Metallic phases from disordered (2+1)-dimensional quantum electrodynamics
Goswami, Pallab; Goldman, Hart; Raghu, S.
2017-06-15
Metallic phases have been observed in several disordered two-dimensional (2D) systems, including thin films near superconductor-insulator transitions and quantum Hall systems near plateau transitions. The existence of 2D metallic phases at zero temperature generally requires an interplay of disorder and interaction effects. Consequently, experimental observations of 2D metallic behavior have largely defied explanation. We formulate a general stability criterion for strongly interacting, massless Dirac fermions against disorder, which describe metallic ground states with vanishing density of states. We show that (2+1)-dimensional quantum electrodynamics (QED 3) with a large, even number of fermion flavors remains metallic in the presence of weakmore » scalar potential disorder due to the dynamic screening of disorder by gauge fluctuations. In conclusion, we also show that QED 3 with weak mass disorder exhibits a stable, dirty metallic phase in which both interactions and disorder play important roles.« less
Metallic phases from disordered (2+1)-dimensional quantum electrodynamics
NASA Astrophysics Data System (ADS)
Goswami, Pallab; Goldman, Hart; Raghu, S.
2017-06-01
Metallic phases have been observed in several disordered two-dimensional (2D) systems, including thin films near superconductor-insulator transitions and quantum Hall systems near plateau transitions. The existence of 2D metallic phases at zero temperature generally requires an interplay of disorder and interaction effects. Consequently, experimental observations of 2D metallic behavior have largely defied explanation. We formulate a general stability criterion for strongly interacting, massless Dirac fermions against disorder, which describe metallic ground states with vanishing density of states. We show that (2+1)-dimensional quantum electrodynamics (QED3) with a large, even number of fermion flavors remains metallic in the presence of weak scalar potential disorder due to the dynamic screening of disorder by gauge fluctuations. We also show that QED3 with weak mass disorder exhibits a stable, dirty metallic phase in which both interactions and disorder play important roles.
A disorder-enhanced quasi-one-dimensional superconductor
Petrović, A. P.; Ansermet, D.; Chernyshov, D.; Hoesch, M.; Salloum, D.; Gougeon, P.; Potel, M.; Boeri, L.; Panagopoulos, C.
2016-01-01
A powerful approach to analysing quantum systems with dimensionality d>1 involves adding a weak coupling to an array of one-dimensional (1D) chains. The resultant quasi-1D (q1D) systems can exhibit long-range order at low temperature, but are heavily influenced by interactions and disorder due to their large anisotropies. Real q1D materials are therefore ideal candidates not only to provoke, test and refine theories of strongly correlated matter, but also to search for unusual emergent electronic phases. Here we report the unprecedented enhancement of a superconducting instability by disorder in single crystals of Na2−δMo6Se6, a q1D superconductor comprising MoSe chains weakly coupled by Na atoms. We argue that disorder-enhanced Coulomb pair-breaking (which usually destroys superconductivity) may be averted due to a screened long-range Coulomb repulsion intrinsic to disordered q1D materials. Our results illustrate the capability of disorder to tune and induce new correlated electron physics in low-dimensional materials. PMID:27448209
A disorder-enhanced quasi-one-dimensional superconductor.
Petrović, A P; Ansermet, D; Chernyshov, D; Hoesch, M; Salloum, D; Gougeon, P; Potel, M; Boeri, L; Panagopoulos, C
2016-07-22
A powerful approach to analysing quantum systems with dimensionality d>1 involves adding a weak coupling to an array of one-dimensional (1D) chains. The resultant quasi-1D (q1D) systems can exhibit long-range order at low temperature, but are heavily influenced by interactions and disorder due to their large anisotropies. Real q1D materials are therefore ideal candidates not only to provoke, test and refine theories of strongly correlated matter, but also to search for unusual emergent electronic phases. Here we report the unprecedented enhancement of a superconducting instability by disorder in single crystals of Na2-δMo6Se6, a q1D superconductor comprising MoSe chains weakly coupled by Na atoms. We argue that disorder-enhanced Coulomb pair-breaking (which usually destroys superconductivity) may be averted due to a screened long-range Coulomb repulsion intrinsic to disordered q1D materials. Our results illustrate the capability of disorder to tune and induce new correlated electron physics in low-dimensional materials.
Krueger, Robert F; Skodol, Andrew E; Livesley, W John; Shrout, Patrick E; Huang, Yueqin
2007-01-01
Personality disorder researchers have long considered the utility of dimensional approaches to diagnosis, signaling the need to consider a dimensional approach for personality disorders in the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-V). Nevertheless, a dimensional approach to personality disorders in DSM-V is more likely to succeed if it represents an orderly and logical progression from the categorical system in DSM-IV. With these considerations and opportunities in mind, the authors sought to delineate ways of synthesizing categorical and dimensional approaches to personality disorders that could inform the construction of DSM-V. This discussion resulted in (1) the idea of having a set of core descriptive elements of personality for DSM-V, (2) an approach to rating those elements for specific patients, (3) a way of combining those elements into personality disorder prototypes, and (4) a revised conception of personality disorder as a construct separate from personality traits. Copyright (c) 2007 John Wiley & Sons, Ltd.
High-Dimensional Disorder-Driven Phenomena in Weyl Semimetals, Semiconductors, and Related Systems
NASA Astrophysics Data System (ADS)
Syzranov, Sergey V.; Radzihovsky, Leo
2018-03-01
It is commonly believed that a noninteracting disordered electronic system can undergo only the Anderson metal-insulator transition. It has been suggested, however, that a broad class of systems can display disorder-driven transitions distinct from Anderson localization that have manifestations in the disorder-averaged density of states, conductivity, and other observables. Such transitions have received particular attention in the context of recently discovered 3D Weyl and Dirac materials but have also been predicted in cold-atom systems with long-range interactions, quantum kicked rotors, and all sufficiently high-dimensional systems. Moreover, such systems exhibit unconventional behavior of Lifshitz tails, energy-level statistics, and ballistic-transport properties. Here, we review recent progress and the status of results on non-Anderson disorder-driven transitions and related phenomena.
Three-Dimensional Localized-Delocalized Anderson Transition in the Time Domain
NASA Astrophysics Data System (ADS)
Delande, Dominique; Morales-Molina, Luis; Sacha, Krzysztof
2017-12-01
Systems which can spontaneously reveal periodic evolution are dubbed time crystals. This is in analogy with space crystals that display periodic behavior in configuration space. While space crystals are modeled with the help of space periodic potentials, crystalline phenomena in time can be modeled by periodically driven systems. Disorder in the periodic driving can lead to Anderson localization in time: the probability for detecting a system at a fixed point of configuration space becomes exponentially localized around a certain moment in time. We here show that a three-dimensional system exposed to a properly disordered pseudoperiodic driving may display a localized-delocalized Anderson transition in the time domain, in strong analogy with the usual three-dimensional Anderson transition in disordered systems. Such a transition could be experimentally observed with ultracold atomic gases.
Coulomb disorder in three-dimensional Dirac materials
NASA Astrophysics Data System (ADS)
Skinner, Brian
2015-03-01
In three-dimensional materials with a Dirac spectrum, weak short-ranged disorder is essentially irrelevant near the Dirac point. This is manifestly not the case for Coulomb disorder, where the long-ranged nature of the potential produced by charged impurities implies large fluctuations of the disorder potential even when impurities are sparse, and these fluctuations are screened by the formation of electron/hole puddles. Here I outline a theory of such nonlinear screening of Coulomb disorder in three-dimensional Dirac systems, and present results for the typical magnitude of the disorder potential, the corresponding density of states, and the size and density of electron/hole puddles. The resulting conductivity is also discussed.
Fate of superconductivity in three-dimensional disordered Luttinger semimetals
NASA Astrophysics Data System (ADS)
Mandal, Ipsita
2018-05-01
Superconducting instability can occur in three-dimensional quadratic band crossing semimetals only at a finite coupling strength due to the vanishing of density of states at the quadratic band touching point. Since realistic materials are always disordered to some extent, we study the effect of short-ranged-correlated disorder on this superconducting quantum critical point using a controlled loop-expansion applying dimensional regularization. The renormalization group (RG) scheme allows us to determine the RG flows of the various interaction strengths and shows that disorder destroys the superconducting quantum critical point. In fact, the system exhibits a runaway flow to strong disorder.
Coherent wave transmission in quasi-one-dimensional systems with Lévy disorder
NASA Astrophysics Data System (ADS)
Amanatidis, Ilias; Kleftogiannis, Ioannis; Falceto, Fernando; Gopar, Víctor A.
2017-12-01
We study the random fluctuations of the transmission in disordered quasi-one-dimensional systems such as disordered waveguides and/or quantum wires whose random configurations of disorder are characterized by density distributions with a long tail known as Lévy distributions. The presence of Lévy disorder leads to large fluctuations of the transmission and anomalous localization, in relation to the standard exponential localization (Anderson localization). We calculate the complete distribution of the transmission fluctuations for a different number of transmission channels in the presence and absence of time-reversal symmetry. Significant differences in the transmission statistics between disordered systems with Anderson and anomalous localizations are revealed. The theoretical predictions are independently confirmed by tight-binding numerical simulations.
NASA Astrophysics Data System (ADS)
Burin, Alexander L.
2015-03-01
Many-body localization in a disordered system of interacting spins coupled by the long-range interaction 1 /Rα is investigated combining analytical theory considering resonant interactions and a finite-size scaling of exact numerical solutions with number of spins N . The numerical results for a one-dimensional system are consistent with the general expectations of analytical theory for a d -dimensional system including the absence of localization in the infinite system at α <2 d and a universal scaling of a critical energy disordering Wc∝N2/d -α d .
Dagdeviren, Omur E
2018-08-03
The effect of surface disorder, load, and velocity on friction between a single asperity contact and a model surface is explored with one-dimensional and two-dimensional Prandtl-Tomlinson (PT) models. We show that there are fundamental physical differences between the predictions of one-dimensional and two-dimensional models. The one-dimensional model estimates a monotonic increase in friction and energy dissipation with load, velocity, and surface disorder. However, a two-dimensional PT model, which is expected to approximate a tip-sample system more realistically, reveals a non-monotonic trend, i.e. friction is inert to surface disorder and roughness in wearless friction regime. The two-dimensional model discloses that the surface disorder starts to dominate the friction and energy dissipation when the tip and the sample interact predominantly deep into the repulsive regime. Our numerical calculations address that tracking the minimum energy path and the slip-stick motion are two competing effects that determine the load, velocity, and surface disorder dependence of friction. In the two-dimensional model, the single asperity can follow the minimum energy path in wearless regime; however, with increasing load and sliding velocity, the slip-stick movement dominates the dynamic motion and results in an increase in friction by impeding tracing the minimum energy path. Contrary to the two-dimensional model, when the one-dimensional PT model is employed, the single asperity cannot escape to the minimum energy minimum due to constraint motion and reveals only a trivial dependence of friction on load, velocity, and surface disorder. Our computational analyses clarify the physical differences between the predictions of the one-dimensional and two-dimensional models and open new avenues for disordered surfaces for low energy dissipation applications in wearless friction regime.
Giddings, J C
1995-05-26
While the use of multiple dimensions in separation systems can create very high peak capacities, the effectiveness of the enhanced peak capacity in resolving large numbers of components depends strongly on whether the distribution of component peaks is ordered or disordered. Peak overlap is common in disordered distributions, even with a very high peak capacity. It is therefore of great importance to understand the origin of peak order/disorder in multidimensional separations and to address the question of whether any control can be exerted over observed levels of order and disorder and thus separation efficacy. It is postulated here that the underlying difference between ordered and disordered distributions of component peaks in separation systems is related to sample complexity as measured by a newly defined parameter, the sample dimensionality s, and by the derivative dimensionality s'. It is concluded that the type and degree of order and disorder is determined by the relationship of s (or s') to the dimensionality n of the separation system employed. Thus for some relatively simple samples (defined as having small s values), increased order and a consequent enhancement of resolution can be realized by increasing n. The resolution enhancement is in addition to the normal gain in resolving power resulting from the increased peak capacity of multidimensional systems. However, for other samples (having even smaller s values), an increase in n provides no additional benefit in enhancing component separability.
ERIC Educational Resources Information Center
Rodebaugh, Thomas L.; Holaway, Robert M.; Heimberg, Richard G.
2008-01-01
Despite favorable psychometric properties, the Generalized Anxiety Disorder Questionnaire for the "Diagnostic and Statistical Manual of Mental Disorders" (4th ed.) (GAD-Q-IV) does not have a known factor structure, which calls into question use of its original weighted scoring system (usually referred to as the dimensional score).…
Effect of the degree of disorder on electronic and optical properties in random superlattices
NASA Technical Reports Server (NTRS)
Wang, E. G.; Su, W. P.; Ting, C. S.
1994-01-01
A three-dimensional tight-binding calculation is developed and used to study disorder effects in a realistic random superlattice. With increasing disorder, a tendency of possible indirect-direct band-gap transition is suggested. Direct evidence of mobility edges between localized and extended states in three-dimensional random systems is given. As system disorder increases, the optical absorption intensities increase dramatically from five to forty-five times stronger than the ordered (GaAs)(sub 1)/(AlAs)(sub 1) superlattice. It is believed that the degree of disorder significantly affects electronic and optical properties of GaAs/AlAs random superlattices.
NASA Astrophysics Data System (ADS)
Xing, Yanxia; Xu, Fuming; Cheung, King Tai; Sun, Qing-feng; Wang, Jian; Yao, Yugui
2018-04-01
Quantum anomalous Hall effect (QAHE) has been experimentally realized in magnetic topological insulator (MTI) thin films fabricated on magnetically doped {({{Bi}},{{Sb}})}2{{{Te}}}3. In an MTI thin film with the magnetic easy axis along the normal direction (z-direction), orientations of magnetic dopants are randomly distributed around the magnetic easy axis, acting as magnetic disorders. With the aid of the non-equilibrium Green's function and Landauer–Büttiker formalism, we numerically study the influence of magnetic disorders on QAHE in an MTI thin film modeled by a three-dimensional tight-binding Hamiltonian. It is found that, due to the existence of gapless side surface states, QAHE is protected even in the presence of magnetic disorders as long as the z-component of magnetic moment of all magnetic dopants are positive. More importantly, such magnetic disorders also suppress the dissipation of the chiral edge states and enhance the quality of QAHE in MTI films. In addition, the effect of magnetic disorders depends very much on the film thickness, and the optimal influence is achieved at certain thickness. These findings are new features for QAHE in three-dimensional systems, not present in two-dimensional systems.
Global Culture: A Noise Induced Transition in Finite Systems
NASA Astrophysics Data System (ADS)
Klemm, Konstantin; Eguíluz, Victor M.; Toral, Raúl; San Miguel, Maxi
2003-04-01
We analyze Axelrod's model for the unbiased transmission of culture in the presence of noise. In a one-dimensional lattice, the dynamics is described in terms of a Lyapunov potential, where the disordered configurations are metastable states of the dynamics. In a two-dimensional lattice the dynamics is governed by the average relaxation time T for perturbations to the homogeneous configuration. If the noise rate is smaller than 1/T, the perturbations drive the system to a completely ordered configuration, whereas the system remains disordered for larger noise rates. Based on a mean-field approximation we obtain the average relaxation time T(N) = Nln(N) for system size N. Thus in the limit of infinite system size the system is disordered for any finite noise rate.
Single-Particle Mobility Edge in a One-Dimensional Quasiperiodic Optical Lattice
NASA Astrophysics Data System (ADS)
Lüschen, Henrik P.; Scherg, Sebastian; Kohlert, Thomas; Schreiber, Michael; Bordia, Pranjal; Li, Xiao; Das Sarma, S.; Bloch, Immanuel
2018-04-01
A single-particle mobility edge (SPME) marks a critical energy separating extended from localized states in a quantum system. In one-dimensional systems with uncorrelated disorder, a SPME cannot exist, since all single-particle states localize for arbitrarily weak disorder strengths. However, in a quasiperiodic system, the localization transition can occur at a finite detuning strength and SPMEs become possible. In this Letter, we find experimental evidence for the existence of such a SPME in a one-dimensional quasiperiodic optical lattice. Specifically, we find a regime where extended and localized single-particle states coexist, in good agreement with theoretical simulations, which predict a SPME in this regime.
Charge density waves in disordered media circumventing the Imry-Ma argument
Changlani, Hitesh J.; Tubman, Norm M.; Hughes, Taylor L.
2016-08-24
Two powerful theoretical predictions, Anderson localization and the Imry-Ma argument, impose significant restrictions on the phases of matter that can exist in the presence of even the smallest amount of disorder in one-dimensional systems. These predictions forbid electrically conducting states and ordered states respectively. It was thus remarkable that a mechanism to circumvent Anderson localization relying on the presence of correlated disorder was found, that is also realized in certain biomolecular systems. Here, in a similar manner, we show that the Imry-Ma argument can be circumvented, resulting in the formation of stable ordered states with discrete broken symmetries in disorderedmore » one dimensional systems. We then investigate other mechanisms by which disorder can destroy an ordered state.« less
Charge density waves in disordered media circumventing the Imry-Ma argument
DOE Office of Scientific and Technical Information (OSTI.GOV)
Changlani, Hitesh J.; Tubman, Norm M.; Hughes, Taylor L.
Two powerful theoretical predictions, Anderson localization and the Imry-Ma argument, impose significant restrictions on the phases of matter that can exist in the presence of even the smallest amount of disorder in one-dimensional systems. These predictions forbid electrically conducting states and ordered states respectively. It was thus remarkable that a mechanism to circumvent Anderson localization relying on the presence of correlated disorder was found, that is also realized in certain biomolecular systems. Here, in a similar manner, we show that the Imry-Ma argument can be circumvented, resulting in the formation of stable ordered states with discrete broken symmetries in disorderedmore » one dimensional systems. We then investigate other mechanisms by which disorder can destroy an ordered state.« less
Localization and delocalization of a one-dimensional system coupled with the environment
NASA Astrophysics Data System (ADS)
Zhu, Hong-Jun; Xiong, Shi-Jie
2010-03-01
We investigate several models of a one-dimensional chain coupling with surrounding atoms to elucidate disorder-induced delocalization in quantum wires, a peculiar behaviour against common wisdom. We show that the localization length is enhanced by disorder of side sites in the case of strong disorder, but in the case of weak disorder there is a plateau in this dependence. The above behaviour is the conjunct influence of the coupling to the surrounding atoms and the antiresonant effect. We also discuss different effects and their physical origin of different types of disorder in such systems. The numerical results show that coupling with the surrounding atoms can induce either the localization or delocalization effect depending on the values of parameters.
Two-dimensional Anderson-Hubbard model in the DMFT + {Sigma} approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuchinskii, E. Z., E-mail: kuchinsk@iep.uran.ru; Kuleeva, N. A.; Nekrasov, I. A.
The density of states, the dynamic (optical) conductivity, and the phase diagram of the paramagnetic two-dimensional Anderson-Hubbard model with strong correlations and disorder are analyzed within the generalized dynamical mean field theory (DMFT + {Sigma} approximation). Strong correlations are accounted by the DMFT, while disorder is taken into account via the appropriate generalization of the self-consistent theory of localization. We consider the two-dimensional system with the rectangular 'bare' density of states (DOS). The DMFT effective single-impurity problem is solved by numerical renormalization group (NRG). The 'correlated metal,' Mott insulator, and correlated Anderson insulator phases are identified from the evolution ofmore » the density of states, optical conductivity, and localization length, demonstrating both Mott-Hubbard and Anderson metal-insulator transitions in two-dimensional systems of finite size, allowing us to construct the complete zero-temperature phase diagram of the paramagnetic Anderson-Hubbard model. The localization length in our approximation is practically independent of the strength of Hubbard correlations. But the divergence of the localization length in a finite-size two-dimensional system at small disorder signifies the existence of an effective Anderson transition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goswami, Pallab; Goldman, Hart; Raghu, S.
Metallic phases have been observed in several disordered two-dimensional (2D) systems, including thin films near superconductor-insulator transitions and quantum Hall systems near plateau transitions. The existence of 2D metallic phases at zero temperature generally requires an interplay of disorder and interaction effects. Consequently, experimental observations of 2D metallic behavior have largely defied explanation. We formulate a general stability criterion for strongly interacting, massless Dirac fermions against disorder, which describe metallic ground states with vanishing density of states. We show that (2+1)-dimensional quantum electrodynamics (QED 3) with a large, even number of fermion flavors remains metallic in the presence of weakmore » scalar potential disorder due to the dynamic screening of disorder by gauge fluctuations. In conclusion, we also show that QED 3 with weak mass disorder exhibits a stable, dirty metallic phase in which both interactions and disorder play important roles.« less
Emergent reduced dimensionality by vertex frustration in artificial spin ice
NASA Astrophysics Data System (ADS)
Gilbert, Ian; Lao, Yuyang; Carrasquillo, Isaac; O'Brien, Liam; Watts, Justin D.; Manno, Michael; Leighton, Chris; Scholl, Andreas; Nisoli, Cristiano; Schiffer, Peter
2016-02-01
Reducing the dimensionality of a physical system can have a profound effect on its properties, as in the ordering of low-dimensional magnetic materials, phonon dispersion in mercury chain salts, sliding phases, and the electronic states of graphene. Here we explore the emergence of quasi-one-dimensional behaviour in two-dimensional artificial spin ice, a class of lithographically fabricated nanomagnet arrays used to study geometrical frustration. We extend the implementation of artificial spin ice by fabricating a new array geometry, the so-called tetris lattice. We demonstrate that the ground state of the tetris lattice consists of alternating ordered and disordered bands of nanomagnetic moments. The disordered bands can be mapped onto an emergent thermal one-dimensional Ising model. Furthermore, we show that the level of degeneracy associated with these bands dictates the susceptibility of island moments to thermally induced reversals, thus establishing that vertex frustration can reduce the relevant dimensionality of physical behaviour in a magnetic system.
Emergent reduced dimensionality by vertex frustration in artificial spin ice
Gilbert, Ian; Lao, Yuyang; Carrasquillo, Isaac; ...
2015-10-26
Reducing the dimensionality of a physical system can have a profound effect on its properties, as in the ordering of low-dimensional magnetic materials, phonon dispersion in mercury chain salts, sliding phases, and the electronic states of graphene. Here we explore the emergence of quasi-one-dimensional behaviour in two-dimensional artificial spin ice, a class of lithographically fabricated nanomagnet arrays used to study geometrical frustration. We extend the implementation of artificial spin ice by fabricating a new array geometry, the so-called tetris lattice. We demonstrate that the ground state of the tetris lattice consists of alternating ordered and disordered bands of nanomagnetic moments.more » The disordered bands can be mapped onto an emergent thermal one-dimensional Ising model. Furthermore, we show that the level of degeneracy associated with these bands dictates the susceptibility of island moments to thermally induced reversals, thus establishing that vertex frustration can reduce the relevant dimensionality of physical behaviour in a magnetic system.« less
Entanglement entropy in a one-dimensional disordered interacting system: the role of localization.
Berkovits, Richard
2012-04-27
The properties of the entanglement entropy (EE) in one-dimensional disordered interacting systems are studied. Anderson localization leaves a clear signature on the average EE, as it saturates on the length scale exceeding the localization length. This is verified by numerically calculating the EE for an ensemble of disordered realizations using the density matrix renormalization group method. A heuristic expression describing the dependence of the EE on the localization length, which takes into account finite-size effects, is proposed. This is used to extract the localization length as a function of the interaction strength. The localization length dependence on the interaction fits nicely with the expectations.
Persistent mobility edges and anomalous quantum diffusion in order-disorder separated quantum films
NASA Astrophysics Data System (ADS)
Zhong, Jianxin; Stocks, G. Malcolm
2007-01-01
A concept of order-disorder separated quantum films is proposed for the design of ultrathin quantum films of a few atomic layers thick with unconventional transport properties. The concept is demonstrated through studying an atomic bilayer comprised of an ordered layer and a disordered layer. Without the disordered layer or the ordered layer, the system is a conducting two-dimensional (2D) crystal or an insulating disordered 2D electron system. Without the order-disorder phase separation, a disordered bilayer is insulating under large disorder. In an order-disorder separated atomic bilayer, however, we show that the system behaves remarkably different from conventional ordered or disordered electron systems, exhibiting metal-insulator transitions with persistent mobility edges and superdiffusive anomalous quantum diffusion.
[The relationship between mood disorders and temperament, character and personality].
Sayin, Aslihan; Aslan, Salçuk
2005-01-01
The terms temperament, character and personality have been used almost synonymously despite their different meanings. Hippocratic physicians conceptualized illness, including melancholia, in dimensional terms as an out-growth of premorbid characteristics. In modern times, full-scale application of this dimensional concept to psychiatric disorders led Kraepelin, Schneider and Kretschmer to hypothesize that the 'endogenous psychoses are nothing other than marked accentuation of normal types of temperament'. Akiskal's 'soft-bipolarity' and 'affective temperaments' concepts and Cloninger's psychobiological model of temperament and character, which includes four temperament and three character dimensions, are examples of this dimensional approach from the last two decades. Hypotheses concerning the relationship between personality disorders and mood disorders have been described, but it is likely that a single unitary model would not adequately capture the complexity inherent in the relationship between mood and personality disorders. The DSM multiaxial approach to diagnosis encourages the clinician to distinguish state (Axis I) from trait (Axis II) features of mental disorders. Categorical systems like DSM have been criticised because of their inability to mention temperament, character and personality features. In this review, examples of dimensional approaches to mood disorders are given and discussed under the influence of temperament, character and personality disorders. For this purpose, literature from 1980 to 2004 has been reviewed through Pub/med, using the following key words.
NASA Astrophysics Data System (ADS)
Berkovits, Richard
2018-03-01
The properties of the low-lying eigenvalues of the entanglement Hamiltonian and their relation to the localization length of a disordered interacting one-dimensional many-particle system are studied. The average of the first entanglement Hamiltonian level spacing is proportional to the ground-state localization length and shows the same dependence on the disorder and interaction strength as the localization length. This is the result of the fact that entanglement is limited to distances of order of the localization length. The distribution of the first entanglement level spacing shows a Gaussian-type behavior as expected for level spacings much larger than the disorder broadening. For weakly disordered systems (localization length larger than sample length), the distribution shows an additional peak at low-level spacings. This stems from rare regions in some samples which exhibit metalliclike behavior of large entanglement and large particle-number fluctuations. These intermediate microemulsion metallic regions embedded in the insulating phase are discussed.
Peculiar spectral statistics of ensembles of trees and star-like graphs
NASA Astrophysics Data System (ADS)
Kovaleva, V.; Maximov, Yu; Nechaev, S.; Valba, O.
2017-07-01
In this paper we investigate the eigenvalue statistics of exponentially weighted ensembles of full binary trees and p-branching star graphs. We show that spectral densities of corresponding adjacency matrices demonstrate peculiar ultrametric structure inherent to sparse systems. In particular, the tails of the distribution for binary trees share the ‘Lifshitz singularity’ emerging in the one-dimensional localization, while the spectral statistics of p-branching star-like graphs is less universal, being strongly dependent on p. The hierarchical structure of spectra of adjacency matrices is interpreted as sets of resonance frequencies, that emerge in ensembles of fully branched tree-like systems, known as dendrimers. However, the relaxational spectrum is not determined by the cluster topology, but has rather the number-theoretic origin, reflecting the peculiarities of the rare-event statistics typical for one-dimensional systems with a quenched structural disorder. The similarity of spectral densities of an individual dendrimer and of an ensemble of linear chains with exponential distribution in lengths, demonstrates that dendrimers could be served as simple disorder-less toy models of one-dimensional systems with quenched disorder.
Cai, Xiaoming; Lang, Li-Jun; Chen, Shu; Wang, Yupeng
2013-04-26
We study the competition of disorder and superconductivity for a one-dimensional p-wave superconductor in incommensurate potentials. With the increase in the strength of the incommensurate potential, the system undergoes a transition from a topological superconducting phase to a topologically trivial localized phase. The phase boundary is determined both numerically and analytically from various aspects and the topological superconducting phase is characterized by the presence of Majorana edge fermions in the system with open boundary conditions. We also calculate the topological Z2 invariant of the bulk system and find it can be used to distinguish the different topological phases even for a disordered system.
Disordered two-dimensional electron systems with chiral symmetry
NASA Astrophysics Data System (ADS)
Markoš, P.; Schweitzer, L.
2012-10-01
We review the results of our recent numerical investigations on the electronic properties of disordered two dimensional systems with chiral unitary, chiral orthogonal, and chiral symplectic symmetry. Of particular interest is the behavior of the density of states and the logarithmic scaling of the smallest Lyapunov exponents in the vicinity of the chiral quantum critical point in the band center at E=0. The observed peaks or depressions in the density of states, the distribution of the critical conductances, and the possible non-universality of the critical exponents for certain chiral unitary models are discussed.
The role of identity in the DSM-5 classification of personality disorders
2013-01-01
In the revised Diagnostic and Statistical Manual DSM-5 the definition of personality disorder diagnoses has not been changed from that in the DSM-IV-TR. However, an alternative model for diagnosing personality disorders where the construct “identity” has been integrated as a central diagnostic criterion for personality disorders has been placed in section III of the manual. The alternative model’s hybrid nature leads to the simultaneous use of diagnoses and the newly developed “Level of Personality Functioning-Scale” (a dimensional tool to define the severity of the disorder). Pathological personality traits are assessed in five broad domains which are divided into 25 trait facets. With this dimensional approach, the new classification system gives, both clinicians and researchers, the opportunity to describe the patient in much more detail than previously possible. The relevance of identity problems in assessing and understanding personality pathology is illustrated using the new classification system applied in two case examples of adolescents with a severe personality disorder. PMID:23902698
The role of identity in the DSM-5 classification of personality disorders.
Schmeck, Klaus; Schlüter-Müller, Susanne; Foelsch, Pamela A; Doering, Stephan
2013-07-31
In the revised Diagnostic and Statistical Manual DSM-5 the definition of personality disorder diagnoses has not been changed from that in the DSM-IV-TR. However, an alternative model for diagnosing personality disorders where the construct "identity" has been integrated as a central diagnostic criterion for personality disorders has been placed in section III of the manual. The alternative model's hybrid nature leads to the simultaneous use of diagnoses and the newly developed "Level of Personality Functioning-Scale" (a dimensional tool to define the severity of the disorder). Pathological personality traits are assessed in five broad domains which are divided into 25 trait facets. With this dimensional approach, the new classification system gives, both clinicians and researchers, the opportunity to describe the patient in much more detail than previously possible. The relevance of identity problems in assessing and understanding personality pathology is illustrated using the new classification system applied in two case examples of adolescents with a severe personality disorder.
Spin-charge conversion in disordered two-dimensional electron gases lacking inversion symmetry
NASA Astrophysics Data System (ADS)
Huang, Chunli; Milletarı, Mirco; Cazalilla, Miguel A.
2017-11-01
We study the spin-charge conversion mechanisms in a two-dimensional gas of electrons moving in a smooth disorder potential by accounting for both Rashba-type and Mott's skew scattering contributions. We find that the quantum interference effects between spin-flip and skew scattering give rise to anisotropic spin precession scattering (ASP), a direct spin-charge conversion mechanism that was discovered in an earlier study of graphene decorated with adatoms [Huang et al., Phys. Rev. B 94, 085414 (2016), 10.1103/PhysRevB.94.085414]. Our findings suggest that, together with other spin-charge conversion mechanisms such as the inverse galvanic effect, ASP is a fairly universal phenomenon that should be present in disordered two-dimensional systems lacking inversion symmetry.
Dissipative phases across the superconductor-to-insulator transition
Couëdo, F.; Crauste, O.; Drillien, A. A.; Humbert, V.; Bergé, L.; Marrache-Kikuchi, C. A.; Dumoulin, L.
2016-01-01
Competing phenomena in low dimensional systems can generate exotic electronic phases, either through symmetry breaking or a non-trivial topology. In two-dimensional (2D) systems, the interplay between superfluidity, disorder and repulsive interactions is especially fruitful in this respect although both the exact nature of the phases and the microscopic processes at play are still open questions. In particular, in 2D, once superconductivity is destroyed by disorder, an insulating ground state is expected to emerge, as a result of a direct superconductor-to-insulator quantum phase transition. In such systems, no metallic state is theoretically expected to survive to the slightest disorder. Here we map out the phase diagram of amorphous NbSi thin films as functions of disorder and film thickness, with two metallic phases in between the superconducting and insulating ones. These two dissipative states, defined by a resistance which extrapolates to a finite value in the zero temperature limit, each bear a specific dependence on disorder. We argue that they originate from an inhomogeneous destruction of superconductivity, even if the system is morphologically homogeneous. Our results suggest that superconducting fluctuations can favor metallic states that would not otherwise exist. PMID:27786260
Disorder-induced topological phase transitions in two-dimensional spin-orbit coupled superconductors
Qin, Wei; Xiao, Di; Chang, Kai; Shen, Shun-Qing; Zhang, Zhenyu
2016-01-01
Normal superconductors with Rashba spin-orbit coupling have been explored as candidate systems of topological superconductors. Here we present a comparative theoretical study of the effects of different types of disorder on the topological phases of two-dimensional Rashba spin-orbit coupled superconductors. First, we show that a topologically trivial superconductor can be driven into a chiral topological superconductor upon diluted doping of isolated magnetic disorder, which close and reopen the quasiparticle gap of the paired electrons in a nontrivial manner. Secondly, the superconducting nature of a topological superconductor is found to be robust against Anderson disorder, but the topological nature is not, converting the system into a topologically trivial state even in the weak scattering limit. These topological phase transitions are distinctly characterized by variations in the topological invariant. We discuss the central findings in connection with existing experiments, and provide new schemes towards eventual realization of topological superconductors. PMID:27991541
Disorder-induced topological phase transitions in two-dimensional spin-orbit coupled superconductors
NASA Astrophysics Data System (ADS)
Qin, Wei; Xiao, Di; Chang, Kai; Shen, Shun-Qing; Zhang, Zhenyu
2016-12-01
Normal superconductors with Rashba spin-orbit coupling have been explored as candidate systems of topological superconductors. Here we present a comparative theoretical study of the effects of different types of disorder on the topological phases of two-dimensional Rashba spin-orbit coupled superconductors. First, we show that a topologically trivial superconductor can be driven into a chiral topological superconductor upon diluted doping of isolated magnetic disorder, which close and reopen the quasiparticle gap of the paired electrons in a nontrivial manner. Secondly, the superconducting nature of a topological superconductor is found to be robust against Anderson disorder, but the topological nature is not, converting the system into a topologically trivial state even in the weak scattering limit. These topological phase transitions are distinctly characterized by variations in the topological invariant. We discuss the central findings in connection with existing experiments, and provide new schemes towards eventual realization of topological superconductors.
Reentrant Resistive Behavior and Dimensional Crossover in Disordered Superconducting TiN Films.
Postolova, Svetlana V; Mironov, Alexey Yu; Baklanov, Mikhail R; Vinokur, Valerii M; Baturina, Tatyana I
2017-05-11
A reentrant temperature dependence of the normal state resistance often referred to as the N-shaped temperature dependence, is omnipresent in disordered superconductors - ranging from high-temperature cuprates to ultrathin superconducting films - that experience superconductor-to-insulator transition. Yet, despite the ubiquity of this phenomenon its origin still remains a subject of debate. Here we investigate strongly disordered superconducting TiN films and demonstrate universality of the reentrant behavior. We offer a quantitative description of the N-shaped resistance curve. We show that upon cooling down the resistance first decreases linearly with temperature and then passes through the minimum that marks the 3D-2D crossover in the system. In the 2D temperature range the resistance first grows with decreasing temperature due to quantum contributions and eventually drops to zero as the system falls into a superconducting state. Our findings demonstrate the prime importance of disorder in dimensional crossover effects.
Rosellini, Anthony J; Brown, Timothy A
2014-12-01
Limitations in anxiety and mood disorder diagnostic reliability and validity due to the categorical approach to classification used by the Diagnostic and Statistical Manual of Mental Disorders (DSM) have been long recognized. Although these limitations have led researchers to forward alternative classification schemes, few have been empirically evaluated. In a sample of 1,218 outpatients with anxiety and mood disorders, the present study examined the validity of Brown and Barlow's (2009) proposal to classify the anxiety and mood disorders using an integrated dimensional-categorical approach based on transdiagnostic emotional disorder vulnerabilities and phenotypes. Latent class analyses of 7 transdiagnostic dimensional indicators suggested that a 6-class (i.e., profile) solution provided the best model fit and was the most conceptually interpretable. Interpretation of the classes was further supported when compared with DSM diagnoses (i.e., within-class prevalence of diagnoses, using diagnoses to predict class membership). In addition, hierarchical multiple regression models were used to demonstrate the incremental validity of the profiles; class probabilities consistently accounted for unique variance in anxiety and mood disorder outcomes above and beyond DSM diagnoses. These results provide support for the potential development and utility of a hybrid dimensional-categorical profile approach to anxiety and mood disorder classification. In particular, the availability of dimensional indicators and corresponding profiles may serve as a useful complement to DSM diagnoses for both researchers and clinicians. (c) 2014 APA, all rights reserved.
Rosellini, Anthony J.; Brown, Timothy A.
2014-01-01
Limitations in anxiety and mood disorder diagnostic reliability and validity due to the categorical approach to classification used by the Diagnostic and Statistical Manual of Mental Disorders (DSM) have been long recognized. Although these limitations have led researchers to forward alternative classification schemes, few have been empirically evaluated. In a sample of 1,218 outpatients with anxiety and mood disorders, the present study examined the validity of Brown and Barlow's (2009) proposal to classify the anxiety and mood disorders using an integrated dimensional-categorical approach based on transdiagnostic emotional disorder vulnerabilities and phenotypes. Latent class analyses of seven transdiagnostic dimensional indicators suggested that a six-class (i.e., profile) solution provided the best model fit and was the most conceptually interpretable. Interpretation of the classes was further supported when compared with DSM-IV diagnoses (i.e., within-class prevalence of diagnoses, using diagnoses to predict class membership). In addition, hierarchical multiple regression models were used to demonstrate the incremental validity of the profiles; class probabilities consistently accounted for unique variance in anxiety and mood disorder outcomes above and beyond DSM diagnoses. These results provide support for the potential development and utility of a hybrid dimensional-categorical profile approach to anxiety and mood disorder classification. In particular, the availability of dimensional indicators and corresponding profiles may serve as a useful complement to DSM diagnoses for both researchers and clinicians. PMID:25265416
Monte Carlo chord length sampling for d-dimensional Markov binary mixtures
NASA Astrophysics Data System (ADS)
Larmier, Coline; Lam, Adam; Brantley, Patrick; Malvagi, Fausto; Palmer, Todd; Zoia, Andrea
2018-01-01
The Chord Length Sampling (CLS) algorithm is a powerful Monte Carlo method that models the effects of stochastic media on particle transport by generating on-the-fly the material interfaces seen by the random walkers during their trajectories. This annealed disorder approach, which formally consists of solving the approximate Levermore-Pomraning equations for linear particle transport, enables a considerable speed-up with respect to transport in quenched disorder, where ensemble-averaging of the Boltzmann equation with respect to all possible realizations is needed. However, CLS intrinsically neglects the correlations induced by the spatial disorder, so that the accuracy of the solutions obtained by using this algorithm must be carefully verified with respect to reference solutions based on quenched disorder realizations. When the disorder is described by Markov mixing statistics, such comparisons have been attempted so far only for one-dimensional geometries, of the rod or slab type. In this work we extend these results to Markov media in two-dimensional (extruded) and three-dimensional geometries, by revisiting the classical set of benchmark configurations originally proposed by Adams, Larsen and Pomraning [1] and extended by Brantley [2]. In particular, we examine the discrepancies between CLS and reference solutions for scalar particle flux and transmission/reflection coefficients as a function of the material properties of the benchmark specifications and of the system dimensionality.
Monte Carlo chord length sampling for d-dimensional Markov binary mixtures
Larmier, Coline; Lam, Adam; Brantley, Patrick; ...
2017-09-27
The Chord Length Sampling (CLS) algorithm is a powerful Monte Carlo method that models the effects of stochastic media on particle transport by generating on-the-fly the material interfaces seen by the random walkers during their trajectories. This annealed disorder approach, which formally consists of solving the approximate Levermore–Pomraning equations for linear particle transport, enables a considerable speed-up with respect to transport in quenched disorder, where ensemble-averaging of the Boltzmann equation with respect to all possible realizations is needed. However, CLS intrinsically neglects the correlations induced by the spatial disorder, so that the accuracy of the solutions obtained by using thismore » algorithm must be carefully verified with respect to reference solutions based on quenched disorder realizations. When the disorder is described by Markov mixing statistics, such comparisons have been attempted so far only for one-dimensional geometries, of the rod or slab type. In this work we extend these results to Markov media in two-dimensional (extruded) and three-dimensional geometries, by revisiting the classical set of benchmark configurations originally proposed by Adams, Larsen and Pomraning and extended by Brantley. In particular, we examine the discrepancies between CLS and reference solutions for scalar particle flux and transmission/reflection coefficients as a function of the material properties of the benchmark specifications and of the system dimensionality.« less
Monte Carlo chord length sampling for d-dimensional Markov binary mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larmier, Coline; Lam, Adam; Brantley, Patrick
The Chord Length Sampling (CLS) algorithm is a powerful Monte Carlo method that models the effects of stochastic media on particle transport by generating on-the-fly the material interfaces seen by the random walkers during their trajectories. This annealed disorder approach, which formally consists of solving the approximate Levermore–Pomraning equations for linear particle transport, enables a considerable speed-up with respect to transport in quenched disorder, where ensemble-averaging of the Boltzmann equation with respect to all possible realizations is needed. However, CLS intrinsically neglects the correlations induced by the spatial disorder, so that the accuracy of the solutions obtained by using thismore » algorithm must be carefully verified with respect to reference solutions based on quenched disorder realizations. When the disorder is described by Markov mixing statistics, such comparisons have been attempted so far only for one-dimensional geometries, of the rod or slab type. In this work we extend these results to Markov media in two-dimensional (extruded) and three-dimensional geometries, by revisiting the classical set of benchmark configurations originally proposed by Adams, Larsen and Pomraning and extended by Brantley. In particular, we examine the discrepancies between CLS and reference solutions for scalar particle flux and transmission/reflection coefficients as a function of the material properties of the benchmark specifications and of the system dimensionality.« less
Early Life Stress, Mood, and Anxiety Disorders.
Syed, Shariful A; Nemeroff, Charles B
2017-02-01
Early life stress has been shown to exert profound short- and long-term effects on human physiology both in the central nervous system and peripherally. Early life stress has demonstrated clear association with many psychiatric disorders including major depression, posttraumatic stress disorder, and bipolar disorder. The Diagnostic and Statistics Manuel of Mental Disorders (DSM) diagnostic categorical system has served as a necessary framework for clinical service, delivery, and research, however has not been completely matching the neurobiological research perspective. Early life stress presents a complex dynamic featuring a wide spectrum of physiologic alterations: from epigenetic alterations, inflammatory changes, to dysregulation of the hypothalamic pituitary axis and has further added to the challenge of identifying biomarkers associated with psychiatric disorders. The National Institute of Mental Health's proposed Research Domain Criteria initiative incorporates a dimensional approach to assess discrete domains and constructs of behavioral function that are subserved by identifiable neural circuits. The current neurobiology of early life stress is reviewed in accordance with dimensional organization of Research Domain Criteria matrix and how the findings as a whole fit within the Research Domain Criteria frameworks.
Additivity Principle in High-Dimensional Deterministic Systems
NASA Astrophysics Data System (ADS)
Saito, Keiji; Dhar, Abhishek
2011-12-01
The additivity principle (AP), conjectured by Bodineau and Derrida [Phys. Rev. Lett. 92, 180601 (2004)PRLTAO0031-900710.1103/PhysRevLett.92.180601], is discussed for the case of heat conduction in three-dimensional disordered harmonic lattices to consider the effects of deterministic dynamics, higher dimensionality, and different transport regimes, i.e., ballistic, diffusive, and anomalous transport. The cumulant generating function (CGF) for heat transfer is accurately calculated and compared with the one given by the AP. In the diffusive regime, we find a clear agreement with the conjecture even if the system is high dimensional. Surprisingly, even in the anomalous regime the CGF is also well fitted by the AP. Lower-dimensional systems are also studied and the importance of three dimensionality for the validity is stressed.
Vaidyanathan, Uma; Patrick, Christopher J.; Cuthbert, Bruce N.
2009-01-01
Integrative hierarchical models have sought to account for the extensive comorbidity between various internalizing disorders in terms of broad individual difference factors these disorders share. However, such models have been developed largely on the basis of self-report and diagnostic symptom data. Toward the goal of linking such models to neurobiological systems, we review studies that have employed variants of the affect-modulated startle paradigm to investigate emotional processing in internalizing disorders as well as personality constructs known to be associated with these disorders. Specifically, we focus on four parameters of startle reactivity: fear-potentiated startle, inhibition of startle in the context of pleasant stimuli, context-potentiated startle, and general startle reactivity. On the basis of available data, we argue that these varying effects index differing neurobiological processes related to mood and anxiety disorders that are interpretable from the standpoint of dimensional models of the internalizing spectrum. Further, we contend that these empirical findings can feed back into and help reshape conceptualizations of internalizing disorders in ways that make them more amenable to neurobiological analysis. PMID:19883142
High-density Two-Dimensional Small Polaron Gas in a Delta-Doped Mott Insulator
Ouellette, Daniel G.; Moetakef, Pouya; Cain, Tyler A.; Zhang, Jack Y.; Stemmer, Susanne; Emin, David; Allen, S. James
2013-01-01
Heterointerfaces in complex oxide systems open new arenas in which to test models of strongly correlated material, explore the role of dimensionality in metal-insulator-transitions (MITs) and small polaron formation. Close to the quantum critical point Mott MITs depend on band filling controlled by random disordered substitutional doping. Delta-doped Mott insulators are potentially free of random disorder and introduce a new arena in which to explore the effect of electron correlations and dimensionality. Epitaxial films of the prototypical Mott insulator GdTiO3 are delta-doped by substituting a single (GdO)+1 plane with a monolayer of charge neutral SrO to produce a two-dimensional system with high planar doping density. Unlike metallic SrTiO3 quantum wells in GdTiO3 the single SrO delta-doped layer exhibits thermally activated DC and optical conductivity that agree in a quantitative manner with predictions of small polaron transport but with an extremely high two-dimensional density of polarons, ~7 × 1014 cm−2. PMID:24257578
Disorder-Induced Quantum Beats in Two-Dimensional Spectra of Excitonically Coupled Molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butkus, Vytautas; Dong, Hui; Fleming, Graham R.
2016-01-21
Here, a study is presented showing the conditions when long-lived electronic quantum coherences originating from recently proposed inhomogeneous broadening mechanism are enhanced and reflected in the two-dimensional electronic spectra of the excitonically coupled molecular dimer. We show that depending on the amount of inhomogeneous broadening, the excitonically coupled molecular system can establish long-lived electronic coherences, caused by a disordered subensemble, for which the dephasing due to static energy disorder becomes significantly reduced. On the basis of these considerations, we present explanations for why the electronic or vibrational coherences were or were not observed in a range of recent experiments.
Monte-Carlo simulations of the clean and disordered contact process in three space dimensions
NASA Astrophysics Data System (ADS)
Vojta, Thomas
2013-03-01
The absorbing-state transition in the three-dimensional contact process with and without quenched randomness is investigated by means of Monte-Carlo simulations. In the clean case, a reweighting technique is combined with a careful extrapolation of the data to infinite time to determine with high accuracy the critical behavior in the three-dimensional directed percolation universality class. In the presence of quenched spatial disorder, our data demonstrate that the absorbing-state transition is governed by an unconventional infinite-randomness critical point featuring activated dynamical scaling. The critical behavior of this transition does not depend on the disorder strength, i.e., it is universal. Close to the disordered critical point, the dynamics is characterized by the nonuniversal power laws typical of a Griffiths phase. We compare our findings to the results of other numerical methods, and we relate them to a general classification of phase transitions in disordered systems based on the rare region dimensionality. This work has been supported in part by the NSF under grants no. DMR-0906566 and DMR-1205803.
NASA Astrophysics Data System (ADS)
Song, Juntao; Fine, Carolyn; Prodan, Emil
2014-11-01
The effect of strong disorder on chiral-symmetric three-dimensional lattice models is investigated via analytical and numerical methods. The phase diagrams of the models are computed using the noncommutative winding number, as functions of disorder strength and model's parameters. The localized/delocalized characteristic of the quantum states is probed with level statistics analysis. Our study reconfirms the accurate quantization of the noncommutative winding number in the presence of strong disorder, and its effectiveness as a numerical tool. Extended bulk states are detected above and below the Fermi level, which are observed to undergo the so-called "levitation and pair annihilation" process when the system is driven through a topological transition. This suggests that the bulk invariant is carried by these extended states, in stark contrast with the one-dimensional case where the extended states are completely absent and the bulk invariant is carried by the localized states.
Duality in Power-Law Localization in Disordered One-Dimensional Systems
NASA Astrophysics Data System (ADS)
Deng, X.; Kravtsov, V. E.; Shlyapnikov, G. V.; Santos, L.
2018-03-01
The transport of excitations between pinned particles in many physical systems may be mapped to single-particle models with power-law hopping, 1 /ra . For randomly spaced particles, these models present an effective peculiar disorder that leads to surprising localization properties. We show that in one-dimensional systems almost all eigenstates (except for a few states close to the ground state) are power-law localized for any value of a >0 . Moreover, we show that our model is an example of a new universality class of models with power-law hopping, characterized by a duality between systems with long-range hops (a <1 ) and short-range hops (a >1 ), in which the wave function amplitude falls off algebraically with the same power γ from the localization center.
NASA Technical Reports Server (NTRS)
Goshchitskii, B. N.; Davydov, S. A.; Karkin, A. E.; Mirmelstein, A. V.; Sadovskii, M. V.
1990-01-01
Theoretical interpretation of recent experiments on radiationally disordered high-temperature superconductors is presented, based on the concepts of mutual interplay of Anderson localization and superconductivity. Microscopic derivation of Ginzburg-Landau coefficients for the quasi-two-dimensional system in the vicinity of localization transition is given in the framework of the self-consistent theory of localization. The 'minimal metallic conductivity' for the quasi-two-dimensional case is enhanced due to a small overlap of electronic states on the nearest neighbor conducting planes. This leads to a stronger influence of localization effects than in ordinary (three-dimensional) superconductors. From this point of view even the initial samples of high-temperature superconductors are already very close to Anderson transition. Anomalies of H(c2) are also analyzed, explaining the upward curvature of H(c2)(T) and apparent independence of dH(c2)/dT (T = T(sub c)) on the degree of disorder as due to localization effects. Researchers discuss the possible reasons of fast T(sub c) degradation due to the enhanced Coulomb effects caused by the disorder induced decrease of localization length. The appearance and growth of localized magnetic moments is also discussed. The disorder dependence of localization length calculated from the experimental data on conductivity correlates reasonably with the theoretical criterion for suppression of superconductivity in the system with localized electronic states.
ERIC Educational Resources Information Center
Brown, Timothy A.; Barlow, David H.
2009-01-01
A wealth of evidence attests to the extensive current and lifetime diagnostic comorbidity of the "Diagnostic and Statistical Manual of Mental Disorders" (4th ed., "DSM-IV") anxiety and mood disorders. Research has shown that the considerable cross-sectional covariation of "DSM-IV" emotional disorders is accounted for by common higher order…
Reentrant resistive behavior and dimensional crossover in disordered superconducting TiN films
Postolova, Svetlana V.; Mironov, Alexey Yu.; Baklanov, Mikhail R.; ...
2017-05-11
A reentrant temperature dependence of the normal state resistance often referred to as the N-shaped temperature dependence, is omnipresent in disordered superconductors – ranging from high-temperature cuprates to ultrathin superconducting films – that experience superconductor-to-insulator transition. Yet, despite the ubiquity of this phenomenon its origin still remains a subject of debate. Here we investigate strongly disordered superconducting TiN films and demonstrate universality of the reentrant behavior. We offer a quantitative description of the N-shaped resistance curve. We show that upon cooling down the resistance first decreases linearly with temperature and then passes through the minimum that marks the 3D-2D crossovermore » in the system. In the 2D temperature range the resistance first grows with decreasing temperature due to quantum contributions and eventually drops to zero as the system falls into a superconducting state. As a result, our findings demonstrate the prime importance of disorder in dimensional crossover effects.« less
Dimensional assessment of anxiety disorders in parents and children for DSM-5.
Möller, Eline L; Majdandžić, Mirjana; Craske, Michelle G; Bögels, Susan M
2014-09-01
The current shift in the DSM towards the inclusion of a dimensional component allows clinicians and researchers to demonstrate not only the presence or absence of psychopathology in an individual, but also the degree to which the disorder and its symptoms are manifested. This study evaluated the psychometric properties and utility of a set of brief dimensional scales that assess DSM-based core features of anxiety disorders, for children and their parents. The dimensional scales and the Screen for Child Anxiety Related Emotional Disorders (SCARED-71), a questionnaire to assess symptoms of all anxiety disorders, were administered to a community sample of children (n = 382), aged 8-13 years, and their mothers (n = 285) and fathers (n = 255). The dimensional scales assess six anxiety disorders: specific phobia, agoraphobia, panic disorder, social anxiety disorder, generalized anxiety disorder, and separation anxiety disorder. Children rated their own anxiety and parents their child's anxiety. The dimensional scales demonstrated high internal consistency (α > 0.78, except for father reported child panic disorder, for reason of lack of variation), and moderate to high levels of convergent validity (rs = 0.29-0.73). Children who exceeded the SCARED cutoffs scored higher on the dimensional scales than those who did not, providing preliminary support for the clinical sensitivity of the scales. Given their strong psychometric properties and utility for both child and parent report, addition of the dimensional scales to the DSM-5 might be an effective way to incorporate dimensional measurement into the categorical DSM-5 assessment of anxiety disorders in children. Copyright © 2014 American Psychiatric Association. All rights reserved.
Gøtzsche-Astrup, Oluf; Moskowitz, Andrew
2016-02-01
The aim of this study was to review and discuss the evidence for dimensional classification of personality disorders and the historical and sociological bases of psychiatric nosology and research. Categorical and dimensional conceptualisations of personality disorder are reviewed, with a focus on the Diagnostic and Statistical Manual of Mental Disorders-system's categorisation and the Five-Factor Model of personality. This frames the events leading up to the Diagnostic and Statistical Manual of Mental Disorders, 5th Edition, personality disorder debacle, where the implementation of a hybrid model was blocked in a last-minute intervention by the American Psychiatric Association Board of Trustees. Explanations for these events are discussed, including the existence of invisible colleges of researchers and the fear of risking a 'scientific revolution' in psychiatry. A failure to recognise extra-scientific factors at work in classification of mental illness can have a profound and long-lasting influence on psychiatric nosology. In the end it was not scientific factors that led to the failure of the hybrid model of personality disorders, but opposing forces within the mental health community in general and the Diagnostic and Statistical Manual of Mental Disorders, 5th Edition, Task Force in particular. Substantial evidence has accrued over the past decades in support of a dimensional model of personality disorders. The events surrounding the Diagnostic and Statistical Manual of Mental Disorders, 5th Edition, Personality and Personality Disorders Work Group show the difficulties in reconciling two different worldviews with a hybrid model. They also indicate the future of a psychiatric nosology that will be increasingly concerned with dimensional classification of mental illness. As such, the road is paved for more substantial changes to personality disorder classification in the International Classification of Diseases, 11th Revision, in 2017. © The Royal Australian and New Zealand College of Psychiatrists 2015.
Disorder from order among anisotropic next-nearest-neighbor Ising spin chains in SrHo 2O 4
Wen, J. -J.; Tian, W.; Garlea, V. O.; ...
2015-02-26
In this study, we describe why Ising spin chains with competing interactions in SrHo 2O 4 segregate into ordered and disordered ensembles at low temperatures (T). Using elastic neutron scattering, magnetization, and specific heat measurements, the two distinct spin chains are inferred to have Néel (↑↓↑↓) and double-Néel (↑↑↓↓) ground states, respectively. Below T N = 0.68(2)K, the Néel chains develop three-dimensional long range order (LRO), which arrests further thermal equilibration of the double-Néel chains so they remain in a disordered incommensurate state for T below T S = 0.52(2)K. SrHo 2O 4 distills an important feature of incommensurate lowmore » dimensional magnetism: kinetically trapped topological defects in a quasi–d–dimensional spin system can preclude order in d + 1 dimensions.« less
Transition to spatiotemporal chaos in a two-dimensional hydrodynamic system.
Pirat, Christophe; Naso, Aurore; Meunier, Jean-Louis; Maïssa, Philippe; Mathis, Christian
2005-04-08
We study the transition to spatiotemporal chaos in a two-dimensional hydrodynamic experiment where liquid columns take place in the gravity induced instability of a liquid film. The film is formed below a plane grid which is used as a porous media and is continuously supplied with a controlled flow rate. This system can be either ordered (on a hexagonal structure) or disordered depending on the flow rate. We observe, for the first time in an initially structured state, a subcritical transition to spatiotemporal disorder which arises through spatiotemporal intermittency. Statistics of numbers, creations, and fusions of columns are investigated. We exhibit a critical behavior close to the directed percolation one.
Ordering phase transition in the one-dimensional Axelrod model
NASA Astrophysics Data System (ADS)
Vilone, D.; Vespignani, A.; Castellano, C.
2002-12-01
We study the one-dimensional behavior of a cellular automaton aimed at the description of the formation and evolution of cultural domains. The model exhibits a non-equilibrium transition between a phase with all the system sharing the same culture and a disordered phase of coexisting regions with different cultural features. Depending on the initial distribution of the disorder the transition occurs at different values of the model parameters. This phenomenology is qualitatively captured by a mean-field approach, which maps the dynamics into a multi-species reaction-diffusion problem.
Experimental Observation of Two-Dimensional Anderson Localization with the Atomic Kicked Rotor.
Manai, Isam; Clément, Jean-François; Chicireanu, Radu; Hainaut, Clément; Garreau, Jean Claude; Szriftgiser, Pascal; Delande, Dominique
2015-12-11
Dimension 2 is expected to be the lower critical dimension for Anderson localization in a time-reversal-invariant disordered quantum system. Using an atomic quasiperiodic kicked rotor-equivalent to a two-dimensional Anderson-like model-we experimentally study Anderson localization in dimension 2 and we observe localized wave function dynamics. We also show that the localization length depends exponentially on the disorder strength and anisotropy and is in quantitative agreement with the predictions of the self-consistent theory for the 2D Anderson localization.
Fractional Quantum Hall Effect in Infinite-Layer Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naud, J. D.; Pryadko, Leonid P.; Sondhi, S. L.
2000-12-18
Stacked two dimensional electron systems in transverse magnetic fields exhibit three dimensional fractional quantum Hall phases. We analyze the simplest such phases and find novel bulk properties, e.g., irrational braiding. These phases host ''one and a half'' dimensional surface phases in which motion in one direction is chiral. We offer a general analysis of conduction in the latter by combining sum rule and renormalization group arguments, and find that when interlayer tunneling is marginal or irrelevant they are chiral semimetals that conduct only at T>0 or with disorder.
Bögels, Susan M.
2016-01-01
Abstract With DSM‐5, the American Psychiatric Association encourages complementing categorical diagnoses with dimensional severity ratings. We therefore examined the psychometric properties of the DSM‐5 Dimensional Anxiety Scales, a set of brief dimensional scales that are consistent in content and structure and assess DSM‐5‐based core features of anxiety disorders. Participants (285 males, 255 females) completed the DSM‐5 Dimensional Anxiety Scales for social anxiety disorder, generalized anxiety disorder, specific phobia, agoraphobia, and panic disorder that were included in previous studies on the scales, and also for separation anxiety disorder, which is included in the DSM‐5 chapter on anxiety disorders. Moreover, they completed the Screen for Child Anxiety Related Emotional Disorders Adult version (SCARED‐A). The DSM‐5 Dimensional Anxiety Scales demonstrated high internal consistency, and the scales correlated significantly and substantially with corresponding SCARED‐A subscales, supporting convergent validity. Separation anxiety appeared present among adults, supporting the DSM‐5 recognition of separation anxiety as an anxiety disorder across the life span. To conclude, the DSM‐5 Dimensional Anxiety Scales are a valuable tool to screen for specific adult anxiety disorders, including separation anxiety. Research in more diverse and clinical samples with anxiety disorders is needed. © 2016 The Authors International Journal of Methods in Psychiatric Research Published by John Wiley & Sons Ltd. PMID:27378317
NASA Astrophysics Data System (ADS)
Olekhno, N. A.; Beltukov, Y. M.
2018-05-01
Random impedance networks are widely used as a model to describe plasmon resonances in disordered metal-dielectric nanocomposites. Two-dimensional networks are applied when considering thin films despite the fact that such networks correspond to the two-dimensional electrodynamics [Clerc et al., J. Phys. A 29, 4781 (1996), 10.1088/0305-4470/29/16/006]. In the present work, we propose a model of two-dimensional systems with the three-dimensional Coulomb interaction and show that this model is equivalent to the planar network with long-range capacitive links between distant sites. In the case of a metallic film, we obtain the well-known dispersion of two-dimensional plasmons ω ∝√{k } . We study the evolution of resonances with a decrease in the metal filling factor within the framework of the proposed model. In the subcritical region with the metal filling p lower than the percolation threshold pc, we observe a gap with Lifshitz tails in the spectral density of states (DOS). In the supercritical region p >pc , the DOS demonstrates a crossover between plane-wave two-dimensional plasmons and resonances of finite clusters.
Peculiar spectral statistics of ensembles of trees and star-like graphs
Kovaleva, V.; Maximov, Yu; Nechaev, S.; ...
2017-07-11
In this paper we investigate the eigenvalue statistics of exponentially weighted ensembles of full binary trees and p-branching star graphs. We show that spectral densities of corresponding adjacency matrices demonstrate peculiar ultrametric structure inherent to sparse systems. In particular, the tails of the distribution for binary trees share the \\Lifshitz singularity" emerging in the onedimensional localization, while the spectral statistics of p-branching star-like graphs is less universal, being strongly dependent on p. The hierarchical structure of spectra of adjacency matrices is interpreted as sets of resonance frequencies, that emerge in ensembles of fully branched tree-like systems, known as dendrimers. However,more » the relaxational spectrum is not determined by the cluster topology, but has rather the number-theoretic origin, re ecting the peculiarities of the rare-event statistics typical for one-dimensional systems with a quenched structural disorder. The similarity of spectral densities of an individual dendrimer and of ensemble of linear chains with exponential distribution in lengths, demonstrates that dendrimers could be served as simple disorder-less toy models of one-dimensional systems with quenched disorder.« less
Peculiar spectral statistics of ensembles of trees and star-like graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovaleva, V.; Maximov, Yu; Nechaev, S.
In this paper we investigate the eigenvalue statistics of exponentially weighted ensembles of full binary trees and p-branching star graphs. We show that spectral densities of corresponding adjacency matrices demonstrate peculiar ultrametric structure inherent to sparse systems. In particular, the tails of the distribution for binary trees share the \\Lifshitz singularity" emerging in the onedimensional localization, while the spectral statistics of p-branching star-like graphs is less universal, being strongly dependent on p. The hierarchical structure of spectra of adjacency matrices is interpreted as sets of resonance frequencies, that emerge in ensembles of fully branched tree-like systems, known as dendrimers. However,more » the relaxational spectrum is not determined by the cluster topology, but has rather the number-theoretic origin, re ecting the peculiarities of the rare-event statistics typical for one-dimensional systems with a quenched structural disorder. The similarity of spectral densities of an individual dendrimer and of ensemble of linear chains with exponential distribution in lengths, demonstrates that dendrimers could be served as simple disorder-less toy models of one-dimensional systems with quenched disorder.« less
Low Dimensionality Effects in Complex Magnetic Oxides
NASA Astrophysics Data System (ADS)
Kelley, Paula J. Lampen
Complex magnetic oxides represent a unique intersection of immense technological importance and fascinating physical phenomena originating from interwoven structural, electronic and magnetic degrees of freedom. The resulting energetically close competing orders can be controllably selected through external fields. Competing interactions and disorder represent an additional opportunity to systematically manipulate the properties of pure magnetic systems, leading to frustration, glassiness, and other novel phenomena while finite sample dimension plays a similar role in systems with long-range cooperative effects or large correlation lengths. A rigorous understanding of these effects in strongly correlated oxides is key to manipulating their functionality and device performance, but remains a challenging task. In this dissertation, we examine a number of problems related to intrinsic and extrinsic low dimensionality, disorder, and competing interactions in magnetic oxides by applying a unique combination of standard magnetometry techniques and unconventional magnetocaloric effect and transverse susceptibility measurements. The influence of dimensionality and disorder on the nature and critical properties of phase transitions in manganites is illustrated in La0.7 Ca0.3MnO3, in which both size reduction to the nanoscale and chemically-controlled quenched disorder are observed to induce a progressive weakening of the first-order nature of the transition, despite acting through the distinct mechanisms of surface effects and site dilution. In the second-order material La0.8Ca0.2MnO3, a strong magnetic field is found to drive the system toward its tricritical point as competition between exchange interactions in the inhomogeneous ground state is suppressed. In the presence of large phase separation stabilized by chemical disorder and long-range strain, dimensionality has a profound effect. With the systematic reduction of particle size in microscale-phase-separated (La, Pr, Ca)MnO3 we observe a disruption of the long-range glassy strains associated with the charge-ordered phase in the bulk, lowering the field and pressure threshold for charge-order melting and increasing the ferromagnetic volume fraction as particle size is decreased. The long-range charge-ordered phase becomes completely suppressed when the particle size falls below 100 nm. In contrast, low dimensionality in the geometrically frustrated pseudo-1D spin chain compound Ca3Co2O6 is intrinsic, arising from the crystal lattice. We establish a comprehensive phase diagram for this exotic system consistent with recent reports of an incommensurate ground state and identify new sub-features of the ferrimagnetic phase. When defects in the form of grain boundaries are incorporated into the system the low-temperature slow-dynamic state is weakened, and new crossover phenomena emerge in the spin relaxation behavior along with an increased distribution of relaxation times. The presence of both disorder and randomness leads to a spin-glass-like state, as observed in gammaFe2O3 hollow nanoparticles, where freezing of surface spins at low temperature generates an irreversible magnetization component and an associated exchange-biasing effect. Our results point to distinct dynamic behaviors on the inner and outer surfaces of the hollow structures. Overall, these studies yield new physical insights into the role of dimensionality and disorder in these complex oxide systems and highlight the sensitivity of their manifested magnetic ground states to extrinsic factors, leading in many cases to crossover behaviors where the balance between competing phases is altered, or to the emergence of entirely new magnetic phenomena.
Möller, Eline L; Bögels, Susan M
2016-09-01
With DSM-5, the American Psychiatric Association encourages complementing categorical diagnoses with dimensional severity ratings. We therefore examined the psychometric properties of the DSM-5 Dimensional Anxiety Scales, a set of brief dimensional scales that are consistent in content and structure and assess DSM-5-based core features of anxiety disorders. Participants (285 males, 255 females) completed the DSM-5 Dimensional Anxiety Scales for social anxiety disorder, generalized anxiety disorder, specific phobia, agoraphobia, and panic disorder that were included in previous studies on the scales, and also for separation anxiety disorder, which is included in the DSM-5 chapter on anxiety disorders. Moreover, they completed the Screen for Child Anxiety Related Emotional Disorders Adult version (SCARED-A). The DSM-5 Dimensional Anxiety Scales demonstrated high internal consistency, and the scales correlated significantly and substantially with corresponding SCARED-A subscales, supporting convergent validity. Separation anxiety appeared present among adults, supporting the DSM-5 recognition of separation anxiety as an anxiety disorder across the life span. To conclude, the DSM-5 Dimensional Anxiety Scales are a valuable tool to screen for specific adult anxiety disorders, including separation anxiety. Research in more diverse and clinical samples with anxiety disorders is needed. © 2016 The Authors International Journal of Methods in Psychiatric Research Published by John Wiley & Sons Ltd. © 2016 The Authors International Journal of Methods in Psychiatric Research Published by John Wiley & Sons Ltd.
Berkovits, Richard
2015-11-13
A fermionic disordered one-dimensional wire in the presence of attractive interactions is known to have two distinct phases, a localized and superconducting, depending on the strength of interaction and disorder. The localized region may also exhibit a metallic behavior if the system size is shorter than the localization length. Here we show that the superconducting phase has a distribution of the entanglement entropy distinct from the metallic regime. The entanglement entropy distribution is strongly asymmetric with a Lévy α-stable distribution (compared to the Gaussian metallic distribution), as is seen also for the second Rényi entropy distribution. Thus, entanglement properties may reveal properties which cannot be detected by other methods.
Wavepacket dynamics in one-dimensional system with long-range correlated disorder
NASA Astrophysics Data System (ADS)
Yamada, Hiroaki S.
2018-03-01
We numerically investigate dynamical property in the one-dimensional tight-binding model with long-range correlated disorder having power spectrum 1 /fα (α: spectrum exponent) generated by Fourier filtering method. For relatively small α <αc (=2) time-dependence of mean square displacement (MSD) of the initially localized wavepacket shows ballistic spread and localizes as time elapses. It is shown that α-dependence of the dynamical localization length determined by the MSD exhibits a simple scaling law in the localization regime for the relatively weak disorder strength W. Furthermore, scaled MSD by the dynamical localization length almost obeys an universal function from the ballistic to the localization regime in the various combinations of the parameters α and W.
NASA Astrophysics Data System (ADS)
Mandal, Ipsita; Nandkishore, Rahul M.
2018-03-01
Coulomb interactions famously drive three-dimensional quadratic band crossing semimetals into a non-Fermi liquid phase of matter. In a previous work [Nandkishore and Parameswaran, Phys. Rev. B 95, 205106 (2017), 10.1103/PhysRevB.95.205106], the effect of disorder on this non-Fermi liquid phase was investigated, assuming that the band structure was isotropic, assuming that the conduction and valence bands had the same band mass, and assuming that the disorder preserved exact time-reversal symmetry and statistical isotropy. It was shown that the non-Fermi liquid fixed point is unstable to disorder and that a runaway flow to strong disorder occurs. In this paper, we extend that analysis by relaxing the assumption of time-reversal symmetry and allowing the electron and hole masses to differ (but continuing to assume isotropy of the low energy band structure). We first incorporate time-reversal symmetry breaking disorder and demonstrate that there do not appear any new fixed points. Moreover, while the system continues to flow to strong disorder, time-reversal-symmetry-breaking disorder grows asymptotically more slowly than time-reversal-symmetry-preserving disorder, which we therefore expect should dominate the strong-coupling phase. We then allow for unequal electron and hole masses. We show that whereas asymmetry in the two masses is irrelevant in the clean system, it is relevant in the presence of disorder, such that the `effective masses' of the conduction and valence bands should become sharply distinct in the low-energy limit. We calculate the RG flow equations for the disordered interacting system with unequal band masses and demonstrate that the problem exhibits a runaway flow to strong disorder. Along the runaway flow, time-reversal-symmetry-preserving disorder grows asymptotically more rapidly than both time-reversal-symmetry-breaking disorder and the Coulomb interaction.
Development of an Interactive Anatomical Three-Dimensional Eye Model
ERIC Educational Resources Information Center
Allen, Lauren K.; Bhattacharyya, Siddhartha; Wilson, Timothy D.
2015-01-01
The discrete anatomy of the eye's intricate oculomotor system is conceptually difficult for novice students to grasp. This is problematic given that this group of muscles represents one of the most common sites of clinical intervention in the treatment of ocular motility disorders and other eye disorders. This project was designed to develop a…
Effect of atomic disorder on the magnetic phase separation.
Groshev, A G; Arzhnikov, A K
2018-05-10
The effect of disorder on the magnetic phase separation between the antiferromagnetic and incommensurate helical [Formula: see text] and [Formula: see text] phases is investigated. The study is based on the quasi-two-dimensional single-band Hubbard model in the presence of atomic disorder (the [Formula: see text] Anderson-Hubbard model). A model of binary alloy disorder is considered, in which the disorder is determined by the difference in energy between the host and impurity atomic levels at a fixed impurity concentration. The problem is solved within the theory of functional integration in static approximation. Magnetic phase diagrams are obtained as functions of the temperature, the number of electrons and impurity concentration with allowance for phase separation. It is shown that for the model parameters chosen, the disorder caused by impurities whose atomic-level energy is greater than that of the host atomic levels, leads to qualitative changes in the phase diagram of the impurity-free system. In the opposite case, only quantitative changes occur. The peculiarities of the effect of disorder on the phase separation regions of the quasi-two-dimensional Hubbard model are discussed.
Effect of atomic disorder on the magnetic phase separation
NASA Astrophysics Data System (ADS)
Groshev, A. G.; Arzhnikov, A. K.
2018-05-01
The effect of disorder on the magnetic phase separation between the antiferromagnetic and incommensurate helical and phases is investigated. The study is based on the quasi-two-dimensional single-band Hubbard model in the presence of atomic disorder (the Anderson–Hubbard model). A model of binary alloy disorder is considered, in which the disorder is determined by the difference in energy between the host and impurity atomic levels at a fixed impurity concentration. The problem is solved within the theory of functional integration in static approximation. Magnetic phase diagrams are obtained as functions of the temperature, the number of electrons and impurity concentration with allowance for phase separation. It is shown that for the model parameters chosen, the disorder caused by impurities whose atomic-level energy is greater than that of the host atomic levels, leads to qualitative changes in the phase diagram of the impurity-free system. In the opposite case, only quantitative changes occur. The peculiarities of the effect of disorder on the phase separation regions of the quasi-two-dimensional Hubbard model are discussed.
Topological energy conversion through the bulk or the boundary of driven systems
NASA Astrophysics Data System (ADS)
Peng, Yang; Refael, Gil
2018-04-01
Combining physical and synthetic dimensions allows a controllable realization and manipulation of high-dimensional topological states. In our work, we introduce two quasiperiodically driven one-dimensional systems which enable tunable topological energy conversion between different driving sources. Using three drives, we realize a four-dimensional quantum Hall state which allows energy conversion between two of the drives within the bulk of the one-dimensional system. With only two drives, we achieve energy conversion between the two at the edge of the chain. Both effects are a manifestation of the effective axion electrodynamics in a three-dimensional time-reversal-invariant topological insulator. Furthermore, we explore the effects of disorder and commensurability of the driving frequencies, and show the phenomena are robust. We propose two experimental platforms, based on semiconductor heterostructures and ultracold atoms in optical lattices, in order to observe the topological energy conversion.
Quantum thermostatted disordered systems and sensitivity under compression
NASA Astrophysics Data System (ADS)
Vanzan, Tommaso; Rondoni, Lamberto
2018-03-01
A one-dimensional quantum system with off diagonal disorder, consisting of a sample of conducting regions randomly interspersed within potential barriers is considered. Results mainly concerning the large N limit are presented. In particular, the effect of compression on the transmission coefficient is investigated. A numerical method to simulate such a system, for a physically relevant number of barriers, is proposed. It is shown that the disordered model converges to the periodic case as N increases, with a rate of convergence which depends on the disorder degree. Compression always leads to a decrease of the transmission coefficient which may be exploited to design nano-technological sensors. Effective choices for the physical parameters to improve the sensitivity are provided. Eventually large fluctuations and rate functions are analysed.
Brown, Timothy A.; Barlow, David H.
2010-01-01
A wealth of evidence attests to the extensive current and lifetime diagnostic comorbidity of the DSM-IV anxiety and mood disorders. Research has shown that the considerable cross-sectional covariation of DSM-IV emotional disorders is accounted for by common higher-order dimensions such as neuroticism/behavioral inhibition (N/BI) and low positive affect/behavioral activation. Longitudinal studies have indicated that the temporal covariation of these disorders can be explained by changes in N/BI and in some cases, initial levels of N/BI are predictive of the temporal course of emotional disorders. Moreover, the marked phenotypal overlap of the DSM-IV anxiety and mood disorder constructs is a frequent source of diagnostic unreliability (e.g., temporal overlap in the shared features of generalized anxiety disorder and mood disorders, situation specificity of panic attacks in panic disorder and specific phobia). Although dimensional approaches have been considered as a method to address the drawbacks associated with the extant prototypical nosology (e.g., inadequate assessment of individual differences in disorder severity), these proposals do not reconcile key problems in current classification such as modest reliability and high comorbidity. The current paper considers an alternative approach that emphasizes empirically supported common dimensions of emotional disorders over disorder-specific criteria sets. The selection and assessment of these dimensions are discussed along with how these methods could be implemented to promote more reliable and valid diagnosis, prognosis, and treatment planning. For instance, the advantages of this classification system are discussed in context of current transdiagnostic treatment protocols that are efficaciously applied to a variety of disorders by targeting their shared features. PMID:19719339
Zehetmayer, M.
2015-01-01
Order-disorder transitions take place in many physical systems, but observing them in detail in real materials is difficult. In two- or quasi-two-dimensional systems, the transition has been studied by computer simulations and experimentally in electron sheets, dusty plasmas, colloidal and other systems. Here I show the different stages of defect formation in the vortex lattice of a superconductor while it undergoes an order-disorder transition by presenting real-space images of the lattice from scanning tunneling spectroscopy. When the system evolves from the ordered to the disordered state, the predominant kind of defect changes from dislocation pairs to single dislocations, and finally to defect clusters forming grain boundaries. Correlation functions indicate a hexatic-like state preceding the disordered state. The transition in the microscopic vortex distribution is mirrored by the well-known spectacular second peak effect observed in the macroscopic current density of the superconductor. PMID:25784605
Zehetmayer, M
2015-03-18
Order-disorder transitions take place in many physical systems, but observing them in detail in real materials is difficult. In two- or quasi-two-dimensional systems, the transition has been studied by computer simulations and experimentally in electron sheets, dusty plasmas, colloidal and other systems. Here I show the different stages of defect formation in the vortex lattice of a superconductor while it undergoes an order-disorder transition by presenting real-space images of the lattice from scanning tunneling spectroscopy. When the system evolves from the ordered to the disordered state, the predominant kind of defect changes from dislocation pairs to single dislocations, and finally to defect clusters forming grain boundaries. Correlation functions indicate a hexatic-like state preceding the disordered state. The transition in the microscopic vortex distribution is mirrored by the well-known spectacular second peak effect observed in the macroscopic current density of the superconductor.
ERIC Educational Resources Information Center
Lindsay, William R.; Steptoe, Lesley; McVicker, Ronnie; Haut, Fabian; Robertson, Colette
2018-01-01
In "DSM-5" there has been a move to dimensional personality disorder (PD) diagnosis, incorporating personality theory in the form of the five-factor model (FFM). It proposes an alternative assessment system based on diagnostic indicators and the FFM, while retaining "DSM-IV" categorical criteria. Four individuals with…
Numerical studies of the topological Chern numbers in two dimensional electron system
NASA Astrophysics Data System (ADS)
Sheng, Donna
2004-03-01
I will report on the numerical results of the exact calculation of the topological Chern numbers in fractional and bilayer quantum Hall systems[1]. I will show that following the evolution of the Chern numbers as a function of the disorder strength and/or layer separations, various quantum phase transitions as well as the characteristic transport properties of the phases, can be determined. The hidden topological ordering in other two dimensional electron systems will also be discussed. 1. D. N. Sheng et. al., Phys. Rev. Lett. 90, 256802 (2003).
Transitions from order to disorder in multiple dark and multiple dark-bright soliton atomic clouds.
Wang, Wenlong; Kevrekidis, P G
2015-03-01
We have performed a systematic study quantifying the variation of solitary wave behavior from that of an ordered cloud resembling a "crystalline" configuration to that of a disordered state that can be characterized as a soliton "gas." As our illustrative examples, we use both one-component, as well as two-component, one-dimensional atomic gases very close to zero temperature, where in the presence of repulsive interatomic interactions and of a parabolic trap, a cloud of dark (dark-bright) solitons can form in the one- (two-) component system. We corroborate our findings through three distinct types of approaches, namely a Gross-Pitaevskii type of partial differential equation, particle-based ordinary differential equations describing the soliton dynamical system, and Monte Carlo simulations for the particle system. We define an "empirical" order parameter to characterize the order of the soliton lattices and study how this changes as a function of the strength of the "thermally" (i.e., kinetically) induced perturbations. As may be anticipated by the one-dimensional nature of our system, the transition from order to disorder is gradual without, apparently, a genuine phase transition ensuing in the intermediate regime.
Long-range Prethermal Time Crystals
NASA Astrophysics Data System (ADS)
Machado, Francisco; Meyer, Gregory D.; Else, Dominic; Olund, Christopher; Nayak, Chetan; Yao, Norman Y.
2017-04-01
Driven quantum systems have recently enabled the realization of a discrete time crystal - an intrinsically out-of-equilibrium phase of matter. One strategy to prevent the drive-induced, runaway heating of the time crystal is the presence of strong disorder leading to many-body localization (MBL). A more elegant, disorder-less approach is simply to work in the prethermal regime where time crystalline order can persist to exponentially long times. One key difference between prethermal and MBL time crystals is that the former is prohibited from existing in one dimensional systems with short-range interactions. In this work, we demonstrate that long-range interactions can stabilize a one dimensional prethermal time crystal. By numerically studying the pre-thermal regime, we find evidence for a phase transition out of the time crystal as a function of increasing energy density. Finally, generalizations of previous analytical bounds for the heating time-scale of driven quantum systems to long-range interactions will also be discussed.
Dynamics of wave packets in two-dimensional random systems with anisotropic disorder.
Samelsohn, Gregory; Gruzdev, Eugene
2008-09-01
A theoretical model is proposed to describe narrowband pulse dynamics in two-dimensional systems with arbitrary correlated disorder. In anisotropic systems with elongated cigarlike inhomogeneities, fast propagation is predicted in the direction across the structure where the wave is exponentially localized and tunneling of evanescent modes plays a dominant role in typical realizations. Along the structure, where the wave is channeled as in a waveguide, the motion of the wave energy is relatively slow. Numerical simulations performed for ultra-wide-band pulses show that even at the initial stage of wave evolution, the radiation diffuses predominantly in the direction along the major axis of the correlation ellipse. Spectral analysis of the results relates the long tail of the wave observed in the transverse direction to a number of frequency domain "lucky shots" associated with the long-living resonant modes localized inside the sample.
Dynamics of wave packets in two-dimensional random systems with anisotropic disorder
NASA Astrophysics Data System (ADS)
Samelsohn, Gregory; Gruzdev, Eugene
2008-09-01
A theoretical model is proposed to describe narrowband pulse dynamics in two-dimensional systems with arbitrary correlated disorder. In anisotropic systems with elongated cigarlike inhomogeneities, fast propagation is predicted in the direction across the structure where the wave is exponentially localized and tunneling of evanescent modes plays a dominant role in typical realizations. Along the structure, where the wave is channeled as in a waveguide, the motion of the wave energy is relatively slow. Numerical simulations performed for ultra-wide-band pulses show that even at the initial stage of wave evolution, the radiation diffuses predominantly in the direction along the major axis of the correlation ellipse. Spectral analysis of the results relates the long tail of the wave observed in the transverse direction to a number of frequency domain “lucky shots” associated with the long-living resonant modes localized inside the sample.
NASA Astrophysics Data System (ADS)
Longone, P.; Romá, F.
2018-06-01
Chemical techniques are an efficient method to synthesize one-dimensional perovskite manganite oxide nanostructures with a granular morphology, that is, formed by arrays of monodomain magnetic nanoparticles. Integrating the stochastic Landau-Lifshitz-Gilbert equation, we simulate the dynamics of a simple disordered model for such materials that only takes into account the morphological characteristics of their nanograins. We show that it is possible to describe reasonably well experimental hysteresis loops reported in the literature for single La0.67Ca0.33MnO3 nanotubes and powders of these nanostructures, simulating small systems consisting of only 100 nanoparticles.
The effect of disorder on the wave propagation in one-dimensional periodic optical systems
NASA Astrophysics Data System (ADS)
Godin, Yuri A.; Molchanov, Stanislav; Vainberg, Boris
2011-02-01
The influence of disorder on the transmission through periodic waveguides is studied. Using a canonical form of the transfer matrix, we investigate the dependence of the Lyapunov exponent γ on the frequency ν and magnitude of the disorder σ. It is shown that in the bulk of the bands γ ∼ σ2, while near the band edges it has order γ ∼ σ2/3. This dependence is illustrated by numerical simulations.
NASA Astrophysics Data System (ADS)
Lukin, Alexander; Tai, M. Eric; Rispoli, Matthew; Schittko, Robert; Menke, Tim; Kaufman, Adam; Greiner, Markus
2017-04-01
Many-body localized states appear at odds with thermalization as they preserve the memory of their initial state. This behavior has drawn significant theoretical and experimental attention in recent years. Real space localization has been observed on various platforms and under a number of experimental conditions, both with and without interactions. However, the characteristic logarithmic growth of entanglement entropy, which distinguishes the many-body localized state from the non-interacting Anderson localized state, has only been studied in numerics and has yet to be investigated experimentally. We are working towards the phenomenon of localization in one dimensional, interacting Bose-Hubbard system using a quantum gas microscope. With site-resolved addressing and readout, our microscope provides full control over the studied system, in particular it allows us to add disorder into our system using a Fourier plane hologram. This gives us access to both local observables, such as the occupation of individual lattice sites, as well as the entanglement entropy. I will present our progress towards measuring the dependence of the entanglement entropy grows on the disorder strength and interactions in our system. National Science Foundation, Gordon and Betty Moore Foundation's EPiQS Initiative, Air Force Office of Scientific Research MURI program, NSF Graduate Research Fellowship Program (MNR).
Superdiffusive transport and energy localization in disordered granular crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez, Alejandro J.; Kevrekidis, Panagiotis G.; Porter, Mason A.
We study the spreading of initially localized excitations in one-dimensional disordered granular crystals. We thereby investigate localization phenomena in strongly nonlinear systems, which we demonstrate to be fundamentally different from localization in linear and weakly nonlinear systems. We conduct a thorough comparison of wave dynamics in chains with three different types of disorder: an uncorrelated (Anderson-like) disorder and two types of correlated disorders (which are produced by random dimer arrangements), and for two families of initial conditions: displacement perturbations and velocity perturbations. We find for strongly precompressed (i.e., weakly nonlinear) chains that the dynamics strongly depends on the initial condition.more » Furthermore, for displacement perturbations, the long-time asymptotic behavior of the second moment m ~2 has oscillations that depend on the type of disorder, with a complex trend that is markedly different from a power law and which is particularly evident for an Anderson-like disorder.« less
Superdiffusive transport and energy localization in disordered granular crystals
Martinez, Alejandro J.; Kevrekidis, Panagiotis G.; Porter, Mason A.
2016-02-12
We study the spreading of initially localized excitations in one-dimensional disordered granular crystals. We thereby investigate localization phenomena in strongly nonlinear systems, which we demonstrate to be fundamentally different from localization in linear and weakly nonlinear systems. We conduct a thorough comparison of wave dynamics in chains with three different types of disorder: an uncorrelated (Anderson-like) disorder and two types of correlated disorders (which are produced by random dimer arrangements), and for two families of initial conditions: displacement perturbations and velocity perturbations. We find for strongly precompressed (i.e., weakly nonlinear) chains that the dynamics strongly depends on the initial condition.more » Furthermore, for displacement perturbations, the long-time asymptotic behavior of the second moment m ~2 has oscillations that depend on the type of disorder, with a complex trend that is markedly different from a power law and which is particularly evident for an Anderson-like disorder.« less
Different phases of a system of hard rods on three dimensional cubic lattice
NASA Astrophysics Data System (ADS)
Vigneshwar, N.; Dhar, Deepak; Rajesh, R.
2017-11-01
We study the different phases of a system of monodispersed hard rods of length k on a cubic lattice, using an efficient cluster algorithm able to simulate densities close to the fully-packed limit. For k≤slant 4 , the system is disordered at all densities. For k=5, 6 , we find a single density-driven transition, from a disordered phase to high density layered-disordered phase, in which the density of rods of one orientation is strongly suppressed, breaking the system into weakly coupled layers. Within a layer, the system is disordered. For k ≥slant 7 , three density-driven transitions are observed numerically: isotropic to nematic to layered-nematic to layered-disordered. In the layered-nematic phase, the system breaks up into layers, with nematic order in each layer, but very weak correlation between the ordering directions of different layers. We argue that the layered-nematic phase is a finite-size effect, and in the thermodynamic limit, the nematic phase will have higher entropy per site. We expect the systems of rods in four and higher dimensions will have a qualitatively similar phase diagram.
Interfacial adsorption in two-dimensional pure and random-bond Potts models.
Fytas, Nikolaos G; Theodorakis, Panagiotis E; Malakis, Anastasios
2017-03-01
We use Monte Carlo simulations to study the finite-size scaling behavior of the interfacial adsorption of the two-dimensional square-lattice q-states Potts model. We consider the pure and random-bond versions of the Potts model for q=3,4,5,8, and 10, thus probing the interfacial properties at the originally continuous, weak, and strong first-order phase transitions. For the pure systems our results support the early scaling predictions for the size dependence of the interfacial adsorption at both first- and second-order phase transitions. For the disordered systems, the interfacial adsorption at the (disordered induced) continuous transitions is discussed, applying standard scaling arguments and invoking findings for bulk critical properties. The self-averaging properties of the interfacial adsorption are also analyzed by studying the infinite limit-size extrapolation of properly defined signal-to-noise ratios.
Zhu, Pei; Zhou, Yalu; Wu, Furen; Hong, Yuanfan; Wang, Xin; Shekhawat, Gajendra; Mosenson, Jeffrey
2017-01-01
Abstract Muscle stem cells (MuSCs) exhibit robust myogenic potential in vivo, thus providing a promising curative treatment for muscle disorders. Ex vivo expansion of adult MuSCs is highly desired to achieve a therapeutic cell dose because of their scarcity in limited muscle biopsies. Sorting of pure MuSCs is generally required for all the current culture systems. Here we developed a soft three‐dimensional (3D) salmon fibrin gel culture system that can selectively expand mouse MuSCs from bulk skeletal muscle preparations without cell sorting and faithfully maintain their regenerative capacity in culture. Our study established a novel platform for convenient ex vivo expansion of MuSCs, thus greatly advancing stem cell‐based therapies for various muscle disorders. Stem Cells Translational Medicine 2017;6:1412–1423 PMID:28244269
Dirty bosons in a three-dimensional harmonic trap
NASA Astrophysics Data System (ADS)
Khellil, Tama; Pelster, Axel
2017-09-01
We study a three-dimensional Bose-Einstein condensate in an isotropic harmonic trapping potential with an additional delta-correlated disorder potential and investigate the emergence of a Bose-glass phase for increasing disorder strength. At zero temperature a first-order quantum phase transition from the superfluid phase to the Bose-glass phase is detected at a critical disorder strength, which agrees with the findings in the literature. Afterwards, we study the interplay between temperature and disorder fluctuations on the respective components of the particle density. In particular, we find for smaller disorder strengths that a superfluid region, a Bose-glass region, and a thermal region coexist. Furthermore, depending on the respective system parameters, three phase transitions are detected, namely, one from the superfluid to the Bose-glass phase, another one from the Bose-glass to the thermal phase, and finally one from the superfluid to the thermal phase. All these results are obtained by extending a quite recent Hartree-Fock mean-field theory for the dirty boson problem, which is based on the replica method, from the homogeneous case to a harmonic confinement.
NASA Astrophysics Data System (ADS)
Hu, Dong-Sheng; Xiong, Shi-Jie
2002-11-01
We investigate the transport properties and Andreev reflection in one-dimensional (1D) systems with randomly doped superconducting grains. The superconducting grains are described by the Bogoliubov-de Gene Hamiltonian and the conductance is calculated by using the transfer matrix method and Landauer-Büttiker formula. It is found that although the quasiparticle states are localized due to the randomness and the low dimensionality, the conductance is still kept finite in the thermodynamical limit due to the Andreev reflection. We also investigate the effect of correlation of disorder in such systems and the results show the delocalization of quasiparticle states and suppression of Andreev reflection in a wide energy window.
Statistics of Lyapunov exponents of quasi-one-dimensional disordered systems
NASA Astrophysics Data System (ADS)
Zhang, Yan-Yang; Xiong, Shi-Jie
2005-10-01
Statistical properties of Lyapunov exponents (LE) are numerically calculated in a quasi-one-dimensional (1D) Anderson model, which is in a 2D or 3D lattice with a finite cross section. The single-parameter scaling (SPS) variable τ relating the Lyapunov exponents γ and their variances σ by τ≡σ2L/⟨γ⟩ is calculated for different lateral coupling t and disorder strength W . In a wide range of t , τ is approximately independent of W , but it has different values for LEs in different channels. For small t , the distribution of the smallest LE is non-Gaussian and τ strongly depends on W , remarkably different from the 1D SPS hypothesis.
Transitions from order to disorder in multiple dark and multiple dark-bright soliton atomic clouds
Wang, Wenlong; Kevrekidis, P. G.
2015-03-09
We have performed a systematic study quantifying the variation of solitary wave behavior from that of an ordered cloud resembling a “crystalline” configuration to that of a disordered state that can be characterized as a soliton “gas.” As our illustrative examples, we use both one-component, as well as two-component, one-dimensional atomic gases very close to zero temperature, where in the presence of repulsive interatomic interactions and of a parabolic trap, a cloud of dark (dark-bright) solitons can form in the one- (two-) component system. We corroborate our findings through three distinct types of approaches, namely a Gross-Pitaevskii type of partialmore » differential equation, particle-based ordinary differential equations describing the soliton dynamical system, and Monte Carlo simulations for the particle system. In addition, we define an “empirical” order parameter to characterize the order of the soliton lattices and study how this changes as a function of the strength of the “thermally” (i.e., kinetically) induced perturbations. As may be anticipated by the one-dimensional nature of our system, the transition from order to disorder is gradual without, apparently, a genuine phase transition ensuing in the intermediate regime.« less
Thomas, Jennifer J; Lawson, Elizabeth A; Micali, Nadia; Misra, Madhusmita; Deckersbach, Thilo; Eddy, Kamryn T
2017-08-01
DSM-5 defined avoidant/restrictive food intake disorder (ARFID) as a failure to meet nutritional needs leading to low weight, nutritional deficiency, dependence on supplemental feedings, and/or psychosocial impairment. We summarize what is known about ARFID and introduce a three-dimensional model to inform research. Because ARFID prevalence, risk factors, and maintaining mechanisms are not known, prevailing treatment approaches are based on clinical experience rather than data. Furthermore, most ARFID research has focused on children, rather than adolescents or adults. We hypothesize a three-dimensional model wherein neurobiological abnormalities in sensory perception, homeostatic appetite, and negative valence systems underlie the three primary ARFID presentations of sensory sensitivity, lack of interest in eating, and fear of aversive consequences, respectively. Now that ARFID has been defined, studies investigating risk factors, prevalence, and pathophysiology are needed. Our model suggests testable hypotheses about etiology and highlights cognitive-behavioral therapy as one possible treatment.
Balsis, Steve; Segal, Daniel L; Donahue, Cailin
2009-10-01
The categorical measurement approach implemented by the Diagnostic and Statistical Manual of Mental Disorders-Fourth Edition (DSM-IV) personality disorder (PD) diagnostic system is theoretically and pragmatically limited. As a result, many prominent psychologists now advocate for a shift away from this approach in favor of more conceptually sound dimensional measurement. This shift is expected to improve the psychometric properties of the personality disorder (PD) diagnostic system and make it more useful for clinicians and researchers. The current article suggests that despite the probable benefits of such a change, several limitations will remain if the new diagnostic system does not closely consider the context of later life. A failure to address the unique challenges associated with the assessment of personality in older adults likely will result in the continued limited validity, reliability, and utility of the Diagnostic and Statistical Manual of Mental Disorders (DSM) system for this growing population. This article discusses these limitations and their possible implications. (c) 2009 APA, all rights reserved.
Quasi-two-dimensional complex plasma containing spherical particles and their binary agglomerates.
Chaudhuri, M; Semenov, I; Nosenko, V; Thomas, H M
2016-05-01
A unique type of quasi-two-dimensional complex plasma system was observed which consisted of monodisperse microspheres and their binary agglomerations (dimers). The particles and their dimers levitated in a plasma sheath at slightly different heights and formed two distinct sublayers. The system did not crystallize and may be characterized as a disordered solid. The dimers were identified based on their characteristic appearance in defocused images, i.e., rotating interference fringe patterns. The in-plane and interplane particle separations exhibit nonmonotonic dependence on the discharge pressure.
Dual-Gate Modulation of Carrier Density and Disorder in an Oxide Two-Dimensional Electron System
Chen, Zhuoyu; Yuan, Hongtao; Xie, Yanwu; ...
2016-09-08
Carrier density and disorder are two crucial parameters that control the properties of correlated two-dimensional electron systems. Furthermore, in order to disentangle their individual contributions to quantum phenomena, independent tuning of these two parameters is required. By utilizing a hybrid liquid/solid electric dual-gate geometry acting on the conducting LaAlO 3/SrTiO 3 heterointerface, we obtain an additional degree of freedom to strongly modify the electron confinement profile and thus the strength of interfacial scattering, independent from the carrier density. A dual-gate controlled nonlinear Hall effect is a direct manifestation of this profile, which can be quantitatively understood by a Poisson–Schrödinger sub-bandmore » model. In particular, the large nonlinear dielectric response of SrTiO 3 enables a very wide range of tunable density and disorder, far beyond that for conventional semiconductors. This study provides a broad framework for understanding various reported phenomena at the LaAlO 3/SrTiO 3 interface.« less
Sign phase transition in the problem of interfering directed paths
NASA Astrophysics Data System (ADS)
Baldwin, C. L.; Laumann, C. R.; Spivak, B.
2018-01-01
We investigate the statistical properties of interfering directed paths in disordered media. At long distance, the average sign of the sum over paths may tend to zero (sign disordered) or remain finite (sign ordered) depending on dimensionality and the concentration of negative scattering sites x . We show that in two dimensions the sign-ordered phase is unstable even for arbitrarily small x by identifying rare destabilizing events. In three dimensions, we present strong evidence that there is a sign phase transition at a finite xc>0 . These results have consequences for several different physical systems. In two-dimensional insulators at low temperature, the variable-range-hopping magnetoresistance is always negative, while in three dimensions, it changes sign at the point of the sign phase transition. We also show that in the sign-disordered regime a small magnetic field may enhance superconductivity in a random system of D -wave superconducting grains embedded in a metallic matrix. Finally, the existence of the sign phase transition in three dimensions implies new features in the spin-glass phase diagram at high temperature.
Study of multiband disordered systems using the typical medium dynamical cluster approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yi; Terletska, Hanna; Moore, C.
We generalize the typical medium dynamical cluster approximation to multiband disordered systems. Using our extended formalism, we perform a systematic study of the nonlocal correlation effects induced by disorder on the density of states and the mobility edge of the three-dimensional two-band Anderson model. We include interband and intraband hopping and an intraband disorder potential. Our results are consistent with those obtained by the transfer matrix and the kernel polynomial methods. We also apply the method to K xFe 2-ySe 2 with Fe vacancies. Despite the strong vacancy disorder and anisotropy, we find the material is not an Anderson insulator.more » Moreover our results demonstrate the application of the typical medium dynamical cluster approximation method to study Anderson localization in real materials.« less
Study of multiband disordered systems using the typical medium dynamical cluster approximation
Zhang, Yi; Terletska, Hanna; Moore, C.; ...
2015-11-06
We generalize the typical medium dynamical cluster approximation to multiband disordered systems. Using our extended formalism, we perform a systematic study of the nonlocal correlation effects induced by disorder on the density of states and the mobility edge of the three-dimensional two-band Anderson model. We include interband and intraband hopping and an intraband disorder potential. Our results are consistent with those obtained by the transfer matrix and the kernel polynomial methods. We also apply the method to K xFe 2-ySe 2 with Fe vacancies. Despite the strong vacancy disorder and anisotropy, we find the material is not an Anderson insulator.more » Moreover our results demonstrate the application of the typical medium dynamical cluster approximation method to study Anderson localization in real materials.« less
Entanglement of a class of non-Gaussian states in disordered harmonic oscillator systems
NASA Astrophysics Data System (ADS)
Abdul-Rahman, Houssam
2018-03-01
For disordered harmonic oscillator systems over the d-dimensional lattice, we consider the problem of finding the bipartite entanglement of the uniform ensemble of the energy eigenstates associated with a particular number of modes. Such an ensemble defines a class of mixed, non-Gaussian entangled states that are labeled, by the energy of the system, in an increasing order. We develop a novel approach to find the exact logarithmic negativity of this class of states. We also prove entanglement bounds and demonstrate that the low energy states follow an area law.
Magnetic-proximity-induced magnetoresistance on topological insulators
NASA Astrophysics Data System (ADS)
Chiba, Takahiro; Takahashi, Saburo; Bauer, Gerrit E. W.
2017-03-01
We theoretically study the magnetoresistance (MR) of two-dimensional massless Dirac electrons as found on the surface of three-dimensional topological insulators (TIs) that are capped by a ferromagnetic insulator (FI). We calculate charge and spin transport by Kubo and Boltzmann theories, taking into account the ladder-vertex correction and the in-scattering due to normal and magnetic disorder. The induced exchange splitting is found to generate an electric conductivity that depends on the magnetization orientation, but its form is very different from both the anisotropic and the spin Hall MR. The in-plane MR vanishes identically for nonmagnetic disorder, while out-of-plane magnetizations cause a large MR ratio. On the other hand, we do find an in-plane MR and planar Hall effect in the presence of magnetic disorder aligned with the FI magnetization. Our results may help us understand recent transport measurements on TI |FI systems.
Development of an interactive anatomical three-dimensional eye model.
Allen, Lauren K; Bhattacharyya, Siddhartha; Wilson, Timothy D
2015-01-01
The discrete anatomy of the eye's intricate oculomotor system is conceptually difficult for novice students to grasp. This is problematic given that this group of muscles represents one of the most common sites of clinical intervention in the treatment of ocular motility disorders and other eye disorders. This project was designed to develop a digital, interactive, three-dimensional (3D) model of the muscles and cranial nerves of the oculomotor system. Development of the 3D model utilized data from the Visible Human Project (VHP) dataset that was refined using multiple forms of 3D software. The model was then paired with a virtual user interface in order to create a novel 3D learning tool for the human oculomotor system. Development of the virtual eye model was done while attempting to adhere to the principles of cognitive load theory (CLT) and the reduction of extraneous load in particular. The detailed approach, digital tools employed, and the CLT guidelines are described herein. © 2014 American Association of Anatomists.
NASA Astrophysics Data System (ADS)
Prudnikov, V. V.; Prudnikov, P. V.; Popov, I. S.
2018-03-01
A Monte Carlo numerical simulation of the specific features of nonequilibrium critical behavior is carried out for the two-dimensional structurally disordered XY model during its evolution from a low-temperature initial state. On the basis of the analysis of the two-time dependence of autocorrelation functions and dynamic susceptibility for systems with spin concentrations of p = 1.0, 0.9, and 0.6, aging phenomena characterized by a slowing down of the relaxation system with increasing waiting time and the violation of the fluctuation-dissipation theorem (FDT) are revealed. The values of the universal limiting fluctuation-dissipation ratio (FDR) are obtained for the systems considered. As a result of the analysis of the two-time scaling dependence for spin-spin and connected spin autocorrelation functions, it is found that structural defects lead to subaging phenomena in the behavior of the spin-spin autocorrelation function and superaging phenomena in the behavior of the connected spin autocorrelation function.
[Attention deficit hyperactivity disorder: from a neurodevelopmental perspective].
Fernandez-Jaen, A; Lopez-Martin, S; Albert, J; Martin Fernandez-Mayoralas, D; Fernandez-Perrone, A L; Calleja-Perez, B; Lopez-Arribas, S
2017-02-24
Neurodevelopmental disorders cover a heterogeneous group of disorders such as intellectual disability, autism spectrum disorders or specific learning difficulties, among others. The neurobiological and clinical variables seem to clearly justify the recent inclusion of attention deficit hyperactivity disorder (ADHD) as a neurodevelopmental disorder in the international classifications. Neurodevelopmental disorders are characterised by their dimensional nature and the distribution of the different symptoms in the population. These aspects are reviewed, specifically from the perspective of the clinical features and the neuropsychology of ADHD. The dimensional symptomatic nature of ADHD contrasts with the diagnostic criteria of this disorder according to different classifications or clinical guidelines. It also contrasts with the data collected by means of different complementary examinations (scales, tests, etc.). It is essential to understand the clinical continuum within each neurodevelopmental disorder (including ADHD), among the different neurodevelopmental disorders, and among the neurodevelopmental disorders and normality for their research, diagnosis and management. The development of instruments that provide support for this dimensional component is equally significant.
ERIC Educational Resources Information Center
Ruscio, Ayelet Meron
2008-01-01
Comments on the original article "Plate tectonics in the classification of personality disorder: Shifting to a dimensional model," by T. A. Widiger and T. J. Trull (2007). Widiger and Trull raised important nosological issues that warrant serious consideration not only for the personality disorders but for all mental disorders as the Diagnostic…
[An approach to DSM-5: a breakthrough in psychiatry?].
Heerlein, Andrés L
2014-01-01
One of the main problems of current psychiatry is that its diagnostic classification systems are not precise and reliable, they do not help to identify with certainty a specific type of mental disorder and they frequently overlap two or more diagnoses. This may conduce to over diagnosis and overtreatment, which is the main criticism of the DSM system. The American Psychiatric Association (APA) launched recently the DSM-5, the fifth edition of its diagnostic manual, which provides diagnostic criteria for thousands of psychiatrist, psychologist and researchers and who will be using it in the next coming years. DSM-5, like the preceding editions, placed disorders in discrete categories such as bipolar disorder or schizophrenia. The problem is that scientists have been unable to find yet a genetic or neurobiological evidence to support the theory of mental disorders as separate categories. Several authors wanted the latest DSM to move away from the category model towards a new "dimensional approach", where disorders can be measured and mental illnesses overlapping can be reduced. Recent findings supports this new dimensional strategy, suggesting that the disorders are a product of shared risk factors that lead to abnormalities in specific drives, which can be measured and used to place persons on one of several spectra. In some parts the DSM-5 entered changes aiming to achieve a greater objectivity. The door for new changes in each category, dimension or criteria has been opened, favoring an evidence-based development of the future versions. DSM-5 is presented as a "living document" that can be updated easily. However, the category model still remains for many disorders. The future research in psychiatric diagnostic systems requires more genetic-molecular and neurophysiological evidence and more objective multinational field trials, in order to confirm the existence of the new diagnostic entities, spectrums or dimensions. This approach may provide us reliable information about the pathogenesis, psychopathology, adequate taxonomy and treatment of mental disorders.
Two-dimensional conductors with interactions and disorder from particle-vortex duality
NASA Astrophysics Data System (ADS)
Goldman, H.; Mulligan, M.; Raghu, S.; Torroba, G.; Zimet, M.
2017-12-01
We study Dirac fermions in two spatial dimensions (2D) coupled to strongly fluctuating U (1 ) gauge fields in the presence of quenched disorder. Such systems are dual to theories of free Dirac fermions, which are vortices of the original theory. In analogy to superconductivity, when these fermionic vortices localize, the original system becomes a perfect conductor, and when the vortices possess a finite conductivity, the original fermions do as well. We provide several realizations of this principle and thereby introduce examples of strongly interacting 2D metals that evade Anderson localization.
Anti-levitation in integer quantum Hall systems
NASA Astrophysics Data System (ADS)
Wang, C.; Avishai, Y.; Meir, Yigal; Wang, X. R.
2014-01-01
The evolution of extended states of two-dimensional electron gas with white-noise randomness and field is numerically investigated by using the Anderson model on square lattices. Focusing on the lowest Landau band we establish an anti-levitation scenario of the extended states: As either the disorder strength W increases or the magnetic field strength B decreases, the energies of the extended states move below the Landau energies pertaining to a clean system. Moreover, for strong enough disorder, there is a disorder-dependent critical magnetic field Bc(W) below which there are no extended states at all. A general phase diagram in the W-1/B plane is suggested with a line separating domains of localized and delocalized states.
Quantum anomalous Hall phase in a one-dimensional optical lattice
NASA Astrophysics Data System (ADS)
Liu, Sheng; Shao, L. B.; Hou, Qi-Zhe; Xue, Zheng-Yuan
2018-03-01
We propose to simulate and detect quantum anomalous Hall phase with ultracold atoms in a one-dimensional optical lattice, with the other synthetic dimension being realized by modulating spin-orbit coupling. We show that the system manifests a topologically nontrivial phase with two chiral edge states which can be readily detected in this synthetic two-dimensional system. Moreover, it is interesting that at the phase transition point there is a flat energy band and this system can also be in a topologically nontrivial phase with two Fermi zero modes existing at the boundaries by considering the synthetic dimension as a modulated parameter. We also show how to measure these topological phases experimentally in ultracold atoms. Another model with a random Rashba and Dresselhaus spin-orbit coupling strength is also found to exhibit topological nontrivial phase, and the impact of the disorder to the system is revealed.
Phase transitions in coupled map lattices and in associated probabilistic cellular automata.
Just, Wolfram
2006-10-01
Analytical tools are applied to investigate piecewise linear coupled map lattices in terms of probabilistic cellular automata. The so-called disorder condition of probabilistic cellular automata is closely related with attracting sets in coupled map lattices. The importance of this condition for the suppression of phase transitions is illustrated by spatially one-dimensional systems. Invariant densities and temporal correlations are calculated explicitly. Ising type phase transitions are found for one-dimensional coupled map lattices acting on repelling sets and for a spatially two-dimensional Miller-Huse-like system with stable long time dynamics. Critical exponents are calculated within a finite size scaling approach. The relevance of detailed balance of the resulting probabilistic cellular automaton for the critical behavior is pointed out.
Variable-Range Hopping through Marginally Localized Phonons
NASA Astrophysics Data System (ADS)
Banerjee, Sumilan; Altman, Ehud
2016-03-01
We investigate the effect of coupling Anderson localized particles in one dimension to a system of marginally localized phonons having a symmetry protected delocalized mode at zero frequency. This situation is naturally realized for electrons coupled to phonons in a disordered nanowire as well as for ultracold fermions coupled to phonons of a superfluid in a one-dimensional disordered trap. To determine if the coupled system can be many-body localized we analyze the phonon-mediated hopping transport for both the weak and strong coupling regimes. We show that the usual variable-range hopping mechanism involving a low-order phonon process is ineffective at low temperature due to discreteness of the bath at the required energy. Instead, the system thermalizes through a many-body process involving exchange of a diverging number n ∝-log T of phonons in the low temperature limit. This effect leads to a highly singular prefactor to Mott's well-known formula and strongly suppresses the variable range hopping rate. Finally, we comment on possible implications of this physics in higher dimensional electron-phonon coupled systems.
Phonon-induced localization of electron states in quasi-one-dimensional systems
NASA Astrophysics Data System (ADS)
Xiong, Ye
2007-02-01
It is shown that hot phonons with random phases can cause localization of electron states in quasi-one-dimensional systems. Owing to the nature of long-range correlation of the disorder induced by phonons, only the states at edges of one-dimensional (1D) subbands are localized, and the states inside the 1D subbands are still extended. As a result, the conductance exhibits gradual quantum steps in varying the gate potential. By increasing the temperature the degree of localization increases. In the localization regime the distribution of Lyapunov exponent (LE) is Gaussian and the relation of the mean-value and standard variance of LE to the system size obeys the single-parameter hypothesis. The mean value of LE can be used as an order parameter to distinguish the local and extended states.
Effect of long-range correlation on the metal-insulator transition in a disordered molecular crystal
NASA Astrophysics Data System (ADS)
Unge, Mikael; Stafström, Sven
2006-12-01
Localization lengths of the electronic states in a disordered two-dimensional system, resembling highly anisotropic molecular crystals such as pentacene, have been calculated numerically using the transfer matrix method. The disorder is based on a model with small random fluctuations of induced molecular dipole moments which give rise to long-range correlated disorder in the on-site energies as well as a coupling between the on-site energies and the intermolecular interactions. Our calculations show that molecular crystals such as pentacene can exhibit states with very long localization lengths with a possibility to reach a truly metallic state.
Three-Dimensional Mapping of Hippocampal Anatomy in Adolescents with Bipolar Disorder
ERIC Educational Resources Information Center
Bearden, Carrie E.; Soares, Jair C.; Klunder, Andrea D.; Nicoletti, Mark; Dierschki, Nicole; Hayashi, Kiralee M.; Narr, Katherine L.; Bhrambilla, Paolo; Sassi, Roberto B.; Axelson, David; Ryan, Neal; Birmaher, Boris; Thompson, Paul M.
2008-01-01
The article discusses the use of three-dimensional mapping methods in children and adolescents with bipolar disorder to find out if localized alterations in hippocampal structure are exhibited. It also explores the developmental differences where the patient with bipolar disorder showed increasing hippocampal size with increasing age.
Generalized Kubo formulas for the transport properties of incommensurate 2D atomic heterostructures
NASA Astrophysics Data System (ADS)
Cancès, Eric; Cazeaux, Paul; Luskin, Mitchell
2017-06-01
We give an exact formulation for the transport coefficients of incommensurate two-dimensional atomic multilayer systems in the tight-binding approximation. This formulation is based upon the C* algebra framework introduced by Bellissard and collaborators [Coherent and Dissipative Transport in Aperiodic Solids, Lecture Notes in Physics (Springer, 2003), Vol. 597, pp. 413-486 and J. Math. Phys. 35(10), 5373-5451 (1994)] to study aperiodic solids (disordered crystals, quasicrystals, and amorphous materials), notably in the presence of magnetic fields (quantum Hall effect). We also present numerical approximations and test our methods on a one-dimensional incommensurate bilayer system.
Visibility graphs of random scalar fields and spatial data
NASA Astrophysics Data System (ADS)
Lacasa, Lucas; Iacovacci, Jacopo
2017-07-01
We extend the family of visibility algorithms to map scalar fields of arbitrary dimension into graphs, enabling the analysis of spatially extended data structures as networks. We introduce several possible extensions and provide analytical results on the topological properties of the graphs associated to different types of real-valued matrices, which can be understood as the high and low disorder limits of real-valued scalar fields. In particular, we find a closed expression for the degree distribution of these graphs associated to uncorrelated random fields of generic dimension. This result holds independently of the field's marginal distribution and it directly yields a statistical randomness test, applicable in any dimension. We showcase its usefulness by discriminating spatial snapshots of two-dimensional white noise from snapshots of a two-dimensional lattice of diffusively coupled chaotic maps, a system that generates high dimensional spatiotemporal chaos. The range of potential applications of this combinatorial framework includes image processing in engineering, the description of surface growth in material science, soft matter or medicine, and the characterization of potential energy surfaces in chemistry, disordered systems, and high energy physics. An illustration on the applicability of this method for the classification of the different stages involved in carcinogenesis is briefly discussed.
Electron transport in the two-dimensional channel material - zinc oxide nanoflake
NASA Astrophysics Data System (ADS)
Lai, Jian-Jhong; Jian, Dunliang; Lin, Yen-Fu; Ku, Ming-Ming; Jian, Wen-Bin
2018-03-01
ZnO nanoflakes of 3-5 μm in lateral size and 15-20 nm in thickness are synthesized. The nanoflakes are used to make back-gated transistor devices. Electron transport in the ZnO nanoflake channel between source and drain electrodes are investigated. In the beginning, we argue and determine that electrons are in a two-dimensional system. We then apply Mott's two-dimensional variable range hopping model to analyze temperature and electric field dependences of resistivity. The disorder parameter, localization length, hopping distance, and hopping energy of the electron system in ZnO nanoflakes are obtained and, additionally, their temperature behaviors and dependences on room-temperature resistivity are presented. On the other hand, the basic transfer characteristics of the channel material are carried out, as well, and the carrier concentration, the mobility, and the Fermi wavelength of two-dimensional ZnO nanoflakes are estimated.
Beesdo-Baum, Katja; Klotsche, Jens; Knappe, Susanne; Craske, Michelle G; Lebeau, Richard T; Hoyer, Jürgen; Strobel, Anja; Pieper, Lars; Wittchen, Hans-Ulrich
2012-12-01
Dimensional assessments are planned to be included as supplements to categorical diagnoses in DSM-V. The aim of this study was to examine the unidimensionality, reliability, validity, and clinical sensitivity of brief self-rated scales for specific anxiety disorders in an unselected German sample of consecutive attendees to a psychological clinic. These scales use a common template to assess core constructs of fear and anxiety. Dimensional scales for social anxiety disorder, specific phobia, agoraphobia, panic disorder, and generalized anxiety disorder were administered along with established scales to 102 adults seeking treatment for mental health problems at a German university outpatient clinic for psychotherapy. The computer-assisted clinical version of the Munich-Composite International Diagnostic Interview was used to assess mental disorders according to DSM-IV criteria. Dimensionality and scale reliability were examined using confirmatory factor analyses. Convergent and discriminant validity were examined by testing differences in the size of correlations between each dimensional anxiety scale and each of the previously validated scales. Each dimensional scale's ability to correctly differentiate between individuals with versus without an anxiety diagnosis was examined via the area under the curve. Analyses revealed unidimensionality for each scale, high reliability, and convergent and discriminant validity. Classification performance was good to excellent for all scales except for specific phobia. The application of the dimensional anxiety scales may be an effective way to screen for specific anxiety disorders and to supplement categorical diagnoses in DSM-V, although further evaluation and refinement of the scales (particularly the specific phobia scale) is needed. © 2012 Wiley Periodicals, Inc.
Periodic and quasiperiodic revivals in periodically driven interacting quantum systems
NASA Astrophysics Data System (ADS)
Luitz, David J.; Lazarides, Achilleas; Bar Lev, Yevgeny
2018-01-01
Recently it has been shown that interparticle interactions generically destroy dynamical localization in periodically driven systems, resulting in diffusive transport and heating. In this Rapid Communication we rigorously construct a family of interacting driven systems which are dynamically localized and effectively decoupled from the external driving potential. We show that these systems exhibit tunable periodic or quasiperiodic revivals of the many-body wave function and thus of all physical observables. By numerically examining spinless fermions on a one-dimensional lattice we show that the analytically obtained revivals of such systems remain stable for finite systems with open boundary conditions while having a finite lifetime in the presence of static spatial disorder. We find this lifetime to be inversely proportional to the disorder strength.
Vaccarino, Anthony L; Dharsee, Moyez; Strother, Stephen; Aldridge, Don; Arnott, Stephen R; Behan, Brendan; Dafnas, Costas; Dong, Fan; Edgecombe, Kenneth; El-Badrawi, Rachad; El-Emam, Khaled; Gee, Tom; Evans, Susan G; Javadi, Mojib; Jeanson, Francis; Lefaivre, Shannon; Lutz, Kristen; MacPhee, F Chris; Mikkelsen, Jordan; Mikkelsen, Tom; Mirotchnick, Nicholas; Schmah, Tanya; Studzinski, Christa M; Stuss, Donald T; Theriault, Elizabeth; Evans, Kenneth R
2018-01-01
Historically, research databases have existed in isolation with no practical avenue for sharing or pooling medical data into high dimensional datasets that can be efficiently compared across databases. To address this challenge, the Ontario Brain Institute's "Brain-CODE" is a large-scale neuroinformatics platform designed to support the collection, storage, federation, sharing and analysis of different data types across several brain disorders, as a means to understand common underlying causes of brain dysfunction and develop novel approaches to treatment. By providing researchers access to aggregated datasets that they otherwise could not obtain independently, Brain-CODE incentivizes data sharing and collaboration and facilitates analyses both within and across disorders and across a wide array of data types, including clinical, neuroimaging and molecular. The Brain-CODE system architecture provides the technical capabilities to support (1) consolidated data management to securely capture, monitor and curate data, (2) privacy and security best-practices, and (3) interoperable and extensible systems that support harmonization, integration, and query across diverse data modalities and linkages to external data sources. Brain-CODE currently supports collaborative research networks focused on various brain conditions, including neurodevelopmental disorders, cerebral palsy, neurodegenerative diseases, epilepsy and mood disorders. These programs are generating large volumes of data that are integrated within Brain-CODE to support scientific inquiry and analytics across multiple brain disorders and modalities. By providing access to very large datasets on patients with different brain disorders and enabling linkages to provincial, national and international databases, Brain-CODE will help to generate new hypotheses about the biological bases of brain disorders, and ultimately promote new discoveries to improve patient care.
Vaccarino, Anthony L.; Dharsee, Moyez; Strother, Stephen; Aldridge, Don; Arnott, Stephen R.; Behan, Brendan; Dafnas, Costas; Dong, Fan; Edgecombe, Kenneth; El-Badrawi, Rachad; El-Emam, Khaled; Gee, Tom; Evans, Susan G.; Javadi, Mojib; Jeanson, Francis; Lefaivre, Shannon; Lutz, Kristen; MacPhee, F. Chris; Mikkelsen, Jordan; Mikkelsen, Tom; Mirotchnick, Nicholas; Schmah, Tanya; Studzinski, Christa M.; Stuss, Donald T.; Theriault, Elizabeth; Evans, Kenneth R.
2018-01-01
Historically, research databases have existed in isolation with no practical avenue for sharing or pooling medical data into high dimensional datasets that can be efficiently compared across databases. To address this challenge, the Ontario Brain Institute’s “Brain-CODE” is a large-scale neuroinformatics platform designed to support the collection, storage, federation, sharing and analysis of different data types across several brain disorders, as a means to understand common underlying causes of brain dysfunction and develop novel approaches to treatment. By providing researchers access to aggregated datasets that they otherwise could not obtain independently, Brain-CODE incentivizes data sharing and collaboration and facilitates analyses both within and across disorders and across a wide array of data types, including clinical, neuroimaging and molecular. The Brain-CODE system architecture provides the technical capabilities to support (1) consolidated data management to securely capture, monitor and curate data, (2) privacy and security best-practices, and (3) interoperable and extensible systems that support harmonization, integration, and query across diverse data modalities and linkages to external data sources. Brain-CODE currently supports collaborative research networks focused on various brain conditions, including neurodevelopmental disorders, cerebral palsy, neurodegenerative diseases, epilepsy and mood disorders. These programs are generating large volumes of data that are integrated within Brain-CODE to support scientific inquiry and analytics across multiple brain disorders and modalities. By providing access to very large datasets on patients with different brain disorders and enabling linkages to provincial, national and international databases, Brain-CODE will help to generate new hypotheses about the biological bases of brain disorders, and ultimately promote new discoveries to improve patient care. PMID:29875648
Is schizoaffective disorder a distinct categorical diagnosis? A critical review of the literature
Abrams, Daniel J; Rojas, Donald C; Arciniegas, David B
2008-01-01
Considerable debate surrounds the inclusion of schizoaffective disorder in psychiatric nosology. Schizoaffective disorder may be a variant of schizophrenia in which mood symptoms are unusually prominent but not unusual in type. This condition may instead reflect a severe form of either major depressive or bipolar disorder in which episode-related psychotic symptoms fail to remit completely between mood episodes. Alternatively, schizoaffective disorder may reflect the co-occurrence of two relatively common psychiatric illnesses, schizophrenia and a mood disorder (major depressive or bipolar disorder). Each of these formulations of schizoaffective disorder presents nosological challenges because the signs and symptoms of this condition cross conventional categorical diagnostic boundaries between psychotic disorders and mood disorders. The study, evaluation, and treatment of persons presently diagnosed with schizoaffective may be more usefully informed by a dimensional approach. It is in this context that this article reviews and contrasts the categorical and dimensional approaches to its description, neurobiology, and treatment. Based on this review, an argument for the study and treatment of this condition using a dimensional approach is offered. PMID:19337453
Ho, Hau My; Cui, Bianxiao; Repel, Stephen; Lin, Binhua; Rice, Stuart A
2004-11-01
We report the results of digital video microscopy studies of the large particle displacements in a quasi-two-dimensional binary mixture of large (L) and small (S) colloid particles with diameter ratio sigma(L)/sigma(S)=4.65, as a function of the large and small colloid particle densities. As in the case of the one-component quasi-two-dimensional colloid system, the binary mixtures exhibit structural and dynamical heterogeneity. The distribution of large particle displacements over the time scale examined provides evidence for (at least) two different mechanisms of motion, one associated with particles in locally ordered regions and the other associated with particles in locally disordered regions. When rhoL*=Npisigma(L) (2)/4A< or =0.35, the addition of small colloid particles leads to a monotonic decrease in the large particle diffusion coefficient with increasing small particle volume fraction. When rhoL* > or =0.35 the addition of small colloid particles to a dense system of large colloid particles at first leads to an increase in the large particle diffusion coefficient, which is then followed by the expected decrease of the large particle diffusion coefficient with increasing small colloid particle volume fraction. The mode coupling theory of the ideal glass transition in three-dimensional systems makes a qualitative prediction that agrees with the initial increase in the large particle diffusion coefficient with increasing small particle density. Nevertheless, because the structural and dynamical heterogeneities of the quasi-two-dimensional colloid liquid occur within the field of equilibrium states, and the fluctuations generate locally ordered domains rather than just disordered regions of higher and lower density, it is suggested that mode coupling theory does not account for all classes of relevant fluctuations in a quasi-two-dimensional liquid. (c) 2004 American Institute of Physics.
Glassy phases and driven response of the phase-field-crystal model with random pinning.
Granato, E; Ramos, J A P; Achim, C V; Lehikoinen, J; Ying, S C; Ala-Nissila, T; Elder, K R
2011-09-01
We study the structural correlations and the nonlinear response to a driving force of a two-dimensional phase-field-crystal model with random pinning. The model provides an effective continuous description of lattice systems in the presence of disordered external pinning centers, allowing for both elastic and plastic deformations. We find that the phase-field crystal with disorder assumes an amorphous glassy ground state, with only short-ranged positional and orientational correlations, even in the limit of weak disorder. Under increasing driving force, the pinned amorphous-glass phase evolves into a moving plastic-flow phase and then, finally, a moving smectic phase. The transverse response of the moving smectic phase shows a vanishing transverse critical force for increasing system sizes.
Ergodicity breaking and ageing of underdamped Brownian dynamics with quenched disorder
NASA Astrophysics Data System (ADS)
Guo, Wei; Li, Yong; Song, Wen-Hua; Du, Lu-Chun
2018-03-01
The dynamics of an underdamped Brownian particle moving in one-dimensional quenched disorder under the action of an external force is investigated. Within the tailored parameter regime, the transiently anomalous diffusion and ergodicity breaking, spanning several orders of magnitude in time, have been obtained. The ageing nature of the system weakens as the dissipation of the system increases for other given parameters. Its origin is ascribed to the highly local heterogeneity of the disorder. Two kinds of approximations (in the stationary state), respectively, for large bias and large damping are derived. These results may be helpful in further understanding the nontrivial response of nonlinear dynamics, and also have potential applications to experiments and activities of biological processes.
Morey, Leslie C; Benson, Kathryn T
2016-07-01
Beginning with DSM-III, the inclusion of a "personality" axis was designed to encourage awareness of personality disorders and the treatment-related implications of individual differences, but since that time there is little accumulated evidence that the personality disorder categories provide substantial treatment-related guidance. The DSM-5 Personality and Personality Disorders Work Group sought to develop an Alternative Model for personality disorder, and this study examined whether this model is more closely related to clinicians' decision-making processes than the traditional categorical personality disorder diagnoses. A national sample of 337 clinicians provided complete personality disorder diagnostic information and several treatment-related clinical judgments about one of their patients. The dimensional concepts of the DSM-5 Alternative Model for personality disorders demonstrated stronger relationships than categorical DSM-IV/DSM-5 Section II diagnoses to 10 of 11 clinical judgments regarding differential treatment planning, optimal treatment intensity, and long-term prognosis. The constructs of the DSM-5 Alternative Model for personality disorders may provide more clinically useful information for treatment planning than the official categorical personality disorder diagnostic system retained in DSM-5 Section II. Copyright © 2016 Elsevier Inc. All rights reserved.
Schizoaffective disorder--an ongoing challenge for psychiatric nosology.
Jäger, M; Haack, S; Becker, T; Frasch, K
2011-04-01
Schizoaffective disorder is a common diagnosis in mental health services. The present article aims to provide an overview of diagnostic reliability, symptomatology, outcome, neurobiology and treatment of schizoaffective disorder. Literature was identified by searches in "Medline" and "Cochrane Library". The diagnosis of schizoaffective disorder has a low reliability. There are marked differences between the current diagnostic systems. With respect to psychopathological symptoms, no clear boundaries were found between schizophrenia, schizoaffective disorder and affective disorders. Common neurobiological factors were found across the traditional diagnostic categories. Schizoaffective disorder according to ICD-10 criteria, but not to DSM-IV criteria, shows a more favorable outcome than schizophrenia. With regard to treatment, only a small and heterogeneous database exists. Due to the low reliability and questionable validity there is a substantial need for revision and unification of the current diagnostic concepts of schizoaffective disorder. If future diagnostic systems return to Kraepelin's dichotomous classification of non-organic psychosis or adopt a dimensional diagnostic approach, schizoaffective disorder will disappear from the psychiatric nomenclature. A nosological model with multiple diagnostic entities, however, would be compatible with retaining the diagnostic category of schizoaffective disorder. Copyright © 2010 Elsevier Masson SAS. All rights reserved.
Disorder effect on the Friedel oscillations in a one-dimensional Mott insulator
NASA Astrophysics Data System (ADS)
Weiss, Y.; Goldstein, M.; Berkovits, R.
2007-07-01
The Friedel oscillations resulting from coupling a quantum dot to one edge of a disordered one-dimensional wire in the Mott insulator regime are calculated numerically using the density matrix renormalization group method. By investigating the influence of a constant weak disorder on the Friedel oscillations decay we find that the effect of disorder is reduced by increasing the interaction strength. This behavior is opposite to the recently reported influence of disorder in the Anderson insulator regime.
Two-dimensional conductors with interactions and disorder from particle-vortex duality
Goldman, H.; Mulligan, M.; Raghu, S.; ...
2017-12-27
Here, we study Dirac fermions in two spatial dimensions (2D) coupled to strongly fluctuating U(1) gauge fields in the presence of quenched disorder. Such systems are dual to theories of free Dirac fermions, which are vortices of the original theory. In analogy to superconductivity, when these fermionic vortices localize, the original system becomes a perfect conductor, and when the vortices possess a finite conductivity, the original fermions do as well. We provide several realizations of this principle and thereby introduce examples of strongly interacting 2D metals that evade Anderson localization.
Identifying Structural Flow Defects in Disordered Solids Using Machine-Learning Methods
NASA Astrophysics Data System (ADS)
Cubuk, E. D.; Schoenholz, S. S.; Rieser, J. M.; Malone, B. D.; Rottler, J.; Durian, D. J.; Kaxiras, E.; Liu, A. J.
2015-03-01
We use machine-learning methods on local structure to identify flow defects—or particles susceptible to rearrangement—in jammed and glassy systems. We apply this method successfully to two very different systems: a two-dimensional experimental realization of a granular pillar under compression and a Lennard-Jones glass in both two and three dimensions above and below its glass transition temperature. We also identify characteristics of flow defects that differentiate them from the rest of the sample. Our results show it is possible to discern subtle structural features responsible for heterogeneous dynamics observed across a broad range of disordered materials.
Two-dimensional conductors with interactions and disorder from particle-vortex duality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldman, H.; Mulligan, M.; Raghu, S.
Here, we study Dirac fermions in two spatial dimensions (2D) coupled to strongly fluctuating U(1) gauge fields in the presence of quenched disorder. Such systems are dual to theories of free Dirac fermions, which are vortices of the original theory. In analogy to superconductivity, when these fermionic vortices localize, the original system becomes a perfect conductor, and when the vortices possess a finite conductivity, the original fermions do as well. We provide several realizations of this principle and thereby introduce examples of strongly interacting 2D metals that evade Anderson localization.
Rauh, Virginia A.; Margolis, Amy
2016-01-01
Background Environmental exposures play a critical role in the genesis of some child mental health problems. Methods We open with a discussion of children’s vulnerability to neurotoxic substances, changes in the distribution of toxic exposures, and co-occurrence of social and physical exposures. We address trends in prevalence of mental health disorders, and approaches to the definition of disorders that are sensitive to the subtle effects of toxic exposures. We suggest broadening outcomes to include dimensional measures of autism spectrum disorders, attention deficit hyperactivity disorder, and child learning capacity, as well as direct assessment of brain function. Findings We consider the impact of two important exposures on children’s mental health: lead and pesticides. We argue that longitudinal research designs may capture the cascading effects of exposures across biological systems and the full-range of neuropsychological endpoints. Neuroimaging is a valuable tool for observing brain maturation under varying environmental conditions. A dimensional approach to measurement may be sensitive to subtle sub-clinical toxic effects, permitting the development of exposure-related profiles and testing of complex functional relationships between brain and behavior. Questions about the neurotoxic effects of chemicals become more pressing when viewed through the lens of environmental justice. Conclusions Reduction in the burden of child mental health disorders will require longitudinal study of neurotoxic exposures, incorporating dimensional approaches to outcome assessment and measures of brain function. Research that seeks to identify links between toxic exposures and mental health outcomes has enormous public health and societal value. PMID:26987761
Rauh, Virginia A; Margolis, Amy E
2016-07-01
Environmental exposures play a critical role in the genesis of some child mental health problems. We open with a discussion of children's vulnerability to neurotoxic substances, changes in the distribution of toxic exposures, and cooccurrence of social and physical exposures. We address trends in prevalence of mental health disorders, and approaches to the definition of disorders that are sensitive to the subtle effects of toxic exposures. We suggest broadening outcomes to include dimensional measures of autism spectrum disorders, attention-deficit hyperactivity disorder, and child learning capacity, as well as direct assessment of brain function. We consider the impact of two important exposures on children's mental health: lead and pesticides. We argue that longitudinal research designs may capture the cascading effects of exposures across biological systems and the full-range of neuropsychological endpoints. Neuroimaging is a valuable tool for observing brain maturation under varying environmental conditions. A dimensional approach to measurement may be sensitive to subtle subclinical toxic effects, permitting the development of exposure-related profiles and testing of complex functional relationships between brain and behavior. Questions about the neurotoxic effects of chemicals become more pressing when viewed through the lens of environmental justice. Reduction in the burden of child mental health disorders will require longitudinal study of neurotoxic exposures, incorporating dimensional approaches to outcome assessment, and measures of brain function. Research that seeks to identify links between toxic exposures and mental health outcomes has enormous public health and societal value. © 2016 Association for Child and Adolescent Mental Health.
Fischer, Claudia; Voss, Andreas
2014-01-01
Hypertensive pregnancy disorders affect 6-8% of gestations representing the most common complication of pregnancy for both mother and fetus. The aim of this study was to introduce a new three-dimensional coupling analysis methods - the three-dimensional segmented Poincaré plot analyses (SPPA3) - to establish an effective approach for the detection of hypertensive pregnancy disorders and especially pre-eclampsia (PE). A cubic box model representing the three-dimensional phase space is subdivided into 12 × 12 × 12 equal predefined cubelets according to the range of the SD of each investigated signal. Additionally, we investigated the influence of rotating the cloud of points and the size of the cubelets (adapted or predefined). All single probabilities of occurring points in a specific cubelet related to the total number of points are calculated. In this study, 10 healthy non-pregnant women, 66 healthy pregnant women, and 56 hypertensive pregnant women (chronic hypertension, pregnancy-induced hypertension, and PE) were investigated. From all subjects, 30 min of beat-to-beat intervals (BBI), respiration (RESP), non-invasive systolic (SBP), and diastolic blood pressure (DBP) were continuously recorded and analyzed. Non-rotated adapted SPPA3 discriminated best between hypertensive pregnancy disorders and PE concerning coupling analysis of two or three different systems (BBI, DBP, RESP and BBI, SBP, DBP) reaching an accuracy of up to 82.9%. This could be increased to an accuracy of up to 91.2% applying multivariate analysis differentiating between all pregnant women and PE. In conclusion, SPPA3 could be a useful method for enhanced risk stratification in pregnant women.
Energy Content & Spectral Energy Representation of Wave Propagation in a Granular Chain
NASA Astrophysics Data System (ADS)
Shrivastava, Rohit; Luding, Stefan
2017-04-01
A mechanical wave is propagation of vibration with transfer of energy and momentum. Studying the energy as well as spectral energy characteristics of a propagating wave through disordered granular media can assist in understanding the overall properties of wave propagation through materials like soil. The study of these properties is aimed at modeling wave propagation for oil, mineral or gas exploration (seismic prospecting) or non-destructive testing for the study of internal structure of solids. Wave propagation through granular materials is often accompanied by energy attenuation which is quantified by Quality factor and this parameter has often been used to characterize material properties, hence, determining the Quality factor (energy attenuation parameter) can also help in determining the properties of the material [3], studied experimentally in [2]. The study of Energy content (Kinetic, Potential and Total Energy) of a pulse propagating through an idealized one-dimensional discrete particle system like a mass disordered granular chain can assist in understanding the energy attenuation due to disorder as a function of propagation distance. The spectral analysis of the energy signal can assist in understanding dispersion as well as attenuation due to scattering in different frequencies (scattering attenuation). The selection of one-dimensional granular chain also helps in studying only the P-wave attributes of the wave and removing the influence of shear or rotational waves. Granular chains with different mass distributions have been studied, by randomly selecting masses from normal, binary and uniform distributions and the standard deviation of the distribution is considered as the disorder parameter, higher standard deviation means higher disorder and lower standard deviation means lower disorder [1]. For obtaining macroscopic/continuum properties, ensemble averaging has been invoked. Instead of analyzing deformation-, velocity- or stress-signals, interpreting information from a Total Energy signal turned out to be much easier in comparison to displacement, velocity or acceleration signals of the wave, hence, indicating a better analysis method for wave propagation through granular materials. Increasing disorder decreases the Energy of higher frequency signals transmitted, but at the same time the energy of spatially localized high frequencies increases. Brian P. Lawney and Stefan Luding. Mass-disorder effects on the frequency filtering in one-dimensional discrete particle systems. AIP Conference Proceedings, 1542(1), 2013. Ibrahim Guven. Hydraulical and acoustical properties of porous sintered glass bead systems: experiments, theory and simulations (Doctoral dissertation). Rainer Tonn. Comparison of seven methods for the computation of Q. Physics of the Earth and Planetary Interiors, 55(3):259 - 268, 1989. Rohit Kumar Shrivastava and Stefan Luding.: Effect of Disorder on Bulk Sound Wave Speed : A Multiscale Spectral Analysis, Nonlin. Processes Geophys. Discuss., doi:10.5194/npg-2016-83, in review, 2017.
Vojta, Thomas; Igo, John; Hoyos, José A
2014-07-01
We investigate the nonequilibrium phase transition of the disordered contact process in five space dimensions by means of optimal fluctuation theory and Monte Carlo simulations. We find that the critical behavior is of mean-field type, i.e., identical to that of the clean five-dimensional contact process. It is accompanied by off-critical power-law Griffiths singularities whose dynamical exponent z' saturates at a finite value as the transition is approached. These findings resolve the apparent contradiction between the Harris criterion, which implies that weak disorder is renormalization-group irrelevant, and the rare-region classification, which predicts unconventional behavior. We confirm and illustrate our theory by large-scale Monte Carlo simulations of systems with up to 70(5) sites. We also relate our results to a recently established general relation between the Harris criterion and Griffiths singularities [Phys. Rev. Lett. 112, 075702 (2014)], and we discuss implications for other phase transitions.
Mackinejad, Kioumars; Sharifi, Vandad
2006-01-01
In this paper the importance of Wittgenstein's philosophical ideas for the justification of a dimensional approach to the classification of mental disorders is discussed. Some of his basic concepts in his Philosophical Investigations, such as 'family resemblances', 'grammar' and 'language-game' and their relations to the concept of mental disorder are explored.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blackmore, W. J.A.; Goddard, P. A.; Xiao, F.
Low-dimensional quantum magnetism is currently of great interest due to the fact that reduced dimensionality can support strong quantum fluctuations, which may lead to unusual phenomena and quantum-critical behavior. The effect of random exchange strengths in two-dimensional (2D) antiferromagnets is still not fully understood despite much effort. This project aims to rectify this by investigating the high-field properties of the 2D coordination polymer (QuinH) 2Cu(Cl xBr 1-x) 4.2H 2O. The exchange pathway is through Cu-Halide-Cu bonds, and by randomizing the proportion of chlorine and bromine atoms in the unit cell, disorder can be introduced into the system.
NASA Astrophysics Data System (ADS)
Mano, Tomohiro; Ohtsuki, Tomi
2017-11-01
The three-dimensional Anderson model is a well-studied model of disordered electron systems that shows the delocalization-localization transition. As in our previous papers on two- and three-dimensional (2D, 3D) quantum phase transitions [
ERIC Educational Resources Information Center
Lai, Kelly Y. C.; Leung, Patrick W. L.; Mo, Flora Y. M.; Lee, Marshall M. C.; Shea, Caroline K. S.; Chan, Grace F. C.; Che, Kiti K. I.; Luk, Ernest S. L.; Mak, Arthur D. P.; Warrington, Richard; Skuse, David
2015-01-01
Autism spectrum disorder (ASD) is a disorder with high levels of co-morbidities. The Developmental, Dimensional and Diagnostic Interview (3Di) is a relatively new instrument designed to provide dimensional as well as categorical assessment of autistic behaviours among children with normal intelligence. Its sound psychometric properties and…
Disorder-induced transparency in a one-dimensional waveguide side coupled with optical cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yongyou, E-mail: yyzhang@bit.edu.cn; Dong, Guangda; Zou, Bingsuo
2014-05-07
Disorder influence on photon transmission behavior is theoretically studied in a one-dimensional waveguide side coupled with a series of optical cavities. For this sake, we propose a concept of disorder-induced transparency appearing on the low-transmission spectral background. Two kinds of disorders, namely, disorders of optical cavity eigenfrequencies and relative phases in the waveguide side coupled with optical cavities are considered to show the disorder-induced transparency. They both can induce the optical transmission peaks on the low-transmission backgrounds. The statistical mean value of the transmission also increases with increasing the disorders of the cavity eigenfrequencies and relative phases.
NASA Astrophysics Data System (ADS)
Vázquez, Héctor; Troisi, Alessandro
2013-11-01
We investigate the process of exciton dissociation in ordered and disordered model donor/acceptor systems and describe a method to calculate exciton dissociation rates. We consider a one-dimensional system with Frenkel states in the donor material and states where charge transfer has taken place between donor and acceptor. We introduce a Green's function approach to calculate the generation rates of charge-transfer states. For disorder in the Frenkel states we find a clear exponential dependence of charge dissociation rates with exciton-interface distance, with a distance decay constant β that increases linearly with the amount of disorder. Disorder in the parameters that describe (final) charge-transfer states has little effect on the rates. Exciton dissociation invariably leads to partially separated charges. In all cases final states are “hot” charge-transfer states, with electron and hole located far from the interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wenlong; Kevrekidis, P. G.
We have performed a systematic study quantifying the variation of solitary wave behavior from that of an ordered cloud resembling a “crystalline” configuration to that of a disordered state that can be characterized as a soliton “gas.” As our illustrative examples, we use both one-component, as well as two-component, one-dimensional atomic gases very close to zero temperature, where in the presence of repulsive interatomic interactions and of a parabolic trap, a cloud of dark (dark-bright) solitons can form in the one- (two-) component system. We corroborate our findings through three distinct types of approaches, namely a Gross-Pitaevskii type of partialmore » differential equation, particle-based ordinary differential equations describing the soliton dynamical system, and Monte Carlo simulations for the particle system. In addition, we define an “empirical” order parameter to characterize the order of the soliton lattices and study how this changes as a function of the strength of the “thermally” (i.e., kinetically) induced perturbations. As may be anticipated by the one-dimensional nature of our system, the transition from order to disorder is gradual without, apparently, a genuine phase transition ensuing in the intermediate regime.« less
Melville, Craig A; Johnson, Paul C D; Smiley, Elita; Simpson, Neill; Purves, David; McConnachie, Alex; Cooper, Sally-Ann
2016-08-01
The limited evidence on the relationship between problem behaviours and symptoms of psychiatric disorders experienced by adults with intellectual disabilities leads to conflict about diagnostic criteria and confused treatment. This study examined the relationship between problem behaviours and other psychopathology, and compared the predictive validity of dimensional and categorical models experienced by adults with intellectual disabilities. Exploratory and confirmatory factor analyses appropriate for non-continuous data were used to derive, and validate, symptom dimensions using two clinical datasets (n=457; n=274). Categorical diagnoses were derived using DC-LD. Severity and 5-year longitudinal outcome was measured using a battery of instruments. Five factors/dimensions were identified and confirmed. Problem behaviours were included in an emotion dysregulation-problem behaviour dimension that was distinct from the depressive, anxiety, organic and psychosis dimensions. The dimensional model had better predictive validity than categorical diagnosis. International classification systems should not include problem behaviours as behavioural equivalents in diagnostic criteria for depression or other psychiatric disorders. Investigating the relevance of emotional regulation to psychopathology may provide an important pathway for development of improved interventions. There is uncertainty whether new onset problem behaviours or a change in longstanding problem behaviours should be considered as symptoms of depression or other types of psychiatric disorders in adults with intellectual disabilities. The validity of previous studies was limited by the use of pre-defined, categorical diagnoses or unreliable statistical methods. This study used robust statistical modelling to examine problem behaviours within a dimensional model of symptoms. We found that problem behaviours were included in an emotional dysregulation dimension and not in the dimension that included symptoms that are typical of depression. The dimensional model of symptoms had greater predictive validity than categorical diagnoses of psychiatric disorders. Our findings suggest that problem behaviours are a final common pathway for emotional distress in adults with intellectual disabilities so clinicians should not use a change in problem behaviours as a diagnostic criterion for depression, or other psychiatric disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nowinski, W.L.; Chua, B.C.
2013-01-01
Understanding brain pathology along with the underlying neuroanatomy and the resulting neurological deficits is of vital importance in medical education and clinical practice. To facilitate and expedite this understanding, we created a three-dimensional (3D) interactive atlas of neurological disorders providing the correspondence between a brain lesion and the resulting disorder(s). The atlas contains a 3D highly parcellated atlas of normal neuroanatomy along with a brain pathology database. Normal neuroanatomy is divided into about 2,300 components, including the cerebrum, cerebellum, brainstem, spinal cord, arteries, veins, dural sinuses, tracts, cranial nerves (CN), white matter, deep gray nuclei, ventricles, visual system, muscles, glands and cervical vertebrae (C1-C5). The brain pathology database contains 144 focal and distributed synthesized lesions (70 vascular, 36 CN-related, and 38 regional anatomy-related), each lesion labeled with the resulting disorder and associated signs, symptoms, and/or syndromes compiled from materials reported in the literature. The initial view of each lesion was preset in terms of its location and size, surrounding surface and sectional (magnetic resonance) neuroanatomy, and labeling of lesion and neuroanatomy. In addition, a glossary of neurological disorders was compiled and for each disorder materials from textbooks were included to provide neurological description. This atlas of neurological disorders is potentially useful to a wide variety of users ranging from medical students, residents and nurses to general practitioners, neuroanatomists, neuroradiologists and neurologists, as it contains both normal (surface and sectional) brain anatomy and pathology correlated with neurological disorders presented in a visual and interactive way. PMID:23859280
Nowinski, W L; Chua, B C
2013-06-01
Understanding brain pathology along with the underlying neuroanatomy and the resulting neurological deficits is of vital importance in medical education and clinical practice. To facilitate and expedite this understanding, we created a three-dimensional (3D) interactive atlas of neurological disorders providing the correspondence between a brain lesion and the resulting disorder(s). The atlas contains a 3D highly parcellated atlas of normal neuroanatomy along with a brain pathology database. Normal neuroanatomy is divided into about 2,300 components, including the cerebrum, cerebellum, brainstem, spinal cord, arteries, veins, dural sinuses, tracts, cranial nerves (CN), white matter, deep gray nuclei, ventricles, visual system, muscles, glands and cervical vertebrae (C1-C5). The brain pathology database contains 144 focal and distributed synthesized lesions (70 vascular, 36 CN-related, and 38 regional anatomy-related), each lesion labeled with the resulting disorder and associated signs, symptoms, and/or syndromes compiled from materials reported in the literature. The initial view of each lesion was preset in terms of its location and size, surrounding surface and sectional (magnetic resonance) neuroanatomy, and labeling of lesion and neuroanatomy. In addition, a glossary of neurological disorders was compiled and for each disorder materials from textbooks were included to provide neurological description. This atlas of neurological disorders is potentially useful to a wide variety of users ranging from medical students, residents and nurses to general practitioners, neuroanatomists, neuroradiologists and neurologists, as it contains both normal (surface and sectional) brain anatomy and pathology correlated with neurological disorders presented in a visual and interactive way.
A dimensional comparison between delusional disorder, schizophrenia and schizoaffective disorder.
Muñoz-Negro, José E; Ibanez-Casas, Inmaculada; de Portugal, Enrique; Ochoa, Susana; Dolz, Montserrat; Haro, Josep M; Ruiz-Veguilla, Miguel; de Dios Luna Del Castillo, Juan; Cervilla, Jorge A
2015-12-01
Since the early description of paranoia, the nosology of delusional disorder has always been controversial. The old idea of unitary psychosis has now gained some renewed value from the dimensional continuum model of psychotic symptoms. 1. To study the psychopathological dimensions of the psychosis spectrum; 2. to explore the association between psychotic dimensions and categorical diagnoses; 3. to compare the different psychotic disorders from a psychopathological and functional point of view. This is an observational study utilizing a sample of some 550 patients with a psychotic disorder. 373 participants had a diagnosis of schizophrenia, 137 had delusional disorder and 40 with a diagnosis of schizoaffective disorder. The PANSS was used to elicit psychopathology and global functioning was ascertained using the GAF measure. Both exploratory and confirmatory factor analyses of the PANSS items were performed to extract psychopathological dimensions. Associations between diagnostic categories and dimensions were subsequently studied using ANOVA tests. 5 dimensions - manic, negative symptoms, depression, positive symptoms and cognitive - emerged. The model explained 57.27% of the total variance. The dimensional model was useful to explained differences and similarities between all three psychosis spectrum categories. The potential clinical usefulness of this dimensional model within and between clinical psychosis spectrum categories is discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Harrison, Ben J; Pujol, Jesus; Cardoner, Narcis; Deus, Joan; Alonso, Pino; López-Solà, Marina; Contreras-Rodríguez, Oren; Real, Eva; Segalàs, Cinto; Blanco-Hinojo, Laura; Menchon, José M; Soriano-Mas, Carles
2013-02-15
Functional neuroimaging studies have provided consistent support for the idea that obsessive-compulsive disorder (OCD) is associated with disturbances of brain corticostriatal systems. However, in general, these studies have not sought to account for the disorder's prominent clinical heterogeneity. To address these concerns, we investigated the influence of major OCD symptom dimensions on brain corticostriatal functional systems in a large sample of OCD patients (n = 74) and control participants (n = 74) examined with resting-state functional magnetic resonance imaging. We employed a valid method for mapping ventral and dorsal striatal functional connectivity, which supported both standard group comparisons and linear regression analyses with patients' scores on the Dimensional Yale-Brown Obsessive-Compulsive Scale. Consistent with past findings, patients demonstrated a common connectivity alteration involving the ventral striatum and orbitofrontal cortex that predicted overall illness severity levels. This common alteration was independent of the effect of particular symptom dimensions. Instead, we observed distinct anatomical relationships between the severity of symptom dimensions and striatal functional connectivity. Aggression symptoms modulated connectivity between the ventral striatum, amygdala, and ventromedial frontal cortex, while sexual/religious symptoms had a specific influence on ventral striatal-insular connectivity. Hoarding modulated the strength of ventral and dorsal striatal connectivity with distributed frontal regions. Taken together, these results suggest that pathophysiological changes among orbitofrontal-striatal regions may be common to all forms of OCD. They suggest that a further examination of certain dimensional relationships will also be relevant for advancing current neurobiological models of the disorder. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
[Pharmacotherapy in the treatment of borderline personality disorder].
Alliani, Daniela; Tarantelli, Silvia
2009-01-01
The aim of this study is to bring together the previous studies on pharmacotherapy of borderline disorder from the oldest to the recent ones, mainly focusing on atypical antipsychotic, whose success has been underlined in recent medical literature with peculiar reference to olanzapine. Since the '80 the pharmacotherapy in borderline personality disorder has been playing an increasing role in the interest of scientific community and in the medical practice as indicated by APA guidelines (2000). Nowadays the pharmacological approach, supported by some experimental outcomes, follow a so called "dimensional" standard. The targets of this standard drug approach are specific psychopathological "dimensions" of the disorder and related neurotransmitters' changes in particular linked to serotoninergic and dopaminergic systems, both supported by experimental outcomes. The psychopathological dimensions to which pharmacological approach is more suitable are: impulsiveness and emotional dysregulation. During the last past years, effectiveness of atypical antipsychotic drugs became of major interest in medical treatment of borderline disorder, mainly related to their action toward the serotoninergic and dopaminergic systems.
Thermal conductivity of disordered two-dimensional binary alloys.
Zhou, Yang; Guo, Zhi-Xin; Cao, Hai-Yuan; Chen, Shi-You; Xiang, Hong-Jun; Gong, Xin-Gao
2016-10-20
Using non-equilibrium molecular dynamics simulations, we have studied the effect of disorder on the thermal conductivity of two-dimensional (2D) C 1-x N x alloys. We find that the thermal conductivity not only depends on the substitution concentration of nitrogen, but also strongly depends on the disorder distribution. A general linear relationship is revealed between the thermal conductivity and the participation ratio of phonons in 2D alloys. Localization mode analysis further indicates that the thermal conductivity variation in the ordered alloys can be attributed to the number of inequivalent atoms. As for the disordered alloys, we find that the thermal conductivity variation can be described by a simple linear formula with the disorder degree and the substitution concentration. The present study suggests some general guidance for phonon manipulation and thermal engineering in low dimensional alloys.
NASA Astrophysics Data System (ADS)
Francisco Sánchez-Royo, Juan
2012-12-01
The two-dimensional conducting properties of the Si(111) \\sqrt {3} \\times \\sqrt {3} surface doped by the charge surface transfer mechanism have been calculated in the frame of a semiclassical Drude-Boltzmann model considering donor scattering mechanisms. To perform these calculations, the required values of the carrier effective mass were extracted from reported angle-resolved photoemission results. The calculated doping dependence of the surface conductance reproduces experimental results reported and reveals an intricate metallization process driven by disorder and assisted by interband interactions. The system should behave as an insulator even at relatively low doping due to disorder. However, when doping increases, the system achieves to attenuate the inherent localization effects introduced by disorder and to conduct by percolation. The mechanism found by the system to conduct appears to be connected with the increasing of the carrier effective mass observed with doping, which seems to be caused by interband interactions involving the conducting band and deeper ones. This mass enhancement reduces the donor Bohr radius and, consequently, promotes the screening ability of the donor potential by the electron gas.
[Personality disorders--different outlooks and attempts at their integration].
Grabski, Bartosz; Gierowski, Józef Krzysztof
2012-01-01
The paper presents different approaches to personality disorders. The authors critically discuss the contemporary categorical psychiatrie (medical) classification and also present psychological approaches with the special attention put to personality trait theories and stemming from them the Five Factor Model (FFM). Due to the coming time of the publication of a new revision of the American classification DSM- 5 the detailed description of the proposals for the new system has been presented. The authors included the most updated version which has just recently been published on the DSM-5 APA web site on 11h June 2011. The proposed changes go forward to the voices of critique of present solutions, and create a hybrid system which will incorporate some elements of the dimensional approach to personality disorders.
NASA Astrophysics Data System (ADS)
Shaw, Leah B.; Sethna, James P.; Lee, Kelvin H.
2004-08-01
The process of protein synthesis in biological systems resembles a one-dimensional driven lattice gas in which the particles (ribosomes) have spatial extent, covering more than one lattice site. Realistic, nonuniform gene sequences lead to quenched disorder in the particle hopping rates. We study the totally asymmetric exclusion process with large particles and quenched disorder via several mean-field approaches and compare the mean-field results with Monte Carlo simulations. Mean-field equations obtained from the literature are found to be reasonably effective in describing this system. A numerical technique is developed for computing the particle current rapidly. The mean-field approach is extended to include two-point correlations between adjacent sites. The two-point results are found to match Monte Carlo simulations more closely.
Disordered λ φ4+ρ φ6 Landau-Ginzburg model
NASA Astrophysics Data System (ADS)
Diaz, R. Acosta; Svaiter, N. F.; Krein, G.; Zarro, C. A. D.
2018-03-01
We discuss a disordered λ φ4+ρ φ6 Landau-Ginzburg model defined in a d -dimensional space. First we adopt the standard procedure of averaging the disorder-dependent free energy of the model. The dominant contribution to this quantity is represented by a series of the replica partition functions of the system. Next, using the replica-symmetry ansatz in the saddle-point equations, we prove that the average free energy represents a system with multiple ground states with different order parameters. For low temperatures we show the presence of metastable equilibrium states for some replica fields for a range of values of the physical parameters. Finally, going beyond the mean-field approximation, the one-loop renormalization of this model is performed, in the leading-order replica partition function.
Coccanari De Fornari, Maria Antonietta; Piccione, Michele; Giampà, Alessio
2010-01-01
In the general reflection inherent categorical and dimensional diagnosis and the opportunity to put neurotic and psychotic personality in the various chapters of the discipline, a never-ending discussion on the similarities and differences between clinical pictures classified in separate entries (think of the comings and goings from one cluster to another between schizoid and avoidant personality disorder). Other cogent discussion focused on the nosographical criteria, targeted to a modified classification that takes into account dimensional rather than descriptive criteria. About personality disorders think of the debate on their degree of severity, as assessed by criteria such dissimilar from various authors, as to be very different in this sense a ranking according to the variables considered (eg, classifications by Kernberg and Millon). As an established tradition that a contribution to psychological studies derives also from the literary and artistic forms in general, we propose, through the interpretation of literary cases, the dimensional affinity between schizoid and narcissistic disorders. The dimensions taken into account are those of affectivity and intersubjectivity, impaired in both disorders.
NASA Astrophysics Data System (ADS)
Woellner, Cristiano F.; Li, Zi; Freire, José A.; Lu, Gang; Nguyen, Thuc-Quyen
2013-09-01
In this paper we use a three-dimensional Pauli master equation to investigate the charge carrier mobility of a two-phase system which can mimic donor-acceptor and amorphous-crystalline bulk heterojunctions. By taking the energetic disorder of each phase, their energy offset, and domain morphology into consideration, we show that the carrier mobility can have a completely different behavior when compared to a one-phase system. When the energy offset is equal to zero, the mobility is controlled by the more disordered phase. When the energy offset is nonzero, we show that the mobility electric field dependence switches from negative to positive at a threshold field proportional to the energy offset. Additionally, the influence of morphology, through the domain size and volume ratio parameters, on the transport is investigated and an approximate analytical expression for the zero field mobility is provided.
NASA Astrophysics Data System (ADS)
Bucheli, D.; Caprara, S.; Castellani, C.; Grilli, M.
2013-02-01
Motivated by recent experimental data on thin film superconductors and oxide interfaces, we propose a random-resistor network apt to describe the occurrence of a metal-superconductor transition in a two-dimensional electron system with disorder on the mesoscopic scale. We consider low-dimensional (e.g. filamentary) structures of a superconducting cluster embedded in the two-dimensional network and we explore the separate effects and the interplay of the superconducting structure and of the statistical distribution of local critical temperatures. The thermal evolution of the resistivity is determined by a numerical calculation of the random-resistor network and, for comparison, a mean-field approach called effective medium theory (EMT). Our calculations reveal the relevance of the distribution of critical temperatures for clusters with low connectivity. In addition, we show that the presence of spatial correlations requires a modification of standard EMT to give qualitative agreement with the numerical results. Applying the present approach to an LaTiO3/SrTiO3 oxide interface, we find that the measured resistivity curves are compatible with a network of spatially dense but loosely connected superconducting islands.
Misra, S; Urban, L; Kim, M; Sambandamurthy, G; Yazdani, A
2013-01-18
Our measurements of the low frequency ac conductivity in strongly disordered two-dimensional films near the magnetic-field-tuned superconductor-to-insulator transition show a sudden drop in the phase stiffness of superconducting order with either increased temperature or magnetic field. Surprisingly, for two different material systems, the abrupt drop in the superfluid density in a magnetic field has the same universal value as that expected for a Berezinskii-Kosterlitz-Thouless transition in a zero magnetic field. The characteristic temperature at which phase stiffness is suddenly lost can be tuned to zero at a critical magnetic field, following a power-law behavior with a critical exponent consistent with that obtained in previous dc transport studies on the dissipative side of the transition.
Localization in momentum space of ultracold atoms in incommensurate lattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larcher, M.; Dalfovo, F.; Modugno, M.
2011-01-15
We characterize the disorder-induced localization in momentum space for ultracold atoms in one-dimensional incommensurate lattices, according to the dual Aubry-Andre model. For low disorder the system is localized in momentum space, and the momentum distribution exhibits time-periodic oscillations of the relative intensity of its components. The behavior of these oscillations is explained by means of a simple three-mode approximation. We predict their frequency and visibility by using typical parameters of feasible experiments. Above the transition the system diffuses in momentum space, and the oscillations vanish when averaged over different realizations, offering a clear signature of the transition.
Language extraction from zinc sulfide
NASA Astrophysics Data System (ADS)
Varn, Dowman Parks
2001-09-01
Recent advances in the analysis of one-dimensional temporal and spacial series allow for detailed characterization of disorder and computation in physical systems. One such system that has defied theoretical understanding since its discovery in 1912 is polytypism. Polytypes are layered compounds, exhibiting crystallinity in two dimensions, yet having complicated stacking sequences in the third direction. They can show both ordered and disordered sequences, sometimes each in the same specimen. We demonstrate a method for extracting two-layer correlation information from ZnS diffraction patterns and employ a novel technique for epsilon-machine reconstruction. We solve a long-standing problem---that of determining structural information for disordered materials from their diffraction patterns---for this special class of disorder. Our solution offers the most complete possible statistical description of the disorder. Furthermore, from our reconstructed epsilon-machines we find the effective range of the interlayer interaction in these materials, as well as the configurational energy of both ordered and disordered specimens. Finally, we can determine the 'language' (in terms of the Chomsky Hierarchy) these small rocks speak, and we find that regular languages are sufficient to describe them.
Anomalous Photon-Assisted Tunneling in Graphene
2012-01-01
is not simply due to linear electron dispersion but may be observed for both mass- less and massive quasiparticles [4]. In this paper, we consider a...325221 [22] Mildenberger A, Evers F, Mirlin A D and Chalker J T 2007 Density of quasiparticle states for a two-dimensional disordered system: metallic
Anderson localization of a Tonks-Girardeau gas in potentials with controlled disorder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radic, J.; Bacic, V.; Jukic, D.
We theoretically demonstrate features of Anderson localization in a Tonks-Girardeau gas confined in one-dimensional potentials with controlled disorder. That is, we investigate the evolution of the single-particle density and correlations of a Tonks-Girardeau wave packet in such disordered potentials. The wave packet is initially trapped, the trap is suddenly turned off, and after some time the system evolves into a localized steady state due to Anderson localization. The density tails of the steady state decay exponentially, while the coherence in these tails increases. The latter phenomenon corresponds to the same effect found in incoherent optical solitons.
A perspective on the current issues in the DSM-5 classification of personality disorders.
Guelfi, Julien D
2013-06-01
David Kupfer chaired the DSM-5 Task Force, and Andrew Skodol the working group, on personality disorders. Various initial propositions were posted on the Internet in 2010 for comment and discussion: new general definition, new criteria, new diagnostic procedures, reduction in the number of categories, and dimensional representation. Following numerous criticisms, the Task Force's final decisions were made public on December 1, 2012. Personality disorders now figure alongside other mental disorders, because of the deletion of Axis II. The methodology concerning personality traits is in a third section to promote new studies. The new proposed hybrid system has not, to date, proven better than the categories of the DSM-IV. These various decisions are commented upon.
A perspective on the current issues in the DSM-5 classification of personality disorders
Guelfi, Julien D.
2013-01-01
David Kupfer chaired the DSM-5 Task Force, and Andrew Skodol the working group, on personality disorders. Various initial propositions were posted on the Internet in 2010 for comment and discussion: new general definition, new criteria, new diagnostic procedures, reduction in the number of categories, and dimensional representation. Following numerous criticisms, the Task Force's final decisions were made public on December 1, 2012. Personality disorders now figure alongside other mental disorders, because of the deletion of Axis II. The methodology concerning personality traits is in a third section to promote new studies. The new proposed hybrid system has not, to date, proven better than the categories of the DSM-IV. These various decisions are commented upon. PMID:24174887
A view of personality disorder from the colonial periphery.
Hickling, F W; Walcott, G
2013-01-01
To examine the history of personality disorder in the context of contemporary post-colonial Jamaican society. The literature outlining the development and classification of personality disorder is reviewed. The social, psychiatric and epidemiological studies of personality disorder in Jamaica are presented. A categorical classification system of personality disorder has been in use by the International Classification of Diseases (ICD) and the Diagnostic and Statistical Manual of Mental Disorders (DSM) from the mid 20th century. Challenging that approach is the Minnesota Multiphasic Personality Inventory (MMPI), which represents the dimensional method, which views pathology as a continuum from normal personality traits. Both systems suffer from an absence of cultural flexibility, an absence of a a system of severity, and a lack of treatment specificity, which foster misdiagnosis while making treatment planning difficult and unreliable. The proposed DSM-5 attempts to integrate a prototypematching system and identification of personality traits promises disappointing outcomes. The University of the West Indies, Section of Psychiatry, proposes a phenomenological nosological approach, advocating an alternate DSM Axis I category called Shakatani derived from Swahili shaka (problem), tani (power), and developing a 38-item Jamaica Personality Disorder Inventory (JPDI) screening questionnaire for diagnosing this condition. The epidemiological results using this instrument are reviewed, and the Jamaican print, broadcast and social media responses to this research in Jamaica are described. The heritage of slavery and colonial oppression in Jamaica has resulted in maladaptive personality disorders that have led to extremely high rates of homicide, violence and transgressive behaviour.
Equilibrium phases of dipolar lattice bosons in the presence of random diagonal disorder
NASA Astrophysics Data System (ADS)
Zhang, C.; Safavi-Naini, A.; Capogrosso-Sansone, B.
2018-01-01
Ultracold gases offer an unprecedented opportunity to engineer disorder and interactions in a controlled manner. In an effort to understand the interplay between disorder, dipolar interactions, and quantum degeneracy, we study two-dimensional hard-core dipolar lattice bosons in the presence of on-site bound disorder. Our results are based on large-scale path-integral quantum Monte Carlo simulations by the worm algorithm. We study the ground-state phase diagram at a fixed half-integer filling factor for which the clean system is either a superfluid at a lower dipolar interaction strength or a checkerboard solid at a larger dipolar interaction strength. We find that, even for weak dipolar interactions, superfluidity is destroyed in favor of a Bose glass at a relatively low disorder strength. Interestingly, in the presence of disorder, superfluidity persists for values of the dipolar interaction strength for which the clean system is a checkerboard solid. At a fixed disorder strength, as the dipolar interaction is increased, superfluidity is destroyed in favor of a Bose glass. As the interaction is further increased, the system eventually develops extended checkerboard patterns in the density distribution. Due to the presence of disorder, though, grain boundaries and defects, responsible for a finite residual compressibility, are present in the density distribution. Finally, we study the robustness of the superfluid phase against thermal fluctuations.
Clinical Implications of a Dimensional Approach: The Normal:Abnormal Spectrum of Early Irritability.
Wakschlag, Lauren S; Estabrook, Ryne; Petitclerc, Amelie; Henry, David; Burns, James L; Perlman, Susan B; Voss, Joel L; Pine, Daniel S; Leibenluft, Ellen; Briggs-Gowan, Margaret L
2015-08-01
The importance of dimensional approaches is widely recognized, but an empirical base for clinical application is lacking. This is particularly true for irritability, a dimensional phenotype that cuts across many areas of psychopathology and manifests early in life. We examine longitudinal, dimensional patterns of irritability and their clinical import in early childhood. Irritability was assessed longitudinally over an average of 16 months in a clinically enriched, diverse community sample of preschoolers (N = 497; mean = 4.2 years; SD = 0.8). Using the Temper Loss scale of the Multidimensional Assessment Profile of Disruptive Behavior (MAP-DB) as a developmentally sensitive indicator of early childhood irritability, we examined its convergent/divergent, clinical, and incremental predictive validity, and modeled its linear and nonlinear associations with clinical risk. The Temper Loss scale demonstrated convergent and divergent validity to child and maternal factors. In multivariate analyses, Temper Loss predicted mood (separation anxiety disorder [SAD], generalized anxiety disorder [GAD], and depression/dysthymia), disruptive (oppositional defiant disorder [ODD], attention-deficit/hyperactivity disorder [ADHD], and conduct disorder [CD]) symptoms. Preschoolers with even mildly elevated Temper Loss scale scores showed substantially increased risk of symptoms and disorders. For ODD, GAD, SAD, and depression, increases in Temper Loss scale scores at the higher end of the dimension had a greater impact on symptoms relative to increases at the lower end. Temper Loss scale scores also showed incremental validity over DSM-IV disorders in predicting subsequent impairment. Finally, accounting for the substantial heterogeneity in longitudinal patterns of Temper Loss significantly improved prediction of mood and disruptive symptoms. Dimensional, longitudinal characterization of irritability informs clinical prediction. A vital next step will be empirically generating parameters for the incorporation of dimensional information into clinical decision-making with reasonable certainty. Copyright © 2015 American Academy of Child and Adolescent Psychiatry. All rights reserved.
Long-time predictability in disordered spin systems following a deep quench
NASA Astrophysics Data System (ADS)
Ye, J.; Gheissari, R.; Machta, J.; Newman, C. M.; Stein, D. L.
2017-04-01
We study the problem of predictability, or "nature vs nurture," in several disordered Ising spin systems evolving at zero temperature from a random initial state: How much does the final state depend on the information contained in the initial state, and how much depends on the detailed history of the system? Our numerical studies of the "dynamical order parameter" in Edwards-Anderson Ising spin glasses and random ferromagnets indicate that the influence of the initial state decays as dimension increases. Similarly, this same order parameter for the Sherrington-Kirkpatrick infinite-range spin glass indicates that this information decays as the number of spins increases. Based on these results, we conjecture that the influence of the initial state on the final state decays to zero in finite-dimensional random-bond spin systems as dimension goes to infinity, regardless of the presence of frustration. We also study the rate at which spins "freeze out" to a final state as a function of dimensionality and number of spins; here the results indicate that the number of "active" spins at long times increases with dimension (for short-range systems) or number of spins (for infinite-range systems). We provide theoretical arguments to support these conjectures, and also study analytically several mean-field models: the random energy model, the uniform Curie-Weiss ferromagnet, and the disordered Curie-Weiss ferromagnet. We find that for these models, the information contained in the initial state does not decay in the thermodynamic limit—in fact, it fully determines the final state. Unlike in short-range models, the presence of frustration in mean-field models dramatically alters the dynamical behavior with respect to the issue of predictability.
Long-time predictability in disordered spin systems following a deep quench.
Ye, J; Gheissari, R; Machta, J; Newman, C M; Stein, D L
2017-04-01
We study the problem of predictability, or "nature vs nurture," in several disordered Ising spin systems evolving at zero temperature from a random initial state: How much does the final state depend on the information contained in the initial state, and how much depends on the detailed history of the system? Our numerical studies of the "dynamical order parameter" in Edwards-Anderson Ising spin glasses and random ferromagnets indicate that the influence of the initial state decays as dimension increases. Similarly, this same order parameter for the Sherrington-Kirkpatrick infinite-range spin glass indicates that this information decays as the number of spins increases. Based on these results, we conjecture that the influence of the initial state on the final state decays to zero in finite-dimensional random-bond spin systems as dimension goes to infinity, regardless of the presence of frustration. We also study the rate at which spins "freeze out" to a final state as a function of dimensionality and number of spins; here the results indicate that the number of "active" spins at long times increases with dimension (for short-range systems) or number of spins (for infinite-range systems). We provide theoretical arguments to support these conjectures, and also study analytically several mean-field models: the random energy model, the uniform Curie-Weiss ferromagnet, and the disordered Curie-Weiss ferromagnet. We find that for these models, the information contained in the initial state does not decay in the thermodynamic limit-in fact, it fully determines the final state. Unlike in short-range models, the presence of frustration in mean-field models dramatically alters the dynamical behavior with respect to the issue of predictability.
NASA Astrophysics Data System (ADS)
Prudnikov, V. V.; Prudnikov, P. V.; Mamonova, M. V.
2017-11-01
This paper reviews features in critical behavior of far-from-equilibrium macroscopic systems and presents current methods of describing them by referring to some model statistical systems such as the three-dimensional Ising model and the two-dimensional XY model. The paper examines the critical relaxation of homogeneous and structurally disordered systems subjected to abnormally strong fluctuation effects involved in ordering processes in solids at second-order phase transitions. Interest in such systems is due to the aging properties and fluctuation-dissipation theorem violations predicted for and observed in systems slowly evolving from a nonequilibrium initial state. It is shown that these features of nonequilibrium behavior show up in the magnetic properties of magnetic superstructures consisting of alternating nanoscale-thick magnetic and nonmagnetic layers and can be observed not only near the film’s critical ferromagnetic ordering temperature Tc, but also over the wide temperature range T ⩽ Tc.
Mesman, Esther; Birmaher, Boris B; Goldstein, Benjamin I; Goldstein, Tina; Derks, Eske M; Vleeschouwer, Marloes; Hickey, Mary Beth; Axelson, David; Monk, Kelly; Diler, Rasim; Hafeman, Danella; Sakolsky, Dara J; Reichart, Catrien G; Wals, Marjolein; Verhulst, Frank C; Nolen, Willem A; Hillegers, Manon H J
2016-11-15
Accumulating evidence suggests cross-national differences in adults with bipolar disorder (BD), but also in the susceptibility of their offspring (bipolar offspring). This study aims to explore and clarify cross-national variation in the prevalence of categorical and dimensional psychopathology between bipolar offspring in the US and The Netherlands. We compared levels of psychopathology in offspring of the Pittsburgh Bipolar Offspring Study (n=224) and the Dutch Bipolar Offspring Study (n=136) (age 10-18). Categorical psychopathology was ascertained through interviews using the Schedule for Affective Disorders and Schizophrenia for School Age Children (K-SADS-PL), dimensional psychopathology by parental reports using the Child Behavior Checklist (CBCL). Higher rates of categorical psychopathology were observed in the US versus the Dutch samples (66% versus 44%). We found no differences in the overall prevalence of mood disorders, including BD-I or -II, but more comorbidity in mood disorders in US versus Dutch offspring (80% versus 34%). The strongest predictors of categorical psychopathology were maternal BD (OR: 1.72, p<.05), older age of the offspring (OR: 1.19, p<.05), and country of origin (US; OR: 2.17, p<.001). Regarding comorbidity, only country of origin (OR: 7.84, p<.001) was a significant predictor. In general, we found no differences in dimensional psychopathology based on CBCL reports. Preliminary measure of inter-site reliability. We found cross-national differences in prevalence of categorical diagnoses of non-mood disorders in bipolar offspring, but not in mood disorder diagnoses nor in parent-reported dimensional psychopathology. Cross-national variation was only partially explained by between-sample differences. Cultural and methodological explanations for these findings warrant further study. Copyright © 2016 Elsevier B.V. All rights reserved.
Mesman, Esther; Birmaher, Boris B.; Goldstein, Benjamin I.; Goldstein, Tina; Derks, Eske M.; Vleeschouwer, Marloes; Hickey, Mary Beth; Axelson, David; Monk, Kelly; Diler, Rasim; Hafeman, Danella; Sakolsky, Dara J.; Reichart, Catrien G.; Wals, Marjolein; Verhulst, Frank C.; Nolen, Willem A.; Hillegers, Manon H.J.
2017-01-01
Objective Accumulating evidence suggests cross-national differences in adults with bipolar disorder (BD), but also in the susceptibility of their offspring (bipolar offspring). This study aims to explore and clarify cross-national variation in the prevalence of categorical and dimensional psychopathology between bipolar offspring in the US and The Netherlands. Methods We compared levels of psychopathology in offspring of the Pittsburgh Bipolar Offspring Study (n=224) and the Dutch Bipolar Offspring Study (n=136) (age 10–18). Categorical psychopathology was ascertained through interviews using the Schedule for Affective Disorders and Schizophrenia for School Age Children (K-SADS-PL), dimensional psychopathology by parental reports using the Child Behavior Checklist (CBCL). Results Higher rates of categorical psychopathology were observed in the US versus the Dutch samples (66% versus 44%). We found no differences in the overall prevalence of mood disorders, including BD-I or -II, but more comorbidity in mood disorders in US versus Dutch offspring (80% versus 34%). The strongest predictors of categorical psychopathology were maternal BD (OR: 1.72, p<.05), older age of the offspring (OR: 1.19, p<.05), and country of origin (US; OR: 2.17, p<.001). Regarding comorbidity, only country of origin (OR: 7.84, p<.001) was a significant predictor. In general, we found no differences in dimensional psychopathology based on CBCL reports. Limitations Preliminary measure of inter-site reliability. Conclusions We found cross-national differences in prevalence of categorical diagnoses of non-mood disorders in bipolar offspring, but not in mood disorder diagnoses nor in parent-reported dimensional psychopathology. Cross-national variation was only partially explained by between-sample differences. Cultural and methodological explanations for these findings warrant further study. PMID:27423424
NASA Astrophysics Data System (ADS)
Wijesinghe, Ruchire Eranga; Lee, Seung-Yeol; Ravichandran, Naresh Kumar; Shirazi, Muhammad Faizan; Moon, Byungin; Jung, Hee-Young; Jeon, Mansik; Kim, Jeehyun
2017-04-01
The pathological and physiological defects in various types of fruits lead to large amounts of economical waste. It is well recognized that internal fruit defects due to pathological infections and physiological disorders can be effectively visualized at an initial stage of the disease using a well-known bio-photonic detection method called optical coherence tomography (OCT). This work investigates the use of OCT for identifying the morphological variations of anthracnose (bitter rot) disease infected and physiologically disordered Diospyros kaki (Asian Persimmon) fruits. An experiment was conducted using fruit samples that were carefully selected from persimmon orchards. Depth-resolved images with a high axial resolution were acquired using 850-nm-based spectral-domain OCT (SD-OCT) system. The obtained exemplary high-resolution two-dimensional and volumetric three-dimensional images revealed complementary morphological differences between healthy and defected samples. Moreover, the obtained depth-profile analysis results confirmed the disappearance of the healthy cell layers among the healthy-infected boundary regions. Thus, the proposed method has the potential to increase the diagnostic accuracy of the OCT technique used in agricultural plantations.
Hentschel, Annett G; Livesley, W John
2013-01-01
Recent developments in the classification of personality disorder, especially moves toward more dimensional systems, create the need to assess general personality disorder apart from individual differences in personality pathology. The General Assessment of Personality Disorder (GAPD) is a self-report questionnaire designed to evaluate general personality disorder. The measure evaluates 2 major components of disordered personality: self or identity problems and interpersonal dysfunction. This study explores whether there is a single factor reflecting general personality pathology as proposed by the Diagnostic and Statistical Manual of Mental Disorders (5th ed.), whether self-pathology has incremental validity over interpersonal pathology as measured by GAPD, and whether GAPD scales relate significantly to Diagnostic and Statistical Manual of Mental Disorders (4th ed. [DSM-IV]) personality disorders. Based on responses from a German psychiatric sample of 149 participants, parallel analysis yielded a 1-factor model. Self Pathology scales of the GAPD increased the predictive validity of the Interpersonal Pathology scales of the GAPD. The GAPD scales showed a moderate to high correlation for 9 of 12 DSM-IV personality disorders.
Dimensional assessment of personality pathology in patients with eating disorders.
Goldner, E M; Srikameswaran, S; Schroeder, M L; Livesley, W J; Birmingham, C L
1999-02-22
This study examined patients with eating disorders on personality pathology using a dimensional method. Female subjects who met DSM-IV diagnostic criteria for eating disorder (n = 136) were evaluated and compared to an age-controlled general population sample (n = 68). We assessed 18 features of personality disorder with the Dimensional Assessment of Personality Pathology - Basic Questionnaire (DAPP-BQ). Factor analysis and cluster analysis were used to derive three clusters of patients. A five-factor solution was obtained with limited intercorrelation between factors. Cluster analysis produced three clusters with the following characteristics: Cluster 1 members (constituting 49.3% of the sample and labelled 'rigid') had higher mean scores on factors denoting compulsivity and interpersonal difficulties; Cluster 2 (18.4% of the sample) showed highest scores in factors denoting psychopathy, neuroticism and impulsive features, and appeared to constitute a borderline psychopathology group; Cluster 3 (32.4% of the sample) was characterized by few differences in personality pathology in comparison to the normal population sample. Cluster membership was associated with DSM-IV diagnosis -- a large proportion of patients with anorexia nervosa were members of Cluster 1. An empirical classification of eating-disordered patients derived from dimensional assessment of personality pathology identified three groups with clinical relevance.
How to approach the ENS: various ways to analyse motility disorders in situ and in vitro.
Schäfer, K-H; Hagl, C I; Wink, E; Holland-Cunz, S; Klotz, M; Rauch, U; Waag, K-L
2003-06-01
Motility disorders of the human intestine are so variable that they cannot be diagnosed by just one technique. Their aetiology is obviously so varied that they have to be approached with a broad range of technical methods. These reach from the simple haematoxylin-stained section to the isolation of stem or precursor cells. In this study, various methods to investigate the enteric nervous system and its surrounding tissue are demonstrated. While sections from paraffin-embedded material or cryostat sections provide only a two-dimensional perspective of the ENS, the whole-mount method yields three-dimensional perspectives of large areas of the gut wall. The three-dimensional impression can even be enhanced by electron microscopy of the isolated ENS. Dynamical aspects of ENS development can be tackled by in vitro studies. The myenteric plexus can be isolated and cultivated under the influence of the microenvironment (protein extracts). Although the postnatal myenteric plexus is not fully developed, the choice of embryological neuronal cells seems to be more effective for certain approaches. They can be isolated from the embryonic mouse gut and cultivated under the influence of various factors. This method seems to us a valuable tool for the investigation of the aetiology of motility disorders, although only a "complete" approach which considers all available methods will yield at the end a clear understanding which might lead to new therapeutical concepts.
Chalmers, John A; Heathers, James A J; Abbott, Maree J; Kemp, Andrew H; Quintana, Daniel S
2016-06-03
Individuals with anxiety disorders display reduced resting-state heart rate variability (HRV), although findings have been contradictory and the role of specific symptoms has been less clear. It is possible that HRV reductions may transcend diagnostic categories, consistent with dimensional-trait models of psychopathology. Here we investigated whether anxiety disorders or symptoms of anxiety, stress, worry and depression are more strongly associated with resting-state HRV. Resting-state HRV was calculated in participants with clinical anxiety (n = 25) and healthy controls (n = 58). Symptom severity measures of worry, anxiety, stress, and depression were also collected from participants, regardless of diagnosis. Participants who fulfilled DSM-IV criteria for an anxiety disorder displayed diminished HRV, a difference at trend level significance (p = .1, Hedges' g = -.37, BF10 = .84). High worriers (Total n = 41; n = 22 diagnosed with an anxiety disorder and n = 19 not meeting criteria for any psychopathology) displayed a robust reduction in resting state HRV relative to low worriers (p = .001, Hedges' g = -.75, BF10 = 28.16). The specific symptom of worry - not the diagnosis of an anxiety disorder - was associated with the most robust reductions in HRV, indicating that HRV may provide a transdiagnostic biomarker of worry. These results enhance understanding of the relationship between the cardiac autonomic nervous system and anxiety psychopathology, providing support for dimensional-trait models consistent with the Research Domain Criteria framework.
Bastiaens, Leo; Galus, James
2018-06-01
The diagnosis of Attention Deficit Hyperactivity Disorder in adults with Substance Use Disorders is complicated. A specific screening tool, such as the World Health Organization Adult ADHD Self Report Scale Screener can be the first step in identifying the condition. Recently, the screener has been revised because the Diagnostic and Statistical Manual of Mental Disorders, Fifth edition, made some changes to the criteria for Attention Deficit Hyperactivity Disorder. This study compared the screeners based upon the Fourth and Fifth edition of the Manual. One hundred and forty patients, including seventy with Attention Deficit Hyperactivity Disorder, completed both screeners, independent from a clinical diagnostic interview. The sensitivity, specificity, and predictive values were calculated based on four different scoring methods: a categorical score of three or four positive answers, and a dimensional score of twelve or fourteen. Both screening instruments appeared to perform equally without significant differences between them, no matter which scoring system was used. However, the only satisfactory result was obtained using the dimensional scoring with a cutoff of 12, providing a sensitivity and negative predictive value above 80%. This is a lower cut off than recommended in community and clinic samples. It is possible that the cut off of the screener may need to be adjusted depending on the circumstances within which it is used.
Development of a Multi-Dimensional Scale for PDD and ADHD
ERIC Educational Resources Information Center
Funabiki, Yasuko; Kawagishi, Hisaya; Uwatoko, Teruhisa; Yoshimura, Sayaka; Murai, Toshiya
2011-01-01
A novel assessment scale, the multi-dimensional scale for pervasive developmental disorder (PDD) and attention-deficit/hyperactivity disorder (ADHD) (MSPA), is reported. Existing assessment scales are intended to establish each diagnosis. However, the diagnosis by itself does not always capture individual characteristics or indicate the level of…
Bansal, Ravi; Liu, Jun; Gerber, Andrew J.; Goh, Suzanne; Posner, Jonathan; Colibazzi, Tiziano; Algermissen, Molly; Chiang, I-Chin; Russell, James A.; Peterson, Bradley S.
2015-01-01
The Affective Circumplex Model holds that emotions can be described as linear combinations of two underlying, independent neurophysiological systems (arousal, valence). Given research suggesting individuals with autism spectrum disorders (ASD) have difficulty processing emotions, we used the circumplex model to compare how individuals with ASD and typically-developing (TD) individuals respond to facial emotions. Participants (51 ASD, 80 TD) rated facial expressions along arousal and valence dimensions; we fitted closed, smooth, 2-dimensional curves to their ratings to examine overall circumplex contours. We modeled individual and group influences on parameters describing curve contours to identify differences in dimensional effects across groups. Significant main effects of diagnosis indicated the ASD-group’ s ratings were constricted for the entire circumplex, suggesting range constriction across all emotions. Findings did not change when covarying for overall intelligence. PMID:24234677
Chen, Yunzhong; Green, Robert J; Sutarto, Ronny; He, Feizhou; Linderoth, Søren; Sawatzky, George A; Pryds, Nini
2017-11-08
Polar discontinuities and redox reactions provide alternative paths to create two-dimensional electron liquids (2DELs) at oxide interfaces. Herein, we report high mobility 2DELs at interfaces involving SrTiO 3 (STO) achieved using polar La 7/8 Sr 1/8 MnO 3 (LSMO) buffer layers to manipulate both polarities and redox reactions from disordered overlayers grown at room temperature. Using resonant X-ray reflectometry experiments, we quantify redox reactions from oxide overlayers on STO as well as polarity induced electronic reconstruction at epitaxial LSMO/STO interfaces. The analysis reveals how these effects can be combined in a STO/LSMO/disordered film trilayer system to yield high mobility modulation doped 2DELs, where the buffer layer undergoes a partial transformation from perovskite to brownmillerite structure. This uncovered interplay between polar discontinuities and redox reactions via buffer layers provides a new approach for the design of functional oxide interfaces.
Resonant tunneling in GaAs/Al xGa 1-xAs superlattices with aperiodic potential profiles
NASA Astrophysics Data System (ADS)
Djelti, R.; Aziz, Z.; Bentata, S.; Besbes, A.
2011-12-01
Using the exact Airy function formalism and the transfer-matrix technique, we have numerically investigated in this paper the effect of intentional correlations in spatial disorder on transmission properties of one-dimensional superlattices. Such systems consist of two different structures randomly distributed along the growth direction, with the additional constraint that barriers (wells) of one kind always appear in triply. It is shown that the intentional correlations in disorder and superlattices structural parameters are responsible to obtain resonant tunneling in aperiodic structure.
Rabany, Liron; Diefenbach, Gretchen J; Bragdon, Laura B; Pittman, Brian P; Zertuche, Luis; Tolin, David F; Goethe, John W; Assaf, Michal
2017-06-01
Generalized anxiety disorder (GAD) and social anxiety disorder (SAD) are currently considered distinct diagnostic categories. Accumulating data suggest the study of anxiety disorders may benefit from the use of dimensional conceptualizations. One such dimension of shared dysfunction is emotion regulation (ER). The current study evaluated dimensional (ER) and categorical (diagnosis) neurocorrelates of resting-state functional connectivity (rsFC) in participants with GAD and SAD and healthy controls (HC). Functional magnetic resonance imaging (fMRI) rsFC was estimated between all regions of the default mode network (DMN), salience network (SN), and bilateral amygdala (N = 37: HC-19; GAD-10; SAD-8). Thereafter, rsFC was predicted by both ER, (using the Difficulties in Emotion Regulation Scale [DERS]), and diagnosis (DSM-5) within a single unified analysis of covariance (ANCOVA). For the ER dimension, there was a significant association between impaired ER abilities and anticorrelated rsFC of amygdala and DMN (L.amygdala-ACC: p = 0.011, beta = -0.345), as well as amygdala and SN (L.amygdala-posterior cingulate cortex [PCC]: p = 0.032, beta = -0.409). Diagnostic status was significantly associated with rsFC differences between the SAD and HC groups, both within the DMN (PCC-MPFC: p = 0.009) and between the DMN and SN (R.LP-ACC: p = 0.010). Although preliminary, our results exemplify the potential contribution of the dimensional approach to the study of GAD and SAD and support a combined categorical and dimensional model of rsFC of anxiety disorders.
Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons.
Cardano, Filippo; D'Errico, Alessio; Dauphin, Alexandre; Maffei, Maria; Piccirillo, Bruno; de Lisio, Corrado; De Filippis, Giulio; Cataudella, Vittorio; Santamato, Enrico; Marrucci, Lorenzo; Lewenstein, Maciej; Massignan, Pietro
2017-06-01
Topological insulators are fascinating states of matter exhibiting protected edge states and robust quantized features in their bulk. Here we propose and validate experimentally a method to detect topological properties in the bulk of one-dimensional chiral systems. We first introduce the mean chiral displacement, an observable that rapidly approaches a value proportional to the Zak phase during the free evolution of the system. Then we measure the Zak phase in a photonic quantum walk of twisted photons, by observing the mean chiral displacement in its bulk. Next, we measure the Zak phase in an alternative, inequivalent timeframe and combine the two windings to characterize the full phase diagram of this Floquet system. Finally, we prove the robustness of the measure by introducing dynamical disorder in the system. This detection method is extremely general and readily applicable to all present one-dimensional platforms simulating static or Floquet chiral systems.
Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons
Cardano, Filippo; D’Errico, Alessio; Dauphin, Alexandre; Maffei, Maria; Piccirillo, Bruno; de Lisio, Corrado; De Filippis, Giulio; Cataudella, Vittorio; Santamato, Enrico; Marrucci, Lorenzo; Lewenstein, Maciej; Massignan, Pietro
2017-01-01
Topological insulators are fascinating states of matter exhibiting protected edge states and robust quantized features in their bulk. Here we propose and validate experimentally a method to detect topological properties in the bulk of one-dimensional chiral systems. We first introduce the mean chiral displacement, an observable that rapidly approaches a value proportional to the Zak phase during the free evolution of the system. Then we measure the Zak phase in a photonic quantum walk of twisted photons, by observing the mean chiral displacement in its bulk. Next, we measure the Zak phase in an alternative, inequivalent timeframe and combine the two windings to characterize the full phase diagram of this Floquet system. Finally, we prove the robustness of the measure by introducing dynamical disorder in the system. This detection method is extremely general and readily applicable to all present one-dimensional platforms simulating static or Floquet chiral systems. PMID:28569741
Luttinger liquid behavior in low-dimensional systems
NASA Astrophysics Data System (ADS)
Sandler, Nancy Patricia
The purpose of this thesis is the study of different low-dimensional systems displaying the physical properties of Luttinger liquids (LL). In recent years, the LL model has been successfully applied to understand the transport properties, and recently noise measurements, of low-dimensional electronic systems. In this thesis, I focus on quantum wires (QW) and two-dimensional systems exhibiting the fractional quantum Hall effect (FQHE) as two different examples of systems showing Luttinger liquid behavior. In the case of QW, I analyze the effect of the dimensionality crossover on the finite temperature conductance in weakly disordered quantum wires. I show that although the quasi-one-dimensional QW exhibits a typical Luttinger liquid behavior for a small number of channels in the wire, the well-established Fermi liquid picture sets in when the number of channels increases. As another example of LL behavior, I study junctions between fractional quantum Hall (FQH) systems with different filling fractions. These junctions display a rich and interesting array of new physics. For example, I show that, by analyzing the scattering processes at the junction site, processes analogous to Andreev reflection present in superconductor/normal metal junctions are also present in the FQH junctions. I also analyze the noise spectrum of FQH junctions, and show that the scale of the noise spectrum is determined by the conductance of the junction. Furthermore, I discuss the implications of these results on the interpretation of recent experiments in terms of quasiparticles with fractional charge. Finally, I introduce the concept of generalized noise Wilson ratios as universal quotients between noise amplitudes in the thermal and shot noise regimes and discuss their experimental consequences.
PERSONALITY DISORDER RESEARCH AGENDA FOR THE DSM–V
Widiger, Thomas A.; Simonsen, Erik; Krueger, Robert; Livesley, W. John; Verheul, Roel
2008-01-01
The American Psychiatric Association is sponsoring a series of international conferences to set a research agenda for the development of the next edition of the diagnostic manual. The first conference in this series, “Dimensional Models of Personality Disorder: Etiology, Pathology, Phenomenology, & Treatment,” was devoted to reviewing the existing research and setting a future research agenda that would be most effective in leading the field toward a dimensional classification of personality disorder. The purpose of this article, authored by the Steering Committee of this conference, was to provide a summary of the conference papers and their recommendations for research. Covered herein are the reviews and recommendations concerning alternative dimensional models of personality disorder, behavioral genetics and gene mapping, neurobiological mechanisms, childhood antecedents, cross–cultural issues, Axes I and II continuity, coverage and cutoff points for diagnosis, and clinical utility. PMID:16175740
Almost conserved operators in nearly many-body localized systems
NASA Astrophysics Data System (ADS)
Pancotti, Nicola; Knap, Michael; Huse, David A.; Cirac, J. Ignacio; Bañuls, Mari Carmen
2018-03-01
We construct almost conserved local operators, that possess a minimal commutator with the Hamiltonian of the system, near the many-body localization transition of a one-dimensional disordered spin chain. We collect statistics of these slow operators for different support sizes and disorder strengths, both using exact diagonalization and tensor networks. Our results show that the scaling of the average of the smallest commutators with the support size is sensitive to Griffiths effects in the thermal phase and the onset of many-body localization. Furthermore, we demonstrate that the probability distributions of the commutators can be analyzed using extreme value theory and that their tails reveal the difference between diffusive and subdiffusive dynamics in the thermal phase.
Step Density Profiles in Localized Chains
NASA Astrophysics Data System (ADS)
De Roeck, Wojciech; Dhar, Abhishek; Huveneers, François; Schütz, Marius
2017-06-01
We consider two types of strongly disordered one-dimensional Hamiltonian systems coupled to baths (energy or particle reservoirs) at the boundaries: strongly disordered quantum spin chains and disordered classical harmonic oscillators. These systems are believed to exhibit localization, implying in particular that the conductivity decays exponentially in the chain length L. We ask however for the profile of the (very slowly) transported quantity in the steady state. We find that this profile is a step-function, jumping in the middle of the chain from the value set by the left bath to the value set by the right bath. This is confirmed by numerics on a disordered quantum spin chain of 9 spins and on much longer chains of harmonic oscillators. From theoretical arguments, we find that the width of the step grows not faster than √{L}, and we confirm this numerically for harmonic oscillators. In this case, we also observe a drastic breakdown of local equilibrium at the step, resulting in a heavily oscillating temperature profile.
The structural and electrical evolution of graphene by oxygen plasma-induced disorder.
Kim, Dong Chul; Jeon, Dae-Young; Chung, Hyun-Jong; Woo, YunSung; Shin, Jai Kwang; Seo, Sunae
2009-09-16
Evolution of a single graphene layer with disorder generated by remote oxygen plasma irradiation is investigated using atomic force microscopy, Raman spectroscopy and electrical measurement. Gradual changes of surface morphology from planar graphene to isolated granular structure associated with a decrease of transconductance are accounted for by two-dimensional percolative conduction by disorder and the oxygen plasma-induced doping effect. The corresponding evolution of Raman spectra of graphene shows several peculiarities such as a sudden appearance of a saturated D peak followed by a linear decrease in its intensity, a relatively inert characteristic of a D' peak and a monotonic increase of a G peak position as the exposure time to oxygen plasma increases. These are discussed in terms of a disorder-induced change of Raman spectra in the graphite system.
Tavora, Marco; Rosch, Achim; Mitra, Aditi
2014-07-04
The dynamics of interacting bosons in one dimension following the sudden switching on of a weak disordered potential is investigated. On time scales before quasiparticles scatter (prethermalized regime), the dephasing from random elastic forward scattering causes all correlations to decay exponentially fast, but the system remains far from thermal equilibrium. For longer times, the combined effect of disorder and interactions gives rise to inelastic scattering and to thermalization. A novel quantum kinetic equation accounting for both disorder and interactions is employed to study the dynamics. Thermalization turns out to be most effective close to the superfluid-Bose-glass critical point where nonlinearities become more and more important. The numerically obtained thermalization times are found to agree well with analytic estimates.
Disordered topological wires in a momentum-space lattice
NASA Astrophysics Data System (ADS)
Meier, Eric; An, Fangzhao; Gadway, Bryce
2017-04-01
One of the most interesting aspects of topological systems is the presence of boundary modes which remain robust in the presence of weak disorder. We explore this feature in the context of one-dimensional (1D) topological wires where staggered tunneling strengths lead to the creation of a mid-gap state in the lattice band structure. Using Bose-condensed 87Rb atoms in a 1D momentum-space lattice, we probe the robust topological character of this model when subjected to both site energy and tunneling disorder. We observe a transition to a topologically trivial phase when tailored disorder is applied, which we detect through both charge-pumping and Hamiltonian-quenching protocols. In addition, we report on efforts to probe the influence of interactions in topological momentum-space lattices.
Classifying psychosis--challenges and opportunities.
Gaebel, Wolfgang; Zielasek, Jürgen; Cleveland, Helen-Rose
2012-12-01
Within the efforts to revise ICD-10 and DSM-IV-TR, work groups on the classification of psychotic disorders appointed by the World Health Organization (WHO) and the American Psychiatric Association (APA) have proposed several changes to the corresponding classification criteria of schizophrenia and other psychotic disorders in order to increase the clinical utility, reliability and validity of these diagnoses. These proposed revisions are subject to field trials with the objective of studying whether they will lead to an improvement of the classification systems in comparison to their previous versions. Both a challenge and an opportunity, the APA and WHO have also considered harmonizing between the two classifications. The current status of both suggests that this goal can only be met in part. The main proposed revisions include changes to the number and types of symptoms of schizophrenia, the replacement of existing schizophrenia subtypes with dimensional assessments or symptom specifiers, different modifications of the criteria for schizoaffective disorder, a reorganization of the delusional disorders and the acute and transient psychotic disorders in ICD-11, as well as the revision of course and psychomotor symptoms/catatonia specifiers in both classification systems.
Disordered Kitaev chains with long-range pairing.
Cai, Xiaoming
2017-03-22
We study the competition of disorder and superconductivity for a generalized Kitaev model in incommensurate potentials. The generalized Kitaev model describes one dimensional spinless fermions with long-range p-wave superconducting pairing, which decays with distance l as a power law ∼[Formula: see text]. We focus on the transition from the topological superconducting phase to the topologically trivial Anderson localized phase, and effects of the exponent α on this phase transition. In the topological superconducting phase, for a system under open boundary condition the amplitude of zero-mode Majorana fermion has a hybrid exponential-algebraic decay as the distance increases from the edge. In the Anderson localized phase, some single-particle states remain critical for very strong disorders and the number of critical states increases as α decreases. In addition, except for critical disorders, the correlation function always has an exponential decay at the short range and an algebraic decay at the long range. Phase transition points are also numerically determined and the topological phase transition happens earlier at a smaller disorder strength for a system with smaller α.
Can disorder act as a chemical pressure? An optical study of the Hubbard model
NASA Astrophysics Data System (ADS)
Barman, H.; Laad, M. S.; Hassan, S. R.
2018-05-01
The optical properties have been studied using the dynamical mean-field theory on a disordered Hubbard model. Despite the fact that disorder turns a metal to an insulator in high dimensional correlated materials, we notice that it can enhance certain metallic behavior as if a chemical pressure is applied to the system resulting in an increase of the effective lattice bandwidth (BW). We study optical properties in such a scenario and compare results with experiments where the BW is changed through isovalent chemical substitution (keeping electron filling unaltered) and obtain remarkable similarities vindicating our claim. We also make the point that these similarities differ from some other forms of BW tuned optical effects.
An integrative dimensional classification of personality disorder.
Widiger, Thomas A; Livesley, W John; Clark, Lee Anna
2009-09-01
Psychological assessment research concerns how to describe psychological dysfunction in ways that are both valid and useful. Recent advances in assessment research hold the promise of facilitating significant improvements in description and diagnosis. One such contribution is in the classification of personality disorder symptomatology. The American Psychiatric Association's diagnostic manual considers personality disorders to be categorically distinct entities. However, research assessing personality disorders has consistently supported a dimensional perspective. Recognition of the many limitations of categorical models of personality disorder classification has led to the development of a variety of alternative proposals, which further research has indicated can be integrated within a common hierarchical structure. This article offers an alternative integrated dimensional model of normal and abnormal personality structure, and it illustrates how such a model could be used clinically to describe patients' normal adaptive personality traits as well as their maladaptive personality traits that could provide the basis for future assessments of personality disorder. The empirical support, feasibility, and clinical utility of the proposal are discussed. Points of ambiguity and dispute are highlighted, and suggestions for future research are provided. Copyright 2009 APA, all rights reserved.
Computational studies of model disordered and strongly correlated electronic systems
NASA Astrophysics Data System (ADS)
Johri, Sonika
The theory of non-interacting electrons in perfect crystals was completed soon after the advent of quantum mechanics. Though capable of describing electron behaviour in most simple solid state physics systems, this approach falls woefully short of describing condensed matter systems of interest today, and designing the quantum devices of the future. The reason is that nature is never free of disorder, and emergent properties arising from interactions can be clearly seen in the pure, low-dimensional materials that can be engineered today. In this thesis, I address some salient problems in disordered and correlated electronic systems using modern numerical techniques like sparse matrix diagonalization, density matrix renormalization group (DMRG), and large disorder renormalization group (LDRG) methods. The pioneering work of P. W. Anderson, in 1958, led to an understanding of how an electron can stop diffusing and become localized in a region of space when a crystal is sufficiently disordered. Thus disorder can lead to metal-insulator transitions, for instance, in doped semiconductors. Theoretical research on the Anderson disorder model since then has mostly focused on the localization-delocalization phase transition. The localized phase in itself was not thought to exhibit any interesting physics. Our work has uncovered a new singularity in the disorder-averaged inverse participation ratio of wavefunctions within the localized phase, arising from resonant states. The effects of system size, dimension and disorder distribution on the singularity have been studied. A novel wavefunction-based LDRG technique has been designed for the Anderson model which captures the singular behaviour. While localization is well established for a single electron in a disordered potential, the situation is less clear in the case of many interacting particles. Most studies of a many-body localized phase are restricted to a system which is isolated from its environment. Such a condition cannot be achieved perfectly in experiments. A chapter of this thesis is devoted to studying signatures of incomplete localization in a disordered system with interacting particles which is coupled to a bath. . Strongly interacting particles can also give rise to topological phases of matter that have exotic emergent properties, such as quasiparticles with fractional charges and anyonic, or perhaps even non-Abelian statistics. In addition to their intrinsic novelty, these particles (e.g. Majorana fermions) may be the building blocks of future quantum computers. The third part of my thesis focuses on the best experimentally known realizations of such systems - the fractional quantum Hall effect (FQHE) which occurs in two-dimensional electron gases in a strong perpendicular magnetic field. It has been observed in systems such as semiconductor heterostructures and, more recently, graphene. I have developed software for exact diagonalization of the many-body FQHE problem on the surface of a cylinder, a hitherto unstudied type of geometry. This geometry turns out to be optimal for the DMRG algorithm. Using this new geometry, I have studied properties of various fractionally-filled states, computing the overlap between exact ground states and model wavefunctions, their edge excitations, and entanglement spectra. I have calculated the sizes and tunneling amplitudes of quasiparticles, information which is needed to design the interferometers used to experimentally measure their Aharanov-Bohm phase. I have also designed numerical probes of the recently discovered geometric degree of freedom of FQHE states.
Glassy phase in quenched disordered crystalline membranes
NASA Astrophysics Data System (ADS)
Coquand, O.; Essafi, K.; Kownacki, J.-P.; Mouhanna, D.
2018-03-01
We investigate the flat phase of D -dimensional crystalline membranes embedded in a d -dimensional space and submitted to both metric and curvature quenched disorders using a nonperturbative renormalization group approach. We identify a second-order phase transition controlled by a finite-temperature, finite-disorder fixed point unreachable within the leading order of ɛ =4 -D and 1 /d expansions. This critical point divides the flow diagram into two basins of attraction: that associated with the finite-temperature fixed point controlling the long-distance behavior of disorder-free membranes and that associated with the zero-temperature, finite-disorder fixed point. Our work thus strongly suggests the existence of a whole low-temperature glassy phase for quenched disordered crystalline membranes and, possibly, for graphene and graphene-like compounds.
Dimensional and Cross-Cutting Assessment in the "DSM-5"
ERIC Educational Resources Information Center
Jones, K. Dayle
2012-01-01
A significant proposed change to the 5th edition of the "Diagnostic and Statistical Manual of Mental Disorders" ("DSM-5") that will significantly affect the way counselors diagnose mental disorders is the addition of dimensional assessments to the categorical diagnoses. The author reviews the current "DSM"'s (4th ed., text rev.; American…
Patterns of Visual Attention to Faces and Objects in Autism Spectrum Disorder
ERIC Educational Resources Information Center
McPartland, James C.; Webb, Sara Jane; Keehn, Brandon; Dawson, Geraldine
2011-01-01
This study used eye-tracking to examine visual attention to faces and objects in adolescents with autism spectrum disorder (ASD) and typical peers. Point of gaze was recorded during passive viewing of images of human faces, inverted human faces, monkey faces, three-dimensional curvilinear objects, and two-dimensional geometric patterns.…
NASA Astrophysics Data System (ADS)
Mehboudi, Mehrshad; Barraza-Lopez, Salvador; Dorio, Alex M.; Zhu, Wenjuan; van der Zande, Arend; Churchill, Hugh O. H.; Pacheco-Sanjuan, Alejandro A.; Harriss, Edmund O.; Kumar, Pradeep
Mono-layers of black phosphorus and other two dimensional materials such as mono-layers of SiSe, GeS, GeSe, GeTe, Sns, SnSe, and SnTe with a similar crystalline structure have a four-fold degenerate ground state that leads to two-dimensional disorder at finite temperature. Disorder happens when neighboring atoms gently re-accommodate bonds beyond a critical temperature. In this talk, the effect of atomic numbers on the transition temperature will be discussed. In addition Car-Parinello molecular dynamics calculations at temperatures 30, 300 and 1000 K were performed on supercells containing more than five hundred atoms and the results from these calculations confirm the transition onto a two-dimensional disordered structure past the critical temperature, which is close to room temperature for many of these compounds. References: M. Mehboudi, A.M. Dorio, W. Zhu, A. van der Zande, H.O.H. Churchill, A.A. Pacheco Sanjuan, E.O.H. Harris, P. Kumar, and S. Barraza-Lopez. arXiv:1510.09153.
TACKETT, JENNIFER L.; BALSIS, STEVE; OLTMANNS, THOMAS F.; KRUEGER, ROBERT F.
2010-01-01
Proposed changes in the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-V) include replacing current personality disorder (PD) categories on Axis II with a taxonomy of dimensional maladaptive personality traits. Most of the work on dimensional models of personality pathology, and on personality disorders per se, has been conducted on young and middle-aged adult populations. Numerous questions remain regarding the applicability and limitations of applying various PD models to early and later life. In the present paper, we provide an overview of such dimensional models and review current proposals for conceptualizing PDs in DSM-V. Next, we extensively review existing evidence on the development, measurement, and manifestation of personality pathology in early and later life focusing on those issues deemed most relevant for informing DSM-V. Finally, we present overall conclusions regarding the need to incorporate developmental issues in conceptualizing PDs in DSM-V and highlight the advantages of a dimensional model in unifying PD perspectives across the life span. PMID:19583880
Attractive Hubbard model with disorder and the generalized Anderson theorem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuchinskii, E. Z., E-mail: kuchinsk@iep.uran.ru; Kuleeva, N. A., E-mail: strigina@iep.uran.ru; Sadovskii, M. V., E-mail: sadovski@iep.uran.ru
Using the generalized DMFT+Σ approach, we study the influence of disorder on single-particle properties of the normal phase and the superconducting transition temperature in the attractive Hubbard model. A wide range of attractive potentials U is studied, from the weak coupling region, where both the instability of the normal phase and superconductivity are well described by the BCS model, to the strong-coupling region, where the superconducting transition is due to Bose-Einstein condensation (BEC) of compact Cooper pairs, formed at temperatures much higher than the superconducting transition temperature. We study two typical models of the conduction band with semi-elliptic and flatmore » densities of states, respectively appropriate for three-dimensional and two-dimensional systems. For the semi-elliptic density of states, the disorder influence on all single-particle properties (e.g., density of states) is universal for an arbitrary strength of electronic correlations and disorder and is due to only the general disorder widening of the conduction band. In the case of a flat density of states, universality is absent in the general case, but still the disorder influence is mainly due to band widening, and the universal behavior is restored for large enough disorder. Using the combination of DMFT+Σ and Nozieres-Schmitt-Rink approximations, we study the disorder influence on the superconducting transition temperature T{sub c} for a range of characteristic values of U and disorder, including the BCS-BEC crossover region and the limit of strong-coupling. Disorder can either suppress T{sub c} (in the weak-coupling region) or significantly increase T{sub c} (in the strong-coupling region). However, in all cases, the generalized Anderson theorem is valid and all changes of the superconducting critical temperature are essentially due to only the general disorder widening of the conduction band.« less
Marcus, David K.; Barry, Tammy D.
2010-01-01
An understanding of the latent structure of attention-deficit/hyperactivity disorder (ADHD) is essential for developing causal models of this disorder. Although some researchers have presumed that ADHD is dimensional and others have assumed that it is taxonic, there has been relatively little research directly examining the latent structure of ADHD. The authors conducted a set of taxometric analyses using data from the NICHD Study of Early Child Care and Youth Development (ns between 667–1078). The results revealed a dimensional latent structure across a variety of different analyses and sets of indicators, for inattention, hyperactivity/impulsivity, and ADHD. Furthermore, analyses of correlations with associated features indicated that dimensional models demonstrated stronger validity coefficients with these criterion measures than dichotomous models. These findings jibe with recent research on the genetic basis of ADHD and with contemporary models of ADHD. PMID:20973595
Koerting, Johanna; Pukrop, Ralf; Klein, Philipp; Ritter, Kathrin; Knowles, Mark; Banzhaf, Anke; Gentschow, Laura; Vater, Aline; Heuser, Isabella; Colla, Michael; Roepke, Stefan
2016-08-01
This pilot study was a comparison of dimensional models assessing personality traits and personality pathology in a clinical sample of adults diagnosed with ADHD and adults diagnosed with borderline personality disorder (BPD), and a nonclinical control sample of healthy adults. Personality traits were assessed using the NEO-Personality Inventory-Revised (NEO-PI-R) and dimensional personality pathology with the Dimensional Assessment of Personality Pathology-Basic Questionnaire (DAPP-BQ). Adults with ADHD and BPD produced higher Emotional Dysregulation/Neuroticism and Dissocial Behavior scores than controls. For the Extraversion/Inhibitedness scale, adults with BPD produced significantly lower scores than adults with ADHD and controls. On the Conscientiousness/Compulsivity domains, Conscientiousness scores were lower for both disorders, whereas low Compulsivity values were specific to adult ADHD. Our results suggest that patients with adult ADHD and BPD have distinguishable profiles of personality traits and personality pathology. © The Author(s) 2012.
Marcus, David K; Barry, Tammy D
2011-05-01
An understanding of the latent structure of attention-deficit/hyperactivity disorder (ADHD) is essential for developing causal models of this disorder. Although some researchers have presumed that ADHD is dimensional and others have assumed that it is taxonic, there has been relatively little research directly examining the latent structure of ADHD. The authors conducted a set of taxometric analyses using data from the NICHD Study of Early Child Care and Youth Development (ns between 667 and 1,078). The results revealed a dimensional latent structure across a variety of different analyses and sets of indicators for inattention, hyperactivity/impulsivity, and ADHD. Furthermore, analyses of correlations with associated features indicated that dimensional models demonstrated stronger validity coefficients with these criterion measures than dichotomous models. These findings jibe with recent research on the genetic basis of ADHD and with contemporary models of ADHD.
All the world’s a (clinical) stage: Rethinking bipolar disorder from a longitudinal perspective
Frank, Ellen; Nimgaonkar, Vishwajit L.; Phillips, Mary L.; Kupfer, David J.
2014-01-01
Psychiatric disorders have traditionally been classified using a static, categorical approach. However, this approach falls short in facilitating understanding of the development, common comorbid diagnoses, prognosis, and treatment of these disorders. We propose a “staging” model of bipolar disorder that integrates genetic and neural information with mood and activity symptoms to describe how the disease progresses over time. From an early, asymptomatic, but “at risk” stage to severe, chronic illness, each stage is described with associated neuroimaging findings as well as strategies for mapping genetic risk factors. Integrating more biologic information relating to cardiovascular and endocrine systems, refining methodology for modeling dimensional approaches to disease, and developing outcome measures will all be crucial in examining the validity of this model. Ultimately, this approach should aid in developing targeted interventions for each group that will reduce the significant morbidity and mortality associated with bipolar disorder. PMID:25048003
Topologically protected excitons in porphyrin thin films
NASA Astrophysics Data System (ADS)
Yuen-Zhou, Joel; Saikin, Semion K.; Yao, Norman Y.; Aspuru-Guzik, Alán
2014-11-01
The control of exciton transport in organic materials is of fundamental importance for the development of efficient light-harvesting systems. This transport is easily deteriorated by traps in the disordered energy landscape. Here, we propose and analyse a system that supports topological Frenkel exciton edge states. Backscattering of these chiral Frenkel excitons is prohibited by symmetry, ensuring that the transport properties of such a system are robust against disorder. To implement our idea, we propose a two-dimensional periodic array of tilted porphyrins interacting with a homogeneous magnetic field. This field serves to break time-reversal symmetry and results in lattice fluxes that mimic the Aharonov-Bohm phase acquired by electrons. Our proposal is the first blueprint for realizing topological phases of matter in molecular aggregates and suggests a paradigm for engineering novel excitonic materials.
Topologically protected excitons in porphyrin thin films.
Yuen-Zhou, Joel; Saikin, Semion K; Yao, Norman Y; Aspuru-Guzik, Alán
2014-11-01
The control of exciton transport in organic materials is of fundamental importance for the development of efficient light-harvesting systems. This transport is easily deteriorated by traps in the disordered energy landscape. Here, we propose and analyse a system that supports topological Frenkel exciton edge states. Backscattering of these chiral Frenkel excitons is prohibited by symmetry, ensuring that the transport properties of such a system are robust against disorder. To implement our idea, we propose a two-dimensional periodic array of tilted porphyrins interacting with a homogeneous magnetic field. This field serves to break time-reversal symmetry and results in lattice fluxes that mimic the Aharonov-Bohm phase acquired by electrons. Our proposal is the first blueprint for realizing topological phases of matter in molecular aggregates and suggests a paradigm for engineering novel excitonic materials.
Numerical analysis of the Anderson localization
NASA Astrophysics Data System (ADS)
Markoš, P.
2006-10-01
The aim of this paper is to demonstrate, by simple numerical simulations, the main transport properties of disordered electron systems. These systems undergo the metal insulator transition when either Fermi energy crosses the mobility edge or the strength of the disorder increases over critical value. We study how disorder affects the energy spectrum and spatial distribution of electronic eigenstates in the diffusive and insulating regime, as well as in the critical region of the metal-insulator transition. Then, we introduce the transfer matrix and conductance, and we discuss how the quantum character of the electron propagation influences the transport properties of disordered samples. In the weakly disordered systems, the weak localization and anti-localization as well as the universal conductance fluctuation are numerically simulated and discussed. The localization in the one dimensional system is described and interpreted as a purely quantum effect. Statistical properties of the conductance in the critical and localized regimes are demonstrated. Special attention is given to the numerical study of the transport properties of the critical regime and to the numerical verification of the single parameter scaling theory of localization. Numerical data for the critical exponent in the orthogonal models in dimension 2 < d, ≤ 5 are compared with theoretical predictions. We argue that the discrepancy between the theory and numerical data is due to the absence of the self-averaging of transmission quantities. This complicates the analytical analysis of the disordered systems. Finally, theoretical methods of description of weakly disordered systems are explained and their possible generalization to the localized regime is discussed. Since we concentrate on the one-electron propagation at zero temperature, no effects of electron-electron interaction and incoherent scattering are discussed in the paper.
Gauge theory for finite-dimensional dynamical systems.
Gurfil, Pini
2007-06-01
Gauge theory is a well-established concept in quantum physics, electrodynamics, and cosmology. This concept has recently proliferated into new areas, such as mechanics and astrodynamics. In this paper, we discuss a few applications of gauge theory in finite-dimensional dynamical systems. We focus on the concept of rescriptive gauge symmetry, which is, in essence, rescaling of an independent variable. We show that a simple gauge transformation of multiple harmonic oscillators driven by chaotic processes can render an apparently "disordered" flow into a regular dynamical process, and that there exists a strong connection between gauge transformations and reduction theory of ordinary differential equations. Throughout the discussion, we demonstrate the main ideas by considering examples from diverse fields, including quantum mechanics, chemistry, rigid-body dynamics, and information theory.
Cai, X
2014-04-16
The effect of the incommensurate potential is studied for the one-dimensional p-wave superconductor. It is determined by analyzing various properties, such as the superconducting gap, the long-range order of the correlation function, the inverse participation ratio and the Z2 topological invariant, etc. In particular, two important aspects of the effect are investigated: (1) as disorder, the incommensurate potential destroys the superconductivity and drives the system into the Anderson localized phase; (2) as a quasi-periodic potential, the incommensurate potential causes band splitting and turns the system with certain chemical potential into the band insulator phase. A full phase diagram is also presented in the chemical potential-incommensurate potential strength plane.
NASA Astrophysics Data System (ADS)
Rotter, Stefan; Aigner, Florian; Burgdörfer, Joachim
2007-03-01
We investigate the statistical distribution of transmission eigenvalues in phase-coherent transport through quantum dots. In two-dimensional ab initio simulations for both clean and disordered two-dimensional cavities, we find markedly different quantum-to-classical crossover scenarios for these two cases. In particular, we observe the emergence of “noiseless scattering states” in clean cavities, irrespective of sharp-edged entrance and exit lead mouths. We find the onset of these “classical” states to be largely independent of the cavity’s classical chaoticity, but very sensitive with respect to bulk disorder. Our results suggest that for weakly disordered cavities, the transmission eigenvalue distribution is determined both by scattering at the disorder potential and the cavity walls. To properly account for this intermediate parameter regime, we introduce a hybrid crossover scheme, which combines previous models that are valid in the ballistic and the stochastic limit, respectively.
Simulation of the zero-temperature behavior of a three-dimensional elastic medium
NASA Astrophysics Data System (ADS)
McNamara, David; Middleton, A. Alan; Zeng, Chen
1999-10-01
We have performed numerical simulation of a three-dimensional elastic medium, with scalar displacements, subject to quenched disorder. In the absence of topological defects this system is equivalent to a (3+1)-dimensional interface subject to a periodic pinning potential. We have applied an efficient combinatorial optimization algorithm to generate exact ground states for this interface representation. Our results indicate that this Bragg glass is characterized by power law divergences in the structure factor S(k)~Ak-3. We have found numerically consistent values of the coefficient A for two lattice discretizations of the medium, supporting universality for A in the isotropic systems considered here. We also examine the response of the ground state to the change in boundary conditions that corresponds to introducing a single dislocation loop encircling the system. The rearrangement of the ground state caused by this change is equivalent to the domain wall of elastic deformations which span the dislocation loop. Our results indicate that these domain walls are highly convoluted, with a fractal dimension df=2.60(5). We also discuss the implications of the domain wall energetics for the stability of the Bragg glass phase. Elastic excitations similar to these domain walls arise when the pinning potential is slightly perturbed. As in other disordered systems, perturbations of relative strength δ introduce a new length scale L*~δ-1/ζ beyond which the perturbed ground state becomes uncorrelated with the reference (unperturbed) ground state. We have performed a scaling analysis of the response of the ground state to the perturbations and obtain ζ=0.385(40). This value is consistent with the scaling relation ζ=df/2-θ, where θ characterizes the scaling of the energy fluctuations of low energy excitations.
Prethermal time crystals in a one-dimensional periodically driven Floquet system
NASA Astrophysics Data System (ADS)
Zeng, Tian-Sheng; Sheng, D. N.
2017-09-01
Motivated by experimental observations of time-symmetry breaking behavior in a periodically driven (Floquet) system, we study a one-dimensional spin model to explore the stability of such Floquet discrete time crystals (DTCs) under the interplay between interaction and the microwave driving. For intermediate interactions and high drivings, from the time evolution of both stroboscopic spin polarization and mutual information between two ends, we show that Floquet DTCs can exist in a prethermal time regime without the tuning of strong disorder. For much weak interactions the system is a symmetry-unbroken phase, while for strong interactions it gives its way to a thermal phase. Through analyzing the entanglement dynamics, we show that large driving fields protect the prethermal DTCs from many-body localization and thermalization. Our results suggest that by increasing the spin interaction, one can drive the experimental system into optimal regime for observing a robust prethermal DTC phase.
NASA Astrophysics Data System (ADS)
Davis, L. J.; Boggess, M.; Kodpuak, E.; Deutsch, M.
2012-11-01
We report on a model for the deposition of three dimensional, aggregated nanocrystalline silver films, and an efficient numerical simulation method developed for visualizing such structures. We compare our results to a model system comprising chemically deposited silver films with morphologies ranging from dilute, uniform distributions of nanoparticles to highly porous aggregated networks. Disordered silver films grown in solution on silica substrates are characterized using digital image analysis of high resolution scanning electron micrographs. While the latter technique provides little volume information, plane-projected (two dimensional) island structure and surface coverage may be reliably determined. Three parameters governing film growth are evaluated using these data and used as inputs for the deposition model, greatly reducing computing requirements while still providing direct access to the complete (bulk) structure of the films throughout the growth process. We also show how valuable three dimensional characteristics of the deposited materials can be extracted using the simulated structures.
Müller, Matthias J; Zink, Sabrina; Koch, Eckhardt
2017-09-01
Assessment of stressors related to migration and acculturation in patients with psychiatric disorder and migration background could help improve culturally sensitive concepts of psychiatry and psychotherapy for diagnosis and treatment. The present overview delineates development and psychometric properties of an instrument (MIGSTR10) for assessment of stressors related to migration and acculturation, particularly for application in patients with psychiatric disorders. Ten migration-related stressors were derived from a qualitative content analysis of case histories of patients with psychiatric disorder and migration background and put into a suitable interview and questionnaire format (MIGSTR10; 10 questions, answer format: categorical yes/no, and dimensional 0-10) for self-assessment and observer ratings in several languages. Reliability (interrater agreement, internal consistency) and dimensionality (multi-dimensional scaling, MDS) were investigated in n = 235 patients with migration background and n = 612 indigenous German patients. Interrater agreement (ICC) for MIGSTR10 single items and sum scores (categorical and dimensional) was sufficiently high (≥.58); internal consistency (Cronbach's α) reached medium to high values (.56-.73). MDS revealed a two-dimensional solution with two item clusters (A: communication, migration history, forced marriage, homesickness, discrimination, other stressors; B: family conflicts, loss of status, feelings of shame, guilt feelings). The MIGSTR10 is a rationally developed, straightforward 10-item screening instrument with satisfactory psychometric properties for the assessment of individual and specific stressors related to migration and acculturation.
Further Comments toward a Dimensional Classification of Personality Disorder
ERIC Educational Resources Information Center
Widiger, Thomas A.; Trull, Timothy J.
2008-01-01
Responds to the comments by H. N. Garb (2007) and A. M. Ruscio (2007) on the current authors' original article "Plate tectonics in the classification of personality disorder: Shifting to a dimensional model" (2007). Unable to respond to all of Garb's and Ruscio's concerns given space limitations, the current authors attempt to respond to key…
Diagnosis and treatment of unconsummated marriage in an Iranian couple.
Bokaie, Mahshid; Khalesi, Zahra Bostani; Yasini-Ardekani, Seyed Mojtaba
2017-09-01
Unconsummated marriage is a problem among couples who would not be able to perform natural sexual intercourse and vaginal penetration. This disorder is more common in developing countries and sometimes couples would come up with non-technical and non-scientific methods to overcome their problem. Multi-dimensional approach and narrative exposure therapy used in this case. This study would report a case of unconsummated marriage between a couple after 6 years. The main problem of this couple was vaginismus and post-traumatic stress. Treatment with multi-dimensional approach for this couple included methods like narrative exposure therapy, educating the anatomy of female and male reproductive system, correcting misconceptions, educating foreplay, educating body exploring and non-sexual and sexual massage and penetrating the vagina first by women finger and then men's after relaxation. The entire stages of the treatment lasted for four sessions and at the one-month follow-up couple's satisfaction was desirable. Unconsummated marriage is one of the main sexual problems; it is more common in developing countries than developed countries and cultural factors are effective on intensifying this disorder. The use of multi-dimensional approach in this study led to expedite diagnosis and treatment of vaginismus.
Two-dimensional Ising model on random lattices with constant coordination number
NASA Astrophysics Data System (ADS)
Schrauth, Manuel; Richter, Julian A. J.; Portela, Jefferson S. E.
2018-02-01
We study the two-dimensional Ising model on networks with quenched topological (connectivity) disorder. In particular, we construct random lattices of constant coordination number and perform large-scale Monte Carlo simulations in order to obtain critical exponents using finite-size scaling relations. We find disorder-dependent effective critical exponents, similar to diluted models, showing thus no clear universal behavior. Considering the very recent results for the two-dimensional Ising model on proximity graphs and the coordination number correlation analysis suggested by Barghathi and Vojta [Phys. Rev. Lett. 113, 120602 (2014), 10.1103/PhysRevLett.113.120602], our results indicate that the planarity and connectedness of the lattice play an important role on deciding whether the phase transition is stable against quenched topological disorder.
Kerridge, Bradley T; Saha, Tulshi D; Hasin, Deborah S
2014-05-01
The categorical-dimensional status of DSM-IV (Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition) conduct disorder (CD) and antisocial personality disorder (ASPD) is a source of controversy. This study examined whether the underlying structure of DSM-IV CD and ASPD was dimensional or categorical (taxonic) among individuals with and without substance use disorders. Using a national large representative survey of U.S. adults (n = 43,093), taxometric analyses of DSM-IV CD and ASPD diagnostic criteria were conducted on the total sample and among those with and without substance use disorders. Results of three taxometric procedures were consistent in showing that the structures underlying DSM-IV CD and ASPD were clearly taxonic in the total sample and among individuals with and without substance use disorders. Comparison curve fit indices exceeded 0.57 for each model. Taxonic findings of the present study were in contrast to the dimensional results of prior taxometric research among incarcerated samples with substantial comorbidity of antisocial syndromes and substance use disorders. Results supported the categorical representation and diagnostic thresholds of ASPD and CD as defined in DSM-IV and DSM-5. That the structure of ASPD and CD may be taxonic suggests that further research on these disorders use group comparative designs in which samples with and without these disorders are compared in terms of sociodemographic and clinical correlates, comorbidity, and treatment utilization. The taxonic structure of ASPD and CD may contribute to future research on causal processes through which these antisocial syndromes develop.
Effects of nonmagnetic disorder on the energy of Yu-Shiba-Rusinov states
NASA Astrophysics Data System (ADS)
Kiendl, Thomas; von Oppen, Felix; Brouwer, Piet W.
2017-10-01
We study the sensitivity of Yu-Shiba-Rusinov states, bound states that form around magnetic scatterers in superconductors, to the presence of nonmagnetic disorder in both two and three dimensional systems. We formulate a scattering approach to this problem and reduce the effects of disorder to two contributions: disorder-induced normal reflection and a random phase of the amplitude for Andreev reflection. We find that both of these are small even for moderate amounts of disorder. In the dirty limit in which the disorder-induced mean free path is smaller than the superconducting coherence length, the variance of the energy of the Yu-Shiba-Rusinov state remains small in the ratio of the Fermi wavelength and the mean free path. This effect is more pronounced in three dimensions, where only impurities within a few Fermi wavelengths of the magnetic scatterer contribute. In two dimensions the energy variance is larger by a logarithmic factor because impurities contribute up to a distance of the order of the superconducting coherence length.
Dimensional indicators of generalized anxiety disorder severity for DSM-V.
Niles, Andrea N; Lebeau, Richard T; Liao, Betty; Glenn, Daniel E; Craske, Michelle G
2012-03-01
For DSM-V, simple dimensional measures of disorder severity will accompany diagnostic criteria. The current studies examine convergent validity and test-retest reliability of two potential dimensional indicators of worry severity for generalized anxiety disorder (GAD): percent of the day worried and number of worry domains. In study 1, archival data from diagnostic interviews from a community sample of individuals diagnosed with one or more anxiety disorders (n = 233) were used to assess correlations between percent of the day worried and number of worry domains with other measures of worry severity (clinical severity rating (CSR), age of onset, number of comorbid disorders, Penn state worry questionnaire (PSWQ)) and DSM-IV criteria (excessiveness, uncontrollability and number of physical symptoms). Both measures were significantly correlated with CSR and number of comorbid disorders, and with all three DSM-IV criteria. In study 2, test-retest reliability of percent of the day worried and number of worry domains were compared to test-retest reliability of DSM-IV diagnostic criteria in a non-clinical sample of undergraduate students (n = 97) at a large west coast university. All measures had low test-retest reliability except percent of the day worried, which had moderate test-retest reliability. Findings suggest that these two indicators capture worry severity, and percent of the day worried may be the most reliable existing indicator. These measures may be useful as dimensional measures for DSM-V. Copyright © 2012 Elsevier Ltd. All rights reserved.
Bumstead, Matt; Liang, Kunyu; Hanta, Gregory; Hui, Lok Shu; Turak, Ayse
2018-01-24
Order classification is particularly important in photonics, optoelectronics, nanotechnology, biology, and biomedicine, as self-assembled and living systems tend to be ordered well but not perfectly. Engineering sets of experimental protocols that can accurately reproduce specific desired patterns can be a challenge when (dis)ordered outcomes look visually similar. Robust comparisons between similar samples, especially with limited data sets, need a finely tuned ensemble of accurate analysis tools. Here we introduce our numerical Mathematica package disLocate, a suite of tools to rapidly quantify the spatial structure of a two-dimensional dispersion of objects. The full range of tools available in disLocate give different insights into the quality and type of order present in a given dispersion, accessing the translational, orientational and entropic order. The utility of this package allows for researchers to extract the variation and confidence range within finite sets of data (single images) using different structure metrics to quantify local variation in disorder. Containing all metrics within one package allows for researchers to easily and rapidly extract many different parameters simultaneously, allowing robust conclusions to be drawn on the order of a given system. Quantifying the experimental trends which produce desired morphologies enables engineering of novel methods to direct self-assembly.
Finite-size effects in Anderson localization of one-dimensional Bose-Einstein condensates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cestari, J. C. C.; Foerster, A.; Gusmao, M. A.
We investigate the disorder-induced localization transition in Bose-Einstein condensates for the Anderson and Aubry-Andre models in the noninteracting limit using exact diagonalization. We show that, in addition to the standard superfluid fraction, other tools such as the entanglement and fidelity can provide clear signatures of the transition. Interestingly, the fidelity exhibits good sensitivity even for small lattices. Effects of the system size on these quantities are analyzed in detail, including the determination of a finite-size-scaling law for the critical disorder strength in the case of the Anderson model.
Many-body localization of bosons in optical lattices
NASA Astrophysics Data System (ADS)
Sierant, Piotr; Zakrzewski, Jakub
2018-04-01
Many-body localization for a system of bosons trapped in a one-dimensional lattice is discussed. Two models that may be realized for cold atoms in optical lattices are considered. The model with a random on-site potential is compared with previously introduced random interactions model. While the origin and character of the disorder in both systems is different they show interesting similar properties. In particular, many-body localization appears for a sufficiently large disorder as verified by a time evolution of initial density wave states as well as using statistical properties of energy levels for small system sizes. Starting with different initial states, we observe that the localization properties are energy-dependent which reveals an inverted many-body localization edge in both systems (that finding is also verified by statistical analysis of energy spectrum). Moreover, we consider computationally challenging regime of transition between many body localized and extended phases where we observe a characteristic algebraic decay of density correlations which may be attributed to subdiffusion (and Griffiths-like regions) in the studied systems. Ergodicity breaking in the disordered Bose–Hubbard models is compared with the slowing-down of the time evolution of the clean system at large interactions.
Anderson localization of partially incoherent light
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capeta, D.; Radic, J.; Buljan, H.
We study Anderson localization and propagation of partially spatially incoherent wavepackets in linear disordered potentials, motivated by the insight that interference phenomena resulting from multiple scattering are affected by the coherence of the waves. We find that localization is delayed by incoherence: the more incoherent the waves are, the longer they diffusively spread while propagating in the medium. However, if all the eigenmodes of the system are exponentially localized (as in one- and two-dimensional disordered systems), any partially incoherent wavepacket eventually exhibits localization with exponentially decaying tails, after sufficiently long propagation distances. Interestingly, we find that the asymptotic behavior ofmore » the incoherent beam is similar to that of a single instantaneous coherent realization of the beam.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cestari, J. C. C.; Foerster, A.; Gusmao, M. A.
2011-11-15
We investigate the nature of the superfluid-insulator quantum phase transition driven by disorder for noninteracting ultracold atoms on one-dimensional lattices. We consider two different cases: Anderson-type disorder, with local energies randomly distributed, and pseudodisorder due to a potential incommensurate with the lattice, which is usually called the Aubry-Andre model. A scaling analysis of numerical data for the superfluid fraction for different lattice sizes allows us to determine quantum critical exponents characterizing the disorder-driven superfluid-insulator transition. We also briefly discuss the effect of interactions close to the noninteracting quantum critical point of the Aubry-Andre model.
Personality disorder assessment: the challenge of construct validity.
Clark, L A; Livesley, W J; Morey, L
1997-01-01
We begin with a review of the data that challenge the current categorical system for classifying personality disorder, focusing on the central assessment issues of convergent and discriminant validity. These data indicate that while there is room for improvement in assessment, even greater change is needed in conceptualization than in instrumentation. Accordingly, we then refocus the categorical-dimensional debate in assessment terms, and place it in the broader context of such issues as the hierarchical structure of personality, overlap and distinctions between normal and abnormal personality, sources of information in personality disorder assessment, and overlap and discrimination of trait and state assessment. We conclude that more complex conceptual models that can incorporate both biological and environmental influences on the development of adaptive and maladaptive personality are needed.
Magallón-Neri, Ernesto; González, Esther; Canalda, Gloria; Forns, Maria; De La Fuente, J Eugenio; Martínez, Estebán; García, Raquel; Lara, Anais; Vallès, Antoni; Castro-Fornieles, Josefina
2014-05-01
The objective of this study is to explore and compare the prevalence of categorical and dimensional personality disorders (PDs) and their severity in Spanish adolescents with Eating Disorders (EDs). Diagnostic and Statistical Manual of Mental Disorders Fourth Edition and International Classification of Diseases, Tenth Revision-10 modules of the International Personality Disorder Examination were administered to a sample of 100 female adolescents with EDs (mean age=15.8 years, SD=0.9). 'Thirty-three per cent of the sample had at least one PD, in most cases a simple PD. The rate of PDs was 64-76% in bulimia patients, 22-28% in anorexia and 25% in EDs not otherwise specified. The highest dimensional scores were observed in bulimia, [corrected] mainly in borderline and histrionic PDs, and higher scores for anankastic PD in anorexia than in the other ED diagnoses. Overall, purging type EDs had higher cluster B personality pathology scores than restrictive type.' [corrected] The Publisher would like to apologize for this error and any confusion it may have caused. [corrected]. Adolescent female patients with ED have a risk of presenting a comorbid PD, especially patients with bulimia and purging type EDs. Copyright © 2013 John Wiley & Sons, Ltd and Eating Disorders Association.
Sharma, Anup; Satterthwaite, Theodore D.; Vandekar, Lillie; Katchmar, Natalie; Daldal, Aylin; Ruparel, Kosha; A.Elliott, Mark; Baldassano, Claudia; Thase, Michael E.; Gur, Raquel E.; Kable, Joseph W.; Wolf, Daniel H.
2016-01-01
Neuroimaging studies of mood disorders demonstrate abnormalities in brain regions implicated in reward processing. However, there is a paucity of research investigating how social rewards affect reward circuit activity in these disorders. Here, we evaluated the relationship of both diagnostic category and dimensional depression severity to reward system function in bipolar and unipolar depression. In total, 86 adults were included, including 24 patients with bipolar depression, 24 patients with unipolar depression, and 38 healthy comparison subjects. Participants completed a social reward task during 3T BOLD fMRI. On average, diagnostic groups did not differ in activation to social reward. However, greater depression severity significantly correlated with reduced bilateral ventral striatum activation to social reward in the bipolar depressed group, but not the unipolar depressed group. In addition, decreased left orbitofrontal cortical activation correlated with more severe symptoms in bipolar depression, but not unipolar depression. These differential dimensional effects resulted in a significant voxelwise group by depression severity interaction. Taken together, these results provide initial evidence that deficits in social reward processing are differentially related to depression severity in the two disorders. PMID:27295401
Coccaro, Emil F; Hirsch, Sharon L; Stein, Mark A
2007-01-15
Central dopaminergic activity is critical to the functioning of both motor and cognitive systems. Based on the therapeutic action of dopaminergic agents in treating attention deficit hyperactivity disorder (ADHD), ADHD symptoms may be related to a reduction in central dopaminergic activity. We tested the hypothesis that dopaminergic activity, as reflected by plasma homovanillic acid (pHVA), may be related to dimensional aspects of ADHD in adults. Subjects were 30 healthy volunteer and 39 personality disordered subjects, in whom morning basal pHVA concentration and a dimensional measure of childhood ADHD symptoms (Wender Utah Rating Scale: WURS) were obtained. A significant inverse correlation was found between WURS Total score and pHVA concentration in the total sample. Among WURS factor scores, a significant inverse relationship was noted between pHVA and history of "childhood learning problems". Consistent with the dopaminergic dysfunction hypothesis of ADHD and of cognitive function, pHVA concentrations were correlated with childhood history of ADHD symptoms in general and with history of "learning problems" in non-ADHD psychiatric patients and controls. Replication is needed in treated and untreated ADHD samples to confirm these initial results.
Electronic structure of disordered CuPd alloys: A two-dimensional positron-annihilation study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smedskjaer, L.C.; Benedek, R.; Siegel, R.W.
1987-11-23
Two-dimensional--angular-correlation experiments using posi- tron-annihilation spectroscopy were performed on a series of disordered Cu-rich CuPd-alloy single crystals. The results are compared with theoretical calculations based on the Korringa-Kohn-Rostoker coherent-potential approximation. Our experiments confirm the theoretically predicted flattening of the alloy Fermi surface near (110) with increasing Pd concentration. The momentum densities and the two-dimensional--angular-correlation spectra around zero momentum exhibit a characteristic signature of the electronic states near the valence-band edge in the alloy.
Dimensional models of personality: the five-factor model and the DSM-5
Trull, Timothy J.; Widiger, Thomas A.
2013-01-01
It is evident that the classification of personality disorder is shifting toward a dimensional trait model and, more specifically, the five-factor model (FFM). The purpose of this paper is to provide an overview of the FFM of personality disorder. It will begin with a description of this dimensional model of normal and abnormal personality functioning, followed by a comparison with a proposal for future revisions to DSM-5 and a discussion of its potential advantages as an integrative hierarchical model of normal and abnormal personality structure. PMID:24174888
Understanding disordered systems through numerical simulation and algorithm development
NASA Astrophysics Data System (ADS)
Sweeney, Sean Michael
Disordered systems arise in many physical contexts. Not all matter is uniform, and impurities or heterogeneities can be modeled by fixed random disorder. Numerous complex networks also possess fixed disorder, leading to applications in transportation systems, telecommunications, social networks, and epidemic modeling, to name a few. Due to their random nature and power law critical behavior, disordered systems are difficult to study analytically. Numerical simulation can help overcome this hurdle by allowing for the rapid computation of system states. In order to get precise statistics and extrapolate to the thermodynamic limit, large systems must be studied over many realizations. Thus, innovative algorithm development is essential in order reduce memory or running time requirements of simulations. This thesis presents a review of disordered systems, as well as a thorough study of two particular systems through numerical simulation, algorithm development and optimization, and careful statistical analysis of scaling properties. Chapter 1 provides a thorough overview of disordered systems, the history of their study in the physics community, and the development of techniques used to study them. Topics of quenched disorder, phase transitions, the renormalization group, criticality, and scale invariance are discussed. Several prominent models of disordered systems are also explained. Lastly, analysis techniques used in studying disordered systems are covered. In Chapter 2, minimal spanning trees on critical percolation clusters are studied, motivated in part by an analytic perturbation expansion by Jackson and Read that I check against numerical calculations. This system has a direct mapping to the ground state of the strongly disordered spin glass. We compute the path length fractal dimension of these trees in dimensions d = {2, 3, 4, 5} and find our results to be compatible with the analytic results suggested by Jackson and Read. In Chapter 3, the random bond Ising ferromagnet is studied, which is especially useful since it serves as a prototype for more complicated disordered systems such as the random field Ising model and spin glasses. We investigate the effect that changing boundary spins has on the locations of domain walls in the interior of the random ferromagnet system. We provide an analytic proof that ground state domain walls in the two dimensional system are decomposable, and we map these domain walls to a shortest paths problem. By implementing a multiple-source shortest paths algorithm developed by Philip Klein, we are able to efficiently probe domain wall locations for all possible configurations of boundary spins. We consider lattices with uncorrelated dis- order, as well as disorder that is spatially correlated according to a power law. We present numerical results for the scaling exponent governing the probability that a domain wall can be induced that passes through a particular location in the system's interior, and we compare these results to previous results on the directed polymer problem.
Quantum cluster variational method and message passing algorithms revisited
NASA Astrophysics Data System (ADS)
Domínguez, E.; Mulet, Roberto
2018-02-01
We present a general framework to study quantum disordered systems in the context of the Kikuchi's cluster variational method (CVM). The method relies in the solution of message passing-like equations for single instances or in the iterative solution of complex population dynamic algorithms for an average case scenario. We first show how a standard application of the Kikuchi's CVM can be easily translated to message passing equations for specific instances of the disordered system. We then present an "ad hoc" extension of these equations to a population dynamic algorithm representing an average case scenario. At the Bethe level, these equations are equivalent to the dynamic population equations that can be derived from a proper cavity ansatz. However, at the plaquette approximation, the interpretation is more subtle and we discuss it taking also into account previous results in classical disordered models. Moreover, we develop a formalism to properly deal with the average case scenario using a replica-symmetric ansatz within this CVM for quantum disordered systems. Finally, we present and discuss numerical solutions of the different approximations for the quantum transverse Ising model and the quantum random field Ising model in two-dimensional lattices.
Eating disorders in patients with obsessive-compulsive disorder: prevalence and clinical correlates.
Sallet, Paulo C; de Alvarenga, Pedro Gomes; Ferrão, Ygor; de Mathis, Maria Alice; Torres, Albina R; Marques, Andrea; Hounie, Ana G; Fossaluza, Victor; do Rosario, Maria Conceição; Fontenelle, Leonardo F; Petribu, Katia; Fleitlich-Bilyk, Bacy
2010-05-01
The objective is to evaluate the prevalence and associated clinical characteristics of eating disorders (ED) in patients with obsessive-compulsive disorder (OCD). This is a cross-sectional study comparing 815 patients with OCD. Participants were assessed with structured interviews and scales: SCID-I, Y-BOCS, Dimensional Y-BOCS, BABS, Beck Depression and Anxiety Inventories. Ninety-two patients (11.3%) presented the following EDs: binge-eating disorders [= 59 (7.2%)], bulimia nervosa [= 16 (2.0%)], or anorexia nervosa [= 17 (2.1%)]. Compared to OCD patients without ED (OCD-Non-ED), OCD-ED patients were more likely to be women with previous psychiatric treatment. Mean total scores in Y-BOCS, Dimensional Y-BOCS, and BABS were similar within groups. However, OCD-ED patients showed higher lifetime prevalence of comorbid conditions, higher anxiety and depression scores, and higher frequency of suicide attempts than did the OCD-Non-ED group. Primarily diagnosed OCD patients with comorbid ED may be associated with higher clinical severity. Future longitudinal studies should investigate dimensional correlations between OCD and ED. 2009 by Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Chuthapisith, Jariya; Taycharpipranai, Pasinee; Ruangdaraganon, Nichara; Warrington, Richard; Skuse, David
2012-01-01
This study aimed to examine the effectiveness of a translated version of the short version of the Developmental, Dimensional and Diagnostic Interview (3Di) in discriminating children with autism spectrum disorders (ASDs) from typically developing children. Two groups, comprising 63 children with clinically ascertained ASDs and 67 typically…
Clustering and assembly dynamics of a one-dimensional microphase former.
Hu, Yi; Charbonneau, Patrick
2018-05-23
Both ordered and disordered microphases ubiquitously form in suspensions of particles that interact through competing short-range attraction and long-range repulsion (SALR). While ordered microphases are more appealing materials targets, understanding the rich structural and dynamical properties of their disordered counterparts is essential to controlling their mesoscale assembly. Here, we study the disordered regime of a one-dimensional (1D) SALR model, whose simplicity enables detailed analysis by transfer matrices and Monte Carlo simulations. We first characterize the signature of the clustering process on macroscopic observables, and then assess the equilibration dynamics of various simulation algorithms. We notably find that cluster moves markedly accelerate the mixing time, but that event chains are of limited help in the clustering regime. These insights will inspire further study of three-dimensional microphase formers.
Gauge theory for finite-dimensional dynamical systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gurfil, Pini
2007-06-15
Gauge theory is a well-established concept in quantum physics, electrodynamics, and cosmology. This concept has recently proliferated into new areas, such as mechanics and astrodynamics. In this paper, we discuss a few applications of gauge theory in finite-dimensional dynamical systems. We focus on the concept of rescriptive gauge symmetry, which is, in essence, rescaling of an independent variable. We show that a simple gauge transformation of multiple harmonic oscillators driven by chaotic processes can render an apparently ''disordered'' flow into a regular dynamical process, and that there exists a strong connection between gauge transformations and reduction theory of ordinary differentialmore » equations. Throughout the discussion, we demonstrate the main ideas by considering examples from diverse fields, including quantum mechanics, chemistry, rigid-body dynamics, and information theory.« less
Biological Movement and Laws of Physics.
Latash, Mark L
2017-07-01
Living systems may be defined as systems able to organize new, biology-specific, laws of physics and modify their parameters for specific tasks. Examples include the force-length muscle dependence mediated by the stretch reflex, and the control of movements with modification of the spatial referent coordinates for salient performance variables. Low-dimensional sets of referent coordinates at a task level are transformed to higher-dimensional sets at lower hierarchical levels in a way that ensures stability of performance. Stability of actions can be controlled independently of the actions (e.g., anticipatory synergy adjustments). Unintentional actions reflect relaxation processes leading to drifts of corresponding referent coordinates in the absence of changes in external load. Implications of this general framework for movement disorders, motor development, motor skill acquisition, and even philosophy are discussed.
Kerridge, Bradley T; Saha, Tulshi D; Hasin, Deborah S
2014-01-01
Objective: The categorical-dimensional status of DSM-IV (Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition) conduct disorder (CD) and antisocial personality disorder (ASPD) is a source of controversy. This study examined whether the underlying structure of DSM-IV CD and ASPD was dimensional or categorical (taxonic) among individuals with and without substance use disorders. Method: Using a national large representative survey of U.S. adults (n = 43,093), taxometric analyses of DSM-IV CD and ASPD diagnostic criteria were conducted on the total sample and among those with and without substance use disorders. Results: Results of three taxometric procedures were consistent in showing that the structures underlying DSM-IV CD and ASPD were clearly taxonic in the total sample and among individuals with and without substance use disorders. Comparison curve fit indices exceeded 0.57 for each model. Conclusions: Taxonic findings of the present study were in contrast to the dimensional results of prior taxometric research among incarcerated samples with substantial comorbidity of antisocial syndromes and substance use disorders. Results supported the categorical representation and diagnostic thresholds of ASPD and CD as defined in DSM-IV and DSM-5. That the structure of ASPD and CD may be taxonic suggests that further research on these disorders use group comparative designs in which samples with and without these disorders are compared in terms of sociodemographic and clinical correlates, comorbidity, and treatment utilization. The taxonic structure of ASPD and CD may contribute to future research on causal processes through which these antisocial syndromes develop. PMID:24766762
Hasin, Deborah S.; Shmulewitz, Dvora; Stohl, Malka; Greenstein, Eliana; Aivadyan, Christina; Morita, Kara; Saha, Tulshi; Aharonovich, Efrat; Jung, Jeesun; Zhang, Haitao; Nunes, Edward V.; Grant, Bridget F.
2016-01-01
Background Little is known about the procedural validity of lay-administered, fully-structured assessments of depressive, anxiety and post-traumatic stress (PTSD) disorders in the general population as determined by comparison to clinical re-appraisal, and whether this differs between current regular substance abusers and others. We evaluated the procedural validity of the Alcohol Use Disorder and Associated Disabilities Interview Schedule, DSM-5 Version (AUDADIS-5) assessment of these disorders through clinician re-interviews. Methods Test-retest design among respondents from the National Epidemiologic Survey on Alcohol and Related Conditions-III (NESARC-III): (264 current regular substance abusers, 447 others). Clinicians blinded to AUDADIS-5 results administered the semi-structured Psychiatric Research Interview for Substance and Mental Disorders, DSM-5 version (PRISM-5). AUDADIS-5/PRISM-5 concordance was indicated by kappa (κ) for diagnoses and intraclass correlation coefficients (ICC) for dimensional measures (DSM-5 symptom or criterion counts). Results were compared between current regular substance abusers and others. Results AUDADIS-5 and PRISM-5 concordance for DSM-5 depressive disorders, anxiety disorders and PTSD was generally fair to moderate (κ =0.24–0.59), with concordance on dimensional scales much better (ICC=0.53–0.81). Concordance differed little between regular substance abusers and others. Conclusions AUDADIS-5/PRISM-5 concordance indicated procedural validity for the AUDADIS-5 among substance abusers and others, suggesting that AUDADIS-5 diagnoses of DSM-5 depressive, anxiety and PTSD diagnoses are informative measures in both groups in epidemiologic studies. The stronger concordance on dimensional measures supports the current movement towards dimensional psychopathology measures, suggesting that such measures provide important information for research in the NESARC-III and other datasets, and possibly for clinical purposes as well. PMID:25939727
Should there be both categorical and dimensional criteria for the substance use disorders in DSM-V?
Helzer, John E; van den Brink, Wim; Guth, Sarah E
2006-09-01
As discussed in the following literature review, the relative advantages of categorical and dimensional criteria for classifying the substance use disorders (SUDs) have been debated for many years. The scheduled revision of the Diagnostic and Statistical Manual (DSM) offers an opportunity to re-examine this question. Both categorical and dimensional approaches to diagnosis offer advantages, both may in fact be necessary for a comprehensive taxonomy. One means of resolving debate about the direction to take in revising DSM-V and simultaneously of achieving maximum taxonomic utility is to include both categorical and dimensional criteria in DSM-V. This could be accomplished by first defining a set of categorical criteria, as in the previous editions of the DSM. Corresponding dimensional criteria could then be created using a more empirical methodology. In this paper we review some of the relevant literature, offer a specific proposal for a dimensional component for the DSM-V substance use disorders that also preserves the categorical definitions and suggest areas for additional research relevant the this agenda. There is evidence that alcohol and other forms of substance abuse and dependence are heterogeneous categories and that the SUDs can be conceptualized viably as arrayed along a continuum. Amplifying clinically derived categorical definitions with more empirically derived dimensional components to better capture this variability is a particularly important consideration for a substance use research agenda for DSM-V. It is crucial that a dimensional approach be offered in some form in DSM-V; but it is also vital that any dimensional approach be linked to the categorical definition. The proposal offered herein provides a model for amplifying categorical definitions with a dimensional component in a way that is evolutionary and not disruptive to the existing taxonomy.
Open problems in active chaotic flows: Competition between chaos and order in granular materials.
Ottino, J. M.; Khakhar, D. V.
2002-06-01
There are many systems where interaction among the elementary building blocks-no matter how well understood-does not even give a glimpse of the behavior of the global system itself. Characteristic for these systems is the ability to display structure without any external organizing principle being applied. They self-organize as a consequence of synthesis and collective phenomena and the behavior cannot be understood in terms of the systems' constitutive elements alone. A simple example is flowing granular materials, i.e., systems composed of particles or grains. How the grains interact with each other is reasonably well understood; as to how particles move, the governing law is Newton's second law. There are no surprises at this level. However, when the particles are many and the material is vibrated or tumbled, surprising behavior emerges. Systems self-organize in complex patterns that cannot be deduced from the behavior of the particles alone. Self-organization is often the result of competing effects; flowing granular matter displays both mixing and segregation. Small differences in either size or density lead to flow-induced segregation and order; similar to fluids, noncohesive granular materials can display chaotic mixing and disorder. Competition gives rise to a wealth of experimental outcomes. Equilibrium structures, obtained experimentally in quasi-two-dimensional systems, display organization in the presence of disorder, and are captured by a continuum flow model incorporating collisional diffusion and density-driven segregation. Several open issues remain to be addressed. These include analysis of segregating chaotic systems from a dynamical systems viewpoint, and understanding three-dimensional systems and wet granular systems (slurries). General aspects of the competition between chaos-enhanced mixing and properties-induced de-mixing go beyond granular materials and may offer a paradigm for other kinds of physical systems. (c) 2002 American Institute of Physics.
Diagnosing hyperuniformity in two-dimensional, disordered, jammed packings of soft spheres.
Dreyfus, Remi; Xu, Ye; Still, Tim; Hough, L A; Yodh, A G; Torquato, Salvatore
2015-01-01
Hyperuniformity characterizes a state of matter for which (scaled) density fluctuations diminish towards zero at the largest length scales. However, the task of determining whether or not an image of an experimental system is hyperuniform is experimentally challenging due to finite-resolution, noise, and sample-size effects that influence characterization measurements. Here we explore these issues, employing video optical microscopy to study hyperuniformity phenomena in disordered two-dimensional jammed packings of soft spheres. Using a combination of experiment and simulation we characterize the possible adverse effects of particle polydispersity, image noise, and finite-size effects on the assignment of hyperuniformity, and we develop a methodology that permits improved diagnosis of hyperuniformity from real-space measurements. The key to this improvement is a simple packing reconstruction algorithm that incorporates particle polydispersity to minimize the free volume. In addition, simulations show that hyperuniformity in finite-sized samples can be ascertained more accurately in direct space than in reciprocal space. Finally, our experimental colloidal packings of soft polymeric spheres are shown to be effectively hyperuniform.
NASA Astrophysics Data System (ADS)
Kim, Yup; Cho, Minsoo; Yook, Soon-Hyung
2011-10-01
We study the effects of the underlying topologies on a single feature perturbation imposed to the Axelrod model of consensus formation. From the numerical simulations we show that there are successive updates which are similar to avalanches in many self-organized criticality systems when a perturbation is imposed. We find that the distribution of avalanche size satisfies the finite-size scaling (FSS) ansatz on two-dimensional lattices and random networks. However, on scale-free networks with the degree exponent γ≤3 we show that the avalanche size distribution does not satisfy the FSS ansatz. The results indicate that the disordered configurations on two-dimensional lattices or on random networks are still stable against the perturbation in the limit N (network size) →∞. However, on scale-free networks with γ≤3 the perturbation always drives the disordered phase into an ordered phase. The possible relationship between the properties of phase transition of the Axelrod model and the avalanche distribution is also discussed.
Diagnosing hyperuniformity in two-dimensional, disordered, jammed packings of soft spheres
NASA Astrophysics Data System (ADS)
Dreyfus, Remi; Xu, Ye; Still, Tim; Hough, L. A.; Yodh, A. G.; Torquato, Salvatore
2015-01-01
Hyperuniformity characterizes a state of matter for which (scaled) density fluctuations diminish towards zero at the largest length scales. However, the task of determining whether or not an image of an experimental system is hyperuniform is experimentally challenging due to finite-resolution, noise, and sample-size effects that influence characterization measurements. Here we explore these issues, employing video optical microscopy to study hyperuniformity phenomena in disordered two-dimensional jammed packings of soft spheres. Using a combination of experiment and simulation we characterize the possible adverse effects of particle polydispersity, image noise, and finite-size effects on the assignment of hyperuniformity, and we develop a methodology that permits improved diagnosis of hyperuniformity from real-space measurements. The key to this improvement is a simple packing reconstruction algorithm that incorporates particle polydispersity to minimize the free volume. In addition, simulations show that hyperuniformity in finite-sized samples can be ascertained more accurately in direct space than in reciprocal space. Finally, our experimental colloidal packings of soft polymeric spheres are shown to be effectively hyperuniform.
Engineered disorder and light propagation in a planar photonic glass
Romanov, Sergei G.; Orlov, Sergej; Ploss, Daniel; Weiss, Clemens K.; Vogel, Nicolas; Peschel, Ulf
2016-01-01
The interaction of light with matter strongly depends on the structure of the latter at wavelength scale. Ordered systems interact with light via collective modes, giving rise to diffraction. In contrast, completely disordered systems are dominated by Mie resonances of individual particles and random scattering. However, less clear is the transition regime in between these two extremes, where diffraction, Mie resonances and near-field interaction between individual scatterers interplay. Here, we probe this transitional regime by creating colloidal crystals with controlled disorder from two-dimensional self-assembly of bidisperse spheres. Choosing the particle size in a way that the small particles are transparent in the spectral region of interest enables us to probe in detail the effect of increasing positional disorder on the optical properties of the large spheres. With increasing disorder a transition from a collective optical response characterized by diffractive resonances to single particles scattering represented by Mie resonances occurs. In between these extremes, we identify an intermediate, hopping-like light transport regime mediated by resonant interactions between individual spheres. These results suggest that different levels of disorder, characterized not only by absence of long range order but also by differences in short-range correlation and interparticle distance, exist in colloidal glasses. PMID:27277521
Dimensional psychiatry: reward dysfunction and depressive mood across psychiatric disorders.
Hägele, Claudia; Schlagenhauf, Florian; Rapp, Michael; Sterzer, Philipp; Beck, Anne; Bermpohl, Felix; Stoy, Meline; Ströhle, Andreas; Wittchen, Hans-Ulrich; Dolan, Raymond J; Heinz, Andreas
2015-01-01
A dimensional approach in psychiatry aims to identify core mechanisms of mental disorders across nosological boundaries. We compared anticipation of reward between major psychiatric disorders, and investigated whether reward anticipation is impaired in several mental disorders and whether there is a common psychopathological correlate (negative mood) of such an impairment. We used functional magnetic resonance imaging (fMRI) and a monetary incentive delay (MID) task to study the functional correlates of reward anticipation across major psychiatric disorders in 184 subjects, with the diagnoses of alcohol dependence (n = 26), schizophrenia (n = 44), major depressive disorder (MDD, n = 24), bipolar disorder (acute manic episode, n = 13), attention deficit/hyperactivity disorder (ADHD, n = 23), and healthy controls (n = 54). Subjects' individual Beck Depression Inventory-and State-Trait Anxiety Inventory-scores were correlated with clusters showing significant activation during reward anticipation. During reward anticipation, we observed significant group differences in ventral striatal (VS) activation: patients with schizophrenia, alcohol dependence, and major depression showed significantly less ventral striatal activation compared to healthy controls. Depressive symptoms correlated with dysfunction in reward anticipation regardless of diagnostic entity. There was no significant correlation between anxiety symptoms and VS functional activation. Our findings demonstrate a neurobiological dysfunction related to reward prediction that transcended disorder categories and was related to measures of depressed mood. The findings underline the potential of a dimensional approach in psychiatry and strengthen the hypothesis that neurobiological research in psychiatric disorders can be targeted at core mechanisms that are likely to be implicated in a range of clinical entities.
ERIC Educational Resources Information Center
Ip, Horace H. S.; Lai, Candy Hoi-Yan; Wong, Simpson W. L.; Tsui, Jenny K. Y.; Li, Richard Chen; Lau, Kate Shuk-Ying; Chan, Dorothy F. Y.
2017-01-01
Previous research has illustrated the unique benefits of three-dimensional (3-D) Virtual Reality (VR) technology in Autism Spectrum Disorder (ASD) children. This study examined the use of 3-D VR technology as an assessment tool in ASD children, and further compared its use to two-dimensional (2-D) tasks. Additionally, we aimed to examine…
NASA Astrophysics Data System (ADS)
Torres-Herrera, E. J.; García-García, Antonio M.; Santos, Lea F.
2018-02-01
We study numerically and analytically the quench dynamics of isolated many-body quantum systems. Using full random matrices from the Gaussian orthogonal ensemble, we obtain analytical expressions for the evolution of the survival probability, density imbalance, and out-of-time-ordered correlator. They are compared with numerical results for a one-dimensional-disordered model with two-body interactions and shown to bound the decay rate of this realistic system. Power-law decays are seen at intermediate times, and dips below the infinite time averages (correlation holes) occur at long times for all three quantities when the system exhibits level repulsion. The fact that these features are shared by both the random matrix and the realistic disordered model indicates that they are generic to nonintegrable interacting quantum systems out of equilibrium. Assisted by the random matrix analytical results, we propose expressions that describe extremely well the dynamics of the realistic chaotic system at different time scales.
Beyond DSM-5: an alternative approach to assessing Social Anxiety Disorder.
Skocic, Sonja; Jackson, Henry; Hulbert, Carol
2015-03-01
This article focuses on the Diagnostic and Statistical Manual of Mental Disorders (DSM) classification of Social Anxiety Disorder (SAD). The article details the diagnostic criteria for SAD that have evolved in the various editions and demonstrates that whilst there have been some positive steps taken to more comprehensively define the disorder, further revision is necessary. It will be argued that the DSM-5 (APA, 2013) has made some changes to the diagnostic criteria of SAD that do not seem to be completely in line with theory and research and do not describe SAD effectively in terms of both diversity and presentation. This article concludes with the presentation of a proposed set of diagnostic criteria that address the concerns raised in the article. The proposed criteria reflect a hybrid categorical-dimensional system of classification. Copyright © 2014 Elsevier Ltd. All rights reserved.
Choi, Ji Young; Park, Soo Hyun
2018-02-01
Extant literature indicates that childhood maltreatment is significantly associated with personality disorders. With the recent call for a more dimensional approach to understanding personality and pathological personality traits, the aim of the present study was to examine whether the experience of childhood maltreatment is associated with pathological personality traits as measured by the Personality Psychopathology Five (PSY-5). We analyzed data from 557 adult psychiatric patients with diverse psychiatric diagnoses, including mood disorders, schizophrenia spectrum disorders, and anxiety disorders. Hierarchical multiple regression analyses were conducted to determine the degree to which childhood maltreatment explained the five trait dimensions after controlling for demographic variables, presence of psychotic symptoms, and degree of depressive symptoms. Childhood maltreatment significantly predicted all of the five trait dimensions of the PSY-5. This suggests that childhood maltreatment may negatively affect the development of an adaptive adjustment system, thereby potentially contributing to the emergence of pathological personality traits.
Quantum glassiness in strongly correlated clean systems: an example of topological overprotection.
Chamon, Claudio
2005-02-04
This Letter presents solvable examples of quantum many-body Hamiltonians of systems that are unable to reach their ground states as the environment temperature is lowered to absolute zero. These examples, three-dimensional generalizations of quantum Hamiltonians proposed for topological quantum computing, (1) have no quenched disorder, (2) have solely local interactions, (3) have an exactly solvable spectrum, (4) have topologically ordered ground states, and (5) have slow dynamical relaxation rates akin to those of strong structural glasses.
Quantum Glassiness in Strongly Correlated Clean Systems: An Example of Topological Overprotection
NASA Astrophysics Data System (ADS)
Chamon, Claudio
2005-01-01
This Letter presents solvable examples of quantum many-body Hamiltonians of systems that are unable to reach their ground states as the environment temperature is lowered to absolute zero. These examples, three-dimensional generalizations of quantum Hamiltonians proposed for topological quantum computing, (1)have no quenched disorder, (2)have solely local interactions, (3)have an exactly solvable spectrum, (4)have topologically ordered ground states, and (5)have slow dynamical relaxation rates akin to those of strong structural glasses.
Disorders Related to Use of Psychoactive Substances in DSM-5: Changes and Challenges.
Bhad, Roshan; Lal, Rakesh; Balhara, Yatan Pal Singh
2015-01-01
In the most recent edition of Diagnostic and Statistical Manual (DSM) that is DSM-5 many modifications have been made in substance use disorder section. These include changes in terminology; sections and categories; diagnostic criteria; threshold for diagnosis; severity; and specifier. Additionally, there have been certain additions and omissions from the earlier version. Critical evaluation of the changes made to the section on disorders related to use of psychoactive substances in India context has not been published so far. The current paper presents a critique of the changes made to the substance use disorder section in DSM-5. The rationale for these changes put forth by DSM-5 work group on substance related disorders have been discussed. Additionally, attempt has been made to highlight the possible future challenges consequent to the current nosological revision for substance use disorder category. Overall DSM-5 seems to be promising in fulfilling its goal of DSM-ICD harmonisation and movement towards an internationally compatible and practical diagnostic system for mental health disorders. It has increased the scope of addiction by inclusion of behavioural addiction. It has also tried to balance the categorical and dimensional approach to diagnosis. However, the real test of this newer edition of one of the most commonly used nosological systems will be during clinical care and research. This will help address the debatable issues regarding the changes that DSM-5 brings with it.
Test-retest reliability and sensitivity to change of the dimensional anxiety scales for DSM-5.
Knappe, Susanne; Klotsche, Jens; Heyde, Franziska; Hiob, Sarah; Siegert, Jens; Hoyer, Jürgen; Strobel, Anja; LeBeau, Richard T; Craske, Michelle G; Wittchen, Hans-Ulrich; Beesdo-Baum, Katja
2014-06-01
This article reports on the test-retest reliability and sensitivity to change of a set of brief dimensional self-rating questionnaires for social anxiety disorder (SAD-D), specific phobia (SP-D), agoraphobia (AG-D), panic disorder (PD-D), and generalized anxiety disorder (GAD-D), as well as a general cross-cutting anxiety scale (Cross-D), which were developed to supplement categorical diagnoses in the Diagnostic and Statistical Manual of Mental Disorders, 5th edition (DSM-5). The German versions of the dimensional anxiety scales were administered to 218 students followed up approximately 2 weeks later (Study 1) and 55 outpatients (23 with anxiety diagnoses) followed-up 1 year later (Study 2). Probable diagnostic status in students was determined by the DIA-X/M-CIDI stem screening-questionnaire (SSQ). In the clinical sample, Diagnostic and Statistical Manual of Mental Disorders, 4th edition (DSM-IV) diagnoses were assessed at Time 1 using the DIA-X/M-CIDI. At Time 2, the patient-version of the Clinical Global Impression-Improvement scale (CGI-I) was applied to assess change. Good psychometric properties, including high test-retest reliability, were found for the dimensional scales except for SP-D. In outpatients, improvement at Time 2 was associated with significant decrease in PD-D, GAD-D, and Cross-D scores. Discussion Major advantages of the scales include that they are brief, concise, and based on a consistent template to measure the cognitive, physiological, and behavioral symptoms of fear and anxiety. Further replication in larger samples is needed. Given its modest psychometric properties, SP-D needs refinement. Increasing evidence from diverse samples suggests clinical utility of the dimensional anxiety scales.
Interplay of Anderson localization and quench dynamics
NASA Astrophysics Data System (ADS)
Rahmani, Armin; Vishveshwara, Smitha
2018-06-01
In the context of an isolated three-dimensional noninteracting fermionic lattice system, we study the effects of a sudden quantum quench between a disorder-free situation and one in which disorder results in a mobility edge and associated Anderson localization. Salient post-quench features hinge upon the overlap between momentum states and post-quench eigenstates and whether these latter states are extended or localized. We find that the post-quench momentum distribution directly reflects these overlaps. For the local density, we show that disorder generically prevents the equilibration of quantum expectation values to a steady state and that the persistent fluctuations have a nonmonotonic dependence on the strength of disorder. We identify two distinct types of fluctuations, namely, temporal fluctuations describing the time-dependent fluctuations of the local density around its time average and sample-to-sample fluctuations characterizing the variations of these time averages from one realization of disorder to another. We demonstrate that both of these fluctuations vanish for extremely extended as well as extremely localized states, peaking at some intermediate value.
Swann, Alan C; Lijffijt, Marijn; Lane, Scott D; Steinberg, Joel L; Moeller, F Gerard
2013-06-01
Interactions between characteristics of bipolar and Axis II cluster B disorders are clinically and diagnostically challenging. Characteristics associated with personality disorders may be dimensional aspects of bipolar disorder. We investigated relationships among antisocial personality disorder (ASPD) or borderline personality disorder symptoms, impulsivity, and course of illness in bipolar disorder. Subjects with bipolar disorder were recruited from the community. Diagnosis was by structured clinical interview for DSM-IV (SCID-I and -II), psychiatric symptom assessment by the change version of the schedule for affective disorders and schizophrenia (SADS-C), severity of Axis II symptoms by ASPD and borderline personality disorder SCID-II symptoms, and impulsivity by the Barratt impulsiveness scale (BIS-11). ASPD and borderline symptoms were not related to clinical state or affective symptoms. Borderline symptoms correlated with BIS-11 impulsivity scores, and predicted history of suicide attempts independently of the relationship to impulsivity. ASPD symptoms were more strongly related to course of illness, including early onset, frequent episodes, and substance-related disorders. These effects persisted after allowance for gender and substance-use disorder history. Personality disorder symptoms appear to be dimensional, trait-like characteristics of bipolar disorder. ASPD and Borderline symptoms are differentially related to impulsivity and course of illness. Copyright © 2012 Elsevier B.V. All rights reserved.
Swann, Alan C.; Lijffijt, Marijn; Lane, Scott D.; Steinberg, Joel L.; Moeller, F. Gerard
2012-01-01
Background Interactions between characteristics of bipolar and Axis II cluster B disorders are clinically and diagnostically challenging. Characteristics associated with personality disorders may be dimensional aspects of bipolar disorder. We investigated relationships among antisocial personality disorder (ASPD) or borderline personality disorder symptoms, impulsivity, and course of illness in bipolar disorder. Methods Subjects with bipolar disorder were recruited from the community. Diagnosis was by Structured Clinical Interview for DSM-IV (SCID-I and –II), psychiatric symptom assessment by the Change version of the Schedule for Affective Disorders and Schizophrenia (SADS-C), severity of axis II symptoms by ASPD and borderline personality disorder SCID-II symptoms, and impulsivity by the Barratt Impulsiveness Scale (BIS-11). Results ASPD and borderline symptoms were not related to clinical state or affective symptoms. Borderline symptoms correlated with BIS-11 impulsivity scores, and predicted history of suicide attempts independently of the relationship to impulsivity. ASPD symptoms were more strongly related to course of illness, including early onset, frequent episodes, and substance-related disorders. These effects persisted after allowance for gender and substance-use disorder history. Conclusions Personality disorder symptoms appear to be dimensional, trait-like characteristics of bipolar disorder. ASPD and Borderline symptoms are differentially related to impulsivity and course of illness. PMID:22835849
Drude weight fluctuations in many-body localized systems
NASA Astrophysics Data System (ADS)
Filippone, Michele; Brouwer, Piet W.; Eisert, Jens; von Oppen, Felix
2016-11-01
We numerically investigate the distribution of Drude weights D of many-body states in disordered one-dimensional interacting electron systems across the transition to a many-body localized phase. Drude weights are proportional to the spectral curvatures induced by magnetic fluxes in mesoscopic rings. They offer a method to relate the transition to the many-body localized phase to transport properties. In the delocalized regime, we find that the Drude weight distribution at a fixed disorder configuration agrees well with the random-matrix-theory prediction P (D ) ∝(γ2+D2) -3 /2 , although the distribution width γ strongly fluctuates between disorder realizations. A crossover is observed towards a distribution with different large-D asymptotics deep in the many-body localized phase, which however differs from the commonly expected Cauchy distribution. We show that the average distribution width <γ >, rescaled by L Δ ,Δ being the average level spacing in the middle of the spectrum and L the systems size, is an efficient probe of the many-body localization transition, as it increases (vanishes) exponentially in the delocalized (localized) phase.
Chaos and Correlated Avalanches in Excitatory Neural Networks with Synaptic Plasticity
NASA Astrophysics Data System (ADS)
Pittorino, Fabrizio; Ibáñez-Berganza, Miguel; di Volo, Matteo; Vezzani, Alessandro; Burioni, Raffaella
2017-03-01
A collective chaotic phase with power law scaling of activity events is observed in a disordered mean field network of purely excitatory leaky integrate-and-fire neurons with short-term synaptic plasticity. The dynamical phase diagram exhibits two transitions from quasisynchronous and asynchronous regimes to the nontrivial, collective, bursty regime with avalanches. In the homogeneous case without disorder, the system synchronizes and the bursty behavior is reflected into a period doubling transition to chaos for a two dimensional discrete map. Numerical simulations show that the bursty chaotic phase with avalanches exhibits a spontaneous emergence of persistent time correlations and enhanced Kolmogorov complexity. Our analysis reveals a mechanism for the generation of irregular avalanches that emerges from the combination of disorder and deterministic underlying chaotic dynamics.
Pukrop, R; Gentil, I; Steinbring, I; Steinmeyer, E
2001-10-01
The Dimensional Assessment of Personality Pathology-Basic Questionnaire (DAPP-BQ) assesses 18 traits to provide a systematic representation of the overall domain of personality disorders. We tested the cross-cultural stability of the prediction that four higher-order factors (Emotional Dysregulation, Dissocial Behavior, Inhibitedness, and Compulsivity) underlie the 18 basic traits. A total of 81 patients who were primarily treated for an Axis II personality disorder and N = 166 healthy control patients completed the German version of the DAPP-BQ. Results clearly confirmed cross-cultural stability of the postulated four-factor structure in both samples, accounting for 74.7% (clinical sample), and 65.7% (nonclinical sample) of the total variance. All four higher-order factors showed specific correlational relationships with dimensional assessments of DSM-IV personality disorders.
Quantum phases of disordered three-dimensional Majorana-Weyl fermions
NASA Astrophysics Data System (ADS)
Wilson, Justin H.; Pixley, J. H.; Goswami, Pallab; Das Sarma, S.
2017-04-01
The gapless Bogoliubov-de Gennes (BdG) quasiparticles of a clean three-dimensional spinless px+i py superconductor provide an intriguing example of a thermal Hall semimetal (ThSM) phase of Majorana-Weyl fermions; such a phase can support a large anomalous thermal Hall conductivity and protected surface Majorana-Fermi arcs at zero energy. We study the effects of quenched disorder on such a gapless topological phase by carrying out extensive numerical and analytical calculations on a lattice model for a disordered, spinless px+i py superconductor. Using the kernel polynomial method, we compute both average and typical density of states for the BdG quasiparticles, from which we construct the phase diagram of three-dimensional dirty px+i py superconductors as a function of disorder strength and chemical potential of the underlying normal state. We establish that the power law quasilocalized states induced by rare statistical fluctuations of the disorder potential give rise to an exponentially small density of states at zero energy, and even infinitesimally weak disorder converts the ThSM into a thermal diffusive Hall metal (ThDM). Consequently, the phase diagram of the disordered model only consists of ThDM and thermal insulating phases. We show the existence of two types of thermal insulators: (i) a trivial thermal band insulator (ThBI) [or BEC phase] with a smeared gap that can occur for suitable band parameters and all strengths of disorder, supporting only exponentially localized Lifshitz states (at low energy) and (ii) a thermal Anderson insulator that only exists for large disorder strengths compared to all band parameters. We determine the nature of the two distinct localization-delocalization transitions between these two types of insulators and ThDM. Additionally, we establish the scaling properties of an avoided (or hidden) quantum critical point for moderate disorder strengths, which govern the crossover between ThSM and ThDM phases over a wide range of energy scales. We also discuss the experimental relevance of our findings for three-dimensional, time reversal symmetry breaking, triplet superconducting states.
PSPP: A Protein Structure Prediction Pipeline for Computing Clusters
2009-07-01
Evanseck JD, et al. (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. Journal of Physical Chemistry B 102...dimensional (3-D) protein structures are critical for the understanding of molecular mechanisms of living systems. Traditionally, X-ray crystallography...disordered proteins are often responsible for molecular recognition, molecular assembly, protein modifica- tion, and entropic chain activities in organisms [26
Evidence for a Multi-Dimensional Latent Structural Model of Externalizing Disorders
ERIC Educational Resources Information Center
Witkiewitz, Katie; King, Kevin; McMahon, Robert J.; Wu, Johnny; Luk, Jeremy; Bierman, Karen L.; Coie, John D.; Dodge, Kenneth A.; Greenberg, Mark T.; Lochman, John E.; Pinderhughes, Ellen E.
2013-01-01
Strong associations between conduct disorder (CD), antisocial personality disorder (ASPD) and substance use disorders (SUD) seem to reflect a general vulnerability to externalizing behaviors. Recent studies have characterized this vulnerability on a continuous scale, rather than as distinct categories, suggesting that the revision of the…
Finite-temperature fluid–insulator transition of strongly interacting 1D disordered bosons
Michal, Vincent P.; Aleiner, Igor L.; Altshuler, Boris L.; Shlyapnikov, Georgy V.
2016-01-01
We consider the many-body localization–delocalization transition for strongly interacting one-dimensional disordered bosons and construct the full picture of finite temperature behavior of this system. This picture shows two insulator–fluid transitions at any finite temperature when varying the interaction strength. At weak interactions, an increase in the interaction strength leads to insulator → fluid transition, and, for large interactions, there is a reentrance to the insulator regime. It is feasible to experimentally verify these predictions by tuning the interaction strength with the use of Feshbach or confinement-induced resonances, for example, in 7Li or 39K. PMID:27436894
Coulomb gap triptych in a periodic array of metal nanocrystals.
Chen, Tianran; Skinner, Brian; Shklovskii, B I
2012-09-21
The Coulomb gap in the single-particle density of states (DOS) is a universal consequence of electron-electron interaction in disordered systems with localized electron states. Here we show that in arrays of monodisperse metallic nanocrystals, there is not one but three identical adjacent Coulomb gaps, which together form a structure that we call a "Coulomb gap triptych." We calculate the DOS and the conductivity in two- and three-dimensional arrays using a computer simulation. Unlike in the conventional Coulomb glass models, in nanocrystal arrays the DOS has a fixed width in the limit of large disorder. The Coulomb gap triptych can be studied via tunneling experiments.
Cross Talk: The Microbiota and Neurodevelopmental Disorders
Kelly, John R.; Minuto, Chiara; Cryan, John F.; Clarke, Gerard; Dinan, Timothy G.
2017-01-01
Humans evolved within a microbial ecosystem resulting in an interlinked physiology. The gut microbiota can signal to the brain via the immune system, the vagus nerve or other host-microbe interactions facilitated by gut hormones, regulation of tryptophan metabolism and microbial metabolites such as short chain fatty acids (SCFA), to influence brain development, function and behavior. Emerging evidence suggests that the gut microbiota may play a role in shaping cognitive networks encompassing emotional and social domains in neurodevelopmental disorders. Drawing upon pre-clinical and clinical evidence, we review the potential role of the gut microbiota in the origins and development of social and emotional domains related to Autism spectrum disorders (ASD) and schizophrenia. Small preliminary clinical studies have demonstrated gut microbiota alterations in both ASD and schizophrenia compared to healthy controls. However, we await the further development of mechanistic insights, together with large scale longitudinal clinical trials, that encompass a systems level dimensional approach, to investigate whether promising pre-clinical and initial clinical findings lead to clinical relevance. PMID:28966571
Random walks on cubic lattices with bond disorder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernst, M.H.; van Velthoven, P.F.J.
1986-12-01
The authors consider diffusive systems with static disorder, such as Lorentz gases, lattice percolation, ants in a labyrinth, termite problems, random resistor networks, etc. In the case of diluted randomness the authors can apply the methods of kinetic theory to obtain systematic expansions of dc and ac transport properties in powers of the impurity concentration c. The method is applied to a hopping model on a d-dimensional cubic lattice having two types of bonds with conductivity sigma and sigma/sub 0/ = 1, with concentrations c and 1-c, respectively. For the square lattice the authors explicitly calculate the diffusion coefficient D(c,sigma)more » as a function of c, to O(c/sup 2/) terms included for different ratios of the bond conductivity sigma. The probability of return at long times is given by P/sub 0/(t) approx. (4..pi..D(c,sigma)t)/sup -d/2/, which is determined by the diffusion coefficient of the disordered system.« less
Falkum, Erik; Pedersen, Geir; Karterud, Sigmund
2009-01-01
This article examines reliability and validity aspects of the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) paranoid personality disorder (PPD) diagnosis. Patients with personality disorders (n = 930) from the Norwegian network of psychotherapeutic day hospitals, of which 114 had PPD, were included in the study. Frequency distribution, chi(2), correlations, reliability statistics, exploratory, and confirmatory factor analyses were performed. The distribution of PPD criteria revealed no distinct boundary between patients with and without PPD. Diagnostic category membership was obtained in 37 of 64 theoretically possible ways. The PPD criteria formed a separate factor in a principal component analysis, whereas a confirmatory factor analysis indicated that the DSM-IV PPD construct consists of 2 separate dimensions as follows: suspiciousness and hostility. The reliability of the unitary PPD scale was only 0.70, probably partly due to the apparent 2-dimensionality of the construct. Persistent unwarranted doubts about the loyalty of friends had the highest diagnostic efficiency, whereas unwarranted accusations of infidelity of partner had particularly poor indicator properties. The reliability and validity of the unitary PPD construct may be questioned. The 2-dimensional PPD model should be further explored.
Clean Floquet Time Crystals: Models and Realizations in Cold Atoms
NASA Astrophysics Data System (ADS)
Huang, Biao; Wu, Ying-Hai; Liu, W. Vincent
2018-03-01
Time crystals, a phase showing spontaneous breaking of time-translation symmetry, has been an intriguing subject for systems far away from equilibrium. Recent experiments found such a phase in both the presence and the absence of localization, while in theories localization by disorder is usually assumed a priori. In this work, we point out that time crystals can generally exist in systems without disorder. A series of clean quasi-one-dimensional models under Floquet driving are proposed to demonstrate this unexpected result in principle. Robust time crystalline orders are found in the strongly interacting regime along with the emergent integrals of motion in the dynamical system, which can be characterized by level statistics and the out-of-time-ordered correlators. We propose two cold atom experimental schemes to realize the clean Floquet time crystals, one by making use of dipolar gases and another by synthetic dimensions.
Culture Models for Studying Thyroid Biology and Disorders
Toda, Shuji; Aoki, Shigehisa; Uchihashi, Kazuyoshi; Matsunobu, Aki; Yamamoto, Mihoko; Ootani, Akifumi; Yamasaki, Fumio; Koike, Eisuke; Sugihara, Hajime
2011-01-01
The thyroid is composed of thyroid follicles supported by extracellular matrix, capillary network, and stromal cell types such as fibroblasts. The follicles consist of thyrocytes and C cells. In this microenvironment, thyrocytes are highly integrated in their specific structural and functional polarization, but monolayer and floating cultures cannot allow thyrocytes to organize the follicles with such polarity. In contrast, three-dimensional (3-D) collagen gel culture enables thyrocytes to form 3-D follicles with normal polarity. However, these systems never reconstruct the follicles consisting of both thyrocytes and C cells. Thyroid tissue-organotypic culture retains 3-D follicles with both thyrocytes and C cells. To create more appropriate experimental models, we here characterize four culture systems above and then introduce the models for studying thyroid biology and disorders. Finally, we propose a new approach to the cell type-specific culture systems on the basis of in vivo microenvironments of various cell types. PMID:22363871
Kimizuka, Hajime; Kurokawa, Shu; Yamaguchi, Akihiro; Sakai, Akira; Ogata, Shigenobu
2014-01-01
Predicting the equilibrium ordered structures at internal interfaces, especially in the case of nanometer-scale chemical heterogeneities, is an ongoing challenge in materials science. In this study, we established an ab-initio coarse-grained modeling technique for describing the phase-like behavior of a close-packed stacking-fault-type interface containing solute nanoclusters, which undergo a two-dimensional disorder-order transition, depending on the temperature and composition. Notably, this approach can predict the two-dimensional medium-range ordering in the nanocluster arrays realized in Mg-based alloys, in a manner consistent with scanning tunneling microscopy-based measurements. We predicted that the repulsively interacting solute-cluster system undergoes a continuous evolution into a highly ordered densely packed morphology while maintaining a high degree of six-fold orientational order, which is attributable mainly to an entropic effect. The uncovered interaction-dependent ordering properties may be useful for the design of nanostructured materials utilizing the self-organization of two-dimensional nanocluster arrays in the close-packed interfaces. PMID:25471232
Kaneko, M; Okui, H; Hirakawa, G; Ishinishi, H; Katayama, Y; Iramina, K
2012-01-01
We have developed an evaluation system for pronation and supination of forearms. The motion of pronation and supination of the forearm is used as a diagnosis method of developmental disability, etc. However, this diagnosis method has a demerit in which diagnosis results between doctors are not consistent. It is hoped that a more quantitative and simple evaluation method is established. Moreover it is hoped a diagnostic criteria obtained from healthy subjects can be established to diagnose developmental disorder patients. We developed a simple and portable evaluation system for pronation and supination of forearms. Three-dimensional wireless acceleration and angular velocity sensors are used for this system. In this study, pronation and supination of forearms of 570 subjects (subjects aged 6-12, 21-100) were examined. We could obtain aging curves in the neuromotor function of pronation and supination. These aging curves obtained by our developed system, has the potential to become diagnostic criteria for a developmental disability, etc.
Non-equlibrium relaxation of vortex lines in disordered type-II superconductors
NASA Astrophysics Data System (ADS)
Dobramysl, Ulrich; Assi, Hiba; Pleimling, Michel; T&äUber, Uwe C.
2013-03-01
Vortex matter in disordered type-II superconductors display a remarkable wealth of behavior, ranging from hexagonally arranged crystals and a vortex liquid to glassy phases. The type and strength of the disorder has a profound influence on the structural properties of the vortex matter: Randomly distributed weak point pinning sites lead to the destruction of long range order and a Bragg glass phase; correlated, columnar disorder can yield a Bose glass phase with infinite tilt modulus. We employ a three-dimensional elastic line model and apply a Langevin molecular dynamics algorithm to simulate the dynamics of vortex lines in a dissipative medium. We investigate the relaxation of a system of lines that were initially prepared in an out-of-equilibrium state and characterize the transient behavior via two-time quantities. We vary the disorder type and strength and compare our results for random and columnar disorder. Research supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-FG02-09ER46613.
Disorders without borders: current and future directions in the meta-structure of mental disorders.
Carragher, Natacha; Krueger, Robert F; Eaton, Nicholas R; Slade, Tim
2015-03-01
Classification is the cornerstone of clinical diagnostic practice and research. However, the extant psychiatric classification systems are not well supported by research evidence. In particular, extensive comorbidity among putatively distinct disorders flags an urgent need for fundamental changes in how we conceptualize psychopathology. Over the past decade, research has coalesced on an empirically based model that suggests many common mental disorders are structured according to two correlated latent dimensions: internalizing and externalizing. We review and discuss the development of a dimensional-spectrum model which organizes mental disorders in an empirically based manner. We also touch upon changes in the DSM-5 and put forward recommendations for future research endeavors. Our review highlights substantial empirical support for the empirically based internalizing-externalizing model of psychopathology, which provides a parsimonious means of addressing comorbidity. As future research goals, we suggest that the field would benefit from: expanding the meta-structure of psychopathology to include additional disorders, development of empirically based thresholds, inclusion of a developmental perspective, and intertwining genomic and neuroscience dimensions with the empirical structure of psychopathology.
Robust light transport in non-Hermitian photonic lattices
Longhi, Stefano; Gatti, Davide; Valle, Giuseppe Della
2015-01-01
Combating the effects of disorder on light transport in micro- and nano-integrated photonic devices is of major importance from both fundamental and applied viewpoints. In ordinary waveguides, imperfections and disorder cause unwanted back-reflections, which hinder large-scale optical integration. Topological photonic structures, a new class of optical systems inspired by quantum Hall effect and topological insulators, can realize robust transport via topologically-protected unidirectional edge modes. Such waveguides are realized by the introduction of synthetic gauge fields for photons in a two-dimensional structure, which break time reversal symmetry and enable one-way guiding at the edge of the medium. Here we suggest a different route toward robust transport of light in lower-dimensional (1D) photonic lattices, in which time reversal symmetry is broken because of the non-Hermitian nature of transport. While a forward propagating mode in the lattice is amplified, the corresponding backward propagating mode is damped, thus resulting in an asymmetric transport insensitive to disorder or imperfections in the structure. Non-Hermitian asymmetric transport can occur in tight-binding lattices with an imaginary gauge field via a non-Hermitian delocalization transition, and in periodically-driven superlattices. The possibility to observe non-Hermitian delocalization is suggested using an engineered coupled-resonator optical waveguide (CROW) structure. PMID:26314932
NASA Astrophysics Data System (ADS)
Li, J.; Tan, L. Z.; Zou, K.; Stabile, A. A.; Seiwell, D. J.; Watanabe, K.; Taniguchi, T.; Louie, Steven G.; Zhu, J.
2016-10-01
In a two-dimensional electron gas, the electron-electron interaction generally becomes stronger at lower carrier densities and renormalizes the Fermi-liquid parameters, such as the effective mass of carriers. We combine experiment and theory to study the effective masses of electrons and holes me* and mh* in bilayer graphene in the low carrier density regime on the order of 1 ×1011c m-2 . Measurements use temperature-dependent low-field Shubnikov-de Haas oscillations observed in high-mobility hexagonal boron nitride supported samples. We find that while me* follows a tight-binding description in the whole density range, mh* starts to drop rapidly below the tight-binding description at a carrier density of n =6 ×1011c m-2 and exhibits a strong suppression of 30% when n reaches 2 ×1011c m-2 . Contributions from the electron-electron interaction alone, evaluated using several different approximations, cannot explain the experimental trend. Instead, the effect of the potential fluctuation and the resulting electron-hole puddles play a crucial role. Calculations including both the electron-electron interaction and disorder effects explain the experimental data qualitatively and quantitatively. This Rapid Communication reveals an unusual disorder effect unique to two-dimensional semimetallic systems.
NASA Astrophysics Data System (ADS)
Murani, A.; Chepelianskii, A.; Guéron, S.; Bouchiat, H.
2017-10-01
In order to point out experimentally accessible signatures of spin-orbit interaction, we investigate numerically the Andreev spectrum of a multichannel mesoscopic quantum wire (N) with high spin-orbit interaction coupled to superconducting electrodes (S), contrasting topological and nontopological behaviors. In the nontopological case (square lattice with Rashba interactions), we find that the Kramers degeneracy of Andreev levels is lifted by a phase difference between the S reservoirs except at multiples of π , when the normal quantum wires can host several conduction channels. The level crossings at these points invariant by time-reversal symmetry are not lifted by disorder. Whereas the dc Josephson current is insensitive to these level crossings, the high-frequency admittance (susceptibility) at finite temperature reveals these level crossings and the lifting of their degeneracy at π by a small Zeeman field. We have also investigated the hexagonal lattice with intrinsic spin-orbit interaction in the range of parameters where it is a two-dimensional topological insulator with one-dimensional helical edges protected against disorder. Nontopological superconducting contacts can induce topological superconductivity in this system characterized by zero-energy level crossing of Andreev levels. Both Josephson current and finite-frequency admittance carry then very specific signatures at low temperature of this disorder-protected Andreev level crossing at π and zero energy.
Robust light transport in non-Hermitian photonic lattices.
Longhi, Stefano; Gatti, Davide; Della Valle, Giuseppe
2015-08-28
Combating the effects of disorder on light transport in micro- and nano-integrated photonic devices is of major importance from both fundamental and applied viewpoints. In ordinary waveguides, imperfections and disorder cause unwanted back-reflections, which hinder large-scale optical integration. Topological photonic structures, a new class of optical systems inspired by quantum Hall effect and topological insulators, can realize robust transport via topologically-protected unidirectional edge modes. Such waveguides are realized by the introduction of synthetic gauge fields for photons in a two-dimensional structure, which break time reversal symmetry and enable one-way guiding at the edge of the medium. Here we suggest a different route toward robust transport of light in lower-dimensional (1D) photonic lattices, in which time reversal symmetry is broken because of the non-Hermitian nature of transport. While a forward propagating mode in the lattice is amplified, the corresponding backward propagating mode is damped, thus resulting in an asymmetric transport insensitive to disorder or imperfections in the structure. Non-Hermitian asymmetric transport can occur in tight-binding lattices with an imaginary gauge field via a non-Hermitian delocalization transition, and in periodically-driven superlattices. The possibility to observe non-Hermitian delocalization is suggested using an engineered coupled-resonator optical waveguide (CROW) structure.
Walters, Glenn D; Diamond, Pamela M; Magaletta, Philip R
2010-03-01
Three indicators derived from the Personality Assessment Inventory (PAI) Alcohol Problems scale (ALC)-tolerance/high consumption, loss of control, and negative social and psychological consequences-were subjected to taxometric analysis-mean above minus below a cut (MAMBAC), maximum covariance (MAXCOV), and latent mode factor analysis (L-Mode)-in 1,374 federal prison inmates (905 males, 469 females). Whereas the total sample yielded ambiguous results, the male subsample produced dimensional results, and the female subsample produced taxonic results. Interpreting these findings in light of previous taxometric research on alcohol abuse and dependence it is speculated that while alcohol use disorders may be taxonic in female offenders, they are probably both taxonic and dimensional in male offenders. Two models of male alcohol use disorder in males are considered, one in which the diagnostic features are categorical and the severity of symptomatology is dimensional, and one in which some diagnostic features (e.g., withdrawal) are taxonic and other features (e.g., social problems) are dimensional.
Examination of Predictors and Moderators for Self-help Treatments of Binge Eating Disorder
Masheb, Robin M.; Grilo, Carlos M.
2008-01-01
Predictors and moderators of outcomes were examined in 75 overweight patients with binge eating disorder (BED) who participated in a randomized clinical trial of guided self-help treatments. Age variables, psychiatric and personality disorder comorbidity and clinical characteristics were tested as predictors and moderators of treatment outcomes. Current age and age of BED onset did not predict outcomes. Key dimensional outcomes (binge frequency, eating psychopathology, and negative affect) were predominately predicted, but not moderated, by their respective pretreatment levels. Presence of personality disorders, particularly Cluster C, predicted both post-treatment negative affect and eating disorder psychopathology. Negative affect, but not major depressive disorder, predicted attrition, and post-treatment negative affect and eating disorder psychopathology. Despite the prognostic significance of these findings for dimensional outcomes, none of the variables tested were predictive of binge remission (i.e., a categorical outcome). No moderator effects were found. The present study found poorer prognosis for patients with negative affect and personality disorders suggesting that treatment outcomes may be enhanced by attending to the cognitive and personality styles of these patients. PMID:18837607
Charge-spin Transport in Surface-disordered Three-dimensional Topological Insulators
NASA Astrophysics Data System (ADS)
Peng, Xingyue
As one of the most promising candidates for the building block of the novel spintronic circuit, the topological insulator (TI) has attracted world-wide interest of study. Robust topological order protected by time-reversal symmetry (TRS) makes charge transport and spin generation in TIs significantly different from traditional three-dimensional (3D) or two-dimensional (2D) electronic systems. However, to date, charge transport and spin generation in 3D TIs are still primarily modeled as single-surface phenomena, happening independently on top and bottom surfaces. In this dissertation, I will demonstrate via both experimental findings and theoretical modeling that this "single surface'' theory neither correctly describes a realistic 3D TI-based device nor reveals the amazingly distinct physical picture of spin transport dynamics in 3D TIs. Instead, I present a new viewpoint of the spin transport dynamics where the role of the insulating yet topologically non-trivial bulk of a 3D TI becomes explicit. Within this new theory, many mysterious transport and magneto-transport anomalies can be naturally explained. The 3D TI system turns out to be more similar to its low dimensional sibling--2D TI rather than some other systems sharing the Dirac dispersion, such as graphene. This work not only provides valuable fundamental physical insights on charge-spin transport in 3D TIs, but also offers important guidance to the design of 3D TI-based spintronic devices.
Amini, Mehdi; Pourshahbaz, Abbas; Mohammadkhani, Parvaneh; Khodaie Ardakani, Mohammad Reza; Lotfi, Mozhgan
2015-08-01
Fundamental problems with Personality Disorders (PD) diagnostic system in the previous version of DSM, led to the revision of DSM. Therefore, a multidimensional system has been proposed for diagnosis of personality disorder features in DSM-5. In the dimensional approach of DSM-5, personality disorders diagnosis is based on levels of personality functioning (Criteria A) and personality trait domains (Criteria B). The purpose of this study was firstly, to examine the DSM-5 levels of personality functioning in antisocial and borderline personality disorders, and second, to explore which levels of personality functioning in patients with antisocial and borderline personality disorders can better predicted severity than others. This study had a cross sectional design. The participants consisted of 252 individuals with antisocial (n = 122) and borderline personality disorders (n = 130). They were recruited from Tehran prisoners, and clinical psychology and psychiatry centers of Razi and Taleghani Hospitals, Tehran, Iran. The sample was selected based on judgmental sampling. The SCID-II-PQ, SCID-II and DSM-5 levels of personality functioning were used to diagnose and assess personality disorders. The data were analyzed by correlation and multiple regression analysis. All statistical analyses were performed using the SPSS 16 software. Firstly, it was found that DSM-5 levels of personality functioning have a strong correlation with antisocial and borderline personality symptoms, specially intimacy and self-directedness (P < 0.001). Secondly, the findings showed that identity, intimacy and self-directedness significantly predicted antisocial personality disorder severity (P < 0.0001). The results showed that intimacy and empathy were good predictors of borderline personality disorder severity, as well (P < 0.0001). Overall, our findings showed that levels of personality functioning are a significant predictor of personality disorders severity. The results partially confirm existing studies.
NASA Astrophysics Data System (ADS)
Durand, Marc; Kraynik, Andrew M.; van Swol, Frank; Käfer, Jos; Quilliet, Catherine; Cox, Simon; Ataei Talebi, Shirin; Graner, François
2014-06-01
Bubble monolayers are model systems for experiments and simulations of two-dimensional packing problems of deformable objects. We explore the relation between the distributions of the number of bubble sides (topology) and the bubble areas (geometry) in the low liquid fraction limit. We use a statistical model [M. Durand, Europhys. Lett. 90, 60002 (2010), 10.1209/0295-5075/90/60002] which takes into account Plateau laws. We predict the correlation between geometrical disorder (bubble size dispersity) and topological disorder (width of bubble side number distribution) over an extended range of bubble size dispersities. Extensive data sets arising from shuffled foam experiments, surface evolver simulations, and cellular Potts model simulations all collapse surprisingly well and coincide with the model predictions, even at extremely high size dispersity. At moderate size dispersity, we recover our earlier approximate predictions [M. Durand, J. Kafer, C. Quilliet, S. Cox, S. A. Talebi, and F. Graner, Phys. Rev. Lett. 107, 168304 (2011), 10.1103/PhysRevLett.107.168304]. At extremely low dispersity, when approaching the perfectly regular honeycomb pattern, we study how both geometrical and topological disorders vanish. We identify a crystallization mechanism and explore it quantitatively in the case of bidisperse foams. Due to the deformability of the bubbles, foams can crystallize over a larger range of size dispersities than hard disks. The model predicts that the crystallization transition occurs when the ratio of largest to smallest bubble radii is 1.4.
Palsbo, Susan E; Hood-Szivek, Pamela
2012-01-01
We explored the efficacy of robotic technology in improving handwriting in children with impaired motor skills. Eighteen participants had impairments arising from cerebral palsy (CP), autism spectrum disorder (ASD), attention deficit disorder (ADD), attention deficit hyperactivity disorder (ADHD), or other disorders. The intervention was robotic-guided three-dimensional repetitive motion in 15-20 daily sessions of 25-30 min each over 4-8 wk. Fine motor control improved for the children with learning disabilities and those ages 9 or older but not for those with CP or under age 9. All children with ASD or ADHD referred for slow writing speed were able to increase speed while maintaining legibility. Three-dimensional, robot-assisted, repetitive motion training improved handwriting fluidity in children with mild to moderate fine motor deficits associated with ASD or ADHD within 10 hr of training. This dosage may not be sufficient for children with CP. Copyright © 2012 by the American Occupational Therapy Association, Inc.
Danforth, Jeffrey S; Doerfler, Leonard A; Connor, Daniel F
2017-08-01
The goal was to examine whether anxiety modifies the risk for, or severity of, conduct problems in children with ADHD. Assessment included both categorical and dimensional measures of ADHD, anxiety, and conduct problems. Analyses compared conduct problems between children with ADHD features alone versus children with co-occurring ADHD and anxiety features. When assessed by dimensional rating scales, results showed that compared with children with ADHD alone, those children with ADHD co-occurring with anxiety are at risk for more intense conduct problems. When assessment included a Diagnostic and Statistical Manual of Mental Disorders (4th ed.; DSM-IV) diagnosis via the Schedule for Affective Disorders and Schizophrenia for School Age Children-Epidemiologic Version (K-SADS), results showed that compared with children with ADHD alone, those children with ADHD co-occurring with anxiety neither had more intense conduct problems nor were they more likely to be diagnosed with oppositional defiant disorder or conduct disorder. Different methodological measures of ADHD, anxiety, and conduct problem features influenced the outcome of the analyses.
Phenotypic and genetic structure of traits delineating personality disorder.
Livesley, W J; Jang, K L; Vernon, P A
1998-10-01
The evidence suggests that personality traits are hierarchically organized with more specific or lower-order traits combining to form more generalized higher-order traits. Agreement exists across studies regarding the lower-order traits that delineate personality disorder but not the higher-order traits. This study seeks to identify the higher-order structure of personality disorder by examining the phenotypic and genetic structures underlying lower-order traits. Eighteen lower-order traits were assessed using the Dimensional Assessment of Personality Disorder-Basic Questionnaire in samples of 656 personality disordered patients, 939 general population subjects, and a volunteer sample of 686 twin pairs. Principal components analysis yielded 4 components, labeled Emotional Dysregulation, Dissocial Behavior, Inhibitedness, and Compulsivity, that were similar across the 3 samples. Multivariate genetic analyses also yielded 4 genetic and environmental factors that were remarkably similar to the phenotypic factors. Analysis of the residual heritability of the lower-order traits when the effects of the higher-order factors were removed revealed a substantial residual heritable component for 12 of the 18 traits. The results support the following conclusions. First, the stable structure of traits across clinical and nonclinical samples is consistent with dimensional representations of personality disorders. Second, the higher-order traits of personality disorder strongly resemble dimensions of normal personality. This implies that a dimensional classification should be compatible with normative personality. Third, the residual heritability of the lower-order traits suggests that the personality phenotypes are based on a large number of specific genetic components.
Fronto-Striatal Glutamate in Autism Spectrum Disorder and Obsessive Compulsive Disorder.
Naaijen, Jilly; Zwiers, Marcel P; Amiri, Houshang; Williams, Steven C R; Durston, Sarah; Oranje, Bob; Brandeis, Daniel; Boecker-Schlier, Regina; Ruf, Matthias; Wolf, Isabella; Banaschewski, Tobias; Glennon, Jeffrey C; Franke, Barbara; Buitelaar, Jan K; Lythgoe, David J
2017-11-01
Autism spectrum disorders (ASDs) and obsessive compulsive disorder (OCD) are often comorbid with the overlap based on compulsive behaviors. Although previous studies suggest glutamatergic deficits in fronto-striatal brain areas in both disorders, this is the first study to directly compare the glutamate concentrations across the two disorders with those in healthy control participants using both categorical and dimensional approaches. In the current multi-center study (four centers), we used proton magnetic resonance spectroscopy in 51 children with ASD, 29 with OCD, and 53 healthy controls (aged 8-13 years) to investigate glutamate (Glu) concentrations in two regions of the fronto-striatal circuit: midline anterior cingulate cortex (ACC) and left dorsal striatum. Spectra were processed with Linear Combination Model. Group comparisons were performed with one-way analyses of variance including sex, medication use, and scanner site as covariates. In addition, a dimensional analysis was performed, linking glutamate with a continuous measure of compulsivity across disorders. There was a main group effect for ACC glutamate (p=0.019). Contrast analyses showed increased glutamate both in children with ASD and OCD compared with controls (p=0.007), but no differences between the two disorders (p=0.770). Dimensional analyses revealed a positive correlation between compulsive behavior (measured with the Repetitive Behavior Scale) and ACC glutamate (rho=0.24, p=0.03). These findings were robust across sites. No differences were found in the striatum. The current findings confirm overlap between ASD and OCD in terms of glutamate involvement. Glutamate concentration in ACC seems to be associated with the severity of compulsive behavior.
Saito, Tomoyuki; Tamura, Maasa; Chiba, Yuhei; Katsuse, Omi; Suda, Akira; Kamada, Ayuko; Ikura, Takahiro; Abe, Kie; Ogawa, Matsuyoshi; Minegishi, Kaoru; Yoshimi, Ryusuke; Kirino, Yohei; Ihata, Atsushi; Hirayasu, Yoshio
2017-08-15
Depression is frequently observed in patients with systemic lupus erythematosus (SLE). Neuropsychiatric SLE (NPSLE) patients often exhibit cerebral hypometabolism, but the association between cerebral metabolism and depression remains unclear. To elucidate the features of cerebral metabolism in SLE patients with depression, we performed brain 18F-fluoro-d-glucose positron emission tomography (FDG-PET) on SLE patients with and without major depressive disorder. We performed brain FDG-PET on 20 SLE subjects (5 male, 15 female). The subjects were divided into two groups: subjects with major depressive disorder (DSLE) and subjects without major depressive disorder (non-DSLE). Cerebral glucose metabolism was analyzed using the three-dimensional stereotactic surface projection (3D-SSP) program. Regional metabolism was evaluated by stereotactic extraction estimation (SEE), in which the whole brain was divided into segments. Every SLE subject exhibited cerebral hypometabolism, in contrast to the normal healthy subjects. Regional analysis revealed a significantly lower ER in the left medial frontal gyrus (p=0.0055) and the right medial frontal gyrus (p=0.0022) in the DSLE group than in the non-DSLE group. Hypometabolism in the medial frontal gyrus may be related to major depressive disorder in SLE. Larger studies are needed to clarify this relationship. Copyright © 2017 Elsevier B.V. All rights reserved.
Phase diagram of the disordered Bose-Hubbard model
NASA Astrophysics Data System (ADS)
Gurarie, V.; Pollet, L.; Prokof'Ev, N. V.; Svistunov, B. V.; Troyer, M.
2009-12-01
We establish the phase diagram of the disordered three-dimensional Bose-Hubbard model at unity filling which has been controversial for many years. The theorem of inclusions, proven by Pollet [Phys. Rev. Lett. 103, 140402 (2009)] states that the Bose-glass phase always intervenes between the Mott insulating and superfluid phases. Here, we note that assumptions on which the theorem is based exclude phase transitions between gapped (Mott insulator) and gapless phases (Bose glass). The apparent paradox is resolved through a unique mechanism: such transitions have to be of the Griffiths type when the vanishing of the gap at the critical point is due to a zero concentration of rare regions where extreme fluctuations of disorder mimic a regular gapless system. An exactly solvable random transverse field Ising model in one dimension is used to illustrate the point. A highly nontrivial overall shape of the phase diagram is revealed with the worm algorithm. The phase diagram features a long superfluid finger at strong disorder and on-site interaction. Moreover, bosonic superfluidity is extremely robust against disorder in a broad range of interaction parameters; it persists in random potentials nearly 50 (!) times larger than the particle half-bandwidth. Finally, we comment on the feasibility of obtaining this phase diagram in cold-atom experiments, which work with trapped systems at finite temperature.
Gaps between avalanches in one-dimensional random-field Ising models
NASA Astrophysics Data System (ADS)
Nampoothiri, Jishnu N.; Ramola, Kabir; Sabhapandit, Sanjib; Chakraborty, Bulbul
2017-09-01
We analyze the statistics of gaps (Δ H ) between successive avalanches in one-dimensional random-field Ising models (RFIMs) in an external field H at zero temperature. In the first part of the paper we study the nearest-neighbor ferromagnetic RFIM. We map the sequence of avalanches in this system to a nonhomogeneous Poisson process with an H -dependent rate ρ (H ) . We use this to analytically compute the distribution of gaps P (Δ H ) between avalanches as the field is increased monotonically from -∞ to +∞ . We show that P (Δ H ) tends to a constant C (R ) as Δ H →0+ , which displays a nontrivial behavior with the strength of disorder R . We verify our predictions with numerical simulations. In the second part of the paper, motivated by avalanche gap distributions in driven disordered amorphous solids, we study a long-range antiferromagnetic RFIM. This model displays a gapped behavior P (Δ H )=0 up to a system size dependent offset value Δ Hoff , and P (Δ H ) ˜(ΔH -Δ Hoff) θ as Δ H →Hoff+ . We perform numerical simulations on this model and determine θ ≈0.95 (5 ) . We also discuss mechanisms which would lead to a nonzero exponent θ for general spin models with quenched random fields.
Regier, Darrel A
2007-01-01
The American Psychiatric Association (APA) will publish the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-V), in 2012. This paper reviews the extended, multi-faceted research planning preparations that APA has undertaken, several in collaboration with the World Health Organization and the U.S. National Institutes of Health, to assess the current state of diagnosis-relevant research and to generate short- and long-term recommendations for research needed to enrich DSM-V and future psychiatric classifications. This research review and planning process has underscored widespread interest among nosologists in the US and globally regarding the potential benefits for research and clinical practice of incorporating a dimensional component into the existing categorical, or binary, classification system in the DSM. Toward this end, the APA and its partners convened an international conference in July 2006 to critically appraise the use of dimensional constructs in psychiatric diagnostic systems. Resultant papers appear in this issue of International Journal of Methods in Psychiatric Research and in a forthcoming monograph to be published by APA. Copyright (c) 2007 John Wiley & Sons, Ltd.
Universal statistics of vortex tangles in three-dimensional random waves
NASA Astrophysics Data System (ADS)
Taylor, Alexander J.
2018-02-01
The tangled nodal lines (wave vortices) in random, three-dimensional wavefields are studied as an exemplar of a fractal loop soup. Their statistics are a three-dimensional counterpart to the characteristic random behaviour of nodal domains in quantum chaos, but in three dimensions the filaments can wind around one another to give distinctly different large scale behaviours. By tracing numerically the structure of the vortices, their conformations are shown to follow recent analytical predictions for random vortex tangles with periodic boundaries, where the local disorder of the model ‘averages out’ to produce large scale power law scaling relations whose universality classes do not depend on the local physics. These results explain previous numerical measurements in terms of an explicit effect of the periodic boundaries, where the statistics of the vortices are strongly affected by the large scale connectedness of the system even at arbitrarily high energies. The statistics are investigated primarily for static (monochromatic) wavefields, but the analytical results are further shown to directly describe the reconnection statistics of vortices evolving in certain dynamic systems, or occurring during random perturbations of the static configuration.
Sellbom, Martin; Smid, Wineke; de Saeger, Hilde; Smit, Naomi; Kamphuis, Jan H
2014-01-01
The Personality Psychopathology Five (PSY-5) model represents 5 broadband dimensional personality domains that align with the originally proposed DSM-5 personality trait system, which was eventually placed in Section III for further study. The main objective of this study was to examine the associations between the PSY-5 model and personality disorder criteria. More specifically, we aimed to determine if the PSY-5 domain scales converged with the alternative DSM-5 Section III model for personality disorders, with a particular emphasis on the personality trait profiles proposed for each of the specific personality disorder types. Two samples from The Netherlands consisting of clinical patients from a personality disorder treatment program (n = 190) and forensic psychiatric hospital (n = 162) were used. All patients had been administered the MMPI-2 (from which MMPI-2-RF PSY-5 scales were scored) and structured clinical interviews to assess personality disorder criteria. Results based on Poisson or negative binomial regression models showed statistically significant and meaningful associations for the hypothesized PSY-5 domains for each of the 6 personality disorders, with a few minor exceptions that are discussed in detail. Implications for these findings are also discussed.
Nonlinear Dynamics, Noise and Cooperative Behavior in Affective Disorders
NASA Astrophysics Data System (ADS)
Huber, Martin
2001-03-01
Mood disorders tend to be recurrent and progressive and illness patterns typically evolve from isolated episodes at the beginning to more rapid, rhythmic and finally irregular "chaotic" mood patterns. This chararacteristic timecourse prompted the consideration of nonlinear dynamics as a way to describe and analyze course and disease states of mood disorders. Indeed, some evidences now exist indicating that low-dimensional dynamics underly the illness progression. To gain an understanding of prinicple mechanisms that might underly the course and disease patterns of mood disorders, we developed a phenomenological mathematical model for the disease course. In doing so, we made use of a neuronal analogy that exists between disease patterns and neuronal spike patterns and which is commonly referred to as the kindling model of mood disorders (Post, Am J of Psychiatry 1992,149:999-1010; Huber, Braun, Krieg, Biol Psychiatry 1999,46:256-262; Huber, Braun, Krieg, Biol Psychiatry 2000,47:634-642). Using a computational implementation of this approach we investigated the possible relevance of nonlinear dynamics for the disease course, the role of cooperative interactions between nonlinear and noisy dynamics as well as the effect of sensitization mechanisms between disease episodes and disease system. Our simulations show that a low-dimensional model can phenomenologically map the timecourse of mood disorders. From a functional perspective, the model indicates an important role for stochastic fluctuations which can amplify subthreshold states into disease states and can induce transitions to irregular rapidly changing disease patterns. Interesting dynamics are observed with respect to deterministically defined disease states and their dependence on noise intensity. Finally, our simulations show how sensitization effects quite naturally lead to a disease course which ends in irregular fluctuating disease patterns as observed in clinical data. Our findings indicate the usefulness of a computational approach as a way to understand and explain the complexity of temporal disease dynamics of mood disorders but also to procede to new experimental approaches for disease characterisation with the aim of better treatment options.
Phase transition in 2-d system of quadrupoles on square lattice with anisotropic field
NASA Astrophysics Data System (ADS)
Sallabi, A. K.; Alkhttab, M.
2014-12-01
Monte Carlo method is used to study a simple model of two-dimensional interacting quadrupoles on ionic square lattice with anisotropic strength provided by the ionic lattice. Order parameter, susceptibility and correlation function data, show that this system form an ordered structure with p(2×1) symmetry at low temperature. The p(2×1) structure undergoes an order-disorder phase transition into disordered (1×1) phase at 8.3K. The two-point correlation function show exponential dependence on distance both above and below the transition temperature. At Tc the two-point correlation function shows a power law dependence on distance, e.g. C(r) ~ 1η. The value of the exponent η at Tc shows small deviation from the Ising value and indicates that this system falls into the same universality class as the XY model with cubic anisotropy. This model can be applied to prototypical quadrupoles physisorbed systems as N2 on NaCl(100).
Virtual Reality to Train Diagnostic Skills in Eating Disorders. Comparison of two Low Cost Systems.
Gutiérrez-Maldonado, José; Ferrer-García, Marta; Plasanjuanelo, Joana; Andrés-Pueyo, Antonio; Talarn-Caparrós, Antoni
2015-01-01
Enhancing the ability to perform differential diagnosis and psychopathological exploration is important for students who wish to work in the clinical field, as well as for professionals already working in this area. Virtual reality (VR) simulations can immerse students totally in educational experiences in a way that is not possible using other methods. Learning in a VR environment can also be more effective and motivating than usual classroom practices. Traditionally, immersion has been considered central to the quality of a VR system; immersive VR is considered a special and unique experience that cannot achieved by three-dimensional (3D) interactions on desktop PCs. However, some authors have suggested that if the content design is emotionally engaging, immersive systems are not always necessary. The main purpose of this study is to compare the efficacy and usability of two low-cost VR systems, offering different levels of immersion, in order to develop the ability to perform diagnostic interviews in eating disorders by means of simulations of psychopathological explorations.
Nanobubble induced formation of quantum emitters in monolayer semiconductors
NASA Astrophysics Data System (ADS)
Shepard, Gabriella D.; Ajayi, Obafunso A.; Li, Xiangzhi; Zhu, X.-Y.; Hone, James; Strauf, Stefan
2017-06-01
The recent discovery of exciton quantum emitters in transition metal dichalcogenides (TMDCs) has triggered renewed interest of localized excitons in low-dimensional systems. Open questions remain about the microscopic origin previously attributed to dopants and/or defects as well as strain potentials. Here we show that the quantum emitters can be deliberately induced by nanobubble formation in WSe2 and BN/WSe2 heterostructures. Correlations of atomic-force microscope and hyperspectral photoluminescence images reveal that the origin of quantum emitters and trion disorder is extrinsic and related to 10 nm tall nanobubbles and 70 nm tall wrinkles, respectively. We further demonstrate that ‘hot stamping’ results in the absence of 0D quantum emitters and trion disorder. The demonstrated technique is useful for advances in nanolasers and deterministic formation of cavity-QED systems in monolayer materials.
Room-Temperature Micron-Scale Exciton Migration in a Stabilized Emissive Molecular Aggregate.
Caram, Justin R; Doria, Sandra; Eisele, Dörthe M; Freyria, Francesca S; Sinclair, Timothy S; Rebentrost, Patrick; Lloyd, Seth; Bawendi, Moungi G
2016-11-09
We report 1.6 ± 1 μm exciton transport in self-assembled supramolecular light-harvesting nanotubes (LHNs) assembled from amphiphillic cyanine dyes. We stabilize LHNs in a sucrose glass matrix, greatly reducing light and oxidative damage and allowing the observation of exciton-exciton annihilation signatures under weak excitation flux. Fitting to a one-dimensional diffusion model, we find an average exciton diffusion constant of 55 ± 20 cm 2 /s, among the highest measured for an organic system. We develop a simple model that uses cryogenic measurements of static and dynamic energetic disorder to estimate a diffusion constant of 32 cm 2 /s, in agreement with experiment. We ascribe large exciton diffusion lengths to low static and dynamic energetic disorder in LHNs. We argue that matrix-stabilized LHNS represent an excellent model system to study coherent excitonic transport.
Kamp-Becker, Inge; Smidt, Judith; Ghahreman, Mardjan; Heinzel-Gutenbrunner, Monika; Becker, Katja; Remschmidt, Helmut
2010-08-01
There is an ongoing debate whether a differentiation of autistic subtypes, especially between Asperger Syndrome (AS) and high-functioning-autism (HFA) is possible and if so, whether it is a categorical or dimensional one. The aim of this study was to examine the possible clustering of responses in different symptom domains without making any assumption concerning diagnostic appreciation. About 140 children and adolescents, incorporating 52 with a diagnosis of AS, 44 with HFA, 8 with atypical autism and 36 with other diagnoses, were examined. Our study does not support the thesis that autistic disorders are discrete phenotypes. On the contrary, it provides evidence that e.g. AS and autism are not qualitatively distinct disorders, but rather different quantitative manifestations of the same disorder.
Plate tectonics in the classification of personality disorder: shifting to a dimensional model.
Widiger, Thomas A; Trull, Timothy J
2007-01-01
The diagnostic categories of the American Psychiatric Association's Diagnostic and Statistical Manual of Mental Disorders were developed in the spirit of a traditional medical model that considers mental disorders to be qualitatively distinct conditions (see, e.g., American Psychiatric Association, 2000). Work is now beginning on the fifth edition of this influential diagnostic manual. It is perhaps time to consider a fundamental shift in how psychopathology is conceptualized and diagnosed. More specifically, it may be time to consider a shift to a dimensional classification of personality disorder that would help address the failures of the existing diagnostic categories as well as contribute to an integration of the psychiatric diagnostic manual with psychology's research on general personality structure. (c) 2007 APA, all rights reserved
Gender identity and sexual orientation in women with borderline personality disorder.
Singh, Devita; McMain, Shelley; Zucker, Kenneth J
2011-02-01
In the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, text revision (DSM-IV-TR) (and earlier editions), a disturbance in "identity" is one of the defining features of borderline personality disorder (BPD). Gender identity, a person's sense of self as a male or a female, constitutes an important aspect of identity formation, but this construct has rarely been examined in patients with BPD. In the present study, the presence of gender identity disorder or confusion was examined in women diagnosed with BPD. We used a validated dimensional measure of gender dysphoria. Recalled gender identity and gender role behavior from childhood was also assessed with a validated dimensional measure, and current sexual orientation was assessed by two self-report measures. A consecutive series of 100 clinic-referred women (mean age, 34 years) with BPD participated in the study. The women were diagnosed with BPD using the International Personality Disorder Exam-BPD Section. None of the women with BPD met the criterion for caseness on the dimensional measure of gender dysphoria. Women who self-reported either a bisexual or a homosexual sexual orientation had a significantly higher score on the dimensional measure of gender dysphoria than the women who self-reported a heterosexual sexual orientation, and they also recalled significantly more cross-gender behavior during childhood. Results were compared with a previous study on a diagnostically heterogeneous group of women with other clinical problems. The importance of psychosexual assessment in the clinical evaluation of patients with BPD is discussed. © 2010 International Society for Sexual Medicine.
Pinto, Paula Sanders Pereira; Iego, Sandro; Nunes, Samantha; Menezes, Hemanny; Mastrorosa, Rosana Sávio; Oliveira, Irismar Reis de; Rosário, Maria Conceição do
2011-03-01
This study investigates obsessive-compulsive disorder patients in terms of strategic planning and its association with specific obsessive-compulsive symptom dimensions. We evaluated 32 obsessive-compulsive disorder patients. Strategic planning was assessed by the Rey-Osterrieth Complex Figure Test, and the obsessive-compulsive dimensions were assessed by the Dimensional Yale-Brown Obsessive-Compulsive Scale. In the statistical analyses, the level of significance was set at 5%. We employed linear regression, including age, intelligence quotient, number of comorbidities, the Yale-Brown Obsessive-Compulsive Scale score, and the Dimensional Yale-Brown Obsessive-Compulsive Scale. The Dimensional Yale-Brown Obsessive-Compulsive Scale "worst-ever" score correlated significantly with the planning score on the copy portion of the Rey-Osterrieth Complex Figure Test (r = 0.4, p = 0.04) and was the only variable to show a significant association after linear regression (β = 0.55, t = 2.1, p = 0.04). Compulsive hoarding correlated positively with strategic planning (r = 0.44, p = 0.03). None of the remaining symptom dimensions presented any significant correlations with strategic planning. We found the severity of obsessive-compulsive symptoms to be associated with strategic planning. In addition, there was a significant positive association between the planning score on the copy portion of the Rey-Osterrieth Complex Figure Test copy score and the hoarding dimension score on the Dimensional Yale-Brown Obsessive-Compulsive Scale. Our results underscore the idea that obsessive-compulsive disorder is a heterogeneous disorder and suggest that the hoarding dimension has a specific neuropsychological profile. Therefore, it is important to assess the peculiarities of each obsessive-compulsive symptom dimension.
Multi-Step Lithiation of Tin Sulfide: An Investigation Using In Situ Electron Microscopy
Hwang, Sooyeon; Yao, Zhenpeng; Zhang, Lei; ...
2018-04-03
Two-dimensional metal sulfides have been widely explored as promising electrodes for lithium ion batteries since their two-dimensional layered structure allows lithium ions to intercalate between layers. For tin disulfide, the lithiation process proceeds via a sequence of three different types of reactions: intercalation, conversion, and alloying but the full scenario of reaction dynamics remains nebulous. In this paper, we investigate the dynamical process of the multi-step reactions using in situ electron microscopy and discover an intermediate rock-salt phase with the disordering of Li and Sn cations, after the initial 2-dimensional intercalation. The disordered cations occupy all the octahedral sites andmore » block the channels for intercalation, which alter the reaction pathways during further lithiation. Our first principles calculations of the non-equilibrium lithiation of SnS2 corroborate the energetic preference of the disordered rock-salt structure over known layered polymorphs. The in situ observations and calculations suggest a two-phase reaction nature for intercalation, disordering, and following conversion reactions. In addition, in situ de-lithiation observation confirms that the alloying reaction is reversible while the conversion reaction is not, which is consistent to the ex situ analysis. This work reveals the full lithiation characteristic of SnS2 and sheds light on the understanding of complex multistep reactions in two-dimensional materials.« less
Di Pierro, Rossella; Preti, Emanuele; Vurro, Nicoletta; Madeddu, Fabio
2014-08-01
Although dual diagnosis has been a topic of great scientific interest for a long time, few studies have investigated the personality traits that characterize patients suffering from substance use disorders and co-occurring personality disorders through a dimensional approach. The present study aimed to evaluate structural personality profiles among dual-diagnosis inpatients to identify specific personality impairments associated with dual diagnosis. The present study involved 97 participants divided into three groups: 37 dual-diagnosis inpatients, 30 psychiatric outpatients and 30 nonclinical controls. Dimensions of personality functioning were assessed and differences between groups were tested using Kernberg's dimensional model of personality. Results showed that dual diagnosis was associated with the presence of difficulties in three main dimensions of personality functioning. Dual-diagnosis inpatients reported a poorly integrated identity with difficulties in the capacity to invest, poorly integrated moral values, and high levels of self-direct and other-direct aggression. The present study highlighted that a dimensional approach to the study of dual diagnosis may clarify the personality functioning of patients suffering from this pathological condition. The use of the dimensional approach could help to advance research on dual diagnosis, and it could have important implications on clinical treatment programs for dual-diagnosis inpatients. Copyright © 2014 Elsevier Inc. All rights reserved.
Multi-Step Lithiation of Tin Sulfide: An Investigation Using In Situ Electron Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Sooyeon; Yao, Zhenpeng; Zhang, Lei
Two-dimensional metal sulfides have been widely explored as promising electrodes for lithium ion batteries since their two-dimensional layered structure allows lithium ions to intercalate between layers. For tin disulfide, the lithiation process proceeds via a sequence of three different types of reactions: intercalation, conversion, and alloying but the full scenario of reaction dynamics remains nebulous. In this paper, we investigate the dynamical process of the multi-step reactions using in situ electron microscopy and discover an intermediate rock-salt phase with the disordering of Li and Sn cations, after the initial 2-dimensional intercalation. The disordered cations occupy all the octahedral sites andmore » block the channels for intercalation, which alter the reaction pathways during further lithiation. Our first principles calculations of the non-equilibrium lithiation of SnS2 corroborate the energetic preference of the disordered rock-salt structure over known layered polymorphs. The in situ observations and calculations suggest a two-phase reaction nature for intercalation, disordering, and following conversion reactions. In addition, in situ de-lithiation observation confirms that the alloying reaction is reversible while the conversion reaction is not, which is consistent to the ex situ analysis. This work reveals the full lithiation characteristic of SnS2 and sheds light on the understanding of complex multistep reactions in two-dimensional materials.« less
Phase transitions in the first-passage time of scale-invariant correlated processes
Carretero-Campos, Concepción; Bernaola-Galván, Pedro; Ch. Ivanov, Plamen
2012-01-01
A key quantity describing the dynamics of complex systems is the first-passage time (FPT). The statistical properties of FPT depend on the specifics of the underlying system dynamics. We present a unified approach to account for the diversity of statistical behaviors of FPT observed in real-world systems. We find three distinct regimes, separated by two transition points, with fundamentally different behavior for FPT as a function of increasing strength of the correlations in the system dynamics: stretched exponential, power-law, and saturation regimes. In the saturation regime, the average length of FPT diverges proportionally to the system size, with important implications for understanding electronic delocalization in one-dimensional correlated-disordered systems. PMID:22400544
NASA Astrophysics Data System (ADS)
Sherajul Islam, Md.; Anindya, Khalid N.; Bhuiyan, Ashraful G.; Tanaka, Satoru; Makino, Takayuki; Hashimoto, Akihiro
2018-02-01
We report the details of the effects of the 10B isotope and those of B and N vacancies combined with the isotope on the phonon modes of two-dimensional hexagonal boron nitride (h-BN). The phonon density of states and localization problems are solved using the forced vibrational method, which is suitable for an intricate and disordered system. We observe an upward shift of Raman-active E2g-mode optical phonons (32 cm-1) for a 100% 10B isotope, which matches well with the experiment and simple harmonic oscillator model. However, a downward shift of E2g-mode phonons is observed for B or N vacancies and the combination of the isotope and vacancy-type disordered BN. Strong localized eigenmodes are found for all types of defects, and a typical localization length is on the order of ˜7 nm for naturally occurring BN samples. These results are very important for understanding the heat dissipation and electron transport properties of BN-based nanoelectronics.
Long-Range Pre-Thermal Time Crystals
NASA Astrophysics Data System (ADS)
Machado, Francisco; Else, Dominic V.; Nayak, Chetan; Yao, Norman
Driven quantum systems have recently enabled the realization of a discrete time crystal - an intrinsically out-of-equilibrium phase of matter that spontaneously breaks time translation symmetry. One strategy to prevent the drive-induced, runaway heating of the time crystal phase is the presence of strong disorder leading to many-body localization. A simpler disorder-less approach is to work in the pre-thermal regime where time crystalline order can persist to long times, before ultimately being destroyed by thermalization. In this talk, we will consider the interplay between long-range interactions, dimensionality, and pre-thermal time-translation symmetry breaking. As an example, we will consider the phase diagram of a 1D long-range pre-thermal time crystal.
Modeling Electronic Quantum Transport with Machine Learning
Lopez Bezanilla, Alejandro; von Lilienfeld Toal, Otto A.
2014-06-11
We present a machine learning approach to solve electronic quantum transport equations of one-dimensional nanostructures. The transmission coefficients of disordered systems were computed to provide training and test data sets to the machine. The system’s representation encodes energetic as well as geometrical information to characterize similarities between disordered configurations, while the Euclidean norm is used as a measure of similarity. Errors for out-of-sample predictions systematically decrease with training set size, enabling the accurate and fast prediction of new transmission coefficients. The remarkable performance of our model to capture the complexity of interference phenomena lends further support to its viability inmore » dealing with transport problems of undulatory nature.« less
Calculation of the conductance of two dimensional narrow wires
NASA Astrophysics Data System (ADS)
Kander, Ilan
1989-05-01
There is an interest in the quantum transport of electrons in systems where the sample dimensions are less than a phase coherence length L(sub phi) which is the distance across which the electrons lose phase memory (typically by inelastic scattering). The two-contact conductance is examined of 2-D systems (strips) as functions of Fermi energy system dimensions as is the amount of disorder at zero temperature. Under these conditions all scattering processes are elastic. The term channel is used in order to describe a quantum state with a given transverse quantum number and the appropriate longitudinal momentum. A channel is considered conducting if its longitudinal momentum is real, and decaying if its longitudinal momentum is imaginary. The calculation of the conductance is done in two ways. Transfer matrix for very long systems and Green's function for relatively short ones. The conductance curve in an ordered system is quantized and in a disordered system it is smeared. Interesting changes in the conductance near the thresholds for changes in the quantized value of the conductance are observed.
Classification of Behaviorally Defined Disorders: Biology versus the DSM
ERIC Educational Resources Information Center
Rapin, Isabelle
2014-01-01
Three levels of investigation underlie all biologically based attempts at classification of behaviorally defined developmental and psychiatric disorders: Level A, pseudo-categorical classification of mostly dimensional descriptions of behaviors and their disorders included in the 2013 American Psychiatric Association's Fifth Edition of the…
Interaction and Correlation Effects in Quasi Two-dimensional Materials
NASA Astrophysics Data System (ADS)
Louie, Steven G.
2015-03-01
Experimental and theoretical studies of atomically thin quasi two-dimensional materials (typically related to some parent van der Waals layered crystals) and their nanostructures have revealed that these systems can exhibit highly unusual behaviors. In this talk, we discuss some theoretical studies of the electronic, transport and optical properties of such systems. We present results on graphene and graphene nanostructures as well as other quasi-2D systems such as monolayer and few-layer transition metal dichalcogenides (e.g., MoS2, MoSe2, WS2, and WSe2) and metal monochalcogenides (such as GaSe and FeSe). Owing to their reduced dimensionality, these systems present opportunities for unusual manifestation of concepts and phenomena that may not be so prominent or have not been seen in bulk materials. Symmetry and many-body interaction effects often play a critical role in shaping qualitatively and quantitatively their properties. Several quantum phenomena are discussed, including novel and dominant exciton effects, tunable magnetism, electron supercollimation by disorder, unusual plasmon behaviors, and possible enhanced superconductivity in some of these systems. We investigate their physical origins and compare theoretical predictions with experimental data. This work was supported by DOE under Contract No. DE-AC02-05CH11231 and by NSF under Grant No. DMR10-1006184. I would like to acknowledge collaborations with members of the Louie group and the experimental groups of Crommie, Heinz, Wang, and Zhang.
Two dimensional disorder in black phosphorus and layered monochalcogenides
NASA Astrophysics Data System (ADS)
Barraza-Lopez, Salvador; Mehboudi, Mehrshad; Kumar, Pradeep; Harriss, Edmund O.; Churchill, Hugh O. H.; Dorio, Alex M.; Zhu, Wenjuan; van der Zande, Arend; Pacheco Sanjuan, Alejandro A.
The degeneracies of the structural ground state of materials with a layered orthorhombic structure such as black phosphorus and layered monochalcogenides GeS, GeSe, SnS, and SnSe, lead to an order/disorder transition in two dimensions at finite temperature. This transition has consequences on applications based on these materials requiring a crystalline two-dimensional structure. Details including a Potts model that explains the two-dimensional transition, among other results, will be given in this talk. References: M. Mehboudi, A.M. Dorio, W. Zhu, A. van der Zande, H.O.H. Churchill, A.A. Pacheco Sanjuan, E.O.H. Harris, P. Kumar, and S. Barraza-Lopez. arXiv:1510.09153.
Quantitative evaluation of the voice range profile in patients with voice disorder.
Ikeda, Y; Masuda, T; Manako, H; Yamashita, H; Yamamoto, T; Komiyama, S
1999-01-01
In 1953, Calvet first displayed the fundamental frequency (pitch) and sound pressure level (intensity) of a voice on a two-dimensional plane and created a voice range profile. This profile has been used to evaluate clinically various vocal disorders, although such evaluations to date have been subjective without quantitative assessment. In the present study, a quantitative system was developed to evaluate the voice range profile utilizing a personal computer. The area of the voice range profile was defined as the voice volume. This volume was analyzed in 137 males and 175 females who were treated for various dysphonias at Kyushu University between 1984 and 1990. Ten normal subjects served as controls. The voice volume in cases with voice disorders significantly decreased irrespective of the disease and sex. Furthermore, cases having better improvement after treatment showed a tendency for the voice volume to increase. These findings illustrated the voice volume as a useful clinical test for evaluating voice control in cases with vocal disorders.
Majorana Kramers pairs in Rashba double nanowires with interactions and disorder
NASA Astrophysics Data System (ADS)
Thakurathi, Manisha; Simon, Pascal; Mandal, Ipsita; Klinovaja, Jelena; Loss, Daniel
2018-01-01
We analyze the effects of electron-electron interactions and disorder on a Rashba double-nanowire setup coupled to an s -wave superconductor, which has been recently proposed as a versatile platform to generate Kramers pairs of Majorana bound states in the absence of magnetic fields. We identify the regime of parameters for which these Kramers pairs are stable against interaction and disorder effects. We use bosonization, perturbative renormalization group, and replica techniques to derive the flow equations for various parameters of the model and evaluate the corresponding phase diagram with topological and disorder-dominated phases. We confirm aforementioned results by considering a more microscopic approach, which starts from the tunneling Hamiltonian between the three-dimensional s -wave superconductor and the nanowires. We find again that the interaction drives the system into the topological phase and, as the strength of the source term coming from the tunneling Hamiltonian increases, strong electron-electron interactions are required to reach the topological phase.
Correlates Associated with Unipolar Depressive Disorders in a Latino Population
Correa-Fernandez, Virmarie; Carrión-Baralt, José R.; Alegría, Margarita; Albizu-García, Carmen E.
2014-01-01
Background This study reports the comparison and associations of demographic, clinical, and psychosocial correlates with three unipolar depressive disorders: dysthymia (DYS), major depression (MD), and double depression (DD), and examines to which extent these variables predict the disorders. Sampling and Method Previously collected data from 563 adults from a community in Puerto Rico were analyzed. One hundred and thirty individuals with DYS, 260 with MD, and 173 with DD were compared by demographic variables, psychiatric and physical comorbidity, familial psychopathology, psychosocial stressors, functional impairment, self-reliance, problem recognition and formal use of mental health services. Multinomial regression was used to assess the association of the predictor variables with each of the three disorders. Results Similarities outweighed the discrepancies between disorders. The main differences observed were between MD and DD, while DYS shared common characteristics with both MD and DD. After other variables were controlled, anxiety, functional impairment, and problem recognition most strongly predicted a DD diagnosis while age predicted a DYS diagnosis. Conclusion MD, DYS, and DD are not completely different disorders but they do differ in key aspects that might be relevant for nosology, research, and practice. A dimensional system that incorporates specific categories of disorders would better reflect the different manifestations of unipolar depressive disorders. PMID:23006435
NASA Astrophysics Data System (ADS)
An, Taeyang; Cha, Min-Chul
2013-03-01
We study the superfluid-insulator quantum phase transition in a disordered two-dimensional quantum rotor model with random on-site interactions in the presence of particle-hole symmetry. Via worm-algorithm Monte Carlo calculations of superfluid density and compressibility, we find the dynamical critical exponent z ~ 1 . 13 (2) and the correlation length critical exponent 1 / ν ~ 1 . 1 (1) . These exponents suggest that the insulating phase is a incompressible Mott glass rather than a Bose glass.
Effect of disorder on the optical properties of short period superlattices
NASA Technical Reports Server (NTRS)
Strozier, J. A.; Zhang, Y. A.; Horton, C.; Ignatiev, A.; Shih, H. D.
1993-01-01
The optical properties of disordered short period superlattices are studied using a one-dimensional tight-binding model. A difference vector and disorder structure factor are proposed to characterize the disordered superlattice. The density of states, participation number, and optical absorption coefficients for both ordered and disordered superlattices are calculated as a function of energy. The results show that introduction of disorder into an indirect band gap material enhances the optical transition near the indirect band edge.
Chiesa, Marco; Cirasola, Antonella; Williams, Riccardo; Nassisi, Valentina; Fonagy, Peter
2017-04-01
Although several studies have highlighted the relationship between attachment states of mind and personality disorders, their findings have not been consistent, possibly due to the application of the traditional taxonomic classification model of attachment. A more recently developed dimensional classification of attachment representations, including more specific aspects of trauma-related representations, may have advantages. In this study, we compare specific associations and predictive power of the categorical attachment and dimensional models applied to 230 Adult Attachment Interview transcripts obtained from personality disordered and nonpsychiatric subjects. We also investigate the role that current levels of psychiatric distress may have in the prediction of PD. The results showed that both models predict the presence of PD, with the dimensional approach doing better in discriminating overall diagnosis of PD. However, both models are less helpful in discriminating specific PD diagnostic subtypes. Current psychiatric distress was found to be the most consistent predictor of PD capturing a large share of the variance and obscuring the role played by attachment variables. The results suggest that attachment parameters correlate with the presence of PD alone and have no specific associations with particular PD subtypes when current psychiatric distress is taken into account.
Weeks, Justin W; Carleton, R Nicholas; Asmundson, Gordon J G; McCabe, Randi E; Antony, Martin M
2010-10-01
Previous findings suggest that social anxiety disorder may be best characterized as having a dimensional latent structure (Kollman et al., 2006; Weeks et al., 2009). We attempted to extend previous taxometric investigations of social anxiety by examining the latent structure of social anxiety disorder symptoms in a large sample comprised of social anxiety disorder patients (i.e., putative taxon members) and community residents/undergraduate respondents (i.e., putative complement class members). MAXEIG and MAMBAC were performed with indicator sets drawn from a self-report measure of social anxiety symptoms, the Social Interaction Phobia Scale (Carleton et al., 2009). MAXEIG and MAMBAC analyses, as well as comparison analyses utilizing simulated taxonic and dimensional datasets, yielded converging evidence that social anxiety disorder has a taxonic latent structure. Moreover, 100% of the confirmed social anxiety disorder patients in our overall sample were correctly assigned to the identified taxon class, providing strong support for the external validity of the identified taxon; and k-means cluster analysis results corroborated our taxometric base-rate estimates. Implications regarding the conceptualization, diagnosis, and assessment of social anxiety disorder are discussed. Copyright 2010 Elsevier Ltd. All rights reserved.
Localization in a quantum spin Hall system.
Onoda, Masaru; Avishai, Yshai; Nagaosa, Naoto
2007-02-16
The localization problem of electronic states in a two-dimensional quantum spin Hall system (that is, a symplectic ensemble with topological term) is studied by the transfer matrix method. The phase diagram in the plane of energy and disorder strength is exposed, and demonstrates "levitation" and "pair annihilation" of the domains of extended states analogous to that of the integer quantum Hall system. The critical exponent nu for the divergence of the localization length is estimated as nu congruent with 1.6, which is distinct from both exponents pertaining to the conventional symplectic and the unitary quantum Hall systems. Our analysis strongly suggests a different universality class related to the topology of the pertinent system.
I Situ Surface X-Ray Diffraction Studies of Electrochemically Deposited Monolayers
NASA Astrophysics Data System (ADS)
Yee, Dennis
1995-01-01
In situ x-ray diffraction has been used to determine the detailed atomic structure of electrochemically deposited lead, thallium, and bismuth monolayers on the silver (111) electrode surface. A review of our previously published lead and thallium monolayer results and the first in situ surface x-ray crystallographic study of the bismuth monolayer structure is presented. The crystallographic analysis of the bismuth Bragg rod intensities and the interference between the bismuth Bragg rod and silver crystal truncation rod scattering were used to determine the detailed atomic structure of the bismuth on silver (111) system at the liquid-solid interface. Our previous in situ x-ray diffraction studies showed that the bismuth monolayer lattice is rectangular and uniaxially incommensurate with the underlying hexagonal silver surface. A crystallographic analysis of the measured structure factor magnitudes reveals that the monolayer forms chains of atoms on the silver surface, similar to the bulk Bi(110)_{rh} plane, with a near neighbor distance of 3.12 +/- 0.01 A and a bond angle of 93 +/- 1^circ, consistent with the bulk Bi(110) _{rh} plane values. The crystallographic refinement also shows that the bismuth monolayer atoms are anisotropically disordered with a rms disorder of 0.25 +/- 0.03 A in the incommensurate direction and 0.09 +/- 0.03 A rms in the commnensurate direction. The interference between the Bi(20) Bragg rod and the Ag(10L)_ {h} crystal truncation rod scattering reveals that one set of bismuth atoms is registered near the bridge sites of the silver (111) surface while another set is registered near the 3-fold hollow sites. In addition, the Bi-Ag d-spacing (3.1 +/- 0.1 A) is found to be consistent with the bulk bismuth near neighbor distance. The bismuth z-direction rms disorder (1.01 +/- 0.08 A) is found to be dominated by the roughness of the underlying silver (sigma_{Ag} = 0.9 +/- 0.1 A rms). Using the estimated bismuth-bismuth spring constant of 1.41 +/- 0.07 eV/A^2 from our measured bismuth two-dimensional compressibility, two simple models are used to try and understand the origin of the anisotropic disorder. A simple two-dimensional isotropic thermal fluctuation model shows that thermal fluctuations are not large enough to account for all of the measured excess disorder in the incommensurate direction. A simple one-dimensional Frenkel-Kontorova model shows that the substrate-induced disorder can account for the anisotropic disorder, assuming a substrate sinusoidal potential strength of 0.35 +/- 0.02 eV.
Two-dimensional La2/3Sr4/3MnO4 Manganite Films Probed by Epitaxial Strain and Cation Ordering
NASA Astrophysics Data System (ADS)
Nelson-Cheeseman, Brittany; Santos, Tiffany; Bhattacharya, Anand
2010-03-01
Dimensionality is known to play a central role in the properties of strongly correlated systems. Here we investigate magnetism and transport in thin films of the Ruddlesden-Popper n=1 phase, La1-xSr1+xMnO4. Within this material, the MnO6-octahedra form two-dimensional perovskite sheets separated by an extra rocksalt layer. By fabricating high quality thin films with ozone-assisted molecular beam epitaxy, we study how the effects of epitaxial strain and intentional cation ordering, known as digital synthesis, influence the properties of this 2-dimensional manganite. For example, at the same Mn^3+:Mn^4+ ratio (2:1) as its fully spin-polarized 3D manganite counterpart, this two dimensional analog at x=1/3 only displays a spin glass phase below 20K in bulk. This is believed to result from a competition between superexchange and double exchange, as well as disordered Jahn-Teller distortions. However, in our films we find weak ferromagnetic order up to much higher temperatures in addition to a low temperature spin glass phase. We will discuss how strain and cation order effect the presence of this weak ferromagnetism.
Clinical application of the five-factor model.
Widiger, Thomas A; Presnall, Jennifer Ruth
2013-12-01
The Five-Factor Model (FFM) has become the predominant dimensional model of general personality structure. The purpose of this paper is to suggest a clinical application. A substantial body of research indicates that the personality disorders included within the American Psychiatric Association's (APA) Diagnostic and Statistical Manual of Mental Disorders (DSM) can be understood as extreme and/or maladaptive variants of the FFM (the acronym "DSM" refers to any particular edition of the APA DSM). In addition, the current proposal for the forthcoming fifth edition of the DSM (i.e., DSM-5) is shifting closely toward an FFM dimensional trait model of personality disorder. Advantages of this shifting conceptualization are discussed, including treatment planning. © 2012 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Siboni, N. H.; Schluck, J.; Pierz, K.; Schumacher, H. W.; Kazazis, D.; Horbach, J.; Heinzel, T.
2018-02-01
Magnetotransport measurements in combination with molecular dynamics simulations on two-dimensional disordered Lorentz gases in the classical regime are reported. In quantitative agreement between experiment and simulation, the magnetoconductivity displays a pronounced peak as a function of the perpendicular magnetic field B which cannot be explained by existing kinetic theories. This peak is linked to the onset of a directed motion of the electrons along the contour of the disordered obstacle matrix when the cyclotron radius becomes smaller than the size of the obstacles. This directed motion leads to transient superdiffusive motion and strong scaling corrections in the vicinity of the insulator-to-conductor transitions of the Lorentz gas.
Chiral zero energy modes in two-dimensional disordered Dirac semimetals
NASA Astrophysics Data System (ADS)
Liu, Lei; Yu, Yan; Wu, Hai-Bin; Zhang, Yan-Yang; Liu, Jian-Jun; Li, Shu-Shen
2018-04-01
The vacancy-induced chiral zero energy modes (CZEMs) of chiral-unitary-class (AIII) and chiral-symplectic-class (CII) two-dimensional (2 D ) disordered Dirac semimetals realized on a square bipartite lattice are investigated numerically by using the Kubo-Greenwood formula with the kernel polynomial method. The results show that, for both systems, the CZEMs exhibit the critical delocalization. The CZEM conductivity remains a robust constant (i.e., σ CZEM≈1.05 e2/h ), which is insensitive to the sample sizes, the vacancy concentrations, and the numbers of moments of Chebyshev polynomials, i.e., the dephasing strength. For both kinds of chiral systems, the CZEM conductivities are almost identical. However, they are not equal to that of graphene (i.e., 4 e2/π h ), which belongs to the chiral orthogonal class (BDI) semimetal on a 2 D hexagonal bipartite lattice. In addition, for the case that the vacancy concentrations are different in the two sublattices, the CZEM conductivity vanishes, and thus both systems exhibit localization at the Dirac point. Moreover, a band gap and a mobility gap open around zero energy. The widths of the energy gaps and mobility gaps are increasing with larger vacancy concentration difference. The width of the mobility gap is greater than that of the band gap, and a δ -function-like peak of density of states emerges at the Dirac point within the band gap, implying the existence of numerous localized states.
PREFACE: 14th International Conference on Transport in Interacting Disordered Systems (TIDS-14)
NASA Astrophysics Data System (ADS)
Frydman, Aviad
2012-07-01
The '14th Transport in interacting disordered systems - TIDS14' conference took place during 5-8 September 2011 in Acre Israel. The conference was a continuation of the biennial meeting traditionally called HRP (hopping and related phenomena) and later named TIDS (transport in interacting disordered systems). Previous conferences took place in Trieste (1985), Bratislava (1987), Chapel Hill (1989), Marburg (1991), Glasgow (1993), Jerusalem (1995), Rackeve (1997), Murcia (1999), Shefayim (2001), Trieste (2003), Egmond, aan Zee (2005), Marburg (2007) and Rackeve (2009). Central to these conferences are systems that are characterized by a large degree of disorder and hence they lack translational symmetry. In such systems interactions are usually very important. Dramatic differences in the behavior of crystalline solids and the 'disordered' systems are possible. Some examples of the latter are amorphous materials, polymer aggregates, materials whose properties are governed by impurities, granular systems and biological systems. This conference series is notable for the pleasant atmosphere and fruitful exchange of ideas between theoreticians and experimentalists in these areas. This tradition was also maintained in the conference in Israel. Specific topics of TIDS14 included: hopping, electron and Coulomb glasses, Anderson localization and many body localization, noise, magneto-transport, metal-insulator and superconductor-insulator transition, transport through low dimensional and nanostructures, quantum coherence, interference and dephasing and other related topics. Over sixty scientists from fourteen countries participated in the conference and presented papers either as oral presentations or as posters in two sessions that took place during the conference. Many of these papers are included in these proceedings. I would like to thank all the conference participants for the interesting presentations, debates and discussions that created a stimulating but pleasant environment. Also, I thank the other members of the local organizing committee Tal Havdala and Shachaf Poran from Bar Ilan University and the members of the international advisory committee. I gratefully acknowledge support from the Israel Science foundation and from Bar Ilan University. Aviad Frydman Conference chairman Bar Ilan University
Bayon, C; Hill, K; Svrakic, D M; Przybeck, T R; Cloninger, C R
1996-01-01
The Cloninger Temperament and Character Inventory (TCI) and the Millon Clinical Multiaxial Inventory (MCMI-II) are both self-report inventories that can be used to assess personality reliably in clinical samples. Both instruments were administered to 103 consecutive psychiatric out-patients with or without personality disorders. The goals were to assess the convergent validity of the two instruments, to replicate the findings of Svrakic et al. (1993) Archives of General Psychiatry, 50, 991-999, about the differential diagnosis of Axis II disorders, and to analyse the relations of Millon's measures of Axis I disorders with Cloninger's measures. We observed a strong convergent validity between the instruments; the seven dimensions of the TCI accounted for most of the variance in MCMI-II measures of both Axis 1 and Axis 2 disorders. As reported by Svrakic et al. (1993) Archives of General Psychiatry, 50, 991-999, in in-patients, low self-directedness and low cooperativeness were confirmed to be the essential features of all personality disorders in out-patients. In addition, self-transcendence, the third of Cloninger's character dimensions, was observed to be a strong correlate of severe Axis-1 psychopathology, including manic and delusional disorders.
Conscientiousness and obsessive-compulsive personality disorder.
Samuel, Douglas B; Widiger, Thomas A
2011-07-01
A dimensional perspective on personality disorder hypothesizes that the current diagnostic categories represent maladaptive variants of general personality traits. However, a fundamental foundation of this viewpoint is that dimensional models can adequately account for the pathology currently described by these categories. While most of the personality disorders have well established links to dimensional models that buttress this hypothesis, obsessive-compulsive personality disorder (OCPD) has obtained only inconsistent support. The current study administered multiple measures of 1) conscientiousness-related personality traits, 2) DSM-IV OCPD, and 3) specific components of OCPD (e.g., compulsivity and perfectionism) to a sample of 536 undergraduates who were oversampled for elevated OCPD scores. Six existing measures of conscientiousness-related personality traits converged strongly with each other supporting their assessment of a common trait. These measures of conscientiousness correlated highly with scales assessing specific components of OCPD, but obtained variable relationships with measures of DSM-IV OCPD. More specifically, there were differences within the conscientiousness instruments such that those designed to assess general personality functioning had small to medium relationships with OCPD, but those assessing more maladaptive variants obtained large effect sizes. These findings support the view that OCPD does represent a maladaptive variant of normal-range conscientiousness.
Kavish, Nicholas; Sellbom, Martin; Anderson, Jaime L
2018-06-06
This study investigated the ability of the Computerized Adaptive Test of Personality Disorder (CAT-PD) model to capture psychopathy in a sample consisting of U.S. (n = 565) and Australian (n = 99) undergraduates and a U.S. community sample (n = 210). More specifically, this study examined (a) the association between CAT-PD facets, particularly those consistent with DSM-5 Section III antisocial personality disorder (ASPD), and measures of psychopathy, (b) the extent to which CAT-PD ASPD traits improve on DSM-5 Section II ASPD in measuring psychopathy, and (c) the utility of measuring functional impairment in additional to dimensional traits in assessing psychopathy. Analyses revealed CAT-PD ASPD traits, including traits' associations with Section III psychopathy specifier, were strongly associated with measures of psychopathy. Furthermore, CAT-PD ASPD was found to be an improvement over DSM-5 Section II ASPD in measuring psychopathy, and the dimensional nature of the CAT-PD was found to render the addition of measures of impairment unnecessary. These findings generally support the utility of the CAT-PD in the measurement of psychopathy, particularly as it relates to the dimensional assessment of psychopathy in the DSM-5 alternative model for personality disorder.
Realization of discrete quantum billiards in a two-dimensional optical lattice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krimer, Dmitry O.; Max-Planck Institute for the Physics of Complex Systems, Noethnitzer Strasse 38, D-01187 Dresden; Khomeriki, Ramaz
2011-10-15
We propose a method for optical visualization of the Bose-Hubbard model with two interacting bosons in the form of two-dimensional (2D) optical lattices consisting of optical waveguides, where the waveguides at the diagonal are characterized by different refractive indices than others elsewhere, modeling the boson-boson interaction. We study the light intensity distribution function averaged over the direction of propagation for both ordered and disordered cases, exploring the sensitivity of the averaged picture with respect to the beam injection position. For our finite systems, the resulting patterns are reminiscent the ones set in billiards, and therefore we introduce a definition ofmore » discrete quantum billiards and discuss the possible relevance to its well-established continuous counterpart.« less
Thermal algebraic-decay charge liquid driven by competing short-range Coulomb repulsion
NASA Astrophysics Data System (ADS)
Kaneko, Ryui; Nonomura, Yoshihiko; Kohno, Masanori
2018-05-01
We explore the possibility of a Berezinskii-Kosterlitz-Thouless-like critical phase for the charge degrees of freedom in the intermediate-temperature regime between the charge-ordered and disordered phases in two-dimensional systems with competing short-range Coulomb repulsion. As the simplest example, we investigate the extended Hubbard model with on-site and nearest-neighbor Coulomb interactions on a triangular lattice at half filling in the atomic limit by using a classical Monte Carlo method, and find a critical phase, characterized by algebraic decay of the charge correlation function, belonging to the universality class of the two-dimensional XY model with a Z6 anisotropy. Based on the results, we discuss possible conditions for the critical phase in materials.
Viscous magnetoresistance of correlated electron liquids
NASA Astrophysics Data System (ADS)
Levchenko, Alex; Xie, Hong-Yi; Andreev, A. V.
2017-03-01
We develop a theory of magnetoresistance of two-dimensional electron systems in a smooth disorder potential in the hydrodynamic regime. Our theory applies to two-dimensional semiconductor structures with strongly correlated carriers when the mean free path due to electron-electron collisions is sufficiently short. The dominant contribution to magnetoresistance arises from the modification of the flow pattern by the Lorentz force, rather than the magnetic field dependence of the kinetic coefficients of the electron liquid. The resulting magnetoresistance is positive and quadratic at weak fields. Although the resistivity is governed by both the viscosity and thermal conductivity of the electron fluid, the magnetoresistance is controlled by the viscosity only. This enables the extraction of viscosity of the electron liquid from magnetotransport measurements.
NASA Astrophysics Data System (ADS)
Romenskyy, Maksym; Lobaskin, Vladimir
2013-03-01
We study dynamic self-organisation and order-disorder transitions in a two-dimensional system of self-propelled particles. Our model is a variation of the Vicsek model, where particles align the motion to their neighbours but repel each other at short distances. We use computer simulations to measure the orientational order parameter for particle velocities as a function of intensity of internal noise or particle density. We show that in addition to the transition to an ordered state on increasing the particle density, as reported previously, there exists a transition into a disordered phase at the higher densities, which can be attributed to the destructive action of the repulsions. We demonstrate that the transition into the ordered phase is accompanied by the onset of algebraic behaviour of the two-point velocity correlation function and by a non-monotonous variation of the velocity relaxation time. The critical exponent for the decay of the velocity correlation function in the ordered phase depends on particle concentration at low densities but assumes a universal value in more dense systems.
Superconductivity drives magnetism in δ -doped La2CuO4
NASA Astrophysics Data System (ADS)
Suter, A.; Logvenov, G.; Boris, A. V.; Baiutti, F.; Wrobel, F.; Howald, L.; Stilp, E.; Salman, Z.; Prokscha, T.; Keimer, B.
2018-04-01
Understanding the interplay between different orders in a solid is a key challenge in highly correlated electronic systems. In real systems this is even more difficult since disorder can have strong influence on the subtle balance between these orders and thus can obscure the interpretation of the observed physical properties. Here we present a study on δ -doped La2CuO4 (δ -LCON ) superlattices. By means of molecular beam epitaxy whole LaO2 layers were periodically replaced by SrO2 layers, providing a charge reservoir yet reducing the level of disorder typically present in doped cuprates to an absolute minimum. The induced superconductivity and its interplay with the antiferromagnetic order is studied by means of low-energy muon spin rotation. We find a quasi-two-dimensional superconducting state which couples to the antiferromagnetic order in a nontrivial way. Below the superconducting transition temperature, the magnetic volume fraction increases strongly. The reason could be a charge redistribution of the free carriers due to the opening of the superconducting gap which is possible due to the close proximity and low disorder between the different ordered regions.
Sadhukhan, Banasree; Singh, Prashant; Nayak, Arabinda; ...
2017-08-09
We present a real-space formulation for calculating the electronic structure and optical conductivity of random alloys based on Kubo-Greenwood formalism interfaced with augmented space recursion technique formulated with the tight-binding linear muffin-tin orbital basis with the van Leeuwen–Baerends corrected exchange potential. This approach has been used to quantitatively analyze the effect of chemical disorder on the configuration averaged electronic properties and optical response of two-dimensional honeycomb siliphene Si xC 1–x beyond the usual Dirac-cone approximation. We predicted the quantitative effect of disorder on both the electronic structure and optical response over a wide energy range, and the results are discussedmore » in the light of the available experimental and other theoretical data. As a result, our proposed formalism may open up a facile way for planned band-gap engineering in optoelectronic applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadhukhan, Banasree; Singh, Prashant; Nayak, Arabinda
We present a real-space formulation for calculating the electronic structure and optical conductivity of random alloys based on Kubo-Greenwood formalism interfaced with augmented space recursion technique formulated with the tight-binding linear muffin-tin orbital basis with the van Leeuwen–Baerends corrected exchange potential. This approach has been used to quantitatively analyze the effect of chemical disorder on the configuration averaged electronic properties and optical response of two-dimensional honeycomb siliphene Si xC 1–x beyond the usual Dirac-cone approximation. We predicted the quantitative effect of disorder on both the electronic structure and optical response over a wide energy range, and the results are discussedmore » in the light of the available experimental and other theoretical data. As a result, our proposed formalism may open up a facile way for planned band-gap engineering in optoelectronic applications.« less
Joshi, Gagan; Biederman, Joseph; Wozniak, Janet; Goldin, Rachel L; Crowley, Dave; Furtak, Stephannie; Lukas, Scott E; Gönenç, Atilla
2013-08-01
The pilot study aimed at examining the neural glutamatergic activity in autism. Seven adolescent males (mean age: 14 ± 1.8; age range: 12-17 years) with intact intellectual capacity (mean IQ: 108 ± 14.26; IQ range: 85-127) suffering from autistic disorder and an equal number of age- and sex-matched healthy controls underwent a two-dimensional magnetic resonance spectroscopy scan at 4T. Results indicated significantly high glutamate (Glu) levels in the anterior cingulate cortex of autistic disorder versus control subjects (paired t test p = 0.01) and a trend for lower Glu in the right medial temporal lobe, which was not statistically different between the groups (paired t test p = 0.06). These preliminary findings support the glutamatergic dysregulation hypothesis in autism and need to be replicated in a larger sample.
Geometrical Origins of Contractility in Disordered Actomyosin Networks
NASA Astrophysics Data System (ADS)
Lenz, Martin
2014-10-01
Movement within eukaryotic cells largely originates from localized forces exerted by myosin motors on scaffolds of actin filaments. Although individual motors locally exert both contractile and extensile forces, large actomyosin structures at the cellular scale are overwhelmingly contractile, suggesting that the scaffold serves to favor contraction over extension. While this mechanism is well understood in highly organized striated muscle, its origin in disordered networks such as the cell cortex is unknown. Here, we develop a mathematical model of the actin scaffold's local two- or three-dimensional mechanics and identify four competing contraction mechanisms. We predict that one mechanism dominates, whereby local deformations of the actin break the balance between contraction and extension. In this mechanism, contractile forces result mostly from motors plucking the filaments transversely rather than buckling them longitudinally. These findings shed light on recent in vitro experiments and provide a new geometrical understanding of contractility in the myriad of disordered actomyosin systems found in vivo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuchinskii, E. Z.; Nekrasov, I. A.; Sadovskii, M. V.
The DOS, the dynamic (optical) conductivity, and the phase diagram of a strongly correlated and strongly disordered paramagnetic Anderson-Hubbard model are analyzed within the generalized dynamical mean field theory (DMFT + {sigma} approximation). Strong correlations are taken into account by the DMFT, and disorder is taken into account via an appropriate generalization of the self-consistent theory of localization. The DMFT effective single-impurity problem is solved by a numerical renormalization group (NRG); we consider the three-dimensional system with a semielliptic DOS. The correlated metal, Mott insulator, and correlated Anderson insulator phases are identified via the evolution of the DOS and dynamicmore » conductivity, demonstrating both the Mott-Hubbard and Anderson metal-insulator transition and allowing the construction of the complete zero-temperature phase diagram of the Anderson-Hubbard model. Rather unusual is the possibility of a disorder-induced Mott insulator-to-metal transition.« less
Bao, Wei; Borys, Nicholas J.; Ko, Changhyun; ...
2015-08-13
The ideal building blocks for atomically thin, flexible optoelectronic and catalytic devices are two-dimensional monolayer transition metal dichalcogenide semiconductors. Although challenging for two-dimensional systems, sub-diffraction optical microscopy provides a nanoscale material understanding that is vital for optimizing their optoelectronic properties. We use the ‘Campanile’ nano-optical probe to spectroscopically image exciton recombination within monolayer MoS2 with sub-wavelength resolution (60 nm), at the length scale relevant to many critical optoelectronic processes. Moreover, synthetic monolayer MoS2 is found to be composed of two distinct optoelectronic regions: an interior, locally ordered but mesoscopically heterogeneous two-dimensional quantum well and an unexpected ~300-nm wide, energetically disorderedmore » edge region. Further, grain boundaries are imaged with sufficient resolution to quantify local exciton-quenching phenomena, and complimentary nano-Auger microscopy reveals that the optically defective grain boundary and edge regions are sulfur deficient. In conclusion, the nanoscale structure–property relationships established here are critical for the interpretation of edge- and boundary-related phenomena and the development of next-generation two-dimensional optoelectronic devices.« less
Deconfinement in Yang-Mills Theory through Toroidal Compactification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simic, Dusan; Unsal, Mithat; /Stanford U., Phys. Dept. /SLAC
2011-08-12
We introduce field theory techniques through which the deconfinement transition of four-dimensional Yang-Mills theory can be moved to a semi-classical domain where it becomes calculable using two-dimensional field theory. We achieve this through a double-trace deformation of toroidally compactified Yang-Mills theory on R{sup 2} x S{sub L}{sup 1} x S{sub {beta}}{sup 1}. At large N, fixed-L, and arbitrary {beta}, the thermodynamics of the deformed theory is equivalent to that of ordinary Yang-Mills theory at leading order in the large N expansion. At fixed-N, small L and a range of {beta}, the deformed theory maps to a two-dimensional theory with electricmore » and magnetic (order and disorder) perturbations, analogs of which appear in planar spin-systems and statistical physics. We show that in this regime the deconfinement transition is driven by the competition between electric and magnetic perturbations in this two-dimensional theory. This appears to support the scenario proposed by Liao and Shuryak regarding the magnetic component of the quark-gluon plasma at RHIC.« less
Overactive lifestyle in patients with fibromyalgia as a core feature of bipolar spectrum disorder.
Alciati, Alessandra; Sarzi-Puttini, Piercarlo; Batticciotto, Alberto; Torta, Riccardo; Gesuele, Felice; Atzeni, Fabiola; Angst, Jules
2012-01-01
To test the hypothesis that the premorbid overactivity previously described in subjects with fibromyalgia is a core feature of the manic/hypomanic symptoms characterising bipolar spectrum disorders. 110 consecutive patients with fibromyalgia were assessed for bipolar spectrum disorders using both categorical and dimensional approaches. The first was based on a version of the DSM-IV SCID-CV interview, modified to improve the detection of bipolar spectrum disorders, the second on the hypomania symptom checklist HCL-32, which adopts a dimensional perspective of the manic/hypomanic component of mood by including sub-syndromal hypomania. Both DSM-IV and Zurich criteria diagnosed high rates of bipolar spectrum disorder in patients with fibromyalgia (70% and 86.3%, respectively). Individuals with a major bipolar spectrum disorder (bipolar II disorder) and with a minor bipolar spectrum disorder (subthreshold depression and hypomania) did not differ in their demographic and clinical aspects. Hypomanic symptom counts on the HCL-32 confirmed high estimates of the bipolar spectrum, with 79% of subjects with fibromyalgia scoring 14 (threshold for hypomania) or above. Overactivity reported in previous studies may be considered a core feature of hypomanic symptoms or syndromes comorbid with bipolar spectrum disorders. Major and minor bipolar spectrum disorders are not associated with differences in demographic or clinical characteristics, suggesting that fibromyalgia rather than being related specifically to depression is related to bipolar spectrum disorders and in particular to the hypomania/overactivity component.
Magnetic domain wall creep and depinning: A scalar field model approach
NASA Astrophysics Data System (ADS)
Caballero, Nirvana B.; Ferrero, Ezequiel E.; Kolton, Alejandro B.; Curiale, Javier; Jeudy, Vincent; Bustingorry, Sebastian
2018-06-01
Magnetic domain wall motion is at the heart of new magnetoelectronic technologies and hence the need for a deeper understanding of domain wall dynamics in magnetic systems. In this context, numerical simulations using simple models can capture the main ingredients responsible for the complex observed domain wall behavior. We present a scalar field model for the magnetization dynamics of quasi-two-dimensional systems with a perpendicular easy axis of magnetization which allows a direct comparison with typical experimental protocols, used in polar magneto-optical Kerr effect microscopy experiments. We show that the thermally activated creep and depinning regimes of domain wall motion can be reached and the effect of different quenched disorder implementations can be assessed with the model. In particular, we show that the depinning field increases with the mean grain size of a Voronoi tessellation model for the disorder.
Varga, Imre; Pipek, János
2003-08-01
We discuss some properties of the generalized entropies, called Rényi entropies, and their application to the case of continuous distributions. In particular, it is shown that these measures of complexity can be divergent; however, their differences are free from these divergences, thus enabling them to be good candidates for the description of the extension and the shape of continuous distributions. We apply this formalism to the projection of wave functions onto the coherent state basis, i.e., to the Husimi representation. We also show how the localization properties of the Husimi distribution on average can be reconstructed from its marginal distributions that are calculated in position and momentum space in the case when the phase space has no structure, i.e., no classical limit can be defined. Numerical simulations on a one-dimensional disordered system corroborate our expectations.
Nontrivial Critical Fixed Point for Replica-Symmetry-Breaking Transitions.
Charbonneau, Patrick; Yaida, Sho
2017-05-26
The transformation of the free-energy landscape from smooth to hierarchical is one of the richest features of mean-field disordered systems. A well-studied example is the de Almeida-Thouless transition for spin glasses in a magnetic field, and a similar phenomenon-the Gardner transition-has recently been predicted for structural glasses. The existence of these replica-symmetry-breaking phase transitions has, however, long been questioned below their upper critical dimension, d_{u}=6. Here, we obtain evidence for the existence of these transitions in d
NASA Astrophysics Data System (ADS)
Cruzeiro, L.
2008-10-01
A new physical cause for a temperature-dependent double peak in exciton systems is put forward within a thermal equilibrium approach for the calculation of optical properties of exciton systems. Indeed, it is found that one-dimensional exciton systems with only one molecule per unit cell can have an absorption spectrum characterized by a double peak provided that the coupling between excitations in different molecules is positive. The two peaks, whose relative intensities vary with temperature, are located around the exciton band edges, being separated by an energy of approximately 4V, where V is the average coupling between nearest neighbours. For small amounts of diagonal and off-diagonal disorder, the contributions from the intermediate states in the band are also visible as intermediate structure between the two peaks, this being enhanced for systems with periodic boundary conditions. At a qualitative level, these results correlate well with experimental observations in the molecular aggregates of the thiacarbocyanine dye THIATS and in the organic crystals of acetanilide and N-methylacetamide.
Faghihi, Faezeh; Mirzaei, Esmaeil; Ai, Jafar; Lotfi, Abolfazl; Sayahpour, Forough Azam; Barough, Somayeh Ebrahimi; Joghataei, Mohammad Taghi
2016-04-01
Many people worldwide suffer from motor neuron-related disorders such as amyotrophic lateral sclerosis and spinal cord injuries. Recently, several attempts have been made to recruit stem cells to modulate disease progression in ALS and also regenerate spinal cord injuries. Chorion-derived mesenchymal stem cells (C-MSCs), used to be discarded as postpartum medically waste product, currently represent a class of cells with self renewal property and immunomodulatory capacity. These cells are able to differentiate into mesodermal and nonmesodermal lineages such as neural cells. On the other hand, gelatin, as a simply denatured collagen, is a suitable substrate for cell adhesion and differentiation. It has been shown that electrospinning of scaffolds into fibrous structure better resembles the physiological microenvironment in comparison with two-dimensional (2D) culture system. Since there is no report on potential of human chorion-derived MSCs to differentiate into motor neuron cells in two- and three-dimensional (3D) culture systems, we set out to determine the effect of retinoic acid (RA) and sonic hedgehog (Shh) on differentiation of human C-MSCs into motor neuron-like cells cultured on tissue culture plates (2D) and electrospun nanofibrous gelatin scaffold (3D).
NASA Astrophysics Data System (ADS)
Lankevich, Vladimir; Bittner, Eric
In organic photovoltaic devices (OPVs), initially bound electron and hole can take many different paths to dissociate and become free charge carriers. This leads to the increase in their density of states and therefore increase in the entropy of the system. Accurate description of the energy barriers that charges have to overcome, therefore requires calculation of the free energy. Free energy of an OPV is directly related to its open-circuit voltage and depends only on few important parameters such as average life-time of a charge-transfer state, average energy of the charge-transfer state and energetic disorder in the system. We extend these ideas to the quantum mechanical simulations of the dissociation in the lattice modeled bulk-heterojunction system. We observe average excitonic and free energies that agree with theoretical predictions and the number of experimental results from previous studies. We study effects of the energy disorder and importance of the dimensionality and morphology in materials such as polymer-fullerene blends.
Fate of a discrete time crystal in an open system
NASA Astrophysics Data System (ADS)
Lazarides, Achilleas; Moessner, Roderich
2017-05-01
Following the recent realization that periodically driven quantum matter can support new types of spatiotemporal order, now known as discrete time crystals (DTCs), we consider the stability of this phenomenon. Motivated by its conceptual importance as well as its experimental relevance, we consider the effect of coupling to an external environment. We use this to argue, both analytically and numerically, that the DTC in disordered one-dimensional systems is destroyed at long times by any such natural coupling. This holds true even in the case where the coupling is such that the system is prevented from heating up by an external thermal bath.
Scanning tunneling spectroscopy study of the proximity effect in a disordered two-dimensional metal.
Serrier-Garcia, L; Cuevas, J C; Cren, T; Brun, C; Cherkez, V; Debontridder, F; Fokin, D; Bergeret, F S; Roditchev, D
2013-04-12
The proximity effect between a superconductor and a highly diffusive two-dimensional metal is revealed in a scanning tunneling spectroscopy experiment. The in situ elaborated samples consist of superconducting single crystalline Pb islands interconnected by a nonsuperconducting atomically thin disordered Pb wetting layer. In the vicinity of each superconducting island the wetting layer acquires specific tunneling characteristics which reflect the interplay between the proximity-induced superconductivity and the inherent electron correlations of this ultimate diffusive two-dimensional metal. The observed spatial evolution of the tunneling spectra is accounted for theoretically by combining the Usadel equations with the theory of dynamical Coulomb blockade; the relevant length and energy scales are extracted and found in agreement with available experimental data.
Skin picking disorder with co-occurring body dysmorphic disorder.
Grant, Jon E; Redden, Sarah A; Leppink, Eric W; Odlaug, Brian L
2015-09-01
There is clinical overlap between skin picking disorder (SPD) and body dysmorphic disorder (BDD), but little research has examined clinical and cognitive correlates of the two disorders when they co-occur. Of 55 participants with SPD recruited for a neurocognitive study and two pharmacological studies, 16 (29.1%) had co-occurring BDD. SPD participants with and without BDD were compared to each other and to 40 healthy volunteers on measures of symptom severity, social functioning, and cognitive assessments using the Stop-signal task (assessing response impulsivity) and the Intra-dimensional/Extra-dimensional Set Shift task (assessing cognitive flexibility). Individuals with SPD and BDD exhibited significantly worse picking, significantly worse overall psychosocial functioning, and significantly greater dysfunction on aspects of cognitive flexibility. These results indicate that when SPD co-occurs with BDD unique clinical and cognitive aspects of SPD may be more pronounced. Future work should explore possible subgroups in SPD and whether these predict different treatment outcomes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Interplay between topology and disorder in a two-dimensional semi-Dirac material
NASA Astrophysics Data System (ADS)
Sriluckshmy, P. V.; Saha, Kush; Moessner, Roderich
2018-01-01
We investigate the role of disorder in a two-dimensional semi-Dirac material characterized by a linear dispersion in one direction and a parabolic dispersion in the orthogonal direction. Using the self-consistent Born approximation, we show that disorder can drive a topological Lifshitz transition from an insulator to a semimetal, as it generates a momentum-independent off-diagonal contribution to the self-energy. Breaking time-reversal symmetry enriches the topological phase diagram with three distinct regimes—single-node trivial, two-node trivial, and two-node Chern. We find that disorder can drive topological transitions from both the single- and two-node trivial to the two-node Chern regime. We further analyze these transitions in an appropriate tight-binding Hamiltonian of an anisotropic hexagonal lattice by calculating the real-space Chern number. Additionally, we compute the disorder-averaged entanglement entropy which signals both the topological Lifshitz and Chern transition as a function of the anisotropy of the hexagonal lattice. Finally, we discuss experimental aspects of our results.
Lavigne, J V; Gibbons, R D; Arend, R; Rosenbaum, D; Binns, H J; Christoffel, K K
1999-10-01
To examine the stability of the occurrence of psychiatric disorders in a nonpsychiatric sample of young children. There were 510 children ages 2-5 years enrolled through pediatric practices, with 391 children participating in the second wave, and 344 in the third wave of data collection 42-48 months later. The assessment battery administered at each wave yielded best-estimate consensus DSM-III-R diagnoses and dimensional assessments of psychopathology. The prevalence of disruptive disorders (DDs) decreased, while emotional disorders (EDs), other disorders, and comorbid DD increased. The DDs were associated with lower family cohesion, more maternal negative affect, stressful life events, and male gender. Comorbid DDs were associated with increasing age and family cohesion. Older children, lower family cohesion, and maternal negative affect were associated with EDs. Time trends for the dimensional assessment of psychopathology was similar to DSM-III-R disorders, but correlates differed. We discuss implications for service planning in pediatric primary care.
Plate Tectonics in the Classification of Personality Disorder: Shifting to a Dimensional Model
ERIC Educational Resources Information Center
Widiger, Thomas A.; Trull, Timothy J.
2007-01-01
The diagnostic categories of the American Psychiatric Association's Diagnostic and Statistical Manual of Mental Disorders were developed in the spirit of a traditional medical model that considers mental disorders to be qualitatively distinct conditions (see, e.g., American Psychiatric Association, 2000). Work is now beginning on the fifth edition…
Liu, Liyong; Wang, Li; Cao, Chengqi; Qing, Yulan; Armour, Cherie
2016-02-01
The current study investigated the underlying dimensionality of DSM-5 posttraumatic stress disorder (PTSD) symptoms in a trauma-exposed Chinese adolescent sample using a confirmatory factor analytic (CFA) alternative model approach. The sample consisted of 559 students (242 females and 314 males) ranging in age from 12 to 18 years (M = 15.8, SD = 1.3). Participants completed the PTSD Checklist for DSM-5, the Major Depression Disorder and Panic Disorder subscales of the Revised Children's Anxiety and Depression Scale, and the Aggressive Behavior subscale of the Youth Self-Report. Confirmatory factor analytic results indicated that a seven-factor model comprised of intrusion, avoidance, negative affect, anhedonia, externalizing behavior, anxious arousal, and dysphoric arousal factors emerged as the best-fitting model. Further analyses showed that the external measures of psychopathological variables including major depressive disorder, panic disorder, and aggressive behavior were differentially associated with the resultant factors. These findings support and extend previous findings for the newly refined seven-factor hybrid model, and carry clinical and research implications for trauma-related psychopathology. © 2015 Association for Child and Adolescent Mental Health.
DSM 5 and child psychiatric disorders: what is new? What has changed?
Eapen, Valsamma; Črnčec, Rudi
2014-10-01
The significant changes in DSM 5 as these relate to a number of the child psychiatric disorders are reviewed by several authors in this special issue: In this paper we address some of the changes in the conceptual organisation of DSM 5 and specifically focus on anxiety and related disorders. In the case of child and adolescent psychiatry, the most notable feature is that the chapter on Disorders Usually First Diagnosed in infancy, Childhood or Adolescence has been deleted. Instead, a new chapter in DSM 5 describes Neurodevelopmental Disorders which typically manifest early in development. Further, an expectation had been built that DSM would be based on the latest data in neuroscience and that a clear direction towards a mixed dimensional and categorical approach would be evident. This has been the case with some disorders and a notable example is the removal of Obsessive Compulsive Disorder (OCD) from the Anxiety Disorder chapter and placement with other related disorders that share similar neurobiology and treatment response. In this regard, the addition in DSM 5 of a new specifier "tic-related" to OCD is worth noting as there is emerging evidence that differential treatment response exists when tics are associated with OCD. The same situation applies to tics with ADHD, thus presenting the argument for a dimensional approach to Tic Spectrum Disorder (TSD) incorporating categories such as those with tics only, tics with OCD, tics with ADHD etc. to be given due consideration in the future. Another important change that clinicians in the field of child psychiatry will no doubt notice is the demise of the multiaxial classification. Instead, DSM 5 has moved back to a nonaxial documentation of diagnosis with separate notations for important psychosocial and contextual factors as well as level of functioning and disability. Clinicians are urged, however, to continue to recognise the need to understand how symptoms and behaviours might have arisen and assess relevant contextual factors such as the family relationships, quality of care, any history of abuse, and so on. Further, the move to harmonise DSM 5 with the structure of ICD 11 (scheduled for release in 2015) should make understanding and familiarising oneself with the two major classificatory systems easier in the future. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sulangi, Miguel Antonio; Zaanen, Jan
2018-04-01
We explore the effects of various kinds of random disorder on the quasiparticle density of states of two-dimensional d -wave superconductors using an exact real-space method, incorporating realistic details known about the cuprates. Random on-site energy and pointlike unitary impurity models are found to give rise to a vanishing DOS at the Fermi energy for narrow distributions and low concentrations, respectively, and lead to a finite, but suppressed, DOS at unrealistically large levels of disorder. Smooth disorder arising from impurities located away from the copper-oxide planes meanwhile gives rise to a finite DOS at realistic impurity concentrations. For the case of smooth disorder whose average potential is zero, a resonance is found at zero energy for the quasiparticle DOS at large impurity concentrations. We discuss the implications of these results on the computed low-temperature specific heat, the behavior of which we find is strongly affected by the amount of disorder present in the system. We also compute the localization length as a function of disorder strength for various types of disorder and find that intermediate- and high-energy states are quasiextended for low disorder, and that states near the Fermi energy are strongly localized and have a localization length that exhibits an unusual dependence on the amount of disorder. We comment on the origin of disorder in the cuprates and provide constraints on these based on known results from scanning tunneling spectroscopy and specific heat experiments.
Chiral Spin Order in Kondo-Heisenberg Systems
NASA Astrophysics Data System (ADS)
Tsvelik, A. M.; Yevtushenko, O. M.
2017-12-01
We demonstrate that low dimensional Kondo-Heisenberg systems, consisting of itinerant electrons and localized magnetic moments (Kondo impurities), can be used as a principally new platform to realize scalar chiral spin order. The underlying physics is governed by a competition of the Ruderman-Kittel-Kosuya-Yosida (RKKY) indirect exchange interaction between the local moments with the direct Heisenberg one. When the direct exchange is weak and RKKY dominates, the isotropic system is in the disordered phase. A moderately large direct exchange leads to an Ising-type phase transition to the phase with chiral spin order. Our finding paves the way towards pioneering experimental realizations of the chiral spin liquid in systems with spontaneously broken time-reversal symmetry.
Liu, Richard T; Burke, Taylor A; Abramson, Lyn Y; Alloy, Lauren B
2017-11-04
Behavioral Approach System (BAS) sensitivity has been implicated in the development of a variety of different psychiatric disorders. Prominent among these in the empirical literature are bipolar spectrum disorders (BSDs). Given that adolescence represents a critical developmental stage of risk for the onset of BSDs, it is important to clarify the latent structure of BAS sensitivity in this period of development. A statistical approach especially well-suited for delineating the latent structure of BAS sensitivity is taxometric analysis, which is designed to evaluate whether the latent structure of a construct is taxonic (i.e., categorical) or dimensional (i.e., continuous) in nature. The current study applied three mathematically non-redundant taxometric procedures (i.e., MAMBAC, MAXEIG, and L-Mode) to a large community sample of adolescents (n = 12,494) who completed two separate measures of BAS sensitivity: the BIS/BAS Scales Carver and White (Journal of Personality and Social Psychology, 67, 319-333. 1994) and the Sensitivity to Reward and Sensitivity to Punishment Questionnaire (Torrubia et al. Personality and Individual Differences, 31, 837-862. 2001). Given the significant developmental changes in reward sensitivity that occur across adolescence, the current investigation aimed to provide a fine-grained evaluation of the data by performing taxometric analyses at an age-by-age level (14-19 years; n for each age ≥ 883). Results derived from taxometric procedures, across all ages tested, were highly consistent, providing strong evidence that BAS sensitivity is best conceptualized as dimensional in nature. Thus, the findings suggest that BAS-related vulnerability to BSDs exists along a continuum of severity, with no natural cut-point qualitatively differentiating high- and low-risk adolescents. Clinical and research implications for the assessment of BSD-related vulnerability are discussed.
NASA Astrophysics Data System (ADS)
Ruhe, N.; Springborn, J. I.; Heyn, Ch.; Wilde, M. A.; Grundler, D.
2006-12-01
In a simultaneous experiment we studied the de Haas-van Alphen (dHvA) and the Shubnikov-de Haas (SdH) effects in a two-dimensional electron system (2DES) in a modulation-doped GaAs/AlxGa1-xAs heterostructure. For this, a gated 2DES mesa was monolithically integrated with a micromechnical cantilever with an interferometric fiber-optics readout. In situ measurement of the dHvA and SdH oscillations at 300mK in a magnetic field B allowed us to directly compare the variation of the ground state energy and the nonequilibrium transport behavior, respectively. This was done on a 2DES of a small carrier density ns ranging from 5×1010to33×1010cm-2 . The wave forms of the dHvA oscillations were nonsinusoidal down to a magnetic field as small as 1.45T . At the same time the zero-field mobility was as low as μe=105cm2/Vs . We found that at fixed B the observed dHvA wave form and amplitude were independent of ns and μe . This was unexpected and in contrast to the established picture in the literature. To understand the dHvA effect quantitatively in a disordered 2DES our data suggest that energetic details of the disorder potentials have to be considered.
Thalamic morphology in schizophrenia and schizoaffective disorder.
Smith, Matthew J; Wang, Lei; Cronenwett, Will; Mamah, Daniel; Barch, Deanna M; Csernansky, John G
2011-03-01
Biomarkers are needed that can distinguish between schizophrenia and schizoaffective disorder to inform the ongoing debate over the diagnostic boundary between these two disorders. Neuromorphometric abnormalities of the thalamus have been reported in individuals with schizophrenia and linked to core features of the disorder, but have not been similarly investigated in individuals with schizoaffective disorder. In this study, we examine whether individuals with schizoaffective disorder have a pattern of thalamic deformation that is similar or different to the pattern found in individuals with schizophrenia. T1-weighted magnetic resonance images were collected from individuals with schizophrenia (n = 47), individuals with schizoaffective disorder (n = 15), and controls (n = 42). Large-deformation, high-dimensional brain mapping was used to obtain three-dimensional surfaces of the thalamus. Multiple analyses of variance were used to test for group differences in volume and measures of surface shape. Individuals with schizophrenia or schizoaffective disorder have similar thalamic volumes. Thalamic surface shape deformation associated with schizophrenia suggests selective involvement of the anterior and posterior thalamus, while deformations in mediodorsal and ventrolateral regions were observed in both groups. Schizoaffective disorder had distinct deformations in medial and lateral thalamic regions. Abnormalities distinct to schizoaffective disorder suggest involvement of the central and ventroposterior medial thalamus which may be involved in mood circuitry, dorsolateral nucleus which is involved in recall processing, and the lateral geniculate nucleus which is involved in visual processing. Copyright © 2010 Elsevier Ltd. All rights reserved.
Thalamic Morphology in Schizophrenia and Schizoaffective Disorder
Smith, Matthew J.; Wang, Lei; Cronenwett, Will; Mamah, Daniel; Barch, Deanna M.; Csernansky, John G.
2010-01-01
Background Biomarkers are needed that can distinguish between schizophrenia and schizoaffective disorder to inform the ongoing debate over the diagnostic boundary between these two disorders. Neuromorphometric abnormalities of the thalamus have been reported in individuals with schizophrenia and linked to core features of the disorder, but have not been similarly investigated in individuals with schizoaffective disorder. In this study, we examine whether individuals with schizoaffective disorder have a pattern of thalamic deformation that is similar or different to the pattern found in individuals with schizophrenia. Method T1-weighted magnetic resonance images were collected from individuals with schizophrenia (n=47), individuals with schizoaffective disorder (n=15), and controls (n=42). Large-deformation, high-dimensional brain mapping was used to obtain three-dimensional surfaces of the thalamus. Multiple analyses of variance were used to test for group differences in volume and measures of surface shape. Results Individuals with schizophrenia or schizoaffective disorder have similar thalamic volumes. Thalamic surface shape deformation associated with schizophrenia suggests selective involvement of the anterior and posterior thalamus, while deformations in mediodorsal and ventrolateral regions were observed in both groups. Schizoaffective disorder had distinct deformations in medial and lateral thalamic regions. Conclusions Abnormalities distinct to schizoaffective disorder suggest involvement of the central and ventroposterior medial thalamus which may be involved in mood circuitry, dorsolateral nucleus which is involved in recall processing, and the lateral geniculate nucleus which is involved in visual processing. PMID:20797731
Effect of increasing disorder on domains of the 2d Coulomb glass.
Bhandari, Preeti; Malik, Vikas
2017-12-06
We have studied a two dimensional lattice model of Coulomb glass for a wide range of disorders at [Formula: see text]. The system was first annealed using Monte Carlo simulation. Further minimization of the total energy of the system was done using an algorithm developed by Baranovskii et al, followed by cluster flipping to obtain the pseudo-ground states. We have shown that the energy required to create a domain of linear size L in d dimensions is proportional to [Formula: see text]. Using Imry-Ma arguments given for random field Ising model, one gets critical dimension [Formula: see text] for Coulomb glass. The investigation of domains in the transition region shows a discontinuity in staggered magnetization which is an indication of a first-order type transition from charge-ordered phase to disordered phase. The structure and nature of random field fluctuations of the second largest domain in Coulomb glass are inconsistent with the assumptions of Imry and Ma, as was also reported for random field Ising model. The study of domains showed that in the transition region there were mostly two large domains, and that as disorder was increased the two large domains remained, but a large number of small domains also opened up. We have also studied the properties of the second largest domain as a function of disorder. We furthermore analysed the effect of disorder on the density of states, and showed a transition from hard gap at low disorders to a soft gap at higher disorders. At [Formula: see text], we have analysed the soft gap in detail, and found that the density of states deviates slightly ([Formula: see text]) from the linear behaviour in two dimensions. Analysis of local minima show that the pseudo-ground states have similar structure.
Cyclotron resonance of interacting quantum Hall droplets
NASA Astrophysics Data System (ADS)
Widmann, M.; Merkt, U.; Cortés, M.; Häusler, W.; Eberl, K.
1998-06-01
The line shape and position of cyclotron resonance in gated GaAs/GaAlAs heterojunctions with δ-doped layers of negatively charged beryllium acceptors, that provide strong potential fluctuations in the channels of the quasi-two-dimensional electron systems, are examined. Specifically, the magnetic quantum limit is considered when the electrons are localized in separate quantum Hall droplets in the valleys of the disorder potential. A model treating disorder and electron-electron interaction on an equal footing accounts for all of the principal experimental findings: blue shifts from the unperturbed cyclotron frequency that decrease when the electron density is reduced, surprisingly narrow lines in the magnetic quantum limit, and asymmetric lines due to additional oscillator strength on their high-frequency sides.
In-cell NMR of intrinsically disordered proteins in prokaryotic cells.
Ito, Yutaka; Mikawa, Tsutomu; Smith, Brian O
2012-01-01
In-cell NMR, i.e., the acquisition of heteronuclear multidimensional NMR of biomacromolecules inside living cells, is, to our knowledge, the only method for investigating the three-dimensional structure and dynamics of proteins at atomic detail in the intracellular environment. Since the inception of the method, intrinsically disordered proteins have been regarded as particular targets for in-cell NMR, due to their expected sensitivity to the molecular crowding in the intracellular environment. While both prokaryotic and eukaryotic cells can be used as host cells for in-cell NMR, prokaryotic in-cell NMR, particularly employing commonly used protein overexpression systems in Escherichia coli cells, is the most accessible approach. In this chapter we describe general procedures for obtaining in-cell NMR spectra in E. coli cells.
Personality disorders in Asians: summary, and a call for cultural research.
Ryder, Andrew G; Sun, Jiahong; Dere, Jessica; Fung, Kenneth
2014-02-01
Epidemiological studies show relatively low rates of personality disorder (PD) in Asian-origin samples, but these low rates may result from a lack of understanding about what constitutes PD in Asian cultural contexts. Research on etiology, assessment, and treatment has rarely been extended to incorporate ways in which culture might shape PDs in general, let alone among Asians in particular. PDs did not officially change in DSM-5, but an alternative dimensional system may help link the Asian PD literature to non-clinical personality research. Personality and culture are deeply intertwined, and the research literature on Asian PDs - and on PDs more generally - would benefit greatly from more research unpacking the cultural mechanisms of variation. Copyright © 2013 Elsevier B.V. All rights reserved.
Doane, Leah D; Mineka, Susan; Zinbarg, Richard E; Craske, Michelle; Griffith, James W; Adam, Emma K
2013-08-01
Alterations in hypothalamic-pituitary-adrenal (HPA) axis functioning have been associated with major depression disorder (MDD) and some anxiety disorders. Few researchers have tested the possibility that high levels of recent life stress or elevations in negative emotion may partially account for the HPA axis alterations observed in these disorders. In a sample of 300 adolescents from the Youth Emotion Project, we examined associations between MDD and anxiety disorders, dimensional measures of internalizing symptomatology, life stress, mood on the days of cortisol testing, and HPA axis functioning. Adolescents with a past MDD episode and those with a recent MDD episode comorbid with an anxiety disorder had flatter diurnal cortisol slopes than adolescents without a history of internalizing disorders. Higher reports of general distress, a dimension of internalizing symptomatology, were also associated with flatter slopes. Negative emotion, specifically sadness and loneliness, was associated with flatter slopes and partially accounted for the associations between comorbid MDD and anxiety disorders and cortisol. The associations between past MDD and cortisol slopes were not accounted for by negative emotion, dimensional variation in internalizing symptomatology, or levels of life stress, indicating that flatter cortisol slopes may also be a "scar" marker of past experiences of MDD.
Amini, Mehdi; Pourshahbaz, Abbas; Mohammadkhani, Parvaneh; Khodaie Ardakani, Mohammad Reza; Lotfi, Mozhgan
2015-01-01
Background: Fundamental problems with Personality Disorders (PD) diagnostic system in the previous version of DSM, led to the revision of DSM. Therefore, a multidimensional system has been proposed for diagnosis of personality disorder features in DSM-5. In the dimensional approach of DSM-5, personality disorders diagnosis is based on levels of personality functioning (Criteria A) and personality trait domains (Criteria B). Objectives: The purpose of this study was firstly, to examine the DSM-5 levels of personality functioning in antisocial and borderline personality disorders, and second, to explore which levels of personality functioning in patients with antisocial and borderline personality disorders can better predicted severity than others. Patients and Methods: This study had a cross sectional design. The participants consisted of 252 individuals with antisocial (n = 122) and borderline personality disorders (n = 130). They were recruited from Tehran prisoners, and clinical psychology and psychiatry centers of Razi and Taleghani Hospitals, Tehran, Iran. The sample was selected based on judgmental sampling. The SCID-II-PQ, SCID-II and DSM-5 levels of personality functioning were used to diagnose and assess personality disorders. The data were analyzed by correlation and multiple regression analysis. All statistical analyses were performed using the SPSS 16 software. Results: Firstly, it was found that DSM-5 levels of personality functioning have a strong correlation with antisocial and borderline personality symptoms, specially intimacy and self-directedness (P < 0.001). Secondly, the findings showed that identity, intimacy and self-directedness significantly predicted antisocial personality disorder severity (P < 0.0001). The results showed that intimacy and empathy were good predictors of borderline personality disorder severity, as well (P < 0.0001). Conclusions: Overall, our findings showed that levels of personality functioning are a significant predictor of personality disorders severity. The results partially confirm existing studies. PMID:26430521
Tikkanen, Roope; Holi, Matti; Lindberg, Nina; Virkkunen, Matti
2007-07-30
The validity of traditional categorical personality disorder diagnoses is currently re-evaluated from a continuous perspective, and the evolving DSM-V classification may describe personality disorders dimensionally. The utility of dimensional personality assessment, however, is unclear in violent offenders with severe personality pathology. The temperament structure of 114 alcoholic violent offenders with antisocial personality disorder (ASPD) was compared to 84 offenders without ASPD, and 170 healthy controls. Inclusion occurred during a court-ordered mental examination preceded by homicide, assault, battery, rape or arson. Participants underwent assessment of temperament with the Tridimensional Personality Questionnaire (TPQ) and were diagnosed with DSM-III-R criteria. The typical temperament profile in violent offender having ASPD comprised high novelty seeking, high harm avoidance, and low reward dependence. A 21% minority scored low in trait harm avoidance. Results, including the polarized harm avoidance dimension, are in accordance with Cloninger's hypothesis of dimensional description of ASPD. The low harm avoidance offenders committed less impulsive violence than high harm avoidance offenders. High harm avoidance was associated with comorbid antisocial personality disorder and borderline personality disorder. Results indicate that the DSM based ASPD diagnosis in alcoholic violent offenders associates with impulsiveness and high novelty seeking but comprises two different types of ASPD associated with distinct second-order traits that possibly explain differences in type of violent criminality. Low harm avoidance offenders have many traits in common with high scorers on the Hare Psychopathy Checklist-Revised (PCL-R). Results link high harm avoidance with broad personality pathology and argue for the usefulness of self-report questionnaires in clinical praxis.
Guo, Qi; Shen, Shu-Ting
2016-04-29
There are two major classes of cardiac tissue models: the ionic model and the FitzHugh-Nagumo model. During computer simulation, each model entails solving a system of complex ordinary differential equations and a partial differential equation with non-flux boundary conditions. The reproducing kernel method possesses significant applications in solving partial differential equations. The derivative of the reproducing kernel function is a wavelet function, which has local properties and sensitivities to singularity. Therefore, study on the application of reproducing kernel would be advantageous. Applying new mathematical theory to the numerical solution of the ventricular muscle model so as to improve its precision in comparison with other methods at present. A two-dimensional reproducing kernel function inspace is constructed and applied in computing the solution of two-dimensional cardiac tissue model by means of the difference method through time and the reproducing kernel method through space. Compared with other methods, this method holds several advantages such as high accuracy in computing solutions, insensitivity to different time steps and a slow propagation speed of error. It is suitable for disorderly scattered node systems without meshing, and can arbitrarily change the location and density of the solution on different time layers. The reproducing kernel method has higher solution accuracy and stability in the solutions of the two-dimensional cardiac tissue model.
Many-body localization proximity effects in platforms of coupled spins and bosons
NASA Astrophysics Data System (ADS)
Marino, J.; Nandkishore, R. M.
2018-02-01
We discuss the onset of many-body localization in a one-dimensional system composed of a XXZ quantum spin chain and a Bose-Hubbard model linearly coupled together. We consider two complementary setups, depending whether spatial disorder is initially imprinted on spins or on bosons; in both cases, we explore the conditions for the disordered portion of the system to localize by proximity of the other clean half. Assuming that the dynamics of one of the two parts develops on shorter time scales than the other, we can adiabatically eliminate the fast degrees of freedom, and derive an effective Hamiltonian for the system's remainder using projection operator techniques. Performing a locator expansion on the strength of the many-body interaction term or on the hopping amplitude of the effective Hamiltonian thus derived, we present results on the stability of the many-body localized phases induced by proximity effect. We also briefly comment on the feasibility of the proposed model through modern quantum optics architectures, with the long-term perspective to realize experimentally, in composite open systems, Anderson or many-body localization proximity effects.
Chhangani, Deepak; Mishra, Amit
2013-08-01
A common feature in most neurodegenerative diseases and aging is the progressive accumulation of damaged proteins. Proteins are essential for all crucial biological functions. Under some notorious conditions, proteins loss their three dimensional native conformations and are converted into disordered aggregated structures. Such changes rise into pathological conditions and eventually cause serious protein conformation disorders. Protein aggregation and inclusion bodies formation mediated multifactorial proteotoxic stress has been reported in the progression of Parkinson's disease (PD), Huntington's disease (HD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS) and Prion disease. Ongoing studies have been remarkably informative in providing a systematic outlook for better understanding the concept and fundamentals of protein misfolding and aggregations. However, the precise role of protein quality control system and precursors of this mechanism remains elusive. In this review, we highlight recent insights and discuss emerging cytoprotective strategies of cellular protein quality control system implicated in protein deposition diseases. Our current review provides a clear, understandable framework of protein quality control system that may offer the more suitable therapeutic strategies for protein-associated diseases.
Stergiakouli, Evie; Davey Smith, George; Martin, Joanna; Skuse, David H; Viechtbauer, Wolfgang; Ring, Susan M; Ronald, Angelica; Evans, David E; Fisher, Simon E; Thapar, Anita; St Pourcain, Beate
2017-01-01
Shared genetic influences between attention-deficit/hyperactivity disorder (ADHD) symptoms and autism spectrum disorder (ASD) symptoms have been reported. Cross-trait genetic relationships are, however, subject to dynamic changes during development. We investigated the continuity of genetic overlap between ASD and ADHD symptoms in a general population sample during childhood and adolescence. We also studied uni- and cross-dimensional trait-disorder links with respect to genetic ADHD and ASD risk. Social-communication difficulties ( N ≤ 5551, Social and Communication Disorders Checklist, SCDC) and combined hyperactive-impulsive/inattentive ADHD symptoms ( N ≤ 5678, Strengths and Difficulties Questionnaire, SDQ-ADHD) were repeatedly measured in a UK birth cohort (ALSPAC, age 7 to 17 years). Genome-wide summary statistics on clinical ASD (5305 cases; 5305 pseudo-controls) and ADHD (4163 cases; 12,040 controls/pseudo-controls) were available from the Psychiatric Genomics Consortium. Genetic trait variances and genetic overlap between phenotypes were estimated using genome-wide data. In the general population, genetic influences for SCDC and SDQ-ADHD scores were shared throughout development. Genetic correlations across traits reached a similar strength and magnitude (cross-trait r g ≤ 1, p min = 3 × 10 -4 ) as those between repeated measures of the same trait (within-trait r g ≤ 0.94, p min = 7 × 10 -4 ). Shared genetic influences between traits, especially during later adolescence, may implicate variants in K-RAS signalling upregulated genes ( p -meta = 6.4 × 10 -4 ). Uni-dimensionally, each population-based trait mapped to the expected behavioural continuum: risk-increasing alleles for clinical ADHD were persistently associated with SDQ-ADHD scores throughout development (marginal regression R 2 = 0.084%). An age-specific genetic overlap between clinical ASD and social-communication difficulties during childhood was also shown, as per previous reports. Cross-dimensionally, however, neither SCDC nor SDQ-ADHD scores were linked to genetic risk for disorder. In the general population, genetic aetiologies between social-communication difficulties and ADHD symptoms are shared throughout child and adolescent development and may implicate similar biological pathways that co-vary during development. Within both the ASD and the ADHD dimension, population-based traits are also linked to clinical disorder, although much larger clinical discovery samples are required to reliably detect cross-dimensional trait-disorder relationships.
Bebko, Genna; Bertocci, Michele A; Fournier, Jay C; Hinze, Amanda K; Bonar, Lisa; Almeida, Jorge R C; Perlman, Susan B; Versace, Amelia; Schirda, Claudiu; Travis, Michael; Gill, Mary Kay; Demeter, Christine; Diwadkar, Vaibhav A; Ciuffetelli, Gary; Rodriguez, Eric; Olino, Thomas; Forbes, Erika; Sunshine, Jeffrey L; Holland, Scott K; Kowatch, Robert A; Birmaher, Boris; Axelson, David; Horwitz, Sarah M; Arnold, L Eugene; Fristad, Mary A; Youngstrom, Eric A; Findling, Robert L; Phillips, Mary L
2014-01-01
Pediatric disorders characterized by behavioral and emotional dysregulation pose diagnostic and treatment challenges because of high comorbidity, suggesting that they may be better conceptualized dimensionally rather than categorically. Identifying neuroimaging measures associated with behavioral and emotional dysregulation in youth may inform understanding of underlying dimensional vs disorder-specific pathophysiologic features. To identify, in a large cohort of behaviorally and emotionally dysregulated youth, neuroimaging measures that (1) are associated with behavioral and emotional dysregulation pathologic dimensions (behavioral and emotional dysregulation measured with the Parent General Behavior Inventory 10-Item Mania Scale [PGBI-10M], mania, depression, and anxiety) or (2) differentiate diagnostic categories (bipolar spectrum disorders, attention-deficit/hyperactivity disorder, anxiety, and disruptive behavior disorders). A multisite neuroimaging study was conducted from February 1, 2011, to April 15, 2012, at 3 academic medical centers: University Hospitals Case Medical Center, Cincinnati Children's Hospital Medical Center, and University of Pittsburgh Medical Center. Participants included a referred sample of behaviorally and emotionally dysregulated youth from the Longitudinal Assessment of Manic Symptoms (LAMS) study (n = 85) and healthy youth (n = 20). Region-of-interest analyses examined relationships among prefrontal-ventral striatal reward circuitry during a reward paradigm (win, loss, and control conditions), symptom dimensions, and diagnostic categories. Regardless of diagnosis, higher PGBI-10M scores were associated with greater left middle prefrontal cortical activity (r = 0.28) and anxiety with greater right dorsal anterior cingulate cortical (r = 0.27) activity to win. The 20 highest (t = 2.75) and 20 lowest (t = 2.42) PGBI-10M-scoring youth showed significantly greater left middle prefrontal cortical activity to win compared with 20 healthy youth. Disruptive behavior disorders were associated with lower left ventrolateral prefrontal cortex activity to win (t = 2.68) (all P < .05, corrected). Greater PGBI-10M-related left middle prefrontal cortical activity and anxiety-related right dorsal anterior cingulate cortical activity to win may reflect heightened reward sensitivity and greater attention to reward in behaviorally and emotionally dysregulated youth regardless of diagnosis. Reduced left ventrolateral prefrontal cortex activity to win may reflect reward insensitivity in youth with disruptive behavior disorders. Despite a distinct reward-related neurophysiologic feature in disruptive behavior disorders, findings generally support a dimensional approach to studying neural mechanisms in behaviorally and emotionally dysregulated youth.
van Unen, Vincent; Höllt, Thomas; Pezzotti, Nicola; Li, Na; Reinders, Marcel J T; Eisemann, Elmar; Koning, Frits; Vilanova, Anna; Lelieveldt, Boudewijn P F
2017-11-23
Mass cytometry allows high-resolution dissection of the cellular composition of the immune system. However, the high-dimensionality, large size, and non-linear structure of the data poses considerable challenges for the data analysis. In particular, dimensionality reduction-based techniques like t-SNE offer single-cell resolution but are limited in the number of cells that can be analyzed. Here we introduce Hierarchical Stochastic Neighbor Embedding (HSNE) for the analysis of mass cytometry data sets. HSNE constructs a hierarchy of non-linear similarities that can be interactively explored with a stepwise increase in detail up to the single-cell level. We apply HSNE to a study on gastrointestinal disorders and three other available mass cytometry data sets. We find that HSNE efficiently replicates previous observations and identifies rare cell populations that were previously missed due to downsampling. Thus, HSNE removes the scalability limit of conventional t-SNE analysis, a feature that makes it highly suitable for the analysis of massive high-dimensional data sets.
Hidden phase in a two-dimensional Sn layer stabilized by modulation hole doping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ming, Fangfei; Mulugeta Amare, Daniel; Tu, Weisong
Semiconductor surfaces and ultrathin interfaces exhibit an interesting variety of two-dimensional quantum matter phases, such as charge density waves, spin density waves and superconducting condensates. Yet, the electronic properties of these broken symmetry phases are extremely difficult to control due to the inherent difficulty of doping a strictly two-dimensional material without introducing chemical disorder. Here we successfully exploit a modulation doping scheme to uncover, in conjunction with a scanning tunnelling microscope tip-assist, a hidden equilibrium phase in a hole-doped bilayer of Sn on Si(111). This new phase is intrinsically phase separated into insulating domains with polar and nonpolar symmetries. Itsmore » formation involves a spontaneous symmetry breaking process that appears to be electronically driven, notwithstanding the lack of metallicity in this system. This modulation doping approach allows access to novel phases of matter, promising new avenues for exploring competing quantum matter phases on a silicon platform.« less
Phonons in two-dimensional soft colloidal crystals.
Chen, Ke; Still, Tim; Schoenholz, Samuel; Aptowicz, Kevin B; Schindler, Michael; Maggs, A C; Liu, Andrea J; Yodh, A G
2013-08-01
The vibrational modes of pristine and polycrystalline monolayer colloidal crystals composed of thermosensitive microgel particles are measured using video microscopy and covariance matrix analysis. At low frequencies, the Debye relation for two-dimensional harmonic crystals is observed in both crystal types; at higher frequencies, evidence for van Hove singularities in the phonon density of states is significantly smeared out by experimental noise and measurement statistics. The effects of these errors are analyzed using numerical simulations. We introduce methods to correct for these limitations, which can be applied to disordered systems as well as crystalline ones, and we show that application of the error correction procedure to the experimental data leads to more pronounced van Hove singularities in the pristine crystal. Finally, quasilocalized low-frequency modes in polycrystalline two-dimensional colloidal crystals are identified and demonstrated to correlate with structural defects such as dislocations, suggesting that quasilocalized low-frequency phonon modes may be used to identify local regions vulnerable to rearrangements in crystalline as well as amorphous solids.
Hidden phase in a two-dimensional Sn layer stabilized by modulation hole doping
Ming, Fangfei; Mulugeta Amare, Daniel; Tu, Weisong; ...
2017-03-07
Semiconductor surfaces and ultrathin interfaces exhibit an interesting variety of two-dimensional quantum matter phases, such as charge density waves, spin density waves and superconducting condensates. Yet, the electronic properties of these broken symmetry phases are extremely difficult to control due to the inherent difficulty of doping a strictly two-dimensional material without introducing chemical disorder. Here we successfully exploit a modulation doping scheme to uncover, in conjunction with a scanning tunnelling microscope tip-assist, a hidden equilibrium phase in a hole-doped bilayer of Sn on Si(111). This new phase is intrinsically phase separated into insulating domains with polar and nonpolar symmetries. Itsmore » formation involves a spontaneous symmetry breaking process that appears to be electronically driven, notwithstanding the lack of metallicity in this system. This modulation doping approach allows access to novel phases of matter, promising new avenues for exploring competing quantum matter phases on a silicon platform.« less
NASA Astrophysics Data System (ADS)
Deán-Ben, X. L.; Bay, Erwin; Razansky, Daniel
2015-03-01
Three-dimensional hand-held optoacoustic imaging comes with important advantages that prompt the clinical translation of this modality, with applications envisioned in cardiovascular and peripheral vascular disease, disorders of the lymphatic system, breast cancer, arthritis or inflammation. Of particular importance is the multispectral acquisition of data by exciting the tissue at several wavelengths, which enables functional imaging applications. However, multispectral imaging of entire three-dimensional regions is significantly challenged by motion artefacts in concurrent acquisitions at different wavelengths. A method based on acquisition of volumetric datasets having a microsecond-level delay between pulses at different wavelengths is described in this work. This method can avoid image artefacts imposed by a scanning velocity greater than 2 m/s, thus, does not only facilitate imaging influenced by respiratory, cardiac or other intrinsic fast movements in living tissues, but can achieve artifact-free imaging in the presence of more significant motion, e.g., abrupt displacements during handheld-mode operation in a clinical environment.
NASA Astrophysics Data System (ADS)
Tsiok, E. N.; Fomin, Y. D.; Ryzhov, V. N.
2018-01-01
Despite about forty years of investigations, the nature of the melting transition in two dimensions is not completely clear. In the framework of the most popular Berezinskii-Kosterlitz-Thouless-Halperin-Nelson-Young (BKTHNY) theory, 2D systems melt through two continuous Berezinskii-Kosterlitz-Thouless (BKT) transitions with intermediate hexatic phase. The conventional first-order transition is also possible. On the other hand, recently on the basis of computer simulations the new melting scenario was proposed with continuous BKT type solid-hexatic transition and first order hexatic-liquid transition. However, in the simulations the hexatic phase is extremely narrow that makes its study difficult. In the present paper, we propose to apply the random pinning to investigate the hexatic phase in more detail. The results of molecular dynamics simulations of two dimensional system having core-softened potentials with narrow repulsive step which is similar to the soft disk system are outlined. The system has a small fraction of pinned particles giving quenched disorder. Random pinning widens the hexatic phase without changing the melting scenario and gives the possibility to study the behavior of the diffusivity and order parameters in the vicinity of the melting transition and inside the hexatic phase.
Social phobia: further evidence of dimensional structure.
Crome, Erica; Baillie, Andrew; Slade, Tim; Ruscio, Ayelet Meron
2010-11-01
Social phobia is a common mental disorder associated with significant impairment. Current research and treatment models of social phobia rely on categorical diagnostic conceptualizations lacking empirical support. This study aims to further research exploring whether social phobia is best conceptualized as a dimension or a discrete categorical disorder. This study used three distinct taxometric techniques (mean above minus below a cut, maximum Eigen value and latent mode) to explore the latent structure of social phobia in two large epidemiological samples, using indicators derived from diagnostic criteria and associated avoidant personality traits. Overall, outcomes from multiple taxometric analyses supported dimensional structure. This is consistent with conceptualizations of social phobia as lying on a continuum with avoidant personality traits. Support for the dimensionality of social phobia has important implications for future research, assessment, treatment, and public policy.
Atomistic cluster alignment method for local order mining in liquids and glasses
NASA Astrophysics Data System (ADS)
Fang, X. W.; Wang, C. Z.; Yao, Y. X.; Ding, Z. J.; Ho, K. M.
2010-11-01
An atomistic cluster alignment method is developed to identify and characterize the local atomic structural order in liquids and glasses. With the “order mining” idea for structurally disordered systems, the method can detect the presence of any type of local order in the system and can quantify the structural similarity between a given set of templates and the aligned clusters in a systematic and unbiased manner. Moreover, population analysis can also be carried out for various types of clusters in the system. The advantages of the method in comparison with other previously developed analysis methods are illustrated by performing the structural analysis for four prototype systems (i.e., pure Al, pure Zr, Zr35Cu65 , and Zr36Ni64 ). The results show that the cluster alignment method can identify various types of short-range orders (SROs) in these systems correctly while some of these SROs are difficult to capture by most of the currently available analysis methods (e.g., Voronoi tessellation method). Such a full three-dimensional atomistic analysis method is generic and can be applied to describe the magnitude and nature of noncrystalline ordering in many disordered systems.
Toward a nanoscience emulator with two dimensional atomic gases
NASA Astrophysics Data System (ADS)
Wang, Ping; Ma, Q.; Dutta, S.; Chen, Yong P.
2009-05-01
We report our experimental progress in constructing a cold atom apparatus for emulating phenomena in nanoscience using low dimensional atom gases. Our first experiments will be performed with a 2D ^87Rb Bose-Einstein condensate created in an optical lattice. Our compact vacuum system consists of two AR-coated glass cells --- a low vacuum magneto-optical trap (MOT) chamber and a high vacuum ``science chamber'', connected by a 15cm-long tube for differential pumping. We have used elliptically shaped cooling laser beams and magnet field coils to realize an elongated MOT in the first chamber, and transferred the atoms to a second MOT in the science chamber by a push laser beam. In the science chamber, a 50W, 1550nm single frequency erbium fiber laser is used to produce an optical dipole trap and optical lattice.In addition, controllable disorder can be introduced with laser speckle and inter-atomic interactions can be tuned by atomic density or Feshbach resonance. We plan to explore important phenomena in nanoscience, such as 2D disorder-induced conductor-insulator transition, quantum Hall effect and graphene-like physics in such a tunable 2D atomic gas in optical lattices.
Paterson, Gillian; Power, Kevin; Yellowlees, Alex; Park, Katy; Taylor, Louise
2007-01-01
Research examining cognitive and behavioural determinants of anorexia is currently lacking. This has implications for the success of treatment programmes for anorexics, particularly, given the high reported dropout rates. This study examines two-dimensional self-esteem (comprising of self-competence and self-liking) and social problem-solving in an anorexic population and predicts that self-esteem will mediate the relationship between problem-solving and eating pathology by facilitating/inhibiting use of faulty/effective strategies. Twenty-seven anorexic inpatients and 62 controls completed measures of social problem solving and two-dimensional self-esteem. Anorexics scored significantly higher than the non-clinical group on measures of eating pathology, negative problem orientation, impulsivity/carelessness and avoidance and significantly lower on positive problem orientation and both self-esteem components. In the clinical sample, disordered eating correlated significantly with self-competence, negative problem-orientation and avoidance. Associations between disordered eating and problem solving lost significance when self-esteem was controlled in the clinical group only. Self-competence was found to be the main predictor of eating pathology in the clinical sample while self-liking, impulsivity and negative and positive problem orientation were main predictors in the non-clinical sample. Findings support the two-dimensional self-esteem theory with self-competence only being relevant to the anorexic population and support the hypothesis that self-esteem mediates the relationship between disordered eating and problem solving ability in an anorexic sample. Treatment implications include support for programmes emphasising increasing self-appraisal and self-efficacy. 2006 John Wiley & Sons, Ltd and Eating Disorders Association
von Zerssen, Detlev
2002-04-01
A unidimensional model of the relationships between normal temperament, psychopathic variants of it and the two main forms of so-called endogenous psychoses (major affective disorders and schizophrenia) was derived from Kretschmer's constitutional typology. It was, however, not confirmed by means of a biometric approach nor was Kretschmer's broad concept of cyclothymia as a correlate of physical stoutness on the one hand and major affective disorders on the other supported by empirical data. Yet the concept of the 'melancholic type' of personality of patients with severe unipolar major depression (melancholia) which resembles descriptions by psychoanalysts could be corroborated. This was also true for the 'manic type' of personality as a (premorbid) correlate of predominantly manic forms of a bipolar I disorder. As predicted from a spectrum concept of major affective disorders, the ratio of traits of either type co-varied with the ratio of the depressive and the manic components in the long-term course of such a disorder. The two types of premorbid personality and a rare variant of the 'manic type', named 'relaxed, easy-going type', were conceived as 'affective types' dominating in major affective disorders. They are opposed to three 'neurotoid types' prevailing in so-called neurotic disorders as well as in schizophrenic psychoses. The similarity among the types can be visualized as spatial relationships in a circular, i.e. a two-dimensional, model (circumplex). Personality disorders as maladapted extreme variants of personality are, by definition, located outside the circle, mainly along its 'neurotoid' side. However, due to their transitional nature, axis I disorders cannot be represented adequately within the plane which represents (adapted as well as maladapted) forms of habitual behaviour (personality types and disorders, respectively). To integrate them into the spatial model of similarity interrelations, a dimension of actual psychopathology has to be added to the two-dimensional plane as a third (orthogonal) axis. The distance of a case from the 'ground level' of habitual behaviour corresponds with the severity of the actual psychopathological state. The specific form of that state (e.g. manic or depressive), however, varies along one the axes which define the circumplex of habitual behaviour. This three-dimensional model is, by its very nature, more complex than the unidimensional one derived from Kretschmer's typological concept, but it is clearly more in accordance with empirical data.
Metallization of a Rashba wire by a superconducting layer in the strong-proximity regime
NASA Astrophysics Data System (ADS)
Reeg, Christopher; Loss, Daniel; Klinovaja, Jelena
2018-04-01
Semiconducting quantum wires defined within two-dimensional electron gases and strongly coupled to thin superconducting layers have been extensively explored in recent experiments as promising platforms to host Majorana bound states. We study numerically such a geometry, consisting of a quasi-one-dimensional wire coupled to a disordered three-dimensional superconducting layer. We find that, in the strong-coupling limit of a sizable proximity-induced superconducting gap, all transverse subbands of the wire are significantly shifted in energy relative to the chemical potential of the wire. For the lowest subband, this band shift is comparable in magnitude to the spacing between quantized levels that arises due to the finite thickness of the superconductor (which typically is ˜500 meV for a 10-nm-thick layer of aluminum); in higher subbands, the band shift is much larger. Additionally, we show that the width of the system, which is usually much larger than the thickness, and moderate disorder within the superconductor have almost no impact on the induced gap or band shift. We provide a detailed discussion of the ramifications of our results, arguing that a huge band shift and significant renormalization of semiconducting material parameters in the strong-coupling limit make it challenging to realize a topological phase in such a setup, as the strong coupling to the superconductor essentially metallizes the semiconductor. This metallization of the semiconductor can be tested experimentally through the measurement of the band shift.
Michopoulos, Vasiliki; Norrholm, Seth Davin; Jovanovic, Tanja
2015-01-01
Posttraumatic stress disorder (PTSD) is a heterogeneous disorder that affects individuals exposed to trauma (e.g., combat, interpersonal violence, and natural disasters). Although its diagnostic features have been recently re-classified with the emergence of the Diagnostic and Statistical Manual for Mental Disorders, Fifth Edition (DSM-5), the disorder remains characterized by hyperarousal, intrusive reminders of the trauma, avoidance of trauma-related cues, and negative cognition and mood. This heterogeneity indicates the presence of multiple neurobiological mechanisms underlying the etiology and maintenance of PTSD. Translational research spanning the past few decades has revealed several potential avenues for the identification of diagnostic biomarkers for PTSD. These include, but are not limited to, monoaminergic transmitter systems, the hypothalamic-pituitary-adrenal (HPA) axis, metabolic hormonal pathways, inflammatory mechanisms, psychophysiological reactivity, and neural circuits. The current review provides an update to the literature with regard to the most promising putative PTSD biomarkers with specific emphasis on the interaction between neurobiological influences on disease risk and symptom progression. Such biomarkers will most likely be identified by multi-dimensional models derived from comprehensive descriptions of molecular, neurobiological, behavioral, and clinical phenotypes. PMID:25727177
Wave propagation of spectral energy content in a granular chain
NASA Astrophysics Data System (ADS)
Shrivastava, Rohit Kumar; Luding, Stefan
2017-06-01
A mechanical wave is propagation of vibration with transfer of energy and momentum. Understanding the spectral energy characteristics of a propagating wave through disordered granular media can assist in understanding the overall properties of wave propagation through inhomogeneous materials like soil. The study of these properties is aimed at modeling wave propagation for oil, mineral or gas exploration (seismic prospecting) or non-destructive testing of the internal structure of solids. The focus is on the total energy content of a pulse propagating through an idealized one-dimensional discrete particle system like a mass disordered granular chain, which allows understanding the energy attenuation due to disorder since it isolates the longitudinal P-wave from shear or rotational modes. It is observed from the signal that stronger disorder leads to faster attenuation of the signal. An ordered granular chain exhibits ballistic propagation of energy whereas, a disordered granular chain exhibits more diffusive like propagation, which eventually becomes localized at long time periods. For obtaining mean-field macroscopic/continuum properties, ensemble averaging has been used, however, such an ensemble averaged spectral energy response does not resolve multiple scattering, leading to loss of information, indicating the need for a different framework for micro-macro averaging.
Optimal dephasing for ballistic energy transfer in disordered linear chains
NASA Astrophysics Data System (ADS)
Zhang, Yang; Celardo, G. Luca; Borgonovi, Fausto; Kaplan, Lev
2017-11-01
We study the interplay between dephasing, disorder, and coupling to a sink on transport efficiency in a one-dimensional chain of finite length N , and in particular the beneficial or detrimental effect of dephasing on transport. The excitation moves along the chain by coherent nearest-neighbor hopping Ω , under the action of static disorder W and dephasing γ . The last site is coupled to an external acceptor system (sink), where the excitation can be trapped with a rate Γtrap. While it is known that dephasing can help transport in the localized regime, here we show that dephasing can enhance energy transfer even in the ballistic regime. Specifically, in the localized regime we recover previous results, where the optimal dephasing is independent of the chain length and proportional to W or W2/Ω . In the ballistic regime, the optimal dephasing decreases as 1 /N or 1 /√{N } , respectively, for weak and moderate static disorder. When focusing on the excitation starting at the beginning of the chain, dephasing can help excitation transfer only above a critical value of disorder Wcr, which strongly depends on the sink coupling strength Γtrap. Analytic solutions are obtained for short chains.
Broadening the diagnosis of bipolar disorder: benefits vs. risks
STRAKOWSKI, STEPHEN M.; FLECK, DAVID E.; MAJ, MARIO
2011-01-01
There is considerable debate over whether bipolar and related disorders that share common signs and symptoms, but are currently defined as distinct clinical entities in DSM-IV and ICD-10, may be better characterized as falling within a more broadly defined “bipolar spectrum”. With a spectrum view in mind, the possibility of broadening the diagnosis of bipolar disorder has been proposed. This paper discusses some of the rationale for an expanded diagnostic scheme from both clinical and research perspectives in light of potential drawbacks. The ultimate goal of broadening the diagnosis of bipolar disorder is to help identify a common etiopathogenesis for these conditions to better guide treatment. To help achieve this goal, bipolar researchers have increasingly expanded their patient populations to identify objective biological or endophenotypic markers that transcend phenomenological observation. Although this approach has and will likely continue to produce beneficial results, the upcoming DSM-IV and ICD-10 revisions will place increasing scrutiny on psychiatry’s diagnostic classification systems and pressure to re-evaluate our conceptions of bipolar disorder. However, until research findings can provide consistent and converging evidence as to the validity of a broader diagnostic conception, clinical expansion to a dimensional bipolar spectrum should be considered with caution. PMID:21991268
A personality classification system for eating disorders: a longitudinal study.
Thompson-Brenner, Heather; Eddy, Kamryn T; Franko, Debra L; Dorer, David J; Vashchenko, Maryna; Kass, Andrea E; Herzog, David B
2008-01-01
Studies of eating disorders (EDs) suggest that empirically derived personality subtypes may explain heterogeneity in ED samples that is not captured by the current diagnostic system. Longitudinal outcomes for personality subtypes have not been examined. In this study, personality pathology was assessed by clinical interview in 213 individuals with anorexia nervosa and bulimia nervosa at baseline. Interview data on EDs, comorbid diagnoses, global functioning, and treatment utilization were collected at baseline and at 6-month follow-up intervals over a median of 9 years. Q-factor analysis of the participants based on personality items produced a 5-prototype system, including high-functioning, behaviorally dysregulated, emotionally dysregulated, avoidant-insecure, and obsessional-sensitive types. Dimensional prototype scores were associated with baseline functioning and longitudinal outcome. Avoidant-Insecure scores showed consistent associations with poor functioning and outcome, including failure to show ED improvement, poor global functioning after 5 years, and high treatment utilization after 5 years. Behavioral dysregulation was associated with poor baseline functioning but did not show strong associations with ED or global outcome when histories of major depression and substance use disorder were covaried. Emotional dysregulation and obsessional-sensitivity were not associated with negative outcomes. High-functioning prototype scores were consistently associated with positive outcomes. Longitudinal results support the importance of personality subtypes to ED classification.
Realizing topological edge states in a silicon nitride microring-based photonic integrated circuit.
Yin, Chenxuan; Chen, Yujie; Jiang, Xiaohui; Zhang, Yanfeng; Shao, Zengkai; Xu, Pengfei; Yu, Siyuan
2016-10-15
Topological edge states in a photonic integrated circuit based on the platform of silicon nitride are demonstrated with a two-dimensional coupled resonator optical waveguide array involving the synthetic magnetic field for photons at near-infrared wavelengths. Measurements indicate that the topological edge states can be observed at certain wavelengths, with light travelling around the boundary of the array. Combined with the induced disorders in fabrication near the edge, the system shows the defect immunity under the topological protection of edge states.
Relaxation of the residual defect structure in deformed polycrystals under ultrasonic action
NASA Astrophysics Data System (ADS)
Murzaev, R. T.; Bachurin, D. V.; Nazarov, A. A.
2017-07-01
Using numerical computer simulation, the behavior of disordered dislocation systems under the action of monochromatic standing sound wave has been investigated in the grain of the model two-dimensional polycrystal containing nonequilibrium grain boundaries. It has been found that the presence of grain boundaries markedly affects the behavior of dislocations. The relaxation process and changes in the level of internal stresses caused by the rearrangement of the dislocation structure due to the ultrasonic action have been studied.
Visual-Vestibular Responses During Space Flight
NASA Technical Reports Server (NTRS)
Reschke, M. F.; Kozlovskaya, I. B.; Paloski, W. H.
1999-01-01
Given the documented disruptions that occur in spatial orientation during space flight and the putative sensory-motor information underlying eye and head spatial coding, the primary purpose of this paper is to examine components of the target acquisition system in subjects free to make head and eye movements in three dimensional space both during and following adaptation to long duration space flight. It is also our intention to suggest a simple model of adaptation that has components in common with cerebellar disorders whose neurobiological substrate has been identified.
Observation of migrating transverse Anderson localizations of light in nonlocal media.
Leonetti, Marco; Karbasi, Salman; Mafi, Arash; Conti, Claudio
2014-05-16
We report the experimental observation of the interaction and attraction of many localized modes in a two-dimensional system realized by a disordered optical fiber supporting transverse Anderson localization. We show that a nonlocal optically nonlinear response of thermal origin alters the localization length by an amount determined by the optical power and also induces an action at a distance between the localized modes and their spatial migration. Evidence of a collective and strongly interacting regime is given.
Microscopic model of superconductivity in carbon nanotubes.
González, J
2002-02-18
We propose the model of a manifold of one-dimensional interacting electron systems to account for the superconductivity observed in ropes of nanotubes. We rely on the strong suppression of single-particle hopping between neighboring nanotubes in a disordered rope and conclude that the tunneling takes place in pairs of electrons, which are formed within each nanotube due to the existence of large superconducting correlations. Our estimate of the transition temperature is consistent with the values that have been measured experimentally in ropes with about 100 metallic nanotubes.
NASA Astrophysics Data System (ADS)
Sadhukhan, Banasree; Singh, Prashant; Nayak, Arabinda; Datta, Sujoy; Johnson, Duane D.; Mookerjee, Abhijit
2017-08-01
We present a real-space formulation for calculating the electronic structure and optical conductivity of random alloys based on Kubo-Greenwood formalism interfaced with augmented space recursion technique [Mookerjee, J. Phys. C 6, 1340 (1973), 10.1088/0022-3719/6/8/003] formulated with the tight-binding linear muffin-tin orbital basis with the van Leeuwen-Baerends corrected exchange potential [Singh, Harbola, Hemanadhan, Mookerjee, and Johnson, Phys. Rev. B 93, 085204 (2016), 10.1103/PhysRevB.93.085204]. This approach has been used to quantitatively analyze the effect of chemical disorder on the configuration averaged electronic properties and optical response of two-dimensional honeycomb siliphene SixC1 -x beyond the usual Dirac-cone approximation. We predicted the quantitative effect of disorder on both the electronic structure and optical response over a wide energy range, and the results are discussed in the light of the available experimental and other theoretical data. Our proposed formalism may open up a facile way for planned band-gap engineering in optoelectronic applications.
Integrals of motion for one-dimensional Anderson localized systems
Modak, Ranjan; Mukerjee, Subroto; Yuzbashyan, Emil A.; ...
2016-03-02
Anderson localization is known to be inevitable in one-dimension for generic disordered models. Since localization leads to Poissonian energy level statistics, we ask if localized systems possess ‘additional’ integrals of motion as well, so as to enhance the analogy with quantum integrable systems. Weanswer this in the affirmative in the present work. We construct a set of nontrivial integrals of motion for Anderson localized models, in terms of the original creation and annihilation operators. These are found as a power series in the hopping parameter. The recently found Type-1 Hamiltonians, which are known to be quantum integrable in a precisemore » sense, motivate our construction.Wenote that these models can be viewed as disordered electron models with infinite-range hopping, where a similar series truncates at the linear order.Weshow that despite the infinite range hopping, all states but one are localized.Wealso study the conservation laws for the disorder free Aubry–Andre model, where the states are either localized or extended, depending on the strength of a coupling constant.Weformulate a specific procedure for averaging over disorder, in order to examine the convergence of the power series. Using this procedure in the Aubry–Andre model, we show that integrals of motion given by our construction are well-defined in localized phase, but not so in the extended phase. Lastly, we also obtain the integrals of motion for a model with interactions to lowest order in the interaction.« less
Integrals of motion for one-dimensional Anderson localized systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modak, Ranjan; Mukerjee, Subroto; Yuzbashyan, Emil A.
Anderson localization is known to be inevitable in one-dimension for generic disordered models. Since localization leads to Poissonian energy level statistics, we ask if localized systems possess ‘additional’ integrals of motion as well, so as to enhance the analogy with quantum integrable systems. Weanswer this in the affirmative in the present work. We construct a set of nontrivial integrals of motion for Anderson localized models, in terms of the original creation and annihilation operators. These are found as a power series in the hopping parameter. The recently found Type-1 Hamiltonians, which are known to be quantum integrable in a precisemore » sense, motivate our construction.Wenote that these models can be viewed as disordered electron models with infinite-range hopping, where a similar series truncates at the linear order.Weshow that despite the infinite range hopping, all states but one are localized.Wealso study the conservation laws for the disorder free Aubry–Andre model, where the states are either localized or extended, depending on the strength of a coupling constant.Weformulate a specific procedure for averaging over disorder, in order to examine the convergence of the power series. Using this procedure in the Aubry–Andre model, we show that integrals of motion given by our construction are well-defined in localized phase, but not so in the extended phase. Lastly, we also obtain the integrals of motion for a model with interactions to lowest order in the interaction.« less
Integrals of motion for one-dimensional Anderson localized systems
NASA Astrophysics Data System (ADS)
Modak, Ranjan; Mukerjee, Subroto; Yuzbashyan, Emil A.; Shastry, B. Sriram
2016-03-01
Anderson localization is known to be inevitable in one-dimension for generic disordered models. Since localization leads to Poissonian energy level statistics, we ask if localized systems possess ‘additional’ integrals of motion as well, so as to enhance the analogy with quantum integrable systems. We answer this in the affirmative in the present work. We construct a set of nontrivial integrals of motion for Anderson localized models, in terms of the original creation and annihilation operators. These are found as a power series in the hopping parameter. The recently found Type-1 Hamiltonians, which are known to be quantum integrable in a precise sense, motivate our construction. We note that these models can be viewed as disordered electron models with infinite-range hopping, where a similar series truncates at the linear order. We show that despite the infinite range hopping, all states but one are localized. We also study the conservation laws for the disorder free Aubry-Andre model, where the states are either localized or extended, depending on the strength of a coupling constant. We formulate a specific procedure for averaging over disorder, in order to examine the convergence of the power series. Using this procedure in the Aubry-Andre model, we show that integrals of motion given by our construction are well-defined in localized phase, but not so in the extended phase. Finally, we also obtain the integrals of motion for a model with interactions to lowest order in the interaction.
Stable biexcitons in two-dimensional metal-halide perovskites with strong dynamic lattice disorder
NASA Astrophysics Data System (ADS)
Thouin, Félix; Neutzner, Stefanie; Cortecchia, Daniele; Dragomir, Vlad Alexandru; Soci, Cesare; Salim, Teddy; Lam, Yeng Ming; Leonelli, Richard; Petrozza, Annamaria; Kandada, Ajay Ram Srimath; Silva, Carlos
2018-03-01
With strongly bound and stable excitons at room temperature, single-layer, two-dimensional organic-inorganic hybrid perovskites are viable semiconductors for light-emitting quantum optoelectronics applications. In such a technological context, it is imperative to comprehensively explore all the factors—chemical, electronic, and structural—that govern strong multiexciton correlations. Here, by means of two-dimensional coherent spectroscopy, we examine excitonic many-body effects in pure, single-layer (PEA) 2PbI4 (PEA = phenylethylammonium). We determine the binding energy of biexcitons—correlated two-electron, two-hole quasiparticles—to be 44 ±5 meV at room temperature. The extraordinarily high values are similar to those reported in other strongly excitonic two-dimensional materials such as transition-metal dichalcogenides. Importantly, we show that this binding energy increases by ˜25 % upon cooling to 5 K. Our work highlights the importance of multiexciton correlations in this class of technologically promising, solution-processable materials, in spite of the strong effects of lattice fluctuations and dynamic disorder.
Arciniegas, David B.
2015-01-01
Purpose of Review: Psychosis is a common and functionally disruptive symptom of many psychiatric, neurodevelopmental, neurologic, and medical conditions and an important target of evaluation and treatment in neurologic and psychiatric practice. The purpose of this review is to define psychosis, communicate recent changes to the classification of and criteria for primary psychotic disorders described in the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5), and summarize current evidence-based approaches to the evaluation and management of primary and secondary psychoses. Recent Findings: The DSM-5 classification of and criteria for primary psychotic disorders emphasize that these conditions occur along a spectrum, with schizoid (personality) disorder and schizophrenia defining its mild and severe ends, respectively. Psychosis is also identified as only one of several dimensions of neuropsychiatric disturbance in these disorders, with others encompassing abnormal psychomotor behaviors, negative symptoms, cognitive impairments, and emotional disturbances. This dimensional approach regards hallucinations and delusions as arising from neural systems subserving perception and information processing, thereby aligning the neurobiological framework used to describe and study such symptoms in primary psychotic disorders with those used to study psychosis associated with other neurologic conditions. Summary: This article provides practicing neurologists with updates on current approaches to the diagnosis, evaluation, and treatment of primary and secondary psychoses. PMID:26039850
Psychotic disorders in DSM-5 and ICD-11.
Biedermann, Falko; Fleischhacker, W Wolfgang
2016-08-01
The Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) was published by the American Psychiatric Association (APA) in 2013, and the Work Group on the Classification of Psychotic disorders (WGPD), installed by the World Health Organization (WHO), is expected to publish the new chapter about schizophrenia and other primary psychotic disorders in 2017. We reviewed the available literature to summarize the major changes, innovations, and developments of both manuals. If available and possible, we outline the theoretical background behind these changes. Due to the fact that the development of ICD-11 has not yet been completed, the details about ICD-11 are still proposals under ongoing revision. In this ongoing process, they may be revised and therefore have to be seen as proposals. DSM-5 has eliminated schizophrenia subtypes and replaced them with a dimensional approach based on symptom assessments. ICD-11 will most likely go in a similar direction, as both manuals are planned to be more harmonized, although some differences will remain in details and the conceptual orientation. Next to these modifications, ICD-11 will provide a transsectional diagnostic criterion for schizoaffective disorders and a reorganization of acute and transient psychotic and delusional disorders. In this manuscript, we will compare the 2 classification systems.
Non-Hermitian bidirectional robust transport
NASA Astrophysics Data System (ADS)
Longhi, Stefano
2017-01-01
Transport of quantum or classical waves in open systems is known to be strongly affected by non-Hermitian terms that arise from an effective description of system-environment interaction. A simple and paradigmatic example of non-Hermitian transport, originally introduced by Hatano and Nelson two decades ago [N. Hatano and D. R. Nelson, Phys. Rev. Lett. 77, 570 (1996), 10.1103/PhysRevLett.77.570], is the hopping dynamics of a quantum particle on a one-dimensional tight-binding lattice in the presence of an imaginary vectorial potential. The imaginary gauge field can prevent Anderson localization via non-Hermitian delocalization, opening up a mobility region and realizing robust transport immune to disorder and backscattering. Like for robust transport of topologically protected edge states in quantum Hall and topological insulator systems, non-Hermitian robust transport in the Hatano-Nelson model is unidirectional. However, there is not any physical impediment to observe robust bidirectional non-Hermitian transport. Here it is shown that in a quasi-one-dimensional zigzag lattice, with non-Hermitian (imaginary) hopping amplitudes and a synthetic gauge field, robust transport immune to backscattering can occur bidirectionally along the lattice.
NASA Astrophysics Data System (ADS)
Mitran, T. L.; Melchert, O.; Hartmann, A. K.
2013-12-01
The main characteristics of biased greedy random walks (BGRWs) on two-dimensional lattices with real-valued quenched disorder on the lattice edges are studied. Here the disorder allows for negative edge weights. In previous studies, considering the negative-weight percolation (NWP) problem, this was shown to change the universality class of the existing, static percolation transition. In the presented study, four different types of BGRWs and an algorithm based on the ant colony optimization heuristic were considered. Regarding the BGRWs, the precise configurations of the lattice walks constructed during the numerical simulations were influenced by two parameters: a disorder parameter ρ that controls the amount of negative edge weights on the lattice and a bias strength B that governs the drift of the walkers along a certain lattice direction. The random walks are “greedy” in the sense that the local optimal choice of the walker is to preferentially traverse edges with a negative weight (associated with a net gain of “energy” for the walker). Here, the pivotal observable is the probability that, after termination, a lattice walk exhibits a total negative weight, which is here considered as percolating. The behavior of this observable as function of ρ for different bias strengths B is put under scrutiny. Upon tuning ρ, the probability to find such a feasible lattice walk increases from zero to 1. This is the key feature of the percolation transition in the NWP model. Here, we address the question how well the transition point ρc, resulting from numerically exact and “static” simulations in terms of the NWP model, can be resolved using simple dynamic algorithms that have only local information available, one of the basic questions in the physics of glassy systems.
ERIC Educational Resources Information Center
Sinzig, Judith; Walter, Daniel; Doepfner, Manfred
2009-01-01
Objective: This study aims to evaluate ADHD-like symptoms in children with autism spectrum disorder (ASD) based on single-item analysis, as well as the comparison of two ASD subsamples of children with ADHD (ASD+) and without ADHD (ASD-). Methods: Participants are 83 children with ASD. Dimensional and categorical aspects of ADHD are evaluated…
Haslam, N; Holland, E; Kuppens, P
2012-05-01
Taxometric research methods were developed by Paul Meehl and colleagues to distinguish between categorical and dimensional models of latent variables. We have conducted a comprehensive review of published taxometric research that included 177 articles, 311 distinct findings and a combined sample of 533 377 participants. Multilevel logistic regression analyses have examined the methodological and substantive variables associated with taxonic (categorical) findings. Although 38.9% of findings were taxonic, these findings were much less frequent in more recent and methodologically stronger studies, and in those reporting comparative fit indices based on simulated comparison data. When these and other possible confounds were statistically controlled, the true prevalence of taxonic findings was estimated at 14%. The domains of normal personality, mood disorders, anxiety disorders, eating disorders, externalizing disorders, and personality disorders (PDs) other than schizotypal yielded little persuasive evidence of taxa. Promising but still not definitive evidence of psychological taxa was confined to the domains of schizotypy, substance use disorders and autism. This review indicates that most latent variables of interest to psychiatrists and personality and clinical psychologists are dimensional, and that many influential taxonic findings of early taxometric research are likely to be spurious.
Normal personality, personality disorder and psychosis: current views and future perspectives.
Balaratnasingam, Sivasankaran; Janca, Aleksandar
2015-01-01
The purpose of this article is to review recent literature examining the occurrence of psychotic experiences in normal population and those with personality disorders. Up to 15% of individuals in the general population report some type or degree of psychotic experience. Most of these individuals function adequately, do not require psychiatric treatment and do not receive diagnosis of a psychotic illness. A significant number of individuals diagnosed with borderline personality disorder (25-50%) also report psychotic symptoms. These are not easily differentiated from the psychotic symptoms reported by individuals with schizophrenia, nor are they always transient. However, emerging research has confirmed that individuals with schizotypal personality disorder are dimensionally related to those with schizophrenia and are at an increased risk of transition to psychosis. Psychotic symptoms are best considered as 'trans-diagnostic' entities on a continuum from normal to pathological. There is a large body of evidence for a dimensional relationship between schizotypal personality disorder and schizophrenia. There is also a significant amount of research showing that psychotic symptoms in borderline personality disorder are frequent, nontransient and represent a marker of illness severity. This review highlights the need to move beyond traditional assumptions and categorical boundaries when evaluating psychotic experiences and psychopathological phenomena.
Almansa, Josué; Vermunt, Jeroen K; Forero, Carlos G; Vilagut, Gemma; De Graaf, Ron; De Girolamo, Giovanni; Alonso, Jordi
2011-06-01
Epidemiological studies on mental health and mental comorbidity are usually based on prevalences and correlations between disorders, or some other form of bivariate clustering of disorders. In this paper, we propose a Factor Mixture Model (FMM) methodology based on conceptual models aiming to measure and summarize distinctive disorder information in the internalizing and externalizing dimensions. This methodology includes explicit modelling of subpopulations with and without 12 month disorders ("ill" and "healthy") by means of latent classes, as well as assessment of model invariance and estimation of dimensional scores. We applied this methodology with an internalizing/externalizing two-factor model, to a representative sample gathered in the European Study of the Epidemiology of Mental Disorders (ESEMeD) study -- which includes 8796 individuals from six countries, and used the CIDI 3.0 instrument for disorder assessment. Results revealed that southern European countries have significantly higher mental health levels concerning internalizing/externalizing disorders than central countries; males suffered more externalizing disorders than women did, and conversely, internalizing disorders were more frequent in women. Differences in mental-health level between socio-demographic groups were due to different proportions of healthy and ill individuals and, noticeably, to the ameliorating influence of marital status on severity. An advantage of latent model-based scores is that the inclusion of additional mental-health dimensional information -- other than diagnostic data -- allows for greater precision within a target range of scores. Copyright © 2011 John Wiley & Sons, Ltd.
Yamada, Hiroaki; Ikeda, Kensuke S
2002-04-01
It was shown that localization in one-dimensional disordered (quantum) electronic system is destroyed against coherent harmonic perturbations and the delocalized electron exhibits an unlimited diffusive motion [Yamada and Ikeda, Phys. Rev. E 59, 5214 (1999)]. The appearance of diffusion implies that the system has potential for irreversibility and dissipation. In the present paper, we investigate dissipative property of the dynamically delocalized state, and we show that an irreversible quasistationary energy flow indeed appears in the form of a "heat" flow when we couple the system with another dynamical degree of freedom. In the concrete we numerically investigate dissipative properties of a one-dimensional tight-binding electronic system perturbed by time-dependent harmonic forces, by coupling it with a quantum harmonic oscillator or a quantum anharmonic oscillator. It is demonstrated that if the on-site potential is spatially irregular an irreversible energy transfer from the scattered electron to the test oscillator occurs. Moreover, the test oscillator promptly approaches a thermalized state characterized by a well-defined time-dependent temperature. On the contrary, such a relaxation process cannot be observed at all for periodic potential systems. Our system is one of the minimal quantum systems in which a distinct nonequilibrium statistical behavior is self-induced.
Magnetic order in a frustrated two-dimensional atom lattice at a semiconductor surface.
Li, Gang; Höpfner, Philipp; Schäfer, Jörg; Blumenstein, Christian; Meyer, Sebastian; Bostwick, Aaron; Rotenberg, Eli; Claessen, Ralph; Hanke, Werner
2013-01-01
Two-dimensional electron systems, as exploited for device applications, can lose their conducting properties because of local Coulomb repulsion, leading to a Mott-insulating state. In triangular geometries, any concomitant antiferromagnetic spin ordering can be prevented by geometric frustration, spurring speculations about 'melted' phases, known as spin liquid. Here we show that for a realization of a triangular electron system by epitaxial atom adsorption on a semiconductor, such spin disorder, however, does not appear. Our study compares the electron excitation spectra obtained from theoretical simulations of the correlated electron lattice with data from high-resolution photoemission. We find that an unusual row-wise antiferromagnetic spin alignment occurs that is reflected in the photoemission spectra as characteristic 'shadow bands' induced by the spin pattern. The magnetic order in a frustrated lattice of otherwise non-magnetic components emerges from longer-range electron hopping between the atoms. This finding can offer new ways of controlling magnetism on surfaces.
Kjaergaard, M; Nichele, F; Suominen, H J; Nowak, M P; Wimmer, M; Akhmerov, A R; Folk, J A; Flensberg, K; Shabani, J; Palmstrøm, C J; Marcus, C M
2016-09-29
Coupling a two-dimensional (2D) semiconductor heterostructure to a superconductor opens new research and technology opportunities, including fundamental problems in mesoscopic superconductivity, scalable superconducting electronics, and new topological states of matter. One route towards topological matter is by coupling a 2D electron gas with strong spin-orbit interaction to an s-wave superconductor. Previous efforts along these lines have been adversely affected by interface disorder and unstable gating. Here we show measurements on a gateable InGaAs/InAs 2DEG with patterned epitaxial Al, yielding devices with atomically pristine interfaces between semiconductor and superconductor. Using surface gates to form a quantum point contact (QPC), we find a hard superconducting gap in the tunnelling regime. When the QPC is in the open regime, we observe a first conductance plateau at 4e 2 /h, consistent with theory. The hard-gap semiconductor-superconductor system demonstrated here is amenable to top-down processing and provides a new avenue towards low-dissipation electronics and topological quantum systems.
Confined Doping for Control of Transport Properties in Nanowires and Nanofilms
NASA Astrophysics Data System (ADS)
Zhong, Jianxin; Stocks, G. Malcolm
2006-03-01
Doping, an essential element for manipulation of electronic transport in traditional semiconductor industry, is widely expected to play important role as well in control of transport properties in nanostructures. However, traditional theory of electronic disorder predicts that doping in one-dimensional and two-dimensional systems leads to carrier localization, limiting practical applications due to poor carrier mobility. Here, a novel concept is proposed that offers the possibility to significantly increase carrier mobility by confining the distribution of dopants within a particular region [1]. Thus, the doped nanostructure becomes a coupled system comprising a doped subsystem and a perfect crystalline subsystem. We showed that carrier mobility in such a dopped nanowire or a nanofilm exhibits counterintuitive behavior in the regime of heavy doping. In particular, the larger the dopant concentration the higher the carrier mobility; we trace this transition to the existence of quasi-mobility-edges in the nanowires and mobility edges in nanofilms. *J.X. Zhong and G.M. Stocks, Nano Lett., in press, (2005)
A thermodynamic counterpart of the Axelrod model of social influence: The one-dimensional case
NASA Astrophysics Data System (ADS)
Gandica, Y.; Medina, E.; Bonalde, I.
2013-12-01
We propose a thermodynamic version of the Axelrod model of social influence. In one-dimensional (1D) lattices, the thermodynamic model becomes a coupled Potts model with a bonding interaction that increases with the site matching traits. We analytically calculate thermodynamic and critical properties for a 1D system and show that an order-disorder phase transition only occurs at T=0 independent of the number of cultural traits q and features F. The 1D thermodynamic Axelrod model belongs to the same universality class of the Ising and Potts models, notwithstanding the increase of the internal dimension of the local degree of freedom and the state-dependent bonding interaction. We suggest a unifying proposal to compare exponents across different discrete 1D models. The comparison with our Hamiltonian description reveals that in the thermodynamic limit the original out-of-equilibrium 1D Axelrod model with noise behaves like an ordinary thermodynamic 1D interacting particle system.
Kjaergaard, M.; Nichele, F.; Suominen, H. J.; Nowak, M. P.; Wimmer, M.; Akhmerov, A. R.; Folk, J. A.; Flensberg, K.; Shabani, J.; Palmstrøm, C. J.; Marcus, C. M.
2016-01-01
Coupling a two-dimensional (2D) semiconductor heterostructure to a superconductor opens new research and technology opportunities, including fundamental problems in mesoscopic superconductivity, scalable superconducting electronics, and new topological states of matter. One route towards topological matter is by coupling a 2D electron gas with strong spin–orbit interaction to an s-wave superconductor. Previous efforts along these lines have been adversely affected by interface disorder and unstable gating. Here we show measurements on a gateable InGaAs/InAs 2DEG with patterned epitaxial Al, yielding devices with atomically pristine interfaces between semiconductor and superconductor. Using surface gates to form a quantum point contact (QPC), we find a hard superconducting gap in the tunnelling regime. When the QPC is in the open regime, we observe a first conductance plateau at 4e2/h, consistent with theory. The hard-gap semiconductor–superconductor system demonstrated here is amenable to top-down processing and provides a new avenue towards low-dissipation electronics and topological quantum systems. PMID:27682268
Spatiotemporal patterns in reaction-diffusion system and in a vibrated granular bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swinney, H.L.; Lee, K.J.; McCormick, W.D.
Experiments on a quasi-two-dimensional reaction-diffusion system reveal transitions from a uniform state to stationary hexagonal, striped, and rhombic spatial patterns. For other reactor conditions lamellae and self-replicating spot patterns are observed. These patterns form in continuously fed thin gel reactors that can be maintained indefinitely in well-defined nonequilibrium states. Reaction-diffusion models with two chemical species yield patterns similar to those observed in the experiments. Pattern formation is also being examined in vertically oscillated thin granular layers (typically 3-30 particle diameters deep). For small acceleration amplitudes, a granular layer is flat, but above a well-defined critical acceleration amplitude, spatial patterns spontaneouslymore » form. Disordered time-dependent granular patterns are observed as well as regular patterns of squares, stripes, and hexagons. A one-dimensional model consisting of a completely inelastic ball colliding with a sinusoidally oscillating platform provides a semi-quantitative description of most of the observed bifurcations between the different spatiotemporal regimes.« less
NASA Astrophysics Data System (ADS)
Granato, Enzo
2017-11-01
We study numerically the superconductor-insulator transition in two-dimensional inhomogeneous superconductors with gauge disorder, described by four different quantum rotor models: a gauge glass, a flux glass, a binary phase glass, and a Gaussian phase glass. The first two models describe the combined effect of geometrical disorder in the array of local superconducting islands and a uniform external magnetic field, while the last two describe the effects of random negative Josephson-junction couplings or π junctions. Monte Carlo simulations in the path-integral representation of the models are used to determine the critical exponents and the universal conductivity at the quantum phase transition. The gauge- and flux-glass models display the same critical behavior, within the estimated numerical uncertainties. Similar agreement is found for the binary and Gaussian phase-glass models. Despite the different symmetries and disorder correlations, we find that the universal conductivity of these models is approximately the same. In particular, the ratio of this value to that of the pure model agrees with recent experiments on nanohole thin-film superconductors in a magnetic field, in the large disorder limit.
Materials considerations for forming the topological insulator phase in InAs/GaSb heterostructures
NASA Astrophysics Data System (ADS)
Shojaei, B.; McFadden, A. P.; Pendharkar, M.; Lee, J. S.; Flatté, M. E.; Palmstrøm, C. J.
2018-06-01
In an ideal InAs/GaSb bilayer of appropriate dimension, in-plane electron and hole bands overlap and hybridize, and a topologically nontrivial, or quantum spin Hall (QSH) insulator, phase is predicted to exist. The in-plane dispersion's potential landscape, however, is subject to microscopic perturbations originating from material imperfections. In this work, the effect of disorder on the electronic structure of InAs/GaSb (001) bilayers was studied by observing the temperature and magnetic-field dependence of the resistance of a dual-gated heterostructure gate-tuned through the inverted to normal gap regimes. Conduction with the electronic structure tuned to the inverted (predicted topological) regime and the Fermi level in the hybridization gap was qualitatively similar to behavior in a disordered two-dimensional system. The impact of charged impurities and interface roughness on the formation of topologically protected edge states and an insulating bulk was estimated. The experimental evidence and estimates of disorder in the potential landscape indicated that the potential fluctuations in state-of-the-art films are sufficiently strong such that conduction with the electronic structure tuned to the predicted topological insulator (TI) regime and the Fermi level in the hybridization gap was dominated by a symplectic metal phase rather than a TI phase. The implications are that future efforts must address disorder in this system, and focus must be placed on the reduction of defects and disorder in these heterostructures if a TI regime is to be achieved.
Chiral Spin Order in Kondo-Heisenberg systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsvelik, A. M.; Yevtushenko, O. M.
We demonstrate that Kondo-Heisenberg systems, consisting of itinerant electrons and localized magnetic moments (Kondo impurities), can be used as a principally new platform to realize scalar chiral spin order. The underlying physics is governed by a competition of the Ruderman-Kittel- Kosuya-Yosida (RKKY) indirect exchange interaction between the local moments with the direct Heisenberg one. When the direct exchange is weak and RKKY dominates the isotropic system is in the disordered phase. A moderately large direct exchange leads to an Ising-type phase transition to the phase with chiral spin order. Our nding paves the way towards pioneering experimental realizations of themore » chiral spin liquid in low dimensional systems with spontaneously broken time reversal symmetry.« less
Quantum glassiness in clean strongly correlated systems: an example of topological overprotection
NASA Astrophysics Data System (ADS)
Chamon, Claudio
2005-03-01
Describing matter at near absolute zero temperature requires understanding a system's quantum ground state and the low energy excitations around it, the quasiparticles, which are thermally populated by the system's contact to a heat bath. However, this paradigm breaks down if thermal equilibration is obstructed. I present solvable examples of quantum many-body Hamiltonians of systems that are unable to reach their ground states as the environment temperature is lowered to absolute zero. These examples, three dimensional generalizations of quantum Hamiltonians proposed for topological quantum computing, 1) have no quenched disorder, 2) have solely local interactions, 3) have an exactly solvable spectrum, 4) have topologically ordered ground states, and 5) have slow dynamical relaxation rates akin to those of strong structural glasses.
Chiral Spin Order in Kondo-Heisenberg systems
Tsvelik, A. M.; Yevtushenko, O. M.
2017-12-15
We demonstrate that Kondo-Heisenberg systems, consisting of itinerant electrons and localized magnetic moments (Kondo impurities), can be used as a principally new platform to realize scalar chiral spin order. The underlying physics is governed by a competition of the Ruderman-Kittel- Kosuya-Yosida (RKKY) indirect exchange interaction between the local moments with the direct Heisenberg one. When the direct exchange is weak and RKKY dominates the isotropic system is in the disordered phase. A moderately large direct exchange leads to an Ising-type phase transition to the phase with chiral spin order. Our nding paves the way towards pioneering experimental realizations of themore » chiral spin liquid in low dimensional systems with spontaneously broken time reversal symmetry.« less
Macroscopic traveling packet and soliton states of quasi-one-dimensional flocks.
Guttenberg, Nicholas; Toner, John; Tu, Yuhai
2014-05-01
Using a continuum model for inhomogeneous flocks, we show that a finite but arbitrarily large moving "packet" of active particles (e.g., moving creatures) can form in a background of a lower density disordered phase of these particles, like a liquid drop surrounded by vapor. The "vapor density" of the disordered background can be made arbitrarily low. We find three basic types of quasi-one-dimensional states: "longitudinal", "transverse", and "oblique" states, with their internal velocity fields, respectively, parallel, perpendicular, and oblique to the interface. The transitions between these states are also studied.
Effects of sudden density changes in disordered superconductors and semiconductors
NASA Astrophysics Data System (ADS)
Assi, Hiba; Chaturvedi, Harshwardhan; Pleimling, Michel; Täuber, Uwe
Vortices in type-II superconductors in the presence of extended, linear defects display the strongly pinned Bose glass phase at low temperatures. This disorder-dominated thermodynamic state is characterized by suppressed lateral flux line fluctuations and very slow structural relaxation kinetics: The vortices migrate between different columnar pinning centers to minimize the mutual repulsive interactions and eventually optimize the system's pinning configuration. To monitor the flux lines' late-time structural relaxations, we employ a mapping between an effectively two-dimensional Bose glass system and a modified Coulomb glass model, originally developed to describe disordered semiconductors at low temperatures. By means of Monte Carlo simulations, we investigate the effects of the introduction of random bare site energies and sudden changes in the vortex or charge carrier density on the soft Coulomb gap that appears in the density of states due to the emerging spatial anticorrelations. The non-equilibrium relaxation properties of the Bose and Coulomb glass states and the ensuing aging kinetics are studied through the two-time density autocorrelation function and its various scaling forms. Research supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-FG02-09ER46613.
Privitera, Daniela; Corti, Valeria; Alessio, Massimo; Volontè, Maria Antonietta; Volontè, Antonietta; Lampasona, Vito; Comi, Giancarlo; Martino, Gianvito; Franciotta, Diego; Furlan, Roberto; Fazio, Raffaella
2013-03-01
We tried to identify the target/s of autoantibodies to basal ganglia neurons found in a patient with hyperkinetic movement disorders (HMD) characterized by rapid, rhythmic involuntary movements or spasms in both face and neck. Patient and control sera were used in Western blot to probe mouse brain homogenates. Two-dimensional gel electrophoresis (2-DE) SDS-PAGE protein spots recognized by the patient's antibodies were excised and sequenced by mass spectrometry analysis, and the glycolytic enzyme aldolase A was identified as the antigen recognized by the patient's autoantibodies. To assess relevance and specificity of these antibodies to the identified targets as biomarkers of autoimmunity in movement disorders, autoantibody responses to the identified target were then measured by ELISA in various diseases of the central nervous system. Anti-aldolase A autoantibodies were associated mainly with HMD (7/17, 41%) and Parkinson's disease (4/30, 13%) patients, and undetectable in subjects with other inflammatory and non-inflammatory central nervous system diseases. We, thus, identified aldolase A as an autoantigen in a sub-group of patients with HMD, a clinically ill-defined syndrome. Anti-aldolase A antibodies may represent a useful biomarker of autoimmunity in HMD patients.
Ab initio phonon thermal transport in monolayer InSe, GaSe, GaS, and alloys
NASA Astrophysics Data System (ADS)
Pandey, Tribhuwan; Parker, David S.; Lindsay, Lucas
2017-11-01
We compare vibrational properties and phonon thermal conductivities (κ) of monolayer InSe, GaSe, and GaS systems using density functional theory and Peierls-Boltzmann transport methods. In going from InSe to GaSe to GaS, system mass decreases giving both increasing acoustic phonon velocities and decreasing scattering of these heat-carrying modes with optic phonons, ultimately giving {κ }{InSe}< {κ }{GaSe}< {κ }{GaS}. This behavior is demonstrated by correlating the scattering phase space limited by fundamental conservation conditions with mode scattering rates and phonon dispersions for each material. We also show that, unlike flat monolayer systems such as graphene, in InSe, GaSe and GaS thermal transport is governed by in-plane vibrations. Alloying of InSe, GaSe, and GaS systems provides an effective method for modulating their κ through intrinsic vibrational modifications and phonon scattering from mass disorder giving reductions ˜2-3.5 times. This disorder also suppresses phonon mean free paths in the alloy systems compared to those in their crystalline counterparts. This work provides fundamental insights of lattice thermal transport from basic vibrational properties for an interesting set of two-dimensional materials.
Tikkanen, Roope; Holi, Matti; Lindberg, Nina; Virkkunen, Matti
2007-01-01
Background The validity of traditional categorical personality disorder diagnoses is currently re-evaluated from a continuous perspective, and the evolving DSM-V classification may describe personality disorders dimensionally. The utility of dimensional personality assessment, however, is unclear in violent offenders with severe personality pathology. Methods The temperament structure of 114 alcoholic violent offenders with antisocial personality disorder (ASPD) was compared to 84 offenders without ASPD, and 170 healthy controls. Inclusion occurred during a court-ordered mental examination preceded by homicide, assault, battery, rape or arson. Participants underwent assessment of temperament with the Tridimensional Personality Questionnaire (TPQ) and were diagnosed with DSM-III-R criteria. Results The typical temperament profile in violent offender having ASPD comprised high novelty seeking, high harm avoidance, and low reward dependence. A 21% minority scored low in trait harm avoidance. Results, including the polarized harm avoidance dimension, are in accordance with Cloninger's hypothesis of dimensional description of ASPD. The low harm avoidance offenders committed less impulsive violence than high harm avoidance offenders. High harm avoidance was associated with comorbid antisocial personality disorder and borderline personality disorder. Conclusion Results indicate that the DSM based ASPD diagnosis in alcoholic violent offenders associates with impulsiveness and high novelty seeking but comprises two different types of ASPD associated with distinct second-order traits that possibly explain differences in type of violent criminality. Low harm avoidance offenders have many traits in common with high scorers on the Hare Psychopathy Checklist-Revised (PCL-R). Results link high harm avoidance with broad personality pathology and argue for the usefulness of self-report questionnaires in clinical praxis. PMID:17662159
Many-body delocalization with random vector potentials
NASA Astrophysics Data System (ADS)
Cheng, Chen; Mondaini, Rubem
2016-11-01
We study the ergodic properties of excited states in a model of interacting fermions in quasi-one-dimensional chains subjected to a random vector potential. In the noninteracting limit, we show that arbitrarily small values of this complex off-diagonal disorder trigger localization for the whole spectrum; the divergence of the localization length in the single-particle basis is characterized by a critical exponent ν which depends on the energy density being investigated. When short-range interactions are included, the localization is lost, and the system is ergodic regardless of the magnitude of disorder in finite chains. Our numerical results suggest a delocalization scheme for arbitrary small values of interactions. This finding indicates that the standard scenario of the many-body localization cannot be obtained in a model with random gauge fields.
The dimensionality of DSM5 alcohol use disorder in Puerto Rico.
Caetano, Raul; Vaeth, Patrice A C; Santiago, Katyana; Canino, Glorisa
2016-11-01
Test the dimensionality and measurement properties of lifetime DSM-5 AUD criteria in a sample of adults from the metropolitan area of San Juan, Puerto Rico. Cross-sectional study with survey data collected in 2013-2014. General population. Random household sample of the adult population 18 to 64years of age in San Juan, Puerto Rico (N=1510; lifetime drinker N=1107). DSM-5 alcohol use disorder (2 or more criteria present in 12months). Lifetime reports of AUD criteria were consistent with a one-dimensional model. Scalar measurement invariance was observed across gender, but measurement parameters for tolerance varied across age, with younger ages showing a lower threshold and steeper loading. Results provide support for a unidimensional DSM-5 AUD construct in a sample from a Latin American country. Copyright © 2016 Elsevier Ltd. All rights reserved.
Different universality classes at the yielding transition of amorphous systems
NASA Astrophysics Data System (ADS)
Jagla, E. A.
2017-08-01
We study the yielding transition of a two-dimensional amorphous system under shear by using a mesoscopic elasto-plastic model. The model combines a full (tensorial) description of the elastic interactions in the system and the possibility of structural reaccommodations that are responsible for the plastic behavior. The possible structural reaccommodations are encoded in the form of a "plastic disorder" potential, which is chosen independently at each position of the sample to account for local heterogeneities. We observe that the stress must exceed a critical value σc in order for the system to yield. In addition, when the system yields a flow curve (relating stress σ and strain rate γ ˙) of the form γ ˙˜(σ-σc) β is obtained. Remarkably, we observe the value of β to depend on some details of the plastic disorder potential. For smooth potentials a value of β ≃2.0 is obtained, whereas for potentials obtained as a concatenation of smooth pieces a value β ≃1.5 is observed in the simulations. This indicates a dependence of critical behavior on details of the plastic behavior. In addition, by integrating out nonessential, harmonic degrees of freedom, we derive a simplified scalar version of the model that represents a collection of interacting Prandtl-Tomlinson particles. A mean-field treatment of this interaction reproduces the difference of β exponents for the two classes of plastic disorder potentials and provides values of β that compare favorably with those found in the full simulations.
Steiner, Florian; Poelking, Carl; Niedzialek, Dorota; Andrienko, Denis; Nelson, Jenny
2017-05-03
We present a multi-scale model for charge transport across grain boundaries in molecular electronic materials that incorporates packing disorder, electrostatic and polarisation effects. We choose quasi two-dimensional films of tri-isopropylsilylethynyl pentacene (TIPS-P) as a model system representative of technologically relevant crystalline organic semiconductors. We use atomistic molecular dynamics, with a force-field specific for TIPS-P, to generate and equilibrate polycrystalline two-dimensional thin films. The energy landscape is obtained by calculating contributions from electrostatic interactions and polarization. The variation in these contributions leads to energetic barriers between grains. Subsequently, charge transport is simulated using a kinetic Monte-Carlo algorithm. Two-grain systems with varied mutual orientation are studied. We find relatively little effect of long grain boundaries due to the presence of low impedance pathways. However, effects could be more pronounced for systems with limited inter-grain contact areas. Furthermore, we present a lattice model to generalize the model for small molecular systems. In the general case, depending on molecular architecture and packing, grain boundaries can result in interfacial energy barriers, traps or a combination of both with qualitatively different effects on charge transport.
Reif, Roberto; Qin, Jia; Shi, Lei; Dziennis, Suzan; Zhi, Zhongwei; Nuttall, Alfred L; Wang, Ruikang K
2012-01-01
A synchronized dual-wavelength laser speckle contrast imaging (DWLSCI) system and a Doppler optical microangiography (DOMAG) system was developed to determine several ischemic parameters in the cochlea due to a systemic hypoxic challenge. DWLSCI can obtain two-dimensional data, and was used to determine the relative changes in cochlear blood flow, and change in the concentrations of oxyhemoglobin (HbO), deoxyhemoglobin (Hb) and total hemoglobin (HbT) in mice. DOMAG can obtain three-dimensional data, and was used to determine the changes in cochlear blood flow with single vessel resolution. It was demonstrated that during a hypoxic challenge there was an increase in the concentrations of Hb, a decrease in the concentrations of HbO and cochlear blood flow, and a slight decrease in the concentration of HbT. Also, the rate of change in the concentrations of Hb and HbO was quantified during and after the hypoxic challenge. The ability to simultaneously measure these ischemic parameters with high spatio-temporal resolution will allow the detailed quantitative analysis of several hearing disorders, and will be useful for diagnosing and developing treatments.
An Integrative Dimensional Classification of Personality Disorder
ERIC Educational Resources Information Center
Widiger, Thomas A.; Livesley, W. John; Clark, Lee Anna
2009-01-01
Psychological assessment research concerns how to describe psychological dysfunction in ways that are both valid and useful. Recent advances in assessment research hold the promise of facilitating significant improvements in description and diagnosis. One such contribution is in the classification of personality disorder symptomatology. The…
Chloride ions induce order-disorder transition at water-oxide interfaces
NASA Astrophysics Data System (ADS)
Deshmukh, Sanket; Kamath, Ganesh; Ramanathan, Shriram; Sankaranarayanan, Subramanian K. R. S.
2013-12-01
Water can form quasi-two-dimensional ordered layers near a solid interface. The solvation dynamics and ionic transport phenomena through this ordered water structure is of direct relevance to a variety of problems in interface science. Molecular dynamics simulations are used to study the impact of local fluctuation of the chloride ion density in the vicinity of an oxide surface on the structure and dynamics of water layers. We demonstrate that local increase in chloride ions beyond a threshold concentration near the water-MgO (100) interface introduces an order-disorder transition of this two-dimensional layered network into bulklike water, leading to increased diffusional characteristics and reduced hydrogen bonding lifetimes. We find that the extent of this order-disorder transition can be tuned by modifying the defect chemistry and nature of the underlying substrate. The kinetic fluidity resulting from order-disorder transition at high chloride ion concentration has significance for a broad range of phenomena, ranging from freezing point depression of brine to onset of aqueous corrosion.
Emotional Variability and Clarity in Depression and Social Anxiety
Thompson, Renee J.; Boden, Matthew Tyler; Gotlib, Ian H.
2016-01-01
Recent research has underscored the importance of elucidating specific patterns of emotion that characterize mental disorders. We examined two emotion traits, emotional variability and emotional clarity, in relation to both categorical (diagnostic interview) and dimensional (self-report) measures of Major Depressive Disorder (MDD) and Social Anxiety Disorder (SAD) in women diagnosed with MDD only (n=35), SAD only (n=31), MDD and SAD (n=26), or no psychiatric disorder (n=38). Results of the categorical analyses suggest that elevated emotional variability and diminished emotional clarity are transdiagnostic of MDD and SAD. More specifically, emotional variability was elevated for MDD and SAD diagnoses compared to no diagnosis, showing an additive effect for co-occurring MDD and SAD. Similarly diminished levels of emotional clarity characterized all three clinical groups compared to the healthy control group. Dimensional findings suggest that whereas emotional variability is associated more consistently with depression than with social anxiety, emotional clarity is associated more consistently with social anxiety than with depression. Results are interpreted using a threshold- and dose-response framework. PMID:26371579
A randomized controlled trial of multimodal music therapy for children with anxiety disorders.
Goldbeck, Lutz; Ellerkamp, Thomas
2012-01-01
Music therapy has been shown to be effective for children with psychopathology, providing an alternative nonverbal approach to the treatment of children with anxiety disorders. This pilot study investigates the efficacy of Multimodal Music Therapy (MMT), a combination of music therapy and cognitive-behavioral therapy, compared to treatment as usual (TAU). Thirty-six children aged 8-12 years with a primary diagnosis of an anxiety disorder were randomly assigned to 15 sessions of MMT or to TAU. Diagnostic status and dimensional outcome variables were assessed at the end of treatment and 4 months later. MMT was superior compared to TAU according to the remission rates after treatment (MMT 67%; TAU 33%; chi2 = 4.0; p = 0.046) and remissions persisted until four months post-treatment. Dimensional measures showed equivalent improvement after either MMT or TAU. The results regarding the efficacy of MMT are promising for children with anxiety disorders. Further evaluation with larger samples and comparisons to pure CBT are recommended.
A dimensional approach to modeling symptoms of neuropsychiatric disorders in the marmoset monkey
Oikonomidis, Lydia; Santangelo, Andrea M.; Shiba, Yoshiro; Clarke, F. Hannah; Robbins, Trevor W.
2017-01-01
ABSTRACT Some patients suffering from the same neuropsychiatric disorder may have no overlapping symptoms whilst others may share symptoms common to other distinct disorders. Therefore, the Research Domain Criteria initiative recognises the need for better characterisation of the individual symptoms on which to focus symptom‐based treatment strategies. Many of the disorders involve dysfunction within the prefrontal cortex (PFC) and so the marmoset, due to their highly developed PFC and small size, is an ideal species for studying the neurobiological basis of the behavioural dimensions that underlie these symptoms.Here we focus on a battery of tests that address dysfunction spanning the cognitive (cognitive inflexibility and working memory), negative valence (fear generalisation and negative bias) and positive valence (anhedonia) systems pertinent for understanding disorders such as ADHD, Schizophrenia, Anxiety, Depression and OCD. Parsing the separable prefrontal and striatal circuits and identifying the selective neurochemical modulation (serotonin vs dopamine) that underlie cognitive dysfunction have revealed counterparts in the clinical domain. Aspects of the negative valence system have been explored both at individual‐ (trait anxiety and genetic variation in serotonin transporter) and circuit‐based levels enabling the understanding of generalisation processes, negative biases and differential responsiveness to SSRIs. Within the positive valence system, the combination of cardiovascular and behavioural measures provides a framework for understanding motivational, anticipatory and consummatory aspects of anhedonia and their neurobiological mechanisms. Together, the direct comparison of experimental findings in marmosets with clinical studies is proving an excellent translational model to address the behavioural dimensions and neurobiology of neuropsychiatric symptoms. © 2016 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol 77: 328–353, 2016 PMID:27589556
Text-to-audiovisual speech synthesizer for children with learning disabilities.
Mendi, Engin; Bayrak, Coskun
2013-01-01
Learning disabilities affect the ability of children to learn, despite their having normal intelligence. Assistive tools can highly increase functional capabilities of children with learning disorders such as writing, reading, or listening. In this article, we describe a text-to-audiovisual synthesizer that can serve as an assistive tool for such children. The system automatically converts an input text to audiovisual speech, providing synchronization of the head, eye, and lip movements of the three-dimensional face model with appropriate facial expressions and word flow of the text. The proposed system can enhance speech perception and help children having learning deficits to improve their chances of success.
Spectroscopic signatures of localization with interacting photons in superconducting qubits
NASA Astrophysics Data System (ADS)
Roushan, P.; Neill, C.; Tangpanitanon, J.; Bastidas, V. M.; Megrant, A.; Barends, R.; Chen, Y.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Fowler, A.; Foxen, B.; Giustina, M.; Jeffrey, E.; Kelly, J.; Lucero, E.; Mutus, J.; Neeley, M.; Quintana, C.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T.; Neven, H.; Angelakis, D. G.; Martinis, J.
2017-12-01
Quantized eigenenergies and their associated wave functions provide extensive information for predicting the physics of quantum many-body systems. Using a chain of nine superconducting qubits, we implement a technique for resolving the energy levels of interacting photons. We benchmark this method by capturing the main features of the intricate energy spectrum predicted for two-dimensional electrons in a magnetic field—the Hofstadter butterfly. We introduce disorder to study the statistics of the energy levels of the system as it undergoes the transition from a thermalized to a localized phase. Our work introduces a many-body spectroscopy technique to study quantum phases of matter.
Defects and spatiotemporal disorder in a pattern of falling liquid columns
NASA Astrophysics Data System (ADS)
Brunet, Philippe; Limat, Laurent
2004-10-01
Disordered regimes of a one-dimensional pattern of liquid columns hanging below an overflowing circular dish are investigated experimentally. The interaction of two basic dynamical modes (oscillations and drift) combined with the occurrence of defects (birth of new columns, disappearances by coalescences of two columns) leads to spatiotemporal chaos. When the flow rate is progressively increased, a continuous transition between transient and permanent chaos is pointed into evidence. We introduce the rate of defects as the sole relevant quantity to quantify this “turbulence” without ambiguity. Statistics on both transient and endlessly chaotic regimes enable to define a critical flow rate around which exponents are extracted. Comparisons are drawn with other interfacial pattern-forming systems, where transition towards chaos follows similar steps. Qualitatively, careful examinations of the global dynamics show that the contamination processes are nonlocal and involve the propagation of blocks of elementary laminar states (such as propagative domains or local oscillations), emitted near the defects, which turn out to be essential ingredients of this self-sustained disorder.
Emergent order in the kagome Ising magnet Dy3Mg2Sb3O14
Paddison, Joseph A. M.; Ong, Harapan S.; Hamp, James O.; Mukherjee, Paromita; Bai, Xiaojian; Tucker, Matthew G.; Butch, Nicholas P.; Castelnovo, Claudio; Mourigal, Martin; Dutton, S. E.
2016-01-01
The Ising model—in which degrees of freedom (spins) are binary valued (up/down)—is a cornerstone of statistical physics that shows rich behaviour when spins occupy a highly frustrated lattice such as kagome. Here we show that the layered Ising magnet Dy3Mg2Sb3O14 hosts an emergent order predicted theoretically for individual kagome layers of in-plane Ising spins. Neutron-scattering and bulk thermomagnetic measurements reveal a phase transition at ∼0.3 K from a disordered spin-ice-like regime to an emergent charge ordered state, in which emergent magnetic charge degrees of freedom exhibit three-dimensional order while spins remain partially disordered. Monte Carlo simulations show that an interplay of inter-layer interactions, spin canting and chemical disorder stabilizes this state. Our results establish Dy3Mg2Sb3O14 as a tuneable system to study interacting emergent charges arising from kagome Ising frustration. PMID:27996012
N-(1-Allyl-1H-indazol-5-yl)-4-meth-oxy-benzene-sulfonamide hemihydrate.
Chicha, Hakima; Rakib, El Mostapha; Geffken, Detlef; Saadi, Mohamed; El Ammari, Lahcen
2013-01-01
In the title compound, C17H17N3O3 (.)0.5H2O, the indazole system makes a dihedral angle of 46.19 (8)° with the plane through the benzene ring and is nearly perpendicular to the allyl group, as indicated by the dihedral angle of 81.2 (3)°. In the crystal, the water mol-ecule, disordered over two sites related by an inversion center, forms O-H⋯N bridges between indazole N atoms of two sulfonamide mol-ecules. It is also connected via N-H⋯O inter-action to the third sulfonamide mol-ecule; however, due to the water mol-ecule disorder, only every second mol-ecule of sulfonamide participates in this inter-action. This missing inter-action results in a slight disorder of the sulfonamide S,O and N atoms which are split over two sites with half occupancy. With the help of C-H⋯O hydrogen bonds, the mol-ecules are further connected into a three-dimensional network.
Jang, Joon Hwan; Kim, Hee Sun; Ha, Tae Hyon; Shin, Na Young; Kang, Do-Hyung; Choi, Jung-Seok; Ha, Kyooseob; Kwon, Jun Soo
2010-12-30
Recent acceptance that obsessive-compulsive disorder (OCD) represents a heterogeneous phenomenon has underscored the need for dimensional approaches to this disorder. However little is known about the relation between neuropsychological functions and symptom dimensions. The purpose of this study was to identify the cognitive deficits correlated with specific symptom dimensions. Thirteen categories in the Yale-Brown Obsessive Compulsive Scale symptom checklist from 144 patients with OCD were analyzed by principal component analysis. Correlations between identified symptom dimensions and neuropsychological functioning, measured by the Boston Qualitative Scoring System, were analyzed. Five factors or dimensions were identified: contamination/cleaning, hoarding, symmetry/ordering, obsessions/checking, and repeating/counting. Dysfunctions in nonverbal memory and organizational strategies were related to the symmetry/ordering dimension and the obsessions/checking dimension, respectively. The results of the present study support a transculturally stable symptom structure for OCD. They also suggest the possibility that nonverbal memory dysfunction and organizational impairment are mediated by distinct obsessive-compulsive dimensions. Copyright © 2010 Elsevier Ltd. All rights reserved.
Dell'osso, Liliana; Pini, Stefano
2012-01-01
Despite the large amount of research conducted in this area over the last two decades, comorbidity of psychiatric disorders remains a topic of major practical and theoretical significance.Official diagnostic and therapeutic guidelines of psychiatric disorders still do not provide clinicians and researchers with any treatment-specific indications for those cases presenting with psychiatric comorbidity. We will discuss the diagnostic improvement brought about, in clinical practice, by the punctual and refined recognition of threshold and subthreshold comorbidity. From such a perspective, diagnostic procedures and forthcoming systems of classification of mental disorders should attempt to combine descriptive, categorical and dimensional approaches, addressing more attention to the cross-sectional and longitudinal analysis of nuclear, subclinical, and atypical symptoms that may represent a pattern of either full-blown or partially expressed psychiatric comorbidity. This should certainly be regarded as a positive development. Parallel, continuous critical challenge seems to be vital in this area, in order to prevent dangerous trivializations and misunderstandings.
Relating DSM-5 section III personality traits to section II personality disorder diagnoses.
Morey, L C; Benson, K T; Skodol, A E
2016-02-01
The DSM-5 Personality and Personality Disorders Work Group formulated a hybrid dimensional/categorical model that represented personality disorders as combinations of core impairments in personality functioning with specific configurations of problematic personality traits. Specific clusters of traits were selected to serve as indicators for six DSM categorical diagnoses to be retained in this system - antisocial, avoidant, borderline, narcissistic, obsessive-compulsive and schizotypal personality disorders. The goal of the current study was to describe the empirical relationships between the DSM-5 section III pathological traits and DSM-IV/DSM-5 section II personality disorder diagnoses. Data were obtained from a sample of 337 clinicians, each of whom rated one of his or her patients on all aspects of the DSM-IV and DSM-5 proposed alternative model. Regression models were constructed to examine trait-disorder relationships, and the incremental validity of core personality dysfunctions (i.e. criterion A features for each disorder) was examined in combination with the specified trait clusters. Findings suggested that the trait assignments specified by the Work Group tended to be substantially associated with corresponding DSM-IV concepts, and the criterion A features provided additional diagnostic information in all but one instance. Although the DSM-5 section III alternative model provided a substantially different taxonomic structure for personality disorders, the associations between this new approach and the traditional personality disorder concepts in DSM-5 section II make it possible to render traditional personality disorder concepts using alternative model traits in combination with core impairments in personality functioning.
Simultaneous neural and movement recording in large-scale immersive virtual environments.
Snider, Joseph; Plank, Markus; Lee, Dongpyo; Poizner, Howard
2013-10-01
Virtual reality (VR) allows precise control and manipulation of rich, dynamic stimuli that, when coupled with on-line motion capture and neural monitoring, can provide a powerful means both of understanding brain behavioral relations in the high dimensional world and of assessing and treating a variety of neural disorders. Here we present a system that combines state-of-the-art, fully immersive, 3D, multi-modal VR with temporally aligned electroencephalographic (EEG) recordings. The VR system is dynamic and interactive across visual, auditory, and haptic interactions, providing sight, sound, touch, and force. Crucially, it does so with simultaneous EEG recordings while subjects actively move about a 20 × 20 ft² space. The overall end-to-end latency between real movement and its simulated movement in the VR is approximately 40 ms. Spatial precision of the various devices is on the order of millimeters. The temporal alignment with the neural recordings is accurate to within approximately 1 ms. This powerful combination of systems opens up a new window into brain-behavioral relations and a new means of assessment and rehabilitation of individuals with motor and other disorders.
NASA Astrophysics Data System (ADS)
Harris, D. T.; Campbell, N.; Uecker, R.; Brützam, M.; Schlom, D. G.; Levchenko, A.; Rzchowski, M. S.; Eom, C.-B.
2018-04-01
BaPb1 -xBixO3 is a superconductor, with transition temperature Tc=11 K, whose parent compound BaBiO3 possesses a charge ordering phase and perovskite crystal structure reminiscent of the cuprates. The lack of magnetism simplifies the BaPb1 -xBixO3 phase diagram, making this system an ideal platform for contrasting high-Tc systems with isotropic superconductors. Here we use high-quality epitaxial thin films and magnetotransport to demonstrate superconducting fluctuations that extend well beyond Tc. For the thickest films (thickness above ˜100 nm ) this region extends to ˜27 K , well above the bulk Tc and remarkably close to the higher Tc of Ba1 -xKxBiO3 (Tc=31 K). We drive the system through a superconductor-insulator transition by decreasing thickness and find the observed Tc correlates strongly with disorder. This material manifests strong fluctuations across a wide range of thicknesses, temperatures, and disorder presenting new opportunities for understanding the precursor of superconductivity near the 2D-3D dimensionality crossover.
Assessing the heterogeneity of autism spectrum symptoms in a school population.
Morales-Hidalgo, Paula; Ferrando, Pere J; Canals, Josefa
2018-05-15
The aim of the present study was to assess whether the nature of the main autistic features (i.e., social communication problems and repetitive and restrictive patterns) are better conceptualized as dimensional or categorical in a school population. The study was based on the teacher ratings of two different age groups: 2,585 children between the ages of 10 and 12 (Primary Education; PE) and 2,502 children between the ages of 3 and 5 (Nursery Education; NE) from 60 mainstream schools. The analyses were based on Factor Mixture Analysis, a novel approach that combines dimensional and categorical features and prevents spurious latent classes from appearing. The results provided evidence of the dimensionality of autism spectrum symptoms in a school age population. The distribution of the symptoms was strongly and positively skewed but continuous; and the prevalence of high-risk symptoms for autism spectrum disorders (ASD) and social-pragmatic communication disorder (SCD) was 7.55% of NE children and 8.74% in PE. A categorical separation between SCD and ASD was not supported by our sample. In view of the results, it is necessary to establish clear cut points for detecting and diagnosing autism and to develop specific and reliable tools capable of assessing symptom severity and functional consequences in children with ASD. Autism Res 2018. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. The results of the present study suggest that the distribution of autism spectrum symptoms are continuous and dimensional among school-aged children and thus support the need to establish clear cut-off points for detecting and diagnosing autism. In our sample, the prevalence of high-risk symptoms for autism spectrum disorders and social-pragmatic communication disorder was around 8%. © 2018 International Society for Autism Research, Wiley Periodicals, Inc.
Hamm, Alfons O; Richter, Jan; Pané-Farré, Christiane; Westphal, Dorte; Wittchen, Hans-Ulrich; Vossbeck-Elsebusch, Anna N; Gerlach, Alexander L; Gloster, Andrew T; Ströhle, Andreas; Lang, Thomas; Kircher, Tilo; Gerdes, Antje B M; Alpers, Georg W; Reif, Andreas; Deckert, Jürgen
2016-03-01
In the current review, we reconceptualize a categorical diagnosis-panic disorder and agoraphobia-in terms of two constructs within the domain "negative valence systems" suggested by the Research Domain Criteria initiative. Panic attacks are considered as abrupt and intense fear responses to acute threat arising from inside the body, while anxious apprehension refers to anxiety responses to potential harm and more distant or uncertain threat. Taking a dimensional view, panic disorder with agoraphobia is defined with the threat-imminence model stating that defensive responses are dynamically organized along the dimension of the proximity of the threat. We tested this model within a large group of patients with panic disorder and agoraphobia (N = 369 and N = 124 in a replication sample) and found evidence that panic attacks are indeed instances of circa strike defense. This component of the defensive reactivity was related to genetic modulators within the serotonergic system. In contrast, anxious apprehension-characterized by attentive freezing during postencounter defense-was related to general distress and depressive mood, as well as to genetic modulations within the hypothalamic-pituitary-adrenal (HPA) axis. Patients with a strong behavioral tendency for active and passive avoidance responded better to exposure treatment if the therapist guides the patient through the exposure exercises. © 2016 Society for Psychophysiological Research.
Calvo, Natalia; Valero, Sergi; Sáez-Francàs, Naia; Gutiérrez, Fernando; Casas, Miguel; Ferrer, Marc
2016-10-01
Borderline personality disorder (BPD) diagnosis has been considered highly controversial. The Diagnostic and Statistical Manual of Mental Disorders 5th edition (DSM-5) proposes an alternative hybrid diagnostic model for personality disorders (PD), and the Personality Inventory for DSM-5 (PID-5) has adequate psychometric properties and has been widely used for the assessment of the dimensional component. Our aim was to analyze the utility of the personality traits presented in Section III of the DSM-5 for BPD diagnosis in an outpatient clinical sample, using the Spanish version of the PID-5. Two clinical samples were studied: BPD sample (n=84) and non-BPD sample (n=45). Between-sample differences in PID-5 scores were analyzed. The BPD sample obtained significantly higher scores in most PID-5 trait facets and domains. Specifically and after regression logistic analyses, in BPD patients, the domains of Negative Affectivity and Disinhibition, and the trait facets of emotional lability, [lack of] restricted affectivity, and impulsivity were more significantly associated with BPD. Although our findings are only partially consistent with the algorithm proposed by DSM-5, we consider that the combination of the PID-5 trait domains and facets could be useful for BPD dimensional diagnosis, and could further our understanding of BPD diagnosis complexity. Copyright © 2016 Elsevier Inc. All rights reserved.
Stress Transmission in Granular Packings: Localization and Cooperative Response
NASA Astrophysics Data System (ADS)
Ramola, Kabir
We develop a framework for stress transmission in two dimensional granular media that respects vector force balance at the microscopic level. For a packing of grains interacting via pairwise contact forces, we introduce local gauge degrees of freedom that determine the response of the system to external perturbations. This allows us to construct unique force-balanced solutions that determine the change in contact forces as a response to external stress. By mapping this response to diffusion in the underlying contact network, we show that this naturally leads to spatial localization of forces. We present numerical evidence for stress localization using exact diagonalization studies of network Laplacians associated with soft disk packings. We use this formalism to characterize the deviation from elastic behaviour as the amount of disorder in the underlying network is varied. We discuss generalizations to systems with large friction between grains and other networks that display topological disorder. This work has been supported by NSF-DMR 1409093 and the W. M. Keck Foundation.
Relaxation of creep strain in paper
NASA Astrophysics Data System (ADS)
Mustalahti, Mika; Rosti, Jari; Koivisto, Juha; Alava, Mikko J.
2010-07-01
In disordered, viscoelastic or viscoplastic materials a sample response exhibits a recovery phenomenon after the removal of a constant load or after creep. We study experimentally the recovery in paper, a quasi-two-dimensional system with intrinsic structural disorder. The deformation is measured by using the digital image correlation (DIC) method. By the DIC we obtain accurate displacement data and the spatial fields of deformation and recovered strains. The averaged results are first compared to several heuristic models for viscoelastic polymer materials in particular. The most important experimental quantity is the permanent creep strain, and we analyze whether it is non-zero by fitting the empirical models of viscoelasticity. We then present in more detail the spatial recovery behavior results from DIC, and show that they indicate a power-law-type relaxation. We outline results on variation from sample to sample and collective, spatial fluctuations in the recovery behavior. An interpretation is provided for the relaxation in the general context of glassy, interacting systems with barriers.
Nature of the superconductor-insulator transition in disordered superconductors.
Dubi, Yonatan; Meir, Yigal; Avishai, Yshai
2007-10-18
The interplay of superconductivity and disorder has intrigued scientists for several decades. Disorder is expected to enhance the electrical resistance of a system, whereas superconductivity is associated with a zero-resistance state. Although superconductivity has been predicted to persist even in the presence of disorder, experiments performed on thin films have demonstrated a transition from a superconducting to an insulating state with increasing disorder or magnetic field. The nature of this transition is still under debate, and the subject has become even more relevant with the realization that high-transition-temperature (high-T(c)) superconductors are intrinsically disordered. Here we present numerical simulations of the superconductor-insulator transition in two-dimensional disordered superconductors, starting from a microscopic description that includes thermal phase fluctuations. We demonstrate explicitly that disorder leads to the formation of islands where the superconducting order is high. For weak disorder, or high electron density, increasing the magnetic field results in the eventual vanishing of the amplitude of the superconducting order parameter, thereby forming an insulating state. On the other hand, at lower electron densities or higher disorder, increasing the magnetic field suppresses the correlations between the phases of the superconducting order parameter in different islands, giving rise to a different type of superconductor-insulator transition. One of the important predictions of this work is that in the regime of high disorder, there are still superconducting islands in the sample, even on the insulating side of the transition. This result, which is consistent with experiments, explains the recently observed huge magneto-resistance peak in disordered thin films and may be relevant to the observation of 'the pseudogap phenomenon' in underdoped high-T(c) superconductors.
NASA Astrophysics Data System (ADS)
Ortiz, L.; Varona, S.; Viyuela, O.; Martin-Delgado, M. A.
2018-02-01
We study the localization and oscillation properties of the Majorana fermions that arise in a two-dimensional electron gas (2DEG) with spin-orbit coupling (SOC) and a Zeeman field coupled with a d -wave superconductor. Despite the angular dependence of the d -wave pairing, localization and oscillation properties are found to be similar to the ones seen in conventional s -wave superconductors. In addition, we study a microscopic lattice version of the previous system that can be characterized by a topological invariant. We derive its real space representation that involves nearest and next-to-nearest-neighbors pairing. Finally, we show that the emerging chiral Majorana fermions are indeed robust against static disorder. This analysis has potential applications to quantum simulations and experiments in high-Tc superconductors.
Disorder-induced losses in photonic crystal waveguides with line defects.
Gerace, Dario; Andreani, Lucio Claudio
2004-08-15
A numerical analysis of extrinsic diffraction losses in two-dimensional photonic crystal slabs with line defects is reported. To model disorder, a Gaussian distribution of hole radii in the triangular lattice of airholes is assumed. The extrinsic losses below the light line increase quadratically with the disorder parameter, decrease slightly with increasing core thickness, and depend weakly on the hole radius. For typical values of the disorder parameter the calculated loss values of guided modes below the light line compare favorably with available experimental results.
Protein conformational disorder and enzyme catalysis.
Schulenburg, Cindy; Hilvert, Donald
2013-01-01
Though lacking a well-defined three-dimensional structure, intrinsically unstructured proteins are ubiquitous in nature. These molecules play crucial roles in many cellular processes, especially signaling and regulation. Surprisingly, even enzyme catalysis can tolerate substantial disorder. This observation contravenes conventional wisdom but is relevant to an understanding of how protein dynamics modulates enzyme function. This chapter reviews properties and characteristics of disordered proteins, emphasizing examples of enzymes that lack defined structures, and considers implications of structural disorder for catalytic efficiency and evolution.
Cognitive Clusters in Specific Learning Disorder
ERIC Educational Resources Information Center
Poletti, Michele; Carretta, Elisa; Bonvicini, Laura; Giorgi-Rossi, Paolo
2018-01-01
The heterogeneity among children with learning disabilities still represents a barrier and a challenge in their conceptualization. Although a dimensional approach has been gaining support, the categorical approach is still the most adopted, as in the recent fifth edition of the "Diagnostic and Statistical Manual of Mental Disorders." The…
Lupien, S J; Sasseville, M; François, N; Giguère, C E; Boissonneault, J; Plusquellec, P; Godbout, R; Xiong, L; Potvin, S; Kouassi, E; Lesage, A
2017-01-01
In 2008, the National Institute of Mental Health (NIMH) announced that in the next few decades, it will be essential to study the various biological, psychological and social "signatures" of mental disorders. Along with this new "signature" approach to mental health disorders, modifications of DSM were introduced. One major modification consisted of incorporating a dimensional approach to mental disorders, which involved analyzing, using a transnosological approach, various factors that are commonly observed across different types of mental disorders. Although this new methodology led to interesting discussions of the DSM5 working groups, it has not been incorporated in the last version of the DSM5. Consequently, the NIMH launched the "Research Domain Criteria" (RDoC) framework in order to provide new ways of classifying mental illnesses based on dimensions of observable behavioral and neurobiological measures. The NIMH emphasizes that it is important to consider the benefits of dimensional measures from the perspective of psychopathology and environmental influences, and it is also important to build these dimensions on neurobiological data. The goal of this paper is to present the perspectives of DSM5 and RDoC to the science of mental health disorders and the impact of this debate on the future of human stress research. The second goal is to present the "Signature Bank" developed by the Institut Universitaire en Santé Mentale de Montréal (IUSMM) that has been developed in line with a dimensional and transnosological approach to mental illness.
BOOK REVIEW: Quantum Physics in One Dimension
NASA Astrophysics Data System (ADS)
Logan, David
2004-05-01
To a casual ostrich the world of quantum physics in one dimension may sound a little one-dimensional, suitable perhaps for those with an unhealthy obsession for the esoteric. Nothing of course could be further from the truth. The field is remarkably rich and broad, and for more than fifty years has thrown up innumerable challenges. Theorists, realising that the role of interactions in 1D is special and that well known paradigms of higher dimensions (Fermi liquid theory for example) no longer apply, took up the challenge of developing new concepts and techniques to understand the undoubted pecularities of one-dimensional systems. And experimentalists have succeeded in turning pipe dreams into reality, producing an impressive and ever increasing array of experimental realizations of 1D systems, from the molecular to the mesoscopic---spin and ladder compounds, organic superconductors, carbon nanotubes, quantum wires, Josephson junction arrays and so on. Many books on the theory of one-dimensional systems are however written by experts for experts, and tend as such to leave the non-specialist a touch bewildered. This is understandable on both fronts, for the underlying theoretical techniques are unquestionably sophisticated and not usually part of standard courses in many-body theory. A brave author it is then who aims to produce a well rounded, if necessarily partial, overview of quantum physics in one dimension, accessible to a beginner yet taking them to the edge of current research, and providing en route a thorough grounding in the fundamental ideas, basic methods and essential phenomenology of the field. It is of course the brave who succeed in this world, and Thierry Giamarchi does just that with this excellent book, written by an expert for the uninitiated. Aimed in particular at graduate students in theoretical condensed matter physics, and assumimg little theoretical background on the part of the reader (well just a little), Giamarchi writes in a refreshingly relaxed style with infectious enthusiasm for his subject, and readily combines formal instruction with physical insight. The result is a serious, pedagogical yet comprehensive guide to the fascinating and important field of one-dimensional quantum systems, for which many a graduate student (and not a few oldies) will be grateful. The first half of the book, chapters 1--5, is devoted to a coherent presentation of the essential concepts and theoretical methods of the field. After a basic introduction to the unique behaviour of interacting electrons in one dimension, and to early fermionic approaches to the problem, Giamarchi turns to the technique of bosonization, introducing chapter 3 with a Marxist quote: `A child of five would understand this. Send for a child of five.' This most powerful technique is presented in a step by step fashion, and serious perusal of the chapter will benefit all ages since bosonization is used extensively throughout the rest of the book. The same is true of chapter 3 where a phenomenological and physically insightful introduction is given to the Luttinger liquid---the key concept in the low-energy physics of one-dimensional systems, analogous to the Fermi liquid in higher dimensions. Chapter 4 deals with what the author calls `refinements', or complications of the sort theorists in particular welcome; such as how the Luttinger liquid description is modified by the presence of long-ranged interactions, the Mott transition (`we forgot the lattice Gromit'), and the effects of breaking spin rotational invariance on application of a magnetic field. Finally chapter 5 describes various microscopic methods for one dimension, including a brief discussion of numerical techniques but focussing primarily on the Bethe ansatz---the famous one-dimensional technique others seek to emulate but whose well known complexity necessitates a relatively brief discussion, confined in practice to the spin-1/2 Heisenberg model. In the second half of the book, chapters 6--11, a range of different physical realizations of one-dimensional quantum physics are discussed. According to taste and interest, these chapters can be read in essentially any order. Spin systems are considered in chapter 6, beginning with spin chains---Jordan--Wigner, the bosonization solution---before moving to frustration, the spin-Peierls transition, and spin ladders; and including experimental examples of both spin chain and ladder materials. Chapters 7 and 8 deal with interacting lattice fermions, the former with single chain problems, notably the Hubbard, t-J and related models; and the latter with coupled fermionic chains, from finite to infinite, including a fulsome discussion of Bechgaard salts (organic conductors) as exemplars of Luttinger liquid behaviour. The effect of disorder in fermionic systems is taken up in chapter 9, and here the reader may react: interacting systems are tough enough, why make life harder? But disorder is always present to some degree in real systems---quantum wires, for example, discussed briefly in the chapter---and its effects particularly acute in one dimension. It simply cannot be avoided, even if the problem of interacting, disordered one-dimensional systems is still a long way off being solved. The penultimate chapter deals with the topical issues of boundaries, isolated impurities and constrictions, with a primary focus on mesoscopic examples of Luttinger liquids, notably carbon nanotubes and edge states in the quantum Hall effect. Finally `significant other' examples of Luttinger liquids, namely interacting one-dimensional bosons, are considered in chapter 11; which concludes with a discussion of bosonization techniques in the context of quantum impurities in Fermi liquids---the x-ray, Kondo and multichannel Kondo problems. The quality of the product attests to the fact that writing this impressive tome was a labour of love for the author. Anyone with a serious interest in getting to grips with one-dimensional quantum systems simply needs the book on their shelves---and will have great fun reading it too.
2014-01-01
Background Anxiety scales may help primary care physicians to detect specific anxiety disorders among the many emotionally distressed patients presenting in primary care. The anxiety scale of the Four-Dimensional Symptom Questionnaire (4DSQ) consists of an admixture of symptoms of specific anxiety disorders. The research questions were: (1) Is the anxiety scale unidimensional or multidimensional? (2) To what extent does the anxiety scale detect specific DSM-IV anxiety disorders? (3) Which cut-off points are suitable to rule out or to rule in (which) anxiety disorders? Methods We analyzed 5 primary care datasets with standardized psychiatric diagnoses and 4DSQ scores. Unidimensionality was assessed through confirmatory factor analysis (CFA). We examined mean scores and anxiety score distributions per disorder. Receiver operating characteristic (ROC) analysis was used to determine optimal cut-off points. Results Total n was 969. CFA supported unidimensionality. The anxiety scale performed slightly better in detecting patients with panic disorder, agoraphobia, social phobia, obsessive compulsive disorder (OCD) and post traumatic stress disorder (PTSD) than patients with generalized anxiety disorder (GAD) and specific phobia. ROC-analysis suggested that ≥4 was the optimal cut-off point to rule out and ≥10 the cut-off point to rule in anxiety disorders. Conclusions The 4DSQ anxiety scale measures a common trait of pathological anxiety that is characteristic of anxiety disorders, in particular panic disorder, agoraphobia, social phobia, OCD and PTSD. The anxiety score detects the latter anxiety disorders to a slightly greater extent than GAD and specific phobia, without being able to distinguish between the different anxiety disorder types. The cut-off points ≥4 and ≥10 can be used to separate distressed patients in three groups with a relatively low, moderate and high probability of having one or more anxiety disorders. PMID:24761829
Anomalous negative magnetoresistance of two-dimensional electrons
NASA Astrophysics Data System (ADS)
Kanter, Jesse; Vitkalov, Sergey; Bykov, A. A.
2018-05-01
Effects of temperature T (6-18 K) and variable in situ static disorder on dissipative resistance of two-dimensional electrons are investigated in GaAs quantum wells placed in a perpendicular magnetic-field B⊥. Quantum contributions to the magnetoresistance, leading to quantum positive magnetoresistance (QPMR), are separated by application of an in-plane magnetic field. QPMR decreases considerably with both the temperature and the static disorder and is in good quantitative agreement with theory. The remaining resistance R decreases with the magnetic field exhibiting an anomalous polynomial dependence on B⊥:[R (B⊥) -R (0 ) ] =A (T ,τq) B⊥η where the power is η ≈1.5 ±0.1 in a broad range of temperatures and disorder. The disorder is characterized by electron quantum lifetime τq. The scaling factor A (T ,τq) ˜[κ(τq) +β (τq) T2] -1 depends significantly on both τq and T where the first term κ ˜τq-1/2 decreases with τq. The second term is proportional to the square of the temperature and diverges with increasing static disorder. Above a critical disorder the anomalous magnetoresistance is absent, and only a positive magnetoresistance, exhibiting no distinct polynomial behavior with the magnetic field, is observed. The presented model accounts memory effects and yields η = 3/2.
Rost, Silke; Kappel, Viola; Salbach, Harriet; Schneider, Nora; Pfeiffer, Ernst; Lehmkuhl, Ulrike; Winter, Sibylle; Sarrar, Lea
2017-09-01
To provide further insight into the presently poorly understood role of familial psychopathology in the development of eating disorders (ED). The present study assesses psychiatric and personality disorders listed on Axis I and II of the DSM-IV in 27 mothers of adolescent patients with anorexia (AN mothers) and 14 bulimia nervosa (BN mothers) as well as 22 mentally healthy girls (CG mothers) on a categorical level. Furthermore, we conducted a dimensional diagnostic regarding personality styles and personality traits. AN and BN mothers showed increased rates of Axis I disorders, especially affective, substance use, and anxiety disorders. Differences on Axis II did not reach statistical significance. However, BN mothers showed higher occurrences of paranoid, negativistic, and schizotypal personality styles compared to the other groups. BN mothers further showed higher occurrences than CG mothers of the personality traits excitability, aggressiveness, physical complaints, openness, and emotionality. AN mothers differed significantly from CG mothers on the scale demands. Increased occurrence of psychopathology on both categorical and dimensional levels in mothers of patients with AN and BN supports the assumption of a familial accumulation of psychopathology in ED. Longitudinal studies and genetic analyses should clarify a possible cause-effect relationship and interactions between familial dynamics and adolescent ED.
Multidetector Scattering as a Probe of Local Structure in Disordered Phases
NASA Astrophysics Data System (ADS)
Clark, Noel A.; Ackerson, Bruce J.; Hurd, Alan J.
1983-05-01
The local translational structure of a two-dimensional colloidal liquid is observed by use of cross correlation of the intensity fluctuations of light scattered by the liquid through two different wave vectors. The utility of multidetector scattering in probing multipoint correlations in disordered phases is thereby demonstrated unambiguously.
ERIC Educational Resources Information Center
Moriarty, Dick; Chanko, Cathy
This report describes an eating disorder as a multi-dimensional physiological, psychological, social, and cultural illness. A chart describing the typical anorexic and bulimic is included which has on its horizontal axis the predisposing, precipitating, perpetuating, professional help, and prevention factors of anorexia nervosa and bulimia. On its…
ERIC Educational Resources Information Center
Yoder, Kevin A.; Longley, Susan L.; Whitbeck, Les B.; Hoyt, Dan R.
2008-01-01
The present study examined associations among dimensions of suicidality and psychopathology in a sample of 428 homeless adolescents (56.3% female). Confirmatory factor analysis results provided support for a three-factor model in which suicidality (measured with lifetime suicidal ideation and suicide attempts), internalizing disorders (assessed…
On Categorical Diagnoses in "DSM-V": Cutting Dimensions at Useful Points?
ERIC Educational Resources Information Center
Kamphuis, Jan H.; Noordhof, Arjen
2009-01-01
The "Diagnostic and Statistical Manual of Mental Disorders" (5th ed.; "DSM-V") will likely place more emphasis on dimensional representation of mental disorders. However, it is often argued that categorical diagnoses are preferable for professional communication, clinical decision-making, or distinguishing between individuals with and without a…
Phillips, Mary L; Swartz, Holly A.
2014-01-01
Objective This critical review appraises neuroimaging findings in bipolar disorder in emotion processing, emotion regulation, and reward processing neural circuitry, to synthesize current knowledge of the neural underpinnings of bipolar disorder, and provide a neuroimaging research “roadmap” for future studies. Method We examined findings from all major studies in bipolar disorder that used fMRI, volumetric analyses, diffusion imaging, and resting state techniques, to inform current conceptual models of larger-scale neural circuitry abnormalities in bipolar disorder Results Bipolar disorder can be conceptualized in neural circuitry terms as parallel dysfunction in bilateral prefrontal cortical (especially ventrolateral prefrontal cortical)-hippocampal-amygdala emotion processing and emotion regulation neural circuitries, together with an “overactive” left-sided ventral striatal-ventrolateral and orbitofrontal cortical reward processing circuitry, that result in characteristic behavioral abnormalities associated with bipolar disorder: emotional lability, emotional dysregulation and heightened reward sensitivity. A potential structural basis for these functional abnormalities are gray matter decreases in prefrontal and temporal cortices, amygdala and hippocampus, and fractional anisotropy decreases in white matter tracts connecting prefrontal and subcortical regions. Conclusion Neuroimaging studies of bipolar disorder clearly demonstrate abnormalities in neural circuitries supporting emotion processing, emotion regulation and reward processing, although there are several limitations to these studies. Future neuroimaging research in bipolar disorder should include studies adopting dimensional approaches; larger studies examining neurodevelopmental trajectories in bipolar disorder and at-risk youth; multimodal neuroimaging studies using integrated systems approaches; and studies using pattern recognition approaches to provide clinically useful, individual-level data. Such studies will help identify clinically-relevant biomarkers to guide diagnosis and treatment decision-making for individuals with bipolar disorder. PMID:24626773
ERIC Educational Resources Information Center
Olatunji, Bunmi O.; Broman-Fulks, Joshua J.
2007-01-01
Disgust sensitivity has recently been implicated as a specific vulnerability factor for several anxiety-related disorders. However, it is not clear whether disgust sensitivity is a dimensional or categorical phenomenon. The present study examined the latent structure of disgust by applying three taxometric procedures (maximum eigenvalue, mean…
ERIC Educational Resources Information Center
Achenbach, Thomas M.; Rescorla, Leslie A.; Ivanova, Masha Y.
2012-01-01
Objectives: To review international findings on the prevalence of diagnosed disorders, generalizability of dimensional scales, and distributions of dimensional scores for school-age children and to address the conceptual and clinical issues raised by the findings. Method: A review of findings for interviews (Development and Well-Being Assessment,…
Judgment Research and the Dimensional Model of Personality
ERIC Educational Resources Information Center
Garb, Howard N.
2008-01-01
Comments on the original article "Plate tectonics in the classification of personality disorder: Shifting to a dimensional model," by T. A. Widiger and T. J. Trull. The purpose of this comment is to address (a) whether psychologists know how personality traits are currently assessed by clinicians and (b) the reliability and validity of those…
Simulation study of localization of electromagnetic waves in two-dimensional random dipolar systems.
Wang, Ken Kang-Hsin; Ye, Zhen
2003-12-01
We study the propagation and scattering of electromagnetic waves by random arrays of dipolar cylinders in a uniform medium. A set of self-consistent equations, incorporating all orders of multiple scattering of the electromagnetic waves, is derived from first principles and then solved numerically for electromagnetic fields. For certain ranges of frequencies, spatially localized electromagnetic waves appear in such a simple but realistic disordered system. Dependence of localization on the frequency, radiation damping, and filling factor is shown. The spatial behavior of the total, coherent, and diffusive waves is explored in detail, and found to comply with a physical intuitive picture. A phase diagram characterizing localization is presented, in agreement with previous investigations on other systems.
Bound state and localization of excitation in many-body open systems
NASA Astrophysics Data System (ADS)
Cui, H. T.; Shen, H. Z.; Hou, S. C.; Yi, X. X.
2018-04-01
We study the exact bound state and time evolution for single excitations in one-dimensional X X Z spin chains within a non-Markovian reservoir. For the bound state, a common feature is the localization of single excitations, which means the spontaneous emission of excitations into the reservoir is prohibited. Exceptionally, the pseudo-bound state can be found, for which the single excitation has a finite probability of emission into the reservoir. In addition, a critical energy scale for bound states is also identified, below which only one bound state exists, and it is also the pseudo-bound state. The effect of quasirandom disorder in the spin chain is also discussed; such disorder induces the single excitation to locate at some spin sites. Furthermore, to display the effect of bound state and disorder on the preservation of quantum information, the time evolution of single excitations in spin chains is studied exactly. An interesting observation is that the excitation can stay at its initial location with high probability only when the bound state and disorder coexist. In contrast, when either one of them is absent, the information of the initial state can be erased completely or becomes mixed. This finding shows that the combination of bound state and disorder can provide an ideal mechanism for quantum memory.
Jefferies-Sewell, K; Chamberlain, SR; Fineberg, NA; Laws, KR
2017-01-01
Background Body dysmorphic disorder (BDD) is a debilitating disorder, characterised by obsessions and compulsions relating specifically to perceived appearance, newly classified within the DSM-5 Obsessive-Compulsive and Related Disorders grouping. Until now, little research has been conducted into the cognitive profile of this disorder. Materials and Methods Participants with BDD (n=12) and healthy controls (n=16) were tested using a computerised neurocognitive battery investigating attentional set-shifting (Intra/Extra Dimensional Set Shift Task), decision-making (Cambridge Gamble Task), motor response-inhibition (Stop-Signal Reaction Time Task) and affective processing (Affective Go-No Go Task). The groups were matched for age, IQ and education. Results In comparison to controls, patients with BDD showed significantly impaired attentional set shifting, abnormal decision-making, impaired response inhibition and greater omission and commission errors on the emotional processing task. Conclusions Despite the modest sample size, our results showed that individuals with BDD performed poorly compared to healthy controls on tests of cognitive flexibility, reward and motor impulsivity and affective processing. Results from separate studies in OCD patients suggest similar cognitive dysfunction. Therefore, these findings are consistent with the re-classification of BDD alongside OCD. These data also hint at additional areas of decision-making abnormalities that might contribute specifically to the psychopathology of BDD. PMID:27899165
Comparing personality disorder models: cross-method assessment of the FFM and DSM-IV-TR.
Samuel, Douglas B; Widiger, Thomas W
2010-12-01
The current edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR; American Psychiatric Association, 2000) defines personality disorders as categorical entities that are distinct from each other and from normal personality traits. However, many scientists now believe that personality disorders are best conceptualized using a dimensional model of traits that span normal and abnormal personality, such as the Five-Factor Model (FFM). However, if the FFM or any dimensional model is to be considered as a credible alternative to the current model, it must first demonstrate an increment in the validity of the assessment offered within a clinical setting. Thus, the current study extended previous research by comparing the convergent and discriminant validity of the current DSM-IV-TR model to the FFM across four assessment methodologies. Eighty-eight individuals receiving ongoing psychotherapy were assessed for the FFM and the DSM-IV-TR personality disorders using self-report, informant report, structured interview, and therapist ratings. The results indicated that the FFM had an appreciable advantage over the DSM-IV-TR in terms of discriminant validity and, at the domain level, convergent validity. Implications of the findings and directions for future research are discussed.
Comparing Personality Disorder Models: Cross-Method Assessment of the FFM and DSM-IV-TR
Samuel, Douglas B.; Widiger, Thomas A.
2010-01-01
The current edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR; American Psychiatric Association, 2000) defines personality disorders as categorical entities that are distinct from each other and from normal personality traits. However, many scientists now believe that personality disorders are best conceptualized using a dimensional model of traits that span normal and abnormal personality, such as the Five-Factor Model (FFM). However, if the FFM or any dimensional model is to be considered as a credible alternative to the current model, it must first demonstrate an increment in the validity of the assessment offered within a clinical setting. Thus, the current study extended previous research by comparing the convergent and discriminant validity of the current DSM-IV-TR model to the FFM across four assessment methodologies. Eighty-eight individuals receiving ongoing psychotherapy were assessed for the FFM and the DSM-IV-TR personality disorders using self-report, informant report, structured interview, and therapist ratings. The results indicated that the FFM had an appreciable advantage over the DSM-IV-TR in terms of discriminant validity and, at the domain level, convergent validity. Implications of the findings and directions for future research are discussed. PMID:21158596
Phase diagram and quantum criticality of disordered Majorana-Weyl fermions
NASA Astrophysics Data System (ADS)
Wilson, Justin; Pixley, Jed; Goswami, Pallab
A three-dimensional px + ipy superconductor hosts gapless Bogoliubov-de Gennes (BdG) quasiparticles which provide an intriguing example of a thermal Hall semimetal (ThSM) phase of Majorana-Weyl fermions. We study the effect of quenched disorder on such a topological phase with both numerical and analytical methods. Using the kernel polynomial method, we compute the average and typical density of states for the BdG quasiparticles; based on this, we construct the disordered phase diagram. We show for infinitesimal disorder, the ThSM is converted into a diffusive thermal Hall metal (ThDM) due to rare statistical fluctuations. Consequently, the phase diagram of the disordered model only consists of ThDM and thermal insulating phases. Nonetheless, there is a cross-over at finite energies from a ThSM regime to a ThDM regime, and we establish the scaling properties of the avoided quantum critical point which marks this cross-over. Additionally, we show the existence of two types of thermal insulators: (i) a trivial thermal band insulator (ThBI), and (ii) a thermal Anderson insulator (AI). We also discuss the experimental relevance of our results for three-dimensional, time reversal symmetry breaking, triplet superconducting states.
Driving Forces of the Self-Assembly of Supramolecular Systems: Partially Ordered Mesophases
NASA Astrophysics Data System (ADS)
Shcherbina, M. A.; Chvalun, S. N.
2018-06-01
The main aspects are considered of the self-organization of a new class of liquid crystalline compounds, rigid sector-shaped and cone-shaped dendrons. Theoretical approaches to the self-assembly of different amphiphilic compounds (lipids, bolaamphiphiles, block copolymers, and polyelectrolytes) are described. Particular attention is given to the mesophase structures that emerge during the self-organization of mesophases characterized by intermediate degrees of ordering, e.g., plastic crystals, the rotation-crystalline phase in polymers, ordered and disordered two-dimensional columnar phases, and bicontinuous cubic phases of different symmetry.
Disordered Phase of the 3x3 Pb/Ge(111) structure at low temperature
NASA Astrophysics Data System (ADS)
Guo, Jiandong; Bolorizadeh, Mehdi; Plummer, E. W.
2003-03-01
* Dept. of Phys., Univ. of Tenn., Knoxville, TN 37996. ** Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831. At a metal surface or a thin metallic film on a semiconductor there is a competition between the long-range adatom-adatom interactions and the local stress fields imposed by the substrate bulk structure. In interesting cases this leads to a structural phase transition. In this talk we present a STM investigation of the two-dimensional structure at different temperatures for the 1/3 monolayer of Pb on Ge(111) system. When the temperature is lowered the interface undergoes a (3x3)R30^o to (3x3) phase transition at roughly 110 K. Substitutional Ge defects play a crucial role in the phase transition as has been reported for the isoelectronic Sn/Ge system. However, unlike Sn/Ge, as the temperature is lowed below 80 K the (3x3) structure in Pb/Ge is broken and a disordered glassy-like structure is observed. This is very similar to the glassy phase predicted by Shi et al. in a model calculation for the Sn/Ge system. The question we address is, is this disordered low temperature phase inherent to the ideal Pb/Ge system or a consequence of the Ge substitutional defects? This work was funded by NSF DMR-0105232 and Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under contract DE-AC05-00OR22725.
Oveshnikov, L. N.; Kulbachinskii, V. A.; Davydov, A. B.; ...
2015-11-24
In this study, the anomalous Hall effect (AHE) arises from the interplay of spin-orbit interactions and ferromagnetic order and is a potentially useful probe of electron spin polarization, especially in nanoscale systems where direct measurement is not feasible. While AHE is rather well-understood in metallic ferromagnets, much less is known about the relevance of different physical mechanisms governing AHE in insulators. As ferromagnetic insulators, but not metals, lend themselves to gatecontrol of electron spin polarization, understanding AHE in the insulating state is valuable from the point of view of spintronic applications. Among the mechanisms proposed in the literature for AHEmore » in insulators, the one related to a geometric (Berry) phase effect has been elusive in past studies. The recent discovery of quantized AHE in magnetically doped topological insulators - essentially a Berry phase effect - provides strong additional motivation to undertake more careful search for geometric phase effects in AHE in the magnetic semiconductors. Here we report our experiments on the temperature and magnetic field dependences of AHE in insulating, strongly-disordered two-dimensional Mn delta-doped semiconductor heterostructures in the hopping regime. In particular, it is shown that at sufficiently low temperatures, the mechanism of AHE related to the Berry phase is favoured.« less
The role of emotion regulation in predicting personality dimensions.
Borges, Lauren M; Naugle, Amy E
2017-11-01
Dimensional models of personality have been widely acknowledged in the field as alternatives to a trait-based system of nomenclature. While the importance of dimensional models has been established, less is known about the constructs underlying these personality dimensions. Emotion regulation is one such potential construct. The goal of the current study was to examine the relationship between personality dimensions and emotion regulation. More specifically, the predictive capacity of emotion regulation in accounting for personality dimensions and symptoms on the Schedule for Nonadaptive and Adaptive Personality-2 above and beyond a measure of general distress was evaluated. Emotion regulation was found to be predictive of most personality dimensions and symptoms of most personality disorders. Consistent with hypotheses, emotion regulation variables associated with undercontrol of emotions were most predictive of traits associated with Cluster B personality disorders whereas Cluster A and C traits were most associated with emotion regulation related to overcontrol of emotions. These findings provide preliminary evidence that some personality dimensions never assessed in relation to emotion regulation are strongly predicted by emotion regulation variables. Thus, the present study facilitates an initial step in understanding the relationship between personality dimensions and a multidimensional model of emotion regulation. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Oveshnikov, L. N.; Kulbachinskii, V. A.; Davydov, A. B.; Aronzon, B. A.; Rozhansky, I. V.; Averkiev, N. S.; Kugel, K. I.; Tripathi, V.
2015-01-01
The anomalous Hall effect (AHE) arises from the interplay of spin-orbit interactions and ferromagnetic order and is a potentially useful probe of electron spin polarization, especially in nanoscale systems where direct measurement is not feasible. While AHE is rather well-understood in metallic ferromagnets, much less is known about the relevance of different physical mechanisms governing AHE in insulators. As ferromagnetic insulators, but not metals, lend themselves to gate-control of electron spin polarization, understanding AHE in the insulating state is valuable from the point of view of spintronic applications. Among the mechanisms proposed in the literature for AHE in insulators, the one related to a geometric (Berry) phase effect has been elusive in past studies. The recent discovery of quantized AHE in magnetically doped topological insulators - essentially a Berry phase effect - provides strong additional motivation to undertake more careful search for geometric phase effects in AHE in the magnetic semiconductors. Here we report our experiments on the temperature and magnetic field dependences of AHE in insulating, strongly-disordered two-dimensional Mn delta-doped semiconductor heterostructures in the hopping regime. In particular, it is shown that at sufficiently low temperatures, the mechanism of AHE related to the Berry phase is favoured. PMID:26596472
Animal models of gene-environment interaction in schizophrenia: a dimensional perspective
Ayhan, Yavuz; McFarland, Ross; Pletnikov, Mikhail V.
2015-01-01
Schizophrenia has long been considered as a disorder with multifactorial origins. Recent discoveries have advanced our understanding of the genetic architecture of the disease. However, even with the increase of identified risk variants, heritability estimates suggest an important contribution of non-genetic factors. Various environmental risk factors have been proposed to play a role in the etiopathogenesis of schizophrenia. These include season of birth, maternal infections, obstetric complications, adverse events at early childhood, and drug abuse. Despite the progress in identification of genetic and environmental risk factors, we still have a limited understanding of the mechanisms whereby gene-environment interactions (GxE) operate in schizophrenia and psychoses at large. In this review we provide a critical analysis of current animal models of GxE relevant to psychotic disorders and propose that dimensional perspective will advance our understanding of the complex mechanisms of these disorders. PMID:26510407
DeFife, Jared A; Goldberg, Melissa; Westen, Drew
2015-04-01
Central to the proposed DSM-5 general definition of personality disorder (PD) are features of self- and interpersonal functioning. The Social Cognition and Object Relations Scale-Global Rating Method (SCORS-G) is a coding system that assesses eight dimensions of self- and relational experience that can be applied to narrative data or used by clinically experienced observers to quantify observations of patients in ongoing psychotherapy. This study aims to evaluate the relationship of SCORS-G dimensions to personality pathology in adolescents and their incremental validity for predicting multiple domains of adaptive functioning. A total of 294 randomly sampled doctoral-level clinical psychologists and psychiatrists described an adolescent patient in their care based on all available data. Individual SCORS-G variables demonstrated medium-to-large effect size differences for PD versus non-PD identified adolescents (d = .49-1.05). A summary SCORS-Composite rating was significantly related to composite measurements of global adaptive functioning (r = .66), school functioning (r = .47), externalizing behavior (r = -.49), and prior psychiatric history (r = -.31). The SCORS-Composite significantly predicted variance in domains of adaptive functioning above and beyond age and DSM-IV PD diagnosis (ΔR(2)s = .07-.32). As applied to adolescents, the SCORS-G offers a framework for a clinically meaningful and empirically sound dimensional assessment of self- and other representations and interpersonal functioning capacities. Our findings support the inclusion of self- and interpersonal capacities in the DSM-5 general definition of personality disorder as an improvement to existing PD diagnosis for capturing varied domains of adaptive functioning and psychopathology.
Depue, Richard A; Fu, Yu
2012-03-01
Borderline personality disorder (BPD) is an exceedingly complex behavioral phenomenon that is in need of conceptual clarification within a larger model of personality disorders (PDs). The association of personality traits to BPD is discussed initially as a means of introducing a dimensional personality approach to understanding BPD. While this model suggests that PDs emerge at the extremes of personality dimensions, attempts to demonstrate such an association have been empirically disappointing and conceptually unilluminating. Therefore, in this article, we attempt to extend such models by outlining the neurobehavioral systems that underlie major personality traits, and highlight the evidence that they are subject to experience-dependent modification that can be enduring through effects on genetic expression, mainly through processes known as epigenetics. It is through such processes that risk for personality disorder may be modified by experience at any point in development, but perhaps especially during early critical periods of development. We conclude by presenting a multidimensional model of PDs, in general, and BPD, in particular, that relies on the concepts developed earlier in the article. Our goal is to provide a guide for novel clinical conceptualization and assessment of PDs, as well as research on their psychobiological nature and pharmacological treatment.
Luyten, Patrick; Fonagy, Peter
2017-10-09
The Research Domain Criteria (RDoC) propose a much-needed change in approach to the study of vulnerability factors implicated in mental disorders, shifting away from a categorical, disease-oriented model to a dimensional approach that focuses on underlying systems implicated in psychopathology. In this paper we illustrate this approach with a focus on the emergence of depression in childhood and adolescence. Based on evolutionary biological and developmental psychopathology considerations, we present an integrative developmental cascade model of depression that essentially suggests that depression emerges out of a three-pronged series of interacting impairments in the domains of stress regulation, reward, and mentalizing. We discuss the relation of these impairments to the five domains proposed by RDoC. We also focus on how this model may explain in large part the marked comorbidity of depression with other psychiatric disorders, as well as with functional somatic and somatic disorders. Limitations of this theoretical approach are discussed, as well as implications for the development, evaluation, and dissemination of interventions aimed at preventing or treating depression. Copyright © 2017 Elsevier Ltd. All rights reserved.
Role of dimensionality in Axelrod's model for the dissemination of culture
NASA Astrophysics Data System (ADS)
Klemm, Konstantin; Eguíluz, Víctor M.; Toral, Raúl; Miguel, Maxi San
2003-09-01
We analyze a model of social interaction in one- and two-dimensional lattices for a moderate number of features. We introduce an order parameter as a function of the overlap between neighboring sites. In a one-dimensional chain, we observe that the dynamics is consistent with a second-order transition, where the order parameter changes continuously and the average domain diverges at the transition point. However, in a two-dimensional lattice the order parameter is discontinuous at the transition point characteristic of a first-order transition between an ordered and a disordered state.
Sharma, Anup; Wolf, Daniel H; Ciric, Rastko; Kable, Joseph W; Moore, Tyler M; Vandekar, Simon N; Katchmar, Natalie; Daldal, Aylin; Ruparel, Kosha; Davatzikos, Christos; Elliott, Mark A; Calkins, Monica E; Shinohara, Russell T; Bassett, Danielle S; Satterthwaite, Theodore D
2017-07-01
Anhedonia is central to multiple psychiatric disorders and causes substantial disability. A dimensional conceptualization posits that anhedonia severity is related to a transdiagnostic continuum of reward deficits in specific neural networks. Previous functional connectivity studies related to anhedonia have focused on case-control comparisons in specific disorders, using region-specific seed-based analyses. Here, the authors explore the entire functional connectome in relation to reward responsivity across a population of adults with heterogeneous psychopathology. In a sample of 225 adults from five diagnostic groups (major depressive disorder, N=32; bipolar disorder, N=50; schizophrenia, N=51; psychosis risk, N=39; and healthy control subjects, N=53), the authors conducted a connectome-wide analysis examining the relationship between a dimensional measure of reward responsivity (the reward sensitivity subscale of the Behavioral Activation Scale) and resting-state functional connectivity using multivariate distance-based matrix regression. The authors identified foci of dysconnectivity associated with reward responsivity in the nucleus accumbens, the default mode network, and the cingulo-opercular network. Follow-up analyses revealed dysconnectivity among specific large-scale functional networks and their connectivity with the nucleus accumbens. Reward deficits were associated with decreased connectivity between the nucleus accumbens and the default mode network and increased connectivity between the nucleus accumbens and the cingulo-opercular network. In addition, impaired reward responsivity was associated with default mode network hyperconnectivity and diminished connectivity between the default mode network and the cingulo-opercular network. These results emphasize the centrality of the nucleus accumbens in the pathophysiology of reward deficits and suggest that dissociable patterns of connectivity among large-scale networks are critical to the neurobiology of reward dysfunction across clinical diagnostic categories.
Eating Dysfunctions in College Women: The Roles of Depression and Attachment to Fathers
ERIC Educational Resources Information Center
Gutzwiller, Joeanne; Oliver, J. M.; Katz, Barry M.
2003-01-01
The authors examined the roles of depression and attachment to fathers in college women's eating dysfunctions. Three-hundred six undergraduate women completed (1) a diagnostic measure of eating dysfunctions that categorized them as asymptomatic, symptomatic but not eating disordered, or eating disordered; (2) 3 dimensional measures of attachment…
Reduced Mimicry to Virtual Reality Avatars in Autism Spectrum Disorder
ERIC Educational Resources Information Center
Forbes, Paul A. G.; Pan, Xueni; de C. Hamilton, Antonia F.
2016-01-01
Mimicry involves unconsciously copying the actions of others. Increasing evidence suggests that autistic people can copy the goal of an observed action but show differences in their mimicry. We investigated mimicry in autism spectrum disorder (ASD) within a two-dimensional virtual reality environment. Participants played an imitation game with a…
ERIC Educational Resources Information Center
Mikami, Amori Yee; Lorenzi, Jill
2011-01-01
Children with attention-deficit/hyperactivity disorder (ADHD) often have poor relationships with peers. However, research on this topic has predominantly focused on boys. This study considered child gender, ADHD status, and dimensionally assessed conduct problems as predictors of peer relationship difficulties. Participants were 125 children (ages…
[The three-dimensional simulation of arytenoid cartilage movement].
Zhang, Jun; Wang, Xuefeng
2011-08-01
Exploring the characteristics of arytenoid cartilage movement. Using Pro/ENGINEER (Pro/E) software, the cricoid cartilage, arytenoid cartilage and vocal cords were simulated to the three-dimensional reconstruction, by analyzing the trajectory of arytenoid cartilage in the joint surface from the cricoid cartilage and arytenoid cartilage composition. The 3D animation simulation showed the normal movement patterns of the vocal cords and the characteristics of vocal cords movement in occasion of arytenoid cartilage dislocation vividly. The three-dimensional model has clinical significance for arytenoid cartilage movement disorders.