Sample records for dimensional radiative transfer

  1. Three-dimensional aspects of radiative transfer in remote sensing of precipitation: Application to the 1986 COHMEX storm

    NASA Technical Reports Server (NTRS)

    Haferman, J. L.; Krajewski, W. F.; Smith, T. F.

    1994-01-01

    Several multifrequency techniques for passive microwave estimation of precipitation based on the absorption and scattering properties of hydrometers have been proposed in the literature. In the present study, plane-parallel limitations are overcome by using a model based on the discrete-ordinates method to solve the radiative transfer equation in three-dimensional rectangular domains. This effectively accounts for the complexity and variety of radiation problems encountered in the atmosphere. This investigation presents result for plane-parallel and three-dimensional radiative transfer for a precipitating system, discusses differences between these results, and suggests possible explanations for these differences. Microphysical properties were obtained from the Colorado State University Regional Atmospehric Modeling System and represent a hailstorm observed during the 1986 Cooperative Huntsville Meteorological Experiment. These properties are used as input to a three-dimensional radiative transfer model in order to simulate satellite observation of the storm. The model output consists of upwelling brightness temperatures at several of the frequencies on the Special Sensor Microwave/Imager. The radiative transfer model accounts for scattering and emission of atmospheric gases and hydrometers in liquid and ice phases. Brightness temperatures obtained from the three-dimensional model of this investigation indicate that horizontal inhomogeneities give rise to brightness temperature fields that can be quite different from fields obtained using plane-parallel radiative transfer theory. These differences are examined for various resolutions of the satellite sensor field of view. In adddition, the issue of boundary conditions for three-dimensional atmospheric radiative transfer is addressed.

  2. Simple Models of the Spatial Distribution of Cloud Radiative Properties for Remote Sensing Studies

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This project aimed to assess the degree to which estimates of three-dimensional cloud structure can be inferred from a time series of profiles obtained at a point. The work was motivated by the desire to understand the extent to which high-frequency profiles of the atmosphere (e.g. ARM data streams) can be used to assess the magnitude of non-plane parallel transfer of radiation in thc atmosphere. We accomplished this by performing an observing system simulation using a large-eddy simulation and a Monte Carlo radiative transfer model. We define the 3D effect as the part of the radiative transfer that isn't captured by one-dimensional radiative transfer calculations. We assess the magnitude of the 3D effect in small cumulus clouds by using a fine-scale cloud model to simulate many hours of cloudiness over a continental site. We then use a Monte Carlo radiative transfer model to compute the broadband shortwave fluxes at the surface twice, once using the complete three-dimensional radiative transfer F(sup 3D), and once using the ICA F (sup ICA); the difference between them is the 3D effect given.

  3. Spatial radiation environment in a heterogeneous oak woodland using a three-dimensional radiative transfer model and multiple constraints from observations

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Ryu, Y.; Ustin, S.; Baldocchi, D. D.

    2009-12-01

    B15: Remote Characterization of Vegetation Structure: Including Research to Inform the Planned NASA DESDynI and ESA BIOMASS Missions Title: Spatial radiation environment in a heterogeneous oak woodland using a three-dimensional radiative transfer model and multiple constraints from observations Hideki Kobayashi, Youngryel Ryu, Susan Ustin, and Dennis Baldocchi Abstract Accurate evaluations of radiation environments of visible, near infrared, and thermal infrared wavebands in forest canopies are important to estimate energy, water, and carbon fluxes. Californian oak woodlands are sparse and highly clumped so that radiation environments are extremely heterogeneous spatially. The heterogeneity of radiation environments also varies with wavebands which depend on scattering and emission properties. So far, most of modeling studies have been performed in one dimensional radiative transfer models with (or without) clumping effect in the forest canopies. While some studies have been performed by using three dimensional radiative transfer models, several issues are still unresolved. For example, some 3D models calculate the radiation field with individual tree basis, and radiation interactions among trees are not considered. This interaction could be important in the highly scattering waveband such as near infrared. The objective of this study is to quantify the radiation field in the oak woodland. We developed a three dimensional radiative transfer model, which includes the thermal waveband. Soil/canopy energy balances and canopy physiology models, CANOAK, are incorporated in the radiative transfer model to simulate the diurnal patterns of thermal radiation fields and canopy physiology. Airborne LiDAR and canopy gap data measured by the several methods (digital photographs and plant canopy analyzer) were used to constrain the forest structures such as tree positions, crown sizes and leaf area density. Modeling results were tested by a traversing radiometer system that measured incoming photosynthetically active radiation and net radiation at forest floor and spatial variations in canopy reflectances taken by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). In this study, we show how the model with available measurements can reproduce the spatially heterogeneous radiation environments in the oak woodland.

  4. A three-dimensional model of solar radiation transfer in a non-uniform plant canopy

    NASA Astrophysics Data System (ADS)

    Levashova, N. T.; Mukhartova, Yu V.

    2018-01-01

    A three-dimensional (3D) model of solar radiation transfer in a non-uniform plant canopy was developed. It is based on radiative transfer equations and a so-called turbid medium assumption. The model takes into account the multiple scattering contributions of plant elements in radiation fluxes. These enable more accurate descriptions of plant canopy reflectance and transmission in different spectral bands. The model was applied to assess the effects of plant canopy heterogeneity on solar radiation transmission and to quantify the difference in a radiation transfer between photosynthetically active radiation PAR (=0.39-0.72 μm) and near infrared solar radiation NIR (Δλ = 0.72-3.00 μm). Comparisons of the radiative transfer fluxes simulated by the 3D model within a plant canopy consisted of sparsely planted fruit trees (plant area index, PAI - 0.96 m2 m-2) with radiation fluxes simulated by a one-dimensional (1D) approach, assumed horizontal homogeneity of plant and leaf area distributions, showed that, for sunny weather conditions with a high solar elevation angle, an application of a simplified 1D approach can result in an underestimation of transmitted solar radiation by about 22% for PAR, and by about 26% for NIR.

  5. Solution of Radiation and Convection Heat-Transfer Problems

    NASA Technical Reports Server (NTRS)

    Oneill, R. F.

    1986-01-01

    Computer program P5399B developed to accommodate variety of fin-type heat conduction applications involving radiative or convective boundary conditions with additionally imposed local heat flux. Program also accommodates significant variety of one-dimensional heat-transfer problems not corresponding specifically to fin-type applications. Program easily accommodates all but few specialized one-dimensional heat-transfer analyses as well as many twodimensional analyses.

  6. Discontinuous finite element method for vector radiative transfer

    NASA Astrophysics Data System (ADS)

    Wang, Cun-Hai; Yi, Hong-Liang; Tan, He-Ping

    2017-03-01

    The discontinuous finite element method (DFEM) is applied to solve the vector radiative transfer in participating media. The derivation in a discrete form of the vector radiation governing equations is presented, in which the angular space is discretized by the discrete-ordinates approach with a local refined modification, and the spatial domain is discretized into finite non-overlapped discontinuous elements. The elements in the whole solution domain are connected by modelling the boundary numerical flux between adjacent elements, which makes the DFEM numerically stable for solving radiative transfer equations. Several various problems of vector radiative transfer are tested to verify the performance of the developed DFEM, including vector radiative transfer in a one-dimensional parallel slab containing a Mie/Rayleigh/strong forward scattering medium and a two-dimensional square medium. The fact that DFEM results agree very well with the benchmark solutions in published references shows that the developed DFEM in this paper is accurate and effective for solving vector radiative transfer problems.

  7. Multiscale solutions of radiative heat transfer by the discrete unified gas kinetic scheme

    NASA Astrophysics Data System (ADS)

    Luo, Xiao-Ping; Wang, Cun-Hai; Zhang, Yong; Yi, Hong-Liang; Tan, He-Ping

    2018-06-01

    The radiative transfer equation (RTE) has two asymptotic regimes characterized by the optical thickness, namely, optically thin and optically thick regimes. In the optically thin regime, a ballistic or kinetic transport is dominant. In the optically thick regime, energy transport is totally dominated by multiple collisions between photons; that is, the photons propagate by means of diffusion. To obtain convergent solutions to the RTE, conventional numerical schemes have a strong dependence on the number of spatial grids, which leads to a serious computational inefficiency in the regime where the diffusion is predominant. In this work, a discrete unified gas kinetic scheme (DUGKS) is developed to predict radiative heat transfer in participating media. Numerical performances of the DUGKS are compared in detail with conventional methods through three cases including one-dimensional transient radiative heat transfer, two-dimensional steady radiative heat transfer, and three-dimensional multiscale radiative heat transfer. Due to the asymptotic preserving property, the present method with relatively coarse grids gives accurate and reliable numerical solutions for large, small, and in-between values of optical thickness, and, especially in the optically thick regime, the DUGKS demonstrates a pronounced computational efficiency advantage over the conventional numerical models. In addition, the DUGKS has a promising potential in the study of multiscale radiative heat transfer inside the participating medium with a transition from optically thin to optically thick regimes.

  8. Radiative Instabilities in Three-Dimensional Astrophysical Masers

    NASA Technical Reports Server (NTRS)

    Scappaticci, Gerardo A.; Watson, William D.

    1995-01-01

    Inherent instabilities in the radiative transfer for astrophysical masers have been recognized and calculated in the linear maser idealization in our previous investigations. The same instabilities are now shown to occur in the more realistic, three-dimensional geometries. Fluctuations in the emergent flux result and may be related to the observed fluctuations in the radiative flux from the 1665 MHz OH masers that have been reported to occur on timescales as short as 1000 s. The time-dependent differential equations of radiative transfer are solved numerically for three-dimensional astrophysical masers. Computations are performed for spherical and elongated (rectangular parallelepiped) geometries.

  9. IPRT polarized radiative transfer model intercomparison project - Three-dimensional test cases (phase B)

    NASA Astrophysics Data System (ADS)

    Emde, Claudia; Barlakas, Vasileios; Cornet, Céline; Evans, Frank; Wang, Zhen; Labonotte, Laurent C.; Macke, Andreas; Mayer, Bernhard; Wendisch, Manfred

    2018-04-01

    Initially unpolarized solar radiation becomes polarized by scattering in the Earth's atmosphere. In particular molecular scattering (Rayleigh scattering) polarizes electromagnetic radiation, but also scattering of radiation at aerosols, cloud droplets (Mie scattering) and ice crystals polarizes. Each atmospheric constituent produces a characteristic polarization signal, thus spectro-polarimetric measurements are frequently employed for remote sensing of aerosol and cloud properties. Retrieval algorithms require efficient radiative transfer models. Usually, these apply the plane-parallel approximation (PPA), assuming that the atmosphere consists of horizontally homogeneous layers. This allows to solve the vector radiative transfer equation (VRTE) efficiently. For remote sensing applications, the radiance is considered constant over the instantaneous field-of-view of the instrument and each sensor element is treated independently in plane-parallel approximation, neglecting horizontal radiation transport between adjacent pixels (Independent Pixel Approximation, IPA). In order to estimate the errors due to the IPA approximation, three-dimensional (3D) vector radiative transfer models are required. So far, only a few such models exist. Therefore, the International Polarized Radiative Transfer (IPRT) working group of the International Radiation Commission (IRC) has initiated a model intercomparison project in order to provide benchmark results for polarized radiative transfer. The group has already performed an intercomparison for one-dimensional (1D) multi-layer test cases [phase A, 1]. This paper presents the continuation of the intercomparison project (phase B) for 2D and 3D test cases: a step cloud, a cubic cloud, and a more realistic scenario including a 3D cloud field generated by a Large Eddy Simulation (LES) model and typical background aerosols. The commonly established benchmark results for 3D polarized radiative transfer are available at the IPRT website (http://www.meteo.physik.uni-muenchen.de/ iprt).

  10. Atmospheric Radiative Transfer for Satellite Remote Sensing

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander

    2008-01-01

    I will discuss the science of satellite remote sensing which involves the interpretation and inversion of radiometric measurements made from space. The goal of remote sensing is to retrieve some physical aspects of the medium which are sensitive to the radiation at specific wavelengths. This requires the use of fundamentals of atmospheric radiative transfer. I will talk about atmospheric radiation or, more specifically, about the interactions of solar radiation with aerosols and cloud particles. The focus will be more on cloudy atmospheres. I will also show how a standard one-dimensional approach, that is traced back at least 100 years, can fail to interpret the complexity of real clouds. I n these cases, three-dimensional radiative transfer should be used. Examples of satellite retrievals will illustrate the cases.

  11. Extending generalized Kubelka-Munk to three-dimensional radiative transfer.

    PubMed

    Sandoval, Christopher; Kim, Arnold D

    2015-08-10

    The generalized Kubelka-Munk (gKM) approximation is a linear transformation of the double spherical harmonics of order one (DP1) approximation of the radiative transfer equation. Here, we extend the gKM approximation to study problems in three-dimensional radiative transfer. In particular, we derive the gKM approximation for the problem of collimated beam propagation and scattering in a plane-parallel slab composed of a uniform absorbing and scattering medium. The result is an 8×8 system of partial differential equations that is much easier to solve than the radiative transfer equation. We compare the solutions of the gKM approximation with Monte Carlo simulations of the radiative transfer equation to identify the range of validity for this approximation. We find that the gKM approximation is accurate for isotropic scattering media that are sufficiently thick and much less accurate for anisotropic, forward-peaked scattering media.

  12. Atmospheric Radiative Transfer for Satellite Remote Sensing: Validation and Uncertainty

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander

    2007-01-01

    My presentation will begin with the discussion of the Intercomparison of three-dimensional (3D) Radiative Codes (13RC) project that has been started in 1997. I will highlight the question of how well the atmospheric science community can solve the 3D radiative transfer equation. Initially I3RC was focused only on algorithm intercomparison; now it has acquired a broader identity providing new insights and creating new community resources for 3D radiative transfer calculations. Then I will switch to satellite remote sensing. Almost all radiative transfer calculations for satellite remote sensing are one-dimensional (1D) assuming (i) no variability inside a satellite pixel and (ii) no radiative interactions between pixels. The assumptions behind the 1D approach will be checked using cloud and aerosol data measured by the MODerate Resolution Imaging Spectroradiometer (MODIS) on board of two NASA satellites TERRA and AQUA. In the discussion, I will use both analysis technique: statistical analysis over large areas and time intervals, and single scene analysis to validate how well the 1D radiative transfer equation describes radiative regime in cloudy atmospheres.

  13. Radiative interactions in multi-dimensional chemically reacting flows using Monte Carlo simulations

    NASA Technical Reports Server (NTRS)

    Liu, Jiwen; Tiwari, Surendra N.

    1994-01-01

    The Monte Carlo method (MCM) is applied to analyze radiative heat transfer in nongray gases. The nongray model employed is based on the statistical narrow band model with an exponential-tailed inverse intensity distribution. The amount and transfer of the emitted radiative energy in a finite volume element within a medium are considered in an exact manner. The spectral correlation between transmittances of two different segments of the same path in a medium makes the statistical relationship different from the conventional relationship, which only provides the non-correlated results for nongray methods is discussed. Validation of the Monte Carlo formulations is conducted by comparing results of this method of other solutions. In order to further establish the validity of the MCM, a relatively simple problem of radiative interactions in laminar parallel plate flows is considered. One-dimensional correlated Monte Carlo formulations are applied to investigate radiative heat transfer. The nongray Monte Carlo solutions are also obtained for the same problem and they also essentially match the available analytical solutions. the exact correlated and non-correlated Monte Carlo formulations are very complicated for multi-dimensional systems. However, by introducing the assumption of an infinitesimal volume element, the approximate correlated and non-correlated formulations are obtained which are much simpler than the exact formulations. Consideration of different problems and comparison of different solutions reveal that the approximate and exact correlated solutions agree very well, and so do the approximate and exact non-correlated solutions. However, the two non-correlated solutions have no physical meaning because they significantly differ from the correlated solutions. An accurate prediction of radiative heat transfer in any nongray and multi-dimensional system is possible by using the approximate correlated formulations. Radiative interactions are investigated in chemically reacting compressible flows of premixed hydrogen and air in an expanding nozzle. The governing equations are based on the fully elliptic Navier-Stokes equations. Chemical reaction mechanisms were described by a finite rate chemistry model. The correlated Monte Carlo method developed earlier was employed to simulate multi-dimensional radiative heat transfer. Results obtained demonstrate that radiative effects on the flowfield are minimal but radiative effects on the wall heat transfer are significant. Extensive parametric studies are conducted to investigate the effects of equivalence ratio, wall temperature, inlet flow temperature, and nozzle size on the radiative and conductive wall fluxes.

  14. Heat Transfer Modelling of Glass Media within TPV Systems

    NASA Astrophysics Data System (ADS)

    Bauer, Thomas; Forbes, Ian; Penlington, Roger; Pearsall, Nicola

    2004-11-01

    Understanding and optimisation of heat transfer, and in particular radiative heat transfer in terms of spectral, angular and spatial radiation distributions is important to achieve high system efficiencies and high electrical power densities for thermophtovoltaics (TPV). This work reviews heat transfer models and uses the Discrete Ordinates method. Firstly one-dimensional heat transfer in fused silica (quartz glass) shields was examined for the common arrangement, radiator-air-glass-air-PV cell. It has been concluded that an alternative arrangement radiator-glass-air-PV cell with increased thickness of fused silica should have advantages in terms of improved transmission of convertible radiation and enhanced suppression of non-convertible radiation.

  15. Backward and forward Monte Carlo method for vector radiative transfer in a two-dimensional graded index medium

    NASA Astrophysics Data System (ADS)

    Qian, Lin-Feng; Shi, Guo-Dong; Huang, Yong; Xing, Yu-Ming

    2017-10-01

    In vector radiative transfer, backward ray tracing is seldom used. We present a backward and forward Monte Carlo method to simulate vector radiative transfer in a two-dimensional graded index medium, which is new and different from the conventional Monte Carlo method. The backward and forward Monte Carlo method involves dividing the ray tracing into two processes backward tracing and forward tracing. In multidimensional graded index media, the trajectory of a ray is usually a three-dimensional curve. During the transport of a polarization ellipse, the curved ray trajectory will induce geometrical effects and cause Stokes parameters to continuously change. The solution processes for a non-scattering medium and an anisotropic scattering medium are analysed. We also analyse some parameters that influence the Stokes vector in two-dimensional graded index media. The research shows that the Q component of the Stokes vector cannot be ignored. However, the U and V components of the Stokes vector are very small.

  16. Two-dimensional simulation of a two-phase, regenerative pumped radiator loop utilizing direct contact heat transfer with phase change

    NASA Astrophysics Data System (ADS)

    Rhee, Hyop S.; Begg, Lester L.; Wetch, Joseph R.; Jang, Jong H.; Juhasz, Albert J.

    An innovative pumped loop concept for 600 K space power system radiators utilizing direct contact heat transfer, which facilitates repeated startup/shutdown of the power system without complex and time-consuming coolant thawing during power startup, is under development. The heat transfer process with melting/freezing of Li in an NaK flow was studied through two-dimensional time-dependent numerical simulations to characterize and predict the Li/NaK radiator performance during startup (thawing) and shutdown (cold-trapping). Effects of system parameters and the criteria for the plugging domain are presented together with temperature distribution patterns in solid Li and subsequent melting surface profile variations in time.

  17. Radiative Heat Transfer in Finite Cylindrical Enclosures with Nonhomogeneous Participating Media

    NASA Technical Reports Server (NTRS)

    Hsu, Pei-Feng; Ku, Jerry C.

    1994-01-01

    Results of a numerical solution for radiative heat transfer in homogeneous and nonhomogeneous participating media are presented. The geometry of interest is a finite axisymmetric cylindrical enclosure. The integral formulation for radiative transport is solved by the YIX method. A three-dimensional solution scheme is applied to two-dimensional axisymmetric geometry to simplify kernel calculations and to avoid difficulties associated with treating boundary conditions. As part of the effort to improve modeling capabilities for turbulent jet diffusion flames, predicted distributions for flame temperature and soot volume fraction are used to calculate radiative heat transfer from soot particles in such flames. It is shown that the nonhomogeneity of radiative property has very significant effects. The peak value of the divergence of radiative heat flux could be underestimated by 2 factor of 7 if a mean homogeneous radiative property is used. Since recent studies have shown that scattering by soot agglomerates is significant in flames, the effect of magnitude of scattering is also investigated and found to be nonnegligible.

  18. Two-dimensional HID light source radiative transfer using discrete ordinates method

    NASA Astrophysics Data System (ADS)

    Ghrib, Basma; Bouaoun, Mohamed; Elloumi, Hatem

    2016-08-01

    This paper shows the implementation of the Discrete Ordinates Method for handling radiation problems in High Intensity Discharge (HID) lamps. Therefore, we start with presenting this rigorous method for treatment of radiation transfer in a two-dimensional, axisymmetric HID lamp. Furthermore, the finite volume method is used for the spatial discretization of the Radiative Transfer Equation. The atom and electron densities were calculated using temperature profiles established by a 2D semi-implicit finite-element scheme for the solution of conservation equations relative to energy, momentum, and mass. Spectral intensities as a function of position and direction are first calculated, and then axial and radial radiative fluxes are evaluated as well as the net emission coefficient. The results are given for a HID mercury lamp on a line-by-line basis. A particular attention is paid on the 253.7 nm resonance and 546.1 nm green lines.

  19. A numerical study of three-dimensional flame propagation over thin solids in purely forced concurrent flow including gas-phase radiation

    NASA Astrophysics Data System (ADS)

    Feier, Ioan I., Jr.

    The effect of flame radiation on concurrent-flow flame spread over a thin solid sample of finite width in a low-speed wind tunnel is modeled using three-dimensional full Navier-Stokes equations and three-dimensional flame radiation transfer equations. The formulation includes the conservation of mass, momentum, energy, and species: fuel vapor, oxygen, carbon dioxide and water vapor. The SN discrete ordinates method is used to solve the radiation transfer equation with a mean absorption coefficient kappa = Ckappa p, where kappap is the Planck mean absorption coefficient of the gas mixture. The varying parameter C has a value between 0 and 1; C represents the strength of flame radiation. In addition, the solid fuel absorptivity alpha is varied to ascertain the effect of flame radiation heat feedback to the solid. The flow tunnel modeled has a dimension of 10x10x30 cm, the solid fuel has a width of 6-cm with two 1-cm inert strips as edges. Incoming forced flow velocity (5 cm/s) of 21% oxygen is assumed. For comparison with the three-dimensional results, corresponding two-dimensional computations are also performed. Detailed spatial flame profiles, solid surface profiles, and heat fluxes are presented. Increasing the flame radiation strength decreases the flame length. Although flame radiation provides an additional heat transfer mechanism to preheat the solid, it is insufficient to offset the decreased convective heating due to the shorter flame; the net effect is a slower spread rate. The percentage of unreacted fuel vapor that escapes from the flame is under 2%. It is theorized that some of the pyrolyzed fuel vapor diffuses sideway and reacts at the flame edges. A radiative energy balance is analyzed also. Flame radiative feedback to the solid plays a more important role in two-dimensional flames. With high solid fuel absorptivity, a peak in the flame spread rate occurs at an intermediate value of flame radiation strength---due to the competition between two mechanisms: gas-radiation heat loss weakening the flame and the radiative feedback boosting the solid pyrolysis. Two-dimensional calculations suggest that a larger percentage of unreacted fuel vapor can escape from the flame when the flame radiation strength is high.

  20. Radiation transfer in plant canopies - Scattering of solar radiation and canopy reflectance

    NASA Technical Reports Server (NTRS)

    Verstraete, Michel M.

    1988-01-01

    The one-dimensional vertical model of radiation transfer in a plant canopy described by Verstraete (1987) is extended to account for the transfer of diffuse radiation. This improved model computes the absorption and scattering of both visible and near-infrared radiation in a multilayer canopy as a function of solar position and leaf orientation distribution. Multiple scattering is allowed, and the spectral reflectance of the vegetation stand is predicted. The results of the model are compared to those of other models and actual observations.

  1. Two-dimensional radiative transfer for the retrieval of limb emission measurements in the martian atmosphere

    NASA Astrophysics Data System (ADS)

    Kleinböhl, Armin; Friedson, A. James; Schofield, John T.

    2017-01-01

    The remote sounding of infrared emission from planetary atmospheres using limb-viewing geometry is a powerful technique for deriving vertical profiles of structure and composition on a global scale. Compared with nadir viewing, limb geometry provides enhanced vertical resolution and greater sensitivity to atmospheric constituents. However, standard limb profile retrieval techniques assume spherical symmetry and are vulnerable to biases produced by horizontal gradients in atmospheric parameters. We present a scheme for the correction of horizontal gradients in profile retrievals from limb observations of the martian atmosphere. It characterizes horizontal gradients in temperature, pressure, and aerosol extinction along the line-of-sight of a limb view through neighboring measurements, and represents these gradients by means of two-dimensional radiative transfer in the forward model of the retrieval. The scheme is applied to limb emission measurements from the Mars Climate Sounder instrument on Mars Reconnaissance Orbiter. Retrieval simulations using data from numerical models indicate that biases of up to 10 K in the winter polar region, obtained with standard retrievals using spherical symmetry, are reduced to about 2 K in most locations by the retrieval with two-dimensional radiative transfer. Retrievals from Mars atmospheric measurements suggest that the two-dimensional radiative transfer greatly reduces biases in temperature and aerosol opacity caused by observational geometry, predominantly in the polar winter regions.

  2. A Comparison of Numerical and Analytical Radiative-Transfer Solutions for Plane Albedo of Natural Waters

    EPA Science Inventory

    Three numerical algorithms were compared to provide a solution of a radiative transfer equation (RTE) for plane albedo (hemispherical reflectance) in semi-infinite one-dimensional plane-parallel layer. Algorithms were based on the invariant imbedding method and two different var...

  3. Polarization radiation in the planetary atmosphere delimited by a heterogeneous diffusely reflecting surface

    NASA Technical Reports Server (NTRS)

    Strelkov, S. A.; Sushkevich, T. A.

    1983-01-01

    Spatial frequency characteristics (SFC) and the scattering functions were studied in the two cases of a uniform horizontal layer with absolutely black bottom, and an isolated layer. The mathematical model for these examples describes the horizontal heterogeneities in a light field with regard to radiation polarization in a three dimensional planar atmosphere, delimited by a heterogeneous surface with diffuse reflection. The perturbation method was used to obtain vector transfer equations which correspond to the linear and nonlinear systems of polarization radiation transfer. The boundary value tasks for the vector transfer equation that is a parametric set and one dimensional are satisfied by the SFC of the nonlinear system, and are expressed through the SFC of linear approximation. As a consequence of the developed theory, formulas were obtained for analytical calculation of albedo in solving the task of dissemination of polarization radiation in the planetary atmosphere with uniform Lambert bottom.

  4. Two-dimensional molecular line transfer for a cometary coma

    NASA Astrophysics Data System (ADS)

    Szutowicz, S.

    2017-09-01

    In the proposed axisymmetric model of the cometary coma the gas density profile is described by an angular density function. Three methods for treating two-dimensional radiative transfer are compared: the Large Velocity Gradient (LVG) (the Sobolev method), Accelerated Lambda Iteration (ALI) and accelerated Monte Carlo (MC).

  5. Study of multi-dimensional radiative energy transfer in molecular gases

    NASA Technical Reports Server (NTRS)

    Liu, Jiwen; Tiwari, S. N.

    1993-01-01

    The Monte Carlo method (MCM) is applied to analyze radiative heat transfer in nongray gases. The nongray model employed is based on the statistical arrow band model with an exponential-tailed inverse intensity distribution. Consideration of spectral correlation results in some distinguishing features of the Monte Carlo formulations. Validation of the Monte Carlo formulations has been conducted by comparing results of this method with other solutions. Extension of a one-dimensional problem to a multi-dimensional problem requires some special treatments in the Monte Carlo analysis. Use of different assumptions results in different sets of Monte Carlo formulations. The nongray narrow band formulations provide the most accurate results.

  6. A fast method to compute Three-Dimensional Infrared Radiative Transfer in non scattering medium

    NASA Astrophysics Data System (ADS)

    Makke, Laurent; Musson-Genon, Luc; Carissimo, Bertrand

    2014-05-01

    The Atmospheric Radiation field has seen the development of more accurate and faster methods to take into account absoprtion in participating media. Radiative fog appears with clear sky condition due to a significant cooling during the night, so scattering is left out. Fog formation modelling requires accurate enough method to compute cooling rates. Thanks to High Performance Computing, multi-spectral approach of Radiative Transfer Equation resolution is most often used. Nevertheless, the coupling of three-dimensionnal radiative transfer with fluid dynamics is very detrimental to the computational cost. To reduce the time spent in radiation calculations, the following method uses analytical absorption functions fitted by Sasamori (1968) on Yamamoto's charts (Yamamoto,1956) to compute a local linear absorption coefficient. By averaging radiative properties, this method eliminates the spectral integration. For an isothermal atmosphere, analytical calculations lead to an explicit formula between emissivities functions and linear absorption coefficient. In the case of cooling to space approximation, this analytical expression gives very accurate results compared to correlated k-distribution. For non homogeneous paths, we propose a two steps algorithm. One-dimensional radiative quantities and linear absorption coefficient are computed by a two-flux method. Then, three-dimensional RTE under the grey medium assumption is solved with the DOM. Comparisons with measurements of radiative quantities during ParisFOG field (2006) shows the cability of this method to handle strong vertical variations of pressure/temperature and gases concentrations.

  7. A Comparison of Numerical and Analytical Radiative-Transfer Solutions for Plane Albedo in Natural Waters

    EPA Science Inventory

    Several numerical and analytical solutions of the radiative transfer equation (RTE) for plane albedo were compared for solar light reflection by sea water. The study incorporated the simplest case, that being a semi-infinite one-dimensional plane-parallel absorbing and scattering...

  8. Strain-induced modulation of near-field radiative transfer.

    PubMed

    Ghanekar, Alok; Ricci, Matthew; Tian, Yanpei; Gregory, Otto; Zheng, Yi

    2018-06-11

    In this theoretical study, we present a near-field thermal modulator that exhibits change in radiative heat transfer when subjected to mechanical stress/strain. The device has two terminals at different temperatures separated by vacuum: one fixed and one stretchable. The stretchable side contains one-dimensional grating. When subjected to mechanical strain, the effective optical properties of the stretchable side are affected upon deformation of the grating. This results in modulation of surface waves across the interfaces influencing near-field radiative heat transfer. We show that for a separation of 100 nm, it is possible to achieve 25% change in radiative heat transfer for a strain of 10%.

  9. TIME-DEPENDENT MULTI-GROUP MULTI-DIMENSIONAL RELATIVISTIC RADIATIVE TRANSFER CODE BASED ON SPHERICAL HARMONIC DISCRETE ORDINATE METHOD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tominaga, Nozomu; Shibata, Sanshiro; Blinnikov, Sergei I., E-mail: tominaga@konan-u.ac.jp, E-mail: sshibata@post.kek.jp, E-mail: Sergei.Blinnikov@itep.ru

    We develop a time-dependent, multi-group, multi-dimensional relativistic radiative transfer code, which is required to numerically investigate radiation from relativistic fluids that are involved in, e.g., gamma-ray bursts and active galactic nuclei. The code is based on the spherical harmonic discrete ordinate method (SHDOM) which evaluates a source function including anisotropic scattering in spherical harmonics and implicitly solves the static radiative transfer equation with ray tracing in discrete ordinates. We implement treatments of time dependence, multi-frequency bins, Lorentz transformation, and elastic Thomson and inelastic Compton scattering to the publicly available SHDOM code. Our code adopts a mixed-frame approach; the source functionmore » is evaluated in the comoving frame, whereas the radiative transfer equation is solved in the laboratory frame. This implementation is validated using various test problems and comparisons with the results from a relativistic Monte Carlo code. These validations confirm that the code correctly calculates the intensity and its evolution in the computational domain. The code enables us to obtain an Eddington tensor that relates the first and third moments of intensity (energy density and radiation pressure) and is frequently used as a closure relation in radiation hydrodynamics calculations.« less

  10. One-dimensional transient radiative transfer by lattice Boltzmann method.

    PubMed

    Zhang, Yong; Yi, Hongliang; Tan, Heping

    2013-10-21

    The lattice Boltzmann method (LBM) is extended to solve transient radiative transfer in one-dimensional slab containing scattering media subjected to a collimated short laser irradiation. By using a fully implicit backward differencing scheme to discretize the transient term in the radiative transfer equation, a new type of lattice structure is devised. The accuracy and computational efficiency of this algorithm are examined firstly. Afterwards, effects of the medium properties such as the extinction coefficient, the scattering albedo and the anisotropy factor, and the shapes of laser pulse on time-resolved signals of transmittance and reflectance are investigated. Results of the present method are found to compare very well with the data from the literature. For an oblique incidence, the LBM results in this paper are compared with those by Monte Carlo method generated by ourselves. In addition, transient radiative transfer in a two-Layer inhomogeneous media subjected to a short square pulse irradiation is investigated. At last, the LBM is further extended to study the transient radiative transfer in homogeneous medium with a refractive index discontinuity irradiated by the short pulse laser. Several trends on the time-resolved signals different from those for refractive index of 1 (i.e. refractive-index-matched boundary) are observed and analysed.

  11. Three-dimensional large-eddy simulations of the early phase of contrail-to-cirrus transition: effects of atmospheric turbulence and radiative transfer

    DOE PAGES

    Paoli, Roberto; Thouron, Odile; Cariolle, Daniel; ...

    2017-12-08

    Here, this article presents the results from numerical experiments of the early phase of contrail-cirrus formation using a limited set of fully three-dimensional, high-resolution large-eddy-simulations. The focus is laid on the interplay between atmospheric turbulence and the radiative transfer (and to a limited extent the ambient ice relative humidity), and how this interaction affects the contrail evolution and the characteristics of the resulting contrail-cirrus one hour after emission. Turbulence is sustained via a large-scale stochastic forcing that creates a non-uniform shear in addition to pure turbulent fluctuations. This effect manifests in the formation of vertically sheared structures of ice crystals.more » When radiative transfer is activated, ice tends to redistribute more uniformly along the vertical direction forming spotty vertical structures. For the conditions analyzed in this study, atmospheric turbulence, inclusive of non-uniform turbulent shear and turbulent fluctuations, affects primarily the contrail width whereas the microphysical properties such ice water path and ice mass are controlled by radiative transfer and relative humidity.« less

  12. Three-dimensional large-eddy simulations of the early phase of contrail-to-cirrus transition: effects of atmospheric turbulence and radiative transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paoli, Roberto; Thouron, Odile; Cariolle, Daniel

    Here, this article presents the results from numerical experiments of the early phase of contrail-cirrus formation using a limited set of fully three-dimensional, high-resolution large-eddy-simulations. The focus is laid on the interplay between atmospheric turbulence and the radiative transfer (and to a limited extent the ambient ice relative humidity), and how this interaction affects the contrail evolution and the characteristics of the resulting contrail-cirrus one hour after emission. Turbulence is sustained via a large-scale stochastic forcing that creates a non-uniform shear in addition to pure turbulent fluctuations. This effect manifests in the formation of vertically sheared structures of ice crystals.more » When radiative transfer is activated, ice tends to redistribute more uniformly along the vertical direction forming spotty vertical structures. For the conditions analyzed in this study, atmospheric turbulence, inclusive of non-uniform turbulent shear and turbulent fluctuations, affects primarily the contrail width whereas the microphysical properties such ice water path and ice mass are controlled by radiative transfer and relative humidity.« less

  13. Derivation and application of the reciprocity relations for radiative transfer with internal illumination

    NASA Technical Reports Server (NTRS)

    Cogley, A. C.

    1975-01-01

    A Green's function formulation is used to derive basic reciprocity relations for planar radiative transfer in a general medium with internal illumination. Reciprocity (or functional symmetry) allows an explicit and generalized development of the equivalence between source and probability functions. Assuming similar symmetry in three-dimensional space, a general relationship is derived between planar-source intensity and point-source total directional energy. These quantities are expressed in terms of standard (universal) functions associated with the planar medium, while all results are derived from the differential equation of radiative transfer.

  14. Validation of radiative transfer computation with Monte Carlo method for ultra-relativistic background flow

    NASA Astrophysics Data System (ADS)

    Ishii, Ayako; Ohnishi, Naofumi; Nagakura, Hiroki; Ito, Hirotaka; Yamada, Shoichi

    2017-11-01

    We developed a three-dimensional radiative transfer code for an ultra-relativistic background flow-field by using the Monte Carlo (MC) method in the context of gamma-ray burst (GRB) emission. For obtaining reliable simulation results in the coupled computation of MC radiation transport with relativistic hydrodynamics which can reproduce GRB emission, we validated radiative transfer computation in the ultra-relativistic regime and assessed the appropriate simulation conditions. The radiative transfer code was validated through two test calculations: (1) computing in different inertial frames and (2) computing in flow-fields with discontinuous and smeared shock fronts. The simulation results of the angular distribution and spectrum were compared among three different inertial frames and in good agreement with each other. If the time duration for updating the flow-field was sufficiently small to resolve a mean free path of a photon into ten steps, the results were thoroughly converged. The spectrum computed in the flow-field with a discontinuous shock front obeyed a power-law in frequency whose index was positive in the range from 1 to 10 MeV. The number of photons in the high-energy side decreased with the smeared shock front because the photons were less scattered immediately behind the shock wave due to the small electron number density. The large optical depth near the shock front was needed for obtaining high-energy photons through bulk Compton scattering. Even one-dimensional structure of the shock wave could affect the results of radiation transport computation. Although we examined the effect of the shock structure on the emitted spectrum with a large number of cells, it is hard to employ so many computational cells per dimension in multi-dimensional simulations. Therefore, a further investigation with a smaller number of cells is required for obtaining realistic high-energy photons with multi-dimensional computations.

  15. Discontinuous Galerkin finite element methods for radiative transfer in spherical symmetry

    NASA Astrophysics Data System (ADS)

    Kitzmann, D.; Bolte, J.; Patzer, A. B. C.

    2016-11-01

    The discontinuous Galerkin finite element method (DG-FEM) is successfully applied to treat a broad variety of transport problems numerically. In this work, we use the full capacity of the DG-FEM to solve the radiative transfer equation in spherical symmetry. We present a discontinuous Galerkin method to directly solve the spherically symmetric radiative transfer equation as a two-dimensional problem. The transport equation in spherical atmospheres is more complicated than in the plane-parallel case owing to the appearance of an additional derivative with respect to the polar angle. The DG-FEM formalism allows for the exact integration of arbitrarily complex scattering phase functions, independent of the angular mesh resolution. We show that the discontinuous Galerkin method is able to describe accurately the radiative transfer in extended atmospheres and to capture discontinuities or complex scattering behaviour which might be present in the solution of certain radiative transfer tasks and can, therefore, cause severe numerical problems for other radiative transfer solution methods.

  16. A tensor formulation of the equation of transfer for spherically symmetric flows. [radiative transfer in seven dimensional Riemannian space

    NASA Technical Reports Server (NTRS)

    Haisch, B. M.

    1976-01-01

    A tensor formulation of the equation of radiative transfer is derived in a seven-dimensional Riemannian space such that the resulting equation constitutes a divergence in any coordinate system. After being transformed to a spherically symmetric comoving coordinate system, the transfer equation contains partial derivatives in angle and frequency, as well as optical depth due to the effects of aberration and the Doppler shift. However, by virtue of the divergence form of this equation, the divergence theorem may be applied to yield a numerical differencing scheme which is expected to be stable and to conserve luminosity. It is shown that the equation of transfer derived by this method in a Lagrangian coordinate system may be reduced to that given by Castor (1972), although it is, of course, desirable to leave the equation in divergence form.

  17. Hybrid numerical method for solution of the radiative transfer equation in one, two, or three dimensions.

    PubMed

    Reinersman, Phillip N; Carder, Kendall L

    2004-05-01

    A hybrid method is presented by which Monte Carlo (MC) techniques are combined with an iterative relaxation algorithm to solve the radiative transfer equation in arbitrary one-, two-, or three-dimensional optical environments. The optical environments are first divided into contiguous subregions, or elements. MC techniques are employed to determine the optical response function of each type of element. The elements are combined, and relaxation techniques are used to determine simultaneously the radiance field on the boundary and throughout the interior of the modeled environment. One-dimensional results compare well with a standard radiative transfer model. The light field beneath and adjacent to a long barge is modeled in two dimensions and displayed. Ramifications for underwater video imaging are discussed. The hybrid model is currently capable of providing estimates of the underwater light field needed to expedite inspection of ship hulls and port facilities.

  18. Thermal radiation heat transfer in participating media by finite volume discretization using collimated beam incidence

    NASA Astrophysics Data System (ADS)

    Harijishnu, R.; Jayakumar, J. S.

    2017-09-01

    The main objective of this paper is to study the heat transfer rate of thermal radiation in participating media. For that, a generated collimated beam has been passed through a two dimensional slab model of flint glass with a refractive index 2. Both Polar and azimuthal angle have been varied to generate such a beam. The Temperature of the slab and Snells law has been validated by Radiation Transfer Equation (RTE) in OpenFOAM (Open Field Operation and Manipulation), a CFD software which is the major computational tool used in Industry and research applications where the source code is modified in which radiation heat transfer equation is added to the case and different radiation heat transfer models are utilized. This work concentrates on the numerical strategies involving both transparent and participating media. Since Radiation Transfer Equation (RTE) is difficult to solve, the purpose of this paper is to use existing solver buoyantSimlpeFoam to solve radiation model in the participating media by compiling the source code to obtain the heat transfer rate inside the slab by varying the Intensity of radiation. The Finite Volume Method (FVM) is applied to solve the Radiation Transfer Equation (RTE) governing the above said physical phenomena.

  19. Effects of multiple scattering and surface albedo on the photochemistry of the troposphere

    NASA Technical Reports Server (NTRS)

    Augustsson, T. R.; Tiwari, S. N.

    1981-01-01

    The effect of treatment of incoming solar radiation on the photochemistry of the troposphere is discussed. A one dimensional photochemical model of the troposphere containing the species of the nitrogen, oxygen, carbon, hydrogen, and sulfur families was developed. The vertical flux is simulated by use of the parameterized eddy diffusion coefficients. The photochemical model is coupled to a radiative transfer model that calculates the radiation field due to the incoming solar radiation which initiates much of the photochemistry of the troposphere. Vertical profiles of tropospheric species were compared with the Leighton approximation, radiative transfer, matrix inversion model. The radiative transfer code includes the effects of multiple scattering due to molecules and aerosols, pure absorption, and surface albedo on the transfer of incoming solar radiation. It is indicated that significant differences exist for several key photolysis frequencies and species number density profiles between the Leighton approximation and the profiles generated with, radiative transfer, matrix inversion technique. Most species show enhanced vertical profiles when the more realistic treatment of the incoming solar radiation field is included

  20. Incorporation of Three-dimensional Radiative Transfer into a Very High Resolution Simulation of Horizontally Inhomogeneous Clouds

    NASA Astrophysics Data System (ADS)

    Ishida, H.; Ota, Y.; Sekiguchi, M.; Sato, Y.

    2016-12-01

    A three-dimensional (3D) radiative transfer calculation scheme is developed to estimate horizontal transport of radiation energy in a very high resolution (with the order of 10 m in spatial grid) simulation of cloud evolution, especially for horizontally inhomogeneous clouds such as shallow cumulus and stratocumulus. Horizontal radiative transfer due to inhomogeneous clouds seems to cause local heating/cooling in an atmosphere with a fine spatial scale. It is, however, usually difficult to estimate the 3D effects, because the 3D radiative transfer often needs a large resource for computation compared to a plane-parallel approximation. This study attempts to incorporate a solution scheme that explicitly solves the 3D radiative transfer equation into a numerical simulation, because this scheme has an advantage in calculation for a sequence of time evolution (i.e., the scene at a time is little different from that at the previous time step). This scheme is also appropriate to calculation of radiation with strong absorption, such as the infrared regions. For efficient computation, this scheme utilizes several techniques, e.g., the multigrid method for iteration solution, and a correlated-k distribution method refined for efficient approximation of the wavelength integration. For a case study, the scheme is applied to an infrared broadband radiation calculation in a broken cloud field generated with a large eddy simulation model. The horizontal transport of infrared radiation, which cannot be estimated by the plane-parallel approximation, and its variation in time can be retrieved. The calculation result elucidates that the horizontal divergences and convergences of infrared radiation flux are not negligible, especially at the boundaries of clouds and within optically thin clouds, and the radiative cooling at lateral boundaries of clouds may reduce infrared radiative heating in clouds. In a future work, the 3D effects on radiative heating/cooling will be able to be included into atmospheric numerical models.

  1. Prediction of the 21-cm signal from reionization: comparison between 3D and 1D radiative transfer schemes

    NASA Astrophysics Data System (ADS)

    Ghara, Raghunath; Mellema, Garrelt; Giri, Sambit K.; Choudhury, T. Roy; Datta, Kanan K.; Majumdar, Suman

    2018-05-01

    Three-dimensional radiative transfer simulations of the epoch of reionization can produce realistic results, but are computationally expensive. On the other hand, simulations relying on one-dimensional radiative transfer solutions are faster but limited in accuracy due to their more approximate nature. Here, we compare the performance of the reionization simulation codes GRIZZLY and C2-RAY which use 1D and 3D radiative transfer schemes, respectively. The comparison is performed using the same cosmological density fields, halo catalogues, and source properties. We find that the ionization maps, as well as the 21-cm signal maps from these two simulations are very similar even for complex scenarios which include thermal feedback on low-mass haloes. The comparison between the schemes in terms of the statistical quantities such as the power spectrum of the brightness temperature fluctuation agrees with each other within 10 per cent error throughout the entire reionization history. GRIZZLY seems to perform slightly better than the seminumerical approaches considered in Majumdar et al. which are based on the excursion set principle. We argue that GRIZZLY can be efficiently used for exploring parameter space, establishing observations strategies, and estimating parameters from 21-cm observations.

  2. Forward Monte Carlo Computations of Polarized Microwave Radiation

    NASA Technical Reports Server (NTRS)

    Battaglia, A.; Kummerow, C.

    2000-01-01

    Microwave radiative transfer computations continue to acquire greater importance as the emphasis in remote sensing shifts towards the understanding of microphysical properties of clouds and with these to better understand the non linear relation between rainfall rates and satellite-observed radiance. A first step toward realistic radiative simulations has been the introduction of techniques capable of treating 3-dimensional geometry being generated by ever more sophisticated cloud resolving models. To date, a series of numerical codes have been developed to treat spherical and randomly oriented axisymmetric particles. Backward and backward-forward Monte Carlo methods are, indeed, efficient in this field. These methods, however, cannot deal properly with oriented particles, which seem to play an important role in polarization signatures over stratiform precipitation. Moreover, beyond the polarization channel, the next generation of fully polarimetric radiometers challenges us to better understand the behavior of the last two Stokes parameters as well. In order to solve the vector radiative transfer equation, one-dimensional numerical models have been developed, These codes, unfortunately, consider the atmosphere as horizontally homogeneous with horizontally infinite plane parallel layers. The next development step for microwave radiative transfer codes must be fully polarized 3-D methods. Recently a 3-D polarized radiative transfer model based on the discrete ordinate method was presented. A forward MC code was developed that treats oriented nonspherical hydrometeors, but only for plane-parallel situations.

  3. Laser radiation in active amplifying media treated as a transport problem - Transfer equation derived and exactly solved

    NASA Astrophysics Data System (ADS)

    Gupta, S. R. D.; Gupta, Santanu D.

    1991-10-01

    The flow of laser radiation in a plane-parallel cylindrical slab of active amplifying medium with axial symmetry is treated as a problem in radiative transfer. The appropriate one-dimensional transfer equation describing the transfer of laser radiation has been derived by an appeal to Einstein's A, B coefficients (describing the processes of stimulated line absorption, spontaneous line emission, and stimulated line emission sustained by population inversion in the medium) and considering the 'rate equations' to completely establish the rational of the transfer equation obtained. The equation is then exactly solved and the angular distribution of the emergent laser beam intensity is obtained; its numerically computed values are given in tables and plotted in graphs showing the nature of peaks of the emerging laser beam intensity about the axis of the laser cylinder.

  4. Radiative heat transfer in low-dimensional systems -- microscopic mode

    NASA Astrophysics Data System (ADS)

    Woods, Lilia; Phan, Anh; Drosdoff, David

    2013-03-01

    Radiative heat transfer between objects can increase dramatically at sub-wavelength scales. Exploring ways to modulate such transport between nano-systems is a key issue from fundamental and applied points of view. We advance the theoretical understanding of radiative heat transfer between nano-objects by introducing a microscopic model, which takes into account the individual atoms and their atomic polarizabilities. This approach is especially useful to investigate nano-objects with various geometries and give a detailed description of the heat transfer distribution. We employ this model to study the heat exchange in graphene nanoribbon/substrate systems. Our results for the distance separations, substrates, and presence of extended or localized defects enable making predictions for tailoring the radiative heat transfer at the nanoscale. Financial support from the Department of Energy under Contract No. DE-FG02-06ER46297 is acknowledged.

  5. Super-Planckian far-field radiative heat transfer

    NASA Astrophysics Data System (ADS)

    Fernández-Hurtado, V.; Fernández-Domínguez, A. I.; Feist, J.; García-Vidal, F. J.; Cuevas, J. C.

    2018-01-01

    We present here a theoretical analysis that demonstrates that the far-field radiative heat transfer between objects with dimensions smaller than the thermal wavelength can overcome the Planckian limit by orders of magnitude. To guide the search for super-Planckian far-field radiative heat transfer, we make use of the theory of fluctuational electrodynamics and derive a relation between the far-field radiative heat transfer and the directional absorption efficiency of the objects involved. Guided by this relation, and making use of state-of-the-art numerical simulations, we show that the far-field radiative heat transfer between highly anisotropic objects can largely overcome the black-body limit when some of their dimensions are smaller than the thermal wavelength. In particular, we illustrate this phenomenon in the case of suspended pads made of polar dielectrics like SiN or SiO2. These structures are widely used to measure the thermal transport through nanowires and low-dimensional systems and can be employed to test our predictions. Our work illustrates the dramatic failure of the classical theory to predict the far-field radiative heat transfer between micro- and nanodevices.

  6. Implications of a quadratic stream definition in radiative transfer theory.

    NASA Technical Reports Server (NTRS)

    Whitney, C.

    1972-01-01

    An explicit definition of the radiation-stream concept is stated and applied to approximate the integro-differential equation of radiative transfer with a set of twelve coupled differential equations. Computational efficiency is enhanced by distributing the corresponding streams in three-dimensional space in a totally symmetric way. Polarization is then incorporated in this model. A computer program based on the model is briefly compared with a Monte Carlo program for simulation of horizon scans of the earth's atmosphere. It is found to be considerably faster.

  7. Laser Radiation in Active Amplifying Media Treated as a Transport Problem - Transfer Equation Derived and Exactly Solved

    NASA Astrophysics Data System (ADS)

    Das Gupta, Santanu; Das Gupta, S. R.

    1991-10-01

    The flow of laser radiation in a plane-parallel cylindrical slab of active amplifying medium with axial symmetry is treated as a problem in radiative transfer. The appropriate one-dimensional transfer equation describing the transfer of laser radiation has been derived by an appeal to Einstein'sA, B coefficients (describing the processes of stimulated line absorption, spontaneous line emission, and stimulated line emission sustained by population inversion in the medium) and considering the ‘rate equations’ to completely establish the rational of the transfer equation obtained. The equation is then exactly solved and the angular distribution of the emergent laser beam intensity is obtained; its numerically computed values are given in tables and plotted in graphs showing the nature of peaks of the emerging laser beam intensity about the axis of the laser cylinder.

  8. Evaluation of the Anisotropic Radiative Conductivity of a Low-Density Carbon Fiber Material from Realistic Microscale Imaging

    NASA Technical Reports Server (NTRS)

    Nouri, Nima; Panerai, Francesco; Tagavi, Kaveh A.; Mansour, Nagi N.; Martin, Alexandre

    2015-01-01

    The radiative heat transfer inside a low-density carbon fiber insulator is analyzed using a three-dimensional direct simulation model. A robust procedure is presented for the numerical calculation of the geometric configuration factor to compute the radiative energy exchange processes among the small discretized surface areas of the fibrous material. The methodology is applied to a polygonal mesh of a fibrous insulator obtained from three-dimensional microscale imaging of the real material. The anisotropic values of the radiative conductivity are calculated for that geometry. The results yield both directional and thermal dependence of the radiative conductivity.

  9. A Variational Formalism for the Radiative Transfer Equation and a Geostrophic, Hydrostatic Atmosphere: Prelude to Model 3

    NASA Technical Reports Server (NTRS)

    Achtemeier, Gary L.

    1991-01-01

    The second step in development of MODEL III is summarized. It combines the four radiative transfer equations of the first step with the equations for a geostrophic and hydrostatic atmosphere. This step is intended to bring radiance into a three dimensional balance with wind, height, and temperature. The use of the geostrophic approximation in place of the full set of primitive equations allows for an easier evaluation of how the inclusion of the radiative transfer equation increases the complexity of the variational equations. Seven different variational formulations were developed for geostrophic, hydrostatic, and radiative transfer equations. The first derivation was too complex to yield solutions that were physically meaningful. For the remaining six derivations, the variational method gave the same physical interpretation (the observed brightness temperatures could provide no meaningful input to a geostrophic, hydrostatic balance) at least through the problem solving methodology used in these studies. The variational method is presented and the Euler-Lagrange equations rederived for the geostrophic, hydrostatic, and radiative transfer equations.

  10. Effects of multiple scattering and surface albedo on the photochemistry of the troposphere. Final report, period ending 30 Nov 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustsson, T.R.; Tiwari, S.N.

    The effect of treatment of incoming solar radiation on the photochemistry of the troposphere is discussed. A one dimensional photochemical model of the troposphere containing the species of the nitrogen, oxygen, carbon, hydrogen, and sulfur families was developed. The vertical flux is simulated by use of the parameterized eddy diffusion coefficients. The photochemical model is coupled to a radiative transfer model that calculates the radiation field due to the incoming solar radiation which initiates much of the photochemistry of the troposphere. Vertical profiles of tropospheric species were compared with the Leighton approximation, radiative transfer, matrix inversion model. The radiative transfermore » code includes the effects of multiple scattering due to molecules and aerosols, pure absorption, and surface albedo on the transfer of incoming solar radiation. It is indicated that significant differences exist for several key photolysis frequencies and species number density profiles between the Leighton approximation and the profiles generated with, radiative transfer, matrix inversion technique. Most species show enhanced vertical profiles when the more realistic treatment of the incoming solar radiation field is included« less

  11. Heat transfer in porous medium embedded with vertical plate: Non-equilibrium approach - Part A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badruddin, Irfan Anjum; Quadir, G. A.

    2016-06-08

    Heat transfer in a porous medium embedded with vertical flat plate is investigated by using thermal non-equilibrium model. Darcy model is employed to simulate the flow inside porous medium. It is assumed that the heat transfer takes place by natural convection and radiation. The vertical plate is maintained at isothermal temperature. The governing partial differential equations are converted into non-dimensional form and solved numerically using finite element method. Results are presented in terms of isotherms and streamlines for various parameters such as heat transfer coefficient parameter, thermal conductivity ratio, and radiation parameter.

  12. High performance computation of radiative transfer equation using the finite element method

    NASA Astrophysics Data System (ADS)

    Badri, M. A.; Jolivet, P.; Rousseau, B.; Favennec, Y.

    2018-05-01

    This article deals with an efficient strategy for numerically simulating radiative transfer phenomena using distributed computing. The finite element method alongside the discrete ordinate method is used for spatio-angular discretization of the monochromatic steady-state radiative transfer equation in an anisotropically scattering media. Two very different methods of parallelization, angular and spatial decomposition methods, are presented. To do so, the finite element method is used in a vectorial way. A detailed comparison of scalability, performance, and efficiency on thousands of processors is established for two- and three-dimensional heterogeneous test cases. Timings show that both algorithms scale well when using proper preconditioners. It is also observed that our angular decomposition scheme outperforms our domain decomposition method. Overall, we perform numerical simulations at scales that were previously unattainable by standard radiative transfer equation solvers.

  13. Reflectivity of the atmosphere-inhomogeneous surfaces system Laboratory simulation

    NASA Technical Reports Server (NTRS)

    Mekler, Y.; Kaufman, Y. J.; Fraser, R. S.

    1984-01-01

    Theoretical two- and three-dimensional solutions of the radiative transfer equation have been applied to the earth-atmosphere system. Such solutions have not been verified experimentally. A laboratory experiment simulates such a system to test the theory. The atmosphere was simulated by latex spheres suspended in water and the ground by a nonuniform surface, half white and half black. A stable radiation source provided uniform illumination over the hydrosol. The upward radiance along a line orthogonal to the boundary of the two-halves field was recorded for different amounts of the hydrosol. The simulation is a well-defined radiative transfer experiment to test radiative transfer models involving nonuniform surfaces. Good agreement is obtained between the measured and theoretical results.

  14. Two-dimensional analytic weighting functions for limb scattering

    NASA Astrophysics Data System (ADS)

    Zawada, D. J.; Bourassa, A. E.; Degenstein, D. A.

    2017-10-01

    Through the inversion of limb scatter measurements it is possible to obtain vertical profiles of trace species in the atmosphere. Many of these inversion methods require what is often referred to as weighting functions, or derivatives of the radiance with respect to concentrations of trace species in the atmosphere. Several radiative transfer models have implemented analytic methods to calculate weighting functions, alleviating the computational burden of traditional numerical perturbation methods. Here we describe the implementation of analytic two-dimensional weighting functions, where derivatives are calculated relative to atmospheric constituents in a two-dimensional grid of altitude and angle along the line of sight direction, in the SASKTRAN-HR radiative transfer model. Two-dimensional weighting functions are required for two-dimensional inversions of limb scatter measurements. Examples are presented where the analytic two-dimensional weighting functions are calculated with an underlying one-dimensional atmosphere. It is shown that the analytic weighting functions are more accurate than ones calculated with a single scatter approximation, and are orders of magnitude faster than a typical perturbation method. Evidence is presented that weighting functions for stratospheric aerosols calculated under a single scatter approximation may not be suitable for use in retrieval algorithms under solar backscatter conditions.

  15. The program FANS-3D (finite analytic numerical simulation 3-dimensional) and its applications

    NASA Technical Reports Server (NTRS)

    Bravo, Ramiro H.; Chen, Ching-Jen

    1992-01-01

    In this study, the program named FANS-3D (Finite Analytic Numerical Simulation-3 Dimensional) is presented. FANS-3D was designed to solve problems of incompressible fluid flow and combined modes of heat transfer. It solves problems with conduction and convection modes of heat transfer in laminar flow, with provisions for radiation and turbulent flows. It can solve singular or conjugate modes of heat transfer. It also solves problems in natural convection, using the Boussinesq approximation. FANS-3D was designed to solve heat transfer problems inside one, two and three dimensional geometries that can be represented by orthogonal planes in a Cartesian coordinate system. It can solve internal and external flows using appropriate boundary conditions such as symmetric, periodic and user specified.

  16. Transmission mode terahertz computed tomography

    DOEpatents

    Ferguson, Bradley Stuart; Wang, Shaohong; Zhang, Xi-Cheng

    2006-10-10

    A method of obtaining a series of images of a three-dimensional object by transmitting pulsed terahertz (THz) radiation through the entire object from a plurality of angles, optically detecting changes in the transmitted THz radiation using pulsed laser radiation, and constructing a plurality of imaged slices of the three-dimensional object using the detected changes in the transmitted THz radiation. The THz radiation is transmitted through the object as a scanning spot. The object is placed within the Rayleigh range of the focused THz beam and a focusing system is used to transfer the imaging plane from adjacent the object to a desired distance away from the object. A related system is also disclosed.

  17. Galaxy Morphology From the UV to the FIR: An Intercomparison of Recent Observations From Space With New Radiative Transfer Models

    NASA Technical Reports Server (NTRS)

    (CIT), Barry Madore

    1995-01-01

    We will present the latest multiwavelength observations of spiral galaxies made from space and from the ground covering the electromagnetic spectrum from the far ultraviolet (ASTRO-2 UIT observations) through the optical, and out to the far infrared (IRAS). Comparisons with recent theoretical models for the radiative transfer of stellar light through a three-dimensional dusty galaxy will be presented.

  18. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Hydrodynamic efficiency of laser-induced transfer of matter

    NASA Astrophysics Data System (ADS)

    Isakov, Vladimir A.; Kanavin, Andrey P.; Nasibov, A. S.

    2007-04-01

    A one-dimensional analytic hydrodynamic model of the direct laser-induced transfer of matter is considered. The efficiency of pulsed laser radiation energy conversion to the kinetic energy of the ejected matter is determined. It is shown that the hydrodynamic efficiency of the process for the layers of matter of thickness exceeding the laser radiation absorption depth is determined by the adiabatic index of the evaporated matter.

  19. ASTRORAY: General relativistic polarized radiative transfer code

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Roman V.

    2014-07-01

    ASTRORAY employs a method of ray tracing and performs polarized radiative transfer of (cyclo-)synchrotron radiation. The radiative transfer is conducted in curved space-time near rotating black holes described by Kerr-Schild metric. Three-dimensional general relativistic magneto hydrodynamic (3D GRMHD) simulations, in particular performed with variations of the HARM code, serve as an input to ASTRORAY. The code has been applied to reproduce the sub-mm synchrotron bump in the spectrum of Sgr A*, and to test the detectability of quasi-periodic oscillations in its light curve. ASTRORAY can be readily applied to model radio/sub-mm polarized spectra of jets and cores of other low-luminosity active galactic nuclei. For example, ASTRORAY is uniquely suitable to self-consistently model Faraday rotation measure and circular polarization fraction in jets.

  20. Analysis of Radiation-natural Convection Interactions in 1-g and low-g Environments using the Discrete Exchange Factor Method

    NASA Technical Reports Server (NTRS)

    Kassemi, M.; Naraghi, M. H. N.

    1993-01-01

    A new numerical method is presented for the analysis of combined natural convection and radiation heat transfer with applications in many engineering situations such as materials processing, combustion and fire research. Because of the recent interest in the low gravity environment of space, attention is devoted to both 1-g and low-g applications. The two-dimensional mathematical model is represented by a set of coupled nonlinear integro-partial differential equations. Radiative exchange is formulated using the Discrete Exchange Factor method (DEF). This method considers point to point exchange and provides accurate results over a wide range of radiation parameters. Numerical results show that radiation significantly influences the flow and heat transfer in both low-g and 1-g applications. In the low-g environment, convection is weak, and radiation can easily become the dominant heat transfer mode. It is also shown that volumetric heating by radiation gives rise to an intricate cell pattern in the top heated enclosure.

  1. Comprehensive analysis of heat transfer of gold-blood nanofluid (Sisko-model) with thermal radiation

    NASA Astrophysics Data System (ADS)

    Eid, Mohamed R.; Alsaedi, Ahmed; Muhammad, Taseer; Hayat, Tasawar

    Characteristics of heat transfer of gold nanoparticles (Au-NPs) in flow past a power-law stretching surface are discussed. Sisko bio-nanofluid flow (with blood as a base fluid) in existence of non-linear thermal radiation is studied. The resulting equations system is abbreviated to model the suggested problem in non-linear PDEs. Along with initial and boundary-conditions, the equations are made non-dimensional and then resolved numerically utilizing 4th-5th order Runge-Kutta-Fehlberg (RKF45) technique with shooting integration procedure. Various flow quantities behaviors are examined for parametric consideration such as the Au-NPs volume fraction, the exponentially stretching and thermal radiation parameters. It is observed that radiation drives to shortage the thermal boundary-layer thickness and therefore resulted in better heat transfer at surface.

  2. Radiation Heat Transfer Between Diffuse-Gray Surfaces Using Higher Order Finite Elements

    NASA Technical Reports Server (NTRS)

    Gould, Dana C.

    2000-01-01

    This paper presents recent work on developing methods for analyzing radiation heat transfer between diffuse-gray surfaces using p-version finite elements. The work was motivated by a thermal analysis of a High Speed Civil Transport (HSCT) wing structure which showed the importance of radiation heat transfer throughout the structure. The analysis also showed that refining the finite element mesh to accurately capture the temperature distribution on the internal structure led to very large meshes with unacceptably long execution times. Traditional methods for calculating surface-to-surface radiation are based on assumptions that are not appropriate for p-version finite elements. Two methods for determining internal radiation heat transfer are developed for one and two-dimensional p-version finite elements. In the first method, higher-order elements are divided into a number of sub-elements. Traditional methods are used to determine radiation heat flux along each sub-element and then mapped back to the parent element. In the second method, the radiation heat transfer equations are numerically integrated over the higher-order element. Comparisons with analytical solutions show that the integration scheme is generally more accurate than the sub-element method. Comparison to results from traditional finite elements shows that significant reduction in the number of elements in the mesh is possible using higher-order (p-version) finite elements.

  3. An asymptotic preserving unified gas kinetic scheme for gray radiative transfer equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Wenjun, E-mail: sun_wenjun@iapcm.ac.cn; Jiang, Song, E-mail: jiang@iapcm.ac.cn; Xu, Kun, E-mail: makxu@ust.hk

    The solutions of radiative transport equations can cover both optical thin and optical thick regimes due to the large variation of photon's mean-free path and its interaction with the material. In the small mean free path limit, the nonlinear time-dependent radiative transfer equations can converge to an equilibrium diffusion equation due to the intensive interaction between radiation and material. In the optical thin limit, the photon free transport mechanism will emerge. In this paper, we are going to develop an accurate and robust asymptotic preserving unified gas kinetic scheme (AP-UGKS) for the gray radiative transfer equations, where the radiation transportmore » equation is coupled with the material thermal energy equation. The current work is based on the UGKS framework for the rarefied gas dynamics [14], and is an extension of a recent work [12] from a one-dimensional linear radiation transport equation to a nonlinear two-dimensional gray radiative system. The newly developed scheme has the asymptotic preserving (AP) property in the optically thick regime in the capturing of diffusive solution without using a cell size being smaller than the photon's mean free path and time step being less than the photon collision time. Besides the diffusion limit, the scheme can capture the exact solution in the optical thin regime as well. The current scheme is a finite volume method. Due to the direct modeling for the time evolution solution of the interface radiative intensity, a smooth transition of the transport physics from optical thin to optical thick can be accurately recovered. Many numerical examples are included to validate the current approach.« less

  4. Global simulation of canopy scale sun-induced chlorophyll fluorescence with a 3 dimensional radiative transfer model

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Yang, W.; Ichii, K.

    2015-12-01

    Global simulation of canopy scale sun-induced chlorophyll fluorescence with a 3 dimensional radiative transfer modelHideki Kobayashi, Wei Yang, and Kazuhito IchiiDepartment of Environmental Geochemical Cycle Research, Japan Agency for Marine-Earth Science and Technology3173-25, Showa-machi, Kanazawa-ku, Yokohama, Japan.Plant canopy scale sun-induced chlorophyll fluorescence (SIF) can be observed from satellites, such as Greenhouse gases Observation Satellite (GOSAT), Orbiting Carbon Observatory-2 (OCO-2), and Global Ozone Monitoring Experiment-2 (GOME-2), using Fraunhofer lines in the near infrared spectral domain [1]. SIF is used to infer photosynthetic capacity of plant canopy [2]. However, it is not well understoond how the leaf-level SIF emission contributes to the top of canopy directional SIF because SIFs observed by the satellites use the near infrared spectral domain where the multiple scatterings among leaves are not negligible. It is necessary to quantify the fraction of emission for each satellite observation angle. Absorbed photosynthetically active radiation of sunlit leaves are 100 times higher than that of shaded leaves. Thus, contribution of sunlit and shaded leaves to canopy scale directional SIF emission should also be quantified. Here, we show the results of global simulation of SIF using a 3 dimensional radiative transfer simulation with MODIS atmospheric (aerosol optical thickness) and land (land cover and leaf area index) products and a forest landscape data sets prepared for each land cover category. The results are compared with satellite-based SIF (e.g. GOME-2) and the gross primary production empirically estimated by FLUXNET and remote sensing data.

  5. Millimeter wave radiative transfer studies for precipitation measurements

    NASA Technical Reports Server (NTRS)

    Vivekanandan, J.; Evans, Frank

    1989-01-01

    Scattering calculations using the discrete dipole approximation and vector radiative transfer calculations were performed to model multiparameter radar return and passive microwave emission for a simple model of a winter storm. The issue of dendrite riming was addressed by computing scattering properties of thin ice disks with varying bulk density. It was shown that C-band multiparameter radar contains information about particle density and the number concentration of the ice particles. The radiative transfer modeling indicated that polarized multifrequency passive microwave emission may be used to infer some properties of ice hydrometers. Detailed radar modeling and vector radiative transfer modeling is in progress to enhance the understanding of simultaneous radar and radiometer measurements, as in the case of the proposed TRMM field program. A one-dimensional cloud model will be used to simulate the storm structure in detail and study the microphysics, such as size and density. Multifrequency polarized radiometer measurements from the SSMI satellite instrument will be analyzed in relation to dual-frequency and dual-polarization radar measurements.

  6. Equivalent isotropic scattering formulation for transient short-pulse radiative transfer in anisotropic scattering planar media.

    PubMed

    Guo, Z; Kumar, S

    2000-08-20

    An isotropic scaling formulation is evaluated for transient radiative transfer in a one-dimensional planar slab subject to collimated and/or diffuse irradiation. The Monte Carlo method is used to implement the equivalent scattering and exact simulations of the transient short-pulse radiation transport through forward and backward anisotropic scattering planar media. The scaled equivalent isotropic scattering results are compared with predictions of anisotropic scattering in various problems. It is found that the equivalent isotropic scaling law is not appropriate for backward-scattering media in transient radiative transfer. Even for an optically diffuse medium, the differences in temporal transmittance and reflectance profiles between predictions of backward anisotropic scattering and equivalent isotropic scattering are large. Additionally, for both forward and backward anisotropic scattering media, the transient equivalent isotropic results are strongly affected by the change of photon flight time, owing to the change of flight direction associated with the isotropic scaling technique.

  7. Radiative interactions in chemically reacting compressible nozzle flows using Monte Carlo simulations

    NASA Technical Reports Server (NTRS)

    Liu, J.; Tiwari, Surendra N.

    1994-01-01

    The two-dimensional spatially elliptic Navier-Stokes equations have been used to investigate the radiative interactions in chemically reacting compressible flows of premixed hydrogen and air in an expanding nozzle. The radiative heat transfer term in the energy equation is simulated using the Monte Carlo method (MCM). The nongray model employed is based on the statistical narrow band model with an exponential-tailed inverse intensity distribution. The spectral correlation has been considered in the Monte Carlo formulations. Results obtained demonstrate that the effect of radiation on the flow field is minimal but its effect on the wall heat transfer is significant. Extensive parametric studies are conducted to investigate the effects of equivalence ratio, wall temperature, inlet flow temperature, and the nozzle size on the radiative and conductive wall fluxes.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashraf, M. Bilal, E-mail: bilalashraf-qau@yahoo.com; Hayat, T.; Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80257, Jeddah 21589

    Three dimensional radiative flow of Maxwell fluid over an inclined stretching surface with convective boundary condition is investigated. Heat and mass transfer analysis is taken into account with thermophoresis effects. Similarity transformations are utilized to reduce the partial differential equations into ordinary differential equations. Series solutions of velocity, temperature and concentration are developed. Influence of different parameters Biot number, therrmophoretic parameter, Deborah number, ratio parameter, inclined stretching angle, radiation parameter, mixed convection parameter and concentration buoyancy parameter on the non-dimensional velocity components, temperature and concentration are plotted and discussed in detail. Physical quantities of interests are tabulated and examined.

  9. Correlated k-distribution method for radiative transfer in climate models: Application to effect of cirrus clouds on climate

    NASA Technical Reports Server (NTRS)

    Lacis, A. A.; Wang, W. C.; Hansen, J. E.

    1979-01-01

    A radiative transfer method appropriate for use in simple climate models and three dimensional global climate models was developed. It is fully interactive with climate changes, such as in the temperature-pressure profile, cloud distribution, and atmospheric composition, and it is accurate throughout the troposphere and stratosphere. The vertical inhomogeneity of the atmosphere is accounted for by assuming a correlation of gaseous k-distributions of different pressures and temperatures. Line-by-line calculations are made to demonstrate that The method is remarkably accurate. The method is then used in a one-dimensional radiative-convective climate model to study the effect of cirrus clouds on surface temperature. It is shown that an increase in cirrus cloud cover can cause a significant warming of the troposphere and the Earth's surface, by the mechanism of an enhanced green-house effect. The dependence of this phenomenon on cloud optical thickness, altitude, and latitude is investigated.

  10. Asymmetric Base-Bleed Effect on Aerospike Plume-Induced Base-Heating Environment

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Droege, Alan; DAgostino, Mark; Lee, Young-Ching; Williams, Robert

    2004-01-01

    A computational heat transfer design methodology was developed to study the dual-engine linear aerospike plume-induced base-heating environment during one power-pack out, in ascent flight. It includes a three-dimensional, finite volume, viscous, chemically reacting, and pressure-based computational fluid dynamics formulation, a special base-bleed boundary condition, and a three-dimensional, finite volume, and spectral-line-based weighted-sum-of-gray-gases absorption computational radiation heat transfer formulation. A separate radiation model was used for diagnostic purposes. The computational methodology was systematically benchmarked. In this study, near-base radiative heat fluxes were computed, and they compared well with those measured during static linear aerospike engine tests. The base-heating environment of 18 trajectory points selected from three power-pack out scenarios was computed. The computed asymmetric base-heating physics were analyzed. The power-pack out condition has the most impact on convective base heating when it happens early in flight. The source of its impact comes from the asymmetric and reduced base bleed.

  11. FluorWPS: A Monte Carlo ray-tracing model to compute sun-induced chlorophyll fluorescence of three-dimensional canopy

    USDA-ARS?s Scientific Manuscript database

    A model to simulate radiative transfer (RT) of sun-induced chlorophyll fluorescence (SIF) of three-dimensional (3-D) canopy, FluorWPS, was proposed and evaluated. The inclusion of fluorescence excitation was implemented with the ‘weight reduction’ and ‘photon spread’ concepts based on Monte Carlo ra...

  12. Linearized Flux Evolution (LiFE): A technique for rapidly adapting fluxes from full-physics radiative transfer models

    NASA Astrophysics Data System (ADS)

    Robinson, Tyler D.; Crisp, David

    2018-05-01

    Solar and thermal radiation are critical aspects of planetary climate, with gradients in radiative energy fluxes driving heating and cooling. Climate models require that radiative transfer tools be versatile, computationally efficient, and accurate. Here, we describe a technique that uses an accurate full-physics radiative transfer model to generate a set of atmospheric radiative quantities which can be used to linearly adapt radiative flux profiles to changes in the atmospheric and surface state-the Linearized Flux Evolution (LiFE) approach. These radiative quantities describe how each model layer in a plane-parallel atmosphere reflects and transmits light, as well as how the layer generates diffuse radiation by thermal emission and by scattering light from the direct solar beam. By computing derivatives of these layer radiative properties with respect to dynamic elements of the atmospheric state, we can then efficiently adapt the flux profiles computed by the full-physics model to new atmospheric states. We validate the LiFE approach, and then apply this approach to Mars, Earth, and Venus, demonstrating the information contained in the layer radiative properties and their derivatives, as well as how the LiFE approach can be used to determine the thermal structure of radiative and radiative-convective equilibrium states in one-dimensional atmospheric models.

  13. Solar Radiation Transport in the Cloudy Atmosphere: A 3D Perspective on Observations and Climate Impacts

    NASA Technical Reports Server (NTRS)

    Davis, Anthony B.; Marshak, Alexander

    2010-01-01

    The interplay of sunlight with clouds is a ubiquitous and often pleasant visual experience, but it conjures up major challenges for weather, climate, environmental science and beyond. Those engaged in the characterization of clouds (and the clear air nearby) by remote sensing methods are even more confronted. The problem comes, on the one hand, from the spatial complexity of real clouds and, on the other hand, from the dominance of multiple scattering in the radiation transport. The former ingredient contrasts sharply with the still popular representation of clouds as homogeneous plane-parallel slabs for the purposes of radiative transfer computations. In typical cloud scenes the opposite asymptotic transport regimes of diffusion and ballistic propagation coexist. We survey the three-dimensional (3D) atmospheric radiative transfer literature over the past 50 years and identify three concurrent and intertwining thrusts: first, how to assess the damage (bias) caused by 3D effects in the operational 1D radiative transfer models? Second, how to mitigate this damage? Finally, can we exploit 3D radiative transfer phenomena to innovate observation methods and technologies? We quickly realize that the smallest scale resolved computationally or observationally may be artificial but is nonetheless a key quantity that separates the 3D radiative transfer solutions into two broad and complementary classes: stochastic and deterministic. Both approaches draw on classic and contemporary statistical, mathematical and computational physics.

  14. Projection methods for line radiative transfer in spherical media.

    NASA Astrophysics Data System (ADS)

    Anusha, L. S.; Nagendra, K. N.

    An efficient numerical method called the Preconditioned Bi-Conjugate Gradient (Pre-BiCG) method is presented for the solution of radiative transfer equation in spherical geometry. A variant of this method called Stabilized Preconditioned Bi-Conjugate Gradient (Pre-BiCG-STAB) is also presented. These methods are based on projections on the subspaces of the n dimensional Euclidean space mathbb {R}n called Krylov subspaces. The methods are shown to be faster in terms of convergence rate compared to the contemporary iterative methods such as Jacobi, Gauss-Seidel and Successive Over Relaxation (SOR).

  15. Merced

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hedstrom, Gerald; Beck, Bret; Mattoon, Caleb

    2016-10-01

    Merced performs a multi-dimensional integral tl generate so-called 'transfer matrices' for use in deterministic radiation transport applications. It produces transfer matrices on the user-defind energy grid. The angular dependence of outgoing products is captured in a Legendre expansion, up to a user-specified maximun Legendre order. Merced calculations can use multi-threading for enhanced performance on a single compute node.

  16. New numerical method for radiation heat transfer in nonhomogeneous participating media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howell, J.R.; Tan, Zhiqiang

    A new numerical method, which solves the exact integral equations of distance-angular integration form for radiation transfer, is introduced in this paper. By constructing and prestoring the numerical integral formulas for the distance integral for appropriate kernel functions, this method eliminates the time consuming evaluations of the kernels of the space integrals in the formal computations. In addition, when the number of elements in the system is large, the resulting coefficient matrix is quite sparse. Thus, either considerable time or much storage can be saved. A weakness of the method is discussed, and some remedies are suggested. As illustrations, somemore » one-dimensional and two-dimensional problems in both homogeneous and inhomogeneous emitting, absorbing, and linear anisotropic scattering media are studied. Some results are compared with available data. 13 refs.« less

  17. Consistent radiative transfer modeling of active and passive observations of precipitation

    NASA Astrophysics Data System (ADS)

    Adams, Ian

    2016-04-01

    Spaceborne platforms such as the Tropical Rainfall Measurement Mission (TRMM) and the Global Precipitation Measurement (GPM) mission exploit a combination of active and passive sensors to provide a greater understanding of the three-dimensional structure of precipitation. While "operationalized" retrieval algorithms require fast forward models, the ability to perform higher fidelity simulations is necessary in order to understand the physics of remote sensing problems by testing assumptions and developing parameterizations for the fast models. To ensure proper synergy between active and passive modeling, forward models must be consistent when modeling the responses of radars and radiometers. This work presents a self-consistent transfer model for simulating radar reflectivities and millimeter wave brightness temperatures for precipitating scenes. To accomplish this, we extended the Atmospheric Radiative Transfer Simulator (ARTS) version 2.3 to solve the radiative transfer equation for active sensors and multiple scattering conditions. Early versions of ARTS (1.1) included a passive Monte Carlo solver, and ARTS is capable of handling atmospheres of up to three dimensions with ellipsoidal planetary geometries. The modular nature of ARTS facilitates extensibility, and the well-developed ray-tracing tools are suited for implementation of Monte Carlo algorithms. Finally, since ARTS handles the full Stokes vector, co- and cross-polarized reflectivity products are possible for scenarios that include nonspherical particles, with or without preferential alignment. The accuracy of the forward model will be demonstrated with precipitation events observed by TRMM and GPM, and the effects of multiple scattering will be detailed. The three-dimensional nature of the radiative transfer model will be useful for understanding the effects of nonuniform beamfill and multiple scattering for spatially heterogeneous precipitation events. The targets of this forward model are GPM (the Dual-wavelength Precipitation Radar (DPR) and GPM Microwave Imager (GMI)).

  18. Heat transfer evaluation in a plasma core reactor

    NASA Technical Reports Server (NTRS)

    Smith, D. E.; Smith, T. M.; Stoenescu, M. L.

    1976-01-01

    Numerical evaluations of heat transfer in a fissioning uranium plasma core reactor cavity, operating with seeded hydrogen propellant, was performed. A two-dimensional analysis is based on an assumed flow pattern and cavity wall heat exchange rate. Various iterative schemes were required by the nature of the radiative field and by the solid seed vaporization. Approximate formulations of the radiative heat flux are generally used, due to the complexity of the solution of a rigorously formulated problem. The present work analyzes the sensitivity of the results with respect to approximations of the radiative field, geometry, seed vaporization coefficients and flow pattern. The results present temperature, heat flux, density and optical depth distributions in the reactor cavity, acceptable simplifying assumptions, and iterative schemes. The present calculations, performed in cartesian and spherical coordinates, are applicable to any most general heat transfer problem.

  19. Reflection of solar radiation by a cylindrical cloud

    NASA Technical Reports Server (NTRS)

    Smith, G. L.

    1989-01-01

    Potential applications of an analytic method for computing the solar radiation reflected by a cylindrical cloud are discussed, including studies of radiative transfer within finite clouds and evaluations of these effects on other clouds and on remote sensing problems involving finite clouds. The pattern of reflected sunlight from a cylindrical cloud as seen at a large distance has been considered and described by the bidirectional function method for finite cloud analysis, as previously studied theoretically for plane-parallel atmospheres by McKee and Cox (1974); Schmetz and Raschke (1981); and Stuhlmann et al. (1985). However, the lack of three-dimensional radiative transfer solutions for anisotropic scattering media have hampered theoretical investigations of bidirectional functions for finite clouds. The present approach permits expression of the directional variation of the radiation field as a spherical harmonic series to any desired degree and order.

  20. Statistics Analysis of the Uncertainties in Cloud Optical Depth Retrievals Caused by Three-Dimensional Radiative Effects

    NASA Technical Reports Server (NTRS)

    Varnai, Tamas; Marshak, Alexander

    2000-01-01

    This paper presents a simple approach to estimate the uncertainties that arise in satellite retrievals of cloud optical depth when the retrievals use one-dimensional radiative transfer theory for heterogeneous clouds that have variations in all three dimensions. For the first time, preliminary error bounds are set to estimate the uncertainty of cloud optical depth retrievals. These estimates can help us better understand the nature of uncertainties that three-dimensional effects can introduce into retrievals of this important product of the MODIS instrument. The probability distribution of resulting retrieval errors is examined through theoretical simulations of shortwave cloud reflection for a wide variety of cloud fields. The results are used to illustrate how retrieval uncertainties change with observable and known parameters, such as solar elevation or cloud brightness. Furthermore, the results indicate that a tendency observed in an earlier study, clouds appearing thicker for oblique sun, is indeed caused by three-dimensional radiative effects.

  1. An Introduction to Atmospheric Radiation: Review for the Bulletin of AMS

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander

    2003-01-01

    Whether you like a certain geophysical book or not, largely depends on your background. The field of radiative transfer and atmospheric radiation, in particular, combines people with a wide range of mathematical skills: from theoretical astrophysicists and nuclear physicists to meteorologists and ecologists. There is always a delicate balance between physical explanations and their mathematical interpretations. This balance is very personal and is based on your background. I came to the field of atmospheric radiative transfer as a mathematician with little knowledge of atmospheric physics. After being in the field for more than a decade, I still have gaps in my atmospheric science education. Thus I assess a radiative transfer book fi-om two main criteria: how well does it describe the material that is familiar to me (the radiative transfer equation and its numerical solutions) and how well does it help me to fill the gaps in my personal knowledge. So I present this review fi-om the perspective of a former mathematician working in the field of atmospheric radiation. . After being asked to review the book, my first intention was to compare the new edition with the previous one (Liou, 1980). In doing so, you can clearly follow the progress made in the field of atmospheric radiation over the past two decades. If there are few changes (as in Fundamental Radiative Transfer) or no changes at all (as in the Maxwell s equations), then the field has not seen much development. To the contrary, many differences between the two editions illustrate areas of major progress in the field, such as evidenced in Thermal Ineared Radiative Transfer and even in the creations of completely new fields like Three-Dimensional Radiative Transfer or Light Scattering by Nonspherical Particles. Obviously, the major changes happened not in the theory, which is at least half a century old, but in data quality and completely new measurements (mostly due to new satellite data) with higher accuracy and more reliability. The new edition illustrates this progress well.

  2. Principal Component-Based Radiative Transfer Model (PCRTM) for Hyperspectral Sensors. Part I; Theoretical Concept

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Smith, William L.; Zhou, Daniel K.; Larar, Allen

    2005-01-01

    Modern infrared satellite sensors such as Atmospheric Infrared Sounder (AIRS), Cosmic Ray Isotope Spectrometer (CrIS), Thermal Emission Spectrometer (TES), Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) and Infrared Atmospheric Sounding Interferometer (IASI) are capable of providing high spatial and spectral resolution infrared spectra. To fully exploit the vast amount of spectral information from these instruments, super fast radiative transfer models are needed. This paper presents a novel radiative transfer model based on principal component analysis. Instead of predicting channel radiance or transmittance spectra directly, the Principal Component-based Radiative Transfer Model (PCRTM) predicts the Principal Component (PC) scores of these quantities. This prediction ability leads to significant savings in computational time. The parameterization of the PCRTM model is derived from properties of PC scores and instrument line shape functions. The PCRTM is very accurate and flexible. Due to its high speed and compressed spectral information format, it has great potential for super fast one-dimensional physical retrievals and for Numerical Weather Prediction (NWP) large volume radiance data assimilation applications. The model has been successfully developed for the National Polar-orbiting Operational Environmental Satellite System Airborne Sounder Testbed - Interferometer (NAST-I) and AIRS instruments. The PCRTM model performs monochromatic radiative transfer calculations and is able to include multiple scattering calculations to account for clouds and aerosols.

  3. An interface for simulating radiative transfer in and around volcanic plumes with the Monte Carlo radiative transfer model McArtim

    USGS Publications Warehouse

    Kern, Christoph

    2016-03-23

    This report describes two software tools that, when used as front ends for the three-dimensional backward Monte Carlo atmospheric-radiative-transfer model (RTM) McArtim, facilitate the generation of lookup tables of volcanic-plume optical-transmittance characteristics in the ultraviolet/visible-spectral region. In particular, the differential optical depth and derivatives thereof (that is, weighting functions), with regard to a change in SO2 column density or aerosol optical thickness, can be simulated for a specific measurement geometry and a representative range of plume conditions. These tables are required for the retrieval of SO2 column density in volcanic plumes, using the simulated radiative-transfer/differential optical-absorption spectroscopic (SRT-DOAS) approach outlined by Kern and others (2012). This report, together with the software tools published online, is intended to make this sophisticated SRT-DOAS technique available to volcanologists and gas geochemists in an operational environment, without the need for an indepth treatment of the underlying principles or the low-level interface of the RTM McArtim.

  4. Three dimensional radiative flow of magnetite-nanofluid with homogeneous-heterogeneous reactions

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Rashid, Madiha; Alsaedi, Ahmed

    2018-03-01

    Present communication deals with the effects of homogeneous-heterogeneous reactions in flow of nanofluid by non-linear stretching sheet. Water based nanofluid containing magnetite nanoparticles is considered. Non-linear radiation and non-uniform heat sink/source effects are examined. Non-linear differential systems are computed by Optimal homotopy analysis method (OHAM). Convergent solutions of nonlinear systems are established. The optimal data of auxiliary variables is obtained. Impact of several non-dimensional parameters for velocity components, temperature and concentration fields are examined. Graphs are plotted for analysis of surface drag force and heat transfer rate.

  5. The actinic UV-radiation budget during the ESCOMPTE campaign 2001: results of airborne measurements with the microlight research aircraft D-MIFU

    NASA Astrophysics Data System (ADS)

    Junkermann, Wolfgang

    2005-03-01

    During the ESCOMPTE campaign 2001, the vertical distribution of ultraviolet actinic radiation was investigated with concurrent measurements of ozone, aerosol size distributions, and scattering coefficients using a microlight aircraft as airborne platform. Three-dimensional (3D) measurements were performed on a regional scale in the area between Avignon, Aix-en-Provence, and Marseille up to an altitude of 4000 m a.s.l. The results show a pronounced dependence of the vertical actinic flux distribution on aerosol load and stratification while horizontally no significant variability was observed. Furthermore, investigations under cloudy conditions and in the vicinity of cumulus clouds were performed allowing comparisons with one-dimensional and recently published three-dimensional model results. Cloud effects of scattered convective clouds were often found to be masked by aerosols and the aerosol content was generally the dominating factor controlling radiation transfer.

  6. A narrow-band k-distribution model with single mixture gas assumption for radiative flows

    NASA Astrophysics Data System (ADS)

    Jo, Sung Min; Kim, Jae Won; Kwon, Oh Joon

    2018-06-01

    In the present study, the narrow-band k-distribution (NBK) model parameters for mixtures of H2O, CO2, and CO are proposed by utilizing the line-by-line (LBL) calculations with a single mixture gas assumption. For the application of the NBK model to radiative flows, a radiative transfer equation (RTE) solver based on a finite-volume method on unstructured meshes was developed. The NBK model and the RTE solver were verified by solving two benchmark problems including the spectral radiance distribution emitted from one-dimensional slabs and the radiative heat transfer in a truncated conical enclosure. It was shown that the results are accurate and physically reliable by comparing with available data. To examine the applicability of the methods to realistic multi-dimensional problems in non-isothermal and non-homogeneous conditions, radiation in an axisymmetric combustion chamber was analyzed, and then the infrared signature emitted from an aircraft exhaust plume was predicted. For modeling the plume flow involving radiative cooling, a flow-radiation coupled procedure was devised in a loosely coupled manner by adopting a Navier-Stokes flow solver based on unstructured meshes. It was shown that the predicted radiative cooling for the combustion chamber is physically more accurate than other predictions, and is as accurate as that by the LBL calculations. It was found that the infrared signature of aircraft exhaust plume can also be obtained accurately, equivalent to the LBL calculations, by using the present narrow-band approach with a much improved numerical efficiency.

  7. Radiative transfer simulations of the two-dimensional ocean glint reflectance and determination of the sea surface roughness.

    PubMed

    Lin, Zhenyi; Li, Wei; Gatebe, Charles; Poudyal, Rajesh; Stamnes, Knut

    2016-02-20

    An optimized discrete-ordinate radiative transfer model (DISORT3) with a pseudo-two-dimensional bidirectional reflectance distribution function (BRDF) is used to simulate and validate ocean glint reflectances at an infrared wavelength (1036 nm) by matching model results with a complete set of BRDF measurements obtained from the NASA cloud absorption radiometer (CAR) deployed on an aircraft. The surface roughness is then obtained through a retrieval algorithm and is used to extend the simulation into the visible spectral range where diffuse reflectance becomes important. In general, the simulated reflectances and surface roughness information are in good agreement with the measurements, and the diffuse reflectance in the visible, ignored in current glint algorithms, is shown to be important. The successful implementation of this new treatment of ocean glint reflectance and surface roughness in DISORT3 will help improve glint correction algorithms in current and future ocean color remote sensing applications.

  8. Radiative Transfer Simulations of the Two-Dimensional Ocean Glint Reflectance and Determination of the Sea Surface Roughness

    NASA Technical Reports Server (NTRS)

    Lin, Zhenyi; Li, Wei; Gatebe, Charles; Poudyal, Rajesh; Stamnes, Knut

    2016-01-01

    An optimized discrete-ordinate radiative transfer model (DISORT3) with a pseudo-two-dimensional bidirectional reflectance distribution function (BRDF) is used to simulate and validate ocean glint reflectances at an infrared wavelength (1036 nm) by matching model results with a complete set of BRDF measurements obtained from the NASA cloud absorption radiometer (CAR) deployed on an aircraft. The surface roughness is then obtained through a retrieval algorithm and is used to extend the simulation into the visible spectral range where diffuse reflectance becomes important. In general, the simulated reflectances and surface roughness information are in good agreement with the measurements, and the diffuse reflectance in the visible, ignored in current glint algorithms, is shown to be important. The successful implementation of this new treatment of ocean glint reflectance and surface roughness in DISORT3 will help improve glint correction algorithms in current and future ocean color remote sensing applications.

  9. Radiative transfer model for aerosols at infrared wavelengths for passive remote sensing applications: revisited.

    PubMed

    Ben-David, Avishai; Davidson, Charles E; Embury, Janon F

    2008-11-01

    We introduced a two-dimensional radiative transfer model for aerosols in the thermal infrared [Appl. Opt.45, 6860-6875 (2006)APOPAI0003-693510.1364/AO.45.006860]. In that paper we superimposed two orthogonal plane-parallel layers to compute the radiance due to a two-dimensional (2D) rectangular aerosol cloud. In this paper we revisit the model and correct an error in the interaction of the two layers. We derive new expressions relating to the signal content of the radiance from an aerosol cloud based on the concept of five directional thermal contrasts: four for the 2D diffuse radiance and one for direct radiance along the line of sight. The new expressions give additional insight on the radiative transfer processes within the cloud. Simulations for Bacillus subtilis var. niger (BG) bioaerosol and dustlike kaolin aerosol clouds are compared and contrasted for two geometries: an airborne sensor looking down and a ground-based sensor looking up. Simulation results suggest that aerosol cloud detection from an airborne platform may be more challenging than for a ground-based sensor and that the detection of an aerosol cloud in emission mode (negative direct thermal contrast) is not the same as the detection of an aerosol cloud in absorption mode (positive direct thermal contrast).

  10. An Investigation of the Compatibility of Radiation and Convection Heat Flux Measurements

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.

    1996-01-01

    A method for determining time-resolved absorbed surface heat flux and surface temperature in radiation and convection environments is described. The method is useful for verification of aerodynamic, heat transfer and durability models. A practical heat flux gage fabrication procedure and a simple one-dimensional inverse heat conduction model and calculation procedure are incorporated in this method. The model provides an estimate of the temperature and heat flux gradient in the direction of heat transfer through the gage. This paper discusses several successful time-resolved tests of this method in hostile convective heating and cooling environments.

  11. Calculations of thermal radiation transfer of C2H2 and C2H4 together with H2O, CO2, and CO in a one-dimensional enclosure using LBL and SNB models

    NASA Astrophysics Data System (ADS)

    Qi, Chaobo; Zheng, Shu; Zhou, Huaichun

    2017-08-01

    Generally, the involvement of hydrocarbons such as C2H4 and its derivative C2H2 in thermal radiation has not been accounted in the numerical simulation of their flames, which may cause serious error for estimation of temperature in the early stage of combustion. At the first, the Statistical Narrow-Band (SNB) model parameters for C2H2 and C2H4 are generated from line by line (LBL) calculations. The distributions of the concentrations of radiating gases such as H2O, CO2, CO, C2H2 and C2H4, and the temperature along the centerline of a laminar ethylene/air diffusion flame were chosen to form a one-dimensional, planar enclosure to be tested in this study. Thermal radiation transfer in such an enclosure was calculated using the LBL approach and the SNB model, most of the relative errors are less than 8% and the results of these two models shows an excellent agreement. Below the height of 20 mm, which is the early stage of the flame, the average fraction contributed by C2H2 and C2H4 in the radiative heat source is 33.8%, while that by CO is only 5.8%. This result indicates that the involvement of C2H2 and C2H4 in radiation heat transfer needs to be taken into account in the numerical modeling of the ethylene/air diffusion flame, especially in the early stage of combustion.

  12. Constraining physical parameters of ultra-fast outflows in PDS 456 with Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Hagino, K.; Odaka, H.; Done, C.; Gandhi, P.; Takahashi, T.

    2014-07-01

    Deep absorption lines with extremely high velocity of ˜0.3c observed in PDS 456 spectra strongly indicate the existence of ultra-fast outflows (UFOs). However, the launching and acceleration mechanisms of UFOs are still uncertain. One possible way to solve this is to constrain physical parameters as a function of distance from the source. In order to study the spatial dependence of parameters, it is essential to adopt 3-dimensional Monte Carlo simulations that treat radiation transfer in arbitrary geometry. We have developed a new simulation code of X-ray radiation reprocessed in AGN outflow. Our code implements radiative transfer in 3-dimensional biconical disk wind geometry, based on Monte Carlo simulation framework called MONACO (Watanabe et al. 2006, Odaka et al. 2011). Our simulations reproduce FeXXV and FeXXVI absorption features seen in the spectra. Also, broad Fe emission lines, which reflects the geometry and viewing angle, is successfully reproduced. By comparing the simulated spectra with Suzaku data, we obtained constraints on physical parameters. We discuss launching and acceleration mechanisms of UFOs in PDS 456 based on our analysis.

  13. Monte Carlo Calculations of Polarized Microwave Radiation Emerging from Cloud Structures

    NASA Technical Reports Server (NTRS)

    Kummerow, Christian; Roberti, Laura

    1998-01-01

    The last decade has seen tremendous growth in cloud dynamical and microphysical models that are able to simulate storms and storm systems with very high spatial resolution, typically of the order of a few kilometers. The fairly realistic distributions of cloud and hydrometeor properties that these models generate has in turn led to a renewed interest in the three-dimensional microwave radiative transfer modeling needed to understand the effect of cloud and rainfall inhomogeneities upon microwave observations. Monte Carlo methods, and particularly backwards Monte Carlo methods have shown themselves to be very desirable due to the quick convergence of the solutions. Unfortunately, backwards Monte Carlo methods are not well suited to treat polarized radiation. This study reviews the existing Monte Carlo methods and presents a new polarized Monte Carlo radiative transfer code. The code is based on a forward scheme but uses aliasing techniques to keep the computational requirements equivalent to the backwards solution. Radiative transfer computations have been performed using a microphysical-dynamical cloud model and the results are presented together with the algorithm description.

  14. Radiation transfer in plant canopies - Transmission of direct solar radiation and the role of leaf orientation

    NASA Technical Reports Server (NTRS)

    Verstraete, Michel M.

    1987-01-01

    Understanding the details of the interaction between the radiation field and plant structures is important climatically because of the influence of vegetation on the surface water and energy balance, but also biologically, since solar radiation provides the energy necessary for photosynthesis. The problem is complex because of the extreme variety of vegetation forms in space and time, as well as within and across plant species. This one-dimensional vertical multilayer model describes the transfer of direct solar radiation through a leaf canopy, accounting explicitly for the vertical inhomogeneities of a plant stand and leaf orientation, as well as heliotropic plant behavior. This model reproduces observational results on homogeneous canopies, but it is also well adapted to describe vertically inhomogeneous canopies. Some of the implications of leaf orientation and plant structure as far as light collection is concerned are briefly reviewed.

  15. Development and validation of P-MODTRAN7 and P-MCScene, 1D and 3D polarimetric radiative transfer models

    NASA Astrophysics Data System (ADS)

    Hawes, Frederick T.; Berk, Alexander; Richtsmeier, Steven C.

    2016-05-01

    A validated, polarimetric 3-dimensional simulation capability, P-MCScene, is being developed by generalizing Spectral Sciences' Monte Carlo-based synthetic scene simulation model, MCScene, to include calculation of all 4 Stokes components. P-MCScene polarimetric optical databases will be generated by a new version (MODTRAN7) of the government-standard MODTRAN radiative transfer algorithm. The conversion of MODTRAN6 to a polarimetric model is being accomplished by (1) introducing polarimetric data, by (2) vectorizing the MODTRAN radiation calculations and by (3) integrating the newly revised and validated vector discrete ordinate model VDISORT3. Early results, presented here, demonstrate a clear pathway to the long-term goal of fully validated polarimetric models.

  16. Dynamic modeling of temperature change in outdoor operated tubular photobioreactors.

    PubMed

    Androga, Dominic Deo; Uyar, Basar; Koku, Harun; Eroglu, Inci

    2017-07-01

    In this study, a one-dimensional transient model was developed to analyze the temperature variation of tubular photobioreactors operated outdoors and the validity of the model was tested by comparing the predictions of the model with the experimental data. The model included the effects of convection and radiative heat exchange on the reactor temperature throughout the day. The temperatures in the reactors increased with increasing solar radiation and air temperatures, and the predicted reactor temperatures corresponded well to the measured experimental values. The heat transferred to the reactor was mainly through radiation: the radiative heat absorbed by the reactor medium, ground radiation, air radiation, and solar (direct and diffuse) radiation, while heat loss was mainly through the heat transfer to the cooling water and forced convection. The amount of heat transferred by reflected radiation and metabolic activities of the bacteria and pump work was negligible. Counter-current cooling was more effective in controlling reactor temperature than co-current cooling. The model developed identifies major heat transfer mechanisms in outdoor operated tubular photobioreactors, and accurately predicts temperature changes in these systems. This is useful in determining cooling duty under transient conditions and scaling up photobioreactors. The photobioreactor design and the thermal modeling were carried out and experimental results obtained for the case study of photofermentative hydrogen production by Rhodobacter capsulatus, but the approach is applicable to photobiological systems that are to be operated under outdoor conditions with significant cooling demands.

  17. Crystallographic effects during radiative melting of semitransparent materials

    NASA Astrophysics Data System (ADS)

    Webb, B. W.; Viskanta, R.

    1987-10-01

    Experiments have been performed to illustrate crystallogrpahic effects during radiative melting of unconfined vertical layers of semitransparent material. Radiative melting of a polycrystalline paraffin was performed and the instantaneous layer weight and transmittance were measured using a cantilever beam technique and thermopile radiation detector, respectively. The effects of radiative flux, initial solid subcooling, spectral distribution of the irradiation, and crystal structure of the solid as determined qualitatively by the sample solidification rate were studied. Experimental results show conclusively the dominant influence of cystallographic effects in the form of multiple internal scattering of radiation during the melting process. A theoretical model is formulated to predict the melting rate of the material. Radiation transfer is treated by solving the one-dimensional radiative transfer equation for an absorbing-scattering medium using the discrete ordinates method. Melting rate and global layer reflectance as predicted by the model agree well with experimental data. Parametric studies conducted with the model illustrate the sensitivity of the melting behavior to such variables as incident radiative flux, initial layer opacity (material extinction coefficient), and scattering asymmetry factor.

  18. Analysis of Aerospike Plume Induced Base-Heating Environment

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    1998-01-01

    Computational analysis is conducted to study the effect of an aerospike engine plume on X-33 base-heating environment during ascent flight. To properly account for the effect of forebody and aftbody flowfield such as shocks and to allow for potential plume-induced flow-separation, thermo-flowfield of trajectory points is computed. The computational methodology is based on a three-dimensional finite-difference, viscous flow, chemically reacting, pressure-base computational fluid dynamics formulation, and a three-dimensional, finite-volume, spectral-line based weighted-sum-of-gray-gases radiation absorption model computational heat transfer formulation. The predicted convective and radiative base-heat fluxes are presented.

  19. Two-dimensional radiative transfer. I - Planar geometry. [in stellar atmospheres

    NASA Technical Reports Server (NTRS)

    Mihalas, D.; Auer, L. H.; Mihalas, B. R.

    1978-01-01

    Differential-equation methods for solving the transfer equation in two-dimensional planar geometries are developed. One method, which uses a Hermitian integration formula on ray segments through grid points, proves to be extremely well suited to velocity-dependent problems. An efficient elimination scheme is developed for which the computing time scales linearly with the number of angles and frequencies; problems with large velocity amplitudes can thus be treated accurately. A very accurate and efficient method for performing a formal solution is also presented. A discussion is given of several examples of periodic media and free-standing slabs, both in static cases and with velocity fields. For the free-standing slabs, two-dimensional transport effects are significant near boundaries, but no important effects were found in any of the periodic cases studied.

  20. Analysis and design of an ultrahigh temperature hydrogen-fueled MHD generator

    NASA Technical Reports Server (NTRS)

    Moder, Jeffrey P.; Myrabo, Leik N.; Kaminski, Deborah A.

    1993-01-01

    A coupled gas dynamics/radiative heat transfer analysis of partially ionized hydrogen, in local thermodynamic equilibrium, flowing through an ultrahigh temperature (10,000-20,000 K) magnetohydrodynamic (MHD) generator is performed. Gas dynamics are modeled by a set of quasi-one-dimensional, nonlinear differential equations which account for friction, convective and radiative heat transfer, and the interaction between the ionized gas and applied magnetic field. Radiative heat transfer is modeled using nongray, absorbing-emitting 2D and 3D P-1 approximations which permit an arbitrary variation of the spectral absorption coefficient with frequency. Gas dynamics and radiative heat transfer are coupled through the energy equation and through the temperature- and density-dependent absorption coefficient. The resulting nonlinear elliptic problem is solved by iterative methods. Design of such MHD generators as onboard, open-cycle, electric power supplies for a particular advanced airbreathing propulsion concept produced an efficient and compact 128-MWe generator characterized by an extraction ratio of 35.5 percent, a power density of 10,500 MWe/cu m, and a specific (extracted) energy of 324 MJe/kg of hydrogen. The maximum wall heat flux and total wall heat load were 453 MW/sq m and 62 MW, respectively.

  1. Modellierung dreidimensionaler Strahlungsfelder im frühen Universum %t Modelling three dimensional radiation fields in the early universe

    NASA Astrophysics Data System (ADS)

    Meinköhn, Erik

    2002-11-01

    The present work aims at the modelling of three-dimensional radiation fields in gas clouds from the early universe, in particular as to the influence of varying distributions of density and velocity. In observations of high-redshift gas clouds, the Lyα transition from the first excited energy level to the ground state of the hydrogen atom is usually found to be the only prominent emission lines in the entire spectrum. It is a well-known assumption that high-redshifted hydrogen clouds are the precursors of present-day galaxies. Thus, the investigation of the Lyα line is of paramount importance of the theory of galaxy formation and evolution. The observed Lyα line - or rather, to be precise, its profile - reveals both the complexity of the spatial distribution and of the kinematics of the interstellar gas, and also the nature of the photon source. In this thesis we have developed a code which is capable of solving the three-dimensional frequency-dependent radiative transfer equation for arbitrarily nonrelativistically moving media. The numerical treatment of the associated partial integro-differential equation is an extremely challenging task, since radiation intensity depends on 6 variables, namely 3 space variables, 2 variables describing the direction of photon propagation, and the frequency. With the goal of a quantitative comparison with observational data in mind, the implementation of very efficient methods for a sufficiently accurate solution of the complex radiative transfer problems turned out to be a necessity. The size of the resulting linear system of equations makes the use of parallelization techniques and grid refinement strategies indispensable.

  2. A demonstration of adjoint methods for multi-dimensional remote sensing of the atmosphere and surface

    NASA Astrophysics Data System (ADS)

    Martin, William G. K.; Hasekamp, Otto P.

    2018-01-01

    In previous work, we derived the adjoint method as a computationally efficient path to three-dimensional (3D) retrievals of clouds and aerosols. In this paper we will demonstrate the use of adjoint methods for retrieving two-dimensional (2D) fields of cloud extinction. The demonstration uses a new 2D radiative transfer solver (FSDOM). This radiation code was augmented with adjoint methods to allow efficient derivative calculations needed to retrieve cloud and surface properties from multi-angle reflectance measurements. The code was then used in three synthetic retrieval studies. Our retrieval algorithm adjusts the cloud extinction field and surface albedo to minimize the measurement misfit function with a gradient-based, quasi-Newton approach. At each step we compute the value of the misfit function and its gradient with two calls to the solver FSDOM. First we solve the forward radiative transfer equation to compute the residual misfit with measurements, and second we solve the adjoint radiative transfer equation to compute the gradient of the misfit function with respect to all unknowns. The synthetic retrieval studies verify that adjoint methods are scalable to retrieval problems with many measurements and unknowns. We can retrieve the vertically-integrated optical depth of moderately thick clouds as a function of the horizontal coordinate. It is also possible to retrieve the vertical profile of clouds that are separated by clear regions. The vertical profile retrievals improve for smaller cloud fractions. This leads to the conclusion that cloud edges actually increase the amount of information that is available for retrieving the vertical profile of clouds. However, to exploit this information one must retrieve the horizontally heterogeneous cloud properties with a 2D (or 3D) model. This prototype shows that adjoint methods can efficiently compute the gradient of the misfit function. This work paves the way for the application of similar methods to 3D remote sensing problems.

  3. Radiative transfer of X-rays in the solar corona

    NASA Technical Reports Server (NTRS)

    Acton, L. W.

    1978-01-01

    The problem of resonance scattering of X-ray emission lines in the solar corona is investigated. For the resonance lines of some helium-like ions, significant optical depths are reached over distances small compared with the size of typical coronal features. A general integral equation for the transfer of resonance-line radiation under solar coronal conditions is derived. This expression is in a form useful for modeling the complex three-dimensional temperature and density structure of coronal active regions. The transfer equation is then cast in a form illustrating the terms which give rise to the attenuation or enhancement of the resonance-line intensity. The source function for helium-like oxygen (O VII) under coronal conditions is computed and discussed in terms of the relative importance of scattering.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Masood; Malik, Rabia, E-mail: rabiamalik.qau@gmail.com; Department of Mathematics and Statistics, International Islamic University Islamabad 44000

    In the present paper, we endeavor to perform a numerical analysis in connection with the nonlinear radiative stagnation-point flow and heat transfer to Sisko fluid past a stretching cylinder in the presence of convective boundary conditions. The influence of thermal radiation using nonlinear Rosseland approximation is explored. The numerical solutions of transformed governing equations are calculated through forth order Runge-Kutta method using shooting technique. With the help of graphs and tables, the influence of non-dimensional parameters on velocity and temperature along with the local skin friction and Nusselt number is discussed. The results reveal that the temperature increases however, heatmore » transfer from the surface of cylinder decreases with the increasing values of thermal radiation and temperature ratio parameters. Moreover, the authenticity of numerical solutions is validated by finding their good agreement with the HAM solutions.« less

  5. Four-component numerical simulation model of radiative convective interactions in large-scale oxygen-hydrogen turbulent fire balls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Surzhikov, S.T.

    1996-12-31

    Two-dimensional radiative gas dynamics model for numerical simulation of oxygen-hydrogen fire ball which may be generated by an explosion of a launch vehicle with cryogenic (LO{sub 2}-LH{sub 2}) fuel components is presented. The following physical-chemical processes are taken into account in the numerical model: and effective chemical reaction between the gaseous components (O{sub 2}-H{sub 2}) of the propellant, turbulent mixing and diffusion of the components, and radiative heat transfer. The results of numerical investigations of the following problems are presented: The influence of radiative heat transfer on fire ball gas dynamics during the first 13 sec after explosion, the effectmore » of the fuel gaseous components afterburning on fire ball gas dynamics, and the effect of turbulence on fire ball gas dynamics (in a framework of algebraic model of turbulent mixing).« less

  6. A simplified analytical solution for thermal response of a one-dimensional, steady state transpiration cooling system in radiative and convective environment

    NASA Technical Reports Server (NTRS)

    Kubota, H.

    1976-01-01

    A simplified analytical method for calculation of thermal response within a transpiration-cooled porous heat shield material in an intense radiative-convective heating environment is presented. The essential assumptions of the radiative and convective transfer processes in the heat shield matrix are the two-temperature approximation and the specified radiative-convective heatings of the front surface. Sample calculations for porous silica with CO2 injection are presented for some typical parameters of mass injection rate, porosity, and material thickness. The effect of these parameters on the cooling system is discussed.

  7. Methods for heat transfer and temperature field analysis of the insulated diesel phase 2 progress report

    NASA Technical Reports Server (NTRS)

    Morel, T.; Kerlbar, R.; Fort, E. F.; Blumberg, P. N.

    1985-01-01

    This report describes work done during Phase 2 of a 3 year program aimed at developing a comprehensive heat transfer and thermal analysis methodology for design analysis of insulated diesel engines. The overall program addresses all the key heat transfer issues: (1) spatially and time-resolved convective and radiative in-cylinder heat transfer, (2) steady-state conduction in the overall structure, and (3) cyclical and load/speed temperature transients in the engine structure. During Phase 2, radiation heat transfer model was developed, which accounts for soot formation and burn up. A methodology was developed for carrying out the multi-dimensional finite-element heat conduction calculations within the framework of thermodynamic cycle codes. Studies were carried out using the integrated methodology to address key issues in low heat rejection engines. A wide ranging design analysis matrix was covered, including a variety of insulation strategies, recovery devices and base engine configurations. A single cylinder Cummins engine was installed at Purdue University, and it was brought to a full operational status. The development of instrumentation was continued, concentrating on radiation heat flux detector, total heat flux probe, and accurate pressure-crank angle data acquisition.

  8. Radiated flow of chemically reacting nanoliquid with an induced magnetic field across a permeable vertical plate

    NASA Astrophysics Data System (ADS)

    Mahanthesh, B.; Gireesha, B. J.; Athira, P. R.

    Impact of induced magnetic field over a flat porous plate by utilizing incompressible water-copper nanoliquid is examined analytically. Flow is supposed to be laminar, steady and two-dimensional. The plate is subjected to a regular free stream velocity as well as suction velocity. Flow formulation is developed by considering Maxwell-Garnetts (MG) and Brinkman models of nanoliquid. Impacts of thermal radiation, viscous dissipation, temperature dependent heat source/sink and first order chemical reaction are also retained. The subjected non-linear problems are non-dimensionalized and analytic solutions are presented via series expansion method. The graphs are plotted to analyze the influence of pertinent parameters on flow, magnetism, heat and mass transfer fields as well as friction factor, current density, Nusselt and Sherwood numbers. It is found that friction factor at the plate is more for larger magnetic Prandtl number. Also the rate of heat transfer decayed with increasing nanoparticles volume fraction and the strength of magnetism.

  9. Radiant heat exchange calculations in radiantly heated and cooled enclosures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, K.S.; Zhang, P.

    1995-08-01

    This paper presents the development of a three-dimensional mathematical model to compute the radiant heat exchange between surfaces separated by a transparent and/or opaque medium. The model formulation accommodates arbitrary arrangements of the interior surfaces, as well as arbitrary placement of obstacles within the enclosure. The discrete ordinates radiation model is applied and has the capability to analyze the effect of irregular geometries and diverse surface temperatures and radiative properties. The model is verified by comparing calculated heat transfer rates to heat transfer rates determined from the exact radiosity method for four different enclosures. The four enclosures were selected tomore » provide a wide range of verification. This three-dimensional model based on the discrete ordinates method can be applied to a building to assist the design engineer in sizing a radiant heating system. By coupling this model with a convective and conductive heat transfer model and a thermal comfort model, the comfort levels throughout the room can be easily and efficiently mapped for a given radiant heater location. In addition, objects such as airplanes, trucks, furniture, and partitions can be easily incorporated to determine their effect on the performance of the radiant heating system.« less

  10. FitSKIRT: genetic algorithms to automatically fit dusty galaxies with a Monte Carlo radiative transfer code

    NASA Astrophysics Data System (ADS)

    De Geyter, G.; Baes, M.; Fritz, J.; Camps, P.

    2013-02-01

    We present FitSKIRT, a method to efficiently fit radiative transfer models to UV/optical images of dusty galaxies. These images have the advantage that they have better spatial resolution compared to FIR/submm data. FitSKIRT uses the GAlib genetic algorithm library to optimize the output of the SKIRT Monte Carlo radiative transfer code. Genetic algorithms prove to be a valuable tool in handling the multi- dimensional search space as well as the noise induced by the random nature of the Monte Carlo radiative transfer code. FitSKIRT is tested on artificial images of a simulated edge-on spiral galaxy, where we gradually increase the number of fitted parameters. We find that we can recover all model parameters, even if all 11 model parameters are left unconstrained. Finally, we apply the FitSKIRT code to a V-band image of the edge-on spiral galaxy NGC 4013. This galaxy has been modeled previously by other authors using different combinations of radiative transfer codes and optimization methods. Given the different models and techniques and the complexity and degeneracies in the parameter space, we find reasonable agreement between the different models. We conclude that the FitSKIRT method allows comparison between different models and geometries in a quantitative manner and minimizes the need of human intervention and biasing. The high level of automation makes it an ideal tool to use on larger sets of observed data.

  11. Three-dimensional nonsteady heat-transfer analysis of an indirect heating furnace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ito, H.; Umeda, Y.; Nakamura, Y.

    1991-01-01

    This paper reports on an accurate design method for industrial furnaces from the viewpoint of heat transfer. The authors carried out a three-dimensional nonsteady heat-transfer analysis for a practical-size heat- treatment furnace equipped with radiant heaters. The authors applied three software package programs, STREAM, MORSE, and TRUMP, for the analysis of the combined heat-transfer problems of radiation, conduction, and convection. The authors also carried out experiments of the heating of a charge consisting of packed bolts. The authors found that the air swirled inside the furnace. As for the temperature in each part in the furnace, analytical results were generallymore » in close agreement with the experimental ones. This suggests that our analytical method is useful for a fundamental heat- transfer-based design of a practical-size industrial furnace with an actual charge such as packed bolts. As for the temperature distribution inside the bolt charge (work), the analytical results were also in close agreement with the experimental ones. Consequently, it was found that the heat transfer in the bolt charge could be described with an effective thermal conductivity.« less

  12. Accuracy analysis of automodel solutions for Lévy flight-based transport: from resonance radiative transfer to a simple general model

    NASA Astrophysics Data System (ADS)

    Kukushkin, A. B.; Sdvizhenskii, P. A.

    2017-12-01

    The results of accuracy analysis of automodel solutions for Lévy flight-based transport on a uniform background are presented. These approximate solutions have been obtained for Green’s function of the following equations: the non-stationary Biberman-Holstein equation for three-dimensional (3D) radiative transfer in plasma and gases, for various (Doppler, Lorentz, Voigt and Holtsmark) spectral line shapes, and the 1D transport equation with a simple longtailed step-length probability distribution function with various power-law exponents. The results suggest the possibility of substantial extension of the developed method of automodel solution to other fields far beyond physics.

  13. Scattering and Emission from Inhomogeneous Vegetation Canopy and Alien Target by Using Three-Dimensional Vector Radiative Transfer (3D-VRT) Equation

    NASA Astrophysics Data System (ADS)

    Jin, Ya-Qiu; Liang, Zichang

    2005-01-01

    To solve 3D-VRT equation for the model of spatially inhomogeneous scatter media, the finite enclosure of the scatter media is geometrically divided, in both the vertical z and horizontal (x,y) directions, to form very thin multi-boxes. The zero-th order emission, first-order Mueller matrix of each thin box and an iterative approach of high-order radiative transfer are applied to deriving high-order scattering and emission of whole inhomogeneous scatter media. Numerical results of polarized brightness temperature at microwave frequency and under different radiometer's resolutions from inhomogeneous scatter model such as vegetation canopy and embedded alien target are simulated and discussed.

  14. Analytical Solutions for Radiative Transfer: Implications for Giant Planet Formation by Disk Instability

    NASA Astrophysics Data System (ADS)

    Boss, Alan P.

    2009-03-01

    The disk instability mechanism for giant planet formation is based on the formation of clumps in a marginally gravitationally unstable protoplanetary disk, which must lose thermal energy through a combination of convection and radiative cooling if they are to survive and contract to become giant protoplanets. While there is good observational support for forming at least some giant planets by disk instability, the mechanism has become theoretically contentious, with different three-dimensional radiative hydrodynamics codes often yielding different results. Rigorous code testing is required to make further progress. Here we present two new analytical solutions for radiative transfer in spherical coordinates, suitable for testing the code employed in all of the Boss disk instability calculations. The testing shows that the Boss code radiative transfer routines do an excellent job of relaxing to and maintaining the analytical results for the radial temperature and radiative flux profiles for a spherical cloud with high or moderate optical depths, including the transition from optically thick to optically thin regions. These radial test results are independent of whether the Eddington approximation, diffusion approximation, or flux-limited diffusion approximation routines are employed. The Boss code does an equally excellent job of relaxing to and maintaining the analytical results for the vertical (θ) temperature and radiative flux profiles for a disk with a height proportional to the radial distance. These tests strongly support the disk instability mechanism for forming giant planets.

  15. Heat transfer in porous medium embedded with vertical plate: Non-equilibrium approach - Part B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quadir, G. A., E-mail: Irfan-magami@Rediffmail.com, E-mail: gaquadir@gmail.com; Badruddin, Irfan Anjum

    2016-06-08

    This work is continuation of the paper Part A. Due to large number of results, the paper is divided into two section with section-A (Part A) discussing the effect of various parameters such as heat transfer coefficient parameter, thermal conductivity ratio etc. on streamlines and isothermal lines. Section-B highlights the heat transfer characteristics in terms of Nusselt number The Darcy model is employed to simulate the flow inside the medium. It is assumed that the heat transfer takes place by convection and radiation. The governing partial differential equations are converted into non-dimensional form and solved numerically using finite element method.

  16. Simulation of one-dimensional heat transfer system based on the blended coal combustion

    NASA Astrophysics Data System (ADS)

    Jin, Y. G.; Li, W. B.; Cheng, Z. S.; Cheng, J. W.; liu, Y.

    2017-12-01

    In this paper, the supercritical boiler thermodynamic calculation model is studied. Three types of heat exchangers are proposed, namely furnace (total radiation type), semi-radiation and convection, and discussed. Two cases were simulated - mixing of two bituminous coals and mixing of a bituminous coal and lignite- order to analyze the performance on the flue gas side. The study shows that the influence of flue air leakage and gas distribution coefficient on the system.

  17. Radiation characteristics of water droplets in a fire-inspired environment: A Monte Carlo ray tracing study

    NASA Astrophysics Data System (ADS)

    Wu, Bifen; Zhao, Xinyu

    2018-06-01

    The effects of radiation of water mists in a fire-inspired environment are numerically investigated for different complexities of radiative media in a three-dimensional cubic enclosure. A Monte Carlo ray tracing (MCRT) method is employed to solve the radiative transfer equation (RTE). The anisotropic scattering behaviors of water mists are modeled by a combination of the Mie theory and the Henyey-Greestein relation. A tabulation method considering the size and wavelength dependencies is established for water droplets, to reduce the computational cost associated with the evaluation of the nongray spectral properties of water mists. Validation and verification of the coupled MCRT solver are performed using a one-dimensional slab with gray gas in comparison with the analytical solutions. Parametric studies are then performed using a three-dimensional cubic box to examine radiation of two monodispersed and one polydispersed water mist systems. The tabulation method can reduce the computational cost by a factor of one hundred. Results obtained without any scattering model better conform with results obtained from the anisotropic model than the isotropic scattering model, when a highly directional emissive source is applied. For isotropic emissive sources, isotropic and anisotropic scattering models predict comparable results. The addition of different volume fractions of soot shows that soot may have a negative impact on the effectiveness of water mists in absorbing radiation when its volume fraction exceeds certain threshold.

  18. Three-dimensional radiation transfer modeling in a dicotyledon leaf

    NASA Astrophysics Data System (ADS)

    Govaerts, Yves M.; Jacquemoud, Stéphane; Verstraete, Michel M.; Ustin, Susan L.

    1996-11-01

    The propagation of light in a typical dicotyledon leaf is investigated with a new Monte Carlo ray-tracing model. The three-dimensional internal cellular structure of the various leaf tissues, including the epidermis, the palisade parenchyma, and the spongy mesophyll, is explicitly described. Cells of different tissues are assigned appropriate morphologies and contain realistic amounts of water and chlorophyll. Each cell constituent is characterized by an index of refraction and an absorption coefficient. The objective of this study is to investigate how the internal three-dimensional structure of the tissues and the optical properties of cell constituents control the reflectance and transmittance of the leaf. Model results compare favorably with laboratory observations. The influence of the roughness of the epidermis on the reflection and absorption of light is investigated, and simulation results confirm that convex cells in the epidermis focus light on the palisade parenchyma and increase the absorption of radiation.

  19. GPU-BASED MONTE CARLO DUST RADIATIVE TRANSFER SCHEME APPLIED TO ACTIVE GALACTIC NUCLEI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heymann, Frank; Siebenmorgen, Ralf, E-mail: fheymann@pa.uky.edu

    2012-05-20

    A three-dimensional parallel Monte Carlo (MC) dust radiative transfer code is presented. To overcome the huge computing-time requirements of MC treatments, the computational power of vectorized hardware is used, utilizing either multi-core computer power or graphics processing units. The approach is a self-consistent way to solve the radiative transfer equation in arbitrary dust configurations. The code calculates the equilibrium temperatures of two populations of large grains and stochastic heated polycyclic aromatic hydrocarbons. Anisotropic scattering is treated applying the Heney-Greenstein phase function. The spectral energy distribution (SED) of the object is derived at low spatial resolution by a photon counting proceduremore » and at high spatial resolution by a vectorized ray tracer. The latter allows computation of high signal-to-noise images of the objects at any frequencies and arbitrary viewing angles. We test the robustness of our approach against other radiative transfer codes. The SED and dust temperatures of one- and two-dimensional benchmarks are reproduced at high precision. The parallelization capability of various MC algorithms is analyzed and included in our treatment. We utilize the Lucy algorithm for the optical thin case where the Poisson noise is high, the iteration-free Bjorkman and Wood method to reduce the calculation time, and the Fleck and Canfield diffusion approximation for extreme optical thick cells. The code is applied to model the appearance of active galactic nuclei (AGNs) at optical and infrared wavelengths. The AGN torus is clumpy and includes fluffy composite grains of various sizes made up of silicates and carbon. The dependence of the SED on the number of clumps in the torus and the viewing angle is studied. The appearance of the 10 {mu}m silicate features in absorption or emission is discussed. The SED of the radio-loud quasar 3C 249.1 is fit by the AGN model and a cirrus component to account for the far-infrared emission.« less

  20. Radiative heat transfer in strongly forward scattering media using the discrete ordinates method

    NASA Astrophysics Data System (ADS)

    Granate, Pedro; Coelho, Pedro J.; Roger, Maxime

    2016-03-01

    The discrete ordinates method (DOM) is widely used to solve the radiative transfer equation, often yielding satisfactory results. However, in the presence of strongly forward scattering media, this method does not generally conserve the scattering energy and the phase function asymmetry factor. Because of this, the normalization of the phase function has been proposed to guarantee that the scattering energy and the asymmetry factor are conserved. Various authors have used different normalization techniques. Three of these are compared in the present work, along with two other methods, one based on the finite volume method (FVM) and another one based on the spherical harmonics discrete ordinates method (SHDOM). In addition, the approximation of the Henyey-Greenstein phase function by a different one is investigated as an alternative to the phase function normalization. The approximate phase function is given by the sum of a Dirac delta function, which accounts for the forward scattering peak, and a smoother scaled phase function. In this study, these techniques are applied to three scalar radiative transfer test cases, namely a three-dimensional cubic domain with a purely scattering medium, an axisymmetric cylindrical enclosure containing an emitting-absorbing-scattering medium, and a three-dimensional transient problem with collimated irradiation. The present results show that accurate predictions are achieved for strongly forward scattering media when the phase function is normalized in such a way that both the scattered energy and the phase function asymmetry factor are conserved. The normalization of the phase function may be avoided using the FVM or the SHDOM to evaluate the in-scattering term of the radiative transfer equation. Both methods yield results whose accuracy is similar to that obtained using the DOM along with normalization of the phase function. Very satisfactory predictions were also achieved using the delta-M phase function, while the delta-Eddington phase function and the transport approximation may perform poorly.

  1. IPRT polarized radiative transfer model intercomparison project - Phase A

    NASA Astrophysics Data System (ADS)

    Emde, Claudia; Barlakas, Vasileios; Cornet, Céline; Evans, Frank; Korkin, Sergey; Ota, Yoshifumi; Labonnote, Laurent C.; Lyapustin, Alexei; Macke, Andreas; Mayer, Bernhard; Wendisch, Manfred

    2015-10-01

    The polarization state of electromagnetic radiation scattered by atmospheric particles such as aerosols, cloud droplets, or ice crystals contains much more information about the optical and microphysical properties than the total intensity alone. For this reason an increasing number of polarimetric observations are performed from space, from the ground and from aircraft. Polarized radiative transfer models are required to interpret and analyse these measurements and to develop retrieval algorithms exploiting polarimetric observations. In the last years a large number of new codes have been developed, mostly for specific applications. Benchmark results are available for specific cases, but not for more sophisticated scenarios including polarized surface reflection and multi-layer atmospheres. The International Polarized Radiative Transfer (IPRT) working group of the International Radiation Commission (IRC) has initiated a model intercomparison project in order to fill this gap. This paper presents the results of the first phase A of the IPRT project which includes ten test cases, from simple setups with only one layer and Rayleigh scattering to rather sophisticated setups with a cloud embedded in a standard atmosphere above an ocean surface. All scenarios in the first phase A of the intercomparison project are for a one-dimensional plane-parallel model geometry. The commonly established benchmark results are available at the IPRT website.

  2. Doppler effects on 3-D non-LTE radiation transport and emission spectra.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giuliani, J. L.; Davis, J.; DasGupta, A.

    2010-10-01

    Spatially and temporally resolved X-ray emission lines contain information about temperatures, densities, velocities, and the gradients in a plasma. Extracting this information from optically thick lines emitted from complex ions in dynamic, three-dimensional, non-LTE plasmas requires self-consistent accounting for both non-LTE atomic physics and non-local radiative transfer. We present a brief description of a hybrid-structure spectroscopic atomic model coupled to an iterative tabular on-the-spot treatment of radiative transfer that can be applied to plasmas of arbitrary material composition, conditions, and geometries. The effects of Doppler line shifts on the self-consistent radiative transfer within the plasma and the emergent emission andmore » absorption spectra are included in the model. Sample calculations for a two-level atom in a uniform cylindrical plasma are given, showing reasonable agreement with more sophisticated transport models and illustrating the potential complexity - or richness - of radially resolved emission lines from an imploding cylindrical plasma. Also presented is a comparison of modeled L- and K-shell spectra to temporally and radially resolved emission data from a Cu:Ni plasma. Finally, some shortcomings of the model and possible paths for improvement are discussed.« less

  3. Computing Radiative Transfer in a 3D Medium

    NASA Technical Reports Server (NTRS)

    Von Allmen, Paul; Lee, Seungwon

    2012-01-01

    A package of software computes the time-dependent propagation of a narrow laser beam in an arbitrary three- dimensional (3D) medium with absorption and scattering, using the transient-discrete-ordinates method and a direct integration method. Unlike prior software that utilizes a Monte Carlo method, this software enables simulation at very small signal-to-noise ratios. The ability to simulate propagation of a narrow laser beam in a 3D medium is an improvement over other discrete-ordinate software. Unlike other direct-integration software, this software is not limited to simulation of propagation of thermal radiation with broad angular spread in three dimensions or of a laser pulse with narrow angular spread in two dimensions. Uses for this software include (1) computing scattering of a pulsed laser beam on a material having given elastic scattering and absorption profiles, and (2) evaluating concepts for laser-based instruments for sensing oceanic turbulence and related measurements of oceanic mixed-layer depths. With suitable augmentation, this software could be used to compute radiative transfer in ultrasound imaging in biological tissues, radiative transfer in the upper Earth crust for oil exploration, and propagation of laser pulses in telecommunication applications.

  4. Effect of Surface Reflectivity Variations On Uv-visible Limb Scattering Measurements of The Atmosphere

    NASA Astrophysics Data System (ADS)

    Oikarinen, L.

    Solar UV and visible radiation scattered at the limb of the Earth's atmosphere is used for measuring density profiles of atmosperic trace gases. For example, the OSIRIS instrument on Odin and SCIAMACHY on Envisat use this technique. A limb-viewing instrument does not see Earth's surface or tropospheric clouds directly. However, in- direct light reflected from the surface or low altitude clouds can make up tens of per cents of the signal. Furthermore, the surface area that contributes to limb intensity ex- tends over 1000 km along the instrument line-of-sight and 200 km across it. Over this area surface reflectivity can vary from almost 0% to 100%. Inaccurate modelling of reflected intensity is a potential source of error in the trace gas retrieval. Generally, radiative transfer models used for analysing limb measure- ments have to assume that the surface has a constant albedo. We have used a three- dimensional Monte Carlo radiative transfer model to study the effects of surface vari- ation to limb radiance. Based on the simulations, we have developed an approximate method for averaging surface albedo for limb scattering measurements with the help of a simple single scattering radiative transfer model.

  5. Transitional flow in thin tubes for space station freedom radiator

    NASA Technical Reports Server (NTRS)

    Loney, Patrick; Ibrahim, Mounir

    1995-01-01

    A two dimensional finite volume method is used to predict the film coefficients in the transitional flow region (laminar or turbulent) for the radiator panel tubes. The code used to perform this analysis is CAST (Computer Aided Simulation of Turbulent Flows). The information gathered from this code is then used to augment a Sinda85 model that predicts overall performance of the radiator. A final comparison is drawn between the results generated with a Sinda85 model using the Sinda85 provided transition region heat transfer correlations and the Sinda85 model using the CAST generated data.

  6. Topical Review: Polymer gel dosimetry

    PubMed Central

    Baldock, C; De Deene, Y; Doran, S; Ibbott, G; Jirasek, A; Lepage, M; McAuley, K B; Oldham, M; Schreiner, L J

    2010-01-01

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. PMID:20150687

  7. Multidimensional Modeling of Atmospheric Effects and Surface Heterogeneities on Remote Sensing

    NASA Technical Reports Server (NTRS)

    Gerstl, S. A. W.; Simmer, C.; Zardecki, A. (Principal Investigator)

    1985-01-01

    The overall goal of this project is to establish a modeling capability that allows a quantitative determination of atmospheric effects on remote sensing including the effects of surface heterogeneities. This includes an improved understanding of aerosol and haze effects in connection with structural, angular, and spatial surface heterogeneities. One important objective of the research is the possible identification of intrinsic surface or canopy characteristics that might be invariant to atmospheric perturbations so that they could be used for scene identification. Conversely, an equally important objective is to find a correction algorithm for atmospheric effects in satellite-sensed surface reflectances. The technical approach is centered around a systematic model and code development effort based on existing, highly advanced computer codes that were originally developed for nuclear radiation shielding applications. Computational techniques for the numerical solution of the radiative transfer equation are adapted on the basis of the discrete-ordinates finite-element method which proved highly successful for one and two-dimensional radiative transfer problems with fully resolved angular representation of the radiation field.

  8. Effects of variable electrical conductivity and thermal conductivity on unsteady MHD free convection flow past an exponential accelerated inclined plate

    NASA Astrophysics Data System (ADS)

    Rana, B. M. Jewel; Ahmed, Rubel; Ahmmed, S. F.

    2017-06-01

    An analysis is carried out to investigate the effects of variable viscosity, thermal radiation, absorption of radiation and cross diffusion past an inclined exponential accelerated plate under the influence of variable heat and mass transfer. A set of suitable transformations has been used to obtain the non-dimensional coupled governing equations. Explicit finite difference technique has been used to solve the obtained numerical solutions of the present problem. Stability and convergence of the finite difference scheme have been carried out for this problem. Compaq Visual Fortran 6.6a has been used to calculate the numerical results. The effects of various physical parameters on the fluid velocity, temperature, concentration, coefficient of skin friction, rate of heat transfer, rate of mass transfer, streamlines and isotherms on the flow field have been presented graphically and discussed in details.

  9. Scattering and emission from inhomogeneous vegetation canopy and alien target beneath by using three-dimensional vector radiative transfer (3D-VRT) equation

    NASA Astrophysics Data System (ADS)

    Jin, Ya-Qiu; Liang, Zichang

    2005-05-01

    To solve the 3D-VRT equation for the model of spatially inhomogeneous scatter media, the finite enclosure of the scatter media is geometrically divided, in both vertical z and transversal (x,y) directions, to form very thin multi-boxes. The zeroth order emission, first-order Mueller matrix of each thin box and an iterative approach of high-order radiative transfer are applied to derive high-order scattering and emission of whole inhomogeneous scatter media. Numerical results of polarized brightness temperature at microwave frequency and under different radiometer resolutions from inhomogeneous scatter model such as vegetation canopy and alien target beneath canopy are simulated and discussed.

  10. Amazon forest structure generates diurnal and seasonal variability in light utilization

    Treesearch

    Douglas C. Morton; Jeremy Rubio; Bruce D. Cook; Jean-Philippe Gastellu-Etchegorry; Marcos Longo; Hyeungu Choi; Maria Hunter; Michael Keller

    2016-01-01

    The complex three-dimensional (3-D) structure of tropical forests generates a diversity of light environments for canopy and understory trees. Understanding diurnal and seasonal changes in light availability is critical for interpreting measurements of net ecosystem exchange and improving ecosystem models. Here, we used the Discrete Anisotropic Radiative Transfer (DART...

  11. Three-dimensional radiative transfer models of clumpy tori in Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Schartmann, M.; Meisenheimer, K.; Camenzind, M.; Wolf, S.; Tristram, K. R. W.; Henning, T.

    2008-04-01

    Context: Tori of Active Galactic Nuclei (AGN) are made up of a mixture of hot and cold gas, as well as dust. In order to protect the dust grains from destruction by the surrounding hot gas as well as by the energetic (UV/optical) radiation from the accretion disk, the dust is often assumed to be distributed in clouds. Aims: A new three-dimensional model of AGN dust tori is extensively investigated. The torus is modelled as a wedge-shaped disk within which dusty clouds are randomly distributed throughout the volume, by taking the dust density distribution of the corresponding continuous model into account. We especially concentrate on the differences between clumpy and continuous models in terms of the temperature distributions, the surface brightness distributions and interferometric visibilities, as well as spectral energy distributions. Methods: Radiative transfer calculations with the help of the three-dimensional Monte Carlo radiative transfer code MC3D are used in order to simulate spectral energy distributions as well as surface brightness distributions at various wavelengths. In a second step, interferometric visibilities for various inclination as well as position angles and baselines are calculated, which can be used to directly compare our models to interferometric observations with the MIDI instrument. Results: We find that the radial temperature distributions of clumpy models possess significantly enhanced scatter compared to the continuous cases. Even at large distances, clouds can be heated directly by the central accretion disk. The existence of the silicate 10 μm-feature in absorption or in emission depends sensitively on the distribution, the size and optical depth of clouds in the innermost part of the dust distribution. With this explanation, failure and success of previous modelling efforts of clumpy tori can be understood. The main reason for this outcome are shadowing effects of clouds within the central region. We underline this result with the help of several parameter variations. After adapting the parameters of our clumpy standard model to the circumstances of the Seyfert 2 Circinus galaxy, it can qualitatively explain recent mid-infrared interferometric observations performed with MIDI, as well as high resolution spectral data.

  12. Radiative transfer and spectroscopic databases: A line-sampling Monte Carlo approach

    NASA Astrophysics Data System (ADS)

    Galtier, Mathieu; Blanco, Stéphane; Dauchet, Jérémi; El Hafi, Mouna; Eymet, Vincent; Fournier, Richard; Roger, Maxime; Spiesser, Christophe; Terrée, Guillaume

    2016-03-01

    Dealing with molecular-state transitions for radiative transfer purposes involves two successive steps that both reach the complexity level at which physicists start thinking about statistical approaches: (1) constructing line-shaped absorption spectra as the result of very numerous state-transitions, (2) integrating over optical-path domains. For the first time, we show here how these steps can be addressed simultaneously using the null-collision concept. This opens the door to the design of Monte Carlo codes directly estimating radiative transfer observables from spectroscopic databases. The intermediate step of producing accurate high-resolution absorption spectra is no longer required. A Monte Carlo algorithm is proposed and applied to six one-dimensional test cases. It allows the computation of spectrally integrated intensities (over 25 cm-1 bands or the full IR range) in a few seconds, regardless of the retained database and line model. But free parameters need to be selected and they impact the convergence. A first possible selection is provided in full detail. We observe that this selection is highly satisfactory for quite distinct atmospheric and combustion configurations, but a more systematic exploration is still in progress.

  13. An iterative phase-space explicit discontinuous Galerkin method for stellar radiative transfer in extended atmospheres

    NASA Astrophysics Data System (ADS)

    de Almeida, Valmor F.

    2017-07-01

    A phase-space discontinuous Galerkin (PSDG) method is presented for the solution of stellar radiative transfer problems. It allows for greater adaptivity than competing methods without sacrificing generality. The method is extensively tested on a spherically symmetric, static, inverse-power-law scattering atmosphere. Results for different sizes of atmospheres and intensities of scattering agreed with asymptotic values. The exponentially decaying behavior of the radiative field in the diffusive-transparent transition region, and the forward peaking behavior at the surface of extended atmospheres were accurately captured. The integrodifferential equation of radiation transfer is solved iteratively by alternating between the radiative pressure equation and the original equation with the integral term treated as an energy density source term. In each iteration, the equations are solved via an explicit, flux-conserving, discontinuous Galerkin method. Finite elements are ordered in wave fronts perpendicular to the characteristic curves so that elemental linear algebraic systems are solved quickly by sweeping the phase space element by element. Two implementations of a diffusive boundary condition at the origin are demonstrated wherein the finite discontinuity in the radiation intensity is accurately captured by the proposed method. This allows for a consistent mechanism to preserve photon luminosity. The method was proved to be robust and fast, and a case is made for the adequacy of parallel processing. In addition to classical two-dimensional plots, results of normalized radiation intensity were mapped onto a log-polar surface exhibiting all distinguishing features of the problem studied.

  14. Effect of Elevated Pressure on the Heat Transfer and Power Requirements During Bridgman Growth of PMN-PT Crystals

    NASA Technical Reports Server (NTRS)

    Bune, Andris; Ostrogorsky, Aleksandar; Marin, Carlos; Nicoara, Irina; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Performance of the furnace during Bridgman growth of the lead magnesium niobate-lead titanate crystal (PMN-PT) is analyzed. PMN-PT is electrostrictive ceramic that has near ideal strain-voltage function. Furthermore piezoelectric (2000 to 2300 pC/N) and coupling (92 to 95%) constants are exceptionally good. Due to these properties PMN-PT has wide range of applications - from sonars to transducers in a high precision optical systems. In this research first attempt to crystallize PMN-PT in a Mellen type vertical Bridgman furnace was not successful, as melting temperature of precursor materials was not achieved. At this point choice was between building a new more powerful facility or finding ways to enhance performance of the existing furnace. Besides adjusting power supply to the individual heating elements, redesigning ampoule holding cartridge and improving furnace insulation one more radical improvement was proposed. The entire furnace was placed into the high pressure chamber. Further experiments confirmed that temperature inside the furnace was increased sufficiently to melt precursor materials to obtain PMN-PT. Numerical modeling is undertaken to find limitations of this technique and to predict temperature distribution inside the ampoule. It is of interest also to account for main factors contributing to a higher temperatures achieved in the furnace under the higher pressure (up to 10 atm.). Numerical model of the furnace is based on general purpose finite - element code FIDAP and on previous efforts to model Bridgman type furnace with multiply heaters. In order to account for all heat transfer mechanism involved - conduction, convection and radiation - different parts of the furnace are modeled in accordance with expected dominant mode of heat transfer - conduction in the solid parts, conduction and radiation in the ampoule, gas convection and conduction in the furnace openings complemented with wall-to-wall radiation. Because of these complicating factors, dimensional rather than non-dimensional modeling is performed using steady-state 2-D and 3-D models. Particular attention is paid to the modeling of radiation in a semitransparent material of ampoule 7 sapphire. The radiation model is validated by solving realistic test problem - conduction and radiation heat transfer in the fused quartz. Results are in agreement with both experimental and analytical data.

  15. Evaluating radiative transfer schemes treatment of vegetation canopy architecture in land surface models

    NASA Astrophysics Data System (ADS)

    Braghiere, Renato; Quaife, Tristan; Black, Emily

    2016-04-01

    Incoming shortwave radiation is the primary source of energy driving the majority of the Earth's climate system. The partitioning of shortwave radiation by vegetation into absorbed, reflected, and transmitted terms is important for most of biogeophysical processes, including leaf temperature changes and photosynthesis, and it is currently calculated by most of land surface schemes (LSS) of climate and/or numerical weather prediction models. The most commonly used radiative transfer scheme in LSS is the two-stream approximation, however it does not explicitly account for vegetation architectural effects on shortwave radiation partitioning. Detailed three-dimensional (3D) canopy radiative transfer schemes have been developed, but they are too computationally expensive to address large-scale related studies over long time periods. Using a straightforward one-dimensional (1D) parameterisation proposed by Pinty et al. (2006), we modified a two-stream radiative transfer scheme by including a simple function of Sun zenith angle, so-called "structure factor", which does not require an explicit description and understanding of the complex phenomena arising from the presence of vegetation heterogeneous architecture, and it guarantees accurate simulations of the radiative balance consistently with 3D representations. In order to evaluate the ability of the proposed parameterisation in accurately represent the radiative balance of more complex 3D schemes, a comparison between the modified two-stream approximation with the "structure factor" parameterisation and state-of-art 3D radiative transfer schemes was conducted, following a set of virtual scenarios described in the RAMI4PILPS experiment. These experiments have been evaluating the radiative balance of several models under perfectly controlled conditions in order to eliminate uncertainties arising from an incomplete or erroneous knowledge of the structural, spectral and illumination related canopy characteristics typical of model comparisons with in-situ observations. The structure factor parameters were obtained for each canopy structure through the inversion against direct and diffuse fraction of absorbed photosynthetically active radiation (fAPAR), and albedo PAR. Overall, the modified two-stream approximation consistently showed a good agreement with the RAMI4PILPS reference values under direct and diffuse illumination conditions. It is an efficient and accurate tool to derive PAR absorptance and reflectance for scenarios with different canopy densities, leaf densities and soil background albedos, with especial attention to brighter backgrounds, i.e., snowy. The major difficulty of its applicability in the real world is to acquire the parameterisation parameters from in-situ observations. The derivation of parameters from Digital Hemispherical Photographs (DHP) is highly promising at forest stands scales. DHP provide a permanent record and are a valuable information source for position, size, density, and distribution of canopy gaps. The modified two-stream approximation parameters were derived from gap probability data extracted from DHP obtained in a woody savannah in California, USA. Values of fAPAR and albedo PAR were evaluated against a tree-based vegetation canopy model, MAESPA, which used airborne LiDAR data to define the individual-tree locations, and extract structural information such as tree height and crown diameter. The parameterisation improved the performance of a two-stream approximation by making it achieves comparable results to complex 3D model calculations under observed conditions.

  16. Dusty Cloud Acceleration by Radiation Pressure in Rapidly Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Zhang, Dong; Davis, Shane W.; Jiang, Yan-Fei; Stone, James M.

    2018-02-01

    We perform two-dimensional and three-dimensional radiation hydrodynamic simulations to study cold clouds accelerated by radiation pressure on dust in the environment of rapidly star-forming galaxies dominated by infrared flux. We utilize the reduced speed of light approximation to solve the frequency-averaged, time-dependent radiative transfer equation. We find that radiation pressure is capable of accelerating the clouds to hundreds of kilometers per second while remaining dense and cold, consistent with observations. We compare these results to simulations where acceleration is provided by entrainment in a hot wind, where the momentum injection of the hot flow is comparable to the momentum in the radiation field. We find that the survival time of the cloud accelerated by the radiation field is significantly longer than that of a cloud entrained in a hot outflow. We show that the dynamics of the irradiated cloud depends on the initial optical depth, temperature of the cloud, and intensity of the flux. Additionally, gas pressure from the background may limit cloud acceleration if the density ratio between the cloud and background is ≲ {10}2. In general, a 10 pc-scale optically thin cloud forms a pancake structure elongated perpendicular to the direction of motion, while optically thick clouds form a filamentary structure elongated parallel to the direction of motion. The details of accelerated cloud morphology and geometry can also be affected by other factors, such as the cloud lengthscale, reduced speed of light approximation, spatial resolution, initial cloud structure, and dimensionality of the run, but these have relatively little affect on the cloud velocity or survival time.

  17. The Intercomparison of 3D Radiation Codes (I3RC): Showcasing Mathematical and Computational Physics in a Critical Atmospheric Application

    NASA Astrophysics Data System (ADS)

    Davis, A. B.; Cahalan, R. F.

    2001-05-01

    The Intercomparison of 3D Radiation Codes (I3RC) is an on-going initiative involving an international group of over 30 researchers engaged in the numerical modeling of three-dimensional radiative transfer as applied to clouds. Because of their strong variability and extreme opacity, clouds are indeed a major source of uncertainty in the Earth's local radiation budget (at GCM grid scales). Also 3D effects (at satellite pixel scales) invalidate the standard plane-parallel assumption made in the routine of cloud-property remote sensing at NASA and NOAA. Accordingly, the test-cases used in I3RC are based on inputs and outputs which relate to cloud effects in atmospheric heating rates and in real-world remote sensing geometries. The main objectives of I3RC are to (1) enable participants to improve their models, (2) publish results as a community, (3) archive source code, and (4) educate. We will survey the status of I3RC and its plans for the near future with a special emphasis on the mathematical models and computational approaches. We will also describe some of the prime applications of I3RC's efforts in climate models, cloud-resolving models, and remote-sensing observations of clouds, or that of the surface in their presence. In all these application areas, computational efficiency is the main concern and not accuracy. One of I3RC's main goals is to document the performance of as wide a variety as possible of three-dimensional radiative transfer models for a small but representative number of ``cases.'' However, it is dominated by modelers working at the level of linear transport theory (i.e., they solve the radiative transfer equation) and an overwhelming majority of these participants use slow-but-robust Monte Carlo techniques. This means that only a small portion of the efficiency vs. accuracy vs. flexibility domain is currently populated by I3RC participants. To balance this natural clustering the present authors have organized a systematic outreach towards modelers that have used approximate methods in radiation transport. In this context, different, presumably simpler, equations (such as diffusion) are used in order to make a significant gain on the efficiency axis. We will describe in some detail the most promising approaches to approximate 3D radiative transfer in clouds. Somewhat paradoxically, and in spite of its importance in the above-mentioned applications, approximate radiative transfer modeling lags significantly behind its exact counterpart because the required mathematical and computational culture is essentially alien to the native atmospheric radiation community. I3RC is receiving enough funding from NASA/HQ and DOE/ARM for its essential operations out of NASA/GSFC. However, this does not cover the time and effort of any of the participants; so only existing models were entered. At present, none of inherently approximate methods are represented, only severe truncations of some exact methods. We therefore welcome the Math/Geo initiative at NSF which should enable the proper consortia of experts in atmospheric radiation and in applied mathematics to fill an important niche.

  18. Modeling the Atmosphere of Solar and Other Stars: Radiative Transfer with PHOENIX/3D

    NASA Astrophysics Data System (ADS)

    Baron, Edward

    The chemical composition of stars is an important ingredient in our understanding of the formation, structure, and evolution of both the Galaxy and the Solar System. The composition of the sun itself is an essential reference standard against which the elemental contents of other astronomical objects are compared. Recently, redetermination of the elemental abundances using three-dimensional, time-dependent hydrodynamical models of the solar atmosphere has led to a reduction in the inferred metal abundances, particularly C, N, O, and Ne. However, this reduction in metals reduces the opacity such that models of the Sun no longer agree with the observed results obtained using helioseismology. Three dimensional (3-D) radiative transfer is an important problem in physics, astrophysics, and meteorology. Radiative transfer is extremely computationally complex and it is a natural problem that requires computation on the exascale. We intend to calculate the detailed compositional structure of the Sun and other stars at high resolution with full NLTE, treating the turbulent velocity flows in full detail in order to compare results from hydrodynamics and helioseismology, and understand the nature of the discrepancies found between the two approaches. We propose to perform 3-D high-resolution radiative transfer calculations with the PHOENIX/3D suite of solar and other stars using 3-D hydrodynamic models from different groups. While NLTE radiative transfer has been treated by the groups doing hydrodynamics, they are necessarily limited in their resolution to the consideration of only a few (4-20) frequency bins, whereas we can calculate full NLTE including thousands of wavelength points, resolving the line profiles, and solving the scattering problem with extremely high angular resolution. The code has been used for the analysis of supernova spectra, stellar and planetary spectra, and for time-dependent modeling of transient objects. PHOENIX/3D runs and scales very well on Cray XC-30 and XC-40 machines (tested up to 100,800 CPU cores) and should scale up to several million cores for large simulations. Non-local problems, particularly radiation hydrodynamics problems, are at the forefront of computational astrophysics and we will share our work with the community. Our research program brings a unified modeling strategy to the results of several disparate groups and thus will provide a unifying framework with which to assess the metal abundance of the stars and the chemical evolution of the galaxy. We will bring together 3-D hydrodynamical models, detailed radiative transfer, and astronomical abundance studies. We will also provide results of interest to the atomic physics and plasma physics communities. Our work will use data from NASA telescopes including the Hubble Space Telescope and the James Webb Space telescope. The ability to work with data from the UV to the far IR is crucial from validating our results. Our work will also extend the exascale computational capabilities, which is a national goal.

  19. The application of the principles of invariance to the radiative transfer equation in plant canopies

    NASA Technical Reports Server (NTRS)

    Ganapol, B. D.; Myneni, R. B.

    1992-01-01

    Solutions of the radiative transfer equation describing photon interactions with vegetation canopies are important in remote sensing since they provide the canopy reflectance distribution required in the interpretation of satellite acquired information. The general one-dimensional two-angle transport problem for a finite copy of arbitrary leaf angle distribution is considered. Analytical solutions are obtained in terms of generalized Chandrasekhar's X- and Y-functions by invoking the principles of invariance. A critical step in the formulation involves the decomposition of the integral of the scattering phase function into a product of known functions of the incident and scattered photon directions. Several simplified cases previously considered in the literature are derived from the generalized solution. Various symmetries obeyed by the scattering operator and reciprocity relations are formally proved.

  20. Application of satellite data in variational analysis for global cyclonic systems

    NASA Technical Reports Server (NTRS)

    Achtemeier, G. L.

    1988-01-01

    The goal of the research is a variational data assimilation method that incorporates as dynamical constraints, the primitive equations for a moist, convectively unstable atmosphere and the radiative transfer equation. Variables to be adjusted include the three-dimensional vector wind, height, temperature, and moisture from rawinsonde data, and cloud-wind vectors, moisture, and radiance from satellite data. In order to facilitate thorough analysis of each of the model components, four variational models that divide the problem naturally according to increasing complexity were defined. The research performed during the second year fall into four areas: sensitivity studies involving Model 1; evaluation of Model 2; reformation of Model 1 for greater compatibility with Model 2; development of Model 3 (radiative transfer equation); and making the model more responsive to the observations.

  1. Casimir effect and radiative heat transfer between Chern Insulators

    NASA Astrophysics Data System (ADS)

    Rodriguez Lopez, Pablo; Grushin, Adolfo; Tse, Wang-Kong; Dalvit, Diego

    2015-03-01

    Chern Insulators are a class of two-dimensional topological materials. Their electronic properties are different from conventional materials, and lead to interesting new physics as quantum Hall effect in absence of an external magnetic field. Here we will review some of their special properties and, in particular, we will discuss the radiative heat transfer and the Casimir effect between two planar Chern Insulators sheets. Finally, we will see how to control the intensity and sign of this Casimir force and the requirements to observe a repulsive Casimir force in the lab with those materials. The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA Grant Agreement No. 302005.

  2. HELIOS: An Open-source, GPU-accelerated Radiative Transfer Code for Self-consistent Exoplanetary Atmospheres

    NASA Astrophysics Data System (ADS)

    Malik, Matej; Grosheintz, Luc; Mendonça, João M.; Grimm, Simon L.; Lavie, Baptiste; Kitzmann, Daniel; Tsai, Shang-Min; Burrows, Adam; Kreidberg, Laura; Bedell, Megan; Bean, Jacob L.; Stevenson, Kevin B.; Heng, Kevin

    2017-02-01

    We present the open-source radiative transfer code named HELIOS, which is constructed for studying exoplanetary atmospheres. In its initial version, the model atmospheres of HELIOS are one-dimensional and plane-parallel, and the equation of radiative transfer is solved in the two-stream approximation with nonisotropic scattering. A small set of the main infrared absorbers is employed, computed with the opacity calculator HELIOS-K and combined using a correlated-k approximation. The molecular abundances originate from validated analytical formulae for equilibrium chemistry. We compare HELIOS with the work of Miller-Ricci & Fortney using a model of GJ 1214b, and perform several tests, where we find: model atmospheres with single-temperature layers struggle to converge to radiative equilibrium; k-distribution tables constructed with ≳ 0.01 cm-1 resolution in the opacity function (≲ {10}3 points per wavenumber bin) may result in errors ≳ 1%-10% in the synthetic spectra; and a diffusivity factor of 2 approximates well the exact radiative transfer solution in the limit of pure absorption. We construct “null-hypothesis” models (chemical equilibrium, radiative equilibrium, and solar elemental abundances) for six hot Jupiters. We find that the dayside emission spectra of HD 189733b and WASP-43b are consistent with the null hypothesis, while the latter consistently underpredicts the observed fluxes of WASP-8b, WASP-12b, WASP-14b, and WASP-33b. We demonstrate that our results are somewhat insensitive to the choice of stellar models (blackbody, Kurucz, or PHOENIX) and metallicity, but are strongly affected by higher carbon-to-oxygen ratios. The code is publicly available as part of the Exoclimes Simulation Platform (exoclime.net).

  3. An Epoch of Reionization simulation pipeline based on BEARS

    NASA Astrophysics Data System (ADS)

    Krause, Fabian; Thomas, Rajat M.; Zaroubi, Saleem; Abdalla, Filipe B.

    2018-10-01

    The quest to unlock the mysteries of the Epoch of Reionization (EoR) is well poised with many experiments at diverse wavelengths beginning to gather data. Albeit these efforts, we are yet uncertain about the various factors that influence the EoR which include, the nature of the sources, their spectral characteristics (blackbody temperatures, power-law indices), clustering property, efficiency, duty cycle etc. Given these physical uncertainties that define the EoR, we need fast and efficient computational methods to model and analyze the data in order to provide confidence bounds on the parameters that influence the brightness temperature at 21-cm. Towards this goal we developed a pipeline that combines dark matter-only N-body simulations with exact 1-dimensional radiative transfer computations to approximate exact 3-dimensional radiative transfer. Because these simulations are about two to three orders of magnitude faster than the exact 3-dimensional methods, they can be used to explore the parameter space of the EoR systematically. A fast scheme like this pipeline could be incorporated into a Bayesian framework for parameter estimation. In this paper we detail the construction of the pipeline and describe how to use the software which is being made publicly available. We show the results of running the pipeline for four test cases of sources with various spectral energy distributions and compare their outputs using various statistics.

  4. On the Formation of Massive Stars

    NASA Technical Reports Server (NTRS)

    Yorke, Harold W.; Sonnhalter, Cordula

    2002-01-01

    We calculate numerically the collapse of slowly rotating, nonmagnetic, massive molecular clumps of masses 30,60, and 120 Stellar Mass, which conceivably could lead to the formation of massive stars. Because radiative acceleration on dust grains plays a critical role in the clump's dynamical evolution, we have improved the module for continuum radiation transfer in an existing two-dimensional (axial symmetry assumed) radiation hydrodynamic code. In particular, rather than using "gray" dust opacities and "gray" radiation transfer, we calculate the dust's wavelength-dependent absorption and emission simultaneously with the radiation density at each wavelength and the equilibrium temperatures of three grain components: amorphous carbon particles. silicates, and " dirty ice " -coated silicates. Because our simulations cannot spatially resolve the innermost regions of the molecular clump, however, we cannot distinguish between the formation of a dense central cluster or a single massive object. Furthermore, we cannot exclude significant mass loss from the central object(s) that may interact with the inflow into the central grid cell. Thus, with our basic assumption that all material in the innermost grid cell accretes onto a single object. we are able to provide only an upper limit to the mass of stars that could possibly be formed. We introduce a semianalytical scheme for augmenting existing evolutionary tracks of pre-main-sequence protostars by including the effects of accretion. By considering an open outermost boundary, an arbitrary amount of material could, in principal, be accreted onto this central star. However, for the three cases considered (30, 60, and 120 Stellar Mass originally within the computation grid), radiation acceleration limited the final masses to 3 1.6, 33.6, and 42.9 Stellar Mass, respectively, for wavelength-dependent radiation transfer and to 19.1, 20.1, and 22.9 Stellar Mass. for the corresponding simulations with gray radiation transfer. Our calculations demonstrate that massive stars can in principle be formed via accretion through a disk. The accretion rate onto the central source increases rapidly after one initial free-fall time and decreases monotonically afterward. By enhancing the nonisotropic character of the radiation field, the accretion disk reduces the effects of radiative acceleration in the radial direction - a process we call the "flashlight effect." The flashlight effect is further amplified in our case by including the effects of frequency-dependent radiation transfer. We conclude with the warning that a careful treatment of radiation transfer is a mandatory requirement for realistic simulations of the formation of massive stars.

  5. FESTR: Finite-Element Spectral Transfer of Radiation spectroscopic modeling and analysis code

    DOE PAGES

    Hakel, Peter

    2016-10-01

    Here we report on the development of a new spectral postprocessor of hydrodynamic simulations of hot, dense plasmas. Based on given time histories of one-, two-, and three-dimensional spatial distributions of materials, and their local temperature and density conditions, spectroscopically-resolved signals are computed. The effects of radiation emission and absorption by the plasma on the emergent spectra are simultaneously taken into account. This program can also be used independently of hydrodynamic calculations to analyze available experimental data with the goal of inferring plasma conditions.

  6. Estimating regional evapotranspiration from remotely sensed data by surface energy balance models

    NASA Technical Reports Server (NTRS)

    Asrar, Ghassem; Kanemasu, Edward; Myneni, R. B.; Lapitan, R. L.; Harris, T. R.; Killeen, J. M.; Cooper, D. I.; Hwang, C.

    1987-01-01

    Spatial and temporal variations of surface radiative temperatures of the burned and unburned areas of the Konza tallgrass prairie were studied. The role of management practices, topographic conditions and the uncertainties associated with in situ or airborne surface temperature measurements were assessed. Evaluation of diurnal and seasonal spectral characteristics of the burned and unburned areas of the prairie was also made. This was accomplished based on the analysis of measured spectral reflectance of the grass canopies under field conditions, and modelling their spectral behavior using a one dimensional radiative transfer model.

  7. FESTR: Finite-Element Spectral Transfer of Radiation spectroscopic modeling and analysis code

    NASA Astrophysics Data System (ADS)

    Hakel, Peter

    2016-10-01

    We report on the development of a new spectral postprocessor of hydrodynamic simulations of hot, dense plasmas. Based on given time histories of one-, two-, and three-dimensional spatial distributions of materials, and their local temperature and density conditions, spectroscopically-resolved signals are computed. The effects of radiation emission and absorption by the plasma on the emergent spectra are simultaneously taken into account. This program can also be used independently of hydrodynamic calculations to analyze available experimental data with the goal of inferring plasma conditions.

  8. Energy transfer simulation for radiantly heated and cooled enclosures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, K.S.; Zhang, P.

    1996-11-01

    This paper presents the development of a three-dimensional mathematical model to compute heat transfer within a radiantly heated or cooled room, which then calculates the mass-averaged room air temperature and the wall surface temperature distributions. The radiation formulation used in the model accommodates arbitrary placement of walls and objects within the room. The convection model utilizes Nusselt number correlations published in the open literature. The complete energy transfer model is validated by comparing calculated room temperatures to temperatures measured in a radiantly heated room. This three-dimensional model may be applied to a building to assist the heating/cooling system design engineermore » in sizing a radiant heating/cooling system. By coupling this model with a thermal comfort model, the comfort levels throughout the room can be easily and efficiently mapped for a given radiant heater/cooler location. In addition, obstacles such as airplanes, trucks, furniture, and partitions can be easily incorporated to determine their effect on the radiant heating system performance.« less

  9. Space radiator simulation system analysis

    NASA Technical Reports Server (NTRS)

    Black, W. Z.; Wulff, W.

    1972-01-01

    A transient heat transfer analysis was carried out on a space radiator heat rejection system exposed to an arbitrarily prescribed combination of aerodynamic heating, solar, albedo, and planetary radiation. A rigorous analysis was carried out for the radiation panel and tubes lying in one plane and an approximate analysis was used to extend the rigorous analysis to the case of a curved panel. The analysis permits the consideration of both gaseous and liquid coolant fluids, including liquid metals, under prescribed, time dependent inlet conditions. The analysis provided a method for predicting: (1) transient and steady-state, two dimensional temperature profiles, (2) local and total heat rejection rates, (3) coolant flow pressure in the flow channel, and (4) total system weight and protection layer thickness.

  10. 3D Radiative Transfer in Cloudy Atmospheres

    NASA Astrophysics Data System (ADS)

    Marshak, Alexander; Davis, Anthony

    Developments in three-dimensional cloud radiation over the past few decades are assessed and distilled into this contributed volume. Chapters are authored by subject-matter experts who address a broad audience of graduate students, researchers, and anyone interested in cloud-radiation processes in the solar and infrared spectral regions. After two introductory chapters and a section on the fundamental physics and computational techniques, the volume extensively treats two main application areas: the impact of clouds on the Earth's radiation budget, which is an essential aspect of climate modeling; and remote observation of clouds, especially with the advanced sensors on current and future satellite missions. http://www.springeronline.com/alert/article?a=3D1_1fva7w_1j826l_41z_6

  11. Influence of the Geometric Parameter on the Regimes of Natural Convection and Thermal Surface Radiation in a Closed Parallelepiped

    NASA Astrophysics Data System (ADS)

    Martyushev, S. G.; Miroshnichenko, I. V.; Sheremet, M. A.

    2015-11-01

    We have performed a numerical analysis of the stationary regimes of thermogravitational convection and thermal surface radiation in a closed differentially heated parallelepiped. The mathematical model formulated in dimensionless natural velocity-pressure-temperature variables was realized numerically in the control volume approach. Analysis of the radiative heat exchange was carried out on the basis of the surface radiation approach with the use of the balance method in the Polyak variant. We have obtained three-dimensional temperature and velocity fields, as well as dependences for the mean Nusselt number reflecting the influence of the geometric parameter, the Rayleigh number, and the reduced emissive factor of the walls on the flow structure and the heat transfer.

  12. An iterative phase-space explicit discontinuous Galerkin method for stellar radiative transfer in extended atmospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Almeida, Valmor F.

    In this work, a phase-space discontinuous Galerkin (PSDG) method is presented for the solution of stellar radiative transfer problems. It allows for greater adaptivity than competing methods without sacrificing generality. The method is extensively tested on a spherically symmetric, static, inverse-power-law scattering atmosphere. Results for different sizes of atmospheres and intensities of scattering agreed with asymptotic values. The exponentially decaying behavior of the radiative field in the diffusive-transparent transition region, and the forward peaking behavior at the surface of extended atmospheres were accurately captured. The integrodifferential equation of radiation transfer is solved iteratively by alternating between the radiative pressure equationmore » and the original equation with the integral term treated as an energy density source term. In each iteration, the equations are solved via an explicit, flux-conserving, discontinuous Galerkin method. Finite elements are ordered in wave fronts perpendicular to the characteristic curves so that elemental linear algebraic systems are solved quickly by sweeping the phase space element by element. Two implementations of a diffusive boundary condition at the origin are demonstrated wherein the finite discontinuity in the radiation intensity is accurately captured by the proposed method. This allows for a consistent mechanism to preserve photon luminosity. The method was proved to be robust and fast, and a case is made for the adequacy of parallel processing. In addition to classical two-dimensional plots, results of normalized radiation intensity were mapped onto a log-polar surface exhibiting all distinguishing features of the problem studied.« less

  13. An iterative phase-space explicit discontinuous Galerkin method for stellar radiative transfer in extended atmospheres

    DOE PAGES

    de Almeida, Valmor F.

    2017-04-19

    In this work, a phase-space discontinuous Galerkin (PSDG) method is presented for the solution of stellar radiative transfer problems. It allows for greater adaptivity than competing methods without sacrificing generality. The method is extensively tested on a spherically symmetric, static, inverse-power-law scattering atmosphere. Results for different sizes of atmospheres and intensities of scattering agreed with asymptotic values. The exponentially decaying behavior of the radiative field in the diffusive-transparent transition region, and the forward peaking behavior at the surface of extended atmospheres were accurately captured. The integrodifferential equation of radiation transfer is solved iteratively by alternating between the radiative pressure equationmore » and the original equation with the integral term treated as an energy density source term. In each iteration, the equations are solved via an explicit, flux-conserving, discontinuous Galerkin method. Finite elements are ordered in wave fronts perpendicular to the characteristic curves so that elemental linear algebraic systems are solved quickly by sweeping the phase space element by element. Two implementations of a diffusive boundary condition at the origin are demonstrated wherein the finite discontinuity in the radiation intensity is accurately captured by the proposed method. This allows for a consistent mechanism to preserve photon luminosity. The method was proved to be robust and fast, and a case is made for the adequacy of parallel processing. In addition to classical two-dimensional plots, results of normalized radiation intensity were mapped onto a log-polar surface exhibiting all distinguishing features of the problem studied.« less

  14. Numerical study of radiation effect on the municipal solid waste combustion characteristics inside an incinerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jingfu, E-mail: jfwang@bjut.edu.cn; Xue, Yanqing; Zhang, Xinxin

    Highlights: • A 3-D model for the MSW incinerator with preheated air was developed. • Gas radiative properties were obtained from a statistical narrow-band model. • Non-gray body radiation model can provide more accurate simulation results. - Abstract: Due to its advantages of high degree volume reduction, relatively stable residue, and energy reclamation, incineration becomes one of the best choices for Municipal Solid Waste (MSW) disposal. However, detailed measurements of temperature and gas species inside a furnace are difficulty by conventional experimental techniques. Therefore, numerical simulation of MSW incineration in the packed bed and gas flow field was applied. Inmore » this work, a three dimensional (3-D) model of incinerator system, including flow, heat transfer, detailed chemical mechanisms, and non-gray gas models, was developed. Radiation from the furnace wall and the flame formed above the bed is of importance for drying and igniting the waste. The preheated air with high temperature is used for the MSW combustion. Under the conditions of high temperature and high pressure, MSW combustion produces a variety of radiating gases. The wavelength-depend radiative properties of flame adopted in non-gray radiation model were obtained from a statistical narrow-band model. The influence of radiative heat transfer on temperature, flow field is researched by adiabatic model (without considering radiation), gray radiation model, and non-gray radiation model. The simulation results show that taking into account the non-gray radiation is essential.« less

  15. Three-dimensional microstructure simulation of Ni-based superalloy investment castings

    NASA Astrophysics Data System (ADS)

    Pan, Dong; Xu, Qingyan; Liu, Baicheng

    2011-05-01

    An integrated macro and micro multi-scale model for the three-dimensional microstructure simulation of Ni-based superalloy investment castings was developed, and applied to industrial castings to investigate grain evolution during solidification. A ray tracing method was used to deal with the complex heat radiation transfer. The microstructure evolution was simulated based on the Modified Cellular Automaton method, which was coupled with three-dimensional nested macro and micro grids. Experiments for Ni-based superalloy turbine wheel investment casting were carried out, which showed a good correspondence with the simulated results. It is indicated that the proposed model is able to predict the microstructure of the casting precisely, which provides a tool for the optimizing process.

  16. CRASH: A BLOCK-ADAPTIVE-MESH CODE FOR RADIATIVE SHOCK HYDRODYNAMICS-IMPLEMENTATION AND VERIFICATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van der Holst, B.; Toth, G.; Sokolov, I. V.

    We describe the Center for Radiative Shock Hydrodynamics (CRASH) code, a block-adaptive-mesh code for multi-material radiation hydrodynamics. The implementation solves the radiation diffusion model with a gray or multi-group method and uses a flux-limited diffusion approximation to recover the free-streaming limit. Electrons and ions are allowed to have different temperatures and we include flux-limited electron heat conduction. The radiation hydrodynamic equations are solved in the Eulerian frame by means of a conservative finite-volume discretization in either one-, two-, or three-dimensional slab geometry or in two-dimensional cylindrical symmetry. An operator-split method is used to solve these equations in three substeps: (1)more » an explicit step of a shock-capturing hydrodynamic solver; (2) a linear advection of the radiation in frequency-logarithm space; and (3) an implicit solution of the stiff radiation diffusion, heat conduction, and energy exchange. We present a suite of verification test problems to demonstrate the accuracy and performance of the algorithms. The applications are for astrophysics and laboratory astrophysics. The CRASH code is an extension of the Block-Adaptive Tree Solarwind Roe Upwind Scheme (BATS-R-US) code with a new radiation transfer and heat conduction library and equation-of-state and multi-group opacity solvers. Both CRASH and BATS-R-US are part of the publicly available Space Weather Modeling Framework.« less

  17. TOPAZ2D heat transfer code users manual and thermal property data base

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapiro, A.B.; Edwards, A.L.

    1990-05-01

    TOPAZ2D is a two dimensional implicit finite element computer code for heat transfer analysis. This user's manual provides information on the structure of a TOPAZ2D input file. Also included is a material thermal property data base. This manual is supplemented with The TOPAZ2D Theoretical Manual and the TOPAZ2D Verification Manual. TOPAZ2D has been implemented on the CRAY, SUN, and VAX computers. TOPAZ2D can be used to solve for the steady state or transient temperature field on two dimensional planar or axisymmetric geometries. Material properties may be temperature dependent and either isotropic or orthotropic. A variety of time and temperature dependentmore » boundary conditions can be specified including temperature, flux, convection, and radiation. Time or temperature dependent internal heat generation can be defined locally be element or globally by material. TOPAZ2D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in material surrounding the enclosure. Additional features include thermally controlled reactive chemical mixtures, thermal contact resistance across an interface, bulk fluid flow, phase change, and energy balances. Thermal stresses can be calculated using the solid mechanics code NIKE2D which reads the temperature state data calculated by TOPAZ2D. A three dimensional version of the code, TOPAZ3D is available. The material thermal property data base, Chapter 4, included in this manual was originally published in 1969 by Art Edwards for use with his TRUMP finite difference heat transfer code. The format of the data has been altered to be compatible with TOPAZ2D. Bob Bailey is responsible for adding the high explosive thermal property data.« less

  18. The In Vitro Response of Tissue Stem Cells to Irradiation With Different Linear Energy Transfers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagle, Peter W.; Hosper, Nynke A.; Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen

    Purpose: A reduction in the dose, irradiated volume, and sensitivity of, in particular, normal tissue stem cells is needed to advance radiation therapy. This could be obtained with the use of particles for radiation therapy. However, the radiation response of normal tissue stem cells is still an enigma. Therefore, in the present study, we developed a model to investigate the in vitro response of stem cells to particle irradiation. Methods and Materials: We used the immortalized human salivary gland (HSG) cell line resembling salivary gland (SG) cells to translate the radiation response in 2-dimensional (2D) to 3-dimensional (3D) conditions. This responsemore » was subsequently translated to the response of SG stem cells (SGSCs). Dispersed single cells were irradiated with photons or carbon ions at different linear energy transfers (LETs; 48.76 ± 2.16, 149.9 ± 10.8, and 189 ± 15 keV/μm). Subsequently, 2D or 3D clonogenicity was determined by counting the colonies or secondary stem cell-derived spheres in Matrigel. γH2AX immunostaining was used to assess DNA double strand break repair. Results: The 2D response of HSG cells showed a similar increase in dose response to increasing higher LET irradiation as other cell lines. The 3D response of HSG cells to increasing LET irradiation was reduced compared with the 2D response. Finally, the response of mouse SGSCs to photons was similar to the 3D response of HSG cells. The response to higher LET irradiation was reduced in the stem cells. Conclusions: Mouse SGSC radiosensitivity seems reduced at higher LET radiation compared with transformed HSG cells. The developed model to assess the radiation response of SGSCs offers novel possibilities to study the radiation response of normal tissue in vitro.« less

  19. On the attenuation of sound by three-dimensionally segmented acoustic liners in a rectangular duct

    NASA Technical Reports Server (NTRS)

    Koch, W.

    1979-01-01

    Axial segmentation of acoustically absorbing liners in rectangular, circular or annual duct configurations is a very useful concept for obtaining higher noise attenuation with respect to the bandwidth of absorption as well as the maximum attenuation. As a consequence, advanced liner concepts are proposed which induce a modal energy transfer in both cross-sectional directions to further reduce the noise radiated from turbofan engines. However, these advanced liner concepts require three-dimensional geometries which are difficult to treat theoretically. A very simple three-dimensional problem is investigated analytically. The results show a strong dependence on the positioning of the liner for some incident source modes while the effect of three-dimensional segmentation appears to be negligible over the frequency range considered.

  20. Computational attributes of the integral form of the equation of transfer

    NASA Technical Reports Server (NTRS)

    Frankel, J. I.

    1991-01-01

    Difficulties can arise in radiative and neutron transport calculations when a highly anisotropic scattering phase function is present. In the presence of anisotropy, currently used numerical solutions are based on the integro-differential form of the linearized Boltzmann transport equation. This paper, departs from classical thought and presents an alternative numerical approach based on application of the integral form of the transport equation. Use of the integral formalism facilitates the following steps: a reduction in dimensionality of the system prior to discretization, the use of symbolic manipulation to augment the computational procedure, and the direct determination of key physical quantities which are derivable through the various Legendre moments of the intensity. The approach is developed in the context of radiative heat transfer in a plane-parallel geometry, and results are presented and compared with existing benchmark solutions. Encouraging results are presented to illustrate the potential of the integral formalism for computation. The integral formalism appears to possess several computational attributes which are well-suited to radiative and neutron transport calculations.

  1. Radiative transfer and radiative driving of outflows in active galactic nuclei and starbursts

    NASA Astrophysics Data System (ADS)

    Novak, G. S.; Ostriker, J. P.; Ciotti, L.

    2012-12-01

    To facilitate the study of black hole fuelling, star formation and feedback in galaxies, we outline a method for treating the radial forces on interstellar gas due to absorption of photons by dust grains. The method gives the correct behaviour in all of the relevant limits [dominated by the central point source; dominated by the distributed isotropic source; optically thin; optically thick to ultraviolet (UV)/optical; optically thick to infrared (IR)] and reasonably interpolates between the limits when necessary. The method is explicitly energy conserving so that UV/optical photons that are absorbed are not lost, but are rather redistributed to the IR where they may scatter out of the galaxy. We implement the radiative transfer algorithm in a two-dimensional hydrodynamical code designed to study feedback processes in the context of early-type galaxies. We find that the dynamics and final state of simulations are measurably but only moderately affected by radiative forces on dust, even when assumptions about the dust-to-gas ratio are varied from zero to a value appropriate for the Milky Way. In simulations with high gas densities designed to mimic ultraluminous IR galaxies with a star formation rate of several hundred solar masses per year, dust makes a more substantial contribution to the dynamics and outcome of the simulation. We find that, despite the large opacity of dust to UV radiation, the momentum input to the flow from radiation very rarely exceeds L/c due to two factors: the low opacity of dust to the re-radiated IR and the tendency for dust to be destroyed by sputtering in hot gas environments. We also develop a simplification of our radiative transfer algorithm that respects the essential physics but is much easier to implement and requires a fraction of the computational cost.

  2. Chebyshev collocation spectral method for one-dimensional radiative heat transfer in linearly anisotropic-scattering cylindrical medium

    NASA Astrophysics Data System (ADS)

    Zhou, Rui-Rui; Li, Ben-Wen

    2017-03-01

    In this study, the Chebyshev collocation spectral method (CCSM) is developed to solve the radiative integro-differential transfer equation (RIDTE) for one-dimensional absorbing, emitting and linearly anisotropic-scattering cylindrical medium. The general form of quadrature formulas for Chebyshev collocation points is deduced. These formulas are proved to have the same accuracy as the Gauss-Legendre quadrature formula (GLQF) for the F-function (geometric function) in the RIDTE. The explicit expressions of the Lagrange basis polynomials and the differentiation matrices for Chebyshev collocation points are also given. These expressions are necessary for solving an integro-differential equation by the CCSM. Since the integrand in the RIDTE is continuous but non-smooth, it is treated by the segments integration method (SIM). The derivative terms in the RIDTE are carried out to improve the accuracy near the origin. In this way, a fourth order accuracy is achieved by the CCSM for the RIDTE, whereas it's only a second order one by the finite difference method (FDM). Several benchmark problems (BPs) with various combinations of optical thickness, medium temperature distribution, degree of anisotropy, and scattering albedo are solved. The results show that present CCSM is efficient to obtain high accurate results, especially for the optically thin medium. The solutions rounded to seven significant digits are given in tabular form, and show excellent agreement with the published data. Finally, the solutions of RIDTE are used as benchmarks for the solution of radiative integral transfer equations (RITEs) presented by Sutton and Chen (JQSRT 84 (2004) 65-103). A non-uniform grid refined near the wall is advised to improve the accuracy of RITEs solutions.

  3. The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutherland, Kevin Jerome

    Photonic band gap (PBG) crystals are periodic dielectric structures that manipulate electromagnetic radiation in a manner similar to semiconductor devices manipulating electrons. Whereas a semiconductor material exhibits an electronic band gap in which electrons cannot exist, similarly, a photonic crystal containing a photonic band gap does not allow the propagation of specific frequencies of electromagnetic radiation. This phenomenon results from the destructive Bragg diffraction interference that a wave propagating at a specific frequency will experience because of the periodic change in dielectric permitivity. This gives rise to a variety of optical applications for improving the efficiency and effectiveness of opto-electronicmore » devices. These applications are reviewed later. Several methods are currently used to fabricate photonic crystals, which are also discussed in detail. This research involves a layer-by-layer micro-transfer molding ({mu}TM) and stacking method to create three-dimensional FCC structures of epoxy or titania. The structures, once reduced significantly in size can be infiltrated with an organic gain media and stacked on a semiconductor to improve the efficiency of an electronically pumped light-emitting diode. Photonic band gap structures have been proven to effectively create a band gap for certain frequencies of electro-magnetic radiation in the microwave and near-infrared ranges. The objective of this research project was originally two-fold: to fabricate a three dimensional (3-D) structure of a size scaled to prohibit electromagnetic propagation within the visible wavelength range, and then to characterize that structure using laser dye emission spectra. As a master mold has not yet been developed for the micro transfer molding technique in the visible range, the research was limited to scaling down the length scale as much as possible with the current available technology and characterizing these structures with other methods.« less

  4. The Effect of Cumulus Cloud Field Anisotropy on Domain-Averaged Solar Fluxes and Atmospheric Heating Rates

    NASA Technical Reports Server (NTRS)

    Hinkelman, Laura M.; Evans, K. Franklin; Clothiaux, Eugene E.; Ackerman, Thomas P.; Stackhouse, Paul W., Jr.

    2006-01-01

    Cumulus clouds can become tilted or elongated in the presence of wind shear. Nevertheless, most studies of the interaction of cumulus clouds and radiation have assumed these clouds to be isotropic. This paper describes an investigation of the effect of fair-weather cumulus cloud field anisotropy on domain-averaged solar fluxes and atmospheric heating rate profiles. A stochastic field generation algorithm was used to produce twenty three-dimensional liquid water content fields based on the statistical properties of cloud scenes from a large eddy simulation. Progressively greater degrees of x-z plane tilting and horizontal stretching were imposed on each of these scenes, so that an ensemble of scenes was produced for each level of distortion. The resulting scenes were used as input to a three-dimensional Monte Carlo radiative transfer model. Domain-average transmission, reflection, and absorption of broadband solar radiation were computed for each scene along with the average heating rate profile. Both tilt and horizontal stretching were found to significantly affect calculated fluxes, with the amount and sign of flux differences depending strongly on sun position relative to cloud distortion geometry. The mechanisms by which anisotropy interacts with solar fluxes were investigated by comparisons to independent pixel approximation and tilted independent pixel approximation computations for the same scenes. Cumulus anisotropy was found to most strongly impact solar radiative transfer by changing the effective cloud fraction, i.e., the cloud fraction when the field is projected on a surface perpendicular to the direction of the incident solar beam.

  5. Radiation from advanced solid rocket motor plumes

    NASA Technical Reports Server (NTRS)

    Farmer, Richard C.; Smith, Sheldon D.; Myruski, Brian L.

    1994-01-01

    The overall objective of this study was to develop an understanding of solid rocket motor (SRM) plumes in sufficient detail to accurately explain the majority of plume radiation test data. Improved flowfield and radiation analysis codes were developed to accurately and efficiently account for all the factors which effect radiation heating from rocket plumes. These codes were verified by comparing predicted plume behavior with measured NASA/MSFC ASRM test data. Upon conducting a thorough review of the current state-of-the-art of SRM plume flowfield and radiation prediction methodology and the pertinent data base, the following analyses were developed for future design use. The NOZZRAD code was developed for preliminary base heating design and Al2O3 particle optical property data evaluation using a generalized two-flux solution to the radiative transfer equation. The IDARAD code was developed for rapid evaluation of plume radiation effects using the spherical harmonics method of differential approximation to the radiative transfer equation. The FDNS CFD code with fully coupled Euler-Lagrange particle tracking was validated by comparison to predictions made with the industry standard RAMP code for SRM nozzle flowfield analysis. The FDNS code provides the ability to analyze not only rocket nozzle flow, but also axisymmetric and three-dimensional plume flowfields with state-of-the-art CFD methodology. Procedures for conducting meaningful thermo-vision camera studies were developed.

  6. A Numerical Investigation of the Extinction of Low Strain Rate Diffusion Flames by an Agent in Microgravity

    NASA Technical Reports Server (NTRS)

    Puri, Ishwar K.

    2004-01-01

    Our goal has been to investigate the influence of both dilution and radiation on the extinction process of nonpremixed flames at low strain rates. Simulations have been performed by using a counterflow code and three radiation models have been included in it, namely, the optically thin, the narrowband, and discrete ordinate models. The counterflow flame code OPPDIFF was modified to account for heat transfer losses by radiation from the hot gases. The discrete ordinate method (DOM) approximation was first suggested by Chandrasekhar for solving problems in interstellar atmospheres. Carlson and Lathrop developed the method for solving multi-dimensional problem in neutron transport. Only recently has the method received attention in the field of heat transfer. Due to the applicability of the discrete ordinate method for thermal radiation problems involving flames, the narrowband code RADCAL was modified to calculate the radiative properties of the gases. A non-premixed counterflow flame was simulated with the discrete ordinate method for radiative emissions. In comparison with two other models, it was found that the heat losses were comparable with the optically thin and simple narrowband model. The optically thin model had the highest heat losses followed by the DOM model and the narrow-band model.

  7. Numerical study of Free Convective Viscous Dissipative flow along Vertical Cone with Influence of Radiation using Network Simulation method

    NASA Astrophysics Data System (ADS)

    Kannan, R. M.; Pullepu, Bapuji; Immanuel, Y.

    2018-04-01

    A two dimensional mathematical model is formulated for the transient laminar free convective flow with heat transfer over an incompressible viscous fluid past a vertical cone with uniform surface heat flux with combined effects of viscous dissipation and radiation. The dimensionless boundary layer equations of the flow which are transient, coupled and nonlinear Partial differential equations are solved using the Network Simulation Method (NSM), a powerful numerical technique which demonstrates high efficiency and accuracy by employing the network simulator computer code Pspice. The velocity and temperature profiles have been investigated for various factors, namely viscous dissipation parameter ε, Prandtl number Pr and radiation Rd are analyzed graphically.

  8. Modelling of Titan's middle atmosphere with the IPSL climate model

    NASA Astrophysics Data System (ADS)

    Vatant d'Ollone, Jan; Lebonnois, Sébastien; Guerlet, Sandrine

    2017-04-01

    Titan's 3-dimensional Global Climate Model developed at the Institute Pierre-Simon Laplace has already demonstrated its efficiency to reproduce and interpret many features of the Saturnian moon's climate (e.g. Lebonnois et al., 2012). However, it suffered from limits at the top of the model, with temperatures far warmer than the observations and no stratopause simulated. To interpret Cassini's overall observations of seasonal effects in the middle atmosphere (e.g. Vinatier et al., 2015), a satisfying modelling of the temperature profile in this region was first required. Latest developments in the GCM now enable a correct modelling of the temperature profile in the middle atmosphere. In particular, a new, more flexible, radiative transfer scheme based on correlated-k method has been set up, using up-to-date spectroscopic data. Special emphasis is put on the too warm upper stratospheric temperatures in the former model that were due to the absence of the infrared ν4 methane line (7.7 μm) in the radiative transfer. While it was usually neglected in the tropospheric radiative models, this line has a strong cooling effect in Titan's stratospheric conditions and cannot be neglected. In this new version of the GCM, the microphysical model is temporarily switched off and we use a mean profile for haze opacity (Lavvas et al., 2010). The circulation in the middle atmosphere is significantly improved by this new radiative transfer. The new 3-D simulations also show an interesting feature in the modeled vertical profile of the zonal wind as the minimum in low stratosphere is now closer to the observations. Works in progress such as the vertical extension and the computation of the radiative effect of the seasonal variations of trace components will also be presented. - Lavvas P. et al., 2010. Titan's vertical aerosol structure at the Huygens landing site: Constraints on particle size, density, charge, and refractive index. Icarus 210, 832-842. - Lebonnois S. et al., 2012. Titan Global Climate Model: new 3-dimensional version of the IPSL Titan GCM. Icarus 218, 707-722. - Vinatier S. et al., 2015. Seasonal variations in Titan's middle atmosphere during the northern spring derived from Cassini/CIRS observations. Icarus 250, 95-115.

  9. Some New Results in Astrophysical Problems of Nonlinear Theory of Radiative Transfer

    NASA Astrophysics Data System (ADS)

    Pikichyan, H. V.

    2017-07-01

    In the interpretation of the observed astrophysical spectra, a decisive role is related to nonlinear problems of radiative transfer, because the processes of multiple interactions of matter of cosmic medium with the exciting intense radiation ubiquitously occur in astrophysical objects, and in their vicinities. Whereas, the intensity of the exciting radiation changes the physical properties of the original medium, and itself was modified, simultaneously, in a self-consistent manner under its influence. In the present report, we show that the consistent application of the principle of invariance in the nonlinear problem of bilateral external illumination of a scattering/absorbing one-dimensional anisotropic medium of finite geometrical thickness allows for simplifications that were previously considered as a prerogative only of linear problems. The nonlinear problem is analyzed through the three methods of the principle of invariance: (i) an adding of layers, (ii) its limiting form, described by differential equations of invariant imbedding, and (iii) a transition to the, so-called, functional equations of the "Ambartsumyan's complete invariance". Thereby, as an alternative to the Boltzmann equation, a new type of equations, so-called "kinetic equations of equivalence", are obtained. By the introduction of new functions - the so-called "linear images" of solution of nonlinear problem of radiative transfer, the linear structure of the solution of the nonlinear problem under study is further revealed. Linear images allow to convert naturally the statistical characteristics of random walk of a "single quantum" or their "beam of unit intensity", as well as widely known "probabilistic interpretation of phenomena of transfer", to the field of nonlinear problems. The structure of the equations obtained for determination of linear images is typical of linear problems.

  10. Two-dimensional vocal tracts with three-dimensional behavior in the numerical generation of vowels.

    PubMed

    Arnela, Marc; Guasch, Oriol

    2014-01-01

    Two-dimensional (2D) numerical simulations of vocal tract acoustics may provide a good balance between the high quality of three-dimensional (3D) finite element approaches and the low computational cost of one-dimensional (1D) techniques. However, 2D models are usually generated by considering the 2D vocal tract as a midsagittal cut of a 3D version, i.e., using the same radius function, wall impedance, glottal flow, and radiation losses as in 3D, which leads to strong discrepancies in the resulting vocal tract transfer functions. In this work, a four step methodology is proposed to match the behavior of 2D simulations with that of 3D vocal tracts with circular cross-sections. First, the 2D vocal tract profile becomes modified to tune the formant locations. Second, the 2D wall impedance is adjusted to fit the formant bandwidths. Third, the 2D glottal flow gets scaled to recover 3D pressure levels. Fourth and last, the 2D radiation model is tuned to match the 3D model following an optimization process. The procedure is tested for vowels /a/, /i/, and /u/ and the obtained results are compared with those of a full 3D simulation, a conventional 2D approach, and a 1D chain matrix model.

  11. Accelerated solution of discrete ordinates approximation to the Boltzmann transport equation via model reduction

    DOE PAGES

    Tencer, John; Carlberg, Kevin; Larsen, Marvin; ...

    2017-06-17

    Radiation heat transfer is an important phenomenon in many physical systems of practical interest. When participating media is important, the radiative transfer equation (RTE) must be solved for the radiative intensity as a function of location, time, direction, and wavelength. In many heat-transfer applications, a quasi-steady assumption is valid, thereby removing time dependence. The dependence on wavelength is often treated through a weighted sum of gray gases (WSGG) approach. The discrete ordinates method (DOM) is one of the most common methods for approximating the angular (i.e., directional) dependence. The DOM exactly solves for the radiative intensity for a finite numbermore » of discrete ordinate directions and computes approximations to integrals over the angular space using a quadrature rule; the chosen ordinate directions correspond to the nodes of this quadrature rule. This paper applies a projection-based model-reduction approach to make high-order quadrature computationally feasible for the DOM for purely absorbing applications. First, the proposed approach constructs a reduced basis from (high-fidelity) solutions of the radiative intensity computed at a relatively small number of ordinate directions. Then, the method computes inexpensive approximations of the radiative intensity at the (remaining) quadrature points of a high-order quadrature using a reduced-order model constructed from the reduced basis. Finally, this results in a much more accurate solution than might have been achieved using only the ordinate directions used to compute the reduced basis. One- and three-dimensional test problems highlight the efficiency of the proposed method.« less

  12. Accelerated solution of discrete ordinates approximation to the Boltzmann transport equation via model reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tencer, John; Carlberg, Kevin; Larsen, Marvin

    Radiation heat transfer is an important phenomenon in many physical systems of practical interest. When participating media is important, the radiative transfer equation (RTE) must be solved for the radiative intensity as a function of location, time, direction, and wavelength. In many heat-transfer applications, a quasi-steady assumption is valid, thereby removing time dependence. The dependence on wavelength is often treated through a weighted sum of gray gases (WSGG) approach. The discrete ordinates method (DOM) is one of the most common methods for approximating the angular (i.e., directional) dependence. The DOM exactly solves for the radiative intensity for a finite numbermore » of discrete ordinate directions and computes approximations to integrals over the angular space using a quadrature rule; the chosen ordinate directions correspond to the nodes of this quadrature rule. This paper applies a projection-based model-reduction approach to make high-order quadrature computationally feasible for the DOM for purely absorbing applications. First, the proposed approach constructs a reduced basis from (high-fidelity) solutions of the radiative intensity computed at a relatively small number of ordinate directions. Then, the method computes inexpensive approximations of the radiative intensity at the (remaining) quadrature points of a high-order quadrature using a reduced-order model constructed from the reduced basis. Finally, this results in a much more accurate solution than might have been achieved using only the ordinate directions used to compute the reduced basis. One- and three-dimensional test problems highlight the efficiency of the proposed method.« less

  13. Optical Radiation from Integer Quantum Hall States in Dirac Materials

    NASA Astrophysics Data System (ADS)

    Gullans, Michael; Taylor, Jacob; Ghaemi, Pouyan; Hafezi, Mohammad

    Quantum Hall systems exhibit topologically protected edge states, which can have a macroscopic spatial extent. Such edge states provide a unique opportunity to study a quantum emitter whose size far exceeds the wavelength of emitted light. To better understand this limit, we theoretically characterize the optical radiation from integer quantum Hall states in two-dimensional Dirac materials. We show that the scattered light from the bulk reflects the spatial profile of the wavefunctions, enabling spatial imaging of the disorder landscape. We find that the radiation from the edge states are characterized by the presence of large multipole moments in the far-field. This multipole radiation arises from the transfer of angular momentum from the electrons into the scattered light, enabling the generation of coherent light with high orbital angular momentum.

  14. MHD Forced Convective Laminar Boundary Layer Flow from a Convectively Heated Moving Vertical Plate with Radiation and Transpiration Effect

    PubMed Central

    Uddin, Md. Jashim; Khan, Waqar A.; Ismail, A. I. Md.

    2013-01-01

    A two-dimensional steady forced convective flow of a Newtonian fluid past a convectively heated permeable vertically moving plate in the presence of a variable magnetic field and radiation effect has been investigated numerically. The plate moves either in assisting or opposing direction to the free stream. The plate and free stream velocities are considered to be proportional to whilst the magnetic field and mass transfer velocity are taken to be proportional to where is the distance along the plate from the leading edge of the plate. Instead of using existing similarity transformations, we use a linear group of transformations to transform the governing equations into similarity equations with relevant boundary conditions. Numerical solutions of the similarity equations are presented to show the effects of the controlling parameters on the dimensionless velocity, temperature and concentration profiles as well as on the friction factor, rate of heat and mass transfer. It is found that the rate of heat transfer elevates with the mass transfer velocity, convective heat transfer, Prandtl number, velocity ratio and the magnetic field parameters. It is also found that the rate of mass transfer enhances with the mass transfer velocity, velocity ratio, power law index and the Schmidt number, whilst it suppresses with the magnetic field parameter. Our results are compared with the results existing in the open literature. The comparisons are satisfactory. PMID:23741295

  15. F--Ray: A new algorithm for efficient transport of ionizing radiation

    NASA Astrophysics Data System (ADS)

    Mao, Yi; Zhang, J.; Wandelt, B. D.; Shapiro, P. R.; Iliev, I. T.

    2014-04-01

    We present a new algorithm for the 3D transport of ionizing radiation, called F2-Ray (Fast Fourier Ray-tracing method). The transfer of ionizing radiation with long mean free path in diffuse intergalactic gas poses a special challenge to standard numerical methods which transport the radiation in position space. Standard methods usually trace each individual ray until it is fully absorbed by the intervening gas. If the mean free path is long, the computational cost and memory load are likely to be prohibitive. We have developed an algorithm that overcomes these limitations and is, therefore, significantly more efficient. The method calculates the transfer of radiation collectively, using the Fast Fourier Transform to convert radiation between position and Fourier spaces, so the computational cost will not increase with the number of ionizing sources. The method also automatically combines parallel rays with the same frequency at the same grid cell, thereby minimizing the memory requirement. The method is explicitly photon-conserving, i.e. the depletion of ionizing photons is guaranteed to equal the photoionizations they caused, and explicitly obeys the periodic boundary condition, i.e. the escape of ionizing photons from one side of a simulation volume is guaranteed to be compensated by emitting the same amount of photons into the volume through the opposite side. Together, these features make it possible to numerically simulate the transfer of ionizing photons more efficiently than previous methods. Since ionizing radiation such as the X-ray is responsible for heating the intergalactic gas when first stars and quasars form at high redshifts, our method can be applied to simulate thermal distribution, in addition to cosmic reionization, in three-dimensional inhomogeneous cosmological density field.

  16. Influence of nonlinear thermal radiation and viscous dissipation on three-dimensional flow of Jeffrey nano fluid over a stretching sheet in the presence of Joule heating

    NASA Astrophysics Data System (ADS)

    Ganesh Kumar, K.; Rudraswamy, N. G.; Gireesha, B. J.; Krishnamurthy, M. R.

    2017-09-01

    Present exploration discusses the combined effect of viscous dissipation and Joule heating on three dimensional flow and heat transfer of a Jeffrey nanofluid in the presence of nonlinear thermal radiation. Here the flow is generated over bidirectional stretching sheet in the presence of applied magnetic field by accounting thermophoresis and Brownian motion of nanoparticles. Suitable similarity transformations are employed to reduce the governing partial differential equations into coupled nonlinear ordinary differential equations. These nonlinear ordinary differential equations are solved numerically by using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. Graphically results are presented and discussed for various parameters. Validation of the current method is proved by comparing our results with the existing results under limiting situations. It can be concluded that combined effect of Joule and viscous heating increases the temperature profile and thermal boundary layer thickness.

  17. Single-footprint retrievals for AIRS using a fast TwoSlab cloud-representation model and the SARTA all-sky infrared radiative transfer algorithm

    NASA Astrophysics Data System (ADS)

    DeSouza-Machado, Sergio; Larrabee Strow, L.; Tangborn, Andrew; Huang, Xianglei; Chen, Xiuhong; Liu, Xu; Wu, Wan; Yang, Qiguang

    2018-01-01

    One-dimensional variational retrievals of temperature and moisture fields from hyperspectral infrared (IR) satellite sounders use cloud-cleared radiances (CCRs) as their observation. These derived observations allow the use of clear-sky-only radiative transfer in the inversion for geophysical variables but at reduced spatial resolution compared to the native sounder observations. Cloud clearing can introduce various errors, although scenes with large errors can be identified and ignored. Information content studies show that, when using multilayer cloud liquid and ice profiles in infrared hyperspectral radiative transfer codes, there are typically only 2-4 degrees of freedom (DOFs) of cloud signal. This implies a simplified cloud representation is sufficient for some applications which need accurate radiative transfer. Here we describe a single-footprint retrieval approach for clear and cloudy conditions, which uses the thermodynamic and cloud fields from numerical weather prediction (NWP) models as a first guess, together with a simple cloud-representation model coupled to a fast scattering radiative transfer algorithm (RTA). The NWP model thermodynamic and cloud profiles are first co-located to the observations, after which the N-level cloud profiles are converted to two slab clouds (TwoSlab; typically one for ice and one for water clouds). From these, one run of our fast cloud-representation model allows an improvement of the a priori cloud state by comparing the observed and model-simulated radiances in the thermal window channels. The retrieval yield is over 90 %, while the degrees of freedom correlate with the observed window channel brightness temperature (BT) which itself depends on the cloud optical depth. The cloud-representation and scattering package is benchmarked against radiances computed using a maximum random overlap (RMO) cloud scheme. All-sky infrared radiances measured by NASA's Atmospheric Infrared Sounder (AIRS) and NWP thermodynamic and cloud profiles from the European Centre for Medium-Range Weather Forecasts (ECMWF) forecast model are used in this paper.

  18. RAPTOR. I. Time-dependent radiative transfer in arbitrary spacetimes

    NASA Astrophysics Data System (ADS)

    Bronzwaer, T.; Davelaar, J.; Younsi, Z.; Mościbrodzka, M.; Falcke, H.; Kramer, M.; Rezzolla, L.

    2018-05-01

    Context. Observational efforts to image the immediate environment of a black hole at the scale of the event horizon benefit from the development of efficient imaging codes that are capable of producing synthetic data, which may be compared with observational data. Aims: We aim to present RAPTOR, a new public code that produces accurate images, animations, and spectra of relativistic plasmas in strong gravity by numerically integrating the equations of motion of light rays and performing time-dependent radiative transfer calculations along the rays. The code is compatible with any analytical or numerical spacetime. It is hardware-agnostic and may be compiled and run both on GPUs and CPUs. Methods: We describe the algorithms used in RAPTOR and test the code's performance. We have performed a detailed comparison of RAPTOR output with that of other radiative-transfer codes and demonstrate convergence of the results. We then applied RAPTOR to study accretion models of supermassive black holes, performing time-dependent radiative transfer through general relativistic magneto-hydrodynamical (GRMHD) simulations and investigating the expected observational differences between the so-called fast-light and slow-light paradigms. Results: Using RAPTOR to produce synthetic images and light curves of a GRMHD model of an accreting black hole, we find that the relative difference between fast-light and slow-light light curves is less than 5%. Using two distinct radiative-transfer codes to process the same data, we find integrated flux densities with a relative difference less than 0.01%. Conclusions: For two-dimensional GRMHD models, such as those examined in this paper, the fast-light approximation suffices as long as errors of a few percent are acceptable. The convergence of the results of two different codes demonstrates that they are, at a minimum, consistent. The public version of RAPTOR is available at the following URL: http://https://github.com/tbronzwaer/raptor

  19. A microscale three-dimensional urban energy balance model for studying surface temperatures

    NASA Astrophysics Data System (ADS)

    Krayenhoff, E. Scott; Voogt, James A.

    2007-06-01

    A microscale three-dimensional (3-D) urban energy balance model, Temperatures of Urban Facets in 3-D (TUF-3D), is developed to predict urban surface temperatures for a variety of surface geometries and properties, weather conditions, and solar angles. The surface is composed of plane-parallel facets: roofs, walls, and streets, which are further sub-divided into identical square patches, resulting in a 3-D raster-type model geometry. The model code is structured into radiation, conduction and convection sub-models. The radiation sub-model uses the radiosity approach and accounts for multiple reflections and shading of direct solar radiation. Conduction is solved by finite differencing of the heat conduction equation, and convection is modelled by empirically relating patch heat transfer coefficients to the momentum forcing and the building morphology. The radiation and conduction sub-models are tested individually against measurements, and the complete model is tested against full-scale urban surface temperature and energy balance observations. Modelled surface temperatures perform well at both the facet-average and the sub-facet scales given the precision of the observations and the uncertainties in the model inputs. The model has several potential applications, such as the calculation of radiative loads, and the investigation of effective thermal anisotropy (when combined with a sensor-view model).

  20. Multiple Scattering in Clouds: Insights from Three-Dimensional Diffusion/P{sub 1} Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Anthony B.; Marshak, Alexander

    2001-03-15

    In the atmosphere, multiple scattering matters nowhere more than in clouds, and being a product of its turbulence, clouds are highly variable environments. This challenges three-dimensional (3D) radiative transfer theory in a way that easily swamps any available computational resources. Fortunately, the far simpler diffusion (or P{sub 1}) theory becomes more accurate as the scattering intensifies, and allows for some analytical progress as well as computational efficiency. After surveying current approaches to 3D solar cloud-radiation problems from the diffusion standpoint, a general 3D result in steady-state diffusive transport is derived relating the variability-induced change in domain-average flux (i.e., diffuse transmittance)more » to the one-point covariance of internal fluctuations in particle density and in radiative flux. These flux variations follow specific spatial patterns in deliberately hydrodynamical language: radiative channeling. The P{sub 1} theory proves even more powerful when the photon diffusion process unfolds in time as well as space. For slab geometry, characteristic times and lengths that describe normal and transverse transport phenomena are derived. This phenomenology is used to (a) explain persistent features in satellite images of dense stratocumulus as radiative channeling, (b) set limits on current cloud remote-sensing techniques, and (c) propose new ones both active and passive.« less

  1. Improving the accuracy of S02 column densities and emission rates obtained from upward-looking UV-spectroscopic measurements of volcanic plumes by taking realistic radiative transfer into account

    USGS Publications Warehouse

    Kern, Christoph; Deutschmann, Tim; Werner, Cynthia; Sutton, A. Jeff; Elias, Tamar; Kelly, Peter J.

    2012-01-01

    Sulfur dioxide (SO2) is monitored using ultraviolet (UV) absorption spectroscopy at numerous volcanoes around the world due to its importance as a measure of volcanic activity and a tracer for other gaseous species. Recent studies have shown that failure to take realistic radiative transfer into account during the spectral retrieval of the collected data often leads to large errors in the calculated emission rates. Here, the framework for a new evaluation method which couples a radiative transfer model to the spectral retrieval is described. In it, absorption spectra are simulated, and atmospheric parameters are iteratively updated in the model until a best match to the measurement data is achieved. The evaluation algorithm is applied to two example Differential Optical Absorption Spectroscopy (DOAS) measurements conducted at Kilauea volcano (Hawaii). The resulting emission rates were 20 and 90% higher than those obtained with a conventional DOAS retrieval performed between 305 and 315 nm, respectively, depending on the different SO2 and aerosol loads present in the volcanic plume. The internal consistency of the method was validated by measuring and modeling SO2 absorption features in a separate wavelength region around 375 nm and comparing the results. Although additional information about the measurement geometry and atmospheric conditions is needed in addition to the acquired spectral data, this method for the first time provides a means of taking realistic three-dimensional radiative transfer into account when analyzing UV-spectral absorption measurements of volcanic SO2 plumes.

  2. Convective Heat Transfer in the Reusable Solid Rocket Motor of the Space Transportation System

    NASA Technical Reports Server (NTRS)

    Ahmad, Rashid A.; Cash, Stephen F. (Technical Monitor)

    2002-01-01

    This simulation involved a two-dimensional axisymmetric model of a full motor initial grain of the Reusable Solid Rocket Motor (RSRM) of the Space Transportation System (STS). It was conducted with CFD (computational fluid dynamics) commercial code FLUENT. This analysis was performed to: a) maintain continuity with most related previous analyses, b) serve as a non-vectored baseline for any three-dimensional vectored nozzles, c) provide a relatively simple application and checkout for various CFD solution schemes, grid sensitivity studies, turbulence modeling and heat transfer, and d) calculate nozzle convective heat transfer coefficients. The accuracy of the present results and the selection of the numerical schemes and turbulence models were based on matching the rocket ballistic predictions of mass flow rate, head end pressure, vacuum thrust and specific impulse, and measured chamber pressure drop. Matching these ballistic predictions was found to be good. This study was limited to convective heat transfer and the results compared favorably with existing theory. On the other hand, qualitative comparison with backed-out data of the ratio of the convective heat transfer coefficient to the specific heat at constant pressure was made in a relative manner. This backed-out data was devised to match nozzle erosion that was a result of heat transfer (convective, radiative and conductive), chemical (transpirating), and mechanical (shear and particle impingement forces) effects combined.

  3. Multi-time-scale heat transfer modeling of turbid tissues exposed to short-pulsed irradiations.

    PubMed

    Kim, Kyunghan; Guo, Zhixiong

    2007-05-01

    A combined hyperbolic radiation and conduction heat transfer model is developed to simulate multi-time-scale heat transfer in turbid tissues exposed to short-pulsed irradiations. An initial temperature response of a tissue to an ultrashort pulse irradiation is analyzed by the volume-average method in combination with the transient discrete ordinates method for modeling the ultrafast radiation heat transfer. This response is found to reach pseudo steady state within 1 ns for the considered tissues. The single pulse result is then utilized to obtain the temperature response to pulse train irradiation at the microsecond/millisecond time scales. After that, the temperature field is predicted by the hyperbolic heat conduction model which is solved by the MacCormack's scheme with error terms correction. Finally, the hyperbolic conduction is compared with the traditional parabolic heat diffusion model. It is found that the maximum local temperatures are larger in the hyperbolic prediction than the parabolic prediction. In the modeled dermis tissue, a 7% non-dimensional temperature increase is found. After about 10 thermal relaxation times, thermal waves fade away and the predictions between the hyperbolic and parabolic models are consistent.

  4. A Theoretical Evaluation of Secondary Atomization Effects on Engine Performance for Aluminum Gel Propellants

    NASA Technical Reports Server (NTRS)

    Mueller, D. C.; Turns, S. R.

    1994-01-01

    A one-dimensional model of a gel-fueled rocket combustion chamber has been developed. This model includes the processes of liquid hydrocarbon burnout, secondary atomization. aluminum ignition, and aluminum combustion. Also included is a model of radiative heat transfer from the solid combustion products to the chamber walls. Calculations indicate that only modest secondary atomization is required to significantly reduce propellant burnout distances, aluminum oxide residual size and radiation heat wall losses. Radiation losses equal to approximately 2-13 percent of the energy released during combustion were estimated. A two-dimensional, two-phase nozzle code was employed to estimate radiation and nozzle two-phase flow effects on overall engine performance. Radiation losses yielded a 1 percent decrease in engine I(sub sp). Results also indicate that secondary atomization may have less effect on two-phase losses than it does on propellant burnout distance and no effect if oxide particle coagulation and shear induced droplet breakup govern oxide particle size. Engine I(sub sp) was found to decrease from 337.4 to 293.7 seconds as gel aluminum mass loading was varied from 0-70 wt percent. Engine I(sub sp) efficiencies, accounting for radiation and two-phase flow effects, on the order of 0.946 were calculated for a 60 wt percent gel, assuming a fragmentation ratio of 5.

  5. FIBRE AND INTEGRATED OPTICS. OPTICAL PROCESSING OF INFORMATION: Feasibility of using waveguide holograms in systems for the transfer of amplitude—phase information along fibre communication lines

    NASA Astrophysics Data System (ADS)

    Dianov, Evgenii M.; Zubov, Vladimir A.; Putilin, A. N.

    1995-02-01

    An analysis is made of a variant of a system for spatial—temporal transformation of spatially one-dimensional information for its transfer along a single-mode fibre waveguide. Information is coupled into a fibre by a waveguide hologram. This hologram forms a light-beam structure which matches the fibre-guided mode. A report is given of the use of ion-exchange planar glass waveguides as waveguide holograms. An amorphous chalcogenide semiconductor film or a photoresist was deposited by evaporation on such a planar waveguide. Reconstruction of the waveguide hologram made it possible to achieve a high read rate, up to 1011 pixels per second, when a short radiation pulse was used. Multisectioned injection semiconductor lasers, operating under Q-switching conditions, were used as the radiation sources.

  6. Apparatus and method for detecting full-capture radiation events

    DOEpatents

    Odell, D.M.C.

    1994-10-11

    An apparatus and method are disclosed for sampling the output signal of a radiation detector and distinguishing full-capture radiation events from Compton scattering events. The output signal of a radiation detector is continuously sampled. The samples are converted to digital values and input to a discriminator where samples that are representative of events are identified. The discriminator transfers only event samples, that is, samples representing full-capture events and Compton events, to a signal processor where the samples are saved in a three-dimensional count matrix with time (from the time of onset of the pulse) on the first axis, sample pulse current amplitude on the second axis, and number of samples on the third axis. The stored data are analyzed to separate the Compton events from full-capture events, and the energy of the full-capture events is determined without having determined the energies of any of the individual radiation detector events. 4 figs.

  7. Apparatus and method for detecting full-capture radiation events

    DOEpatents

    Odell, Daniel M. C.

    1994-01-01

    An apparatus and method for sampling the output signal of a radiation detector and distinguishing full-capture radiation events from Compton scattering events. The output signal of a radiation detector is continuously sampled. The samples are converted to digital values and input to a discriminator where samples that are representative of events are identified. The discriminator transfers only event samples, that is, samples representing full-capture events and Compton events, to a signal processor where the samples are saved in a three-dimensional count matrix with time (from the time of onset of the pulse) on the first axis, sample pulse current amplitude on the second axis, and number of samples on the third axis. The stored data are analyzed to separate the Compton events from full-capture events, and the energy of the full-capture events is determined without having determined the energies of any of the individual radiation detector events.

  8. Cross diffusion and exponential space dependent heat source impacts in radiated three-dimensional (3D) flow of Casson fluid by heated surface

    NASA Astrophysics Data System (ADS)

    Zaigham Zia, Q. M.; Ullah, Ikram; Waqas, M.; Alsaedi, A.; Hayat, T.

    2018-03-01

    This research intends to elaborate Soret-Dufour characteristics in mixed convective radiated Casson liquid flow by exponentially heated surface. Novel features of exponential space dependent heat source are introduced. Appropriate variables are implemented for conversion of partial differential frameworks into a sets of ordinary differential expressions. Homotopic scheme is employed for construction of analytic solutions. Behavior of various embedding variables on velocity, temperature and concentration distributions are plotted graphically and analyzed in detail. Besides, skin friction coefficients and heat and mass transfer rates are also computed and interpreted. The results signify the pronounced characteristics of temperature corresponding to convective and radiation variables. Concentration bears opposite response for Soret and Dufour variables.

  9. Absorption of Solar Radiation by the Cloudy Atmosphere Interpretations of Collocated Aircraft Measurements

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.; Cess, Robert D.; Zhang, Minghua; Pope, Shelly K.; Bucholtz, Anthony; Bush, Brett; Vitko, John, Jr.

    1997-01-01

    As part of the Atmospheric Radiation Measurement (ARM) Enhanced Shortwave Experiment (ARESE), we have obtained and analyzed measurements made from collocated aircraft of the absorption of solar radiation within the atmospheric column between the two aircraft. The measurements were taken during October 1995 at the ARM site in Oklahoma. Relative to a theoretical radiative transfer model, we find no evidence for excess solar absorption in the clear atmosphere and significant evidence for its existence in the cloudy atmosphere. This excess cloud solar absorption appears to occur in both visible (0.224-0.68 microns) and near-infrared (0.68-3.30 microns) spectral regions, although not at 0.5 microns for the visible contribution, and it is shown to be true absorption rather than an artifact of sampling errors caused by measuring three-dimensional clouds.

  10. Inverse optimal design of the radiant heating in materials processing and manufacturing

    NASA Astrophysics Data System (ADS)

    Fedorov, A. G.; Lee, K. H.; Viskanta, R.

    1998-12-01

    Combined convective, conductive, and radiative heat transfer is analyzed during heating of a continuously moving load in the industrial radiant oven. A transient, quasi-three-dimensional model of heat transfer between a continuous load of parts moving inside an oven on a conveyor belt at a constant speed and an array of radiant heaters/burners placed inside the furnace enclosure is developed. The model accounts for radiative exchange between the heaters and the load, heat conduction in the load, and convective heat transfer between the moving load and oven environment. The thermal model developed has been used to construct a general framework for an inverse optimal design of an industrial oven as an example. In particular, the procedure based on the Levenberg-Marquardt nonlinear least squares optimization algorithm has been developed to obtain the optimal temperatures of the heaters/burners that need to be specified to achieve a prescribed temperature distribution of the surface of a load. The results of calculations for several sample cases are reported to illustrate the capabilities of the procedure developed for the optimal inverse design of an industrial radiant oven.

  11. DART: Recent Advances in Remote Sensing Data Modeling With Atmosphere, Polarization, and Chlorophyll Fluorescence

    NASA Technical Reports Server (NTRS)

    Gastellu-Etchegorry, Jean-Phil; Lauret, Nicolas; Yin, Tiangang; Landier, Lucas; Kallel, Abdelaziz; Malenovsky, Zbynek; Bitar, Ahmad Al; Aval, Josselin; Benhmida, Sahar; Qi, Jianbo; hide

    2017-01-01

    To better understand the life-essential cycles and processes of our planet and to further develop remote sensing (RS) technology, there is an increasing need for models that simulate the radiative budget (RB) and RS acquisitions of urban and natural landscapes using physical approaches and considering the three-dimensional (3-D) architecture of Earth surfaces. Discrete anisotropic radiative transfer (DART) is one of the most comprehensive physically based 3-D models of Earth-atmosphere radiative transfer, covering the spectral domain from ultraviolet to thermal infrared wavelengths. It simulates the optical 3-DRB and optical signals of proximal, aerial, and satellite imaging spectrometers and laser scanners, for any urban and/or natural landscapes and for any experimental and instrumental configurations. It is freely available for research and teaching activities. In this paper, we briefly introduce DART theory and present recent advances in simulated sensors (LiDAR and cameras with finite field of view) and modeling mechanisms (atmosphere, specular reflectance with polarization and chlorophyll fluorescence). A case study demonstrating a novel application of DART to investigate urban landscapes is also presented.

  12. Efficient radiative transfer methods for continuum and line transfer in large three-dimensional models

    NASA Astrophysics Data System (ADS)

    Juvela, Mika J.

    The relationship between physical conditions of an interstellar cloud and the observed radiation is defined by the radiative transfer problem. Radiative transfer calculations are needed if, e.g., one wants to disentangle abundance variations from excitation effects or wants to model variations of dust properties inside an interstellar cloud. New observational facilities (e.g., ALMA and Herschel) will bring improved accuracy both in terms of intensity and spatial resolution. This will enable detailed studies of the densest sub-structures of interstellar clouds and star forming regions. Such observations must be interpreted with accurate radiative transfer methods and realistic source models. In many cases this will mean modelling in three dimensions. High optical depths and observed wide range of linear scales are, however, challenging for radiative transfer modelling. A large range of linear scales can be accessed only with hierarchical models. Figure 1 shows an example of the use of a hierarchical grid for radiative transfer calculations when the original model cloud (L=10 pc, =500 cm-3) was based a MHD simulation carried out on a regular grid (Juvela & Padoan, 2005). For computed line intensities an accuracy of 10% was still reached when the number of individual cells (and the run time) was reduced by a factor of ten. This illustrates how, as long as cloud is not extremely optically thick, most of the emission comes from a small sub-volume. It is also worth noting that while errors are ~10% for any given point they are much smaller when compared with intensity variations. In particular, calculations on hierarchical grid recovered the spatial power spectrum of line emission with very good accuracy. Monte Carlo codes are used widely in both continuum and line transfer calculations. Like any lambda iteration schemes these suffer from slow convergence when models are optically thick. In line transfer Accelerated Monte Carlo methods (AMC) present a partial solution to this problem (Juvela & Padoan, 2000; Hogerheijde & van der Tak, 2000). AMC methods can be used similarly in continuum calculations to speed up the computation of dust temperatures (Juvela, 2005). The sampling problems associated with high optical depths can be solved with weighted sampling and the handling of models with τV ~ 1000 is perfectly feasible. Transiently heated small dust grains pose another problem because the calculation of their temperature distribution is very time consuming. However, a 3D model will contain thousands of cells at very similar conditions. If dust temperature distributions are calculated only once for such a set an approximate solution can be found in a much shorter time time. (Juvela & Padoan, 2003; see Figure 2a). MHD simulations with Automatic Mesh Refinement (AMR) techniques present an exciting development for the modelling of interstellar clouds. Cloud models consist of a hierarchy of grids with different grid steps and the ratio between the cloud size and the smallest resolution elements can be 106 or even larger. We are currently working on radiative transfer codes (line and continuum) that could be used efficiently on such grids (see Figure 2b). The radiative transfer problem can be solved relatively independently on each of the sub-grids. This means that the use of convergence acceleration methods can be limited to those sub-grids where they are needed and, on the other hand, parallelization of the code is straightforward.

  13. Parameterization and analysis of 3-D radiative transfer in clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varnai, Tamas

    2012-03-16

    This report provides a summary of major accomplishments from the project. The project examines the impact of radiative interactions between neighboring atmospheric columns, for example clouds scattering extra sunlight toward nearby clear areas. While most current cloud models don't consider these interactions and instead treat sunlight in each atmospheric column separately, the resulting uncertainties have remained unknown. This project has provided the first estimates on the way average solar heating is affected by interactions between nearby columns. These estimates have been obtained by combining several years of cloud observations at three DOE Atmospheric Radiation Measurement (ARM) Climate Research Facility sitesmore » (in Alaska, Oklahoma, and Papua New Guinea) with simulations of solar radiation around the observed clouds. The importance of radiative interactions between atmospheric columns was evaluated by contrasting simulations that included the interactions with those that did not. This study provides lower-bound estimates for radiative interactions: It cannot consider interactions in cross-wind direction, because it uses two-dimensional vertical cross-sections through clouds that were observed by instruments looking straight up as clouds drifted aloft. Data from new DOE scanning radars will allow future radiative studies to consider the full three-dimensional nature of radiative processes. The results reveal that two-dimensional radiative interactions increase overall day-and-night average solar heating by about 0.3, 1.2, and 4.1 Watts per meter square at the three sites, respectively. This increase grows further if one considers that most large-domain cloud simulations have resolutions that cannot specify small-scale cloud variability. For example, the increases in solar heating mentioned above roughly double for a fairly typical model resolution of 1 km. The study also examined the factors that shape radiative interactions between atmospheric columns and found that local effects were often much larger than the overall values mentioned above, and were especially large for high sun and near convective clouds such as cumulus. The study also found that statistical methods such as neural networks appear promising for enabling cloud models to consider radiative interactions between nearby atmospheric columns. Finally, through collaboration with German scientists, the project found that new methods (especially one called stepwise kriging) show great promise in filling gaps between cloud radar scans. If applied to data from the new DOE scanning cloud radars, these methods can yield large, continuous three-dimensional cloud structures for future radiative simulations.« less

  14. Optimal spacing within a tubed, volumetric, cavity receiver suitable for modular molten salt solar towers

    NASA Astrophysics Data System (ADS)

    Turner, Peter

    2016-05-01

    A 2-dimensional radiation analysis has been developed to analyse the radiative efficiency of an arrangement of heat transfer tubes distributed in layers but spaced apart to form a tubed, volumetric receiver. Such an arrangement could be suitable for incorporation into a cavity receiver. Much of the benefit of this volumetric approach is gained after using 5 layers although improvements do continue with further layers. The radiation analysis splits each tube into multiple segments in which each segment surface can absorb, reflect and radiate rays depending on its surface temperature. An iterative technique is used to calculate appropriate temperatures depending on the distribution of the net energy absorbed and assuming that the cool heat transfer fluid (molten salt) starts at the front layer and flows back through successive layers to the rear of the cavity. Modelling the finite diameter of each layer of tubes increases the ability of a layer to block radiation scattered at acute angles and this effect is shown to reduce radiation losses by nearly 25% compared to the earlier 1-d analysis. Optimum efficient designs tend to occur when the blockage factor is 0.2 plus the inverse of the number of tube layers. It is beneficial if the distance between successive layers is ≥ 2 times the diameter of individual tubes and in this situation, if the incoming radiation is spread over a range of angles, the performance is insensitive to the degree of any tube positional offset or stagger between layers.

  15. 2-Dimensional B-Spline Algorithms with Applications to Ray Tracing in Media of Spatially-Varying Refractive Index

    DTIC Science & Technology

    2007-08-01

    In the approach, photon trajectories are computed using a solution of the Eikonal equation (ray-tracing methods) rather than linear trajectories. The...coupling the radiative transport solution into heat transfer and damage models. 15. SUBJECT TERMS: B-Splines, Ray-Tracing, Eikonal Equation...multi-layer biological tissue model. In the approach, photon trajectories are computed using a solution of the Eikonal equation (ray-tracing methods

  16. A Zero Dimensional Time-Dependent Model of High-Pressure Ablative Capillary Discharge (Preprint)

    DTIC Science & Technology

    2008-06-01

    comprehensive model of capillary discharge is important to understand the physics and engineering aspects of the capillary discharge thruster. A schematic...investigators since the mid-1980s see 1-11 and references therein, satisfy both of these conditions well. These studies investigated the dynamics of high...is a comprehensive description of the radiative heat transfer in the capillary discharge. It is worth noting that in other types of capillary

  17. TRUST. I. A 3D externally illuminated slab benchmark for dust radiative transfer

    NASA Astrophysics Data System (ADS)

    Gordon, K. D.; Baes, M.; Bianchi, S.; Camps, P.; Juvela, M.; Kuiper, R.; Lunttila, T.; Misselt, K. A.; Natale, G.; Robitaille, T.; Steinacker, J.

    2017-07-01

    Context. The radiative transport of photons through arbitrary three-dimensional (3D) structures of dust is a challenging problem due to the anisotropic scattering of dust grains and strong coupling between different spatial regions. The radiative transfer problem in 3D is solved using Monte Carlo or Ray Tracing techniques as no full analytic solution exists for the true 3D structures. Aims: We provide the first 3D dust radiative transfer benchmark composed of a slab of dust with uniform density externally illuminated by a star. This simple 3D benchmark is explicitly formulated to provide tests of the different components of the radiative transfer problem including dust absorption, scattering, and emission. Methods: The details of the external star, the slab itself, and the dust properties are provided. This benchmark includes models with a range of dust optical depths fully probing cases that are optically thin at all wavelengths to optically thick at most wavelengths. The dust properties adopted are characteristic of the diffuse Milky Way interstellar medium. This benchmark includes solutions for the full dust emission including single photon (stochastic) heating as well as two simplifying approximations: One where all grains are considered in equilibrium with the radiation field and one where the emission is from a single effective grain with size-distribution-averaged properties. A total of six Monte Carlo codes and one Ray Tracing code provide solutions to this benchmark. Results: The solution to this benchmark is given as global spectral energy distributions (SEDs) and images at select diagnostic wavelengths from the ultraviolet through the infrared. Comparison of the results revealed that the global SEDs are consistent on average to a few percent for all but the scattered stellar flux at very high optical depths. The image results are consistent within 10%, again except for the stellar scattered flux at very high optical depths. The lack of agreement between different codes of the scattered flux at high optical depths is quantified for the first time. Convergence tests using one of the Monte Carlo codes illustrate the sensitivity of the solutions to various model parameters. Conclusions: We provide the first 3D dust radiative transfer benchmark and validate the accuracy of this benchmark through comparisons between multiple independent codes and detailed convergence tests.

  18. Near-field heat transfer between graphene/hBN multilayers

    NASA Astrophysics Data System (ADS)

    Zhao, Bo; Guizal, Brahim; Zhang, Zhuomin M.; Fan, Shanhui; Antezza, Mauro

    2017-06-01

    We study the radiative heat transfer between multilayer structures made by a periodic repetition of a graphene sheet and a hexagonal boron nitride (hBN) slab. Surface plasmons in a monolayer graphene can couple with hyperbolic phonon polaritons in a single hBN film to form hybrid polaritons that can assist photon tunneling. For periodic multilayer graphene/hBN structures, the stacked metallic/dielectric array can give rise to a further effective hyperbolic behavior, in addition to the intrinsic natural hyperbolic behavior of hBN. The effective hyperbolicity can enable more hyperbolic polaritons that enhance the photon tunneling and hence the near-field heat transfer. However, the hybrid polaritons on the surface, i.e., surface plasmon-phonon polaritons, dominate the near-field heat transfer between multilayer structures when the topmost layer is graphene. The effective hyperbolic regions can be well predicted by the effective medium theory (EMT), thought EMT fails to capture the hybrid surface polaritons and results in a heat transfer rate much lower compared to the exact calculation. The chemical potential of the graphene sheets can be tuned through electrical gating and results in an additional modulation of the heat transfer. We found that the near-field heat transfer between multilayer structures does not increase monotonously with the number of layers in the stack, which provides a way to control the heat transfer rate by the number of graphene layers in the multilayer structure. The results may benefit the applications of near-field energy harvesting and radiative cooling based on hybrid polaritons in two-dimensional materials.

  19. Heat transfer in thermal barrier coated rods with circumferential and radial temperature gradients

    NASA Astrophysics Data System (ADS)

    Chung, B. T. F.; Kermani, M. M.; Braun, M. J.; Padovan, J.; Hendricks, R.

    1984-06-01

    To study the heat transfer in ceramic coatings applied to the heated side of internally cooled hot section components of the gas turbine engine, a mathematical model is developed for the thermal response of plasma-sprayed ZrO2-Y2O3 ceramic materials with a Ni-Cr-AL-Y bond coat on a Rene 41 rod substrate subject to thermal cycling. This multilayered cylinder with temperature dependent thermal properties is heated in a cross-flow by a high velocity flame and then cooled by ambient air. Due to high temperature and high velocity of the flame, both gas radiation and forced convection are taken into consideration. Furthermore, the local turbulent heat transfer coefficient is employed which varies with angular position as well as the surface temperature. The transient two-dimensional (heat transfer along axial direction is neglected) temperature distribution of the composite cylinder is determined numerically.

  20. Heat transfer in thermal barrier coated rods with circumferential and radial temperature gradients

    NASA Technical Reports Server (NTRS)

    Chung, B. T. F.; Kermani, M. M.; Braun, M. J.; Padovan, J.; Hendricks, R.

    1984-01-01

    To study the heat transfer in ceramic coatings applied to the heated side of internally cooled hot section components of the gas turbine engine, a mathematical model is developed for the thermal response of plasma-sprayed ZrO2-Y2O3 ceramic materials with a Ni-Cr-AL-Y bond coat on a Rene 41 rod substrate subject to thermal cycling. This multilayered cylinder with temperature dependent thermal properties is heated in a cross-flow by a high velocity flame and then cooled by ambient air. Due to high temperature and high velocity of the flame, both gas radiation and forced convection are taken into consideration. Furthermore, the local turbulent heat transfer coefficient is employed which varies with angular position as well as the surface temperature. The transient two-dimensional (heat transfer along axial direction is neglected) temperature distribution of the composite cylinder is determined numerically.

  1. Influence of aerosols, clouds, and sunglint on polarization spectra of Earthshine

    NASA Astrophysics Data System (ADS)

    Emde, Claudia; Buras-Schnell, Robert; Sterzik, Michael; Bagnulo, Stefano

    2017-08-01

    Context. Ground-based observations of the Earthshine, I.e., the light scattered by Earth to the Moon, and then reflected back to Earth, simulate space observations of our planet and represent a powerful benchmark for the studies of Earth-like planets. Earthshine spectra are strongly linearly polarized, owing to scattering by molecules and small particles in the atmosphere of the Earth and surface reflection, and may allow us to measure global atmospheric and surface properties of planet Earth. Aims: We aim to interpret already published spectropolarimetric observations of the Earthshine by comparing them with new radiative transfer model simulations including a fully realistic three-dimensional (3D) surface-atmosphere model for planet Earth. Methods: We used the highly advanced Monte Carlo radiative transfer model MYSTIC to simulate polarized radiative transfer in the atmosphere of the Earth without approximations regarding the geometry, taking into account the polarization from surface reflection and multiple scattering by molecules, aerosol particles, cloud droplets, and ice crystals. Results: We have shown that Earth spectropolarimetry is highly sensitive to all these input parameters, and we have presented simulations of a fully realistic Earth atmosphere-surface model including 3D cloud fields and two-dimensional (2D) surface property maps. Our modeling results show that scattering in high ice water clouds and reflection from the ocean surface are crucial to explain the continuum polarization at longer wavelengths as has been reported in Earthshine observations taken at the Very Large Telescope in 2011 (3.8% and 6.6% at 800 nm, depending on which part of Earth was visible from the Moon at the time of the observations). We found that the relatively high degree of polarization of 6.6% can be attributed to light reflected by the ocean surface in the sunglint region. High ice-water clouds reduce the amount of absorption in the O2A band and thus explain the weak O2A band feature in the observations.

  2. An exact solution on unsteady MHD free convection chemically reacting silver nanofluid flow past an exponentially accelerated vertical plate through porous medium

    NASA Astrophysics Data System (ADS)

    Kumaresan, E.; Vijaya Kumar, A. G.; Rushi Kumar, B.

    2017-11-01

    This article studies, an exact solution of unsteady MHD free convection boundary-layer flow of a silver nanofluid past an exponentially accelerated moving vertical plate through aporous medium in the presence of thermal radiation, transverse applied amagnetic field, radiation absorption and Heat generation or absorption with chemical reaction are investigated theoretically. We consider nanofluids contain spherical shaped nanoparticle of silverwith a nanoparticle volume concentration range smaller than or equal to 0.04. This phenomenon is modeled in the form of partial differential equations with initial boundary conditions. Some suitable dimensional variables are introduced. The corresponding dimensionless equations with boundary conditions are solved by using Laplace transform technique. The exact solutions for velocity, energy, and species are obtained, also the corresponding numerical values of nanofluid velocity, temperature and concentration profiles are represented graphically. The expressions for skin friction coefficient, the rate of heat transfer and mass transfer are derived. The present study finds applications involving heat transfer, enhancement of thermal conductivity and other applications like transportation, industrial cooling applications, heating buildings and reducing pollution, energy applications and solar absorption. The effect of heat transfer is found to be more pronounced in a silver-water nanofluid than in the other nanofluids.

  3. Generation of shock waves and formation of craters in a solid material irradiated by a short laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gus'kov, Sergei Yu; Borodziuk, S; Kasperczuk, A

    2004-11-30

    The results of investigations are presented which are concerned with laser radiation absorption in a target, the plasma state of its ablated material, the energy transfer to the solid target material, the characteristics of the shock wave and craters on the target surface. The investigation involved irradiation of a planar target by a subnanosecond plasma-producing laser pulse. The experiments were carried out with massive aluminium targets using the PALS iodine laser, whose pulse duration (0.4 ns) was much shorter than the shock wave attenuation and on-target crater formation times (50-200 ns). The investigations were conducted for a laser radiation energymore » of 100 J at two wavelengths of 0.438 and 1.315 {mu}m. For a given pulse energy, the irradiation intensity was varied in a broad range (10{sup 13}-10{sup 16} W cm{sup -2}) by varying the radius of the laser beam. The efficiency of laser radiation-to-shock energy transfer was determined as a function of the intensity and wavelength of laser radiation; also determined were the characteristics of the plasma plume and the shock wave propagating in the solid target, including the experimental conditions under which two-dimensional effects are highly significant. (invited paper)« less

  4. Venus climate stability and volcanic resurfacing rates

    NASA Technical Reports Server (NTRS)

    Bullock, M. A.; Grinspoon, D. H.; Pollack, J. B.

    1994-01-01

    The climate of Venus is to a large degree controlled by the radiative properties of its massive atmosphere. In addition, outgassing due to volcanic activity, exospheric escape processes, and surface/atmosphere interactions may all be important in moderating the abundances of atmospheric CO2 and other volatiles. We have developed an evolutionary climate model for Venus using a systems approach that emphasizes feedbacks between elements in the climate system. Modules for atmospheric radiative transfer, surface/atmosphere interactions, tropospheric chemistry, and exospheric escape processes have so far been developed. Climate feedback loops result from interconnections between modules, in the form of the environmental parameters pressure, temperature, and atmospheric mixing ratios. The radiative transfer module has been implemented by using Rosseland mean opacities in a one dimensional grey radiative-convective model. The model has been solved for the static (time independent) case to determine climate equilibrium points. The dynamics of the model have also been explored by employing reaction/diffusion kinetics for possible surface atmosphere heterogeneous reactions over geologic timescales. It was found that under current conditions, the model predicts that the climate of Venus is at or near an unstable equilibrium point. The effects of constant rate volcanism and corresponding exsolution of volatiles on the stability of the climate model were also explored.

  5. Microclimatic modeling of the desert in the United Arab Emirates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalil, A.K.; Abdrabboh, M.A.; Kamel, K.A.

    1996-10-01

    The present study is concerned with the prediction of the weather parameters in the microclimate layer (less than 2 m above the ground surface) in the desert and sparsely vegetated areas in the United Arab Emirates. A survey was made of the weather data in these regions including solar radiation, wind speed, screen temperatures and relative humidity. Additionally, wind speed data were obtained at heights below two meters and surface albedo was recorded for various soil and vegetation conditions. A survey was also carried out for the different plant species in various areas of the U.A.E. Data on soil andmore » surface temperature were then analyzed. An energy balance model was formulated including incident short- and long-wave length radiation between earth and sky, convective heat transfer to/from earth surface, surface reflection of solar radiation and soil/plant evapotranspiration. An explicit one dimensional finite difference scheme was adapted to solve the resulting algebraic finite difference equations. The equation for surface nodes included thermal radiation as well as convection effects. The heat transfer coefficient was evaluated on the basis of wind speed and surface roughness at the site where the energy balance was set. Theoretical predictions of air and soil temperatures were accordingly compared to experimental measurements in selected sites, where reasonable agreements were observed.« less

  6. K-distribution models for gas mixtures in hypersonic nonequilibrium flows

    NASA Astrophysics Data System (ADS)

    Bansal, Ankit

    Calculation of nonequilibrium radiation field in plasmas around a spacecraft entering into an atmosphere at hypersonic velocities is a very complicated and computationally expensive task. The objective of this Dissertation is to collect state-of-the art spectroscopic data for the evaluation of spectral absorption and emission coefficients of atomic and molecular gases, develop efficient and accurate spectral models and databases, and study the effect of radiation on wall heat loads and flowfield around the spacecraft. The most accurate simulation of radiative transport in the shock layer requires calculating the gas properties at a large number of wavelengths and solving the Radiative Transfer Equation (RTE) in a line-by-line (LBL) fashion, which is prohibitively expensive for coupled simulations. A number of k-distribution based spectral models are developed for atomic lines, continuum and molecular bands that allow efficient evaluation of radiative properties and heat loads in hypersonic shock layer plasma. Molecular radiation poses very different challenges than atomic radiation. A molecular spectrum is governed by simultaneous electronic, vibrational and rotational transitions, making the spectrum very strongly dependent on wavelength. In contrast to an atomic spectrum, where line wings play a major role in heat transfer, most of the heat transfer in molecular spectra occurs near line centers. As the first step, k-distribution models are developed separately for atomic and molecular species, taking advantage of the fact that in the Earth's atmosphere the radiative field is dominated by atomic species (N and O) and in Titan's and Mars' atmospheres molecular bands of CN and CO are dominant. There are a number of practical applications where both atomic and molecular species are present, for example, the vacuum-ultra-violet spectrum during Earth's reentry conditions is marked by emission from atomic bound-bound lines and continuum and simultaneous absorption by strong bands of N2. For such cases, a new model is developed for the treatment of gas mixtures containing atomic lines, continuum and molecular bands. Full-spectrum k-distribution (FSK) method provides very accurate results compared to those obtained from the exact line-by-line method. For cases involving more extreme gradients in species concentrations and temperature, full-spectrum k-distribution model is relatively less accurate, and the method is refined by dividing the spectrum into a number of groups or scales, leading to the development of multi-scale models. The detailed methodology of splitting the gas mixture into scales is presented. To utilize the full potential of the k-distribution methods, pre-calculated values of k-distributions are stored in databases, which can later be interpolated at local flow conditions. Accurate and compact part-spectrum k-distribution databases are developed for atomic species and molecular bands. These databases allow users to calculate desired full-spectrum k-distributions through look-up and interpolation. Application of the new spectral models and databases to shock layer plasma radiation is demonstrated by solving the radiative transfer equation along typical one-dimensional flowfields in Earth's, Titan's and Mars' atmospheres. The k-distribution methods are vastly more efficient than the line-by-line method. The efficiency of the method is compared with the line-by-line method by measuring computational times for a number of test problems, showing typical reduction in computational time by a factor of more than 500 for property evaluation and a factor of about 32,000 for the solution of the RTE. A large percentage of radiative energy emitted in the shock-layer is likely to escape the region, resulting in cooling of the shock layer. This may change the flow parameters in the flowfield and, in turn, can affect radiative as well as convective heat loads. A new flow solver is constructed to simulate coupled hypersonic flow-radiation over a reentry vehicle. The flow solver employs a number of existing schemes and tools available in OpenFOAM; along with a number of additional features for high temperature, compressible and chemically reacting flows, and k-distribution models for radiative calculations. The radiative transport is solved with the one-dimensional tangent slab and P1 solvers, and also with the two-dimensional P1 solver. The new solver is applied to simulate flow around an entry vehicle in Martian atmosphere. Results for uncoupled and coupled flow-radiation simulations are presented, highlighting the effects of radiative cooling on flowfield and wall fluxes.

  7. Feasibility study of multi-pixel retrieval of optical thickness and droplet effective radius of inhomogeneous clouds using deep learning

    NASA Astrophysics Data System (ADS)

    Okamura, Rintaro; Iwabuchi, Hironobu; Schmidt, K. Sebastian

    2017-12-01

    Three-dimensional (3-D) radiative-transfer effects are a major source of retrieval errors in satellite-based optical remote sensing of clouds. The challenge is that 3-D effects manifest themselves across multiple satellite pixels, which traditional single-pixel approaches cannot capture. In this study, we present two multi-pixel retrieval approaches based on deep learning, a technique that is becoming increasingly successful for complex problems in engineering and other areas. Specifically, we use deep neural networks (DNNs) to obtain multi-pixel estimates of cloud optical thickness and column-mean cloud droplet effective radius from multispectral, multi-pixel radiances. The first DNN method corrects traditional bispectral retrievals based on the plane-parallel homogeneous cloud assumption using the reflectances at the same two wavelengths. The other DNN method uses so-called convolutional layers and retrieves cloud properties directly from the reflectances at four wavelengths. The DNN methods are trained and tested on cloud fields from large-eddy simulations used as input to a 3-D radiative-transfer model to simulate upward radiances. The second DNN-based retrieval, sidestepping the bispectral retrieval step through convolutional layers, is shown to be more accurate. It reduces 3-D radiative-transfer effects that would otherwise affect the radiance values and estimates cloud properties robustly even for optically thick clouds.

  8. Heat transfer in melt ponds with convection and radiative heating: observationally-inspired modelling

    NASA Astrophysics Data System (ADS)

    Wells, A.; Langton, T.; Rees Jones, D. W.; Moon, W.; Kim, J. H.; Wilkinson, J.

    2016-12-01

    Melt ponds have key impacts on the evolution of Arctic sea ice and summer ice melt. Small changes to the energy budget can have significant consequences, with a net heat-flux perturbation of only a few Watts per square metre sufficient to explain the thinning of sea ice over recent decades. Whilst parameterisations of melt-pond thermodynamics often assume that pond temperatures remain close to the freezing point, recent in-situ observations show more complex thermal structure with significant diurnal and synoptic variability. We here consider the energy budget of melt ponds and explore the role of internal convective heat transfer in determining the thermal structure within the pond in relatively calm conditions with low winds. We quantify the energy fluxes and temperature variability using two-dimensional direct numerical simulations of convective turbulence within a melt pond, driven by internal radiative heating and surface fluxes. Our results show that the convective flow dynamics are modulated by changes to the incoming radiative flux and sensible heat flux at the pond surface. The evolving pond surface temperature controls the outgoing longwave emissions from the pond. Hence the convective flow modifies the net energy balance of a melt pond, modulating the relative fractions of the incoming heat flux that is re-emitted to the atmosphere or transferred downward into the sea ice to drive melt.

  9. Study the effect of chemical reaction and variable viscosity on free convection MHD radiating flow over an inclined plate bounded by porous medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, M., E-mail: ali.mehidi93@gmail.com; Department of Mathematics, Chittagong University of Engineering and Technology, Chittagong-4349; Alim, M. A., E-mail: maalim@math.buet.ac.bd

    An analysis is performed to study the free convection heat and mass transfer flow of an electrically conducting incompressible viscous fluid about a semi-infinite inclined porous plate under the action of radiation, chemical reaction in presence of magnetic field with variable viscosity. The dimensionless governing equations are steady, two-dimensional coupled and non-linear ordinary differential equation. Nachtsgeim-Swigert shooting iteration technique along with Runge-Kutta integration scheme is used to solve the non-dimensional governing equations. The effects of magnetic parameter, viscosity parameter and chemical reaction parameter on velocity, temperature and concentration profiles are discussed numerically and shown graphically. Therefore, the results of velocitymore » profile decreases for increasing values of magnetic parameter and viscosity parameter but there is no effect for reaction parameter. The temperature profile decreases in presence of magnetic parameter, viscosity parameter and Prandtl number but increases for radiation parameter. Also, concentration profile decreases for the increasing values of magnetic parameter, viscosity parameter and reaction parameter. All numerical calculations are done with respect to salt water and fixed angle of inclination of the plate.« less

  10. A theory of solar type 3 radio bursts

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.; Papadopoulos, K.; Smith, R. A.

    1979-01-01

    Energetic electrons propagating through the interplanetary medium are shown to excite the one dimensional oscillating two stream instability (OTSI). The OTSI is in turn stabilized by anomalous resistivity which completes the transfer of long wavelength Langmuir waves to short wavelengths, out of resonance with the electrons. The theory explains the small energy losses suffered by the electrons in propagating to 1 AU, the predominance of second harmonic radiation, and the observed correlation between radio and electron fluxes.

  11. Thermal effusivity: a promising imaging biomarker to predict radiation-induced skin injuries.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, J. C. H.; Templeton, A.; Yao, R.

    An effective screening technology is needed to triage individuals at the time of radiation incidents involving a large population. Three-dimensional thermal tomography is a relatively new development in active thermal imaging technology that produces cross-sectional images based on the subject's ability to transfer heat thermal effusivity at the voxel level. This noninvasive imaging modality has been used successfully in nondestructive examination of complex materials; also it has been shown to predict the severity of radiation-induced skin injuries several days before the manifestation of severe moist desquamations or blister formation symptoms in mice at 40 Gy. If these results are confirmedmore » at lower dose levels in human subjects, a thermal tomography imaging device may be an ideal screening tool in radiation emergencies. This imaging method is non-invasive, relatively simple, easily adaptable for field use, and when properly deployed, it will enhance public emergency preparedness for incidents involving unexpected radiation exposure.« less

  12. A new silicon detector telescope for measuring the linear energy transfer distribution over the range from 0.2 to 400 keV/micrometer in space.

    PubMed

    Doke, T; Hayashi, T; Hasebe, N; Kikuchi, J; Kono, S; Murakami, T; Sakaguchi, T; Takahashi, K; Takashima, T

    1996-12-01

    A new telescope consisting of three two-dimensional position-sensitive silicon detectors which can measure the linear energy transfer (LET) distribution over the range from 0.2 to 400keV/micrometers has been developed as a real-time radiation monitor in manned spacecraft. First, the principle of LET measurement and its design method are described. Second, suitable electronic parameters for the LET measurement are experimentally determined. Finally the telescope performance is investigated by using, relativistic heavy ions. The first in-flight test of this type of telescope on the US Space Shuttle (STS-84) is scheduled for May, 1997.

  13. Final Report: SciDAC Computational Astrophysics Consortium (at Princeton University)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burrows, Adam

    Supernova explosions are the central events in astrophysics. They are the major agencies of change in the interstellar medium, driving star formation and the evolution of galaxies. Their gas remnants are the birthplaces of the cosmic rays. Such is their brightness that they can be used as standard candles to measure the size and geometry of the universe and their investigation draws on particle and nuclear physics, radiative transfer, kinetic theory, gravitational physics, thermodynamics, and the numerical arts. Hence, supernovae are unrivaled astrophysical laboratories. We will develop new state-of-the-art multi-dimensional radiation hydrodynamic codes to address this and other related astrophysicalmore » phenomena.« less

  14. Numerical treatment for Carreau nanofluid flow over a porous nonlinear stretching surface

    NASA Astrophysics Data System (ADS)

    Eid, Mohamed R.; Mahny, Kasseb L.; Muhammad, Taseer; Sheikholeslami, Mohsen

    2018-03-01

    The impact of magnetic field and nanoparticles on the two-phase flow of a generalized non-Newtonian Carreau fluid over permeable non-linearly stretching surface has been analyzed in the existence of all suction/injection and thermal radiation. The governing PDEs with congruous boundary condition are transformed into a system of non-linear ODEs with appropriate boundary conditions by using similarity transformation. It solved numerically by using 4th-5th order Runge-Kutta-Fehlberg method based on shooting technique. The impacts of non-dimensional controlling parameters on velocity, temperature, and nanoparticles volume concentration profiles are scrutinized with aid of graphs. The Nusselt and the Sherwood numbers are studied at the different situations of the governing parameters. The numerical computations are in excellent consent with previously reported studies. It is found that the heat transfer rate is reduced with an increment of thermal radiation parameter and on contrary of the rising of magnetic field. The opposite trend happens in the mass transfer rate.

  15. Retrieval of Boundary Layer 3D Cloud Properties Using Scanning Cloud Radar and 3D Radiative Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchand, Roger

    Retrievals of cloud optical and microphysical properties for boundary layer clouds, including those widely used by ASR investigators, frequently assume that clouds are sufficiently horizontally homogeneous that scattering and absorption (at all wavelengths) can be treated using one dimensional (1D) radiative transfer, and that differences in the field-of-view of different sensors are unimportant. Unfortunately, most boundary layer clouds are far from horizontally homogeneous, and numerous theoretical and observational studies show that the assumption of horizontal homogeneity leads to significant errors. The introduction of scanning cloud and precipitation radars at the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) programmore » sites presents opportunities to move beyond the horizontally homogeneous assumption. The primary objective of this project was to develop a 3D retrieval for warm-phase (liquid only) boundary layer cloud microphysical properties, and to assess errors in current 1D (non-scanning) approaches. Specific research activities also involved examination of the diurnal cycle of hydrometeors as viewed by ARM cloud radar, and continued assessment of precipitation impacts on retrievals of cloud liquid water path using passive microwaves.« less

  16. Analysis of loss-of-coolant accident for a fast-spectrum lithium-cooled nuclear reactor for space-power applications

    NASA Technical Reports Server (NTRS)

    Turney, G. E.; Petrik, E. J.; Kieffer, A. W.

    1972-01-01

    A two-dimensional, transient, heat-transfer analysis was made to determine the temperature response in the core of a conceptual space-power nuclear reactor following a total loss of reactor coolant. With loss of coolant from the reactor, the controlling mode of heat transfer is thermal radiation. In one of the schemes considered for removing decay heat from the core, it was assumed that the 4 pi shield which surrounds the core acts as a constant-temperature sink (temperature, 700 K) for absorption of thermal radiation from the core. Results based on this scheme of heat removal show that melting of fuel in the core is possible only when the emissivity of the heat-radiating surfaces in the core is less than about 0.40. In another scheme for removing the afterheat, the core centerline fuel pin was replaced by a redundant, constant temperature, coolant channel. Based on an emissivity of 0.20 for all material surfaces in the core, the calculated maximum fuel temperature for this scheme of heat removal was 2840 K, or about 90 K less than the melting temperature of the UN fuel.

  17. Turbulent convection driven by internal radiative heating of melt ponds on sea ice

    NASA Astrophysics Data System (ADS)

    Wells, Andrew; Langton, Tom; Rees Jones, David; Moon, Woosok

    2016-11-01

    The melting of Arctic sea ice is strongly influenced by heat transfer through melt ponds which form on the ice surface. Melt ponds are internally heated by the absorption of incoming radiation and cooled by surface heat fluxes, resulting in vigorous buoyancy-driven convection in the pond interior. Motivated by this setting, we conduct two-dimensional direct-numerical simulations of the turbulent convective flow of a Boussinesq fluid between two horizontal boundaries, with internal heating predicted from a two-stream radiation model. A linearised thermal boundary condition describes heat exchange with the overlying atmosphere, whilst the lower boundary is isothermal. Vertically asymmetric convective flow modifies the upper surface temperature, and hence controls the partitioning of the incoming heat flux between emission at the upper and lower boundaries. We determine how the downward heat flux into the ice varies with a Rayleigh number based on the internal heating rate, the flux ratio of background surface cooling compared to internal heating, and a Biot number characterising the sensitivity of surface fluxes to surface temperature. Thus we elucidate the physical controls on heat transfer through Arctic melt ponds which determine the fate of sea ice in the summer.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kakoniti, Androula; Georgiou, Gregoria; Neophytou, Marina

    Two-dimensional steady-state simulations have been performed using the standard k-e turbulence model coupled with the heat transfer models available in the CFD software FLUENT 6.1, in order to examine the impact of radiation on the Urban Heat Island phenomenon. Specifically, the impact of radiation in three typical urban areas of Cyprus during the summer period is examined. The first geometry considered represents a typical suburban area and is termed as the reference geometry. The second geometry represents an area at the centre of a town with higher buildings and relatively narrower roads. The third geometry, on the other hand, describesmore » a suburban area with wider roads and larger houses than the reference model. Computed values for air temperature in the urban street canyon have indicated that the increase in temperature associated with radiative heat transfer can be reduced by optimising the canyon geometry and, ultimately, help to mitigate the human thermal discomfort. The present study has also revealed that the selection of construction materials can be optimised to offer further reductions in the air temperature of the urban environment. It can be concluded that the combined effect of these remedies can lead to reductions in the energy consumption for building air-conditioning over the summer period.« less

  19. An implicit-iterative solution of the heat conduction equation with a radiation boundary condition

    NASA Technical Reports Server (NTRS)

    Williams, S. D.; Curry, D. M.

    1977-01-01

    For the problem of predicting one-dimensional heat transfer between conducting and radiating mediums by an implicit finite difference method, four different formulations were used to approximate the surface radiation boundary condition while retaining an implicit formulation for the interior temperature nodes. These formulations are an explicit boundary condition, a linearized boundary condition, an iterative boundary condition, and a semi-iterative boundary method. The results of these methods in predicting surface temperature on the space shuttle orbiter thermal protection system model under a variety of heating rates were compared. The iterative technique caused the surface temperature to be bounded at each step. While the linearized and explicit methods were generally more efficient, the iterative and semi-iterative techniques provided a realistic surface temperature response without requiring step size control techniques.

  20. A 2.5-dimensional method for the prediction of structure-borne low-frequency noise from concrete rail transit bridges.

    PubMed

    Li, Qi; Song, Xiaodong; Wu, Dingjun

    2014-05-01

    Predicting structure-borne noise from bridges subjected to moving trains using the three-dimensional (3D) boundary element method (BEM) is a time consuming process. This paper presents a two-and-a-half dimensional (2.5D) BEM-based procedure for simulating bridge-borne low-frequency noise with higher efficiency, yet no loss of accuracy. The two-dimensional (2D) BEM of a bridge with a constant cross section along the track direction is adopted to calculate the spatial modal acoustic transfer vectors (MATVs) of the bridge using the space-wave number transforms of its 3D modal shapes. The MATVs calculated using the 2.5D method are then validated by those computed using the 3D BEM. The bridge-borne noise is finally obtained through the MATVs and modal coordinate responses of the bridge, considering time-varying vehicle-track-bridge dynamic interaction. The presented procedure is applied to predict the sound pressure radiating from a U-shaped concrete bridge, and the computed results are compared with those obtained from field tests on Shanghai rail transit line 8. The numerical results match well with the measured results in both time and frequency domains at near-field points. Nevertheless, the computed results are smaller than the measured ones for far-field points, mainly due to the sound radiation from adjacent spans neglected in the current model.

  1. Assessment of polarization effect on aerosol retrievals from MODIS

    NASA Astrophysics Data System (ADS)

    Korkin, S.; Lyapustin, A.

    2010-12-01

    Light polarization affects the total intensity of scattered radiation. In this work, we compare aerosol retrievals performed by code MAIAC [1] with and without taking polarization into account. The MAIAC retrievals are based on the look-up tables (LUT). For this work, MAIAC was run using two different LUTs, the first one generated using the scalar code SHARM [2], and the second one generated with the vector code Modified Vector Discrete Ordinates Method (MVDOM). MVDOM is a new code suitable for computations with highly anisotropic phase functions, including cirrus clouds and snow [3]. To this end, the solution of the vector radiative transfer equation (VRTE) is represented as a sum of anisotropic and regular components. The anisotropic component is evaluated in the Small Angle Modification of the Spherical Harmonics Method (MSH) [4]. The MSH is formulated in the frame of reference of the solar beam where z-axis lies along the solar beam direction. In this case, the MSH solution for anisotropic part is nearly symmetric in azimuth, and is computed analytically. In scalar case, this solution coincides with the Goudsmit-Saunderson small-angle approximation [5]. To correct for an analytical separation of the anisotropic part of the signal, the transfer equation for the regular part contains a correction source function term [6]. Several examples of polarization impact on aerosol retrievals over different surface types will be presented. 1. Lyapustin A., Wang Y., Laszlo I., Kahn R., Korkin S., Remer L., Levy R., and Reid J. S. Multi-Angle Implementation of Atmospheric Correction (MAIAC): Part 2. Aerosol Algorithm. J. Geophys. Res., submitted (2010). 2. Lyapustin A., Muldashev T., Wang Y. Code SHARM: fast and accurate radiative transfer over spatially variable anisotropic surfaces. In: Light Scattering Reviews 5. Chichester: Springer, 205 - 247 (2010). 3. Budak, V.P., Korkin S.V. On the solution of a vectorial radiative transfer equation in an arbitrary three-dimensional turbid medium with anisotropic scattering. JQSRT, 109, 220-234 (2008). 4. Budak V.P., Sarmin S.E. Solution of radiative transfer equation by the method of spherical harmonics in the small angle modification. Atmospheric and Oceanic Optics, 3, 898-903 (1990). 5. Goudsmit S., Saunderson J.L. Multiple scattering of electrons. Phys. Rev., 57, 24-29 (1940). 6. Budak V.P, Klyuykov D.A., Korkin S.V. Convergence acceleration of radiative transfer equation solution at strongly anisotropic scattering. In: Light Scattering Reviews 5. Chichester: Springer, 147 - 204 (2010).

  2. Three-dimensional modeling of the Ca II H and K lines in the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Bjørgen, Johan P.; Sukhorukov, Andrii V.; Leenaarts, Jorrit; Carlsson, Mats; de la Cruz Rodríguez, Jaime; Scharmer, Göran B.; Hansteen, Viggo H.

    2018-03-01

    Context. CHROMIS, a new imaging spectrometer at the Swedish 1-m Solar Telescope (SST), can observe the chromosphere in the H and K lines of Ca II at high spatial and spectral resolution. Accurate modeling as well as an understanding of the formation of these lines are needed to interpret the SST/CHROMIS observations. Such modeling is computationally challenging because these lines are influenced by strong departures from local thermodynamic equilibrium, three-dimensional radiative transfer, and partially coherent resonance scattering of photons. Aim. We aim to model the Ca II H and K lines in 3D model atmospheres to understand their formation and to investigate their diagnostic potential for probing the chromosphere. Methods: We model the synthetic spectrum of Ca II using the radiative transfer code Multi3D in three different radiation-magnetohydrodynamic model atmospheres computed with the Bifrost code. We classify synthetic intensity profiles according to their shapes and study how their features are related to the physical properties in the model atmospheres. We investigate whether the synthetic data reproduce the observed spatially-averaged line shapes, center-to-limb variation and compare this data with SST/CHROMIS images. Results: The spatially-averaged synthetic line profiles show too low central emission peaks, and too small separation between the peaks. The trends of the observed center-to-limb variation of the profiles properties are reproduced by the models. The Ca II H and K line profiles provide a temperature diagnostic of the temperature minimum and the temperature at the formation height of the emission peaks. The Doppler shift of the central depression is an excellent probe of the velocity in the upper chromosphere.

  3. Finite element study of three dimensional radiative nano-plasma flow subject to Hall and ion slip currents

    NASA Astrophysics Data System (ADS)

    Nawaz, M.; Zubair, T.

    In this article, we developed a computer code of Galerikan Finite Element method (GFEM) for three dimensional flow equations of nano-plasma fluid (blood) in the presence of uniform applied magnetic field when Hall and ion slip current are significant. Lorentz force is calculated through generalized Ohm's law with Maxwell equations. A series of numerical simulations are carried out to search ηmax and algebraic equations are solved by Gauss-Seidel method with simulation tolerance 10-8 . Simulated results for special case have an excellent agreement with the already published results. Velocity components and temperature of the nano-plasma (blood) are influenced significantly by the inclusion of nano-particles of Copper (Cu) and Silver (Ag). Heat enhancement is observed when copper and silver nonmagnetic nanoparticles are used instead of simple base fluid (conventional fluid). Radiative nature of nano-plasma in the presence of magnetic field causes a decrease in the temperature due to the transfer of heat by the electromagnetic waves. In contrast to this, due to heat dissipated by Joule heating and viscous dissipation phenomena, temperature of nano-plasmaincreases as thermal radiation parameter is increased. Thermal boundary layer thickness can be controlled by using radiative fluid instead of non-radiative fluid. Momentum boundary layer thickness can be reduced by increasing the intensity of the applied magnetic field. Temperature of plasma in the presence magnetic field is higher than the plasma in the absence of magnetic field.

  4. Modeling of bioheat equation for skin and a preliminary study on a noninvasive diagnostic method for skin burn wounds.

    PubMed

    Lee, Shong-Leih; Lu, Yung-Hsiang

    2014-08-01

    Heat transfer in a unit three-dimensional skin tissue with an embedded vascular system of actual histology structure is computed in the present work. The tissue temperature and the blood temperatures in artery and vein vessels are solved with a multi-grid system. The mean temperature of the tissue over the cross-section of the unit skin area is evaluated. The resulting one-dimensional function is regarded as the temperature of healthy tissue (or injured skin but the blood perfusion is still normally working) for large area of skin in view of the symmetric and periodic structure of the paired artery-vein vessels in nature. A three-dimensional bioheat equation then is formulated by the superposition of the skin burn wound effect and the healthy skin temperature with and without thermal radiation exposure. When this bioheat equation is employed to simulate ADT process on burn wounds, the decaying factor of the skin surface temperature is found to be a sharply decreasing function of time in the self-cooling stage after a thermal radiation heating. Nevertheless, the boundary of non-healing (needing surgery) and healing regions in a large burn wound can be estimated by tracking the peak of the gradient of decaying factor within 30 s after the thermal radiation is turned off. Experimental studies on the full ADT procedure are needed to justify the assumptions in the present computation. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  5. High-order multipole radiation from quantum Hall states in Dirac materials

    NASA Astrophysics Data System (ADS)

    Gullans, Michael J.; Taylor, Jacob M.; Imamoǧlu, Ataç; Ghaemi, Pouyan; Hafezi, Mohammad

    2017-06-01

    We investigate the optical response of strongly disordered quantum Hall states in two-dimensional Dirac materials and find qualitatively different effects in the radiation properties of the bulk versus the edge. We show that the far-field radiation from the edge is characterized by large multipole moments (>50 ) due to the efficient transfer of angular momentum from the electrons into the scattered light. The maximum multipole transition moment is a direct measure of the coherence length of the edge states. Accessing these multipole transitions would provide new tools for optical spectroscopy and control of quantum Hall edge states. On the other hand, the far-field radiation from the bulk appears as random dipole emission with spectral properties that vary with the local disorder potential. We determine the conditions under which this bulk radiation can be used to image the disorder landscape. Such optical measurements can probe submicron-length scales over large areas and provide complementary information to scanning probe techniques. Spatially resolving this bulk radiation would serve as a novel probe of the percolation transition near half filling.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobel, R.

    TRUMP is a general finite difference computer program for the solution of transient and steady state heat transfer problems. It is a very general program capable of solving heat transfer problems in one, two or three dimensions for plane, cylindrical or spherical geometry. Because of the variety of possible geometries, the effort required to describe the geometry can be large. GIFT was written to minimize this effort for one-dimensional heat flow problems. After describing the inner and outer boundaries of a region made of a single material along with the modes of heat transfer which thermally connect different regions, GIFTmore » will calculate all the geometric data (BLOCK 04) and thermal network data (BLOCK 05) required by TRUMP for one-dimensional problems. The heat transfer between layers (or shells) of a material may be by conduction or radiation; also, an interface resistance between layers can be specified. Convection between layers can be accounted for by use of an effective thermal conductivity in which the convection effect is included or by a thermal conductance coefficient. GIFT was written for the Sigma 7 computer, a small digital computer with a versatile graphic display system. This system makes it possible to input the desired data in a question and answer mode and to see both the input and the output displayed on a screen in front of the user at all times. (auth)« less

  7. Polarized scattered light from self-luminous exoplanets. Three-dimensional scattering radiative transfer with ARTES

    NASA Astrophysics Data System (ADS)

    Stolker, T.; Min, M.; Stam, D. M.; Mollière, P.; Dominik, C.; Waters, L. B. F. M.

    2017-11-01

    Context. Direct imaging has paved the way for atmospheric characterization of young and self-luminous gas giants. Scattering in a horizontally-inhomogeneous atmosphere causes the disk-integrated polarization of the thermal radiation to be linearly polarized, possibly detectable with the newest generation of high-contrast imaging instruments. Aims: We aim to investigate the effect of latitudinal and longitudinal cloud variations, circumplanetary disks, atmospheric oblateness, and cloud particle properties on the integrated degree and direction of polarization in the near-infrared. We want to understand how 3D atmospheric asymmetries affect the polarization signal in order to assess the potential of infrared polarimetry for direct imaging observations of planetary-mass companions. Methods: We have developed a three-dimensional Monte Carlo radiative transfer code (ARTES) for scattered light simulations in (exo)planetary atmospheres. The code is applicable to calculations of reflected light and thermal radiation in a spherical grid with a parameterized distribution of gas, clouds, hazes, and circumplanetary material. A gray atmosphere approximation is used for the thermal structure. Results: The disk-integrated degree of polarization of a horizontally-inhomogeneous atmosphere is maximal when the planet is flattened, the optical thickness of the equatorial clouds is large compared to the polar clouds, and the clouds are located at high altitude. For a flattened planet, the integrated polarization can both increase or decrease with respect to a spherical planet which depends on the horizontal distribution and optical thickness of the clouds. The direction of polarization can be either parallel or perpendicular to the projected direction of the rotation axis when clouds are zonally distributed. Rayleigh scattering by submicron-sized cloud particles will maximize the polarimetric signal whereas the integrated degree of polarization is significantly reduced with micron-sized cloud particles as a result of forward scattering. The presence of a cold or hot circumplanetary disk may also produce a detectable degree of polarization (≲1%) even with a uniform cloud layer in the atmosphere.

  8. A Numerical Study of Cirrus Clouds. Part I: Model Description.

    NASA Astrophysics Data System (ADS)

    Liu, Hui-Chun; Wang, Pao K.; Schlesinger, Robert E.

    2003-04-01

    This article, the first of a two-part series, presents a detailed description of a two-dimensional numerical cloud model directed toward elucidating the physical processes governing the evolution of cirrus clouds. The two primary scientific purposes of this work are (a) to determine the evolution and maintenance mechanisms of cirrus clouds and try to explain why some cirrus can persist for a long time; and (b) to investigate the influence of certain physical factors such as radiation, ice crystal habit, latent heat, ventilation effects, and aggregation mechanisms on the evolution of cirrus. The second part will discuss sets of model experiments that were run to address objectives (a) and (b), respectively.As set forth in this paper, the aforementioned two-dimensional numerical model, which comprises the research tool for this study, is organized into three modules that embody dynamics, microphysics, and radiation. The dynamic module develops a set of equations to describe shallow moist convection, also parameterizing turbulence by using a 1.5-order closure scheme. The microphysical module uses a double-moment scheme to simulate the evolution of the size distribution of ice particles. Heterogeneous and homogeneous nucleation of haze particles are included, along with other ice crystal processes such as diffusional growth, sedimentation, and aggregation. The radiation module uses a two-stream radiative transfer scheme to determine the radiative fluxes and heating rates, while the cloud optical properties are determined by the modified anomalous diffraction theory (MADT) for ice particles. One of the main advantages of this cirrus model is its explicit formulation of the microphysical and radiative properties as functions of ice crystal habit.

  9. Vertical Plane Oscillation Experiments on a Series of Two-Dimensional SWATH Demi-Hull Sections

    DTIC Science & Technology

    1988-08-01

    32 21. Example of repeatability of hydrodynamic coefficients for the Z1 gage, and wave TF1 , for model A...waves heights from probes 1 and 2 were divided by the heave oscillation amplitude to define radiated wave transfer functions , TF1 and TF2...delta2) and TF1 and TF2 are presented versus kB/2 on a single page for each combination of draft and amplitude tested. The plots are followed by the

  10. Advanced Radiation Theory Support Annual Report 2003, Final Report

    DTIC Science & Technology

    2004-04-19

    diameter wires would lose a higher mass fraction. Table 2. Energy Transfers for Ti Loads Dia. & Case H 2 H13 Mass -a-m Z,DE kJ kJ Pg 1000 - Z 428.2...issues covered are (1) issues and directions for future research, (2) zero- and one-dimensional modeling of DQ experiments, (3) enhanced energy ...coupling and x-ray emission in z-pinch implosions, (4) confinement and compression of magnetic flux by plasma shells, and (6) flashover and energy coupling

  11. Ultra-high resolution computed tomography imaging

    DOEpatents

    Paulus, Michael J.; Sari-Sarraf, Hamed; Tobin, Jr., Kenneth William; Gleason, Shaun S.; Thomas, Jr., Clarence E.

    2002-01-01

    A method for ultra-high resolution computed tomography imaging, comprising the steps of: focusing a high energy particle beam, for example x-rays or gamma-rays, onto a target object; acquiring a 2-dimensional projection data set representative of the target object; generating a corrected projection data set by applying a deconvolution algorithm, having an experimentally determined a transfer function, to the 2-dimensional data set; storing the corrected projection data set; incrementally rotating the target object through an angle of approximately 180.degree., and after each the incremental rotation, repeating the radiating, acquiring, generating and storing steps; and, after the rotating step, applying a cone-beam algorithm, for example a modified tomographic reconstruction algorithm, to the corrected projection data sets to generate a 3-dimensional image. The size of the spot focus of the beam is reduced to not greater than approximately 1 micron, and even to not greater than approximately 0.5 microns.

  12. Optical coupling between atomically thin black phosphorus and a two dimensional photonic crystal nanocavity

    NASA Astrophysics Data System (ADS)

    Ota, Yasutomo; Moriya, Rai; Yabuki, Naoto; Arai, Miho; Kakuda, Masahiro; Iwamoto, Satoshi; Machida, Tomoki; Arakawa, Yasuhiko

    2017-05-01

    Atomically thin black phosphorus (BP) is an emerging two dimensional (2D) material exhibiting bright photoluminescence in the near infrared region. Coupling its radiation to photonic nanostructures will be an important step toward the realization of 2D material based nanophotonic devices that operate efficiently in the near infrared region, which includes the technologically important optical telecommunication wavelength bands. In this letter, we demonstrate the optical coupling between atomically thin BP and a 2D photonic crystal nanocavity. We employed a home-build dry transfer apparatus for placing a thin BP flake on the surface of the nanocavity. Their optical coupling was analyzed through measuring cavity mode emission under optical carrier injection at room temperature.

  13. 3D-radiative transfer in terrestrial atmosphere: An efficient parallel numerical procedure

    NASA Astrophysics Data System (ADS)

    Bass, L. P.; Germogenova, T. A.; Nikolaeva, O. V.; Kokhanovsky, A. A.; Kuznetsov, V. S.

    2003-04-01

    Light propagation and scattering in terrestrial atmosphere is usually studied in the framework of the 1D radiative transfer theory [1]. However, in reality particles (e.g., ice crystals, solid and liquid aerosols, cloud droplets) are randomly distributed in 3D space. In particular, their concentrations vary both in vertical and horizontal directions. Therefore, 3D effects influence modern cloud and aerosol retrieval procedures, which are currently based on the 1D radiative transfer theory. It should be pointed out that the standard radiative transfer equation allows to study these more complex situations as well [2]. In recent year the parallel version of the 2D and 3D RADUGA code has been developed. This version is successfully used in gammas and neutrons transport problems [3]. Applications of this code to radiative transfer in atmosphere problems are contained in [4]. Possibilities of code RADUGA are presented in [5]. The RADUGA code system is an universal solver of radiative transfer problems for complicated models, including 2D and 3D aerosol and cloud fields with arbitrary scattering anisotropy, light absorption, inhomogeneous underlying surface and topography. Both delta type and distributed light sources can be accounted for in the framework of the algorithm developed. The accurate numerical procedure is based on the new discrete ordinate SWDD scheme [6]. The algorithm is specifically designed for parallel supercomputers. The version RADUGA 5.1(P) can run on MBC1000M [7] (768 processors with 10 Gb of hard disc memory for each processor). The peak productivity is equal 1 Tfl. Corresponding scalar version RADUGA 5.1 is working on PC. As a first example of application of the algorithm developed, we have studied the shadowing effects of clouds on neighboring cloudless atmosphere, depending on the cloud optical thickness, surface albedo, and illumination conditions. This is of importance for modern satellite aerosol retrieval algorithms development. [1] Sobolev, V. V., 1972: Light scattering in planetary atmosphere, M.:Nauka. [2] Evans, K. F., 1998: The spherical harmonic discrete ordinate method for three dimensional atmospheric radiative transfer, J. Atmos. Sci., 55, 429 446. [3] L.P. Bass, T.A. Germogenova, V.S. Kuznetsov, O.V. Nikolaeva. RADUGA 5.1 and RADUGA 5.1(P) codes for stationary transport equation solution in 2D and 3D geometries on one and multiprocessors computers. Report on seminar “Algorithms and Codes for neutron physical of nuclear reactor calculations” (Neutronica 2001), Obninsk, Russia, 30 October 2 November 2001. [4] T.A. Germogenova, L.P. Bass, V.S. Kuznetsov, O.V. Nikolaeva. Mathematical modeling on parallel computers solar and laser radiation transport in 3D atmosphere. Report on International Symposium CIS countries “Atmosphere radiation”, 18 21 June 2002, St. Peterburg, Russia, p. 15 16. [5] L.P. Bass, T.A. Germogenova, O.V. Nikolaeva, V.S. Kuznetsov. Radiative Transfer Universal 2D 3D Code RADUGA 5.1(P) for Multiprocessor Computer. Abstract. Poster report on this Meeting. [6] L.P. Bass, O.V. Nikolaeva. Correct calculation of Angular Flux Distribution in Strongly Heterogeneous Media and Voids. Proc. of Joint International Conference on Mathematical Methods and Supercomputing for Nuclear Applications, Saratoga Springs, New York, October 5 9, 1997, p. 995 1004. [7] http://www/jscc.ru

  14. Ignition and combustion characteristics of metallized propellants

    NASA Technical Reports Server (NTRS)

    Mueller, D. C.; Turns, Stephen R.

    1992-01-01

    During this reporting period, theoretical work on the secondary atomization process was continued and the experimental apparatus was improved. A one-dimensional model of a rocket combustor, incorporating multiple droplet size classes, slurry combustion, secondary atomization, radiation heat transfer, and two-phase slip between slurry droplets and the gas flow was derived and a computer code was written to implement this model. The STANJAN chemical equilibrium solver was coupled with this code to yield gas temperature, density, and composition as functions of axial location. Preliminary results indicate that the model is performing correctly, given current model assumptions. Radiation heat transfer in the combustion chamber is treated as an optically-thick participating media problem requiring a solution of the radiative transfer equation. A cylindrical P sub 1 approximation was employed to yield an analytical expression for chamber-wall heat flux at each axial location. The code exercised to determine the effects of secondary atomization intensity, defined as the number of secondary drops produced per initial drop, on chamber burnout distance and final Al2O3 agglomerate diameter. These results indicate that only weak secondary atomization is required to significantly reduce these two parameters. Stronger atomization intensities were found to yield decreasing marginal benefits. The experimental apparatus was improved to reduce building vibration effects on the optical system alignment. This was accomplished by mounting the burner and the transmitting/receiving optics on a single frame supported by vibration-isolation legs. Calibration and shakedown tests indicate that vibration problems were eliminated and that the system is performing correctly.

  15. The cause of spatial structure in solar He I 1083 nm multiplet images

    NASA Astrophysics Data System (ADS)

    Leenaarts, Jorrit; Golding, Thomas; Carlsson, Mats; Libbrecht, Tine; Joshi, Jayant

    2016-10-01

    Context. The He I 1083 nm is a powerful diagnostic for inferring properties of the upper solar chromosphere, in particular for the magnetic field. The basic formation of the line in one-dimensional models is well understood, but the influence of the complex three-dimensional structure of the chromosphere and corona has however never been investigated. This structure must play an essential role because images taken in He I 1083 nm show structures with widths down to 100 km. Aims: We aim to understand the effect of the three-dimensional temperature and density structure in the solar atmosphere on the formation of the He I 1083 nm line. Methods: We solved the non-LTE radiative transfer problem assuming statistical equilibrium for a simple nine-level helium atom that nevertheless captures all essential physics. As a model atmosphere we used a snapshot from a 3D radiation-MHD simulation computed with the Bifrost code. Ionising radiation from the corona was self-consistently taken into account. Results: The emergent intensity in the He I 1083 nm is set by the source function and the opacity in the upper chromosphere. The former is dominated by scattering of photospheric radiation and does not vary much with spatial location. The latter is determined by the photonionisation rate in the He I ground state continuum, as well as the electron density in the chromosphere. The spatial variation of the flux of ionising radiation is caused by the spatially-structured emissivity of the ionising photons from material at T ≈ 100 kK in the transition region. The hotter coronal material produces more ionising photons, but the resulting radiation field is smooth and does not lead to small-scale variation of the UV flux. The corrugation of the transition region further increases the spatial variation of the amount of UV radiation in the chromosphere. Finally we find that variations in the chromospheric electron density also cause strong variation in He I 1083 nm opacity. We compare our findings to observations using SST, IRIS and SDO/AIA data. A movie associated to Fig. 4 is available at http://www.aanda.org

  16. Radiant energy absorption studies for laser propulsion. [gas dynamics

    NASA Technical Reports Server (NTRS)

    Caledonia, G. E.; Wu, P. K. S.; Pirri, A. N.

    1975-01-01

    A study of the energy absorption mechanisms and fluid dynamic considerations for efficient conversion of high power laser radiation into a high velocity flow is presented. The objectives of the study are: (1) to determine the most effective absorption mechanisms for converting laser radiation into translational energy, and (2) to examine the requirements for transfer of the absorbed energy into a steady flow which is stable to disturbances in the absorption zone. A review of inverse Bremsstrahlung, molecular and particulate absorption mechanisms is considered and the steady flow and stability considerations for conversion of the laser power to a high velocity flow in a nozzle configuration is calculated. A quasi-one-dimensional flow through a nozzle was formulated under the assumptions of perfect gas.

  17. Thermal radiation and mass transfer effects on unsteady MHD free convection flow past a vertical oscillating plate

    NASA Astrophysics Data System (ADS)

    Rana, B. M. Jewel; Ahmed, Rubel; Ahmmed, S. F.

    2017-06-01

    Unsteady MHD free convection flow past a vertical porous plate in porous medium with radiation, diffusion thermo, thermal diffusion and heat source are analyzed. The governing non-linear, partial differential equations are transformed into dimensionless by using non-dimensional quantities. Then the resultant dimensionless equations are solved numerically by applying an efficient, accurate and conditionally stable finite difference scheme of explicit type with the help of a computer programming language Compaq Visual Fortran. The stability and convergence analysis has been carried out to establish the effect of velocity, temperature, concentration, skin friction, Nusselt number, Sherwood number, stream lines and isotherms line. Finally, the effects of various parameters are presented graphically and discussed qualitatively.

  18. Active and Passive 3D Vector Radiative Transfer with Preferentially-Aligned Ice Particles

    NASA Astrophysics Data System (ADS)

    Adams, I. S.; Munchak, S. J.; Pelissier, C.; Kuo, K. S.; Heymsfield, G. M.

    2017-12-01

    To support the observation of clouds and precipitation using combinations of radars and radiometers, a forward model capable of representing diverse sensing geometries for active and passive instruments is necessary for correctly interpreting and consistently combining multi-sensor measurements from ground-based, airborne, and spaceborne platforms. As such, the Atmospheric Radiative Transfer Simulator (ARTS) uses Monte Carlo integration to produce radar reflectivities and radiometric brightness temperatures for three-dimensional cloud and precipitation input fields. This radiative transfer framework is capable of efficiently sampling Gaussian antenna beams and fully accounting for multiple scattering. By relying on common ray-tracing tools, gaseous absorption models, and scattering properties, the model reproduces accurate and consistent radar and radiometer observables. While such a framework is an important component for simulating remote sensing observables, the key driver for self-consistent radiative transfer calculations of clouds and precipitation is scattering data. Research over the past decade has demonstrated that spheroidal models of frozen hydrometeors cannot accurately reproduce all necessary scattering properties at all desired frequencies. The discrete dipole approximation offers flexibility in calculating scattering for arbitrary particle geometries, but at great computational expense. When considering scattering for certain pristine ice particles, the Extended Boundary Condition Method, or T-Matrix, is much more computationally efficient; however, convergence for T-Matrix calculations fails at large size parameters and high aspect ratios. To address these deficiencies, we implemented the Invariant Imbedding T-Matrix Method (IITM). A brief overview of ARTS and IITM will be given, including details for handling preferentially-aligned hydrometeors. Examples highlighting the performance of the model for simulating space-based and airborne measurements will be offered, and some case studies showing the response to particle type and orientation will be presented. Simulations of polarized radar (Z, LDR, ZDR) and radiometer (Stokes I and Q) quantities will be used to demonstrate the capabilities of the model.

  19. Numerical Solution of the Radiative Transfer Equation: X-Ray Spectral Formation from Cylindrical Accretion onto a Magnetized Neutron Star

    NASA Technical Reports Server (NTRS)

    Fairnelli, R.; Ceccobello, C.; Romano, P.; Titarchuk, L.

    2011-01-01

    Predicting the emerging X-ray spectra in several astrophysical objects is of great importance, in particular when the observational data are compared with theoretical models. This requires developing numerical routines for the solution of the radiative transfer equation according to the expected physical conditions of the systems under study. Aims. We have developed an algorithm solving the radiative transfer equation in the Fokker-Planck approximation when both thermal and bulk Comptonization take place. The algorithm is essentially a relaxation method, where stable solutions are obtained when the system has reached its steady-state equilibrium. Methods. We obtained the solution of the radiative transfer equation in the two-dimensional domain defined by the photon energy E and optical depth of the system pi using finite-differences for the partial derivatives, and imposing specific boundary conditions for the solutions. We treated the case of cylindrical accretion onto a magnetized neutron star. Results. We considered a blackbody seed spectrum of photons with exponential distribution across the accretion column and for an accretion where the velocity reaches its maximum at the stellar surface and at the top of the accretion column, respectively. In both cases higher values of the electron temperature and of the optical depth pi produce flatter and harder spectra. Other parameters contributing to the spectral formation are the steepness of the vertical velocity profile, the albedo at the star surface, and the radius of the accretion column. The latter parameter modifies the emerging spectra in a specular way for the two assumed accretion profiles. Conclusions. The algorithm has been implemented in the XPEC package for X-ray fitting and is specifically dedicated to the physical framework of accretion at the polar cap of a neutron star with a high magnetic field (approx > 10(exp 12) G). This latter case is expected to be of typical accreting systems such as X-ray pulsars and supergiant fast X ray transients.

  20. What Does Reflection from Cloud Sides Tell Us About Vertical Distribution of Cloud Droplet Sizes?

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Martins, J. Vanderlei; Zubko, Victor; Kaufman, Yoram, J.

    2005-01-01

    Cloud development, the onset of precipitation and the effect of aerosol on clouds depend on the structure of the cloud profiles of droplet size and phase. Aircraft measurements of cloud profiles are limited in their temporal and spatial extent. Satellites were used to observe cloud tops not cloud profiles with vertical profiles of precipitation-sized droplets anticipated from Cloudsat. The recently proposed CLAIM-3D satellite mission (cloud aerosol interaction mission in 3D) suggests to measure profiles of cloud microphysical properties by retrieving them from the solar and infrared radiation reflected or emitted from cloud sides. Inversion of measurements from the cloud sides requires rigorous understanding of the 3-dimensional (3D) properties of clouds. Here we discuss the reflected sunlight from the cloud sides and top at two wavelengths: one nonabsorbing to solar radiation (0.67 micrometers) and one with liquid water efficient absorption of solar radiation (2.1 micrometers). In contrast to the plane-parallel approximation, a conventional approach to all current operational retrievals, 3D radiative transfer is used for interpreting the observed reflectances. General properties of the radiation reflected from the sides of an isolated cloud are discussed. As a proof of concept, the paper shows a few examples of radiation reflected from cloud fields generated by a simple stochastic cloud model with the prescribed vertically resolved microphysics. To retrieve the information about droplet sizes, we propose to use the probability density function of the droplet size distribution and its first two moments instead of the assumption about fixed values of the droplet effective radius. The retrieval algorithm is based on the Bayesian theorem that combines prior information about cloud structure and microphysics with radiative transfer calculations.

  1. Rotating Flow of Magnetite-Water Nanofluid over a Stretching Surface Inspired by Non-Linear Thermal Radiation.

    PubMed

    Mustafa, M; Mushtaq, A; Hayat, T; Alsaedi, A

    2016-01-01

    Present study explores the MHD three-dimensional rotating flow and heat transfer of ferrofluid induced by a radiative surface. The base fluid is considered as water with magnetite-Fe3O4 nanoparticles. Novel concept of non-linear radiative heat flux is considered which produces a non-linear energy equation in temperature field. Conventional transformations are employed to obtain the self-similar form of the governing differential system. The arising system involves an interesting temperature ratio parameter which is an indicator of small/large temperature differences in the flow. Numerical simulations with high precision are determined by well-known shooting approach. Both uniform stretching and rotation have significant impact on the solutions. The variation in velocity components with the nanoparticle volume fraction is non-monotonic. Local Nusselt number in Fe3O4-water ferrofluid is larger in comparison to the pure fluid even at low particle concentration.

  2. Modeling UV Radiation Feedback from Massive Stars. I. Implementation of Adaptive Ray-tracing Method and Tests

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Gyu; Kim, Woong-Tae; Ostriker, Eve C.; Skinner, M. Aaron

    2017-12-01

    We present an implementation of an adaptive ray-tracing (ART) module in the Athena hydrodynamics code that accurately and efficiently handles the radiative transfer involving multiple point sources on a three-dimensional Cartesian grid. We adopt a recently proposed parallel algorithm that uses nonblocking, asynchronous MPI communications to accelerate transport of rays across the computational domain. We validate our implementation through several standard test problems, including the propagation of radiation in vacuum and the expansions of various types of H II regions. Additionally, scaling tests show that the cost of a full ray trace per source remains comparable to that of the hydrodynamics update on up to ∼ {10}3 processors. To demonstrate application of our ART implementation, we perform a simulation of star cluster formation in a marginally bound, turbulent cloud, finding that its star formation efficiency is 12% when both radiation pressure forces and photoionization by UV radiation are treated. We directly compare the radiation forces computed from the ART scheme with those from the M1 closure relation. Although the ART and M1 schemes yield similar results on large scales, the latter is unable to resolve the radiation field accurately near individual point sources.

  3. Investigation of the effects of the macrophysical and microphysical properties of cirrus clouds on the retrieval of optical properties: Results for FIRE 2

    NASA Technical Reports Server (NTRS)

    Stackhouse, Paul W., Jr.; Stephens, Graeme L.

    1993-01-01

    Due to the prevalence and persistence of cirrus cloudiness across the globe, cirrus clouds are believed to have an important effect on the climate. Stephens et al., (1990) among others have shown that the important factor determining how cirrus clouds modulate the climate is the balance between the albedo and emittance effect of the cloud systems. This factor was shown to depend in part upon the effective sizes of the cirrus cloud particles. Since effective sizes of cirrus cloud microphysical distributions are used as a basis of parameterizations in climate models, it is crucial that the relationships between effective sizes and radiative properties be clearly established. In this preliminary study, the retrieval of cirrus cloud effective sizes are examined using a two dimensional radiative transfer model for a cirrus cloud case sampled during FIRE Cirrus 11. The purpose of this paper is to present preliminary results from the SHSG model demonstrating the sensitivity of the bispectral relationships of reflected radiances and thus the retrieval of effective sizes to phase function and dimensionality.

  4. A substantial amount of hidden magnetic energy in the quiet Sun.

    PubMed

    Bueno, J Trujillo; Shchukina, N; Ramos, A Asensio

    2004-07-15

    Deciphering and understanding the small-scale magnetic activity of the quiet solar photosphere should help to solve many of the key problems of solar and stellar physics, such as the magnetic coupling to the outer atmosphere and the coronal heating. At present, we can see only approximately 1 per cent of the complex magnetism of the quiet Sun, which highlights the need to develop a reliable way to investigate the remaining 99 per cent. Here we report three-dimensional radiative transfer modelling of scattering polarization in atomic and molecular lines that indicates the presence of hidden, mixed-polarity fields on subresolution scales. Combining this modelling with recent observational data, we find a ubiquitous tangled magnetic field with an average strength of approximately 130 G, which is much stronger in the intergranular regions of solar surface convection than in the granular regions. So the average magnetic energy density in the quiet solar photosphere is at least two orders of magnitude greater than that derived from simplistic one-dimensional investigations, and sufficient to balance radiative energy losses from the solar chromosphere.

  5. Explicit validation of a surface shortwave radiation balance model over snow-covered complex terrain

    NASA Astrophysics Data System (ADS)

    Helbig, N.; Löwe, H.; Mayer, B.; Lehning, M.

    2010-09-01

    A model that computes the surface radiation balance for all sky conditions in complex terrain is presented. The spatial distribution of direct and diffuse sky radiation is determined from observations of incident global radiation, air temperature, and relative humidity at a single measurement location. Incident radiation under cloudless sky is spatially derived from a parameterization of the atmospheric transmittance. Direct and diffuse sky radiation for all sky conditions are obtained by decomposing the measured global radiation value. Spatial incident radiation values under all atmospheric conditions are computed by adjusting the spatial radiation values obtained from the parametric model with the radiation components obtained from the decomposition model at the measurement site. Topographic influences such as shading are accounted for. The radiosity approach is used to compute anisotropic terrain reflected radiation. Validations of the shortwave radiation balance model are presented in detail for a day with cloudless sky. For a day with overcast sky a first validation is presented. Validation of a section of the horizon line as well as of individual radiation components is performed with high-quality measurements. A new measurement setup was designed to determine terrain reflected radiation. There is good agreement between the measurements and the modeled terrain reflected radiation values as well as with incident radiation values. A comparison of the model with a fully three-dimensional radiative transfer Monte Carlo model is presented. That validation reveals a good agreement between modeled radiation values.

  6. Numerical investigation for entropy generation in hydromagnetic flow of fluid with variable properties and slip

    NASA Astrophysics Data System (ADS)

    Khan, M. Ijaz; Hayat, Tasawar; Alsaedi, Ahmed

    2018-02-01

    This modeling and computations present the study of viscous fluid flow with variable properties by a rotating stretchable disk. Rotating flow is generated through nonlinear rotating stretching surface. Nonlinear thermal radiation and heat generation/absorption are studied. Flow is conducting for a constant applied magnetic field. No polarization is taken. Induced magnetic field is not taken into account. Attention is focused on the entropy generation rate and Bejan number. The entropy generation rate and Bejan number clearly depend on velocity and thermal fields. The von Kármán approach is utilized to convert the partial differential expressions into ordinary ones. These expressions are non-dimensionalized, and numerical results are obtained for flow variables. The effects of the magnetic parameter, Prandtl number, radiative parameter, heat generation/absorption parameter, and slip parameter on velocity and temperature fields as well as the entropy generation rate and Bejan number are discussed. Drag forces (radial and tangential) and heat transfer rates are calculated and discussed. Furthermore the entropy generation rate is a decreasing function of magnetic variable and Reynolds number. The Bejan number effect on the entropy generation rate is reverse to that of the magnetic variable. Also opposite behavior of heat transfers is observed for varying estimations of radiative and slip variables.

  7. Nonlinear Conservation Laws and Finite Volume Methods

    NASA Astrophysics Data System (ADS)

    Leveque, Randall J.

    Introduction Software Notation Classification of Differential Equations Derivation of Conservation Laws The Euler Equations of Gas Dynamics Dissipative Fluxes Source Terms Radiative Transfer and Isothermal Equations Multi-dimensional Conservation Laws The Shock Tube Problem Mathematical Theory of Hyperbolic Systems Scalar Equations Linear Hyperbolic Systems Nonlinear Systems The Riemann Problem for the Euler Equations Numerical Methods in One Dimension Finite Difference Theory Finite Volume Methods Importance of Conservation Form - Incorrect Shock Speeds Numerical Flux Functions Godunov's Method Approximate Riemann Solvers High-Resolution Methods Other Approaches Boundary Conditions Source Terms and Fractional Steps Unsplit Methods Fractional Step Methods General Formulation of Fractional Step Methods Stiff Source Terms Quasi-stationary Flow and Gravity Multi-dimensional Problems Dimensional Splitting Multi-dimensional Finite Volume Methods Grids and Adaptive Refinement Computational Difficulties Low-Density Flows Discrete Shocks and Viscous Profiles Start-Up Errors Wall Heating Slow-Moving Shocks Grid Orientation Effects Grid-Aligned Shocks Magnetohydrodynamics The MHD Equations One-Dimensional MHD Solving the Riemann Problem Nonstrict Hyperbolicity Stiffness The Divergence of B Riemann Problems in Multi-dimensional MHD Staggered Grids The 8-Wave Riemann Solver Relativistic Hydrodynamics Conservation Laws in Spacetime The Continuity Equation The 4-Momentum of a Particle The Stress-Energy Tensor Finite Volume Methods Multi-dimensional Relativistic Flow Gravitation and General Relativity References

  8. A High-Order Low-Order Algorithm with Exponentially Convergent Monte Carlo for Thermal Radiative Transfer

    DOE PAGES

    Bolding, Simon R.; Cleveland, Mathew Allen; Morel, Jim E.

    2016-10-21

    In this paper, we have implemented a new high-order low-order (HOLO) algorithm for solving thermal radiative transfer problems. The low-order (LO) system is based on the spatial and angular moments of the transport equation and a linear-discontinuous finite-element spatial representation, producing equations similar to the standard S 2 equations. The LO solver is fully implicit in time and efficiently resolves the nonlinear temperature dependence at each time step. The high-order (HO) solver utilizes exponentially convergent Monte Carlo (ECMC) to give a globally accurate solution for the angular intensity to a fixed-source pure-absorber transport problem. This global solution is used tomore » compute consistency terms, which require the HO and LO solutions to converge toward the same solution. The use of ECMC allows for the efficient reduction of statistical noise in the Monte Carlo solution, reducing inaccuracies introduced through the LO consistency terms. Finally, we compare results with an implicit Monte Carlo code for one-dimensional gray test problems and demonstrate the efficiency of ECMC over standard Monte Carlo in this HOLO algorithm.« less

  9. Atmospheric, Cloud, and Surface Parameters Retrieved from Satellite Ultra-spectral Infrared Sounder Measurements

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Smith, William L.; Yang, Ping; Schluessel, Peter; Strow, Larrabee

    2007-01-01

    An advanced retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. This physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multivariable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. This retrieval algorithm is applied to the MetOp satellite Infrared Atmospheric Sounding Interferometer (IASI) launched on October 19, 2006. IASI possesses an ultra-spectral resolution of 0.25 cm(exp -1) and a spectral coverage from 645 to 2760 cm(exp -1). Preliminary retrievals of atmospheric soundings, surface properties, and cloud optical/microphysical properties with the IASI measurements are obtained and presented.

  10. Measurement of tree canopy architecture

    NASA Technical Reports Server (NTRS)

    Martens, S. N.; Ustin, S. L.; Norman, J. M.

    1991-01-01

    The lack of accurate extensive geometric data on tree canopies has retarded development and validation of radiative transfer models. A stratified sampling method was devised to measure the three-dimensional geometry of 16 walnut trees which had received irrigation treatments of either 100 or 33 per cent of evapotranspirational (ET) demand for the previous two years. Graphic reconstructions of the three-dimensional geometry were verified by 58 independent measurements. The distributions of stem- and leaf-size classes, lengths, and angle classes were determined and used to calculate leaf area index (LAI), stem area, and biomass. Reduced irrigation trees have lower biomass of stems, leaves and fruit, lower LAI, steeper leaf angles and altered biomass allocation to large stems. These data can be used in ecological models that link canopy processes with remotely sensed measurements.

  11. Differences in Water Vapor Radiative Transfer among 1D Models Can Significantly Affect the Inner Edge of the Habitable Zone

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Leconte, Jérémy; Wolf, Eric T.; Goldblatt, Colin; Feldl, Nicole; Merlis, Timothy; Wang, Yuwei; Koll, Daniel D. B.; Ding, Feng; Forget, François; Abbot, Dorian S.

    2016-08-01

    An accurate estimate of the inner edge of the habitable zone is critical for determining which exoplanets are potentially habitable and for designing future telescopes to observe them. Here, we explore differences in estimating the inner edge among seven one-dimensional radiative transfer models: two line-by-line codes (SMART and LBLRTM) as well as five band codes (CAM3, CAM4_Wolf, LMDG, SBDART, and AM2) that are currently being used in global climate models. We compare radiative fluxes and spectra in clear-sky conditions around G and M stars, with fixed moist adiabatic profiles for surface temperatures from 250 to 360 K. We find that divergences among the models arise mainly from large uncertainties in water vapor absorption in the window region (10 μm) and in the region between 0.2 and 1.5 μm. Differences in outgoing longwave radiation increase with surface temperature and reach 10-20 W m-2 differences in shortwave reach up to 60 W m-2, especially at the surface and in the troposphere, and are larger for an M-dwarf spectrum than a solar spectrum. Differences between the two line-by-line models are significant, although smaller than among the band models. Our results imply that the uncertainty in estimating the insolation threshold of the inner edge (the runaway greenhouse limit) due only to clear-sky radiative transfer is ≈10% of modern Earth’s solar constant (I.e., ≈34 W m-2 in global mean) among band models and ≈3% between the two line-by-line models. These comparisons show that future work is needed that focuses on improving water vapor absorption coefficients in both shortwave and longwave, as well as on increasing the resolution of stellar spectra in broadband models.

  12. DIFFERENCES IN WATER VAPOR RADIATIVE TRANSFER AMONG 1D MODELS CAN SIGNIFICANTLY AFFECT THE INNER EDGE OF THE HABITABLE ZONE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Jun; Wang, Yuwei; Leconte, Jérémy

    An accurate estimate of the inner edge of the habitable zone is critical for determining which exoplanets are potentially habitable and for designing future telescopes to observe them. Here, we explore differences in estimating the inner edge among seven one-dimensional radiative transfer models: two line-by-line codes (SMART and LBLRTM) as well as five band codes (CAM3, CAM4-Wolf, LMDG, SBDART, and AM2) that are currently being used in global climate models. We compare radiative fluxes and spectra in clear-sky conditions around G and M stars, with fixed moist adiabatic profiles for surface temperatures from 250 to 360 K. We find thatmore » divergences among the models arise mainly from large uncertainties in water vapor absorption in the window region (10 μ m) and in the region between 0.2 and 1.5 μ m. Differences in outgoing longwave radiation increase with surface temperature and reach 10–20 W m{sup 2}; differences in shortwave reach up to 60 W m{sup 2}, especially at the surface and in the troposphere, and are larger for an M-dwarf spectrum than a solar spectrum. Differences between the two line-by-line models are significant, although smaller than among the band models. Our results imply that the uncertainty in estimating the insolation threshold of the inner edge (the runaway greenhouse limit) due only to clear-sky radiative transfer is ≈10% of modern Earth’s solar constant (i.e., ≈34 W m{sup 2} in global mean) among band models and ≈3% between the two line-by-line models. These comparisons show that future work is needed that focuses on improving water vapor absorption coefficients in both shortwave and longwave, as well as on increasing the resolution of stellar spectra in broadband models.« less

  13. Application of satellite data in variational analysis for global cyclonic systems

    NASA Technical Reports Server (NTRS)

    Achtemeier, G. L.

    1987-01-01

    The research goal was a variational data assimilation method that incorporates as dynamical constraints, the primitive equations for a moist, convectively unstable atmosphere and the radiative transfer equation. Variables to be adjusted include the three-dimensional vector wind, height, temperature, and moisture from rawinsonde data, and cloud-wind vectors, moisture, and radiance from satellite data. This presents a formidable mathematical problem. In order to facilitate thorough analysis of each of the model components, four variational models that divide the problem naturally according to increasing complexity are defined. Each model is summarized.

  14. Optoelectronic Infrastructure for Radio Frequency and Optical Phased Arrays

    NASA Technical Reports Server (NTRS)

    Cai, Jianhong

    2015-01-01

    Optoelectronic integrated circuits offer radiation-hardened solutions for satellite systems in addition to improved size, weight, power, and bandwidth characteristics. ODIS, Inc., has developed optoelectronic integrated circuit technology for sensing and data transfer in phased arrays. The technology applies integrated components (lasers, amplifiers, modulators, detectors, and optical waveguide switches) to a radio frequency (RF) array with true time delay for beamsteering. Optical beamsteering is achieved by controlling the current in a two-dimensional (2D) array. In this project, ODIS integrated key components to produce common RF-optical aperture operation.

  15. Computational analysis of heat transfer, thermal stress and dislocation density during resistively Czochralski growth of germanium single crystal

    NASA Astrophysics Data System (ADS)

    Tavakoli, Mohammad Hossein; Renani, Elahe Kabiri; Honarmandnia, Mohtaram; Ezheiyan, Mahdi

    2018-02-01

    In this paper, a set of numerical simulations of fluid flow, temperature gradient, thermal stress and dislocation density for a Czochralski setup used to grow IR optical-grade Ge single crystal have been done for different stages of the growth process. A two-dimensional steady state finite element method has been applied for all calculations. The obtained numerical results reveal that the thermal field, thermal stress and dislocation structure are mainly dependent on the crystal height, heat radiation and gas flow in the growth system.

  16. Effects of solar radiation, terrestrial radiation and lunar interior heat flow on surface temperature at the nearside of the Moon: Based on numerical calculation and data analysis

    NASA Astrophysics Data System (ADS)

    Song, Yutian; Wang, Xueqiang; Bi, Shengshan; Wu, Jiangtao; Huang, Shaopeng

    2017-09-01

    Surface temperature at the nearside of the Moon (Ts,n) embraces an abundance of valuable information to be explored, and its measurement contributes to studying Earth's energy budget. On a basis of a one-dimensional unsteady heat-transfer model, this paper ran a quantitative calculation that how much the Ts,n varies with the changes of different heat sources, including solar radiation, terrestrial radiation, and lunar interior heat flow. The results reveal that solar radiation always has the most important influence on Ts,n not only during lunar daytime (by means of radiation balance) but also during lunar nighttime (by means of lunar regolith heat conduction). Besides, the effect of terrestrial radiation is also unavoidable, and measuring the variation of lunar nighttime low temperature is exactly helpful in observing Earth outgoing radiation. Accordingly, it is practical to establish a Moon-base observatory on the Moon. For verification, the Apollo 15 mission temperature data was used and analyzed as well. Moreover, other 9 typical lunar areas were selected and the simulation was run one after another in these areas after proper model amendation. It is shown that the polar regions on the Moon are the best areas for establishing Moon-base observatory.

  17. Numerical Model of Flame Spread Over Solids in Microgravity: A Supplementary Tool for Designing a Space Experiment

    NASA Technical Reports Server (NTRS)

    Shih, Hsin-Yi; Tien, James S.; Ferkul, Paul (Technical Monitor)

    2001-01-01

    The recently developed numerical model of concurrent-flow flame spread over thin solids has been used as a simulation tool to help the designs of a space experiment. The two-dimensional and three-dimensional, steady form of the compressible Navier-Stokes equations with chemical reactions are solved. With the coupled multi-dimensional solver of the radiative heat transfer, the model is capable of answering a number of questions regarding the experiment concept and the hardware designs. In this paper, the capabilities of the numerical model are demonstrated by providing the guidance for several experimental designing issues. The test matrix and operating conditions of the experiment are estimated through the modeling results. The three-dimensional calculations are made to simulate the flame-spreading experiment with realistic hardware configuration. The computed detailed flame structures provide the insight to the data collection. In addition, the heating load and the requirements of the product exhaust cleanup for the flow tunnel are estimated with the model. We anticipate that using this simulation tool will enable a more efficient and successful space experiment to be conducted.

  18. Remote sensing of vegetation canopy photosynthetic and stomatal conductance efficiencies

    NASA Technical Reports Server (NTRS)

    Myneni, R. B.; Ganapol, B. D.; Asrar, G.

    1992-01-01

    The problem of remote sensing the canopy photosynthetic and stomatal conductance efficiencies is investigated with the aid of one- and three-dimensional radiative transfer methods coupled to a semi-empirical mechanistic model of leaf photosynthesis and stomatal conductance. Desertlike vegetation is modeled as clumps of leaves randomly distributed on a bright dry soil with partial ground cover. Normalized difference vegetation index (NDVI), canopy photosynthetic (Ep), and stomatal efficiencies (Es) are calculated for various geometrical, optical, and illumination conditions. The contribution of various radiative fluxes to estimates of Ep is evaluated and the magnitude of errors in bulk canopy formulation of problem parameters are quantified. The nature and sensitivity of the relationship between Ep and Es to NDVI is investigated, and an algorithm is proposed for use in operational remote sensing.

  19. Radiative Transfer Modeling of a Large Pool Fire by Discrete Ordinates, Discrete Transfer, Ray Tracing, Monte Carlo and Moment Methods

    NASA Technical Reports Server (NTRS)

    Jensen, K. A.; Ripoll, J.-F.; Wray, A. A.; Joseph, D.; ElHafi, M.

    2004-01-01

    Five computational methods for solution of the radiative transfer equation in an absorbing-emitting and non-scattering gray medium were compared on a 2 m JP-8 pool fire. The temperature and absorption coefficient fields were taken from a synthetic fire due to the lack of a complete set of experimental data for fires of this size. These quantities were generated by a code that has been shown to agree well with the limited quantity of relevant data in the literature. Reference solutions to the governing equation were determined using the Monte Carlo method and a ray tracing scheme with high angular resolution. Solutions using the discrete transfer method, the discrete ordinate method (DOM) with both S(sub 4) and LC(sub 11) quadratures, and moment model using the M(sub 1) closure were compared to the reference solutions in both isotropic and anisotropic regions of the computational domain. DOM LC(sub 11) is shown to be the more accurate than the commonly used S(sub 4) quadrature technique, especially in anisotropic regions of the fire domain. This represents the first study where the M(sub 1) method was applied to a combustion problem occurring in a complex three-dimensional geometry. The M(sub 1) results agree well with other solution techniques, which is encouraging for future applications to similar problems since it is computationally the least expensive solution technique. Moreover, M(sub 1) results are comparable to DOM S(sub 4).

  20. Analytical Models of Exoplanetary Atmospheres. IV. Improved Two-stream Radiative Transfer for the Treatment of Aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heng, Kevin; Kitzmann, Daniel, E-mail: kevin.heng@csh.unibe.ch, E-mail: daniel.kitzmann@csh.unibe.ch

    We present a novel generalization of the two-stream method of radiative transfer, which allows for the accurate treatment of radiative transfer in the presence of strong infrared scattering by aerosols. We prove that this generalization involves only a simple modification of the coupling coefficients and transmission functions in the hemispheric two-stream method. This modification originates from allowing the ratio of the first Eddington coefficients to depart from unity. At the heart of the method is the fact that this ratio may be computed once and for all over the entire range of values of the single-scattering albedo and scattering asymmetrymore » factor. We benchmark our improved two-stream method by calculating the fraction of flux reflected by a single atmospheric layer (the reflectivity) and comparing these calculations to those performed using a 32-stream discrete-ordinates method. We further compare our improved two-stream method to the two-stream source function (16 streams) and delta-Eddington methods, demonstrating that it is often more accurate at the order-of-magnitude level. Finally, we illustrate its accuracy using a toy model of the early Martian atmosphere hosting a cloud layer composed of carbon dioxide ice particles. The simplicity of implementation and accuracy of our improved two-stream method renders it suitable for implementation in three-dimensional general circulation models. In other words, our improved two-stream method has the ease of implementation of a standard two-stream method, but the accuracy of a 32-stream method.« less

  1. Finite element computation of multi-physical micropolar transport phenomena from an inclined moving plate in porous media

    NASA Astrophysics Data System (ADS)

    Shamshuddin, MD.; Anwar Bég, O.; Sunder Ram, M.; Kadir, A.

    2018-02-01

    Non-Newtonian flows arise in numerous industrial transport processes including materials fabrication systems. Micropolar theory offers an excellent mechanism for exploring the fluid dynamics of new non-Newtonian materials which possess internal microstructure. Magnetic fields may also be used for controlling electrically-conducting polymeric flows. To explore numerical simulation of transport in rheological materials processing, in the current paper, a finite element computational solution is presented for magnetohydrodynamic, incompressible, dissipative, radiative and chemically-reacting micropolar fluid flow, heat and mass transfer adjacent to an inclined porous plate embedded in a saturated homogenous porous medium. Heat generation/absorption effects are included. Rosseland's diffusion approximation is used to describe the radiative heat flux in the energy equation. A Darcy model is employed to simulate drag effects in the porous medium. The governing transport equations are rendered into non-dimensional form under the assumption of low Reynolds number and also low magnetic Reynolds number. Using a Galerkin formulation with a weighted residual scheme, finite element solutions are presented to the boundary value problem. The influence of plate inclination, Eringen coupling number, radiation-conduction number, heat absorption/generation parameter, chemical reaction parameter, plate moving velocity parameter, magnetic parameter, thermal Grashof number, species (solutal) Grashof number, permeability parameter, Eckert number on linear velocity, micro-rotation, temperature and concentration profiles. Furthermore, the influence of selected thermo-physical parameters on friction factor, surface heat transfer and mass transfer rate is also tabulated. The finite element solutions are verified with solutions from several limiting cases in the literature. Interesting features in the flow are identified and interpreted.

  2. The effect of sea ice on the solar energy budget in the astmosphere-sea ice-ocean system: A model study

    NASA Technical Reports Server (NTRS)

    Jin, Z.; Stamnes, Knut; Weeks, W. F.; Tsay, Si-Chee

    1994-01-01

    A coupled one-dimensional multilayer and multistream radiative transfer model has been developed and applied to the study of radiative interactions in the atmosphere, sea ice, and ocean system. The consistent solution of the radiative transfer equation in this coupled system automatically takes into account the refraction and reflection at the air-ice interface and allows flexibility in choice of stream numbers. The solar radiation spectrum (0.25 micron-4.0 micron) is divided into 24 spectral bands to account adequately for gaseous absorption in the atmosphere. The effects of ice property changes, including salinity and density variations, as well as of melt ponds and snow cover variations over the ice on the solar energy distribution in the entire system have been studied quantitatively. The results show that for bare ice it is the scattering, determined by air bubbles and brine pockets, in just a few centimeters of the top layer of ice that plays the most important role in the solar energy absorption and partitioning in the entire system. Ice thickness is important to the energy distribution only when the ice is thin, while the absorption in the atmosphere is not sensitive to ice thickness exceeds about 70 cm. The presence of clouds moderates all the sensitivities of the absorptive amounts in each layer to the variations in the ice properties and ice thickness. Comparisons with observational spectral albedo values for two simple ice types are also presented.

  3. Understanding Accretion Disks through Three Dimensional Radiation MHD Simulations

    NASA Astrophysics Data System (ADS)

    Jiang, Yan-Fei

    I study the structures and thermal properties of black hole accretion disks in the radiation pressure dominated regime. Angular momentum transfer in the disk is provided by the turbulence generated by the magneto-rotational instability (MRI), which is calculated self-consistently with a recently developed 3D radiation magneto-hydrodynamics (MHD) code based on Athena. This code, developed by my collaborators and myself, couples both the radiation momentum and energy source terms with the ideal MHD equations by modifying the standard Godunov method to handle the stiff radiation source terms. We solve the two momentum equations of the radiation transfer equations with a variable Eddington tensor (VET), which is calculated with a time independent short characteristic module. This code is well tested and accurate in both optically thin and optically thick regimes. It is also accurate for both radiation pressure and gas pressure dominated flows. With this code, I find that when photon viscosity becomes significant, the ratio between Maxwell stress and Reynolds stress from the MRI turbulence can increase significantly with radiation pressure. The thermal instability of the radiation pressure dominated disk is then studied with vertically stratified shearing box simulations. Unlike the previous results claiming that the radiation pressure dominated disk with MRI turbulence can reach a steady state without showing any unstable behavior, I find that the radiation pressure dominated disks always either collapse or expand until we have to stop the simulations. During the thermal runaway, the heating and cooling rates from the simulations are consistent with the general criterion of thermal instability. However, details of the thermal runaway are different from the predictions of the standard alpha disk model, as many assumptions in that model are not satisfied in the simulations. We also identify the key reasons why previous simulations do not find the instability. The thermal instability has many important implications for understanding the observations of both X-ray binaries and Active Galactic Nuclei (AGNs). However, direct comparisons between observations and the simulations require global radiation MHD simulations, which will be the main focus of my future work.

  4. Hawking radiation of five-dimensional charged black holes with scalar fields

    NASA Astrophysics Data System (ADS)

    Miao, Yan-Gang; Xu, Zhen-Ming

    2017-09-01

    We investigate the Hawking radiation cascade from the five-dimensional charged black hole with a scalar field coupled to higher-order Euler densities in a conformally invariant manner. We give the semi-analytic calculation of greybody factors for the Hawking radiation. Our analysis shows that the Hawking radiation cascade from this five-dimensional black hole is extremely sparse. The charge enhances the sparsity of the Hawking radiation, while the conformally coupled scalar field reduces this sparsity.

  5. Heat transfer in gas turbine engines and three-dimensional flows; Proceedings of the Symposium, ASME Winter Annual Meeting, Chicago, IL, Nov. 27-Dec. 2, 1988

    NASA Technical Reports Server (NTRS)

    Elovic, E. (Editor); O'Brien, J. E. (Editor); Pepper, D. W. (Editor)

    1988-01-01

    The present conference on heat transfer characteristics of gas turbines and three-dimensional flows discusses velocity-temperature fluctuation correlations at the flow stagnation flow of a circular cylinder in turbulent flow, heat transfer across turbulent boundary layers with pressure gradients, the effect of jet grid turbulence on boundary layer heat transfer, and heat transfer characteristics predictions for discrete-hole film cooling. Also discussed are local heat transfer in internally cooled turbine airfoil leading edges, secondary flows in vane cascades and curved ducts, three-dimensional numerical modeling in gas turbine coal combustor design, numerical and experimental results for tube-fin heat exchanger airflow and heating characteristics, and the computation of external hypersonic three-dimensional flow field and heat transfer characteristics.

  6. Heat transfer in gas turbine engines and three-dimensional flows; Proceedings of the Symposium, ASME Winter Annual Meeting, Chicago, IL, Nov. 27-Dec. 2, 1988

    NASA Astrophysics Data System (ADS)

    Elovic, E.; O'Brien, J. E.; Pepper, D. W.

    The present conference on heat transfer characteristics of gas turbines and three-dimensional flows discusses velocity-temperature fluctuation correlations at the flow stagnation flow of a circular cylinder in turbulent flow, heat transfer across turbulent boundary layers with pressure gradients, the effect of jet grid turbulence on boundary layer heat transfer, and heat transfer characteristics predictions for discrete-hole film cooling. Also discussed are local heat transfer in internally cooled turbine airfoil leading edges, secondary flows in vane cascades and curved ducts, three-dimensional numerical modeling in gas turbine coal combustor design, numerical and experimental results for tube-fin heat exchanger airflow and heating characteristics, and the computation of external hypersonic three-dimensional flow field and heat transfer characteristics.

  7. A second order radiative transfer equation and its solution by meshless method with application to strongly inhomogeneous media

    NASA Astrophysics Data System (ADS)

    Zhao, J. M.; Tan, J. Y.; Liu, L. H.

    2013-01-01

    A new second order form of radiative transfer equation (named MSORTE) is proposed, which overcomes the singularity problem of a previously proposed second order radiative transfer equation [J.E. Morel, B.T. Adams, T. Noh, J.M. McGhee, T.M. Evans, T.J. Urbatsch, Spatial discretizations for self-adjoint forms of the radiative transfer equations, J. Comput. Phys. 214 (1) (2006) 12-40 (where it was termed SAAI), J.M. Zhao, L.H. Liu, Second order radiative transfer equation and its properties of numerical solution using finite element method, Numer. Heat Transfer B 51 (2007) 391-409] in dealing with inhomogeneous media where some locations have very small/zero extinction coefficient. The MSORTE contains a naturally introduced diffusion (or second order) term which provides better numerical property than the classic first order radiative transfer equation (RTE). The stability and convergence characteristics of the MSORTE discretized by central difference scheme is analyzed theoretically, and the better numerical stability of the second order form radiative transfer equations than the RTE when discretized by the central difference type method is proved. A collocation meshless method is developed based on the MSORTE to solve radiative transfer in inhomogeneous media. Several critical test cases are taken to verify the performance of the presented method. The collocation meshless method based on the MSORTE is demonstrated to be capable of stably and accurately solve radiative transfer in strongly inhomogeneous media, media with void region and even with discontinuous extinction coefficient.

  8. Radiative Transfer in Seagrass Canopies

    DTIC Science & Technology

    1999-09-30

    Radiative Transfer in Seagrass Canopies Richard C. Zimmerman Moss Landing Marine Laboratories P. O. Box 450 Moss Landing, CA 95039 phone (831) 655...models of radiative transfer for optically shallow waters with benthic substrates colonized by submerged plant canopies ( seagrasses and seaweeds). Such...coastal resources. SCIENTIFIC OBJECTIVES The objectives of this study are to • Develop radiative transfer models of seagrass and seaweed canopies in

  9. Beyond multi-fractals: surrogate time series and fields

    NASA Astrophysics Data System (ADS)

    Venema, V.; Simmer, C.

    2007-12-01

    Most natural complex are characterised by variability on a large range of temporal and spatial scales. The two main methodologies to generate such structures are Fourier/FARIMA based algorithms and multifractal methods. The former is restricted to Gaussian data, whereas the latter requires the structure to be self-similar. This work will present so-called surrogate data as an alternative that works with any (empirical) distribution and power spectrum. The best-known surrogate algorithm is the iterative amplitude adjusted Fourier transform (IAAFT) algorithm. We have studied six different geophysical time series (two clouds, runoff of a small and a large river, temperature and rain) and their surrogates. The power spectra and consequently the 2nd order structure functions were replicated accurately. Even the fourth order structure function was more accurately reproduced by the surrogates as would be possible by a fractal method, because the measured structure deviated too strong from fractal scaling. Only in case of the daily rain sums a fractal method could have been more accurate. Just as Fourier and multifractal methods, the current surrogates are not able to model the asymmetric increment distributions observed for runoff, i.e., they cannot reproduce nonlinear dynamical processes that are asymmetric in time. Furthermore, we have found differences for the structure functions on small scales. Surrogate methods are especially valuable for empirical studies, because the time series and fields that are generated are able to mimic measured variables accurately. Our main application is radiative transfer through structured clouds. Like many geophysical fields, clouds can only be sampled sparsely, e.g. with in-situ airborne instruments. However, for radiative transfer calculations we need full 3-dimensional cloud fields. A first study relating the measured properties of the cloud droplets and the radiative properties of the cloud field by generating surrogate cloud fields yielded good results within the measurement error. A further test of the suitability of the surrogate clouds for radiative transfer is evaluated by comparing the radiative properties of model cloud fields of sparse cumulus and stratocumulus with their surrogate fields. The bias and root mean square error in various radiative properties is small and the deviations in the radiances and irradiances are not statistically significant, i.e. these deviations can be attributed to the Monte Carlo noise of the radiative transfer calculations. We compared these results with optical properties of synthetic clouds that have either the correct distribution (but no spatial correlations) or the correct power spectrum (but a Gaussian distribution). These clouds did show statistical significant deviations. For more information see: http://www.meteo.uni-bonn.de/venema/themes/surrogates/

  10. On the role of radiation and dimensionality in predicting flow opposed flame spread over thin fuels

    NASA Astrophysics Data System (ADS)

    Kumar, Chenthil; Kumar, Amit

    2012-06-01

    In this work a flame-spread model is formulated in three dimensions to simulate opposed flow flame spread over thin solid fuels. The flame-spread model is coupled to a three-dimensional gas radiation model. The experiments [1] on downward spread and zero gravity quiescent spread over finite width thin fuel are simulated by flame-spread models in both two and three dimensions to assess the role of radiation and effect of dimensionality on the prediction of the flame-spread phenomena. It is observed that while radiation plays only a minor role in normal gravity downward spread, in zero gravity quiescent spread surface radiation loss holds the key to correct prediction of low oxygen flame spread rate and quenching limit. The present three-dimensional simulations show that even in zero gravity gas radiation affects flame spread rate only moderately (as much as 20% at 100% oxygen) as the heat feedback effect exceeds the radiation loss effect only moderately. However, the two-dimensional model with the gas radiation model badly over-predicts the zero gravity flame spread rate due to under estimation of gas radiation loss to the ambient surrounding. The two-dimensional model was also found to be inadequate for predicting the zero gravity flame attributes, like the flame length and the flame width, correctly. The need for a three-dimensional model was found to be indispensable for consistently describing the zero gravity flame-spread experiments [1] (including flame spread rate and flame size) especially at high oxygen levels (>30%). On the other hand it was observed that for the normal gravity downward flame spread for oxygen levels up to 60%, the two-dimensional model was sufficient to predict flame spread rate and flame size reasonably well. Gas radiation is seen to increase the three-dimensional effect especially at elevated oxygen levels (>30% for zero gravity and >60% for normal gravity flames).

  11. Transient radiative transfer in a scattering slab considering polarization.

    PubMed

    Yi, Hongliang; Ben, Xun; Tan, Heping

    2013-11-04

    The characteristics of the transient and polarization must be considered for a complete and correct description of short-pulse laser transfer in a scattering medium. A Monte Carlo (MC) method combined with a time shift and superposition principle is developed to simulate transient vector (polarized) radiative transfer in a scattering medium. The transient vector radiative transfer matrix (TVRTM) is defined to describe the transient polarization behavior of short-pulse laser propagating in the scattering medium. According to the definition of reflectivity, a new criterion of reflection at Fresnel surface is presented. In order to improve the computational efficiency and accuracy, a time shift and superposition principle is applied to the MC model for transient vector radiative transfer. The results for transient scalar radiative transfer and steady-state vector radiative transfer are compared with those in published literatures, respectively, and an excellent agreement between them is observed, which validates the correctness of the present model. Finally, transient radiative transfer is simulated considering the polarization effect of short-pulse laser in a scattering medium, and the distributions of Stokes vector in angular and temporal space are presented.

  12. Experimental and Computational Investigations of Phase Change Thermal Energy Storage Canisters

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir; Kerslake, Thomas; Sokolov, Pavel; Tolbert, Carol

    1996-01-01

    Two sets of experimental data are examined in this paper, ground and space experiments, for cylindrical canisters with thermal energy storage applications. A 2-D computational model was developed for unsteady heat transfer (conduction and radiation) with phase-change. The radiation heat transfer employed a finite volume method. The following was found in this study: (1) Ground Experiments: the convection heat transfer is equally important to that of the radiation heat transfer; radiation heat transfer in the liquid is found to be more significant than that in the void; including the radiation heat transfer in the liquid resulted in lower temperatures (about 15 K) and increased the melting time (about 10 min.); generally, most of the heat flow takes place in the radial direction. (2) Space Experiments: radiation heat transfer in the void is found to be more significant than that in the liquid (exactly the opposite to the Ground Experiments); accordingly, the location and size of the void affects the performance considerably; including the radiation heat transfer in the void resulted in lower temperatures (about 40 K).

  13. Three-dimensional modeling of diesel engine intake flow, combustion and emissions

    NASA Technical Reports Server (NTRS)

    Reitz, R. D.; Rutland, C. J.

    1992-01-01

    A three-dimensional computer code (KIVA) is being modified to include state-of-the-art submodels for diesel engine flow and combustion: spray atomization, drop breakup/coalescence, multi-component fuel vaporization, spray/wall interaction, ignition and combustion, wall heat transfer, unburned HC and NOx formation, soot and radiation, and the intake flow process. Improved and/or new submodels which were completed are: wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo'vich NOx, and spray/wall impingement with rebounding and sliding drops. Results to date show that adding the effects of unsteadiness and compressibility improves the accuracy of heat transfer predictions; spray drop rebound can occur from walls at low impingement velocities (e.g., in cold-starting); larger spray drops are formed at the nozzle due to the influence of vaporization on the atomization process; a laminar-and-turbulent characteristic time combustion model has the flexibility to match measured engine combustion data over a wide range of operating conditions; and finally, the characteristic time combustion model can also be extended to allow predictions of ignition. The accuracy of the predictions is being assessed by comparisons with available measurements. Additional supporting experiments are also described briefly. To date, comparisons with measured engine cylinder pressure and heat flux data were made for homogeneous charge, spark-ignited and compression-ignited engines. The model results are in good agreement with the experiments.

  14. Method for calculating internal radiation and ventilation with the ADINAT heat-flow code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butkovich, T.R.; Montan, D.N.

    1980-04-01

    One objective of the spent fuel test in Climax Stock granite (SFTC) is to correctly model the thermal transport, and the changes in the stress field and accompanying displacements from the application of the thermal loads. We have chosen the ADINA and ADINAT finite element codes to do these calculations. ADINAT is a heat transfer code compatible to the ADINA displacement and stress analysis code. The heat flow problem encountered at SFTC requires a code with conduction, radiation, and ventilation capabilities, which the present version of ADINAT does not have. We have devised a method for calculating internal radiation andmore » ventilation with the ADINAT code. This method effectively reproduces the results from the TRUMP multi-dimensional finite difference code, which correctly models radiative heat transport between drift surfaces, conductive and convective thermal transport to and through air in the drifts, and mass flow of air in the drifts. The temperature histories for each node in the finite element mesh calculated with ADINAT using this method can be used directly in the ADINA thermal-mechanical calculation.« less

  15. Enhancement of the CAVE computer code

    NASA Astrophysics Data System (ADS)

    Rathjen, K. A.; Burk, H. O.

    1983-12-01

    The computer code CAVE (Conduction Analysis via Eigenvalues) is a convenient and efficient computer code for predicting two dimensional temperature histories within thermal protection systems for hypersonic vehicles. The capabilities of CAVE were enhanced by incorporation of the following features into the code: real gas effects in the aerodynamic heating predictions, geometry and aerodynamic heating package for analyses of cone shaped bodies, input option to change from laminar to turbulent heating predictions on leading edges, modification to account for reduction in adiabatic wall temperature with increase in leading sweep, geometry package for two dimensional scramjet engine sidewall, with an option for heat transfer to external and internal surfaces, print out modification to provide tables of select temperatures for plotting and storage, and modifications to the radiation calculation procedure to eliminate temperature oscillations induced by high heating rates. These new features are described.

  16. Modeling Dust Emission of HL Tau Disk Based on Planet-Disk Interactions

    DOE PAGES

    Jin, Sheng; Li, Shengtai; Isella, Andrea; ...

    2016-02-09

    In this paper, we use extensive global two-dimensional hydrodynamic disk gas+dust simulations with embedded planets, coupled with three-dimensional radiative transfer calculations, to model the dust ring and gap structures in the HL Tau protoplanetary disk observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). We include the self-gravity of disk gas and dust components and make reasonable choices of disk parameters, assuming an already settled dust distribution and no planet migration. We can obtain quite adequate fits to the observed dust emission using three planets with masses of 0.35, 0.17, and 0.26 M Jup at 13.1, 33.0, and 68.6 AU, respectively.more » Finally, implications for the planet formation as well as the limitations of this scenario are discussed.« less

  17. Distance dependence of the energy transfer rate from a single semiconductor nanostructure to graphene.

    PubMed

    Federspiel, François; Froehlicher, Guillaume; Nasilowski, Michel; Pedetti, Silvia; Mahmood, Ather; Doudin, Bernard; Park, Serin; Lee, Jeong-O; Halley, David; Dubertret, Benoît; Gilliot, Pierre; Berciaud, Stéphane

    2015-02-11

    The near-field Coulomb interaction between a nanoemitter and a graphene monolayer results in strong Förster-type resonant energy transfer and subsequent fluorescence quenching. Here, we investigate the distance dependence of the energy transfer rate from individual, (i) zero-dimensional CdSe/CdS nanocrystals and (ii) two-dimensional CdSe/CdS/ZnS nanoplatelets to a graphene monolayer. For increasing distances d, the energy transfer rate from individual nanocrystals to graphene decays as 1/d(4). In contrast, the distance dependence of the energy transfer rate from a two-dimensional nanoplatelet to graphene deviates from a simple power law but is well described by a theoretical model, which considers a thermal distribution of free excitons in a two-dimensional quantum well. Our results show that accurate distance measurements can be performed at the single particle level using graphene-based molecular rulers and that energy transfer allows probing dimensionality effects at the nanoscale.

  18. 3D Cloud Radiative Effects on Aerosol Optical Thickness Retrievals in Cumulus Cloud Fields in the Biomass Burning Region in Brazil

    NASA Technical Reports Server (NTRS)

    Wen, Guo-Yong; Marshak, Alexander; Cahalan, Robert F.

    2004-01-01

    Aerosol amount in clear regions of a cloudy atmosphere is a critical parameter in studying the interaction between aerosols and clouds. Since the global cloud cover is about 50%, cloudy scenes are often encountered in any satellite images. Aerosols are more or less transparent, while clouds are extremely reflective in the visible spectrum of solar radiation. The radiative transfer in clear-cloudy condition is highly three- dimensional (3D). This paper focuses on estimating the 3D effects on aerosol optical thickness retrievals using Monte Carlo simulations. An ASTER image of cumulus cloud fields in the biomass burning region in Brazil is simulated in this study. The MODIS products (i-e., cloud optical thickness, particle effective radius, cloud top pressure, surface reflectance, etc.) are used to construct the cloud property and surface reflectance fields. To estimate the cloud 3-D effects, we assume a plane-parallel stratification of aerosol properties in the 60 km x 60 km ASTER image. The simulated solar radiation at the top of the atmosphere is compared with plane-parallel calculations. Furthermore, the 3D cloud radiative effects on aerosol optical thickness retrieval are estimated.

  19. Radiative heat transfer in the extreme near field.

    PubMed

    Kim, Kyeongtae; Song, Bai; Fernández-Hurtado, Víctor; Lee, Woochul; Jeong, Wonho; Cui, Longji; Thompson, Dakotah; Feist, Johannes; Reid, M T Homer; García-Vidal, Francisco J; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod

    2015-12-17

    Radiative transfer of energy at the nanometre length scale is of great importance to a variety of technologies including heat-assisted magnetic recording, near-field thermophotovoltaics and lithography. Although experimental advances have enabled elucidation of near-field radiative heat transfer in gaps as small as 20-30 nanometres (refs 4-6), quantitative analysis in the extreme near field (less than 10 nanometres) has been greatly limited by experimental challenges. Moreover, the results of pioneering measurements differed from theoretical predictions by orders of magnitude. Here we use custom-fabricated scanning probes with embedded thermocouples, in conjunction with new microdevices capable of periodic temperature modulation, to measure radiative heat transfer down to gaps as small as two nanometres. For our experiments we deposited suitably chosen metal or dielectric layers on the scanning probes and microdevices, enabling direct study of extreme near-field radiation between silica-silica, silicon nitride-silicon nitride and gold-gold surfaces to reveal marked, gap-size-dependent enhancements of radiative heat transfer. Furthermore, our state-of-the-art calculations of radiative heat transfer, performed within the theoretical framework of fluctuational electrodynamics, are in excellent agreement with our experimental results, providing unambiguous evidence that confirms the validity of this theory for modelling radiative heat transfer in gaps as small as a few nanometres. This work lays the foundations required for the rational design of novel technologies that leverage nanoscale radiative heat transfer.

  20. Linear Polarization, Circular Polarization, and Depolarization of Gamma-ray Bursts: A Simple Case of Jitter Radiation

    NASA Astrophysics Data System (ADS)

    Mao, Jirong; Wang, Jiancheng

    2017-04-01

    Linear and circular polarizations of gamma-ray bursts (GRBs) have been detected recently. We adopt a simplified model to investigate GRB polarization characteristics in this paper. A compressed two-dimensional turbulent slab containing stochastic magnetic fields is considered, and jitter radiation can produce the linear polarization under this special magnetic field topology. Turbulent Faraday rotation measure (RM) of this slab makes strong wavelength-dependent depolarization. The jitter photons can also scatter with those magnetic clumps inside the turbulent slab, and a nonzero variance of the Stokes parameter V can be generated. Furthermore, the linearly and circularly polarized photons in the optical and radio bands may suffer heavy absorptions from the slab. Thus we consider the polarized jitter radiation transfer processes. Finally, we compare our model results with the optical detections of GRB 091018, GRB 121024A, and GRB 131030A. We suggest simultaneous observations of GRB multi-wavelength polarization in the future.

  1. Radiation and polarization signatures of the 3D multizone time-dependent hadronic blazar model

    DOE PAGES

    Zhang, Haocheng; Diltz, Chris; Bottcher, Markus

    2016-09-23

    We present a newly developed time-dependent three-dimensional multizone hadronic blazar emission model. By coupling a Fokker–Planck-based lepto-hadronic particle evolution code, 3DHad, with a polarization-dependent radiation transfer code, 3DPol, we are able to study the time-dependent radiation and polarization signatures of a hadronic blazar model for the first time. Our current code is limited to parameter regimes in which the hadronic γ-ray output is dominated by proton synchrotron emission, neglecting pion production. Our results demonstrate that the time-dependent flux and polarization signatures are generally dominated by the relation between the synchrotron cooling and the light-crossing timescale, which is largely independent ofmore » the exact model parameters. We find that unlike the low-energy polarization signatures, which can vary rapidly in time, the high-energy polarization signatures appear stable. Lastly, future high-energy polarimeters may be able to distinguish such signatures from the lower and more rapidly variable polarization signatures expected in leptonic models.« less

  2. Linear Polarization, Circular Polarization, and Depolarization of Gamma-ray Bursts: A Simple Case of Jitter Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Jirong; Wang, Jiancheng, E-mail: jirongmao@mail.ynao.ac.cn

    Linear and circular polarizations of gamma-ray bursts (GRBs) have been detected recently. We adopt a simplified model to investigate GRB polarization characteristics in this paper. A compressed two-dimensional turbulent slab containing stochastic magnetic fields is considered, and jitter radiation can produce the linear polarization under this special magnetic field topology. Turbulent Faraday rotation measure (RM) of this slab makes strong wavelength-dependent depolarization. The jitter photons can also scatter with those magnetic clumps inside the turbulent slab, and a nonzero variance of the Stokes parameter V can be generated. Furthermore, the linearly and circularly polarized photons in the optical and radiomore » bands may suffer heavy absorptions from the slab. Thus we consider the polarized jitter radiation transfer processes. Finally, we compare our model results with the optical detections of GRB 091018, GRB 121024A, and GRB 131030A. We suggest simultaneous observations of GRB multi-wavelength polarization in the future.« less

  3. Numerical study of radiative heat transfer and effects of thermal boundary conditions on CLC fuel reactor

    NASA Astrophysics Data System (ADS)

    Ben-Mansour, R.; Li, H.; Habib, M. A.; Hossain, M. M.

    2018-02-01

    Global warming has become a worldwide concern due to its severe impacts and consequences on the climate system and ecosystem. As a promising technology proving good carbon capture ability with low-efficiency penalty, Chemical Looping Combustion technology has risen much interest. However, the radiative heat transfer was hardly studied, nor its effects were clearly declared. The present work provides a mathematical model for radiative heat transfer within fuel reactor of chemical looping combustion systems and conducts a numerical research on the effects of boundary conditions, solid particles reflectivity, particles size, and the operating temperature. The results indicate that radiative heat transfer has very limited impacts on the flow pattern. Meanwhile, the temperature variations in the static bed region (where solid particles are dense) brought by radiation are also insignificant. However, the effects of radiation on temperature profiles within free bed region (where solid particles are very sparse) are obvious, especially when convective-radiative (mixed) boundary condition is applied on fuel reactor walls. Smaller oxygen carrier particle size results in larger absorption & scattering coefficients. The consideration of radiative heat transfer within fuel reactor increases the temperature gradient within free bed region. On the other hand, the conversion performance of fuel is nearly not affected by radiation heat transfer within fuel reactor. However, the consideration of radiative heat transfer enhances the heat transfer between the gas phase and solid phase, especially when the operating temperature is low.

  4. Wavelets solution of MHD 3-D fluid flow in the presence of slip and thermal radiation effects

    NASA Astrophysics Data System (ADS)

    Usman, M.; Zubair, T.; Hamid, M.; Haq, Rizwan Ul; Wang, Wei

    2018-02-01

    This article is devoted to analyze the magnetic field, slip, and thermal radiations effects on generalized three-dimensional flow, heat, and mass transfer in a channel of lower stretching wall. We supposed two various lateral direction rates for the lower stretching surface of the wall while the upper wall of the channel is subjected to constant injection. Moreover, influence of thermal slip on the temperature profile beside the viscous dissipation and Joule heating is also taken into account. The governing set of partial differential equations of the heat transfer and flow are transformed to nonlinear set of ordinary differential equations (ODEs) by using the compatible similarity transformations. The obtained nonlinear ODE set tackled by means of a new wavelet algorithm. The outcomes obtained via modified Chebyshev wavelet method are compared with Runge-Kutta (order-4). The worthy comparison, error, and convergence analysis shows an excellent agreement. Additionally, the graphical representation for various physical parameters including the skin friction coefficient, velocity, the temperature gradient, and the temperature profiles are plotted and discussed. It is observed that for a fixed value of velocity slip parameter a suitable selection of stretching ratio parameter can be helpful in hastening the heat transfer rate and in reducing the viscous drag over the stretching sheet. Finally, the convergence analysis is performed which endorsing that this proposed method is well efficient.

  5. A radiosity-based model to compute the radiation transfer of soil surface

    NASA Astrophysics Data System (ADS)

    Zhao, Feng; Li, Yuguang

    2011-11-01

    A good understanding of interactions of electromagnetic radiation with soil surface is important for a further improvement of remote sensing methods. In this paper, a radiosity-based analytical model for soil Directional Reflectance Factor's (DRF) distributions was developed and evaluated. The model was specifically dedicated to the study of radiation transfer for the soil surface under tillage practices. The soil was abstracted as two dimensional U-shaped or V-shaped geometric structures with periodic macroscopic variations. The roughness of the simulated surfaces was expressed as a ratio of the height to the width for the U and V-shaped structures. The assumption was made that the shadowing of soil surface, simulated by U or V-shaped grooves, has a greater influence on the soil reflectance distribution than the scattering properties of basic soil particles of silt and clay. Another assumption was that the soil is a perfectly diffuse reflector at a microscopic level, which is a prerequisite for the application of the radiosity method. This radiosity-based analytical model was evaluated by a forward Monte Carlo ray-tracing model under the same structural scenes and identical spectral parameters. The statistics of these two models' BRF fitting results for several soil structures under the same conditions showed the good agreements. By using the model, the physical mechanism of the soil bidirectional reflectance pattern was revealed.

  6. A multidimensional unified gas-kinetic scheme for radiative transfer equations on unstructured mesh

    NASA Astrophysics Data System (ADS)

    Sun, Wenjun; Jiang, Song; Xu, Kun

    2017-12-01

    In order to extend the unified gas kinetic scheme (UGKS) to solve radiative transfer equations in a complex geometry, a multidimensional asymptotic preserving implicit method on unstructured mesh is constructed in this paper. With an implicit formulation, the CFL condition for the determination of the time step in UGKS can be much relaxed, and a large time step is used in simulations. Differently from previous direction-by-direction UGKS on orthogonal structured mesh, on unstructured mesh the interface flux transport takes into account multi-dimensional effect, where gradients of radiation intensity and material temperature in both normal and tangential directions of a cell interface are included in the flux evaluation. The multiple scale nature makes the UGKS be able to capture the solutions in both optically thin and thick regions seamlessly. In the optically thick region the condition of cell size being less than photon's mean free path is fully removed, and the UGKS recovers a solver for diffusion equation in such a limit on unstructured mesh. For a distorted quadrilateral mesh, the UGKS goes to a nine-point scheme for the diffusion equation, and it naturally reduces to the standard five-point scheme for a orthogonal quadrilateral mesh. Numerical computations covering a wide range of transport regimes on unstructured and distorted quadrilateral meshes will be presented to validate the current approach.

  7. Review of TRMM/GPM Rainfall Algorithm Validation

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.

    2004-01-01

    A review is presented concerning current progress on evaluation and validation of standard Tropical Rainfall Measuring Mission (TRMM) precipitation retrieval algorithms and the prospects for implementing an improved validation research program for the next generation Global Precipitation Measurement (GPM) Mission. All standard TRMM algorithms are physical in design, and are thus based on fundamental principles of microwave radiative transfer and its interaction with semi-detailed cloud microphysical constituents. They are evaluated for consistency and degree of equivalence with one another, as well as intercompared to radar-retrieved rainfall at TRMM's four main ground validation sites. Similarities and differences are interpreted in the context of the radiative and microphysical assumptions underpinning the algorithms. Results indicate that the current accuracies of the TRMM Version 6 algorithms are approximately 15% at zonal-averaged / monthly scales with precisions of approximately 25% for full resolution / instantaneous rain rate estimates (i.e., level 2 retrievals). Strengths and weaknesses of the TRMM validation approach are summarized. Because the dew of convergence of level 2 TRMM algorithms is being used as a guide for setting validation requirements for the GPM mission, it is important that the GPM algorithm validation program be improved to ensure concomitant improvement in the standard GPM retrieval algorithms. An overview of the GPM Mission's validation plan is provided including a description of a new type of physical validation model using an analytic 3-dimensional radiative transfer model.

  8. Prospective of employing high porosity open-cell metal foams in passive cryogenic radiators for space applications

    NASA Astrophysics Data System (ADS)

    Tisha, Dixit; Indranil, Ghosh

    2017-02-01

    Passive cryogenic radiators work on the principle of dissipating heat to the outer space purely by radiation. High porosity open-cell metal foams are a relatively new class of extended surfaces. These possess the advantages of high surface area density and low weight, characteristics which the space industry looks for. In case of radiative heat transfer, the porous nature of metal foams permits a deeper penetration of the incident radiation. Consequently, the heat transfer area participating in radiative heat exchange increases thereby enhancing the heat transfer rate. However, effective heat conduction in between the foam struts reduces as a result of the void spaces. These two conflicting phenomenon for radiation heat transfer in metal foams have been studied in this work. Similar to the foam conduction-convection heat transfer analysis, a conduction-radiation heat transfer model has been developed for metal foams in analogy with the conventional solid fin theory. Metal foams have been theoretically represented as simple cubic structures. A comparison of the radiative heat transfer through metal foams and solid fins attached to a surface having constant temperature has been presented. Effect of changes in foam characteristic properties such as porosity and pore density have also been studied.

  9. Impact of comet Shoemaker-Levy 9 on Jupiter

    NASA Technical Reports Server (NTRS)

    Takata, Toshiko; Ahrens, Thomas J.; Okeefe, John D.; Orton, Glenn S.

    1994-01-01

    We have employed three-dimensional numerical simulations of the impact of Comet Shoemaker-Levy 9 (SL9) on Jupiter and the resulting vapor plume expansion using the smoothed particle hydrodynamics (SPH) method. An icy body with a diameter of 2 km can penetrate to an altitude of -350 km (0 km = 1 bar) and most of the incident kinetic energy is transferred to the atmosphere between -100 to -250 km. This energy is converted to potential energy of the resulting gas plume. The unconfined plume expands vertically and has a peak radiative power approximately equal to the total radiation from Jupiter's disc. The plume rises a few tens of atmospheric scale heights in approximately 10(exp 2) seconds. The rising plume reaches the altitude of approximately 3000 km; however, no atmospheric gas is accelerated to the escape velocity (approximately 60 km/s).

  10. Impact on comet Shoemaker-Levy 9 on Jupiter

    NASA Technical Reports Server (NTRS)

    Ahrens, Thomas J.; Takata, Toshiko; O'Keefe, John D.; Orton, Glenn S.

    1994-01-01

    Three-dimensional numerical simulations of the impact of Comet Shoemaker - Levy 9 on Jupiter and the resulting vapor plume expansion were conducted using the Smoothed Particle Hydrodynamics (SPH) method. An icy body with a diameter of 2 km can penetrate to an altitude of -350 km (0 km = 1 bar) and most of the incident kinetic energy is transferred to the atmosphere between -100 km to -250 km. This energy is converted to potential energy of the resulting gas plume. The unconfined plume expands vertically and has a peak radiative power approximately equal to the total radiation from Jupiter's disk. The plume rises a few tens of atmospheric scale heights in approximately 10(exp 2) seconds. The rising plume reaches the altitude of approximately 3000 km, but no atmospheric gas is accelerated to the escape velocity (approximately 60 km/s).

  11. Diffraction mode terahertz tomography

    DOEpatents

    Ferguson, Bradley; Wang, Shaohong; Zhang, Xi-Cheng

    2006-10-31

    A method of obtaining a series of images of a three-dimensional object. The method includes the steps of transmitting pulsed terahertz (THz) radiation through the entire object from a plurality of angles, optically detecting changes in the transmitted THz radiation using pulsed laser radiation, and constructing a plurality of imaged slices of the three-dimensional object using the detected changes in the transmitted THz radiation. The THz radiation is transmitted through the object as a two-dimensional array of parallel rays. The optical detection is an array of detectors such as a CCD sensor.

  12. Calculating clear-sky radiative heating rates using the Fu-Liou RTM with inputs from observed and reanalyzed profiles

    NASA Astrophysics Data System (ADS)

    Dolinar, E. K.; Dong, X.; Xi, B.

    2015-12-01

    One-dimensional radiative transfer models (RTM) are a common tool used for calculating atmospheric heating rates and radiative fluxes. In the forward sense, RTMs use known (or observed) quantities of the atmospheric state and surface characteristics to determine the appropriate surface and top-of-atmosphere (TOA) radiative fluxes. The NASA CERES science team uses the modified Fu-Liou RTM to calculate atmospheric heating rates and surface and TOA fluxes using the CERES observed TOA shortwave (SW) and longwave (LW) fluxes as constraints to derive global surface and TOA radiation budgets using a reanalyzed atmospheric state (e.g. temperature and various greenhouse gases) from the newly developed MERRA-2. However, closure studies have shown that using the reanalyzed state as input to the RTM introduces some disparity between the RTM calculated fluxes and surface observed ones. The purpose of this study is to generate a database of observed atmospheric state profiles, from satellite and ground-based sources, at several permanent Atmospheric Radiation Measurement (ARM) Program sites, including the Southern Great Plains (SGP), Northern Slope of Alaska (NSA) and Tropical Western Pacific Nauru (TWP-C2), and Eastern North Atlantic (ENA) permanent facilities. Since clouds are a major modulator of radiative transfer within the Earth's atmosphere, we will focus on the clear-sky conditions in this study, which will set up the baseline for our cloudy studies in the future. Clear-sky flux profiles are calculated using the Edition 4 NASA LaRC modified Fu-Liou RTM. The aforementioned atmospheric profiles generated in-house are used as input into the RTM, as well as from reanalyses. The calculated surface and TOA fluxes are compared with ARM surface measured and CERES satellite observed SW and LW fluxes, respectively. Clear-sky cases are identified by the ARM radar-lidar observations, as well as satellite observations, at the select ARM sites.

  13. 3ARM: A Fast, Accurate Radiative Transfer Model for Use in Climate Models

    NASA Technical Reports Server (NTRS)

    Bergstrom, R. W.; Kinne, S.; Sokolik, I. N.; Toon, O. B.; Mlawer, E. J.; Clough, S. A.; Ackerman, T. P.; Mather, J.

    1996-01-01

    A new radiative transfer model combining the efforts of three groups of researchers is discussed. The model accurately computes radiative transfer in a inhomogeneous absorbing, scattering and emitting atmospheres. As an illustration of the model, results are shown for the effects of dust on the thermal radiation.

  14. 3ARM: A Fast, Accurate Radiative Transfer Model for use in Climate Models

    NASA Technical Reports Server (NTRS)

    Bergstrom, R. W.; Kinne, S.; Sokolik, I. N.; Toon, O. B.; Mlawer, E. J.; Clough, S. A.; Ackerman, T. P.; Mather, J.

    1996-01-01

    A new radiative transfer model combining the efforts of three groups of researchers is discussed. The model accurately computes radiative transfer in a inhomogeneous absorbing, scattering and emitting atmospheres. As an illustration of the model, results are shown for the effects of dust on the thermal radiation.

  15. 3ARM: A Fast, Accurate Radiative Transfer Model For Use in Climate Models

    NASA Technical Reports Server (NTRS)

    Bergstrom, R. W.; Kinne, S.; Sokolik, I. N.; Toon, O. B.; Mlawer, E. J.; Clough, S. A.; Ackerman, T. P.; Mather, J.

    1996-01-01

    A new radiative transfer model combining the efforts of three groups of researchers is discussed. The model accurately computes radiative transfer in a inhomogeneous absorbing, scattering and emitting atmospheres. As an illustration of the model, results are shown for the effects of dust on the thermal radiation.

  16. LANDSAT-D investigations in snow hydrology

    NASA Technical Reports Server (NTRS)

    Dozier, J.

    1983-01-01

    The atmospheric radiative transfer calculation program (ATARD) and its supporting programs (setting up atmospheric profile, making Mie tables and an exponential-sum-fitting table) were completed. More sophisticated treatment of aerosol scattering (including angular phase function or asymmetric factor) and multichannel analysis of results from ATRAD are being developed. Some progress was made on a Monte Carlo program for examining two dimensional effects, specifically a surface boundary condition that varies across a scene. The MONTE program combines ATRAD and the Monte Carlo method together to produce an atmospheric point spread function. Currently the procedure passes monochromatic tests and the results are reasonable.

  17. The effect of finite geometry on the three-dimensional transfer of solar irradiance in clouds

    NASA Technical Reports Server (NTRS)

    Davies, R.

    1978-01-01

    Results are presented for a Monte Carlo model applied to a wide range of cloud widths and heights, and for an analytical model restricted in its application to cuboidally shaped clouds whose length, breadth, and depth may be varied independently; the clouds must be internally homogeneous with respect to their intrinsic radiative properties. Comparative results from the Monte Carlo method and the derived analytical model are presented for a wide range of cloud sizes, with special emphasis on the effects of varying the single scatter albedo, the solar zenith angle, and the scattering phase angle.

  18. Implementation of radiation shielding calculation methods. Volume 1: Synopsis of methods and summary of results

    NASA Technical Reports Server (NTRS)

    Capo, M. A.; Disney, R. K.

    1971-01-01

    The work performed in the following areas is summarized: (1) Analysis of Realistic nuclear-propelled vehicle was analyzed using the Marshall Space Flight Center computer code package. This code package includes one and two dimensional discrete ordinate transport, point kernel, and single scatter techniques, as well as cross section preparation and data processing codes, (2) Techniques were developed to improve the automated data transfer in the coupled computation method of the computer code package and improve the utilization of this code package on the Univac-1108 computer system. (3) The MSFC master data libraries were updated.

  19. Effective Thermal Conductivity of High Porosity Open Cell Nickel Foam

    NASA Technical Reports Server (NTRS)

    Sullins, Alan D.; Daryabeigi, Kamran

    2001-01-01

    The effective thermal conductivity of high-porosity open cell nickel foam samples was measured over a wide range of temperatures and pressures using a standard steady-state technique. The samples, measuring 23.8 mm, 18.7 mm, and 13.6 mm in thickness, were constructed with layers of 1.7 mm thick foam with a porosity of 0.968. Tests were conducted with the specimens subjected to temperature differences of 100 to 1000 K across the thickness and at environmental pressures of 10(exp -4) to 750 mm Hg. All test were conducted in a gaseous nitrogen environment. A one-dimensional finite volume numerical model was developed to model combined radiation/conduction heat transfer in the foam. The radiation heat transfer was modeled using the two-flux approximation. Solid and gas conduction were modeled using standard techniques for high porosity media. A parameter estimation technique was used in conjunction with the measured and predicted thermal conductivities at pressures of 10(exp -4) and 750 mm Hg to determine the extinction coefficient, albedo of scattering, and weighting factors for modeling the conduction thermal conductivity. The measured and predicted conductivities over the intermediate pressure values differed by 13%.

  20. Buoyant Low Stretch Diffusion Flames Beneath Cylindrical PMMA Samples

    NASA Technical Reports Server (NTRS)

    Olson, S. L.; Tien, J. S.

    1999-01-01

    A unique new way to study low gravity flames in normal gravity has been developed. To study flame structure and extinction characteristics in low stretch environments, a normal gravity low-stretch diffusion flame is generated using a cylindrical PMMA sample of varying large radii. Burning rates, visible flame thickness, visible flame standoff distance, temperature profiles in the solid and gas, and radiative loss from the system were measured. A transition from the blowoff side of the flammability map to the quenching side of the flammability map is observed at approximately 6-7/ sec, as determined by curvefits to the non-monotonic trends in peak temperatures, solid and gas-phase temperature gradients, and non-dimensional standoff distances. A surface energy balance reveals that the fraction of heat transfer from the flame that is lost to in-depth conduction and surface radiation increases with decreasing stretch until quenching extinction is observed. This is primarily due to decreased heat transfer from the flame, while the magnitude of the losses remains the same. A unique local extinction flamelet phenomena and associated pre-extinction oscillations are observed at very low stretch. An ultimate quenching extinction limit is found at low stretch with sufficiently high induced heat losses.

  1. High-order solution methods for grey discrete ordinates thermal radiative transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maginot, Peter G., E-mail: maginot1@llnl.gov; Ragusa, Jean C., E-mail: jean.ragusa@tamu.edu; Morel, Jim E., E-mail: morel@tamu.edu

    This work presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge–Kutta time integration techniques. Iterative convergence of the radiation equation ismore » accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.« less

  2. High-order solution methods for grey discrete ordinates thermal radiative transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maginot, Peter G.; Ragusa, Jean C.; Morel, Jim E.

    This paper presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge–Kutta time integration techniques. Iterative convergence of the radiation equation ismore » accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.« less

  3. High-order solution methods for grey discrete ordinates thermal radiative transfer

    DOE PAGES

    Maginot, Peter G.; Ragusa, Jean C.; Morel, Jim E.

    2016-09-29

    This paper presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge–Kutta time integration techniques. Iterative convergence of the radiation equation ismore » accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.« less

  4. Airborne observations and simulations of three-dimensional radiative interactions between Arctic boundary layer clouds and ice floes

    NASA Astrophysics Data System (ADS)

    Schäfer, M.; Bierwirth, E.; Ehrlich, A.; Jäkel, E.; Wendisch, M.

    2015-07-01

    Based on airborne spectral imaging observations, three-dimensional (3-D) radiative effects between Arctic boundary layer clouds and highly variable Arctic surfaces were identified and quantified. A method is presented to discriminate between sea ice and open water under cloudy conditions based on airborne nadir reflectivity γλ measurements in the visible spectral range. In cloudy cases the transition of γλ from open water to sea ice is not instantaneous but horizontally smoothed. In general, clouds reduce γλ above bright surfaces in the vicinity of open water, while γλ above open sea is enhanced. With the help of observations and 3-D radiative transfer simulations, this effect was quantified to range between 0 and 2200 m distance to the sea ice edge (for a dark-ocean albedo of αwater = 0.042 and a sea-ice albedo of αice = 0.91 at 645 nm wavelength). The affected distance Δ L was found to depend on both cloud and sea ice properties. For a low-level cloud at 0-200 m altitude, as observed during the Arctic field campaign VERtical Distribution of Ice in Arctic clouds (VERDI) in 2012, an increase in the cloud optical thickness τ from 1 to 10 leads to a decrease in Δ L from 600 to 250 m. An increase in the cloud base altitude or cloud geometrical thickness results in an increase in Δ L; for τ = 1/10 Δ L = 2200 m/1250 m in case of a cloud at 500-1000 m altitude. To quantify the effect for different shapes and sizes of ice floes, radiative transfer simulations were performed with various albedo fields (infinitely long straight ice edge, circular ice floes, squares, realistic ice floe field). The simulations show that Δ L increases with increasing radius of the ice floe and reaches maximum values for ice floes with radii larger than 6 km (500-1000 m cloud altitude), which matches the results found for an infinitely long, straight ice edge. Furthermore, the influence of these 3-D radiative effects on the retrieved cloud optical properties was investigated. The enhanced brightness of a dark pixel next to an ice edge results in uncertainties of up to 90 and 30 % in retrievals of τ and effective radius reff, respectively. With the help of Δ L, an estimate of the distance to the ice edge is given, where the retrieval uncertainties due to 3-D radiative effects are negligible.

  5. The physics of volume rendering

    NASA Astrophysics Data System (ADS)

    Peters, Thomas

    2014-11-01

    Radiation transfer is an important topic in several physical disciplines, probably most prominently in astrophysics. Computer scientists use radiation transfer, among other things, for the visualization of complex data sets with direct volume rendering. In this article, I point out the connection between physical radiation transfer and volume rendering, and I describe an implementation of direct volume rendering in the astrophysical radiation transfer code RADMC-3D. I show examples for the use of this module on analytical models and simulation data.

  6. Tools for Atmospheric Radiative Transfer: Streamer and FluxNet. Revised

    NASA Technical Reports Server (NTRS)

    Key, Jeffrey R.; Schweiger, Axel J.

    1998-01-01

    Two tools for the solution of radiative transfer problems are presented. Streamer is a highly flexible medium spectral resolution radiative transfer model based on the plane-parallel theory of radiative transfer. Capable of computing either fluxes or radiances, it is suitable for studying radiative processes at the surface or within the atmosphere and for the development of remote-sensing algorithms. FluxNet is a fast neural network-based implementation of Streamer for computing surface fluxes. It allows for a sophisticated treatment of radiative processes in the analysis of large data sets and potential integration into geophysical models where computational efficiency is an issue. Documentation and tools for the development of alternative versions of Fluxnet are available. Collectively, Streamer and FluxNet solve a wide variety of problems related to radiative transfer: Streamer provides the detail and sophistication needed to perform basic research on most aspects of complex radiative processes while the efficiency and simplicity of FluxNet make it ideal for operational use.

  7. Numerical Investigation of Radiative Heat Transfer in Laser Induced Air Plasmas

    NASA Technical Reports Server (NTRS)

    Liu, J.; Chen, Y. S.; Wang, T. S.; Turner, James E. (Technical Monitor)

    2001-01-01

    Radiative heat transfer is one of the most important phenomena in the laser induced plasmas. This study is intended to develop accurate and efficient methods for predicting laser radiation absorption and plasma radiative heat transfer, and investigate the plasma radiation effects in laser propelled vehicles. To model laser radiation absorption, a ray tracing method along with the Beer's law is adopted. To solve the radiative transfer equation in the air plasmas, the discrete transfer method (DTM) is selected and explained. The air plasma radiative properties are predicted by the LORAN code. To validate the present nonequilibrium radiation model, several benchmark problems are examined and the present results are found to match the available solutions. To investigate the effects of plasma radiation in laser propelled vehicles, the present radiation code is coupled into a plasma aerodynamics code and a selected problem is considered. Comparisons of results at different cases show that plasma radiation plays a role of cooling plasma and it lowers the plasma temperature by about 10%. This change in temperature also results in a reduction of the coupling coefficient by about 10-20%. The present study indicates that plasma radiation modeling is very important for accurate modeling of aerodynamics in a laser propelled vehicle.

  8. Light-Cone Effect of Radiation Fields in Cosmological Radiative Transfer Simulations

    NASA Astrophysics Data System (ADS)

    Ahn, Kyungjin

    2015-02-01

    We present a novel method to implement time-delayed propagation of radiation fields in cosmo-logical radiative transfer simulations. Time-delayed propagation of radiation fields requires construction of retarded-time fields by tracking the location and lifetime of radiation sources along the corresponding light-cones. Cosmological radiative transfer simulations have, until now, ignored this "light-cone effect" or implemented ray-tracing methods that are computationally demanding. We show that radiative trans-fer calculation of the time-delayed fields can be easily achieved in numerical simulations when periodic boundary conditions are used, by calculating the time-discretized retarded-time Green's function using the Fast Fourier Transform (FFT) method and convolving it with the source distribution. We also present a direct application of this method to the long-range radiation field of Lyman-Werner band photons, which is important in the high-redshift astrophysics with first stars.

  9. Inhomogeneity and velocity fields effects on scattering polarization in solar prominences

    NASA Astrophysics Data System (ADS)

    Milić, I.; Faurobert, M.

    2015-10-01

    One of the methods for diagnosing vector magnetic fields in solar prominences is the so called "inversion" of observed polarized spectral lines. This inversion usually assumes a fairly simple generative model and in this contribution we aim to study the possible systematic errors that are introduced by this assumption. On two-dimensional toy model of a prominence, we first demonstrate importance of multidimensional radiative transfer and horizontal inhomogeneities. These are able to induce a significant level of polarization in Stokes U, without the need for the magnetic field. We then compute emergent Stokes spectrum from a prominence which is pervaded by the vector magnetic field and use a simple, one-dimensional model to interpret these synthetic observations. We find that inferred values for the magnetic field vector generally differ from the original ones. Most importantly, the magnetic field might seem more inclined than it really is.

  10. Enhancement of the CAVE computer code. [aerodynamic heating package for nose cones and scramjet engine sidewalls

    NASA Technical Reports Server (NTRS)

    Rathjen, K. A.; Burk, H. O.

    1983-01-01

    The computer code CAVE (Conduction Analysis via Eigenvalues) is a convenient and efficient computer code for predicting two dimensional temperature histories within thermal protection systems for hypersonic vehicles. The capabilities of CAVE were enhanced by incorporation of the following features into the code: real gas effects in the aerodynamic heating predictions, geometry and aerodynamic heating package for analyses of cone shaped bodies, input option to change from laminar to turbulent heating predictions on leading edges, modification to account for reduction in adiabatic wall temperature with increase in leading sweep, geometry package for two dimensional scramjet engine sidewall, with an option for heat transfer to external and internal surfaces, print out modification to provide tables of select temperatures for plotting and storage, and modifications to the radiation calculation procedure to eliminate temperature oscillations induced by high heating rates. These new features are described.

  11. Bidirectional plant canopy reflection models derived from the radiation transfer equation

    NASA Technical Reports Server (NTRS)

    Beeth, D. R.

    1975-01-01

    A collection of bidirectional canopy reflection models was obtained from the solution of the radiation transfer equation for a horizontally homogeneous canopy. A phase function is derived for a collection of bidirectionally reflecting and transmitting planar elements characterized geometrically by slope and azimuth density functions. Two approaches to solving the radiation transfer equation for the canopy are presented. One approach factors the radiation transfer equation into a solvable set of three first-order linear differential equations by assuming that the radiation field within the canopy can be initially approximated by three components: uniformly diffuse downwelling, uniformly diffuse upwelling, and attenuated specular. The solution to these equations, which can be iterated to any degree of accuracy, was used to obtain overall canopy reflection from the formal solution to the radiation transfer equation. A programable solution to canopy overall bidirectional reflection is given for this approach. The special example of Lambertian leaves with constant leaf bidirectional reflection and scattering functions is considered, and a programmable solution for this example is given. The other approach to solving the radiation transfer equation, a generalized Chandrasekhar technique, is presented in the appendix.

  12. Spectrally-Invariant Approximation Within Atmospheric Radiative Transfer

    NASA Technical Reports Server (NTRS)

    Marshak, A.; Knyazikhin, Y.; Chiu, J. C.; Wiscombe, W. J.

    2011-01-01

    Certain algebraic combinations of single scattering albedo and solar radiation reflected from, or transmitted through, vegetation canopies do not vary with wavelength. These "spectrally invariant relationships" are the consequence of wavelength independence of the extinction coefficient and scattering phase function in vegetation. In general, this wavelength independence does not hold in the atmosphere, but in clouddominated atmospheres the total extinction and total scattering phase function vary only weakly with wavelength. This paper identifies the atmospheric conditions under which the spectrally invariant approximation can accurately describe the extinction. and scattering properties of cloudy atmospheres. The validity of the assumptions and the accuracy of the approximation are tested with ID radiative transfer calculations using publicly available radiative transfer models: Discrete Ordinate Radiative Transfer (DISORT) and Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART). It is shown for cloudy atmospheres with cloud optical depth above 3, and for spectral intervals that exclude strong water vapor absorption, that the spectrally invariant relationships found in vegetation canopy radiative transfer are valid to better than 5%. The physics behind this phenomenon, its mathematical basis, and possible applications to remote sensing and climate are discussed.

  13. Modeling the influence of leaf demography on remotely sensed data using DART and PROSPECT-D

    NASA Astrophysics Data System (ADS)

    Feret, J. B.; Grau, E.; Barbier, N.; Berveiller, D.; Chave, J.; Durrieu, S.; Gastellu-Etchegorry, J. P.; Hmimina, G.; Lefèvre-Fonollosa, M. J.; Proisy, C.; Soudani, K.; Vincent, G.

    2016-12-01

    The seasonality of Amazon forest productivity and photosynthetic activity has recently been investigated under a new perspective by a series of publications. The debate about possible factors explaining this seasonality is vivid, and the possibility of several hypotheses has been tested, including canopy phenology and leaf demography, and changes in illumination geometry combined with the complex 3D structure of the canopy. A manifold of measurements and techniques have been used to test these hypotheses, including field observations of leaf demography from ground measured litterfall and phenocam, airborne and satellite remote sensing and 3 dimensional radiative transfer modeling. Our study explores the relative influence of leaf demography and illumination geometry on remotely sensed data. To achieve this, we take advantage of the latest advances in the domain of physical modeling at both leaf and canopy scale. The leaf optical properties model PROSPECT-D was used to model leaf optical properties at various growth stages based on field observations and theoretical leaf biochemical composition during its development and senescence. The 3-dimensional radiative transfer model DART was used to simulate various levels of complexity of canopy covers, from a turbid layer to complex canopy derived from airborne LiDAR acquisitions. Data for leaf demography and ontogeny taken from recent publications was used and integrated into canopy simulations corresponding to year-long observations. Data acquisitions were performed in the frame of the HyperTropik project, funded by CNES, Our results focus on analyzing the influence of separated and combined factors such as illumination geometry, leaf biochemistry and leaf demography on various spectral attributes, including Enhanced vegetation index and hyperspectral metrics.

  14. Numerical modeling of reflux solar receivers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogan, R.E. Jr.

    1993-05-01

    Using reflux solar receivers to collect solar energy for dish-Stirling electric power generation systems is presently being investigated by several organizations, including Sandia National Laboratories, Albuquerque, N. Mex. In support of this program, Sandia has developed two numerical models describing the thermal performance of pool-boiler and heat-pipe reflux receivers. Both models are applicable to axisymmetric geometries and they both consider the radiative and convective energy transfer within the receiver cavity, the conductive and convective energy transfer from the receiver housing, and the energy transfer to the receiver working fluid. The primary difference between the models is the level of detailmore » in modeling the heat conduction through the receiver walls. The more detailed model uses a two-dimensional finite control volume method, whereas the simpler model uses a one-dimensional thermal resistance approach. The numerical modeling concepts presented are applicable to conventional tube-type solar receivers, as well as to reflux receivers. Good agreement between the two models is demonstrated by comparing the predicted and measured performance of a pool-boiler reflux receiver being tested at Sandia. For design operating conditions, the receiver thermal efficiencies agree within 1 percent and the average receiver cavity temperature within 1.3 percent. The thermal efficiency and receiver temperatures predicted by the simpler thermal resistance model agree well with experimental data from on-sun tests of the Sandia reflux pool-boiler receiver. An analysis of these comparisons identifies several plausible explanations for the differences between the predicted results and the experimental data.« less

  15. Three-Dimensional Model of Heat and Mass Transfer in Fractured Rocks to Estimate Environmental Conditions Along Heated Drifts

    NASA Astrophysics Data System (ADS)

    Fedors, R. W.; Painter, S. L.

    2004-12-01

    Temperature gradients along the thermally-perturbed drifts of the potential high-level waste repository at Yucca Mountain, Nevada, will drive natural convection and associated heat and mass transfer along drifts. A three-dimensional, dual-permeability, thermohydrological model of heat and mass transfer was used to estimate the magnitude of temperature gradients along a drift. Temperature conditions along heated drifts are needed to support estimates of repository-edge cooling and as input to computational fluid dynamics modeling of in-drift axial convection and the cold-trap process. Assumptions associated with abstracted heat transfer models and two-dimensional thermohydrological models weakly coupled to mountain-scale thermal models can readily be tested using the three-dimensional thermohydrological model. Although computationally expensive, the fully coupled three-dimensional thermohydrological model is able to incorporate lateral heat transfer, including host rock processes of conduction, convection in gas phase, advection in liquid phase, and latent-heat transfer. Results from the three-dimensional thermohydrological model showed that weakly coupling three-dimensional thermal and two-dimensional thermohydrological models lead to underestimates of temperatures and underestimates of temperature gradients over large portions of the drift. The representative host rock thermal conductivity needed for abstracted heat transfer models are overestimated using the weakly coupled models. If axial flow patterns over large portions of drifts are not impeded by the strong cross-sectional flow patterns imparted by the heat rising directly off the waste package, condensation from the cold-trap process will not be limited to the extreme ends of each drift. Based on the three-dimensional thermohydrological model, axial temperature gradients occur sooner over a larger portion of the drift, though high gradients nearest the edge of the potential repository are dampened. This abstract is an independent product of CNWRA and does not necessarily reflect the view or regulatory position of the Nuclear Regulatory Commission.

  16. A passive and active microwave-vector radiative transfer (PAM-VRT) model

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Min, Qilong

    2015-11-01

    A passive and active microwave vector radiative transfer (PAM-VRT) package has been developed. This fast and accurate forward microwave model, with flexible and versatile input and output components, self-consistently and realistically simulates measurements/radiation of passive and active microwave sensors. The core PAM-VRT, microwave radiative transfer model, consists of five modules: gas absorption (two line-by-line databases and four fast models); hydrometeor property of water droplets and ice (spherical and nonspherical) particles; surface emissivity (from Community Radiative Transfer Model (CRTM)); vector radiative transfer of successive order of scattering (VSOS); and passive and active microwave simulation. The PAM-VRT package has been validated against other existing models, demonstrating good accuracy. The PAM-VRT not only can be used to simulate or assimilate measurements of existing microwave sensors, but also can be used to simulate observation results at some new microwave sensors.

  17. Comparison of different substrates for laser-induced electron transfer desorption/ionization of metal complexes

    NASA Astrophysics Data System (ADS)

    Grechnikov, A. A.; Georgieva, V. B.; Donkov, N.; Borodkov, A. S.; Pento, A. V.; Raicheva, Z. G.; Yordanov, Tc A.

    2016-03-01

    Four different substrates, namely, graphite, tungsten, amorphous silicon (α-Si) and titanium dioxide (TiO2) films, were compared in view of the laser-induced electron transfer desorption/ionization (LETDI) of metal coordination complexes. A rhenium complex with 8-mercaptoquinoline, a copper complex with diphenylthiocarbazone and chlorophyll A were studied as the test analytes. The dependencies of the ion yield and the surface temperature on the incident radiation fluence were investigated experimentally and theoretically. The temperature was estimated using the numerical solution of a one-dimensional heat conduction problem with a heat source distributed in time and space. It was found that at the same temperature, the ion yield from the different substrates varies in the range of three orders of magnitude. The direct comparison of all studied substrates revealed that LETDI from the TiO2 and α-Si films offer a better choice for producing molecular ions of metal coordination complexes.

  18. A Network Model for the Effective Thermal Conductivity of Rigid Fibrous Refractory Insulations

    NASA Technical Reports Server (NTRS)

    Marschall, Jochen; Cooper, D. M. (Technical Monitor)

    1995-01-01

    A procedure is described for computing the effective thermal conductivity of a rigid fibrous refractory insulation. The insulation is modeled as a 3-dimensional Cartesian network of thermal conductance. The values and volume distributions of the conductance are assigned to reflect the physical properties of the insulation, its constituent fibers, and any permeating gas. The effective thermal conductivity is computed by considering the simultaneous energy transport by solid conduction, gas conduction and radiation through a cubic volume of model insulation; thus the coupling between heat transfer modes is retained (within the simplifications inherent to the model), rather than suppressed by treating these heat transfer modes as independent. The model takes into account insulation composition, density and fiber anisotropy, as well as the geometric and material properties of the constituent fibers. A relatively good agreement, between calculated and experimentally derived thermal conductivity values, is obtained for a variety of rigid fibrous insulations.

  19. The vector radiative transfer numerical model of coupled ocean-atmosphere system using the matrix-operator method

    NASA Astrophysics Data System (ADS)

    Xianqiang, He; Delu, Pan; Yan, Bai; Qiankun, Zhu

    2005-10-01

    The numerical model of the vector radiative transfer of the coupled ocean-atmosphere system is developed based on the matrix-operator method, which is named PCOART. In PCOART, using the Fourier analysis, the vector radiative transfer equation (VRTE) splits up into a set of independent equations with zenith angle as only angular coordinate. Using the Gaussian-Quadrature method, VRTE is finally transferred into the matrix equation, which is calculated by using the adding-doubling method. According to the reflective and refractive properties of the ocean-atmosphere interface, the vector radiative transfer numerical model of ocean and atmosphere is coupled in PCOART. By comparing with the exact Rayleigh scattering look-up-table of MODIS(Moderate-resolution Imaging Spectroradiometer), it is shown that PCOART is an exact numerical calculation model, and the processing methods of the multi-scattering and polarization are correct in PCOART. Also, by validating with the standard problems of the radiative transfer in water, it is shown that PCOART could be used to calculate the underwater radiative transfer problems. Therefore, PCOART is a useful tool to exactly calculate the vector radiative transfer of the coupled ocean-atmosphere system, which can be used to study the polarization properties of the radiance in the whole ocean-atmosphere system and the remote sensing of the atmosphere and ocean.

  20. Directional interlayer spin-valley transfer in two-dimensional heterostructures

    DOE PAGES

    Schaibley, John R.; Rivera, Pasqual; Yu, Hongyi; ...

    2016-12-14

    Van der Waals heterostructures formed by two different monolayer semiconductors have emerged as a promising platform for new optoelectronic and spin/valleytronic applications. In addition to its atomically thin nature, a two-dimensional semiconductor heterostructure is distinct from its three-dimensional counterparts due to the unique coupled spin-valley physics of its constituent monolayers. In this paper, we report the direct observation that an optically generated spin-valley polarization in one monolayer can be transferred between layers of a two-dimensional MoSe 2–WSe 2 heterostructure. Using non-degenerate optical circular dichroism spectroscopy, we show that charge transfer between two monolayers conserves spin-valley polarization and is only weaklymore » dependent on the twist angle between layers. Finally, our work points to a new spin-valley pumping scheme in nanoscale devices, provides a fundamental understanding of spin-valley transfer across the two-dimensional interface, and shows the potential use of two-dimensional semiconductors as a spin-valley generator in two-dimensional spin/valleytronic devices for storing and processing information.« less

  1. The evolution of stable magnetic fields in stars: an analytical approach

    NASA Astrophysics Data System (ADS)

    Mestel, Leon; Moss, David

    2010-07-01

    The absence of a rigorous proof of the existence of dynamically stable, large-scale magnetic fields in radiative stars has been for many years a missing element in the fossil field theory for the magnetic Ap/Bp stars. Recent numerical simulations, by Braithwaite & Spruit and Braithwaite & Nordlund, have largely filled this gap, demonstrating convincingly that coherent global scale fields can survive for times of the order of the main-sequence lifetimes of A stars. These dynamically stable configurations take the form of magnetic tori, with linked poloidal and toroidal fields, that slowly rise towards the stellar surface. This paper studies a simple analytical model of such a torus, designed to elucidate the physical processes that govern its evolution. It is found that one-dimensional numerical calculations reproduce some key features of the numerical simulations, with radiative heat transfer, Archimedes' principle, Lorentz force and Ohmic decay all playing significant roles.

  2. Solar Ellerman Bombs in 1D Radiative Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Reid, A.; Mathioudakis, M.; Kowalski, A.; Doyle, J. G.; Allred, J. C.

    2017-02-01

    Recent observations from the Interface Region Imaging Spectrograph appear to show impulsive brightenings in high temperature lines, which when combined with simultaneous ground-based observations in Hα, appear co-spatial to Ellerman Bombs (EBs). We use the RADYN one-dimensional radiative transfer code in an attempt to try and reproduce the observed line profiles and simulate the atmospheric conditions of these events. Combined with the MULTI/RH line synthesis codes, we compute the Hα, Ca II 8542 Å, and Mg II h and k lines for these simulated events and compare them to previous observations. Our findings hint that the presence of superheated regions in the photosphere (>10,000 K) is not a plausible explanation for the production of EB signatures. While we are able to recreate EB-like line profiles in Hα, Ca II 8542 Å, and Mg II h and k, we cannot achieve agreement with all of these simultaneously.

  3. Effects of proton irradiation on luminescence and carrier dynamics of self-assembled III-V quatum dots

    NASA Technical Reports Server (NTRS)

    Leon, R.; Marcinkevicius, S.; Siegert, J.; Magness, B.; Taylor, W.; Lobo, C.

    2002-01-01

    The effects of proton irradiation (1.5 MeV) on photoluminescence intensities and carrier dynamics were compared between III-V quantum dots and similar quantum well structures. A significant enhancement in radiation tolerance is seen with three-dimensional quantum confinement. Measurements were carried out in different quantum dot (QD) structures, varying in material (InGaAs/GaAs and InAlAs/AlGaAs), QD surface density (4x10^8 to 3x10'^10 cm^-2), and substrate orientation [(100) and (311) B]. Similar trends were observed for all QD samples. A slight increase in PL emission after low to intermediate proton doses, are also observed in InGaAs/GaAs (100) QD structures. The latter is explained in terms of more efficient carrier transfer from the wetting layer via radiation-induced defects.

  4. Effect of vibrationally excited oxygen on ozone production in the stratosphere

    NASA Technical Reports Server (NTRS)

    Patten, K. O., Jr.; Connell, P. S.; Kinnison, D. E.; Wuebbles, D. J.; Slanger, T. G.; Froidevaux, L.

    1994-01-01

    Photolysis of vibrationally excited oxygen produced by ultraviolet photolysis of ozone in the upper stratosphere is incorporated into the Lawrence Livermore National Laboratory two-dimensional zonally averaged chemical-radiative-transport model of the troposphere and stratosphere. The importance of this potential contributor of odd oxygen to the concentration of ozone is evaluated based on recent information on vibrational distributions of excited oxygen and on preliminary studies of energy transfer from the excited oxygen. When energy transfer rate constants similar to those of Toumi et al. (1991) are assumed, increases in model ozone concentrations of up to 4.0% in the upper stratosphere are found, and the model ozone concentrations are found to agree slightly better with measurements, including recent data from the Upper Atmosphere Research Satellite. However, the ozone increase is only 0.3% when the larger energy transfer rate constants indicated by recent experimental work are applied to the model. An ozone increase of 1% at 50 km requires energy transfer rate constants one-twentieth those of the preliminary observations. As a result, vibrationally excited oxygen processes probably do not contribute enough ozone to be significant in models of the upper stratosphere.

  5. A scalable plant-resolving radiative transfer model based on optimized GPU ray tracing

    USDA-ARS?s Scientific Manuscript database

    A new model for radiative transfer in participating media and its application to complex plant canopies is presented. The goal was to be able to efficiently solve complex canopy-scale radiative transfer problems while also representing sub-plant heterogeneity. In the model, individual leaf surfaces ...

  6. In Vivo 18-FDG/18-Choline-Mediated Cerenkov Radiation Energy Transfer (CRET) Multiplexed Optical Imaging for Human Prostate Carcinoma Detection and Staging

    DTIC Science & Technology

    2017-12-01

    AWARD NUMBER: W81XWH-13-1-0138 TITLE: In Vivo 18-FDG/18-Choline-Mediated Cerenkov Radiation Energy Transfer (CRET) Multiplexed Optical...18Ffluorocholine/ 18F-FDG Cerenkov radiation energy transfer (CRET) coupled with TF- and ErbB2/3- molecularly targeted nearinfrared (NIR) QDs can be used to detect...to examine whether internal illumination via 18F-fluorocholine Cerenkov radiation energy transfer (CRET) coupled with TF- and ErbB2/3- molecularly

  7. Multi-dimensional modeling of a thermal energy storage canister. M.S. Thesis - Cleveland State Univ., Dec. 1990

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.

    1991-01-01

    The Solar Dynamic Power Module being developed for Space Station Freedom uses a eutectic mixture of LiF-CaF2 phase change material (PCM) contained in toroidal canisters for thermal energy storage. Presented are the results from heat transfer analyses of a PCM containment canister. One and two dimensional finite difference computer models are developed to analyze heat transfer in the canister walls, PCM, void, and heat engine working fluid coolant. The modes of heat transfer considered include conduction in canister walls and solid PCM, conduction and pseudo-free convection in liquid PCM, conduction and radiation across PCM vapor filled void regions, and forced convection in the heat engine working fluid. Void shape, location, growth or shrinkage (due to density difference between the solid and liquid PCM phases) are prescribed based on engineering judgment. The PCM phase change process is analyzed using the enthalpy method. The discussion of the results focuses on how canister thermal performance is affected by free convection in the liquid PCM and void heat transfer. Characterizing these effects is important for interpreting the relationship between ground-based canister performance (in 1-g) and expected on-orbit performance (in micro-g). Void regions accentuate canister hot spots and temperature gradients due to their large thermal resistance. Free convection reduces the extent of PCM superheating and lowers canister temperatures during a portion of the PCM thermal charge period. Surprisingly small differences in canister thermal performance result from operation on the ground and operation on-orbit. This lack of a strong gravity dependency is attributed to the large contribution of container walls in overall canister energy redistribution by conduction.

  8. Radiation and phase change of lithium fluoride in an annulus

    NASA Technical Reports Server (NTRS)

    Lund, Kurt O.

    1993-01-01

    A one-dimensional thermal model is developed to evaluate the effect of radiation on the phase change of lithium-fluoride (LiF) in an annular canister under gravitational and microgravitational conditions. Specified heat flux at the outer wall of the canister models focused solar flux; adiabatic and convective conditions are considered for the inner wall. A two-band radiation model is used for the combined-mode heat transfer within the canister, and LiF optical properties relate metal surface properties in vacuum to those in LiF. For axial gravitational conditions, the liquid LiF remains in contact with the two bounding walls, whereas a void gap is used at the outer wall to model possible microgravitational conditions. For the adiabatic cases, exact integrals are obtained for the time required for complete melting of the LiF. Melting was found to occur primarily from the outer wall in the 1-g model, whereas it occurred primarily from the inner wall in the mu-g model. For the convective cases, partially melted steady-state conditions and fully melted conditions are determined to depend on the source flux level, with radiation extending the melting times.

  9. Dynamical and Radiative Modeling of Sagittarius A*

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Roman V.

    2011-09-01

    Sgr A* in our Galactic Center is the closest supermassive black hole (SMBH) with the largest event horizon angular size. Most other SMBHs are likely in the same dormant low-luminosity accretion state as Sgr A*. Thus, the important physical effects in lives of BHs can be best observed and studied in our Galactic Center. One of these effects is electron heat conduction. Conduction may be the main reason why Sgr A* is so dramatically underluminous: it transfers heat outwards from the inner flow and unbinds the outer flow, quenching the accretion. In Chapter 3 I build a realistic model of accretion with conduction, which incorporates feeding by stellar winds. In a model with accretion rate < 1% of the naive Bondi estimate I achieve agreement of the X-ray surface brightness profile and Faraday rotation measure to observations. An earlier model proposed in Chapter 2 with adiabatic accretion of turbulent magnetized medium cannot be tweaked to match the observations. Its accretion rate appears too large, so turbulent magnetic field cannot stop gas from falling in. Low accretion rate leads to a peculiar radiation pattern from near the BH: cyclo-synchrotron polarized radiation is observed in radio/sub-mm. Since it comes from several Schwarzschild radii, the BH spin can be determined, when we overcome all modeling challenges. I fit the average observed radiation spectrum with a theoretical spectrum, which is computed by radiative transfer over a simulation-based model. Relevant plasma effects responsible for the observed polarization state are accurately computed for thermal plasma in Chapter 4. The prescription of how to perform the correct general relativistic polarized radiative transfer is elaborated in Chapter 5. Application of this technique to three-dimensional general relativistic magneto hydrodynamic numerical simulations is reported in Chapter 6. The main results of analysis are that the spin inclination angle is estimated to lie within a narrow range theta est = 50° -- 59°, and most probable value of BH spin is a* = 0.9. I believe the researched topics will play a central role in future modeling of typical SMBH accretion and will lead to effective ways to determine the spins of these starving eaters. Computations of plasma effects reported here will also find applications when comparing models of jets to observations.

  10. Comparing simulations and test data of a radiation damaged charge-coupled device for the Euclid mission

    NASA Astrophysics Data System (ADS)

    Skottfelt, Jesper; Hall, David J.; Gow, Jason P. D.; Murray, Neil J.; Holland, Andrew D.; Prod'homme, Thibaut

    2017-04-01

    The visible imager instrument on board the Euclid mission is a weak-lensing experiment that depends on very precise shape measurements of distant galaxies obtained by a large charge-coupled device (CCD) array. Due to the harsh radiative environment outside the Earth's atmosphere, it is anticipated that the CCDs over the mission lifetime will be degraded to an extent that these measurements will be possible only through the correction of radiation damage effects. We have therefore created a Monte Carlo model that simulates the physical processes taking place when transferring signals through a radiation-damaged CCD. The software is based on Shockley-Read-Hall theory and is made to mimic the physical properties in the CCD as closely as possible. The code runs on a single electrode level and takes the three-dimensional trap position, potential structure of the pixel, and multilevel clocking into account. A key element of the model is that it also takes device specific simulations of electron density as a direct input, thereby avoiding making any analytical assumptions about the size and density of the charge cloud. This paper illustrates how test data and simulated data can be compared in order to further our understanding of the positions and properties of the individual radiation-induced traps.

  11. 3D Radiative Hydrodynamics Simulations of Protoplanetary Disks: A Comparison Between Two Radiative Cooling Algorithms

    NASA Astrophysics Data System (ADS)

    Lord, Jesse W.; Boley, A. C.; Durisen, R. H.

    2006-12-01

    We present a comparison between two three-dimensional radiative hydrodynamics simulations of a gravitationally unstable 0.07 Msun protoplanetary disk around a 0.5 Msun star. The first simulation is the radiatively cooled disk described in Boley et al. (2006, ApJ, 651). This simulation employed an algorithm that uses 3D flux-limited diffusion wherever the vertical Rosseland optical depth is greater than 2/3, which defines the optically thick region. The optically thin atmosphere of the disk, which cools according to its emissivity, is coupled to the optically thick region through an Eddington-like boundary condition. The second simulation employed an algorithm that uses a combination of solving the radiative transfer equation along rays in the z direction and flux limited diffusion in the r and phi directions on a cylindrical grid. We compare the following characteristics of the disk simulations: the mass transport and torques induced by gravitational instabilities, the effective temperature profiles of the disks, the gravitational and Reynolds stresses measured in the disk and those expected in an alpha-disk, and the amplitudes of the Fourier modes. This work has been supported by the National Science Foundation through grant AST-0452975 (astronomy REU program to Indiana University).

  12. Modeling the interaction between plant canopies and the planetary boundary layer using a new 1D multi-layer soil- vegetation-atmosphere transfer (SVAT) scheme combined with a non-local turbulence closure model

    NASA Astrophysics Data System (ADS)

    Yetzer, Kenneth H.

    A new one-dimensional (1D) soil-vegetation-atmospheric transport (SVAT) scheme is coupled to a nonlocal turbulence closure model in order to simulate the interactions between a forested canopy and the planetary boundary layer. The SVAT consists of mechanistic models for both physiological (photosynthesis, stomatal conductance and soil/root and bole respiration) and micrometeorological (radiative transfer and surface energy exchanges) processes. The turbulence closure model is a first-order, nonlocal turbulence closure called transilient turbulence theory (Stull, 1993; Inclan et al., 1995) which includes the effects of form drag, wake turbulence, and interference to vertical mixing by the plant elements. The submodel that accounts for radiative transfer inside the forest has been taken from Norman (1979) and Baldocchi (1989). It includes the effect of varying mean leaf inclination angle with height and it also accounts for leaf clumping The photosynthesis submodel is taken from Nikolov and others (1995). It accounts for both differences between shaded and sunlit leaves and the variation of photosynthetic capacity with height. The model was tested with data obtained from a deciduous forest in Pennsylvania. The results show reasonable agreement with the observations. They also demonstrate the model's ability to simulate phenomena that is characteristic of tall canopies like forests, including counter gradient-fluxes and local wind speed maxima in the trunk space.

  13. The effect of low dose ionizing radiation on homeostasis and functional integrity in an organotypic human skin model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    von Neubeck, Claere; Geniza, Matthew; Kauer, Paula M.

    Outside the protection of earth’s atmosphere, astronauts are exposed to low doses of high linear energy transfer (LET) radiation. Future NASA plans for deep space missions or a permanent settlement on the moon are limited by the health risks associated with space radiation exposures. There is a paucity of direct epidemiological data for low dose exposures to space radiation-relevant high LET ions. Health risk models are used to estimate the risk for such exposures, though these models are based on high dose experiments. There is increasing evidence, however, that low and high dose exposures result in different signaling events atmore » the molecular level, and may involve different response mechanisms. Further, despite their low abundance, high LET particles have been identified as the major contributor to health risk during manned space flight. The human skin is exposed in every external radiation scenario, making it an ideal epithelial tissue model in which to study radiation induced effects. Here, we exposed an in vitro three dimensional (3-D) human organotypic skin tissue model to low doses of high LET oxygen (O), silicon (Si) and iron (Fe) ions. We measured proliferation and differentiation profiles in the skin tissue and examined the integrity of the skin’s barrier function. We discuss the role of secondary particles in changing the proportion of cells receiving a radiation dose, emphasizing the possible impact on radiation-induced health issues in astronauts.« less

  14. Observable Signatures of Wind-driven Chemistry with a Fully Consistent Three-dimensional Radiative Hydrodynamics Model of HD 209458b

    NASA Astrophysics Data System (ADS)

    Drummond, B.; Mayne, N. J.; Manners, J.; Carter, A. L.; Boutle, I. A.; Baraffe, I.; Hébrard, É.; Tremblin, P.; Sing, D. K.; Amundsen, D. S.; Acreman, D.

    2018-03-01

    We present a study of the effect of wind-driven advection on the chemical composition of hot-Jupiter atmospheres using a fully consistent 3D hydrodynamics, chemistry, and radiative transfer code, the Met Office Unified Model (UM). Chemical modeling of exoplanet atmospheres has primarily been restricted to 1D models that cannot account for 3D dynamical processes. In this work, we couple a chemical relaxation scheme to the UM to account for the chemical interconversion of methane and carbon monoxide. This is done consistently with the radiative transfer meaning that departures from chemical equilibrium are included in the heating rates (and emission) and hence complete the feedback between the dynamics, thermal structure, and chemical composition. In this Letter, we simulate the well studied atmosphere of HD 209458b. We find that the combined effect of horizontal and vertical advection leads to an increase in the methane abundance by several orders of magnitude, which is directly opposite to the trend found in previous works. Our results demonstrate the need to include 3D effects when considering the chemistry of hot-Jupiter atmospheres. We calculate transmission and emission spectra, as well as the emission phase curve, from our simulations. We conclude that gas-phase nonequilibrium chemistry is unlikely to explain the model–observation discrepancy in the 4.5 μm Spitzer/IRAC channel. However, we highlight other spectral regions, observable with the James Webb Space Telescope, where signatures of wind-driven chemistry are more prominant.

  15. Use of MISR measurements to study the radiative transfer of an isolated convective cloud: Implications for cloud optical thickness retrieval

    NASA Astrophysics Data System (ADS)

    Cornet, C.; Davies, R.

    2008-02-01

    Radiative transfer simulations of an isolated deep convective cloud reconstructed with stereo-techniques from the Multiangle Imaging Spectroradiometer (MISR) are compared with the reflectances measured at the nine MISR viewing angles. The simulations were done using a three dimensional Monte Carlo model, in which ocean reflectance, aerosol and Rayleigh scattering were prescribed to match the surrounding clear-sky MISR measurements. Making reasonable assumptions regarding the vertical and horizontal distribution of the volume extinction coefficient, we were able to reproduce the MISR measurements with the 3D radiative calculations. While the uniqueness of the these distributions cannot be proven, they all lead to retrievals of much larger cloud optical thickness and cloud water content than for a 1D retrieval. Averaged over the cloud, the difference was a factor of about 3, rising to 9 locally. This is a consequence of horizontal photon transport that serves to highlight the inadequacy of 1D retrievals for the case of deep convective cloud. Concerning the internal cloud properties, we noticed the angular distribution of modeled radiances did not match the measured radiances when an ice crystal phase function was applied. Better estimates of the optical depths and water contents of deep convective clouds appear to be obtainable by integrating an estimate of the extinction coefficient over the vertical cloud extent (when this can assessed) than by attempting to invert the radiance measured from a single-angle view using 1D theory.

  16. A 3D radiative transfer model based on lidar data and its application on hydrological and ecosystem modeling

    NASA Astrophysics Data System (ADS)

    Li, W.; Su, Y.; Harmon, T. C.; Guo, Q.

    2013-12-01

    Light Detection and Ranging (lidar) is an optical remote sensing technology that measures properties of scattered light to find range and/or other information of a distant object. Due to its ability to generate 3-dimensional data with high spatial resolution and accuracy, lidar technology is being increasingly used in ecology, geography, geology, geomorphology, seismology, remote sensing, and atmospheric physics. In this study we construct a 3-dimentional (3D) radiative transfer model (RTM) using lidar data to simulate the spatial distribution of solar radiation (direct and diffuse) on the surface of water and mountain forests. The model includes three sub-models: a light model simulating the light source, a sensor model simulating the camera, and a scene model simulating the landscape. We use ground-based and airborne lidar data to characterize the 3D structure of the study area, and generate a detailed 3D scene model. The interactions between light and object are simulated using the Monte Carlo Ray Tracing (MCRT) method. A large number of rays are generated from the light source. For each individual ray, the full traveling path is traced until it is absorbed or escapes from the scene boundary. By locating the sensor at different positions and directions, we can simulate the spatial distribution of solar energy at the ground, vegetation and water surfaces. These outputs can then be incorporated into meteorological drivers for hydrologic and energy balance models to improve our understanding of hydrologic processes and ecosystem functions.

  17. Evaluation of Bulk Charging in Geostationary Transfer Orbit and Earth Escape Trajectories Using the Numit 1-D Charging Model

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Coffey, Victoria N.; Parker, Linda N.; Blackwell, William C., Jr.; Jun, Insoo; Garrett, Henry B.

    2007-01-01

    The NUMIT 1-dimensional bulk charging model is used as a screening to ol for evaluating time-dependent bulk internal or deep dielectric) ch arging of dielectrics exposed to penetrating electron environments. T he code is modified to accept time dependent electron flux time serie s along satellite orbits for the electron environment inputs instead of using the static electron flux environment input originally used b y the code and widely adopted in bulk charging models. Application of the screening technique ts demonstrated for three cases of spacecraf t exposure within the Earth's radiation belts including a geostationa ry transfer orbit and an Earth-Moon transit trajectory for a range of orbit inclinations. Electric fields and charge densities are compute d for dielectric materials with varying electrical properties exposed to relativistic electron environments along the orbits. Our objectiv e is to demonstrate a preliminary application of the time-dependent e nvironments input to the NUMIT code for evaluating charging risks to exposed dielectrics used on spacecraft when exposed to the Earth's ra diation belts. The results demonstrate that the NUMIT electric field values in GTO orbits with multiple encounters with the Earth's radiat ion belts are consistent with previous studies of charging in GTO orb its and that potential threat conditions for electrostatic discharge exist on lunar transit trajectories depending on the electrical proper ties of the materials exposed to the radiation environment.

  18. 3D Radiative Transfer in Eta Carinae: Application of the SimpleX Algorithm to 3D SPH Simulations of Binary Colliding Winds

    NASA Technical Reports Server (NTRS)

    Clementel, N.; Madura, T. I.; Kruip, C. J. H.; Icke, V.; Gull, T. R.

    2014-01-01

    Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions and evolution, and stellar wind-wind collisions. Recent three-dimensional (3D) simulations set the stage for understanding the highly complex 3D flows in Eta Car. Observations of different broad high- and low-ionization forbidden emission lines provide an excellent tool to constrain the orientation of the system, the primary's mass-loss rate, and the ionizing flux of the hot secondary. In this work we present the first steps towards generating synthetic observations to compare with available and future HST/STIS data. We present initial results from full 3D radiative transfer simulations of the interacting winds in Eta Car. We use the SimpleX algorithm to post-process the output from 3D SPH simulations and obtain the ionization fractions of hydrogen and helium assuming three different mass-loss rates for the primary star. The resultant ionization maps of both species constrain the regions where the observed forbidden emission lines can form. Including collisional ionization is necessary to achieve a better description of the ionization states, especially in the areas shielded from the secondary's radiation. We find that reducing the primary's mass-loss rate increases the volume of ionized gas, creating larger areas where the forbidden emission lines can form. We conclude that post processing 3D SPH data with SimpleX is a viable tool to create ionization maps for Eta Car.

  19. 3D Radiative Transfer in Eta Carinae: Application of the SimpleX Algorithm to 3D SPH Simulations of Binary Colliding Winds

    NASA Technical Reports Server (NTRS)

    Clementel, N.; Madura, T. I.; Kruip, C.J.H.; Icke, V.; Gull, T. R.

    2014-01-01

    Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions and evolution, and stellar wind-wind collisions. Recent three-dimensional (3D) simulations set the stage for understanding the highly complex 3D flows in eta Car. Observations of different broad high- and low-ionization forbidden emission lines provide an excellent tool to constrain the orientation of the system, the primary's mass-loss rate, and the ionizing flux of the hot secondary. In this work we present the first steps towards generating synthetic observations to compare with available and future HST/STIS data. We present initial results from full 3D radiative transfer simulations of the interacting winds in eta Car.We use the SimpleX algorithm to post-process the output from 3D SPH simulations and obtain the ionization fractions of hydrogen and helium assuming three different mass-loss rates for the primary star. The resultant ionization maps of both species constrain the regions where the observed forbidden emission lines can form. Including collisional ionization is necessary to achieve a better description of the ionization states, especially in the areas shielded from the secondary's radiation. We find that reducing the primary's mass-loss rate increases the volume of ionized gas, creating larger areas where the forbidden emission lines can form.We conclude that post processing 3D SPH data with SimpleX is a viable tool to create ionization maps for eta Car.

  20. Radiation Effects on Flow Characteristics in Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Brewster, M. Q.; Gross, Klaus W.

    1989-01-01

    A JANNAF sponsored workshop was held to discuss the importance and role of radiative heat transfer in rocket combustion chambers. The potential impact of radiative transfer on hardware design, reliability, and performance was discussed. The current state of radiative transfer prediction capability in CFD modeling was reviewed and concluded to be substantially lacking in both the physical models used and the radiative property data available. There is a clear need to begin to establish a data base for making radiation calculations in rocket combustion chambers. A natural starting point for this effort would be the NASA thermochemical equilibrium code (CEC).

  1. Atmospheric aerosols: Their Optical Properties and Effects (supplement)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A digest of technical papers is presented. Topics include aerosol size distribution from spectral attenuation with scattering measurements; comparison of extinction and backscattering coefficients for measured and analytic stratospheric aerosol size distributions; using hybrid methods to solve problems in radiative transfer and in multiple scattering; blue moon phenomena; absorption refractive index of aerosols in the Denver pollution cloud; a two dimensional stratospheric model of the dispersion of aerosols from the Fuego volcanic eruption; the variation of the aerosol volume to light scattering coefficient; spectrophone in situ measurements of the absorption of visible light by aerosols; a reassessment of the Krakatoa volcanic turbidity, and multiple scattering in the sky radiance.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozanov, V. B., E-mail: rozanov@sci.lebedev.ru; Vergunova, G. A., E-mail: verg@sci.lebedev.ru

    The main parameters of compression of a target and tendencies at change in the irradiation conditions are determined by analyzing the published results of experiments at the megajoule National Ignition Facility (NIF) on the compression of capsules in indirect-irradiation targets by means of the one-dimensional RADIAN program in the spherical geometry. A possible version of the “failure of ignition” of an indirect-irradiation target under the NIF conditions is attributed to radiation transfer. The application of onedimensional model to analyze the National Ignition Campaign (NIC) experiments allows identifying conditions corresponding to the future ignition regime and distinguishing them from conditions undermore » which ignition does not occur.« less

  3. Temperatures in a runaway greenhouse on the evolving Venus Implications for water loss

    NASA Technical Reports Server (NTRS)

    Watson, A. J.; Donahue, T. M.; Kuhn, W. R.

    1984-01-01

    Some aspects of the temperature structure of a runaway greenhouse on Venus are examined using one-dimensional radiative transfer techniques. It is found that there generally is a region high in the atmosphere where condensation and cloud formation can occur, while deep in the atmosphere the gas is strongly unsaturated with respect to water vapor. The necessity of including clouds introduces considerably uncertainty into the calculation of surface temperatures. Under reasonable assumptions concerning the clouds, temperatures deep in the atmosphere are high enough to produce a plastic or even molten surface, which may significantly ease the problem of explaining the loss of oxygen.

  4. Sounding rocket thermal analysis techniques applied to GAS payloads. [Get Away Special payloads (STS)

    NASA Technical Reports Server (NTRS)

    Wing, L. D.

    1979-01-01

    Simplified analytical techniques of sounding rocket programs are suggested as a means of bringing the cost of thermal analysis of the Get Away Special (GAS) payloads within acceptable bounds. Particular attention is given to two methods adapted from sounding rocket technology - a method in which the container and payload are assumed to be divided in half vertically by a thermal plane of symmetry, and a method which considers the container and its payload to be an analogous one-dimensional unit having the real or correct container top surface area for radiative heat transfer and a fictitious mass and geometry which model the average thermal effects.

  5. Implementation of one and three dimensional models for heat transfer coeffcient identification over the plate cooled by the circular water jets

    NASA Astrophysics Data System (ADS)

    Malinowski, Zbigniew; Cebo-Rudnicka, Agnieszka; Hadała, Beata; Szajding, Artur; Telejko, Tadeusz

    2017-10-01

    A cooling rate affects the mechanical properties of steel which strongly depend on microstructure evolution processes. The heat transfer boundary condition for the numerical simulation of steel cooling by water jets can be determined from the local one dimensional or from the three dimensional inverse solutions in space and time. In the present study the inconel plate has been heated to about 900 °C and then cooled by six circular water jets. The plate temperature has been measured by 30 thermocouples. The heat transfer coefficient and the heat flux distributions at the plate surface have been determined in time and space. The one dimensional solutions have given a local error to the heat transfer coefficient of about 35%. The three dimensional inverse solution has allowed reducing the local error to about 20%. The uncertainty test has confirmed that a better approximation of the heat transfer coefficient distribution over the cooled surface can be obtained even for limited number of thermocouples. In such a case it was necessary to constrain the inverse solution with the interpolated temperature sensors.

  6. Probing energy transfer events in the light harvesting complex 2 (LH2) of Rhodobacter sphaeroides with two-dimensional spectroscopy.

    PubMed

    Fidler, Andrew F; Singh, Ved P; Long, Phillip D; Dahlberg, Peter D; Engel, Gregory S

    2013-10-21

    Excitation energy transfer events in the photosynthetic light harvesting complex 2 (LH2) of Rhodobacter sphaeroides are investigated with polarization controlled two-dimensional electronic spectroscopy. A spectrally broadened pulse allows simultaneous measurement of the energy transfer within and between the two absorption bands at 800 nm and 850 nm. The phased all-parallel polarization two-dimensional spectra resolve the initial events of energy transfer by separating the intra-band and inter-band relaxation processes across the two-dimensional map. The internal dynamics of the 800 nm region of the spectra are resolved as a cross peak that grows in on an ultrafast time scale, reflecting energy transfer between higher lying excitations of the B850 chromophores into the B800 states. We utilize a polarization sequence designed to highlight the initial excited state dynamics which uncovers an ultrafast transfer component between the two bands that was not observed in the all-parallel polarization data. We attribute the ultrafast transfer component to energy transfer from higher energy exciton states to lower energy states of the strongly coupled B850 chromophores. Connecting the spectroscopic signature to the molecular structure, we reveal multiple relaxation pathways including a cyclic transfer of energy between the two rings of the complex.

  7. Multidisciplinary research in the space sciences

    NASA Technical Reports Server (NTRS)

    Broecker, W. S.; Flynn, G. W.

    1983-01-01

    Research activities were carried out in the following areas during this reporting period: (1) astrophysics; (2) climate and atmospheric modeling; and (3) climate applications of earth observations & geological studies. An ultra-low-noise 115 GHz receiver based upon a superconducting tunnel diode mixer has been designed and constructed. The first laboratory tests have yielded spectacular results: a single-sideband noise temperature of 75 K considerably more sensitive than any other receiver at this frequency. The receiver will replace that currently in use on the Columbia-GISS CO Sky Survey telescope. The 1.2 meter millimeter-wave telescope at Columbia University has been used to complete two large-scale surveys of molecular matter in the part of the inner galaxy which is visible from the Northern hemisphere (the first galactic quadrant); one of the distant galaxy and one of the solar neighborhood. The research conducted during the past year in the climate and atmospheric modeling programs has been focused on the development of appropriate atmospheric and upper ocean models, and preliminary applications of these models. Principal models are a one-dimensional radiative-convective model, a three-dimensional global climate model, and an upper ocean model. During the past year this project has focused on development of 2-channel satellite analysis methods and radiative transfer studies in support of multichannel analysis techniques.

  8. Effects of 3-D clouds on atmospheric transmission of solar radiation: Cloud type dependencies inferred from A-train satellite data

    NASA Astrophysics Data System (ADS)

    Ham, Seung-Hee; Kato, Seiji; Barker, Howard W.; Rose, Fred G.; Sun-Mack, Sunny

    2014-01-01

    Three-dimensional (3-D) effects on broadband shortwave top of atmosphere (TOA) nadir radiance, atmospheric absorption, and surface irradiance are examined using 3-D cloud fields obtained from one hour's worth of A-train satellite observations and one-dimensional (1-D) independent column approximation (ICA) and full 3-D radiative transfer simulations. The 3-D minus ICA differences in TOA nadir radiance multiplied by π, atmospheric absorption, and surface downwelling irradiance, denoted as πΔI, ΔA, and ΔT, respectively, are analyzed by cloud type. At the 1 km pixel scale, πΔI, ΔA, and ΔT exhibit poor spatial correlation. Once averaged with a moving window, however, better linear relationships among πΔI, ΔA, and ΔT emerge, especially for moving windows larger than 5 km and large θ0. While cloud properties and solar geometry are shown to influence the relationships amongst πΔI, ΔA, and ΔT, once they are separated by cloud type, their linear relationships become much stronger. This suggests that ICA biases in surface irradiance and atmospheric absorption can be approximated based on ICA biases in nadir radiance as a function of cloud type.

  9. Multiphysics Modeling for Dimensional Analysis of a Self-Heated Molten Regolith Electrolysis Reactor for Oxygen and Metals Production on the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Dominguez, Jesus A.; Sibille, Laurent

    2010-01-01

    The technology of direct electrolysis of molten lunar regolith to produce oxygen and molten metal alloys has progressed greatly in the last few years. The development of long-lasting inert anodes and cathode designs as well as techniques for the removal of molten products from the reactor has been demonstrated. The containment of chemically aggressive oxide and metal melts is very difficult at the operating temperatures ca 1600 C. Containing the molten oxides in a regolith shell can solve this technical issue and can be achieved by designing a self-heating reactor in which the electrolytic currents generate enough Joule heat to create a molten bath. In a first phase, a thermal analysis model was built to study the formation of a melt of lunar basaltic regolith irradiated by a focused solar beam This mode of heating was selected because it relies on radiative heat transfer, which is the dominant mode of transfer of energy in melts at 1600 C. Knowing and setting the Gaussian-type heat flux from the concentrated solar beam and the phase and temperature dependent thermal properties, the model predicts the dimensions and temperature profile of the melt. A validation of the model is presented in this paper through the experimental formation of a spherical cap melt realized by others. The Orbitec/PSI experimental setup uses an 3.6-cm diameter concentrated solar beam to create a hemispheric melt in a bed of lunar regolith simulant contained in a large pot. Upon cooling, the dimensions of the vitrified melt are measured to validate the thermal model. In a second phase, the model is augmented by multiphysics components to compute the passage of electrical currents between electrodes inserted in the molten regolith. The current through the melt generates Joule heating due to the high resistivity of the medium and this energy is transferred into the melt by conduction, convection and primarily by radiation. The model faces challenges in two major areas, the change of phase as temperature increases, and the dominance of radiative heat flux as heat transfer mechanism within the melt the change of phase concerns the regolith itself which is present in states ranging from a fine grain regolith with low thermal conductivity and low density to a vitrified melt with much higher thermal conductivity, and higher density. As the regolith is heated, it starts to soften around 1300 C the melt iS very viscous and evolving gas bubbles out in thick, lava-like fashion. By 1600 C the regolith is completely melted and the viscosity is low The second challenge resides in the proper modeling of the radiative heat flux requiring the addition of the computing-demanding radiative-heat-transfer function to the general heat transfer equation. The model Includes temperature-dependent properties (density, thermal conductivity, heat capacity, and viscosity, and absorption coefficients) and solves the radiative heat flux equation assuming gray (fine grains) and semi-transparent (melt) media and using an absorption coefficient spectral found in the literature for terrestrial minerals similar in composition to those of lunar regolith simulant

  10. 3-D Transient Heat Transfer Analysis of Slab Heating Characteristics in a Reheating Furnace in Hot Strip Mills

    NASA Astrophysics Data System (ADS)

    Jang, J. Y.; Lee, Y. W.; Lin, C. N.; Wang, C. H.

    2016-05-01

    A three-dimensional mathematical transient heat transfer model for the prediction of temperature distribution within the slab has been developed by considering the thermal radiation in the walking-beam-type reheating furnace chamber. The steel slabs are heated up through the non-firing, preheating, 1st-heating, 2nd-heating, and soaking zones in the furnace, respectively, where the furnace wall temperature is function of time. Comparison with the in-situ experimental data from Steel Company in Taiwan shows that the present heat transfer model works well for the prediction of thermal behavior of the slab in the reheating furnace. The effects of different skid button height (H=60mm, 90mm, and 120mm) and different gap distance between two slabs (S=50mm, 75mm, and 100mm) on the slab skid mark formation and temperature profiles are investigated. It is found that the skid mark severity decreases with an increase in the skid button height. The effect of gap distance is important only for the slab edge planes, while it is insignificant for the slab central planes.

  11. FBILI method for multi-level line transfer

    NASA Astrophysics Data System (ADS)

    Kuzmanovska, O.; Atanacković, O.; Faurobert, M.

    2017-07-01

    Efficient non-LTE multilevel radiative transfer calculations are needed for a proper interpretation of astrophysical spectra. In particular, realistic simulations of time-dependent processes or multi-dimensional phenomena require that the iterative method used to solve such non-linear and non-local problem is as fast as possible. There are several multilevel codes based on efficient iterative schemes that provide a very high convergence rate, especially when combined with mathematical acceleration techniques. The Forth-and-Back Implicit Lambda Iteration (FBILI) developed by Atanacković-Vukmanović et al. [1] is a Gauss-Seidel-type iterative scheme that is characterized by a very high convergence rate without the need of complementing it with additional acceleration techniques. In this paper we make the implementation of the FBILI method to the multilevel atom line transfer in 1D more explicit. We also consider some of its variants and investigate their convergence properties by solving the benchmark problem of CaII line formation in the solar atmosphere. Finally, we compare our solutions with results obtained with the well known code MULTI.

  12. AN ANALYTIC RADIATIVE-CONVECTIVE MODEL FOR PLANETARY ATMOSPHERES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Tyler D.; Catling, David C., E-mail: robinson@astro.washington.edu

    2012-09-20

    We present an analytic one-dimensional radiative-convective model of the thermal structure of planetary atmospheres. Our model assumes that thermal radiative transfer is gray and can be represented by the two-stream approximation. Model atmospheres are assumed to be in hydrostatic equilibrium, with a power-law scaling between the atmospheric pressure and the gray thermal optical depth. The convective portions of our models are taken to follow adiabats that account for condensation of volatiles through a scaling parameter to the dry adiabat. By combining these assumptions, we produce simple, analytic expressions that allow calculations of the atmospheric-pressure-temperature profile, as well as expressions formore » the profiles of thermal radiative flux and convective flux. We explore the general behaviors of our model. These investigations encompass (1) worlds where atmospheric attenuation of sunlight is weak, which we show tend to have relatively high radiative-convective boundaries; (2) worlds with some attenuation of sunlight throughout the atmosphere, which we show can produce either shallow or deep radiative-convective boundaries, depending on the strength of sunlight attenuation; and (3) strongly irradiated giant planets (including hot Jupiters), where we explore the conditions under which these worlds acquire detached convective regions in their mid-tropospheres. Finally, we validate our model and demonstrate its utility through comparisons to the average observed thermal structure of Venus, Jupiter, and Titan, and by comparing computed flux profiles to more complex models.« less

  13. Fast multilevel radiative transfer

    NASA Astrophysics Data System (ADS)

    Paletou, Frédéric; Léger, Ludovick

    2007-01-01

    The vast majority of recent advances in the field of numerical radiative transfer relies on approximate operator methods better known in astrophysics as Accelerated Lambda-Iteration (ALI). A superior class of iterative schemes, in term of rates of convergence, such as Gauss-Seidel and Successive Overrelaxation methods were therefore quite naturally introduced in the field of radiative transfer by Trujillo Bueno & Fabiani Bendicho (1995); it was thoroughly described for the non-LTE two-level atom case. We describe hereafter in details how such methods can be generalized when dealing with non-LTE unpolarised radiation transfer with multilevel atomic models, in monodimensional geometry.

  14. The Eighth International Symposium On Radiative Transfer

    NASA Astrophysics Data System (ADS)

    Lemonnier, Denis; Webb, Brent W.; Mengüç, M. Pınar

    2017-08-01

    This Special Issue of The Journal of Quantitative Spectroscopy and Radiative Transfer is based on the papers selected from RAD-16, the Eighth International Symposium on Radiative Transfer, which was held June 2016, in Cappadocia, Turkey. This Symposium is a follow-up of the seven previous meetings held in Kuşadası in 1995, 1997, and 2013; Antalya in 2001 and 2010; Istanbul in 2004; and Bodrum in 2007, all in Turkey. The Symposium was another enjoyable opportunity for the international radiation transfer community to assemble in a comfortable setting to present and discuss the state-of-the-art in research and application.

  15. Multigroup Radiation-Hydrodynamics with a High-Order, Low-Order Method

    DOE PAGES

    Wollaber, Allan Benton; Park, HyeongKae; Lowrie, Robert Byron; ...

    2016-12-09

    Recent efforts at Los Alamos National Laboratory to develop a moment-based, scale-bridging [or high-order (HO)–low-order (LO)] algorithm for solving large varieties of the transport (kinetic) systems have shown promising results. A part of our ongoing effort is incorporating this methodology into the framework of the Eulerian Applications Project to achieve algorithmic acceleration of radiationhydrodynamics simulations in production software. By starting from the thermal radiative transfer equations with a simple material-motion correction, we derive a discretely consistent energy balance equation (LO equation). We demonstrate that the corresponding LO system for the Monte Carlo HO solver is closely related to the originalmore » LO system without material-motion corrections. We test the implementation on a radiative shock problem and show consistency between the energy densities and temperatures in the HO and LO solutions as well as agreement with the semianalytic solution. We also test the approach on a more challenging two-dimensional problem and demonstrate accuracy enhancements and algorithmic speedups. This paper extends a recent conference paper by including multigroup effects.« less

  16. Protein nanocrystallography: growth mechanism and atomic structure of crystals induced by nanotemplates.

    PubMed

    Pechkova, E; Vasile, F; Spera, R; Fiordoro, S; Nicolini, C

    2005-11-01

    Protein nanocrystallography, a new technology for crystal growth based on protein nanotemplates, has recently been shown to produce diffracting, stable and radiation-resistant lysozyme crystals. This article, by computing these lysozyme crystals' atomic structures, obtained by the diffraction patterns of microfocused synchrotron radiation, provides a possible mechanism for this increased stability, namely a significant decrease in water content accompanied by a minor but significant alpha-helix increase. These data are shown to be compatible with the circular dichroism and two-dimensional Fourier transform spectra of high-resolution H NMR of proteins dissolved from the same nanotemplate-based crystal versus those from a classical crystal. Finally, evidence for protein direct transfer from the nanotemplate to the drop and the participation of the template proteins in crystal nucleation and growth is provided by high-resolution NMR spectrometry and mass spectrometry. Furthermore, the lysozyme nanotemplate appears stable up to 523 K, as confirmed by a thermal denaturation study using spectropolarimetry. The overall data suggest that heat-proof lysozyme presence in the crystal provides a possible explanation of the crystal's resistance to synchrotron radiation.

  17. Photoluminescence of radiation-induced color centers in lithium fluoride thin films for advanced diagnostics of proton beams

    NASA Astrophysics Data System (ADS)

    Piccinini, M.; Ambrosini, F.; Ampollini, A.; Picardi, L.; Ronsivalle, C.; Bonfigli, F.; Libera, S.; Nichelatti, E.; Vincenti, M. A.; Montereali, R. M.

    2015-06-01

    Systematic irradiation of thermally evaporated 0.8 μm thick polycrystalline lithium fluoride films on glass was performed by proton beams of 3 and 7 MeV energies, produced by a linear accelerator, in a fluence range from 1011 to 1015 protons/cm2. The visible photoluminescence spectra of radiation-induced F2 and F3+ laser active color centers, which possess almost overlapping absorption bands at about 450 nm, were measured under laser pumping at 458 nm. On the basis of simulations of the linear energy transfer with proton penetration depth in LiF, it was possible to obtain the behavior of the measured integrated photoluminescence intensity of proton irradiated LiF films as a function of the deposited dose. The photoluminescence signal is linearly dependent on the deposited dose in the interval from 103 to about 106 Gy, independently from the used proton energies. This behavior is very encouraging for the development of advanced solid state radiation detectors based on optically transparent LiF thin films for proton beam diagnostics and two-dimensional dose mapping.

  18. Modeling of high pressure arc-discharge with a fully-implicit Navier-Stokes stabilized finite element flow solver

    NASA Astrophysics Data System (ADS)

    Sahai, A.; Mansour, N. N.; Lopez, B.; Panesi, M.

    2017-05-01

    This work addresses the modeling of high pressure electric discharge in an arc-heated wind tunnel. The combined numerical solution of Poisson’s equation, radiative transfer equations, and the set of Favre-averaged thermochemical nonequilibrium Navier-Stokes equations allows for the determination of the electric, radiation, and flow fields, accounting for their mutual interaction. Semi-classical statistical thermodynamics is used to determine the plasma thermodynamic properties, while transport properties are obtained from kinetic principles with the Chapman-Enskog method. A multi-temperature formulation is used to account for thermal non-equilibrium. Finally, the turbulence closure of the flow equations is obtained by means of the Spalart-Allmaras model, which requires the solution of an additional scalar transport equation. A Streamline upwind Petrov-Galerkin stabilized finite element formulation is employed to solve the Navier-Stokes equation. The electric field equation is solved using the standard Galerkin formulation. A stable formulation for the radiative transfer equations is obtained using the least-squares finite element method. The developed simulation framework has been applied to investigate turbulent plasma flows in the 20 MW Aerodynamic Heating Facility at NASA Ames Research Center. The current model is able to predict the process of energy addition and re-distribution due to Joule heating and thermal radiation, resulting in a hot central core surrounded by colder flow. The use of an unsteady three-dimensional treatment also allows the asymmetry due to a dynamic electric arc attachment point in the cathode chamber to be captured accurately. The current work paves the way for detailed estimation of operating characteristics for arc-heated wind tunnels which are critical in testing thermal protection systems.

  19. A unified radiative magnetohydrodynamics code for lightning-like discharge simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Qiang, E-mail: cq0405@126.com; Chen, Bin, E-mail: emcchen@163.com; Xiong, Run

    2014-03-15

    A two-dimensional Eulerian finite difference code is developed for solving the non-ideal magnetohydrodynamic (MHD) equations including the effects of self-consistent magnetic field, thermal conduction, resistivity, gravity, and radiation transfer, which when combined with specified pulse current models and plasma equations of state, can be used as a unified lightning return stroke solver. The differential equations are written in the covariant form in the cylindrical geometry and kept in the conservative form which enables some high-accuracy shock capturing schemes to be equipped in the lightning channel configuration naturally. In this code, the 5-order weighted essentially non-oscillatory scheme combined with Lax-Friedrichs fluxmore » splitting method is introduced for computing the convection terms of the MHD equations. The 3-order total variation diminishing Runge-Kutta integral operator is also equipped to keep the time-space accuracy of consistency. The numerical algorithms for non-ideal terms, e.g., artificial viscosity, resistivity, and thermal conduction, are introduced in the code via operator splitting method. This code assumes the radiation is in local thermodynamic equilibrium with plasma components and the flux limited diffusion algorithm with grey opacities is implemented for computing the radiation transfer. The transport coefficients and equation of state in this code are obtained from detailed particle population distribution calculation, which makes the numerical model is self-consistent. This code is systematically validated via the Sedov blast solutions and then used for lightning return stroke simulations with the peak current being 20 kA, 30 kA, and 40 kA, respectively. The results show that this numerical model consistent with observations and previous numerical results. The population distribution evolution and energy conservation problems are also discussed.« less

  20. Vectorial finite elements for solving the radiative transfer equation

    NASA Astrophysics Data System (ADS)

    Badri, M. A.; Jolivet, P.; Rousseau, B.; Le Corre, S.; Digonnet, H.; Favennec, Y.

    2018-06-01

    The discrete ordinate method coupled with the finite element method is often used for the spatio-angular discretization of the radiative transfer equation. In this paper we attempt to improve upon such a discretization technique. Instead of using standard finite elements, we reformulate the radiative transfer equation using vectorial finite elements. In comparison to standard finite elements, this reformulation yields faster timings for the linear system assemblies, as well as for the solution phase when using scattering media. The proposed vectorial finite element discretization for solving the radiative transfer equation is cross-validated against a benchmark problem available in literature. In addition, we have used the method of manufactured solutions to verify the order of accuracy for our discretization technique within different absorbing, scattering, and emitting media. For solving large problems of radiation on parallel computers, the vectorial finite element method is parallelized using domain decomposition. The proposed domain decomposition method scales on large number of processes, and its performance is unaffected by the changes in optical thickness of the medium. Our parallel solver is used to solve a large scale radiative transfer problem of the Kelvin-cell radiation.

  1. Spectral collocation method with a flexible angular discretization scheme for radiative transfer in multi-layer graded index medium

    NASA Astrophysics Data System (ADS)

    Wei, Linyang; Qi, Hong; Sun, Jianping; Ren, Yatao; Ruan, Liming

    2017-05-01

    The spectral collocation method (SCM) is employed to solve the radiative transfer in multi-layer semitransparent medium with graded index. A new flexible angular discretization scheme is employed to discretize the solid angle domain freely to overcome the limit of the number of discrete radiative direction when adopting traditional SN discrete ordinate scheme. Three radial basis function interpolation approaches, named as multi-quadric (MQ), inverse multi-quadric (IMQ) and inverse quadratic (IQ) interpolation, are employed to couple the radiative intensity at the interface between two adjacent layers and numerical experiments show that MQ interpolation has the highest accuracy and best stability. Variable radiative transfer problems in double-layer semitransparent media with different thermophysical properties are investigated and the influence of these thermophysical properties on the radiative transfer procedure in double-layer semitransparent media is also analyzed. All the simulated results show that the present SCM with the new angular discretization scheme can predict the radiative transfer in multi-layer semitransparent medium with graded index efficiently and accurately.

  2. Detailed modeling analysis for soot formation and radiation in microgravity gas jet diffusion flames

    NASA Technical Reports Server (NTRS)

    Ku, Jerry C.; Tong, LI; Greenberg, Paul S.

    1995-01-01

    Radiation heat transfer in combustion systems has been receiving increasing interest. In the case of hydrocarbon fuels, a significant portion of the radiation comes from soot particles, justifying the need for detailed soot formation model and radiation transfer calculations. For laminar gas jet diffusion flames, results from this project (4/1/91 8/22/95) and another NASA study show that flame shape, soot concentration, and radiation heat fluxes are substantially different under microgravity conditions. Our emphasis is on including detailed soot transport models and a detailed solution for radiation heat transfer, and on coupling them with the flame structure calculations. In this paper, we will discuss the following three specific areas: (1) Comparing two existing soot formation models, and identifying possible improvements; (2) A simple yet reasonably accurate approach to calculating total radiative properties and/or fluxes over the spectral range; and (3) Investigating the convergence of iterations between the flame structure solver and the radiation heat transfer solver.

  3. In Vivo 18-FDG/18-Choline-Mediated Cerenkov Radiation Energy Transfer (CRET) Multiplexed Optical Imaging for Human Prostate Carcinoma Detection and Staging

    DTIC Science & Technology

    2014-10-01

    Transfer ( CRET ) Multiplexed Optical Imaging for Human Prostate Carcinoma Detection and Staging PRINCIPAL INVESTIGATOR: Susan L. Deutscher...SUBTITLE 5a. CONTRACT NUMBER In Vivo 18-FDG/18-Choline-Mediated Cerenkov Radiation Energy Transfer ( CRET ) Multiplexed Optical Imaging for Human...internal illumination via 18F-fluorocholine Cerenkov radiation energy transfer ( CRET ) coupled with TF- and ErbB2/3- molecularly targeted near-infrared

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lv, Q.; Kraus, A.; Hu, R.

    CFD analysis has been focused on important component-level phenomena using STARCCM+ to supplement the system analysis of integral system behavior. A notable area of interest was the cavity region. This area is of particular interest for CFD analysis due to the multi-dimensional flow and complex heat transfer (thermal radiation heat transfer and natural convection), which are not simulated directly by RELAP5. CFD simulations allow for the estimation of the boundary heat flux distribution along the riser tubes, which is needed in the RELAP5 simulations. The CFD results can also provide additional data to help establish what level of modeling detailmore » is necessary in RELAP5. It was found that the flow profiles in the cavity region are simpler for the water-based concept than for the air-cooled concept. The local heat flux noticeably increases axially, and is higher in the fins than in the riser tubes. These results were utilized in RELAP5 simulations as boundary conditions, to provide better temperature predictions in the system level analyses. It was also determined that temperatures were higher in the fins than the riser tubes, but within design limits for thermal stresses. Higher temperature predictions were identified in the edge fins, in part due to additional thermal radiation from the side cavity walls.« less

  5. Radiative transfer calculations of the diffuse ionized gas in disc galaxies with cosmic ray feedback

    NASA Astrophysics Data System (ADS)

    Vandenbroucke, Bert; Wood, Kenneth; Girichidis, Philipp; Hill, Alex S.; Peters, Thomas

    2018-05-01

    The large vertical scale heights of the diffuse ionized gas (DIG) in disc galaxies are challenging to model, as hydrodynamical models including only thermal feedback seem to be unable to support gas at these heights. In this paper, we use a three-dimensional Monte Carlo radiation transfer code to post-process disc simulations of the Simulating the Life-Cycle of Molecular Clouds project that include feedback by cosmic rays. We show that the more extended discs in simulations including cosmic ray feedback naturally lead to larger scale heights for the DIG which are more in line with observed scale heights. We also show that including a fiducial cosmic ray heating term in our model can help to increase the temperature as a function of disc scale height, but fails to reproduce observed DIG nitrogen and sulphur forbidden line intensities. We show that, to reproduce these line emissions, we require a heating mechanism that affects gas over a larger density range than is achieved by cosmic ray heating, which can be achieved by fine tuning the total luminosity of ionizing sources to get an appropriate ionizing spectrum as a function of scale height. This result sheds a new light on the relation between forbidden line emissions and temperature profiles for realistic DIG gas distributions.

  6. Developing Present-day Proxy Cases Based on NARVAL Data for Investigating Low Level Cloud Responses to Future Climate Change.

    NASA Astrophysics Data System (ADS)

    Reilly, Stephanie

    2017-04-01

    The energy budget of the entire global climate is significantly influenced by the presence of boundary layer clouds. The main aim of the High Definition Clouds and Precipitation for Advancing Climate Prediction (HD(CP)2) project is to improve climate model predictions by means of process studies of clouds and precipitation. This study makes use of observed elevated moisture layers as a proxy of future changes in tropospheric humidity. The associated impact on radiative transfer triggers fast responses in boundary layer clouds, providing a framework for investigating this phenomenon. The investigation will be carried out using data gathered during the Next-generation Aircraft Remote-sensing for VALidation (NARVAL) South campaigns. Observational data will be combined with ECMWF reanalysis data to derive the large scale forcings for the Large Eddy Simulations (LES). Simulations will be generated for a range of elevated moisture layers, spanning a multi-dimensional phase space in depth, amplitude, elevation, and cloudiness. The NARVAL locations will function as anchor-points. The results of the large eddy simulations and the observations will be studied and compared in an attempt to determine how simulated boundary layer clouds react to changes in radiative transfer from the free troposphere. Preliminary LES results will be presented and discussed.

  7. Experimental determination of soil heat storage for the simulation of heat transport in a coastal wetland

    NASA Astrophysics Data System (ADS)

    Swain, Michael; Swain, Matthew; Lohmann, Melinda; Swain, Eric

    2012-02-01

    SummaryTwo physical experiments were developed to better define the thermal interaction of wetland water and the underlying soil layer. This information is important to numerical models of flow and heat transport that have been developed to support biological studies in the South Florida coastal wetland areas. The experimental apparatus consists of two 1.32 m diameter by 0.99 m tall, trailer-mounted, well-insulated tanks filled with soil and water. A peat-sand-soil mixture was used to represent the wetland soil, and artificial plants were used as a surrogate for emergent wetland vegetation based on size and density observed in the field. The tanks are instrumented with thermocouples to measure vertical and horizontal temperature variations and were placed in an outdoor environment subject to solar radiation, wind, and other factors affecting the heat transfer. Instruments also measure solar radiation, relative humidity, and wind speed. Tests indicate that heat transfer through the sides and bottoms of the tanks is negligible, so the experiments represent vertical heat transfer effects only. The temperature fluctuations measured in the vertical profile through the soil and water are used to calibrate a one-dimensional heat-transport model. The model was used to calculate the thermal conductivity of the soil. Additionally, the model was used to calculate the total heat stored in the soil. This information was then used in a lumped parameter model to calculate an effective depth of soil which provides the appropriate heat storage to be combined with the heat storage in the water column. An effective depth, in the model, of 5.1 cm of wetland soil represents the heat storage needed to match the data taken in the tank containing 55.9 cm of peat/sand/soil mix. The artificial low-density laboratory sawgrass reduced the solar energy absorbed by the 35.6 cm of water and 55.9 cm of soil at midday by less than 5%. The maximum heat transfer into the underlying peat-sand-soil mix lags behind maximum solar radiation by approximately 2 h. A slightly longer temperature lag was observed between the maximum solar radiation and maximum water temperature both with and without soil.

  8. Scaling dimensions in spectroscopy of soil and vegetation

    NASA Astrophysics Data System (ADS)

    Malenovský, Zbyněk; Bartholomeus, Harm M.; Acerbi-Junior, Fausto W.; Schopfer, Jürg T.; Painter, Thomas H.; Epema, Gerrit F.; Bregt, Arnold K.

    2007-05-01

    The paper revises and clarifies definitions of the term scale and scaling conversions for imaging spectroscopy of soil and vegetation. We demonstrate a new four-dimensional scale concept that includes not only spatial but also the spectral, directional and temporal components. Three scaling remote sensing techniques are reviewed: (1) radiative transfer, (2) spectral (un)mixing, and (3) data fusion. Relevant case studies are given in the context of their up- and/or down-scaling abilities over the soil/vegetation surfaces and a multi-source approach is proposed for their integration. Radiative transfer (RT) models are described to show their capacity for spatial, spectral up-scaling, and directional down-scaling within a heterogeneous environment. Spectral information and spectral derivatives, like vegetation indices (e.g. TCARI/OSAVI), can be scaled and even tested by their means. Radiative transfer of an experimental Norway spruce ( Picea abies (L.) Karst.) research plot in the Czech Republic was simulated by the Discrete Anisotropic Radiative Transfer (DART) model to prove relevance of the correct object optical properties scaled up to image data at two different spatial resolutions. Interconnection of the successive modelling levels in vegetation is shown. A future development in measurement and simulation of the leaf directional spectral properties is discussed. We describe linear and/or non-linear spectral mixing techniques and unmixing methods that demonstrate spatial down-scaling. Relevance of proper selection or acquisition of the spectral endmembers using spectral libraries, field measurements, and pure pixels of the hyperspectral image is highlighted. An extensive list of advanced unmixing techniques, a particular example of unmixing a reflective optics system imaging spectrometer (ROSIS) image from Spain, and examples of other mixture applications give insight into the present status of scaling capabilities. Simultaneous spatial and temporal down-scaling by means of a data fusion technique is described. A demonstrative example is given for the moderate resolution imaging spectroradiometer (MODIS) and LANDSAT Thematic Mapper (TM) data from Brazil. Corresponding spectral bands of both sensors were fused via a pyramidal wavelet transform in Fourier space. New spectral and temporal information of the resultant image can be used for thematic classification or qualitative mapping. All three described scaling techniques can be integrated as the relevant methodological steps within a complex multi-source approach. We present this concept of combining numerous optical remote sensing data and methods to generate inputs for ecosystem process models.

  9. Experimental determination of soil heat storage for the simulation of heat transport in a coastal wetland

    USGS Publications Warehouse

    Swain, Michael; Swain, Matthew; Lohmann, Melinda; Swain, Eric

    2012-01-01

    Two physical experiments were developed to better define the thermal interaction of wetland water and the underlying soil layer. This information is important to numerical models of flow and heat transport that have been developed to support biological studies in the South Florida coastal wetland areas. The experimental apparatus consists of two 1.32. m diameter by 0.99. m tall, trailer-mounted, well-insulated tanks filled with soil and water. A peat-sand-soil mixture was used to represent the wetland soil, and artificial plants were used as a surrogate for emergent wetland vegetation based on size and density observed in the field. The tanks are instrumented with thermocouples to measure vertical and horizontal temperature variations and were placed in an outdoor environment subject to solar radiation, wind, and other factors affecting the heat transfer. Instruments also measure solar radiation, relative humidity, and wind speed.Tests indicate that heat transfer through the sides and bottoms of the tanks is negligible, so the experiments represent vertical heat transfer effects only. The temperature fluctuations measured in the vertical profile through the soil and water are used to calibrate a one-dimensional heat-transport model. The model was used to calculate the thermal conductivity of the soil. Additionally, the model was used to calculate the total heat stored in the soil. This information was then used in a lumped parameter model to calculate an effective depth of soil which provides the appropriate heat storage to be combined with the heat storage in the water column. An effective depth, in the model, of 5.1. cm of wetland soil represents the heat storage needed to match the data taken in the tank containing 55.9. cm of peat/sand/soil mix. The artificial low-density laboratory sawgrass reduced the solar energy absorbed by the 35.6. cm of water and 55.9. cm of soil at midday by less than 5%. The maximum heat transfer into the underlying peat-sand-soil mix lags behind maximum solar radiation by approximately 2. h. A slightly longer temperature lag was observed between the maximum solar radiation and maximum water temperature both with and without soil. ?? 2012 Elsevier B.V.

  10. Tree crown structural characterization: A study using terrestrial laser scanning and three-dimensional radiative transfer modeling

    NASA Astrophysics Data System (ADS)

    Moorthy, Inian

    Spectroscopic observational data for vegetated environments, have been coupled with 3D physically-based radiative transfer models for retrievals of biochemical and biophysical indicators of vegetation health and condition. With the recent introduction of Terrestrial Laser Scanning (TLS) units, there now exists a means of rapidly measuring intricate structural details of vegetation canopies, which can also serve as input into 3D radiative transfer models. In this investigation, Intelligent Laser Ranging and Imaging System (ILRIS-3D) data was acquired of individual tree crowns in laboratory, and field-based experiments. The ILRIS-3D uses the Time-Of-Flight (TOF) principle to measure the distances of objects based on the time interval between laser pulse exitance and return, upon reflection from an object. At the laboratory-level, this exploratory study demonstrated and validated innovative approaches for retrieving crown-level estimates of Leaf Area Index (LAI) (r2 = 0.98, rmse = 0.26m2/m2), a critical biophysical parameter for vegetation monitoring and modeling. These methods were implemented and expanded in field experiments conducted in olive (Olea europaea L.) orchards in Cordoba, Spain, where ILRIS-3D observations for 24 structurally-variable trees were made. Robust methodologies were developed to characterize diagnostic architectural parameters, such as tree height (r2 = 0.97, rmse = 0.21m), crown width (r 2 = 0.98, rmse = 0.12m), crown height (r2 = 0.81, rmse = 0.11m), crown volume (r2 = 0.99, rmse = 2.6m3), and LAI (r2 = 0.76, rmse = 0.27m2/ m2). These parameters were subsequently used as direct inputs into the Forest LIGHT (FLIGHT) 3D ray tracing model for characterization of the spectral behavior of the olive crowns. Comparisons between FLIGHT-simulated spectra and measured data showed small differences in the visible (< 3%) and near infrared (< 10%) spectral ranges. These differences between model simulations and measurements were significantly correlated to TLS-derived tree crown complexity metrics. The specific implications of internal crown complexity on estimating leaf chlorophyll concentration, a pertinent physiological health indicator, is highlighted. This research demonstrates that TLS systems can potentially be the new observational tool and benchmark for precise characterization of vegetation architecture for synergy with 3D radiative transfer models for improved operational management of agricultural crops.

  11. Satellite Remote Sensing of Tropical Precipitation and Ice Clouds for GCM Verification

    NASA Technical Reports Server (NTRS)

    Evans, K. Franklin

    2001-01-01

    This project, supported by the NASA New Investigator Program, has primarily been funding a graduate student, Darren McKague. Since August 1999 Darren has been working part time at Raytheon, while continuing his PhD research. Darren is planning to finish his thesis work in May 2001, thus some of the work described here is ongoing. The proposed research was to use GOES visible and infrared imager data and SSM/I microwave data to obtain joint distributions of cirrus cloud ice mass and precipitation for a study region in the Eastern Tropical Pacific. These joint distributions of cirrus cloud and rainfall were to be compared to those from the CSU general circulation model to evaluate the cloud microphysical amd cumulus parameterizations in the GCM. Existing algorithms were to be used for the retrieval of cloud ice water path from GOES (Minnis) and rainfall from SSM/I (Wilheit). A theoretical study using radiative transfer models and realistic variations in cloud and precipitation profiles was to be used to estimate the retrieval errors. Due to the unavailability of the GOES satellite cloud retrieval algorithm from Dr. Minnis (a co-PI), there was a change in the approach and emphasis of the project. The new approach was to develop a completely new type of remote sensing algorithm - one to directly retrieve joint probability density functions (pdf's) of cloud properties from multi-dimensional histograms of satellite radiances. The usual approach is to retrieve individual pixels of variables (i.e. cloud optical depth), and then aggregate the information. Only statistical information is actually needed, however, and so a more direct method is desirable. We developed forward radiative transfer models for the SSM/I and GOES channels, originally for testing the retrieval algorithms. The visible and near infrared ice scattering information is obtained from geometric ray tracing of fractal ice crystals (Andreas Macke), while the mid-infrared and microwave scattering is computed with Mie scattering. The radiative transfer is performed with the Spherical Harmonic Discrete Ordinate Method (developed by the PI), and infrared molecular absorption is included with the correlated k-distribution method. The SHDOM radiances have been validated by comparison to version 2 of DISORT (the community "standard" discrete-ordinates radiative transfer model), however we use SHDOM since it is computationally more efficient.

  12. Solving transient conduction and radiation heat transfer problems using the lattice Boltzmann method and the finite volume method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Subhash C.; Roy, Hillol K.

    2007-04-10

    The lattice Boltzmann method (LBM) was used to solve the energy equation of a transient conduction-radiation heat transfer problem. The finite volume method (FVM) was used to compute the radiative information. To study the compatibility of the LBM for the energy equation and the FVM for the radiative transfer equation, transient conduction and radiation heat transfer problems in 1-D planar and 2-D rectangular geometries were considered. In order to establish the suitability of the LBM, the energy equations of the two problems were also solved using the FVM of the computational fluid dynamics. The FVM used in the radiative heatmore » transfer was employed to compute the radiative information required for the solution of the energy equation using the LBM or the FVM (of the CFD). To study the compatibility and suitability of the LBM for the solution of energy equation and the FVM for the radiative information, results were analyzed for the effects of various parameters such as the scattering albedo, the conduction-radiation parameter and the boundary emissivity. The results of the LBM-FVM combination were found to be in excellent agreement with the FVM-FVM combination. The number of iterations and CPU times in both the combinations were found comparable.« less

  13. Modeling of Radiative Heat Transfer in an Electric Arc Furnace

    NASA Astrophysics Data System (ADS)

    Opitz, Florian; Treffinger, Peter; Wöllenstein, Jürgen

    2017-12-01

    Radiation is an important means of heat transfer inside an electric arc furnace (EAF). To gain insight into the complex processes of heat transfer inside the EAF vessel, not only radiation from the surfaces but also emission and absorption of the gas phase and the dust cloud need to be considered. Furthermore, the radiative heat exchange depends on the geometrical configuration which is continuously changing throughout the process. The present paper introduces a system model of the EAF which takes into account the radiative heat transfer between the surfaces and the participating medium. This is attained by the development of a simplified geometrical model, the use of a weighted-sum-of-gray-gases model, and a simplified consideration of dust radiation. The simulation results were compared with the data of real EAF plants available in literature.

  14. Ray-tracing in three dimensions for calculation of radiation-dose calculations. Master's thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, D.R.

    1986-05-27

    This thesis addresses several methods of calculating the radiation-dose distribution for use by technicians or clinicians in radiation-therapy treatment planning. It specifically covers the calculation of the effective pathlength of the radiation beam for use in beam models representing the dose distribution. A two-dimensional method by Bentley and Milan is compared to the method of Strip Trees developed by Duda and Hart and then a three-dimensional algorithm built to perform the calculations in three dimensions. The use of PRISMS conforms easily to the obtained CT Scans and provides a means of only doing two-dimensional ray-tracing while performing three-dimensional dose calculations.more » This method is already being applied and used in actual calculations.« less

  15. SAR Processing Based On Two-Dimensional Transfer Function

    NASA Technical Reports Server (NTRS)

    Chang, Chi-Yung; Jin, Michael Y.; Curlander, John C.

    1994-01-01

    Exact transfer function, ETF, is two-dimensional transfer function that constitutes basis of improved frequency-domain-convolution algorithm for processing synthetic-aperture-radar, SAR data. ETF incorporates terms that account for Doppler effect of motion of radar relative to scanned ground area and for antenna squint angle. Algorithm based on ETF outperforms others.

  16. Master equation theory applied to the redistribution of polarized radiation in the weak radiation field limit. IV. Application to the second solar spectrum of the Na I D1 and D2 lines

    NASA Astrophysics Data System (ADS)

    Bommier, Véronique

    2016-06-01

    Context. The spectrum of the linear polarization, which is formed by scattering and observed on the solar disk close to the limb, is very different from the intensity spectrum and thus able to provide new information, in particular about anisotropies in the solar surface plasma and magnetic fields. In addition, a large number of lines show far wing polarization structures assigned to partial redistribution (PRD), which we prefer to denote as Rayleigh/Raman scattering. The two-level or two-term atom approximation without any lower level polarization is insufficient for many lines. Aims: In the previous paper of this series, we presented our theory generalized to the multilevel and multiline atom and comprised of statistical equilibrium equations for the atomic density matrix elements and radiative transfer equation for the polarized radiation. The present paper is devoted to applying this theory to model the second solar spectrum of the Na I D1 and D2 lines. Methods: The solution method is iterative, of the lambda-iteration type. The usual acceleration techniques were considered or even applied, but we found these to be unsuccessful, in particular because of nonlinearity or large number of quantities determining the radiation at each depth. Results: The observed spectrum is qualitatively reproduced in line center, but the convergence is yet to be reached in the far wings and the observed spectrum is not totally reproduced there. Conclusions: We need to investigate noniterative resolution methods. The other limitation lies in the one-dimensional (1D) atmosphere model, which is unable to reproduce the intermittent matter structure formed of small loops or spicules in the chromosphere. This modeling is rough, but the computing time in the presence of hyperfine structure and PRD prevents us from envisaging a three-dimensional (3D) model at this instant.

  17. Close-range laser scanning in forests: towards physically based semantics across scales.

    PubMed

    Morsdorf, F; Kükenbrink, D; Schneider, F D; Abegg, M; Schaepman, M E

    2018-04-06

    Laser scanning with its unique measurement concept holds the potential to revolutionize the way we assess and quantify three-dimensional vegetation structure. Modern laser systems used at close range, be it on terrestrial, mobile or unmanned aerial platforms, provide dense and accurate three-dimensional data whose information just waits to be harvested. However, the transformation of such data to information is not as straightforward as for airborne and space-borne approaches, where typically empirical models are built using ground truth of target variables. Simpler variables, such as diameter at breast height, can be readily derived and validated. More complex variables, e.g. leaf area index, need a thorough understanding and consideration of the physical particularities of the measurement process and semantic labelling of the point cloud. Quantified structural models provide a framework for such labelling by deriving stem and branch architecture, a basis for many of the more complex structural variables. The physical information of the laser scanning process is still underused and we show how it could play a vital role in conjunction with three-dimensional radiative transfer models to shape the information retrieval methods of the future. Using such a combined forward and physically based approach will make methods robust and transferable. In addition, it avoids replacing observer bias from field inventories with instrument bias from different laser instruments. Still, an intensive dialogue with the users of the derived information is mandatory to potentially re-design structural concepts and variables so that they profit most of the rich data that close-range laser scanning provides.

  18. Radiative Transfer Modeling and Retrievals for Advanced Hyperspectral Sensors

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Zhou, Daniel K.; Larar, Allen M.; Smith, William L., Sr.; Mango, Stephen A.

    2009-01-01

    A novel radiative transfer model and a physical inversion algorithm based on principal component analysis will be presented. Instead of dealing with channel radiances, the new approach fits principal component scores of these quantities. Compared to channel-based radiative transfer models, the new approach compresses radiances into a much smaller dimension making both forward modeling and inversion algorithm more efficient.

  19. Principles of the radiosity method versus radiative transfer for canopy reflectance modeling

    NASA Technical Reports Server (NTRS)

    Gerstl, Siegfried A. W.; Borel, Christoph C.

    1992-01-01

    The radiosity method is introduced to plant canopy reflectance modeling. We review the physics principles of the radiosity method which originates in thermal radiative transfer analyses when hot and cold surfaces are considered within a given enclosure. The radiosity equation, which is an energy balance equation for discrete surfaces, is described and contrasted with the radiative transfer equation, which is a volumetric energy balance equation. Comparing the strengths and weaknesses of the radiosity method and the radiative transfer method, we conclude that both methods are complementary to each other. Results of sample calculations are given for canopy models with up to 20,000 discrete leaves.

  20. A 1D radiative transfer benchmark with polarization via doubling and adding

    NASA Astrophysics Data System (ADS)

    Ganapol, B. D.

    2017-11-01

    Highly precise numerical solutions to the radiative transfer equation with polarization present a special challenge. Here, we establish a precise numerical solution to the radiative transfer equation with combined Rayleigh and isotropic scattering in a 1D-slab medium with simple polarization. The 2-Stokes vector solution for the fully discretized radiative transfer equation in space and direction derives from the method of doubling and adding enhanced through convergence acceleration. Updates to benchmark solutions found in the literature to seven places for reflectance and transmittance as well as for angular flux follow. Finally, we conclude with the numerical solution in a partially randomly absorbing heterogeneous medium.

  1. Radiative Transfer in Stellar Atmospheres

    NASA Astrophysics Data System (ADS)

    Rutten, Robert J.

    2003-05-01

    The main topic treated in these graduate course notes is the classical theory of radiative transfer for explaining stellar spectra. It needs relatively much attention to be mastered. Radiative transfer in gaseous media that are neither optically thin nor fully opaque and scatter to boot is a key part of astrophysics but not a transparent subject. These course notes represent a middle road between Mihalas' "Stellar Atmospheres" (graduate level and up) and the books by Novotny and Boehm-Vitense (undergraduate level). They are at about the level of Gray's "The observation and analysis of stellar photospheres" but emphasize NLTE radiative transfer rather than observational techniques and data interpretation.

  2. Experiment of flow regime map and local condensing heat transfer coefficients inside three dimensional inner microfin tubes

    NASA Astrophysics Data System (ADS)

    Du, Yang; Xin, Ming Dao

    1999-03-01

    This paper developed a new type of three dimensional inner microfin tube. The experimental results of the flow patterns for the horizontal condensation inside these tubes are reported in the paper. The flow patterns for the horizontal condensation inside the new made tubes are divided into annular flow, stratified flow and intermittent flow within the test conditions. The experiments of the local heat transfer coefficients for the different flow patterns have been systematically carried out. The experiments of the local heat transfer coefficients changing with the vapor dryness fraction have also been carried out. As compared with the heat transfer coefficients of the two dimensional inner microfin tubes, those of the three dimensional inner microfin tubes increase 47-127% for the annular flow region, 38-183% for the stratified flow and 15-75% for the intermittent flow, respectively. The enhancement factor of the local heat transfer coefficients is from 1.8-6.9 for the vapor dryness fraction from 0.05 to 1.

  3. Fingering convection induced by atomic diffusion in stars: 3D numerical computations and applications to stellar models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zemskova, Varvara; Garaud, Pascale; Deal, Morgan

    2014-11-10

    Iron-rich layers are known to form in the stellar subsurface through a combination of gravitational settling and radiative levitation. Their presence, nature, and detailed structure can affect the excitation process of various stellar pulsation modes and must therefore be modeled carefully in order to better interpret Kepler asteroseismic data. In this paper, we study the interplay between atomic diffusion and fingering convection in A-type stars, as well as its role in the establishment and evolution of iron accumulation layers. To do so, we use a combination of three-dimensional idealized numerical simulations of fingering convection (which neglect radiative transfer and complexmore » opacity effects) and one-dimensional realistic stellar models. Using the three-dimensional simulations, we first validate the mixing prescription for fingering convection recently proposed by Brown et al. (within the scope of the aforementioned approximation) and identify what system parameters (total mass of iron, iron diffusivity, thermal diffusivity, etc.) play a role in the overall evolution of the layer. We then implement the Brown et al. prescription in the Toulouse-Geneva Evolution Code to study the evolution of the iron abundance profile beneath the stellar surface. We find, as first discussed by Théado et al., that when the concurrent settling of helium is ignored, this accumulation rapidly causes an inversion in the mean molecular weight profile, which then drives fingering convection. The latter mixes iron with the surrounding material very efficiently, and the resulting iron layer is very weak. However, taking helium settling into account partially stabilizes the iron profile against fingering convection, and a large iron overabundance can accumulate. The opacity also increases significantly as a result, and in some cases it ultimately triggers dynamical convection. The direct effects of radiative acceleration on the dynamics of fingering convection (especially in the nonlinear regime) remain to be added in the future to improve the quantitative predictions of the model.« less

  4. Deterministic and stochastic methods of calculation of polarization characteristics of radiation in natural environment

    NASA Astrophysics Data System (ADS)

    Strelkov, S. A.; Sushkevich, T. A.; Maksakova, S. V.

    2017-11-01

    We are talking about russian achievements of the world level in the theory of radiation transfer, taking into account its polarization in natural media and the current scientific potential developing in Russia, which adequately provides the methodological basis for theoretically-calculated research of radiation processes and radiation fields in natural media using supercomputers and mass parallelism. A new version of the matrix transfer operator is proposed for solving problems of polarized radiation transfer in heterogeneous media by the method of influence functions, when deterministic and stochastic methods can be combined.

  5. Infrared band absorptance correlations and applications to nongray radiation. [mathematical models of absorption spectra for nongray atmospheres in order to study air pollution

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Manian, S. V. S.

    1976-01-01

    Various mathematical models for infrared radiation absorption spectra for atmospheric gases are reviewed, and continuous correlations for the total absorptance of a wide band are presented. Different band absorptance correlations were employed in two physically realistic problems (radiative transfer in gases with internal heat source, and heat transfer in laminar flow of absorbing-emitting gases between parallel plates) to study their influence on final radiative transfer results. This information will be applied to the study of atmospheric pollutants by infrared radiation measurement.

  6. In-Space Radiator Shape Optimization using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Hull, Patrick V.; Kittredge, Ken; Tinker, Michael; SanSoucie, Michael

    2006-01-01

    Future space exploration missions will require the development of more advanced in-space radiators. These radiators should be highly efficient and lightweight, deployable heat rejection systems. Typical radiators for in-space heat mitigation commonly comprise a substantial portion of the total vehicle mass. A small mass savings of even 5-10% can greatly improve vehicle performance. The objective of this paper is to present the development of detailed tools for the analysis and design of in-space radiators using evolutionary computation techniques. The optimality criterion is defined as a two-dimensional radiator with a shape demonstrating the smallest mass for the greatest overall heat transfer, thus the end result is a set of highly functional radiator designs. This cross-disciplinary work combines topology optimization and thermal analysis design by means of a genetic algorithm The proposed design tool consists of the following steps; design parameterization based on the exterior boundary of the radiator, objective function definition (mass minimization and heat loss maximization), objective function evaluation via finite element analysis (thermal radiation analysis) and optimization based on evolutionary algorithms. The radiator design problem is defined as follows: the input force is a driving temperature and the output reaction is heat loss. Appropriate modeling of the space environment is added to capture its effect on the radiator. The design parameters chosen for this radiator shape optimization problem fall into two classes, variable height along the width of the radiator and a spline curve defining the -material boundary of the radiator. The implementation of multiple design parameter schemes allows the user to have more confidence in the radiator optimization tool upon demonstration of convergence between the two design parameter schemes. This tool easily allows the user to manipulate the driving temperature regions thus permitting detailed design of in-space radiators for unique situations. Preliminary results indicate an optimized shape following that of the temperature distribution regions in the "cooler" portions of the radiator. The results closely follow the expected radiator shape.

  7. Radiative heat transfer in strongly forward scattering media of circulating fluidized bed combustors

    NASA Astrophysics Data System (ADS)

    Ates, Cihan; Ozen, Guzide; Selçuk, Nevin; Kulah, Gorkem

    2016-10-01

    Investigation of the effect of particle scattering on radiative incident heat fluxes and source terms is carried out in the dilute zone of the lignite-fired 150 kWt Middle East Technical University Circulating Fluidized Bed Combustor (METU CFBC) test rig. The dilute zone is treated as an axisymmetric cylindrical enclosure containing grey/non-grey, absorbing, emitting gas with absorbing, emitting non/isotropically/anisotropically scattering particles surrounded by grey diffuse walls. A two-dimensional axisymmetric radiation model based on Method of Lines (MOL) solution of Discrete Ordinates Method (DOM) coupled with Grey Gas (GG)/Spectral Line-Based Weighted Sum of Grey Gases Model (SLW) and Mie theory/geometric optics approximation (GOA) is extended for incorporation of anisotropic scattering by using normalized Henyey-Greenstein (HG)/transport approximation for the phase function. Input data for the radiation model is obtained from predictions of a comprehensive model previously developed and benchmarked against measurements on the same CFBC burning low calorific value indigenous lignite with high volatile matter/fixed carbon (VM/FC) ratio in its own ash. Predictive accuracy and computational efficiency of nonscattering, isotropic scattering and forward scattering with transport approximation are tested by comparing their predictions with those of forward scattering with HG. GG and GOA based on reflectivity with angular dependency are found to be accurate and CPU efficient. Comparisons reveal that isotropic assumption leads to under-prediction of both incident heat fluxes and source terms for which discrepancy is much larger. On the other hand, predictions obtained by neglecting scattering were found to be in favorable agreement with those of forward scattering at significantly less CPU time. Transport approximation is as accurate and CPU efficient as HG. These findings indicate that negligence of scattering is a more practical choice in solution of the radiative transfer equation (RTE) in conjunction with conservation equations for the system under consideration.

  8. Air temperature sensors: dependence of radiative errors on sensor diameter in precision metrology and meteorology

    NASA Astrophysics Data System (ADS)

    de Podesta, Michael; Bell, Stephanie; Underwood, Robin

    2018-04-01

    In both meteorological and metrological applications, it is well known that air temperature sensors are susceptible to radiative errors. However, it is not widely known that the radiative error measured by an air temperature sensor in flowing air depends upon the sensor diameter, with smaller sensors reporting values closer to true air temperature. This is not a transient effect related to sensor heat capacity, but a fluid-dynamical effect arising from heat and mass flow in cylindrical geometries. This result has been known historically and is in meteorology text books. However, its significance does not appear to be widely appreciated and, as a consequence, air temperature can be—and probably is being—widely mis-estimated. In this paper, we first review prior descriptions of the ‘sensor size’ effect from the metrological and meteorological literature. We develop a heat transfer model to describe the process for cylindrical sensors, and evaluate the predicted temperature error for a range of sensor sizes and air speeds. We compare these predictions with published predictions and measurements. We report measurements demonstrating this effect in two laboratories at NPL in which the air flow and temperature are exceptionally closely controlled. The results are consistent with the heat-transfer model, and show that the air temperature error is proportional to the square root of the sensor diameter and that, even under good laboratory conditions, it can exceed 0.1 °C for a 6 mm diameter sensor. We then consider the implications of this result. In metrological applications, errors of the order of 0.1 °C are significant, representing limiting uncertainties in dimensional and mass measurements. In meteorological applications, radiative errors can easily be much larger. But in both cases, an understanding of the diameter dependence allows assessment and correction of the radiative error using a multi-sensor technique.

  9. Prompt Radiation Protection Factors

    DTIC Science & Technology

    2018-02-01

    dimensional Monte-Carlo radiation transport code MCNP (Monte Carlo N-Particle) and the evaluation of the protection factors (ratio of dose in the open to...radiation was performed using the three dimensional Monte- Carlo radiation transport code MCNP (Monte Carlo N-Particle) and the evaluation of the protection...by detonation of a nuclear device have placed renewed emphasis on evaluation of the consequences in case of such an event. The Defense Threat

  10. Redshifted Cherenkov Radiation for in vivo Imaging: Coupling Cherenkov Radiation Energy Transfer to multiple Förster Resonance Energy Transfers

    NASA Astrophysics Data System (ADS)

    Bernhard, Yann; Collin, Bertrand; Decréau, Richard A.

    2017-03-01

    Cherenkov Radiation (CR), this blue glow seen in nuclear reactors, is an optical light originating from energetic β-emitter radionuclides. CR emitter 90Y triggers a cascade of energy transfers in the presence of a mixed population of fluorophores (which each other match their respective absorption and emission maxima): Cherenkov Radiation Energy Transfer (CRET) first, followed by multiple Förster Resonance Energy transfers (FRET): CRET ratios were calculated to give a rough estimate of the transfer efficiency. While CR is blue-weighted (300-500 nm), such cascades of Energy Transfers allowed to get a) fluorescence emission up to 710 nm, which is beyond the main CR window and within the near-infrared (NIR) window where biological tissues are most transparent, b) to amplify this emission and boost the radiance on that window: EMT6-tumor bearing mice injected with both a radionuclide and a mixture of fluorophores having a good spectral overlap, were shown to have nearly a two-fold radiance boost (measured on a NIR window centered on the emission wavelength of the last fluorophore in the Energy Transfer cascade) compared to a tumor injected with the radionuclide only. Some CR embarked light source could be converted into a near-infrared radiation, where biological tissues are most transparent.

  11. Redshifted Cherenkov Radiation for in vivo Imaging: Coupling Cherenkov Radiation Energy Transfer to multiple Förster Resonance Energy Transfers.

    PubMed

    Bernhard, Yann; Collin, Bertrand; Decréau, Richard A

    2017-03-24

    Cherenkov Radiation (CR), this blue glow seen in nuclear reactors, is an optical light originating from energetic β-emitter radionuclides. CR emitter 90 Y triggers a cascade of energy transfers in the presence of a mixed population of fluorophores (which each other match their respective absorption and emission maxima): Cherenkov Radiation Energy Transfer (CRET) first, followed by multiple Förster Resonance Energy transfers (FRET): CRET ratios were calculated to give a rough estimate of the transfer efficiency. While CR is blue-weighted (300-500 nm), such cascades of Energy Transfers allowed to get a) fluorescence emission up to 710 nm, which is beyond the main CR window and within the near-infrared (NIR) window where biological tissues are most transparent, b) to amplify this emission and boost the radiance on that window: EMT6-tumor bearing mice injected with both a radionuclide and a mixture of fluorophores having a good spectral overlap, were shown to have nearly a two-fold radiance boost (measured on a NIR window centered on the emission wavelength of the last fluorophore in the Energy Transfer cascade) compared to a tumor injected with the radionuclide only. Some CR embarked light source could be converted into a near-infrared radiation, where biological tissues are most transparent.

  12. Monte Carlo Study on Carbon-Gradient-Doped Silica Aerogel Insulation.

    PubMed

    Zhao, Y; Tang, G H

    2015-04-01

    Silica aerogel is almost transparent for wavelengths below 8 µm where significant energy is transferred by thermal radiation. The radiative heat transfer can be restricted at high temperature if doped with carbon powder in silica aerogel. However, different particle sizes of carbon powder doping have different spectral extinction coefficients and the doped carbon powder will increase the solid conduction of silica aerogel. This paper presents a theoretical method for determining the optimal carbon doping in silica aerogel to minimize the energy transfer. Firstly we determine the optimal particle size by combining the spectral extinction coefficient with blackbody radiation and then evaluate the optimal doping amount between heat conduction and radiation. Secondly we develop the Monte Carlo numerical method to study radiative properties of carbon-gradient-doped silica aerogel to decrease the radiative heat transfer further. The results indicate that the carbon powder is able to block infrared radiation and thus improve the thermal insulating performance of silica aerogel effectively.

  13. Spectral tuning of near-field radiative heat transfer by graphene-covered metasurfaces

    NASA Astrophysics Data System (ADS)

    Zheng, Zhiheng; Wang, Ao; Xuan, Yimin

    2018-03-01

    When two gratings are respectively covered by a layer of graphene sheet, the near-field radiative heat transfer between two parallel gratings made of silica (SiO2) could be greatly improved. As the material properties of doped silicon (n-type doping concentration is 1020 cm-3, marked as Si-20) and SiO2 differ greatly, we theoretically investigate the near-field radiative heat transfer between two parallel graphene-covered gratings made of Si-20 to explore some different phenomena, especially for modulating the spectral properties. The radiative heat flux between two parallel bulks made of Si-20 can be enhanced by using gratings instead of bulks. When the two gratings are respectively covered by a layer of graphene sheet, the radiative heat flux between two gratings made of Si-20 can be further enhanced. By tuning graphene chemical potential μ and grating filling factor f, due to the interaction between surface plasmon polaritons (SPPs) of graphene sheets and grating structures, the spectral properties of the radiative heat flux between two parallel graphene-covered gratings can be effectively regulated. This work will develop and supplement the effects of materials on the near-field radiative heat transfer for this kind of system configuration, paving a way to modulate the spectral properties of near-field radiative heat transfer.

  14. Radiative heat transfer in anisotropic many-body systems: Tuning and enhancement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikbakht, Moladad, E-mail: mnik@znu.ac.ir

    2014-09-07

    A general formalism for calculating the radiative heat transfer in many body systems with anisotropic component is presented. Our scheme extends the theory of radiative heat transfer in isotropic many body systems to anisotropic cases. In addition, the radiative heating of the particles by the thermal bath is taken into account in our formula. It is shown that the radiative heat exchange (HE) between anisotropic particles and their radiative cooling/heating (RCH) could be enhanced several order of magnitude than that of isotropic particles. Furthermore, we demonstrate that both the HE and RCH can be tuned dramatically by particles relative orientationmore » in many body systems.« less

  15. Stochastic Radiative Transfer Model for Contaminated Rough Surfaces: A Framework for Detection System Design

    DTIC Science & Technology

    2013-11-01

    STOCHASTIC RADIATIVE TRANSFER MODEL FOR CONTAMINATED ROUGH SURFACES: A...of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid ...COVERED (From - To) Jan 2013 - Sep 2013 4. TITLE AND SUBTITLE Stochastic Radiative Transfer Model for Contaminated Rough Surfaces: A Framework for

  16. SEURAT: SPH scheme extended with ultraviolet line radiative transfer

    NASA Astrophysics Data System (ADS)

    Abe, Makito; Suzuki, Hiroyuki; Hasegawa, Kenji; Semelin, Benoit; Yajima, Hidenobu; Umemura, Masayuki

    2018-05-01

    We present a novel Lyman alpha (Ly α) radiative transfer code, SEURAT (SPH scheme Extended with Ultraviolet line RAdiative Transfer), where line scatterings are solved adaptively with the resolution of the smoothed particle hydrodynamics (SPH). The radiative transfer method implemented in SEURAT is based on a Monte Carlo algorithm in which the scattering and absorption by dust are also incorporated. We perform standard test calculations to verify the validity of the code; (i) emergent spectra from a static uniform sphere, (ii) emergent spectra from an expanding uniform sphere, and (iii) escape fraction from a dusty slab. Thereby, we demonstrate that our code solves the {Ly} α radiative transfer with sufficient accuracy. We emphasize that SEURAT can treat the transfer of {Ly} α photons even in highly complex systems that have significantly inhomogeneous density fields. The high adaptivity of SEURAT is desirable to solve the propagation of {Ly} α photons in the interstellar medium of young star-forming galaxies like {Ly} α emitters (LAEs). Thus, SEURAT provides a powerful tool to model the emergent spectra of {Ly} α emission, which can be compared to the observations of LAEs.

  17. Performance Analysis of GFDL's GCM Line-By-Line Radiative Transfer Model on GPU and MIC Architectures

    NASA Astrophysics Data System (ADS)

    Menzel, R.; Paynter, D.; Jones, A. L.

    2017-12-01

    Due to their relatively low computational cost, radiative transfer models in global climate models (GCMs) run on traditional CPU architectures generally consist of shortwave and longwave parameterizations over a small number of wavelength bands. With the rise of newer GPU and MIC architectures, however, the performance of high resolution line-by-line radiative transfer models may soon approach those of the physical parameterizations currently employed in GCMs. Here we present an analysis of the current performance of a new line-by-line radiative transfer model currently under development at GFDL. Although originally designed to specifically exploit GPU architectures through the use of CUDA, the radiative transfer model has recently been extended to include OpenMP in an effort to also effectively target MIC architectures such as Intel's Xeon Phi. Using input data provided by the upcoming Radiative Forcing Model Intercomparison Project (RFMIP, as part of CMIP 6), we compare model results and performance data for various model configurations and spectral resolutions run on both GPU and Intel Knights Landing architectures to analogous runs of the standard Oxford Reference Forward Model on traditional CPUs.

  18. Maximal near-field radiative heat transfer between two plates

    NASA Astrophysics Data System (ADS)

    Nefzaoui, Elyes; Ezzahri, Younès; Drévillon, Jérémie; Joulain, Karl

    2013-09-01

    Near-field radiative transfer is a promising way to significantly and simultaneously enhance both thermo-photovoltaic (TPV) devices power densities and efficiencies. A parametric study of Drude and Lorentz models performances in maximizing near-field radiative heat transfer between two semi-infinite planes separated by nanometric distances at room temperature is presented in this paper. Optimal parameters of these models that provide optical properties maximizing the radiative heat flux are reported and compared to real materials usually considered in similar studies, silicon carbide and heavily doped silicon in this case. Results are obtained by exact and approximate (in the extreme near-field regime and the electrostatic limit hypothesis) calculations. The two methods are compared in terms of accuracy and CPU resources consumption. Their differences are explained according to a mesoscopic description of nearfield radiative heat transfer. Finally, the frequently assumed hypothesis which states a maximal radiative heat transfer when the two semi-infinite planes are of identical materials is numerically confirmed. Its subsequent practical constraints are then discussed. Presented results enlighten relevant paths to follow in order to choose or design materials maximizing nano-TPV devices performances.

  19. Radiative transfer modeling through terrestrial atmosphere and ocean accounting for inelastic processes: Software package SCIATRAN

    NASA Astrophysics Data System (ADS)

    Rozanov, V. V.; Dinter, T.; Rozanov, A. V.; Wolanin, A.; Bracher, A.; Burrows, J. P.

    2017-06-01

    SCIATRAN is a comprehensive software package which is designed to model radiative transfer processes in the terrestrial atmosphere and ocean in the spectral range from the ultraviolet to the thermal infrared (0.18-40 μm). It accounts for multiple scattering processes, polarization, thermal emission and ocean-atmosphere coupling. The main goal of this paper is to present a recently developed version of SCIATRAN which takes into account accurately inelastic radiative processes in both the atmosphere and the ocean. In the scalar version of the coupled ocean-atmosphere radiative transfer solver presented by Rozanov et al. [61] we have implemented the simulation of the rotational Raman scattering, vibrational Raman scattering, chlorophyll and colored dissolved organic matter fluorescence. In this paper we discuss and explain the numerical methods used in SCIATRAN to solve the scalar radiative transfer equation including trans-spectral processes, and demonstrate how some selected radiative transfer problems are solved using the SCIATRAN package. In addition we present selected comparisons of SCIATRAN simulations with those published benchmark results, independent radiative transfer models, and various measurements from satellite, ground-based, and ship-borne instruments. The extended SCIATRAN software package along with a detailed User's Guide is made available for scientists and students, who are undertaking their own research typically at universities, via the web page of the Institute of Environmental Physics (IUP), University of Bremen: http://www.iup.physik.uni-bremen.de.

  20. Clouds in the atmospheres of extrasolar planets. IV. On the scattering greenhouse effect of CO2 ice particles: Numerical radiative transfer studies

    NASA Astrophysics Data System (ADS)

    Kitzmann, D.; Patzer, A. B. C.; Rauer, H.

    2013-09-01

    Context. Owing to their wavelength-dependent absorption and scattering properties, clouds have a strong impact on the climate of planetary atmospheres. The potential greenhouse effect of CO2 ice clouds in the atmospheres of terrestrial extrasolar planets is of particular interest because it might influence the position and thus the extension of the outer boundary of the classic habitable zone around main sequence stars. Such a greenhouse effect, however, is a complicated function of the CO2 ice particles' optical properties. Aims: We study the radiative effects of CO2 ice particles obtained by different numerical treatments to solve the radiative transfer equation. To determine the effectiveness of the scattering greenhouse effect caused by CO2 ice clouds, the radiative transfer calculations are performed over the relevant wide range of particle sizes and optical depths, employing different numerical methods. Methods: We used Mie theory to calculate the optical properties of particle polydispersion. The radiative transfer calculations were done with a high-order discrete ordinate method (DISORT). Two-stream radiative transfer methods were used for comparison with previous studies. Results: The comparison between the results of a high-order discrete ordinate method and simpler two-stream approaches reveals large deviations in terms of a potential scattering efficiency of the greenhouse effect. The two-stream methods overestimate the transmitted and reflected radiation, thereby yielding a higher scattering greenhouse effect. For the particular case of a cool M-type dwarf, the CO2 ice particles show no strong effective scattering greenhouse effect by using the high-order discrete ordinate method, whereas a positive net greenhouse effect was found for the two-stream radiative transfer schemes. As a result, previous studies of the effects of CO2 ice clouds using two-stream approximations overrated the atmospheric warming caused by the scattering greenhouse effect. Consequently, the scattering greenhouse effect of CO2 ice particles seems to be less effective than previously estimated. In general, higher order radiative transfer methods are needed to describe the effects of CO2 ice clouds accurately as indicated by our numerical radiative transfer studies.

  1. Improved Finite-Volume Method for Radiative Hydrodynamics

    NASA Technical Reports Server (NTRS)

    Wray, Alan

    2012-01-01

    Fully coupled simulations of hydrodynamics and radiative transfer are essential to a number of fields ranging from astrophysics to engineering applications. Of particular interest in this work are hypersonic atmospheric entries and associated experimental apparatus, e.g., shock tubes and high enthalpy testing facilities. The radiative transfer calculations must supply to the CFD a heating term in the energy equation in the form of the divergence of the radiative heat flux and the radiative heat fluxes to bounding surfaces. It is most efficient to solve the radiative transfer equation on the same grid as the CFD solution, and this work presents an algorithm with improved accuracy for such simulations on structured and unstructured grids compared to more conventional approaches. Results will be shown for shock radiation during hypersonic reentry. Issues of parallelization within a radiation sweep will also be discussed.

  2. Formal Solutions for Polarized Radiative Transfer. III. Stiffness and Instability

    NASA Astrophysics Data System (ADS)

    Janett, Gioele; Paganini, Alberto

    2018-04-01

    Efficient numerical approximation of the polarized radiative transfer equation is challenging because this system of ordinary differential equations exhibits stiff behavior, which potentially results in numerical instability. This negatively impacts the accuracy of formal solvers, and small step-sizes are often necessary to retrieve physical solutions. This work presents stability analyses of formal solvers for the radiative transfer equation of polarized light, identifies instability issues, and suggests practical remedies. In particular, the assumptions and the limitations of the stability analysis of Runge–Kutta methods play a crucial role. On this basis, a suitable and pragmatic formal solver is outlined and tested. An insightful comparison to the scalar radiative transfer equation is also presented.

  3. Studies of radiative transfer in the earth's atmosphere with emphasis on the influence of the radiation budget in the joint institute for advancement of flight sciences at the NASA-Langley Research Center

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Earth and solar radiation budget measurements were examined. Sensor calibration and measurement accuracy were emphasized. Past works on the earth's radiation field that must be used in reducing observations of the radiation field were reviewed. Using a finite difference radiative transfer algorithm, models of the angular and spectral dependence of the earth's radiation field were developed.

  4. Dynamic model of a micro-tubular solid oxide fuel cell stack including an integrated cooling system

    NASA Astrophysics Data System (ADS)

    Hering, Martin; Brouwer, Jacob; Winkler, Wolfgang

    2017-02-01

    A novel dynamic micro-tubular solid oxide fuel cell (MT-SOFC) and stack model including an integrated cooling system is developed using a quasi three-dimensional, spatially resolved, transient thermodynamic, physical and electrochemical model that accounts for the complex geometrical relations between the cells and cooling-tubes. The modeling approach includes a simplified tubular geometry and stack design including an integrated cooling structure, detailed pressure drop and gas property calculations, the electrical and physical constraints of the stack design that determine the current, as well as control strategies for the temperature. Moreover, an advanced heat transfer balance with detailed radiative heat transfer between the cells and the integrated cooling-tubes, convective heat transfer between the gas flows and the surrounding structures and conductive heat transfer between the solid structures inside of the stack, is included. The detailed model can be used as a design basis for the novel MT-SOFC stack assembly including an integrated cooling system, as well as for the development of a dynamic system control strategy. The evaluated best-case design achieves very high electrical efficiency between around 75 and 55% in the entire power density range between 50 and 550 mW /cm2 due to the novel stack design comprising an integrated cooling structure.

  5. Sentinel Lymph Node Biopsy: Quantification of Lymphedema Risk Reduction

    DTIC Science & Technology

    2006-10-01

    dimensional internal mammary lymphoscintigraphy: implications for radiation therapy treatment planning for breast carcinoma. Int J Radiat Oncol Biol Phys...techniques based on conventional photon beams, intensity modulated photon beams and proton beams for therapy of intact breast. Radiother Oncol. Feb...Harris JR. Three-dimensional internal mammary lymphoscintigraphy: implications for radiation therapy treatment planning for breast carcinoma. Int J

  6. Tomographic imaging of flourescence resonance energy transfer in highly light scattering media

    NASA Astrophysics Data System (ADS)

    Soloviev, Vadim Y.; McGinty, James; Tahir, Khadija B.; Laine, Romain; Stuckey, Daniel W.; Mohan, P. Surya; Hajnal, Joseph V.; Sardini, Alessandro; French, Paul M. W.; Arridge, Simon R.

    2010-02-01

    Three-dimensional localization of protein conformation changes in turbid media using Förster Resonance Energy Transfer (FRET) was investigated by tomographic fluorescence lifetime imaging (FLIM). FRET occurs when a donor fluorophore, initially in its electronic excited state, transfers energy to an acceptor fluorophore in close proximity through non-radiative dipole-dipole coupling. An acceptor effectively behaves as a quencher of the donor's fluorescence. The quenching process is accompanied by a reduction in the quantum yield and lifetime of the donor fluorophore. Therefore, FRET can be localized by imaging changes in the quantum yield and the fluorescence lifetime of the donor fluorophore. Extending FRET to diffuse optical tomography has potentially important applications such as in vivo studies in small animal. We show that FRET can be localized by reconstructing the quantum yield and lifetime distribution from time-resolved non-invasive boundary measurements of fluorescence and transmitted excitation radiation. Image reconstruction was obtained by an inverse scattering algorithm. Thus we report, to the best of our knowledge, the first tomographic FLIM-FRET imaging in turbid media. The approach is demonstrated by imaging a highly scattering cylindrical phantom concealing two thin wells containing cytosol preparations of HEK293 cells expressing TN-L15, a cytosolic genetically-encoded calcium FRET sensor. A 10mM calcium chloride solution was added to one of the wells to induce a protein conformation change upon binding to TN-L15, resulting in FRET and a corresponding decrease in the donor fluorescence lifetime. The resulting fluorescence lifetime distribution, the quantum efficiency, absorption and scattering coefficients were reconstructed.

  7. Multi-dimensional Core-Collapse Supernova Simulations with Neutrino Transport

    NASA Astrophysics Data System (ADS)

    Pan, Kuo-Chuan; Liebendörfer, Matthias; Hempel, Matthias; Thielemann, Friedrich-Karl

    We present multi-dimensional core-collapse supernova simulations using the Isotropic Diffusion Source Approximation (IDSA) for the neutrino transport and a modified potential for general relativity in two different supernova codes: FLASH and ELEPHANT. Due to the complexity of the core-collapse supernova explosion mechanism, simulations require not only high-performance computers and the exploitation of GPUs, but also sophisticated approximations to capture the essential microphysics. We demonstrate that the IDSA is an elegant and efficient neutrino radiation transfer scheme, which is portable to multiple hydrodynamics codes and fast enough to investigate long-term evolutions in two and three dimensions. Simulations with a 40 solar mass progenitor are presented in both FLASH (1D and 2D) and ELEPHANT (3D) as an extreme test condition. It is found that the black hole formation time is delayed in multiple dimensions and we argue that the strong standing accretion shock instability before black hole formation will lead to strong gravitational waves.

  8. Modeling the Scattering Polarization of the Hydrogen Ly-alpha Line Observed by CLASP in a Filament Channel

    NASA Technical Reports Server (NTRS)

    Stepan, J.; Trujillo Bueno, J.; Gunar, S.; del Pino Aleman, T.; Heinzel, P.; Kano, R.; Ishikawa, R.; Narukage, M.; Bando, T.; Winebarger, Amy; hide

    2016-01-01

    The 400 arcsec spectrograph slit of CLASP crossed predominantly quiet regions of the solar chromosphere, from the limb towards the solar disk center. Interestingly, in the CLASP slit-jaw images and in the SDO images of the He I line at 304 A, we can identify a filament channel (FC) extending over more than 60 arcsec crossing the spectrograph slit. In order to interpret the peculiar spatial variation of the Q/1 and U/1 signals observed by CLASP in the hydrogen Ly-alpha line (1216 A) and in the Si Ill line (1206 A) in such a filament channel, it is necessary to perform multi-dimensional radiative transfer modeling. In this contribution, we show the first results of the two-dimensional calculations we are carrying out in given filament models, with the aim of determining the filament thermal and magnetic structure by comparing the theoretical and the observed polarization signals.

  9. A Three-dimensional Magnetohydrodynamic Simulation of the Formation of Solar Chromospheric Jets with Twisted Magnetic Field Lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iijima, H.; Yokoyama, T., E-mail: h.iijima@isee.nagoya-u.ac.jp

    This paper presents a three-dimensional simulation of chromospheric jets with twisted magnetic field lines. Detailed treatments of the photospheric radiative transfer and the equations of state allow us to model realistic thermal convection near the solar surface, which excites various MHD waves and produces chromospheric jets in the simulation. A tall chromospheric jet with a maximum height of 10–11 Mm and lifetime of 8–10 minutes is formed above a strong magnetic field concentration. The magnetic field lines are strongly entangled in the chromosphere, which helps the chromospheric jet to be driven by the Lorentz force. The jet exhibits oscillatory motionmore » as a natural consequence of its generation mechanism. We also find that the produced chromospheric jet forms a cluster with a diameter of several Mm with finer strands. These results imply a close relationship between the simulated jet and solar spicules.« less

  10. Minimum mass design of large-scale space trusses subjected to thermal gradients

    NASA Technical Reports Server (NTRS)

    Williams, R. Brett; Agnes, Gregory S.

    2006-01-01

    Lightweight, deployable trusses are commonly used to support space-borne instruments including RF reflectors, radar panels, and telescope optics. While in orbit, these support structures are subjected to thermal gradients that vary with altitude, location in orbit, and self-shadowing. Since these instruments have tight dimensional-stability requirements, their truss members are often covered with multi-layer insulation (MLI) blankets to minimize thermal distortions. This paper develops a radiation heat transfer model to predict the thermal gradient experienced by a triangular truss supporting a long, linear radar panel in Medium Earth Orbit (MEO). The influence of self-shadowing effects of the radar panel are included in the analysis, and the influence of both MLI thickness and outer covers/coatings on the magnitude of the thermal gradient are formed into a simple, two-dimensional analysis. This thermal model is then used to size and estimate the structural mass of a triangular truss that meets a given set of structural requirements.

  11. Three-dimensional time-dependent computer modeling of the electrothermal atomizers for analytical spectrometry

    NASA Astrophysics Data System (ADS)

    Tsivilskiy, I. V.; Nagulin, K. Yu.; Gilmutdinov, A. Kh.

    2016-02-01

    A full three-dimensional nonstationary numerical model of graphite electrothermal atomizers of various types is developed. The model is based on solution of a heat equation within solid walls of the atomizer with a radiative heat transfer and numerical solution of a full set of Navier-Stokes equations with an energy equation for a gas. Governing equations for the behavior of a discrete phase, i.e., atomic particles suspended in a gas (including gas-phase processes of evaporation and condensation), are derived from the formal equations molecular kinetics by numerical solution of the Hertz-Langmuir equation. The following atomizers test the model: a Varian standard heated electrothermal vaporizer (ETV), a Perkin Elmer standard THGA transversely heated graphite tube with integrated platform (THGA), and the original double-stage tube-helix atomizer (DSTHA). The experimental verification of computer calculations is carried out by a method of shadow spectral visualization of the spatial distributions of atomic and molecular vapors in an analytical space of an atomizer.

  12. A GRID OF THREE-DIMENSIONAL STELLAR ATMOSPHERE MODELS OF SOLAR METALLICITY. I. GENERAL PROPERTIES, GRANULATION, AND ATMOSPHERIC EXPANSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trampedach, Regner; Asplund, Martin; Collet, Remo

    2013-05-20

    Present grids of stellar atmosphere models are the workhorses in interpreting stellar observations and determining their fundamental parameters. These models rely on greatly simplified models of convection, however, lending less predictive power to such models of late-type stars. We present a grid of improved and more reliable stellar atmosphere models of late-type stars, based on deep, three-dimensional (3D), convective, stellar atmosphere simulations. This grid is to be used in general for interpreting observations and improving stellar and asteroseismic modeling. We solve the Navier Stokes equations in 3D and concurrent with the radiative transfer equation, for a range of atmospheric parameters,more » covering most of stellar evolution with convection at the surface. We emphasize the use of the best available atomic physics for quantitative predictions and comparisons with observations. We present granulation size, convective expansion of the acoustic cavity, and asymptotic adiabat as functions of atmospheric parameters.« less

  13. Analysis of sensible heat exchanges from a thermal manikin.

    PubMed

    Quintela, Divo; Gaspar, Adélio; Borges, Carlos

    2004-09-01

    The present work is dedicated to the analysis of dry heat exchanges as measured by a thermal manikin placed in still air. We believe that the understanding of some fundamental aspects governing fluid flow and heat transfer around three-dimensional bodies such as human beings deserves appropriate attention. This should be of great significance for improving physiological models concerned with thermal exposures. The potential interest of such work can be directed towards quite distinct targets such as working conditions, sports, the military, or healthcare personnel and patients. In the present study, we made use of a climate chamber and an articulated thermal manikin of the Pernille type, with 16 body parts. The most common occidental postures (standing, sitting and lying) were studied. In order to separate heat losses due to radiation and convection, the radiative heat losses of the manikin were significantly reduced by means of a shiny aluminium coating, which was carefully applied to the artificial skin. The air temperature within the test chamber was varied between 13 degrees C and 29 degrees C. The corresponding mean differences between the skin and the operative temperatures changed from 3.8 degrees C up to 15.8 degrees C. The whole-body heat transfer coefficients by radiation and convection for both standing and sitting postures are in good agreement with those in the published literature. The lying posture appears to be more efficient for losing heat by convection. This is confirmed when the heat losses of each individual part are considered. The proposed correlations for the whole body suggest that natural convection is mainly laminar.

  14. Coupling radiative heat transfer in participating media with other heat transfer modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tencer, John; Howell, John R.

    The common methods for finding the local radiative flux divergence in participating media through solution of the radiative transfer equation are outlined. The pros and cons of each method are discussed in terms of their speed, ability to handle spectral properties and scattering phenomena, as well as their accuracy in different ranges of media transport properties. The suitability of each method for inclusion in the energy equation to efficiently solve multi-mode thermal transfer problems is discussed. Lastly, remaining topics needing research are outlined.

  15. Coupling radiative heat transfer in participating media with other heat transfer modes

    DOE PAGES

    Tencer, John; Howell, John R.

    2015-09-28

    The common methods for finding the local radiative flux divergence in participating media through solution of the radiative transfer equation are outlined. The pros and cons of each method are discussed in terms of their speed, ability to handle spectral properties and scattering phenomena, as well as their accuracy in different ranges of media transport properties. The suitability of each method for inclusion in the energy equation to efficiently solve multi-mode thermal transfer problems is discussed. Lastly, remaining topics needing research are outlined.

  16. Observation of a single-beam gradient-force optical trap for dielectric particles in air.

    PubMed

    Omori, R; Kobayashi, T; Suzuki, A

    1997-06-01

    A single-beam gradient-force optical trap for dielectric particles, which relies solely on the radiation pressure force of a TEM(00)-mode laser light, is demonstrated in air for what is believed to be the first time. It was observed that micrometer-sized glass spheres with a refractive index of n=1.45 remained trapped in the focus region for more than 30 min, and we could transfer them three dimensionally by moving the beam focus and the microscope stage. A laser power of ~40 mW was sufficient to trap a 5- microm -diameter glass sphere. The present method has several distinct advantages over the conventional optical levitation method.

  17. Gap heating with pressure gradients. [for Shuttle Orbiter thermal protection system tiles

    NASA Technical Reports Server (NTRS)

    Scott, C. D.; Maraia, R. J.

    1979-01-01

    The heating rate distribution and temperature response on the gap walls of insulating tiles is analyzed to determine significant phenomena and parameters in flows where there is an external surface pressure gradient. Convective heating due to gap flow, modeled as fully developed pipe flow, is coupled with a two-dimensional thermal model of the tiles that includes conduction and radiative heat transfer. To account for geometry and important environmental parameters, scale factors are obtained by curve-fitting measured temperatures to analytical solutions. These scale factors are then used to predict the time-dependent gap heat flux and temperature response of tile gaps on the Space Shuttle Orbiter during entry.

  18. Solution strategies and heat transfer calculations for three-dimensional configurations at hypersonic speeds

    NASA Technical Reports Server (NTRS)

    Weilmuenster, K. J.; Gnoffo, Peter A.

    1992-01-01

    A procedure which reduces the memory requirements for computing the viscous flow over a modified Orbiter geometry at a hypersonic flight condition is presented. The Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) code which incorporates a thermochemical nonequilibrium chemistry model, a finite rate catalytic wall boundary condition and wall temperature distribution based on radiation equilibrium is used in this study. In addition, the effect of choice of 'min mod' function, eigenvalue limiter and grid density on surface heating is investigated. The surface heating from a flowfield calculation at Mach number 22, altitude of 230,000 ft and 40 deg angle of attack is compared with flight data from three Orbiter flights.

  19. Experimentally validated finite element model of electrocaloric multilayer ceramic structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, N. A. S., E-mail: nadia.smith@npl.co.uk, E-mail: maciej.rokosz@npl.co.uk, E-mail: tatiana.correia@npl.co.uk; Correia, T. M., E-mail: nadia.smith@npl.co.uk, E-mail: maciej.rokosz@npl.co.uk, E-mail: tatiana.correia@npl.co.uk; Rokosz, M. K., E-mail: nadia.smith@npl.co.uk, E-mail: maciej.rokosz@npl.co.uk, E-mail: tatiana.correia@npl.co.uk

    2014-07-28

    A novel finite element model to simulate the electrocaloric response of a multilayer ceramic capacitor (MLCC) under real environment and operational conditions has been developed. The two-dimensional transient conductive heat transfer model presented includes the electrocaloric effect as a source term, as well as accounting for radiative and convective effects. The model has been validated with experimental data obtained from the direct imaging of MLCC transient temperature variation under application of an electric field. The good agreement between simulated and experimental data, suggests that the novel experimental direct measurement methodology and the finite element model could be used to supportmore » the design of optimised electrocaloric units and operating conditions.« less

  20. Propagation of Boundary-Induced Discontinuity in Stationary Radiative Transfer

    NASA Astrophysics Data System (ADS)

    Kawagoe, Daisuke; Chen, I.-Kun

    2018-01-01

    We consider the boundary value problem of the stationary transport equation in the slab domain of general dimensions. In this paper, we discuss the relation between discontinuity of the incoming boundary data and that of the solution to the stationary transport equation. We introduce two conditions posed on the boundary data so that discontinuity of the boundary data propagates along positive characteristic lines as that of the solution to the stationary transport equation. Our analysis does not depend on the celebrated velocity averaging lemma, which is different from previous works. We also introduce an example in two dimensional case which shows that piecewise continuity of the boundary data is not a sufficient condition for the main result.

  1. Transfer of Learning between 2D and 3D Sources during Infancy: Informing Theory and Practice

    ERIC Educational Resources Information Center

    Barr, Rachel

    2010-01-01

    The ability to transfer learning across contexts is an adaptive skill that develops rapidly during early childhood. Learning from television is a specific instance of transfer of learning between a two-dimensional (2D) representation and a three-dimensional (3D) object. Understanding the conditions under which young children might accomplish this…

  2. HBOI Underwater Imaging and Communication Research - Phase 1

    DTIC Science & Technology

    2012-04-19

    validation of one-way pulse stretching radiative transfer code The objective was to develop and validate time-resolved radiative transfer models that...and validation of one-way pulse stretching radiative transfer code The models were subjected to a series of validation experiments over 12.5 meter...about the theoretical basis of the model together with validation results can be found in Dalgleish et al., (20 1 0). Forward scattering Mueller

  3. Heat transfer performance characteristics of hybrid nanofluids as coolant in louvered fin automotive radiator

    NASA Astrophysics Data System (ADS)

    Sahoo, Rashmi R.; Sarkar, Jahar

    2017-06-01

    Present study deals with the enhancement of convective heat transfer performance of EG brine based various hybrid nanofluids i.e. Ag, Cu, SiC, CuO and TiO2 in 0-1% volume fraction of Al2O3 nanofluid, as coolants for louvered fin automobile radiator. The effects of nanoparticles combination and operating parameters on thermo physical properties, heat transfer, effectiveness, pumping power and performance index of hybrid nanofluids have been evaluated. Comparison of studied hybrid nanofluids based on radiator size and pumping power has been made as well. Among all studied hybrid nanofluids, 1% Ag hybrid nanofluid (0.5% Ag and 0.5% Al2O3) yields highest effectiveness and heat transfer rate as well as pumping power. However, SiC + Al2O3 dispersed hybrid nanofluid yields maximum performance index and hence this can be recommended for best coolant. For the same radiator size and heat transfer rate, pumping power increases by using Ag hybrid nanofluids leading to increase in engine thermal efficiency and hence reduction in engine fuel consumption. For same coolant flow rate and heat transfer rate, the radiator size reduces and pumping power increases by using Ag hybrid nanofluids leading to reduction in radiator size, weight and cost.

  4. Self-consistent modelling of line-driven hot-star winds with Monte Carlo radiation hydrodynamics

    NASA Astrophysics Data System (ADS)

    Noebauer, U. M.; Sim, S. A.

    2015-11-01

    Radiative pressure exerted by line interactions is a prominent driver of outflows in astrophysical systems, being at work in the outflows emerging from hot stars or from the accretion discs of cataclysmic variables, massive young stars and active galactic nuclei. In this work, a new radiation hydrodynamical approach to model line-driven hot-star winds is presented. By coupling a Monte Carlo radiative transfer scheme with a finite volume fluid dynamical method, line-driven mass outflows may be modelled self-consistently, benefiting from the advantages of Monte Carlo techniques in treating multiline effects, such as multiple scatterings, and in dealing with arbitrary multidimensional configurations. In this work, we introduce our approach in detail by highlighting the key numerical techniques and verifying their operation in a number of simplified applications, specifically in a series of self-consistent, one-dimensional, Sobolev-type, hot-star wind calculations. The utility and accuracy of our approach are demonstrated by comparing the obtained results with the predictions of various formulations of the so-called CAK theory and by confronting the calculations with modern sophisticated techniques of predicting the wind structure. Using these calculations, we also point out some useful diagnostic capabilities our approach provides. Finally, we discuss some of the current limitations of our method, some possible extensions and potential future applications.

  5. Radiative Effect of Clouds on Tropospheric Chemistry in a Global Three-Dimensional Chemical Transport Model

    NASA Technical Reports Server (NTRS)

    Liu, Hongyu; Crawford, James H.; Pierce, Robert B.; Norris, Peter; Platnick, Steven E.; Chen, Gao; Logan, Jennifer A.; Yantosca, Robert M.; Evans, Mat J.; Kittaka, Chieko; hide

    2006-01-01

    Clouds exert an important influence on tropospheric photochemistry through modification of solar radiation that determines photolysis frequencies (J-values). We assess the radiative effect of clouds on photolysis frequencies and key oxidants in the troposphere with a global three-dimensional (3-D) chemical transport model (GEOS-CHEM) driven by assimilated meteorological observations from the Goddard Earth Observing System data assimilation system (GEOS DAS) at the NASA Global Modeling and Assimilation Office (GMAO). We focus on the year of 2001 with the GEOS-3 meteorological observations. Photolysis frequencies are calculated using the Fast-J radiative transfer algorithm. The GEOS-3 global cloud optical depth and cloud fraction are evaluated and generally consistent with the satellite retrieval products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the International Satellite Cloud Climatology Project (ISCCP). Results using the linear assumption, which assumes linear scaling of cloud optical depth with cloud fraction in a grid box, show global mean OH concentrations generally increase by less than 6% because of the radiative effect of clouds. The OH distribution shows much larger changes (with maximum decrease of approx.20% near the surface), reflecting the opposite effects of enhanced (weakened) photochemistry above (below) clouds. The global mean photolysis frequencies for J[O1D] and J[NO2] in the troposphere change by less than 5% because of clouds; global mean O3 concentrations in the troposphere increase by less than 5%. This study shows tropical upper tropospheric O3 to be less sensitive to the radiative effect of clouds than previously reported (approx.5% versus approx.20-30%). These results emphasize that the dominant effect of clouds is to influence the vertical redistribution of the intensity of photochemical activity while global average effects remain modest, again contrasting with previous studies. Differing vertical distributions of clouds may explain part, but not the majority, of these discrepancies between models. Using an approximate random overlap or a maximum-random overlap scheme to take account of the effect of cloud overlap in the vertical reduces the impact of clouds on photochemistry but does not significantly change our results with respect to the modest global average effect.

  6. SPECT3D - A multi-dimensional collisional-radiative code for generating diagnostic signatures based on hydrodynamics and PIC simulation output

    NASA Astrophysics Data System (ADS)

    MacFarlane, J. J.; Golovkin, I. E.; Wang, P.; Woodruff, P. R.; Pereyra, N. A.

    2007-05-01

    SPECT3D is a multi-dimensional collisional-radiative code used to post-process the output from radiation-hydrodynamics (RH) and particle-in-cell (PIC) codes to generate diagnostic signatures (e.g. images, spectra) that can be compared directly with experimental measurements. This ability to post-process simulation code output plays a pivotal role in assessing the reliability of RH and PIC simulation codes and their physics models. SPECT3D has the capability to operate on plasmas in 1D, 2D, and 3D geometries. It computes a variety of diagnostic signatures that can be compared with experimental measurements, including: time-resolved and time-integrated spectra, space-resolved spectra and streaked spectra; filtered and monochromatic images; and X-ray diode signals. Simulated images and spectra can include the effects of backlighters, as well as the effects of instrumental broadening and time-gating. SPECT3D also includes a drilldown capability that shows where frequency-dependent radiation is emitted and absorbed as it propagates through the plasma towards the detector, thereby providing insights on where the radiation seen by a detector originates within the plasma. SPECT3D has the capability to model a variety of complex atomic and radiative processes that affect the radiation seen by imaging and spectral detectors in high energy density physics (HEDP) experiments. LTE (local thermodynamic equilibrium) or non-LTE atomic level populations can be computed for plasmas. Photoabsorption rates can be computed using either escape probability models or, for selected 1D and 2D geometries, multi-angle radiative transfer models. The effects of non-thermal (i.e. non-Maxwellian) electron distributions can also be included. To study the influence of energetic particles on spectra and images recorded in intense short-pulse laser experiments, the effects of both relativistic electrons and energetic proton beams can be simulated. SPECT3D is a user-friendly software package that runs on Windows, Linux, and Mac platforms. A parallel version of SPECT3D is supported for Linux clusters for large-scale calculations. We will discuss the major features of SPECT3D, and present example results from simulations and comparisons with experimental data.

  7. Cumulative effective radiation dose received by blunt trauma patients arriving to a military level I trauma center from point of injury and interhospital transfers.

    PubMed

    Van Arnem, Kerri A; Supinski, David P; Tucker, Jonathan E; Varney, Shawn

    2016-12-01

    Trauma patients sustaining blunt injuries are exposed to multiple radiologic studies. Evidence indicates that the risk of cancer from exposure to ionizing radiation rises in direct proportion to the cumulative effective dose (CED) received. The purpose of this study is to quantify the amount of ionizing radiation accumulated when arriving directly from point of injury to San Antonio Military Medical Center (SAMMC), a level I trauma center, compared with those transferred from other facilities. A retrospective record review was conducted from 1st January 2010 through 31st December 2012. The SAMMC trauma registry, electronic medical records, and the digital radiology imaging system were searched for possible candidates. The medical records were then analyzed for sex, age, mechanism of injury, received directly from point of injury (direct group), transfer from another medical facility (transfer group), computed tomographic scans received, dose-length product, CED of radiation, and injury severity score. A diagnostic imaging physicist then calculated the estimated CED each subject received based on the dose-length product of each computed tomographic scan. A total of 300 patients were analyzed, with 150 patients in the direct group and 150 patients in the transfer group. Both groups were similar in age and sex. Patients in the transfer group received a significantly greater CED of radiation compared with the direct group (mean, 37.6 mSv vs 28 mSv; P=.001). The radiation received in the direct group correlates with a lifetime attributable risk (LAR) of 1 in 357 compared with the transfer group with an increase in LAR to 1 in 266. Patients transferred to our facility received a 34% increase in ionizing radiation compared with patients brought directly from the injury scene. This increased dose of ionizing radiation contributes to the LAR of cancer and needs to be considered before repeating imaging studies. III. Published by Elsevier Inc.

  8. SCIATRAN 3.1: A new radiative transfer model and retrieval package

    NASA Astrophysics Data System (ADS)

    Rozanov, Alexei; Rozanov, Vladimir; Kokhanovsky, Alexander; Burrows, John P.

    The SCIATRAN 3.1 package is a result of further development of the SCIATRAN 2.X software family which, similar to previous versions, comprises a radiative transfer model and a retrieval block. After an implementation of the vector radiative transfer model in SCIATRAN 3.0 the spectral range covered by the model has been extended into the thermal infrared ranging to approximately 40 micrometers. Another major improvement has been done accounting for the underlying surface effects. Among others, a sophisticated representation of the water surface with a bidirectional reflection distribution function (BRDF) has been implemented accounting for the Fresnel reflection of the polarized light and for the effect of foam. A newly developed representation for a snow surface allows radiative transfer calculations to be performed within an unpolluted or soiled snow layer. Furthermore, a new approach has been implemented allowing radiative transfer calculations to be performed for a coupled atmosphere-ocean system. This means that, the underlying ocean is not considered as a purely reflecting surface any more. Instead, full radiative transfer calculations are performed within the water allowing the user to simulate the radiance within both the atmosphere and the ocean. Similar to previous versions, the simulations can be performed for any viewing geometry typi-cal for atmospheric observations in the UV-Vis-NIR-TIR spectral range (nadir, limb, off-axis, etc.) as well as for any observer location within or outside the Earth's atmosphere including underwater observations. Similar to the precursor version, the new model is freely available for non-commercial use via the web page of the University of Bremen. In this presentation a short description of the software package, especially of the new features of the radiative transfer model is given, including remarks on the availability for the scientific community. Furthermore, some application examples of the radiative transfer model are shown.

  9. Minimum Fisher regularization of image reconstruction for infrared imaging bolometer on HL-2A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, J. M.; Liu, Y.; Li, W.

    2013-09-15

    An infrared imaging bolometer diagnostic has been developed recently for the HL-2A tokamak to measure the temporal and spatial distribution of plasma radiation. The three-dimensional tomography, reduced to a two-dimensional problem by the assumption of plasma radiation toroidal symmetry, has been performed. A three-dimensional geometry matrix is calculated with the one-dimensional pencil beam approximation. The solid angles viewed by the detector elements are taken into account in defining the chord brightness. And the local plasma emission is obtained by inverting the measured brightness with the minimum Fisher regularization method. A typical HL-2A plasma radiation model was chosen to optimize amore » regularization parameter on the criterion of generalized cross validation. Finally, this method was applied to HL-2A experiments, demonstrating the plasma radiated power density distribution in limiter and divertor discharges.« less

  10. Effect of ice-albedo feedback on global sensitivity in a one-dimensional radiative-convective climate model

    NASA Technical Reports Server (NTRS)

    Wang, W.-C.; Stone, P. H.

    1980-01-01

    The feedback between the ice albedo and temperature is included in a one-dimensional radiative-convective climate model. The effect of this feedback on global sensitivity to changes in solar constant is studied for the current climate conditions. This ice-albedo feedback amplifies global sensitivity by 26 and 39%, respectively, for assumptions of fixed cloud altitude and fixed cloud temperature. The global sensitivity is not affected significantly if the latitudinal variations of mean solar zenith angle and cloud cover are included in the global model. The differences in global sensitivity between one-dimensional radiative-convective models and energy balance models are examined. It is shown that the models are in close agreement when the same feedback mechanisms are included. The one-dimensional radiative-convective model with ice-albedo feedback included is used to compute the equilibrium ice line as a function of solar constant.

  11. Three dimensional radiation fields in free electron lasers using Lienard-Wiechert fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elias, L.R.; Gallardo, J.

    1981-10-28

    In a free electron laser a relativistic electron beam is bunched under the action of the ponderomotive potential and is forced to radiate in close phase with the input wave. Until recently, most theories of the FEL have dealt solely with electron beams of infinite transverse dimension radiating only one-dimensional E.M. waves (plane waves). Although these theories describe accurately the dynamics of the electrons during the FEL interaction process, neither the three dimensional nature of the radiated fields nor its non-monochromatic features can be properly studied by them. As a result of this, very important practical issues such as themore » gain per gaussian-spherical optical mode in a free electron laser have not been well addressed, except through a one dimensional field model in which a filling factor describes crudely the coupling of the FEL induced field to the input field.« less

  12. Basic theory for polarized, astrophysical maser radiation in a magnetic field

    NASA Technical Reports Server (NTRS)

    Watson, William D.

    1994-01-01

    Fundamental alterations in the theory and resulting behavior of polarized, astrophysical maser radiation in the presence of a magnetic field have been asserted based on a calculation of instabilities in the radiative transfer. I reconsider the radiative transfer and find that the relevant instabilities do not occur. Calculational errors in the previous investigation are identified. In addition, such instabilities would have appeared -- but did not -- in the numerous numerical solutions to the same radiative transfer equations that have been presented in the literature. As a result, all modifications that have been presented in a recent series of papers (Elitzur 1991, 1993) to the theory for polarized maser radiation in the presence of a magnetic field are invalid. The basic theory is thus clarified.

  13. 3D modeling of satellite spectral images, radiation budget and energy budget of urban landscapes

    NASA Astrophysics Data System (ADS)

    Gastellu-Etchegorry, J. P.

    2008-12-01

    DART EB is a model that is being developed for simulating the 3D (3 dimensional) energy budget of urban and natural scenes, possibly with topography and atmosphere. It simulates all non radiative energy mechanisms (heat conduction, turbulent momentum and heat fluxes, water reservoir evolution, etc.). It uses DART model (Discrete Anisotropic Radiative Transfer) for simulating radiative mechanisms: 3D radiative budget of 3D scenes and their remote sensing images expressed in terms of reflectance or brightness temperature values, for any atmosphere, wavelength, sun/view direction, altitude and spatial resolution. It uses an innovative multispectral approach (ray tracing, exact kernel, discrete ordinate techniques) over the whole optical domain. This paper presents two major and recent improvements of DART for adapting it to urban canopies. (1) Simulation of the geometry and optical characteristics of urban elements (houses, etc.). (2) Modeling of thermal infrared emission by vegetation and urban elements. The new DART version was used in the context of the CAPITOUL project. For that, districts of the Toulouse urban data base (Autocad format) were translated into DART scenes. This allowed us to simulate visible, near infrared and thermal infrared satellite images of Toulouse districts. Moreover, the 3D radiation budget was used by DARTEB for simulating the time evolution of a number of geophysical quantities of various surface elements (roads, walls, roofs). Results were successfully compared with ground measurements of the CAPITOUL project.

  14. Stationary radiation hydrodynamics of accreting magnetic white dwarfs.

    NASA Astrophysics Data System (ADS)

    Woelk, U.; Beuermann, K.

    1996-02-01

    Using an artificial viscosity, we solved the one-dimensional time-independent two-fluid hydrodynamic equations simultaneously to the fully frequency and angle dependent radiation transport in an accretion flow directed towards the surface of a magnetic white dwarf. We consider energy transfer from ions to electrons by Coulomb encounters and cooling by bremsstrahlung and by cyclotron radiation in fields between B=5 and 70MG. Electron and ion temperatures relax in the post-shock regime and the cooling flow settles onto the white dwarf surface. For high mass flow rates ˙(m) (in g/cm^2^/s), cooling takes place mainly by bremsstrahlung and the solutions approach the non-magnetic case. For low ˙(m) and high B, cooling is dominated by cyclotron radiation which causes the thickness of the cooling region to collapse by 1-2 orders of magnitude compared to the non-magnetic case. The electron temperature behind the shock drops from a few 10^8^ to a few 10^7^K and the ratio of cyclotron vs. total radiative flux approaches unity. For high ˙(m) and low B values, bremsstrahlung dominates, but cyclotron losses can never be neglected. We find a smooth transition from particle-heated to shock-heated atmospheres in the maximum electron temperature and also in the thickness of the heated layer. With these results, the stationary radiation-hydrodynamics of accreting magnetic white dwarfs with cyclotron and bremsstrahlung cooling has been solved for the whole range of observed mass flow rates and field strengths.

  15. Experimental Studies of the Heat Transfer to RBCC Rocket Nozzles for CFD Application to Design Methodologies

    NASA Technical Reports Server (NTRS)

    Santoro, Robert J.; Pal, Sibtosh

    1999-01-01

    Rocket thrusters for Rocket Based Combined Cycle (RBCC) engines typically operate with hydrogen/oxygen propellants in a very compact space. Packaging considerations lead to designs with either axisymmetric or two-dimensional throat sections. Nozzles tend to be either two- or three-dimensional. Heat transfer characteristics, particularly in the throat, where the peak heat flux occurs, are not well understood. Heat transfer predictions for these small thrusters have been made with one-dimensional analysis such as the Bartz equation or scaling of test data from much larger thrusters. The current work addresses this issue with an experimental program that examines the heat transfer characteristics of a gaseous oxygen (GO2)/gaseous hydrogen (GH2) two-dimensional compact rocket thruster. The experiments involved measuring the axial wall temperature profile in the nozzle region of a water-cooled gaseous oxygen/gaseous hydrogen rocket thruster at a pressure of 3.45 MPa. The wall temperature measurements in the thruster nozzle in concert with Bartz's correlation are utilized in a one-dimensional model to obtain axial profiles of nozzle wall heat flux.

  16. Energy transfer in turbulence under rotation

    NASA Astrophysics Data System (ADS)

    Buzzicotti, Michele; Aluie, Hussein; Biferale, Luca; Linkmann, Moritz

    2018-03-01

    It is known that rapidly rotating turbulent flows are characterized by the emergence of simultaneous upscale and downscale energy transfer. Indeed, both numerics and experiments show the formation of large-scale anisotropic vortices together with the development of small-scale dissipative structures. However the organization of interactions leading to this complex dynamics remains unclear. Two different mechanisms are known to be able to transfer energy upscale in a turbulent flow. The first is characterized by two-dimensional interactions among triads lying on the two-dimensional, three-component (2D3C)/slow manifold, namely on the Fourier plane perpendicular to the rotation axis. The second mechanism is three-dimensional and consists of interactions between triads with the same sign of helicity (homochiral). Here, we present a detailed numerical study of rotating flows using a suite of high-Reynolds-number direct numerical simulations (DNS) within different parameter regimes to analyze both upscale and downscale cascade ranges. We find that the upscale cascade at wave numbers close to the forcing scale is generated by increasingly dominant homochiral interactions which couple the three-dimensional bulk and the 2D3C plane. This coupling produces an accumulation of energy in the 2D3C plane, which then transfers energy to smaller wave numbers thanks to the two-dimensional mechanism. In the forward cascade range, we find that the energy transfer is dominated by heterochiral triads and is dominated primarily by interaction within the fast manifold where kz≠0 . We further analyze the energy transfer in different regions in the real-space domain. In particular, we distinguish high-strain from high-vorticity regions and we uncover that while the mean transfer is produced inside regions of strain, the rare but extreme events of energy transfer occur primarily inside the large-scale column vortices.

  17. Redshifted Cherenkov Radiation for in vivo Imaging: Coupling Cherenkov Radiation Energy Transfer to multiple Förster Resonance Energy Transfers

    PubMed Central

    Bernhard, Yann; Collin, Bertrand; Decréau, Richard A.

    2017-01-01

    Cherenkov Radiation (CR), this blue glow seen in nuclear reactors, is an optical light originating from energetic β-emitter radionuclides. CR emitter 90Y triggers a cascade of energy transfers in the presence of a mixed population of fluorophores (which each other match their respective absorption and emission maxima): Cherenkov Radiation Energy Transfer (CRET) first, followed by multiple Förster Resonance Energy transfers (FRET): CRET ratios were calculated to give a rough estimate of the transfer efficiency. While CR is blue-weighted (300–500 nm), such cascades of Energy Transfers allowed to get a) fluorescence emission up to 710 nm, which is beyond the main CR window and within the near-infrared (NIR) window where biological tissues are most transparent, b) to amplify this emission and boost the radiance on that window: EMT6-tumor bearing mice injected with both a radionuclide and a mixture of fluorophores having a good spectral overlap, were shown to have nearly a two-fold radiance boost (measured on a NIR window centered on the emission wavelength of the last fluorophore in the Energy Transfer cascade) compared to a tumor injected with the radionuclide only. Some CR embarked light source could be converted into a near-infrared radiation, where biological tissues are most transparent. PMID:28338043

  18. Three-dimensional numerical study of heat transfer enhancement in separated flows

    NASA Astrophysics Data System (ADS)

    Kumar, Saurav; Vengadesan, S.

    2017-11-01

    The flow separation appears in a wide range of heat transfer applications and causes poor heat transfer performance. It motivates the study of heat transfer enhancement in laminar as well as turbulent flows over a backward facing step by means of an adiabatic fin mounted on the top wall. Recently, we have studied steady, 2-D numerical simulations in laminar flow and investigated the effect of fin length, location, and orientation. It revealed that the addition of fin causes enhancement of heat transfer and it is very effective to control the flow and thermal behavior. The fin is most effective and sensitive when it is placed exactly above the step. A slight displacement of the fin in upstream of the step causes the complete change of flow and thermal behavior. Based on the obtained 2-D results it is interesting to investigate the side wall effect in three-dimensional simulations. The comparison of two-dimensional and three-dimensional numerical simulations with the available experimental results will be presented. Special attention has to be given to capture unsteadiness in the flow and thermal field.

  19. The Physics of Polarization

    NASA Astrophysics Data System (ADS)

    Landi Degl'Innocenti, Egidio

    2015-10-01

    The introductory lecture that has been delivered at this Symposium is a condensed version of an extended course held by the author at the XII Canary Island Winter School from November 13 to November 21, 2000. The full series of lectures can be found in Landi Degl'Innocenti (2002). The original reference is organized in 20 Sections that are here itemized: 1. Introduction, 2. Description of polarized radiation, 3. Polarization and optical devices: Jones calculus and Muller matrices, 4. The Fresnel equations, 5. Dichroism and anomalous dispersion, 6. Polarization in everyday life, 7. Polarization due to radiating charges, 8. The linear antenna, 9. Thomson scattering, 10. Rayleigh scattering, 11. A digression on Mie scattering, 12. Bremsstrahlung radiation, 13. Cyclotron radiation, 14. Synchrotron radiation, 15. Polarization in spectral lines, 16. Density matrix and atomic polarization, 17. Radiative transfer and statistical equilibrium equations, 18. The amplification condition in polarized radiative transfer, and 19. Coupling radiative transfer and statistical equilibrium equations.

  20. Numerical study of entropy generation due to coupled laminar and turbulent mixed convection and thermal radiation in an enclosure filled with a semitransparent medium.

    PubMed

    Goodarzi, M; Safaei, M R; Oztop, Hakan F; Karimipour, A; Sadeghinezhad, E; Dahari, M; Kazi, S N; Jomhari, N

    2014-01-01

    The effect of radiation on laminar and turbulent mixed convection heat transfer of a semitransparent medium in a square enclosure was studied numerically using the Finite Volume Method. A structured mesh and the SIMPLE algorithm were utilized to model the governing equations. Turbulence and radiation were modeled with the RNG k-ε model and Discrete Ordinates (DO) model, respectively. For Richardson numbers ranging from 0.1 to 10, simulations were performed for Rayleigh numbers in laminar flow (10⁴) and turbulent flow (10⁸). The model predictions were validated against previous numerical studies and good agreement was observed. The simulated results indicate that for laminar and turbulent motion states, computing the radiation heat transfer significantly enhanced the Nusselt number (Nu) as well as the heat transfer coefficient. Higher Richardson numbers did not noticeably affect the average Nusselt number and corresponding heat transfer rate. Besides, as expected, the heat transfer rate for the turbulent flow regime surpassed that in the laminar regime. The simulations additionally demonstrated that for a constant Richardson number, computing the radiation heat transfer majorly affected the heat transfer structure in the enclosure; however, its impact on the fluid flow structure was negligible.

  1. Numerical Study of Entropy Generation due to Coupled Laminar and Turbulent Mixed Convection and Thermal Radiation in an Enclosure Filled with a Semitransparent Medium

    PubMed Central

    Goodarzi, M.; Safaei, M. R.; Oztop, Hakan F.; Karimipour, A.; Sadeghinezhad, E.; Dahari, M.; Kazi, S. N.; Jomhari, N.

    2014-01-01

    The effect of radiation on laminar and turbulent mixed convection heat transfer of a semitransparent medium in a square enclosure was studied numerically using the Finite Volume Method. A structured mesh and the SIMPLE algorithm were utilized to model the governing equations. Turbulence and radiation were modeled with the RNG k-ε model and Discrete Ordinates (DO) model, respectively. For Richardson numbers ranging from 0.1 to 10, simulations were performed for Rayleigh numbers in laminar flow (104) and turbulent flow (108). The model predictions were validated against previous numerical studies and good agreement was observed. The simulated results indicate that for laminar and turbulent motion states, computing the radiation heat transfer significantly enhanced the Nusselt number (Nu) as well as the heat transfer coefficient. Higher Richardson numbers did not noticeably affect the average Nusselt number and corresponding heat transfer rate. Besides, as expected, the heat transfer rate for the turbulent flow regime surpassed that in the laminar regime. The simulations additionally demonstrated that for a constant Richardson number, computing the radiation heat transfer majorly affected the heat transfer structure in the enclosure; however, its impact on the fluid flow structure was negligible. PMID:24778601

  2. Arrays of strongly coupled atoms in a one-dimensional waveguide

    NASA Astrophysics Data System (ADS)

    Ruostekoski, Janne; Javanainen, Juha

    2017-09-01

    We study the cooperative optical coupling between regularly spaced atoms in a one-dimensional waveguide using decompositions to subradiant and super-radiant collective excitation eigenmodes, direct numerical solutions, and analytical transfer-matrix methods. We illustrate how the spectrum of transmitted light through the waveguide, including the emergence of narrow Fano resonances, can be understood by the resonance features of the eigenmodes. We describe a method based on super-radiant and subradiant modes to engineer the optical response of the waveguide and to store light. The stopping of light is obtained by transferring an atomic excitation to a subradiant collective mode with the zero radiative resonance linewidth by controlling the level shift of an atom in the waveguide. Moreover, we obtain an exact analytic solution for the transmitted light through the waveguide for the case of a regular lattice of atoms and provide a simple description of how the light transmission may present large resonance shifts when the lattice spacing is close, but not exactly equal, to half of the wavelength of the light. Experimental imperfections such as fluctuations of the positions of the atoms and loss of light from the waveguide are easily quantified in the numerical simulations, which produce the natural result that the optical response of the atomic array tends toward the response of a gas with random atomic positions.

  3. SERODS optical data storage with parallel signal transfer

    DOEpatents

    Vo-Dinh, Tuan

    2003-09-02

    Surface-enhanced Raman optical data storage (SERODS) systems having increased reading and writing speeds, that is, increased data transfer rates, are disclosed. In the various SERODS read and write systems, the surface-enhanced Raman scattering (SERS) data is written and read using a two-dimensional process called parallel signal transfer (PST). The various embodiments utilize laser light beam excitation of the SERODS medium, optical filtering, beam imaging, and two-dimensional light detection. Two- and three-dimensional SERODS media are utilized. The SERODS write systems employ either a different laser or a different level of laser power.

  4. SERODS optical data storage with parallel signal transfer

    DOEpatents

    Vo-Dinh, Tuan

    2003-06-24

    Surface-enhanced Raman optical data storage (SERODS) systems having increased reading and writing speeds, that is, increased data transfer rates, are disclosed. In the various SERODS read and write systems, the surface-enhanced Raman scattering (SERS) data is written and read using a two-dimensional process called parallel signal transfer (PST). The various embodiments utilize laser light beam excitation of the SERODS medium, optical filtering, beam imaging, and two-dimensional light detection. Two- and three-dimensional SERODS media are utilized. The SERODS write systems employ either a different laser or a different level of laser power.

  5. SAFSIM theory manual: A computer program for the engineering simulation of flow systems

    NASA Astrophysics Data System (ADS)

    Dobranich, Dean

    1993-12-01

    SAFSIM (System Analysis Flow SIMulator) is a FORTRAN computer program for simulating the integrated performance of complex flow systems. SAFSIM provides sufficient versatility to allow the engineering simulation of almost any system, from a backyard sprinkler system to a clustered nuclear reactor propulsion system. In addition to versatility, speed and robustness are primary SAFSIM development goals. SAFSIM contains three basic physics modules: (1) a fluid mechanics module with flow network capability; (2) a structure heat transfer module with multiple convection and radiation exchange surface capability; and (3) a point reactor dynamics module with reactivity feedback and decay heat capability. Any or all of the physics modules can be implemented, as the problem dictates. SAFSIM can be used for compressible and incompressible, single-phase, multicomponent flow systems. Both the fluid mechanics and structure heat transfer modules employ a one-dimensional finite element modeling approach. This document contains a description of the theory incorporated in SAFSIM, including the governing equations, the numerical methods, and the overall system solution strategies.

  6. Project Fog Drops 5. Task 1: A numerical model of advection fog. Task 2: Recommendations for simplified individual zero-gravity cloud physics experiments

    NASA Technical Reports Server (NTRS)

    Rogers, C. W.; Eadie, W. J.; Katz, U.; Kocmond, W. C.

    1975-01-01

    A two-dimensional numerical model was used to investigate the formation of marine advection fog. The model predicts the evolution of potential temperature, horizontal wind, water vapor content, and liquid water content in a vertical cross section of the atmosphere as determined by vertical turbulent transfer and horizontal advection, as well as radiative cooling and drop sedimentation. The model is designed to simulate the formation, development, or dissipation of advection fog in response to transfer of heat and moisture between the atmosphere and the surface as driven by advection over horizontal discontinuities in the surface temperature. Results from numerical simulations of advection fog formation are discussed with reference to observations of marine fog. A survey of candidate fog or cloud microphysics experiments which might be performed in the low gravity environment of a shuttle-type spacecraft in presented. Recommendations are given for relatively simple experiments which are relevent to fog modification problems.

  7. Bridging the Radiative Transfer Models for Meteorology and Solar Energy Applications

    NASA Astrophysics Data System (ADS)

    Xie, Y.; Sengupta, M.

    2017-12-01

    Radiative transfer models are used to compute solar radiation reaching the earth surface and play an important role in both meteorology and solar energy studies. Therefore, they are designed to meet the needs of specialized applications. For instance, radiative transfer models for meteorology seek to provide more accurate cloudy-sky radiation compared to models used in solar energy that are geared towards accuracy in clear-sky conditions associated with the maximum solar resource. However, models for solar energy applications are often computationally faster, as the complex solution of the radiative transfer equation is parameterized by atmospheric properties that can be acquired from surface- or satellite-based observations. This study introduces the National Renewable Energy Laboratory's (NREL's) recent efforts to combine the advantages of radiative transfer models designed for meteorology and solar energy applictions. A fast all-sky radiation model, FARMS-NIT, was developed to efficiently compute narrowband all-sky irradiances over inclined photovoltaic (PV) panels. This new model utilizes the optical preperties from a solar energy model, SMARTS, to computes surface radiation by considering all possible paths of photon transmission and the relevent scattering and absorption attenuation. For cloudy-sky conditions, cloud bidirectional transmittance functions (BTDFs) are provided by a precomputed lookup table (LUT) by LibRadtran. Our initial results indicate that FARMS-NIT has an accuracy that is similar to LibRadtran, a highly accurate multi-stream model, but is significantly more efficient. The development and validation of this model will be presented.

  8. MULTI2D - a computer code for two-dimensional radiation hydrodynamics

    NASA Astrophysics Data System (ADS)

    Ramis, R.; Meyer-ter-Vehn, J.; Ramírez, J.

    2009-06-01

    Simulation of radiation hydrodynamics in two spatial dimensions is developed, having in mind, in particular, target design for indirectly driven inertial confinement energy (IFE) and the interpretation of related experiments. Intense radiation pulses by laser or particle beams heat high-Z target configurations of different geometries and lead to a regime which is optically thick in some regions and optically thin in others. A diffusion description is inadequate in this situation. A new numerical code has been developed which describes hydrodynamics in two spatial dimensions (cylindrical R-Z geometry) and radiation transport along rays in three dimensions with the 4 π solid angle discretized in direction. Matter moves on a non-structured mesh composed of trilateral and quadrilateral elements. Radiation flux of a given direction enters on two (one) sides of a triangle and leaves on the opposite side(s) in proportion to the viewing angles depending on the geometry. This scheme allows to propagate sharply edged beams without ray tracing, though at the price of some lateral diffusion. The algorithm treats correctly both the optically thin and optically thick regimes. A symmetric semi-implicit (SSI) method is used to guarantee numerical stability. Program summaryProgram title: MULTI2D Catalogue identifier: AECV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 151 098 No. of bytes in distributed program, including test data, etc.: 889 622 Distribution format: tar.gz Programming language: C Computer: PC (32 bits architecture) Operating system: Linux/Unix RAM: 2 Mbytes Word size: 32 bits Classification: 19.7 External routines: X-window standard library (libX11.so) and corresponding heading files (X11/*.h) are required. Nature of problem: In inertial confinement fusion and related experiments with lasers and particle beams, energy transport by thermal radiation becomes important. Under these conditions, the radiation field strongly interacts with the hydrodynamic motion through emission and absorption processes. Solution method: The equations of radiation transfer coupled with Lagrangian hydrodynamics, heat diffusion and beam tracing (laser or ions) are solved, in two-dimensional axial-symmetric geometry ( R-Z coordinates) using a fractional step scheme. Radiation transfer is solved with angular resolution. Matter properties are either interpolated from tables (equations-of-state and opacities) or computed by user routines (conductivities and beam attenuation). Restrictions: The code has been designed for typical conditions prevailing in inertial confinement fusion (ns time scale, matter states close to local thermodynamical equilibrium, negligible radiation pressure, …). Although a wider range of situations can be treated, extrapolations to regions beyond this design range need special care. Unusual features: A special computer language, called r94, is used at top levels of the code. These parts have to be converted to standard C by a translation program (supplied as part of the package). Due to the complexity of code (hydro-code, grid generation, user interface, graphic post-processor, translator program, installation scripts) extensive manuals are supplied as part of the package. Running time: 567 seconds for the example supplied.

  9. Theory of light transfer in food and biological materials

    USDA-ARS?s Scientific Manuscript database

    In this chapter, we first define the basic radiometric quantities that are needed for describing light propagation in food and biological materials. Radiative transfer theory is then derived, according to the principle of the conservation of energy. Because the radiative transfer theory equation is ...

  10. Detection of DNA Damage by Space Radiation in Human Fibroblasts Flown on the International Space Station

    NASA Technical Reports Server (NTRS)

    Lu, Tao; Zhang, Ye; Wong, Michael; Feiveson, Alan; Gaza, Ramona; Stoffle, Nicholas; Wang, Huichen; Wilson, Bobby; Rohde, Larry; Stodieck, Louis; hide

    2017-01-01

    Although charged particles in space have been detected with radiation detectors on board spacecraft since the discovery of the Van Allen Belts, reports on the effects of direct exposure to space radiation in biological systems have been limited. Measurement of biological effects of space radiation is challenging due to the low dose and low dose rate nature of the radiation environment, and due to the difficulty in distinguishing the radiation effects from microgravity and other space environmental factors. In astronauts, only a few changes, such as increased chromosome aberrations in their lymphocytes and early onset of cataracts, are attributed primarily to their exposure to space radiation. In this study, cultured human fibroblasts were flown on the International Space Station (ISS). Cells were kept at 37 degrees Centigrade in space for 14 days before being fixed for analysis of DNA damages with the gamma-H2AX assay. The 3-dimensional gamma-H2AX foci were captured with a laser confocal microscope. Quantitative analysis revealed several foci that were larger and displayed a track pattern only in the Day 14 flight samples. To confirm that the foci data from the flight study was actually induced from space radiation exposure, cultured human fibroblasts were exposed to low dose rate gamma rays at 37 degrees Centigrade. Cells exposed to chronic gamma rays showed similar foci size distribution in comparison to the non-exposed controls. The cells were also exposed to low- and high-LET (Linear Energy Transfer) protons, and high-LET Fe ions on the ground. Our results suggest that in G1 human fibroblasts under the normal culture condition, only a small fraction of large size foci can be attributed to high-LET radiation in space.

  11. Shape-Independent Limits to Near-Field Radiative Heat Transfer

    NASA Astrophysics Data System (ADS)

    Miller, Owen D.; Johnson, Steven G.; Rodriguez, Alejandro W.

    2015-11-01

    We derive shape-independent limits to the spectral radiative heat transfer rate between two closely spaced bodies, generalizing the concept of a blackbody to the case of near-field energy transfer. Through conservation of energy and reciprocity, we show that each body of susceptibility χ can emit and absorb radiation at enhanced rates bounded by |χ |2/Im χ , optimally mediated by near-field photon transfer proportional to 1 /d2 across a separation distance d . Dipole-dipole and dipole-plate structures approach restricted versions of the limit, but common large-area structures do not exhibit the material enhancement factor and thus fall short of the general limit. By contrast, we find that particle arrays interacting in an idealized Born approximation (i.e., neglecting multiple scattering) exhibit both enhancement factors, suggesting the possibility of orders-of-magnitude improvement beyond previous designs and the potential for radiative heat transfer to be comparable to conductive heat transfer through air at room temperature, and significantly greater at higher temperatures.

  12. Approximate Solution Methods for Spectral Radiative Transfer in High Refractive Index Layers

    NASA Technical Reports Server (NTRS)

    Siegel, R.; Spuckler, C. M.

    1994-01-01

    Some ceramic materials for high temperature applications are partially transparent for radiative transfer. The refractive indices of these materials can be substantially greater than one which influences internal radiative emission and reflections. Heat transfer behavior of single and laminated layers has been obtained in the literature by numerical solutions of the radiative transfer equations coupled with heat conduction and heating at the boundaries by convection and radiation. Two-flux and diffusion methods are investigated here to obtain approximate solutions using a simpler formulation than required for exact numerical solutions. Isotropic scattering is included. The two-flux method for a single layer yields excellent results for gray and two band spectral calculations. The diffusion method yields a good approximation for spectral behavior in laminated multiple layers if the overall optical thickness is larger than about ten. A hybrid spectral model is developed using the two-flux method in the optically thin bands, and radiative diffusion in bands that are optically thick.

  13. Quantum funneling in blended multi-band gap core/shell colloidal quantum dot solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neo, Darren C. J.; Assender, Hazel E.; Watt, Andrew A. R., E-mail: Andrew.watt@materials.ox.ac.uk

    2015-09-07

    Multi-band gap heterojunction solar cells fabricated from a blend of 1.2 eV and 1.4 eV PbS colloidal quantum dots (CQDs) show poor device performance due to non-radiative recombination. To overcome this, a CdS shell is epitaxially formed around the PbS core using cation exchange. From steady state and transient photoluminescence measurements, we understand the nature of charge transfer between these quantum dots. Photoluminescence decay lifetimes are much longer in the PbS/CdS core/shell blend compared to PbS only, explained by a reduction in non-radiative recombination resulting from CdS surface passivation. PbS/CdS heterojunction devices sustain a higher open-circuit voltage and lower reverse saturation currentmore » as compared to PbS-only devices, implying lower recombination rates. Further device performance enhancement is attained by modifying the composition profile of the CQD species in the absorbing layer resulting in a three dimensional quantum cascade structure.« less

  14. Multi-Wavelength Implications of the Companion Star in eta Carinae

    NASA Technical Reports Server (NTRS)

    Madura, Thomas I.; Gull, Theodore R.; Groh, Jose H.; Owocki, Stanley P.; Okazaki, Atsuo; Hillier, D. John; Russell, Christopher

    2012-01-01

    Eta-Carinae is considered to be a massive colliding wind binary system with a highly eccentric (e approximately 0.9), 5.54-yr orbit. However, the companion star continues to evade direct detection as the primary dwarfs its emission at most wavelengths. Using three-dimensional (3-D) SPH simulations of eta-Car's colliding winds and radiative transfer codes, we are able to compute synthetic observables across multiple wavebands for comparison to the observations. The models show that the presence of a companion star has a profound influence on the observed HST/STIS UV spectrum and H-alpha line profiles, as well as the ground-based photometric monitoring. Here, we focus on the Bore Hole effect, wherein the fast wind from the hot secondary star carves a cavity in the dense primary wind, allowing increased escape of radiation from the hotter/deeper layers of the primary's extended wind photosphere. The results have important implications for interpretations of eta-Car's observables at multiple wavelengths.

  15. Bidirectional Reflectance Modeling of Non-homogeneous Plant Canopies

    NASA Technical Reports Server (NTRS)

    Norman, J. M. (Principal Investigator)

    1985-01-01

    The objective of this research is to develop a 3-dimensional radiative transfer model for predicting the bidirectional reflectance distribution function (BRDF) for heterogeneous vegetation canopies. The model (named BIGAR) considers the angular distribution of leaves, leaf area index, the location and size of individual subcanopies such as widely spaced rows or trees, spectral and directional properties of leaves, multiple scattering, solar position and sky condition, and characteristics of the soil. The model relates canopy biophysical attributes to down-looking radiation measurements for nadir and off-nadir viewing angles. Therefore, inversion of this model, which is difficult but practical should provide surface biophysical pattern; a fundamental goal of remote sensing. Such a model also will help to evaluate atmospheric limitations to satellite remote sensing by providing a good surface boundary condition for many different kinds of canopies. Furthermore, this model can relate estimates of nadir reflectance, which is approximated by most satellites, to hemispherical reflectance, which is necessary in the energy budget of vegetated surfaces.

  16. The physics behind a simple demonstration of the greenhouse effect

    NASA Astrophysics Data System (ADS)

    Buxton, Gavin A.

    2014-03-01

    A simple, and popular, demonstration of the greenhouse effect involves a higher temperature being observed in a container with an elevated concentration of CO2 inside than in a container with just air enclosed, when subject to direct light. The CO2 absorbs outgoing thermal radiation and causes the air inside the container to be warmer. However, in some variations of this experiment an additional positive effect can arise from artefacts in the experiment, such as the slightly heavier CO2 forming a layer at the bottom of the container and suppressing convection. Therefore, the physics of this demonstration is elucidated in a system that does not suffer from such artefacts. In particular, the absorption of infrared radiation due to the enclosed CO2 is measured, and a one-dimensional model of heat transfer is solved. It is found that the temperature of the enclosed air is significantly higher inside the container with an elevated concentration of CO2 inside, but that the temperature of the container itself is not appreciably higher.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wollaber, Allan Benton; Park, HyeongKae; Lowrie, Robert Byron

    Recent efforts at Los Alamos National Laboratory to develop a moment-based, scale-bridging [or high-order (HO)–low-order (LO)] algorithm for solving large varieties of the transport (kinetic) systems have shown promising results. A part of our ongoing effort is incorporating this methodology into the framework of the Eulerian Applications Project to achieve algorithmic acceleration of radiationhydrodynamics simulations in production software. By starting from the thermal radiative transfer equations with a simple material-motion correction, we derive a discretely consistent energy balance equation (LO equation). We demonstrate that the corresponding LO system for the Monte Carlo HO solver is closely related to the originalmore » LO system without material-motion corrections. We test the implementation on a radiative shock problem and show consistency between the energy densities and temperatures in the HO and LO solutions as well as agreement with the semianalytic solution. We also test the approach on a more challenging two-dimensional problem and demonstrate accuracy enhancements and algorithmic speedups. This paper extends a recent conference paper by including multigroup effects.« less

  18. Infrared emission of a freestanding plasmonic membrane

    NASA Astrophysics Data System (ADS)

    Monshat, Hosein; Liu, Longju; McClelland, John; Biswas, Rana; Lu, Meng

    2018-01-01

    This paper reports a free-standing plasmonic membrane as a thermal emitter in the near- and mid-infrared regions. The plasmonic membrane consists of an ultrathin gold film perforated with a two-dimensional array of holes. The device was fabricated using an imprint and transfer process and fixed on a low-emissivity metal grid. The thermal radiation characteristics of the plasmonic membrane can be engineered by controlling the array period and the thickness of the gold membrane. Plasmonic membranes with two different periods were designed using electromagnetic simulation and then characterized for their transmission and infrared radiation properties. The free-standing membranes exhibit extraordinary optical transmissions with the resonant transmission coefficient as high as 76.8%. After integration with a customized heater, the membranes demonstrate narrowband thermal emission in the wavelength range of 2.5 μm to 5.5 μm. The emission signatures, including peak emission wavelength and bandwidth, are associated with the membrane geometry. The ultrathin membrane infrared emitter can be adopted in applications, such as chemical analysis and thermal imaging.

  19. Near-field radiative transfer in spectrally tunable double-layer phonon-polaritonic metamaterials

    NASA Astrophysics Data System (ADS)

    Didari, Azadeh; Elçioğlu, Elif Begüm; Okutucu-Özyurt, Tuba; Mengüç, M. Pinar

    2018-06-01

    Understanding of near-field radiative transfer is crucial for many advanced applications such as nanoscale energy harvesting, nano-manufacturing, thermal imaging, and radiative cooling. Near-field radiative transfer has been shown to be dependent on the material and morphological characteristics of systems, the gap distances between structures, and their temperatures. Surface interactions of phononic materials in close proximity of each other has led to promising results for novel near-field radiative transfer applications. For systems involving thin films and small structures, as the dimension(s) through which the heat transfer takes place is/are on the order of sub-micrometers, it is important to identify the impacts of size-related parameters on the results. In this work, we investigated the impact of geometric design and characteristics in a double-layer metamaterial system made up of GaN, SiC, h-BN; all of which have potential importance in micro-and nano-technological systems. The numerical study is performed using the NF-RT-FDTD algorithm, which is a versatile method to study near-field thermal radiation performances of advanced configurations of materials, even with arbitrary shapes. We have systematically investigated the thin film thickness, the substrate material, and the nanostructured surfaces effects, and reported on the best combination of scenarios among the studied cases to obtain maximum enhancement of radiative heat transfer rate. The findings of this work may be used in design and fabrication of new corrugated surfaces for energy harvesting purposes.

  20. Theoretical and Observational Determination of Global and Regional Radiation Budget, Forcing and Feedbacks at the Top-of-Atmosphere and Surface

    NASA Technical Reports Server (NTRS)

    Loeb, Norman G.

    2004-01-01

    Report consists of: 1. List of accomplishments 2. List of publications 3. Abstracts of published or submitted papers and 4. Subject invention disclosure. The accomplishments of the grant listed are: 1. Improved the third-order turbulence closure in cloud resolving models to remove the liquid water oscillation. 2. Used the University of California-Los Angeles (UCLA) large-eddy simulation (LES) model to provide data for radiation transfer testing. 3. Revised shortwave k-distribution models based on HITRAN 2000. 4. Developed a gamma-weighted two-stream radiative transfer model for radiation budget estimate applications. 5. Estimated the effect of spherical geometry to the earth radiation budget. 6. Estimated top-of-atmosphere irradiance over snow and sea ice surfaces. 7. Estimated the aerosol direct radiative effect at the top of the atmosphere. 8. Estimated the top-of-atmosphere reflectance of the clear-sky molecular atmosphere over ocean. 9. Developed and validated new set of Angular Distribution Models for the CERES TRMM satellite instrument (tropical) 10. Developed and validated new set of Angular Distribution Models for the CERES Terra satellite instrument (global) 11. Quantified the top-of-atmosphere direct radiative effect of aerosols over global oceans from merged CERES and MODIS observations 12 Clarified the definition of TOA flux reference level for radiation budget studies 13. Developed new algorithm for unfaltering CERES measured radiances 14. Used multiangle POLDER measurements to produce narrowband angular distribution models and examine the effect of scene identification errors on TOA albedo estimates 15. Developed and validated a novel algorithm called the Multidirectional Reflectance Matching (MRM) model for inferring TOA albedos from ice clouds using multi-angle satellite measurements. 16. Developed and validated a novel algorithm called the Multidirectional Polarized Reflectance Matching (MPRM) model for inferring particle shapes from ice clouds using multi-angle polarized satellite measurements. 17. Developed 4 advanced light scattering models including the three-dimensional (3D) uniaxial perfectly matched layer (UPML) finite-difference time-domain (FDTD) model. 18. Develop sunglint in situ measurement and study reflectance distribution in the sunglint area. 19. Lead a balloon-borne radiometer TOA albedo validation effort. 20. Developed a CERES surface UVB, UVA, and UV index product.

  1. Plastic scintillator enhancement through Quantum Dot

    NASA Astrophysics Data System (ADS)

    Tam, Alan; Boyraz, Ozdal; Nilsson, Mikael

    2017-08-01

    Plastic scintillators such as Polyvinyl Toluene (PVT) are used for radiation detection but due to their poor performance they are not widely implemented. In order to circumnavigate this, dopants are added to enhance scintillation by energy transfer otherwise lost through non-radiative processes. In this work, we exploit the effects of energy transfer through the use of short wavelength emission Cadmium Sulfide Quantum Dots (QD) as the transfer stimulant. Scintillation enhancement was observed as Cadmium Sulfide QD with scintillating dyes are embedded in PVT polymer matrix for beta and gamma radiation. Energy transfer was observed between Quantum Dots, scintillating dye, and the host polymer. Different concentrations of QD and 2,5-diphenyloxazole (PPO) dye are investigated to characterize the energy transfer.

  2. Near-field radiative heat transfer between graphene-covered hyperbolic metamaterials

    NASA Astrophysics Data System (ADS)

    Hong, Xiao-Juan; Li, Jian-Wen; Wang, Tong-Biao; Zhang, De-Jian; Liu, Wen-Xing; Liao, Qing-Hua; Yu, Tian-Bao; Liu, Nian-Hua

    2018-04-01

    We propose the use of graphene-covered silicon carbide (SiC) nanowire arrays (NWAs) for theoretical studies of near-field radiative heat transfer. The SiC NWAs exhibit a hyperbolic characteristic at an appropriately selected filling-volume fraction. The surface plasmon supported by graphene and the hyperbolic modes supported by SiC NWAs significantly affect radiative heat transfer. The heat-transfer coefficient (HTC) between the proposed structures is larger than that between SiC NWAs. We also find that the chemical potential of graphene plays an important role in modulating the HTC. The tunability of chemical potential through gate voltage enables flexible control of heat transfer using the graphene-covered SiC NWAs.

  3. Algorithms for radiative transfer simulations for aerosol retrieval

    NASA Astrophysics Data System (ADS)

    Mukai, Sonoyo; Sano, Itaru; Nakata, Makiko

    2012-11-01

    Aerosol retrieval work from satellite data, i.e. aerosol remote sensing, is divided into three parts as: satellite data analysis, aerosol modeling and multiple light scattering calculation in the atmosphere model which is called radiative transfer simulation. The aerosol model is compiled from the accumulated measurements during more than ten years provided with the world wide aerosol monitoring network (AERONET). The radiative transfer simulations take Rayleigh scattering by molecules and Mie scattering by aerosols in the atmosphere, and reflection by the Earth surface into account. Thus the aerosol properties are estimated by comparing satellite measurements with the numerical values of radiation simulations in the Earth-atmosphere-surface model. It is reasonable to consider that the precise simulation of multiple light-scattering processes is necessary, and needs a long computational time especially in an optically thick atmosphere model. Therefore efficient algorithms for radiative transfer problems are indispensable to retrieve aerosols from space.

  4. A probabilistic approach to radiative energy loss calculations for optically thick atmospheres - Hydrogen lines and continua

    NASA Technical Reports Server (NTRS)

    Canfield, R. C.; Ricchiazzi, P. J.

    1980-01-01

    An approximate probabilistic radiative transfer equation and the statistical equilibrium equations are simultaneously solved for a model hydrogen atom consisting of three bound levels and ionization continuum. The transfer equation for L-alpha, L-beta, H-alpha, and the Lyman continuum is explicitly solved assuming complete redistribution. The accuracy of this approach is tested by comparing source functions and radiative loss rates to values obtained with a method that solves the exact transfer equation. Two recent model solar-flare chromospheres are used for this test. It is shown that for the test atmospheres the probabilistic method gives values of the radiative loss rate that are characteristically good to a factor of 2. The advantage of this probabilistic approach is that it retains a description of the dominant physical processes of radiative transfer in the complete redistribution case, yet it achieves a major reduction in computational requirements.

  5. Dose evaluation of organs at risk (OAR) cervical cancer using dose volume histogram (DVH) on brachytherapy

    NASA Astrophysics Data System (ADS)

    Arif Wibowo, R.; Haris, Bambang; Inganatul Islamiyah, dan

    2017-05-01

    Brachytherapy is one way to cure cervical cancer. It works by placing a radioactive source near the tumor. However, there are some healthy tissues or organs at risk (OAR) such as bladder and rectum which received radiation also. This study aims to evaluate the radiation dose of the bladder and rectum. There were 12 total radiation dose data of the bladder and rectum obtained from patients’ brachytherapy. The dose of cervix for all patients was 6 Gy. Two-dimensional calculation of the radiation dose was based on the International Commission on Radiation Units and Measurements (ICRU) points or called DICRU while the 3-dimensional calculation derived from Dose Volume Histogram (DVH) on a volume of 2 cc (D2cc). The radiation dose of bladder and rectum from both methods were analysed using independent t test. The mean DICRU of bladder was 4.33730 Gy and its D2cc was4.78090 Gy. DICRU and D2cc bladder did not differ significantly (p = 0.144). The mean DICRU of rectum was 3.57980 Gy and 4.58670 Gy for D2cc. The mean DICRU of rectum differed significantly from D2cc of rectum (p = 0.000). The three-dimensional method radiation dose of the bladder and rectum was higher than the two-dimensional method with ratios 1.10227 for bladder and 1.28127 for rectum. The radiation dose of the bladder and rectum was still below the tolerance dose. Two-dimensional calculation of the bladder and rectum dose was lower than three-dimension which was more accurate due to its calculation at the whole volume of the organs.

  6. Combined natural convection and non-gray radiation heat transfer in a horizontal annulus

    NASA Astrophysics Data System (ADS)

    Sun, Yujia; Zhang, Xiaobing; Howell, John R.

    2018-02-01

    Natural convection and non-gray radiation in an annulus containing a radiative participating gas is investigated. To determine the effect of non-gray radiation, the spectral line based weighted sum of gray gas is adopted to model the gas radiative properties. Case with only surface radiation (transparent medium) is also considered to see the relative contributions of surface radiation and gas radiation. The finite volume method is used to solve the mass, momentum, energy and radiative transfer equations. Comparisons between pure convection, case considering only surface radiation and case considering both gas radiation and surface radiation are made and the results show that radiation is not negligible and gas radiation becomes more important with increasing Rayleigh number (and the annulus size).

  7. Assessment of different radiative transfer equation solvers for combined natural convection and radiation heat transfer problems

    NASA Astrophysics Data System (ADS)

    Sun, Yujia; Zhang, Xiaobing; Howell, John R.

    2017-06-01

    This work investigates the performance of the DOM, FVM, P1, SP3 and P3 methods for 2D combined natural convection and radiation heat transfer for an absorbing, emitting medium. The Monte Carlo method is used to solve the RTE coupled with the energy equation, and its results are used as benchmark solutions. Effects of the Rayleigh number, Planck number and optical thickness are considered, all covering several orders of magnitude. Temperature distributions, heat transfer rate and computational performance in terms of accuracy and computing time are presented and analyzed.

  8. Radiative contribution to thermal conductance in animal furs and other woolly insulators.

    PubMed

    Simonis, Priscilla; Rattal, Mourad; Oualim, El Mostafa; Mouhse, Azeddine; Vigneron, Jean-Pol

    2014-01-27

    This paper deals with radiation's contribution to thermal insulation. The mechanism by which a stack of absorbers limits radiative heat transfer is examined in detail both for black-body shields and grey-body shields. It shows that radiation energy transfer rates should be much faster than conduction rates. It demonstrates that, for opaque screens, increased reflectivity will dramatically reduce the rate of heat transfer, improving thermal insulation. This simple model is thought to contribute to the understanding of how animal furs, human clothes, rockwool insulators, thermo-protective containers, and many other passive energy-saving devices operate.

  9. The Coupling of Finite Element and Integral Equation Representations for Efficient Three-Dimensional Modeling of Electromagnetic Scattering and Radiation

    NASA Technical Reports Server (NTRS)

    Cwik, Tom; Zuffada, Cinzia; Jamnejad, Vahraz

    1996-01-01

    Finite element modeling has proven useful for accurtely simulating scattered or radiated fields from complex three-dimensional objects whose geometry varies on the scale of a fraction of a wavelength.

  10. Nonaxisymmetric evolution in protostellar disks

    NASA Technical Reports Server (NTRS)

    Laughlin, Gregory; Bodenheimer, Peter

    1994-01-01

    We present a two-dimensional, multigridded hydrodynamical simulation of the collapse of an axisymmetric, rotating, 1 solar mass protostellar cloud, which forms a resolved, hydrotastic disk. The code includes the effects of physical viscosity, radiative transfer and radiative acceleration but not magnetic fields. We examine how the disk is affected by the inclusion of turbulent viscosity by comparing a viscous simulation with an inviscid model evolved from the same initial conditions, and we derive a disk evolutionary timescale on the order of 300,000 years if alpha = 0.01. Effects arising from non-axisymmetric gravitational instabilities in the protostellar disk are followed with a three-dimensional SPH code, starting from the two-dimensional structure. We find that the disk is prone to a series of spiral instabilities with primary azimulthal mode number m = 1 and m = 2. The torques induced by these nonaxisymmetric structures elicit material transport of angular momentum and mass through the disk, readjusting the surface density profile toward more stable configurations. We present a series of analyses which characterize both the development and the likely source of the instabilities. We speculate that an evolving disk which maintains a minimum Toomre Q-value approximately 1.4 will have a total evolutionary span of several times 10(exp 5) years, comparable to, but somewhat shorter than the evolutionary timescale resulting from viscous turbulence alone. We compare the evolution resulting from nonaxisymmetric instabilities with solutions of a one-dimensional viscous diffusion equation applied to the initial surface density and temperature profile. We find that an effective alpha-value of 0.03 is a good fit to the results of the simulation. However, the effective alpha will depend on the minimum Q in the disk at the time the instability is activated. We argue that the major fraction of the transport characterized by the value of alpha is due to the action of gravitational torques, and does not arise from inherent viscosity within the smoothed particle hydrodynamics method.

  11. Hawking radiation as tunneling from squashed Kaluza-Klein black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuno, Ken; Umetsu, Koichiro

    2011-03-15

    We discuss Hawking radiation from a five-dimensional squashed Kaluza-Klein black hole on the basis of the tunneling mechanism. A simple method, which was recently suggested by Umetsu, may be used to extend the original derivation by Parikh and Wilczek to various black holes. That is, we use the two-dimensional effective metric, which is obtained by the dimensional reduction near the horizon, as the background metric. Using the same method, we derive both the desired result of the Hawking temperature and the effect of the backreaction associated with the radiation in the squashed Kaluza-Klein black hole background.

  12. Thermal balance of the atmospheres of Jupiter and Uranus

    NASA Technical Reports Server (NTRS)

    Friedson, A. J.; Ingersoll, A. P.

    1986-01-01

    Two-dimensional, radiative-convective-dynamical models of the visible atmospheres of Jupiter and Uranus are presented. Zonally-averaged temperatures and heat fluxes are calculated numerically as functions of pressure and latitude. In addition to radiative heat fluxes, the dynamical heat flux due to large-scale baroclinic eddies is included and is parametrized using a mixing length theory which gives heat fluxes similar to those of Stone. The results for Jupiter indicate that the internal heat flow is non-uniform in latitude and nearly balances the net radiative flux leaving the atmosphere. The thermal emission is found to be uniform in latitude in agreement with Pioneer and Voyager observations. Baroclinic eddies are calculated to transport only a small amount of the meridional heat flow necessary to account for the uniformity of thermal emission with latitude. The bulk of the meridional heat transfer is found to occur very deep in the stable interior of Jupiter as originally proposed by Ingersoll and Porco. The relative importance of baroclinic eddies vs. internal heat flow in the thermal balance of Uranus depends on the ratio of emitted thermal power to absorbed solar power. The thermal balance of Uranus is compared to that of Jupiter for different values of this ratio.

  13. Experimental and numerical study on heat transfer enhancement of flat tube radiator using Al2O3 and CuO nanofluids

    NASA Astrophysics Data System (ADS)

    Alosious, Sobin; R, Sarath S.; Nair, Anjan R.; Krishnakumar, K.

    2017-12-01

    Forced convective heat transfer of Al2O3 and CuO nanofluids through flat tube automobile radiator were studied experimentally and numerically. Nanofluids of 0.05% volume concentrations were prepared with Al2O3 and CuO nanoparticles having diameter below 50 nm. The working fluid recirculates through an automobile flat tube radiator with constant inlet temperature of 90 °C. Experiments were conducted by using water and nanofluids by varying the Reynolds numbers from 136 to 816. The flat tube of the radiator with same dimensions were modeled and numerically studied the heat transfer. The model includes the thickness of tube wall and also considers the effect of fins in the radiator. Numerical studies were carried out for six different volume concentrations from 0.05% to 1% and Reynolds number varied between 136 and 816 for both nanofluids. The results show an enhancement in heat transfer coefficient and effectiveness of radiator with increase in Reynolds number and volume concentration. A maximum enhancement of 13.2% and 16.4% in inside heat transfer coefficient were obtained for 1% concentration of CuO and Al2O3 nanofluids respectively. However increasing the volume concentration causes an increase in viscosity and density, which leads to an increase in pumping power. For same heat rejection of water, the area of the radiator can be reduced by 2.1% and 2.9% by using 1% concentration of CuO and Al2O3 nanofluids respectively. The optimum values of volume concentration were found to be 0.4% to 0.8% in which heat transfer enhancement dominates pumping power increase. Al2O3 nanofluids gives the maximum heat transfer enhancement and stability compared to CuO nanofluids.

  14. Heat transfer augmentation of a car radiator using nanofluids

    NASA Astrophysics Data System (ADS)

    Hussein, Adnan M.; Bakar, R. A.; Kadirgama, K.; Sharma, K. V.

    2014-05-01

    The car radiator heat transfer enhancement by using TiO2 and SiO2 nanoparticles dispersed in water as a base fluid was studied experimentally. The test rig is setup as a car radiator with tubes and container. The range of Reynolds number and volume fraction are (250-1,750) and (1.0-2.5 %) respectively. Results showed that the heat transfer increases with increasing of nanofluid volume fraction. The experimental data is agreed with other investigator.

  15. Mathematical modeling of radiative-conductive heat transfer in semitransparent medium with phase change

    NASA Astrophysics Data System (ADS)

    Savvinova, Nadezhda A.; Sleptsov, Semen D.; Rubtsov, Nikolai A.

    2017-11-01

    A mathematical phase change model is a formulation of the Stefan problem. Various formulations of the Stefan problem modeling of radiative-conductive heat transfer during melting or solidification of a semitransparent material are presented. Analysis of numerical results show that the radiative heat transfer has a significant effect on temperature distributions during melting (solidification) of the semitransparent material. In this paper conditions for application of various statements of the Stefan problem are analyzed.

  16. Polarization as a probe of dusty environments around Type Ia supernovae: radiative transfer models for SN 2012dn

    NASA Astrophysics Data System (ADS)

    Nagao, Takashi; Maeda, Keiichi; Yamanaka, Masayuki

    2018-06-01

    The geometry of the circumstellar (CS) medium around supernovae (SNe) provides important diagnostics to understand the nature of their progenitors. In this article, the properties of CS dust around SN 2012dn, a super-Chandrasekhar candidate Type Ia supernova (SC-SN), have been studied through detailed three-dimensional radiation transfer simulations. Using the detected near-infrared excess from SN 2012dn, we show that it has a disc-like dusty CS environment, the mass of which is roughly consistent with a branch of an accreting white dwarf system (the single degenerate scenario). We show that a similar system should produce polarization signals up to ˜8 per cent in the B band, depending on the viewing direction if polarimetric observations are performed. We predict that maximum polarization is reached around ˜60 d after the B-band maximum. We show that the temporal and wavelength dependence of the polarization signals, together with other unique features, can be easily distinguished from the interstellar polarization and intrinsic SN polarization. Indeed, the small polarization degree observed for normal Type Ia SNe (SNe Ia) can constrain a parameter space in CS dust mass and distribution. We thus encourage multi-band polarimetric observations for SNe Ia, especially for outliers including SC-SNe, for which some arguments for the single degenerate scenario exist but polarization data are very rare so far.

  17. Probing the Magnetic Field Structure in Sgr A* on Black Hole Horizon Scales with Polarized Radiative Transfer Simulations

    NASA Astrophysics Data System (ADS)

    Gold, Roman; McKinney, Jonathan C.; Johnson, Michael D.; Doeleman, Sheperd S.

    2017-03-01

    Magnetic fields are believed to drive accretion and relativistic jets in black hole accretion systems, but the magnetic field structure that controls these phenomena remains uncertain. We perform general relativistic (GR) polarized radiative transfer of time-dependent three-dimensional GR magnetohydrodynamical simulations to model thermal synchrotron emission from the Galactic Center source Sagittarius A* (Sgr A*). We compare our results to new polarimetry measurements by the Event Horizon Telescope (EHT) and show how polarization in the visibility (Fourier) domain distinguishes and constrains accretion flow models with different magnetic field structures. These include models with small-scale fields in disks driven by the magnetorotational instability as well as models with large-scale ordered fields in magnetically arrested disks. We also consider different electron temperature and jet mass-loading prescriptions that control the brightness of the disk, funnel-wall jet, and Blandford-Znajek-driven funnel jet. Our comparisons between the simulations and observations favor models with ordered magnetic fields near the black hole event horizon in Sgr A*, though both disk- and jet-dominated emission can satisfactorily explain most of the current EHT data. We also discuss how the black hole shadow can be filled-in by jet emission or mimicked by the absence of funnel jet emission. We show that stronger model constraints should be possible with upcoming circular polarization and higher frequency (349 GHz) measurements.

  18. A Melting Layer Model for Passive/Active Microwave Remote Sensing Applications. Part 2; Simulation of TRMM Observations

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Bauer, Peter; Kummerow, Christian D.; Tao, Wei-Kuo

    2000-01-01

    The one-dimensional, steady-state melting layer model developed in Part I of this study is used to calculate both the microphysical and radiative properties of melting precipitation, based upon the computed concentrations of snow and graupel just above the freezing level at applicable horizontal gridpoints of 3-dimensional cloud resolving model simulations. The modified 3-dimensional distributions of precipitation properties serve as input to radiative transfer calculations of upwelling radiances and radar extinction/reflectivities at the TRMM Microwave Imager (TMI) and Precipitation Radar (PR) frequencies, respectively. At the resolution of the cloud resolving model grids (approx. 1 km), upwelling radiances generally increase if mixed-phase precipitation is included in the model atmosphere. The magnitude of the increase depends upon the optical thickness of the cloud and precipitation, as well as the scattering characteristics of ice-phase precipitation aloft. Over the set of cloud resolving model simulations utilized in this study, maximum radiance increases of 43, 28, 18, and 10 K are simulated at 10.65, 19.35 GHz, 37.0, and 85.5 GHz, respectively. The impact of melting on TMI-measured radiances is determined not only by the physics of the melting particles but also by the horizontal extent of the melting precipitation, since the lower-frequency channels have footprints that extend over 10''s of kilometers. At TMI resolution, the maximum radiance increases are 16, 15, 12, and 9 K at the same frequencies. Simulated PR extinction and reflectivities in the melting layer can increase dramatically if mixed-phase precipitation is included, a result consistent with previous studies. Maximum increases of 0.46 (-2 dB) in extinction optical depth and 5 dBZ in reflectivity are simulated based upon the set of cloud resolving model simulations.

  19. Low-dimensional approximation searching strategy for transfer entropy from non-uniform embedding

    PubMed Central

    2018-01-01

    Transfer entropy from non-uniform embedding is a popular tool for the inference of causal relationships among dynamical subsystems. In this study we present an approach that makes use of low-dimensional conditional mutual information quantities to decompose the original high-dimensional conditional mutual information in the searching procedure of non-uniform embedding for significant variables at different lags. We perform a series of simulation experiments to assess the sensitivity and specificity of our proposed method to demonstrate its advantage compared to previous algorithms. The results provide concrete evidence that low-dimensional approximations can help to improve the statistical accuracy of transfer entropy in multivariate causality analysis and yield a better performance over other methods. The proposed method is especially efficient as the data length grows. PMID:29547669

  20. Effect of radiator position and mass flux on the dryer room heat transfer rate

    NASA Astrophysics Data System (ADS)

    Mirmanto, M.; Sulistyowati, E. D.; Okariawan, I. D. K.

    A room radiator as usually used in cold countries, is actually able to be used as a heat source to dry goods, especially in the rainy season where the sun seldom shines due to much rain and cloud. Experiments to investigate effects of radiator position and mass flux on heat transfer rate were performed. This study is to determine the best position of the radiator and the optimum mass flux. The radiator used was a finned radiator made of copper pipes and aluminum fins with an overall dimension of 220 mm × 50 mm × 310 mm. The prototype room was constructed using plywood and wood frame with an overall size of 1000 mm × 1000 mm × 1000 mm. The working fluid was heated water flowing inside the radiator and air circulating naturally inside the prototype room. The nominal mass fluxes employed were 800, 900 and 1000 kg/m2 s. The water was kept at 80 °C at the radiator entrance, while the initial air temperature inside the prototype room was 30 °C. Three positions of the radiator were examined. The results show that the effect of the mass flux on the forced and free convection heat transfer rate is insignificant but the radiator position strongly affects the heat transfer rate for both forced and free convection.

  1. LION4; LION; three-dimensional temperature distribution program. [CDC6600,7600; UNIVAC1108; IBM360,370; FORTRAN IV and ASCENT (CDC6600,7600), FORTRAN IV (UNIVAC1108A,B and IBM360,370)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binney, E.J.

    LION4 is a computer program for calculating one-, two-, or three-dimensional transient and steady-state temperature distributions in reactor and reactor plant components. It is used primarily for thermal-structural analyses. It utilizes finite difference techniques with first-order forward difference integration and is capable of handling a wide variety of bounding conditions. Heat transfer situations accommodated include forced and free convection in both reduced and fully-automated temperature dependent forms, coolant flow effects, a limited thermal radiation capability, a stationary or stagnant fluid gap, a dual dependency (temperature difference and temperature level) heat transfer, an alternative heat transfer mode comparison and selection facilitymore » combined with heat flux direction sensor, and any form of time-dependent boundary temperatures. The program, which handles time and space dependent internal heat generation, can also provide temperature dependent material properties with limited non-isotropic properties. User-oriented capabilities available include temperature means with various weightings and a complete heat flow rate surveillance system.CDC6600,7600;UNIVAC1108;IBM360,370; FORTRAN IV and ASCENT (CDC6600,7600), FORTRAN IV (UNIVAC1108A,B and IBM360,370); SCOPE (CDC6600,7600), EXEC8 (UNIVAC1108A,B), OS/360,370 (IBM360,370); The CDC6600 version plotter routine LAPL4 is used to produce the input required by the associated CalComp plotter for graphical output. The IBM360 version requires 350K for execution and one additional input/output unit besides the standard units.« less

  2. Fast All-Sky Radiation Model for Solar Applications (FARMS): A Brief Overview of Mechanisms, Performance, and Applications: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Yu; Sengupta, Manajit

    Solar radiation can be computed using radiative transfer models, such as the Rapid Radiation Transfer Model (RRTM) and its general circulation model applications, and used for various energy applications. Due to the complexity of computing radiation fields in aerosol and cloudy atmospheres, simulating solar radiation can be extremely time-consuming, but many approximations--e.g., the two-stream approach and the delta-M truncation scheme--can be utilized. To provide a new fast option for computing solar radiation, we developed the Fast All-sky Radiation Model for Solar applications (FARMS) by parameterizing the simulated diffuse horizontal irradiance and direct normal irradiance for cloudy conditions from the RRTMmore » runs using a 16-stream discrete ordinates radiative transfer method. The solar irradiance at the surface was simulated by combining the cloud irradiance parameterizations with a fast clear-sky model, REST2. To understand the accuracy and efficiency of the newly developed fast model, we analyzed FARMS runs using cloud optical and microphysical properties retrieved using GOES data from 2009-2012. The global horizontal irradiance for cloudy conditions was simulated using FARMS and RRTM for global circulation modeling with a two-stream approximation and compared to measurements taken from the U.S. Department of Energy's Atmospheric Radiation Measurement Climate Research Facility Southern Great Plains site. Our results indicate that the accuracy of FARMS is comparable to or better than the two-stream approach; however, FARMS is approximately 400 times more efficient because it does not explicitly solve the radiative transfer equation for each individual cloud condition. Radiative transfer model runs are computationally expensive, but this model is promising for broad applications in solar resource assessment and forecasting. It is currently being used in the National Solar Radiation Database, which is publicly available from the National Renewable Energy Laboratory at http://nsrdb.nrel.gov.« less

  3. Free Thyroid Transfer: A Novel Procedure to Prevent Radiation-induced Hypothyroidism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, Jeffrey; Almarzouki, Hani; Department of Otolaryngology-Head and Neck Surgery, King Abdulaziz University, Jeddah

    Purpose: The incidence of hypothyroidism after radiation therapy for head and neck cancer (HNC) has been found to be ≤53%. Medical treatment of hypothyroidism can be costly and difficult to titrate. The aim of the present study was to assess the feasibility of free thyroid transfer as a strategy for the prevention of radiation-induced damage to the thyroid gland during radiation therapy for HNC. Methods and Materials: A prospective feasibility study was performed involving 10 patients with a new diagnosis of advanced HNC undergoing ablative surgery, radial forearm free-tissue transfer reconstruction, and postoperative adjuvant radiation therapy. During the neck dissection,more » hemithyroid dissection was completed with preservation of the thyroid arterial and venous supply for implantation into the donor forearm site. All patients underwent a diagnostic thyroid technetium scan 6 weeks and 12 months postoperatively to examine the functional integrity of the transferred thyroid tissue. Results: Free thyroid transfer was executed in 9 of the 10 recruited patients with advanced HNC. The postoperative technetium scans demonstrated strong uptake of technetium at the forearm donor site at 6 weeks and 12 months for all 9 of the transplanted patients. Conclusions: The thyroid gland can be transferred as a microvascular free transfer with maintenance of function. This technique could represent a novel strategy for maintenance of thyroid function after head and neck irradiation.« less

  4. Assessment of 1D and 3D model simulated radiation flux based on surface measurements and estimation of aerosol forcing and their climatological aspects

    NASA Astrophysics Data System (ADS)

    Subba, T.; Gogoi, M. M.; Pathak, B.; Ajay, P.; Bhuyan, P. K.; Solmon, F.

    2018-05-01

    Ground reaching solar radiation flux was simulated using a 1-dimensional radiative transfer (SBDART) and a 3-dimensional regional climate (RegCM 4.4) model and their seasonality against simultaneous surface measurements carried out using a CNR4 net Radiometer over a sub-Himalayan foothill site of south-east Asia was assessed for the period from March 2013-January 2015. The model simulated incoming fluxes showed a very good correlation with the measured values with correlation coefficient R2 0.97. The mean bias errors between these two varied from -40 W m-2 to +7 W m-2 with an overestimation of 2-3% by SBDART and an underestimation of 2-9% by RegCM. Collocated measurements of the optical parameters of aerosols indicated a reduction in atmospheric transmission path by 20% due to aerosol load in the atmosphere when compared with the aerosol free atmospheric condition. Estimation of aerosol radiative forcing efficiency (ARFE) indicated that the presence of black carbon (BC, 10-15%) led to a surface dimming by -26.14 W m-2 τ-1 and a potential atmospheric forcing of +43.04 W m-2 τ-1. BC alone is responsible for >70% influence with a major role in building up of forcing efficiency of +55.69 W m-2 τ-1 (composite) in the atmosphere. On the other hand, the scattering due to aerosols enhance the outgoing radiation at the top of the atmosphere (ARFETOA -12.60 W m-2 ω-1), the absence of which would have resulted in ARFETOA of +16.91 W m-2 τ-1 (due to BC alone). As a result, 3/4 of the radiation absorption in the atmosphere is ascribed to the presence of BC. This translated to an atmospheric heating rate of 1.0 K day-1, with 0.3 K day-1 heating over the elevated regions (2-4 km) of the atmosphere, especially during pre-monsoon season. Comparison of the satellite (MODIS) derived and ground based estimates of surface albedo showed seasonal difference in their magnitudes (R2 0.98 during retreating monsoon and winter; 0.65 during pre-monsoon and monsoon), indicating that the reliability of the satellite data for aerosol radiative forcing estimation is more during the retreating and winter seasons.

  5. Evaporating Atmospheres Around Close-in Exoplanets.

    NASA Astrophysics Data System (ADS)

    Owen, J.; Jackson, A.; Wu, Y.; Adams, F.

    2014-12-01

    The majority of currently observed exoplanets appear exceeding close to the central star (<0.1 AU) and as such are subject to intense high energy radiation from UV & X-ray photons. We will discuss that in such environments the atmospheres these planets are heated sufficiently that they can escape the planet's gravitational field in a hydrodynamic trans-sonic wind. We will show that this hydrodynamic mass-loss occurs for the majority of exoplanets at short periods, and for low-mass planets (<50 Mearth) is vigorous enough to significantly alter the planet's evolution. In some cases we will argue that an originally gas rich exoplanet can be completely evaporated leaving behind a bare rock core. In addition, we will present new multi-dimensional simulations of evaporation that include realistic treatment of the radiative transfer. These new simulations show that evaporation from 'hot' Jupiters is likely to be magnetically controlled, where mass-loss can only occur along open filed lines, where the interaction between the stellar and planetary magnetic field strongly controls the geometry of the evaporative flow. We will indicate how these new multi-dimensional radiation-magneto-hydrodynamic calculations can be used to study the time-dependence of the outflow and link the small but growing number of observations of exoplanet evaporation to the theoretical models. Finally, we will indicate that asymmetric evaporative flows can lead to orbital evolution of planets at close separations. Figure Caption: "Flow structure from an evaporating Hot Jupiter with a magnetic field strength of 0.3 Gauss. Top panels show density and magnetic field configuration and bottom panel shows plasma beta and velocity structure; left panels show simulation domain, right panels show a zoom in on the planet."

  6. A two-dimensional model with coupled dynamics, radiative transfer, and photochemistry. 2: Assessment of the response of stratospheric ozone to increased levels of CO2, N2O, CH4, and CFC

    NASA Technical Reports Server (NTRS)

    Schneider, Hans R.; Ko, Malcolm K. W.; Shia, Run-Lie; Sze, Nien-Dak

    1993-01-01

    The impact of increased levels of carbon dioxide (CO2), chlorofluorocarbons (CFCs), and other trace gases on stratospheric ozone is investigated with an interactive, two-dimensional model of gas phase chemistry, dynamics, and radiation. The scenarios considered are (1) a doubling of the CO2 concentration, (2) increases of CFCs, (3) CFC increases combined with increases of nitrous oxide (N2O) and methane CH4, and (4) the simultaneous increase of CO2, CFCs, N2O, and CH4. The radiative feedback and the effect of temperature and circulation changes are studied for each scenario. For the double CO2 calculations the tropospheric warming was specified. The CO2 doubling leads to a 3.1% increase in the global ozone content. Doubling of the CO2 concentrations would lead to a maximum cooling of about 12 C at 45 km if the ozone concentration were held fixed. The cooling of the stratosphere leads to an ozone increase with an associated increase in solar heating, reducing the maximum temperature drop by about 3 C. The CFC increase from continuous emissions at 1985 rate causes a 4.5% loss of ozone. For the combined perturbations a net loss of 1.3% is calculated. The structure of the perturbations shows a north-south asymmetry. Ozone losses (when expressed in terms of percent changes) are generally larger in the high latitudes of the southern hemisphere as a result of the eddy mixing being smaller than in the northern hemisphere. Increase of chlorine leads to ozone losses above 30 km altitude where the radiative feedback results in a cooler temperature and an ozone recovery of about one quarter of the losses predicted with a noninteractive model. In all the cases, changes in circulation are small. In the chlorine case, circulation changes reduce the calculated column depletion by about one tenth compared to offline calculations.

  7. Analysis of the In-Water and Sky Radiance Distribution Data Acquired During the RaDyO Project

    DTIC Science & Technology

    2011-09-30

    radiative transfer to model the BRDF of particulate surfaces. OBJECTIVES The major objective of this research is to understand the downwelling spectral...in the water, was also used by the two major modeling groups in RaDyO, to successfully validate their radiative transfer models . This work is...image and radiative transfer models used in the ocean. My near term ocean optics objectives have been: 1) to improve the measurement capability of

  8. Computation of Radiation Heat Transfer in Aeroengine Combustors

    NASA Technical Reports Server (NTRS)

    Patankar, S. V.

    1996-01-01

    In this report the highlights of the research completed for the NASA are summarized. This research has been completed in the form of two Ph.D. theses by Chai (1994) and Parthasarathy (1996). Readers are referred to these theses for a complete details of the work and lists of references. In the following sections, first objectives of this research are introduced, then the finite-volume method for radiation heat transfer is described, and finally computations of radiative heat transfer in non-gray participating media is presented.

  9. An assessment on convective and radiative heat transfer modelling in tubular solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Sánchez, D.; Muñoz, A.; Sánchez, T.

    Four models of convective and radiative heat transfer inside tubular solid oxide fuel cells are presented in this paper, all of them applicable to multidimensional simulations. The work is aimed at assessing if it is necessary to use a very detailed and complicated model to simulate heat transfer inside this kind of device and, for those cases when simple models can be used, the errors are estimated and compared to those of the more complex models. For the convective heat transfer, two models are presented. One of them accounts for the variation of film coefficient as a function of local temperature and composition. This model gives a local value for the heat transfer coefficients and establishes the thermal entry length. The second model employs an average value of the transfer coefficient, which is applied to the whole length of the duct being studied. It is concluded that, unless there is a need to calculate local temperatures, a simple model can be used to evaluate the global performance of the cell with satisfactory accuracy. For the radiation heat transfer, two models are presented again. One of them considers radial radiation exclusively and, thus, radiative exchange between adjacent cells is neglected. On the other hand, the second model accounts for radiation in all directions but increases substantially the complexity of the problem. For this case, it is concluded that deviations between both models are higher than for convection. Actually, using a simple model can lead to a not negligible underestimation of the temperature of the cell.

  10. Radiative Heat Transfer and Turbulence-Radiation Interactions in a Heavy-Duty Diesel Engine

    NASA Astrophysics Data System (ADS)

    Paul, C.; Sircar, A.; Ferreyro, S.; Imren, A.; Haworth, D. C.; Roy, S.; Ge, W.; Modest, M. F.

    2016-11-01

    Radiation in piston engines has received relatively little attention to date. Recently, it is being revisited in light of current trends towards higher operating pressures and higher levels of exhaust-gas recirculation, both of which enhance molecular gas radiation. Advanced high-efficiency engines also are expected to function closer to the limits of stable operation, where even small perturbations to the energy balance can have a large influence on system behavior. Here several different spectral radiation property models and radiative transfer equation (RTE) solvers have been implemented in an OpenFOAM-based engine CFD code, and simulations have been performed for a heavy-duty diesel engine. Differences in computed temperature fields, NO and soot levels, and wall heat transfer rates are shown for different combinations of spectral models and RTE solvers. The relative importance of molecular gas radiation versus soot radiation is examined. And the influence of turbulence-radiation interactions is determined by comparing results obtained using local mean values of composition and temperature to compute radiative emission and absorption with those obtained using a particle-based transported probability density function method. DOE, NSF.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Lingyun; Lin, Zekai; Shi, Wenjie

    The dimensionality dependency of resonance energy transfer is of great interest due to its importance in understanding energy transfer on cell membranes and in low-dimension nanostructures. Light harvesting two-dimensional metal–organic layers (2D-MOLs) and three-dimensional metal–organic frameworks (3D-MOFs) provide comparative models to study such dimensionality dependence with molecular accuracy. Here we report the construction of 2D-MOLs and 3D-MOFs from a donor ligand 4,4',4''-(benzene-1,3,5-triyl-tris(ethyne-2,1-diyl))tribenzoate (BTE) and a doped acceptor ligand 3,3',3''-nitro-4,4',4''-(benzene-1,3,5-triyl-tris(ethyne-2,1-diyl))tribenzoate (BTE-NO2). These 2D-MOLs and 3D-MOFs are connected by similar hafnium clusters, with key differences in the topology and dimensionality of the metal–ligand connection. Energy transfer from donors to acceptors through themore » 2D-MOL or 3D-MOF skeletons is revealed by measuring and modeling the fluorescence quenching of the donors. We found that energy transfer in 3D-MOFs is more efficient than that in 2D-MOLs, but excitons on 2D-MOLs are more accessible to external quenchers as compared with those in 3D-MOFs. These results not only provide support to theoretical analysis of energy transfer in low dimensions, but also present opportunities to use efficient exciton migration in 2D materials for light-harvesting and fluorescence sensing.« less

  12. A generalized analytical model for radiative transfer in vacuum thermal insulation of space vehicles

    NASA Astrophysics Data System (ADS)

    Krainova, Irina V.; Dombrovsky, Leonid A.; Nenarokomov, Aleksey V.; Budnik, Sergey A.; Titov, Dmitry M.; Alifanov, Oleg M.

    2017-08-01

    The previously developed spectral model for radiative transfer in vacuum thermal insulation of space vehicles is generalized to take into account possible thermal contact between a fibrous spacer and one of the neighboring aluminum foil layers. An approximate analytical solution based on slightly modified two-flux approximation for radiative transfer in a semi-transparent fibrous spacer is derived. It was shown that thermal contact between the spacer and adjacent foil may decrease significantly the quality of thermal insulation because of an increase in radiative flux to/from the opposite aluminum foil. Theoretical predictions are confirmed by comparison with new results of laboratory experiments.

  13. Thermal radiation influence on MHD flow of a rotating fluid with heat transfer through EFGM solutions

    NASA Astrophysics Data System (ADS)

    Prasad, D. V. V. Krishna; Chaitanya, G. S. Krishna; Raju, R. Srinivasa

    2018-05-01

    The aim of this research work is to find the EFGM solutions of the unsteady magnetohydromagnetic natural convection heat transfer flow of a rotating, incompressible, viscous, Boussinesq fluid is presented in this study in the presence of radiative heat transfer. The Rosseland approximation for an optically thick fluid is invoked to describe the radiative flux. Numerical results obtained show that a decrease in the temperature boundary layer occurs when the Prandtl number and the radiation parameter are increased and the flow velocity approaches steady state as the time parameter t is increased. These findings are in quantitative agreement with earlier reported studies.

  14. A radiative transfer model for remote sensing of laser induced fluorescence of phytoplankton in non-homogeneous turbid water

    NASA Technical Reports Server (NTRS)

    Venable, D. D.

    1980-01-01

    A radiative transfer computer model was developed to characterize the total flux of chlorophyll a fluoresced or backscattered photons when laser radiation is incident on turbid water that contains a non-homogeneous suspension of inorganic sediments and phytoplankton. The radiative transfer model is based on the Monte Carlo technique and assumes that: (1) the aquatic medium can be represented by a stratified concentration profile; and (2) that appropriate optical parameters can be defined for each layer. The model was designed to minimize the required computer resources and run time. Results are presented for an anacystis marinus culture.

  15. Super-Eddington radiation transfer in soft gamma repeaters

    NASA Technical Reports Server (NTRS)

    Ulmer, Andrew

    1994-01-01

    Bursts from soft gamma repeaters (SGRs) have been shown to be super-Eddington by a factor of 1000 and have been persuasively associated with compact objects. Super-Eddington radiation transfer on the surface of a strongly magnetic (greater than or equal to 10(exp 13) G) neutron star is studied and related to the observational constraints on SGRs. In strong magnetic fields, Thompson scattering is suppressed in one polarization state, so super-Eddington fluxes can be radiated while the plasma remains in hydrostatic equilibrium. We discuss a model which offers a somewhat natural explanation for the observation that the energy spectra of bursts with varying intensity are similar. The radiation produced is found to be linearly polarized to one part in 1000 in a direction determined by the local magnetic field, and intensity variations between bursts are understood as a change in the radiating area on the source. The net polarization is inversely correlated with burst intensity. Further, it is shown that for radiation transfer calculations in limit of superstrong magnetic fields, it is sufficient to solve the radiation transfer for the low opacity state rather than the coupled equations for both. With this approximation, standard stellar atmosphere techniques are utilized to calculate the model energy spectrum.

  16. Microbubble-assisted p53, RB, and p130 gene transfer in combination with radiation therapy in prostate cancer.

    PubMed

    Nande, Rounak; Greco, Adelaide; Gossman, Michael S; Lopez, Jeffrey P; Claudio, Luigi; Salvatore, Marco; Brunetti, Arturo; Denvir, James; Howard, Candace M; Claudio, Pier Paolo

    2013-06-01

    Combining radiation therapy and direct intratumoral (IT) injection of adenoviral vectors has been explored as a means to enhance the therapeutic potential of gene transfer. A major challenge for gene transfer is systemic delivery of nucleic acids directly into an affected tissue. Ultrasound (US) contrast agents (microbubbles) are viable candidates to enhance targeted delivery of systemically administered genes. Here we show that p53, pRB, and p130 gene transfer mediated by US cavitation of microbubbles at the tumor site resulted in targeted gene transduction and increased reduction in tumor growth compared to DU-145 prostate cancer cell xenografts treated intratumorally with adenovirus (Ad) or radiation alone. Microbubble-assisted/US-mediated Ad.p53 and Ad.RB treated tumors showed significant reduction in tumor volume compared to Ad.p130 treated tumors (p<0.05). Additionally, US mediated microbubble delivery of p53 and RB combined with external beam radiation resulted in the most profound tumor reduction in DU-145 xenografted nude mice (p<0.05) compared to radiation alone. These findings highlight the potential therapeutic applications of this novel image-guided gene transfer technology in combination with external beam radiation for prostate cancer patients with therapy resistant disease.

  17. Functional proteomic analysis revealed ground-base ion radiations cannot reflect biological effects of space radiations of rice

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Sun, Yeqing; Zhao, Qian; Han, Lu

    2016-07-01

    Highly ionizing radiation (HZE) in space is considered as main factor causing biological effects. Radiobiological studies during space flights are unrepeatable due to the variable space radiation environment, ground-base ion radiations are usually performed to simulate of the space biological effect. Spaceflights present a low-dose rate (0.1˜~0.3mGy/day) radiation environment inside aerocrafts while ground-base ion radiations present a much higher dose rate (100˜~500mGy/min). Whether ground-base ion radiation can reflect effects of space radiation is worth of evaluation. In this research, we compared the functional proteomic profiles of rice plants between on-ground simulated HZE particle radiation and spaceflight treatments. Three independent ground-base seed ionizing radiation experiments with different cumulative doses (dose range: 2˜~20000mGy) and different liner energy transfer (LET) values (13.3˜~500keV/μμm) and two independent seed spaceflight experiments onboard Chinese 20th satellite and SZ-6 spacecraft were carried out. Alterations in the proteome were analyzed by two-dimensional difference gel electrophoresis (2-D DIGE) with MALDI-TOF/TOF mass spectrometry identifications. 45 and 59 proteins showed significant (p<0.05) and reproducible quantitative differences in ground-base ion radiation and spaceflight experiments respectively. The functions of ground-base radiation and spaceflight proteins were both involved in a wide range of biological processes. Gene Ontology enrichment analysis further revealed that ground-base radiation responsive proteins were mainly involved in removal of superoxide radicals, defense response to stimulus and photosynthesis, while spaceflight responsive proteins mainly participate in nucleoside metabolic process, protein folding and phosphorylation. The results implied that ground-base radiations cannot truly reflect effects of spaceflight radiations, ground-base radiation was a kind of indirect effect to rice causing oxidation and metabolism stresses, but space radiation was a kind of direct effect leading to macromolecule (DNA and protein) damage and signal pathway disorders. This functional proteomic analysis work might provide a new evaluation method for further on-ground simulated HZE radiation experiments.

  18. Assessment of CFD Hypersonic Turbulent Heating Rates for Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Oliver, A. Brandon

    2011-01-01

    Turbulent CFD codes are assessed for the prediction of convective heat transfer rates at turbulent, hypersonic conditions. Algebraic turbulence models are used within the DPLR and LAURA CFD codes. The benchmark heat transfer rates are derived from thermocouple measurements of the Space Shuttle orbiter Discovery windward tiles during the STS-119 and STS-128 entries. The thermocouples were located underneath the reaction-cured glass coating on the thermal protection tiles. Boundary layer transition flight experiments conducted during both of those entries promoted turbulent flow at unusually high Mach numbers, with the present analysis considering Mach 10{15. Similar prior comparisons of CFD predictions directly to the flight temperature measurements were unsatisfactory, showing diverging trends between prediction and measurement for Mach numbers greater than 11. In the prior work, surface temperatures and convective heat transfer rates had been assumed to be in radiative equilibrium. The present work employs a one-dimensional time-accurate conduction analysis to relate measured temperatures to surface heat transfer rates, removing heat soak lag from the flight data, in order to better assess the predictive accuracy of the numerical models. The turbulent CFD shows good agreement for turbulent fuselage flow up to Mach 13. But on the wing in the wake of the boundary layer trip, the inclusion of tile conduction effects does not explain the prior observed discrepancy in trends between simulation and experiment; the flight heat transfer measurements are roughly constant over Mach 11-15, versus an increasing trend with Mach number from the CFD.

  19. Combined Heat Transfer in High-Porosity High-Temperature Fibrous Insulations: Theory and Experimental Validation

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Cunnington, George R.; Miller, Steve D.; Knutson, Jeffry R.

    2010-01-01

    Combined radiation and conduction heat transfer through various high-temperature, high-porosity, unbonded (loose) fibrous insulations was modeled based on first principles. The diffusion approximation was used for modeling the radiation component of heat transfer in the optically thick insulations. The relevant parameters needed for the heat transfer model were derived from experimental data. Semi-empirical formulations were used to model the solid conduction contribution of heat transfer in fibrous insulations with the relevant parameters inferred from thermal conductivity measurements at cryogenic temperatures in a vacuum. The specific extinction coefficient for radiation heat transfer was obtained from high-temperature steady-state thermal measurements with large temperature gradients maintained across the sample thickness in a vacuum. Standard gas conduction modeling was used in the heat transfer formulation. This heat transfer modeling methodology was applied to silica, two types of alumina, and a zirconia-based fibrous insulation, and to a variation of opacified fibrous insulation (OFI). OFI is a class of insulations manufactured by embedding efficient ceramic opacifiers in various unbonded fibrous insulations to significantly attenuate the radiation component of heat transfer. The heat transfer modeling methodology was validated by comparison with more rigorous analytical solutions and with standard thermal conductivity measurements. The validated heat transfer model is applicable to various densities of these high-porosity insulations as long as the fiber properties are the same (index of refraction, size distribution, orientation, and length). Furthermore, the heat transfer data for these insulations can be obtained at any static pressure in any working gas environment without the need to perform tests in various gases at various pressures.

  20. Optical diagnosis and theoretical simulation of laser induced lead plasma spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong Bofu; Chuan Songchen; Bao Yuanman

    2012-01-15

    Plasmas generated during incipient laser ablation of lead in air were studied using emission spectroscopy and fast photography by an intensified charge coupled device (ICCD) camera. An improved plasma emission model was introduced, invoking one-dimensional radiative transfer, to describe the observed emission spectra, while taking into account Gaussian intensity distribution of the laser used to form plasma. The effects of different parameters to the fitting results are discussed. The plasma temperature got by Saha-Boltzmann plot method and the electron number density got by line broadening method were compared with the fitting results. We also found that the distribution of plasmamore » temperature is more uniform than that of the electron number density in the radial direction.« less

Top