7 in TSB, dTSB and DMJ, P. fragi in RSM and P. fluorescens in RSM. The medium which produced the highest observed level of adherent cells was different for each microorganism.
Zhang, Yuning; Du, Xiaoze
2015-09-01
Predictions of the propagation of the acoustic waves in bubbly liquids is of great importance for bubble dynamics and related applications (e.g. sonochemistry, sonochemical reactor design, biomedical engineering). In the present paper, an approach for modeling the propagation of the acoustic waves in dilute bubbly liquids is proposed through considering the non-uniform pressure field outside the bubbles. This approach is validated through comparing with available experimental data in the literature. Comparing with the previous models, our approach mainly improves the predictions of the attenuation of acoustic waves in the regions with large kR0 (k is the wave number and R0 is the equilibrium bubble radius). Stability of the oscillating bubbles under acoustic excitation are also quantitatively discussed based on the analytical solution. Copyright © 2015 Elsevier B.V. All rights reserved.
Artificial bias typically neglected in comparisons of uncertain atmospheric data
NASA Astrophysics Data System (ADS)
Pitkänen, Mikko R. A.; Mikkonen, Santtu; Lehtinen, Kari E. J.; Lipponen, Antti; Arola, Antti
2016-09-01
Publications in atmospheric sciences typically neglect biases caused by regression dilution (bias of the ordinary least squares line fitting) and regression to the mean (RTM) in comparisons of uncertain data. We use synthetic observations mimicking real atmospheric data to demonstrate how the biases arise from random data uncertainties of measurements, model output, or satellite retrieval products. Further, we provide examples of typical methods of data comparisons that have a tendency to pronounce the biases. The results show, that data uncertainties can significantly bias data comparisons due to regression dilution and RTM, a fact that is known in statistics but disregarded in atmospheric sciences. Thus, we argue that often these biases are widely regarded as measurement or modeling errors, for instance, while they in fact are artificial. It is essential that atmospheric and geoscience communities become aware of and consider these features in research.
Regression dilution in the proportional hazards model.
Hughes, M D
1993-12-01
The problem of regression dilution arising from covariate measurement error is investigated for survival data using the proportional hazards model. The naive approach to parameter estimation is considered whereby observed covariate values are used, inappropriately, in the usual analysis instead of the underlying covariate values. A relationship between the estimated parameter in large samples and the true parameter is obtained showing that the bias does not depend on the form of the baseline hazard function when the errors are normally distributed. With high censorship, adjustment of the naive estimate by the factor 1 + lambda, where lambda is the ratio of within-person variability about an underlying mean level to the variability of these levels in the population sampled, removes the bias. As censorship increases, the adjustment required increases and when there is no censorship is markedly higher than 1 + lambda and depends also on the true risk relationship.
Decay dynamics in the coupled-dipole model
NASA Astrophysics Data System (ADS)
Araújo, M. O.; Guerin, W.; Kaiser, R.
2018-06-01
Cooperative scattering in cold atoms has gained renewed interest, in particular in the context of single-photon superradiance, with the recent experimental observation of super- and subradiance in dilute atomic clouds. Numerical simulations to support experimental signatures of cooperative scattering are often limited by the number of dipoles which can be treated, well below the number of atoms in the experiments. In this paper, we provide systematic numerical studies aimed at matching the regime of dilute atomic clouds. We use a scalar coupled-dipole model in the low excitation limit and an exclusion volume to avoid density-related effects. Scaling laws for super- and subradiance are obtained and the limits of numerical studies are pointed out. We also illustrate the cooperative nature of light scattering by considering an incident laser field, where half of the beam has a ? phase shift. The enhanced subradiance obtained under such condition provides an additional signature of the role of coherence in the detected signal.
Effects of Fuel Composition on EGR Dilution Tolerance in Spark Ignited Engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szybist, James P
2016-01-01
Fuel-specific differences in exhaust gas recirculation (EGR) dilution tolerance are studied in a modern, direct-injection single-cylinder research engine. A total of 6 model fuel blends are examined at a constant research octane number (RON) of 95 using n-heptane, iso-octane, toluene, and ethanol. Laminar flame speeds for these mixtures, which were calculated two different methods (an energy fraction mixing rule and a detailed kinetic simulation), spanned a range of about 6 cm/s. A constant fueling nominal load of 350 kPa IMEPg at 2000 rpm was operated with varying CA50 from 8-20 CAD aTDCf, and with EGR increasing until a COV ofmore » IMEP of 5% is reached. The results illustrate that flame speed affects EGR dilution tolerance; fuels with increased flame speeds increase EGR tolerance. Specifically, flame speed correlates most closely to the initial flame kernel growth, measured as the time of ignition to 5% mass fraction burned. The effect of the latent heat of vaporization on the flame speed is taken into account for the ethanol-containing fuels. At a 30 vol% blend level, the increased enthalpy of vaporization of ethanol compared to conventional hydrocarbons can decrease the temperature at the time of ignition by a maximum of 15 C, which can account for up to a 3.5 cm/s decrease in flame speed. The ethanol-containing fuels, however, still exhibit a flame speed advantage, and a dilution tolerance advantage over the slower flame-speed fuels. The fuel-specific differences in dilution tolerance are significant at the condition examined, allowing for a 50% relative increase in EGR (4% absolute difference in EGR) at a constant COV of IMEP of 3%.« less
Capturing Cyclic Variability in EGR Dilute SI Combustion using Multi-Cycle RANS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scarcelli, Riccardo; Sevik, James; Wallner, Thomas
Dilute combustion is an effective approach to increase the thermal efficiency of spark-ignition (SI) internal combustion engines (ICEs). However, high dilution levels typically result in large cycle-to-cycle variations (CCV) and poor combustion stability, therefore limiting the efficiency improvement. In order to extend the dilution tolerance of SI engines, advanced ignition systems are the subject of extensive research. When simulating the effect of the ignition characteristics on CCV, providing a numerical result matching the measured average in-cylinder pressure trace does not deliver useful information regarding combustion stability. Typically Large Eddy Simulations (LES) are performed to simulate cyclic engine variations, since Reynold-Averagedmore » Navier-Stokes (RANS) modeling is expected to deliver an ensemble-averaged result. In this paper it is shown that, when using RANS, the cyclic perturbations coming from different initial conditions at each cycle are not damped out even after many simulated cycles. As a result, multi-cycle RANS results feature cyclic variability. This allows evaluating the effect of advanced ignition sources on combustion stability but requires validation against the entire cycle-resolved experimental dataset. A single-cylinder GDI research engine is simulated using RANS and the numerical results for 20 consecutive engine cycles are evaluated for several operating conditions, including stoichiometric as well as EGR dilute operation. The effect of the ignition characteristics on CCV is also evaluated. Results show not only that multi-cycle RANS simulations can capture cyclic variability and deliver similar trends as the experimental data, but more importantly that RANS might be an effective, lower-cost alternative to LES for the evaluation of ignition strategies for combustion systems that operate close to the stability limit.« less
Nagai, Takashi; Horio, Takeshi; Yokoyama, Atsushi; Kamiya, Takashi; Takano, Hiroyuki; Makino, Tomoyuki
2012-06-01
On-site soil washing with iron(III) chloride reduces Cd levels in soil, and thus the human health risks caused by Cd in food. However, it may threaten aquatic organisms when soil washing effluent is discharged to open aquatic systems. Therefore, we conducted trial-scale on-site soil washing and ecological risk assessment in Nagano and Niigata prefectures, Japan. The ecological effect of effluent water was investigated by two methods. The first was bioassay using standard aquatic test organisms. Twice-diluted effluent water from the Nagano site and the original effluent water from the Niigata site had no significant effects on green algae, water flea, caddisfly, and fish. The safe dilution rates were estimated as 20 times and 10 times for the Nagano and Niigata sites, respectively, considering an assessment factor of 10. The second method was probabilistic effect analysis using chemical analysis and the species sensitivity distribution concept. The mixture effects of CaCl(2), Al, Zn, and Mn were considered by applying a response additive model. The safe dilution rates, assessed for a potentially affected fraction of species of 5%, were 7.1 times and 23.6 times for the Nagano and Niigata sites, respectively. The actual dilution rates of effluent water by river water at the Nagano and Niigata sites were 2200-67,000 times and 1300-110,000 times, respectively. These are much larger than the safe dilution rates derived from the two approaches. Consequently, the ecological risk to aquatic organisms of soil washing is evaluated as being below the concern level. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Cao, S.; Ma, B.; Bennett, B. A. V.; Giassi, D.; Stocker, D. P.; Takahashi, F.; Long, M. B.; Smooke, M. D.
2014-01-01
The influences of fuel dilution, inlet velocity, and gravity on the shape and structure of laminar coflow CH4-air diffusion flames were investigated computationally and experimentally. A series of nitrogen-diluted flames measured in the Structure and Liftoff in Combustion Experiment (SLICE) on board the International Space Station was assessed numerically under microgravity (mu g) and normal gravity (1g) conditions with CH4 mole fraction ranging from 0.4 to 1.0 and average inlet velocity ranging from 23 to 90 cm/s. Computationally, the MC-Smooth vorticity-velocity formulation was employed to describe the reactive gaseous mixture, and soot evolution was modeled by sectional aerosol equations. The governing equations and boundary conditions were discretized on a two-dimensional computational domain by finite differences, and the resulting set of fully coupled, strongly nonlinear equations was solved simultaneously at all points using a damped, modified Newton's method. Experimentally, flame shape and soot temperature were determined by flame emission images recorded by a digital color camera. Very good agreement between computation and measurement was obtained, and the conclusions were as follows. (1) Buoyant and nonbuoyant luminous flame lengths are proportional to the mass flow rate of the fuel mixture; computed and measured nonbuoyant flames are noticeably longer than their 1g counterparts; the effect of fuel dilution on flame shape (i.e., flame length and flame radius) is negligible when the flame shape is normalized by the methane flow rate. (2) Buoyancy-induced reduction of the flame radius through radially inward convection near the flame front is demonstrated. (3) Buoyant and nonbuoyant flame structure is mainly controlled by the fuel mass flow rate, and the effects from fuel dilution and inlet velocity are secondary.
An accurate algorithm for the detection of DNA fragments from dilution pool sequencing experiments.
Bansal, Vikas
2018-01-01
The short read lengths of current high-throughput sequencing technologies limit the ability to recover long-range haplotype information. Dilution pool methods for preparing DNA sequencing libraries from high molecular weight DNA fragments enable the recovery of long DNA fragments from short sequence reads. These approaches require computational methods for identifying the DNA fragments using aligned sequence reads and assembling the fragments into long haplotypes. Although a number of computational methods have been developed for haplotype assembly, the problem of identifying DNA fragments from dilution pool sequence data has not received much attention. We formulate the problem of detecting DNA fragments from dilution pool sequencing experiments as a genome segmentation problem and develop an algorithm that uses dynamic programming to optimize a likelihood function derived from a generative model for the sequence reads. This algorithm uses an iterative approach to automatically infer the mean background read depth and the number of fragments in each pool. Using simulated data, we demonstrate that our method, FragmentCut, has 25-30% greater sensitivity compared with an HMM based method for fragment detection and can also detect overlapping fragments. On a whole-genome human fosmid pool dataset, the haplotypes assembled using the fragments identified by FragmentCut had greater N50 length, 16.2% lower switch error rate and 35.8% lower mismatch error rate compared with two existing methods. We further demonstrate the greater accuracy of our method using two additional dilution pool datasets. FragmentCut is available from https://bansal-lab.github.io/software/FragmentCut. vibansal@ucsd.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Wang, Qinggang; Bao, Dachuan; Guo, Yili; Lu, Junmeng; Lu, Zhijun; Xu, Yaozhan; Zhang, Kuihan; Liu, Haibo; Meng, Hongjie; Jiang, Mingxi; Qiao, Xiujuan; Huang, Handong
2014-01-01
The stochastic dilution hypothesis has been proposed to explain species coexistence in species-rich communities. The relative importance of the stochastic dilution effects with respect to other effects such as competition and habitat filtering required to be tested. In this study, using data from a 25-ha species-rich subtropical forest plot with a strong topographic structure at Badagongshan in central China, we analyzed overall species associations and fine-scale species interactions between 2,550 species pairs. The result showed that: (1) the proportion of segregation in overall species association analysis at 2 m neighborhood in this plot followed the prediction of the stochastic dilution hypothesis that segregations should decrease with species richness but that at 10 m neighborhood was higher than the prediction. (2) The proportion of no association type was lower than the expectation of stochastic dilution hypothesis. (3) Fine-scale species interaction analyses using Heterogeneous Poisson processes as null models revealed a high proportion (47%) of significant species effects. However, the assumption of separation of scale of this method was not fully met in this plot with a strong fine-scale topographic structure. We also found that for species within the same families, fine-scale positive species interactions occurred more frequently and negative ones occurred less frequently than expected by chance. These results suggested effects of environmental filtering other than species interaction in this forest. (4) We also found that arbor species showed a much higher proportion of significant fine-scale species interactions (66%) than shrub species (18%). We concluded that the stochastic dilution hypothesis only be partly supported and environmental filtering left discernible spatial signals in the spatial associations between species in this species-rich subtropical forest with a strong topographic structure. PMID:24824996
Wang, Qinggang; Bao, Dachuan; Guo, Yili; Lu, Junmeng; Lu, Zhijun; Xu, Yaozhan; Zhang, Kuihan; Liu, Haibo; Meng, Hongjie; Jiang, Mingxi; Qiao, Xiujuan; Huang, Handong
2014-01-01
The stochastic dilution hypothesis has been proposed to explain species coexistence in species-rich communities. The relative importance of the stochastic dilution effects with respect to other effects such as competition and habitat filtering required to be tested. In this study, using data from a 25-ha species-rich subtropical forest plot with a strong topographic structure at Badagongshan in central China, we analyzed overall species associations and fine-scale species interactions between 2,550 species pairs. The result showed that: (1) the proportion of segregation in overall species association analysis at 2 m neighborhood in this plot followed the prediction of the stochastic dilution hypothesis that segregations should decrease with species richness but that at 10 m neighborhood was higher than the prediction. (2) The proportion of no association type was lower than the expectation of stochastic dilution hypothesis. (3) Fine-scale species interaction analyses using Heterogeneous Poisson processes as null models revealed a high proportion (47%) of significant species effects. However, the assumption of separation of scale of this method was not fully met in this plot with a strong fine-scale topographic structure. We also found that for species within the same families, fine-scale positive species interactions occurred more frequently and negative ones occurred less frequently than expected by chance. These results suggested effects of environmental filtering other than species interaction in this forest. (4) We also found that arbor species showed a much higher proportion of significant fine-scale species interactions (66%) than shrub species (18%). We concluded that the stochastic dilution hypothesis only be partly supported and environmental filtering left discernible spatial signals in the spatial associations between species in this species-rich subtropical forest with a strong topographic structure.
Staley, Christopher; Gordon, Katrina V.; Schoen, Mary E.
2012-01-01
Before new, rapid quantitative PCR (qPCR) methods for assessment of recreational water quality and microbial source tracking (MST) can be useful in a regulatory context, an understanding of the ability of the method to detect a DNA target (marker) when the contaminant source has been diluted in environmental waters is needed. This study determined the limits of detection and quantification of the human-associated Bacteroides sp. (HF183) and human polyomavirus (HPyV) qPCR methods for sewage diluted in buffer and in five ambient, Florida water types (estuarine, marine, tannic, lake, and river). HF183 was quantifiable in sewage diluted up to 10−6 in 500-ml ambient-water samples, but HPyVs were not quantifiable in dilutions of >10−4. Specificity, which was assessed using fecal composites from dogs, birds, and cattle, was 100% for HPyVs and 81% for HF183. Quantitative microbial risk assessment (QMRA) estimated the possible norovirus levels in sewage and the human health risk at various sewage dilutions. When juxtaposed with the MST marker detection limits, the QMRA analysis revealed that HF183 was detectable when the modeled risk of gastrointestinal (GI) illness was at or below the benchmark of 10 illnesses per 1,000 exposures, but the HPyV method was generally not sensitive enough to detect potential health risks at the 0.01 threshold for frequency of illness. The tradeoff between sensitivity and specificity in the MST methods indicates that HF183 data should be interpreted judiciously, preferably in conjunction with a more host-specific marker, and that better methods of concentrating HPyVs from environmental waters are needed if this method is to be useful in a watershed management or monitoring context. PMID:22885746
NASA Astrophysics Data System (ADS)
Cao, Su; Ma, Bin; Giassi, Davide; Bennett, Beth Anne V.; Long, Marshall B.; Smooke, Mitchell D.
2018-03-01
In this study, the influence of pressure and fuel dilution on the structure and geometry of coflow laminar methane-air diffusion flames is examined. A series of methane-fuelled, nitrogen-diluted flames has been investigated both computationally and experimentally, with pressure ranging from 1.0 to 2.7 atm and CH4 mole fraction ranging from 0.50 to 0.65. Computationally, the MC-Smooth vorticity-velocity formulation was employed to describe the reactive gaseous mixture, and soot evolution was modelled by sectional aerosol equations. The governing equations and boundary conditions were discretised on a two-dimensional computational domain by finite differences, and the resulting set of fully coupled, strongly nonlinear equations was solved simultaneously at all points using a damped, modified Newton's method. Experimentally, chemiluminescence measurements of CH* were taken to determine its relative concentration profile and the structure of the flame front. A thin-filament ratio pyrometry method using a colour digital camera was employed to determine the temperature profiles of the non-sooty, atmospheric pressure flames, while soot volume fraction was quantified, after evaluation of soot temperature, through an absolute light calibration using a thermocouple. For a broad spectrum of flames in atmospheric and elevated pressures, the computed and measured flame quantities were examined to characterise the influence of pressure and fuel dilution, and the major conclusions were as follows: (1) maximum temperature increases with increasing pressure or CH4 concentration; (2) lift-off height decreases significantly with increasing pressure, modified flame length is roughly independent of pressure, and flame radius decreases with pressure approximately as P-1/2; and (3) pressure and fuel stream dilution significantly affect the spatial distribution and the peak value of the soot volume fraction.
NASA Astrophysics Data System (ADS)
Breard, Eric C. P.; Lube, Gert
2017-01-01
Pyroclastic density currents (PDCs) are the most lethal threat from volcanoes. While there are two main types of PDCs (fully turbulent, fully dilute pyroclastic surges and more concentrated pyroclastic flows encompassing non-turbulent to turbulent transport) pyroclastic flows, which are the subject of the present study, are far more complex than dilute pyroclastic surges and remain the least understood type despite their far greater hazard, greater runout length and ability to transport vast quantities of material across the Earth's surface. Here we present large-scale experiments of natural volcanic material and gas in order to provide the missing quantitative view of the internal structure and gas-particle transport mechanisms in pyroclastic flows. We show that the outer flow structure with head, body and wake regions broadly resembles current PDC analogues of dilute gravity currents. However, the internal structure, in which lower levels consist of a concentrated granular fluid and upper levels are more dilute, contrasts significantly with the internal structure of fully dilute gravity currents. This bipartite vertical structure shows strong analogy to current conceptual models of high-density turbidity currents, which are responsible for the distribution of coarse sediment in marine basins and of great interest to the hydrocarbon industry. The lower concentrated and non-turbulent levels of the PDC (granular-fluid basal flow) act as a fast-flowing carrier for the more dilute and turbulent upper levels of the current (ash-cloud surge). Strong kinematic coupling between these flow parts reduces viscous dissipation and entrainment of ambient air into the lower part of the ash-cloud surge. This leads to a state of forced super-criticality whereby fast and destructive PDCs can endure even at large distances from volcanoes. Importantly, the basal flow/ash-cloud surge coupling yields a characteristically smooth rheological boundary across the non-turbulent/turbulent interface, as well as vertical velocity and density profiles in the ash-cloud surge, which strongly differ from current theoretical predictions. Observed generation of successive pulses of high dynamic pressure within the upper dilute levels of the PDC may be important to understand the destructive potential of PDCs. The experiments further show that a wide range in the degree of coupling between particle and gas phases is critical to the vertical and longitudinal segregation of the currents into reaches that have starkly contrasting sediment transport capacities. In particular, the formation of mesoscale turbulence clusters under strong particle-gas feedback controls vertical stratification inside the turbulent upper levels of the current (ash-cloud surge) and triggers significant transfers of mass and momentum from the ash-cloud surge onto the granular-fluid basal flow. These results open up new pathways to advance current computational PDC hazard models and to describe and interpret PDCs as well as other types of high-density gravity currents transported across the surfaces of Earth and other planets and across marine basins.
The importance of vertical resolution in the free troposphere for modeling intercontinental plumes
NASA Astrophysics Data System (ADS)
Zhuang, Jiawei; Jacob, Daniel J.; Eastham, Sebastian D.
2018-05-01
Chemical plumes in the free troposphere can preserve their identity for more than a week as they are transported on intercontinental scales. Current global models cannot reproduce this transport. The plumes dilute far too rapidly due to numerical diffusion in sheared flow. We show how model accuracy can be limited by either horizontal resolution (Δx) or vertical resolution (Δz). Balancing horizontal and vertical numerical diffusion, and weighing computational cost, implies an optimal grid resolution ratio (Δx / Δz)opt ˜ 1000 for simulating the plumes. This is considerably higher than current global models (Δx / Δz ˜ 20) and explains the rapid plume dilution in the models as caused by insufficient vertical resolution. Plume simulations with the Geophysical Fluid Dynamics Laboratory Finite-Volume Cubed-Sphere Dynamical Core (GFDL-FV3) over a range of horizontal and vertical grid resolutions confirm this limiting behavior. Our highest-resolution simulation (Δx ≈ 25 km, Δz ≈ 80 m) preserves the maximum mixing ratio in the plume to within 35 % after 8 days in strongly sheared flow, a drastic improvement over current models. Adding free tropospheric vertical levels in global models is computationally inexpensive and would also improve the simulation of water vapor.
Helium 3/Helium 4 dilution cryocooler for space
NASA Technical Reports Server (NTRS)
Hendricks, John B.; Dingus, Michael L.
1991-01-01
Prototype dilution cryocoolers based on dilution refrigeration and adiabatic demagnetization refrigeration (ADR) cycles were designed, constructed, and tested. Although devices the devices did not operate as fully functional dilution cryocoolers, important information was gathered. The porous metal phase separator was demonstrated to operate in the -1-g configuration; this phase separation is the critical element in the He-3 circulation dilution cryocooler. Improvements in instrumentation needed for additional tests and development were identified.
Templated cocrystallization of cholesterol and phytosterols from microemulsions
NASA Astrophysics Data System (ADS)
Rozner, Shoshana; Popov, Inna; Uvarov, Vladimir; Aserin, Abraham; Garti, Nissim
2009-08-01
A major cause of cardiovascular disease is high cholesterol (CH) levels in the blood, a potential solution to which is the intake of phytosterols (PS) known as CH-reducing agents. One mechanism proposed for PS activity is the mutual cocrystallization of CH and PS from dietary mixed micelles (DMM), a process that removes excess CH from the transporting micelles. In this study, microemulsions (MEs) were used both as a model system for cocrystallization mimicking DMM and as a possible alternative pathway, based on the competitive solubilization of CH and PS, to reduce solubilized CH transport levels from the ME. The effects of different CH/PS ratios, aqueous dilution, and lecithin-based MEs on sterol crystallization were studied. The precipitated crystals from the ME-loaded system with PS alone and from that loaded with 1:1 or 1:3 CH/PS mixtures were significantly influenced by ME microstructure and by dilution with aqueous phase (X-ray powder diffraction (XRD) and differential scanning calorimetry (DSC) results). No new polymorphic structures were detected apart from the corresponding sterol hydrates. Mixed crystal morphology and the habit of the precipitated sterols were strongly affected by the CH/PS ratio and the structures of the diluted ME. As the amount of PS in the mixture increased or as the ME aqueous dilution proceeded, precipitated crystal shape became more needle-like. The mixed sterols seemed to be forming eutectic solids.