Sample records for dimensional heat flow

  1. Heat transfer in gas turbine engines and three-dimensional flows; Proceedings of the Symposium, ASME Winter Annual Meeting, Chicago, IL, Nov. 27-Dec. 2, 1988

    NASA Technical Reports Server (NTRS)

    Elovic, E. (Editor); O'Brien, J. E. (Editor); Pepper, D. W. (Editor)

    1988-01-01

    The present conference on heat transfer characteristics of gas turbines and three-dimensional flows discusses velocity-temperature fluctuation correlations at the flow stagnation flow of a circular cylinder in turbulent flow, heat transfer across turbulent boundary layers with pressure gradients, the effect of jet grid turbulence on boundary layer heat transfer, and heat transfer characteristics predictions for discrete-hole film cooling. Also discussed are local heat transfer in internally cooled turbine airfoil leading edges, secondary flows in vane cascades and curved ducts, three-dimensional numerical modeling in gas turbine coal combustor design, numerical and experimental results for tube-fin heat exchanger airflow and heating characteristics, and the computation of external hypersonic three-dimensional flow field and heat transfer characteristics.

  2. Heat transfer in gas turbine engines and three-dimensional flows; Proceedings of the Symposium, ASME Winter Annual Meeting, Chicago, IL, Nov. 27-Dec. 2, 1988

    NASA Astrophysics Data System (ADS)

    Elovic, E.; O'Brien, J. E.; Pepper, D. W.

    The present conference on heat transfer characteristics of gas turbines and three-dimensional flows discusses velocity-temperature fluctuation correlations at the flow stagnation flow of a circular cylinder in turbulent flow, heat transfer across turbulent boundary layers with pressure gradients, the effect of jet grid turbulence on boundary layer heat transfer, and heat transfer characteristics predictions for discrete-hole film cooling. Also discussed are local heat transfer in internally cooled turbine airfoil leading edges, secondary flows in vane cascades and curved ducts, three-dimensional numerical modeling in gas turbine coal combustor design, numerical and experimental results for tube-fin heat exchanger airflow and heating characteristics, and the computation of external hypersonic three-dimensional flow field and heat transfer characteristics.

  3. Experiment of flow regime map and local condensing heat transfer coefficients inside three dimensional inner microfin tubes

    NASA Astrophysics Data System (ADS)

    Du, Yang; Xin, Ming Dao

    1999-03-01

    This paper developed a new type of three dimensional inner microfin tube. The experimental results of the flow patterns for the horizontal condensation inside these tubes are reported in the paper. The flow patterns for the horizontal condensation inside the new made tubes are divided into annular flow, stratified flow and intermittent flow within the test conditions. The experiments of the local heat transfer coefficients for the different flow patterns have been systematically carried out. The experiments of the local heat transfer coefficients changing with the vapor dryness fraction have also been carried out. As compared with the heat transfer coefficients of the two dimensional inner microfin tubes, those of the three dimensional inner microfin tubes increase 47-127% for the annular flow region, 38-183% for the stratified flow and 15-75% for the intermittent flow, respectively. The enhancement factor of the local heat transfer coefficients is from 1.8-6.9 for the vapor dryness fraction from 0.05 to 1.

  4. Three-dimensional numerical study of heat transfer enhancement in separated flows

    NASA Astrophysics Data System (ADS)

    Kumar, Saurav; Vengadesan, S.

    2017-11-01

    The flow separation appears in a wide range of heat transfer applications and causes poor heat transfer performance. It motivates the study of heat transfer enhancement in laminar as well as turbulent flows over a backward facing step by means of an adiabatic fin mounted on the top wall. Recently, we have studied steady, 2-D numerical simulations in laminar flow and investigated the effect of fin length, location, and orientation. It revealed that the addition of fin causes enhancement of heat transfer and it is very effective to control the flow and thermal behavior. The fin is most effective and sensitive when it is placed exactly above the step. A slight displacement of the fin in upstream of the step causes the complete change of flow and thermal behavior. Based on the obtained 2-D results it is interesting to investigate the side wall effect in three-dimensional simulations. The comparison of two-dimensional and three-dimensional numerical simulations with the available experimental results will be presented. Special attention has to be given to capture unsteadiness in the flow and thermal field.

  5. Two-dimensional heat flow analysis applied to heat sterilization of ponderosa pine and Douglas-fir square timbers

    Treesearch

    William T. Simpson

    2004-01-01

    Equations for a two-dimensional finite difference heat flow analysis were developed and applied to ponderosa pine and Douglas-fir square timbers to calculate the time required to heat the center of the squares to target temperature. The squares were solid piled, which made their surfaces inaccessible to the heating air, and thus surface temperatures failed to attain...

  6. The program FANS-3D (finite analytic numerical simulation 3-dimensional) and its applications

    NASA Technical Reports Server (NTRS)

    Bravo, Ramiro H.; Chen, Ching-Jen

    1992-01-01

    In this study, the program named FANS-3D (Finite Analytic Numerical Simulation-3 Dimensional) is presented. FANS-3D was designed to solve problems of incompressible fluid flow and combined modes of heat transfer. It solves problems with conduction and convection modes of heat transfer in laminar flow, with provisions for radiation and turbulent flows. It can solve singular or conjugate modes of heat transfer. It also solves problems in natural convection, using the Boussinesq approximation. FANS-3D was designed to solve heat transfer problems inside one, two and three dimensional geometries that can be represented by orthogonal planes in a Cartesian coordinate system. It can solve internal and external flows using appropriate boundary conditions such as symmetric, periodic and user specified.

  7. One-dimensional analysis of unsteady flows due to supercritical heat addition in high speed condensing steam

    NASA Astrophysics Data System (ADS)

    Malek, N. A.; Hasini, H.; Yusoff, M. Z.

    2013-06-01

    Unsteadiness in supersonic flow in nozzles can be generated by the release of heat due to spontaneous condensation. The heat released is termed "supercritical" and may be responsible for turbine blades failure in turbine cascade as it causes a supersonic flow to decelerate. When the Mach number is reduced to unity, the flow can no longer sustain the additional heat and becomes unstable. This paper aims to numerically investigate the unsteadiness caused by supercritical heat addition in one-dimensional condensing flows. The governing equations for mass, momentum and energy, coupled with the equations describing the wetness fraction and droplet growth are integrated and solved iteratively to reveal the final solution. Comparison is made with well-established experimental and numerical solution done by previous researchers that shows similar phenomena.

  8. Effect of heat transfer on rotating electroosmotic flow through a micro-vessel: haemodynamical applications

    NASA Astrophysics Data System (ADS)

    Sinha, A.; Mondal, A.; Shit, G. C.; Kundu, P. K.

    2016-08-01

    This paper theoretically analyzes the heat transfer characteristics associated with electroosmotic flow of blood through a micro-vessel having permeable walls. The analysis is based on the Debye-Hückel approximation for charge distributions and the Navier-Stokes equations are assumed to represent the flow field in a rotating system. The velocity slip condition at the vessel walls is taken into account. The essential features of the rotating electroosmotic flow of blood and associated heat transfer characteristics through a micro-vessel are clearly highlighted by the variation in the non-dimensional flow velocity, volumetric flow rate and non-dimensional temperature profiles. Moreover, the effect of Joule heating parameter and Prandtl number on the thermal transport characteristics are discussed thoroughly. The study reveals that the flow of blood is appreciably influenced by the elctroosmotic parameter as well as rotating Reynolds number.

  9. An experimental study of heat transfer in a large-scale turbine rotor passage

    NASA Astrophysics Data System (ADS)

    Blair, Michael F.

    1992-06-01

    An experimental study of the heat transfer distribution in a turbine rotor passage was conducted in a large-scale, ambient temperature, rotating turbine model. Heat transfer was measured for both the full-span suction and pressure surfaces of the airfoil as well as for the hub endwall surface. The objective of this program was to document the effects of flow three-dimensionality on the heat transfer in a rotating blade row (vs a stationary cascade). Of particular interest were the effects of the hub and tip secondary flows, tip leakage and the leading-edge horseshoe vortex system. The effect of surface roughness on the passage heat transfer was also investigated. Midspan results are compared with both smooth-wall and rough-wall finite-difference two-dimensional heat transfer predictions. Contour maps of Stanton number for both the rotor airfoil and endwall surfaces revealed numerous regions of high heat transfer produced by the three-dimensional flows within the rotor passage. Of particular importance are regions of local enhancement (as much as 100 percent over midspan values) produced on the airfoil suction surface by the secondary flows and tip-leakage vortices and on the hub endwall by the leading-edge horseshoe vortex system.

  10. Multi-Dimensional, Inviscid Flux Reconstruction for Simulation of Hypersonic Heating on Tetrahedral Grids

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2009-01-01

    The quality of simulated hypersonic stagnation region heating on tetrahedral meshes is investigated by using a three-dimensional, upwind reconstruction algorithm for the inviscid flux vector. Two test problems are investigated: hypersonic flow over a three-dimensional cylinder with special attention to the uniformity of the solution in the spanwise direction and hypersonic flow over a three-dimensional sphere. The tetrahedral cells used in the simulation are derived from a structured grid where cell faces are bisected across the diagonal resulting in a consistent pattern of diagonals running in a biased direction across the otherwise symmetric domain. This grid is known to accentuate problems in both shock capturing and stagnation region heating encountered with conventional, quasi-one-dimensional inviscid flux reconstruction algorithms. Therefore the test problem provides a sensitive test for algorithmic effects on heating. This investigation is believed to be unique in its focus on three-dimensional, rotated upwind schemes for the simulation of hypersonic heating on tetrahedral grids. This study attempts to fill the void left by the inability of conventional (quasi-one-dimensional) approaches to accurately simulate heating in a tetrahedral grid system. Results show significant improvement in spanwise uniformity of heating with some penalty of ringing at the captured shock. Issues with accuracy near the peak shear location are identified and require further study.

  11. A generalized one-dimensional computer code for turbomachinery cooling passage flow calculations

    NASA Technical Reports Server (NTRS)

    Kumar, Ganesh N.; Roelke, Richard J.; Meitner, Peter L.

    1989-01-01

    A generalized one-dimensional computer code for analyzing the flow and heat transfer in the turbomachinery cooling passages was developed. This code is capable of handling rotating cooling passages with turbulators, 180 degree turns, pin fins, finned passages, by-pass flows, tip cap impingement flows, and flow branching. The code is an extension of a one-dimensional code developed by P. Meitner. In the subject code, correlations for both heat transfer coefficient and pressure loss computations were developed to model each of the above mentioned type of coolant passages. The code has the capability of independently computing the friction factor and heat transfer coefficient on each side of a rectangular passage. Either the mass flow at the inlet to the channel or the exit plane pressure can be specified. For a specified inlet total temperature, inlet total pressure, and exit static pressure, the code computers the flow rates through the main branch and the subbranches, flow through tip cap for impingement cooling, in addition to computing the coolant pressure, temperature, and heat transfer coefficient distribution in each coolant flow branch. Predictions from the subject code for both nonrotating and rotating passages agree well with experimental data. The code was used to analyze the cooling passage of a research cooled radial rotor.

  12. Effect of velocity boundary conditions on the heat transfer and flow topology in two-dimensional Rayleigh-Bénard convection.

    PubMed

    van der Poel, Erwin P; Ostilla-Mónico, Rodolfo; Verzicco, Roberto; Lohse, Detlef

    2014-07-01

    The effect of various velocity boundary condition is studied in two-dimensional Rayleigh-Bénard convection. Combinations of no-slip, stress-free, and periodic boundary conditions are used on both the sidewalls and the horizontal plates. For the studied Rayleigh numbers Ra between 10(8) and 10(11) the heat transport is lower for Γ=0.33 than for Γ=1 in case of no-slip sidewalls. This is, surprisingly, the opposite for stress-free sidewalls, where the heat transport increases for a lower aspect ratio. In wider cells the aspect-ratio dependence is observed to disappear for Ra ≥ 10(10). Two distinct flow types with very different dynamics can be seen, mostly dependent on the plate velocity boundary condition, namely roll-like flow and zonal flow, which have a substantial effect on the dynamics and heat transport in the system. The predominantly horizontal zonal flow suppresses heat flux and is observed for stress-free and asymmetric plates. Low aspect-ratio periodic sidewall simulations with a no-slip boundary condition on the plates also exhibit zonal flow. In all the other cases, the flow is roll like. In two-dimensional Rayleigh-Bénard convection, the velocity boundary conditions thus have large implications on both roll-like and zonal flow that have to be taken into consideration before the boundary conditions are imposed.

  13. Computational modeling of unsteady third-grade fluid flow over a vertical cylinder: A study of heat transfer visualization

    NASA Astrophysics Data System (ADS)

    Reddy, G. Janardhana; Hiremath, Ashwini; Kumar, Mahesh

    2018-03-01

    The present paper aims to investigate the effect of Prandtl number for unsteady third-grade fluid flow over a uniformly heated vertical cylinder using Bejan's heat function concept. The mathematical model of this problem is given by highly time-dependent non-linear coupled equations and are resolved by an efficient unconditionally stable implicit scheme. The time histories of average values of momentum and heat transport coefficients as well as the steady-state flow variables are displayed graphically for distinct values of non-dimensional control parameters arising in the system. As the non-dimensional parameter value gets amplified, the time taken for the fluid flow variables to attain the time-independent state is decreasing. The dimensionless heat function values are closely associated with an overall rate of heat transfer. Thermal energy transfer visualization implies that the heat function contours are compact in the neighborhood of the leading edge of the hot cylindrical wall. It is noticed that the deviations of flow-field variables from the hot wall for a non-Newtonian third-grade fluid flow are significant compared to the usual Newtonian fluid flow.

  14. Two-dimensional heat flow apparatus

    NASA Astrophysics Data System (ADS)

    McDougall, Patrick; Ayars, Eric

    2014-06-01

    We have created an apparatus to quantitatively measure two-dimensional heat flow in a metal plate using a grid of temperature sensors read by a microcontroller. Real-time temperature data are collected from the microcontroller by a computer for comparison with a computational model of the heat equation. The microcontroller-based sensor array allows previously unavailable levels of precision at very low cost, and the combination of measurement and modeling makes for an excellent apparatus for the advanced undergraduate laboratory course.

  15. Cattaneo-Christov Heat Flux Model for MHD Three-Dimensional Flow of Maxwell Fluid over a Stretching Sheet.

    PubMed

    Rubab, Khansa; Mustafa, M

    2016-01-01

    This letter investigates the MHD three-dimensional flow of upper-convected Maxwell (UCM) fluid over a bi-directional stretching surface by considering the Cattaneo-Christov heat flux model. This model has tendency to capture the characteristics of thermal relaxation time. The governing partial differential equations even after employing the boundary layer approximations are non linear. Accurate analytic solutions for velocity and temperature distributions are computed through well-known homotopy analysis method (HAM). It is noticed that velocity decreases and temperature rises when stronger magnetic field strength is accounted. Penetration depth of temperature is a decreasing function of thermal relaxation time. The analysis for classical Fourier heat conduction law can be obtained as a special case of the present work. To our knowledge, the Cattaneo-Christov heat flux model law for three-dimensional viscoelastic flow problem is just introduced here.

  16. Conformal mapping technique for two-dimensional porous media and jet impingement heat transfer

    NASA Technical Reports Server (NTRS)

    Siegel, R.

    1974-01-01

    Transpiration cooling and liquid metals both provide highly effective heat transfer. Using Darcy's law in porous media and the inviscid approximation for liquid metals, the local fluid velocity in these flows equals the gradient of a potential. The energy equation and flow region are simplified when transformed into potential plane coordinates. In these coordinates, the present problems are reduced to heat conduction solutions which are mapped into the physical geometry. Results are obtained for a porous region with simultaneously prescribed surface temperature and heat flux, heat transfer in a two-dimensional porous bed, and heat transfer for two liquid metal slot jets impinging on a heated plate.

  17. Conformal mapping technique for two-dimensional porous media and jet impingement heat transfer

    NASA Technical Reports Server (NTRS)

    Siegel, R.

    1973-01-01

    Transpiration cooling and liquid metals both provide highly effective heat transfer. Using Darcy's law in porous media, and the inviscid approximation for liquid metals, the local fluid velocity in these flows equals the gradient of a potential, The energy equation and flow region are simplified when transformed into potential plane coordinates. In these coordinates the present problems are reduced to heat conduction solutions which are mapped into the physical geometry. Results are obtained for a porous region with simultaneously prescribed surface temperature and heat flux, heat transfer in a two-dimensional porous bed, and heat transfer for two liquid metal slot jets impinging on a heated plate.

  18. Dependence of energy characteristics of ascending swirling air flow on velocity of vertical blowing

    NASA Astrophysics Data System (ADS)

    Volkov, R. E.; Obukhov, A. G.; Kutrunov, V. N.

    2018-05-01

    In the model of a compressible continuous medium, for the complete Navier-Stokes system of equations, an initial boundary problem is proposed that corresponds to the conducted and planned experiments and describes complex three-dimensional flows of a viscous compressible heat-conducting gas in ascending swirling flows that are initiated by a vertical cold blowing. Using parallelization methods, three-dimensional nonstationary flows of a polytropic viscous compressible heat-conducting gas are constructed numerically in different scaled ascending swirling flows under the condition when gravity and Coriolis forces act. With the help of explicit difference schemes and the proposed initial boundary conditions, approximate solutions of the complete system of Navier-Stokes equations are constructed as well as the velocity and energy characteristics of three-dimensional nonstationary gas flows in ascending swirling flows are determined.

  19. The Development of a Full Field Three-Dimensional Microscale Flow Measurement Technique for Application to Near Contact Line Flows

    NASA Technical Reports Server (NTRS)

    He, Qun; Hallinan, Kevin

    1996-01-01

    The goal of this paper is to present details of the development of a new three-dimensional velocity field measurement technique which can be used to provide more insight into the dynamics of thin evaporating liquid films (not limited to just low heat inputs for the heat transfer) and which also could prove useful for the study of spreading and wetting phenomena and other microscale flows.

  20. Theoretical Exploration of Exponential Heat Source and Thermal Stratification Effects on The Motion of 3-Dimensional Flow of Casson Fluid Over a Low Heat Energy Surface at Initial Unsteady Stage

    NASA Astrophysics Data System (ADS)

    Sandeep, N.; Animasaun, I. L.

    2017-06-01

    Within the last few decades, experts and scientists dealing with the flow of non-Newtonian fluids (most especially Casson fluid) have confirmed the existence of such flow on a stretchable surface with low heat energy (i.e. absolute zero of temperature). This article presents the motion of a three-dimensional of such fluid. Influence of uniform space dependent internal heat source on the intermolecular forces holding the molecules of Casson fluid is investigated. It is assumed that the stagnation flow was induced by an external force (pressure gradient) together with impulsive. Based on these assumptions, variable thermophysical properties are most suitable; hence modified kinematic viscosity model is presented. The system of governing equations of 3-dimensional unsteady Casson fluid was non-dimensionalized using suitable similarity transformation which unravels the behavior of the flow at full fledge short period. The numerical solution of the corresponding boundary value problem (ODE) was obtained using Runge-Kutta fourth order along with shooting technique. The intermolecular forces holding the molecules of Casson fluid flow in both horizontal directions when magnitude of velocity ratio parameters are greater than unity breaks continuously with an increase in Casson parameter and this leads to an increase in velocity profiles in both directions.

  1. Undergraduate Laboratory on a Turbulent Impinging Jet

    NASA Astrophysics Data System (ADS)

    Ivanosky, Arnaud; Brezzard, Etienne; van Poppel, Bret; Benson, Michael

    2017-11-01

    An undergraduate thermal sciences laboratory exercise that includes both experimental fluid mechanics and heat transfer measurements of an impinging jet is presented. The flow field is measured using magnetic resonance velocimetry (MRV) of a water flow, while IR thermography is used in the heat transfer testing. Flow Reynolds numbers for both the heat transfer and fluid mechanics tests range from 20,000-50,000 based on the jet diameter for a fully turbulent flow condition, with target surface temperatures in the heat transfer test reaching a maximum of approximately 50 Kelvin. The heat transfer target surface is subject to a measured uniform Joule heat flux, a well-defined boundary condition that allows comparison to existing correlations. The MRV generates a 3-component 3-dimensional data set, while the IR thermography provides a 2-dimensional heat transfer coefficient (or Nusselt number) map. These data sets can be post-processed and compared to existing correlations to verify data quality, and the sets can be juxtaposed to understand how flow features drive heat transfer. The laboratory setup, data acquisition, and analysis procedures are described for the laboratory experience, which can be incorporated as fluid mechanics, experimental methods, and heat transfer courses

  2. Numerical and experimental analysis of a thin liquid film on a rotating disk related to development of a spacecraft absorption cooling system

    NASA Technical Reports Server (NTRS)

    Faghri, Amir; Swanson, Theodore D.

    1989-01-01

    The numerical and experimental analysis of a thin liquid film on a rotating and a stationary disk related to the development of an absorber unit for a high capacity spacecraft absorption cooling system, is described. The creation of artificial gravity by the use of a centrifugal field was focused upon in this report. Areas covered include: (1) One-dimensional computation of thin liquid film flows; (2) Experimental measurement of film height and visualization of flow; (3) Two-dimensional computation of the free surface flow of a thin liquid film using a pressure optimization method; (4) Computation of heat transfer in two-dimensional thin film flow; (5) Development of a new computational methodology for the free surface flows using a permeable wall; (6) Analysis of fluid flow and heat transfer in a thin film in the presence and absence of gravity; and (7) Comparison of theoretical prediction and experimental data. The basic phenomena related to fluid flow and heat transfer on rotating systems reported here can also be applied to other areas of space systems.

  3. Three-Dimensional Flow of an Oldroyd-B Fluid with Variable Thermal Conductivity and Heat Generation/Absorption

    PubMed Central

    Shehzad, Sabir Ali; Alsaedi, Ahmed; Hayat, Tasawar; Alhuthali, M. Shahab

    2013-01-01

    This paper looks at the series solutions of three dimensional boundary layer flow. An Oldroyd-B fluid with variable thermal conductivity is considered. The flow is induced due to stretching of a surface. Analysis has been carried out in the presence of heat generation/absorption. Homotopy analysis is implemented in developing the series solutions to the governing flow and energy equations. Graphs are presented and discussed for various parameters of interest. Comparison of present study with the existing limiting solution is shown and examined. PMID:24223780

  4. Radiant heat fluxes in supersonic flow of an inviscid gas past three-dimensional bodies

    NASA Astrophysics Data System (ADS)

    Apshtein, E. Z.; Vartanian, N. V.; Sakharov, V. I.; Tirskii, G. A.

    Supersonic flow of an inviscid non-heat-conducting gas past three-dimensional bodies of various shapes (spheres, ellipsoids, hyperboloids, paraboloids, and power-law bodies of revolution) in the earth atmosphere is investigated numerically in the velocity range 10-18 km/s for heights of 40-80 km and densities of the incoming flow ranging from 0.003 to 0.00017 kg/cu m. It is shown that, at a constant flight velocity, the ratio of the radiant heat flux to the flux at the critical point is largely determined by the angle of the shock wave and is practically independent of the body dimensions and flight height. The results are used to develop a simplified method for determining radiant fluxes toward the nose section of three-dimensional bodies.

  5. Laminar forced convection from a rotating horizontal cylinder in cross flow

    NASA Astrophysics Data System (ADS)

    Chandran, Prabul; Venugopal, G.; Jaleel, H. Abdul; Rajkumar, M. R.

    2017-04-01

    The influence of non-dimensional rotational velocity, flow Reynolds number and Prandtl number of the fluid on laminar forced convection from a rotating horizontal cylinder subject to constant heat flux boundary condition is numerically investigated. The numerical simulations have been conducted using commercial Computational Fluid Dynamics package CFX available in ANSYS Workbench 14. Results are presented for the non-dimensional rotational velocity α ranging from 0 to 4, flow Reynolds number from 25 to 40 and Prandtl number of the fluid from 0.7 to 5.4. The rotational effects results in reduction in heat transfer compared to heat transfer from stationary heated cylinder due to thickening of boundary layer as consequence of the rotation of the cylinder. Heat transfer rate increases with increase in Prandtl number of the fluid.

  6. One-dimensional analysis of supersonic two-stage HVOF process

    NASA Astrophysics Data System (ADS)

    Katanoda, Hiroshi; Hagi, Junichi; Fukuhara, Minoru

    2009-12-01

    The one-dimensional calculation of the gas/particle flows of a supersonic two-stage high-velocity oxy-fuel (HVOF) thermal spray process was performed. The internal gas flow was solved by numerically integrating the equations of the quasi-one-dimensional flow including the effects of pipe friction and heat transfer. As for the supersonic jet flow, semi-empirical equations were used to obtain the gas velocity and temperature along the center line. The velocity and temperature of the particle were obtained by an one-way coupling method. The material of the spray particle selected in this study is ultra high molecular weight polyethylene (UHMWPE). The temperature distributions in the spherical UHMWPE particles of 50 and 150µm accelerated and heated by the supersonic gas flow was clarified.

  7. Molecular shear heating and vortex dynamics in thermostatted two dimensional Yukawa liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Akanksha; Ganesh, Rajaraman, E-mail: ganesh@ipr.res.in; Joy, Ashwin

    2016-07-15

    It is well known that two-dimensional macroscale shear flows are susceptible to instabilities leading to macroscale vortical structures. The linear and nonlinear fate of such a macroscale flow in a strongly coupled medium is a fundamental problem. A popular example of a strongly coupled medium is a dusty plasma, often modelled as a Yukawa liquid. Recently, laboratory experiments and molecular dynamics (MD) studies of shear flows in strongly coupled Yukawa liquids indicated the occurrence of strong molecular shear heating, which is found to reduce the coupling strength exponentially leading to the destruction of macroscale vorticity. To understand the vortex dynamicsmore » of strongly coupled molecular fluids undergoing macroscale shear flows and molecular shear heating, MD simulation has been performed, which allows the macroscopic vortex dynamics to evolve, while at the same time “removes” the microscopically generated heat without using the velocity degrees of freedom. We demonstrate that by using a configurational thermostat in a novel way, the microscale heat generated by shear flow can be thermostatted out efficiently without compromising the large scale vortex dynamics. In the present work, using MD simulations, a comparative study of shear flow evolution in Yukawa liquids in the presence and absence of molecular or microscopic heating is presented for a prototype shear flow, namely, Kolmogorov flow.« less

  8. A Non Local Electron Heat Transport Model for Multi-Dimensional Fluid Codes

    NASA Astrophysics Data System (ADS)

    Schurtz, Guy

    2000-10-01

    Apparent inhibition of thermal heat flow is one of the most ancient problems in computational Inertial Fusion and flux-limited Spitzer-Harm conduction has been a mainstay in multi-dimensional hydrodynamic codes for more than 25 years. Theoretical investigation of the problem indicates that heat transport in laser produced plasmas has to be considered as a non local process. Various authors contributed to the non local theory and proposed convolution formulas designed for practical implementation in one-dimensional fluid codes. Though the theory, confirmed by kinetic calculations, actually predicts a reduced heat flux, it fails to explain the very small limiters required in two-dimensional simulations. Fokker-Planck simulations by Epperlein, Rickard and Bell [PRL 61, 2453 (1988)] demonstrated that non local effects could lead to a strong reduction of heat flow in two dimensions, even in situations where a one-dimensional analysis suggests that the heat flow is nearly classical. We developed at CEA/DAM a non local electron heat transport model suitable for implementation in our two-dimensional radiation hydrodynamic code FCI2. This model may be envisionned as the first step of an iterative solution of the Fokker-Planck equations; it takes the mathematical form of multigroup diffusion equations, the solution of which yields both the heat flux and the departure of the electron distribution function to the Maxwellian. Although direct implementation of the model is straightforward, formal solutions of it can be expressed in convolution form, exhibiting a three-dimensional tensor propagator. Reduction to one dimension retrieves the original formula of Luciani, Mora and Virmont [PRL 51, 1664 (1983)]. Intense magnetic fields may be generated by thermal effects in laser targets; these fields, as well as non local effects, will inhibit electron conduction. We present simulations where both effects are taken into account and shortly discuss the coupling strategy between them.

  9. Updates to Multi-Dimensional Flux Reconstruction for Hypersonic Simulations on Tetrahedral Grids

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2010-01-01

    The quality of simulated hypersonic stagnation region heating with tetrahedral meshes is investigated by using an updated three-dimensional, upwind reconstruction algorithm for the inviscid flux vector. An earlier implementation of this algorithm provided improved symmetry characteristics on tetrahedral grids compared to conventional reconstruction methods. The original formulation however displayed quantitative differences in heating and shear that were as large as 25% compared to a benchmark, structured-grid solution. The primary cause of this discrepancy is found to be an inherent inconsistency in the formulation of the flux limiter. The inconsistency is removed by employing a Green-Gauss formulation of primitive gradients at nodes to replace the previous Gram-Schmidt algorithm. Current results are now in good agreement with benchmark solutions for two challenge problems: (1) hypersonic flow over a three-dimensional cylindrical section with special attention to the uniformity of the solution in the spanwise direction and (2) hypersonic flow over a three-dimensional sphere. The tetrahedral cells used in the simulation are derived from a structured grid where cell faces are bisected across the diagonal resulting in a consistent pattern of diagonals running in a biased direction across the otherwise symmetric domain. This grid is known to accentuate problems in both shock capturing and stagnation region heating encountered with conventional, quasi-one-dimensional inviscid flux reconstruction algorithms. Therefore the test problems provide a sensitive indicator for algorithmic effects on heating. Additional simulations on a sharp, double cone and the shuttle orbiter are then presented to demonstrate the capabilities of the new algorithm on more geometrically complex flows with tetrahedral grids. These results provide the first indication that pure tetrahedral elements utilizing the updated, three-dimensional, upwind reconstruction algorithm may be used for the simulation of heating and shear in hypersonic flows in upwind, finite volume formulations.

  10. Flow and Temperature Distribution Evaluation on Sodium Heated Large-sized Straight Double-wall-tube Steam Generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kisohara, Naoyuki; Moribe, Takeshi; Sakai, Takaaki

    2006-07-01

    The sodium heated steam generator (SG) being designed in the feasibility study on commercialized fast reactor cycle systems is a straight double-wall-tube type. The SG is large sized to reduce its manufacturing cost by economics of scale. This paper addresses the temperature and flow multi-dimensional distributions at steady state to obtain the prospect of the SG. Large-sized heat exchanger components are prone to have non-uniform flow and temperature distributions. These phenomena might lead to tube buckling or tube to tube-sheet junction failure in straight tube type SGs, owing to tubes thermal expansion difference. The flow adjustment devices installed in themore » SG are optimized to prevent these issues, and the temperature distribution properties are uncovered by analysis methods. The analysis model of the SG consists of two parts, a sodium inlet distribution plenum (the plenum) and a heat transfer tubes bundle region (the bundle). The flow and temperature distributions in the plenum and the bundle are evaluated by the three-dimensional code 'FLUENT' and the two dimensional thermal-hydraulic code 'MSG', respectively. The MSG code is particularly developed for sodium heated SGs in JAEA. These codes have revealed that the sodium flow is distributed uniformly by the flow adjustment devices, and that the lateral tube temperature distributions remain within the allowable temperature range for the structural integrity of the tubes and the tube to tube-sheet junctions. (authors)« less

  11. A one-dimensional heat-transport model for conduit flow in karst aquifers

    USGS Publications Warehouse

    Long, Andrew J.; Gilcrease, P.C.

    2009-01-01

    A one-dimensional heat-transport model for conduit flow in karst aquifers is presented as an alternative to two or three-dimensional distributed-parameter models, which are data intensive and require knowledge of conduit locations. This model can be applied for cases where water temperature in a well or spring receives all or part of its water from a phreatic conduit. Heat transport in the conduit is simulated by using a physically-based heat-transport equation that accounts for inflow of diffuse flow from smaller openings and fissures in the surrounding aquifer during periods of low recharge. Additional diffuse flow that is within the zone of influence of the well or spring but has not interacted with the conduit is accounted for with a binary mixing equation to proportion these different water sources. The estimation of this proportion through inverse modeling is useful for the assessment of contaminant vulnerability and well-head or spring protection. The model was applied to 7 months of continuous temperature data for a sinking stream that recharges a conduit and a pumped well open to the Madison aquifer in western South Dakota. The simulated conduit-flow fraction to the well ranged from 2% to 31% of total flow, and simulated conduit velocity ranged from 44 to 353 m/d.

  12. Source Distribution Method for Unsteady One-Dimensional Flows With Small Mass, Momentum, and Heat Addition and Small Area Variation

    NASA Technical Reports Server (NTRS)

    Mirels, Harold

    1959-01-01

    A source distribution method is presented for obtaining flow perturbations due to small unsteady area variations, mass, momentum, and heat additions in a basic uniform (or piecewise uniform) one-dimensional flow. First, the perturbations due to an elemental area variation, mass, momentum, and heat addition are found. The general solution is then represented by a spatial and temporal distribution of these elemental (source) solutions. Emphasis is placed on discussing the physical nature of the flow phenomena. The method is illustrated by several examples. These include the determination of perturbations in basic flows consisting of (1) a shock propagating through a nonuniform tube, (2) a constant-velocity piston driving a shock, (3) ideal shock-tube flows, and (4) deflagrations initiated at a closed end. The method is particularly applicable for finding the perturbations due to relatively thin wall boundary layers.

  13. Analysis of Aerospike Plume Induced Base-Heating Environment

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    1998-01-01

    Computational analysis is conducted to study the effect of an aerospike engine plume on X-33 base-heating environment during ascent flight. To properly account for the effect of forebody and aftbody flowfield such as shocks and to allow for potential plume-induced flow-separation, thermo-flowfield of trajectory points is computed. The computational methodology is based on a three-dimensional finite-difference, viscous flow, chemically reacting, pressure-base computational fluid dynamics formulation, and a three-dimensional, finite-volume, spectral-line based weighted-sum-of-gray-gases radiation absorption model computational heat transfer formulation. The predicted convective and radiative base-heat fluxes are presented.

  14. Thermally induced rarefied gas flow in a three-dimensional enclosure with square cross-section

    NASA Astrophysics Data System (ADS)

    Zhu, Lianhua; Yang, Xiaofan; Guo, Zhaoli

    2017-12-01

    Rarefied gas flow in a three-dimensional enclosure induced by nonuniform temperature distribution is numerically investigated. The enclosure has a square channel-like geometry with alternatively heated closed ends and lateral walls with a linear temperature distribution. A recently proposed implicit discrete velocity method with a memory reduction technique is used to numerically simulate the problem based on the nonlinear Shakhov kinetic equation. The Knudsen number dependencies of the vortices pattern, slip velocity at the planar walls and edges, and heat transfer are investigated. The influences of the temperature ratio imposed at the ends of the enclosure and the geometric aspect ratio are also evaluated. The overall flow pattern shows similarities with those observed in two-dimensional configurations in literature. However, features due to the three-dimensionality are observed with vortices that are not identified in previous studies on similar two-dimensional enclosures at high Knudsen and small aspect ratios.

  15. Three-Dimensional Model of Heat and Mass Transfer in Fractured Rocks to Estimate Environmental Conditions Along Heated Drifts

    NASA Astrophysics Data System (ADS)

    Fedors, R. W.; Painter, S. L.

    2004-12-01

    Temperature gradients along the thermally-perturbed drifts of the potential high-level waste repository at Yucca Mountain, Nevada, will drive natural convection and associated heat and mass transfer along drifts. A three-dimensional, dual-permeability, thermohydrological model of heat and mass transfer was used to estimate the magnitude of temperature gradients along a drift. Temperature conditions along heated drifts are needed to support estimates of repository-edge cooling and as input to computational fluid dynamics modeling of in-drift axial convection and the cold-trap process. Assumptions associated with abstracted heat transfer models and two-dimensional thermohydrological models weakly coupled to mountain-scale thermal models can readily be tested using the three-dimensional thermohydrological model. Although computationally expensive, the fully coupled three-dimensional thermohydrological model is able to incorporate lateral heat transfer, including host rock processes of conduction, convection in gas phase, advection in liquid phase, and latent-heat transfer. Results from the three-dimensional thermohydrological model showed that weakly coupling three-dimensional thermal and two-dimensional thermohydrological models lead to underestimates of temperatures and underestimates of temperature gradients over large portions of the drift. The representative host rock thermal conductivity needed for abstracted heat transfer models are overestimated using the weakly coupled models. If axial flow patterns over large portions of drifts are not impeded by the strong cross-sectional flow patterns imparted by the heat rising directly off the waste package, condensation from the cold-trap process will not be limited to the extreme ends of each drift. Based on the three-dimensional thermohydrological model, axial temperature gradients occur sooner over a larger portion of the drift, though high gradients nearest the edge of the potential repository are dampened. This abstract is an independent product of CNWRA and does not necessarily reflect the view or regulatory position of the Nuclear Regulatory Commission.

  16. Development of a thermal and structural analysis procedure for cooled radial turbines

    NASA Technical Reports Server (NTRS)

    Kumar, Ganesh N.; Deanna, Russell G.

    1988-01-01

    A procedure for computing the rotor temperature and stress distributions in a cooled radial turbine is considered. Existing codes for modeling the external mainstream flow and the internal cooling flow are used to compute boundary conditions for the heat transfer and stress analyses. An inviscid, quasi three-dimensional code computes the external free stream velocity. The external velocity is then used in a boundary layer analysis to compute the external heat transfer coefficients. Coolant temperatures are computed by a viscous one-dimensional internal flow code for the momentum and energy equation. These boundary conditions are input to a three-dimensional heat conduction code for calculation of rotor temperatures. The rotor stress distribution may be determined for the given thermal, pressure and centrifugal loading. The procedure is applied to a cooled radial turbine which will be tested at the NASA Lewis Research Center. Representative results from this case are included.

  17. Development of a thermal and structural analysis procedure for cooled radial turbines

    NASA Technical Reports Server (NTRS)

    Kumar, Ganesh N.; Deanna, Russell G.

    1988-01-01

    A procedure for computing the rotor temperature and stress distributions in a cooled radial turbine are considered. Existing codes for modeling the external mainstream flow and the internal cooling flow are used to compute boundary conditions for the heat transfer and stress analysis. The inviscid, quasi three dimensional code computes the external free stream velocity. The external velocity is then used in a boundary layer analysis to compute the external heat transfer coefficients. Coolant temperatures are computed by a viscous three dimensional internal flow cade for the momentum and energy equation. These boundary conditions are input to a three dimensional heat conduction code for the calculation of rotor temperatures. The rotor stress distribution may be determined for the given thermal, pressure and centrifugal loading. The procedure is applied to a cooled radial turbine which will be tested at the NASA Lewis Research Center. Representative results are given.

  18. Cattaneo-Christov double-diffusion theory for three-dimensional flow of viscoelastic nanofluid with the effect of heat generation/absorption

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Qayyum, Sajid; Shehzad, Sabir Ali; Alsaedi, Ahmed

    2018-03-01

    The present research article focuses on three-dimensional flow of viscoelastic(second grade) nanofluid in the presence of Cattaneo-Christov double-diffusion theory. Flow caused is due to stretching sheet. Characteristics of heat transfer are interpreted by considering the heat generation/absorption. Nanofluid theory comprises of Brownian motion and thermophoresis. Cattaneo-Christov double-diffusion theory is introduced in the energy and concentration expressions. Such diffusions are developed as a part of formulating the thermal and solutal relaxation times framework. Suitable variables are implemented for the conversion of partial differential systems into a sets of ordinary differential equations. The transformed expressions have been explored through homotopic algorithm. Behavior of sundry variables on the velocities, temperature and concentration are scrutinized graphically. Numerical values of skin friction coefficients are also calculated and examined. Here thermal field enhances for heat generation parameter while reverse situation is noticed for heat absorption parameter.

  19. Conjugate Compressible Fluid Flow and Heat Transfer in Ducts

    NASA Technical Reports Server (NTRS)

    Cross, M. F.

    2011-01-01

    A computational approach to modeling transient, compressible fluid flow with heat transfer in long, narrow ducts is presented. The primary application of the model is for analyzing fluid flow and heat transfer in solid propellant rocket motor nozzle joints during motor start-up, but the approach is relevant to a wide range of analyses involving rapid pressurization and filling of ducts. Fluid flow is modeled through solution of the spatially one-dimensional, transient Euler equations. Source terms are included in the governing equations to account for the effects of wall friction and heat transfer. The equation solver is fully-implicit, thus providing greater flexibility than an explicit solver. This approach allows for resolution of pressure wave effects on the flow as well as for fast calculation of the steady-state solution when a quasi-steady approach is sufficient. Solution of the one-dimensional Euler equations with source terms significantly reduces computational run times compared to general purpose computational fluid dynamics packages solving the Navier-Stokes equations with resolved boundary layers. In addition, conjugate heat transfer is more readily implemented using the approach described in this paper than with most general purpose computational fluid dynamics packages. The compressible flow code has been integrated with a transient heat transfer solver to analyze heat transfer between the fluid and surrounding structure. Conjugate fluid flow and heat transfer solutions are presented. The author is unaware of any previous work available in the open literature which uses the same approach described in this paper.

  20. Vapor Flow Patterns During a Start-Up Transient in Heat Pipes

    NASA Technical Reports Server (NTRS)

    Issacci, F.; Ghoniem, N, M.; Catton, I.

    1996-01-01

    The vapor flow patterns in heat pipes are examined during the start-up transient phase. The vapor core is modelled as a channel flow using a two dimensional compressible flow model. A nonlinear filtering technique is used as a post process to eliminate the non-physical oscillations of the flow variables. For high-input heat flux, multiple shock reflections are observed in the evaporation region. The reflections cause a reverse flow in the evaporation and circulations in the adiabatic region. Furthermore, each shock reflection causes a significant increase in the local pressure and a large pressure drop along the heat pipe.

  1. Further two-dimensional code development for Stirling space engine components

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir; Tew, Roy C.; Dudenhoefer, James E.

    1990-01-01

    The development of multidimensional models of Stirling engine components is described. Two-dimensional parallel plate models of an engine regenerator and a cooler were used to study heat transfer under conditions of laminar, incompressible oscillating flow. Substantial differences in the nature of the temperature variations in time over the cycle were observed for the cooler as contrasted with the regenerator. When the two-dimensional cooler model was used to calculate a heat transfer coefficient, it yields a very different result from that calculated using steady-flow correlations. Simulation results for the regenerator and the cooler are presented.

  2. Use of Transition Modeling to Enable the Computation of Losses for Variable-Speed Power Turbine

    NASA Technical Reports Server (NTRS)

    Ameri, Ali A.

    2012-01-01

    To investigate the penalties associated with using a variable speed power turbine (VSPT) in a rotorcraft capable of vertical takeoff and landing, various analysis tools are required. Such analysis tools must be able to model the flow accurately within the operating envelope of VSPT. For power turbines low Reynolds numbers and a wide range of the incidence angles, positive and negative, due to the variation in the shaft speed at relatively fixed corrected flows, characterize this envelope. The flow in the turbine passage is expected to be transitional and separated at high incidence. The turbulence model of Walters and Leylek was implemented in the NASA Glenn-HT code to enable a more accurate analysis of such flows. Two-dimensional heat transfer predictions of flat plate flow and two-dimensional and three-dimensional heat transfer predictions on a turbine blade were performed and reported herein. Heat transfer computations were performed because it is a good marker for transition. The final goal is to be able to compute the aerodynamic losses. Armed with the new transition model, total pressure losses for three-dimensional flow of an Energy Efficient Engine (E3) tip section cascade for a range of incidence angles were computed in anticipation of the experimental data. The results obtained form a loss bucket for the chosen blade.

  3. 3D Numerical Simulation of Turbulent Buoyant Flow and Heat Transport in a Curved Open Channel

    USDA-ARS?s Scientific Manuscript database

    A three-dimensional buoyancy-extended version of kappa-epsilon turbulence model was developed for simulating the turbulent flow and heat transport in a curved open channel. The density- induced buoyant force was included in the model, and the influence of temperature stratification on flow field was...

  4. Experimental investigation of two-phase heat transfer in a porous matrix.

    NASA Technical Reports Server (NTRS)

    Von Reth, R.; Frost, W.

    1972-01-01

    One-dimensional two-phase flow transpiration cooling through porous metal is studied experimentally. The experimental data is compared with a previous one-dimensional analysis. Good agreement with calculated temperature distribution is obtained as long as the basic assumptions of the analytical model are satisfied. Deviations from the basic assumptions are caused by nonhomogeneous and oscillating flow conditions. Preliminary derivation of nondimensional parameters which characterize the stable and unstable flow conditions is given. Superheated liquid droplets observed sputtering from the heated surface indicated incomplete evaporation at heat fluxes well in access of the latent energy transport. A parameter is developed to account for the nonequilibrium thermodynamic effects. Measured and calculated pressure drops show contradicting trends which are attributed to capillary forces.

  5. A reduced theoretical model for estimating condensation effects in combustion-heated hypersonic tunnel

    NASA Astrophysics Data System (ADS)

    Lin, L.; Luo, X.; Qin, F.; Yang, J.

    2018-03-01

    As one of the combustion products of hydrocarbon fuels in a combustion-heated wind tunnel, water vapor may condense during the rapid expansion process, which will lead to a complex two-phase flow inside the wind tunnel and even change the design flow conditions at the nozzle exit. The coupling of the phase transition and the compressible flow makes the estimation of the condensation effects in such wind tunnels very difficult and time-consuming. In this work, a reduced theoretical model is developed to approximately compute the nozzle-exit conditions of a flow including real-gas and homogeneous condensation effects. Specifically, the conservation equations of the axisymmetric flow are first approximated in the quasi-one-dimensional way. Then, the complex process is split into two steps, i.e., a real-gas nozzle flow but excluding condensation, resulting in supersaturated nozzle-exit conditions, and a discontinuous jump at the end of the nozzle from the supersaturated state to a saturated state. Compared with two-dimensional numerical simulations implemented with a detailed condensation model, the reduced model predicts the flow parameters with good accuracy except for some deviations caused by the two-dimensional effect. Therefore, this reduced theoretical model can provide a fast, simple but also accurate estimation of the condensation effect in combustion-heated hypersonic tunnels.

  6. Heat Transfer at the Reattachment Zone of Separated Laminar Boundary Layers

    NASA Technical Reports Server (NTRS)

    Chung, Paul M.; Viegas, John R.

    1961-01-01

    The flow and heat transfer are analyzed at the reattachment zone of two-dimensional separated laminar boundary layers. The fluid is considered to be flowing normal to the wall at reattachment. An approximate expression is derived for the heat transfer in the reattachment region and a calculated value is compared with an experimental measurement.

  7. Film condensation in a horizontal rectangular duct

    NASA Technical Reports Server (NTRS)

    Lu, Qing; Suryanarayana, N. V.

    1992-01-01

    Condensation heat transfer in an annular flow regime with and without interfacial waves was experimentally investigated. The study included measurements of heat transfer rate with condensation of vapor flowing inside a horizontal rectangular duct and experiments on the initiation of interfacial waves in condensation, and adiabatic air-liquid flow. An analytical model for the condensation was developed to predict condensate film thickness and heat transfer coefficients. Some conclusions drawn from the study are that the condensate film thickness was very thin (less than 0.6 mm). The average heat transfer coefficient increased with increasing the inlet vapor velocity. The local heat transfer coefficient decreased with the axial distance of the condensing surface, with the largest change at the leading edge of the test section. The interfacial shear stress, which consisted of the momentum shear stress and the adiabatic shear stress, appeared to have a significant effect on the heat transfer coefficients. In the experiment, the condensate flow along the condensing surface experienced a smooth flow, a two-dimensional wavy flow, and a three-dimensional wavy flow. In the condensation experiment, the local wave length decreased with the axial distance of the condensing surface and the average wave length decreased with increasing inlet vapor velocity, while the wave speed increased with increasing vapor velocity. The heat transfer measurements are reliable. And, the ultrasonic technique was effective for measuring the condensate film thickness when the surface was smooth or had waves of small amplitude.

  8. Distribution and depth of bottom-simulating reflectors in the Nankai subduction margin.

    PubMed

    Ohde, Akihiro; Otsuka, Hironori; Kioka, Arata; Ashi, Juichiro

    2018-01-01

    Surface heat flow has been observed to be highly variable in the Nankai subduction margin. This study presents an investigation of local anomalies in surface heat flows on the undulating seafloor in the Nankai subduction margin. We estimate the heat flows from bottom-simulating reflectors (BSRs) marking the lower boundaries of the methane hydrate stability zone and evaluate topographic effects on heat flow via two-dimensional thermal modeling. BSRs have been used to estimate heat flows based on the known stability characteristics of methane hydrates under low-temperature and high-pressure conditions. First, we generate an extensive map of the distribution and subseafloor depths of the BSRs in the Nankai subduction margin. We confirm that BSRs exist at the toe of the accretionary prism and the trough floor of the offshore Tokai region, where BSRs had previously been thought to be absent. Second, we calculate the BSR-derived heat flow and evaluate the associated errors. We conclude that the total uncertainty of the BSR-derived heat flow should be within 25%, considering allowable ranges in the P-wave velocity, which influences the time-to-depth conversion of the BSR position in seismic images, the resultant geothermal gradient, and thermal resistance. Finally, we model a two-dimensional thermal structure by comparing the temperatures at the observed BSR depths with the calculated temperatures at the same depths. The thermal modeling reveals that most local variations in BSR depth over the undulating seafloor can be explained by topographic effects. Those areas that cannot be explained by topographic effects can be mainly attributed to advective fluid flow, regional rapid sedimentation, or erosion. Our spatial distribution of heat flow data provides indispensable basic data for numerical studies of subduction zone modeling to evaluate margin parallel age dependencies of subducting plates.

  9. Numberical Solution to Transient Heat Flow Problems

    ERIC Educational Resources Information Center

    Kobiske, Ronald A.; Hock, Jeffrey L.

    1973-01-01

    Discusses the reduction of the one- and three-dimensional diffusion equation to the difference equation and its stability, convergence, and heat-flow applications under different boundary conditions. Indicates the usefulness of this presentation for beginning students of physics and engineering as well as college teachers. (CC)

  10. Periodic unsteady effects on turbulent boundary layer transport and heat transfer: An experimental investigation in a cylinder-wall junction flow

    NASA Astrophysics Data System (ADS)

    Xie, Qi

    Heat transfer in a turbulent boundary layer downstream of junction with a cylinder has many engineering applications including controlling heat transfer to the endwall in gas turbine passages and cooling of protruding electronic chips. The main objective of this research is to study the fundamental process of heat transport and wall heat transfer in a turbulent three-dimensional flow superimposed with local large-scale periodic unsteadiness generated by vortex shedding from the cylinder. Direct measurements of the Reynolds heat fluxes (/line{utheta},\\ /line{vtheta}\\ and\\ /line{wtheta}) and time-resolved wall heat transfer rate will provide insight into unsteady flow behavior and data for advanced turbulence models for numerical simulation of complex engineering flows. Experiments were conducted in an open-circuit, low-speed wind tunnel. Reynolds stresses and heat fluxes were obtained from turbulent heat-flux probes which consisted of two hot wires, arranged in an X-wire configuration, and a cold wire located in front of the X-wire. Thin-film surface heat flux sensors were designed for measuring time-resolved wall heat flux. A reference probe and conditional-sampling technique connected the flow field dynamics to wall heat transfer. An event detecting and ensemble-averaging method was developed to separate effects of unsteadiness from those of background turbulence. Results indicate that unsteadiness affects both heat transport and wall heat transfer. The flow behind the cylinder can be characterized by three regions: (1) Wake region, where unsteadiness is observed to have modest effect; (2) Unsteady region, where the strongest unsteadiness effect is found; (3) Outer region, where the flow approaches the two-dimensional boundary-layer behavior. Vortex shedding from both sides of the cylinder contributes to mixing enhancement in the wake region. Unsteadiness contributes up to 51% of vertical and 59% of spanwise turbulent heat fluxes in the unsteady region. The instantaneous wall Stanton number increased up to 100% compared with an undisturbed flow. Large-scale fluctuations of wall Stanton number were due to the periodic thinning and thickening of the thermal layer caused by periodic vertical velocity fluctuations. This suggests that the outerlayer motion affects near-wall flow behavior and wall heat transfer.

  11. Three dimensional simulation of nucleate boiling heat and mass transfer in cooling passages of internal combustion engines

    NASA Astrophysics Data System (ADS)

    Mehdipour, R.; Baniamerian, Z.; Delauré, Y.

    2016-05-01

    An accurate knowledge of heat transfer and temperature distribution in vehicle engines is essential to have a good management of heat transfer performance in combustion engines. This may be achieved by numerical simulation of flow through the engine cooling passages; but the task becomes particularly challenging when boiling occurs. Neglecting two phase flow processes in the simulation would however result in significant inaccuracy in the predictions. In this study a three dimensional numerical model is proposed using Fluent 6.3 to simulate heat transfer of fluid flowing through channels of conventional size. Results of the present theoretical and numerical model are then compared with some empirical results. For high fluid flow velocities, departure between experimental and numerical results is about 9 %, while for lower velocity conditions, the model inaccuracy increases to 18 %. One of the outstanding capabilities of the present model, beside its ability to simulate two phase fluid flow and heat transfer in three dimensions, is the prediction of the location of bubble formation and condensation which can be a key issue in the evaluation of the engine performance and thermal stresses.

  12. Heat pipe dynamic behavior

    NASA Technical Reports Server (NTRS)

    Issacci, F.; Roche, G. L.; Klein, D. B.; Catton, I.

    1988-01-01

    The vapor flow in a heat pipe was mathematically modeled and the equations governing the transient behavior of the core were solved numerically. The modeled vapor flow is transient, axisymmetric (or two-dimensional) compressible viscous flow in a closed chamber. The two methods of solution are described. The more promising method failed (a mixed Galerkin finite difference method) whereas a more common finite difference method was successful. Preliminary results are presented showing that multi-dimensional flows need to be treated. A model of the liquid phase of a high temperature heat pipe was developed. The model is intended to be coupled to a vapor phase model for the complete solution of the heat pipe problem. The mathematical equations are formulated consistent with physical processes while allowing a computationally efficient solution. The model simulates time dependent characteristics of concern to the liquid phase including input phase change, output heat fluxes, liquid temperatures, container temperatures, liquid velocities, and liquid pressure. Preliminary results were obtained for two heat pipe startup cases. The heat pipe studied used lithium as the working fluid and an annular wick configuration. Recommendations for implementation based on the results obtained are presented. Experimental studies were initiated using a rectangular heat pipe. Both twin beam laser holography and laser Doppler anemometry were investigated. Preliminary experiments were completed and results are reported.

  13. Influence of nonlinear thermal radiation and viscous dissipation on three-dimensional flow of Jeffrey nano fluid over a stretching sheet in the presence of Joule heating

    NASA Astrophysics Data System (ADS)

    Ganesh Kumar, K.; Rudraswamy, N. G.; Gireesha, B. J.; Krishnamurthy, M. R.

    2017-09-01

    Present exploration discusses the combined effect of viscous dissipation and Joule heating on three dimensional flow and heat transfer of a Jeffrey nanofluid in the presence of nonlinear thermal radiation. Here the flow is generated over bidirectional stretching sheet in the presence of applied magnetic field by accounting thermophoresis and Brownian motion of nanoparticles. Suitable similarity transformations are employed to reduce the governing partial differential equations into coupled nonlinear ordinary differential equations. These nonlinear ordinary differential equations are solved numerically by using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. Graphically results are presented and discussed for various parameters. Validation of the current method is proved by comparing our results with the existing results under limiting situations. It can be concluded that combined effect of Joule and viscous heating increases the temperature profile and thermal boundary layer thickness.

  14. COMMIX-PPC: A three-dimensional transient multicomponent computer program for analyzing performance of power plant condensers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chien, T.H.; Domanus, H.M.; Sha, W.T.

    1993-02-01

    The COMMIX-PPC computer pregrain is an extended and improved version of earlier COMMIX codes and is specifically designed for evaluating the thermal performance of power plant condensers. The COMMIX codes are general-purpose computer programs for the analysis of fluid flow and heat transfer in complex Industrial systems. In COMMIX-PPC, two major features have been added to previously published COMMIX codes. One feature is the incorporation of one-dimensional equations of conservation of mass, momentum, and energy on the tube stile and the proper accounting for the thermal interaction between shell and tube side through the porous-medium approach. The other added featuremore » is the extension of the three-dimensional conservation equations for shell-side flow to treat the flow of a multicomponent medium. COMMIX-PPC is designed to perform steady-state and transient. Three-dimensional analysis of fluid flow with heat transfer tn a power plant condenser. However, the code is designed in a generalized fashion so that, with some modification, it can be used to analyze processes in any heat exchanger or other single-phase engineering applications. Volume I (Equations and Numerics) of this report describes in detail the basic equations, formulation, solution procedures, and models for a phenomena. Volume II (User's Guide and Manual) contains the input instruction, flow charts, sample problems, and descriptions of available options and boundary conditions.« less

  15. The combined effects of longitudinal heat conduction, flow nonuniformity and temperature nonuniformity in crossflow plate-fin heat exchangers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ranganayakulu, C.; Seetharamu, K.N.

    An analysis of a crossflow plate-fin compact heat exchanger, accounting for the combined effects of two-dimensional longitudinal heat conduction through the exchanger wall and nonuniform inlet fluid flow and temperature distribution is carried out using a finite element method. A mathematical equation is developed to generate different types of fluid flow/temperature maldistribution models considering the possible deviations in fluid flow. Using these models, the exchanger effectiveness and its deterioration due to the combined effects of longitudinal heat conduction, flow nonuniformity and temperature nonuniformity are calculated for various design and operating conditions of the exchanger. It was found that the performancemore » variations are quite significant in some typical applications.« less

  16. A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers.

    PubMed

    de Jong, J A; Wijnant, Y H; de Boer, A

    2014-03-01

    A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic systems. The model is implementable in existing (quasi-)1D thermoacoustic codes, such as DeltaEC. Examples of generated results show good agreement with literature results. The model allows for arbitrary wave phasing; however, it is shown that the wave phasing does not significantly influence the heat transfer.

  17. Thermal-Flow Code for Modeling Gas Dynamics and Heat Transfer in Space Shuttle Solid Rocket Motor Joints

    NASA Technical Reports Server (NTRS)

    Wang, Qunzhen; Mathias, Edward C.; Heman, Joe R.; Smith, Cory W.

    2000-01-01

    A new, thermal-flow simulation code, called SFLOW. has been developed to model the gas dynamics, heat transfer, as well as O-ring and flow path erosion inside the space shuttle solid rocket motor joints by combining SINDA/Glo, a commercial thermal analyzer. and SHARPO, a general-purpose CFD code developed at Thiokol Propulsion. SHARP was modified so that friction, heat transfer, mass addition, as well as minor losses in one-dimensional flow can be taken into account. The pressure, temperature and velocity of the combustion gas in the leak paths are calculated in SHARP by solving the time-dependent Navier-Stokes equations while the heat conduction in the solid is modeled by SINDA/G. The two codes are coupled by the heat flux at the solid-gas interface. A few test cases are presented and the results from SFLOW agree very well with the exact solutions or experimental data. These cases include Fanno flow where friction is important, Rayleigh flow where heat transfer between gas and solid is important, flow with mass addition due to the erosion of the solid wall, a transient volume venting process, as well as some transient one-dimensional flows with analytical solutions. In addition, SFLOW is applied to model the RSRM nozzle joint 4 subscale hot-flow tests and the predicted pressures, temperatures (both gas and solid), and O-ring erosions agree well with the experimental data. It was also found that the heat transfer between gas and solid has a major effect on the pressures and temperatures of the fill bottles in the RSRM nozzle joint 4 configuration No. 8 test.

  18. Calculation of laminar heating rates on three-dimensional configurations using the axisymmetric analogue

    NASA Technical Reports Server (NTRS)

    Hamilton, H. H., II

    1980-01-01

    A theoretical method was developed for computing approximate laminar heating rates on three dimensional configurations at angle of attack. The method is based on the axisymmetric analogue which is used to reduce the three dimensional boundary layer equations along surface streamlines to an equivalent axisymmetric form by using the metric coefficient which describes streamline divergence (or convergence). The method was coupled with a three dimensional inviscid flow field program for computing surface streamline paths, metric coefficients, and boundary layer edge conditions.

  19. Numerical investigation of flow and heat transfer in a novel configuration multi-tubular fixed bed reactor for propylene to acrolein process

    NASA Astrophysics Data System (ADS)

    Jiang, Bin; Hao, Li; Zhang, Luhong; Sun, Yongli; Xiao, Xiaoming

    2015-01-01

    In the present contribution, a numerical study of fluid flow and heat transfer performance in a pilot-scale multi-tubular fixed bed reactor for propylene to acrolein oxidation reaction is presented using computational fluid dynamics (CFD) method. Firstly, a two-dimensional CFD model is developed to simulate flow behaviors, catalytic oxidation reaction, heat and mass transfer adopting porous medium model on tube side to achieve the temperature distribution and investigate the effect of operation parameters on hot spot temperature. Secondly, based on the conclusions of tube-side, a novel configuration multi-tubular fixed-bed reactor comprising 790 tubes design with disk-and-doughnut baffles is proposed by comparing with segmental baffles reactor and their performance of fluid flow and heat transfer is analyzed to ensure the uniformity condition using molten salt as heat carrier medium on shell-side by three-dimensional CFD method. The results reveal that comprehensive performance of the reactor with disk-and-doughnut baffles is better than that of with segmental baffles. Finally, the effects of operating conditions to control the hot spots are investigated. The results show that the flow velocity range about 0.65 m/s is applicable and the co-current cooling system flow direction is better than counter-current flow to control the hottest temperature.

  20. Heat Transfer Characteristics of Mixed Electroosmotic and Pressure Driven Micro-Flows

    NASA Astrophysics Data System (ADS)

    Horiuchi, Keisuke; Dutta, Prashanta

    We analyze heat transfer characteristics of steady electroosmotic flows with an arbitrary pressure gradient in two-dimensional straight microchannels considering the effects of Joule heating in electroosmotic pumping. Both the temperature distribution and local Nusselt number are mathematically derived in this study. The thermal analysis takes into consideration of the interaction among advective, diffusive, and Joule heating terms to obtain the thermally developing behavior. Unlike macro-scale pipes, axial conduction in micro-scale cannot be negligible, and the governing energy equation is not separable. Thus, a method that considers an extended Graetz problem is introduced. Analytical results show that the Nusselt number of pure electrooosmotic flow is higher than that of plane Poiseulle flow. Moreover, when the electroosmotic flow and pressure driven flow coexist, it is found that adverse pressure gradient to the electroosmotic flow makes the thermal entrance length smaller and the heat transfer ability stronger than pure electroosmotic flow case.

  1. Numerical and Experimental Studies of Ultra Low Profile Three-dimensional Heat Sinks (3DHS) Made using a Novel Manufacturing Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishna Kota; Diana Sobers; Paul Kolodner

    2012-04-01

    The continued increase in electronic device packaging densities is placing ever more challenging performance requirements on air-cooled heat sinks. In cases where the state-of-the-art heat sink technology is unable of to meet these requirements, this often results in either a relaxation of design specifications, or the exploration of other thermal management technologies better able to handle high heat density applications, such as liquid cooling. Both of these approaches provide challenges to equipment designers, as relaxing requirements does not allow for a scale-able path to increased device densities and their associated functionality, while incorporating new thermal management technologies often requires majormore » hardware redesigns, which has significant cost implications. In this work, we explore the use of air-cooled heat sinks incorporating three-dimensional features, so-called three-dimensional heat sinks (3DHS), that enhance heat transfer through a number of different physical mechanisms, as an approach to further extending the limits of air cooling. An ultra low profile (5.7 mm) heat sink application is targeted due to the significant thermal challenges associated with restrictions on heat sink height. We also present details on a novel manufacturing method that has significant cost advantages over other fabrication methods such as investment casting and direct metal printing. Experiments on 3DHS and conventional heat sink are conducted in a wind tunnel test apparatus as a function of inlet air mass flow rate and flow bypass above the heat sinks. The experimental results show a strong correlation between heat sink permeability and thermal performance, as measured by heat sink thermal resistance versus ideal pumping power. The results also illustrate the important effects of flow bypass on heat sink performance. The best performing 3DHS design is observed to have up to a 19% improvement in thermal performance relative to a conventional parallel fin heat sink of the same form factor. Comparison of the experimental results with finite-volume simulations of the laminar, steady equations for mass, momentum and energy transport shows good agreement for heat sink thermal resistance and pressure drop across the heat sink. For the case where the fluid flow is modeled as transitional and steady, there is a greater discrepancy between simulations and experiments, suggesting that the experimental flow conditions are predominantly laminar.« less

  2. Darcy-Forchheimer Three-Dimensional Flow of Williamson Nanofluid over a Convectively Heated Nonlinear Stretching Surface

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Aziz, Arsalan; Muhammad, Taseer; Alsaedi, Ahmed

    2017-09-01

    The present study elaborates three-dimensional flow of Williamson nanoliquid over a nonlinear stretchable surface. Fluid flow obeys Darcy-Forchheimer porous medium. A bidirectional nonlinear stretching surface generates the flow. Convective surface condition of heat transfer is taken into consideration. Further the zero nanoparticles mass flux condition is imposed at the boundary. Effects of thermophoresis and Brownian diffusion are considered. Assumption of boundary layer has been employed in the problem formulation. Convergent series solutions for the nonlinear governing system are established through the optimal homotopy analysis method (OHAM). Graphs have been sketched in order to analyze that how the velocity, temperature and concentration distributions are affected by distinct emerging flow parameters. Skin friction coefficients and local Nusselt number are also computed and discussed.

  3. Impacts of Realistic Urban Heating, Part I: Spatial Variability of Mean Flow, Turbulent Exchange and Pollutant Dispersion

    NASA Astrophysics Data System (ADS)

    Nazarian, Negin; Martilli, Alberto; Kleissl, Jan

    2018-03-01

    As urbanization progresses, more realistic methods are required to analyze the urban microclimate. However, given the complexity and computational cost of numerical models, the effects of realistic representations should be evaluated to identify the level of detail required for an accurate analysis. We consider the realistic representation of surface heating in an idealized three-dimensional urban configuration, and evaluate the spatial variability of flow statistics (mean flow and turbulent fluxes) in urban streets. Large-eddy simulations coupled with an urban energy balance model are employed, and the heating distribution of urban surfaces is parametrized using sets of horizontal and vertical Richardson numbers, characterizing thermal stratification and heating orientation with respect to the wind direction. For all studied conditions, the thermal field is strongly affected by the orientation of heating with respect to the airflow. The modification of airflow by the horizontal heating is also pronounced for strongly unstable conditions. The formation of the canyon vortices is affected by the three-dimensional heating distribution in both spanwise and streamwise street canyons, such that the secondary vortex is seen adjacent to the windward wall. For the dispersion field, however, the overall heating of urban surfaces, and more importantly, the vertical temperature gradient, dominate the distribution of concentration and the removal of pollutants from the building canyon. Accordingly, the spatial variability of concentration is not significantly affected by the detailed heating distribution. The analysis is extended to assess the effects of three-dimensional surface heating on turbulent transfer. Quadrant analysis reveals that the differential heating also affects the dominance of ejection and sweep events and the efficiency of turbulent transfer (exuberance) within the street canyon and at the roof level, while the vertical variation of these parameters is less dependent on the detailed heating of urban facets.

  4. Transient PVT measurements and model predictions for vessel heat transfer. Part II.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felver, Todd G.; Paradiso, Nicholas Joseph; Winters, William S., Jr.

    2010-07-01

    Part I of this report focused on the acquisition and presentation of transient PVT data sets that can be used to validate gas transfer models. Here in Part II we focus primarily on describing models and validating these models using the data sets. Our models are intended to describe the high speed transport of compressible gases in arbitrary arrangements of vessels, tubing, valving and flow branches. Our models fall into three categories: (1) network flow models in which flow paths are modeled as one-dimensional flow and vessels are modeled as single control volumes, (2) CFD (Computational Fluid Dynamics) models inmore » which flow in and between vessels is modeled in three dimensions and (3) coupled network/CFD models in which vessels are modeled using CFD and flows between vessels are modeled using a network flow code. In our work we utilized NETFLOW as our network flow code and FUEGO for our CFD code. Since network flow models lack three-dimensional resolution, correlations for heat transfer and tube frictional pressure drop are required to resolve important physics not being captured by the model. Here we describe how vessel heat transfer correlations were improved using the data and present direct model-data comparisons for all tests documented in Part I. Our results show that our network flow models have been substantially improved. The CFD modeling presented here describes the complex nature of vessel heat transfer and for the first time demonstrates that flow and heat transfer in vessels can be modeled directly without the need for correlations.« less

  5. An exact closed form solution for constant area compressible flow with friction and heat transfer

    NASA Technical Reports Server (NTRS)

    Sturas, J. I.

    1971-01-01

    The well-known differential equation for the one-dimensional flow of a compressible fluid with heat transfer and wall friction has no known solution in closed form for the general case. This report presents a closed form solution for the special case of constant heat flux per unit length and constant specific heat. The solution was obtained by choosing the square of a dimensionless flow parameter as one of the independent variables to describe the flow. From this exact solution, an approximate simplified form is derived that is applicable for predicting subsonic flow performance characteristics for many types of constant area passages in internal flow. The data included in this report are considered sufficiently accurate for use as a guide in analyzing and designing internal gas flow systems.

  6. SEMI-ANALYTIC CALCULATION OF THE TEMPERATURE DISTRIBUTION IN A PERFORATED CIRCLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, J.M.; Fowler, J.K.

    The flow of heat in a tube-in-shell fuel element is closely related to the two-dimensional heat flow in a circular region perforated by a number of circular holes. Mathematical expressions for the two-dimensional temperature distribution were obtained in terms of sources and sinks of increasing complexity located within the holes and beyond the outer circle. A computer program, TINS, which solves the temperature problem for an array of one or two rings of holes, with or without a center hole, is also described. (auth)

  7. 1DTempPro: analyzing temperature profiles for groundwater/surface-water exchange

    USGS Publications Warehouse

    Voytek, Emily B.; Drenkelfuss, Anja; Day-Lewis, Frederick D.; Healy, Richard; Lane, John W.; Werkema, Dale D.

    2014-01-01

    A new computer program, 1DTempPro, is presented for the analysis of vertical one-dimensional (1D) temperature profiles under saturated flow conditions. 1DTempPro is a graphical user interface to the U.S. Geological Survey code Variably Saturated 2-Dimensional Heat Transport (VS2DH), which numerically solves the flow and heat-transport equations. Pre- and postprocessor features allow the user to calibrate VS2DH models to estimate vertical groundwater/surface-water exchange and also hydraulic conductivity for cases where hydraulic head is known.

  8. Modeling of Compressible Flow with Friction and Heat Transfer Using the Generalized Fluid System Simulation Program (GFSSP)

    NASA Technical Reports Server (NTRS)

    Bandyopadhyay, Alak; Majumdar, Alok

    2007-01-01

    The present paper describes the verification and validation of a quasi one-dimensional pressure based finite volume algorithm, implemented in Generalized Fluid System Simulation Program (GFSSP), for predicting compressible flow with friction, heat transfer and area change. The numerical predictions were compared with two classical solutions of compressible flow, i.e. Fanno and Rayleigh flow. Fanno flow provides an analytical solution of compressible flow in a long slender pipe where incoming subsonic flow can be choked due to friction. On the other hand, Raleigh flow provides analytical solution of frictionless compressible flow with heat transfer where incoming subsonic flow can be choked at the outlet boundary with heat addition to the control volume. Nonuniform grid distribution improves the accuracy of numerical prediction. A benchmark numerical solution of compressible flow in a converging-diverging nozzle with friction and heat transfer has been developed to verify GFSSP's numerical predictions. The numerical predictions compare favorably in all cases.

  9. Conjugate Heat Transfer Analyses on the Manifold for Ramjet Fuel Injectors

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.

    2006-01-01

    Three-dimensional conjugate heat transfer analyses on the manifold located upstream of the ramjet fuel injector are performed using CFdesign, a finite-element computational fluid dynamics (CFD) software. The flow field of the hot fuel (JP-7) flowing through the manifold is simulated and the wall temperature of the manifold is computed. The three-dimensional numerical results of the fuel temperature are compared with those obtained using a one-dimensional analysis based on empirical equations, and they showed a good agreement. The numerical results revealed that it takes around 30 to 40 sec to reach the equilibrium where the fuel temperature has dropped about 3 F from the inlet to the exit of the manifold.

  10. A three-dimensional spectral algorithm for simulations of transition and turbulence

    NASA Technical Reports Server (NTRS)

    Zang, T. A.; Hussaini, M. Y.

    1985-01-01

    A spectral algorithm for simulating three dimensional, incompressible, parallel shear flows is described. It applies to the channel, to the parallel boundary layer, and to other shear flows with one wall bounded and two periodic directions. Representative applications to the channel and to the heated boundary layer are presented.

  11. Computer programs for predicting supersonic and hypersonic interference flow fields and heating

    NASA Technical Reports Server (NTRS)

    Morris, D. J.; Keyes, J. W.

    1973-01-01

    This report describes computer codes which calculate two-dimensional shock interference patterns. These codes compute the six types of interference flows as defined by Edney (Aeronaut. Res. Inst. of Sweden FAA Rep. 115). Results include properties of the inviscid flow field and the inviscid-viscous interaction at the surface along with peak pressure and peak heating at the impingement point.

  12. A Mass Computation Model for Lightweight Brayton Cycle Regenerator Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    2010-01-01

    Based on a theoretical analysis of convective heat transfer across large internal surface areas, this paper discusses the design implications for generating lightweight gas-gas heat exchanger designs by packaging such areas into compact three-dimensional shapes. Allowances are made for hot and cold inlet and outlet headers for assembly of completed regenerator (or recuperator) heat exchanger units into closed cycle gas turbine flow ducting. Surface area and resulting volume and mass requirements are computed for a range of heat exchanger effectiveness values and internal heat transfer coefficients. Benefit cost curves show the effect of increasing heat exchanger effectiveness on Brayton cycle thermodynamic efficiency on the plus side, while also illustrating the cost in heat exchanger required surface area, volume, and mass requirements as effectiveness is increased. The equations derived for counterflow and crossflow configurations show that as effectiveness values approach unity, or 100 percent, the required surface area, and hence heat exchanger volume and mass tend toward infinity, since the implication is that heat is transferred at a zero temperature difference. To verify the dimensional accuracy of the regenerator mass computational procedure, calculation of a regenerator specific mass, that is, heat exchanger weight per unit working fluid mass flow, is performed in both English and SI units. Identical numerical values for the specific mass parameter, whether expressed in lb/(lb/sec) or kg/(kg/sec), show the dimensional consistency of overall results.

  13. A Mass Computation Model for Lightweight Brayton Cycle Regenerator Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    2010-01-01

    Based on a theoretical analysis of convective heat transfer across large internal surface areas, this paper discusses the design implications for generating lightweight gas-gas heat exchanger designs by packaging such areas into compact three-dimensional shapes. Allowances are made for hot and cold inlet and outlet headers for assembly of completed regenerator (or recuperator) heat exchanger units into closed cycle gas turbine flow ducting. Surface area and resulting volume and mass requirements are computed for a range of heat exchanger effectiveness values and internal heat transfer coefficients. Benefit cost curves show the effect of increasing heat exchanger effectiveness on Brayton cycle thermodynamic efficiency on the plus side, while also illustrating the cost in heat exchanger required surface area, volume, and mass requirements as effectiveness is increased. The equations derived for counterflow and crossflow configurations show that as effectiveness values approach unity, or 100 percent, the required surface area, and hence heat exchanger volume and mass tend toward infinity, since the implication is that heat is transferred at a zero temperature difference. To verify the dimensional accuracy of the regenerator mass computational procedure, calculation of a regenerator specific mass, that is, heat exchanger weight per unit working fluid mass flow, is performed in both English and SI units. Identical numerical values for the specific mass parameter, whether expressed in lb/(lb/sec) or kg/ (kg/sec), show the dimensional consistency of overall results.

  14. A probabilistic model of a porous heat exchanger

    NASA Technical Reports Server (NTRS)

    Agrawal, O. P.; Lin, X. A.

    1995-01-01

    This paper presents a probabilistic one-dimensional finite element model for heat transfer processes in porous heat exchangers. The Galerkin approach is used to develop the finite element matrices. Some of the submatrices are asymmetric due to the presence of the flow term. The Neumann expansion is used to write the temperature distribution as a series of random variables, and the expectation operator is applied to obtain the mean and deviation statistics. To demonstrate the feasibility of the formulation, a one-dimensional model of heat transfer phenomenon in superfluid flow through a porous media is considered. Results of this formulation agree well with the Monte-Carlo simulations and the analytical solutions. Although the numerical experiments are confined to parametric random variables, a formulation is presented to account for the random spatial variations.

  15. 3-Dimensional numerical study of cooling performance of a heat sink with air-water flow through mini-channel

    NASA Astrophysics Data System (ADS)

    Majumder, Sambit; Majumder, Abhik; Bhaumik, Swapan

    2016-07-01

    The present microelectronics market demands devices with high power dissipation capabilities having enhanced cooling per unit area. The drive for miniaturizing the devices to even micro level dimensions is shooting up the applied heat flux on such devices, resulting in complexity in heat transfer and cooling management. In this paper, a method of CPU processor cooling is introduced where active and passive cooling techniques are incorporated simultaneously. A heat sink consisting of fins is designed, where water flows internally through the mini-channel fins and air flows externally. Three dimensional numerical simulations are performed for large set of Reynolds number in laminar region using finite volume method for both developing flows. The dimensions of mini-channel fins are varied for several aspect ratios such as 1, 1.33, 2 and 4. Constant temperature (T) boundary condition is applied at heat sink base. Channel fluid temperature, pressure drop are analyzed to obtain best cooling option in the present study. It has been observed that as the aspect ratio of the channel decreases Nusselt number decreases while pressure drop increases. However, Nusselt number increases with increase in Reynolds number.

  16. Pressure Gradient Effects on Hypersonic Cavity Flow Heating

    NASA Technical Reports Server (NTRS)

    Everhart, Joel L.; Alter, Stephen J.; Merski, N. Ronald; Wood, William A.; Prabhu, Ramadas K.

    2006-01-01

    The effect of a pressure gradient on the local heating disturbance of rectangular cavities tested at hypersonic freestream conditions has been globally assessed using the two-color phosphor thermography method. These experiments were conducted in the Langley 31-Inch Mach 10 Tunnel and were initiated in support of the Space Shuttle Return-To-Flight Program. Two blunted-nose test surface geometries were developed, including an expansion plate test surface with nearly constant negative pressure gradient and a flat plate surface with nearly zero pressure gradient. The test surface designs and flow characterizations were performed using two-dimensional laminar computational methods, while the experimental boundary layer state conditions were inferred using the measured heating distributions. Three-dimensional computational predictions of the entire model geometry were used as a check on the design process. Both open-flow and closed-flow cavities were tested on each test surface. The cavity design parameters and the test condition matrix were established using the computational predictions. Preliminary conclusions based on an analysis of only the cavity centerline data indicate that the presence of the pressure gradient did not alter the open cavity heating for laminar-entry/laminar-exit flows, but did raise the average floor heating for closed cavities. The results of these risk-reduction studies will be used to formulate a heating assessment of potential damage scenarios occurring during future Space Shuttle flights.

  17. Pressure Gradient Effects on Hypersonic Cavity Flow Heating

    NASA Technical Reports Server (NTRS)

    Everhart, Joel L.; Alter, Stephen J.; Merski, N. Ronald; Wood, William A.; Prabhu, Ramdas K.

    2007-01-01

    The effect of a pressure gradient on the local heating disturbance of rectangular cavities tested at hypersonic freestream conditions has been globally assessed using the two-color phosphor thermography method. These experiments were conducted in the Langley 31-Inch Mach 10 Tunnel and were initiated in support of the Space Shuttle Return-To-Flight Program. Two blunted-nose test surface geometries were developed, including an expansion plate test surface with nearly constant negative pressure gradient and a flat plate surface with nearly zero pressure gradient. The test surface designs and flow characterizations were performed using two-dimensional laminar computational methods, while the experimental boundary layer state conditions were inferred using the measured heating distributions. Three-dimensional computational predictions of the entire model geometry were used as a check on the design process. Both open-flow and closed-flow cavities were tested on each test surface. The cavity design parameters and the test condition matrix were established using the computational predictions. Preliminary conclusions based on an analysis of only the cavity centerline data indicate that the presence of the pressure gradient did not alter the open cavity heating for laminar-entry/laminar-exit flows, but did raise the average floor heating for closed cavities. The results of these risk-reduction studies will be used to formulate a heating assessment of potential damage scenarios occurring during future Space Shuttle flights.

  18. Fundamental mechanisms that influence the estimate of heat transfer to gas turbine blades

    NASA Technical Reports Server (NTRS)

    Graham, R. W.

    1979-01-01

    Estimates of the heat transfer from the gas to stationary (vanes) or rotating blades poses a major uncertainty due to the complexity of the heat transfer processes. The gas flow through these blade rows is three dimensional with complex secondary viscous flow patterns that interact with the endwalls and blade surfaces. In addition, upstream disturbances, stagnation flow, curvature effects, and flow acceleration complicate the thermal transport mechanisms in the boundary layers. Some of these fundamental heat transfer effects are discussed. The chief purpose of the discussion is to acquaint those in the heat transfer community, not directly involved in gas turbines, of the seriousness of the problem and to recommend some basic research that would improve the capability for predicting gas-side heat transfer on turbine blades and vanes.

  19. Lunar ash flow with heat transfer.

    NASA Technical Reports Server (NTRS)

    Pai, S. I.; Hsieh, T.; O'Keefe, J. A.

    1972-01-01

    The most important heat-transfer process in the ash flow under consideration is heat convection. Besides the four important nondimensional parameters of isothermal ash flow (Pai et al., 1972), we have three additional important nondimensional parameters: the ratio of the specific heat of the gas, the ratio of the specific heat of the solid particles to that of gas, and the Prandtl number. We reexamine the one dimensional steady ash flow discussed by Pai et al. (1972) by including the effects of heat transfer. Numerical results for the pressure, temperature, density of the gas, velocities of gas and solid particles, and volume fraction of solid particles as function of altitude for various values of the Jeffreys number, initial velocity ratio, and two different gas species (steam and hydrogen) are presented.

  20. COMMIX-PPC: A three-dimensional transient multicomponent computer program for analyzing performance of power plant condensers. Volume 1, Equations and numerics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chien, T.H.; Domanus, H.M.; Sha, W.T.

    1993-02-01

    The COMMIX-PPC computer pregrain is an extended and improved version of earlier COMMIX codes and is specifically designed for evaluating the thermal performance of power plant condensers. The COMMIX codes are general-purpose computer programs for the analysis of fluid flow and heat transfer in complex Industrial systems. In COMMIX-PPC, two major features have been added to previously published COMMIX codes. One feature is the incorporation of one-dimensional equations of conservation of mass, momentum, and energy on the tube stile and the proper accounting for the thermal interaction between shell and tube side through the porous-medium approach. The other added featuremore » is the extension of the three-dimensional conservation equations for shell-side flow to treat the flow of a multicomponent medium. COMMIX-PPC is designed to perform steady-state and transient. Three-dimensional analysis of fluid flow with heat transfer tn a power plant condenser. However, the code is designed in a generalized fashion so that, with some modification, it can be used to analyze processes in any heat exchanger or other single-phase engineering applications. Volume I (Equations and Numerics) of this report describes in detail the basic equations, formulation, solution procedures, and models for a phenomena. Volume II (User`s Guide and Manual) contains the input instruction, flow charts, sample problems, and descriptions of available options and boundary conditions.« less

  1. Two-Dimensional Finite Element Ablative Thermal Response Analysis of an Arcjet Stagnation Test

    NASA Technical Reports Server (NTRS)

    Dec, John A.; Laub, Bernard; Braun, Robert D.

    2011-01-01

    The finite element ablation and thermal response (FEAtR, hence forth called FEAR) design and analysis program simulates the one, two, or three-dimensional ablation, internal heat conduction, thermal decomposition, and pyrolysis gas flow of thermal protection system materials. As part of a code validation study, two-dimensional axisymmetric results from FEAR are compared to thermal response data obtained from an arc-jet stagnation test in this paper. The results from FEAR are also compared to the two-dimensional axisymmetric computations from the two-dimensional implicit thermal response and ablation program under the same arcjet conditions. The ablating material being used in this arcjet test is phenolic impregnated carbon ablator with an LI-2200 insulator as backup material. The test is performed at the NASA, Ames Research Center Interaction Heating Facility. Spatially distributed computational fluid dynamics solutions for the flow field around the test article are used for the surface boundary conditions.

  2. Convective Heat Transfer for Ship Propulsion.

    DTIC Science & Technology

    1981-04-01

    such as Ede, Hislop and Morris [1956], Krall and Sparrow [1966] and Zemanick and Dougall I [1970]. Reviews of the heat transfer literature for...separated flow; he employed a one- dimensional model of the flow near a wall. Recently, Chieng and Launder [ 1980 ], in calculations of the turbulent heat...computer program developed originally by Gosman and Pun [1974]. In the present study, the version of Habib and Whitelaw [ 1980 ], which treats double coaxial

  3. Overview of aerothermodynamic loads definition study

    NASA Technical Reports Server (NTRS)

    Gaugler, Raymond E.

    1991-01-01

    The objective of the Aerothermodynamic Loads Definition Study is to develop methods of accurately predicting the operating environment in advanced Earth-to-Orbit (ETO) propulsion systems, such as the Space Shuttle Main Engine (SSME) powerhead. Development of time averaged and time dependent three dimensional viscous computer codes as well as experimental verification and engine diagnostic testing are considered to be essential in achieving that objective. Time-averaged, nonsteady, and transient operating loads must all be well defined in order to accurately predict powerhead life. Described here is work in unsteady heat flow analysis, improved modeling of preburner flow, turbulence modeling for turbomachinery, computation of three dimensional flow with heat transfer, and unsteady viscous multi-blade row turbine analysis.

  4. Distribution and depth of bottom-simulating reflectors in the Nankai subduction margin

    NASA Astrophysics Data System (ADS)

    Ohde, Akihiro; Otsuka, Hironori; Kioka, Arata; Ashi, Juichiro

    2018-04-01

    Surface heat flow has been observed to be highly variable in the Nankai subduction margin. This study presents an investigation of local anomalies in surface heat flows on the undulating seafloor in the Nankai subduction margin. We estimate the heat flows from bottom-simulating reflectors (BSRs) marking the lower boundaries of the methane hydrate stability zone and evaluate topographic effects on heat flow via two-dimensional thermal modeling. BSRs have been used to estimate heat flows based on the known stability characteristics of methane hydrates under low-temperature and high-pressure conditions. First, we generate an extensive map of the distribution and subseafloor depths of the BSRs in the Nankai subduction margin. We confirm that BSRs exist at the toe of the accretionary prism and the trough floor of the offshore Tokai region, where BSRs had previously been thought to be absent. Second, we calculate the BSR-derived heat flow and evaluate the associated errors. We conclude that the total uncertainty of the BSR-derived heat flow should be within 25%, considering allowable ranges in the P-wave velocity, which influences the time-to-depth conversion of the BSR position in seismic images, the resultant geothermal gradient, and thermal resistance. Finally, we model a two-dimensional thermal structure by comparing the temperatures at the observed BSR depths with the calculated temperatures at the same depths. The thermal modeling reveals that most local variations in BSR depth over the undulating seafloor can be explained by topographic effects. Those areas that cannot be explained by topographic effects can be mainly attributed to advective fluid flow, regional rapid sedimentation, or erosion. Our spatial distribution of heat flow data provides indispensable basic data for numerical studies of subduction zone modeling to evaluate margin parallel age dependencies of subducting plates.[Figure not available: see fulltext.

  5. The effects of Reynolds number, rotor incidence angle and surface roughness on the heat transfer distribution in a large-scale turbine rotor passage

    NASA Technical Reports Server (NTRS)

    Blair, M. F.

    1991-01-01

    A combined experimental and computational program was conducted to examine the heat transfer distribution in a turbine rotor passage geometrically similar to the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump (HPFTP). Heat transfer was measured and computed for both the full span suction and pressure surfaces of the rotor airfoil as well as for the hub endwall surface. The objective of the program was to provide a benchmark-quality database for the assessment of rotor heat transfer computational techniques. The experimental portion of the study was conducted in a large scale, ambient temperature, rotating turbine model. The computational portion consisted of the application of a well-posed parabolized Navier-Stokes analysis of the calculation of the three-dimensional viscous flow through ducts simulating a gas turbine package. The results of this assessment indicate that the procedure has the potential to predict the aerodynamics and the heat transfer in a gas turbine passage and can be used to develop detailed three dimensional turbulence models for the prediction of skin friction and heat transfer in complex three dimensional flow passages.

  6. Effect of horizontal heat and fluid flow on the vertical temperature distribution in a semiconfining layer

    USGS Publications Warehouse

    Lu, Ning; Ge, Shemin

    1996-01-01

    By including the constant flow of heat and fluid in the horizontal direction, we develop an analytical solution for the vertical temperature distribution within the semiconfining layer of a typical aquifer system. The solution is an extension of the previous one-dimensional theory by Bredehoeft and Papadopulos [1965]. It provides a quantitative tool for analyzing the uncertainty of the horizontal heat and fluid flow. The analytical results demonstrate that horizontal flow of heat and fluid, if at values much smaller than those of the vertical, has a negligible effect on the vertical temperature distribution but becomes significant when it is comparable to the vertical.

  7. Three dimensional investigation of the shock train structure in a convergent-divergent nozzle

    NASA Astrophysics Data System (ADS)

    Mousavi, Seyed Mahmood; Roohi, Ehsan

    2014-12-01

    Three-dimensional computational fluid dynamics analyses have been employed to study the compressible and turbulent flow of the shock train in a convergent-divergent nozzle. The primary goal is to determine the behavior, location, and number of shocks. In this context, full multi-grid initialization, Reynolds stress turbulence model (RSM), and the grid adaption techniques in the Fluent software are utilized under the 3D investigation. The results showed that RSM solution matches with the experimental data suitably. The effects of applying heat generation sources and changing inlet flow total temperature have been investigated. Our simulations showed that changes in the heat generation rate and total temperature of the intake flow influence on the starting point of shock, shock strength, minimum pressure, as well as the maximum flow Mach number.

  8. Radiated flow of chemically reacting nanoliquid with an induced magnetic field across a permeable vertical plate

    NASA Astrophysics Data System (ADS)

    Mahanthesh, B.; Gireesha, B. J.; Athira, P. R.

    Impact of induced magnetic field over a flat porous plate by utilizing incompressible water-copper nanoliquid is examined analytically. Flow is supposed to be laminar, steady and two-dimensional. The plate is subjected to a regular free stream velocity as well as suction velocity. Flow formulation is developed by considering Maxwell-Garnetts (MG) and Brinkman models of nanoliquid. Impacts of thermal radiation, viscous dissipation, temperature dependent heat source/sink and first order chemical reaction are also retained. The subjected non-linear problems are non-dimensionalized and analytic solutions are presented via series expansion method. The graphs are plotted to analyze the influence of pertinent parameters on flow, magnetism, heat and mass transfer fields as well as friction factor, current density, Nusselt and Sherwood numbers. It is found that friction factor at the plate is more for larger magnetic Prandtl number. Also the rate of heat transfer decayed with increasing nanoparticles volume fraction and the strength of magnetism.

  9. Dynamics of lava flow - Thickness growth characteristics of steady two-dimensional flow

    NASA Technical Reports Server (NTRS)

    Park, S.; Iversen, J. D.

    1984-01-01

    The thickness growth characteristics of flowing lava are investigated using a heat balance model and a two-dimensional model for flow of a Bingham plastic fluid down an inclined plane. It is found that yield strength plays a crucial role in the thickening of a lava flow of given flow rate. To illustrate this point, downstream thickness profiles and yield strength distributions were calculated for flows with mass flow rates of 10,000 and 100,000 kg/m-sec. Higher flow rates led to slow cooling rates which resulted in slow rate of increase of yield strength and thus greater flow lengths.

  10. Implementation of a Transition Model in a NASA Code and Validation Using Heat Transfer Data on a Turbine Blade

    NASA Technical Reports Server (NTRS)

    Ameri, Ali A.

    2012-01-01

    The purpose of this report is to summarize and document the work done to enable a NASA CFD code to model laminar-turbulent transition process on an isolated turbine blade. The ultimate purpose of the present work is to down-select a transition model that would allow the flow simulation of a variable speed power turbine to be accurately performed. The flow modeling in its final form will account for the blade row interactions and their effects on transition which would lead to accurate accounting for losses. The present work only concerns itself with steady flows of variable inlet turbulence. The low Reynolds number k- model of Wilcox and a modified version of the same model will be used for modeling of transition on experimentally measured blade pressure and heat transfer. It will be shown that the k- model and its modified variant fail to simulate the transition with any degree of accuracy. A case is thus made for the adoption of more accurate transition models. Three-equation models based on the work of Mayle on Laminar Kinetic Energy were explored. The three-equation model of Walters and Leylek was thought to be in a relatively mature state of development and was implemented in the Glenn-HT code. Two-dimensional heat transfer predictions of flat plate flow and two-dimensional and three-dimensional heat transfer predictions on a turbine blade were performed and reported herein. Surface heat transfer rate serves as sensitive indicator of transition. With the newly implemented model, it was shown that the simulation of transition process is much improved over the baseline k- model for the single Reynolds number and pressure ratio attempted; while agreement with heat transfer data became more satisfactory. Armed with the new transition model, total-pressure losses of computed three-dimensional flow of E3 tip section cascade were compared to the experimental data for a range of incidence angles. The results obtained, form a partial loss bucket for the chosen blade. In time the loss bucket will be populated with losses at additional incidences. Results obtained thus far will be discussed herein.

  11. Thermal Modeling of Bridgman Crystal Growth

    NASA Technical Reports Server (NTRS)

    Cothran, E.

    1983-01-01

    Heat Flow modeled for moving or stationary rod shaped sample inside directional-solidification furnace. Program effectively models one-dimensional heat flow in translating or motionless rod-shaped sample inside of directionalsolidification furnace in which adiabatic zone separates hot zone and cold zone. Applicable to systems for which Biot numbers in hot and cold zones are less than unity.

  12. The NATA code: Theory and analysis, volume 1. [user manuals (computer programming) - gas dynamics, wind tunnels

    NASA Technical Reports Server (NTRS)

    Bade, W. L.; Yos, J. M.

    1975-01-01

    A computer program for calculating quasi-one-dimensional gas flow in axisymmetric and two-dimensional nozzles and rectangular channels is presented. Flow is assumed to start from a state of thermochemical equilibrium at a high temperature in an upstream reservoir. The program provides solutions based on frozen chemistry, chemical equilibrium, and nonequilibrium flow with finite reaction rates. Electronic nonequilibrium effects can be included using a two-temperature model. An approximate laminar boundary layer calculation is given for the shear and heat flux on the nozzle wall. Boundary layer displacement effects on the inviscid flow are considered also. Chemical equilibrium and transport property calculations are provided by subroutines. The code contains precoded thermochemical, chemical kinetic, and transport cross section data for high-temperature air, CO2-N2-Ar mixtures, helium, and argon. It provides calculations of the stagnation conditions on axisymmetric or two-dimensional models, and of the conditions on the flat surface of a blunt wedge. The primary purpose of the code is to describe the flow conditions and test conditions in electric arc heated wind tunnels.

  13. Effects of heat and mass transfer on unsteady boundary layer flow of a chemical reacting Casson fluid

    NASA Astrophysics Data System (ADS)

    Khan, Kashif Ali; Butt, Asma Rashid; Raza, Nauman

    2018-03-01

    In this study, an endeavor is to observe the unsteady two-dimensional boundary layer flow with heat and mass transfer behavior of Casson fluid past a stretching sheet in presence of wall mass transfer by ignoring the effects of viscous dissipation. Chemical reaction of linear order is also invoked here. Similarity transformation have been applied to reduce the governing equations of momentum, energy and mass into non-linear ordinary differential equations; then Homotopy analysis method (HAM) is applied to solve these equations. Numerical work is done carefully with a well-known software MATHEMATICA for the examination of non-dimensional velocity, temperature, and concentration profiles, and then results are presented graphically. The skin friction (viscous drag), local Nusselt number (rate of heat transfer) and Sherwood number (rate of mass transfer) are discussed and presented in tabular form for several factors which are monitoring the flow model.

  14. Energy transport in a shear flow of particles in a two-dimensional dusty plasma.

    PubMed

    Feng, Yan; Goree, J; Liu, Bin

    2012-11-01

    A shear flow of particles in a laser-driven two-dimensional (2D) dusty plasma is observed in a study of viscous heating and thermal conduction. Video imaging and particle tracking yields particle velocity data, which we convert into continuum data, presented as three spatial profiles: mean particle velocity (i.e., flow velocity), mean-square particle velocity, and mean-square fluctuations of particle velocity. These profiles and their derivatives allow a spatially resolved determination of each term in the energy and momentum continuity equations, which we use for two purposes. First, by balancing these terms so that their sum (i.e., residual) is minimized while varying viscosity η and thermal conductivity κ as free parameters, we simultaneously obtain values for η and κ in the same experiment. Second, by comparing the viscous heating and thermal conduction terms, we obtain a spatially resolved characterization of the viscous heating.

  15. Numerical modelling of flow and heat transfer in the rotating disc cavities of a turboprop engine.

    PubMed

    Faragher, J; Ooi, A

    2001-05-01

    A numerical analysis of the flow and heat transfer in the cavity between two co-rotating discs with axial inlet and radial outflow of fluid, a configuration common in gas turbine engines, is described. The results are compared with the experimental data of Northrop and Owen. The effectiveness of the k-epsilon turbulence model with the two-layer zonal model for near-wall treatment of Chen and Patel is tested for this type of flow. Using three-dimensional models it is shown that modelling discrete holes at the outlet as opposed to a continuous slot, which is the approximation inherent in the two-dimensional axisymmetric model, has little effect on the predicted Nusselt number distribution along the disc surface. Results of a conjugate heat transfer analysis of a spacer in the turbine section of a turboprop engine are then presented.

  16. An approximate analysis of the diffusing flow in a self-controlled heat pipe.

    NASA Technical Reports Server (NTRS)

    Somogyi, D.; Yen, H. H.

    1973-01-01

    Constant-density two-dimensional axisymmetric equations are presented for the diffusing flow of a class of self-controlled heat pipes. The analysis is restricted to the vapor space. Condensation of the vapor is related to its mass fraction at the wall by the gas kinetic formula. The Karman-Pohlhausen integral method is applied to obtain approximate solutions. Solutions are presented for a water heat pipe with neon control gas.

  17. Gap heating with pressure gradients. [for Shuttle Orbiter thermal protection system tiles

    NASA Technical Reports Server (NTRS)

    Scott, C. D.; Maraia, R. J.

    1979-01-01

    The heating rate distribution and temperature response on the gap walls of insulating tiles is analyzed to determine significant phenomena and parameters in flows where there is an external surface pressure gradient. Convective heating due to gap flow, modeled as fully developed pipe flow, is coupled with a two-dimensional thermal model of the tiles that includes conduction and radiative heat transfer. To account for geometry and important environmental parameters, scale factors are obtained by curve-fitting measured temperatures to analytical solutions. These scale factors are then used to predict the time-dependent gap heat flux and temperature response of tile gaps on the Space Shuttle Orbiter during entry.

  18. Slip Effects On MHD Three Dimensional Flow Of Casson Fluid Over An Exponentially Stretching Surface

    NASA Astrophysics Data System (ADS)

    Madhusudhana Rao, B.; Krishna Murthy, M.; Sivakumar, N.; Rushi Kumar, B.; Raju, C. S. K.

    2018-04-01

    Heat and mass transfer effects on MHD three dimensional flow of Casson fluid over an exponentially stretching surface with slip conditions is examined. The similarity transformations are used to convert the governing equations into a set of nonlinear ordinary differential equations and are solved numerically using fourth order Runge-Kutta method along with shooting technique. The effects of Casson parameter, Hartmann number, heat source/sink,chemical reaction and slip factors on velocity, temperature and concentration are shown graphically. The skin friction coefficient and the Nusselt number are examined numerically.

  19. Three dimensional radiative flow of magnetite-nanofluid with homogeneous-heterogeneous reactions

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Rashid, Madiha; Alsaedi, Ahmed

    2018-03-01

    Present communication deals with the effects of homogeneous-heterogeneous reactions in flow of nanofluid by non-linear stretching sheet. Water based nanofluid containing magnetite nanoparticles is considered. Non-linear radiation and non-uniform heat sink/source effects are examined. Non-linear differential systems are computed by Optimal homotopy analysis method (OHAM). Convergent solutions of nonlinear systems are established. The optimal data of auxiliary variables is obtained. Impact of several non-dimensional parameters for velocity components, temperature and concentration fields are examined. Graphs are plotted for analysis of surface drag force and heat transfer rate.

  20. Experimental Investigation of Shock-Shock Interactions Over a 2-D Wedge at M=6

    NASA Technical Reports Server (NTRS)

    Jones, Michelle L.

    2013-01-01

    The effects of fin-leading-edge radius and sweep angle on peak heating rates due to shock-shock interactions were investigated in the NASA Langley Research Center 20-inch Mach 6 Air Tunnel. The fin model leading edges, which represent cylindrical leading edges or struts on hypersonic vehicles, were varied from 0.25 inches to 0.75 inches in radius. A 9deg wedge generated a planar oblique shock at 16.7deg to the flow that intersected the fin bow shock, producing a shock-shock interaction that impinged on the fin leading edge. The fin angle of attack was varied from 0deg (normal to the free-stream) to 15deg and 25deg swept forward. Global temperature data was obtained from the surface of the fused silica fins through phosphor thermography. Metal oil flow models with the same geometries as the fused silica models were used to visualize the streamline patterns for each angle of attack. High-speed zoom-schlieren videos were recorded to show the features and temporal unsteadiness of the shock-shock interactions. The temperature data were analyzed using one-dimensional semi-infinite as well as one- and two-dimensional finite-volume methods to determine the proper heat transfer analysis approach to minimize errors from lateral heat conduction due to the presence of strong surface temperature gradients induced by the shock interactions. The general trends in the leading-edge heat transfer behavior were similar for the three shock-shock interactions, respectively, between the test articles with varying leading-edge radius. The dimensional peak heat transfer coefficient augmentation increased with decreasing leading-edge radius. The dimensional peak heat transfer output from the two-dimensional code was about 20% higher than the value from a standard, semi-infinite one-dimensional method.

  1. A technique for measurement of instantaneous heat transfer in steady-flow ambient-temperature facilities

    NASA Technical Reports Server (NTRS)

    O'Brien, James E.

    1990-01-01

    An experimental technique is described for obtaining time-resolved heat flux measurements with high-frequency response (up to 100 kHz) in a steady-flow ambient-temperature facility. The heat transfer test object is preheated and suddenly injected into an established steady flow. Thin-film gages deposited on the test surface detect the unsteady substrate surface temperature. Analog circuitry designed for use in short-duration facilities and based on one-dimensional semiinfinite heat conduction is used to perform the temperature/heat flux transformation. A detailed description of substrate properties, instrumentation, experimental procedure, and data reduction is given, along with representative results obtained in the stagnation region of a circular cylinder subjected to a wake-dominated unsteady flow. An in-depth discussion of related work is also provided.

  2. A numerical study of three-dimensional flame propagation over thin solids in purely forced concurrent flow including gas-phase radiation

    NASA Astrophysics Data System (ADS)

    Feier, Ioan I., Jr.

    The effect of flame radiation on concurrent-flow flame spread over a thin solid sample of finite width in a low-speed wind tunnel is modeled using three-dimensional full Navier-Stokes equations and three-dimensional flame radiation transfer equations. The formulation includes the conservation of mass, momentum, energy, and species: fuel vapor, oxygen, carbon dioxide and water vapor. The SN discrete ordinates method is used to solve the radiation transfer equation with a mean absorption coefficient kappa = Ckappa p, where kappap is the Planck mean absorption coefficient of the gas mixture. The varying parameter C has a value between 0 and 1; C represents the strength of flame radiation. In addition, the solid fuel absorptivity alpha is varied to ascertain the effect of flame radiation heat feedback to the solid. The flow tunnel modeled has a dimension of 10x10x30 cm, the solid fuel has a width of 6-cm with two 1-cm inert strips as edges. Incoming forced flow velocity (5 cm/s) of 21% oxygen is assumed. For comparison with the three-dimensional results, corresponding two-dimensional computations are also performed. Detailed spatial flame profiles, solid surface profiles, and heat fluxes are presented. Increasing the flame radiation strength decreases the flame length. Although flame radiation provides an additional heat transfer mechanism to preheat the solid, it is insufficient to offset the decreased convective heating due to the shorter flame; the net effect is a slower spread rate. The percentage of unreacted fuel vapor that escapes from the flame is under 2%. It is theorized that some of the pyrolyzed fuel vapor diffuses sideway and reacts at the flame edges. A radiative energy balance is analyzed also. Flame radiative feedback to the solid plays a more important role in two-dimensional flames. With high solid fuel absorptivity, a peak in the flame spread rate occurs at an intermediate value of flame radiation strength---due to the competition between two mechanisms: gas-radiation heat loss weakening the flame and the radiative feedback boosting the solid pyrolysis. Two-dimensional calculations suggest that a larger percentage of unreacted fuel vapor can escape from the flame when the flame radiation strength is high.

  3. Numerical studies of convective heat transfer in an inclined semiannular enclosure

    NASA Technical Reports Server (NTRS)

    Wang, Lin-Wen; Yung, Chain-Nan; Chai, An-Ti; Rashidnia, Nasser

    1989-01-01

    Natural convection heat transfer in a two-dimensional differentially heated semiannular enclosure is studied. The enclosure is isothermally heated and cooled at the inner and outer walls, respectively. A commercial software based on the SIMPLER algorithm was used to simulate the velocity and temperature profiles. Various parameters that affect the momentum and heat transfer processes were examined. These parameters include the Rayleigh number, Prandtl number, radius ratio, and the angle of inclination. A flow regime extending from conduction-dominated to convection-dominated flow was examined. The computed results of heat transfer are presented as a function of flow parameter and geometric factors. It is found that the heat transfer rate attains a minimum when the enclosure is tilted about +50 deg with respect to the gravitational direction.

  4. Analysis of Heat Transfer Phenomenon in Magnetohydrodynamic Casson Fluid Flow Through Cattaneo-Christov Heat Diffusion Theory

    NASA Astrophysics Data System (ADS)

    Ramesh, G. K.; Gireesha, B. J.; Shehzad, S. A.; Abbasi, F. M.

    2017-07-01

    Heat transport phenomenon of two-dimensional magnetohydrodynamic Casson fluid flow by employing Cattaneo-Christov heat diffusion theory is described in this work. The term of heat absorption/generation is incorporated in the mathematical modeling of present flow problem. The governing mathematical expressions are solved for velocity and temperature profiles using RKF 45 method along with shooting technique. The importance of arising nonlinear quantities namely velocity, temperature, skin-friction and temperature gradient are elaborated via plots. It is explored that the Casson parameter retarded the liquid velocity while it enhances the fluid temperature. Further, we noted that temperature and thickness of temperature boundary layer are weaker in case of Cattaneo-Christov heat diffusion model when matched with the profiles obtained for Fourier’s theory of heat flux.

  5. Numerical calculation of the parameters of the efflux from a helium dewar used for cooling of heat shields in a satellite

    NASA Technical Reports Server (NTRS)

    Brendley, K.; Chato, J. C.

    1982-01-01

    The parameters of the efflux from a helium dewar in space were numerically calculated. The flow was modeled as a one dimensional compressible ideal gas with variable properties. The primary boundary conditions are flow with friction and flow with heat transfer and friction. Two PASCAL programs were developed to calculate the efflux parameters: EFFLUZD and EFFLUXM. EFFLUXD calculates the minimum mass flow for the given shield temperatures and shield heat inputs. It then calculates the pipe lengths, diameter, and fluid parameters which satisfy all boundary conditions. Since the diameter returned by EFFLUXD is only rarely of nominal size, EFFLUXM calculates the mass flow and shield heat exchange for given pipe lengths, diameter, and shield temperatures.

  6. An experimental study of heat transfer and film cooling on low aspect ratio turbine nozzles

    NASA Astrophysics Data System (ADS)

    Takeishi, K.; Matsuura, M.; Aoki, S.; Sato, T.

    1989-06-01

    The effects of the three-dimensional flow field on the heat transfer and the film cooling on the endwall, suction and pressure surface of an airfoil were studied using a low speed, fully annular, low aspect h/c = 0.5 vane cascade. The predominant effects that the horseshoe vortex, secondary flow, and nozzle wake increases in the heat transfer and decreases in the film cooling on the suction vane surface and the endwall were clearly demonstrated. In addition, it was demonstrated that secondary flow has little effect on the pressure surface. Pertinent flow visualization of the flow passage was also carried out for better understanding of these complex phenomena. Heat transfer and film cooling on the fully annular vane passage surface is discussed.

  7. Three-Dimensional Modeling of Fluid and Heat Transport in an Accretionary Complex

    NASA Astrophysics Data System (ADS)

    Paula, C. A.; Ge, S.; Screaton, E. J.

    2001-12-01

    As sediments are scraped off of the subducting oceanic crust and accreted to the overriding plate, the rapid loading causes pore pressures in the underthrust sediments to increase. The change in pore pressure drives fluid flow and heat transport within the accretionary complex. Fluid is channeled along higher permeability faults and fractures and expelled at the seafloor. In this investigation, we examined the effects of sediment loading on fluid flow and thermal transport in the decollement at the Barbados Ridge subduction zone. Both the width and thickness of the Barbados Ridge accretionary complex increase from north to south. The presence of mud diapers south of the Tiburon Rise and an observed southward decrease in heat flow measurements indicate that the increased thickness of the southern Barbados accretionary prism affects the transport of chemicals and heat by fluids. The three-dimensional geometry and physical properties of the accretionary complex were utilized to construct a three-dimensional fluid flow/heat transport model. We calculated the pore pressure change due to a period of sediment loading and added this to steady-state pressure conditions to generate initial conditions for transient simulations. We then examined the diffusion of pore pressure and possible perturbation of the thermal regime over time due to loading of the underthrust sediments. The model results show that the sediment-loading event was sufficient to create small temperature fluctuations in the decollement zone. The magnitude of temperature fluctuation in the decollement was greatest at the deformation front but did not vary significantly from north to south of the Tiburon Rise.

  8. Two-Dimensional, Supersonic, Linearized Flow with Heat Addition

    NASA Technical Reports Server (NTRS)

    Lomax, Harvard

    1959-01-01

    Calculations are presented for the forces on a thin supersonic wing underneath which the air is heated. The analysis is limited principally to linearized theory but nonlinear effects are considered. It is shown that significant advantages to external heating would exist if the heat were added well below and ahead of the wing.

  9. Numerical simulation for heat transfer performance in unsteady flow of Williamson fluid driven by a wedge-geometry

    NASA Astrophysics Data System (ADS)

    Hamid, Aamir; Hashim; Khan, Masood

    2018-06-01

    The main concern of this communication is to investigate the two-layer flow of a non-Newtonian rheological fluid past a wedge-shaped geometry. One remarkable aspect of this article is the mathematical formulation for two-dimensional flow of Williamson fluid by incorporating the effect of infinite shear rate viscosity. The impacts of heat transfer mechanism on time-dependent flow field are further studied. At first, we employ the suitable non-dimensional variables to transmute the time-dependent governing flow equations into a system of non-linear ordinary differential equations. The converted conservation equations are numerically integrated subject to physically suitable boundary conditions with the aid of Runge-Kutta Fehlberg integration procedure. The effects of involved pertinent parameters, such as, moving wedge parameter, wedge angle parameter, local Weissenberg number, unsteadiness parameter and Prandtl number on the non-dimensional velocity and temperature distributions have been evaluated. In addition, the numerical values of the local skin friction coefficient and the local Nusselt number are compared and presented through tables. The outcomes of this study indicate that the rate of heat transfer increases with the growth of both wedge angle parameter and unsteadiness parameter. Moreover, a substantial rise in the fluid velocity is observed with enhancement in the viscosity ratio parameter while an opposite trend is true for the non-dimensional temperature field. A comparison is presented between the current study and already published works and results found to be in outstanding agreement. Finally, the main findings of this article are highlighted in the last section.

  10. Modelling of Heat and Moisture Loss Through NBC Ensembles

    DTIC Science & Technology

    1991-11-01

    the heat and moisture transport through various NBC clothing ensembles. The analysis involves simplifying the three dimensional physical problem of... clothing on a person to that of a one dimensional problem of flow through parallel layers of clothing and air. Body temperatures are calculated based on...prescribed work rates, ambient conditions and clothing properties. Sweat response and respiration rates are estimated based on empirical data to

  11. Heat transfer simulation of unsteady swirling flow in a vortex tube

    NASA Astrophysics Data System (ADS)

    Veretennikov, S. V.; Piralishvili, Sh A.; Evdokimov, O. A.; Guryanov, A. I.

    2018-03-01

    Effectiveness of not-adiabatic vortex tube application in the cooling systems of gas turbine blades depends on characteristics of swirling flows formed in the energy separation chamber. An analysis of the flow structure in the vortex tube channels has shown a presence of a complex three-dimensional spiral vortex, formed under relatively high turbulence intensity and vortex core precession. This indicates the presence of a significant unsteady flow in the energy separation chamber of the vortex tube that has a great influence on convective heat transfer of the swirling flow to the inner surface of tube. The paper contains the results of investigation of gas dynamics and heat transfer in the vortex tube taking into account the flow unsteadiness.

  12. Boiling heat transfer during flow of distilled water in an asymmetrically heated rectangular minichannel

    NASA Astrophysics Data System (ADS)

    Strąk, Kinga; Piasecka, Magdalena

    This paper discusses test results concerning flow boiling heat transfer in a minichannel 1.7 mm in depth, 16 mm in width and 180 mm in length. The essential part of the experimental stand was a vertically oriented rectangular minichannel, which was heated asymmetrically with a plate made of Haynes-230 alloy. Distilled water was used as the cooling fluid. Changes in the temperature on the outer side of the heated plate in the central, axially symmetric part of the channel were measured using infrared thermography. Simultaneously, the other side of the heated plate in contact with the fluid was observed through a glass pane to identify the two-phase flow patterns. The one-dimensional model used for the heat transfer analysis took into account the heat flow direction, which was perpendicular to the direction of the fluid flow in the minichannel. The study involved determining local values of the heat transfer coefficient and generating boiling curves. The data for water were compared with the findings reported for the FC-72 fluid.

  13. TEMPEST: A three-dimensional time-dependent computer program for hydrothermal analysis: Volume 1, Numerical methods and input instructions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trent, D.S.; Eyler, L.L.; Budden, M.J.

    This document describes the numerical methods, current capabilities, and the use of the TEMPEST (Version L, MOD 2) computer program. TEMPEST is a transient, three-dimensional, hydrothermal computer program that is designed to analyze a broad range of coupled fluid dynamic and heat transfer systems of particular interest to the Fast Breeder Reactor thermal-hydraulic design community. The full three-dimensional, time-dependent equations of motion, continuity, and heat transport are solved for either laminar or turbulent fluid flow, including heat diffusion and generation in both solid and liquid materials. 10 refs., 22 figs., 2 tabs.

  14. Unsteady Magnetized Flow and Heat Transfer of a Viscoelastic fluid over a Stretching Surface

    NASA Astrophysics Data System (ADS)

    Ghosh, Sushil Kumar

    2017-12-01

    This paper is to study the flow of heated ferro-fluid over a stretching sheet under the influence of magnetic field. The fluid considered in the present investigation is a mixture of blood as well as fluid-dispersed magnetic nano particles and under this context blood is found to be the appropriate choice of viscoelastic, Walter's B fluid. The objective of the present work is to study the effect of various parameters found in the mathematical analysis. Taking into account the blood has zero electrical conductivity, magnetization effect has been considered in the governing equation of the present study with the use of ferro-fluid dynamics principle. By introducing appropriate non-dimensional variables into the governing equations of unsteady two-dimensional flow of viscoelastic fluid with heat transfer are converted to a set of ordinary differential equations with appropriate boundary conditions. Newton's linearization technique has been employed for the solution of non-linear ordinary differential equations. Important results found in the present investigation are the substantial influence of ferro-magnetic parameter, Prandlt number and the parameter associated with the thermal conductivity on the flow and heat transfer. It is observed that the presence of magnetic dipole essentially reduces the flow velocity in the vertical direction and that helps to damage the cancer cells in the tumor region.

  15. Single-Shot, Volumetrically Illuminated, Three-Dimensional, Tomographic Laser-Induced-Fluorescence Imaging in a Gaseous Free Jet

    DTIC Science & Technology

    2016-04-28

    Single- shot , volumetrically illuminated, three- dimensional, tomographic laser-induced- fluorescence imaging in a gaseous free jet Benjamin R. Halls...us.af.mil Abstract: Single- shot , tomographic imaging of the three-dimensional concentration field is demonstrated in a turbulent gaseous free jet in co-flow...2001). 6. K. M. Tacina and W. J. A. Dahm, “Effects of heat release on turbulent shear flows, Part 1. A general equivalence principle for non-buoyant

  16. Flow of 3D Eyring-Powell fluid by utilizing Cattaneo-Christov heat flux model and chemical processes over an exponentially stretching surface

    NASA Astrophysics Data System (ADS)

    Hayat, Tanzila; Nadeem, S.

    2018-03-01

    This paper examines the three dimensional Eyring-Powell fluid flow over an exponentially stretching surface with heterogeneous-homogeneous chemical reactions. A new model of heat flux suggested by Cattaneo and Christov is employed to study the properties of relaxation time. From the present analysis we observe that there is an inverse relationship between temperature and thermal relaxation time. The temperature in Cattaneo-Christov heat flux model is lesser than the classical Fourier's model. In this paper the three dimensional Cattaneo-Christov heat flux model over an exponentially stretching surface is calculated first time in the literature. For negative values of temperature exponent, temperature profile firstly intensifies to its most extreme esteem and after that gradually declines to zero, which shows the occurrence of phenomenon (SGH) "Sparrow-Gregg hill". Also, for higher values of strength of reaction parameters, the concentration profile decreases.

  17. Laminar Heating Validation of the OVERFLOW Code

    NASA Technical Reports Server (NTRS)

    Lillard, Randolph P.; Dries, Kevin M.

    2005-01-01

    OVERFLOW, a structured finite difference code, was applied to the solution of hypersonic laminar flow over several configurations assuming perfect gas chemistry. By testing OVERFLOW's capabilities over several configurations encompassing a variety of flow physics a validated laminar heating was produced. Configurations tested were a flat plate at 0 degrees incidence, a sphere, a compression ramp, and the X-38 re-entry vehicle. This variety of test cases shows the ability of the code to predict boundary layer flow, stagnation heating, laminar separation with re-attachment heating, and complex flow over a three-dimensional body. In addition, grid resolutions studies were done to give recommendations for the correct number of off-body points to be applied to generic problems and for wall-spacing values to capture heat transfer and skin friction. Numerical results show good comparison to the test data for all the configurations.

  18. Fluid flow and heat transfer characteristics of an enclosure with fin as a top cover of a solar collector

    NASA Astrophysics Data System (ADS)

    Ambarita, H.; Ronowikarto, A. D.; Siregar, R. E. T.; Setyawan, E. Y.

    2018-03-01

    To reduce heat loses in a flat plate solar collector, double glasses cover is employed. Several studies show that the heat loss from the glass cover is still very significant in comparison with other losses. Here, double glasses cover with attached fins is proposed. In the present work, the fluid flow and heat transfer characteristics of the enclosure between the double glass cover are investigated numerically. The objective is to examine the effect of the fin to the heat transfer rate of the cover. Two-dimensional governing equations are developed. The governing equations and the boundary conditions are solved using commercial Computational Fluid Dynamics code. The fluid flow and heat transfer characteristics are plotted, and numerical results are compared with empirical correlation. The results show that the presence of the fin strongly affects the fluid flow and heat transfer characteristics. The fin can reduce the heat transfer rate up to 22.42% in comparison with double glasses cover without fins.

  19. Rocket injector anomalies study. Volume 1: Description of the mathematical model and solution procedure

    NASA Technical Reports Server (NTRS)

    Przekwas, A. J.; Singhal, A. K.; Tam, L. T.

    1984-01-01

    The capability of simulating three dimensional two phase reactive flows with combustion in the liquid fuelled rocket engines is demonstrated. This was accomplished by modifying an existing three dimensional computer program (REFLAN3D) with Eulerian Lagrangian approach to simulate two phase spray flow, evaporation and combustion. The modified code is referred as REFLAN3D-SPRAY. The mathematical formulation of the fluid flow, heat transfer, combustion and two phase flow interaction of the numerical solution procedure, boundary conditions and their treatment are described.

  20. Topographically driven groundwater flow and the San Andreas heat flow paradox revisited

    USGS Publications Warehouse

    Saffer, D.M.; Bekins, B.A.; Hickman, S.

    2003-01-01

    Evidence for a weak San Andreas Fault includes (1) borehole heat flow measurements that show no evidence for a frictionally generated heat flow anomaly and (2) the inferred orientation of ??1 nearly perpendicular to the fault trace. Interpretations of the stress orientation data remain controversial, at least in close proximity to the fault, leading some researchers to hypothesize that the San Andreas Fault is, in fact, strong and that its thermal signature may be removed or redistributed by topographically driven groundwater flow in areas of rugged topography, such as typify the San Andreas Fault system. To evaluate this scenario, we use a steady state, two-dimensional model of coupled heat and fluid flow within cross sections oriented perpendicular to the fault and to the primary regional topography. Our results show that existing heat flow data near Parkfield, California, do not readily discriminate between the expected thermal signature of a strong fault and that of a weak fault. In contrast, for a wide range of groundwater flow scenarios in the Mojave Desert, models that include frictional heat generation along a strong fault are inconsistent with existing heat flow data, suggesting that the San Andreas Fault at this location is indeed weak. In both areas, comparison of modeling results and heat flow data suggest that advective redistribution of heat is minimal. The robust results for the Mojave region demonstrate that topographically driven groundwater flow, at least in two dimensions, is inadequate to obscure the frictionally generated heat flow anomaly from a strong fault. However, our results do not preclude the possibility of transient advective heat transport associated with earthquakes.

  1. 1DTempPro: analyzing temperature profiles for groundwater/surface-water exchange.

    PubMed

    Voytek, Emily B; Drenkelfuss, Anja; Day-Lewis, Frederick D; Healy, Richard; Lane, John W; Werkema, Dale

    2014-01-01

    A new computer program, 1DTempPro, is presented for the analysis of vertical one-dimensional (1D) temperature profiles under saturated flow conditions. 1DTempPro is a graphical user interface to the U.S. Geological Survey code Variably Saturated 2-Dimensional Heat Transport (VS2DH), which numerically solves the flow and heat-transport equations. Pre- and postprocessor features allow the user to calibrate VS2DH models to estimate vertical groundwater/surface-water exchange and also hydraulic conductivity for cases where hydraulic head is known. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  2. Documentation of Two- and Three-Dimensional Hypersonic Shock Wave/Turbulent Boundary Layer Interaction Flows

    NASA Technical Reports Server (NTRS)

    Kussoy, Marvin I.; Horstman, Clifford C.

    1989-01-01

    Experimental data for a series of two- and three-dimensional shock wave/turbulent boundary layer interaction flows at Mach 7 are presented. Test bodies, composed of simple geometric shapes, were designed to generate flows with varying degrees of pressure gradient, boundary-layer separation, and turning angle. The data include surface-pressure and heat-transfer distributions as well as limited mean-flow-field surveys in both the undisturbed and the interaction regimes. The data are presented in a convenient form for use in validating existing or future computational models of these generic hypersonic flows.

  3. One-dimensional model and solutions for creeping gas flows in the approximation of uniform pressure

    NASA Astrophysics Data System (ADS)

    Vedernikov, A.; Balapanov, D.

    2016-11-01

    A model, along with analytical and numerical solutions, is presented to describe a wide variety of one-dimensional slow flows of compressible heat-conductive fluids. The model is based on the approximation of uniform pressure valid for the flows, in which the sound propagation time is much shorter than the duration of any meaningful density variation in the system. The energy balance is described by the heat equation that is solved independently. This approach enables the explicit solution for the fluid velocity to be obtained. Interfacial and volumetric heat and mass sources as well as boundary motion are considered as possible sources of density variation in the fluid. A set of particular tasks is analyzed for different motion sources in planar, axial, and central symmetries in the quasistationary limit of heat conduction (i.e., for large Fourier number). The analytical solutions are in excellent agreement with corresponding numerical solutions of the whole system of the Navier-Stokes equations. This work deals with the ideal gas. The approach is also valid for other equations of state.

  4. Exact finite elements for conduction and convection

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.; Dechaumphai, P.; Tamma, K. K.

    1981-01-01

    An approach for developing exact one dimensional conduction-convection finite elements is presented. Exact interpolation functions are derived based on solutions to the governing differential equations by employing a nodeless parameter. Exact interpolation functions are presented for combined heat transfer in several solids of different shapes, and for combined heat transfer in a flow passage. Numerical results demonstrate that exact one dimensional elements offer advantages over elements based on approximate interpolation functions.

  5. Flow regimes and mechanistic modeling of critical heat flux under subcooled flow boiling conditions

    NASA Astrophysics Data System (ADS)

    Le Corre, Jean-Marie

    Thermal performance of heat flux controlled boiling heat exchangers are usually limited by the Critical Heat Flux (CHF) above which the heat transfer degrades quickly, possibly leading to heater overheating and destruction. In an effort to better understand the phenomena, a literature review of CHF experimental visualizations under subcooled flow boiling conditions was performed and systematically analyzed. Three major types of CHF flow regimes were identified (bubbly, vapor clot and slug flow regime) and a CHF flow regime map was developed, based on a dimensional analysis of the phenomena and available data. It was found that for similar geometric characteristics and pressure, a Weber number (We)/thermodynamic quality (x) map can be used to predict the CHF flow regime. Based on the experimental observations and the review of the available CHF mechanistic models under subcooled flow boiling conditions, hypothetical CHF mechanisms were selected for each CHF flow regime, all based on a concept of wall dry spot overheating, rewetting prevention and subsequent dry spot spreading. It is postulated that a high local wall superheat occurs locally in a dry area of the heated wall, due to a cyclical event inherent to the considered CHF two-phase flow regime, preventing rewetting (Leidenfrost effect). The selected modeling concept has the potential to span the CHF conditions from highly subcooled bubbly flow to early stage of annular flow. A numerical model using a two-dimensional transient thermal analysis of the heater undergoing nucleation was developed to mechanistically predict CHF in the case of a bubbly flow regime. In this type of CHF two-phase flow regime, the high local wall superheat occurs underneath a nucleating bubble at the time of bubble departure. The model simulates the spatial and temporal heater temperature variations during nucleation at the wall, accounting for the stochastic nature of the boiling phenomena. The model has also the potential to evaluate the post-DNB heater temperature up to the point of heater melting. Validation of the proposed model was performed using detailed measured wall boiling parameters near CHF, thereby bypassing most needed constitutive relations. It was found that under limiting nucleation conditions; a peak wall temperature at the time of bubble departure can be reached at CHF preventing wall cooling by quenching. The simulations show that the resulting dry patch can survive the surrounding quenching event, preventing further nucleation and leading to a fast heater temperature increase. For more practical applications, the model was applied at known CHF conditions in simple geometry coupled with one-dimensional and three-dimensional (CFD) codes. It was found that, in the case where CHF occurs under bubbly flow conditions, the local wall superheat underneath nucleating bubbles is predicted to reach the Leidenfrost temperature. However, a better knowledge of statistical variations in wall boiling parameters would be necessary to correctly capture the CHF trends with mass flux (or Weber number). In addition, consideration of relevant parameter influences on the Leidenfrost temperature and consideration of interfacial microphysics at the wall would allow improved simulation of the wall rewetting prevention and subsequent dry patch spreading.

  6. Blade Heat Transfer Measurements and Prediction in a Transonic Turbine Cascade

    NASA Technical Reports Server (NTRS)

    Giel, P. W.; VanFossen, G. J.; Boyle, R. J.; Thurman, D. R.; Civinskas, K. C.

    1999-01-01

    Detailed heat transfer measurements and predictions are given for a turbine rotor with 136 deg of turning and an axial chord of 12.7 cm. Data were obtained for inlet Reynolds numbers of 0.5 and 1.0 x 10(exp 6), for isentropic exit Mach numbers of 1.0 and 1.3, and for inlet turbulence intensities of 0.25% and 7.0%. Measurements were made in a linear cascade having a highly three-dimensional flow field resulting from thick inlet boundary layers. The purpose of the work is to provide benchmark quality data for three-dimensional CFD code and model verification. Data were obtained by a steady-state technique using a heated, isothermal blade. Heat fluxes were determined from a calibrated resistance layer in conjunction with a surface temperature measured by calibrated liquid crystals. The results show the effects of strong secondary vortical flows, laminar-to-turbulent transition, shock impingement, and increased inlet turbulence on the surface heat transfer.

  7. On the calculation of dynamic and heat loads on a three-dimensional body in a hypersonic flow

    NASA Astrophysics Data System (ADS)

    Bocharov, A. N.; Bityurin, V. A.; Evstigneev, N. M.; Fortov, V. E.; Golovin, N. N.; Petrovskiy, V. P.; Ryabkov, O. I.; Teplyakov, I. O.; Shustov, A. A.; Solomonov, Yu S.

    2018-01-01

    We consider a three-dimensional body in a hypersonic flow at zero angle of attack. Our aim is to estimate heat and aerodynamic loads on specific body elements. We are considering a previously developed code to solve coupled heat- and mass-transfer problem. The change of the surface shape is taken into account by formation of the iterative process for the wall material ablation. The solution is conducted on the multi-graphics-processing-unit (multi-GPU) cluster. Five Mach number points are considered, namely for M = 20-28. For each point we estimate body shape after surface ablation, heat loads on the surface and aerodynamic loads on the whole body and its elements. The latter is done using Gauss-type quadrature on the surface of the body. The comparison of the results for different Mach numbers is performed. We also estimate the efficiency of the Navier-Stokes code on multi-GPU and central processing unit architecture for the coupled heat and mass transfer problem.

  8. Computational analysis of plane and parabolic flow of MHD Carreau fluid with buoyancy and exponential heat source effects

    NASA Astrophysics Data System (ADS)

    Krishna, P. Mohan; Sandeep, N.; Sharma, Ram Prakash

    2017-05-01

    This paper presents the two-dimensional magnetohydrodynamic Carreau fluid flow over a plane and parabolic regions in the form of buoyancy and exponential heat source effects. Soret and Dufour effects are used to examine the heat and mass transfer process. The system of ODE's is obtained by utilizing similarity transformations. The RK-based shooting process is employed to generate the numerical solutions. The impact of different parameters of interest on fluid flow, concentration and thermal fields is characterized graphically. Tabular results are presented to discuss the wall friction, reduced Nusselt and Sherwood numbers. It is seen that the flow, thermal and concentration boundary layers of the plane and parabolic flows of Carreau fluid are non-uniform.

  9. Oscillatory/Chaotic Thermocapillary Flow Induced by Radiant Heating

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth J.

    1998-01-01

    There is a continuing need to understand the fluid physics occurring under low gravity conditions in processes such as crystal growth, materials processing, and the movement of bubbles or droplets. The fluid flow in such situations is often caused by a gradient in interfacial tension. If a temperature gradient is created due to a heat source, the resulting flow is called thermocapillary flow, a special case of Marangoni Convection. In this study, an experimental investigation was conducted using silicone oil in cylindrical containers with a laser heat source at the free surface. It was desired to determine the conditions under which steady, axisymmetrical thermocapillary flow becomes unstable and oscillatory three-dimensional flow states develop. The critical Marangoni number for each observed oscillatory state was measured as a function of the container aspect ratio and the dynamic Bond number, a measure of buoyant force versus ii thermocapillary force. Various oscillatory modes were observed during three- dimensional convection, and chaotic flow was reached in one test condition. The critical Marangoni numbers are compared with those measured in previous studies, and the power spectra and phase trajectories of the instantaneous surface temperature distributions are used to characterize the routes of transitions to the chaotic flow state. Results show that only superharmonic modes appear in the routes to chaos while infinite number of subharmonic modes occur in flow transitions for pure Rayleigh convection.

  10. Numerical modeling of coupled water flow and heat transport in soil and snow

    Treesearch

    Thijs J. Kelleners; Jeremy Koonce; Rose Shillito; Jelle Dijkema; Markus Berli; Michael H. Young; John M. Frank; William Massman

    2016-01-01

    A one-dimensional vertical numerical model for coupled water flow and heat transport in soil and snow was modified to include all three phases of water: vapor, liquid, and ice. The top boundary condition in the model is driven by incoming precipitation and the surface energy balance. The model was applied to three different terrestrial systems: A warm desert bare...

  11. Leading edge film cooling effects on turbine blade heat transfer

    NASA Technical Reports Server (NTRS)

    Garg, Vijay K.; Gaugler, Raymond E.

    1995-01-01

    An existing three dimensional Navier-Stokes code, modified to include film cooling considerations, has been used to study the effect of spanwise pitch of shower-head holes and coolant to mainstream mass flow ratio on the adiabatic effectiveness and heat transfer coefficient on a film-cooled turbine vane. The mainstream is akin to that under real engine conditions with stagnation temperature = 1900 K and stagnation pressure = 3 MPa. It is found that with the coolant to mainstream mass flow ratio fixed, reducing P, the spanwise pitch for shower-head holes, from 7.5 d to 3.0 d, where d is the hole diameter, increases the average effectiveness considerably over the blade surface. However, when P/d= 7.5, increasing the coolant mass flow increases the effectiveness on the pressure surface but reduces it on the suction surface due to coolant jet lift-off. For P/d = 4.5 or 3.0, such an anomaly does not occur within the range of coolant to mainstream mass flow ratios analyzed. In all cases, adiabatic effectiveness and heat transfer coefficient are highly three-dimensional.

  12. Thermographic Phosphor Measurements of Shock-Shock Interactions on a Swept Cylinder

    NASA Technical Reports Server (NTRS)

    Jones, Michelle L.; Berry, Scott A.

    2013-01-01

    The effects of fin leading-edge radius and sweep angle on peak heating rates due to shock-shock interactions were investigated in the NASA Langley Research Center 20-inch Mach 6 Air Tunnel. The fin model leading edges, which represent cylindrical leading edges or struts on hypersonic vehicles, were varied from 0.25 inches to 0.75 inches in radius. A 9deg wedge generated a planar oblique shock at 16.7deg to the flow that intersected the fin bow shock, producing a shock-shock interaction that impinged on the fin leading edge. The fin angle of attack was varied from 0deg (normal to the free-stream) to 15deg and 25deg swept forward. Global temperature data was obtained from the surface of the fused silica fins using phosphor thermography. Metal oil flow models with the same geometries as the fused silica models were used to visualize the streamline patterns for each angle of attack. High-speed zoom-schlieren videos were recorded to show the features and temporal unsteadiness of the shock-shock interactions. The temperature data were analyzed using one-dimensional semi-infinite as well as one- and two-dimensional finite-volume methods to determine the proper heat transfer analysis approach to minimize errors from lateral heat conduction due to the presence of strong surface temperature gradients induced by the shock interactions. The general trends in the leading-edge heat transfer behavior were similar for the three shock-shock interactions, respectively, between the test articles with varying leading-edge radius. The dimensional peak heat transfer coefficient augmentation increased with decreasing leading-edge radius. The dimensional peak heat transfer output from the two-dimensional code was about 20% higher than the value from a standard, semi-infinite onedimensional method.

  13. The heat transfer coefficient determination with the use of the Beck-Trefftz method in flow boiling in a minichannel

    NASA Astrophysics Data System (ADS)

    Strąk, Kinga; Maciejewska, Beata; Piasecka, Magdalena

    2018-06-01

    In this paper, the solution of the two-dimensional inverse heat transfer problem with the use of the Beck method coupled with the Trefftz method is proposed. This method was applied for solving an inverse heat conduction problem. The aim of the calculation was to determine the boiling heat transfer coefficient on the basis of temperature measurements taken by infrared thermography. The experimental data of flow boiling heat transfer in a single vertical minichannel of 1.7 mm depth, heated asymmetrically, were used in calculations. The heating element for two refrigerants (FC-72 and HFE-7100, 3M) flowing in the minichannel was the plate enhanced on the side contacting with the fluid. The analysis of the results was performed on the basis of experimental series obtained for the same heat flux and two different mass flow velocities. The results were presented as infrared thermographs, heated wall temperature and heat transfer coefficient as a function of the distance from the minichannel inlet. The results was discussed for the subcooled and saturated boiling regions separately.

  14. Finite analytic numerical solution of heat transfer and flow past a square channel cavity

    NASA Technical Reports Server (NTRS)

    Chen, C.-J.; Obasih, K.

    1982-01-01

    A numerical solution of flow and heat transfer characteristics is obtained by the finite analytic method for a two dimensional laminar channel flow over a two-dimensional square cavity. The finite analytic method utilizes the local analytic solution in a small element of the problem region to form the algebraic equation relating an interior nodal value with its surrounding nodal values. Stable and rapidly converged solutions were obtained for Reynolds numbers ranging to 1000 and Prandtl number to 10. Streamfunction, vorticity and temperature profiles are solved. Local and mean Nusselt number are given. It is found that the separation streamlines between the cavity and channel flow are concave into the cavity at low Reynolds number and convex at high Reynolds number (Re greater than 100) and for square cavity the mean Nusselt number may be approximately correlated with Peclet number as Nu(m) = 0.365 Pe exp 0.2.

  15. Three-dimensional couette flow of dusty fluid with heat transfer in the presence of magnetic field

    NASA Astrophysics Data System (ADS)

    Gayathri, R.; Govindarajan, A.; Sasikala, R.

    2018-04-01

    This paper is focused on the mathematical modelling of three-dimensional couette flow and heat transfer of a dusty fluid between two infinite horizontal parallel porous flat plates in the presence of an induced magnetic field. The problem is formulated using a continuum two-phase model and the resulting equations are solved analytically. The lower plate is stationary while the upper plate is undergoing uniform motion in its plane. These plates are, respectively subjected to transverse exponential injection and its corresponding removal by constant suction. Due to this type of injection velocity, the flow becomes three dimensional. The closed-form expressions for velocity and temperature fields of both the fluid and dust phase are obtained by solving the governing partial differentiation equations using the perturbation method. A selective set of graphical results is presented and discussed to show interesting features of the problem. It is found that the velocity profiles of both fluid and dust particles decrease due to the increase of (magnetic parameter) Hartmann number.

  16. Programming a hillslope water movement model on the MPP

    NASA Technical Reports Server (NTRS)

    Devaney, J. E.; Irving, A. R.; Camillo, P. J.; Gurney, R. J.

    1987-01-01

    A physically based numerical model was developed of heat and moisture flow within a hillslope on a parallel architecture computer, as a precursor to a model of a complete catchment. Moisture flow within a catchment includes evaporation, overland flow, flow in unsaturated soil, and flow in saturated soil. Because of the empirical evidence that moisture flow in unsaturated soil is mainly in the vertical direction, flow in the unsaturated zone can be modeled as a series of one dimensional columns. This initial version of the hillslope model includes evaporation and a single column of one dimensional unsaturated zone flow. This case has already been solved on an IBM 3081 computer and is now being applied to the massively parallel processor architecture so as to make the extension to the one dimensional case easier and to check the problems and benefits of using a parallel architecture machine.

  17. Aerodynamic and heat transfer analysis of the low aspect ratio turbine

    NASA Astrophysics Data System (ADS)

    Sharma, O. P.; Nguyen, P.; Ni, R. H.; Rhie, C. M.; White, J. A.

    1987-06-01

    The available two- and three-dimensional codes are used to estimate external heat loads and aerodynamic characteristics of a highly loaded turbine stage in order to demonstrate state-of-the-art methodologies in turbine design. By using data for a low aspect ratio turbine, it is found that a three-dimensional multistage Euler code gives good averall predictions for the turbine stage, yielding good estimates of the stage pressure ratio, mass flow, and exit gas angles. The nozzle vane loading distribution is well predicted by both the three-dimensional multistage Euler and three-dimensional Navier-Stokes codes. The vane airfoil surface Stanton number distributions, however, are underpredicted by both two- and three-dimensional boundary value analysis.

  18. Three-dimensional flow in the Florida platform: Theoretical analysis of Kohout convection at its type locality

    USGS Publications Warehouse

    Hughes, J.D.; Vacher, H. Leonard; Sanford, W.E.

    2007-01-01

    Kohout convection is the name given to the circulation of saline groundwater deep within carbonate platforms, first proposed by F.A. Kohout in the 1960s for south Florida. It is now seen as an Mg pump for dolomitization by seawater. As proposed by Kohout, cold seawater is drawn into the Florida platform from the deep Straits of Florida as part of a geothermally driven circulation in which the seawater then rises in the interior of the platform to mix and exit with the discharging meteoric water of the Floridan aquifer system. Simulation of the asymmetrically emergent Florida platform with the new three-dimensional (3-D), finite-element groundwater flow and transport model SUTRA-MS, which couples salinity- and temperature-dependent density variations, allows analysis of how much of the cyclic flow is due to geothermal heating (free convection) as opposed to mixing with meteoric water discharging to the shoreline (forced convection). Simulation of the system with and without geothermal heating reveals that the inflow of seawater from the Straits of Florida would be similar without the heat flow, but the distribution would differ significantly. The addition of heat flow reduces the asymmetry of the circulation: it decreases seawater inflows on the Atlantic side by 8% and on the Guff of Mexico side by half. The study illustrates the complex interplay of freshwater-saltwater mixing, geothermal heat flow, and projected dolomitization in complicated 3-D settings with asymmetric boundary conditions and realistic horizontal and vertical variations in hydraulic properties. ?? 2007 The Geological Society of America.

  19. Channeling at the base of the lithosphere during the lateral flow of plume material beneath flow line hot spots

    NASA Astrophysics Data System (ADS)

    Sleep, Norman H.

    2008-08-01

    Chains of volcanic edifices lie along flow lines between plume-fed hot spots and the thin lithosphere at ridge axes. Discovery and Euterpe/Musicians Seamounts are two examples. An attractive hypothesis is that buoyant plume material flows along the base of the lithosphere perpendicular to isochrons. The plume material may conceivably flow in a broad front or flow within channels convectively eroded into the base to the lithosphere. A necessary but not sufficient condition for convective channeling is that the expected stagnant-lid heat flow for the maximum temperature of the plume material is comparable to the half-space surface heat flow of the oceanic lithosphere. Two-dimensional and three-dimensional numerical calculations confirm this inference. A second criterion for significant convective erosion is that it needs to occur before the plume material thins by lateral spreading. Scaling relationships indicate spreading and convection are closely related. Mathematically, the Nusselt number (ratio of convective to conductive heat flow in the plume material) scales with the flux (volume per time per length of flow front) of the plume material. A blob of unconfined plume material thus spreads before the lithosphere thins much and evolves to a slowly spreading and slowly convecting warm region in equilibrium with conduction into the base of the overlying lithosphere. Three-dimensional calculations illustrate this long-lasting (and hence observable) state of plume material away from its plume source. A different flow domain occurs around a stationary hot plume that continuously supplies hot material. The plume convectively erodes the overlying lithosphere, trapping the plume material near its orifice. The region of lithosphere underlain by plume material grows toward the ridge axis and laterally by convective thinning of the lithosphere at its edges. The hottest plume material channels along flow lines. Geologically, the regions of lithosphere underlain by either warm or hot plume material are likely to extend laterally away from the volcanic edifices whether or not channeling occurs.

  20. Deterministic Stress Modeling of Hot Gas Segregation in a Turbine

    NASA Technical Reports Server (NTRS)

    Busby, Judy; Sondak, Doug; Staubach, Brent; Davis, Roger

    1998-01-01

    Simulation of unsteady viscous turbomachinery flowfields is presently impractical as a design tool due to the long run times required. Designers rely predominantly on steady-state simulations, but these simulations do not account for some of the important unsteady flow physics. Unsteady flow effects can be modeled as source terms in the steady flow equations. These source terms, referred to as Lumped Deterministic Stresses (LDS), can be used to drive steady flow solution procedures to reproduce the time-average of an unsteady flow solution. The goal of this work is to investigate the feasibility of using inviscid lumped deterministic stresses to model unsteady combustion hot streak migration effects on the turbine blade tip and outer air seal heat loads using a steady computational approach. The LDS model is obtained from an unsteady inviscid calculation. The LDS model is then used with a steady viscous computation to simulate the time-averaged viscous solution. Both two-dimensional and three-dimensional applications are examined. The inviscid LDS model produces good results for the two-dimensional case and requires less than 10% of the CPU time of the unsteady viscous run. For the three-dimensional case, the LDS model does a good job of reproducing the time-averaged viscous temperature migration and separation as well as heat load on the outer air seal at a CPU cost that is 25% of that of an unsteady viscous computation.

  1. Network Simulation solution of free convective flow from a vertical cone with combined effect of non- uniform surface heat flux and heat generation or absorption

    NASA Astrophysics Data System (ADS)

    Immanuel, Y.; Pullepu, Bapuji; Sambath, P.

    2018-04-01

    A two dimensional mathematical model is formulated for the transitive laminar free convective, incompressible viscous fluid flow over vertical cone with variable surface heat flux combined with the effects of heat generation and absorption is considered . using a powerful computational method based on thermoelectric analogy called Network Simulation Method (NSM0, the solutions of governing nondimensionl coupled, unsteady and nonlinear partial differential conservation equations of the flow that are obtained. The numerical technique is always stable and convergent which establish high efficiency and accuracy by employing network simulator computer code Pspice. The effects of velocity and temperature profiles have been analyzed for various factors, namely Prandtl number Pr, heat flux power law exponent n and heat generation/absorption parameter Δ are analyzed graphically.

  2. The stress heat-flow paradox and thermal results from Cajon Pass

    USGS Publications Warehouse

    Lachenbruch, A.H.; Sass, J.H.

    1988-01-01

    Conventional friction models predict a substantial thermal anomaly associated with active traces of strike-slip faults, but no such anomaly is observed from over 100 heat-flow determinations along 1000 km of the San Andreas fault. The Cajon Pass well is being drilled to bring deep heat-flow and stress data to bear on this paradox. Preliminary stress results from Cajon Pass and a new interpretation of regional data by Mark D. Zoback and colleagues suggests that the maximum compressive stress near the fault is almost normal to the trace, and hence the resolved shear stress is low and the fault, weak. The heat-flow data show large variability with depth, probably from three-dimensional structure, and an overall decrease from over 90 mW/m2 in the upper kilometer to less than 80 mW/m2 in the lower 300 m with no evidence of advective heat transfer. -from Authors

  3. Numerical modeling of heat transfer during hydrogen absorption in thin double-layered annular ZrCo beds

    NASA Astrophysics Data System (ADS)

    Cui, Yehui; Zeng, Xiangguo; Kou, Huaqin; Ding, Jun; Wang, Fang

    2018-06-01

    In this work a three-dimensional (3D) hydrogen absorption model was proposed to study the heat transfer behavior in thin double-layered annular ZrCo beds. Numerical simulations were performed to investigate the effects of conversion layer thickness, thermal conductivity, cooling medium and its flow velocity on the efficiency of heat transfer. Results reveal that decreasing the layer thickness and improving the thermal conductivity enhance the ability of heat transfer. Compared with nitrogen and helium, water appears to be a better medium for cooling. In order to achieve the best efficiency of heat transfer, the flow velocity needs to be maximized.

  4. Transitions to improved confinement regimes induced by changes in heating in zero-dimensional models for tokamak plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, H.; Chapman, S. C.; Max Planck Institute for the Physics of Complex Systems, Dresden

    2014-06-15

    It is shown that rapid substantial changes in heating rate can induce transitions to improved energy confinement regimes in zero-dimensional models for tokamak plasma phenomenology. We examine for the first time the effect of step changes in heating rate in the models of Kim and Diamond [Phys. Rev. Lett. 90, 185006 (2003)] and Malkov and Diamond [Phys. Plasmas 16, 012504 (2009)], which nonlinearly couple the evolving temperature gradient, micro-turbulence, and a mesoscale flow; and in the extension of Zhu et al. [Phys. Plasmas 20, 042302 (2013)], which couples to a second mesoscale flow component. The temperature gradient rises, as doesmore » the confinement time defined by analogy with the fusion context, while micro-turbulence is suppressed. This outcome is robust against variation of heating rise time and against introduction of an additional variable into the model. It is also demonstrated that oscillating changes in heating rate can drive the level of micro-turbulence through a period-doubling path to chaos, where the amplitude of the oscillatory component of the heating rate is the control parameter.« less

  5. Parametric analyses of DEMO Divertor using two dimensional transient thermal hydraulic modelling

    NASA Astrophysics Data System (ADS)

    Domalapally, Phani; Di Caro, Marco

    2018-05-01

    Among the options considered for cooling of the Plasma facing components of the DEMO reactor, water cooling is a conservative option because of its high heat removal capability. In this work a two-dimensional transient thermal hydraulic code is developed to support the design of the divertor for the projected DEMO reactor with water as a coolant. The mathematical model accounts for transient 2D heat conduction in the divertor section. Temperature-dependent properties are used for more accurate analysis. Correlations for single phase flow forced convection, partially developed subcooled nucleate boiling, fully developed subcooled nucleate boiling and film boiling are used to calculate the heat transfer coefficients on the channel side considering the swirl flow, wherein different correlations found in the literature are compared against each other. Correlation for the Critical Heat Flux is used to estimate its limit for a given flow conditions. This paper then investigates the results of the parametric analysis performed, whereby flow velocity, diameter of the coolant channel, thickness of the coolant pipe, thickness of the armor material, inlet temperature and operating pressure affect the behavior of the divertor under steady or transient heat fluxes. This code will help in understanding the basic parameterś effect on the behavior of the divertor, to achieve a better design from a thermal hydraulic point of view.

  6. Viscous dissipation and Joule heating effects in MHD 3D flow with heat and mass fluxes

    NASA Astrophysics Data System (ADS)

    Muhammad, Taseer; Hayat, Tasawar; Shehzad, Sabir Ali; Alsaedi, Ahmed

    2018-03-01

    The present research explores the three-dimensional stretched flow of viscous fluid in the presence of prescribed heat (PHF) and concentration (PCF) fluxes. Mathematical formulation is developed in the presence of chemical reaction, viscous dissipation and Joule heating effects. Fluid is electrically conducting in the presence of an applied magnetic field. Appropriate transformations yield the nonlinear ordinary differential systems. The resulting nonlinear system has been solved. Graphs are plotted to examine the impacts of physical parameters on the temperature and concentration distributions. Skin friction coefficients and local Nusselt and Sherwood numbers are computed and analyzed.

  7. Characteristics of melting heat transfer during flow of Carreau fluid induced by a stretching cylinder.

    PubMed

    Hashim; Khan, Masood; Saleh Alshomrani, Ali

    2017-01-01

    This article provides a comprehensive analysis of the energy transportation by virtue of the melting process of high-temperature phase change materials. We have developed a two-dimensional model for the boundary layer flow of non-Newtonian Carreau fluid. It is assumed that flow is caused by stretching of a cylinder in the axial direction by means of a linear velocity. Adequate local similarity transformations are employed to determine a set of non-linear ordinary differential equations which govern the flow problem. Numerical solutions to the resultant non-dimensional boundary value problem are computed via the fifth-order Runge-Kutta Fehlberg integration scheme. The solutions are captured for both zero and non-zero curvature parameters, i.e., for flow over a flat plate or flow over a cylinder. The flow and heat transfer attributes are witnessed to be prompted in an intricate manner by the melting parameter, the curvature parameter, the Weissenberg number, the power law index and the Prandtl number. We determined that one of the possible ways to boost the fluid velocity is to increase the melting parameter. Additionally, both the velocity of the fluid and the momentum boundary layer thickness are higher in the case of flow over a stretching cylinder. As expected, the magnitude of the skin friction and the rate of heat transfer decrease by raising the values of the melting parameter and the Weissenberg number.

  8. Lagrangian chaos in three- dimensional steady buoyancy-driven flows

    NASA Astrophysics Data System (ADS)

    Contreras, Sebastian; Speetjens, Michel; Clercx, Herman

    2016-11-01

    Natural convection plays a key role in fluid dynamics owing to its ubiquitous presence in nature and industry. Buoyancy-driven flows are prototypical systems in the study of thermal instabilities and pattern formation. The differentially heated cavity problem has been widely studied for the investigation of buoyancy-induced oscillatory flow. However, far less attention has been devoted to the three-dimensional Lagrangian transport properties in such flows. This study seeks to address this by investigating Lagrangian transport in the steady flow inside a cubic cavity differentially-heated from the side. The theoretical and numerical analysis expands on previously reported similarities between the current flow and lid-driven flows. The Lagrangian dynamics are controlled by the Péclet number (Pe) and the Prandtl number (Pr). Pe controls the behaviour qualitatively in that growing Pe progressively perturbs the integable state (Pe =0), thus paving the way to chaotic dynamics. Pr plays an entirely quantitative role in that Pr<1 and Pr>1 amplifies and diminishes, respectively, the perturbative effect of non-zero Pe. S.C. acknowledges financial support from Consejo Nacional de Ciencia y Tecnología (CONACYT).

  9. The numerical investigation of heat transfer and pressure drop of turbulent flow in a triangular microchannel

    NASA Astrophysics Data System (ADS)

    Rezaei, Omid; Akbari, Omid Ali; Marzban, Ali; Toghraie, Davood; Pourfattah, Farzad; Mashayekhi, Ramin

    2017-09-01

    In this presentation, the flow and heat transfer inside a microchannel with a triangular section, have been numerically simulated. In this three-dimensional simulation, the flow has been considered turbulent. In order to increase the heat transfer of the channel walls, the semi-truncated and semi-attached ribs have been placed inside the channel and the effect of forms and numbers of ribs has been studied. In this research, the base fluid is Water and the effect of volume fraction of Al2O3 nanoparticles on the amount of heat transfer and physics of flow have been investigated. The presented results are including of the distribution of Nusselt number in the channel, friction coefficient and Performance Evaluation Criterion of each different arrangement. The results indicate that, the ribs affect the physics of flow and their influence is absolutely related to Reynolds number of flow. Also, the investigation of the used semi-truncated and semi-attached ribs in Reynolds number indicates that, although heat transfer increases, but more pressure drop arises. Therefore, in this method, in order to improve the heat transfer from the walls of microchannel on the constant heat flux, using the pump is demanded.

  10. Multiscale interaction between a large scale magnetic island and small scale turbulence

    NASA Astrophysics Data System (ADS)

    Choi, M. J.; Kim, J.; Kwon, J.-M.; Park, H. K.; In, Y.; Lee, W.; Lee, K. D.; Yun, G. S.; Lee, J.; Kim, M.; Ko, W.-H.; Lee, J. H.; Park, Y. S.; Na, Y.-S.; Luhmann, N. C., Jr.; Park, B. H.

    2017-12-01

    Multiscale interaction between the magnetic island and turbulence has been demonstrated through simultaneous two-dimensional measurements of turbulence and temperature and flow profiles. The magnetic island and turbulence can mutually interact via coupling between the electron temperature (T e ) gradient, the T e turbulence, and the poloidal flow. The T e gradient altered by the magnetic island steepens outside and flattens inside the island. The T e turbulence can appear in increased T e gradient regions. The combined effects of the T e gradient and the poloidal flow shear determines the two-dimensional distribution of the T e turbulence. When the poloidal vortex flow forms, it can maintain the steepest T e gradient and the magnetic island acts more like an electron heat transport barrier. Interestingly, when the T e gradient, the T e turbulence, and the vortex flow shear increase beyond critical levels, the magnetic island turns into a fast electron heat transport channel, which directly leads to the minor disruption.

  11. TACT1- TRANSIENT THERMAL ANALYSIS OF A COOLED TURBINE BLADE OR VANE EQUIPPED WITH A COOLANT INSERT

    NASA Technical Reports Server (NTRS)

    Gaugler, R. E.

    1994-01-01

    As turbine-engine core operating conditions become more severe, designers must develop more effective means of cooling blades and vanes. In order to design reliable, cooled turbine blades, advanced transient thermal calculation techniques are required. The TACT1 computer program was developed to perform transient and steady-state heat-transfer and coolant-flow analyses for cooled blades, given the outside hot-gas boundary condition, the coolant inlet conditions, the geometry of the blade shell, and the cooling configuration. TACT1 can analyze turbine blades, or vanes, equipped with a central coolant-plenum insert from which coolant-air impinges on the inner surface of the blade shell. Coolant-side heat-transfer coefficients are calculated with the heat transfer mode at each station being user specified as either impingement with crossflow, forced convection channel flow, or forced convection over pin fins. A limited capability to handle film cooling is also available in the program. The TACT1 program solves for the blade temperature distribution using a transient energy equation for each node. The nodal energy balances are linearized, one-dimensional, heat-conduction equations which are applied at the wall-outer-surface node, at the junction of the cladding and the metal node, and at the wall-inner-surface node. At the mid-metal node a linear, three-dimensional, heat-conduction equation is used. Similarly, the coolant pressure distribution is determined by solving the set of transfer momentum equations for the one-dimensional flow between adjacent fluid nodes. In the coolant channel, energy and momentum equations for one-dimensional compressible flow, including friction and heat transfer, are used for the elemental channel length between two coolant nodes. The TACT1 program first obtains a steady-state solution using iterative calculations to obtain convergence of stable temperatures, pressures, coolant-flow split, and overall coolant mass balance. Transient calculations are based on the steady-state solutions obtained. Input to the TACT1 program includes a geometrical description of the blade and insert, the nodal spacing to be used, and the boundary conditions describing the outside hot-gas and the coolant-inlet conditions. The program output includes the value of nodal temperatures and pressures at each iteration. The final solution output includes the temperature at each coolant node, and the coolant flow rates and Reynolds numbers. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 computer with a central memory requirement of approximately 480K of 8 bit bytes. The TACT1 program was developed in 1978.

  12. Global Aeroheating Measurements of Shock-Shock Interactions on a Swept Cylinder

    NASA Technical Reports Server (NTRS)

    Mason, Michelle L.; Berry, Scott A.

    2015-01-01

    The effects of fin leading-edge radius and sweep angle on peak heating rates due to shock-shock interactions were investigated in the NASA Langley Research Center 20-Inch Mach 6 Air Tunnel. The cylindrical leading-edge fin models, with radii varied from 0.25 to 0.75 inches, represent wings or struts on hypersonic vehicles. A 9deg wedge generated a planar oblique shock at 16.7deg. to the flow that intersected the fin bow shock, producing a shock-shock interaction that impinged on the fin leading edge. The fin sweep angle was varied from 0deg (normal to the free-stream) to 15deg and 25deg swept forward. These cases were chosen to explore three characterized shock-shock interaction types. Global temperature data were obtained from the surface of the fused silica fins using phosphor thermography. Metal oil flow models with the same geometries as the fused silica models were used to visualize the streamline patterns for each angle of attack. High-speed zoom-schlieren videos were recorded to show the features and any temporal unsteadiness of the shock-shock interactions. The temperature data were analyzed using a one-dimensional semi-infinite method, as well as one- and two-dimensional finite-volume methods. These results were compared to determine the proper heat transfer analysis approach to minimize errors from lateral heat conduction due to the presence of strong surface temperature gradients induced by the shock interactions. The general trends in the leading-edge heat transfer behavior were similar for each explored shock-shock interaction type regardless of the leading-edge radius. However, the dimensional peak heat transfer coefficient augmentation increased with decreasing leading-edge radius. The dimensional peak heat transfer output from the two-dimensional code was about 20% higher than the value from a standard, semi-infinite one-dimensional method.

  13. Simplified models of the symmetric single-pass parallel-plate counterflow heat exchanger: a tutorial

    PubMed Central

    Abraham-Shrauner, Barbara

    2018-01-01

    The heat exchanger is important in practical thermal processes, especially those of (i) the molten-salt storage schemes, (ii) compressed air energy storage schemes and (iii) other load-shifting thermal storage presumed to undergird a Smart Grid. Such devices, although central to the utilization of energy from sustainable (but intermittent) renewable sources, will be unfamiliar to many scientists, who nevertheless need a working knowledge of them. This tutorial paper provides a largely self-contained conceptual introduction for such persons. It begins by modelling a novel quantized exchanger,1 impractical as a device, but useful for comprehending the underlying thermophysics. It then reviews the one-dimensional steady-state idealization which demonstrates that effectiveness of heat transfer increases monotonically with (device length)/(device throughput). Next, it presents a two-dimensional steady-state idealization for plug flow and from it derives a novel formula for effectiveness of transfer; this formula is then shown to agree well with a finite-difference time-domain solution of the two-dimensional idealization under Hagen–Poiseuille flow. These results are consistent with a conclusion that effectiveness of heat exchange can approach unity, but may involve unwelcome trade-offs among device cost, size and throughput. PMID:29657769

  14. Simplified models of the symmetric single-pass parallel-plate counterflow heat exchanger: a tutorial.

    PubMed

    Pickard, William F; Abraham-Shrauner, Barbara

    2018-03-01

    The heat exchanger is important in practical thermal processes, especially those of (i) the molten-salt storage schemes, (ii) compressed air energy storage schemes and (iii) other load-shifting thermal storage presumed to undergird a Smart Grid. Such devices, although central to the utilization of energy from sustainable (but intermittent) renewable sources, will be unfamiliar to many scientists, who nevertheless need a working knowledge of them. This tutorial paper provides a largely self-contained conceptual introduction for such persons. It begins by modelling a novel quantized exchanger, impractical as a device, but useful for comprehending the underlying thermophysics. It then reviews the one-dimensional steady-state idealization which demonstrates that effectiveness of heat transfer increases monotonically with (device length)/(device throughput). Next, it presents a two-dimensional steady-state idealization for plug flow and from it derives a novel formula for effectiveness of transfer; this formula is then shown to agree well with a finite-difference time-domain solution of the two-dimensional idealization under Hagen-Poiseuille flow. These results are consistent with a conclusion that effectiveness of heat exchange can approach unity, but may involve unwelcome trade-offs among device cost, size and throughput.

  15. Simplified models of the symmetric single-pass parallel-plate counterflow heat exchanger: a tutorial

    NASA Astrophysics Data System (ADS)

    Pickard, William F.; Abraham-Shrauner, Barbara

    2018-03-01

    The heat exchanger is important in practical thermal processes, especially those of (i) the molten-salt storage schemes, (ii) compressed air energy storage schemes and (iii) other load-shifting thermal storage presumed to undergird a Smart Grid. Such devices, although central to the utilization of energy from sustainable (but intermittent) renewable sources, will be unfamiliar to many scientists, who nevertheless need a working knowledge of them. This tutorial paper provides a largely self-contained conceptual introduction for such persons. It begins by modelling a novel quantized exchanger,1 impractical as a device, but useful for comprehending the underlying thermophysics. It then reviews the one-dimensional steady-state idealization which demonstrates that effectiveness of heat transfer increases monotonically with (device length)/(device throughput). Next, it presents a two-dimensional steady-state idealization for plug flow and from it derives a novel formula for effectiveness of transfer; this formula is then shown to agree well with a finite-difference time-domain solution of the two-dimensional idealization under Hagen-Poiseuille flow. These results are consistent with a conclusion that effectiveness of heat exchange can approach unity, but may involve unwelcome trade-offs among device cost, size and throughput.

  16. Implicit marching solution of compressible viscous subsonic flow in planar and axisymmetric ducts. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Towne, C. E.; Hoffman, J. D.

    1982-01-01

    A new streamwise marching procedure was developed and coded for compressible viscous subsonic flow in planar or axisymmetric ducts with or without centerbodies. The continuity, streamwise momentum, cross-flow momentum, and energy equations are written in generalized orthogonal curvilinear coordinates. To allow the use of a marching procedure, second derivatives in the streamwise momentum equation are written as the sum of a known two dimensional imposed pressure field and an unknown one dimensional viscous correction. For turbulent flow, the Reynolds stress and heat flux terms are modeled using two-layer eddy viscosity turbulence models.

  17. Method and Apparatus for Measuring Thermal Conductivity of Small, Highly Insulating Specimens

    NASA Technical Reports Server (NTRS)

    Miller, Robert A (Inventor); Kuczmarski, Maria A (Inventor)

    2013-01-01

    A method and apparatus for the measurement of thermal conductivity combines the following capabilities: 1) measurements of very small specimens; 2) measurements of specimens with thermal conductivity on the same order of that as air; and, 3) the ability to use air as a reference material. Care is taken to ensure that the heat flow through the test specimen is essentially one-dimensional. No attempt is made to use heated guards to minimize the flow of heat from the hot plate to the surroundings. Results indicate that since large correction factors must be applied to account for guard imperfections when specimen dimensions are small, simply measuring and correcting for heat from the heater disc that does not flow into the specimen is preferable.

  18. A Numerical Analysis of Heat Transfer and Effectiveness on Film Cooled Turbine Blade Tip Models

    NASA Technical Reports Server (NTRS)

    Ameri, A. A.; Rigby, D. L.

    1999-01-01

    A computational study has been performed to predict the distribution of convective heat transfer coefficient on a simulated blade tip with cooling holes. The purpose of the examination was to assess the ability of a three-dimensional Reynolds-averaged Navier-Stokes solver to predict the rate of tip heat transfer and the distribution of cooling effectiveness. To this end, the simulation of tip clearance flow with blowing of Kim and Metzger was used. The agreement of the computed effectiveness with the data was quite good. The agreement with the heat transfer coefficient was not as good but improved away from the cooling holes. Numerical flow visualization showed that the uniformity of wetting of the surface by the film cooling jet is helped by the reverse flow due to edge separation of the main flow.

  19. Entrainment in Laboratory Simulations of Cumulus Cloud Flows

    NASA Astrophysics Data System (ADS)

    Narasimha, R.; Diwan, S.; Subrahmanyam, D.; Sreenivas, K. R.; Bhat, G. S.

    2010-12-01

    A variety of cumulus cloud flows, including congestus (both shallow bubble and tall tower types), mediocris and fractus have been generated in a water tank by simulating the release of latent heat in real clouds. The simulation is achieved through ohmic heating, injected volumetrically into the flow by applying suitable voltages between diametral cross-sections of starting jets and plumes of electrically conducting fluid (acidified water). Dynamical similarity between atmospheric and laboratory cloud flows is achieved by duplicating values of an appropriate non-dimensional heat release number. Velocity measurements, made by laser instrumentation, show that the Taylor entrainment coefficient generally increases just above the level of commencement of heat injection (corresponding to condensation level in the real cloud). Subsequently the coefficient reaches a maximum before declining to the very low values that characterize tall cumulus towers. The experiments also simulate the protected core of real clouds. Cumulus Congestus : Atmospheric cloud (left), simulated laboratory cloud (right). Panels below show respectively total heat injected and vertical profile of heating in the laboratory cloud.

  20. Test of a new heat-flow equation for dense-fluid shock waves.

    PubMed

    Holian, Brad Lee; Mareschal, Michel; Ravelo, Ramon

    2010-09-21

    Using a recently proposed equation for the heat-flux vector that goes beyond Fourier's Law of heat conduction, we model shockwave propagation in the dense Lennard-Jones fluid. Disequilibrium among the three components of temperature, namely, the difference between the kinetic temperature in the direction of a planar shock wave and those in the transverse directions, particularly in the region near the shock front, gives rise to a new transport (equilibration) mechanism not seen in usual one-dimensional heat-flow situations. The modification of the heat-flow equation was tested earlier for the case of strong shock waves in the ideal gas, which had been studied in the past and compared to Navier-Stokes-Fourier solutions. Now, the Lennard-Jones fluid, whose equation of state and transport properties have been determined from independent calculations, allows us to study the case where potential, as well as kinetic contributions are important. The new heat-flow treatment improves the agreement with nonequilibrium molecular-dynamics simulations under strong shock wave conditions, compared to Navier-Stokes.

  1. Experimental determination of heat transfer in a Poiseuille-Rayleigh-Bénard flow

    NASA Astrophysics Data System (ADS)

    Taher, R.; Abid, C.

    2018-05-01

    This paper deals with an experimental study of heat transfer in a Poiseuille-Rayleigh-Bénard flow. This situation corresponds to a mixed convection phenomenon in a horizontal rectangular channel uniformly heated from below. Flow visualisation and temperature measurements were achieved in order to describe the flow regimes and heat transfer behaviour. The classical measurement techniques such employing thermocouples give local measurement on one hand and on other hand they often disturb the flow. As the flow is three-dimensional, these techniques are not efficient. In order to not disturb the flow, a non-intrusive method is used for thermal measurement. The Planar laser Induced Fluorescence (PLIF) was implemented to determine thermal fields in the fluid. Experiments conducted for various Reynolds and Rayleigh numbers allow to determine the heat transfer and thus to propose correlation for Nusselt number for a mixed convection flow in Poiseuille-Rayleigh-Bénard configuration. First a description of the use of this technique in water flow is presented and then the obtained results for various Reynolds and Rayleigh numbers allow to propose a correlation for the Nusselt number for such configuration of mixed convection. The comparison between the obtained heat transfer and the pure forced convection one confirms the well-known result that the convective heat transfer is greatly enhanced in mixed convection. Indeed, secondary flow induced by buoyant forces contributes to the refreshment of thermal boundary layers and so acts like mixers, which significantly enhances heat transfer.

  2. Analysis of a Free Surface Film from a Controlled Liquid Impinging Jet over a Rotating Disk Including Conjugate Effects, with and without Evaporation

    NASA Technical Reports Server (NTRS)

    Sankaran, Subramanian (Technical Monitor); Rice, Jeremy; Faghri, Amir; Cetegen, Baki M.

    2005-01-01

    A detailed analysis of the liquid film characteristics and the accompanying heat transfer of a free surface controlled liquid impinging jet onto a rotating disk are presented. The computations were run on a two-dimensional axi-symmetric Eulerian mesh while the free surface was calculated with the volume of fluid method. Flow rates between 3 and 15 1pm with rotational speeds between 50 and 200 rpm are analyzed. The effects of inlet temperature on the film thickness and heat transfer are characterized as well as evaporative effects. The conjugate heating effect is modeled, and was found to effect the heat transfer results the most at both the inner and outer edges of the heated surface. The heat transfer was enhanced with both increasing flow rate and increasing rotational speeds. When evaporative effects were modeled, the evaporation was found to increase the heat transfer at the lower flow rates the most because of a fully developed thermal field that was achieved. The evaporative effects did not significantly enhance the heat transfer at the higher flow rates.

  3. Turbulent heat transfer prediction method for application to scramjet engines

    NASA Technical Reports Server (NTRS)

    Pinckney, S. Z.

    1974-01-01

    An integral method for predicting boundary layer development in turbulent flow regions on two-dimensional or axisymmetric bodies was developed. The method has the capability of approximating nonequilibrium velocity profiles as well as the local surface friction in the presence of a pressure gradient. An approach was developed for the problem of predicting the heat transfer in a turbulent boundary layer in the presence of a high pressure gradient. The solution was derived with particular emphasis on its applicability to supersonic combustion; thus, the effects of real gas flows were included. The resulting integrodifferential boundary layer method permits the estimation of cooling reguirements for scramjet engines. Theoretical heat transfer results are compared with experimental combustor and noncombustor heat transfer data. The heat transfer method was used in the development of engine design concepts which will produce an engine with reduced cooling requirements. The Langley scramjet engine module was designed by utilizing these design concepts and this engine design is discussed along with its corresponding cooling requirements. The heat transfer method was also used to develop a combustor cooling correlation for a combustor whose local properties are computed one dimensionally by assuming a linear area variation and a given heat release schedule.

  4. SIMPLE MODEL OF ICE SEGREGATION USING AN ANALYTIC FUNCTION TO MODEL HEAT AND SOIL-WATER FLOW.

    USGS Publications Warehouse

    Hromadka, T.V.; Guymon, G.L.

    1984-01-01

    This paper reports on the development of a simple two-dimensional model of coupled heat and soil-water flow in freezing or thawing soil. The model also estimates ice-segregation (frost-heave) evolution. Ice segregation in soil results from water drawn into a freezing zone by hydraulic gradients created by the freezing of soil-water. Thus, with a favorable balance between the rate of heat extraction and the rate of water transport to a freezing zone, segregated ice lenses may form.

  5. Exact finite elements for conduction and convection

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.; Dechaumphai, P.; Tamma, K. K.

    1981-01-01

    An appproach for developing exact one dimensional conduction-convection finite elements is presented. Exact interpolation functions are derived based on solutions to the governing differential equations by employing a nodeless parameter. Exact interpolation functions are presented for combined heat transfer in several solids of different shapes, and for combined heat transfer in a flow passage. Numerical results demonstrate that exact one dimensional elements offer advantages over elements based on approximate interpolation functions. Previously announced in STAR as N81-31507

  6. Seismic-geodynamic constraints on three-dimensional structure, vertical flow, and heat transfer in the mantle

    USGS Publications Warehouse

    Forte, A.M.; Woodward, R.L.

    1997-01-01

    Joint inversions of seismic and geodynamic data are carried out in which we simultaneously constrain global-scale seismic heterogeneity in the mantle as well as the amplitude of vertical mantle flow across the 670 km seismic discontinuity. These inversions reveal the existence of a family of three-dimensional (3-D) mantle models that satisfy the data while at the same time yielding predictions of layered mantle flow. The new 3-D mantle models we obtain demonstrate that the buoyancy forces due to the undulations of the 670 km phase-change boundary strongly inhibit the vertical flow between the upper and lower mantle. The strong stabilizing effect of the 670 km topography also has an important impact on the predicted dynamic topography of the Earth's solid surface and on the surface gravity anomalies. The new 3-D models that predict strongly or partially layered mantle flow provide essentially identical fits to the global seismic data as previous models that have, until now, predicted only whole-mantle flow. The convective vertical transport of heat across the mantle predicted on the basis of the new 3-D models shows that the heat flow is a minimum at 1000 km depth. This suggests the presence at this depth of a globally defined horizon across which the pattern of lateral heterogeneity changes rapidly. Copyright 1997 by the American Geophysical Union.

  7. Numerical Study of a Three Dimensional Interaction between two bow Shock Waves and the Aerodynamic Heating on a Wedge Shaped Nose Cone

    NASA Astrophysics Data System (ADS)

    Wu, N.; Wang, J. H.; Shen, L.

    2017-03-01

    This paper presents a numerical investigation on the three-dimensional interaction between two bow shock waves in two environments, i.e. ground high-enthalpy wind tunnel test and real space flight, using Fluent 15.0. The first bow shock wave, also called induced shock wave, which is generated by the leading edge of a hypersonic vehicle. The other bow shock wave can be deemed objective shock wave, which is generated by the cowl clip of hypersonic inlet, and in this paper the inlet is represented by a wedge shaped nose cone. The interaction performances including flow field structures, aerodynamic pressure and heating are analyzed and compared between the ground test and the real space flight. Through the analysis and comparison, we can find the following important phenomena: 1) Three-dimensional complicated flow structures appear in both cases, but only in the real space flight condition, a local two-dimensional type IV interaction appears; 2) The heat flux and pressure in the interaction region are much larger than those in the no-interaction region in both cases, but the peak values of the heat flux and pressure in real space flight are smaller than those in ground test. 3) The interaction region on the objective surface are different in the two cases, and there is a peak value displacement of 3 mm along the stagnation line.

  8. Coherent vertical structures in numerical simulations of buoyant plumes from wildland fires

    Treesearch

    Philip Cunningham; Scott L. Goodrick; M. Yousuff Hussaini; Rodman R. Linn

    2005-01-01

    The structure and dynamics of buoyant plumes arising from surface-based heat sources in a vertically sheared ambient atmospheric flow are examined via simulations of a three-dimensional, compressible numerical model. Simple circular heat sources and asymmetric elliptical ring heat sources that are representative of wildland fires of moderate intensity are considered....

  9. Gas Flow and Ion Transfer in Heated ESI Capillary Interfaces

    NASA Astrophysics Data System (ADS)

    Bernier, Laurent; Pinfold, Harry; Pauly, Matthias; Rauschenbach, Stephan; Reiss, Julius

    2018-02-01

    Transfer capillaries are the preferred means to transport ions, generated by electrospray ionization, from ambient conditions to vacuum. During the transfer of ions through the narrow, long tubes into vacuum, substantial losses are typical. However, recently it was demonstrated that these losses can be avoided altogether. To understand the experimental observation and provide a general model for the ion transport, here, we investigate the ion transport through capillaries by numerical simulation of interacting ions. The simulation encompasses all relevant factors, such as space charge, diffusion, gas flow, and heating. Special attention is paid to the influence of the gas flow on the transmission and especially the change imposed by heating. The gas flow is modeled by a one-dimensional gas dynamics description. A large number of ions are treated as point particles in this gas flow. This allows to investigate the influence of the capillary heating on the gas flow and by this on the ion transport. The results are compared with experimental findings. [Figure not available: see fulltext.

  10. Analytical solution for heat transfer in three-dimensional porous media including variable fluid properties

    NASA Technical Reports Server (NTRS)

    Siegel, R.; Goldstein, M. E.

    1972-01-01

    An analytical solution is obtained for flow and heat transfer in a three-dimensional porous medium. Coolant from a reservoir at constant pressure and temperature enters one portion of the boundary of the medium and exits through another portion of the boundary which is at a specified uniform temperature and uniform pressure. The variation with temperature of coolant density and viscosity are both taken into account. A general solution is found that provides the temperature distribution in the medium and the mass and heat fluxes along the portion of the surface through which the coolant is exiting.

  11. Unsteady boundary layer flow and heat transfer of a Casson fluid past an oscillating vertical plate with Newtonian heating.

    PubMed

    Hussanan, Abid; Zuki Salleh, Mohd; Tahar, Razman Mat; Khan, Ilyas

    2014-01-01

    In this paper, the heat transfer effect on the unsteady boundary layer flow of a Casson fluid past an infinite oscillating vertical plate with Newtonian heating is investigated. The governing equations are transformed to a systems of linear partial differential equations using appropriate non-dimensional variables. The resulting equations are solved analytically by using the Laplace transform method and the expressions for velocity and temperature are obtained. They satisfy all imposed initial and boundary conditions and reduce to some well-known solutions for Newtonian fluids. Numerical results for velocity, temperature, skin friction and Nusselt number are shown in various graphs and discussed for embedded flow parameters. It is found that velocity decreases as Casson parameters increases and thermal boundary layer thickness increases with increasing Newtonian heating parameter.

  12. Two-dimensional numerical simulation of a Stirling engine heat exchanger

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir; Tew, Roy C.; Dudenhoefer, James E.

    1989-01-01

    The first phase of an effort to develop multidimensional models of Stirling engine components is described. The ultimate goal is to model an entire engine working space. Parallel plate and tubular heat exchanger models are described, with emphasis on the central part of the channel (i.e., ignoring hydrodynamic and thermal end effects). The model assumes laminar, incompressible flow with constant thermophysical properties. In addition, a constant axial temperature gradient is imposed. The governing equations describing the model have been solved using the Crack-Nicloson finite-difference scheme. Model predictions are compared with analytical solutions for oscillating/reversing flow and heat transfer in order to check numerical accuracy. Excellent agreement is obtained for flow both in circular tubes and between parallel plates. The computational heat transfer results are in good agreement with the analytical heat transfer results for parallel plates.

  13. Thermal Analysis of the PediaFlow pediatric ventricular assist device.

    PubMed

    Gardiner, Jeffrey M; Wu, Jingchun; Noh, Myounggyu D; Antaki, James F; Snyder, Trevor A; Paden, David B; Paden, Brad E

    2007-01-01

    Accurate modeling of heat dissipation in pediatric intracorporeal devices is crucial in avoiding tissue and blood thermotrauma. Thermal models of new Maglev ventricular assist device (VAD) concepts for the PediaFlow VAD are developed by incorporating empirical heat transfer equations with thermal finite element analysis (FEA). The models assume three main sources of waste heat generation: copper motor windings, active magnetic thrust bearing windings, and eddy currents generated within the titanium housing due to the two-pole motor. Waste heat leaves the pump by convection into blood passing through the pump and conduction through surrounding tissue. Coefficients of convection are calculated and assigned locally along fluid path surfaces of the three-dimensional pump housing model. FEA thermal analysis yields a three-dimensional temperature distribution for each of the three candidate pump models. Thermal impedances from the motor and thrust bearing windings to tissue and blood contacting surfaces are estimated based on maximum temperature rise at respective surfaces. A new updated model for the chosen pump topology is created incorporating computational fluid dynamics with empirical fluid and heat transfer equations. This model represents the final geometry of the first generation prototype, incorporates eddy current heating, and has 60 discrete convection regions. Thermal analysis is performed at nominal and maximum flow rates, and temperature distributions are plotted. Results suggest that the pump will not exceed a temperature rise of 2 degrees C during normal operation.

  14. Heat Transfer Computations of Internal Duct Flows With Combined Hydraulic and Thermal Developing Length

    NASA Technical Reports Server (NTRS)

    Wang, C. R.; Towne, C. E.; Hippensteele, S. A.; Poinsatte, P. E.

    1997-01-01

    This study investigated the Navier-Stokes computations of the surface heat transfer coefficients of a transition duct flow. A transition duct from an axisymmetric cross section to a non-axisymmetric cross section, is usually used to connect the turbine exit to the nozzle. As the gas turbine inlet temperature increases, the transition duct is subjected to the high temperature at the gas turbine exit. The transition duct flow has combined development of hydraulic and thermal entry length. The design of the transition duct required accurate surface heat transfer coefficients. The Navier-Stokes computational method could be used to predict the surface heat transfer coefficients of a transition duct flow. The Proteus three-dimensional Navier-Stokes numerical computational code was used in this study. The code was first studied for the computations of the turbulent developing flow properties within a circular duct and a square duct. The code was then used to compute the turbulent flow properties of a transition duct flow. The computational results of the surface pressure, the skin friction factor, and the surface heat transfer coefficient were described and compared with their values obtained from theoretical analyses or experiments. The comparison showed that the Navier-Stokes computation could predict approximately the surface heat transfer coefficients of a transition duct flow.

  15. Investigation of Hot Streak Migration and Film Cooling Effects on Heat Transfer in Rotor/Stator Interacting Flows. Report 1

    DTIC Science & Technology

    1992-04-01

    I Investigation of Hot Streak Migration and Film Cooling Effects on Heat Transfer in Rotor/Stator Interacting Flows £ N00140-88-C-0677 - Report 1 00...performed ld*ch addresses the Issuas of mlti-blade count ratio s&ad three-dimensionality effects on the prediction of combu tr hot str"k migration in a...demnstrates tbe capabilty of the thro-dirnsioual procedure to cApture most of the flow physics associated with hot streak migration including the

  16. Radiative interactions in multi-dimensional chemically reacting flows using Monte Carlo simulations

    NASA Technical Reports Server (NTRS)

    Liu, Jiwen; Tiwari, Surendra N.

    1994-01-01

    The Monte Carlo method (MCM) is applied to analyze radiative heat transfer in nongray gases. The nongray model employed is based on the statistical narrow band model with an exponential-tailed inverse intensity distribution. The amount and transfer of the emitted radiative energy in a finite volume element within a medium are considered in an exact manner. The spectral correlation between transmittances of two different segments of the same path in a medium makes the statistical relationship different from the conventional relationship, which only provides the non-correlated results for nongray methods is discussed. Validation of the Monte Carlo formulations is conducted by comparing results of this method of other solutions. In order to further establish the validity of the MCM, a relatively simple problem of radiative interactions in laminar parallel plate flows is considered. One-dimensional correlated Monte Carlo formulations are applied to investigate radiative heat transfer. The nongray Monte Carlo solutions are also obtained for the same problem and they also essentially match the available analytical solutions. the exact correlated and non-correlated Monte Carlo formulations are very complicated for multi-dimensional systems. However, by introducing the assumption of an infinitesimal volume element, the approximate correlated and non-correlated formulations are obtained which are much simpler than the exact formulations. Consideration of different problems and comparison of different solutions reveal that the approximate and exact correlated solutions agree very well, and so do the approximate and exact non-correlated solutions. However, the two non-correlated solutions have no physical meaning because they significantly differ from the correlated solutions. An accurate prediction of radiative heat transfer in any nongray and multi-dimensional system is possible by using the approximate correlated formulations. Radiative interactions are investigated in chemically reacting compressible flows of premixed hydrogen and air in an expanding nozzle. The governing equations are based on the fully elliptic Navier-Stokes equations. Chemical reaction mechanisms were described by a finite rate chemistry model. The correlated Monte Carlo method developed earlier was employed to simulate multi-dimensional radiative heat transfer. Results obtained demonstrate that radiative effects on the flowfield are minimal but radiative effects on the wall heat transfer are significant. Extensive parametric studies are conducted to investigate the effects of equivalence ratio, wall temperature, inlet flow temperature, and nozzle size on the radiative and conductive wall fluxes.

  17. Compressible Flow Toolbox

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.

    2006-01-01

    The Compressible Flow Toolbox is primarily a MATLAB-language implementation of a set of algorithms that solve approximately 280 linear and nonlinear classical equations for compressible flow. The toolbox is useful for analysis of one-dimensional steady flow with either constant entropy, friction, heat transfer, or Mach number greater than 1. The toolbox also contains algorithms for comparing and validating the equation-solving algorithms against solutions previously published in open literature. The classical equations solved by the Compressible Flow Toolbox are as follows: The isentropic-flow equations, The Fanno flow equations (pertaining to flow of an ideal gas in a pipe with friction), The Rayleigh flow equations (pertaining to frictionless flow of an ideal gas, with heat transfer, in a pipe of constant cross section), The normal-shock equations, The oblique-shock equations, and The expansion equations.

  18. Numerical simulation of two-dimensional flow over a heated carbon surface with coupled heterogeneous and homogeneous reactions

    NASA Astrophysics Data System (ADS)

    Johnson, Ryan Federick; Chelliah, Harsha Kumar

    2017-01-01

    For a range of flow and chemical timescales, numerical simulations of two-dimensional laminar flow over a reacting carbon surface were performed to understand further the complex coupling between heterogeneous and homogeneous reactions. An open-source computational package (OpenFOAM®) was used with previously developed lumped heterogeneous reaction models for carbon surfaces and a detailed homogeneous reaction model for CO oxidation. The influence of finite-rate chemical kinetics was explored by varying the surface temperatures from 1800 to 2600 K, while flow residence time effects were explored by varying the free-stream velocity up to 50 m/s. The reacting boundary layer structure dependence on the residence time was analysed by extracting the ratio of chemical source and species diffusion terms. The important contributions of radical species reactions on overall carbon removal rate, which is often neglected in multi-dimensional simulations, are highlighted. The results provide a framework for future development and validation of lumped heterogeneous reaction models based on multi-dimensional reacting flow configurations.

  19. Stably stratified canopy flow in complex terrain

    NASA Astrophysics Data System (ADS)

    Xu, X.; Yi, C.; Kutter, E.

    2015-07-01

    Stably stratified canopy flow in complex terrain has been considered a difficult condition for measuring net ecosystem-atmosphere exchanges of carbon, water vapor, and energy. A long-standing advection error in eddy-flux measurements is caused by stably stratified canopy flow. Such a condition with strong thermal gradient and less turbulent air is also difficult for modeling. To understand the challenging atmospheric condition for eddy-flux measurements, we use the renormalized group (RNG) k-ϵ turbulence model to investigate the main characteristics of stably stratified canopy flows in complex terrain. In this two-dimensional simulation, we imposed persistent constant heat flux at ground surface and linearly increasing cooling rate in the upper-canopy layer, vertically varying dissipative force from canopy drag elements, buoyancy forcing induced from thermal stratification and the hill terrain. These strong boundary effects keep nonlinearity in the two-dimensional Navier-Stokes equations high enough to generate turbulent behavior. The fundamental characteristics of nighttime canopy flow over complex terrain measured by the small number of available multi-tower advection experiments can be reproduced by this numerical simulation, such as (1) unstable layer in the canopy and super-stable layers associated with flow decoupling in deep canopy and near the top of canopy; (2) sub-canopy drainage flow and drainage flow near the top of canopy in calm night; (3) upward momentum transfer in canopy, downward heat transfer in upper canopy and upward heat transfer in deep canopy; and (4) large buoyancy suppression and weak shear production in strong stability.

  20. Double stratification effects in chemically reactive squeezed Sutterby fluid flow with thermal radiation and mixed convection

    NASA Astrophysics Data System (ADS)

    Ahmad, S.; Farooq, M.; Javed, M.; Anjum, Aisha

    2018-03-01

    A current analysis is carried out to study theoretically the mixed convection characteristics in squeezing flow of Sutterby fluid in squeezed channel. The constitutive equation of Sutterby model is utilized to characterize the rheology of squeezing phenomenon. Flow characteristics are explored with dual stratification. In flowing fluid which contains heat and mass transport, the first order chemical reaction and radiative heat flux affect the transport phenomenon. The systems of non-linear governing equations have been modulating which then solved by mean of convergent approach (Homotopy Analysis Method). The graphs are reported and illustrated for emerging parameters. Through graphical explanations, drag force, rate of heat and mass transport are conversed for different pertinent parameters. It is found that heat and mass transport rate decays with dominant double stratified parameters and chemical reaction parameter. The present two-dimensional examination is applicable in some of the engineering processes and industrial fluid mechanics.

  1. Laser Measurement Of Convective-Heat-Transfer Coefficient

    NASA Technical Reports Server (NTRS)

    Porro, A. Robert; Hingst, Warren R.; Chriss, Randall M.; Seablom, Kirk D.; Keith, Theo G., Jr.

    1994-01-01

    Coefficient of convective transfer of heat at spot on surface of wind-tunnel model computed from measurements acquired by developmental laser-induced-heat-flux technique. Enables non-intrusive measurements of convective-heat-transfer coefficients at many points across surfaces of models in complicated, three-dimensional, high-speed flows. Measurement spot scanned across surface of model. Apparatus includes argon-ion laser, attenuator/beam splitter electronic shutter infrared camera, and subsystem.

  2. A numerical solution for thermoacoustic convection of fluids in low gravity

    NASA Technical Reports Server (NTRS)

    Spradley, L. W.; Bourgeois, S. V., Jr.; Fan, C.; Grodzka, P. G.

    1973-01-01

    A finite difference numerical technique for solving the differential equations which describe thermal convection of compressible fluids in low gravity are reported. Results of one-dimensional calculations are presented, and comparisons are made to previous solutions. The primary result presented is a one-dimensional radial model of the Apollo 14 heat flow and convection demonstration flight experiment. The numerical calculations show that thermally induced convective motion in a confined fluid can have significant effects on heat transfer in a low gravity environment.

  3. Increased heat transfer to elliptical leading edges due to spanwise variations in the freestream momentum: Numerical and experimental results

    NASA Technical Reports Server (NTRS)

    Rigby, D. L.; Vanfossen, G. J.

    1992-01-01

    A study of the effect of spanwise variation in momentum on leading edge heat transfer is discussed. Numerical and experimental results are presented for both a circular leading edge and a 3:1 elliptical leading edge. Reynolds numbers in the range of 10,000 to 240,000 based on leading edge diameter are investigated. The surface of the body is held at a constant uniform temperature. Numerical and experimental results with and without spanwise variations are presented. Direct comparison of the two-dimensional results, that is, with no spanwise variations, to the analytical results of Frossling is very good. The numerical calculation, which uses the PARC3D code, solves the three-dimensional Navier-Stokes equations, assuming steady laminar flow on the leading edge region. Experimentally, increases in the spanwise-averaged heat transfer coefficient as high as 50 percent above the two-dimensional value were observed. Numerically, the heat transfer coefficient was seen to increase by as much as 25 percent. In general, under the same flow conditions, the circular leading edge produced a higher heat transfer rate than the elliptical leading edge. As a percentage of the respective two-dimensional values, the circular and elliptical leading edges showed similar sensitivity to span wise variations in momentum. By equating the root mean square of the amplitude of the spanwise variation in momentum to the turbulence intensity, a qualitative comparison between the present work and turbulent results was possible. It is shown that increases in leading edge heat transfer due to spanwise variations in freestream momentum are comparable to those due to freestream turbulence.

  4. Hypersonic Combustor Model Inlet CFD Simulations and Experimental Comparisons

    NASA Technical Reports Server (NTRS)

    Venkatapathy, E.; TokarcikPolsky, S.; Deiwert, G. S.; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    Numerous two-and three-dimensional computational simulations were performed for the inlet associated with the combustor model for the hypersonic propulsion experiment in the NASA Ames 16-Inch Shock Tunnel. The inlet was designed to produce a combustor-inlet flow that is nearly two-dimensional and of sufficient mass flow rate for large scale combustor testing. The three-dimensional simulations demonstrated that the inlet design met all the design objectives and that the inlet produced a very nearly two-dimensional combustor inflow profile. Numerous two-dimensional simulations were performed with various levels of approximations such as in the choice of chemical and physical models, as well as numerical approximations. Parametric studies were conducted to better understand and to characterize the inlet flow. Results from the two-and three-dimensional simulations were used to predict the mass flux entering the combustor and a mass flux correlation as a function of facility stagnation pressure was developed. Surface heat flux and pressure measurements were compared with the computed results and good agreement was found. The computational simulations helped determine the inlet low characteristics in the high enthalpy environment, the important parameters that affect the combustor-inlet flow, and the sensitivity of the inlet flow to various modeling assumptions.

  5. Influence of heat transfer rates on pressurization of liquid/slush hydrogen propellant tanks

    NASA Technical Reports Server (NTRS)

    Sasmal, G. P.; Hochstein, J. I.; Hardy, T. L.

    1993-01-01

    A multi-dimensional computational model of the pressurization process in liquid/slush hydrogen tank is developed and used to study the influence of heat flux rates at the ullage boundaries on the process. The new model computes these rates and performs an energy balance for the tank wall whereas previous multi-dimensional models required a priori specification of the boundary heat flux rates. Analyses of both liquid hydrogen and slush hydrogen pressurization were performed to expose differences between the two processes. Graphical displays are presented to establish the dependence of pressurization time, pressurant mass required, and other parameters of interest on ullage boundary heat flux rates and pressurant mass flow rate. Detailed velocity fields and temperature distributions are presented for selected cases to further illuminate the details of the pressurization process. It is demonstrated that ullage boundary heat flux rates do significantly effect the pressurization process and that minimizing heat loss from the ullage and maximizing pressurant flow rate minimizes the mass of pressurant gas required to pressurize the tank. It is further demonstrated that proper dimensionless scaling of pressure and time permit all the pressure histories examined during this study to be displayed as a single curve.

  6. Comparison of Several Methods of Predicting the Pressure Loss at Altitude Across a Baffled Aircraft-Engine Cylinder

    NASA Technical Reports Server (NTRS)

    Neustein, Joseph; Schafer, Louis J , Jr

    1946-01-01

    Several methods of predicting the compressible-flow pressure loss across a baffled aircraft-engine cylinder were analytically related and were experimentally investigated on a typical air-cooled aircraft-engine cylinder. Tests with and without heat transfer covered a wide range of cooling-air flows and simulated altitudes from sea level to 40,000 feet. Both the analysis and the test results showed that the method based on the density determined by the static pressure and the stagnation temperature at the baffle exit gave results comparable with those obtained from methods derived by one-dimensional-flow theory. The method based on a characteristic Mach number, although related analytically to one-dimensional-flow theory, was found impractical in the present tests because of the difficulty encountered in defining the proper characteristic state of the cooling air. Accurate predictions of altitude pressure loss can apparently be made by these methods, provided that they are based on the results of sea-level tests with heat transfer.

  7. Three-dimensional dynamic thermal imaging of structural flaws by dual-band infrared computed tomography

    NASA Astrophysics Data System (ADS)

    DelGrande, Nancy; Dolan, Kenneth W.; Durbin, Philip F.; Gorvad, Michael R.; Kornblum, B. T.; Perkins, Dwight E.; Schneberk, Daniel J.; Shapiro, Arthur B.

    1993-11-01

    We discuss three-dimensional dynamic thermal imaging of structural flaws using dual-band infrared (DBIR) computed tomography. Conventional (single-band) thermal imaging is difficult to interpret. It yields imprecise or qualitative information (e.g., when subsurface flaws produce weak heat flow anomalies masked by surface clutter). We use the DBIR imaging technique to clarify interpretation. We capture the time history of surface temperature difference patterns at the epoxy-glue disbond site of a flash-heated lap joint. This type of flawed structure played a significant role in causing damage to the Aloha Aircraft fuselage on the aged Boeing 737 jetliner. The magnitude of surface-temperature differences versus time for 0.1 mm air layer compared to 0.1 mm glue layer, varies from 0.2 to 1.6 degree(s)C, for simultaneously scanned front and back surfaces. The scans are taken every 42 ms from 0 to 8 s after the heat flash. By ratioing 3 - 5 micrometers and 8 - 12 micrometers DBIR images, we located surface temperature patterns from weak heat flow anomalies at the disbond site and remove the emissivity mask from surface paint of roughness variations. Measurements compare well with calculations based on TOPAX3D, a three-dimensional, finite element computer model. We combine infrared, ultrasound and x-ray imaging methods to study heat transfer, bond quality and material differences associated with the lap joint disbond site.

  8. Turbine Vane External Heat Transfer. Volume 2. Numerical Solutions of the Navier-stokes Equations for Two- and Three-dimensional Turbine Cascades with Heat Transfer

    NASA Technical Reports Server (NTRS)

    Yang, R. J.; Weinberg, B. C.; Shamroth, S. J.; Mcdonald, H.

    1985-01-01

    The application of the time-dependent ensemble-averaged Navier-Stokes equations to transonic turbine cascade flow fields was examined. In particular, efforts focused on an assessment of the procedure in conjunction with a suitable turbulence model to calculate steady turbine flow fields using an O-type coordinate system. Three cascade configurations were considered. Comparisons were made between the predicted and measured surface pressures and heat transfer distributions wherever available. In general, the pressure predictions were in good agreement with the data. Heat transfer calculations also showed good agreement when an empirical transition model was used. However, further work in the development of laminar-turbulent transitional models is indicated. The calculations showed most of the known features associated with turbine cascade flow fields. These results indicate the ability of the Navier-Stokes analysis to predict, in reasonable amounts of computation time, the surface pressure distribution, heat transfer rates, and viscous flow development for turbine cascades operating at realistic conditions.

  9. Three-Dimensional Thermal Boundary Layer Corrections for Circular Heat Flux Gauges Mounted in a Flat Plate with a Surface Temperature Discontinuity

    NASA Technical Reports Server (NTRS)

    Kandula, M.; Haddad, G. F.; Chen, R.-H.

    2006-01-01

    Three-dimensional Navier-Stokes computational fluid dynamics (CFD) analysis has been performed in an effort to determine thermal boundary layer correction factors for circular convective heat flux gauges (such as Schmidt-Boelter and plug type)mounted flush in a flat plate subjected to a stepwise surface temperature discontinuity. Turbulent flow solutions with temperature-dependent properties are obtained for a free stream Reynolds number of 1E6, and freestream Mach numbers of 2 and 4. The effect of gauge diameter and the plate surface temperature have been investigated. The 3-D CFD results for the heat flux correction factors are compared to quasi-21) results deduced from constant property integral solutions and also 2-D CFD analysis with both constant and variable properties. The role of three-dimensionality and of property variations on the heat flux correction factors has been demonstrated.

  10. An analysis of a mixed convection associated with thermal heating in contaminated porous media.

    PubMed

    Krol, Magdalena M; Johnson, Richard L; Sleep, Brent E

    2014-11-15

    The occurrence of subsurface buoyant flow during thermal remediation was investigated using a two dimensional electro-thermal model (ETM). The model incorporated electrical current flow associated with electrical resistance heating, energy and mass transport, and density dependent water flow. The model was used to examine the effects of heating on sixteen subsurface scenarios with different applied groundwater fluxes and soil permeabilities. The results were analyzed in terms of the ratio of Rayleigh to thermal Peclet numbers (the buoyancy ratio). It was found that when the buoyancy number was greater than unity and the soil permeability greater than 10(-12) m(2), buoyant flow and contaminant transport were significant. The effects of low permeability layers and electrode placement on heat and mass transport were also investigated. Heating under a clay layer led to flow stagnation zones resulting in the accumulation of contaminant mass and transport into the low permeability layer. The results of this study can be used to develop dimensionless number-based guidelines for site management during subsurface thermal activities. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Heat Transfer and Fluid Dynamics Measurements in the Expansion Space of a Stirling Cycle Engine

    NASA Technical Reports Server (NTRS)

    Jiang, Nan; Simon, Terrence W.

    2006-01-01

    The heater (or acceptor) of a Stirling engine, where most of the thermal energy is accepted into the engine by heat transfer, is the hottest part of the engine. Almost as hot is the adjacent expansion space of the engine. In the expansion space, the flow is oscillatory, impinging on a two-dimensional concavely-curved surface. Knowing the heat transfer on the inside surface of the engine head is critical to the engine design for efficiency and reliability. However, the flow in this region is not well understood and support is required to develop the CFD codes needed to design modern Stirling engines of high efficiency and power output. The present project is to experimentally investigate the flow and heat transfer in the heater head region. Flow fields and heat transfer coefficients are measured to characterize the oscillatory flow as well as to supply experimental validation for the CFD Stirling engine design codes. Presented also is a discussion of how these results might be used for heater head and acceptor region design calculations.

  12. Two-dimensional numerical simulation of a Stirling engine heat exchanger

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir B.; Tew, Roy C.; Dudenhoefer, James E.

    1989-01-01

    The first phase of an effort to develop multidimensional models of Stirling engine components is described; the ultimate goal is to model an entire engine working space. More specifically, parallel plate and tubular heat exchanger models with emphasis on the central part of the channel (i.e., ignoring hydrodynamic and thermal end effects) are described. The model assumes: laminar, incompressible flow with constant thermophysical properties. In addition, a constant axial temperature gradient is imposed. The governing equations, describing the model, were solved using Crank-Nicloson finite-difference scheme. Model predictions were compared with analytical solutions for oscillating/reversing flow and heat transfer in order to check numerical accuracy. Excellent agreement was obtained for the model predictions with analytical solutions available for both flow in circular tubes and between parallel plates. Also the heat transfer computational results are in good agreement with the heat transfer analytical results for parallel plates.

  13. Numerical Study of Hydrothermal Wave Suppression in Thermocapillary Flow Using a Predictive Control Method

    NASA Astrophysics Data System (ADS)

    Muldoon, F. H.

    2018-04-01

    Hydrothermal waves in flows driven by thermocapillary and buoyancy effects are suppressed by applying a predictive control method. Hydrothermal waves arise in the manufacturing of crystals, including the "open boat" crystal growth process, and lead to undesirable impurities in crystals. The open boat process is modeled using the two-dimensional unsteady incompressible Navier-Stokes equations under the Boussinesq approximation and the linear approximation of the surface thermocapillary force. The flow is controlled by a spatially and temporally varying heat flux density through the free surface. The heat flux density is determined by a conjugate gradient optimization algorithm. The gradient of the objective function with respect to the heat flux density is found by solving adjoint equations derived from the Navier-Stokes ones in the Boussinesq approximation. Special attention is given to heat flux density distributions over small free-surface areas and to the maximum admissible heat flux density.

  14. Numerical thermal analyses of heat exchangers for the stirling engine application

    NASA Technical Reports Server (NTRS)

    Kannapareddy, Mohan Raj

    1995-01-01

    The Regenerator, Cooler and Heater for the NASA Space Power Research Engine (SPRE) have been analyzed in detail for laminar, incompressible and oscillatory flow conditions. Each component has been analyzed independently and in detail with the regenerator being modeled as two-parallel-plates channel with a solid wall. The ends of the channel are exposed to two reservoir maintained at different temperature thus providing an axial temperature gradient along the channel. The cooler and heater components have been modeled as circular pipes with isothermal walls. Two different types of thermal boundary conditions have been investigated for the cooler and heater, namely, symmetric and asymmetric temperature inflow. In symmetric temperature inflow the flow enters the channel with the same temperature in throughout the velocity cycle whereas, in asymmetric temperature inflow the flow enters with a different temperature in each half cycle. The study was conducted over a wide range of Maximum Reynolds number (RE(max) varying from 75 to 60000, Valensi number (Va) from 2.5 to 800, and relative amplitude of fluid displacement (A(sub r) from 0.357 to 1.34. A two dimensional Finite volume method based on the SIMPLE algorithm was used to solve the governing partial differential equations. Post processing programs were developed to effectively describe the heat transfer mechanism under oscillatory flows. The computer code was validated by comparing with existing analytical solutions for oscillating flows. The thermal field have been studied with the help of temperature contour and three dimensional plots. The instantaneous friction factor, wall heat flux and heat transfer coefficient have been examined. It has been concluded that in general, the frictional factor and heat transfer coefficient are higher under oscillatory flow conditions when the Valensi number is high. Also, the thermal efficiency decreases for lower A(r) values. Further, the usual steady state definition for the heat transfer coefficient does not seem to be valid.

  15. The effect of heat generation on mixed convection flow in nano fluids over a horizontal circular cylinder

    NASA Astrophysics Data System (ADS)

    Juliyanto, Bagus; Widodo, Basuki; Imron, Chairul

    2018-04-01

    The purpose of this research is to study the effect of heat generation on mixed convection flow on Nano fluids over a horizontal circular cylinder of a heated in two dimension form. A stream of fluids are steady and incompressible, a stream flowing vertically upwards for circular cylinder and the boundary layer at the stagnation point. Three different types of nanoparticles considered are Cu, Al2O3, and TiO2. Mixed convection flow in Nano fluids on the surface of a circular cylinder will cause the boundary layer. The governing boundary layer equations are transformed into a non-dimensional form, and then the non-dimensional forms are transformed into a similar boundary equations by using stream function. Furthermore, an implicit finite-difference scheme known as the Keller-box method is applied to solve numerically the resulting similar boundary layer equations. The result of the research by varying the non-dimensional parameters are mixed convection, Prandtl number, nanoparticle volume fraction, heat generation, and radius of a cylinder are as follows. First, the velocity profile increase and temperature profile decrease when mixed convection parameter increase. Second, the velocity and temperature profiles decrease when Prandtl number parameter increase. Third, the velocity profile with the variation of nanoparticle volume fraction (χ) is increased when the value of χ is 0,1 ≤ χ ≤ 0,15 and the velocity profile decreases when the value of χ is 0,19 ≤ χ ≤ 0,5 while the temperature profile is increasing when the value of χ is 0,1 ≤ χ ≤ 0,5. Fourth, the velocity and temperature profiles increase when heat generation and the radius of the cylinder increase. The last, Cu, Al 2 O 3, and TiO 2 nanoparticles produce the same velocity and temperature profiles, but the three types of nanoparticles are different at the velocity and temperature values.

  16. Three-dimensional Cascaded Lattice Boltzmann Model for Thermal Convective Flows

    NASA Astrophysics Data System (ADS)

    Hajabdollahi, Farzaneh; Premnath, Kannan

    2017-11-01

    Fluid motion driven by thermal effects, such as due to buoyancy in differentially heated enclosures arise in several natural and industrial settings, whose understanding can be achieved via numerical simulations. Lattice Boltzmann (LB) methods are efficient kinetic computational approaches for coupled flow physics problems. In this study, we develop three-dimensional (3D) LB models based on central moments and multiple relaxation times for D3Q7 and D3Q15 lattices to solve the energy transport equations in a double distribution function approach. Their collision operators lead to a cascaded structure involving higher order terms resulting in improved stability. This is coupled to a central moment based LB flow solver with source terms. The new 3D cascaded LB models for the convective flows are first validated for natural convection of air driven thermally on two vertically opposite faces in a cubic cavity at different Rayleigh numbers against prior numerical and experimental data, which show good quantitative agreement. Then, the detailed structure of the 3D flow and thermal fields and the heat transfer rates at different Rayleigh numbers are analyzed and interpreted.

  17. Turbulent Friction in the Boundary Layer of a Flat Plate in a Two-Dimensional Compressible Flow at High Speeds

    NASA Technical Reports Server (NTRS)

    Frankl, F.; Voishel, V.

    1943-01-01

    In the present report an investigation is made on a flat plate in a two-dimensional compressible flow of the effect of compressibility and heating on the turbulent frictional drag coefficient in the boundary layer of an airfoil or wing radiator. The analysis is based on the Prandtl-Karman theory of the turbulent boundary later and the Stodola-Crocco, theorem on the linear relation between the total energy of the flow and its velocity. Formulas are obtained for the velocity distribution and the frictional drag law in a turbulent boundary later with the compressibility effect and heat transfer taken into account. It is found that with increase of compressibility and temperature at full retardation of the flow (the temperature when the velocity of the flow at a given point is reduced to zero in case of an adiabatic process in the gas) at a constant R (sub x), the frictional drag coefficient C (sub f) decreased, both of these factors acting in the same sense.

  18. Fluid dynamics and convective heat transfer in impinging jets through implementation of a high resolution liquid crystal technique

    NASA Technical Reports Server (NTRS)

    Kim, K.; Wiedner, B.; Camci, C.

    1993-01-01

    A combined convective heat transfer and fluid dynamics investigation in a turbulent round jet impinging on a flat surface is presented. The experimental study uses a high resolution liquid crystal technique for the determination of the convective heat transfer coefficients on the impingement plate. The heat transfer experiments are performed using a transient heat transfer method. The mean flow and the character of turbulent flow in the free jet is presented through five hole probe and hot wire measurements, respectively. The flow field character of the region near the impingement plate plays an important role in the amount of convective heat transfer. Detailed surveys obtained from five hole probe and hot wire measurements are provided. An extensive validation of the liquid crystal based heat transfer method against a conventional technique is also presented. After a complete documentation of the mean and turbulent flow field, the convective heat transfer coefficient distributions on the impingement plate are presented. The near wall of the impingement plate and the free jet region is treated separately. The current heat transfer distributions are compared to other studies available from the literature. The present paper contains complete sets of information on the three dimensional mean flow, turbulent velocity fluctuations, and convective heat transfer to the plate. The experiments also prove that the present nonintrusive heat transfer method is highly effective in obtaining high resolution heat transfer maps with a heat transfer coefficient uncertainty of 5.7 percent.

  19. Cross diffusion and exponential space dependent heat source impacts in radiated three-dimensional (3D) flow of Casson fluid by heated surface

    NASA Astrophysics Data System (ADS)

    Zaigham Zia, Q. M.; Ullah, Ikram; Waqas, M.; Alsaedi, A.; Hayat, T.

    2018-03-01

    This research intends to elaborate Soret-Dufour characteristics in mixed convective radiated Casson liquid flow by exponentially heated surface. Novel features of exponential space dependent heat source are introduced. Appropriate variables are implemented for conversion of partial differential frameworks into a sets of ordinary differential expressions. Homotopic scheme is employed for construction of analytic solutions. Behavior of various embedding variables on velocity, temperature and concentration distributions are plotted graphically and analyzed in detail. Besides, skin friction coefficients and heat and mass transfer rates are also computed and interpreted. The results signify the pronounced characteristics of temperature corresponding to convective and radiation variables. Concentration bears opposite response for Soret and Dufour variables.

  20. Efficiency of Brownian heat engines.

    PubMed

    Derényi, I; Astumian, R D

    1999-06-01

    We study the efficiency of one-dimensional thermally driven Brownian ratchets or heat engines. We identify and compare the three basic setups characterized by the type of the connection between the Brownian particle and the two heat reservoirs: (i) simultaneous, (ii) alternating in time, and (iii) position dependent. We make a clear distinction between the heat flow via the kinetic and the potential energy of the particle, and show that the former is always irreversible and it is only the third setup where the latter is reversible when the engine works quasistatically. We also show that in the third setup the heat flow via the kinetic energy can be reduced arbitrarily, proving that even for microscopic heat engines there is no fundamental limit of the efficiency lower than that of a Carnot cycle.

  1. Three-Dimensional Unsteady Simulation of a Modern High Pressure Turbine Stage Using Phase Lag Periodicity: Analysis of Flow and Heat Transfer

    NASA Technical Reports Server (NTRS)

    Shyam, Vikram; Ameri, Ali; Luk, Daniel F.; Chen, Jen-Ping

    2010-01-01

    Unsteady three-dimensional RANS simulations have been performed on a highly loaded transonic turbine stage and results are compared to steady calculations as well as experiment. A low Reynolds number k- turbulence model is employed to provide closure for the RANS system. A phase-lag boundary condition is used in the periodic direction. This allows the unsteady simulation to be performed by using only one blade from each of the two rows. The objective of this paper is to study the effect of unsteadiness on rotor heat transfer and to glean any insight into unsteady flow physics. The role of the stator wake passing on the pressure distribution at the leading edge is also studied. The simulated heat transfer and pressure results agreed favorably with experiment. The time-averaged heat transfer predicted by the unsteady simulation is higher than the heat transfer predicted by the steady simulation everywhere except at the leading edge. The shock structure formed due to stator-rotor interaction was analyzed. Heat transfer and pressure at the hub and casing were also studied. Thermal segregation was observed that leads to the heat transfer patterns predicted by steady and unsteady simulations to be different.

  2. Development of Flow and Heat Transfer Models for the Carbon Fiber Rope in Nozzle Joints of the Space Shuttle Reusable Solid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Wang, Q.; Ewing, M. E.; Mathias, E. C.; Heman, J.; Smith, C.; McCool, Alex (Technical Monitor)

    2001-01-01

    Methodologies have been developed for modeling both gas dynamics and heat transfer inside the carbon fiber rope (CFR) for applications in the space shuttle reusable solid rocket motor joints. Specifically, the CFR is modeled using an equivalent rectangular duct with a cross-section area, friction factor and heat transfer coefficient such that this duct has the same amount of mass flow rate, pressure drop, and heat transfer rate as the CFR. An equation for the friction factor is derived based on the Darcy-Forschheimer law and the heat transfer coefficient is obtained from pipe flow correlations. The pressure, temperature and velocity of the gas inside the CFR are calculated using the one-dimensional Navier-Stokes equations. Various subscale tests, both cold flow and hot flow, have been carried out to validate and refine this CFR model. In particular, the following three types of testing were used: (1) cold flow in a RSRM nozzle-to-case joint geometry, (2) cold flow in a RSRM nozzle joint No. 2 geometry, and (3) hot flow in a RSRM nozzle joint environment simulator. The predicted pressure and temperature history are compared with experimental measurements. The effects of various input parameters for the model are discussed in detail.

  3. Hydrodynamic and thermal modeling of two-dimensional microdroplet arrays for digitized heat transfer

    NASA Astrophysics Data System (ADS)

    Baird, Eric S.

    This document describes hydrodynamic and thermal modeling of two-dimensional microdroplet arrays for use in digitized heat transfer (DHT), a novel active thermal management technique for high power density electronics and integrated microsystems. In DHT, thermal energy is transported by a discrete array of electrostatically activated microdroplets of liquid metals, alloys or aqueous solutions with the potential of supporting significantly higher heat transfer rates than classical air-cooled heat sinks. Actuation methods for dispensing and transporting individual fluid slugs with a high degree of precision and programmability are described, with simple approximate formulae for net forces for steady state and transient velocities in terms of known parameters. A modified cavity flow solver is developed to provide details on the internal flow properties of a translating microdroplet and used to detail the effects of droplet curvature, internal mixing, Peclet number and other parameters on the heat transfer capabilities of a discretized liquid flow. The concept of Nusselt number is generalized to an individual fluid slug and shown to oscillate with a period equal to the droplet's mixing rate. In whole, DHT is demonstrated to be a viable new alternative for achieving the most important objectives of electronic cooling (i.e., minimization of the maximum substrate temperature, reduction of the substrate temperature gradient and removal of substrate hot spots) and a sound fundamental description of the method's electro-, hydro- and thermodynamics is provided.

  4. Analysis of the injection of a heated turbulent jet into a cross flow

    NASA Technical Reports Server (NTRS)

    Campbell, J. F.; Schetz, J. A.

    1973-01-01

    The development of a theoretical model is investigated of the incompressible jet injection process. The discharge of a turbulent jet into a cross flow was mathematically modeled by using an integral method which accounts for natural fluid mechanisms such as turbulence, entrainment, buoyancy, and heat transfer. The analytical results are supported by experimental data and demonstrate the usefulness of the theory for estimating the trajectory and flow properties of the jet for a variety of injection conditions. The capability of predicting jet flow properties, as well as two- and three-dimensional jet paths, was enhanced by obtaining the jet cross-sectional area during the solution of the conservation equations. Realistic estimates of temperature in the jet fluid were acquired by accounting for heat losses in the jet flow due to forced convection and to entrainment of free-stream fluid into the jet.

  5. Mixed-Dimensionality VLSI-Type Configurable Tools for Virtual Prototyping of Biomicrofluidic Devices and Integrated Systems

    DTIC Science & Technology

    2002-10-01

    proximity to this aluminum bar, then the aluminum element would serve as a heat pipe to rapidly distribute heat to the center sensor and the floor...for a Bent Square Pipe ......................................................... 86 7.3 One-Cell Model for Free Surface Flows...90 7.4.2 Filament Application for Fluid Heating in Microreactor...................................... 91 7.4.3 Model

  6. Finite element analysis in fluids; Proceedings of the Seventh International Conference on Finite Element Methods in Flow Problems, University of Alabama, Huntsville, Apr. 3-7, 1989

    NASA Technical Reports Server (NTRS)

    Chung, T. J. (Editor); Karr, Gerald R. (Editor)

    1989-01-01

    Recent advances in computational fluid dynamics are examined in reviews and reports, with an emphasis on finite-element methods. Sections are devoted to adaptive meshes, atmospheric dynamics, combustion, compressible flows, control-volume finite elements, crystal growth, domain decomposition, EM-field problems, FDM/FEM, and fluid-structure interactions. Consideration is given to free-boundary problems with heat transfer, free surface flow, geophysical flow problems, heat and mass transfer, high-speed flow, incompressible flow, inverse design methods, MHD problems, the mathematics of finite elements, and mesh generation. Also discussed are mixed finite elements, multigrid methods, non-Newtonian fluids, numerical dissipation, parallel vector processing, reservoir simulation, seepage, shallow-water problems, spectral methods, supercomputer architectures, three-dimensional problems, and turbulent flows.

  7. Glenn-HT: The NASA Glenn Research Center General Multi-Block Navier-Stokes Heat Transfer Code

    NASA Technical Reports Server (NTRS)

    Gaugler, Raymond E.; Lee, Chi-Miag (Technical Monitor)

    2001-01-01

    For the last several years, Glenn-HT, a three-dimensional (3D) Computational Fluid Dynamics (CFD) computer code for the analysis of gas turbine flow and convective heat transfer has been evolving at the NASA Glenn Research Center. The code is unique in the ability to give a highly detailed representation of the flow field very close to solid surfaces in order to get accurate representation of fluid heat transfer and viscous shear stresses. The code has been validated and used extensively for both internal cooling passage flow and for hot gas path flows, including detailed film cooling calculations and complex tip clearance gap flow and heat transfer. In its current form, this code has a multiblock grid capability and has been validated for a number of turbine configurations. The code has been developed and used primarily as a research tool, but it can be useful for detailed design analysis. In this paper, the code is described and examples of its validation and use for complex flow calculations are presented, emphasizing the applicability to turbomachinery for space launch vehicle propulsion systems.

  8. Glenn-HT: The NASA Glenn Research Center General Multi-Block Navier-Stokes Heat Transfer Code

    NASA Technical Reports Server (NTRS)

    Gaugfer, Raymond E.

    2002-01-01

    For the last several years, Glenn-HT, a three-dimensional (3D) Computational Fluid Dynamics (CFD) computer code for the analysis of gas turbine flow and convective heat transfer has been evolving at the NASA Glenn Research Center. The code is unique in the ability to give a highly detailed representation of the flow field very close to solid surfaces in order to get accurate representation of fluid heat transfer and viscous shear stresses. The code has been validated and used extensively for both internal cooling passage flow and for hot gas path flows, including detailed film cooling calculations and complex tip clearance gap flow and heat transfer. In its current form, this code has a multiblock grid capability and has been validated for a number of turbine configurations. The code has been developed and used primarily as a research tool, but it can be useful for detailed design analysis. In this presentation, the code is described and examples of its validation and use for complex flow calculations are presented, emphasizing the applicability to turbomachinery.

  9. Numerical Model of Flame Spread Over Solids in Microgravity: A Supplementary Tool for Designing a Space Experiment

    NASA Technical Reports Server (NTRS)

    Shih, Hsin-Yi; Tien, James S.; Ferkul, Paul (Technical Monitor)

    2001-01-01

    The recently developed numerical model of concurrent-flow flame spread over thin solids has been used as a simulation tool to help the designs of a space experiment. The two-dimensional and three-dimensional, steady form of the compressible Navier-Stokes equations with chemical reactions are solved. With the coupled multi-dimensional solver of the radiative heat transfer, the model is capable of answering a number of questions regarding the experiment concept and the hardware designs. In this paper, the capabilities of the numerical model are demonstrated by providing the guidance for several experimental designing issues. The test matrix and operating conditions of the experiment are estimated through the modeling results. The three-dimensional calculations are made to simulate the flame-spreading experiment with realistic hardware configuration. The computed detailed flame structures provide the insight to the data collection. In addition, the heating load and the requirements of the product exhaust cleanup for the flow tunnel are estimated with the model. We anticipate that using this simulation tool will enable a more efficient and successful space experiment to be conducted.

  10. Mixed Convection Flow in Horizontal CVD Reactors

    NASA Astrophysics Data System (ADS)

    Chiu, Wilson K. S.; Richards, Cristy J.; Jaluria, Yogesh

    1998-11-01

    Increasing demands for high quality films and production rates are challenging current Chemical Vapor Deposition (CVD) technology. Since film quality and deposition rates are strongly dependent on gas flow and heat transfer (W.K.S. Chiu and Y. Jaluria, ASME HTD-Vol. 347, pp. 293-311, 1997.), process improvement is obtained through the study of mixed convection flow and temperature distribution in a CVD reactor. Experimental results are presented for a CVD chamber with a horizontal or inclined resistance heated susceptor. Vaporized glycol solution illuminated by a light sheet is used for flow visualization. Temperature measurements are obtained by inserting thermocouple probes into the gas stream or embedding probes into the reactor walls. Flow visualization and temperature measurements show predominantly two dimensional flow and temperature distributions along the streamwise direction under forced convection conditions. Natural convection dominates under large heating rates and low flow rates. Over the range of parameters studied, several distinct flow regimes, characterized by instability, separation, and turbulence, are evident. Different flow regimes alter the flow pattern and temperature distribution, and in consequence, significantly modify deposition rates and uniformity.

  11. Experimental study of thermoacoustic effects on a single plate Part I: Temperature fields

    NASA Astrophysics Data System (ADS)

    Wetzel, M.; Herman, C.

    The thermal interaction between a heated solid plate and the acoustically driven working fluid was investigated by visualizing and quantifying the temperature fields in the neighbourhood of the solid plate. A combination of holographic interferometry and high-speed cinematography was applied in the measurements. A better knowledge of these temperature fields is essential to develop systematic design methodologies for heat exchangers in oscillatory flows. The difference between heat transfer in oscillatory flows with zero mean velocity and steady-state flows is demonstrated in the paper. Instead of heat transfer from a heated solid surface to the colder bulk fluid, the visualized temperature fields indicated that heat was transferred from the working fluid into the stack plate at the edge of the plate. In the experiments, the thermoacoustic effect was visualized through the temperature measurements. A novel evaluation procedure that accounts for the influence of the acoustic pressure variations on the refractive index was applied to accurately reconstruct the high-speed, two-dimensional oscillating temperature distributions.

  12. Thermal stability analysis of a superconducting magnet considering heat flow between magnet surface and liquid helium

    NASA Astrophysics Data System (ADS)

    Jang, J. Y.; Hwang, Y. J.; Ahn, M. C.; Choi, Y. S.

    2018-07-01

    This paper represents a numerical calculation method that enables highly-accurate simulations on temperature analysis of superconducting magnets considering the heat flow between the magnet and liquid helium during a quench. A three-dimensional (3D) superconducting magnet space was divided into many cells and the finite-difference method (FDM) was adopted to calculate the superconducting magnet temperatures governed by the heat transfer and joule heating of the each cell during a quench. To enhance the accuracy of the temperature calculations during a quench, the heat flow between the superconducting magnet surface and liquid helium, which lowers the magnet temperatures, was considered in this work. The electrical equation coupled with the governing thermal equation was also applied to calculate the change of the decay of the magnet current related to the joule heating. The proposed FDM method for temperatures calculation of a superconducting magnet during a quench process achieved results that were in good agreement with those obtained from an experiment.

  13. An Advanced One-Dimensional Finite Element Model for Incompressible Thermally Expandable Flow

    DOE PAGES

    Hu, Rui

    2017-03-27

    Here, this paper provides an overview of a new one-dimensional finite element flow model for incompressible but thermally expandable flow. The flow model was developed for use in system analysis tools for whole-plant safety analysis of sodium fast reactors. Although the pressure-based formulation was implemented, the use of integral equations in the conservative form ensured the conservation laws of the fluid. A stabilization scheme based on streamline-upwind/Petrov-Galerkin and pressure-stabilizing/Petrov-Galerkin formulations is also introduced. The flow model and its implementation have been verified by many test problems, including density wave propagation, steep gradient problems, discharging between tanks, and the conjugate heatmore » transfer in a heat exchanger.« less

  14. An Advanced One-Dimensional Finite Element Model for Incompressible Thermally Expandable Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Rui

    Here, this paper provides an overview of a new one-dimensional finite element flow model for incompressible but thermally expandable flow. The flow model was developed for use in system analysis tools for whole-plant safety analysis of sodium fast reactors. Although the pressure-based formulation was implemented, the use of integral equations in the conservative form ensured the conservation laws of the fluid. A stabilization scheme based on streamline-upwind/Petrov-Galerkin and pressure-stabilizing/Petrov-Galerkin formulations is also introduced. The flow model and its implementation have been verified by many test problems, including density wave propagation, steep gradient problems, discharging between tanks, and the conjugate heatmore » transfer in a heat exchanger.« less

  15. Topology optimization of natural convection: Flow in a differentially heated cavity

    NASA Astrophysics Data System (ADS)

    Saglietti, Clio; Schlatter, Philipp; Berggren, Martin; Henningson, Dan

    2017-11-01

    The goal of the present work is to develop methods for optimization of the design of natural convection cooled heat sinks, using resolved simulation of both fluid flow and heat transfer. We rely on mathematical programming techniques combined with direct numerical simulations in order to iteratively update the topology of a solid structure towards optimality, i.e. until the design yielding the best performance is found, while satisfying a specific set of constraints. The investigated test case is a two-dimensional differentially heated cavity, in which the two vertical walls are held at different temperatures. The buoyancy force induces a swirling convective flow around a solid structure, whose topology is optimized to maximize the heat flux through the cavity. We rely on the spectral-element code Nek5000 to compute a high-order accurate solution of the natural convection flow arising from the conjugate heat transfer in the cavity. The laminar, steady-state solution of the problem is evaluated with a time-marching scheme that has an increased convergence rate; the actual iterative optimization is obtained using a steepest-decent algorithm, and the gradients are conveniently computed using the continuous adjoint equations for convective heat transfer.

  16. A study of the flow boiling heat transfer in a minichannel for a heated wall with surface texture produced by vibration-assisted laser machining

    NASA Astrophysics Data System (ADS)

    Piasecka, Magdalena; Strąk, Kinga; Maciejewska, Beata; Grabas, Bogusław

    2016-09-01

    The paper presents results concerning flow boiling heat transfer in a vertical minichannel with a depth of 1.7 mm and a width of 16 mm. The element responsible for heating FC-72, which flowed laminarly in the minichannel, was a plate with an enhanced surface. Two types of surface textures were considered. Both were produced by vibration-assisted laser machining. Infrared thermography was used to record changes in the temperature on the outer smooth side of the plate. Two-phase flow patterns were observed through a glass pane. The main aim of the study was to analyze how the two types of surface textures affect the heat transfer coefficient. A two-dimensional heat transfer approach was proposed to determine the local values of the heat transfer coefficient. The inverse problem for the heated wall was solved using a semi-analytical method based on the Trefftz functions. The results are presented as relationships between the heat transfer coefficient and the distance along the minichannel length and as boiling curves. The experimental data obtained for the two types of enhanced heated surfaces was compared with the results recorded for the smooth heated surface. The highest local values of the heat transfer coefficient were reported in the saturated boiling region for the plate with the type 1 texture produced by vibration-assisted laser machining.

  17. Heat transfer in aeropropulsion systems

    NASA Astrophysics Data System (ADS)

    Simoneau, R. J.

    1985-07-01

    Aeropropulsion heat transfer is reviewed. A research methodology based on a growing synergism between computations and experiments is examined. The aeropropulsion heat transfer arena is identified as high Reynolds number forced convection in a highly disturbed environment subject to strong gradients, body forces, abrupt geometry changes and high three dimensionality - all in an unsteady flow field. Numerous examples based on heat transfer to the aircraft gas turbine blade are presented to illustrate the types of heat transfer problems which are generic to aeropropulsion systems. The research focus of the near future in aeropropulsion heat transfer is projected.

  18. Heat transfer in aeropropulsion systems

    NASA Technical Reports Server (NTRS)

    Simoneau, R. J.

    1985-01-01

    Aeropropulsion heat transfer is reviewed. A research methodology based on a growing synergism between computations and experiments is examined. The aeropropulsion heat transfer arena is identified as high Reynolds number forced convection in a highly disturbed environment subject to strong gradients, body forces, abrupt geometry changes and high three dimensionality - all in an unsteady flow field. Numerous examples based on heat transfer to the aircraft gas turbine blade are presented to illustrate the types of heat transfer problems which are generic to aeropropulsion systems. The research focus of the near future in aeropropulsion heat transfer is projected.

  19. Resolving hyporheic and groundwater components of streambed water flux

    USGS Publications Warehouse

    Bhaskar, Aditi S.; Harvey, Judson W.; Henry, Eric J.

    2012-01-01

    Hyporheic and groundwater fluxes typically occur together in permeable sediments beneath flowing stream water. However, streambed water fluxes quantified using the thermal method are usually interpreted as representing either groundwater or hyporheic fluxes. Our purpose was to improve understanding of co-occurring groundwater and hyporheic fluxes using streambed temperature measurements and analysis of one-dimensional heat transport in shallow streambeds. First, we examined how changes in hyporheic and groundwater fluxes affect their relative magnitudes by reevaluating previously published simulations. These indicated that flux magnitudes are largely independent until a threshold is crossed, past which hyporheic fluxes are diminished by much larger (1000-fold) groundwater fluxes. We tested accurate quantification of co-occurring fluxes using one-dimensional approaches that are appropriate for analyzing streambed temperature data collected at field sites. The thermal analytical method, which uses an analytical solution to the one-dimensional heat transport equation, was used to analyze results from a numerical heat transport model, in which hyporheic flow was represented as increased thermal dispersion at shallow depths. We found that co-occurring groundwater and hyporheic fluxes can be quantified in streambeds, although not always accurately. For example, using a temperature time series collected in a sandy streambed, we found that hyporheic and groundwater flow could both be detected when thermal dispersion due to hyporheic flow was significant compared to thermal conduction. We provide guidance for when thermal data can be used to quantify both hyporheic and groundwater fluxes, and we show that neglecting thermal dispersion may affect accuracy and interpretation of estimated streambed water fluxes.

  20. Thermal effects of groundwater flow through subarctic fens: A case study based on field observations and numerical modeling

    DOE PAGES

    Sjöberg, Ylva; Coon, Ethan; K. Sannel, A. Britta; ...

    2016-02-04

    Modeling and observation of ground temperature dynamics are the main tools for understanding current permafrost thermal regimes and projecting future thaw. Until recently, most studies on permafrost have focused on vertical ground heat fluxes. Groundwater can transport heat in both lateral and vertical directions but its influence on ground temperatures at local scales in permafrost environments is not well understood. In this paper, we combine field observations from a subarctic fen in the sporadic permafrost zone with numerical simulations of coupled water and thermal fluxes. At the Tavvavuoma study site in northern Sweden, ground temperature profiles and groundwater levels weremore » observed in boreholes. These observations were used to set up one- and two-dimensional simulations down to 2 m depth across a gradient of permafrost conditions within and surrounding the fen. Two-dimensional scenarios representing the fen under various hydraulic gradients were developed to quantify the influence of groundwater flow on ground temperature. Our observations suggest that lateral groundwater flow significantly affects ground temperatures. This is corroborated by modeling results that show seasonal ground ice melts 1 month earlier when a lateral groundwater flux is present. Further, although the thermal regime may be dominated by vertically conducted heat fluxes during most of the year, isolated high groundwater flow rate events such as the spring freshet are potentially important for ground temperatures. Finally, as sporadic permafrost environments often contain substantial portions of unfrozen ground with active groundwater flow paths, knowledge of this heat transport mechanism is important for understanding permafrost dynamics in these environments.« less

  1. Simulation of Fluid Flow and Collection Efficiency for an SEA Multi-element Probe

    NASA Technical Reports Server (NTRS)

    Rigby, David L.; Struk, Peter M.; Bidwell, Colin

    2014-01-01

    Numerical simulations of fluid flow and collection efficiency for a Science Engineering Associates (SEA) multi-element probe are presented. Simulation of the flow field was produced using the Glenn-HT Navier-Stokes solver. Three-dimensional unsteady results were produced and then time averaged for the heat transfer and collection efficiency results. Three grid densities were investigated to enable an assessment of grid dependence. Simulations were completed for free stream velocities ranging from 85-135 meters per second, and free stream total pressure of 44.8 and 93.1 kilopascals (6.5 and 13.5 pounds per square inch absolute). In addition, the effect of angle of attack and yaw were investigated by including 5 degree deviations from straight for one of the flow conditions. All but one of the cases simulated a probe in isolation (i.e. in a very large domain without any support strut). One case is included which represents a probe mounted on a support strut within a finite sized wind tunnel. Collection efficiencies were generated, using the LEWICE3D code, for four spherical particle sizes, 100, 50, 20, and 5 micron in diameter. It was observed that a reduction in velocity of about 20% occurred, for all cases, as the flow entered the shroud of the probe. The reduction in velocity within the shroud is not indicative of any error in the probe measurement accuracy. Heat transfer results are presented which agree quite well with a correlation for the circular cross section heated elements. Collection efficiency results indicate a reduction in collection efficiency as particle size is reduced. The reduction with particle size is expected, however, the results tended to be lower than the previous results generated for isolated two-dimensional elements. The deviation from the two-dimensional results is more pronounced for the smaller particles and is likely due to the reduced flow within the protective shroud. As particle size increases differences between the two-dimensional and three dimensional results become negligible. Taken as a group, the total collection efficiency of the elements including the effects of the shroud has been shown to be in the range of 0.93 to 0.99 for particles above 20 microns. The 3D model has improved the estimated collection efficiency for smaller particles where errors in previous estimates were more significant.

  2. Scaling analysis for the direct reactor auxiliary cooling system for FHRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lv, Q.; Kim, I. H.; Sun, X.

    2015-04-01

    The Direct Reactor Auxiliary Cooling System (DRACS) is a passive residual heat removal system proposed for the Fluoride-salt-cooled High-temperature Reactor (FHR) that combines the coated particle fuel and graphite moderator with a liquid fluoride salt as the coolant. The DRACS features three natural circulation/convection loops that rely on buoyancy as the driving force and are coupled via two heat exchangers, namely, the DRACS heat exchanger and the natural draft heat exchanger. A fluidic diode is employed to minimize the parasitic flow into the DRACS primary loop and correspondingly the heat loss to the DRACS during reactor normal operation, and tomore » activate the DRACS in accidents when the reactor is shut down. While the DRACS concept has been proposed, there are no actual prototypic DRACS systems for FHRs built or tested in the literature. In this paper, a detailed scaling analysis for the DRACS is performed, which will provide guidance for the design of scaled-down DRACS test facilities. Based on the Boussinesq assumption and one-dimensional flow formulation, the governing equations are non-dimensionalized by introducing appropriate dimensionless parameters. The key dimensionless numbers that characterize the DRACS system are obtained from the non-dimensional governing equations. Based on the dimensionless numbers and non-dimensional governing equations, similarity laws are proposed. In addition, a scaling methodology has been developed, which consists of a core scaling and a loop scaling. The consistency between the core and loop scaling is examined via the reference volume ratio, which can be obtained from both the core and loop scaling processes. The scaling methodology and similarity laws have been applied to obtain a scientific design of a scaled-down high-temperature DRACS test facility.« less

  3. A study of the vortex structures around circular cylinder mounted on vertical heated plate

    NASA Astrophysics Data System (ADS)

    Malah, Hamid; Chumakov, Yurii S.; Levchenya, Alexander M.

    2018-05-01

    In recent years, studies of natural convection boundary layer interacting with obstacles draw much of attention, because of its practical applications. Pressure gradient resulting from this interaction leads to separation of the boundary layer. The formation of vortex structure around obstacle is characteristic to any kind of convection flow. In this paper, we describe the formation of three-dimensional vortex structure for the case of natural convection flow around the circular cylinder mounted on vertical heated plate. Navier-Stokes equations were used for numerical computations. The results proved the presence of a horseshoe vortex system in the case of natural convection flow as in the forced convection flow.

  4. Stability investigation in nominally two-dimensional laminar boundary layers by means of heat pulsing

    NASA Astrophysics Data System (ADS)

    Zhou, Ming De; Liu, Tian Shu

    The effects of heat pulses from surface-mounted wires on the laminar boundary-layer flow on an 800 x 300 x 32-mm flat wooden plate with a 6:1 elliptical nose are investigated experimentally in the 1.5 x 0.3-m working section of the DFVLR-AVA Goettingen low-turbulence wind tunnel at maximum free-stream velocity 45 m/s and longitudinal turbulence intensity about 0.05 percent. The results of flow visualization and hot-film measurements are presented in extensive graphs and photographs and analyzed. It is found that the initial amplification of disturbances is accurately predicted by two-dimensional linear stability theory, even when the disturbances include significant three-dimensional components. Subharmonic paths to turbulence are shown to begin from lower initial-disturbance fluctuation levels or at lower Reynolds numbers than predicted by the 'K' mechanism (Klebanoff et al., 1962), and the oblique wave angles at which maximum amplification occurs are seen as consistent with the resonant triad model of Craik (1971).

  5. Heat transfer evaluation in a plasma core reactor

    NASA Technical Reports Server (NTRS)

    Smith, D. E.; Smith, T. M.; Stoenescu, M. L.

    1976-01-01

    Numerical evaluations of heat transfer in a fissioning uranium plasma core reactor cavity, operating with seeded hydrogen propellant, was performed. A two-dimensional analysis is based on an assumed flow pattern and cavity wall heat exchange rate. Various iterative schemes were required by the nature of the radiative field and by the solid seed vaporization. Approximate formulations of the radiative heat flux are generally used, due to the complexity of the solution of a rigorously formulated problem. The present work analyzes the sensitivity of the results with respect to approximations of the radiative field, geometry, seed vaporization coefficients and flow pattern. The results present temperature, heat flux, density and optical depth distributions in the reactor cavity, acceptable simplifying assumptions, and iterative schemes. The present calculations, performed in cartesian and spherical coordinates, are applicable to any most general heat transfer problem.

  6. Aerodynamic heating rate distributions induced by trailing edge controls on hypersonic aircraft configurations at Mach 8

    NASA Technical Reports Server (NTRS)

    Kaufman, L. G., II; Johnson, C. B.

    1984-01-01

    Aerodynamic surface heating rate distributions in three dimensional shock wave boundary layer interaction flow regions are presented for a generic set of model configurations representative of the aft portion of hypersonic aircraft. Heat transfer data were obtained using the phase change coating technique (paint) and, at particular spanwise and streamwise stations for sample cases, by the thin wall transient temperature technique (thermocouples). Surface oil flow patterns are also shown. The good accuracy of the detailed heat transfer data, as attested in part by their repeatability, is attributable partially to the comparatively high temperature potential of the NASA-Langley Mach 8 Variable Density Tunnel. The data are well suited to help guide heating analyses of Mach 8 aircraft, and should be considered in formulating improvements to empiric analytic methods for calculating heat transfer rate coefficient distributions.

  7. Investigation of arterial gas occlusions. [effect of noncondensable gases on high performance heat pipes

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.

    1974-01-01

    The effect of noncondensable gases on high-performance arterial heat pipes was investigated both analytically and experimentally. Models have been generated which characterize the dissolution of gases in condensate, and the diffusional loss of dissolved gases from condensate in arterial flow. These processes, and others, were used to postulate stability criteria for arterial heat pipes under isothermal and non-isothermal condensate flow conditions. A rigorous second-order gas-loaded heat pipe model, incorporating axial conduction and one-dimensional vapor transport, was produced and used for thermal and gas studies. A Freon-22 (CHCIF2) heat pipe was used with helium and xenon to validate modeling. With helium, experimental data compared well with theory. Unusual gas-control effects with xenon were attributed to high solubility.

  8. Heat as a tracer to estimate dissolved organic carbon flux from a restored wetland

    USGS Publications Warehouse

    Burow, K.R.; Constantz, J.; Fujii, R.

    2005-01-01

    Heat was used as a natural tracer to characterize shallow ground water flow beneath a complex wetland system. Hydrogeologic data were combined with measured vertical temperature profiles to constrain a series of two-dimensional, transient simulations of ground water flow and heat transport using the model code SUTRA (Voss 1990). The measured seasonal temperature signal reached depths of 2.7 m beneath the pond. Hydraulic conductivity was varied in each of the layers in the model in a systematic manual calibration of the two-dimensional model to obtain the best fit to the measured temperature and hydraulic head. Results of a series of representative best-fit simulations represent a range in hydraulic conductivity values that had the best agreement between simulated and observed temperatures and that resulted in simulated pond seepage values within 1 order of magnitude of pond seepage estimated from the water budget. Resulting estimates of ground water discharge to an adjacent agricultural drainage ditch were used to estimate potential dissolved organic carbon (DOC) loads resulting from the restored wetland. Estimated DOC loads ranged from 45 to 1340 g C/(m2 year), which is higher than estimated DOC loads from surface water. In spite of the complexity in characterizing ground water flow in peat soils, using heat as a tracer provided a constrained estimate of subsurface flow from the pond to the agricultural drainage ditch. Copyright ?? 2005 National Ground Water Association.

  9. Thermal structure of the crust in Inner East Anatolia from aeromagnetic and gravity data

    NASA Astrophysics Data System (ADS)

    Bektaş, Özcan

    2013-08-01

    Inner East Anatolia has many hot spring outcomes. In this study, the relationship between the thermal structure and hot spring outcomes is investigated. The residual aeromagnetic and gravity anomalies of the Inner East Anatolia, surveyed by the Mineral Research and Exploration (MTA) of Turkey, show complexities. The magnetic data were analyzed to produce Curie point depth estimates. The depth of magnetic dipole was calculated by azimuthally averaged power spectrum method for the whole area. The Curie point depth (CPD) map covering the Inner East Anatolia has been produced. The Curie point depths of the region between Sivas and Malatya vary from 16.5 to 18.7 km. Values of heat flow were calculated according to continental geotherm from the model. The heat flow values vary between 89 and 99 mW m-2. Heat flow values are incorporated with surface heat flow values. Gravity anomalies were modeled by means of a three-dimensional method. The deepest part of the basin (12-14 km), determined from the 3D model, are located below the settlement of Hafik and to the south of Zara towns. Two-dimensional cross sections produced from the basin depths, Curie values and MOHO depths. Based on the analysis of magnetic, gravity anomalies, thermal structures and geology, it seems likely that the hot springs are not related to rising asthenosphere, in the regions of shallow CPDs (∼16.5 km), and mostly hot springs are related to faulting systems in Inner East Anatolia.

  10. Aerothermodynamic measurements for space shuttle configuration in hypersonic wind tunnels

    NASA Technical Reports Server (NTRS)

    Bertin, J. J.; Williams, F. E.; Baker, R. C.; Goodrich, W. D.; Kessler, W. C.

    1972-01-01

    The effect of shuttle configuration geometry, angle of attack, and free stream flow conditions on the heat-transfer distribution as influenced by three-dimensional effects, the wing-fuselage shock-interaction, and resultant wing-impingement phenomena are examined. In addition, the data provided information regarding the flow field in the vicinity of the nose and boundary layer transition in the plane of symmetry of the fuselage. The data included measurements of the surface pressure, the heat transfer rate distributions, (using models instrumented with thermocouples and models painted with thermographic phosphor) and schlieren and shadowgraph photographs. Posttest photographs of the painted models supplemented the heat transfer data.

  11. One-dimensional thermohydraulic code THESEUS and its application to chilldown process simulation in two-phase hydrogen flows

    NASA Astrophysics Data System (ADS)

    Papadimitriou, P.; Skorek, T.

    THESUS is a thermohydraulic code for the calculation of steady state and transient processes of two-phase cryogenic flows. The physical model is based on four conservation equations with separate liquid and gas phase mass conservation equations. The thermohydraulic non-equilibrium is calculated by means of evaporation and condensation models. The mechanical non-equilibrium is modeled by a full-range drift-flux model. Also heat conduction in solid structures and heat exchange for the full spectrum of heat transfer regimes can be simulated. Test analyses of two-channel chilldown experiments and comparisons with the measured data have been performed.

  12. The transference of heat from a hot plate to an air stream

    NASA Technical Reports Server (NTRS)

    Elias, Franz

    1931-01-01

    The object of the present study was to define experimentally the field of temperature and velocity in a heated flat plate when exposed to an air stream whose direction is parallel to it, then calculate therefrom the heat transference and the friction past the flat plate, and lastly, compare the test data with the mathematical theory. To ensure comparable results, we were to actually obtain or else approximate: a) two-dimensional flow; b) constant plate temperature in the direction of the stream. To approximate the flow in two dimensions, we chose a relatively wide plate and measured the velocity and temperature in the median plane.

  13. Two-dimensional simulation of a two-phase, regenerative pumped radiator loop utilizing direct contact heat transfer with phase change

    NASA Astrophysics Data System (ADS)

    Rhee, Hyop S.; Begg, Lester L.; Wetch, Joseph R.; Jang, Jong H.; Juhasz, Albert J.

    An innovative pumped loop concept for 600 K space power system radiators utilizing direct contact heat transfer, which facilitates repeated startup/shutdown of the power system without complex and time-consuming coolant thawing during power startup, is under development. The heat transfer process with melting/freezing of Li in an NaK flow was studied through two-dimensional time-dependent numerical simulations to characterize and predict the Li/NaK radiator performance during startup (thawing) and shutdown (cold-trapping). Effects of system parameters and the criteria for the plugging domain are presented together with temperature distribution patterns in solid Li and subsequent melting surface profile variations in time.

  14. Laser Metalworking Technology Transfer.

    DTIC Science & Technology

    1986-01-01

    TI 59 programmable calculator /printer...the .4 one-dimensional heat flow model and should not be used for low processing speed. The program is written for use on a Texas Instrument TI 59 programmable calculator with...speed range, and a three-dimensional model for the low speed ranges. The program is written for use on a Texas Instrument TI 59 . * programmable calculator

  15. Heat Transfer Measurements and Predictions on a Power Generation Gas Turbine Blade

    NASA Technical Reports Server (NTRS)

    Giel, Paul W.; Bunker, Ronald S.; VanFossen, G. James; Boyle, Robert J.

    2000-01-01

    Detailed heat transfer measurements and predictions are given for a power generation turbine rotor with 129 deg of nominal turning and an axial chord of 137 mm. Data were obtained for a set of four exit Reynolds numbers comprised of the design point of 628,000, -20%, +20%, and +40%. Three ideal exit pressure ratios were examined including the design point of 1.378, -10%, and +10%. Inlet incidence angles of 0 deg and +/-2 deg were also examined. Measurements were made in a linear cascade with highly three-dimensional blade passage flows that resulted from the high flow turning and thick inlet boundary layers. Inlet turbulence was generated with a blown square bar grid. The purpose of the work is the extension of three-dimensional predictive modeling capability for airfoil external heat transfer to engine specific conditions including blade shape, Reynolds numbers, and Mach numbers. Data were obtained by a steady-state technique using a thin-foil heater wrapped around a low thermal conductivity blade. Surface temperatures were measured using calibrated liquid crystals. The results show the effects of strong secondary vortical flows, laminar-to-turbulent transition, and also show good detail in the stagnation region.

  16. Numerical investigation on properties of attack angle for an opposing jet thermal protection system

    NASA Astrophysics Data System (ADS)

    Lu, Hai-Bo; Liu, Wei-Qiang

    2012-08-01

    The three-dimensional Navier—Stokes equation and the k-in viscous model are used to simulate the attack angle characteristics of a hemisphere nose-tip with an opposing jet thermal protection system in supersonic flow conditions. The numerical method is validated by the relevant experiment. The flow field parameters, aerodynamic forces, and surface heat flux distributions for attack angles of 0°, 2°, 5°, 7°, and 10° are obtained. The detailed numerical results show that the cruise attack angle has a great influence on the flow field parameters, aerodynamic force, and surface heat flux distribution of the supersonic vehicle nose-tip with an opposing jet thermal protection system. When the attack angle reaches 10°, the heat flux on the windward generatrix is close to the maximal heat flux on the wall surface of the nose-tip without thermal protection system, thus the thermal protection has failed.

  17. Geothermal Resource/Reservoir Investigations Based on Heat Flow and Thermal Gradient Data for the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. D. Blackwell; K. W. Wisian; M. C. Richards

    2000-04-01

    Several activities related to geothermal resources in the western United States are described in this report. A database of geothermal site-specific thermal gradient and heat flow results from individual exploration wells in the western US has been assembled. Extensive temperature gradient and heat flow exploration data from the active exploration of the 1970's and 1980's were collected, compiled, and synthesized, emphasizing previously unavailable company data. Examples of the use and applications of the database are described. The database and results are available on the world wide web. In this report numerical models are used to establish basic qualitative relationships betweenmore » structure, heat input, and permeability distribution, and the resulting geothermal system. A series of steady state, two-dimensional numerical models evaluate the effect of permeability and structural variations on an idealized, generic Basin and Range geothermal system and the results are described.« less

  18. Effects of aqueous humor hydrodynamics on human eye heat transfer under external heat sources.

    PubMed

    Tiang, Kor L; Ooi, Ean H

    2016-08-01

    The majority of the eye models developed in the late 90s and early 00s considers only heat conduction inside the eye. This assumption is not entirely correct, since the anterior and posterior chambers are filled aqueous humor (AH) that is constantly in motion due to thermally-induced buoyancy. In this paper, a three-dimensional model of the human eye is developed to investigate the effects AH hydrodynamics have on the human eye temperature under exposure to external heat sources. If the effects of AH flow are negligible, then future models can be developed without taking them into account, thus simplifying the modeling process. Two types of external thermal loads are considered; volumetric and surface irradiation. Results showed that heat convection due to AH flow contributes to nearly 95% of the total heat flow inside the anterior chamber. Moreover, the circulation inside the anterior chamber can cause an upward shift of the location of hotspot. This can have significant consequences to our understanding of heat-induced cataractogenesis. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  19. Conjugate heat transfer of a finned tube. Part B: Heat transfer augmentation and avoidance of heat transfer reversal by longitudinal vortex generators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiebig, M.; Chen, Y.; Grosse-Gorgemann, A.

    1995-08-01

    Numerical investigations of three-dimensional flow and heat transfer in a finned tube with punched longitudinal vortex generators (LVG`s) are carried out for Reynolds number of 250 and 300. Air with a Prandtl number of 0.7 is used as the fluid. The flow is both thermally and hydrodynamically developing. The LVG is a delta winglet pair (DWP) punched out of the fin and is located directly behind the tube, symmetrically separated by one tube diameter. The DWP generates longitudinal vortices in the wake of the tube, defers flow separation on the tube, deflects the main stream into the tube wake, andmore » strong reduces the ``dead water zone.`` Heat transfer reversal is avoided by the DWP. Comparison of the span-averaged Nusselt numbers for the fin with and without DWP shows significant local heat transfer enhancement of several hundred percent in the tube wake. For Re = 300 and Fi = 200 the global heat transfer augmentation by a DWP, which amounts to only 2.5% of the fin area, is 31%.« less

  20. LeRC-HT: NASA Lewis Research Center General Multiblock Navier-Stokes Heat Transfer Code Developed

    NASA Technical Reports Server (NTRS)

    Heidmann, James D.; Gaugler, Raymond E.

    1999-01-01

    For the last several years, LeRC-HT, a three-dimensional computational fluid dynamics (CFD) computer code for analyzing gas turbine flow and convective heat transfer, has been evolving at the NASA Lewis Research Center. The code is unique in its ability to give a highly detailed representation of the flow field very close to solid surfaces. This is necessary for an accurate representation of fluid heat transfer and viscous shear stresses. The code has been used extensively for both internal cooling passage flows and hot gas path flows--including detailed film cooling calculations, complex tip-clearance gap flows, and heat transfer. In its current form, this code has a multiblock grid capability and has been validated for a number of turbine configurations. The code has been developed and used primarily as a research tool (at least 35 technical papers have been published relative to the code and its application), but it should be useful for detailed design analysis. We now plan to make this code available to selected users for further evaluation.

  1. Space radiator simulation system analysis

    NASA Technical Reports Server (NTRS)

    Black, W. Z.; Wulff, W.

    1972-01-01

    A transient heat transfer analysis was carried out on a space radiator heat rejection system exposed to an arbitrarily prescribed combination of aerodynamic heating, solar, albedo, and planetary radiation. A rigorous analysis was carried out for the radiation panel and tubes lying in one plane and an approximate analysis was used to extend the rigorous analysis to the case of a curved panel. The analysis permits the consideration of both gaseous and liquid coolant fluids, including liquid metals, under prescribed, time dependent inlet conditions. The analysis provided a method for predicting: (1) transient and steady-state, two dimensional temperature profiles, (2) local and total heat rejection rates, (3) coolant flow pressure in the flow channel, and (4) total system weight and protection layer thickness.

  2. The 1980-81 AFOSR (Air Force Office of Scientific Research)-HTTM (Heat Transfer and Turbulence Mechanics)-Stanford Conference on Complex Turbulent Flows: Comparison of Computation and Experiment. Volume 3. Comparison of Computation with Experiment, and Computors’ Summary Report.

    DTIC Science & Technology

    1981-09-01

    organized the paperwork system , including finances, travel, k, , f iling, and programs in a highly independent and responsible fashion. Thanks are also due...three-dimensional transformation procedure for arbitrary non-orthogonal coordinate systems , for the purpose of the three-dimensional turbulent...transformation procedure for arbitrary non-orthogonal coordinate systems so as to acquire the generality in the application for elliptic flows (for the square

  3. Self-Organizing Fluid Convection Patterns in an en Echelon Fault Array

    NASA Astrophysics Data System (ADS)

    Patterson, James W.; Driesner, Thomas; Matthai, Stephan K.

    2018-05-01

    We present three-dimensional numerical simulations of natural convection in buried, vertical en echelon faults in impermeable host rock. Despite the fractures being hydraulically disconnected, convection within each fracture alters the temperature field in the surrounding host rock, altering convection in neighboring fractures. This leads to self-organization of coherent patterns of upward/downward flow and heating/cooling of the host rock spanning the entire fault array. This "synchronization" effect occurs when fracture spacing is less than the width of convection cells within the fractures, which is controlled by fracture transmissivity (permeability times thickness) and heterogeneity. Narrow fracture spacing and synchronization enhance convective fluid flow within fractures and cause convection to initiate earlier, even lowering the critical transmissivity necessary for convection initiation. Heat flow through the en echelon region, however, is enhanced only in low-transmissivity fractures, while heat flow in high-permeability fractures is reduced due to thermal interference between fractures.

  4. Convective heat transfer and infrared thermography.

    PubMed

    Carlomagno, Giovanni M; Astarita, Tommaso; Cardone, Gennaro

    2002-10-01

    Infrared (IR) thermography, because of its two-dimensional and non-intrusive nature, can be exploited in industrial applications as well as in research. This paper deals with measurement of convective heat transfer coefficients (h) in three complex fluid flow configurations that concern the main aspects of both internal and external cooling of turbine engine components: (1) flow in ribbed, or smooth, channels connected by a 180 degrees sharp turn, (2) a jet in cross-flow, and (3) a jet impinging on a wall. The aim of this study was to acquire detailed measurements of h distribution in complex flow configurations related to both internal and external cooling of turbine components. The heated thin foil technique, which involves the detection of surface temperature by means of an IR scanning radiometer, was exploited to measure h. Particle image velocimetry was also used in one of the configurations to precisely determine the velocity field.

  5. Impact of different thickness of the smooth heated surface on flow boiling heat transfer

    NASA Astrophysics Data System (ADS)

    Strąk, Kinga; Piasecka, Magdalena

    2018-06-01

    This paper presents a comparison of the performance of three smooth heated surfaces with different thicknesses. Analysis was carried out on an experimental setup for flow boiling heat transfer. The most important element of the setup was the test section with a rectangular minichannel, 1.7 mm deep, 16 mm wide and 180 mm long, oriented vertically. The heated element for the FC-72 Fluorinert flowing in the minichannel was designated as a Haynes-230 alloy plate (0.10 mm and 0.45 mm thick) or a Hastelloy X alloy plate (0.65 mm thick). Infrared thermography was used to measure the temperature of the outer plate surface. The local values of the heat transfer coefficient for stationary state conditions were calculated using a simple one-dimensional method. The experimental results were presented as the relationship between the heat transfer coefficients in the subcooled boiling region and the distance along the minichannel length and boiling curves. The highest local heat transfer coefficients were recorded for the surface of 0.10 mm thick heated plate at the outlet and 0.45 mm thick plate at the minichannel inlet. All boiling curves were typical in shape.

  6. Effect of Favorable Pressure Gradients on Turbine Blade Pressure Surface Heat Transfer

    NASA Technical Reports Server (NTRS)

    Boyle, Robert J.; Giel, P. W.

    2002-01-01

    Recent measurements on a turbine rotor showed significant relaminarization effects. These effects were evident on the pressure surface heat transfer measurements. The character of the heat transfer varied with Reynolds number. Data were obtained for exit Reynolds numbers between 500,000 and 880,000. Tests were done with a high level of inlet turbulence, 7.5%. At lower Reynolds numbers the heat transfer was similar to that for laminar flow, but at a level higher than for laminar flow. At higher Reynolds numbers the heat transfer was similar to turbulent flow, when the acceleration parameter, K, was sufficiently small. The proposed paper discusses the experimental results, and also discusses approaches to calculating the surface heat transfer for the blade surface. Calculations were done using a three-dimensional Navier-Stokes CFD analysis. The results of these tests, when compared with previous blade tests in the same facility, illustrate modeling difficulties that were encountered in CFD predictions. The two blades were in many ways similar. However, the degree of agreement between the same analysis and the experimental data was significantly different. These differences are highlighted to illustrate where improvements in modeling approaches are needed for transitional flows.

  7. Heat transfer and oil flow studies on a single-stage-to-orbit control-configured winged entry vehicle

    NASA Technical Reports Server (NTRS)

    Helms, V. T., III; Bradley, P. F.

    1984-01-01

    Results are presented for oil flow and phase change paint heat transfer tests conducted on a 0.006 scale model of a proposed single stage to orbit control configured vehicle. The data were taken at angles of attack up to 40 deg at a free stream Mach number of 10 for Reynolds numbers based on model length of 0.5 x 10 to the 6th power, 1.0 x 10 to the 6th power and 2.0 x 10 to the 6th power. The magnitude and distribution of heating are characterized in terms of angle of attack and Reynolds number aided by an analysis of the flow data which are used to suggest the presence of various three dimensional flow structures that produce the observed heating patterns. Of particular interest are streak heating patterns that result in high localized heat transfer rates on the wing windward surface at low to moderate angles of attack. These streaks are caused by the bow-shock/wing-shock interaction and formation of the wing-shock. Embedded vorticity was found to be associated with these interactions.

  8. Heat Extraction from a Hydraulically Fractured Penny-Shaped Crack in Hot Dry Rock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abe, H.; Mura, T.; Keer, L.M.

    1976-12-01

    Heat extraction from a penny-shaped crack having both inlet and outlet holes is investigated analytically by considering the hydraulic and thermal growth of the crack when fluid is injected at a constant flow rate. The rock mass is assumed to be infinitely extended, homogeneous, and isotropic. The equations for fluid flow are derived and solved to determine the flow pattern in the crack. Temperature distributions in both rock and fluid are also determined. The crack width change due to thermal contraction and the corresponding flow rate increase are discussed. Some numerical calculations of outlet temperature, thermal power extraction, and crackmore » opening displacement due to thermal contraction of rocks are presented for cracks after they attain stationary states for given inlet flow rate and outlet suction pressure. The present paper is a further development of the previous works of Bodvarsson (1969), Gringarten et al. (1975), Lowell (1976), Harlow and Pracht (1972), McFarland (1975), among others, and considers the two-dimensional rather than the one-dimensional crack. Furthermore, the crack radius and width are quantities to be determined rather than given a priori. 11 refs., 1 tab., 5 figs.« less

  9. Influence of the variable thermophysical properties on the turbulent buoyancy-driven airflow inside open square cavities

    NASA Astrophysics Data System (ADS)

    Zamora, Blas; Kaiser, Antonio S.

    2012-01-01

    The effects of the air variable properties (density, viscosity and thermal conductivity) on the buoyancy-driven flows established in open square cavities are investigated, as well as the influence of the stated boundary conditions at open edges and the employed differencing scheme. Two-dimensional, laminar, transitional and turbulent simulations are obtained, considering both uniform wall temperature and uniform heat flux heating conditions. In transitional and turbulent cases, the low-Reynolds k - ω turbulence model is employed. The average Nusselt number and the dimensionless mass-flow rate have been obtained for a wide and not yet covered range of the Rayleigh number varying from 103 to 1016. The results obtained taking into account variable properties effects are compared with those calculated assuming constant properties and the Boussinesq approximation. For uniform heat flux heating, a correlation for the critical heating parameter above which the burnout phenomenon can be obtained is presented, not reported in previous works. The effects of variable properties on the flow patterns are analyzed.

  10. Development of a three-dimensional core dynamics analysis program for commercial boiling water reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bessho, Yasunori; Yokomizo, Osamu; Yoshimoto, Yuichiro

    1997-03-01

    Development and qualification results are described for a three-dimensional, time-domain core dynamics analysis program for commercial boiling water reactors (BWRs). The program allows analysis of the reactor core with a detailed mesh division, which eliminates calculational ambiguity in the nuclear-thermal-hydraulic stability analysis caused by reactor core regional division. During development, emphasis was placed on high calculational speed and large memory size as attained by the latest supercomputer technology. The program consists of six major modules, namely a core neutronics module, a fuel heat conduction/transfer module, a fuel channel thermal-hydraulic module, an upper plenum/separator module, a feedwater/recirculation flow module, and amore » control system module. Its core neutronics module is based on the modified one-group neutron kinetics equation with the prompt jump approximation and with six delayed neutron precursor groups. The module is used to analyze one fuel bundle of the reactor core with one mesh (region). The fuel heat conduction/transfer module solves the one-dimensional heat conduction equation in the radial direction with ten nodes in the fuel pin. The fuel channel thermal-hydraulic module is based on separated three-equation, two-phase flow equations with the drift flux correlation, and it analyzes one fuel bundle of the reactor core with one channel to evaluate flow redistribution between channels precisely. Thermal margin is evaluated by using the GEXL correlation, for example, in the module.« less

  11. Computational analysis of heat transfer, thermal stress and dislocation density during resistively Czochralski growth of germanium single crystal

    NASA Astrophysics Data System (ADS)

    Tavakoli, Mohammad Hossein; Renani, Elahe Kabiri; Honarmandnia, Mohtaram; Ezheiyan, Mahdi

    2018-02-01

    In this paper, a set of numerical simulations of fluid flow, temperature gradient, thermal stress and dislocation density for a Czochralski setup used to grow IR optical-grade Ge single crystal have been done for different stages of the growth process. A two-dimensional steady state finite element method has been applied for all calculations. The obtained numerical results reveal that the thermal field, thermal stress and dislocation structure are mainly dependent on the crystal height, heat radiation and gas flow in the growth system.

  12. Numerical simulation of the heat transfer at cooling a high-temperature metal cylinder by a flow of a gas-liquid medium

    NASA Astrophysics Data System (ADS)

    Makarov, S. S.; Lipanov, A. M.; Karpov, A. I.

    2017-10-01

    The numerical modeling results for the heat transfer during cooling a metal cylinder by a gas-liquid medium flow in an annular channel are presented. The results are obtained on the basis of the mathematical model of the conjugate heat transfer of the gas-liquid flow and the metal cylinder in a two-dimensional nonstationary formulation accounting for the axisymmetry of the cooling medium flow relative to the cylinder longitudinal axis. To solve the system of differential equations the control volume approach is used. The flow field parameters are calculated by the SIMPLE algorithm. To solve iteratively the systems of linear algebraic equations the Gauss-Seidel method with under-relaxation is used. The results of the numerical simulation are verified by comparing the results of the numerical simulation with the results of the field experiment. The calculation results for the heat transfer parameters at cooling the high-temperature metal cylinder by the gas-liquid flow are obtained with accounting for evaporation. The values of the rate of cooling the cylinder by the laminar flow of the cooling medium are determined. The temperature change intensity for the metal cylinder is analyzed depending on the initial velocity of the liquid flow and the time of the cooling process.

  13. Interfacing a General Purpose Fluid Network Flow Program with the SINDA/G Thermal Analysis Program

    NASA Technical Reports Server (NTRS)

    Schallhorn, Paul; Popok, Daniel

    1999-01-01

    A general purpose, one dimensional fluid flow code is currently being interfaced with the thermal analysis program Systems Improved Numerical Differencing Analyzer/Gaski (SINDA/G). The flow code, Generalized Fluid System Simulation Program (GFSSP), is capable of analyzing steady state and transient flow in a complex network. The flow code is capable of modeling several physical phenomena including compressibility effects, phase changes, body forces (such as gravity and centrifugal) and mixture thermodynamics for multiple species. The addition of GFSSP to SINDA/G provides a significant improvement in convective heat transfer modeling for SINDA/G. The interface development is conducted in multiple phases. This paper describes the first phase of the interface which allows for steady and quasi-steady (unsteady solid, steady fluid) conjugate heat transfer modeling.

  14. Jet array impingement flow distributions and heat transfer characteristics. Effects of initial crossflow and nonuniform array geometry. [gas turbine engine component cooling

    NASA Technical Reports Server (NTRS)

    Florschuetz, L. W.; Metzger, D. E.; Su, C. C.; Isoda, Y.; Tseng, H. H.

    1982-01-01

    Two-dimensional arrays of circular air jets impinging on a heat transfer surface parallel to the jet orifice plate are considered. The jet flow, after impingement, is constrained to exit in a single direction along the channel formed by the jet orifice plate and the heat transfer surface. The configurations considered are intended to model those of interest in current and contemplated gas turbine airfoil midchord cooling applications. The effects of an initial crossflow which approaches the array through an upstream extension of the channel are considered. Flow distributions as well as heat transfer coefficients and adiabatic wall temperatures resolved to one streamwise hole spacing were measured as a function of the initial crossflow rate and temperature relative to the jet flow rate and temperature. Both Nusselt number profiles and dimensionless adiabatic wall temperature (effectiveness) profiles are presented and discussed. Special test results which show a significant reduction of jet orifice discharge coefficients owing to the effect of a confined crossflow are also presented, along with a flow distribution model which incorporates those effects. A nonuniform array flow distribution model is developed and validated.

  15. Kinetics-based phase change approach for VOF method applied to boiling flow

    NASA Astrophysics Data System (ADS)

    Cifani, Paolo; Geurts, Bernard; Kuerten, Hans

    2014-11-01

    Direct numerical simulations of boiling flows are performed to better understand the interaction of boiling phenomena with turbulence. The multiphase flow is simulated by solving a single set of equations for the whole flow field according to the one-fluid formulation, using a VOF interface capturing method. Interface terms, related to surface tension, interphase mass transfer and latent heat, are added at the phase boundary. The mass transfer rate across the interface is derived from kinetic theory and subsequently coupled with the continuum representation of the flow field. The numerical model was implemented in OpenFOAM and validated against 3 cases: evaporation of a spherical uniformly heated droplet, growth of a spherical bubble in a superheated liquid and two dimensional film boiling. The computational model will be used to investigate the change in turbulence intensity in a fully developed channel flow due to interaction with boiling heat and mass transfer. In particular, we will focus on the influence of the vapor bubble volume fraction on enhancing heat and mass transfer. Furthermore, we will investigate kinetic energy spectra in order to identify the dynamics associated with the wakes of vapor bubbles. Department of Applied Mathematics, 7500 AE Enschede, NL.

  16. Three-dimensional modeling of diesel engine intake flow, combustion and emissions

    NASA Technical Reports Server (NTRS)

    Reitz, R. D.; Rutland, C. J.

    1992-01-01

    A three-dimensional computer code (KIVA) is being modified to include state-of-the-art submodels for diesel engine flow and combustion: spray atomization, drop breakup/coalescence, multi-component fuel vaporization, spray/wall interaction, ignition and combustion, wall heat transfer, unburned HC and NOx formation, soot and radiation, and the intake flow process. Improved and/or new submodels which were completed are: wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo'vich NOx, and spray/wall impingement with rebounding and sliding drops. Results to date show that adding the effects of unsteadiness and compressibility improves the accuracy of heat transfer predictions; spray drop rebound can occur from walls at low impingement velocities (e.g., in cold-starting); larger spray drops are formed at the nozzle due to the influence of vaporization on the atomization process; a laminar-and-turbulent characteristic time combustion model has the flexibility to match measured engine combustion data over a wide range of operating conditions; and finally, the characteristic time combustion model can also be extended to allow predictions of ignition. The accuracy of the predictions is being assessed by comparisons with available measurements. Additional supporting experiments are also described briefly. To date, comparisons with measured engine cylinder pressure and heat flux data were made for homogeneous charge, spark-ignited and compression-ignited engines. The model results are in good agreement with the experiments.

  17. Simulation analysis of air flow and turbulence statistics in a rib grit roughened duct.

    PubMed

    Vogiatzis, I I; Denizopoulou, A C; Ntinas, G K; Fragos, V P

    2014-01-01

    The implementation of variable artificial roughness patterns on a surface is an effective technique to enhance the rate of heat transfer to fluid flow in the ducts of solar air heaters. Different geometries of roughness elements investigated have demonstrated the pivotal role that vortices and associated turbulence have on the heat transfer characteristics of solar air heater ducts by increasing the convective heat transfer coefficient. In this paper we investigate the two-dimensional, turbulent, unsteady flow around rectangular ribs of variable aspect ratios by directly solving the transient Navier-Stokes and continuity equations using the finite elements method. Flow characteristics and several aspects of turbulent flow are presented and discussed including velocity components and statistics of turbulence. The results reveal the impact that different rib lengths have on the computed mean quantities and turbulence statistics of the flow. The computed turbulence parameters show a clear tendency to diminish downstream with increasing rib length. Furthermore, the applied numerical method is capable of capturing small-scale flow structures resulting from the direct solution of Navier-Stokes and continuity equations.

  18. Thermal impact of magmatism in subduction zones

    NASA Astrophysics Data System (ADS)

    Rees Jones, David W.; Katz, Richard F.; Tian, Meng; Rudge, John F.

    2018-01-01

    Magmatism in subduction zones builds continental crust and causes most of Earth's subaerial volcanism. The production rate and composition of magmas are controlled by the thermal structure of subduction zones. A range of geochemical and heat flow evidence has recently converged to indicate that subduction zones are hotter at lithospheric depths beneath the arc than predicted by canonical thermomechanical models, which neglect magmatism. We show that this discrepancy can be resolved by consideration of the heat transported by magma. In our one- and two-dimensional numerical models and scaling analysis, magmatic transport of sensible and latent heat locally alters the thermal structure of canonical models by ∼300 K, increasing predicted surface heat flow and mid-lithospheric temperatures to observed values. We find the advection of sensible heat to be larger than the deposition of latent heat. Based on these results we conclude that thermal transport by magma migration affects the chemistry and the location of arc volcanoes.

  19. Delta Clipper-Experimental In-Ground Effect on Base-Heating Environment

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    1998-01-01

    A quasitransient in-ground effect method is developed to study the effect of vertical landing on a launch vehicle base-heating environment. This computational methodology is based on a three-dimensional, pressure-based, viscous flow, chemically reacting, computational fluid dynamics formulation. Important in-ground base-flow physics such as the fountain-jet formation, plume growth, air entrainment, and plume afterburning are captured with the present methodology. Convective and radiative base-heat fluxes are computed for comparison with those of a flight test. The influence of the laminar Prandtl number on the convective heat flux is included in this study. A radiative direction-dependency test is conducted using both the discrete ordinate and finite volume methods. Treatment of the plume afterburning is found to be very important for accurate prediction of the base-heat fluxes. Convective and radiative base-heat fluxes predicted by the model using a finite rate chemistry option compared reasonably well with flight-test data.

  20. A Steady State and Quasi-Steady Interface Between the Generalized Fluid System Simulation Program and the SINDA/G Thermal Analysis Program

    NASA Technical Reports Server (NTRS)

    Schallhorn, Paul; Majumdar, Alok; Tiller, Bruce

    2001-01-01

    A general purpose, one dimensional fluid flow code is currently being interfaced with the thermal analysis program SINDA/G. The flow code, GFSSP, is capable of analyzing steady state and transient flow in a complex network. The flow code is capable of modeling several physical phenomena including compressibility effects, phase changes, body forces (such as gravity and centrifugal) and mixture thermodynamics for multiple species. The addition of GFSSP to SINDA/G provides a significant improvement in convective heat transfer modeling for SINDA/G. The interface development is conducted in multiple phases. This paper describes the first phase of the interface which allows for steady and quasisteady (unsteady solid, steady fluid) conjugate heat transfer modeling.

  1. SAFSIM theory manual: A computer program for the engineering simulation of flow systems

    NASA Astrophysics Data System (ADS)

    Dobranich, Dean

    1993-12-01

    SAFSIM (System Analysis Flow SIMulator) is a FORTRAN computer program for simulating the integrated performance of complex flow systems. SAFSIM provides sufficient versatility to allow the engineering simulation of almost any system, from a backyard sprinkler system to a clustered nuclear reactor propulsion system. In addition to versatility, speed and robustness are primary SAFSIM development goals. SAFSIM contains three basic physics modules: (1) a fluid mechanics module with flow network capability; (2) a structure heat transfer module with multiple convection and radiation exchange surface capability; and (3) a point reactor dynamics module with reactivity feedback and decay heat capability. Any or all of the physics modules can be implemented, as the problem dictates. SAFSIM can be used for compressible and incompressible, single-phase, multicomponent flow systems. Both the fluid mechanics and structure heat transfer modules employ a one-dimensional finite element modeling approach. This document contains a description of the theory incorporated in SAFSIM, including the governing equations, the numerical methods, and the overall system solution strategies.

  2. Aerothermodynamics and planetary entry; Aerospace Sciences Meeting, 18th, Pasadena, CA, January 14-16, 1980 and Thermophysics Conference, 15th, Snowmass, CO, July 14-16, 1980, Technical Papers

    NASA Astrophysics Data System (ADS)

    Crosbie, A. L.

    Aspects of aerothermodynamics are considered, taking into account aerodynamic heating for gaps in laminar and transitional boundary layers, the correlation of convection heat transfer for open cavities in supersonic flow, the heat transfer and pressure on a flat plate downstream of heated square jet in a Mach 0.4 to 0.8 crossflow, the effect of surface roughness character on turbulent reentry heating, three-dimensional protuberance interference heating in high-speed flow, and hypersonic flow over small span flaps in a thick turbulent boundary layer. Questions of thermal protection are investigated, giving attention to thermochemical ablation of tantalum carbide loaded carbon-carbons, the catalytic recombination of nitrogen and oxygen on high-temperature reusable surface insulation, particle acceleration using a helium arc heater, a temperature and ablation optical sensor, a wind-tunnel study of ascent heating of multiple reentry vehicle configurations, and reentry vehicle soft-recovery techniques. Subjects examined in connection with a discussion of planetary entry are related to a thermal protection system for the Galileo mission atmospheric entry probe, the viscosity of multicomponent partially ionized gas mixtures associated with Jovian entry, coupled laminar and turbulent flow solutions for Jovian entry, and a preliminary aerothermal analysis for Saturn entry.

  3. electromagnetics, eddy current, computer codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gartling, David

    TORO Version 4 is designed for finite element analysis of steady, transient and time-harmonic, multi-dimensional, quasi-static problems in electromagnetics. The code allows simulation of electrostatic fields, steady current flows, magnetostatics and eddy current problems in plane or axisymmetric, two-dimensional geometries. TORO is easily coupled to heat conduction and solid mechanics codes to allow multi-physics simulations to be performed.

  4. One-dimensional simulation of temperature and moisture in atmospheric and soil boundary layers

    NASA Technical Reports Server (NTRS)

    Bornstein, R. D.; Santhanam, K.

    1981-01-01

    Meteorologists are interested in modeling the vertical flow of heat and moisture through the soil in order to better simulate the vertical and temporal variations of the atmospheric boundary layer. The one dimensional planetary boundary layer model of is modified by the addition of transport equations to be solved by a finite difference technique to predict soil moisture.

  5. Thermal balance of the atmospheres of Jupiter and Uranus

    NASA Technical Reports Server (NTRS)

    Friedson, A. J.; Ingersoll, A. P.

    1986-01-01

    Two-dimensional, radiative-convective-dynamical models of the visible atmospheres of Jupiter and Uranus are presented. Zonally-averaged temperatures and heat fluxes are calculated numerically as functions of pressure and latitude. In addition to radiative heat fluxes, the dynamical heat flux due to large-scale baroclinic eddies is included and is parametrized using a mixing length theory which gives heat fluxes similar to those of Stone. The results for Jupiter indicate that the internal heat flow is non-uniform in latitude and nearly balances the net radiative flux leaving the atmosphere. The thermal emission is found to be uniform in latitude in agreement with Pioneer and Voyager observations. Baroclinic eddies are calculated to transport only a small amount of the meridional heat flow necessary to account for the uniformity of thermal emission with latitude. The bulk of the meridional heat transfer is found to occur very deep in the stable interior of Jupiter as originally proposed by Ingersoll and Porco. The relative importance of baroclinic eddies vs. internal heat flow in the thermal balance of Uranus depends on the ratio of emitted thermal power to absorbed solar power. The thermal balance of Uranus is compared to that of Jupiter for different values of this ratio.

  6. Probing heat transfer, fluid flow and microstructural evolution during fusion welding of alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Wei

    The composition, geometry, structure and properties of the welded joints are affected by the various physical processes that take place during fusion welding. Understanding these processes has been an important goal in the contemporary welding research to achieve structurally sound and reliable welds. In the present thesis research, several important physical processes including the heat transfer, fluid flow and microstructural evolution in fusion welding were modeled based on the fundamentals of transport phenomena and phase transformation theory. The heat transfer and fluid flow calculation is focused on the predictions of the liquid metal convection in the weld pool, the temperature distribution in the entire weldment, and the shape and size of the fusion zone (FZ) and heat affected zone (HAZ). The modeling of microstructural evolution is focused on the quantitative understanding of phase transformation kinetics during welding of several important alloys under both low and high heating and cooling conditions. Three numerical models were developed in the present thesis work: (1) a three-dimensional heat transfer and free surface flow model for the gas metal arc (GMA) fillet welding considering the complex weld joint geometry, (2) a phase transformation model based on the Johnson-Mehl-Avrami (JMA) theory, and (3) a one-dimensional numerical diffusion model considering multiple moving interfaces. To check the capabilities of the developed models, several cases were investigated, in which the predictions from the models were compared with the experimental results. The cases studied are the follows. For the modeling of heat transfer and fluid flow, the welding processes studied included gas tungsten arc (GTA) linear welding, GTA transient spot welding, and GMA fillet welding. The calculated weldment geometry and thermal cycles was validated against the experimental data under various welding conditions. For the modeling of microstructural evolution, the welded materials investigated included AISI 1005 low-carbon steel, 1045 medium-carbon steel, 2205 duplex stainless steel (DSS) and Ti-6Al-4V alloy. The calculated phase transformation kinetics were compared with the experimental results obtained using an x-ray diffraction technique by Dr. John W. Elmer of Lawrence Livermore National Laboratory. (Abstract shortened by UMI.)

  7. An experimental investigation of heat transfer to reusable surface insulation tile array gaps in a turbulent boundary layer with pressure gradient. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Throckmorton, D. A.

    1975-01-01

    An experimental investigation was performed to determine the effect of pressure gradient on the heat transfer to space shuttle reusable surface insulation (RSI) tile array gaps under thick, turbulent boundary layer conditions. Heat transfer and pressure measurements were obtained on a curved array of full-scale simulated RSI tiles in a tunnel wall boundary layer at a nominal freestream Mach number of 10.3 and freestream unit Reynolds numbers of 1.6, 3.3, and and 6.1 million per meter. Transverse pressure gradients were induced over the model surface by rotating the curved array with respect to the flow. Definition of the tunnel wall boundary layer flow was obtained by measurement of boundary layer pitot pressure profiles, and flat plate wall pressure and heat transfer. Flat plate wall heat transfer data were correlated and a method was derived for prediction of smooth, curved array heat transfer in the highly three-dimensional tunnel wall boundary layer flow and simulation of full-scale space shuttle vehicle pressure gradient levels was assessed.

  8. Heat transfer characteristics within an array of impinging jets. Effects of crossflow temperature relative to jet temperature

    NASA Technical Reports Server (NTRS)

    Florschuetz, L. W.; Su, C. C.

    1985-01-01

    Spanwise average heat fluxes, resolved in the streamwise direction to one stream-wise hole spacing were measured for two-dimensional arrays of circular air jets impinging on a heat transfer surface parallel to the jet orifice plate. The jet flow, after impingement, was constrained to exit in a single direction along the channel formed by the jet orifice plate and heat transfer surface. The crossflow originated from the jets following impingement and an initial crossflow was present that approached the array through an upstream extension of the channel. The regional average heat fluxes are considered as a function of parameters associated with corresponding individual spanwise rows within the array. A linear superposition model was employed to formulate appropriate governing parameters for the individual row domain. The effects of flow history upstream of an individual row domain are also considered. The results are formulated in terms of individual spanwise row parameters. A corresponding set of streamwise resolved heat transfer characteristics formulated in terms of flow and geometric parameters characterizing the overall arrays is described.

  9. Numerical experiment on the flow field properties of a blunted body with a counterflowing jet in supersonic flows

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Zhang, Rui-Rui; Yan, Li; Ou, Min; Moradi, R.

    2018-06-01

    The prediction of the drag and heat flux reduction characteristics is a very important issue in the conceptual design phase of the hypersonic vehicle. In this paper, the flow field properties around a blunted body with a counterflowing jet in the supersonic flow with the freestream Mach number being 3.98 were investigated numerically, and they are obtained by means of the two-dimensional axisymmetric Reynolds-averaged Navier-Stokes (RANS) equations coupled with the two equation standard k-ε turbulence model. The surface Stanton number distributions, as well as the surface static pressures, were extracted from the flow field structures in order to evaluate the drag and heat flux reduction characteristics. Further, the influences of the jet pressure ratio and the jet Mach number on the drag and heat flux reduction were analyzed based on the detailed code validation and grid independency analysis process. The obtained results show that the flow cell Reynolds number has a great impact on the heat flux prediction, and its best value is 5.0 for the case studied in the current study. However, the flow cell Reynolds number and the grid scale both have only a slight impact on the prediction of the surface static pressure distribution, as well as the turbulence model. The larger jet pressure ratio is beneficial for the drag and heat flux reduction, and the smaller jet Mach number is beneficial for the heat flux reduction. Further, the long penetration mode is beneficial for the drag reduction, but it is not beneficial for the heat flux reduction.

  10. Low Reynolds number kappa-epsilon and empirical transition models for oscillatory pipe flow and heat transfer. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Bauer, Christopher

    1993-01-01

    Stirling engine heat exchangers are shell-and-tube type with oscillatory flow (zero-mean velocity) for the inner fluid. This heat transfer process involves laminar-transition turbulent flow motions under oscillatory flow conditions. A low Reynolds number kappa-epsilon model, (Lam-Bremhorst form), was utilized in the present study to simulate fluid flow and heat transfer in a circular tube. An empirical transition model was used to activate the low Reynolds number k-e model at the appropriate time within the cycle for a given axial location within the tube. The computational results were compared with experimental flow and heat transfer data for: (1) velocity profiles, (2) kinetic energy of turbulence, (3) skin friction factor, (4) temperature profiles, and (5) wall heat flux. The experimental data were obtained for flow in a tube (38 mm diameter and 60 diameter long), with the maximum Reynolds number based on velocity being Re(sub max) = 11840, a dimensionless frequency (Valensi number) of Va = 80.2, at three axial locations X/D = 16, 30 and 44. The agreement between the computations and the experiment is excellent in the laminar portion of the cycle and good in the turbulent portion. Moreover, the location of transition was predicted accurately. The Low Reynolds Number kappa-epsilon model, together with an empirical transition model, is proposed herein to generate the wall heat flux values at different operating parameters than the experimental conditions. Those computational data can be used for testing the much simpler and less accurate one dimensional models utilized in 1-D Stirling Engine design codes.

  11. Performance evaluation of a ground-source heat pump system utilizing a flowing well and estimation of suitable areas for its installation in Aizu Basin, Japan

    NASA Astrophysics Data System (ADS)

    Shrestha, Gaurav; Uchida, Youhei; Kuronuma, Satoru; Yamaya, Mutsumi; Katsuragi, Masahiko; Kaneko, Shohei; Shibasaki, Naoaki; Yoshioka, Mayumi

    2017-08-01

    Development of a ground-source heat pump (GSHP) system with higher efficiency, and evaluation of its operating performance, is essential to expand the growth of GSHP systems in Japan. A closed-loop GSHP system was constructed utilizing a flowing (artesian) well as a ground heat exchanger (GHE). The system was demonstrated for space-heating and space-cooling of a room (area 126.7 m2) in an office building. The average coefficient of performance was found to be 4.5 for space-heating and 8.1 for space-cooling. The maximum heat exchange rate was 70.8 W/m for space-heating and 57.6 W/m for space-cooling. From these results, it was determined that a GSHP system with a flowing well as a GHE can result in higher performance. With this kind of highly efficient system, energy saving and cost reduction can be expected. In order to assess appropriate locations for the installation of similar kinds of GSHP systems in Aizu Basin, a suitability map showing the distribution of groundwater up-flowing areas was prepared based on the results of a regional-scale three-dimensional analytical model. Groundwater up-flowing areas are considered to be suitable because the flowing well can be constructed at these areas. Performance evaluation of the GSHP system utilizing the flowing well, in conjunction with the prepared suitability map for its installation, can assist in the promotion of GSHP systems in Japan.

  12. HPTAM, a two-dimensional Heat Pipe Transient Analysis Model, including the startup from a frozen state

    NASA Technical Reports Server (NTRS)

    Tournier, Jean-Michel; El-Genk, Mohamed S.

    1995-01-01

    A two-dimensional Heat Pipe Transient Analysis Model, 'HPTAM,' was developed to simulate the transient operation of fully-thawed heat pipes and the startup of heat pipes from a frozen state. The model incorporates: (a) sublimation and resolidification of working fluid; (b) melting and freezing of the working fluid in the porous wick; (c) evaporation of thawed working fluid and condensation as a thin liquid film on a frozen substrate; (d) free-molecule, transition, and continuum vapor flow regimes, using the Dusty Gas Model; (e) liquid flow and heat transfer in the porous wick; and (f) thermal and hydrodynamic couplings of phases at their respective interfaces. HPTAM predicts the radius of curvature of the liquid meniscus at the liquid-vapor interface and the radial location of the working fluid level (liquid or solid) in the wick. It also includes the transverse momentum jump condition (capillary relationship of Pascal) at the liquid-vapor interface and geometrically relates the radius of curvature of the liquid meniscus to the volume fraction of vapor in the wick. The present model predicts the capillary limit and partial liquid recess (dryout) in the evaporator wick, and incorporates a liquid pooling submodel, which simulates accumulation of the excess liquid in the vapor core at the condenser end.

  13. Three-dimensional turbopump flowfield analysis

    NASA Technical Reports Server (NTRS)

    Sharma, O. P.; Belford, K. A.; Ni, R. H.

    1992-01-01

    A program was conducted to develop a flow prediction method applicable to rocket turbopumps. The complex nature of a flowfield in turbopumps is described and examples of flowfields are discussed to illustrate that physics based models and analytical calculation procedures based on computational fluid dynamics (CFD) are needed to develop reliable design procedures for turbopumps. A CFD code developed at NASA ARC was used as the base code. The turbulence model and boundary conditions in the base code were modified, respectively, to: (1) compute transitional flows and account for extra rates of strain, e.g., rotation; and (2) compute surface heat transfer coefficients and allow computation through multistage turbomachines. Benchmark quality data from two and three-dimensional cascades were used to verify the code. The predictive capabilities of the present CFD code were demonstrated by computing the flow through a radial impeller and a multistage axial flow turbine. Results of the program indicate that the present code operated in a two-dimensional mode is a cost effective alternative to full three-dimensional calculations, and that it permits realistic predictions of unsteady loadings and losses for multistage machines.

  14. Analytical and numerical study on cooling flow field designs performance of PEM fuel cell with variable heat flux

    NASA Astrophysics Data System (ADS)

    Afshari, Ebrahim; Ziaei-Rad, Masoud; Jahantigh, Nabi

    2016-06-01

    In PEM fuel cells, during electrochemical generation of electricity more than half of the chemical energy of hydrogen is converted to heat. This heat of reactions, if not exhausted properly, would impair the performance and durability of the cell. In general, large scale PEM fuel cells are cooled by liquid water that circulates through coolant flow channels formed in bipolar plates or in dedicated cooling plates. In this paper, a numerical method has been presented to study cooling and temperature distribution of a polymer membrane fuel cell stack. The heat flux on the cooling plate is variable. A three-dimensional model of fluid flow and heat transfer in cooling plates with 15 cm × 15 cm square area is considered and the performances of four different coolant flow field designs, parallel field and serpentine fields are compared in terms of maximum surface temperature, temperature uniformity and pressure drop characteristics. By comparing the results in two cases, the constant and variable heat flux, it is observed that applying constant heat flux instead of variable heat flux which is actually occurring in the fuel cells is not an accurate assumption. The numerical results indicated that the straight flow field model has temperature uniformity index and almost the same temperature difference with the serpentine models, while its pressure drop is less than all of the serpentine models. Another important advantage of this model is the much easier design and building than the spiral models.

  15. User Guide for Compressible Flow Toolbox Version 2.1 for Use With MATLAB(Registered Trademark); Version 7

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.

    2006-01-01

    This report provides a user guide for the Compressible Flow Toolbox, a collection of algorithms that solve almost 300 linear and nonlinear classical compressible flow relations. The algorithms, implemented in the popular MATLAB programming language, are useful for analysis of one-dimensional steady flow with constant entropy, friction, heat transfer, or shock discontinuities. The solutions do not include any gas dissociative effects. The toolbox also contains functions for comparing and validating the equation-solving algorithms against solutions previously published in the open literature. The classical equations solved by the Compressible Flow Toolbox are: isentropic-flow equations, Fanno flow equations (pertaining to flow of an ideal gas in a pipe with friction), Rayleigh flow equations (pertaining to frictionless flow of an ideal gas, with heat transfer, in a pipe of constant cross section.), normal-shock equations, oblique-shock equations, and Prandtl-Meyer expansion equations. At the time this report was published, the Compressible Flow Toolbox was available without cost from the NASA Software Repository.

  16. Analysis of a two-dimensional type 6 shock-interference pattern using a perfect-gas code and a real-gas code

    NASA Technical Reports Server (NTRS)

    Bertin, J. J.; Graumann, B. W.

    1973-01-01

    Numerical codes were developed to calculate the two dimensional flow field which results when supersonic flow encounters double wedge configurations whose angles are such that a type 4 pattern occurs. The flow field model included the shock interaction phenomena for a delta wing orbiter. Two numerical codes were developed, one which used the perfect gas relations and a second which incorporated a Mollier table to define equilibrium air properties. The two codes were used to generate theoretical surface pressure and heat transfer distributions for velocities from 3,821 feet per second to an entry condition of 25,000 feet per second.

  17. Comprehensive analysis of heat transfer of gold-blood nanofluid (Sisko-model) with thermal radiation

    NASA Astrophysics Data System (ADS)

    Eid, Mohamed R.; Alsaedi, Ahmed; Muhammad, Taseer; Hayat, Tasawar

    Characteristics of heat transfer of gold nanoparticles (Au-NPs) in flow past a power-law stretching surface are discussed. Sisko bio-nanofluid flow (with blood as a base fluid) in existence of non-linear thermal radiation is studied. The resulting equations system is abbreviated to model the suggested problem in non-linear PDEs. Along with initial and boundary-conditions, the equations are made non-dimensional and then resolved numerically utilizing 4th-5th order Runge-Kutta-Fehlberg (RKF45) technique with shooting integration procedure. Various flow quantities behaviors are examined for parametric consideration such as the Au-NPs volume fraction, the exponentially stretching and thermal radiation parameters. It is observed that radiation drives to shortage the thermal boundary-layer thickness and therefore resulted in better heat transfer at surface.

  18. Magnetohydrodynamics Carreau nanofluid flow over an inclined convective heated stretching cylinder with Joule heating

    NASA Astrophysics Data System (ADS)

    Khan, Imad; Shafquatullah; Malik, M. Y.; Hussain, Arif; Khan, Mair

    Current work highlights the computational aspects of MHD Carreau nanofluid flow over an inclined stretching cylinder with convective boundary conditions and Joule heating. The mathematical modeling of physical problem yields nonlinear set of partial differential equations. A suitable scaling group of variables is employed on modeled equations to convert them into non-dimensional form. The integration scheme Runge-Kutta-Fehlberg on the behalf of shooting technique is utilized to solve attained set of equations. The interesting aspects of physical problem (linear momentum, energy and nanoparticles concentration) are elaborated under the different parametric conditions through graphical and tabular manners. Additionally, the quantities (local skin friction coefficient, local Nusselt number and local Sherwood number) which are responsible to dig out the physical phenomena in the vicinity of stretched surface are computed and delineated by varying controlling flow parameters.

  19. Finite-analytic numerical solution of heat transfer in two-dimensional cavity flow

    NASA Technical Reports Server (NTRS)

    Chen, C.-J.; Naseri-Neshat, H.; Ho, K.-S.

    1981-01-01

    Heat transfer in cavity flow is numerically analyzed by a new numerical method called the finite-analytic method. The basic idea of the finite-analytic method is the incorporation of local analytic solutions in the numerical solutions of linear or nonlinear partial differential equations. In the present investigation, the local analytic solutions for temperature, stream function, and vorticity distributions are derived. When the local analytic solution is evaluated at a given nodal point, it gives an algebraic relationship between a nodal value in a subregion and its neighboring nodal points. A system of algebraic equations is solved to provide the numerical solution of the problem. The finite-analytic method is used to solve heat transfer in the cavity flow at high Reynolds number (1000) for Prandtl numbers of 0.1, 1, and 10.

  20. Couette flow of an incompressible fluid in a porous channel with mass transfer

    NASA Astrophysics Data System (ADS)

    Niranjana, N.; Vidhya, M.; Govindarajan, A.

    2018-04-01

    The present discussion deals with the study of couette flow through a porous medium of a viscous incompressible fluid between two infinite horizontal parallel porous flat plates with heat and mass transfer. The stationary plate and the plate in uniform motion are subjected to transverse sinusoidal injection and uniform suction of the fluid. Due to this type of injection velocity, the flow becomes three dimensional. The analytical solutions of the nonlinear partial differential equations of this problem are obtained by using perturbation technique. Expressions for the velocity, temperature fields and the rate of heat and mass transfers are obtained. Effects of the following parameters Schmidt number (Sc), Modified Grashof number (Gm) on the velocity, temperature and concentration fields are obtained numerically and depicted through graphs. The rate of heat and mass transfer are also analyzed.

  1. An analysis of the vapor flow and the heat conduction through the liquid-wick and pipe wall in a heat pipe with single or multiple heat sources

    NASA Technical Reports Server (NTRS)

    Chen, Ming-Ming; Faghri, Amir

    1990-01-01

    A numerical analysis is presented for the overall performance of heat pipes with single or multiple heat sources. The analysis includes the heat conduction in the wall and liquid-wick regions as well as the compressibility effect of the vapor inside the heat pipe. The two-dimensional elliptic governing equations in conjunction with the thermodynamic equilibrium relation and appropriate boundary conditions are solved numerically. The solutions are in agreement with existing experimental data for the vapor and wall temperatures at both low and high operating temperatures.

  2. Self similar flow behind an exponential shock wave in a self-gravitating, rotating, axisymmetric dusty gas with heat conduction and radiation heat flux

    NASA Astrophysics Data System (ADS)

    Bajargaan, Ruchi; Patel, Arvind

    2018-04-01

    One-dimensional unsteady adiabatic flow behind an exponential shock wave propagating in a self-gravitating, rotating, axisymmetric dusty gas with heat conduction and radiation heat flux, which has exponentially varying azimuthal and axial fluid velocities, is investigated. The shock wave is driven out by a piston moving with time according to an exponential law. The dusty gas is taken to be a mixture of a non-ideal gas and small solid particles. The density of the ambient medium is assumed to be constant. The equilibrium flow conditions are maintained and energy is varying exponentially, which is continuously supplied by the piston. The heat conduction is expressed in the terms of Fourier's law, and the radiation is assumed of diffusion type for an optically thick grey gas model. The thermal conductivity and the absorption coefficient are assumed to vary with temperature and density according to a power law. The effects of the variation of heat transfer parameters, gravitation parameter and dusty gas parameters on the shock strength, the distance between the piston and the shock front, and on the flow variables are studied out in detail. It is interesting to note that the similarity solution exists under the constant initial angular velocity, and the shock strength is independent from the self gravitation, heat conduction and radiation heat flux.

  3. Non-Darcy flow of water-based carbon nanotubes with nonlinear radiation and heat generation/absorption

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Ullah, Siraj; Khan, M. Ijaz; Alsaedi, A.; Zaigham Zia, Q. M.

    2018-03-01

    Here modeling and computations are presented to introduce the novel concept of Darcy-Forchheimer three-dimensional flow of water-based carbon nanotubes with nonlinear thermal radiation and heat generation/absorption. Bidirectional stretching surface induces the flow. Darcy's law is commonly replace by Forchheimer relation. Xue model is implemented for nonliquid transport mechanism. Nonlinear formulation based upon conservation laws of mass, momentum and energy is first modeled and then solved by optimal homotopy analysis technique. Optimal estimations of auxiliary variables are obtained. Importance of influential variables on the velocity and thermal fields is interpreted graphically. Moreover velocity and temperature gradients are discussed and analyzed. Physical interpretation of influential variables is examined.

  4. Numerical study of Free Convective Viscous Dissipative flow along Vertical Cone with Influence of Radiation using Network Simulation method

    NASA Astrophysics Data System (ADS)

    Kannan, R. M.; Pullepu, Bapuji; Immanuel, Y.

    2018-04-01

    A two dimensional mathematical model is formulated for the transient laminar free convective flow with heat transfer over an incompressible viscous fluid past a vertical cone with uniform surface heat flux with combined effects of viscous dissipation and radiation. The dimensionless boundary layer equations of the flow which are transient, coupled and nonlinear Partial differential equations are solved using the Network Simulation Method (NSM), a powerful numerical technique which demonstrates high efficiency and accuracy by employing the network simulator computer code Pspice. The velocity and temperature profiles have been investigated for various factors, namely viscous dissipation parameter ε, Prandtl number Pr and radiation Rd are analyzed graphically.

  5. Glenn-HT: The NASA Glenn Research Center General Multi-Block Navier Stokes Heat Transfer Code

    NASA Technical Reports Server (NTRS)

    Gaugler, Raymond E.

    2002-01-01

    For the last several years, Glenn-HT, a three-dimensional (3D) Computational Fluid Dynamics (CFD) computer code for the analysis of gas turbine flow and convective heat transfer has been evolving at the NASA Glenn Research Center. The code is unique in the ability to give a highly detailed representation of the flow field very close to solid surfaces in order to get accurate representation of fluid beat transfer and viscous shear stresses. The code has been validated and used extensively for both internal cooling passage flow and for hot gas path flows, including detailed film cooling calculations and complex tip clearance gap flow and heat transfer. In its current form, this code has a multiblock grid capability and has been validated for a number of turbine configurations. The code has been developed and used primarily as a research tool, but it can be useful for detailed design analysis. In this presentation, the code is described and examples of its validation and use for complex flow calculations are presented, emphasizing the applicability to turbomachinery.

  6. Numerical simulation of heat transfer and fluid flow of Water-CuO Nanofluid in a sinusoidal channel with a porous medium

    NASA Astrophysics Data System (ADS)

    Nazari, Saman; Toghraie, Davood

    2017-03-01

    This study has compared the convection heat transfer of Water-based fluid flow with that of Water-Copper oxide (CuO) nanofluid in a sinusoidal channel with a porous medium. The heat flux in the lower and upper walls has been assumed constant, and the flow has been assumed to be two-dimensional, steady, laminar, and incompressible. The governing equations include equations of continuity, momentum, and energy. The assumption of thermal equilibrium has been considered between the porous medium and the fluid. The effects of the parameters, Reynolds number and Darcy number on the thermal performance of the channel, have been investigated. The results of this study show that the presence of a porous medium in a channel, as well as adding nanoparticles to the base fluid, increases the Nusselt number and the convection heat transfer coefficient. Also the results show that As the Reynolds number increases, the temperature gradient increases. In addition, changes in this parameter are greater in the throat of the flow than in convex regions due to changes in the channel geometry. In addition, porous regions reduce the temperature difference, which in turn increases the convective heat transfer coefficient.

  7. Three-dimensional modeling of air flow and pollutant dispersion in an urban street canyon with thermal effects.

    PubMed

    Tsai, Mong-Yu; Chen, Kang-Shin; Wu, Chung-Hsing

    2005-08-01

    Effects of excess ground and building temperatures on airflow and dispersion of pollutants in an urban street canyon with an aspect ratio of 0.8 and a length-to-width ratio of 3 were investigated numerically. Three-dimensional governing equations of mass, momentum, energy, and species were modeled using the RNG k-epsilon turbulence model and Boussinesq approximation, which were solved using the finite volume method. Vehicle emissions were estimated from the measured traffic flow rates and modeled as banded line sources, with a street length and bandwidths equal to typical vehicle widths. Both measurements and simulations reveal that pollutant concentrations typically follow the traffic flow rate; they decline as the height increases and are higher on the leeward side than on the windward side. Three-dimensional simulations reveal that the vortex line, joining the centers of cross-sectional vortexes of the street canyon, meanders between street buildings and shifts toward the windward side when heating strength is increased. Thermal boundary layers are very thin. Entrainment of outside air increases, and pollutant concentration decreases with increasing heating condition. Also, traffic-produced turbulence enhances the turbulent kinetic energy and the mixing of temperature and admixtures in the canyon. Factors affecting the inaccuracy of the simulations are addressed.

  8. Flow boiling with enhancement devices for cold plate coolant channel design

    NASA Technical Reports Server (NTRS)

    Boyd, Ronald D., Sr.; Smith, Alvin

    1990-01-01

    The use of flow boiling for thermal energy transport is intended to provide an alternative for accommodating higher heat fluxes in commercial space systems. The objectives are to: (1) examine the variations in both the mean and local (axial and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls, spiral fins, or both spiral fins and a twisted tape; (2) examine the effects of channel diameter and subcooling; and (3) develop an improved reduction analysis and/or suggest possible heat transfer correlation of the present data. Freon-11 is the working fluid. Two-dimensional (circumferential and axial) wall temperature distributions were measured for coolant channels with the above noted internal geometries. The flow regimes which are being studied are: (1) single phase; (2) subcooled flow boiling; and (3) stratified flow boiling. The inside diameter of all test sections is near 1.0 cm. Cicumferentially averaged heat transfer coefficients at several axial locations were obtained for selected coolant channels for a mass velocity of 210 kg/sq m s, an exit pressure of 0.19 MPa (absolute), and an inlet subcooling of 20.8 C. Overall (averaged over the entire channel) heat transfer coefficients were compared for the above channel geometries. This comparison showed that the channel with large pitch spiral fins had higher heat transfer coefficients at all power levels.

  9. An experimental study of a three-dimensional shock wave/turbulent boundary-layer interaction at a hypersonic Mach number

    NASA Technical Reports Server (NTRS)

    Kussoy, M. I.; Horstman, K. C.; Kim, K.-S.

    1991-01-01

    Experimental data for a series of three-dimensional shock-wave/turbulent-boundary-layer interaction flows at Mach 8.2 are presented. The test bodies, composed of sharp fins fastened to a flat-plate test surface, were designed to generate flows with varying degrees of pressure gradient, boundary-layer separation, and turning angle. The data include surface-pressure, heat-transfer, and skin-friction distributions, as well as limited mean flowfield surveys both in the undisturbed and interaction regimes. The data were obtained for the purpose of validating computational models of these hypersonic interactions.

  10. Integrated model of the shallow and deep hydrothermal systems in the East Mesa area, Imperial Valley, California

    USGS Publications Warehouse

    Riney, T. David; Pritchett, J.W.; Rice, L.F.

    1982-01-01

    Geological, geophysical, thermal, petrophysical and hydrological data available for the East Mesa hydrothermal system that are pertinent to the construction of a computer model of the natural flow of heat and fluid mass within the system are assembled and correlated. A conceptual model of the full system is developed and a subregion selected for quantitative modeling. By invoking the .Boussinesq approximation, valid for describing the natural flow of heat and mass in a liquid hydrothermal system, it is found practical to carry computer simulations far enough in time to ensure that steady-state conditions are obtained. Initial calculations for an axisymmetric model approximating the system demonstrate that the vertical formation permeability of the deep East Mesa system must be very low (kv ~ 0.25 to 0.5 md). Since subsurface temperature and surface heat flow data exhibit major deviations from the axisymmetric approximation, exploratory three-dimensional calculations are performed to assess the effects of various mechanisms which might operate to produce such observed asymmetries. A three-dimensional model evolves from this iterative data synthesis and computer analysis which includes a hot fluid convective source distributed along a leaky fault radiating northward from the center of the hot spot and realistic variations in the reservoir formation properties.

  11. The origin and structure of streak-like instabilities in laminar boundary layer flames

    NASA Astrophysics Data System (ADS)

    Gollner, Michael; Miller, Colin; Tang, Wei; Finney, Mark

    2017-11-01

    Streamwise streaks are consistently observed in wildland fires, at the base of pool fires, and in other heated flows within a boundary layer. This study examines both the origin of these structures and their role in influencing some of the macroscopic properties of the flow. Streaks were reproduced and characterized via experiments on stationary heated strips and liquid and gas-fueled burners in laminar boundary layer flows, providing a framework to develop theory based on both observed and measured physical phenomena. The incoming boundary layer was established as the controlling mechanism in forming streaks, which are generated by pre-existing coherent structures, while the amplification of streaks was determined to be compatible with quadratic growth of Rayleigh-Taylor Instabilities, providing credence to the idea that the downstream growth of streaks is strongly tied to buoyancy. These local instabilities were also found to affect macroscopic properties of the flow, including heat transfer to the surface, indicating that a two-dimensional assumption may fail to adequately describe heat and mass transfer during flame spread and other reacting boundary layer flows. This work was supported by NSF (CBET-1554026) and the USDA-FS (13-CS-11221637-124).

  12. 2-D and 3-D mixing flow analyses of a scramjet-afterbody configuration

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay; Eleshaky, Mohamed E.; Engelund, Walter C.

    1989-01-01

    A cold simulant gas study of propulsion/airframe integration for a hypersonic vehicle powered by a scramjet engine is presented. The specific heat ratio of the hot exhaust gases are matched by utilizing a cold mixture of argon and Freon-12. Solutions are obtained for a hypersonic corner flow and a supersonic rectangular flow in order to provide the upstream boundary conditions. The computational test examples also provide a comparison of this flow with that of air as the expanding supersonic jet, where the specific heats are assumed to be constant. It is shown that the three-dimensional computational fluid capabilities developed for these types of flow may be utilized to augment the conventional wind tunnel studies of scramjet afterbody flows using cold simulant exhaust gases, which in turn can help in the design of a scramjet internal-external nozzle.

  13. TEMPEST. Transient 3-D Thermal-Hydraulic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eyler, L.L.

    TEMPEST is a transient, three-dimensional, hydrothermal program that is designed to analyze a range of coupled fluid dynamic and heat transfer systems of particular interest to the Fast Breeder Reactor (FBR) thermal-hydraulic design community. The full three-dimensional, time-dependent equations of motion, continuity, and heat transport are solved for either laminar or turbulent fluid flow, including heat diffusion and generation in both solid and liquid materials. The equations governing mass, momentum, and energy conservation for incompressible flows and small density variations (Boussinesq approximation) are solved using finite-difference techniques. Analyses may be conducted in either cylindrical or Cartesian coordinate systems. Turbulence ismore » treated using a two-equation model. Two auxiliary plotting programs, SEQUEL and MANPLOT, for use with TEMPEST output are included. SEQUEL may be operated in batch or interactive mode; it generates data required for vector plots, contour plots of scalar quantities, line plots, grid and boundary plots, and time-history plots. MANPLOT reads the SEQUEL-generated data and creates the hardcopy plots. TEMPEST can be a valuable hydrothermal design analysis tool in areas outside the intended FBR thermal-hydraulic design community.« less

  14. A study of the flow boiling heat transfer in an annular heat exchanger with a mini gap

    NASA Astrophysics Data System (ADS)

    Musiał, Tomasz; Piasecka, Magdalena; Hożejowska, Sylwia

    In this paper the research on flow boiling heat transfer in an annular mini gap was discussed. A one- dimensional mathematical approach was proposed to describe stationary heat transfer in the gap. The mini gap 1 mm wide was created between a metal pipe with enhanced exterior surface and an external tempered glass pipe positioned along the same axis. The experimental test stand consists of several systems: the test loop in which distilled water circulates, the data and image acquisition system and the supply and control system. Known temperature distributions of the metal pipe with enhanced surface and of the working fluid helped to determine, from the Robin boundary condition, the local heat transfer coefficients at the fluid - heated surface contact. In the proposed mathematical model it is assumed that the cylindrical wall is a planar multilayer wall. The numerical results are presented on a chart as function of the heat transfer coefficient along the length of the mini gap.

  15. Data correlation and analysis of arc tunnel and wind tunnel tests of RSI joints and gaps, phase 2. Volume 1: Technical report

    NASA Technical Reports Server (NTRS)

    Cristensen, H. E.

    1975-01-01

    Heat transfer data measured in gaps representative of those being employed for joints in the space shuttle reusable surface insulation (RSI) thermal protection systems (TPS) were assimilated, analyzed, and correlated. Several types of gap were investigated with emphasis on simple butt joints. Gap widths ranged from 0.0 to 0.76 cm and depths ranged from 1 to 6 cm. Laminar, transitional, and turbulent boundary layer flows over the gap opening were investigated. The angle between gap axis and external flow was varied between 0 and pi/2 radians. The contoured cross section gap performed significantly better than all other wide gaps and slightly better than all other narrow gap geometries. Three dimensional heating variations were observed within gaps in the absence of external flow pressure gradients. Interactions between heating within gaps and heating of adjacent top tile surfaces were observed. Gaps aligned with the flow were observed to promote boundary layer transition. Heat transfer correlation equations were obtained for many of the tests. The TPS thickness requirements with and without gaps were computed for a current shuttle entry trajectory. Experimental data employed in the study are summarized. A description of each test facility, run schedule and test conditions, model descriptive information, and heat flux data are included.

  16. Singularity computations

    NASA Technical Reports Server (NTRS)

    Swedlow, J. L.

    1976-01-01

    An approach is described for singularity computations based on a numerical method for elastoplastic flow to delineate radial and angular distribution of field quantities and measure the intensity of the singularity. The method is applicable to problems in solid mechanics and lends itself to certain types of heat flow and fluid motion studies. Its use is not limited to linear, elastic, small strain, or two-dimensional situations.

  17. Experimental study of thermocapillary flows in a thin liquid layer with heat fluxes imposed on the free surface

    NASA Technical Reports Server (NTRS)

    Lai, Chun-Liang; Greenberg, Paul S.; Chai, An-Ti

    1988-01-01

    To study thermocapillary flows in a two-dimensional thin liquid layer with heat fluxes imposed on the free surface experimentally, a long tray configuration was employed to simulate the infinite layer. The surface temperature distribution due to thermocapillary convective for different flow regimes was measured and compared with theoretical predictions. A short tray configuration was also employed to study the end wall effects (insulating or conducting). The results show that for a strong convection flow with an insulating wall as the boundary the surface temperature distribution became quite uniform. Consequently, the thermocapillary driving force was greatly reduced. On the other hand, a strong fluid motion always existed adjacent to the conducting wall because of the large surface temperature gradient near the wall.

  18. Radiative interactions in chemically reacting compressible nozzle flows using Monte Carlo simulations

    NASA Technical Reports Server (NTRS)

    Liu, J.; Tiwari, Surendra N.

    1994-01-01

    The two-dimensional spatially elliptic Navier-Stokes equations have been used to investigate the radiative interactions in chemically reacting compressible flows of premixed hydrogen and air in an expanding nozzle. The radiative heat transfer term in the energy equation is simulated using the Monte Carlo method (MCM). The nongray model employed is based on the statistical narrow band model with an exponential-tailed inverse intensity distribution. The spectral correlation has been considered in the Monte Carlo formulations. Results obtained demonstrate that the effect of radiation on the flow field is minimal but its effect on the wall heat transfer is significant. Extensive parametric studies are conducted to investigate the effects of equivalence ratio, wall temperature, inlet flow temperature, and the nozzle size on the radiative and conductive wall fluxes.

  19. Numerical study for melting heat transfer and homogeneous-heterogeneous reactions in flow involving carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Muhammad, Khursheed; Alsaedi, Ahmed; Asghar, Saleem

    2018-03-01

    Present work concentrates on melting heat transfer in three-dimensional flow of nanofluid over an impermeable stretchable surface. Analysis is made in presence of porous medium and homogeneous-heterogeneous reactions. Single and multi-wall CNTs (carbon nanotubes) are considered. Water is chosen as basefluid. Adequate transformations yield the non-linear ordinary differential systems. Solution of emerging problems is obtained using shooting method. Impacts of influential variables on velocity and temperature are discussed graphically. Skin friction coefficient and Nusselt number are numerically discussed. The results for MWCNTs and SWCNTs are compared and examined.

  20. The Influence of Roof Material on Diurnal Urban Canyon Breathing

    NASA Astrophysics Data System (ADS)

    Abuhegazy, Mohamed; Yaghoobian, Neda

    2017-11-01

    Improvements in building energy use, air quality in urban canyons and in general urban microclimates require understanding the complex interaction between urban morphology, materials, climate, and inflow conditions. Review of the literature indicates that despite a long history of valuable urban microclimate studies, more comprehensive approaches are needed to address energy, and heat and flow transport in urban areas. In this study, a more comprehensive simulation of the diurnally varying street canyon flow and associated heat transport is numerically investigated, using Large-eddy Simulation (LES). We use computational modeling to examine the impact of diurnal variation of the heat fluxes from urban surfaces on the air flow and temperature distribution in street canyons with a focus on the role of roof materials and their temperature footprints. A detailed building energy model with a three-dimensional raster-type geometry provides urban surface heat fluxes as thermal boundary conditions for the LES to determine the key aero-thermodynamic factors that affect urban street ventilation.

  1. Modelling heat transfer during flow through a random packed bed of spheres

    NASA Astrophysics Data System (ADS)

    Burström, Per E. C.; Frishfelds, Vilnis; Ljung, Anna-Lena; Lundström, T. Staffan; Marjavaara, B. Daniel

    2018-04-01

    Heat transfer in a random packed bed of monosized iron ore pellets is modelled with both a discrete three-dimensional system of spheres and a continuous Computational Fluid Dynamics (CFD) model. Results show a good agreement between the two models for average values over a cross section of the bed for an even temperature profiles at the inlet. The advantage with the discrete model is that it captures local effects such as decreased heat transfer in sections with low speed. The disadvantage is that it is computationally heavy for larger systems of pellets. If averaged values are sufficient, the CFD model is an attractive alternative that is easy to couple to the physics up- and downstream the packed bed. The good agreement between the discrete and continuous model furthermore indicates that the discrete model may be used also on non-Stokian flow in the transitional region between laminar and turbulent flow, as turbulent effects show little influence of the overall heat transfer rates in the continuous model.

  2. Method and apparatus for measuring thermal conductivity of small, highly insulating specimens

    NASA Technical Reports Server (NTRS)

    Miller, Robert A. (Inventor); Kuczmarski, Maria A. (Inventor)

    2012-01-01

    A hot plate method and apparatus for the measurement of thermal conductivity combines the following capabilities: 1) measurements of very small specimens; 2) measurements of specimens with thermal conductivity on the same order of that as air; and, 3) the ability to use air as a reference material. Care is taken to ensure that the heat flow through the test specimen is essentially one-dimensional. No attempt is made to use heated guards to minimize the flow of heat from the hot plate to the surroundings. Results indicate that since large correction factors must be applied to account for guard imperfections when specimen dimensions are small, simply measuring and correcting for heat from the heater disc that does not flow into the specimen is preferable. The invention is a hot plate method capable of using air as a standard reference material for the steady-state measurement of the thermal conductivity of very small test samples having thermal conductivity on the order of air.

  3. Divertor sheath power studies in DIII-D using fixed Langmuir probes and three-dimensional modeling of tile heat flows

    NASA Astrophysics Data System (ADS)

    Donovan, D.; Nygren, R.; Buchenauer, D.; Watkins, J.; Rudakov, D.; Leonard, A.; Wong, C. P. C.; Makowski, M.

    2014-04-01

    Experimental results are presented from the three-Langmuir probe (LP) diagnostic head of the divertor material evaluation system (DiMES) on DIII-D that confirm the size of the projected current collection area of the LPs, which is essential for properly measuring ion saturation current density (Jsat) and the sheath power transmission factor (SPTF). Also using the 3-LP DiMES head, the hypothesis that collisional effects on plasma density occurring in the magnetic sheath of the tile are responsible for a lower than expected SPTF is tested and deemed not to have a significant impact on the SPTF. Three-dimensional thermal modeling of wall tiles is presented that accounts for lateral heat conduction, temperature dependence of tile material properties and radiative heat loss from the tile surface. This modeling was developed to be used in the analysis of temperature profiles of the divertor embedded thermocouple (TC) array to obtain more accurate interpretations of TC temperature profiles to infer divertor surface heat flux than have previously been accomplished using more basic one-dimensional methods.

  4. Numerical solutions for heat flow in adhesive lap joints

    NASA Technical Reports Server (NTRS)

    Howell, P. A.; Winfree, William P.

    1992-01-01

    The present formulation for the modeling of heat transfer in thin, adhesively bonded lap joints precludes difficulties associated with large aspect ratio grids required by standard FEM formulations. This quasi-static formulation also reduces the problem dimensionality (by one), thereby minimizing computational requirements. The solutions obtained are found to be in good agreement with both analytical solutions and solutions from standard FEM programs. The approach is noted to yield a more accurate representation of heat-flux changes between layers due to a disbond.

  5. System Modeling for Ammonia Synthesis Energy Recovery System

    NASA Astrophysics Data System (ADS)

    Bran Anleu, Gabriela; Kavehpour, Pirouz; Lavine, Adrienne; Ammonia thermochemical Energy Storage Team

    2015-11-01

    An ammonia thermochemical energy storage system is an alternative solution to the state-of-the-art molten salt TES system for concentrating solar power. Some of the advantages of this emerging technology include its high energy density, no heat losses during the storage duration, and the possibility of long storage periods. Solar energy powers an endothermic reaction to disassociate ammonia into hydrogen and nitrogen, which can be stored for future use. The reverse reaction is carried out in the energy recovery process; a hydrogen-nitrogen mixture flowing through a catalyst bed undergoes the exothermic ammonia synthesis reaction. The goal is to use the ammonia synthesis reaction to heat supercritical steam to temperatures on the order of 650°C as required for a supercritical steam Rankine cycle. The steam will flow through channels in a combined reactor-heat exchanger. A numerical model has been developed to determine the optimal design to heat supercritical steam while maintaining a stable exothermic reaction. The model consists of a transient one dimensional concentric tube counter-flow reactor-heat exchanger. The numerical model determines the inlet mixture conditions needed to achieve various steam outlet conditions.

  6. A three-dimensional analysis on the role of atmospheric waves in the climatology and interannual variability of stratospheric final warming in the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Hirano, Soichiro; Kohma, Masashi; Sato, Kaoru

    2016-07-01

    Stratospheric final warming (SFW) in the Southern Hemisphere is examined in terms of their interannual variability and climatology using reanalysis data from January 1979 to March 2014. First, it is shown from a two-dimensional transformed Eulerian mean (TEM) analysis that a time-integrated vertical component of Eliassen-Palm flux during the spring is significantly related with SFW date. To clarify the role of residual mean flow in the interannual variability of the SFW date, SFWs are categorized into early and late groups according to the SFW date and their differences are examined. Significant difference in potential temperature tendency is observed in the middle and lower stratosphere in early October. Their structure in the meridional cross section accords well with that of vertical potential temperature advection by the residual mean flow. Difference in heating rate by shortwave radiation is minor. These results suggest that the adiabatic heating associated with the residual mean flow largely affects polar stratospheric temperature during austral spring and SFW date. The analysis is extended to investigate the longitudinal structure by using a three-dimensional (3-D) TEM theory. The significant difference in potential temperature tendency is mainly observed around the Weddell Sea at 10 hPa. Next, climatological 3-D structure of a vertical component of the residual mean flow in association with SFW is examined in terms of the effect on the troposphere. The results suggest that a downward residual mean flow from the stratosphere penetrates into underlying troposphere over East Antarctica and partly influences tropospheric temperature there.

  7. Verification and benchmark testing of the NUFT computer code

    NASA Astrophysics Data System (ADS)

    Lee, K. H.; Nitao, J. J.; Kulshrestha, A.

    1993-10-01

    This interim report presents results of work completed in the ongoing verification and benchmark testing of the NUFT (Nonisothermal Unsaturated-saturated Flow and Transport) computer code. NUFT is a suite of multiphase, multicomponent models for numerical solution of thermal and isothermal flow and transport in porous media, with application to subsurface contaminant transport problems. The code simulates the coupled transport of heat, fluids, and chemical components, including volatile organic compounds. Grid systems may be cartesian or cylindrical, with one-, two-, or fully three-dimensional configurations possible. In this initial phase of testing, the NUFT code was used to solve seven one-dimensional unsaturated flow and heat transfer problems. Three verification and four benchmarking problems were solved. In the verification testing, excellent agreement was observed between NUFT results and the analytical or quasianalytical solutions. In the benchmark testing, results of code intercomparison were very satisfactory. From these testing results, it is concluded that the NUFT code is ready for application to field and laboratory problems similar to those addressed here. Multidimensional problems, including those dealing with chemical transport, will be addressed in a subsequent report.

  8. Thermal elastoplastic structural analysis of non-metallic thermal protection systems

    NASA Technical Reports Server (NTRS)

    Chung, T. J.; Yagawa, G.

    1972-01-01

    An incremental theory and numerical procedure to analyze a three-dimensional thermoelastoplastic structure subjected to high temperature, surface heat flux, and volume heat supply as well as mechanical loadings are presented. Heat conduction equations and equilibrium equations are derived by assuming a specific form of incremental free energy, entropy, stresses and heat flux together with the first and second laws of thermodynamics, von Mises yield criteria and Prandtl-Reuss flow rule. The finite element discretization using the linear isotropic three-dimensional element for the space domain and a difference operator corresponding to a linear variation of temperature within a small time increment for the time domain lead to systematic solutions of temperature distribution and displacement and stress fields. Various boundary conditions such as insulated surfaces and convection through uninsulated surface can be easily treated. To demonstrate effectiveness of the present formulation a number of example problems are presented.

  9. Numerical study for heat generation/absorption in flow of nanofluid by a rotating disk

    NASA Astrophysics Data System (ADS)

    Aziz, Arsalan; Alsaedi, Ahmed; Muhammad, Taseer; Hayat, Tasawar

    2018-03-01

    Here MHD three-dimensional flow of viscous nanoliquid by a rotating disk with heat generation/absorption and slip effects is addressed. Thermophoresis and random motion features are also incorporated. Velocity, temperature and concentration slip conditions are imposed at boundary. Applied magnetic field is utilized. Low magnetic Reynolds number and boundary layer approximations have been employed in the problem formulation. Suitable transformations lead to strong nonlinear ordinary differential system. The obtained nonlinear system is solved numerically through NDSolve technique. Graphs have been sketched in order to analyze that how the velocity, temperature and concentration fields are affected by various pertinent variables. Moreover the numerical values for rates of heat and mass transfer have been tabulated and discussed.

  10. Aerodynamic heating on AFE due to nonequilibrium flow with variable entropy at boundary layer edge

    NASA Technical Reports Server (NTRS)

    Ting, P. C.; Rochelle, W. C.; Bouslog, S. A.; Tam, L. T.; Scott, C. D.; Curry, D. M.

    1991-01-01

    A method of predicting the aerobrake aerothermodynamic environment on the NASA Aeroassist Flight Experiment (AFE) vehicle is described. Results of a three dimensional inviscid nonequilibrium solution are used as input to an axisymmetric nonequilibrium boundary layer program to predict AFE convective heating rates. Inviscid flow field properties are obtained from the Euler option of the Viscous Reacting Flow (VRFLO) code at the boundary layer edge. Heating rates on the AFE surface are generated with the Boundary Layer Integral Matrix Procedure (BLIMP) code for a partially catalytic surface composed of Reusable Surface Insulation (RSI) times. The 1864 kg AFE will fly an aerobraking trajectory, simulating return from geosynchronous Earth orbit, with a 75 km perigee and a 10 km/sec entry velocity. Results of this analysis will provide principal investigators and thermal analysts with aeroheating environments to perform experiment and thermal protection system design.

  11. Probing Reliability of Transport Phenomena Based Heat Transfer and Fluid Flow Analysis in Autogeneous Fusion Welding Process

    NASA Astrophysics Data System (ADS)

    Bag, S.; de, A.

    2010-09-01

    The transport phenomena based heat transfer and fluid flow calculations in weld pool require a number of input parameters. Arc efficiency, effective thermal conductivity, and viscosity in weld pool are some of these parameters, values of which are rarely known and difficult to assign a priori based on the scientific principles alone. The present work reports a bi-directional three-dimensional (3-D) heat transfer and fluid flow model, which is integrated with a real number based genetic algorithm. The bi-directional feature of the integrated model allows the identification of the values of a required set of uncertain model input parameters and, next, the design of process parameters to achieve a target weld pool dimension. The computed values are validated with measured results in linear gas-tungsten-arc (GTA) weld samples. Furthermore, a novel methodology to estimate the overall reliability of the computed solutions is also presented.

  12. Mathematical modeling and analysis of heat pipe start-up from the frozen state

    NASA Technical Reports Server (NTRS)

    Jang, Jong Hoon; Faghri, Amir; Chang, Won Soon; Mahefkey, Edward T.

    1989-01-01

    The start-up process of a frozen heat pipe is described and a complete mathematical model for the start-up of the frozen heat pipe is developed based on the existing experimental data, which is simplified and solved numerically. The two-dimensional transient model for the wall and wick is coupled with the one-dimensional transient model for the vapor flow when vaporization and condensation occur at the interface. A parametric study is performed to examine the effect of the boundary specification at the surface of the outer wall on the successful start-up from the frozen state. For successful start-up, the boundary specification at the outer wall surface must melt the working substance in the condenser before dry-out takes place in the evaporator.

  13. Mathematical modeling and analysis of heat pipe start-up from the frozen state

    NASA Technical Reports Server (NTRS)

    Jang, J. H.; Faghri, A.; Chang, W. S.; Mahefkey, E. T.

    1990-01-01

    The start-up process of a frozen heat pipe is described and a complete mathematical model for the start-up of the frozen heat pipe is developed based on the existing experimental data, which is simplified and solved numerically. The two-dimensional transient model for the wall and wick is coupled with the one-dimensional transient model for the vapor flow when vaporization and condensation occur at the interface. A parametric study is performed to examine the effect of the boundary specification at the surface of the outer wall on the successful start-up from the frozen state. For successful start-up, the boundary specification at the outer wall surface must melt the working substance in the condenser before dry-out takes place in the evaporator.

  14. Evaluating geothermal and hydrogeologic controls on regional groundwater temperature distribution

    USGS Publications Warehouse

    Burns, Erick R.; Ingebritsen, Steven E.; Manga, Michael; Williams, Colin F.

    2016-01-01

    A one-dimensional (1-D) analytic solution is developed for heat transport through an aquifer system where the vertical temperature profile in the aquifer is nearly uniform. The general anisotropic form of the viscous heat generation term is developed for use in groundwater flow simulations. The 1-D solution is extended to more complex geometries by solving the equation for piece-wise linear or uniform properties and boundary conditions. A moderately complex example, the Eastern Snake River Plain (ESRP), is analyzed to demonstrate the use of the analytic solution for identifying important physical processes. For example, it is shown that viscous heating is variably important and that heat conduction to the land surface is a primary control on the distribution of aquifer and spring temperatures. Use of published values for all aquifer and thermal properties results in a reasonable match between simulated and measured groundwater temperatures over most of the 300 km length of the ESRP, except for geothermal heat flow into the base of the aquifer within 20 km of the Yellowstone hotspot. Previous basal heat flow measurements (∼110 mW/m2) made beneath the ESRP aquifer were collected at distances of >50 km from the Yellowstone Plateau, but a higher basal heat flow of 150 mW/m2 is required to match groundwater temperatures near the Plateau. The ESRP example demonstrates how the new tool can be used during preliminary analysis of a groundwater system, allowing efficient identification of the important physical processes that must be represented during more-complex 2-D and 3-D simulations of combined groundwater and heat flow.

  15. Analytical study of Cattaneo-Christov heat flux model for a boundary layer flow of Oldroyd-B fluid

    NASA Astrophysics Data System (ADS)

    F, M. Abbasi; M, Mustafa; S, A. Shehzad; M, S. Alhuthali; T, Hayat

    2016-01-01

    We investigate the Cattaneo-Christov heat flux model for a two-dimensional laminar boundary layer flow of an incompressible Oldroyd-B fluid over a linearly stretching sheet. Mathematical formulation of the boundary layer problems is given. The nonlinear partial differential equations are converted into the ordinary differential equations using similarity transformations. The dimensionless velocity and temperature profiles are obtained through optimal homotopy analysis method (OHAM). The influences of the physical parameters on the velocity and the temperature are pointed out. The results show that the temperature and the thermal boundary layer thickness are smaller in the Cattaneo-Christov heat flux model than those in the Fourier’s law of heat conduction. Project supported by the Deanship of Scientific Research (DSR) King Abdulaziz University, Jeddah, Saudi Arabia (Grant No. 32-130-36-HiCi).

  16. Applications of Low Density Flow Techniques and Catalytic Recombination at the Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.

    2000-01-01

    The talk presents a brief background on defInitions of catalysis and effects associated with chemically nonequilibrium and low-density flows of aerospace interest. Applications of catalytic recombination on surfaces in dissociated flow are given, including aero heating on reentry spacecraft thermal protection surfaces and reflection of plume flow on pressure distributions associated with the space station. Examples include aero heating predictions for the X-38 test vehicle, the inlet of a proposed gas-sampling probe used in high enthalpy test facilities, and a parabolic body at angle of attack. The effect of accommodation coefficients on thruster induced pressure distributions is also included. Examples of tools used include simple aero heating formulas based on boundary layer solutions, an engineering approximation that uses axisymmetric viscous shock layer flow to simulate full three dimensional flow, full computational fluid dynamics, and direct simulation Monte-Carlo calculations. Methods of determining catalytic recombination rates in arc jet flow are discus ed. An area of catalysis not fully understood is the formation of single-wall carbon nanotubes (SWNT) with gas phase or nano-size metal particles. The Johnson Space Center is making SWNTs using both a laser ablation technique and an electric arc vaporization technique.

  17. Radiogenic heat production in sedimentary rocks of the Gulf of Mexico Basin, south Texas

    USGS Publications Warehouse

    McKenna, T.E.; Sharp, J.M.

    1998-01-01

    Radiogenic heat production within the sedimentary section of the Gulf of Mexico basin is a significant source of heat. Radiogenic heat should be included in thermal models of this basin (and perhaps other sedimentary basins). We calculate that radiogenic heat may contribute up to 26% of the overall surface heat-flow density for an area in south Texas. Based on measurements of the radioactive decay rate of ??-particles, potassium concentration, and bulk density, we calculate radiogenic heat production for Stuart City (Lower Cretaceous) limestones, Wilcox (Eocene) sandstones and mudrocks, and Frio (Oligocene) sandstones and mudrocks from south Texas. Heat production rates range from a low of 0.07 ?? 0.01 ??W/m3 in clean Stuart City limestones to 2.21 ?? 0.24??W/m3 in Frio mudrocks. Mean heat production rates for Wilcox sandstones, Frio sandstones, Wilcox mudrocks, and Frio mudrocks are 0.88, 1.19, 1.50, and 1.72 ??W/m3, respectively. In general, the mudrocks produce about 30-40% more heat than stratigraphically equivalent sandstones. Frio rocks produce about 15% more heat than Wilcox rocks per unit volume of clastic rock (sandstone/mudrock). A one-dimensional heat-conduction model indicates that this radiogenic heat source has a significant effect on subsurface temperatures. If a thermal model were calibrated to observed temperatures by optimizing basal heat-flow density and ignoring sediment heat production, the extrapolated present-day temperature of a deeply buried source rock would be overestimated.Radiogenic heat production within the sedimentary section of the Gulf of Mexico basin is a significant source of heat. Radiogenic heat should be included in thermal models of this basin (and perhaps other sedimentary basins). We calculate that radiogenic heat may contribute up to 26% of the overall surface heat-flow density for an area in south Texas. Based on measurements of the radioactive decay rate of ??-particles, potassium concentration, and bulk density, we calculate radiogenic heat production for Stuart City (Lower Cretaceous) limestones, Wilcox (Eocene) sandstones and mudrocks, and Frio (Oligocene) sandstones and mudrocks from south Texas. Heat production rates range from a low of 0.07??0.01 ??W/m3 in clean Stuart City limestones to 2.21??0.24 ??W/m3 in Frio mudrocks. Mean heat production rates for Wilcox sandstones, Frio sandstones, Wilcox mudrocks, and Frio mudrocks are 0.88, 1.19, 1.50, and 1.72 ??W/m3, respectively. In general, the mudrocks produce about 30-40% more heat than stratigraphically equivalent sandstones. Frio rocks produce about 15% more heat than Wilcox rocks per unit volume of clastic rock (sandstone/mudrock). A one-dimensional heat-conduction model indicates that this radiogenic heat source has a significant effect on subsurface temperatures. If a thermal model were calibrated to observed temperatures by optimizing basal heat-flow density and ignoring sediment heat production, the extrapolated present-day temperature of a deeply buried source rock would be overestimated.

  18. Pressure gradient effects on heat transfer to reusable surface insulation tile-array gaps

    NASA Technical Reports Server (NTRS)

    Throckmorton, D. A.

    1975-01-01

    An experimental investigation was performed to determine the effect of pressure gradient on the heat transfer within space shuttle reusable surface insulation (RSI) tile-array gaps under thick, turbulent boundary-layer conditions. Heat-transfer and pressure measurements were obtained on a curved array of full-scale simulated RSI tiles in a tunnel-wall boundary layer at a nominal free-stream Mach number and free-stream Reynolds numbers. Transverse pressure gradients of varying degree were induced over the model surface by rotating the curved array with respect to the flow. Definition of the tunnel-wall boundary-layer flow was obtained by measurement of boundary-layer pitot pressure profiles, wall pressure, and heat transfer. Flat-plate heat-transfer data were correlated and a method was derived for prediction of heat transfer to a smooth curved surface in the highly three-dimensional tunnel-wall boundary-layer flow. Pressure on the floor of the RSI tile-array gap followed the trends of the external surface pressure. Heat transfer to the surface immediately downstream of a transverse gap is higher than that for a smooth surface at the same location. Heating to the wall of a transverse gap, and immediately downstream of it, at its intersection with a longitudinal gap is significantly greater than that for the simple transverse gap.

  19. A theoretical analysis of fluid flow and energy transport in hydrothermal systems

    USGS Publications Warehouse

    Faust, Charles R.; Mercer, James W.

    1977-01-01

    A mathematical derivation for fluid flow and energy transport in hydrothermal systems is presented. Specifically, the mathematical model describes the three-dimensional flow of both single- and two-phase, single-component water and the transport of heat in porous media. The derivation begins with the point balance equations for mass, momentum, and energy. These equations are then averaged over a finite volume to obtain the macroscopic balance equations for a porous medium. The macroscopic equations are combined by appropriate constitutive relationships to form two similified partial differential equations posed in terms of fluid pressure and enthalpy. A two-dimensional formulation of the simplified equations is also derived by partial integration in the vertical dimension. (Woodard-USGS)

  20. Nonlinear Conservation Laws and Finite Volume Methods

    NASA Astrophysics Data System (ADS)

    Leveque, Randall J.

    Introduction Software Notation Classification of Differential Equations Derivation of Conservation Laws The Euler Equations of Gas Dynamics Dissipative Fluxes Source Terms Radiative Transfer and Isothermal Equations Multi-dimensional Conservation Laws The Shock Tube Problem Mathematical Theory of Hyperbolic Systems Scalar Equations Linear Hyperbolic Systems Nonlinear Systems The Riemann Problem for the Euler Equations Numerical Methods in One Dimension Finite Difference Theory Finite Volume Methods Importance of Conservation Form - Incorrect Shock Speeds Numerical Flux Functions Godunov's Method Approximate Riemann Solvers High-Resolution Methods Other Approaches Boundary Conditions Source Terms and Fractional Steps Unsplit Methods Fractional Step Methods General Formulation of Fractional Step Methods Stiff Source Terms Quasi-stationary Flow and Gravity Multi-dimensional Problems Dimensional Splitting Multi-dimensional Finite Volume Methods Grids and Adaptive Refinement Computational Difficulties Low-Density Flows Discrete Shocks and Viscous Profiles Start-Up Errors Wall Heating Slow-Moving Shocks Grid Orientation Effects Grid-Aligned Shocks Magnetohydrodynamics The MHD Equations One-Dimensional MHD Solving the Riemann Problem Nonstrict Hyperbolicity Stiffness The Divergence of B Riemann Problems in Multi-dimensional MHD Staggered Grids The 8-Wave Riemann Solver Relativistic Hydrodynamics Conservation Laws in Spacetime The Continuity Equation The 4-Momentum of a Particle The Stress-Energy Tensor Finite Volume Methods Multi-dimensional Relativistic Flow Gravitation and General Relativity References

  1. Numerical Simulation of Non-Rotating and Rotating Coolant Channel Flow Fields. Part 1

    NASA Technical Reports Server (NTRS)

    Rigby, David L.

    2000-01-01

    Future generations of ultra high bypass-ratio jet engines will require far higher pressure ratios and operating temperatures than those of current engines. For the foreseeable future, engine materials will not be able to withstand the high temperatures without some form of cooling. In particular the turbine blades, which are under high thermal as well as mechanical loads, must be cooled. Cooling of turbine blades is achieved by bleeding air from the compressor stage of the engine through complicated internal passages in the turbine blades (internal cooling, including jet-impingement cooling) and by bleeding small amounts of air into the boundary layer of the external flow through small discrete holes on the surface of the blade (film cooling and transpiration cooling). The cooling must be done using a minimum amount of air or any increases in efficiency gained through higher operating temperature will be lost due to added load on the compressor stage. Turbine cooling schemes have traditionally been based on extensive empirical data bases, quasi-one-dimensional computational fluid dynamics (CFD) analysis, and trial and error. With improved capabilities of CFD, these traditional methods can be augmented by full three-dimensional simulations of the coolant flow to predict in detail the heat transfer and metal temperatures. Several aspects of turbine coolant flows make such application of CFD difficult, thus a highly effective CFD methodology must be used. First, high resolution of the flow field is required to attain the needed accuracy for heat transfer predictions, making highly efficient flow solvers essential for such computations. Second, the geometries of the flow passages are complicated but must be modeled accurately in order to capture all important details of the flow. This makes grid generation and grid quality important issues. Finally, since coolant flows are turbulent and separated the effects of turbulence must be modeled with a low Reynolds number turbulence model to accurately predict details of heat transfer.

  2. Resin Film Infusion (RFI) Process Modeling for Large Transport Aircraft Wing Structures

    NASA Technical Reports Server (NTRS)

    Loos, Alfred C.; Caba, Aaron C.; Furrow, Keith W.

    2000-01-01

    This investigation completed the verification of a three-dimensional resin transfer molding/resin film infusion (RTM/RFI) process simulation model. The model incorporates resin flow through an anisotropic carbon fiber preform, cure kinetics of the resin, and heat transfer within the preform/tool assembly. The computer model can predict the flow front location, resin pressure distribution, and thermal profiles in the modeled part. The formulation for the flow model is given using the finite element/control volume (FE/CV) technique based on Darcy's Law of creeping flow through a porous media. The FE/CV technique is a numerically efficient method for finding the flow front location and the fluid pressure. The heat transfer model is based on the three-dimensional, transient heat conduction equation, including heat generation. Boundary conditions include specified temperature and convection. The code was designed with a modular approach so the flow and/or the thermal module may be turned on or off as desired. Both models are solved sequentially in a quasi-steady state fashion. A mesh refinement study was completed on a one-element thick model to determine the recommended size of elements that would result in a converged model for a typical RFI analysis. Guidelines are established for checking the convergence of a model, and the recommended element sizes are listed. Several experiments were conducted and computer simulations of the experiments were run to verify the simulation model. Isothermal, non-reacting flow in a T-stiffened section was simulated to verify the flow module. Predicted infiltration times were within 12-20% of measured times. The predicted pressures were approximately 50% of the measured pressures. A study was performed to attempt to explain the difference in pressures. Non-isothermal experiments with a reactive resin were modeled to verify the thermal module and the resin model. Two panels were manufactured using the RFI process. One was a stepped panel and the other was a panel with two 'T' stiffeners. The difference between the predicted infiltration times and the experimental times was 4% to 23%.

  3. Lumped versus distributed thermoregulatory control: results from a three-dimensional dynamic model.

    PubMed

    Werner, J; Buse, M; Foegen, A

    1989-01-01

    In this study we use a three-dimensional model of the human thermal system, the spatial grid of which is 0.5 ... 1.0 cm. The model is based on well-known physical heat-transfer equations, and all parameters of the passive system have definite physical values. According to the number of substantially different areas and organs, 54 spatially different values are attributed to each physical parameter. Compatibility of simulation and experiment was achieved solely on the basis of physical considerations and physiological basic data. The equations were solved using a modification of the alternating direction implicit method. On the basis of this complex description of the passive system close to reality, various lumped and distributed parameter control equations were tested for control of metabolic heat production, blood flow and sweat production. The simplest control equations delivering results on closed-loop control compatible with experimental evidence were determined. It was concluded that it is essential to take into account the spatial distribution of heat production, blood flow and sweat production, and that at least for control of shivering, distributed controller gains different from the pattern of distribution of muscle tissue are required. For sweat production this is not so obvious, so that for simulation of sweating control after homogeneous heat load a lumped parameter control may be justified. Based on these conclusions three-dimensional temperature profiles for cold and heat load and the dynamics for changes of the environmental conditions were computed. In view of the exact simulation of the passive system and the compatibility with experimentally attainable variables there is good evidence that those values extrapolated by the simulation are adequately determined. The model may be used both for further analysis of the real thermoregulatory mechanisms and for special applications in environmental and clinical health care.

  4. Characterization of structural response to hypersonic boundary-layer transition

    DOE PAGES

    Riley, Zachary B.; Deshmukh, Rohit; Miller, Brent A.; ...

    2016-05-24

    The inherent relationship between boundary-layer stability, aerodynamic heating, and surface conditions makes the potential for interaction between the structural response and boundary-layer transition an important and challenging area of study in high-speed flows. This paper phenomenologically explores this interaction using a fundamental two-dimensional aerothermoelastic model under the assumption of an aluminum panel with simple supports. Specifically, an existing model is extended to examine the impact of transition onset location, transition length, and transitional overshoot in heat flux and fluctuating pressure on the structural response of surface panels. Transitional flow conditions are found to yield significantly increased thermal gradients, and theymore » can result in higher maximum panel temperatures compared to turbulent flow. Results indicate that overshoot in heat flux and fluctuating pressure reduces the flutter onset time and increases the strain energy accumulated in the panel. Furthermore, overshoot occurring near the midchord can yield average temperatures and peak displacements exceeding those experienced by the panel subject to turbulent flow. Lastly, these results suggest that fully turbulent flow does not always conservatively predict the thermo-structural response of surface panels.« less

  5. Investigation of low-frequency-oscillating water flow in metal foam with 10 pores per inch

    NASA Astrophysics Data System (ADS)

    Bağcı, Ö.; Arbak, A.; De Paepe, M.; Dukhan, N.

    2018-01-01

    In this study, oscillating water flow in metal foam with open cells is investigated experimentally. The metal foam sample has a porosity of 88% and 10 pores. The water was oscillated in the test section with three frequencies between 0.116 Hz and 0.348 Hz, which are considered low for water oscillation, and three flow displacements ranging between 74.35 mm and 111.53 mm. The combinations of frequencies of displacements were studied for their impacts of dimensional and non-dimensional pressure loss quantities. To this purpose, friction factor was correlated as a function of kinetic Reynolds number. The same metal foam sample was studied by exposing it to steady-state water flow to investigate its permeability and drag coefficient in low-velocity flow regimes. The friction factor distribution for oscillating flow was found to be over that found for steady state. The outcomes of the study are important for studying heat transfer under the same flow conditions.

  6. Single-side conduction modeling for high heat flux coolant channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, R.D. Sr.

    In the development of plasma-facing components (PFCs), most investigators have erroneously postulated negligible water critical heat flux dependence on the coolant channel length-to-diameter (L/D) ratio above a constant value of L/D. Although encouraging results have been obtained in characterizing peaking factors for local two-dimensional boiling curves and critical heat flux, additional experimental data and theoretical model development are needed to validate the applicability to PFCs. Both these and related issues will affect the flow boiling correlation and data reduction associated with the development of PFCs for fusion reactors and other physical problems that are dependent on conduction modeling in themore » heat flux spectrum of applications. Both exact solutions and numerical conjugate analyses are presented for a one-side heated (OSH) geometry. The results show (a) the coexistence of three flow regimes inside an OSH circular geometry, (b) the correlational dependence of the inside wall heat flux and temperature, and (c) inaccuracies that could arise in some data reduction procedures.« less

  7. Experimental investigation of generic three-dimensional sidewall-compression scramjet inlets at Mach 6 in tetrafluoromethane

    NASA Technical Reports Server (NTRS)

    Holland, Scott D.

    1993-01-01

    Three-dimensional sidewall-compression scramjet inlets with leading-edge sweeps of 30 deg and 70 deg were tested in the Langley Hypersonic CF4 Tunnel at Mach 6 and with a ratio of specific heats of 1.2. The parametric effects of leading-edge sweep, cowl position, contraction ratio, and Reynolds number were investigated. The models were instrumented with 42 static pressure orifices that were distributed on the sidewalls, base plate, and cowl. Schlieren movies were made of each test for flow visualization of the effects of the internal flow spillage on the external flow field. To obtain an approximate characterization of the flow field, a modification to two-dimensional, inviscid, oblique shock theory was derived to accommodate the three-dimensional effects of leading-edge sweep. This theory qualitatively predicted the reflected shock structure (i.e., sidewall impingement locations) and the observed increase in spillage with increasing leading-edge sweep. The primary effect of moving the cowl forward was capturing the flow that would have otherwise spilled out ahead of the cowl. Increasing the contraction ratio increases the number of internal shock reflections and hence incrementally increases the sidewall pressure distribution. Significant Reynolds number effects were noted over a small range of Reynolds number.

  8. Three-dimensional Models of Hydrothermal Circulation through a Seamount Network in Fast-spreading Crust

    NASA Astrophysics Data System (ADS)

    Fisher, A. T.; Lauer, R. M.; Winslow, D. M.

    2015-12-01

    There is a region of 20-24 M.y. old seafloor on the eastern flank of the East Pacific Rise, offshore of Costa Rica, where the advective heat loss from the crust is 60-85% of lithospheric. Much of this advective flux occurs through basement outcrops that penetrate regionally thick sediments, but rates and patterns of hydrothermal circulation in this area are poorly understood. We have run a series of numerical simulations of coupled fluid-heat transport to assess how crustal aquifer and outcrop properties and the distance(s) between outcrops control ridge-flank hydrothermal flows in this setting. Extracting a large fraction of lithospheric heat through this process requires crustal aquifer permeability on the order of 10-10 to 10-9 m2, values considerably higher than seen on other ridge flanks (where advective heat extraction is less efficient). In simulations using two crustal outcrops having a different size, vigorous discharge of outcrop-to-outcrop flow is favored through the smaller and/or less permeable outcrop. In addition, simulations with a larger grid (40 km square versus 20 km square) result in higher fluid flow rates, apparently because there is more heat to be mined by flow between the outcrops. For simulations matching regional heat extraction observations, the outcrop-to-outcrop flow rates from the smaller outcrops are 1,000-3,000 kg/s (for the smaller grids) and 2,000-10,000 kg/s (for larger grids), values consistent with predictions made on the basis of a regional heat flux budget. In many simulations, local convection in and out of individual, large outcrops also removes a significant fraction of lithospheric heat. Additional simulations were conducted with three or four outcrops per simulation grid, to further explore relationships between the geometry, properties, and advective heat extraction.

  9. High through-plane thermal conduction of graphene nanoflake filled polymer composites melt-processed in an L-shape kinked tube.

    PubMed

    Jung, Haejong; Yu, Seunggun; Bae, Nam-Seok; Cho, Suk Man; Kim, Richard Hahnkee; Cho, Sung Hwan; Hwang, Ihn; Jeong, Beomjin; Ryu, Ji Su; Hwang, Junyeon; Hong, Soon Man; Koo, Chong Min; Park, Cheolmin

    2015-07-22

    Design of materials to be heat-conductive in a preferred direction is a crucial issue for efficient heat dissipation in systems using stacked devices. Here, we demonstrate a facile route to fabricate polymer composites with directional thermal conduction. Our method is based on control of the orientation of fillers with anisotropic heat conduction. Melt-compression of solution-cast poly(vinylidene fluoride) (PVDF) and graphene nanoflake (GNF) films in an L-shape kinked tube yielded a lightweight polymer composite with the surface normal of GNF preferentially aligned perpendicular to the melt-flow direction, giving rise to a directional thermal conductivity of approximately 10 W/mK at 25 vol % with an anisotropic thermal conduction ratio greater than six. The high directional thermal conduction was attributed to the two-dimensional planar shape of GNFs readily adaptable to the molten polymer flow, compared with highly entangled carbon nanotubes and three-dimensional graphite fillers. Furthermore, our composite with its density of approximately 1.5 g/cm(3) was mechanically stable, and its thermal performance was successfully preserved above 100 °C even after multiple heating and cooling cycles. The results indicate that the methodology using an L-shape kinked tube is a new way to achieve polymer composites with highly anisotropic thermal conduction.

  10. The Multi-dimensional Character of Core-collapse Supernovae

    DOE PAGES

    Hix, W. R.; Lentz, E. J.; Bruenn, S. W.; ...

    2016-03-01

    Core-collapse supernovae, the culmination of massive stellar evolution, are spectacular astronomical events and the principle actors in the story of our elemental origins. Our understanding of these events, while still incomplete, centers around a neutrino-driven central engine that is highly hydrodynamically unstable. Increasingly sophisticated simulations reveal a shock that stalls for hundreds of milliseconds before reviving. Though brought back to life by neutrino heating, the development of the supernova explosion is inextricably linked to multi-dimensional fluid flows. In this paper, the outcomes of three-dimensional simulations that include sophisticated nuclear physics and spectral neutrino transport are juxtaposed to learn about themore » nature of the three-dimensional fluid flow that shapes the explosion. Comparison is also made between the results of simulations in spherical symmetry from several groups, to give ourselves confidence in the understanding derived from this juxtaposition.« less

  11. Heat transfer prediction in a square porous medium using artificial neural network

    NASA Astrophysics Data System (ADS)

    Ahamad, N. Ameer; Athani, Abdulgaphur; Badruddin, Irfan Anjum

    2018-05-01

    Heat transfer in porous media has been investigated extensively because of its applications in various important fields. Neural network approach is applied to analyze steady two dimensional free convection flows through a porous medium fixed in a square cavity. The backpropagation neural network is trained and used to predict the heat transfer. The results are compared with available information in the literature. It is found that the heat transfer increases with increase in Rayleigh number. It is further found that the local Nusselt number decreases along the height of cavity. The neural network is found to predict the heat transfer behavior accurately for given parameters.

  12. An experimental and numerical study of endwall heat transfer in a turbine blade cascade including tangential heat conduction analysis

    NASA Astrophysics Data System (ADS)

    Ratto, Luca; Satta, Francesca; Tanda, Giovanni

    2018-06-01

    This paper presents an experimental and numerical investigation of heat transfer in the endwall region of a large scale turbine cascade. The steady-state liquid crystal technique has been used to obtain the map of the heat transfer coefficient for a constant heat flux boundary condition. In the presence of two- and three-dimensional flows with significant spatial variations of the heat transfer coefficient, tangential heat conduction could lead to error in the heat transfer coefficient determination, since local heat fluxes at the wall-to-fluid interface tend to differ from point to point and surface temperatures to be smoothed out, thus making the uniform-heat-flux boundary condition difficult to be perfectly achieved. For this reason, numerical simulations of flow and heat transfer in the cascade including the effect of tangential heat conduction inside the endwall have been performed. The major objective of numerical simulations was to investigate the influence of wall heat conduction on the convective heat transfer coefficient determined during a nominal iso-flux heat transfer experiment and to interpret possible differences between numerical and experimental heat transfer results. Results were presented and discussed in terms of local Nusselt number and a convenient wall heat flux function for two values of the Reynolds number (270,000 and 960,000).

  13. Numerical simulation of forced convection in a duct subjected to microwave heating

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Kuznetsov, A. V.; Sandeep, K. P.

    2007-01-01

    In this paper, forced convection in a rectangular duct subjected to microwave heating is investigated. Three types of non-Newtonian liquids flowing through the duct are considered, specifically, apple sauce, skim milk, and tomato sauce. A finite difference time domain method is used to solve Maxwell’s equations simulating the electromagnetic field. The three-dimensional temperature field is determined by solving the coupled momentum, energy, and Maxwell’s equations. Numerical results show that the heating pattern strongly depends on the dielectric properties of the fluid in the duct and the geometry of the microwave heating system.

  14. Heat transfer in porous medium embedded with vertical plate: Non-equilibrium approach - Part A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badruddin, Irfan Anjum; Quadir, G. A.

    2016-06-08

    Heat transfer in a porous medium embedded with vertical flat plate is investigated by using thermal non-equilibrium model. Darcy model is employed to simulate the flow inside porous medium. It is assumed that the heat transfer takes place by natural convection and radiation. The vertical plate is maintained at isothermal temperature. The governing partial differential equations are converted into non-dimensional form and solved numerically using finite element method. Results are presented in terms of isotherms and streamlines for various parameters such as heat transfer coefficient parameter, thermal conductivity ratio, and radiation parameter.

  15. Modeling and Simulation of Radiative Compressible Flows in Aerodynamic Heating Arc-Jet Facility

    NASA Technical Reports Server (NTRS)

    Bensassi, Khalil; Laguna, Alejandro A.; Lani, Andrea; Mansour, Nagi N.

    2016-01-01

    Numerical simulations of an arc heated flow inside NASA's 20 [MW] Aerodynamics heating facility (AHF) are performed in order to investigate the three-dimensional swirling flow and the current distribution inside the wind tunnel. The plasma is considered in Local Thermodynamics Equilibrium(LTE) and is composed of Air-Argon gas mixture. The governing equations are the Navier-Stokes equations that include source terms corresponding to Joule heating and radiative cooling. The former is obtained by solving an electric potential equation, while the latter is calculated using an innovative massively parallel ray-tracing algorithm. The fully coupled system is closed by the thermodynamics relations and transport properties which are obtained from Chapman-Enskog method. A novel strategy was developed in order to enable the flow solver and the radiation calculation to be preformed independently and simultaneously using a different number of processors. Drastic reduction in the computational cost was achieved using this strategy. Details on the numerical methods used for space discretization, time integration and ray-tracing algorithm will be presented. The effect of the radiative cooling on the dynamics of the flow will be investigated. The complete set of equations were implemented within the COOLFluiD Framework. Fig. 1 shows the geometry of the Anode and part of the constrictor of the Aerodynamics heating facility (AHF). Fig. 2 shows the velocity field distribution along (x-y) plane and the streamline in (z-y) plane.

  16. Mixed convection flow of nanofluid in a square enclosure with an intruded rectangular fin

    NASA Astrophysics Data System (ADS)

    Cong, Ran; Zhou, Xuanyu; De Souza Machado, Bruno; Das, Prodip K.

    2016-07-01

    Mixed convection flow in enclosures has been a subject of interest for many years due to their ever increasing applications in solar collectors, electronic cooling, lubrication technologies, food processing, and nuclear reactors. In comparison, little effort has been given to the problem of mixed convection in enclosures filled with nanofluids, while the addition of nanoparticles in a fluid base to alter specific material properties is considered a feasible solution for many heat transfer problems. Mixed convection of nanofluids is a challenging problem as the addition of nanoparticles changes the fluid's thermo-physical properties as well as due to the complex interactions among inertia, viscous, and buoyancy forces. In this study, a two-dimensional steady-state numerical model has been developed to investigate mixed convection flow of nanofluids in a square enclosure with an intruded rectangular fin and to optimize the fin geometry for maximizing the heat transfer using the Constructal design. The model has been developed using ANSYS-FLUENT for various fin geometries. Flow fields, temperature fields, and heat transfer rates are examined for different values of Rayleigh and Reynolds numbers for several geometries of the fin with the aim of maximizing the heat transfer from the fin to the surrounding flow. Outcome of this study provides important insight into the heat transfer behavior of nanofluids, which will help in developing novel geometries with enhanced and controlled heat transfer for solar collectors and electronic devices.

  17. Mixed convection flow of nanofluid in a square enclosure with an intruded rectangular fin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cong, Ran; Zhou, Xuanyu; De Souza Machado, Bruno

    Mixed convection flow in enclosures has been a subject of interest for many years due to their ever increasing applications in solar collectors, electronic cooling, lubrication technologies, food processing, and nuclear reactors. In comparison, little effort has been given to the problem of mixed convection in enclosures filled with nanofluids, while the addition of nanoparticles in a fluid base to alter specific material properties is considered a feasible solution for many heat transfer problems. Mixed convection of nanofluids is a challenging problem as the addition of nanoparticles changes the fluid’s thermo-physical properties as well as due to the complex interactionsmore » among inertia, viscous, and buoyancy forces. In this study, a two-dimensional steady-state numerical model has been developed to investigate mixed convection flow of nanofluids in a square enclosure with an intruded rectangular fin and to optimize the fin geometry for maximizing the heat transfer using the Constructal design. The model has been developed using ANSYS-FLUENT for various fin geometries. Flow fields, temperature fields, and heat transfer rates are examined for different values of Rayleigh and Reynolds numbers for several geometries of the fin with the aim of maximizing the heat transfer from the fin to the surrounding flow. Outcome of this study provides important insight into the heat transfer behavior of nanofluids, which will help in developing novel geometries with enhanced and controlled heat transfer for solar collectors and electronic devices.« less

  18. Heat and Mass Transfer on MHD Free convective flow of Second grade fluid through Porous medium over an infinite vertical plate

    NASA Astrophysics Data System (ADS)

    Dastagiri Babu, D.; Venkateswarlu, S.; Keshava Reddy, E.

    2017-08-01

    In this paper, we have considered the unsteady free convective two dimensional flow of a viscous incompressible electrically conducting second grade fluid over an infinite vertical porous plate under the influence of uniform transverse magnetic field with time dependent permeability, oscillatory suction. The governing equations of the flow field are solved by a regular perturbation method for small amplitude of the permeability. The closed form solutions for the velocity, temperature and concentration have been derived analytically and also its behavior is computationally discussed with reference to different flow parameters with the help of profiles. The skin fiction on the boundary, the heat flux in terms of the Nusselt number and rate of mass transfer in terms of Sherwood number are also obtained and their behavior computationally discussed.

  19. Three-dimensional turbulent-mixing-length modeling for discrete-hole coolant injection into a crossflow

    NASA Technical Reports Server (NTRS)

    Wang, C. R.; Papell, S. S.

    1983-01-01

    Three dimensional mixing length models of a flow field immediately downstream of coolant injection through a discrete circular hole at a 30 deg angle into a crossflow were derived from the measurements of turbulence intensity. To verify their effectiveness, the models were used to estimate the anisotropic turbulent effects in a simplified theoretical and numerical analysis to compute the velocity and temperature fields. With small coolant injection mass flow rate and constant surface temperature, numerical results of the local crossflow streamwise velocity component and surface heat transfer rate are consistent with the velocity measurement and the surface film cooling effectiveness distributions reported in previous studies.

  20. Three-dimensional turbulent-mixing-length modeling for discrete-hole coolant injection into a crossflow

    NASA Astrophysics Data System (ADS)

    Wang, C. R.; Papell, S. S.

    1983-09-01

    Three dimensional mixing length models of a flow field immediately downstream of coolant injection through a discrete circular hole at a 30 deg angle into a crossflow were derived from the measurements of turbulence intensity. To verify their effectiveness, the models were used to estimate the anisotropic turbulent effects in a simplified theoretical and numerical analysis to compute the velocity and temperature fields. With small coolant injection mass flow rate and constant surface temperature, numerical results of the local crossflow streamwise velocity component and surface heat transfer rate are consistent with the velocity measurement and the surface film cooling effectiveness distributions reported in previous studies.

  1. Turbulent convection driven by internal radiative heating of melt ponds on sea ice

    NASA Astrophysics Data System (ADS)

    Wells, Andrew; Langton, Tom; Rees Jones, David; Moon, Woosok

    2016-11-01

    The melting of Arctic sea ice is strongly influenced by heat transfer through melt ponds which form on the ice surface. Melt ponds are internally heated by the absorption of incoming radiation and cooled by surface heat fluxes, resulting in vigorous buoyancy-driven convection in the pond interior. Motivated by this setting, we conduct two-dimensional direct-numerical simulations of the turbulent convective flow of a Boussinesq fluid between two horizontal boundaries, with internal heating predicted from a two-stream radiation model. A linearised thermal boundary condition describes heat exchange with the overlying atmosphere, whilst the lower boundary is isothermal. Vertically asymmetric convective flow modifies the upper surface temperature, and hence controls the partitioning of the incoming heat flux between emission at the upper and lower boundaries. We determine how the downward heat flux into the ice varies with a Rayleigh number based on the internal heating rate, the flux ratio of background surface cooling compared to internal heating, and a Biot number characterising the sensitivity of surface fluxes to surface temperature. Thus we elucidate the physical controls on heat transfer through Arctic melt ponds which determine the fate of sea ice in the summer.

  2. Research on Streamlines and Aerodynamic Heating for Unstructured Grids on High-Speed Vehicles

    NASA Technical Reports Server (NTRS)

    DeJarnette, Fred R.; Hamilton, H. Harris (Technical Monitor)

    2001-01-01

    Engineering codes are needed which can calculate convective heating rates accurately and expeditiously on the surfaces of high-speed vehicles. One code which has proven to meet these needs is the Langley Approximate Three-Dimensional Convective Heating (LATCH) code. It uses the axisymmetric analogue in an integral boundary-layer method to calculate laminar and turbulent heating rates along inviscid surface streamlines. It requires the solution of the inviscid flow field to provide the surface properties needed to calculate the streamlines and streamline metrics. The LATCH code has been used with inviscid codes which calculated the flow field on structured grids, Several more recent inviscid codes calculate flow field properties on unstructured grids. The present research develops a method to calculate inviscid surface streamlines, the streamline metrics, and heating rates using the properties calculated from inviscid flow fields on unstructured grids. Mr. Chris Riley, prior to his departure from NASA LaRC, developed a preliminary code in the C language, called "UNLATCH", to accomplish these goals. No publication was made on his research. The present research extends and improves on the code developed by Riley. Particular attention is devoted to the stagnation region, and the method is intended for programming in the FORTRAN 90 language.

  3. Experimental evaluation of heat transfer on a 1030:1 area ratio rocket nozzle

    NASA Technical Reports Server (NTRS)

    Kacynski, Kenneth J.; Pavli, Albert J.; Smith, Tamara A.

    1987-01-01

    A 1030:1 carbon steel, heat-sink nozzle was tested. The test conditions included a nominal chamber pressure of 2413 kN/sq m and a mixture ratio range of 2.78 to 5.49. The propellants were gaseous oxygen and gaseous hydrogen. Outer wall temperature measurements were used to calculate the inner wall temperature and the heat flux and heat rate to the nozzle at specified axial locations. The experimental heat fluxes were compared to those predicted by the Two-Dimensional Kinetics (TDK) computer model analysis program. When laminar boundary layer flow was assumed in the analysis, the predicted values were within 15 percent of the experimental values for the area ratios of 20 to 975. However, when turbulent boundary layer conditions were assumed, the predicted values were approximately 120 percent higher than the experimental values. A study was performed to determine if the conditions within the nozzle could sustain a laminar boundary layer. Using the flow properties predicted by TDK, the momentum-thickness Reynolds number was calculated, and the point of transition to turbulent flow was predicted. The predicted transition point was within 0.5 inches of the nozzle throat. Calculations of the acceleration parameter were then made to determine if the flow conditions could produce relaminarization of the boundary layer. It was determined that if the boundary layer flow was inclined to transition to turbulent, the acceleration conditions within the nozzle would tend to suppress turbulence and keep the flow laminar-like.

  4. Experimental evaluation of heat transfer on a 1030:1 area ratio rocket nozzle

    NASA Technical Reports Server (NTRS)

    Kacynski, Kenneth J.; Pavli, Albert J.; Smith, Tamara A.

    1987-01-01

    A 1030:1 carbon steel, heat-sink nozzle was tested. The test conditions included a nominal chamber pressure of 2413 kN/sq m and a mixture ratio range of 2.78 to 5.49. The propellants were gaseous oxygen and gaseous hydrogen. Outer wall temperature measurements were used to calculate the inner wall temperature and the heat flux and heat rate to the nozzle at specified axial locations. The experimental heat fluxes were compared to those predicted by the Two-Dimensional Kinetics (TDK) computer model analysis program. When laminar boundary layer flow was assumed in the analysis, the predicted values were within 15% of the experimental values for the area ratios of 20 to 975. However, when turbulent boundary layer conditions were assumed, the predicted values were approximately 120% higher than the experimental values. A study was performed to determine if the conditions within the nozzle could sustain a laminar boundary layer. Using the flow properties predicted by TDK, the momentum-thickness Reynolds number was calculated, and the point of transition to turbulent flow was predicted. The predicted transition point was within 0.5 inches of the nozzle throat. Calculations of the acceleration parameter were then made to determine if the flow conditions could produce relaminarization of the boundary layer. It was determined that if the boundary layer flow was inclined to transition to turbulent, the acceleration conditions within the nozzle would tend to suppress turbulence and keep the flow laminar-like.

  5. Guide to the Revised Ground-Water Flow and Heat Transport Simulator: HYDROTHERM - Version 3

    USGS Publications Warehouse

    Kipp, Kenneth L.; Hsieh, Paul A.; Charlton, Scott R.

    2008-01-01

    The HYDROTHERM computer program simulates multi-phase ground-water flow and associated thermal energy transport in three dimensions. It can handle high fluid pressures, up to 1 ? 109 pascals (104 atmospheres), and high temperatures, up to 1,200 degrees Celsius. This report documents the release of Version 3, which includes various additions, modifications, and corrections that have been made to the original simulator. Primary changes to the simulator include: (1) the ability to simulate unconfined ground-water flow, (2) a precipitation-recharge boundary condition, (3) a seepage-surface boundary condition at the land surface, (4) the removal of the limitation that a specified-pressure boundary also have a specified temperature, (5) a new iterative solver for the linear equations based on a generalized minimum-residual method, (6) the ability to use time- or depth-dependent functions for permeability, (7) the conversion of the program code to Fortran 90 to employ dynamic allocation of arrays, and (8) the incorporation of a graphical user interface (GUI) for input and output. The graphical user interface has been developed for defining a simulation, running the HYDROTHERM simulator interactively, and displaying the results. The combination of the graphical user interface and the HYDROTHERM simulator forms the HYDROTHERM INTERACTIVE (HTI) program. HTI can be used for two-dimensional simulations only. New features in Version 3 of the HYDROTHERM simulator have been verified using four test problems. Three problems come from the published literature and one problem was simulated by another partially saturated flow and thermal transport simulator. The test problems include: transient partially saturated vertical infiltration, transient one-dimensional horizontal infiltration, two-dimensional steady-state drainage with a seepage surface, and two-dimensional drainage with coupled heat transport. An example application to a hypothetical stratovolcano system with unconfined ground-water flow is presented in detail. It illustrates the use of HTI with the combination precipitation-recharge and seepage-surface boundary condition, and functions as a tutorial example problem for the new user.

  6. MHD Free Convective Boundary Layer Flow of a Nanofluid past a Flat Vertical Plate with Newtonian Heating Boundary Condition

    PubMed Central

    Uddin, Mohammed J.; Khan, Waqar A.; Ismail, Ahmed I.

    2012-01-01

    Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first converted into dimensionless form and then using linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. The effects of different controlling parameters, namely, Lewis number, Prandtl number, buoyancy ratio, thermophoresis, Brownian motion, magnetic field and Newtonian heating on the flow and heat transfer are investigated. The numerical results for the dimensionless axial velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically and discussed. It is found that the rate of heat and mass transfer increase as Newtonian heating parameter increases. The dimensionless velocity and temperature distributions increase with the increase of Newtonian heating parameter. The results of the reduced heat transfer rate is compared for convective heating boundary condition and found an excellent agreement. PMID:23166688

  7. Effect of the angle of attack of a rectangular wing on the heat transfer enhancement in channel flow at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Khanjian, Assadour; Habchi, Charbel; Russeil, Serge; Bougeard, Daniel; Lemenand, Thierry

    2018-05-01

    Convective heat transfer enhancement can be achieved by generating secondary flow structures that are added to the main flow to intensify the fluid exchange between hot and cold regions. One method involves the use of vortex generators to produce streamwise and transverse vortices superimposed to the main flow. This study presents numerical computation results of laminar convection heat transfer in a rectangular channel whose bottom wall is equipped with one row of rectangular wing vortex generators. The governing equations are solved using finite volume method by considering steady state, laminar regime and incompressible flow. Three-dimensional numerical simulations are performed to study the effect of the angle of attack α of the wing on heat transfer and pressure drop. Different values are taken into consideration within the range 0° < α < 30 °. For all of these geometrical configurations the Reynolds number is maintained to Re = 456 . To assess the effect of the angle of attack on the heat transfer enhancement, Nusselt number and the friction factor are studied on both local and global perspectives. Also, the location of the generated vortices within the channel is studied, as well as their effect on the heat transfer enhancement throughout the channel for all α values . Based on both local and global analysis, our results show that the angle of attack α has a direct impact on the heat transfer enhancement. By increasing its value, it leads to better enhancement until an optimal value is reached, beyond which the thermal performances decrease.

  8. CVB: the Constrained Vapor Bubble Capillary Experiment on the International Space Station MARANGONI FLOW REGION

    NASA Technical Reports Server (NTRS)

    Wayner, Peter C., Jr.; Kundan, Akshay; Plawsky, Joel

    2014-01-01

    The Constrained Vapor Bubble (CVB) is a wickless, grooved heat pipe and we report on a full- scale fluids experiment flown on the International Space Station (ISS). The CVB system consists of a relatively simple setup a quartz cuvette with sharp corners partially filled with either pentane or an ideal mixture of pentane and isohexane as the working fluids. Along with temperature and pressure measurements, the two-dimensional thickness profile of the menisci formed at the corners of the quartz cuvette was determined using the Light Microscopy Module (LMM). Even with the large, millimeter dimensions of the CVB, interfacial forces dominate in these exceedingly small Bond Number systems. The experiments were carried out at various power inputs. Although conceptually simple, the transport processes were found to be very complex with many different regions. At the heated end of the CVB, due to a high temperature gradient, we observed Marangoni flow at some power inputs. This region from the heated end to the central drop region is defined as a Marangoni dominated region. We present a simple analysis based on interfacial phenomena using only measurements from the ISS experiments that lead to a predictive equation for the thickness of the film near the heated end of the CVB. The average pressure gradient for flow in the film is assumed due to the measured capillary pressure at the two ends of the liquid film and that the pressure stress gradient due to cohesion self adjusts to a constant value over a distance L. The boundary conditions are the no slip condition at the wall interface and an interfacial shear stress at the liquid- vapor interface due to the Marangoni stress, which is due to the high temperature gradient. Although the heated end is extremely complex, since it includes three- dimensional variations in radiation, conduction, evaporation, condensation, fluid flow and interfacial forces, we find that using the above simplifying assumptions, a simple successful model can be developed.

  9. A survey of the role of thermodynamic stability in viscous flow

    NASA Technical Reports Server (NTRS)

    Horne, W. C.; Smith, C. A.; Karamcheti, K.

    1991-01-01

    The stability of near-equilibrium states has been studied as a branch of the general field of nonequilibrium thermodynamics. By treating steady viscous flow as an open thermodynamic system, nonequilibrium principles such as the condition of minimum entropy-production rate for steady, near-equilibrium processes can be used to generate flow distributions from variational analyses. Examples considered in this paper are steady heat conduction, channel flow, and unconstrained three-dimensional flow. The entropy-production-rate condition has also been used for hydrodynamic stability criteria, and calculations of the stability of a laminar wall jet support this interpretation.

  10. A one-dimensional model for gas-solid heat transfer in pneumatic conveying

    NASA Astrophysics Data System (ADS)

    Smajstrla, Kody Wayne

    A one-dimensional ODE model reduced from a two-fluid model of a higher dimensional order is developed to study dilute, two-phase (air and solid particles) flows with heat transfer in a horizontal pneumatic conveying pipe. Instead of using constant air properties (e.g., density, viscosity, thermal conductivity) evaluated at the initial flow temperature and pressure, this model uses an iteration approach to couple the air properties with flow pressure and temperature. Multiple studies comparing the use of constant or variable air density, viscosity, and thermal conductivity are conducted to study the impact of the changing properties to system performance. The results show that the fully constant property calculation will overestimate the results of the fully variable calculation by 11.4%, while the constant density with variable viscosity and thermal conductivity calculation resulted in an 8.7% overestimation, the constant viscosity with variable density and thermal conductivity overestimated by 2.7%, and the constant thermal conductivity with variable density and viscosity calculation resulted in a 1.2% underestimation. These results demonstrate that gas properties varying with gas temperature can have a significant impact on a conveying system and that the varying density accounts for the majority of that impact. The accuracy of the model is also validated by comparing the simulation results to the experimental values found in the literature.

  11. Analytical modeling of operating characteristics of premixing-prevaporizing fuel-air mixing passages. Volume 1: Analysis and results

    NASA Technical Reports Server (NTRS)

    Anderson, O. L.; Chiappetta, L. M.; Edwards, D. E.; Mcvey, J. B.

    1982-01-01

    A model for predicting the distribution of liquid fuel droplets and fuel vapor in premixing-prevaporizing fuel-air mixing passages of the direct injection type is reported. This model consists of three computer programs; a calculation of the two dimensional or axisymmetric air flow field neglecting the effects of fuel; a calculation of the three dimensional fuel droplet trajectories and evaporation rates in a known, moving air flow; a calculation of fuel vapor diffusing into a moving three dimensional air flow with source terms dependent on the droplet evaporation rates. The fuel droplets are treated as individual particle classes each satisfying Newton's law, a heat transfer, and a mass transfer equation. This fuel droplet model treats multicomponent fuels and incorporates the physics required for the treatment of elastic droplet collisions, droplet shattering, droplet coalescence and droplet wall interactions. The vapor diffusion calculation treats three dimensional, gas phase, turbulent diffusion processes. The analysis includes a model for the autoignition of the fuel air mixture based upon the rate of formation of an important intermediate chemical species during the preignition period.

  12. Unsteady boundary layer rotating flow and heat transfer in a copper-water nanofluid over a shrinking sheet

    NASA Astrophysics Data System (ADS)

    Dzulkifli, Nor Fadhilah; Bachok, Norfifah; Yacob, Nor Azizah; Arifin, Norihan Md; Rosali, Haliza

    2017-04-01

    The study of unsteady three-dimensional boundary layer rotating flow with heat transfer in Copper-water nanofluid over a shrinking sheet is discussed. The governing equations in terms of partial differential equations are transformed to ordinary differential equations by introducing the appropriate similarity variables which are then solved numerically by a shooting method with Maple software. The numerical results of velocity gradient in x and y directions, skin friction coefficient and local Nusselt number as well as dual velocity and temperature profiles are shown graphically. The study revealed that dual solutions exist in certain range of s > 0.

  13. Dual solutions of three-dimensional flow and heat transfer over a non-linearly stretching/shrinking sheet

    NASA Astrophysics Data System (ADS)

    Naganthran, Kohilavani; Nazar, Roslinda; Pop, Ioan

    2018-05-01

    This study investigated the influence of the non-linearly stretching/shrinking sheet on the boundary layer flow and heat transfer. A proper similarity transformation simplified the system of partial differential equations into a system of ordinary differential equations. This system of similarity equations is then solved numerically by using the bvp4c function in the MATLAB software. The generated numerical results presented graphically and discussed in the relevance of the governing parameters. Dual solutions found as the sheet stretched and shrunk in the horizontal direction. Stability analysis showed that the first solution is physically realizable whereas the second solution is not practicable.

  14. Effect of radial magnetic field on peristaltic transport of Jeffrey fluid in curved channel with heat / mass transfer

    NASA Astrophysics Data System (ADS)

    Abdulhadi, Ahmed M.; Ahmed, Tamara S.

    2018-05-01

    In this paper, we deals with the impact of radialiy magnetic field on the peristaltic transport of Jeffrey fluid through a curved channel with two dimensional. The effect of slip condition on velocity, the non-slip condition on temperature and conversation is performed. The heat and mass transfer are considered under the influence of various parameters. The flow is investigated under the assumption of long wave length and low Reynolds number approximations. The distribution of temperature and concentration are discussed for various parameters governing the flow with the simultaneous effects of Brinkman number, Soret number and Schmidt number.

  15. Three-Dimensional Finite-Element Simulation for a Thermoelectric Generator Module

    NASA Astrophysics Data System (ADS)

    Hu, Xiaokai; Takazawa, Hiroyuki; Nagase, Kazuo; Ohta, Michihiro; Yamamoto, Atsushi

    2015-10-01

    A three-dimensional closed-circuit numerical model of a thermoelectric generator (TEG) module has been constructed with COMSOL® Multiphysics to verify a module test system. The Seebeck, Peltier, and Thomson effects and Joule heating are included in the thermoelectric conversion model. The TEG model is employed to simulate the operation of a 16-leg TEG module based on bismuth telluride with temperature-dependent material properties. The module is mounted on a test platform, and simulated by combining the heat conduction process and thermoelectric conversion process. Simulation results are obtained for the terminal voltage, output power, heat flow, and efficiency as functions of the electric current; the results are compared with measurement data. The Joule and Thomson heats in all the thermoelectric legs, as functions of the electric current, are calculated by finite-element volume integration over the entire legs. The Peltier heat being pumped at the hot side and released at the cold side of the module are also presented in relation to the electric current. The energy balance relations between heat and electricity are verified to support the simulation.

  16. Numerical investigation for entropy generation in hydromagnetic flow of fluid with variable properties and slip

    NASA Astrophysics Data System (ADS)

    Khan, M. Ijaz; Hayat, Tasawar; Alsaedi, Ahmed

    2018-02-01

    This modeling and computations present the study of viscous fluid flow with variable properties by a rotating stretchable disk. Rotating flow is generated through nonlinear rotating stretching surface. Nonlinear thermal radiation and heat generation/absorption are studied. Flow is conducting for a constant applied magnetic field. No polarization is taken. Induced magnetic field is not taken into account. Attention is focused on the entropy generation rate and Bejan number. The entropy generation rate and Bejan number clearly depend on velocity and thermal fields. The von Kármán approach is utilized to convert the partial differential expressions into ordinary ones. These expressions are non-dimensionalized, and numerical results are obtained for flow variables. The effects of the magnetic parameter, Prandtl number, radiative parameter, heat generation/absorption parameter, and slip parameter on velocity and temperature fields as well as the entropy generation rate and Bejan number are discussed. Drag forces (radial and tangential) and heat transfer rates are calculated and discussed. Furthermore the entropy generation rate is a decreasing function of magnetic variable and Reynolds number. The Bejan number effect on the entropy generation rate is reverse to that of the magnetic variable. Also opposite behavior of heat transfers is observed for varying estimations of radiative and slip variables.

  17. Joule heating effects on electroosmotic flow in insulator-based dielectrophoresis.

    PubMed

    Sridharan, Sriram; Zhu, Junjie; Hu, Guoqing; Xuan, Xiangchun

    2011-09-01

    Insulator-based dielectrophoresis (iDEP) is an emerging technology that has been successfully used to manipulate a variety of particles in microfluidic devices. However, due to the locally amplified electric field around the in-channel insulator, Joule heating often becomes an unavoidable issue that may disturb the electroosmotic flow and affect the particle motion. This work presents the first experimental study of Joule heating effects on electroosmotic flow in a typical iDEP device, e.g., a constriction microchannel, under DC-biased AC voltages. A numerical model is also developed to simulate the observed flow pattern by solving the coupled electric, energy, and fluid equations in a simplified two-dimensional geometry. It is observed that depending on the magnitude of the DC voltage, a pair of counter-rotating fluid circulations can occur at either the downstream end alone or each end of the channel constriction. Moreover, the pair at the downstream end appears larger in size than that at the upstream end due to DC electroosmotic flow. These fluid circulations, which are reasonably simulated by the numerical model, form as a result of the action of the electric field on Joule heating-induced fluid inhomogeneities in the constriction region. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Investigation of Heat and Mass Transfer and Irreversibility Phenomena Within a Three-Dimensional Tilted Enclosure for Different Shapes

    NASA Astrophysics Data System (ADS)

    Oueslati, F.; Ben-Beya, B.

    2018-01-01

    Three-dimensional thermosolutal natural convection and entropy generation within an inclined enclosure is investigated in the current study. A numerical method based on the finite volume method and a full multigrid technique is implemented to solve the governing equations. Effects of various parameters, namely, the aspect ratio, buoyancy ratio, and tilt angle on the flow patterns and entropy generation are predicted and discussed.

  19. Surface thermochemical effects on TPS-coupled aerothermodynamics in hypersonic Martian gas flow

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Gui, Yewei; Tang, Wei; Du, Yanxia; Liu, Lei; Xiao, Guangming; Wei, Dong

    2018-06-01

    This paper deals with the surface thermochemical effects on TPS-coupled aerothermodynamics in hypersonic Martian gas flow. An interface condition with finite-rate thermochemistry was established to balance the three-dimensional Navier-Stokes solver and TPS thermal response solver, and a series of coupled simulations of chemical non-equilibrium aerothermodynamics and structure heat transfer with various surface catalycities were performed for hypersonic Mars entries. The analysis of surface thermochemistry reveals that the surface chemical reactions have great contribution to aerodynamic heating, and the temperature-dependence of finite-rate catalysis highly influences the evolution of the coupling aerodynamic heating in the coupling process. For fixed free stream parameters with proper catalytic excitation energy, a "leap" phenomenon of the TPS-coupled heat flux with the coupling time appears in the initial stage of the coupling process, due to the strong thermochemical effects on the TPS surface.

  20. Physical aspects of heat generation/absorption in the second grade fluid flow due to Riga plate: Application of Cattaneo-Christov approach

    NASA Astrophysics Data System (ADS)

    Anjum, Aisha; Mir, N. A.; Farooq, M.; Javed, M.; Ahmad, S.; Malik, M. Y.; Alshomrani, A. S.

    2018-06-01

    The present article concentrates on thermal stratification in the flow of second grade fluid past a Riga plate with linear stretching towards a stagnation region. Heat transfer phenomenon is disclosed with heat generation/absorption. Riga plate is known as electromagnetic actuator which comprises of permanent magnets and alternating electrodes placed on a plane surface. Cattaneo-Christov heat flux model is implemented to analyze the features of heat transfer. This new heat flux model is the generalization of classical Fourier's law with the contribution of thermal relaxation time. For the first time heat generation/absorption effect is computed with non-Fourier's law of heat conduction (i.e., Cattaneo-Christov heat flux model). Transformations are used to obtain the governing non-linear ordinary differential equations. Approximate convergent solutions are developed for the non-dimensionalized governing problems. Physical features of velocity and temperature distributions are graphically analyzed corresponding to various parameters in 2D and 3D. It is noted that velocity field enhances with an increment of modified Hartman number while it reduces with increasing variable thickness parameter. Increment in modified heat generation parameter results in reduction of temperature field.

  1. A numerical study of hypersonic stagnation heat transfer predictions at a coordinate singularity

    NASA Technical Reports Server (NTRS)

    Grasso, Francesco; Gnoffo, Peter A.

    1990-01-01

    The problem of grid induced errors associated with a coordinate singularity on heating predictions in the stagnation region of a three-dimensional body in hypersonic flow is examined. The test problem is for Mach 10 flow over an Aeroassist Flight Experiment configuration. This configuration is composed of an elliptic nose, a raked elliptic cone, and a circular shoulder. Irregularities in the heating predictions in the vicinity of the coordinate singularity, located at the axis of the elliptic nose near the stagnation point, are examined with respect to grid refinement and grid restructuring. The algorithm is derived using a finite-volume formulation. An upwind-biased total-variation diminishing scheme is employed for the inviscid flux contribution, and central differences are used for the viscous terms.

  2. On numerical model of time-dependent processes in three-dimensional porous heat-releasing objects

    NASA Astrophysics Data System (ADS)

    Lutsenko, Nickolay A.

    2016-10-01

    The gas flows in the gravity field through porous objects with heat-releasing sources are investigated when the self-regulation of the flow rate of the gas passing through the porous object takes place. Such objects can appear after various natural or man-made disasters (like the exploded unit of the Chernobyl NPP). The mathematical model and the original numerical method, based on a combination of explicit and implicit finite difference schemes, are developed for investigating the time-dependent processes in 3D porous energy-releasing objects. The advantage of the numerical model is its ability to describe unsteady processes under both natural convection and forced filtration. The gas cooling of 3D porous objects with different distribution of heat sources is studied using computational experiment.

  3. Experimental and numerical modeling of heat transfer in directed thermoplates

    DOE PAGES

    Khalil, Imane; Hayes, Ryan; Pratt, Quinn; ...

    2018-03-20

    We present three-dimensional numerical simulations to quantify the design specifications of a directional thermoplate expanded channel heat exchanger, also called dimpleplate. Parametric thermofluidic simulations were performed independently varying the number of spot welds, the diameter of the spot welds, and the thickness of the fluid channel within the laminar flow regime. Results from computational fluid dynamics simulations show an improvement in heat transfer is achieved under a variety of conditions: when the thermoplate has a relatively large cross-sectional area normal to the flow, a ratio of spot weld spacing to channel length of 0.2, and a ratio of the spotmore » weld diameter with respect to channel width of 0.3. Lastly, experimental results performed to validate the model are also presented.« less

  4. Experimental and numerical modeling of heat transfer in directed thermoplates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalil, Imane; Hayes, Ryan; Pratt, Quinn

    We present three-dimensional numerical simulations to quantify the design specifications of a directional thermoplate expanded channel heat exchanger, also called dimpleplate. Parametric thermofluidic simulations were performed independently varying the number of spot welds, the diameter of the spot welds, and the thickness of the fluid channel within the laminar flow regime. Results from computational fluid dynamics simulations show an improvement in heat transfer is achieved under a variety of conditions: when the thermoplate has a relatively large cross-sectional area normal to the flow, a ratio of spot weld spacing to channel length of 0.2, and a ratio of the spotmore » weld diameter with respect to channel width of 0.3. Lastly, experimental results performed to validate the model are also presented.« less

  5. Thermal rectification in mass-graded next-nearest-neighbor Fermi-Pasta-Ulam lattices

    NASA Astrophysics Data System (ADS)

    Romero-Bastida, M.; Miranda-Peña, Jorge-Orlando; López, Juan M.

    2017-03-01

    We study the thermal rectification efficiency, i.e., quantification of asymmetric heat flow, of a one-dimensional mass-graded anharmonic oscillator Fermi-Pasta-Ulam lattice both with nearest-neighbor (NN) and next-nearest-neighbor (NNN) interactions. The system presents a maximum rectification efficiency for a very precise value of the parameter that controls the coupling strength of the NNN interactions, which also optimizes the rectification figure when its dependence on mass asymmetry and temperature differences is considered. The origin of the enhanced rectification is the asymmetric local heat flow response as the heat reservoirs are swapped when a finely tuned NNN contribution is taken into account. A simple theoretical analysis gives an estimate of the optimal NNN coupling in excellent agreement with our simulation results.

  6. Data correlation and analysis of arc tunnel and wind tunnel tests of RSI joints and gaps. Volume 1: Technical report

    NASA Technical Reports Server (NTRS)

    Christensen, H. E.; Kipp, H. W.

    1974-01-01

    Heat transfer data measured in gaps typical of those under consideration for joints in space shuttle reusable surface insulation protection systems have been assimilated, analyzed and correlated. The data were obtained in four NASA facilities. Several types of gaps were investigated with emphasis on simple butt joints. Gap widths ranged from 0.07 to 0.7 cm and depths ranged from 1 to 6 cm. Laminar, transitional and turbulent boundary layer flows over the gap opening were investigated. Three-dimensional heating variations were observed within gaps in the absence of external flow pressure gradients. Heat transfer correlation equations were obtained for several of the tests. Thermal protection system performance with and without gaps was compared for a representative shuttle entry trajectory.

  7. Model Reduction of Computational Aerothermodynamics for Multi-Discipline Analysis in High Speed Flows

    NASA Astrophysics Data System (ADS)

    Crowell, Andrew Rippetoe

    This dissertation describes model reduction techniques for the computation of aerodynamic heat flux and pressure loads for multi-disciplinary analysis of hypersonic vehicles. NASA and the Department of Defense have expressed renewed interest in the development of responsive, reusable hypersonic cruise vehicles capable of sustained high-speed flight and access to space. However, an extensive set of technical challenges have obstructed the development of such vehicles. These technical challenges are partially due to both the inability to accurately test scaled vehicles in wind tunnels and to the time intensive nature of high-fidelity computational modeling, particularly for the fluid using Computational Fluid Dynamics (CFD). The aim of this dissertation is to develop efficient and accurate models for the aerodynamic heat flux and pressure loads to replace the need for computationally expensive, high-fidelity CFD during coupled analysis. Furthermore, aerodynamic heating and pressure loads are systematically evaluated for a number of different operating conditions, including: simple two-dimensional flow over flat surfaces up to three-dimensional flows over deformed surfaces with shock-shock interaction and shock-boundary layer interaction. An additional focus of this dissertation is on the implementation and computation of results using the developed aerodynamic heating and pressure models in complex fluid-thermal-structural simulations. Model reduction is achieved using a two-pronged approach. One prong focuses on developing analytical corrections to isothermal, steady-state CFD flow solutions in order to capture flow effects associated with transient spatially-varying surface temperatures and surface pressures (e.g., surface deformation, surface vibration, shock impingements, etc.). The second prong is focused on minimizing the computational expense of computing the steady-state CFD solutions by developing an efficient surrogate CFD model. The developed two-pronged approach is found to exhibit balanced performance in terms of accuracy and computational expense, relative to several existing approaches. This approach enables CFD-based loads to be implemented into long duration fluid-thermal-structural simulations.

  8. Three-dimensional control of crystal growth using magnetic fields

    NASA Astrophysics Data System (ADS)

    Dulikravich, George S.; Ahuja, Vineet; Lee, Seungsoo

    1993-07-01

    Two coupled systems of partial differential equations governing three-dimensional laminar viscous flow undergoing solidification or melting under the influence of arbitrarily oriented externally applied magnetic fields have been formulated. The model accounts for arbitrary temperature dependence of physical properties including latent heat release, effects of Joule heating, magnetic field forces, and mushy region existence. On the basis of this model a numerical algorithm has been developed and implemented using central differencing on a curvilinear boundary-conforming grid and Runge-Kutta explicit time-stepping. The numerical results clearly demonstrate possibilities for active and practically instantaneous control of melt/solid interface shape, the solidification/melting front propagation speed, and the amount and location of solid accrued.

  9. Overview of NASA Multi-dimensional Stirling Convertor Code Development and Validation Effort

    NASA Technical Reports Server (NTRS)

    Tew, Roy C.; Cairelli, James E.; Ibrahim, Mounir B.; Simon, Terrence W.; Gedeon, David

    2002-01-01

    A NASA grant has been awarded to Cleveland State University (CSU) to develop a multi-dimensional (multi-D) Stirling computer code with the goals of improving loss predictions and identifying component areas for improvements. The University of Minnesota (UMN) and Gedeon Associates are teamed with CSU. Development of test rigs at UMN and CSU and validation of the code against test data are part of the effort. The one-dimensional (1-D) Stirling codes used for design and performance prediction do not rigorously model regions of the working space where abrupt changes in flow area occur (such as manifolds and other transitions between components). Certain hardware experiences have demonstrated large performance gains by varying manifolds and heat exchanger designs to improve flow distributions in the heat exchangers. 1-D codes were not able to predict these performance gains. An accurate multi-D code should improve understanding of the effects of area changes along the main flow axis, sensitivity of performance to slight changes in internal geometry, and, in general, the understanding of various internal thermodynamic losses. The commercial CFD-ACE code has been chosen for development of the multi-D code. This 2-D/3-D code has highly developed pre- and post-processors, and moving boundary capability. Preliminary attempts at validation of CFD-ACE models of MIT gas spring and "two space" test rigs were encouraging. Also, CSU's simulations of the UMN oscillating-flow fig compare well with flow visualization results from UMN. A complementary Department of Energy (DOE) Regenerator Research effort is aiding in development of regenerator matrix models that will be used in the multi-D Stirling code. This paper reports on the progress and challenges of this

  10. Numerical simulation of heat transfer and fluid flow during double-sided laser beam welding of T-joints for aluminum aircraft fuselage panels

    NASA Astrophysics Data System (ADS)

    Yang, Zhibin; Tao, Wang; Li, Liqun; Chen, Yanbin; Shi, Chunyuan

    2017-06-01

    In comparison with conventional laser beam welding, double-sided laser beam welding has two laser heat sources simultaneously and symmetrically loaded from both sides makes it to be a more complicated coupled heat transport and fluid flow process. In this work, in order to understand the heat transfer and fluid flow, a three-dimensional model was developed and validated with the experimental results. The temperature field, fluid flow field, and keyhole characteristic were calculated using the developed model by FLUENT software. Calculated results indicated that the temperature and fluid flow fields were bilateral symmetry along the stringer center, and the molten pool maximum length was located near the keyhole intersection position. The skin side had higher temperature and faster cooling speed. Several characteristic flow patterns in the weld pool cross section, including the vortexes flows near the keyhole opening position, the convection flows above the keyhole intersection location, the regularity downward flows at the molten pool bottom. And in the lengthwise section, a distinct vortex flow below the keyhole, and the liquid metal behind the keyhole first flowed to near the molten pool maximum length location and then to the molten pool surface. Perpendicular to and along welding direction the keyhole liquid metal flowed to the weld molten pool surface and around the keyhole, respectively. The special temperature fields and fluid flow patterns were closely related to the effects of the double sides' laser energy coupling and enhancement. The calculated weld pool geometry basically in good agreement with the experimental results indicated that the developed model was validity and reasonable.

  11. Dual-Code Solution Strategy for Chemically-Reacting Hypersonic Flows

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Eberhardt, Scott

    1995-01-01

    A new procedure seeks to combine the thin-layer Navier-Stokes solver LAURA with the parabolized Navier-Stokes solver UPS for the aerothermodynamic solution of chemically-reacting air flow fields. The interface protocol is presented and the method is applied to two slender, blunted shapes. Both axisymmetric and three-dimensional solutions are included with surface pressure and heat transfer comparisons between the present method and previously published results. The case of Mach 25 flow over an axisymmetric six degree sphere-cone with a non-catalytic wall is considered to 100 nose radii. A stability bound on the marching step size was observed with this case and is attributed to chemistry effects resulting from the non-catalytic wall boundary condition. A second case with Mach 28 flow over a sphere-cone-cylinder-flare configuration is computed at both two and five degree angles of attack with a fully-catalytic wall. Surface pressures are seen to be within five percent with the present method compared to the baseline LAURA solution and heat transfers are within 10 percent. The effect of grid resolution is investigated in both the radial and streamwise directions. The procedure demonstrates significant, order of magnitude reductions in solution time and required memory for the three-dimensional case in comparison to an all thin-layer Navier-Stokes solution.

  12. Geothermal properties and groundwater flow estimated with a three-dimensional geological model in a late Pleistocene terrace area, central Japan

    NASA Astrophysics Data System (ADS)

    Funabiki, A.; Takemura, T.; Hamamoto, S.; Komatsu, T.

    2012-12-01

    1. Introduction The ground source heat pump (GSHP) is a highly efficient and renewable energy technology for space heating and cooling, with benefits that include energy conservation and reductions in greenhouse gas emissions. One result of the huge Tohoku-oki earthquake and tsunami and the subsequent nuclear disasters is that GSHPs are receiving more attention from the media and they are being introduced by some local governments. Heat generated by underground GSHP installation, however, can pollute the geothermal environment or change groundwater flow patterns . In this study, we estimated possible effects from the use of GSHPs in the Tokyo area with a three-dimensional (3D) geological model. 2. Geological model The Tokyo Metropolitan Area is surrounded by the Late Pleistocene terraces called the Musashino uplands. The terrace surfaces are densely populated residential areas. One of these surfaces, the Shimosueyohi surface, formed along the Tama River during the last deglacial period. The CRE-NUCHS-1 core (Funabiki et al., 2011) was obtained from this surface, and the lithology, heat transfer coefficients, and chemical characteristics of the sediments were analyzed. In this study, we used borehole log data from a 5 km2 area surrounding the CRE-NUCHS-1 core site to create a 3D geological model. In this area, the Pleistocene Kazusa Group is overlain by terrace gravels and a volcanic ash layer called the Kanto Loam. The terrace gravels occur mainly beneath the Kanda, Kitazawa, and Karasuyama rivers , which flow parallel to the Tama River, whereas away from the rivers , the Kanto Loam directly overlies the Kazusa Group sediments. 3. Geothermal disturbance and groundwater flow Using the geological model, we calculated the heat transfer coefficients and groundwater flow velocities in the sediments. Within the thick terrace gravels, which are at relatively shallow depth (8-20 m), heat transfer coefficients were high and groundwater flow was relatively fast. The amount of disturbance of the geothermal environment and groundwater flow caused by the use of GSHPs, therefore, would depend on the thickness of these gravels. Reference Funabiki, A., Nagoya, K., Kaneki, A., Uemura, K., Kurihara, M., Obara, H., Goto, A., Chiba, T., Naya, T., Ueki, T., and Takemura, T. (2011) Sedimentary facies and physical properties of the sediment core CRE-NUCHS-1 in Setagaya district, Tokyo, central Japan. Abstracts, The 118th Annual Meeting of theGeological Society of Japan. Acknowledgement This work was supported by the Core Research for Evolutional Science and Technology (CREST) program of the Japan Science and Technology Agency (JST).

  13. Predictions for the Effects of Free Stream Turbulence on Turbine Blade Heat Transfer

    NASA Technical Reports Server (NTRS)

    Boyle, Robert J.; Giel, Paul W.; Ames, Forrest E.

    2004-01-01

    An approach to predicting the effects of free stream turbulence on turbine vane and blade heat transfer is described. Four models for predicting the effects of free stream turbulence were in incorporated into a Navier-Stokes CFD analysis. Predictions were compared with experimental data in order to identify an appropriate model for use across a wide range of flow conditions. The analyses were compared with data from five vane geometries and from four rotor geometries. Each of these nine geometries had data for different Reynolds numbers. Comparisons were made for twenty four cases. Steady state calculations were done because all experimental data were obtained in steady state tests. High turbulence levels often result in suction surface transition upstream of the throat, while at low to moderate Reynolds numbers the pressure surface remains laminar. A two-dimensional analysis was used because the flow is predominately two-dimensional in the regions where free stream turbulence significantly augments surface heat transfer. Because the evaluation of models for predicting turbulence effects can be affected by other factors, the paper discusses modeling for transition, relaminarization, and near wall damping. Quantitative comparisons are given between the predictions and data.

  14. A Three-Dimensional Coupled Internal/External Simulation of a Film-Cooled Turbine Vane

    NASA Technical Reports Server (NTRS)

    Heidmann, James D.; Rigby, David L.; Ameri, Ali A.

    1999-01-01

    A three-dimensional Navier-Stokes simulation has been performed for a realistic film-cooled turbine vane using the LeRC-HT code. The simulation includes the flow regions inside the coolant plena and film cooling holes in addition to the external flow. The vane is the subject of an upcoming NASA Glenn Research Center experiment and has both circular cross-section and shaped film cooling holes. This complex geometry is modeled using a multi-block grid which accurately discretizes the actual vane geometry including shaped holes. The simulation matches operating conditions for the planned experiment and assumes periodicity in the spanwise direction on the scale of one pitch of the film cooling hole pattern. Two computations were performed for different isothermal wall temperatures, allowing independent determination of heat transfer coefficients and film effectiveness values. The results indicate separate localized regions of high heat transfer coefficient values, while the shaped holes provide a reduction in heat flux through both parameters. Hole exit data indicate rather simple skewed profiles for the round holes, but complex profiles for the shaped holes with mass fluxes skewed strongly toward their leading edges.

  15. Three-dimensional flow measurements in a vaneless radial turbine scroll

    NASA Technical Reports Server (NTRS)

    Tabakoff, W.; Wood, B.; Vittal, B. V. R.

    1982-01-01

    The flow behavior in a vaneless radial turbine scroll was examined experimentally. The data was obtained using the slant sensor technique of hot film anemometry. This method used the unsymmetric heat transfer characteristics of a constant temperature hot film sensor to detect the flow direction and magnitude. This was achieved by obtaining a velocity vector measurement at three sensor positions with respect to the flow. The true magnitude and direction of the velocity vector was then found using these values and a Newton-Raphson numerical technique. The through flow and secondary flow velocity components are measured at various points in three scroll sections.

  16. Interpreting the cross-sectional flow field in a river bank based on a genetic-algorithm two-dimensional heat-transport method (GA-VS2DH)

    NASA Astrophysics Data System (ADS)

    Su, Xiaoru; Shu, Longcang; Chen, Xunhong; Lu, Chengpeng; Wen, Zhonghui

    2016-12-01

    Interactions between surface waters and groundwater are of great significance for evaluating water resources and protecting ecosystem health. Heat as a tracer method is widely used in determination of the interactive exchange with high precision, low cost and great convenience. The flow in a river-bank cross-section occurs in vertical and lateral directions. In order to depict the flow path and its spatial distribution in bank areas, a genetic algorithm (GA) two-dimensional (2-D) heat-transport nested-loop method for variably saturated sediments, GA-VS2DH, was developed based on Microsoft Visual Basic 6.0. VS2DH was applied to model a 2-D bank-water flow field and GA was used to calibrate the model automatically by minimizing the difference between observed and simulated temperatures in bank areas. A hypothetical model was developed to assess the reliability of GA-VS2DH in inverse modeling in a river-bank system. Some benchmark tests were conducted to recognize the capability of GA-VS2DH. The results indicated that the simulated seepage velocity and parameters associated with GA-VS2DH were acceptable and reliable. Then GA-VS2DH was applied to two field sites in China with different sedimentary materials, to verify the reliability of the method. GA-VS2DH could be applied in interpreting the cross-sectional 2-D water flow field. The estimates of horizontal hydraulic conductivity at the Dawen River and Qinhuai River sites are 1.317 and 0.015 m/day, which correspond to sand and clay sediment in the two sites, respectively.

  17. FLUSH - PREDICTION OF FLOW PARAMETERS OF SLUSH HYDROGEN

    NASA Technical Reports Server (NTRS)

    Hardy, T.

    1994-01-01

    Slush hydrogen, a mixture of the solid and liquid phases of hydrogen, is a possible source of fuel for the National Aerospace Plane (NASP) Project. Advantages of slush hydrogen over liquid hydrogen include greater heat capacity and greater density. However, practical use of slush hydrogen as a fuel requires systems of lines, valves, etc. which are designed to deliver the fuel in slush form with minimal solid loss as a result of pipe heating or flow friction. Engineers involved with the NASP Project developed FLUSH to calculate the pressure drop and slush hydrogen solid fraction loss for steady-state, one-dimensional flow. FLUSH solves the steady-state, one-dimensional energy equation and the Bernoulli equation for pipe flow. The program performs these calculations for each two-node element--straight pipe length, elbow, valve, fitting, or other part of the piping system--specified by the user. The user provides flow rate, upstream pressure, initial solid hydrogen fraction, element heat leak, and element parameters such as length and diameter. For each element, FLUSH first calculates the pressure drop, then figures the slush solid fraction exiting the element. The code employs GASPLUS routines to calculate thermodynamic properties for the slush hydrogen. FLUSH is written in FORTRAN IV for DEC VAX series computers running VMS. An executable is provided on the tape. The GASPLUS physical properties routines which are required for building the executable are included as one object library on the program media (full source code for GASPLUS is available separately as COSMIC Program Number LEW-15091). FLUSH is available in DEC VAX BACKUP format on a 9-track 1600 BPI magnetic tape (standard media) or on a TK50 tape cartridge. FLUSH was developed in 1989.

  18. Three-Dimensional Simulations of Marangoni-Benard Convection in Small Containers by the Least-Squares Finite Element Method

    NASA Technical Reports Server (NTRS)

    Yu, Sheng-Tao; Jiang, Bo-Nan; Wu, Jie; Duh, J. C.

    1996-01-01

    This paper reports a numerical study of the Marangoni-Benard (MB) convection in a planar fluid layer. The least-squares finite element method (LSFEM) is employed to solve the three-dimensional Stokes equations and the energy equation. First, the governing equations are reduced to be first-order by introducing variables such as vorticity and heat fluxes. The resultant first-order system is then cast into a div-curl-grad formulation, and its ellipticity and permissible boundary conditions are readily proved. This numerical approach provides an equal-order discretization for velocity, pressure, vorticity, temperature, and heat conduction fluxes, and therefore can provide high fidelity solutions for the complex flow physics of the MB convection. Numerical results reported include the critical Marangoni numbers (M(sub ac)) for the onset of the convection in containers with various aspect ratios, and the planforms of supercritical MB flows. The numerical solutions compared favorably with the experimental results reported by Koschmieder et al..

  19. The effects of Reynolds number, rotor incidence angle, and surface roughness on the heat transfer distribution in a large-scale turbine rotor passage

    NASA Technical Reports Server (NTRS)

    Blair, Michael F.; Anderson, Olof L.

    1989-01-01

    A combined experimental and computational program was conducted to examine the heat transfer distribution in a turbine rotor passage geometrically similiar to the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump (HPFTP). Heat transfer was measured and computed for both the full-span suction and pressure surfaces of the rotor airfoil as well as for the hub endwall surface. The primary objective of the program was to provide a benchmark-quality data base for the assessment of rotor passage heat transfer computational procedures. The experimental portion of the study was conducted in a large-scale, ambient temperature, rotating turbine model. Heat transfer data were obtained using thermocouple and liquid-crystal techniques to measure temperature distributions on the thin, electrically-heated skin of the rotor passage model. Test data were obtained for various combinations of Reynolds number, rotor incidence angle and model surface roughness. The data are reported in the form of contour maps of Stanton number. These heat distribution maps revealed numerous local effects produced by the three-dimensional flows within the rotor passage. Of particular importance were regions of local enhancement produced on the airfoil suction surface by the main-passage and tip-leakage vortices and on the hub endwall by the leading-edge horseshoe vortex system. The computational portion consisted of the application of a well-posed parabolized Navier-Stokes analysis to the calculation of the three-dimensional viscous flow through ducts simulating the a gas turbine passage. These cases include a 90 deg turning duct, a gas turbine cascade simulating a stator passage, and a gas turbine rotor passage including Coriolis forces. The calculated results were evaluated using experimental data of the three-dimensional velocity fields, wall static pressures, and wall heat transfer on the suction surface of the turbine airfoil and on the end wall. Particular attention was paid to an accurate modeling of the passage vortex and to the development of the wall boundary layers including crossflow.

  20. Different nano-particles volume fraction and Hartmann number effects on flow and heat transfer of water-silver nanofluid under the variable heat flux

    NASA Astrophysics Data System (ADS)

    Forghani-Tehrani, Pezhman; Karimipour, Arash; Afrand, Masoud; Mousavi, Sayedali

    2017-01-01

    Nanofluid flow and heat transfer composed of water-silver nanoparticles is investigated numerically inside a microchannel. Finite volume approach (FVM) is applied and the effects of gravity are ignored. The whole length of Microchannel is considered in three sections as l1=l3=0.151 and l2=0.71. The linear variable heat flux affects the microchannel wall in the length of l2 while a magnetic field with strength of B0 is considered over the whole domain of it. The influences of different values of Hartmann number (Ha=0, 10, 20), volume fraction of the nanoparticles (ɸ=0, 0.02, 0.04) and Reynolds number (Re=10, 50, 200) on the hydrodynamic and thermal properties of flow are reported. The investigation of slip velocity variations under the effects of a magnetic field are presented for the first time (to the best knowledge of author) while the non-dimensional slip coefficient are selected as B=0.01, 0.05, 0.1 at different states.

  1. Method for calculating internal radiation and ventilation with the ADINAT heat-flow code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butkovich, T.R.; Montan, D.N.

    1980-04-01

    One objective of the spent fuel test in Climax Stock granite (SFTC) is to correctly model the thermal transport, and the changes in the stress field and accompanying displacements from the application of the thermal loads. We have chosen the ADINA and ADINAT finite element codes to do these calculations. ADINAT is a heat transfer code compatible to the ADINA displacement and stress analysis code. The heat flow problem encountered at SFTC requires a code with conduction, radiation, and ventilation capabilities, which the present version of ADINAT does not have. We have devised a method for calculating internal radiation andmore » ventilation with the ADINAT code. This method effectively reproduces the results from the TRUMP multi-dimensional finite difference code, which correctly models radiative heat transport between drift surfaces, conductive and convective thermal transport to and through air in the drifts, and mass flow of air in the drifts. The temperature histories for each node in the finite element mesh calculated with ADINAT using this method can be used directly in the ADINA thermal-mechanical calculation.« less

  2. THERMAL-ENERGY STORAGE IN A DEEP SANDSTONE AQUIFER IN MINNESOTA: FIELD OBSERVATIONS AND THERMAL ENERGY-TRANSPORT MODELING.

    USGS Publications Warehouse

    Miller, R.T.

    1986-01-01

    A study of the feasibility of storing heated water in a deep sandstone aquifer in Minnesota is described. The aquifer consists of four hydraulic zones that are areally anisotropic and have average hydraulic conductivities that range from 0. 03 to 1. 2 meters per day. A preliminary axially symmetric, nonisothermal, isotropic, single-phase, radial-flow, thermal-energy-transport model was constructed to investigate the sensitivity of model simulation to various hydraulic and thermal properties of the aquifer. A three-dimensional flow and thermal-energy transport model was constructed to incorporate the areal anisotropy of the aquifer. Analytical solutions of equations describing areally anisotropic groundwater flow around a doublet-well system were used to specify model boundary conditions for simulation of heat injection. The entire heat-injection-testing period of approximately 400 days was simulated. Model-computed temperatures compared favorably with field-recorded temperatures, with differences of no more than plus or minus 8 degree C. For each test cycle, model-computed aquifer thermal efficiency, defined as total heat withdrawn divided by total heat injected, was within plus or minus 2% of the field-calculated values.

  3. Experimental Study of Shock Wave Interference Heating on a Cylindrical Leading Edge. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Wieting, Allan R.

    1987-01-01

    An experimental study of shock wave interference heating on a cylindrical leading edge representative of the cowl of a rectangular hypersonic engine inlet at Mach numbers of 6.3, 6.5, and 8.0 is presented. Stream Reynolds numbers ranged from 0.5 x 106 to 4.9 x 106 per ft. and stream total temperature ranged from 2100 to 3400 R. The model consisted of a 3" dia. cylinder and a shock generation wedge articulated to angles of 10, 12.5, and 15 deg. A fundamental understanding was obtained of the fluid mechanics of shock wave interference induced flow impingement on a cylindrical leading edge and the attendant surface pressure and heat flux distributions. The first detailed heat transfer rate and pressure distributions for two dimensional shock wave interference on a cylinder was provided along with insight into the effects of specific heat variation with temperature on the phenomena. Results show that the flow around a body in hypersonic flow is altered significantly by the shock wave interference pattern that is created by an oblique shock wave from an external source intersecting the bow shock wave produced in front of the body.

  4. Method for Measuring Thermal Conductivity of Small Samples Having Very Low Thermal Conductivity

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Kuczmarski, Maria a.

    2009-01-01

    This paper describes the development of a hot plate method capable of using air as a standard reference material for the steady-state measurement of the thermal conductivity of very small test samples having thermal conductivity on the order of air. As with other approaches, care is taken to ensure that the heat flow through the test sample is essentially one-dimensional. However, unlike other approaches, no attempt is made to use heated guards to block the flow of heat from the hot plate to the surroundings. It is argued that since large correction factors must be applied to account for guard imperfections when sample dimensions are small, it may be preferable to simply measure and correct for the heat that flows from the heater disc to directions other than into the sample. Experimental measurements taken in a prototype apparatus, combined with extensive computational modeling of the heat transfer in the apparatus, show that sufficiently accurate measurements can be obtained to allow determination of the thermal conductivity of low thermal conductivity materials. Suggestions are made for further improvements in the method based on results from regression analyses of the generated data.

  5. Environmental Impacts of a Multi-Borehole Geothermal System: Model Sensitivity Study

    NASA Astrophysics Data System (ADS)

    Krol, M.; Daemi, N.

    2017-12-01

    Problems associated with fossil fuel consumption has increased worldwide interest in discovering and developing sustainable energy systems. One such system is geothermal heating, which uses the constant temperature of the ground to heat or cool buildings. Since geothermal heating offers low maintenance, high heating/cooling comfort, and a low carbon footprint, compared to conventional systems, there has been an increasing trend in equipping large buildings with geothermal heating. However, little is known on the potential environmental impact geothermal heating can have on the subsurface, such as the creation of subsurface thermal plumes or changes in groundwater flow dynamics. In the present study, the environmental impacts of a closed-loop, ground source heat pump (GSHP) system was examined with respect to different system parameters. To do this a three-dimensional model, developed using FEFLOW, was used to examine the thermal plumes resulting from ten years of operation of a vertical closed-loop GSHP system with multiple boreholes. A required thermal load typical of an office building located in Canada was calculated and groundwater flow and heat transport in the geological formation was simulated. Consequently, the resulting thermal plumes were studied and a sensitivity analysis was conducted to determine the effect of different parameters like groundwater flow and soil type on the development and movement of thermal plumes. Since thermal plumes can affect the efficiency of a GSHP system, this study provides insight into important system parameters.

  6. Numerical investigation on aluminum foam application in a tubular heat exchanger

    NASA Astrophysics Data System (ADS)

    Buonomo, Bernardo; di Pasqua, Anna; Ercole, Davide; Manca, Oronzio; Nardini, Sergio

    2018-02-01

    A numerical study has been conducted to examine the thermal and fluiddynamic behaviors of a tubular heat exchanger in aluminum foam. A plate in metal foam with a single array of five circular tubes is the geometrical domain under examination. Darcy-Forchheimer flow model and the thermal non-equilibrium energy model are used to execute two-dimensional simulations on metal foam heat exchanger. The foam is characterized by porosity and (number) pores per inch respectively equal to 0.935 and 20. Different air flow rates are imposed to the entrance of the heat exchanger with an assigned surface tube temperature. The results are provided in terms of local heat transfer coefficient and Nusselt number evaluated on the external surface of the tubes. Furthermore, local air temperature and velocity profiles in the smaller cross section, between two consecutive tubes are given. Finally, the Energy Performance Ratio (EPR) is evaluated in order to demonstrate the effectiveness of the metal foam.

  7. Three-dimensional analysis of the Pratt and Whitney alternate design SSME fuel turbine

    NASA Technical Reports Server (NTRS)

    Kirtley, K. R.; Beach, T. A.; Adamczyk, J. J.

    1991-01-01

    The three dimensional viscous time-mean flow in the Pratt and Whitney alternate design space shuttle main engine fuel turbine is simulated using the average passage Navier-Stokes equations. The migration of secondary flows generated by upstream blade rows and their effect on the performance of downstream blade rows is studied. The present simulation confirms that the flow in this two stage turbine is highly three dimensional and dominated by the tip leakage flow. The tip leakage vortex generated by the first blade persists through the second blade and adversely affects its performance. The greatest mixing of the inlet total temperature distortion occurs in the second vane and is due to the large leakage vortex generated by the upstream rotor. It is assumed that the predominant spanwise mixing mechanism in this low aspect ratio turbine is the radial transport due to the deterministically unsteady vortical flow generated by upstream blade rows. A by-product of the analysis is accurate pressure and heat loads for all blade rows under the influence of neighboring blade rows. These aero loads are useful for advanced structural analysis of the vanes and blades.

  8. Thermally-Choked Combustor Technology

    NASA Technical Reports Server (NTRS)

    Knuth, William H.; Gloyer, P.; Goodman, J.; Litchford, R. J.

    1993-01-01

    A program is underway to demonstrate the practical feasibility of thermally-choked combustor technology with particular emphasis on rocket propulsion applications. Rather than induce subsonic to supersonic flow transition in a geometric throat, the goal is to create a thermal throat by adding combustion heat in a diverging nozzle. Such a device would have certain advantages over conventional flow accelerators assuming that the pressure loss due to heat addition does not severely curtail propulsive efficiency. As an aid to evaluation, a generalized one-dimensional compressible flow analysis tool was constructed. Simplified calculations indicate that the process is fluid dynamically and thermodynamically feasible. Experimental work is also being carried out in an attempt to develop, assuming an array of practical issues are surmountable, a practical bench-scale demonstrator using high flame speed H2/O2 combustibles.

  9. Three-dimensional flow of Prandtl fluid with Cattaneo-Christov double diffusion

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Aziz, Arsalan; Muhammad, Taseer; Alsaedi, Ahmed

    2018-06-01

    This research paper intends to investigate the 3D flow of Prandtl liquid in the existence of improved heat conduction and mass diffusion models. Flow is created by considering linearly bidirectional stretchable sheet. Thermal and concentration diffusions are considered by employing Cattaneo-Christov double diffusion models. Boundary layer approach has been used to simplify the governing PDEs. Suitable nondimensional similarity variables correspond to strong nonlinear ODEs. Optimal homotopy analysis method (OHAM) is employed for solutions development. The role of various pertinent variables on temperature and concentration are analyzed through graphs. The physical quantities such as surface drag coefficients and heat and mass transfer rates at the wall are also plotted and discussed. Our results indicate that the temperature and concentration are decreasing functions of thermal and concentration relaxation parameters respectively.

  10. The assessment of nanofluid in a Von Karman flow with temperature relied viscosity

    NASA Astrophysics Data System (ADS)

    Tanveer, Anum; Salahuddin, T.; Khan, Mumtaz; Alshomrani, Ali Saleh; Malik, M. Y.

    2018-06-01

    This work endeavor to study the heat and mass transfer viscous nanofluid features in a Von Karman flow invoking the variable viscosity mechanism. Moreover, we have extended our study in view of heat generation and uniform suction effects. The flow triggering non-linear partial differential equations are inscribed in the non-dimensional form by manipulating suitable transformations. The resulting non-linear ordinary differential equations are solved numerically via implicit finite difference scheme in conjecture with the Newton's linearization scheme afterwards. The sought solutions are plotted graphically to present comparison between MATLAB routine bvp4c and implicit finite difference schemes. Impact of different parameters on the concentration/temperature/velocity profiles are highlighted. Further Nusselt number, skin friction and Sherwood number characteristics are discussed for better exposition.

  11. Diagnostic Imaging in Flames with Instantaneous Planar Coherent Raman Spectroscopy.

    PubMed

    Bohlin, A; Kliewer, C J

    2014-04-03

    Spatial mapping of temperature and molecular species concentrations is vitally important in studies of gaseous chemically reacting flows. Temperature marks the evolution of heat release and energy transfer, while species concentration gradients provide critical information on mixing and chemical reaction. Coherent anti-Stokes Raman spectroscopy (CARS) was pioneered in measurements of such processes almost 40 years ago and is authoritative in terms of the accuracy and precision it may provide. While a reacting flow is fully characterized in three-dimensional space, a limitation of CARS has been its applicability as a point-wise measurement technique, motivating advancement toward CARS imaging, and attempts have been made considering one-dimensional probing. Here, we report development of two-dimensional CARS, with the first diagnostics of a planar field in a combusting flow within a single laser pulse, resulting in measured isotherms ranging from 450 K up to typical hydrocarbon flame temperatures of about 2000 K with chemical mapping of O2 and N2.

  12. Simulation of air-droplet mixed phase flow in icing wind-tunnel

    NASA Astrophysics Data System (ADS)

    Mengyao, Leng; Shinan, Chang; Menglong, Wu; Yunhang, Li

    2013-07-01

    Icing wind-tunnel is the main ground facility for the research of aircraft icing, which is different from normal wind-tunnel for its refrigeration system and spraying system. In stable section of icing wind-tunnel, the original parameters of droplets and air are different, for example, to keep the nozzles from freezing, the droplets are heated while the temperature of air is low. It means that complex mass and heat transfer as well as dynamic interactive force would happen between droplets and air, and the parameters of droplet will acutely change along the passageway. Therefore, the prediction of droplet-air mixed phase flow is necessary in the evaluation of icing researching wind-tunnel. In this paper, a simplified droplet-air mixed phase flow model based on Lagrangian method was built. The variation of temperature, diameter and velocity of droplet, as well as the air flow field, during the flow process were obtained under different condition. With calculating three-dimensional air flow field by FLUENT, the droplet could be traced and the droplet distribution could also be achieved. Furthermore, the patterns about how initial parameters affect the parameters in test section were achieved. The numerical simulation solving the flow and heat and mass transfer characteristics in the mixing process is valuable for the optimization of experimental parameters design and equipment adjustment.

  13. LavaSIM: the effect of heat transfer in 3D on lava flow characteristics (Invited)

    NASA Astrophysics Data System (ADS)

    Fujita, E.

    2013-12-01

    Characteristics of lava flow are governed by many parameters like lava viscosity, effusion rate, ground topography, etc. The accuracy and applicability of lava flow simulation code is evaluated whether the numerical simulation can reproduce these features quantitatively, which is important from both strategic and scientific points of views. Many lava flow simulation codes are so far proposed, and they are classified into two categories, i.e., the deterministic and the probabilistic models. LavaSIM is one of the former category models, and has a disadvantage of time consuming. But LavaSIM can solves the equations of continuity, motion, energy by step and has an advantage in the calculation of three-dimensional analysis with solid-liquid two phase flow, including the heat transfer between lava, solidified crust, air, water and ground, and three-dimensional convection in liquid lava. In other word, we can check the detailed structure of lava flow by LavaSIM. Therefore, this code can produce both channeled and fan-dispersive flows. The margin of the flow is solidified by cooling and these solidified crusts control the behavior of successive lava flow. In case of a channel flow, the solidified margin supports the stable central main flow and elongates the lava flow distance. The cross section of lava flow shows that the liquid lava flows between solidified crusts. As for the lava extrusion flow rate, LavaSIM can include the time function as well as the location of the vents. In some cases, some parts of the solidified wall may be broken by the pressure of successive flow and/or re-melting. These mechanisms could characterize complex features of the observed lava flows at many volcanoes in the world. To apply LavaSIM to the benchmark tests organized by V-hub is important to improve the lava flow evaluation technique.

  14. Advantages of 3D FEM numerical modeling over 2D, analyzed in a case study of transient thermal-hydraulic groundwater utilization

    NASA Astrophysics Data System (ADS)

    Fuchsluger, Martin; Götzl, Gregor

    2014-05-01

    In general most aquifers have a much larger lateral extent than vertical. This fact leads to the application of the Dupuit-Forchheimer assumptions to many groundwater problems, whereas a two dimensional simulation is considered sufficient. By coupling transient fluid flow modeling with heat transport the 2D aquifer approximation is in many cases insufficient as it does not consider effects of the subjacent and overlying aquitards on heat propagation as well as the impact of surface climatic effects on shallow aquifers. A shallow Holocene aquifer in Vienna served as a case study to compare different modeling approaches in two and three dimensions in order to predict the performance and impact of a thermal aquifer utilization for heating (1.3 GWh) and cooling (1.4 GWh) of a communal building. With the assumption of a 6 doublets well field, the comparison was realized in three steps: At first a two dimensional model for unconfined flow was set up, assuming a varying hydraulic conductivity as well as a varying top and bottom elevation of the aquifer (gross - thickness). The model area was chosen along constant hydraulic head at steady state conditions. A second model was made by mapping solely the aquifer in three dimensions using the same subdomain and boundary conditions as defined in step one. The third model consists of a complete three dimensional geological build-up including the aquifer as well as the overlying and subjacent layers and additionally an annually variable climatic boundary condition at the surface. The latter was calibrated with measured water temperature at a nearby water gauge. For all three models the same annual operating mode of the 6 hydraulic doublets was assumed. Furthermore a limited maximal groundwater temperature at a range between 8 and 18 °C as well as a constrained well flow rate has been given. Finally a descriptive comparison of the three models concerning the extracted thermal power, drawdown, temperature distribution and Darcy flow has been realized. In addition the effects of the basement of the building to the groundwater flow have been analyzed. The results of the 2D model show an underestimation of more than 10 % of the performance of the groundwater utilization facility and a considerable smaller groundwater table drawdown compared to the 3D simulations. This is due to the possibility of 3D modeling to consider (i) the heat distribution and storage in the adjacent layers, (ii) the climatic surface effect and (iii) vertical groundwater flow.

  15. An Exponential Finite Difference Technique for Solving Partial Differential Equations. M.S. Thesis - Toledo Univ., Ohio

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.

    1987-01-01

    An exponential finite difference algorithm, as first presented by Bhattacharya for one-dimensianal steady-state, heat conduction in Cartesian coordinates, has been extended. The finite difference algorithm developed was used to solve the diffusion equation in one-dimensional cylindrical coordinates and applied to two- and three-dimensional problems in Cartesian coordinates. The method was also used to solve nonlinear partial differential equations in one (Burger's equation) and two (Boundary Layer equations) dimensional Cartesian coordinates. Predicted results were compared to exact solutions where available, or to results obtained by other numerical methods. It was found that the exponential finite difference method produced results that were more accurate than those obtained by other numerical methods, especially during the initial transient portion of the solution. Other applications made using the exponential finite difference technique included unsteady one-dimensional heat transfer with temperature varying thermal conductivity and the development of the temperature field in a laminar Couette flow.

  16. exponential finite difference technique for solving partial differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Handschuh, R.F.

    1987-01-01

    An exponential finite difference algorithm, as first presented by Bhattacharya for one-dimensianal steady-state, heat conduction in Cartesian coordinates, has been extended. The finite difference algorithm developed was used to solve the diffusion equation in one-dimensional cylindrical coordinates and applied to two- and three-dimensional problems in Cartesian coordinates. The method was also used to solve nonlinear partial differential equations in one (Burger's equation) and two (Boundary Layer equations) dimensional Cartesian coordinates. Predicted results were compared to exact solutions where available, or to results obtained by other numerical methods. It was found that the exponential finite difference method produced results that weremore » more accurate than those obtained by other numerical methods, especially during the initial transient portion of the solution. Other applications made using the exponential finite difference technique included unsteady one-dimensional heat transfer with temperature varying thermal conductivity and the development of the temperature field in a laminar Couette flow.« less

  17. Interfacing the Generalized Fluid System Simulation Program with the SINDA/G Thermal Program

    NASA Technical Reports Server (NTRS)

    Schallhorn, Paul; Palmiter, Christopher; Farmer, Jeffery; Lycans, Randall; Tiller, Bruce

    2000-01-01

    A general purpose, one dimensional fluid flow code has been interfaced with the thermal analysis program SINDA/G. The flow code, GFSSP, is capable of analyzing steady state and transient flow in a complex network. The flow code is capable of modeling several physical phenomena including compressibility effects, phase changes, body forces (such as gravity and centrifugal) and mixture thermodynamics for multiple species. The addition of GFSSP to SINDA/G provides a significant improvement in convective heat transfer modeling for SINDA/G. The interface development was conducted in two phases. This paper describes the first (which allows for steady and quasi-steady - unsteady solid, steady fluid - conjugate heat transfer modeling). The second (full transient conjugate heat transfer modeling) phase of the interface development will be addressed in a later paper. Phase 1 development has been benchmarked to an analytical solution with excellent agreement. Additional test cases for each development phase demonstrate desired features of the interface. The results of the benchmark case, three additional test cases and a practical application are presented herein.

  18. Thermal convection of liquid metal in the titanium reduction reactor

    NASA Astrophysics Data System (ADS)

    Teimurazov, A.; Frick, P.; Stefani, F.

    2017-06-01

    The structure of the convective flow of molten magnesium in a metallothermic titanium reduction reactor has been studied numerically in a three-dimensional non-stationary formulation with conjugated heat transfer between liquid magnesium and solids (steel walls of the cavity and titanium block). A nonuniform computational mesh with a total of 3.7 million grid points was used. The Large Eddy Simulation technique was applied to take into account the turbulence in the liquid phase. The instantaneous and average characteristics of the process and the velocity and temperature pulsation fields are analyzed. The simulations have been performed for three specific heating regimes: with furnace heaters operating at full power, with furnace heaters switched on at the bottom of the vessel only, and with switched-off furnace heaters. It is shown that the localization of the cooling zone can completely reorganize the structure of the large-scale flow. Therefore, by changing heating regimes, it is possible to influence the flow structure for the purpose of creating the most favorable conditions for the reaction. It is also shown that the presence of the titanium block strongly affects the flow structure.

  19. Heat transfer and instrumentation studies on rotating turbine blades in a transient facility

    NASA Astrophysics Data System (ADS)

    Allan, William D. E.

    1990-08-01

    The current demands of modern aviation have encouraged engine manufacturers to develop larger, more powerful, yet quieter and more fuel efficient gas turbine engines. This has promoted particular interest in the heat loads borne by turbines, for efficiency can be improved if turbine entry temperature is increased. Presently, ceilings for this parameter are set by the thermal properties of the blade materials and their internal cooling capabilities. It has been established that flow unsteadiness and secondary flows in the turbine passages greatly influence the heat transfer rate on turbine blades and endwall surfaces. The three-dimensionality of the rotating turbine flowfield, however, complicates the interaction of these unsteady effects and their combined role in heat transfer on turbine blades. To fulfill the need to study this complex fluid environment, a model turbine stage has been installed in the working section of the Isentropic Light Piston Tunnel at Oxford. This transient facility enables the rotor to be operated at engine representative conditions. Novel high density instrumentation has been development for use on the turbine blade. Both the production and calibration of the thin film gauges will be explained and the theory supporting heat transfer measurement using this instrumentation is presented in this thesis. Perhaps the most important feature of this thesis lies in the extensive mean and unsteady heat transfer rates measured on the blade profile. These were determined on a total of 5 streamlines and represent a significant contribution to the total experimental data available on 3-dimensional profiles at engine representative conditions.

  20. Influence of a heated leading edge on boundary layer growth, stability, and transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landrum, D.B.; Macha, J.M.

    1987-06-01

    This paper presents the results of a combined theoretical and experimental study of the influence of a heated leading edge on the growth, stability, and transition of a two-dimensional boundary layer. The findings are directly applicable to aircraft wings and nacelles that use surface heating for anti-icing protection. The potential effects of the non-adiabatic condition are particularly important for laminar-flow sections where even small perturbations can result in significantly degraded aerodynamic performance. The results of the study give new insight to the fundamental coupling between streamwise pressure gradient and surface heat flux in laminar and transitional boundary layers. 13 references.

  1. Influence of a heated leading edge on boundary layer growth, stability, and transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landrum, D.B.; Macha, J.M.

    1987-01-01

    This paper presents the results of a combined theoretical and experimental study of the influence of a heated leading edge on the growth, stability, and transition of a two-dimensional boundary layer. The findings are directly applicable to aircraft wings and nacelles that use surface heating for anti-icing protection. The potential effects of the non-adiabatic condition are particularly important for laminar-flow sections where even small perturbations can result in significantly degraded aerodynamic performance. The results of the study give new insight to the fundamental coupling between streamwise pressure gradient and surface heat flux in laminar and transitional boundary layers.

  2. Heat transfer in porous medium embedded with vertical plate: Non-equilibrium approach - Part B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quadir, G. A., E-mail: Irfan-magami@Rediffmail.com, E-mail: gaquadir@gmail.com; Badruddin, Irfan Anjum

    2016-06-08

    This work is continuation of the paper Part A. Due to large number of results, the paper is divided into two section with section-A (Part A) discussing the effect of various parameters such as heat transfer coefficient parameter, thermal conductivity ratio etc. on streamlines and isothermal lines. Section-B highlights the heat transfer characteristics in terms of Nusselt number The Darcy model is employed to simulate the flow inside the medium. It is assumed that the heat transfer takes place by convection and radiation. The governing partial differential equations are converted into non-dimensional form and solved numerically using finite element method.

  3. Steady Secondary Flows Generated by Periodic Compression and Expansion of an Ideal Gas in a Pulse Tube

    NASA Technical Reports Server (NTRS)

    Lee, Jeffrey M.

    1999-01-01

    This study establishes a consistent set of differential equations for use in describing the steady secondary flows generated by periodic compression and expansion of an ideal gas in pulse tubes. Also considered is heat transfer between the gas and the tube wall of finite thickness. A small-amplitude series expansion solution in the inverse Strouhal number is proposed for the two-dimensional axisymmetric mass, momentum and energy equations. The anelastic approach applies when shock and acoustic energies are small compared with the energy needed to compress and expand the gas. An analytic solution to the ordered series is obtained in the strong temperature limit where the zeroth-order temperature is constant. The solution shows steady velocities increase linearly for small Valensi number and can be of order I for large Valensi number. A conversion of steady work flow to heat flow occurs whenever temperature, velocity or phase angle gradients are present. Steady enthalpy flow is reduced by heat transfer and is scaled by the Prandtl times Valensi numbers. Particle velocities from a smoke-wire experiment were compared with predictions for the basic and orifice pulse tube configurations. The theory accurately predicted the observed steady streaming.

  4. Two-dimensional numerical modeling and solution of convection heat transfer in turbulent He II

    NASA Technical Reports Server (NTRS)

    Zhang, Burt X.; Karr, Gerald R.

    1991-01-01

    Numerical schemes are employed to investigate heat transfer in the turbulent flow of He II. FEM is used to solve a set of equations governing the heat transfer and hydrodynamics of He II in the turbulent regime. Numerical results are compared with available experimental data and interpreted in terms of conventional heat transfer parameters such as the Prandtl number, the Peclet number, and the Nusselt number. Within the prescribed Reynolds number domain, the Gorter-Mellink thermal counterflow mechanism becomes less significant, and He II acts like an ordinary fluid. The convection heat transfer characteristics of He II in the highly turbulent regime can be successfully described by using the conventional turbulence and heat transfer theories.

  5. Three-Dimensional Modeling of Flow and Thermochemical Behavior in a Blast Furnace

    NASA Astrophysics Data System (ADS)

    Shen, Yansong; Guo, Baoyu; Chew, Sheng; Austin, Peter; Yu, Aibing

    2015-02-01

    An ironmaking blast furnace (BF) is a complex high-temperature moving bed reactor involving counter-, co- and cross-current flows of gas, liquid and solid, coupled with heat and mass exchange and chemical reactions. Two-dimensional (2D) models were widely used for understanding its internal state in the past. In this paper, a three-dimensional (3D) CFX-based mathematical model is developed for describing the internal state of a BF in terms of multiphase flow and the related thermochemical behavior, as well as process indicators. This model considers the intense interactions between gas, solid and liquid phases, and also their competition for the space. The model is applied to a BF covering from the burden surface at the top to the liquid surface in the hearth, where the raceway cavity is considered explicitly. The results show that the key in-furnace phenomena such as flow/temperature patterns and component distributions of solid, gas and liquid phases can be described and characterized in different regions inside the BF, including the gas and liquids flow circumferentially over the 3D raceway surface. The in-furnace distributions of key performance indicators such as reduction degree and gas utilization can also be predicted. This model offers a cost-effective tool to understand and control the complex BF flow and performance.

  6. Numerical analysis of hypersonic turbulent film cooling flows

    NASA Technical Reports Server (NTRS)

    Chen, Y. S.; Chen, C. P.; Wei, H.

    1992-01-01

    As a building block, numerical capabilities for predicting heat flux and turbulent flowfields of hypersonic vehicles require extensive model validations. Computational procedures for calculating turbulent flows and heat fluxes for supersonic film cooling with parallel slot injections are described in this study. Two injectant mass flow rates with matched and unmatched pressure conditions using the database of Holden et al. (1990) are considered. To avoid uncertainties associated with the boundary conditions in testing turbulence models, detailed three-dimensional flowfields of the injection nozzle were calculated. Two computational fluid dynamics codes, GASP and FDNS, with the algebraic Baldwin-Lomax and k-epsilon models with compressibility corrections were used. It was found that the B-L model which resolves near-wall viscous sublayer is very sensitive to the inlet boundary conditions at the nozzle exit face. The k-epsilon models with improved wall functions are less sensitive to the inlet boundary conditions. The testings show that compressibility corrections are necessary for the k-epsilon model to realistically predict the heat fluxes of the hypersonic film cooling problems.

  7. Predicting Turbulent Convective Heat Transfer in Three-Dimensional Duct Flows

    NASA Technical Reports Server (NTRS)

    Rokni, M.; Gatski, T. B.

    1999-01-01

    The performance of an explicit algebraic stress model is assessed in predicting the turbulent flow and forced heat transfer in straight ducts, with square, rectangular, trapezoidal and triangular cross-sections, under fully developed conditions over a range of Reynolds numbers. Iso-thermal conditions are imposed on the duct walls and the turbulent heat fluxes are modeled by gradient-diffusion type models. At high Reynolds numbers (>/= 10(exp 5)), wall functions are used for the velocity and temperature fields; while at low Reynolds numbers damping functions are introduced into the models. Hydraulic parameters such as friction factor and Nusselt number are well predicted even when damping functions are used, and the present formulation imposes minimal demand on the number of grid points without any convergence or stability problems. Comparison between the models is presented in terms of the hydraulic parameters, friction factor and Nusselt number, as well as in terms of the secondary flow patterns occurring within the ducts.

  8. VS2DRTI: Simulating Heat and Reactive Solute Transport in Variably Saturated Porous Media.

    PubMed

    Healy, Richard W; Haile, Sosina S; Parkhurst, David L; Charlton, Scott R

    2018-01-29

    Variably saturated groundwater flow, heat transport, and solute transport are important processes in environmental phenomena, such as the natural evolution of water chemistry of aquifers and streams, the storage of radioactive waste in a geologic repository, the contamination of water resources from acid-rock drainage, and the geologic sequestration of carbon dioxide. Up to now, our ability to simulate these processes simultaneously with fully coupled reactive transport models has been limited to complex and often difficult-to-use models. To address the need for a simple and easy-to-use model, the VS2DRTI software package has been developed for simulating water flow, heat transport, and reactive solute transport through variably saturated porous media. The underlying numerical model, VS2DRT, was created by coupling the flow and transport capabilities of the VS2DT and VS2DH models with the equilibrium and kinetic reaction capabilities of PhreeqcRM. Flow capabilities include two-dimensional, constant-density, variably saturated flow; transport capabilities include both heat and multicomponent solute transport; and the reaction capabilities are a complete implementation of geochemical reactions of PHREEQC. The graphical user interface includes a preprocessor for building simulations and a postprocessor for visual display of simulation results. To demonstrate the simulation of multiple processes, the model is applied to a hypothetical example of injection of heated waste water to an aquifer with temperature-dependent cation exchange. VS2DRTI is freely available public domain software. © 2018, National Ground Water Association.

  9. Teflon probing for the flow characterization of arc-heated wind tunnel facilities

    NASA Astrophysics Data System (ADS)

    Gulli, Stefano; Ground, Cody; Crisanti, Matthew; Maddalena, Luca

    2014-02-01

    The experimental flow characterization of the arc-heated wind tunnel of the University of Texas at Arlington is investigated in this work using ablative Teflon probes in combination with total pressure measurements. A parallel analytical work, focused on the dimensional analysis of the ablation process, has been conducted with the purpose of improving existing semi-empirical correlations for the heat blockage due to the mass injection inside the boundary layer. A control volume analysis at the receding surface of the specimens is used to calculate the wall heat transfer for a non-ablating probe by including the blockage effect. The new correlations, obtained for the convective blockage, show an improvement of the correlation coefficient of 110 % with respect to those available in literature, once a new blowing parameter containing the stagnation pressure is introduced. A correlation developed by NASA during the Round-Robin program, which relates the Teflon mass loss rate to the total pressure and cold-wall heat flux measured experimentally, is also used to predict the wall heat transfer referred to the ablation temperature of Teflon. For both approaches, a simplified stagnation point convective heat transfer equation allows the average stagnation enthalpy to be calculated. Several locations downstream of the nozzle exit have been surveyed, and selected points of the facility's performance map have been used for the experimental campaign. The results show that both approaches provide similar results in terms of stagnation heat flux and enthalpy prediction with uncertainties comparable to those provided by standard intrusive heat flux probes ( δ q max < 25 %). The analysis of the Teflon's ablated surface does not reveal significant flow non-uniformities, and a 1.14 heat flux enhancement factor due to the shock-shock interaction is detectable at x = 3.5 in. from the nozzle exit plane. The results show the use of ablative probes for the flow characterization of arc plasma facilities to be promising for the dual purpose of calculating the local flow properties (i.e., heat flux and enthalpy) as well as verifying the uniformity of the flow by inspecting the footprint of the plume on the exposed surfaces.

  10. Stress loading from viscous flow in the lower crust and triggering of aftershocks following the 1994 Northridge, California, earthquake

    USGS Publications Warehouse

    Deng, J.; Hudnut, K.; Gurnis, M.; Hauksson, E.

    1999-01-01

    Following the M(w) 6.7 Northridge earthquake, significant postseismic displacements were resolved with GPS. Using a three-dimensional viscoelastic model, we suggest that this deformation is mainly driven by viscous flow in the lower crust. Such flow can transfer stress to the upper crust and load the rupture zone of the main shock at a decaying rate. Most aftershocks within the rupture zone, especially those that occurred after the first several weeks of the main shock, may have been triggered by continuous stress loading from viscous flow. The long-term decay time of aftershocks (about 2 years) approximately matches the decay of viscoelastic loading, and thus is controlled by the viscosity of the lower crust. Our model provides a physical interpretation of the observed correlation between aftershock decay rate and surface heat flow.Following the Mw 6.7 Northridge earthquake, significant postseismic displacements were resolved with GPS. Using a three-dimensional viscoelastic model, we suggest that this deformation is mainly driven by viscous flow in the lower crust. Such flow can transfer stress to the upper crust and load the rupture zone of the main shock at a decaying rate. Most aftershocks within the rupture zone, especially those that occurred after the first several weeks of the main shock, may have been triggered by continuous stress loading from viscous flow. The long-term decay time of aftershocks (about 2 years) approximately matches the decay of viscoelastic loading, and thus is controlled by the viscosity of the lower crust. Our model provides a physical interpretation of the observed correlation between aftershock decay rate and surface heat flow.

  11. Program to develop a performance and heat load prediction system for multistage turbines

    NASA Technical Reports Server (NTRS)

    Sharma, OM

    1994-01-01

    Flows in low-aspect ratio turbines, such as the SSME fuel turbine, are three dimensional and highly unsteady due to the relative motion of adjacent airfoil rows and the circumferential and spanwise gradients in total pressure and temperature, The systems used to design these machines, however, are based on the assumption that the flow is steady. The codes utilized in these design systems are calibrated against turbine rig and engine data through the use of empirical correlations and experience factors. For high aspect ratio turbines, these codes yield reasonably accurate estimates of flow and temperature distributions. However, future design trends will see lower aspect ratio (reduced number of parts) and higher inlet temperature which will result in increased three dimensionality and flow unsteadiness in turbines. Analysis of recently acquired data indicate that temperature streaks and secondary flows generated in combustors and up-stream airfoils can have a large impact on the time-averaged temperature and angle distributions in downstream airfoil rows.

  12. Hydrothermal Circulation Within and Between Basement Outcrops on a Young Ridge Flank: Numerical Models and Thermal Constraints

    NASA Astrophysics Data System (ADS)

    Hutnak, M.; Fisher, A. T.; Stauffer, P.; Gable, C. W.

    2005-12-01

    We use two-dimensional, finite-element models of coupled heat and fluid flow to investigate local and large-scale heat and fluid transport around and between basement outcrops on a young ridge flank. System geometries and properties are based on observations and measurements on the 3.4-3.6 Ma eastern flank of the Juan de Fuca Ridge. A small area of basement exposure (Baby Bare outcrop) experiences focused hydrothermal discharge, whereas a much larger feature (Grizzly Bare outcrop) 50 km to the south is a site of hydrothermal recharge. Observations of seafloor heat flow, subseafloor pressures, and basement fluid geochemistry at and near these outcrops constrain acceptable model results. Single-outcrop simulations suggest that local convection alone (represented by a high Nusselt number proxy) cannot explain the near-outcrop heat flow patterns; rapid through-flow is required. Venting of at least 5 L/s through the smaller outcrop, a volumetric flow rate consistent with earlier estimates based on plume and outcrop measurements, is needed to match seafloor heat flow patterns. Heat flow patterns are more variable and complex near the larger, recharging outcrop. Simulations that include 5-20 L/s of recharge through this feature can replicate first-order trends in the data, but small-scale variations are likely to result from heterogeneous flow paths and vigorous, local convection. Two-outcrop simulations started with a warm hydrostatic initial condition, based on a conductive model, result in rapid fluid flow from the smaller outcrop to the larger outcrop, inconsistent with observations. Flow can be sustained in the opposite (correct) direction if it is initially forced, which generates a hydrothermal siphon between the two features. Free flow simulations maintain rapid circulation at rates consistent with observations (specific discharge of m/yr to tens of m/yr), provided basement permeability is on the order of 10-10 m2 or greater. Lateral flow rates scale inversely with the thickness of the permeable basement layer. The differential pressure needed to drive this circulation, created by the siphon, is on the order of tens to hundreds of kPa, with greater differential pressure needed when basement permeability is lower.

  13. Utilization of Additive Manufacturing for Aerospace Heat Exchangers

    DTIC Science & Technology

    2016-02-29

    is made up of flat plates that are layered on top of each other creating air passages in between the plates where the hot liquid and cold liquid flow...electron beam- based) for two-dimensional scanning of the heat source on the powder layer , stages that decrease the build plate and increase the powder...build plate and result in uneven coating of subsequent powder layers or complete failure of the system to recoat. The perturbations in recoater

  14. Direct simulations of chemically reacting turbulent mixing layers, part 2

    NASA Technical Reports Server (NTRS)

    Metcalfe, Ralph W.; Mcmurtry, Patrick A.; Jou, Wen-Huei; Riley, James J.; Givi, Peyman

    1988-01-01

    The results of direct numerical simulations of chemically reacting turbulent mixing layers are presented. This is an extension of earlier work to a more detailed study of previous three dimensional simulations of cold reacting flows plus the development, validation, and use of codes to simulate chemically reacting shear layers with heat release. Additional analysis of earlier simulations showed good agreement with self similarity theory and laboratory data. Simulations with a two dimensional code including the effects of heat release showed that the rate of chemical product formation, the thickness of the mixing layer, and the amount of mass entrained into the layer all decrease with increasing rates of heat release. Subsequent three dimensional simulations showed similar behavior, in agreement with laboratory observations. Baroclinic torques and thermal expansion in the mixing layer were found to produce changes in the flame vortex structure that act to diffuse the pairing vortices, resulting in a net reduction in vorticity. Previously unexplained anomalies observed in the mean velocity profiles of reacting jets and mixing layers were shown to result from vorticity generation by baroclinic torques.

  15. Swirling flow of a dissociated gas

    NASA Technical Reports Server (NTRS)

    Wolfram, W. R., Jr.; Walker, W. F.

    1975-01-01

    Most physical applications of the swirling flow, defined as a vortex superimposed on an axial flow in the nozzle, involve high temperatures and the possibility of real gas effects. The generalized one-dimensional swirling flow in a converging-diverging nozzle is analyzed for equilibrium and frozen dissociation using the ideal dissociating gas model. Numerical results are provided to illustrate the major effects and to compare with results obtained for a perfect gas with constant ratio of specific heats. It is found that, even in the case of real gases, perfect gas calculations can give a good estimate of the reduction in mass flow due to swirl.

  16. Three-dimensional analysis for liquid hydrogen in a cryogenic storage tank with heat pipe pump system

    NASA Astrophysics Data System (ADS)

    Ho, Son H.; Rahman, Muhammad M.

    2008-01-01

    This paper presents a study on fluid flow and heat transfer of liquid hydrogen in a zero boil-off cryogenic storage tank in a microgravity environment. The storage tank is equipped with an active cooling system consisting of a heat pipe and a pump-nozzle unit. The pump collects cryogen at its inlet and discharges it through its nozzle onto the evaporator section of the heat pipe in order to prevent the cryogen from boiling off due to the heat leaking through the tank wall from the surroundings. A three-dimensional (3-D) finite element model is employed in a set of numerical simulations to solve for velocity and temperature fields of liquid hydrogen in steady state. Complex structures of 3-D velocity and temperature distributions determined from the model are presented. Simulations with an axisymmetric model were also performed for comparison. Parametric study results from both models predict that as the speed of the cryogenic fluid discharged from the nozzle increases, the mean or bulk cryogenic fluid speed increases linearly and the maximum temperature within the cryogenic fluid decreases.

  17. Investigation of nitrate salts for solar latent heat storage

    NASA Astrophysics Data System (ADS)

    Kamimoto, M.; Tanaka, T.; Tani, T.; Horigome, T.

    1980-01-01

    The properties of heat transfer in the discharging of a model solar latent heat storage unit based on various nitrate salts and salt mixtures are investigated. A shell-and-tube-type passive heat exchanger containing NaNO3 or eutectic or off-eutectic mixtures of NaNO3 with KNO3 and Ca(NO3)2 was heated to 40 K above the melting temperature of the salt, when air was made to flow through a heat transfer tube at a constant flow rate, and heat transfer material and air temperatures were monitored. Thermal conductivity and the apparent heat transfer coefficient are estimated from the heat extraction rate and temperature profiles, and it is found that although the thermal conductivities of the materials are similar, the off-eutectic salts exhibit higher heat transfer coefficients. Temperature distributions in the NaNO3-KNO3 mixtures are found to be in fairly good agreement with those predicted by numerical solutions of a one-dimensional finite difference equation, and with approximate analytical solutions. It is observed that the temperature of the heat transfer surface drops rapidly after the appearance of a solid phase, due to the low thermal conductivity of the salts, and means of avoiding this temperature drop are considered.

  18. The cooling of terrestrial basaltic lava flows and implications for lava flow emplacement on Venus from surface morphology and radar data

    NASA Astrophysics Data System (ADS)

    Hultgrien, Lynn Kerrell

    Basalt is the most common surface rock on the terrestrial planets. Understanding the emplacement mechanisms for basaltic lava flows facilitates study of the geologic history of a planet and in volcanic hazards assessment. Lava flow cooling is examined through two different models, one applicable to aa and the second to pahoehoe. Occurrence of these basaltic flow types is evaluated in an extensive global survey of lava flows on Venus using Magellan data. First, a basic heat balance model is considered for as flow cooling with terms for conduction, radiation, viscous dissipation and entrainment of cooler material. Pahoehoe cooling is modeled through three different analytic solutions to the one-dimensional, time-dependent heat conduction equation, with constant surface temperature, linear heat transfer at the surface, and surface radiation. The models are compared with thermal data from the Hawaiian 1984 Mauna Loa and 1990 Puu Oo-Kupaianaha, Kilauea eruptions, for as and pahoehoe, respectively. Although commonly omitted in other models, heat conduction is found here to be important in the cooling of both aa and pahoehoe. Equally important is entrainment in as flows and both radiation and atmospheric convection for pahoehoe cooling. Morphology measurements and surface properties are determined for ninety individual lava flows from forty-four volcanic features on Venus. Radar backscatter and rms slope values, relative to terrestrial studies, indicate Venusian lavas are predominately pahoehoe. Emissivities and dielectric constants are consistent with basalt as the principal lithology. Effusion rates and flow velocities, determined using Earth-calibrated parametric relationships, and lava flow dimensions are greater than those found on Earth. Modeling lava flows on the terrestrial planets should involve careful consideration of the type of lava flow being studied. This investigation finds that heat conduction is an important limitation in the ability of a basalt flow to cool. Some models underestimate cooling time and flow dimensions because of their failure to include such effects. Pahoehoe and aa flows are emplaced by different mechanisms and require individualized models. The prevalence of pahoehoe lava flows on both Earth and Venus is a major element for deciphering the past evolution of each planet.

  19. Nonlinear Thermal Instability in Compressible Viscous Flows Without Heat Conductivity

    NASA Astrophysics Data System (ADS)

    Jiang, Fei

    2018-04-01

    We investigate the thermal instability of a smooth equilibrium state, in which the density function satisfies Schwarzschild's (instability) condition, to a compressible heat-conducting viscous flow without heat conductivity in the presence of a uniform gravitational field in a three-dimensional bounded domain. We show that the equilibrium state is linearly unstable by a modified variational method. Then, based on the constructed linearly unstable solutions and a local well-posedness result of classical solutions to the original nonlinear problem, we further construct the initial data of linearly unstable solutions to be the one of the original nonlinear problem, and establish an appropriate energy estimate of Gronwall-type. With the help of the established energy estimate, we finally show that the equilibrium state is nonlinearly unstable in the sense of Hadamard by a careful bootstrap instability argument.

  20. Symmetric flows for compressible heat-conducting fluids with temperature dependent viscosity coefficients

    NASA Astrophysics Data System (ADS)

    Wan, Ling; Wang, Tao

    2017-06-01

    We consider the Navier-Stokes equations for compressible heat-conducting ideal polytropic gases in a bounded annular domain when the viscosity and thermal conductivity coefficients are general smooth functions of temperature. A global-in-time, spherically or cylindrically symmetric, classical solution to the initial boundary value problem is shown to exist uniquely and converge exponentially to the constant state as the time tends to infinity under certain assumptions on the initial data and the adiabatic exponent γ. The initial data can be large if γ is sufficiently close to 1. These results are of Nishida-Smoller type and extend the work (Liu et al. (2014) [16]) restricted to the one-dimensional flows.

  1. Calculation of turbulent boundary layers with heat transfer and pressure gradient utilizing a compressibility transformation. Part 3: Computer program manual

    NASA Technical Reports Server (NTRS)

    Schneider, J.; Boccio, J.

    1972-01-01

    A computer program is described capable of determining the properties of a compressible turbulent boundary layer with pressure gradient and heat transfer. The program treats the two-dimensional problem assuming perfect gas and Crocco integral energy solution. A compressibility transformation is applied to the equation for the conservation of mass and momentum, which relates this flow to a low speed constant property flow with simultaneous mass transfer and pressure gradient. The resulting system of describing equations consists of eight ordinary differential equations which are solved numerically. For Part 1, see N72-12226; for Part 2, see N72-15264.

  2. Nonequilibrium Radiation Aerothermodynamics of the Command Modulus of Apollo 4 at Altitudes above 75 km

    NASA Astrophysics Data System (ADS)

    Surzhikov, S. T.

    2018-02-01

    The problem of the radiation gas dynamics of super-orbital entry into dense layers of the Earth's atmosphere of the command module of Apollo 4 is solved numerically in the two-dimensional formulation of the flow around an aerodynamic frontal shield at the velocity V∞= 10.7 km/s in the altitude range H = 91.5‒76.2 km. The density distributions of the spectral and integral radiation heat fluxes on the surface flowed around are obtained. The considerable role of atomic spectral lines in the radiation heating of the surface is shown. The results of calculations are compared with the flight experimental data and the calculated data of other authors.

  3. Internally Heated Screw Pyrolysis Reactor (IHSPR) heat transfer performance study

    NASA Astrophysics Data System (ADS)

    Teo, S. H.; Gan, H. L.; Alias, A.; Gan, L. M.

    2018-04-01

    1.5 billion end-of-life tyres (ELT) were discarded globally each year and pyrolysis is considered the best solution to convert the ELT into valuable high energy-density products. Among all pyrolysis technologies, screw reactor is favourable. However, conventional screw reactor risks plugging issue due to its lacklustre heat transfer performance. An internally heated screw pyrolysis reactor (IHSPR) was developed by local renewable energy industry, which serves as the research subject for heat transfer performance study of this particular paper. Zero-load heating test (ZLHT) was first carried out to obtain the operational parameters of the reactor, followed by the one dimensional steady-state heat transfer analysis carried out using SolidWorks Flow Simulation 2016. Experiments with feed rate manipulations and pyrolysis products analyses were conducted last to conclude the study.

  4. Idealised large-eddy-simulation of thermally driven flows over an isolated mountain range with multiple ridges

    NASA Astrophysics Data System (ADS)

    Lang, Moritz N.; Gohm, Alexander; Wagner, Johannes S.; Leukauf, Daniel; Posch, Christian

    2014-05-01

    Two dimensional idealised large-eddy-simulations are performed using the WRF model to investigate thermally driven flows during the daytime over complex terrain. Both the upslope flows and the temporal evolution of the boundary layer structure are studied with a constant surface heat flux forcing of 150 W m-2. In order to distinguish between different heating processes the flow is Reynold decomposed into its mean and turbulent part. The heating processes associated with the mean flow are a cooling through cold-air advection along the slopes and subsidence warming within the valleys. The turbulent component causes bottom-up heating near the ground leading to a convective boundary layer (CBL) inside the valleys. Overshooting potentially colder thermals cool the stably stratified valley atmosphere above the CBL. Compared to recent investigations (Schmidli 2013, J. Atmos. Sci., Vol. 70, No. 12: pp. 4041-4066; Wagner et al. 2014, manuscript submitted to Mon. Wea. Rev.), which used an idealised topography with two parallel mountain crests separated by a straight valley, this project focuses on multiple, periodic ridges and valleys within an isolated mountain range. The impact of different numbers of ridges on the flow structure is compared with the sinusoidal envelope-topography. The present simulations show an interaction between the smaller-scale upslope winds within the different valleys and the large-scale flow of the superimposed mountain-plain wind circulation. Despite a smaller boundary layer air volume in the envelope case compared to the multiple ridges case the volume averaged heating rates are comparable. The reason is a stronger advection-induced cooling along the slopes and a weaker warming through subsidence at the envelope-topography compared to the mountain range with multiple ridges.

  5. Numerical Schemes and Computational Studies for Dynamically Orthogonal Equations (Multidisciplinary Simulation, Estimation, and Assimilation Systems: Reports in Ocean Science and Engineering)

    DTIC Science & Technology

    2011-08-01

    heat transfers [49, 52]. However, the DO method has not yet been applied to Boussinesq flows, and the numerical challenges of the DO decomposition for...used a PCE scheme to study mixing in a two-dimensional (2D) microchannel and improved the efficiency of their solution scheme by decoupling the...to several Navier-Stokes flows and their stochastic dynamics has been studied, including mean-mode and mode-mode energy transfers for 2D flows and

  6. Prediction of free turbulent mixing using a turbulent kinetic energy method

    NASA Technical Reports Server (NTRS)

    Harsha, P. T.

    1973-01-01

    Free turbulent mixing of two-dimensional and axisymmetric one- and two-stream flows is analyzed by a relatively simple turbulent kinetic energy method. This method incorporates a linear relationship between the turbulent shear and the turbulent kinetic energy and an algebraic relationship for the length scale appearing in the turbulent kinetic energy equation. Good results are obtained for a wide variety of flows. The technique is shown to be especially applicable to flows with heat and mass transfer, for which nonunity Prandtl and Schmidt numbers may be assumed.

  7. Non-equilibrium radiation from viscous chemically reacting two-phase exhaust plumes

    NASA Technical Reports Server (NTRS)

    Penny, M. M.; Smith, S. D.; Mikatarian, R. R.; Ring, L. R.; Anderson, P. G.

    1976-01-01

    A knowledge of the structure of the rocket exhaust plumes is necessary to solve problems involving plume signatures, base heating, plume/surface interactions, etc. An algorithm is presented which treats the viscous flow of multiphase chemically reacting fluids in a two-dimensional or axisymmetric supersonic flow field. The gas-particle flow solution is fully coupled with the chemical kinetics calculated using an implicit scheme to calculate chemical production rates. Viscous effects include chemical species diffusion with the viscosity coefficient calculated using a two-equation turbulent kinetic energy model.

  8. Chaotic advection in a 2-D mixed convection flow

    NASA Astrophysics Data System (ADS)

    Tangborn, Andrew V.; Silevitch, Daniel M.; Howes, Tony

    1995-06-01

    Two-dimensional numerical simulations of particle advection in a channel flow with spatially periodic heating have been carried out. The velocity field is found to be periodic above a critical Rayleigh number of around 18 000 and a Reynolds number of 10. Particle motion becomes chaotic in the lower half plane almost immediately after this critical value is surpassed, as characterized by the power spectral density and Poincaré section of the flow. As the Rayleigh number is increased further, particle motion in the entire domain becomes chaotic.

  9. Numerical simulation of base flow of a long range flight vehicle

    NASA Astrophysics Data System (ADS)

    Saha, S.; Rathod, S.; Chandra Murty, M. S. R.; Sinha, P. K.; Chakraborty, Debasis

    2012-05-01

    Numerical exploration of base flow of a long range flight vehicle is presented for different flight conditions. Three dimensional Navier-Stokes equations are solved along with k-ɛ turbulence model using commercial CFD software. Simulation captured all essential flow features including flow separation at base shoulder, shear layer formation at the jet boundary, recirculation at the base region etc. With the increase in altitude, the plume of the rocket exhaust is seen to bulge more and more and caused more intense free stream and rocket plume interaction leading to higher gas temperature in the base cavity. The flow field in the base cavity is investigated in more detail, which is found to be fairly uniform at different instant of time. Presence of the heat shield is seen to reduce the hot gas entry to the cavity region due to different recirculation pattern in the base region. Computed temperature history obtained from conjugate heat transfer analysis is found to compare very well with flight measured data.

  10. Shock wave interactions in hypervelocity flow

    NASA Astrophysics Data System (ADS)

    Sanderson, S. R.; Sturtevant, B.

    1994-08-01

    The impingement of shock waves on blunt bodies in steady supersonic flow is known to cause extremely high local heat transfer rates and surface pressures. Although these problems have been studied in cold hypersonic flow, the effects of dissociative relaxation processes are unknown. In this paper we report a model aimed at determining the boundaries of the possible interaction regimes for an ideal dissociating gas. Local analysis about shock wave intersection points in the pressure-flow deflection angle plane with continuation of singular solutions is the fundamental tool employed. Further, we discuss an experimental investigation of the nominally two-dimensional mean flow that results from the impingement of an oblique shock wave on the leading edge of a cylinder. The effects of variations in shock impingement geometry were visualized using differential interferometry. Generally, real gas effects are seen to increase the range of shock impingement points for which enhanced heating occurs. They also reduce the type 4 interaction supersonic jet width and influence the type 2-3 transition process.

  11. Boundary layer development as a function of chamber pressure in the NASA Lewis 1030:1 area ratio rocket nozzle

    NASA Technical Reports Server (NTRS)

    Smith, Tamara A.

    1988-01-01

    Through the use of theoretical predictions of fluid properties and experimental heat transfer and thrust measurements, the zones of laminar, transitional, and turbulent boundary layer flow were defined for the NASA Lewis 1039:1 area ratio rocket nozzle. Tests were performed on the nozzle at chamber pressures from 350 to 100 psia. For these conditions, the throat diameter Reynolds numbers varied from 300,000 to 1 million. The propellants used were gaseous hydrogen and gaseous oxygen. Thrust measurements and nozzle outer wall temperature measurements were taken during the 3-sec test runs. Comparison of experimental heat transfer and thrust data with the corresponding predictions from the Two-Dimensional Kinetics (TDK) nozzle analysis program indicated laminar flow in the nozzle at a throat diameter Reynolds number of 320,000 or chamber pressure of 360 psia. Comparison of experimental and predicted heat transfer data indicated transitional flow up to and including a chamber pressure of 1000 psia. Predicted values of the axisymmetric acceleration parameter within the convergent and divergent nozzle were consistent with the above results. Based upon an extrapolation of the heat transfer data and predicted distributions of the axisymmetric acceleration parameter, transitional flow was predicted up to a throat diameter Reynolds number of 220,000 or 2600-psia chamber pressure. Above 2600-psia chamber pressure, fully developed turbulent flow was predicted.

  12. Boundary layer development as a function of chamber pressure in the NASA Lewis 1030:1 area ratio rocket nozzle

    NASA Technical Reports Server (NTRS)

    Smith, Tamara A.

    1988-01-01

    Through the use of theoretical predictions of fluid properties and experimental heat transfer and thrust measurements, the zones of laminar, transitional, and turbulent boundary layer flow were defined for the NASA Lewis 1030:1 area ratio rocket nozzle. Tests were performed on the nozzle at chamber pressures from 350 to 100 psia. For these conditions, the throat diameter Reynolds numbers varied from 300,000 to 1 million. The propellants used were gaseous hydrogen and gaseous oxygen. Thrust measurements and nozzle outer wall temperature measurements were taken during the 3-sec test runs. Comparison of experimental heat transfer and thrust data with the corresponding predictions from the Two-Dimensional Kinetics (TDK) nozzle analysis program indicated laminar flow in the nozzle at a throat diameter Reynolds number of 320,000 or chamber pressure of 360 psia. Comparison of experimental and predicted heat transfer data indicated transitional flow up to and including a chamber pressure of 1000 psia. Predicted values of the axisymmetric acceleration parameter within the convergent and divergent nozzle were consistent with the above results. Based upon an extrapolation of the heat transfer data and predicted distributions of the axisymmetric acceleration parameter, transitional flow was predicted up to a throat diameter Reynolds number of 220,000 or 2600-psia chamber pressure. Above 2600-psia chamber pressure, fully developed turbulent flow was predicted.

  13. Two Dimensional Heat Transfer in Non-Thermally Thin Poly(Methyl Methacrylate) During Combustion in a Narrow Channel Apparatus

    NASA Astrophysics Data System (ADS)

    Lage, Nicholas Alexander

    Experimentation and Computational modeling of non-thermally thin samples of poly(methyl methacrylate) (PMMA) burning in a Narrow Channel Apparatus (NCA) was conducted. The Narrow Channel Apparatus is used to replicate a microgravity environment by flowing of mixtures of nitrogen and oxygen through a narrow gap to suppress buoyancy above the burning sample. A new NCA was built, and experiments were conducted using it to provide the empirical data presented in this thesis. Samples of PMMA were burned, with thicknesses of 3, 5, and 10 mm, with an opposed-flow mean velocity of 15 cm/s and a 21% oxygen concentration. Flame spread rates were obtained from tracked flame positions. Thermocouples were embedded in the top and bottom surfaces of some of the samples to measure surface temperatures. Using Fire Dynamics Simulator (FDS), version 6.2.0, coupled with Gpyro, a two-dimensional model was developed for non-thermally thin samples of PMMA that are burned in the NCA. A 5 mm gap height was used as well as a laminar, parabolic flow at the inlet. Direct numerical simulation (DNS) was set. Finite rate kinetics were used to model the pyrolysis and combustion reactions. Complete combustion was assumed. Simulations with fuel thicknesses of 1, 3, 5, and 10 mm were run, under the same conditions as the experiment. A comparison between one-dimensional and two-dimensional heat conduction within the sample was made to show the effect the heat transfer parallel to flame propagation has on flame spread rates and solid-phase temperature profiles. A comparison between mica and an adiabatic plane set beneath the PMMA was also made as well as the length of time the sample is exposed to the ignition source. Through comparison of the model with the experiment, it was found that the flame spread rates of the model showed unrealistic trends with thickness. An investigation was completed with the aid of an energy balance as well as graphs, such as equivalence ratios, surface temperatures, surface heat fluxes, fuel vapor mass fluxes, etc., that were plotted with respect to the flame position to find the source of the unrealistic trends, but conclusive evidence was never obtained.

  14. A Few New 2+1-Dimensional Nonlinear Dynamics and the Representation of Riemann Curvature Tensors

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Zhang, Yufeng; Zhang, Xiangzhi

    2016-09-01

    We first introduced a linear stationary equation with a quadratic operator in ∂x and ∂y, then a linear evolution equation is given by N-order polynomials of eigenfunctions. As applications, by taking N=2, we derived a (2+1)-dimensional generalized linear heat equation with two constant parameters associative with a symmetric space. When taking N=3, a pair of generalized Kadomtsev-Petviashvili equations with the same eigenvalues with the case of N=2 are generated. Similarly, a second-order flow associative with a homogeneous space is derived from the integrability condition of the two linear equations, which is a (2+1)-dimensional hyperbolic equation. When N=3, the third second flow associative with the homogeneous space is generated, which is a pair of new generalized Kadomtsev-Petviashvili equations. Finally, as an application of a Hermitian symmetric space, we established a pair of spectral problems to obtain a new (2+1)-dimensional generalized Schrödinger equation, which is expressed by the Riemann curvature tensors.

  15. Mathematical simulation of the process of condensing natural gas

    NASA Astrophysics Data System (ADS)

    Tastandieva, G. M.

    2015-01-01

    Presents a two-dimensional unsteady model of heat transfer in terms of condensation of natural gas at low temperatures. Performed calculations of the process heat and mass transfer of liquefied natural gas (LNG) storage tanks of cylindrical shape. The influence of model parameters on the nature of heat transfer. Defined temperature regimes eliminate evaporation by cooling liquefied natural gas. The obtained dependence of the mass flow rate of vapor condensation gas temperature. Identified the possibility of regulating the process of "cooling down" liquefied natural gas in terms of its partial evaporation with low cost energy.

  16. Re-evaluation of temperature at the updip limit of locked portion of Nankai megasplay inferred from IODP Site C0002 temperature observatory

    NASA Astrophysics Data System (ADS)

    Sugihara, Takamitsu; Kinoshita, Masataka; Araki, Eichiro; Kimura, Toshinori; Kyo, Masanori; Namba, Yasuhiro; Kido, Yukari; Sanada, Yoshinori; Thu, Moe Kyaw

    2014-12-01

    In 2010, the first long-term borehole monitoring system was deployed at approximately 900 m below the sea floor (mbsf) and was assumed to be situated above the updip limit of the seismogenic zone in the Nankai Trough off Kumano (Site C0002). Four temperature records show that the effect of drilling diminished in less than 2 years. Based on in situ temperatures and thermal conductivities measured on core samples, the temperature measurements and heat flow at 900 mbsf are estimated to be 37.9°C and 56 ± 1 mW/m2, respectively. This heat flow value is in excellent agreement with that from the shallow borehole temperature corrected for rapid sedimentation in the Kumano Basin. We use these values in the present study to extrapolate the temperature below 900 mbsf for a megasplay fault at approximately 5,200 mbsf and a plate boundary fault at approximately 7,000 mbsf. To extrapolate the temperature downward, we use logging-while-drilling (LWD) bit resistivity data as a proxy for porosity and estimate thermal conductivity from this porosity using a geometrical mean model. The one-dimensional (1-D) thermal conduction model used for the extrapolation includes radioactive heat and frictional heat production at the plate boundary fault. The estimated temperature at the megasplay ranges from 132°C to 149°C, depending on the assumed thermal conductivity and radioactive heat production values. These values are significantly higher, by up to 40°C, than some of previous two-dimensional (2-D) numerical model predictions that can account for the high heat flow seaward of the deformation front, including a hydrothermal circulation within the subducted igneous oceanic crust. However, our results are in good agreement with those of the 2-D model, which does not include the advection cooling effect. The results imply that 2-D geometrical effects as well as the influence of the advective cooling may be critical and should be evaluated more quantitatively. Revision of 2-D simulation by introducing our new boundary conditions (37.9°C of in situ temperature at 900 mbsf and approximately 56 mW/m2 heat flow) will be essential. Ultimately, in situ temperature measurements at the megasplay fault are required to understand seismogenesis in the Nankai subduction zone.

  17. Two-dimensional patterns in bacterial veils arise from self-generated, three-dimensional fluid flows.

    PubMed

    Cogan, N G; Wolgemuth, C W

    2011-01-01

    The behavior of collections of oceanic bacteria is controlled by metabolic (chemotaxis) and physical (fluid motion) processes. Some sulfur-oxidizing bacteria, such as Thiovulum majus, unite these two processes via a material interface produced by the bacteria and upon which the bacteria are transiently attached. This interface, termed a bacterial veil, is formed by exo-polymeric substances (EPS) produced by the bacteria. By adhering to the veil while continuing to rotate their flagella, the bacteria are able to exert force on the fluid surroundings. This behavior induces a fluid flow that, in turn, causes the bacteria to aggregate leading to the formation of a physical pattern in the veil. These striking patterns are very similar in flavor to the classic convection instability observed when a shallow fluid is heated from below. However, the physics are very different since the flow around the veil is mediated by the bacteria and affects the bacterial densities. In this study, we extend a model of a one-dimensional veil in a two-dimensional fluid to the more realistic two-dimensional veil in a three-dimensional fluid. The linear stability analysis indicates that the Peclet number serves as a bifurcation parameter, which is consistent with experimental observations. We also solve the nonlinear problem numerically and are able to obtain patterns that are similar to those observed in the experiments.

  18. Combined LAURA-UPS solution procedure for chemically-reacting flows. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Wood, William A.

    1994-01-01

    A new procedure seeks to combine the thin-layer Navier-Stokes solver LAURA with the parabolized Navier-Stokes solver UPS for the aerothermodynamic solution of chemically-reacting air flowfields. The interface protocol is presented and the method is applied to two slender, blunted shapes. Both axisymmetric and three dimensional solutions are included with surface pressure and heat transfer comparisons between the present method and previously published results. The case of Mach 25 flow over an axisymmetric six degree sphere-cone with a noncatalytic wall is considered to 100 nose radii. A stability bound on the marching step size was observed with this case and is attributed to chemistry effects resulting from the noncatalytic wall boundary condition. A second case with Mach 28 flow over a sphere-cone-cylinder-flare configuration is computed at both two and five degree angles of attack with a fully-catalytic wall. Surface pressures are seen to be within five percent with the present method compared to the baseline LAURA solution and heat transfers are within 10 percent. The effect of grid resolution is investigated and the nonequilibrium results are compared with a perfect gas solution, showing that while the surface pressure is relatively unchanged by the inclusion of reacting chemistry the nonequilibrium heating is 25 percent higher. The procedure demonstrates significant, order of magnitude reductions in solution time and required memory for the three dimensional case over an all thin-layer Navier-Stokes solution.

  19. Users manual for the NASA Lewis three-dimensional ice accretion code (LEWICE 3D)

    NASA Technical Reports Server (NTRS)

    Bidwell, Colin S.; Potapczuk, Mark G.

    1993-01-01

    A description of the methodology, the algorithms, and the input and output data along with an example case for the NASA Lewis 3D ice accretion code (LEWICE3D) has been produced. The manual has been designed to help the user understand the capabilities, the methodologies, and the use of the code. The LEWICE3D code is a conglomeration of several codes for the purpose of calculating ice shapes on three-dimensional external surfaces. A three-dimensional external flow panel code is incorporated which has the capability of calculating flow about arbitrary 3D lifting and nonlifting bodies with external flow. A fourth order Runge-Kutta integration scheme is used to calculate arbitrary streamlines. An Adams type predictor-corrector trajectory integration scheme has been included to calculate arbitrary trajectories. Schemes for calculating tangent trajectories, collection efficiencies, and concentration factors for arbitrary regions of interest for single droplets or droplet distributions have been incorporated. A LEWICE 2D based heat transfer algorithm can be used to calculate ice accretions along surface streamlines. A geometry modification scheme is incorporated which calculates the new geometry based on the ice accretions generated at each section of interest. The three-dimensional ice accretion calculation is based on the LEWICE 2D calculation. Both codes calculate the flow, pressure distribution, and collection efficiency distribution along surface streamlines. For both codes the heat transfer calculation is divided into two regions, one above the stagnation point and one below the stagnation point, and solved for each region assuming a flat plate with pressure distribution. Water is assumed to follow the surface streamlines, hence starting at the stagnation zone any water that is not frozen out at a control volume is assumed to run back into the next control volume. After the amount of frozen water at each control volume has been calculated the geometry is modified by adding the ice at each control volume in the surface normal direction.

  20. Exact solution for heat transfer free convection flow of Maxwell nanofluids with graphene nanoparticles

    NASA Astrophysics Data System (ADS)

    Aman, Sidra; Zuki Salleh, Mohd; Ismail, Zulkhibri; Khan, Ilyas

    2017-09-01

    This article focuses on the flow of Maxwell nanofluids with graphene nanoparticles over a vertical plate (static) with constant wall temperature. Possessing high thermal conductivity, engine oil is useful to be chosen as base fluid with free convection. The problem is modelled in terms of PDE’s with boundary conditions. Some suitable non-dimensional variables are interposed to transform the governing equations into dimensionless form. The generated equations are solved via Laplace transform technique. Exact solutions are evaluated for velocity and temperature. These solutions are significantly controlled by some parameters involved. Temperature rises with elevation in volume fraction while Velocity decreases with increment in volume fraction. A comparison with previous published results are established and discussed. Moreover, a detailed discussion is made for influence of volume fraction on the flow and heat profile.

  1. Modelling of fluid flow phenomenon in laser+GMAW hybrid welding of aluminum alloy considering three phase coupling and arc plasma shear stress

    NASA Astrophysics Data System (ADS)

    Xu, Guoxiang; Li, Pengfei; Cao, Qingnan; Hu, Qingxian; Gu, Xiaoyan; Du, Baoshuai

    2018-03-01

    The present study aims to develop a unified three dimensional numerical model for fiber laser+GMAW hybrid welding, which is used to study the fluid flow phenomena in hybrid welding of aluminum alloy and the influence of laser power on weld pool dynamic behavior. This model takes into account the coupling of gas, liquid and metal phases. Laser heat input is described using a cone heat source model with changing peak power density, its height being determined based on the keyhole size. Arc heat input is modeled as a double ellipsoid heat source. The arc plasma flow and droplet transfer are simulated through the two simplified models. The temperature and velocity fields for different laser powers are calculated. The computed results are in general agreement with the experimental data. Both the peak and average values of fluid flow velocity during hybrid welding are much higher than those of GMAW. At a low level of laser power, both the arc force and droplet impingement force play a relatively large role on fluid flow in the hybrid welding. Keyhole depth always oscillates within a range. With an increase in laser power, the weld pool behavior becomes more complex. An anti-clockwise vortex is generated and the stability of keyhole depth is improved. Besides, the effects of laser power on different driving forces of fluid flow in weld pool are also discussed.

  2. Toward a Turbulence Constitutive Relation for Rotating Flows

    NASA Technical Reports Server (NTRS)

    Ristorcelli, J. R.

    1996-01-01

    In rapidly rotating turbulent flows the largest scales of the motion are in approximate geostrophic balance. Single-point turbulence closures, in general, cannot attain a geostrophic balance. This article addresses and resolves the possibility of constitutive relation procedures for single-point second order closures for a specific class of rotating or stratified flows. Physical situations in which the geostrophic balance is attained are described. Closely related issues of frame-indifference, horizontal nondivergence, Taylor-Proudman theorem and two-dimensionality are, in the context of both the instantaneous and averaged equations, discussed. It is shown, in the absence of vortex stretching along the axis of rotation, that turbulence is frame-indifferent. A derivation and discussion of a geostrophic constraint which the prognostic equations for second-order statistics must satisfy for turbulence approaching a frame-indifferent limit is given. These flow situations, which include rotating and nonrotating stratified flows, are slowly evolving flows in which the constitutive relation procedures are useful. A nonlinear non-constant coefficient representation for the rapid-pressure strain covariance appearing in the Reynolds stress and heat flux equations consistent with the geostrophic balance is described. The rapid-pressure strain model coefficients are not constants determined by numerical optimization but are functions of the state of the turbulence as parameterized by the Reynolds stresses and the turbulent heat fluxes. The functions are valid for all states of the turbulence attaining their limiting values only when a limit state is achieved. These issues are relevant to strongly vortical flows as well as flows such as the planetary boundary layers, in which there is a transition from a three-dimensional shear driven turbulence to a geostrophic or horizontal turbulence.

  3. Transient Analysis of a Magnetic Heat Pump

    NASA Technical Reports Server (NTRS)

    Schroeder, E. A.

    1985-01-01

    An experimental heat pump that uses a rare earth element as the refrigerant is modeled using NASTRAN. The refrigerant is a ferromagnetic metal whose temperature rises when a magnetic field is applied and falls when the magnetic field is removed. The heat pump is used as a refrigerator to remove heat from a reservoir and discharge it through a heat exchanger. In the NASTRAN model the components modeled are represented by one-dimensional ROD elements. Heat flow in the solids and fluid are analyzed. The problem is mildly nonlinear since the heat capacity of the refrigerant is temperature-dependent. One simulation run consists of a series of transient analyses, each representing one stroke of the heat pump. An auxiliary program was written that uses the results of one NASTRAN analysis to generate data for the next NASTRAN analysis.

  4. Observing temporal patterns of vertical flux through streambed sediments using time-series analysis of temperature records

    NASA Astrophysics Data System (ADS)

    Lautz, Laura K.

    2012-09-01

    SummaryRates of water exchange between surface water and groundwater (SW-GW) can be highly variable over time due to temporal changes in streambed hydraulic conductivity, storm events, and oscillation of stage due to natural and regulated river flow. There are few effective field methods available to make continuous measurements of SW-GW exchange rates with the temporal resolution required in many field applications. Here, controlled laboratory experiments were used to explore the accuracy of analytical solutions to the one-dimensional heat transport model for capturing temporal variability of flux through porous media from propagation of a periodic temperature signal to depth. Column experiments were used to generate one-dimensional flow of water and heat through saturated sand with a quasi-sinusoidal temperature oscillation at the upstream boundary. Measured flux rates through the column were compared to modeled flux rates derived using the computer model VFLUX and the amplitude ratio between filtered temperature records from two depths in the column. Imposed temporal changes in water flux through the column were designed to replicate observed patterns of flux in the field, derived using the same methodology. Field observations of temporal changes in flux were made over multiple days during a large-scale storm event and diurnally during seasonal baseflow recession. Temporal changes in flux that occur gradually over days, sub-daily, and instantaneously in time can be accurately measured using the one-dimensional heat transport model, although those temporal changes may be slightly smoothed over time. Filtering methods effectively isolate the time-variable amplitude and phase of the periodic temperature signal, effectively eliminating artificial temporal flux patterns otherwise imposed by perturbations of the temperature signal, which result from typical weather patterns during field investigations. Although previous studies have indicated that sub-cycle information from the heat transport model is not reliable, this laboratory experiment shows that the sub-cycle information is real and sub-cycle changes in flux can be observed using heat transport modeling. One-dimensional heat transport modeling provides an easy-to-implement, cost effective, reliable field tool for making continuous observations of SW-GW exchange through time, which may be particularly useful for monitoring exchange rates during storms and other conditions that create temporal change in hydraulic gradient across the streambed interface or change in streambed hydraulic conductivity.

  5. Three dimensional rotating flow of Powell-Eyring nanofluid with non-Fourier's heat flux and non-Fick's mass flux theory

    NASA Astrophysics Data System (ADS)

    Ibrahim, Wubshet

    2018-03-01

    This article numerically examines three dimensional boundary layer flow of a rotating Powell-Eyring nanofluid. In modeling heat transfer processes, non-Fourier heat flux theory and for mass transfer non-Fick's mass flux theory are employed. This theory is recently re-initiated and it becomes the active research area to resolves some drawback associated with the famous Fourier heat flux and mass flux theory. The mathematical model of the flow problem is a system of non-linear partial differential equations which are obtained using the boundary layer analysis. The non-linear partial differential equations have been transformed into non-linear high order ordinary differential equations using similarity transformation. Employing bvp4c algorithm from matlab software routine, the numerical solution of the transformed ordinary differential equations is obtained. The governing equations are constrained by parameters such as rotation parameter λ , the non-Newtonian parameter N, dimensionless thermal relaxation and concentration relaxation parameters δt and δc . The impacts of these parameters have been discussed thoroughly and illustrated using graphs and tables. The findings show that thermal relaxation time δt reduces the thermal and concentration boundary layer thickness. Further, the results reveal that the rotational parameter λ has the effect of decreasing the velocity boundary layer thickness in both x and y directions. Further examination pinpoints that the skin friction coefficient along x-axis is an increasing and skin friction coefficient along y-axis is a decreasing function of rotation parameter λ . Furthermore, the non-Newtonian fluid parameter N has the characteristic of reducing the amount of local Nusselt numbers -f″ (0) and -g″ (0) both in x and y -directions.

  6. Numerical comparison of convective heat transfer augmentation devices used in cooling channels of hypersonic vehicles

    NASA Astrophysics Data System (ADS)

    Maldonado, Jaime J.

    1994-04-01

    Hypersonic vehicles are exposed to extreme thermal conditions compared to subsonic aircraft; therefore, some level of thermal management is required to protect the materials used. Normally, hypersonic vehicles experience the highest temperatures in the nozzle throat, and aircraft and propulsion system leading edges. Convective heat transfer augmentation techniques can be used in the thermal management system to increase heat transfer of the cooling channels in those areas. The techniques studied in this report are pin-fin, offset-fin, ribbed and straight roughened channel. A smooth straight channel is used as the baseline for comparing the techniques. SINDA '85, a lumped parameter finite difference thermal analyzer, is used to model the channels. Subroutines are added to model the fluid flow assuming steady one dimensional compressible flow with heat addition and friction. Correlations for convective heat transfer and friction are used in conjunction with the fluid flow analysis mentioned. As expected, the pin-fin arrangement has the highest heat transfer coefficient and the largest pressure drop. All the other devices fall in between the pin-fin and smooth straight channel. The selection of the best heat augmentation method depends on the design requirements. A good approach may be a channel using a combination of the techniques. For instance, several rows of pin-fins may be located at the region of highest heat flux, surrounded by some of the other techniques. Thus, the heat transfer coefficient is maximized at the region of highest heat flux while the pressure drop is not excessive.

  7. Numerical comparison of convective heat transfer augmentation devices used in cooling channels of hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Maldonado, Jaime J.

    1994-01-01

    Hypersonic vehicles are exposed to extreme thermal conditions compared to subsonic aircraft; therefore, some level of thermal management is required to protect the materials used. Normally, hypersonic vehicles experience the highest temperatures in the nozzle throat, and aircraft and propulsion system leading edges. Convective heat transfer augmentation techniques can be used in the thermal management system to increase heat transfer of the cooling channels in those areas. The techniques studied in this report are pin-fin, offset-fin, ribbed and straight roughened channel. A smooth straight channel is used as the baseline for comparing the techniques. SINDA '85, a lumped parameter finite difference thermal analyzer, is used to model the channels. Subroutines are added to model the fluid flow assuming steady one dimensional compressible flow with heat addition and friction. Correlations for convective heat transfer and friction are used in conjunction with the fluid flow analysis mentioned. As expected, the pin-fin arrangement has the highest heat transfer coefficient and the largest pressure drop. All the other devices fall in between the pin-fin and smooth straight channel. The selection of the best heat augmentation method depends on the design requirements. A good approach may be a channel using a combination of the techniques. For instance, several rows of pin-fins may be located at the region of highest heat flux, surrounded by some of the other techniques. Thus, the heat transfer coefficient is maximized at the region of highest heat flux while the pressure drop is not excessive.

  8. Local wall heat flux/temperature meter for convective flow and method of utilizing same

    DOEpatents

    Boyd, Ronald D.; Ekhlassi, Ali; Cofie, Penrose

    2004-11-30

    According to one embodiment of the invention, a method includes providing a conduit having a fluid flowing therethrough, disposing a plurality of temperature measurement devices inside a wall of the conduit, positioning at least some of the temperature measurement devices proximate an inside surface of the wall of the conduit, positioning at least some of the temperature measurement devices at different radial positions at the same circumferential location within the wall, measuring a plurality of temperatures of the wall with respective ones of the temperature measurement devices to obtain a three-dimensional temperature topology of the wall, determining the temperature dependent thermal conductivity of the conduit, and determining a multi-dimensional thermal characteristic of the inside surface of the wall of the conduit based on extrapolation of the three-dimensional temperature topology and the temperature dependent thermal conductivities.

  9. Local wall heat flux/temperature meter for convective flow and method of utilizing same

    NASA Technical Reports Server (NTRS)

    Cofie, Penrose (Inventor); Ekhlassi, Ali (Inventor); Boyd, Ronald D. (Inventor)

    2004-01-01

    According to one embodiment of the invention, a method includes providing a conduit having a fluid flowing therethrough, disposing a plurality of temperature measurement devices inside a wall of the conduit, positioning at least some of the temperature measurement devices proximate an inside surface of the wall of the conduit, positioning at least some of the temperature measurement devices at different radial positions at the same circumferential location within the wall, measuring a plurality of temperatures of the wall with respective ones of the temperature measurement devices to obtain a three-dimensional temperature topology of the wall, determining the temperature dependent thermal conductivity of the conduit, and determining a multi-dimensional thermal characteristic of the inside surface of the wall of the conduit based on extrapolation of the three-dimensional temperature topology and the temperature dependent thermal conductivities.

  10. Shock wave as a probe of flux-dimited thermal transport in laser-heated solids

    NASA Astrophysics Data System (ADS)

    Smith, K.; Forsman, A.; Chiu, G.

    1996-11-01

    Laser-generated shock waves in solids result from the ablation of the target material. Where radiation transport is negligible, the ablation process is dominated by electron thermal conduction. This offers an opportunity to probe the degree of transport inhibition (compared with classical heat flow) for steep temperature gradients in a dense plasma. Using a 1-dimensional hydrodynamic code, we have examined the effect of flux-limited thermal conduction on the amplitude of the resulting shock wave.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McHugh, P.R.; Ramshaw, J.D.

    MAGMA is a FORTRAN computer code designed to viscous flow in in situ vitrification melt pools. It models three-dimensional, incompressible, viscous flow and heat transfer. The momentum equation is coupled to the temperature field through the buoyancy force terms arising from the Boussinesq approximation. All fluid properties, except density, are assumed variable. Density is assumed constant except in the buoyancy force terms in the momentum equation. A simple melting model based on the enthalpy method allows the study of the melt front progression and latent heat effects. An indirect addressing scheme used in the numerical solution of the momentum equationmore » voids unnecessary calculations in cells devoid of liquid. Two-dimensional calculations can be performed using either rectangular or cylindrical coordinates, while three-dimensional calculations use rectangular coordinates. All derivatives are approximated by finite differences. The incompressible Navier-Stokes equations are solved using a new fully implicit iterative technique, while the energy equation is differenced explicitly in time. Spatial derivatives are written in conservative form using a uniform, rectangular, staggered mesh based on the marker and cell placement of variables. Convective terms are differenced using a weighted average of centered and donor cell differencing to ensure numerical stability. Complete descriptions of MAGMA governing equations, numerics, code structure, and code verification are provided. 14 refs.« less

  12. Numerical investigation of two- and three-dimensional heat transfer in expander cycle engines

    NASA Technical Reports Server (NTRS)

    Burch, Robert L.; Cheung, Fan-Bill

    1993-01-01

    The concept of using tube canting for enhancing the hot-side convective heat transfer in a cross-stream tubular rocket combustion chamber is evaluated using a CFD technique in this study. The heat transfer at the combustor wall is determined from the flow field generated by a modified version of the PARC Navier-Stokes Code, using the actual dimensions, fluid properties, and design parameters of a split-expander demonstrator cycle engine. The effects of artificial dissipation on convergence and solution accuracy are investigated. Heat transfer results predicted by the code are presented. The use of CFD in heat transfer calculations is critically examined to demonstrate the care needed in the use of artificial dissipation for good convergence and accurate solutions.

  13. Numerical modeling of crystal growth on a centrifuge for unstable natural convection configurations

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Downey, J. P.; Curreri, P. A.; Jones, J. C.

    1993-01-01

    The fluid mechanics associated with crystal growth processes on centrifuges is modeled using 2D and 3D models. Two-dimensional calculations show that flow bifurcations exist in such crystal growth configurations where the ampoule is oriented in the same direction as the resultant gravity vector and a temperature gradient is imposed on the melt. A scaling analysis is formulated to predict the flow transition point from the natural convection dominated regime to the Coriolis force dominated regime. Results of 3D calculations are presented for two thermal configurations of the crystal growth cell: top heated and bottom heated with respect to the centrifugal acceleration. In the top heated configuration, a substantial reduction in the convection intensity within the melt can be attained by centrifuge operations, and close to steady diffusion-limited thermal conditions can be achieved over a narrow range of the imposed microgravity level. In the bottom heated configuration the Coriolis force has a stabilizing effect on fluid motion by delaying the onset of unsteady convection.

  14. Numerical study of MHD nanofluid flow and heat transfer past a bidirectional exponentially stretching sheet

    NASA Astrophysics Data System (ADS)

    Ahmad, Rida; Mustafa, M.; Hayat, T.; Alsaedi, A.

    2016-06-01

    Recent advancements in nanotechnology have led to the discovery of new generation coolants known as nanofluids. Nanofluids possess novel and unique characteristics which are fruitful in numerous cooling applications. Current work is undertaken to address the heat transfer in MHD three-dimensional flow of magnetic nanofluid (ferrofluid) over a bidirectional exponentially stretching sheet. The base fluid is considered as water which consists of magnetite-Fe3O4 nanoparticles. Exponentially varying surface temperature distribution is accounted. Problem formulation is presented through the Maxwell models for effective electrical conductivity and effective thermal conductivity of nanofluid. Similarity transformations give rise to a coupled non-linear differential system which is solved numerically. Appreciable growth in the convective heat transfer coefficient is observed when nanoparticle volume fraction is augmented. Temperature exponent parameter serves to enhance the heat transfer from the surface. Moreover the skin friction coefficient is directly proportional to both magnetic field strength and nanoparticle volume fraction.

  15. Why Do Elephants Flap Their Ears?

    NASA Astrophysics Data System (ADS)

    Koffi, Moise; Jiji, Latif; Andreopoulos, Yiannis

    2009-11-01

    It is estimated that a 4200 kg elephant generates as much as 5.12 kW of heat. How the elephant dissipates its metabolic heat and regulates its body temperature has been investigated during the past seven decades. Findings and conclusions differ sharply. The high rate of metabolic heat coupled with low surface area to volume ratio and the absence of sweat glands eliminate surface convection as the primary mechanism for heat removal. Noting that the elephant ears have high surface area to volume ratio and an extensive vascular network, ear flapping is thought to be the principal thermoregulatory mechanism. A computational and experimental program is carried out to examine flow and heat transfer characteristics. The ear is modeled as a uniformly heated oscillating rectangular plate. Our computational work involves a three-dimensional time dependent CFD code with heat transfer capabilities to obtain predictions of the flow field and surface temperature distributions. This information was used to design an experimental setup with a uniformly heated plate of size 0.2m x 0.3m oscillating at 1.6 cycles per second. Results show that surface temperature increases and reaches a steady periodic oscillation after a period of transient oscillation. The role of the vortices shed off the plate in heat transfer enhancement will be discussed.

  16. Temperature Histories in Ceramic-Insulated Heat-Sink Nozzle

    NASA Technical Reports Server (NTRS)

    Ciepluch, Carl C.

    1960-01-01

    Temperature histories were calculated for a composite nozzle wall by a simplified numerical integration calculation procedure. These calculations indicated that there is a unique ratio of insulation and metal heat-sink thickness that will minimize total wall thickness for a given operating condition and required running time. The optimum insulation and metal thickness will vary throughout the nozzle as a result of the variation in heat-transfer rate. The use of low chamber pressure results in a significant increase in the maximum running time of a given weight nozzle. Experimentally measured wall temperatures were lower than those calculated. This was due in part to the assumption of one-dimensional or slab heat flow in the calculation procedure.

  17. Pore water pressure variations in Subpermafrost groundwater : Numerical modeling compared with experimental modeling

    NASA Astrophysics Data System (ADS)

    Rivière, Agnès.; Goncalves, Julio; Jost, Anne; Font, Marianne

    2010-05-01

    Development and degradation of permafrost directly affect numerous hydrogeological processes such as thermal regime, exchange between river and groundwater, groundwater flows patterns and groundwater recharge (Michel, 1994). Groundwater in permafrost area is subdivided into two zones: suprapermafrost and subpermafrost which are separated by permafrost. As a result of the volumetric expansion of water upon freezing and assuming ice lenses and frost heave do not form freezing in a saturated aquifer, the progressive formation of permafrost leads to the pressurization of the subpermafrost groundwater (Wang, 2006). Therefore disappearance or aggradation of permafrost modifies the confined or unconfined state of subpermafrost groundwater. Our study focuses on modifications of pore water pressure of subpermafrost groundwater which could appear during thawing and freezing of soil. Numerical simulation allows elucidation of some of these processes. Our numerical model accounts for phase changes for coupled heat transport and variably saturated flow involving cycles of freezing and thawing. The flow model is a combination of a one-dimensional channel flow model which uses Manning-Strickler equation and a two-dimensional vertically groundwater flow model using Richards equation. Numerical simulation of heat transport consisted in a two dimensional model accounting for the effects of latent heat of phase change of water associated with melting/freezing cycles which incorporated the advection-diffusion equation describing heat-transfer in porous media. The change of hydraulic conductivity and thermal conductivity are considered by our numerical model. The model was evaluated by comparing predictions with data from laboratory freezing experiments. Experimental design was undertaken at the Laboratory M2C (Univesité de Caen-Basse Normandie, CNRS, France). The device consisted of a Plexiglas box insulated on all sides except on the top. Precipitation and ambient temperature are imposed. The Plexiglas box is filled with glass beads of which hydraulics and thermal parameters are known. All parameters required for our numerical model are controlled and continuous monitoring of soil temperatures and pore water pressure are reported. Our results of experimental model allow us to test the relevance of processes described by our numerical simulation and to quantify the impact of permafrost on pore water pressure of subpermafrost groundwater during a cycle of freezing and thawing. Michel, Frederick A. and Van Everdingen, Robert O. 1994. Changes in hydrogeologic regimes in permafrost regions due to climatic change. Permafrost and Periglacial Processes, 5: 191-195. Wang, Chi-yuen and Manga, Michael and Hanna, Jeffrey C. 2006. Can freezing cause floods on Mars? Geophysical Research Letters, 33

  18. Noncontact thermophysical property measurement by levitation of a thin liquid disk.

    PubMed

    Lee, Sungho; Ohsaka, Kenichi; Rednikov, Alexei; Sadhal, Satwindar Singh

    2006-09-01

    The purpose of the current research program is to develop techniques for noncontact measurement of thermophysical properties of highly viscous liquids. The application would be for undercooled liquids that remain liquid even below the freezing point when suspended without a container. The approach being used here consists of carrying out thermocapillary flow and temperature measurements in a horizontally levitated, laser-heated thin glycerin disk. In a levitated state, the disk is flattened by an intense acoustic field. Such a disk has the advantage of a relatively low gravitational potential over the thickness, thus mitigating the buoyancy effects, and helping isolate the thermocapillary-driven flows. For the purpose of predicting the thermal properties from these measurements, it is necessary to develop a theoretical model of the thermal processes. Such a model has been developed, and, on the basis of the observed shape, the thickness is taken to be a minimum at the center with a gentle parabolic profile at both the top and the bottom surfaces. This minimum thickness is much smaller than the radius of disk drop and the ratio of thickness to radius becomes much less than unity. It is heated by laser beam in normal direction to the edge. A general three-dimensional momentum equation is transformed into a two-variable vorticity equation. For the highly viscous liquid, a few millimeters in size, Stokes equations adequately describe the flow. Additional approximations are made by considering average flow properties over the disk thickness in a manner similar to lubrication theory. In the same way, the three-dimensional energy equation is averaged over the disk thickness. With convection boundary condition at the surfaces, we integrate a general three-dimensional energy equation to get an averaged two-dimensional energy equation that has convection terms, conduction terms, and additional source terms corresponding to a Biot number. A finite-difference numerical approach is used to solve these steady-state governing equations in the cylindrical coordinate system. The calculations yield the temperature distribution and the thermally driven flow field. These results have been used to formulate a model that, in conjunction with experiments, has enabled the development of a method for the noncontact thermophysical property measurement of liquids.

  19. LION4; LION; three-dimensional temperature distribution program. [CDC6600,7600; UNIVAC1108; IBM360,370; FORTRAN IV and ASCENT (CDC6600,7600), FORTRAN IV (UNIVAC1108A,B and IBM360,370)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binney, E.J.

    LION4 is a computer program for calculating one-, two-, or three-dimensional transient and steady-state temperature distributions in reactor and reactor plant components. It is used primarily for thermal-structural analyses. It utilizes finite difference techniques with first-order forward difference integration and is capable of handling a wide variety of bounding conditions. Heat transfer situations accommodated include forced and free convection in both reduced and fully-automated temperature dependent forms, coolant flow effects, a limited thermal radiation capability, a stationary or stagnant fluid gap, a dual dependency (temperature difference and temperature level) heat transfer, an alternative heat transfer mode comparison and selection facilitymore » combined with heat flux direction sensor, and any form of time-dependent boundary temperatures. The program, which handles time and space dependent internal heat generation, can also provide temperature dependent material properties with limited non-isotropic properties. User-oriented capabilities available include temperature means with various weightings and a complete heat flow rate surveillance system.CDC6600,7600;UNIVAC1108;IBM360,370; FORTRAN IV and ASCENT (CDC6600,7600), FORTRAN IV (UNIVAC1108A,B and IBM360,370); SCOPE (CDC6600,7600), EXEC8 (UNIVAC1108A,B), OS/360,370 (IBM360,370); The CDC6600 version plotter routine LAPL4 is used to produce the input required by the associated CalComp plotter for graphical output. The IBM360 version requires 350K for execution and one additional input/output unit besides the standard units.« less

  20. Assessment of Aerothermal Heating Augmentation Attributed to Surface Catalysis in High Enthalpy Shock Tunnel Flows

    NASA Astrophysics Data System (ADS)

    MacLean, M.; Holden, M.

    2009-01-01

    The effect of gas/surface interaction in making CFD predictions of convective heating has been considered with application to ground tests performed in high enthalpy shock tunnels where additional heating augmentation attributable to surface recombination has been observed for nitrogen, air and carbon dioxide flows. For test articles constructed of stainless steel and aluminum, measurements have been made with several types of heat transfer instrumentation including thin- film, calorimeter, and coaxial thermocouple sensors. These experiments have been modeled by computations made with the high quality, chemically reacting, Navier- Stokes solver, DPLR and the heating results compared. Some typical cases considered include results on an axisymmetric sphere-cone, axisymmetric spherical capsule, spherical capsule at angle of attack, and two- dimensional cylinder. In nitrogen flows, cases considered show a recombination probability on the order of 10-3, which agrees with published data. In many cases in air and CO2, measurements exceeding the predicted level of convective heating have been observed which are consistent with approximately complete recombination (to O2/N2 or CO2) on the surface of the model (sometimes called a super-catalytic wall). It has been recognized that the conclusion that this behavior is tied to an excessively high degree of catalytic efficiency is dependent on the current understanding of the freestream and shock-layer state of the gas.

  1. SEAWAT-based simulation of axisymmetric heat transport.

    PubMed

    Vandenbohede, Alexander; Louwyck, Andy; Vlamynck, Nele

    2014-01-01

    Simulation of heat transport has its applications in geothermal exploitation of aquifers and the analysis of temperature dependent chemical reactions. Under homogeneous conditions and in the absence of a regional hydraulic gradient, groundwater flow and heat transport from or to a well exhibit radial symmetry, and governing equations are reduced by one dimension (1D) which increases computational efficiency importantly. Solute transport codes can simulate heat transport and input parameters may be modified such that the Cartesian geometry can handle radial flow. In this article, SEAWAT is evaluated as simulator for heat transport under radial flow conditions. The 1971, 1D analytical solution of Gelhar and Collins is used to compare axisymmetric transport with retardation (i.e., as a result of thermal equilibrium between fluid and solid) and a large diffusion (conduction). It is shown that an axisymmetric simulation compares well with a fully three dimensional (3D) simulation of an aquifer thermal energy storage systems. The influence of grid discretization, solver parameters, and advection solution is illustrated. Because of the high diffusion to simulate conduction, convergence criterion for heat transport must be set much smaller (10(-10) ) than for solute transport (10(-6) ). Grid discretization should be considered carefully, in particular the subdivision of the screen interval. On the other hand, different methods to calculate the pumping or injection rate distribution over different nodes of a multilayer well lead to small differences only. © 2013, National Ground Water Association.

  2. On the Onset of Thermocapillary Convection in a Liquid bridge

    NASA Astrophysics Data System (ADS)

    Shukla, Kedar

    Thermo capillary convection refers to motion driven by the application of a temperature gradient along the interface. The temperature gradient may be large enough to cause oscillations in the basic state of the fluid. The vast majority of the liquid bridge investigations performed aboard on the sounding rockets or the space shuttles [1, 2] focused on the float zone processes because the process has been regarded as a candidate for the space based manufacturing of semiconductor materials. Although the buoyancy effect is avoided in the floating zone techniques during space operation, it experiences surface tension driven convection initiated by the temperature gradient along the free surface of the zone [3]. The appearance of the oscillatory thermo capillary convection couples with the solidification processes leads to the striations and results into the degradation of the crystals [4, 5]. The half zone consists of the liquid bridge held between two solid, planar end walls across which a temperature gradient is applied. Thus the basic state of thermo capillary convection consists of a single toroidal roll with the surface motion directed downwards from the hot upper disc to the cold lower one. Bennacer et al [6] studied how different axial profiles of the heat flux affect the flow patterns and transition from ax symmetric steady to ax symmetric oscillatory flow. The three dimensional instability of liquid bridges located between isothermal differentially heated disks were studied by several authors [7-14]. The interface deformation caused by the gravity jitters depends on the volume of the liquid bridge and cause changes in the physical properties of the liquid, which ultimately influence the basic state of the fluid [15-16]. The paper discusses Marangoni convection in a liquid bridge subject to g-jitters in a micro gravity environment. The parametric excitement of the liquid bridge with surface tension variation along with the free surface is considered. We will follow the method of Shukla [17] for Boussinesq flow to model the convective instability in an axisymmetric flow in the liquid bridge. The surface deformation caused by g-jitters and its effects on the onset of oscillatory flow will be examined. References: [1] Grodzka, P.G. and Bannister, T.C., Heat flow and convection demonstration experiments abord Appolo 14, Science (Washington, D.C.), Vol.176, May 1972, pp. 506-508. [2] Bannister, T C., etal, NASA, TMX-64772, 1973. [3] Shukla, K.N. Hydrodynamics of Diffusive Processes, Applied Mechanics Review, Vol.54, No.5, 2001, pp. 391-404. [4] Chen, G., Lizee, A., Roux, B.,, Bifurcation analysis of the thermo capillary convection in cylindrical liquid bridge, J Crystal growth, Vol. 180, 1997, pp.638-647. [5] Imaishi, N., Yasuhiro, S., Akiyama, Y and Yoda, S., Numerical simulation of oscillatory Marangoni flow in half zone liquid bridge of low Prandtl number fluid, J., Crystal Growth, Vol. 230, 2001, pp. 164-171. [6] Bennacer, R., Mohamad, A.A., Leonardi, E., The effect o heat flux distribution on thermo capillary convection in a sideheated liquid bridge, Numer. Heat transfer, Part A, vol. 41, 2002, pp. 657-671. [7] Kuhlmann, H C., Rath, H J., Hydrodynamic instabilities in Cylindrical thermocapillary liquid bridges, J Fluid Mech., Vol. 247,1993, pp. 247-274. [8] Wanshura, M., Shevtsova, V M, Kuhlmann, H C and Rath, H J., Convective instability in thermocapillary liquid bridges, Phys. Fluids, Vol. 7, 1995, pp. 912-925. [9] Kasperski, G., Batoul, A., Labrosse, G., Up to the unsteadiness of axisymmetric thermocapillary low in a laterally heated liquid bridge, Phys. Fluids, Vol. 12, 2000, pp. 103-119. [10] Lappa, M., Savino, R., Monti, R., Three dimensional numerical simulation of Marangoni instabilities in non cylindrical liquid bridges in microgravity, Int. J Heat Mass Transfer, Vol. 44, 2001, pp. 1983-2003 [11] Zeng, Z, Mizuseki, H., Simamura, K., Fukud, T. Higashino, K, Kawaazoe, Y., Three dimensional oscillatory thermocapillary convection in liquid bridgeunder microgravity, Int. J heat Mass Transf., Vol. 44, 2001, pp. 3765-3774. [12] Kamotani, Y., Wang, L, Hatta, S., Wang, A., Yoda, S., Free surface heat loss effect on Oscillatory thermocapillary flow in a liquid bridges of high Prandtl number fluids, Int. J heat Mass Transfer, Vol. 46, 2003, pp. 3211-3220.

  3. Comparison of the Calculations Results of Heat Exchange Between a Single-Family Building and the Ground Obtained with the Quasi-Stationary and 3-D Transient Models. Part 2: Intermittent and Reduced Heating Mode

    NASA Astrophysics Data System (ADS)

    Staszczuk, Anna

    2017-03-01

    The paper provides comparative results of calculations of heat exchange between ground and typical residential buildings using simplified (quasi-stationary) and more accurate (transient, three-dimensional) methods. Such characteristics as building's geometry, basement hollow and construction of ground touching assemblies were considered including intermittent and reduced heating mode. The calculations with simplified methods were conducted in accordance with currently valid norm: PN-EN ISO 13370:2008. Thermal performance of buildings. Heat transfer via the ground. Calculation methods. Comparative estimates concerning transient, 3-D, heat flow were performed with computer software WUFI®plus. The differences of heat exchange obtained using more exact and simplified methods have been specified as a result of the analysis.

  4. Dynamics of Cross-Shore Thermal Exchange Over Nonuniform Bathymetry

    NASA Astrophysics Data System (ADS)

    Safaie, A.; Davis, K. A.; Pawlak, G. R.

    2016-02-01

    The hydrodynamics of cross-shelf circulation on the inner shelf influence coastal ecosystems through the transport of heat, salt, nutrients, and planktonic organisms. While cross-shelf exchange on wide continental shelves has received a fair amount of attention in literature, the mechanisms for cross-shelf exchange on narrow shelves with steep, rough, and highly irregular bathymetry, characteristic of coral reef shorelines, is not well understood. Previous observational studies from reefs at Eilat, Israel and Oahu, Hawaii, have demonstrated the importance of surface heat flux in driving cross-shore transport. While both sites experienced offshore surface flow during daytime warming periods and offshore flow near the bed during nighttime cooling, the phase differences between the surface heat fluxes and thermal responses at the two sites indicate different dynamic flow regimes based on momentum and thermal balances. This study examines the dynamical structure of thermally driven flows using numerical modeling to investigate the hypothesis that thermally driven baroclinic exchange is important to cross-shore circulation for tropical coastlines. We use the open-source Regional Ocean Modeling System (ROMS), a free-surface, three-dimensional circulation model, considering a simple wedge case with uniform bathymetry in the alongshore direction, and heat flux applied uniformly to the surface. We examine different flow regimes using scaling of the momentum and thermal balance equations. We also explore the parameter space for the momentum balance describing cross-shore thermal exchange, and thoroughly characterize the exchange structure by investigating the dominant forcing regimes, the mechanisms responsible for modulating thermal circulation, and the effects of temporal variations in vertical mixing and heating/cooling buoyancy flux. Results are compared against existing data sets to evaluate the ability of the model to represent these flows.

  5. Temperature decline thermography for laminar-turbulent transition detection in aerodynamics

    NASA Astrophysics Data System (ADS)

    von Hoesslin, Stefan; Stadlbauer, Martin; Gruendmayer, Juergen; Kähler, Christian J.

    2017-09-01

    Detailed knowledge about laminar-turbulent transition and heat transfer distribution of flows around complex aerodynamic components are crucial to achieve highest efficiencies in modern aerodynamical systems. Several measurement techniques have been developed to determine those parameters either quantitatively or qualitatively. Most of them require extensive instrumentation or give unreliable results as the boundary conditions are often not known with the required precision. This work introduces the simple and robust temperature decline method to qualitatively detect the laminar-turbulent transition and the respective heat transfer coefficients on a surface exposed to an air flow, according to patent application Stadlbauer et al. (Patentnr. WO2014198251 A1, 2014). This method provides results which are less sensitive to control parameters such as the heat conduction into the blade material and temperature inhomogeneities in the flow or blade. This method was applied to measurements with NACA0018 airfoils exposed to the flow of a calibration-free jet at various Reynolds numbers and angles of attack. For data analysis, a post-processing method was developed and qualified to determine a quantity proportional to the heat transfer coefficient into the flow. By plotting this quantity for each pixel of the surface, a qualitative, two-dimensional heat transfer map was obtained. The results clearly depicted the areas of onset and end of transition over the full span of the model and agreed with the expected behavior based on the respective flow condition. To validate the approach, surface hotfilm measurements were conducted simultaneously on the same NACA profile. Both techniques showed excellent agreement. The temperature decline method allows to visualize laminar-turbulent transitions on static or moving parts and can be applied on a very broad range of scales—from tiny airfoils up to large airplane wings.

  6. Heat-transfer distributions on biconics at incidence in hypersonic-hypervelocity He, N2, air, and CO2 flows

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Micol, J. R.; Gnoffo, P. A.; Wilder, S. E.

    1983-01-01

    Laminar heat transfer rates were measured on spherically blunted, 13 deg/7 deg on axis and bent biconics (fore cone bent 7 deg upward relative to aft cone) at hypersonic hypervelocity flow conditions in the Langley Expansion Tube. Freestream velocities from 4.5 to 6.9 km/sec and Mach numbers from 6 to 9 were generated using helium, nitrogen, air, and carbon dioxide test gases, resulting in normal shock density ratios from 4 to 19. Angle of attack, referenced to the axis of the aft cone, was varied from 0 to 20 deg in 4 deg increments. The effect of nose bend, angle of attack, and real gas phenomena on heating distributions are presented along with comparisons of measurement to prediction from a code which solves the three dimensional parabolized Navier-Stokes equations.

  7. Numerical simulation of supersonic gap flow.

    PubMed

    Jing, Xu; Haiming, Huang; Guo, Huang; Song, Mo

    2015-01-01

    Various gaps in the surface of the supersonic aircraft have a significant effect on airflows. In order to predict the effects of attack angle, Mach number and width-to-depth ratio of gap on the local aerodynamic heating environment of supersonic flow, two-dimensional compressible Navier-Stokes equations are solved by the finite volume method, where convective flux of space term adopts the Roe format, and discretization of time term is achieved by 5-step Runge-Kutta algorithm. The numerical results reveal that the heat flux ratio is U-shaped distribution on the gap wall and maximum at the windward corner of the gap. The heat flux ratio decreases as the gap depth and Mach number increase, however, it increases as the attack angle increases. In addition, it is important to find that chamfer in the windward corner can effectively reduce gap effect coefficient. The study will be helpful for the design of the thermal protection system in reentry vehicles.

  8. Closed-form solution of temperature and heat flux in embedded cooling channels

    NASA Astrophysics Data System (ADS)

    Griggs, Steven Craig

    1997-11-01

    An analytical method is discussed for predicting temperature in a layered composite material with embedded cooling channels. The cooling channels are embedded in the material to maintain its temperature at acceptable levels. Problems of this type are encountered in the aerospace industry and include high-temperature or high-heat-flux protection for advanced composite-material skins of high-speed air vehicles; thermal boundary-layer flow control on supersonic transports; or infrared signature suppression on military vehicles. A Green's function solution of the diffusion equation is used to simultaneously predict the global and localized effects of temperature in the material and in the embedded cooling channels. The integral method is used to solve the energy equation with fluid flow to find the solution of temperature and heat flux in the cooling fluid and material simultaneously. This method of calculation preserves the three-dimensional nature of this problem.

  9. Numerical investigation of a heat transfer characteristics of an impingement cooling system with non-uniform temperature on a cooled surface

    NASA Astrophysics Data System (ADS)

    Marzec, K.; Kucaba-Pietal, A.

    2016-09-01

    A series of numerical analysis have been performed to investigate heat transfer characteristics of an impingement cooling array of ten jets directed to the flat surface with different heat flux qw(x). A three-dimensional finite element model was used to solve equations of heat and mass transfer. The study focused on thermal stresses reduction on a cooled surface and aims at answering the question how the Nusselt number distribution on the cooled surface is affected by various inlet flow parameters for different heat flux distributions. The setup consists of a cylindrical plenum with an inline array of ten impingement jets. Simulation has been performed using the Computational Fluid Dynamics (CFD) code Ansys CFX. The k - ω shear stress transport (SST) turbulence model is used in calculations. The numerical analysis of the different mesh density results in good convergence of the GCI index, what excluded mesh size dependency. The physical model is simplified by using the steady state analysis and the incompressible and viscous flow of the fluid.

  10. Forced convection flow boiling and two-phase flow phenomena in a microchannel

    NASA Astrophysics Data System (ADS)

    Na, Yun Whan

    2008-07-01

    The present study was performed to numerically analyze the evaporation phenomena through the liquid-vapor interface and to investigate bubble dynamics and heat transfer behavior during forced convective flow boiling in a microchannel. Flow instabilities of two-phase flow boiling in a microchannel were studied as well. The main objective of this research is to investigate the fundamental mechanisms of two-phase flow boiling in a microchannel and provide predictive tools to design thermal management systems, for example, microchannel heat sinks. The numerical results obtained from this study were qualitatively and quantitatively compared with experimental results in the open literature. Physical and mathematical models, accounting for evaporating phenomena through the liquid-vapor interface in a microchannel at constant heat flux and constant wall temperature, have been developed, respectively. The heat transfer mechanism is affected by the dominant heat conduction through the thin liquid film and vaporization at the liquid-vapor interface. The thickness of the liquid film and the pressure of the liquid and vapor phases were simultaneously solved by the governing differential equations. The developed semi-analytical evaporation model that takes into account of the interfacial phenomena and surface tension effects was used to obtain solutions numerically using the fourth-order Runge-Kutta method. The effects of heat flux 19 and wall temperature on the liquid film were evaluated. The obtained pressure drops in a microchannel were qualitatively consistent with the experimental results of Qu and Mudawar (2004). Forced convective flow boiling in a single microchannel with different channel heights was studied through a numerical simulation to investigate bubble dynamics, flow patterns, and heat transfer. The momentum and energy equations were solved using the finite volume method while the liquid-vapor interface of a bubble is captured using the VOF (Volume of Fluid) technique. The effects of different constant heat fluxes and different channel heights on the boiling mechanisms were investigated. The effects of liquid velocity on the bubble departure diameter were analyzed. The obtained results showed that the wall superheats at the position of nucleate boiling are relatively independent of the mass flow rates at the same channel height. The obtained results, however, showed that the heat flux at the onset of nucleate boiling strongly depends on the channel height. With a decrease of the channel height and an increase of the liquid velocity at the channel inlet, the departure diameter of a bubble was smaller. The periodic flow patterns, such as the bubbly flow, elongated slug flow, and churn flow were observed in the microchannel. Flow instabilities of two-phase flow boiling in a trapezoidal microchannel using a three-dimensional model were investigated. Fluctuation behaviors of flow boiling parameters such as wall temperature and inlet pressure caused by periodic flow patterns were studied at different heat fluxes and mass fluxes. The numerical results showed large amplitude and short period oscillations for wall temperature and inlet pressure fluctuations. Stable and unstable flow boiling regime with short period oscillations were investigated. Those flow boiling regimes were not listed in stable and unstable boiling regime map proposed by Wang et al. (2007).

  11. Investigation of Boundary Layer Disturbances Caused by Periodic Heating of a Thin Ribbon

    DTIC Science & Technology

    1988-03-01

    boundary layer. To obtain quantitative information about the development of these waves, they introduced a two-dimensional artificial disturbance into the...AF IT a. Thermo Systems Inc. (TSI) IFA-iO Intellegent Flow Analyzer Anemometry System b. TSI Model 1218-20 Hot Film Boundary Layer Probe c. Zenith Z

  12. Two-dimensional viscous flow computations of hypersonic scramjet nozzle flowfields at design and off-design conditions

    NASA Technical Reports Server (NTRS)

    Harloff, G. J.; Lai, H. T.; Nelson, E. S.

    1988-01-01

    The PARC2D code has been selected to analyze the flowfields of a representative hypersonic scramjet nozzle over a range of flight conditions from Mach 3 to 20. The flowfields, wall pressures, wall skin friction values, heat transfer values and overall nozzle performance are presented.

  13. Fire behavior sensor package remote trigger design

    Treesearch

    Dan Jimenez; Jason Forthofer; James Reardon; Bret Butler

    2007-01-01

    Fire behavior characteristics (such as temperature, radiant and total heat flux, 2- and 3-dimensional velocities, and air flow) are extremely difficult to measure insitu. Although insitu sensor packages are capable of such measurements in realtime, it is also essential to acquire video documentation as a means of better understanding the fire behavior data recorded by...

  14. Three-dimensional wave evolution on electrified falling films

    NASA Astrophysics Data System (ADS)

    Tomlin, Ruben; Papageorgiou, Demetrios; Pavliotis, Greg

    2016-11-01

    We consider the full three-dimensional model for a thin viscous liquid film completely wetting a flat infinite solid substrate at some non-zero angle to the horizontal, with an electric field normal to the substrate far from the flow. Thin film flows have applications in cooling processes. Many studies have shown that the presence of interfacial waves increases heat transfer by orders of magnitude due to film thinning and convection effects. A long-wave asymptotics procedure yields a Kuramoto-Sivashinsky equation with a non-local term to model the weakly nonlinear evolution of the interface dynamics for overlying film arrangements, with a restriction on the electric field strength. The non-local term is always linearly destabilising and produces growth rates proportional to the cube of the magnitude of the wavenumber vector. A sufficiently strong electric field is able promote non-trivial dynamics for subcritical Reynolds number flows where the flat interface is stable in the absence of an electric field. We present numerical simulations where we observe rich dynamical behavior with competing attractors, including "snaking" travelling waves and other fully three-dimensional wave formations. EPSRC studentship (RJT).

  15. Investigation of thermal protection systems effects on viscid and inviscid flow fields for manned entry systems

    NASA Technical Reports Server (NTRS)

    Bartlett, E. P.; Morse, H. L.; Tong, H.

    1971-01-01

    Procedures and methods for predicting aerothermodynamic heating to delta orbiter shuttle vehicles were reviewed. A number of approximate methods were found to be adequate for large scale parameter studies, but are considered inadequate for final design calculations. It is recommended that final design calculations be based on a computer code which accounts for nonequilibrium chemistry, streamline spreading, entropy swallowing, and turbulence. It is further recommended that this code be developed with the intent that it can be directly coupled with an exact inviscid flow field calculation when the latter becomes available. A nonsimilar, equilibrium chemistry computer code (BLIMP) was used to evaluate the effects of entropy swallowing, turbulence, and various three dimensional approximations. These solutions were compared with available wind tunnel data. It was found study that, for wind tunnel conditions, the effect of entropy swallowing and three dimensionality are small for laminar boundary layers but entropy swallowing causes a significant increase in turbulent heat transfer. However, it is noted that even small effects (say, 10-20%) may be important for the shuttle reusability concept.

  16. CFD study of a simple orifice pulse tube cooler

    NASA Astrophysics Data System (ADS)

    Zhang, X. B.; Qiu, L. M.; Gan, Z. H.; He, Y. L.

    2007-05-01

    Pulse tube cooler (PTC) has the advantages of long-life and low vibration over the conventional cryocoolers, such as G-M and Stirling coolers because of the absence of moving parts in low temperature. This paper performs a two-dimensional axis-symmetric computational fluid dynamic (CFD) simulation of a GM-type simple orifice PTC (OPTC). The detailed modeling process and the general results such as the phase difference between velocity and pressure at cold end, the temperature profiles along the wall as well as the temperature oscillations at cold end with different heat loads are presented. Emphases are put on analyzing the complicated phenomena of multi-dimensional flow and heat transfer in the pulse tube under conditions of oscillating pressure. Swirling flow pattern in the pulse tube is observed and the mechanism of formation is analyzed in details, which is further validated by modeling a basic PTC. The swirl causes undesirable mixing in the thermally stratified fluid and is partially responsible for the poor overall performance of the cooler, such as unsteady cold-end temperature.

  17. Modeling Film-Coolant Flow Characteristics at the Exit of Shower-Head Holes

    NASA Technical Reports Server (NTRS)

    Garg, Vijay K.; Gaugler, R. E. (Technical Monitor)

    2000-01-01

    The coolant flow characteristics at the hole exits of a film-cooled blade are derived from an earlier analysis where the hole pipes and coolant plenum were also discretized. The blade chosen is the VKI rotor with three staggered rows of shower-head holes. The present analysis applies these flow characteristics at the shower-head hole exits. A multi-block three-dimensional Navier-Stokes code with Wilcox's k-omega model is used to compute the heat transfer coefficient on the film-cooled turbine blade. A reasonably good comparison with the experimental data as well as with the more complete earlier analysis where the hole pipes and coolant plenum were also gridded is obtained. If the 1/7th power law is assumed for the coolant flow characteristics at the hole exits, considerable differences in the heat transfer coefficient on the blade surface, specially in the leading-edge region, are observed even though the span-averaged values of h (heat transfer coefficient based on T(sub o)-T(sub w)) match well with the experimental data. This calls for span-resolved experimental data near film-cooling holes on a blade for better validation of the code.

  18. Heat Transfer to Surfaces of Finite Catalytic Activity in Frozen Dissociated Hypersonic Flow

    NASA Technical Reports Server (NTRS)

    Chung, Paul M.; Anderson, Aemer D.

    1961-01-01

    The heat transfer due to catalytic recombination of a partially dissociated diatomic gas along the surfaces of two-dimensional and axisymmetric bodies with finite catalytic efficiencies is studied analytically. An integral method is employed resulting in simple yet relatively complete solutions for the particular configurations considered. A closed form solution is derived which enables one to calculate atom mass-fraction distribution, therefore catalytic heat transfer distribution, along the surface of a flat plate in frozen compressible flow with and without transpiration. Numerical calculations are made to determine the atom mass-fraction distribution along an axisymmetric conical body with spherical nose in frozen hypersonic compressible flow. A simple solution based on a local similarity concept is found to be in good agreement with these numerical calculations. The conditions are given for which the local similarity solution is expected to be satisfactory. The limitations on the practical application of the analysis to the flight of the blunt bodies in the atmosphere are discussed. The use of boundary-layer theory and the assumption of frozen flow restrict application of the analysis to altitudes between about 150,000 and 250,000 feet.

  19. Computations of the three-dimensional flow and heat transfer within a coolant passage of a radial turbine blade

    NASA Technical Reports Server (NTRS)

    Shih, T. I.-P.; Roelke, R. J.; Steinthorsson, E.

    1991-01-01

    A numerical code is developed for computing three-dimensional, turbulent, compressible flow within coolant passages of turbine blades. The code is based on a formulation of the compressible Navier-Stokes equations in a rotating frame of reference in which the velocity dependent variable is specified with respect to the rotating frame instead of the inertial frame. The algorithm employed to obtain solutions to the governing equation is a finite-volume LU algorithm that allows convection, source, as well as diffusion terms to be treated implicitly. In this study, all convection terms are upwind differenced by using flux-vector splitting, and all diffusion terms are centrally differenced. This paper describes the formulation and algorithm employed in the code. Some computed solutions for the flow within a coolant passage of a radial turbine are also presented.

  20. Validation of a CFD Methodology for Variable Speed Power Turbine Relevant Conditions

    NASA Technical Reports Server (NTRS)

    Ameri, Ali A.; Giel, Paul W.; McVetta, Ashlie B.

    2013-01-01

    Analysis tools are needed to investigate aerodynamic performance of Variable-Speed Power Turbines (VSPT) for rotorcraft applications. The VSPT operates at low Reynolds numbers (transitional flow) and over a wide range of incidence. Previously, the capability of a published three-equation turbulence model to predict accurately the transition location for three-dimensional heat transfer problems was assessed. In this paper, the results of a post-diction exercise using a three-dimensional flow in a transonic linear cascade comprising VSPT blading are presented. The measured blade pressure distributions and exit total pressure and flow angles for two incidence angles corresponding to cruise (i = 5.8deg) and takeoff (i = -36.7deg) were used for this study. For the higher loading condition of cruise and the negative incidence condition of takeoff, overall agreement with data may be considered satisfactory but areas of needed improvement are also indicated.

  1. A k-Omega Turbulence Model for Quasi-Three-Dimensional Turbomachinery Flows

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.

    1995-01-01

    A two-equation k-omega turbulence model has been developed and applied to a quasi-three-dimensional viscous analysis code for blade-to-blade flows in turbomachinery. the code includes the effects of rotation, radius change, and variable stream sheet thickness. The flow equations are given and the explicit runge-Kutta solution scheme is described. the k-omega model equations are also given and the upwind implicit approximate-factorization solution scheme is described. Three cases were calculated: transitional flow over a flat plate, a transonic compressor rotor, and transonic turbine vane with heat transfer. Results were compared to theory, experimental data, and to results using the Baldwin-Lomax turbulence model. The two models compared reasonably well with the data and surprisingly well with each other. Although the k-omega model behaves well numerically and simulates effects of transition, freestream turbulence, and wall roughness, it was not decisively better than the Baldwin-Lomax model for the cases considered here.

  2. Flow field predictions for a slab delta wing at incidence

    NASA Technical Reports Server (NTRS)

    Conti, R. J.; Thomas, P. D.; Chou, Y. S.

    1972-01-01

    Theoretical results are presented for the structure of the hypersonic flow field of a blunt slab delta wing at moderately high angle of attack. Special attention is devoted to the interaction between the boundary layer and the inviscid entropy layer. The results are compared with experimental data. The three-dimensional inviscid flow is computed numerically by a marching finite difference method. Attention is concentrated on the windward side of the delta wing, where detailed comparisons are made with the data for shock shape and surface pressure distributions. Surface streamlines are generated, and used in the boundary layer analysis. The three-dimensional laminar boundary layer is computed numerically using a specially-developed technique based on small cross-flow in streamline coordinates. In the rear sections of the wing the boundary layer decreases drastically in the spanwise direction, so that it is still submerged in the entropy layer at the centerline, but surpasses it near the leading edge. Predicted heat transfer distributions are compared with experimental data.

  3. Modelling of the rotational moulding process for the manufacture of plastic products

    NASA Astrophysics Data System (ADS)

    Khoon, Lim Kok

    The present research is mainly focused on two-dimensional non-linear thermal modelling, numerical procedures and software development for the rotational moulding process. The RotoFEM program is developed for the rotational moulding process using finite element procedures. The program is written in the MATLAB environment. The research includes the development of new slip flow models, phase change study, warpage study and process analyses. A new slip flow methodology is derived for the heat transfer problem inside the enclosed rotating mould during the heating stage of the tumbling powder. The methodology enables the discontinuous powder to be modelled by the continuous-based finite element method. The Galerkin Finite Element Method is incorporated with the lumped-parameter system and the coincident node technique in finding the multi-interacting heat transfer solutions inside the mould. Two slip flow models arise from the slip flow methodology; they are SDM (single-layered deposition method) and MDM (multi-layered deposition method). These two models have differences in their thermal description for the internal air energy balance and the computational procedure for the deposition of the molten polymer. The SDM model assumes the macroscopic deposition of the molten polymer bed exists only between the bed and the inner mould surface. On the other hand, the MDM model allows the layer-by-layer deposition of the molten polymer bed macroscopically. In addition, the latter has a more detailed heat transfer description for the internal air inside the mould during the powder heating cycle. In slip flow models, the semi-implicit approach has been introduced to solve the final quasi-equilibrium internal air temperature during the heating cycle. A notable feature of this slip flow methodology is that the slip flow models are capable of producing good results for the internal air at the heating powder stage, without the consideration of the powder movement and changeable powder mass. This makes the modelling of the rotational moulding process much simpler. In the simulation of the cooling stage in rotational moulding, the thermal aspects of the inherent warpage problem and external-internal cooling method have been explored. The predicted internal air temperature profiles have shown that the less apparent crystallization plateau in the experimental internal air in practice could be related to warpage. Various phase change algorithms have been reviewed and compared, and thus the most convenient and considerable effective algorithm is proposed. The dimensional analysis method, expressed by means of dimensionless combinations of physical, boundary, and time variables, is utilized to study the dependence of the key thermal parameters on the processing times of rotational moulding. Lastly, the predicted results have been compared with the experimental results from two different external resources. The predicted temperature profiles of the internal air, oven times and other process conditions are consistent with the available data.

  4. COMOC: Three dimensional boundary region variant, programmer's manual

    NASA Technical Reports Server (NTRS)

    Orzechowski, J. A.; Baker, A. J.

    1974-01-01

    The three-dimensional boundary region variant of the COMOC computer program system solves the partial differential equation system governing certain three-dimensional flows of a viscous, heat conducting, multiple-species, compressible fluid including combustion. The solution is established in physical variables, using a finite element algorithm for the boundary value portion of the problem description in combination with an explicit marching technique for the initial value character. The computational lattice may be arbitrarily nonregular, and boundary condition constraints are readily applied. The theoretical foundation of the algorithm, a detailed description on the construction and operation of the program, and instructions on utilization of the many features of the code are presented.

  5. Effects of regional groundwater flow on the performance of an aquifer thermal energy storage system under continuous operation

    NASA Astrophysics Data System (ADS)

    Lee, Kun Sang

    2014-01-01

    Numerical investigations and a thermohydraulic evaluation are presented for two-well models of an aquifer thermal energy storage (ATES) system operating under a continuous flow regime. A three-dimensional numerical model for groundwater flow and heat transport is used to analyze the thermal energy storage in the aquifer. This study emphasizes the influence of regional groundwater flow on the heat transfer and storage of the system under various operation scenarios. For different parameters of the system, performances were compared in terms of the temperature of recovered water and the temperature field in the aquifer. The calculated temperature at the producing well varies within a certain range throughout the year, reflecting the seasonal (quarterly) temperature variation of the injected water. The pressure gradient across the system, which determines the direction and velocity of regional groundwater flow, has a substantial influence on the convective heat transport and performance of aquifer thermal storage. Injection/production rate and geometrical size of the aquifer used in the model also impact the predicted temperature distribution at each stage and the recovery water temperature. The hydrogeological-thermal simulation is shown to play an integral part in the prediction of performance of processes as complicated as those in ATES systems.

  6. Interactions between gravity waves and cold air outflows in a stably stratified uniform flow

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Wang, Ting-An; Weglarz, Ronald P.

    1993-01-01

    Interactions between gravity waves and cold air outflows in a stably stratified uniform flow forced by various combinations of prescribed heat sinks and sources are studied using a hydrostatic two-dimensional nonlinear numerical model. The formation time for the development of a stagnation point or reversed flow at the surface is not always directly proportional to the Froude number when wave reflections exist from upper levels. A density current is able to form by the wave-otuflow interaction, even though the Froude number is greater than a critical value. This is the result of the wave-outflow interaction shifting the flow response to a different location in the characteristic parameter space. A density current is able to form or be destroyed due to the wave-outflow interaction between a traveling gravity wave and cold air outflow. This is proved by performing experiments with a steady-state heat sink and an additional transient heat source. In a quiescent fluid, a region of cold air, convergence, and upward motion is formed after the collision between two outflows produced by two prescribed heat sinks. After the collision, the individual cold air outflows lose their own identity and merge into a single, stationary, cold air outflow region. Gravity waves tend to suppress this new stationary cold air outflow after the collision. The region of upward motion associated with the collision is confined to a very shallow layer. In a moving airstream, a density current produced by a heat sink may be suppressed or enhanced nonlinearly by an adjacent heat sink due to the wave-outflow interaction.

  7. Transient three-dimensional thermal-hydraulic analysis of nuclear reactor fuel rod arrays: general equations and numerical scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wnek, W.J.; Ramshaw, J.D.; Trapp, J.A.

    1975-11-01

    A mathematical model and a numerical solution scheme for thermal- hydraulic analysis of fuel rod arrays are given. The model alleviates the two major deficiencies associated with existing rod array analysis models, that of a correct transverse momentum equation and the capability of handling reversing and circulatory flows. Possible applications of the model include steady state and transient subchannel calculations as well as analysis of flows in heat exchangers, other engineering equipment, and porous media. (auth)

  8. Interaction between Two-Dimensional Sonic Jets and Supersonic Flow to Model Heat Addition in a Supersonic Combustor.

    DTIC Science & Technology

    1987-12-01

    pressure between two Mach 3 flows approachs absolute zero , Pb=.04 psia for Pop= 100 psia. However, viscous effects increase the base pressure. Korst theory...this problem. Acetylene was chosen as the primary fuel because of its relatively low spontaneous ignition temperature, 581 degrees Farenheit , and high...with the corresponding test section. The exit dimension could be adjusted with a screw mechanism from zero to 2.625 inches. A bracket to hold a .250

  9. Finite element study of three dimensional radiative nano-plasma flow subject to Hall and ion slip currents

    NASA Astrophysics Data System (ADS)

    Nawaz, M.; Zubair, T.

    In this article, we developed a computer code of Galerikan Finite Element method (GFEM) for three dimensional flow equations of nano-plasma fluid (blood) in the presence of uniform applied magnetic field when Hall and ion slip current are significant. Lorentz force is calculated through generalized Ohm's law with Maxwell equations. A series of numerical simulations are carried out to search ηmax and algebraic equations are solved by Gauss-Seidel method with simulation tolerance 10-8 . Simulated results for special case have an excellent agreement with the already published results. Velocity components and temperature of the nano-plasma (blood) are influenced significantly by the inclusion of nano-particles of Copper (Cu) and Silver (Ag). Heat enhancement is observed when copper and silver nonmagnetic nanoparticles are used instead of simple base fluid (conventional fluid). Radiative nature of nano-plasma in the presence of magnetic field causes a decrease in the temperature due to the transfer of heat by the electromagnetic waves. In contrast to this, due to heat dissipated by Joule heating and viscous dissipation phenomena, temperature of nano-plasmaincreases as thermal radiation parameter is increased. Thermal boundary layer thickness can be controlled by using radiative fluid instead of non-radiative fluid. Momentum boundary layer thickness can be reduced by increasing the intensity of the applied magnetic field. Temperature of plasma in the presence magnetic field is higher than the plasma in the absence of magnetic field.

  10. Heat accumulation between scans during multi-pass cutting of carbon fiber reinforced plastics

    NASA Astrophysics Data System (ADS)

    Kononenko, T. V.; Freitag, C.; Komlenok, M. S.; Weber, R.; Graf, T.; Konov, V. I.

    2018-02-01

    Matrix evaporation caused by heat accumulation between scans (HAS) was studied in the case of multi-pass scanning of a laser beam over the surface of carbon fiber reinforced plastic (CFRP). The experiments were performed in two regimes, namely, in the process of CFRP cutting and in the regime of low-fluence irradiation avoiding ablation of carbon fibers. The feature of the ablation-free regime is that all absorbed energy remains in the material as heat, while in the cutting regime the fraction of residual heat is unknown. An analytical model based on two-dimensional (2D) heat flow was applied to predict the critical number of scans, after which the HAS effect causes a distinct growth of the matrix evaporation zone (MEZ). According to the model, the critical number of scans decreases exponentially with increasing laser power, while no dependence on the feed rate is expected. It was found that the model fits well to the experimental data obtained in the ablation-free regime where the heat input is well defined and known. In the cutting regime the measured significant reduction of the critical number of scans observed in deep grooves may be attributed to transformation of the heat flow geometry and to an expected increase of the residual heat fraction.

  11. Rotating Flow of Magnetite-Water Nanofluid over a Stretching Surface Inspired by Non-Linear Thermal Radiation.

    PubMed

    Mustafa, M; Mushtaq, A; Hayat, T; Alsaedi, A

    2016-01-01

    Present study explores the MHD three-dimensional rotating flow and heat transfer of ferrofluid induced by a radiative surface. The base fluid is considered as water with magnetite-Fe3O4 nanoparticles. Novel concept of non-linear radiative heat flux is considered which produces a non-linear energy equation in temperature field. Conventional transformations are employed to obtain the self-similar form of the governing differential system. The arising system involves an interesting temperature ratio parameter which is an indicator of small/large temperature differences in the flow. Numerical simulations with high precision are determined by well-known shooting approach. Both uniform stretching and rotation have significant impact on the solutions. The variation in velocity components with the nanoparticle volume fraction is non-monotonic. Local Nusselt number in Fe3O4-water ferrofluid is larger in comparison to the pure fluid even at low particle concentration.

  12. User's manual for three dimensional boundary layer (BL3-D) code

    NASA Technical Reports Server (NTRS)

    Anderson, O. L.; Caplin, B.

    1985-01-01

    An assessment has been made of the applicability of a 3-D boundary layer analysis to the calculation of heat transfer, total pressure losses, and streamline flow patterns on the surface of both stationary and rotating turbine passages. In support of this effort, an analysis has been developed to calculate a general nonorthogonal surface coordinate system for arbitrary 3-D surfaces and also to calculate the boundary layer edge conditions for compressible flow using the surface Euler equations and experimental data to calibrate the method, calculations are presented for the pressure endwall, and suction surfaces of a stationary cascade and for the pressure surface of a rotating turbine blade. The results strongly indicate that the 3-D boundary layer analysis can give good predictions of the flow field, loss, and heat transfer on the pressure, suction, and endwall surface of a gas turbine passage.

  13. NOR-USA Scientific Traverse of East Antarctica: Science and Logistics on a Three-Month Expedition Across Antarctica's Farthest Frontier

    NASA Technical Reports Server (NTRS)

    Albert, Mary R.

    2012-01-01

    Dr. Albert's current research is centered on transfer processes in porous media, including air-snow exchange in the Polar Regions and in soils in temperate areas. Her research includes field measurements, laboratory experiments, and theoretical modeling. Mary conducts field and laboratory measurements of the physical properties of natural terrain surfaces, including permeability, microstructure, and thermal conductivity. Mary uses the measurements to examine the processes of diffusion and advection of heat, mass, and chemical transport through snow and other porous media. She has developed numerical models for investigation of a variety of problems, from interstitial transport to freezing of flowing liquids. These models include a two-dimensional finite element code for air flow with heat, water vapor, and chemical transport in porous media, several multidimensional codes for diffusive transfer, as well as a computational fluid dynamics code for analysis of turbulent water flow in moving-boundary phase change problems.

  14. Transitional flow in thin tubes for space station freedom radiator

    NASA Technical Reports Server (NTRS)

    Loney, Patrick; Ibrahim, Mounir

    1995-01-01

    A two dimensional finite volume method is used to predict the film coefficients in the transitional flow region (laminar or turbulent) for the radiator panel tubes. The code used to perform this analysis is CAST (Computer Aided Simulation of Turbulent Flows). The information gathered from this code is then used to augment a Sinda85 model that predicts overall performance of the radiator. A final comparison is drawn between the results generated with a Sinda85 model using the Sinda85 provided transition region heat transfer correlations and the Sinda85 model using the CAST generated data.

  15. Computational study of the heat transfer of an avian egg in a tray.

    PubMed

    Eren Ozcan, S; Andriessens, S; Berckmans, D

    2010-04-01

    The development of an embryo in an avian egg depends largely on its temperature. The embryo temperature is affected by its environment and the heat produced by the egg. In this paper, eggshell temperature and the heat transfer characteristics from one egg in a tray toward its environment are studied by means of computational fluid dynamics (CFD). Computational fluid dynamics simulations have the advantage of providing extensive 3-dimensional information on velocity and eggshell temperature distribution around an egg that otherwise is not possible to obtain by experiments. However, CFD results need to be validated against experimental data. The objectives were (1) to find out whether CFD can successfully simulate eggshell temperature from one egg in a tray by comparing to previously conducted experiments, (2) to visualize air flow and air temperature distribution around the egg in a detailed way, and (3) to perform sensitivity analysis on several variables affecting heat transfer. To this end, a CFD model was validated using 2 sets of temperature measurements yielding an effective model. From these simulations, it can be concluded that CFD can effectively be used to analyze heat transfer characteristics and eggshell temperature distribution around an egg. In addition, air flow and temperature distribution around the egg are visualized. It has been observed that temperature differences up to 2.6 degrees C are possible at high heat production (285 mW) and horizontal low flow rates (0.5 m/s). Sensitivity analysis indicates that average eggshell temperature is mainly affected by the inlet air velocity and temperature, flow direction, and the metabolic heat of the embryo and less by the thermal conductivity and emissivity of the egg and thermal emissivity of the tray.

  16. Analytical and numerical solutions for heat transfer and effective thermal conductivity of cracked media

    NASA Astrophysics Data System (ADS)

    Tran, A. B.; Vu, M. N.; Nguyen, S. T.; Dong, T. Q.; Le-Nguyen, K.

    2018-02-01

    This paper presents analytical solutions to heat transfer problems around a crack and derive an adaptive model for effective thermal conductivity of cracked materials based on singular integral equation approach. Potential solution of heat diffusion through two-dimensional cracked media, where crack filled by air behaves as insulator to heat flow, is obtained in a singular integral equation form. It is demonstrated that the temperature field can be described as a function of temperature and rate of heat flow on the boundary and the temperature jump across the cracks. Numerical resolution of this boundary integral equation allows determining heat conduction and effective thermal conductivity of cracked media. Moreover, writing this boundary integral equation for an infinite medium embedding a single crack under a far-field condition allows deriving the closed-form solution of temperature discontinuity on the crack and particularly the closed-form solution of temperature field around the crack. These formulas are then used to establish analytical effective medium estimates. Finally, the comparison between the developed numerical and analytical solutions allows developing an adaptive model for effective thermal conductivity of cracked media. This model takes into account both the interaction between cracks and the percolation threshold.

  17. Numerical simulation of turbulent flow and heat transfer in the wedge-shaped liquid metal pool of a twin-roll caster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seyedein, S.H.; Hasan, H.

    1997-03-01

    Controlled flow and heat transfer are important for the quality of a strip in a twin-roll continuous casting process. A numerical study was carried out to investigate the two-dimensional turbulent flow and heat transfer in the liquid stainless-steel-filled wedge-shaped cavity formed by the two counterrotating rolls in a twin-roll continuous casting system. The turbulent characteristics of the flow were modeled using a low-Reynolds-number {kappa}-{epsilon} turbulence model due to Launder and Sharma. The arbitrary nature of the computational domain was accounted for through the use of a nonorthogonal boundary-fitted coordinate system on a staggered grid. A control-volume-based finite difference scheme wasmore » used to solve the transformed transport equations. This study is primarily focused on elucidating the inlet superheat dissipation in the melt pool with the rolls being maintained at a constant liquidus temperature of the steel. A parametric study was carried out to ascertain the effect of the inlet superheat, the casting speed, and the roll gap at the nip of the rotating rolls on the flow and heat transfer characteristics. The velocity fields show two counterrotating recirculation zones in the upstream region. The local Nusselt number on the roll surface shows significant variations. The contours of temperature and turbulent viscosity show the complex nature of the turbulent transport phenomena to be expected in a twin-roll casting process.« less

  18. Heat Transfer on a Film-Cooled Blade - Effect of Hole Physics

    NASA Technical Reports Server (NTRS)

    Garg, Vijay K.; Rigby, David L.

    1998-01-01

    A multi-block, three-dimensional Navier-Stokes code has been used to study the within-hole and near-hole physics in relation to heat transfer on a film-cooled blade. The flow domain consists of the coolant flow through the plenum and hole-pipes for the three staggered rows of shower-head holes on the VK1 rotor, and the main flow over the blade. A multi-block grid is generated that is nearly orthogonal to the various surfaces. It may be noted that for the VK1 rotor the shower-head holes are inclined at 30 deg. to the spanwise direction, and are normal to the streamwise direction on the blade. Wilcox's k-omega turbulence model is used. The present study provides a much better comparison for the heat transfer coefficient at the blade mid-span with the experimental data than an earlier analysis wherein coolant velocity and temperature distributions were specified at the hole exits rather than extending the computational domain into the hole-pipe and plenum. Details of the distributions of coolant velocity, temperature, k and omega at the hole exits are also presented.

  19. Numerical simulations of thermal convection on a hemisphere

    NASA Astrophysics Data System (ADS)

    Bruneau, C.-H.; Fischer, P.; Xiong, Y.-L.; Kellay, H.; Cyclobulle Collaboration

    2018-04-01

    In this paper we present numerical simulations of two-dimensional turbulent convection on a hemisphere. Recent experiments on a half soap bubble located on a heated plate have shown that such a configuration is ideal for studying thermal convection on a curved surface. Thermal convection and fluid flows on curved surfaces are relevant to a variety of situations, notably for simulating atmospheric and geophysical flows. As in experiments, our simulations show that the gradient of temperature between the base and the top of the hemisphere generates thermal plumes at the base that move up from near the equator to the pole. The movement of these plumes gives rise to a two-dimensional turbulent thermal convective flow. Our simulations turn out to be in qualitative and quantitative agreement with experiments and show strong similarities with Rayleigh-Bénard convection in classical cells where a fluid is heated from below and cooled from above. To compare to results obtained in classical Rayleigh-Bénard convection in standard three-dimensional cells (rectangular or cylindrical), a Nusselt number adapted to our geometry and a Reynolds number are calculated as a function of the Rayleigh number. We find that the Nusselt and Reynolds numbers verify scaling laws consistent with turbulent Rayleigh-Bénard convection: Nu∝Ra0.31 and Re∝Ra1/2 . Further, a Bolgiano regime is found with the Bolgiano scale scaling as Ra-1/4. All these elements show that despite the significant differences in geometry between our simulations and classical 3D cells, the scaling laws of thermal convection are robust.

  20. A Multi-Dimensional Heat Transfer Model of a Tie-Tube and Hexagonal Fuel Element for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Gomez, C. F.; Mireles, O. R.; Stewart, E.

    2016-01-01

    The Space Capable Cryogenic Thermal Engine (SCCTE) effort considers a nuclear thermal rocket design based around a Low-Enriched Uranium (LEU) design fission reactor. The reactor core is comprised of bundled hexagonal fuel elements that directly heat hydrogen for expansion in a thrust chamber and hexagonal tie-tubes that house zirconium hydride moderator mass for the purpose of thermalizing fast neutrons resulting from fission events. Created 3D steady state Hex fuel rod model with 1D flow channels. Hand Calculation were used to set up initial conditions for fluid flow. The Hex Fuel rod uses 1D flow paths to model the channels using empirical correlations for heat transfer in a pipe. Created a 2-D axisymmetric transient to steady state model using the CFD turbulent flow and Heat Transfer module in COMSOL. This model was developed to find and understand the hydrogen flow that might effect the thermal gradients axially and at the end of the tie tube where the flow turns and enters an annulus. The Hex fuel rod and Tie tube models were made based on requirements given to us by CSNR and the SCCTE team. The models helped simplify and understand the physics and assumptions. Using pipe correlations reduced the complexity of the 3-D fuel rod model and is numerically more stable and computationally more time-efficient compared to the CFD approach. The 2-D axisymmetric tie tube model can be used as a reference "Virtual test model" for comparing and improving 3-D Models.

Top