Results from the Joint US/Russian Sensory-Motor Investigations
NASA Technical Reports Server (NTRS)
1997-01-01
In this session, Session FA3, the discussion focuses on the following topics: The Effect of Long Duration Space Flight on the Acquisition of Predictable Targets in Three Dimensional Space; Effects of Microgravity on Spinal Reflex Mechanisms; Three Dimensional Head Movement Control During Locomotion After Long-Duration Space Flight; Human Body Shock Wave Transmission Properties After Long Duration Space Flight; Adaptation of Neuromuscular Activation Patterns During Locomotion After Long Duration Space Flight; Balance Control Deficits Following Long-Duration Space Flight; Influence of Weightlessness on Postural Muscular Activity Coordination; and The Use of Inflight Foot Pressure as a Countermeasure to Neuromuscular Degradation.
A geometrical upper bound on the inflaton range
NASA Astrophysics Data System (ADS)
Cicoli, Michele; Ciupke, David; Mayrhofer, Christoph; Shukla, Pramod
2018-05-01
We argue that in type IIB LVS string models, after including the leading order moduli stabilisation effects, the moduli space for the remaining flat directions is compact due the Calabi-Yau Kähler cone conditions. In cosmological applications, this gives an inflaton field range which is bounded from above, in analogy with recent results from the weak gravity and swampland conjectures. We support our claim by explicitly showing that it holds for all LVS vacua with h 1,1 = 3 obtained from 4-dimensional reflexive polytopes. In particular, we first search for all Calabi-Yau threefolds from the Kreuzer-Skarke list with h 1,1 = 2, 3 and 4 which allow for LVS vacua, finding several new LVS geometries which were so far unknown. We then focus on the h 1,1 = 3 cases and show that the Kähler cones of all toric hypersurface threefolds force the effective 1-dimensional LVS moduli space to be compact. We find that the moduli space size can generically be trans-Planckian only for K3 fibred examples.
Stick balancing with reflex delay in case of parametric forcing
NASA Astrophysics Data System (ADS)
Insperger, Tamas
2011-04-01
The effect of parametric forcing on a PD control of an inverted pendulum is analyzed in the presence of feedback delay. The stability of the time-periodic and time-delayed system is determined numerically using the first-order semi-discretization method in the 5-dimensional parameter space of the pendulum's length, the forcing frequency, the forcing amplitude, the proportional and the differential gains. It is shown that the critical length of the pendulum (that can just be balanced against the time-delay) can significantly be decreased by parametric forcing even if the maximum forcing acceleration is limited. The numerical analysis showed that the critical stick length about 30 cm corresponding to the unforced system with reflex delay 0.1 s can be decreased to 18 cm with keeping maximum acceleration below the gravitational acceleration.
Ivane S. Beritashvili (1884-1974): from spinal cord reflexes to image-driven behavior.
Tsagareli, M G; Doty, R W
2009-10-20
Ivane Beritashvili ("Beritoff" in Russian, and often in Western languages) was a major figure in 20th-century neuroscience. Mastering the string galvanometer, he founded the electrophysiology of spinal cord reflexes, showing that inhibition is a distinctly different process from excitation, contrary to the concepts of his famous mentor, Wedensky. Work on postural reflexes with Magnus was cut short by World War I, but he later demonstrated that navigation in two-dimensional space without vision is a function solely of the vestibular system rather than of muscle proprioception. Persevering in his experiments despite postwar turmoil he founded an enduring Physiology Institute in Tbilisi, where he pursued an ingenious and extensive investigation of comparative memory in vertebrates. This revealed the unique nature of mammalian memory processes, which he forthrightly called "image driven," and distinguished them unequivocally from those underlying conditional reflexes. For some 30 years the Stalinist terror confined his publications to the Russian language. Work with his colleague, Chichinadze, discovering that memory confined to one cerebral hemisphere could be accessed by the other via a specific forebrain commissure, did reach the West, and ultimately led to recognition of the fascinating "split brain" condition. In the 1950s he was removed from his professorial position for 5 years as being "anti-Pavlovian." Restored to favor, he was honorary president of the "Moscow Colloquium" that saw the foundation of the International Brain Research Organization.
Decision Space Operations: Campaign Design Aimed at an Adversary’s Decision Making
2003-01-01
14 Figure 3: Reflexive control, Initial situation (physical reality ...20 Figure 4: Reflexive control, reality as X imagines it to be...20 Figure 5: Reflexive control, reality as Y imagines it to be .......................................................21 Figure 6: Reflexive
Visual suppression of the vestibulo-ocular reflex during space flight
NASA Technical Reports Server (NTRS)
Uri, John J.; Thornton, William E.; Moore, Thomas P.; Pool, Sam L.
1989-01-01
Visual suppression of the vestibulo-ocular reflex was studied in 16 subjects on 4 Space Shuttle missions. Eye movements were recorded by electro-oculography while subjects fixated a head mounted target during active sinusoidal head oscillation at 0.3 Hz. Adequacy of suppression was evaluated by the number of nystagmus beats, the mean amplitude of each beat, and the cumulative amplitude of nystagmus during two head oscillation cycles. Vestibulo-ocular reflex suppression was unaffected by space flight. Subjects with space motion sickness during flight had significantly more nystagmus beats than unaffected individuals. These susceptible subjects also tended to have more nystagmus beats before flight.
On Reflection: Is Reflexivity Necessarily Beneficial in Intercultural Education?
ERIC Educational Resources Information Center
Blasco, Maribel
2012-01-01
This article explores how the concept of reflexivity is used in intercultural education. Reflexivity is often presented as a key learning goal in acquiring intercultural competence (ICC). Yet, reflexivity can be defined in different ways, and take different forms across time and space, depending on the concepts of selfhood that prevail and how…
Haker, H; Misslisch, H; Ott, M; Frens, M A; Henn, V; Hess, K; Sándor, P S
2003-07-01
We investigated gaze-stabilizing reflexes in the chameleon using the three-dimensional search-coil technique. Animals were rotated sinusoidally around an earth-vertical axis under head-fixed and head-free conditions, in the dark and in the light. Gain, phase and the influence of eye position on vestibulo-ocular reflex rotation axes were studied. During head-restrained stimulation in the dark, vestibulo-ocular reflex gaze gains were low (0.1-0.3) and phase lead decreased with increasing frequencies (from 100 degrees at 0.04 Hz to < 30 degrees at 1 Hz). Gaze gains were larger during stimulation in the light (0.1-0.8) with a smaller phase lead (< 30 degrees) and were close to unity during the head-free conditions (around 0.6 in the dark, around 0.8 in the light) with small phase leads. These results confirm earlier findings that chameleons have a low vestibulo-ocular reflex gain during head-fixed conditions and stimulation in the dark and higher gains during head-free stimulation in the light. Vestibulo-ocular reflex eye rotation axes were roughly aligned with the head's rotation axis and did not systematically tilt when the animals were looking eccentrically, up- or downward (as predicted by Listing's Law). Therefore, vestibulo-ocular reflex responses in the chameleon follow a strategy, which optimally stabilizes the entire retinal images, a result previously found in non-human primates.
Reduction of ocular counter-rolling by adaptation to space
NASA Technical Reports Server (NTRS)
Dai, Mingjia; Mcgarvie, Leigh; Kozlovskaya, Inessa; Sirota, Mischa; Raphan, Theodore; Cohen, Bernard
1993-01-01
We studied the three-dimensional vestibulo-ocular reflex (VOR) of rhesus monkeys before and after the COSMOS Biosatellite 2229 Mission of 1992-1993. This included tests of ocular counter-rolling (OCR), the gain of the vestibulo-ocular reflex (VOR), and spatial orientation of velocity storage. A four-axis vestibular and oculomotor stimulator was transported to the Institute of Biomedical Problems in Moscow for the pre- and postflight ground-based testing. Twelve normal juvenile male rhesus monkey were implanted surgically with eye coils and tested 60-90 days before spaceflight. Two monkey (7906 and 6151), selected from the twelve as flight animals, flew from 12/29/92 to 1/10/93. Upon recovery, they were tested for 11 days postflight along with three control animals. Compensatory ocular torsion was produced in two ways: (1) Lateral head tilts evoked OCR through otolith-ocular reflexes. OCR was also measured dynamically during off-vertical axis rotation (OVAR). (2) Rotation about a naso-occipital axis that was either vertical of horizontal elicited torsional nystagmus through semicircular canal-ocular reflexes (roll VOR). OCR from the otoliths was substantially reduced (70 percent) for 11 days after reentry on both modes of testing. The gain of the roll VOR was also decreased, but less than OCR. These data demonstrate that there was a long-lasting depression of torsional or roll eye movements after adaptation to microgravity in these monkeys, especially those movements produced by the otolith organs.
Bourdieu's Reflexive Sociology and "Spaces of Points of View": Whose Reflexivity, Which Perspective?
ERIC Educational Resources Information Center
Kenway, Jane; McLeod, Julie
2004-01-01
This paper considers Bourdieu's concepts of perspectivism and reflexivity, looking particularly at how he develops arguments about these in his recent work, The Weight of the World (1999) and Pascalian Meditations (2000b). We explicate Bourdieu's distinctive purposes and deployment of these terms and approaches, and discuss how this compares with…
ERIC Educational Resources Information Center
Taylor, Carol A.
2011-01-01
This article discusses findings from a UK Higher Education Academy project, which used digital video to promote doctoral students' reflexivity. The project aimed to facilitate doctoral students' research skills through the making of videonarratives; create spaces for reflexivity on the relations between research, narrative and identity; and…
Parameter estimation in nonlinear distributed systems - Approximation theory and convergence results
NASA Technical Reports Server (NTRS)
Banks, H. T.; Reich, Simeon; Rosen, I. G.
1988-01-01
An abstract approximation framework and convergence theory is described for Galerkin approximations applied to inverse problems involving nonlinear distributed parameter systems. Parameter estimation problems are considered and formulated as the minimization of a least-squares-like performance index over a compact admissible parameter set subject to state constraints given by an inhomogeneous nonlinear distributed system. The theory applies to systems whose dynamics can be described by either time-independent or nonstationary strongly maximal monotonic operators defined on a reflexive Banach space which is densely and continuously embedded in a Hilbert space. It is demonstrated that if readily verifiable conditions on the system's dependence on the unknown parameters are satisfied, and the usual Galerkin approximation assumption holds, then solutions to the approximating problems exist and approximate a solution to the original infinite-dimensional identification problem.
Physiological principles of vestibular function on earth and in space
NASA Technical Reports Server (NTRS)
Minor, L. B.
1998-01-01
Physiological mechanisms underlying vestibular function have important implications for our ability to understand, predict, and modify balance processes during and after spaceflight. The microgravity environment of space provides many unique opportunities for studying the effects of changes in gravitoinertial force on structure and function of the vestibular system. Investigations of basic vestibular physiology and of changes in reflexes occurring as a consequence of exposure to microgravity have important implications for diagnosis and treatment of vestibular disorders in human beings. This report reviews physiological principles underlying control of vestibular processes on earth and in space. Information is presented from a functional perspective with emphasis on signals arising from labyrinthine receptors. Changes induced by microgravity in linear acceleration detected by the vestibulo-ocular reflexes. Alterations of the functional requirements for postural control in space are described. Areas of direct correlation between studies of vestibular reflexes in microgravity and vestibular disorders in human beings are discussed.
Sambo, C F; Liang, M; Cruccu, G; Iannetti, G D
2012-02-01
Electrical stimulation of the median nerve at the wrist may elicit a blink reflex [hand blink reflex (HBR)] mediated by a neural circuit at brain stem level. As, in a Sherringtonian sense, the blink reflex is a defensive response, in a series of experiments we tested, in healthy volunteers, whether and how the HBR is modulated by the proximity of the stimulated hand to the face. Electromyographic activity was recorded from the orbicularis oculi, bilaterally. We observed that the HBR is enhanced when the stimulated hand is inside the peripersonal space of the face, compared with when it is outside, irrespective of whether the proximity of the hand to the face is manipulated by changing the position of the arm (experiment 1) or by rotating the head while keeping the arm position constant (experiment 3). Experiment 2 showed that such HBR enhancement has similar magnitude when the participants have their eyes closed. Experiments 4 and 5 showed, respectively, that the blink reflex elicited by the electrical stimulation of the supraorbital nerve, as well as the N20 wave of the somatosensory evoked potentials elicited by the median nerve stimulation, are entirely unaffected by hand position. Taken together, our results provide compelling evidence that the brain stem circuits mediating the HBR in humans undergo tonic and selective top-down modulation from higher order cortical areas responsible for encoding the location of somatosensory stimuli in external space coordinates. These findings support the existence of a "defensive" peripersonal space, representing a safety margin advantageous for survival.
Portraying Reflexivity in Health Services Research.
Rae, John; Green, Bill
2016-09-01
A model is proposed for supporting reflexivity in qualitative health research, informed by arguments from Bourdieu and Finlay. Bourdieu refers to mastering the subjective relation to the object at three levels-the overall social space, the field of specialists, and the scholastic universe. The model overlays Bourdieu's levels of objectivation with Finlay's three stages of research (pre-research, data collection, and data analysis). The intersections of these two ways of considering reflexivity, displayed as cells of a matrix, pose questions and offer prompts to productively challenge health researchers' reflexivity. Portraiture is used to show how these challenges and prompts can facilitate such reflexivity, as illustrated in a research project. © The Author(s) 2016.
Reflexivity in the Interstices: A Tale of Reflexivity at Work in, during, and behind the Scenes
ERIC Educational Resources Information Center
Wickens, Corrine M.; Cohen, James A.; Walther, Carol S.
2017-01-01
This article is a story of how the authors came to make sense of the significance of those words in relation to gender, race/ethnicity, and citizenship in writing a manuscript about L[subscript 1]L[subscript 2] acquisition. It is a tale about how Reflexivity wove itself into the conversations, into the writing, into the in-between spaces, the…
Studies of the vestibulo-ocular reflex on STS 4, 5 and 6
NASA Technical Reports Server (NTRS)
Thornton, William E.; Pool, Sam L.; Moore, Thomas P.; Uri, John J.
1988-01-01
The vestibulo-ocular reflex (VOR) may be altered by weightlessness. Since this reflex plays a large role in visual stabilization, it was important to document any changes caused by space flight. This is a report on findings on STS-4 through 6 and is part of a larger study of neurosensory adaptation done on STS-4 through 8. Voluntary horizontal head oscillations at 1/3 Hz with amplitude of 30 deg right and left of center were recorded by a potentiometer and compared to eye position recorded by electroculography under the following conditions: eyes open, head fixed, tracking horizontal targets switched 0, 15, and 30 degrees right and left (optokinetic reflex - OKR - and calibration); eyes open and fixed on static external target with oscillation, (vestibulo ocular reflex, eyes closed - VOR EC); eyes open and wearing opaque goggles with target fixed in imagination (vestibulo-ocular reflex, eyes shaded - VOR ES); and eyes open and fixed on a head synchronized target with head oscillation (VOR suppression). No significant changes were found in voluntary head oscillation frequency or amplitude in those with (n=5), and without (n=3), space motion sickness (SMS), with phase of flight or test condition. Variations in head oscillation were too small to have produced detectable changes in test results.
NASA Technical Reports Server (NTRS)
Watt, D. G.; Money, K. E.; Tomi, L. M.
1986-01-01
Reflex responses that depend on human otolith organ sensitivity were measured before, during and after a 10 day space flight. Otolith-spinal reflexes were elicited by means of sudden, unexpected falls. In weightlessness, "falls" were achieved using elastic cords running from a torso harness to the floor. Electromyographic (EMG) activity was recorded from gastrocnemius-soleus. The EMG response occurring in the first 100-120 ms of a fall, considered to be predominantly otolith-spinal in origin, decreased in amplitude immediately upon entering weightlessness, and continued to decline throughout the flight, especially during the first two mission days. The response returned to normal before the first post-flight testing session. The results suggest that information coming from the otolith organs is gradually ignored by the nervous system during prolonged space flight, although the possibility that otolith-spinal reflexes are decreased independent of other otolith output pathways cannot be ruled out.
NASA Technical Reports Server (NTRS)
Watt, D. G. D.; Money, K. E.; Tomi, L. M.
1986-01-01
Reflex responses that depend on human otolith organ sensitivity were measured before, during and after a 10 day space flight. Otolith-spinal reflexes were elicited by means of sudden, unexpected falls. In weightlessness, 'falls' were achieved using elastic cords running from a torso harness to the floor. Electromyographic (EMG) activity was recorded from gastrocnemius-soleus. The EMG response occurring in the first 100-120 ms of a fall, considered to be predominantly otolith-spinal in origin, decreased in amplitude immediately upon entering weightlessness, and continued to decline throughout the flight, especially during the first two mission days. The response returned to normal before the first post-flight testing session. The results suggest that information coming from the otolith organs is gradually ignored by the nervous system during prolonged space flight, although the possibility that otolith-spinal reflexes are decreased independent of other otolith output pathways cannot by ruled out.
Jalaleddini, Kian; Tehrani, Ehsan Sobhani; Kearney, Robert E
2017-06-01
The purpose of this paper is to present a structural decomposition subspace (SDSS) method for decomposition of the joint torque to intrinsic, reflexive, and voluntary torques and identification of joint dynamic stiffness. First, it formulates a novel state-space representation for the joint dynamic stiffness modeled by a parallel-cascade structure with a concise parameter set that provides a direct link between the state-space representation matrices and the parallel-cascade parameters. Second, it presents a subspace method for the identification of the new state-space model that involves two steps: 1) the decomposition of the intrinsic and reflex pathways and 2) the identification of an impulse response model of the intrinsic pathway and a Hammerstein model of the reflex pathway. Extensive simulation studies demonstrate that SDSS has significant performance advantages over some other methods. Thus, SDSS was more robust under high noise conditions, converging where others failed; it was more accurate, giving estimates with lower bias and random errors. The method also worked well in practice and yielded high-quality estimates of intrinsic and reflex stiffnesses when applied to experimental data at three muscle activation levels. The simulation and experimental results demonstrate that SDSS accurately decomposes the intrinsic and reflex torques and provides accurate estimates of physiologically meaningful parameters. SDSS will be a valuable tool for studying joint stiffness under functionally important conditions. It has important clinical implications for the diagnosis, assessment, objective quantification, and monitoring of neuromuscular diseases that change the muscle tone.
Experimenting With Baroreceptor Reflexes
NASA Technical Reports Server (NTRS)
Eckberg, Dwain L.; Goble, Ross L.
1988-01-01
Carotid arteries stimulated by pressure or suction on neck. Baro-Cuff is silicone-rubber chamber that fits on front of subject's neck. Electronic system, stepping motor, bellows, and umbilical tube furnish controlled pressure to chamber. Pressure sensor provides feedback to microprocessor in electronic system. Developed to study blood-pressure-reflex responses of astronauts in outer space. Useful for terrestrial studies of patients with congestive heart failure, chronic diabetes mellitus, and other conditions in which blood-pressure-reflex controls behave abnormally.
Approaching Reflexivity through Reflection: Issues for Critical Management Education
ERIC Educational Resources Information Center
Hibbert, Paul
2013-01-01
This conceptual article seeks to develop insights for teaching reflexivity in undergraduate management classes through developing processes of critical reflection. Theoretical inferences to support this aim are developed and organized in relation to four principles. They are as follows: first, preparing and making space for reflection in the…
Stratmann, Philipp; Lakatos, Dominic; Albu-Schäffer, Alin
2016-01-01
There are multiple indications that the nervous system of animals tunes muscle output to exploit natural dynamics of the elastic locomotor system and the environment. This is an advantageous strategy especially in fast periodic movements, since the elastic elements store energy and increase energy efficiency and movement speed. Experimental evidence suggests that coordination among joints involves proprioceptive input and neuromodulatory influence originating in the brain stem. However, the neural strategies underlying the coordination of fast periodic movements remain poorly understood. Based on robotics control theory, we suggest that the nervous system implements a mechanism to accomplish coordination between joints by a linear coordinate transformation from the multi-dimensional space representing proprioceptive input at the joint level into a one-dimensional controller space. In this one-dimensional subspace, the movements of a whole limb can be driven by a single oscillating unit as simple as a reflex interneuron. The output of the oscillating unit is transformed back to joint space via the same transformation. The transformation weights correspond to the dominant principal component of the movement. In this study, we propose a biologically plausible neural network to exemplify that the central nervous system (CNS) may encode our controller design. Using theoretical considerations and computer simulations, we demonstrate that spike-timing-dependent plasticity (STDP) for the input mapping and serotonergic neuromodulation for the output mapping can extract the dominant principal component of sensory signals. Our simulations show that our network can reliably control mechanical systems of different complexity and increase the energy efficiency of ongoing cyclic movements. The proposed network is simple and consistent with previous biologic experiments. Thus, our controller could serve as a candidate to describe the neural control of fast, energy-efficient, periodic movements involving multiple coupled joints.
Stratmann, Philipp; Lakatos, Dominic; Albu-Schäffer, Alin
2016-01-01
There are multiple indications that the nervous system of animals tunes muscle output to exploit natural dynamics of the elastic locomotor system and the environment. This is an advantageous strategy especially in fast periodic movements, since the elastic elements store energy and increase energy efficiency and movement speed. Experimental evidence suggests that coordination among joints involves proprioceptive input and neuromodulatory influence originating in the brain stem. However, the neural strategies underlying the coordination of fast periodic movements remain poorly understood. Based on robotics control theory, we suggest that the nervous system implements a mechanism to accomplish coordination between joints by a linear coordinate transformation from the multi-dimensional space representing proprioceptive input at the joint level into a one-dimensional controller space. In this one-dimensional subspace, the movements of a whole limb can be driven by a single oscillating unit as simple as a reflex interneuron. The output of the oscillating unit is transformed back to joint space via the same transformation. The transformation weights correspond to the dominant principal component of the movement. In this study, we propose a biologically plausible neural network to exemplify that the central nervous system (CNS) may encode our controller design. Using theoretical considerations and computer simulations, we demonstrate that spike-timing-dependent plasticity (STDP) for the input mapping and serotonergic neuromodulation for the output mapping can extract the dominant principal component of sensory signals. Our simulations show that our network can reliably control mechanical systems of different complexity and increase the energy efficiency of ongoing cyclic movements. The proposed network is simple and consistent with previous biologic experiments. Thus, our controller could serve as a candidate to describe the neural control of fast, energy-efficient, periodic movements involving multiple coupled joints. PMID:27014051
Stereotype locally convex spaces
NASA Astrophysics Data System (ADS)
Akbarov, S. S.
2000-08-01
We give complete proofs of some previously announced results in the theory of stereotype (that is, reflexive in the sense of Pontryagin duality) locally convex spaces. These spaces have important applications in topological algebra and functional analysis.
STS-55 Pilot Henricks with baroreflex collar in SL-D2 module onboard OV-102
1993-05-06
STS055-233-019 (26 April-6 May 1993) --- Terence T. (Tom) Henricks, STS-55 pilot, wears a special collar for a space adaptation experiment in the science module onboard the Earth-orbiting Space Shuttle Columbia. The Baroreflex (BA) experiment is designed to investigate the theory that light-headedness and a reduction in blood pressures upon standing after landing may arise because the normal reflex system regulating blood pressure behaves differently after having adapted to a microgravity environment. These space-based measurements of the baroreflex will be compared to ground measurements to determine if microgravity affects the reflex.
Device for rapid quantification of human carotid baroreceptor-cardiac reflex responses
NASA Technical Reports Server (NTRS)
Sprenkle, J. M.; Eckberg, D. L.; Goble, R. L.; Schelhorn, J. J.; Halliday, H. C.
1986-01-01
A new device has been designed, constructed, and evaluated to characterize the human carotid baroreceptor-cardiac reflex response relation rapidly. This system was designed for study of reflex responses of astronauts before, during, and after space travel. The system comprises a new tightly sealing silicon rubber neck chamber, a stepping motor-driven electrodeposited nickel bellows pressure system, capable of delivering sequential R-wave-triggered neck chamber pressure changes between +40 and -65 mmHg, and a microprocessor-based electronics system for control of pressure steps and analysis and display of responses. This new system provokes classic sigmoid baroreceptor-cardiac reflex responses with threshold, linear, and saturation ranges in most human volunteers during one held expiration.
Space adaptation syndrome experiments (8-IML-1)
NASA Technical Reports Server (NTRS)
Watt, D.
1992-01-01
A set of seven experiments will study adaptation of the human nervous system to weightlessness. Particular emphasis will be placed on the vestibular and proprioceptive systems. The experiments are as follows: the sled/H-reflex; rotation/vestibulo-ocular reflex; the visual stimulator experiment; proprioception (relaxed) experiment; proprioception (active) experiment; proprioception (illusion) experiment; and tactile acuity.
Saladrigas, Amalia H.; Goldbogen, Jeremy A.
2017-01-01
ABSTRACT Baleen whales are obligate filter feeders, straining prey‐laden seawater through racks of keratinized baleen plates. Despite the importance of baleen to the ecology and natural history of these animals, relatively little work has been done on baleen morphology, particularly with regard to the three‐dimensional morphology and structure of baleen. We used computed tomography (CT) scanning to take 3D images of six baleen specimens representing five species, including three complete racks. With these images, we described the three‐dimensional shape of the baleen plates using cross‐sectional profiles from within the gum tissue to the tip of the plates. We also measured the percentage of each specimen that was composed of either keratinized plate material or was void space between baleen plates, and thus available for seawater flow. Baleen plates have a complex three‐dimensional structure with curvature that varies across the anterior‐posterior, proximal‐distal, and medial‐lateral (lingual‐labial) axes. These curvatures also vary with location along the baleen rack, and between species. Cross‐sectional profiles resemble backwards‐facing airfoils, and some specimens display S‐shaped, or reflexed, camber. Within a baleen specimen, the intra‐baleen void volume correlates with the average bristle diameter for a species, suggesting that essentially, thinner plates (with more space between them for flow) have thinner bristles. Both plate curvature and the relative proportions of plate and void volumes are likely to have implications for the mechanics of mysticete filtration, and future studies are needed to determine the particular functions of these morphological characters. Anat Rec, 300:1942–1952, 2017. © 2017 The Authors The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists PMID:28971628
Relation of motion sickness susceptibility to vestibular and behavioral measures of orientation
NASA Technical Reports Server (NTRS)
Peterka, Robert J.
1995-01-01
The objective is to determine the relationship of motion sickness susceptibility to vestibulo-ocular reflexes (VOR), motion perception, and behavioral utilization of sensory orientation cues for the control of postural equilibrium. The work is focused on reflexes and motion perception associated with pitch and roll movements that stimulate the vertical semicircular canals and otolith organs of the inner ear. This work is relevant to the space motion sickness problem since 0 g related sensory conflicts between vertical canal and otolith motion cues are a likely cause of space motion sickness.
NASA Astrophysics Data System (ADS)
Wang, Min
2017-06-01
This paper aims to establish the Tikhonov regularization method for generalized mixed variational inequalities in Banach spaces. For this purpose, we firstly prove a very general existence result for generalized mixed variational inequalities, provided that the mapping involved has the so-called mixed variational inequality property and satisfies a rather weak coercivity condition. Finally, we establish the Tikhonov regularization method for generalized mixed variational inequalities. Our findings extended the results for the generalized variational inequality problem (for short, GVIP( F, K)) in R^n spaces (He in Abstr Appl Anal, 2012) to the generalized mixed variational inequality problem (for short, GMVIP(F,φ , K)) in reflexive Banach spaces. On the other hand, we generalized the corresponding results for the generalized mixed variational inequality problem (for short, GMVIP(F,φ ,K)) in R^n spaces (Fu and He in J Sichuan Norm Univ (Nat Sci) 37:12-17, 2014) to reflexive Banach spaces.
Otolith-Canal Convergence in Vestibular Nuclei Neurons
NASA Technical Reports Server (NTRS)
Dickman, J. David
1996-01-01
During manned spaceflight, acute vestibular disturbances often occur, leading to physical duress and a loss of performance. Vestibular adaptation to the weightless environment follows within two to three days yet the mechanisms responsible for the disturbance and subsequent adaptation are still unknown In order to understand vestibular system function in space and normal earth conditions the basic physiological mechanisms of vestibular information co coding must be determined. Information processing regarding head movement and head position with respect to gravity takes place in the vestibular nuclei neurons that receive signals From the semicircular canals and otolith organs in the vestibular labyrinth. These neurons must synthesize the information into a coded output signal that provides for the head and eye movement reflexes as well as the conscious perception of the body in three-dimensional space The current investigation will for the first time. determine how the vestibular nuclei neurons quantitatively synthesize afferent information from the different linear and angular acceleration receptors in the vestibular labyrinths into an integrated output signal. During the second year of funding, progress on the current project has been focused on the anatomical orientation of semicircular canals and the spatial orientation of the innervating afferent responses. This information is necessary in order to understand how vestibular nuclei neurons process the incoming afferent spatial signals particularly with the convergent otolith afferent signals that are also spatially distributed Since information from the vestibular nuclei is presented to different brain regions associated with differing reflexive and sensory functions it is important to understand the computational mechanisms used by vestibular neurons to produce the appropriate output signal.
Kumar, Deepak; Englesbe, Alexander; Parman, Matthew; ...
2015-11-05
Tabletop reflex discharges in a Penning geometry have many applications including ion sources and eXtreme Ultra-Violet (XUV) sources. The presence of primary electrons accelerated across the cathode sheaths is responsible for the distribution of ion charge states and of the unusually high XUV brightness of these plasmas. Absolutely calibrated space resolved XUV spectra from a table top reflex discharge operating with Al cathodes and Ne gas are presented. The spectra are analyzed with a new and complete model for ion charge distribution in similar reflex discharges. The plasma in the discharge was found to have a density of ~10 18mmore » –3 with a significant fraction >0.01 of fast primary electrons. As a result, the implications of the new model on the ion states achievable in a tabletop reflex plasma discharge are also discussed.« less
ERIC Educational Resources Information Center
Reid, Hazel; West, Linden
2016-01-01
This paper explores the constraints to innovative, creative and reflexive careers counselling in an uncertain neo-liberal world. We draw on previously reported research into practitioners' use of a narrative model for career counselling interviews in England and a Europe-wide auto/biographical narrative study of non-traditional learners in…
Multi-Reflex Propulsion Systems for Space and Air Vehicles and Energy Transfer for Long Distance
NASA Astrophysics Data System (ADS)
Bolonkin, A.
The purpose of this article is to call attention to the revolutionary idea of light multi-reflection. This idea allows the design of new engines, space and air propulsion systems, storage (of a beam and solar energy), transmitters of energy (to millions of kilometers), creation of new weapons, etc. This method and the main innovations were offered by the author in 1983 in the former USSR. Now the author shows in a series of articles the immense possibilities of this idea in many fields of engineering - astronautics, aviation, energy, optics, direct converter of light (laser beam) energy to mechanical energy (light engine), to name a few. This article considers the multi-reflex propulsion systems for space and air vehicles and energy transmitter for long distances in space.
ERIC Educational Resources Information Center
Anderson, Kate T.; Stewart, Olivia G.; Abdul Aziz, Masturah Binte
2016-01-01
Researcher reflexivity shapes what and how we know, because the background against which something becomes a site for analysis, and through which we position knowledge about it, result from our researcher gaze. We examine here an adolescent-produced multimodal story according to three different researcher gazes across space and time. By…
PALP: A Package for Analysing Lattice Polytopes with applications to toric geometry
NASA Astrophysics Data System (ADS)
Kreuzer, Maximilian; Skarke, Harald
2004-02-01
We describe our package PALP of C programs for calculations with lattice polytopes and applications to toric geometry, which is freely available on the internet. It contains routines for vertex and facet enumeration, computation of incidences and symmetries, as well as completion of the set of lattice points in the convex hull of a given set of points. In addition, there are procedures specialized to reflexive polytopes such as the enumeration of reflexive subpolytopes, and applications to toric geometry and string theory, like the computation of Hodge data and fibration structures for toric Calabi-Yau varieties. The package is well tested and optimized in speed as it was used for time consuming tasks such as the classification of reflexive polyhedra in 4 dimensions and the creation and manipulation of very large lists of 5-dimensional polyhedra. While originally intended for low-dimensional applications, the algorithms work in any dimension and our key routine for vertex and facet enumeration compares well with existing packages. Program summaryProgram obtainable form: CPC Program Library, Queen's University of Belfast, N. Ireland Title of program: PALP Catalogue identifier: ADSQ Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADSQ Computer for which the program is designed: Any computer featuring C Computers on which it has been tested: PCs, SGI Origin 2000, IBM RS/6000, COMPAQ GS140 Operating systems under which the program has been tested: Linux, IRIX, AIX, OSF1 Programming language used: C Memory required to execute with typical data: Negligible for most applications; highly variable for analysis of large polytopes; no minimum but strong effects on calculation time for some tasks Number of bits in a word: arbitrary Number of processors used: 1 Has the code been vectorised or parallelized?: No Number of bytes in distributed program, including test data, etc.: 138 098 Distribution format: tar gzip file Keywords: Lattice polytopes, facet enumeration, reflexive polytopes, toric geometry, Calabi-Yau manifolds, string theory, conformal field theory Nature of problem: Certain lattice polytopes called reflexive polytopes afford a combinatorial description of a very large class of Calabi-Yau manifolds in terms of toric geometry. These manifolds play an essential role for compactifications of string theory. While originally designed to handle and classify reflexive polytopes, with particular emphasis on problems relevant to string theory applications [M. Kreuzer and H. Skarke, Rev. Math. Phys. 14 (2002) 343], the package also handles standard questions (facet enumeration and similar problems) about arbitrary lattice polytopes very efficiently. Method of solution: Much of the code is straightforward programming, but certain key routines are optimized with respect to calculation time and the handling of large sets of data. A double description method (see, e.g., [D. Avis et al., Comput. Geometry 7 (1997) 265]) is used for the facet enumeration problem, lattice basis reduction for extended gcd and a binary database structure for tasks involving large numbers of polytopes, such as classification problems. Restrictions on the complexity of the program: The only hard limitation comes from the fact that fixed integer arithmetic (32 or 64 bit) is used, allowing for input data (polytope coordinates) of roughly up to 10 9. Other parameters (dimension, numbers of points and vertices, etc.) can be set before compilation. Typical running time: Most tasks (typically: analysis of a four dimensional reflexive polytope) can be perfomed interactively within milliseconds. The classification of all reflexive polytopes in four dimensions takes several processor years. The facet enumeration problem for higher (e.g., 12-20) dimensional polytopes varies strongly with the dimension and structure of the polytope; here PALP's performance is similar to that of existing packages [Avis et al., Comput. Geometry 7 (1997) 265]. Unusual features of the program: None
The Self-Evolving Cosmos: A Phenomenological Approach to Nature's Unity-in-Diversity
NASA Astrophysics Data System (ADS)
Rosen, Steven M.
ch. 1. Introduction: individuation and the quest for unity -- ch. 2. The obstacle to unification in modern physics. 2.1. Introduction. 2.2. Does contemporary mathematical physics actually depart from the classical formulation? -- ch. 3. The phenomenological challenge to the classical formula -- ch. 4. Topological phenomenology. 4.1. Introduction. 4.2. Phenomenological intuition, topology, and the Klein bottle. 4.3. The physical significance of the Klein bottle -- ch. 5. The dimensional family of topological spinors. 5.1. Generalization of intuitive topology. 5.2. Topodimensional spin matrix -- ch. 6. Basic principles of dimensional transformation. 6.1. Synsymmetry and the self-transformation of space. 6.2. From symmetry breaking to dimensional generation. 6.3. The three basic stages of dimensional generation. 6.4. Kleinian topogeny -- ch. 7. Waves carrying waves: the co-evolution of lifeworlds -- ch. 8. The forces of nature. 8.1. The phenomenon of light. 8.2. Phenomenological Kaluza-Klein theory. 8.3. Summary comparison of conventional and topo-phenomenological approaches to Kaluza-Klein theory -- ch. 9. Cosmogony, symmetry, and phenomenological intuition. 9.1. Conventional view of the evolving cosmos. 9.2. The problem of symmetry. 9.3. A new kind of clarity -- ch. 10. The self-evolving cosmos. 10.1. Introduction to the cosmogonic matrix. 10.2. Overview of cosmic evolution. 10.3. The role of the fermions in dimensional generation. 10.4. Projective stages of cosmogony: dimensional divergence. 10.5. Proprioceptive stages of cosmogony: dimensional convergence. 10.6. Conclusion: wider horizons of cosmic evolution -- ch. 11. The psychophysics of cosmogony. 11.1. Psychical aspects of the fundamental particles. 11.2. Toward a reflexive physics. 11.3. Concretization of the self-evolving cosmos.
ERIC Educational Resources Information Center
Huang, Teng; Ou, Yung-Sheng
2017-01-01
The rise of reflexivity and neoliberalism has led to a change in the nature of the public sphere and policy management. Thus, focusing only on analyses of state-initiated policy and the actions of central government is not conducive to understanding the complex process of policy implementation today. Hence, this study aims to analyse the politics…
Gravity and Neuronal Adaptation. Neurophysiology of Reflexes from Hypo- to Hypergravity Conditions
NASA Astrophysics Data System (ADS)
Ritzmann, Ramona; Krause, Anne; Freyler, Kathrin; Gollhofer, Albert
2017-02-01
Introduction: For interplanetary and orbital missions in human space flight, knowledge about the gravity-sensitivity of the central nervous system (CNS) is required. The objective of this study was to assess neurophysiological correlates in variable hetero gravity conditions in regard to their timing and shaping. Methods: In ten subjects, peripheral nerve stimulation was used to elicit H-reflexes and M-waves in the M. soleus in Lunar, Martian, Earth and hypergravity. Gravity-dependencies were described by means of reflex latency, inter-peak-interval, duration, stimulation threshold and maximal amplitudes. Experiments were executed during the CNES/ESA/DLR JEPPFs. Results: H-reflex latency, inter-peak-interval and duration decreased with increasing gravitation (P<0.05); likewise, M-wave inter-peak-interval was diminished and latency prolonged with increasing gravity (P<0.05). Stimulation threshold of H-reflexes and M-waves decreased (P<0.05) while maximal amplitudes increased with an increase in gravitation (P<0.05). Conclusion: Adaptations in neurophysiological correlates in hetero gravity are associated with a shift in timing and shaping. For the first time, our results indicate that synaptic and axonal nerve conduction velocity as well as axonal and spinal excitability are diminished with reduced gravitational forces on the Moon and Mars and gradually increased when gravitation is progressively augmented up to hypergravity. Interrelated with the adaptation in threshold we conclude that neuronal circuitries are significantly affected by gravitation. As a consequence, movement control and countermeasures may be biased in extended space missions involving transitions between different force environments.
NASA Technical Reports Server (NTRS)
1997-01-01
Session TA3 includes short reports covering: (1) Vestibulo-Oculomotor Interaction in Long-Term Microgravity; (2) Effects of Weightlessness on the Spatial Orientation of Visually Induced Eye Movements; (3) Adaptive Modification of the Three-Dimensional Vestibulo-Ocular Reflex during Prolonged Microgravity; (4) The Dynamic Change of Brain Potential Related to Selective Attention to Visual Signals from Left and Right Visual Fields; (5) Locomotor Errors Caused by Vestibular Suppression; and (6) A Novel, Image-Based Technique for Three-Dimensional Eye Measurement.
Kilimov, N
1977-09-01
We examined a 31 year-old female patient who, since her first year of life and following a parotis operation, had suffered from left-sided Bell's palsy. The electromyographical examinations disclosed a complete loss of voluntary muscle control and of the trigemino-facial reflexes, although the direct responses of the facial nerve could be demonstrated with delayed latences. The findings indicated peripheral regeneration of the facial nerve with absence of central programming and reflex pathways. By means of rhythmic muscle stimulation, voluntary control and reflex excitability was re-established, to a limited extent, on the formerly inactive side within a short space of time.
Cerebellar interaction with the acoustic reflex.
Jastreboff, P J
1981-01-01
The involvement of the cerebellar vermis in the acoustic reflex was analyzed in 12 cats, decerebrated or in pentobarbital anesthesia. Anatomical data suggested the existence of a connection of lobules VIII with the ventral cochlear nucleus. Single cell recording and evoked potential techniques demonstrated the existence of the acoustic projection to lobulus VIII. Electrical stimulation of this area changed the tension of the middle ear muscle and caused evoked potential responses in the caudal part of the ventral cochlear nucleus. Electrical stimulation of the motor nucleus of the facial nerve evoked a slow wave in the recording taken from the surrounding of the cochlear round window. A hypothesis is proposed which postulates the involvement of the acoustic reflex in space localization of acoustic stimuli and the action of cerebellar vermis in order to assure the stability and plasticity of the acoustic reflex arc.
NASA Technical Reports Server (NTRS)
Angelaki, D. E.; Hess, B. J.
1996-01-01
1. The dynamic properties of otolith-ocular reflexes elicited by sinusoidal linear acceleration along the three cardinal head axes were studied during off-vertical axis rotations in rhesus monkeys. As the head rotates in space at constant velocity about an off-vertical axis, otolith-ocular reflexes are elicited in response to the sinusoidally varying linear acceleration (gravity) components along the interaural, nasooccipital, or vertical head axis. Because the frequency of these sinusoidal stimuli is proportional to the velocity of rotation, rotation at low and moderately fast speeds allows the study of the mid-and low-frequency dynamics of these otolith-ocular reflexes. 2. Animals were rotated in complete darkness in the yaw, pitch, and roll planes at velocities ranging between 7.4 and 184 degrees/s. Accordingly, otolith-ocular reflexes (manifested as sinusoidal modulations in eye position and/or slow-phase eye velocity) were quantitatively studied for stimulus frequencies ranging between 0.02 and 0.51 Hz. During yaw and roll rotation, torsional, vertical, and horizontal slow-phase eye velocity was sinusoidally modulated as a function of head position. The amplitudes of these responses were symmetric for rotations in opposite directions. In contrast, mainly vertical slow-phase eye velocity was modulated during pitch rotation. This modulation was asymmetric for rotations in opposite direction. 3. Each of these response components in a given rotation plane could be associated with an otolith-ocular response vector whose sensitivity, temporal phase, and spatial orientation were estimated on the basis of the amplitude and phase of sinusoidal modulations during both directions of rotation. Based on this analysis, which was performed either for slow-phase eye velocity alone or for total eye excursion (including both slow and fast eye movements), two distinct response patterns were observed: 1) response vectors with pronounced dynamics and spatial/temporal properties that could be characterized as the low-frequency range of "translational" otolith-ocular reflexes; and 2) response vectors associated with an eye position modulation in phase with head position ("tilt" otolith-ocular reflexes). 4. The responses associated with two otolith-ocular vectors with pronounced dynamics consisted of horizontal eye movements evoked as a function of gravity along the interaural axis and vertical eye movements elicited as a function of gravity along the vertical head axis. Both responses were characterized by a slow-phase eye velocity sensitivity that increased three- to five-fold and large phase changes of approximately 100-180 degrees between 0.02 and 0.51 Hz. These dynamic properties could suggest nontraditional temporal processing in utriculoocular and sacculoocular pathways, possibly involving spatiotemporal otolith-ocular interactions. 5. The two otolith-ocular vectors associated with eye position responses in phase with head position (tilt otolith-ocular reflexes) consisted of torsional eye movements in response to gravity along the interaural axis, and vertical eye movements in response to gravity along the nasooccipital head axis. These otolith-ocular responses did not result from an otolithic effect on slow eye movements alone. Particularly at high frequencies (i.e., high speed rotations), saccades were responsible for most of the modulation of torsional and vertical eye position, which was relatively large (on average +/- 8-10 degrees/g) and remained independent of frequency. Such reflex dynamics can be simulated by a direct coupling of primary otolith afferent inputs to the oculomotor plant. (ABSTRACT TRUNCATED).
NASA Technical Reports Server (NTRS)
Peterka, Robert J.
1993-01-01
Recent studies have identified significant correlations between space motion sickness susceptibility and measures of disconjugate torsional eye movements recorded during parabolic flights. These results support an earlier proposal which hypothesized that an asymmetry of otolith function between the two ears is the cause of space motion sickness. It may be possible to devise experiments that can be performed in the 1 g environment on earth that could identify and quantify the presence of asymmetric otolith function. This paper summarizes the known physiological and anatomical properties of the otolith organs and the properties of the torsional vestibulo-ocular reflex which are relevant to the design of a stimulus to identify otolith asymmetries. A specific stimulus which takes advantage of these properties is proposed.
Orthostatic stress is necessary to maintain the dynamic range of cardiovascular control in space
NASA Technical Reports Server (NTRS)
Baisch, J. F.; Wolfram, G.; Beck, L.; Drummer, C.; Stormer, I.; Buckey, J.; Blomqvist, G.
2000-01-01
In the upright position, gravity fills the low-pressure systems of human circulation with blood and interstitial fluid in the sections below the diaphragm. Without gravity one pressure component in the vessels disappears and the relationship between hydrostatic pressure and oncotic pressure, which regulates fluid passage across the capillary endothelium in the terminal vascular bed, shifts constantly. The visible consequences of this are a puffy face and "bird" legs. The plasma volume shrinks in space and the range of cardiovascular control is reduced. When they stand up for the first time after landing, 30-50% of astronauts suffer from orthostatic intolerance. It remains unclear whether microgravity impairs cardiovascular reflexes, or whether it is the altered volume status that causes the cardiovascular instability following space flight. Lower body negative pressure was used in several space missions to stimulate the cardiovascular reflexes before, during and after a space flight. The results show that cardiovascular reflexes are maintained in microgravity. However, the astronauts' volume status changed in space, towards a volume-retracted state, as measurements of fluid-regulating hormones have shown. It can be hypothesized that the control of circulation and body fluid homeostasis in humans is adapted to their upright posture in the Earth's gravitational field. Autonomic control regulates fluid distribution to maintain the blood pressure in that posture, which most of us have to cope with for two-thirds of the day. A determined amount of interstitial volume is necessary to maintain the dynamic range of cardiovascular control in the upright posture; otherwise orthostatic intolerance may occur more often.
Subspace methods for identification of human ankle joint stiffness.
Zhao, Y; Westwick, D T; Kearney, R E
2011-11-01
Joint stiffness, the dynamic relationship between the angular position of a joint and the torque acting about it, describes the dynamic, mechanical behavior of a joint during posture and movement. Joint stiffness arises from both intrinsic and reflex mechanisms, but the torques due to these mechanisms cannot be measured separately experimentally, since they appear and change together. Therefore, the direct estimation of the intrinsic and reflex stiffnesses is difficult. In this paper, we present a new, two-step procedure to estimate the intrinsic and reflex components of ankle stiffness. In the first step, a discrete-time, subspace-based method is used to estimate a state-space model for overall stiffness from the measured overall torque and then predict the intrinsic and reflex torques. In the second step, continuous-time models for the intrinsic and reflex stiffnesses are estimated from the predicted intrinsic and reflex torques. Simulations and experimental results demonstrate that the algorithm estimates the intrinsic and reflex stiffnesses accurately. The new subspace-based algorithm has three advantages over previous algorithms: 1) It does not require iteration, and therefore, will always converge to an optimal solution; 2) it provides better estimates for data with high noise or short sample lengths; and 3) it provides much more accurate results for data acquired under the closed-loop conditions, that prevail when subjects interact with compliant loads.
Toward a dual-learning systems model of speech category learning
Chandrasekaran, Bharath; Koslov, Seth R.; Maddox, W. T.
2014-01-01
More than two decades of work in vision posits the existence of dual-learning systems of category learning. The reflective system uses working memory to develop and test rules for classifying in an explicit fashion, while the reflexive system operates by implicitly associating perception with actions that lead to reinforcement. Dual-learning systems models hypothesize that in learning natural categories, learners initially use the reflective system and, with practice, transfer control to the reflexive system. The role of reflective and reflexive systems in auditory category learning and more specifically in speech category learning has not been systematically examined. In this article, we describe a neurobiologically constrained dual-learning systems theoretical framework that is currently being developed in speech category learning and review recent applications of this framework. Using behavioral and computational modeling approaches, we provide evidence that speech category learning is predominantly mediated by the reflexive learning system. In one application, we explore the effects of normal aging on non-speech and speech category learning. Prominently, we find a large age-related deficit in speech learning. The computational modeling suggests that older adults are less likely to transition from simple, reflective, unidimensional rules to more complex, reflexive, multi-dimensional rules. In a second application, we summarize a recent study examining auditory category learning in individuals with elevated depressive symptoms. We find a deficit in reflective-optimal and an enhancement in reflexive-optimal auditory category learning. Interestingly, individuals with elevated depressive symptoms also show an advantage in learning speech categories. We end with a brief summary and description of a number of future directions. PMID:25132827
NASA Technical Reports Server (NTRS)
Peterka, R. J.
1994-01-01
Recent studies by Diamond and Markham have identified significant correlations between space motion sickness susceptibility and measures of disconjugate torsional eye movements recorded during parabolic flights. These results support an earlier proposal by von Baumgarten and Thumler which hypothesized that an asymmetry of otolith function between the two ears is the cause of space motion sickness. It may be possible to devise experiments that can be performed in the 1 g environment on earth that could identify and quantify the presence of asymmetric otolith function. This paper summarizes the known physiological and anatomical properties of the otolith organs and the properties of the torsional vestibulo-ocular reflex which are relevant to the design of a stimulus to identify otolith asymmetries. A specific stimulus which takes advantage of these properties is proposed.
Jensen, Megan M; Saladrigas, Amalia H; Goldbogen, Jeremy A
2017-11-01
Baleen whales are obligate filter feeders, straining prey-laden seawater through racks of keratinized baleen plates. Despite the importance of baleen to the ecology and natural history of these animals, relatively little work has been done on baleen morphology, particularly with regard to the three-dimensional morphology and structure of baleen. We used computed tomography (CT) scanning to take 3D images of six baleen specimens representing five species, including three complete racks. With these images, we described the three-dimensional shape of the baleen plates using cross-sectional profiles from within the gum tissue to the tip of the plates. We also measured the percentage of each specimen that was composed of either keratinized plate material or was void space between baleen plates, and thus available for seawater flow. Baleen plates have a complex three-dimensional structure with curvature that varies across the anterior-posterior, proximal-distal, and medial-lateral (lingual-labial) axes. These curvatures also vary with location along the baleen rack, and between species. Cross-sectional profiles resemble backwards-facing airfoils, and some specimens display S-shaped, or reflexed, camber. Within a baleen specimen, the intra-baleen void volume correlates with the average bristle diameter for a species, suggesting that essentially, thinner plates (with more space between them for flow) have thinner bristles. Both plate curvature and the relative proportions of plate and void volumes are likely to have implications for the mechanics of mysticete filtration, and future studies are needed to determine the particular functions of these morphological characters. Anat Rec, 300:1942-1952, 2017. © 2017 The Authors The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists. © 2017 The Authors The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.
Sensor-Motor Maps for Describing Linear Reflex Composition in Hopping.
Schumacher, Christian; Seyfarth, André
2017-01-01
In human and animal motor control several sensory organs contribute to a network of sensory pathways modulating the motion depending on the task and the phase of execution to generate daily motor tasks such as locomotion. To better understand the individual and joint contribution of reflex pathways in locomotor tasks, we developed a neuromuscular model that describes hopping movements. In this model, we consider the influence of proprioceptive length (LFB), velocity (VFB) and force feedback (FFB) pathways of a leg extensor muscle on hopping stability, performance and efficiency (metabolic effort). Therefore, we explore the space describing the blending of the monosynaptic reflex pathway gains. We call this reflex parameter space a sensor-motor map . The sensor-motor maps are used to visualize the functional contribution of sensory pathways in multisensory integration. We further evaluate the robustness of these sensor-motor maps to changes in tendon elasticity, body mass, segment length and ground compliance. The model predicted that different reflex pathway compositions selectively optimize specific hopping characteristics (e.g., performance and efficiency). Both FFB and LFB were pathways that enable hopping. FFB resulted in the largest hopping heights, LFB enhanced hopping efficiency and VFB had the ability to disable hopping. For the tested case, the topology of the sensor-motor maps as well as the location of functionally optimal compositions were invariant to changes in system designs (tendon elasticity, body mass, segment length) or environmental parameters (ground compliance). Our results indicate that different feedback pathway compositions may serve different functional roles. The topology of the sensor-motor map was predicted to be robust against changes in the mechanical system design indicating that the reflex system can use different morphological designs, which does not apply for most robotic systems (for which the control often follows a specific design). Consequently, variations in body mechanics are permitted with consistent compositions of sensory feedback pathways. Given the variability in human body morphology, such variations are highly relevant for human motor control.
Mathematical theory of a relaxed design problem in structural optimization
NASA Technical Reports Server (NTRS)
Kikuchi, Noboru; Suzuki, Katsuyuki
1990-01-01
Various attempts have been made to construct a rigorous mathematical theory of optimization for size, shape, and topology (i.e. layout) of an elastic structure. If these are represented by a finite number of parametric functions, as Armand described, it is possible to construct an existence theory of the optimum design using compactness argument in a finite dimensional design space or a closed admissible set of a finite dimensional design space. However, if the admissible design set is a subset of non-reflexive Banach space such as L(sup infinity)(Omega), construction of the existence theory of the optimum design becomes suddenly difficult and requires to extend (i.e. generalize) the design problem to much more wider class of design that is compatible to mechanics of structures in the sense of variational principle. Starting from the study by Cheng and Olhoff, Lurie, Cherkaev, and Fedorov introduced a new concept of convergence of design variables in a generalized sense and construct the 'G-Closure' theory of an extended (relaxed) optimum design problem. A similar attempt, but independent in large extent, can also be found in Kohn and Strang in which the shape and topology optimization problem is relaxed to allow to use of perforated composites rather than restricting it to usual solid structures. An identical idea is also stated in Murat and Tartar using the notion of the homogenization theory. That is, introducing possibility of micro-scale perforation together with the theory of homogenization, the optimum design problem is relaxed to construct its mathematical theory. It is also noted that this type of relaxed design problem is perfectly matched to the variational principle in structural mechanics.
Compensatory increase of the cervico-ocular reflex with age in healthy humans
Kelders, W P A; Kleinrensink, G J; van der Geest, J N; Feenstra, L; de Zeeuw, C I; Frens, M A
2003-01-01
The cervico-ocular reflex (COR) is an ocular stabilization reflex that is elicited by rotation of the neck. It works in conjunction with the vestibulo-ocular reflex (VOR) and the optokinetic reflex (OKR) in order to prevent visual slip over the retina due to self-motion. The gains of the VOR and OKR are known to decrease with age. We have investigated whether the COR, a reflexive eye movement elicited by rotation of the neck, shows a compensatory increase and whether a synergy exists between the COR and the other ocular stabilization reflexes. In the present study 35 healthy subjects of varying age (20–86 years) were rotated in the dark in a trunk-to-head manner (the head fixed in spaced with the body passively rotated under it) at peak velocities between 2.1 and 12.6 deg s−1 as a COR stimulus. Another 15 were subjected to COR, VOR and OKR stimuli at frequencies between 0.04 and 0.1 Hz. Three subjects participated in both tests. The position of the eyes was recorded with an infrared recording technique. We found that the COR-gain increases with increasing age and that there is a significant covariation between the gains of the VOR and COR, meaning that when VOR increases, COR decreases and vice versa. A nearly constant phase lag between the COR and the VOR of about 25 deg existed at all stimulus frequencies. PMID:12949226
Relation of motion sickness susceptibility to vestibular and behavioral measures of orientation
NASA Technical Reports Server (NTRS)
Peterka, Robert J.
1994-01-01
The objective of this proposal is to determine the relationship of motion sickness susceptibility to vestibulo-ocular reflexes (VOR), motion perception, and behavioral utilization of sensory orientation cues for the control of postural equilibrium. The work is focused on reflexes and motion perception associated with pitch and roll movements that stimulate the vertical semicircular canals and otolith organs of the inner ear. This work is relevant to the space motion sickness problem since 0 g related sensory conflicts between vertical canal and otolith motion cues are a likely cause of space motion sickness. Results of experimentation are summarized and modifications to a two-axis rotation device are described. Abstracts of a number of papers generated during the reporting period are appended.
Systematic Phenomenology on the Landscape of Calabi-Yau Hypersurfaces in Toric Varieties
NASA Astrophysics Data System (ADS)
Altman, Ross
The largest known database of Calabi-Yau threefold string vacua was famously produced by Kreuzer and Skarke in the form of a complete construction of all 473,800,776 reflexive polyhedra that exist in four dimensions [1]. These reflexive polyhedra describe the singu- lar limits of ambient Gorenstein toric Fano varieties in which Calabi-Yau threefolds are known to exist as the associated anticanonical hypersurfaces. In this thesis, we review how to unpack the topological and geometric information describing these Calabi-Yau threefolds using the toric construction, and provide, in a companion online database (see www.rossealtman.com), a detailed inventory of these quantities which are of interest to string phenomenologists. Many of the singular ambient varieties associated to the Kreuzer-Skarke list can be partially smoothed out into a multiplicity of distinct, terminal toric ambient spaces, each of which may embed a unique Calabi-Yau threefold. Some, however are not unique, and can be identified through topological and smoothness con- straints. A distribution of the unique Calabi-Yau threefolds which can be obtained from each 4D reflexive polyhedron, will be provided up to current computational limits. In addition, we will detail the computation of a variety of quantities associated to each of these vacua, such as the Chern classes, Hodge data, intersection numbers, and the Kahler and Mori cones. Then, moving on to actual string phenomenology on the Calabi-Yau compactification vacua, we outline the prescription for moduli stabilization with a supersymmetry breaking vacuum known as the LARGE Volume Scenario (LVS), paying particular attention to the so-called "Swiss cheese" models. It is an important open problem in string model building to identify the set of Swiss cheese solutions within the space of Calabi-Yau threefolds. In this thesis, we present an algorithm to isolate a special subset of Swiss cheese solutions that are characterized by "holes," or small 4-cycles in homology, descending from the toric divisors inherent to the original four dimensional reflexive polyhedra. Implementing these methods, we find 2,313 "toric" Swiss cheese manifolds, over half of which have h1,1 = 6. Of these, 70 have two or more large 4-cycles and a flat direction in the effective potential. In an explicit example, we find a stable minimum for the small Kahler moduli and a flat direction in the large moduli. Finally, we approach the subject of orientifolding the Calabi-Yau threefold vacuum of a type IIB theory in order to break N = 2 supergravity down to N = 1 in the low energy effective theory. To this end, we describe the process of choosing a non-trivial Z 2 involution, and locating its fixed points on the compactification manifold. It will be shown that consistency of this involution across the full Kahler cone is very restrictive and results in at most O3/O7 planes in nearly every case. We also discuss the splitting of the Kahler moduli space of the orientifold into even and odd parity components, and present concrete examples demonstrating this process.
Using ESO Reflex with Web Services
NASA Astrophysics Data System (ADS)
Järveläinen, P.; Savolainen, V.; Oittinen, T.; Maisala, S.; Ullgrén, M. Hook, R.
2008-08-01
ESO Reflex is a prototype graphical workflow system, based on Taverna, and primarily intended to be a flexible way of running ESO data reduction recipes along with other legacy applications and user-written tools. ESO Reflex can also readily use the Taverna Web Services features that are based on the Apache Axis SOAP implementation. Taverna is a general purpose Web Service client, and requires no programming to use such services. However, Taverna also has some restrictions: for example, no numerical types such integers. In addition the preferred binding style is document/literal wrapped, but most astronomical services publish the Axis default WSDL using RPC/encoded style. Despite these minor limitations we have created simple but very promising test VO workflow using the Sesame name resolver service at CDS Strasbourg, the Hubble SIAP server at the Multi-Mission Archive at Space Telescope (MAST) and the WESIX image cataloging and catalogue cross-referencing service at the University of Pittsburgh. ESO Reflex can also pass files and URIs via the PLASTIC protocol to visualisation tools and has its own viewer for VOTables. We picked these three Web Services to try to set up a realistic and useful ESO Reflex workflow. They also demonstrate ESO Reflex abilities to use many kind of Web Services because each of them requires a different interface. We describe each of these services in turn and comment on how it was used
Sensory processing in the vestibular nuclei during active head movements
NASA Technical Reports Server (NTRS)
Gdowski, G. T.; Boyle, R.; McCrea, R. A.; Peterson, B. W. (Principal Investigator)
2000-01-01
Many secondary vestibular neurons are sensitive to head on trunk rotation during reflex-induced and voluntary head movements. During passive whole body rotation the interaction of head on trunk signals related to the vestibulo-collic reflex with vestibular signals increases the rotational gain of many secondary vestibular neurons, including many that project to the spinal cord. In some units, the sensitivity to head on trunk and vestibular input is matched and the resulting interaction produces an output that is related to the trunk velocity in space. In other units the head on trunk inputs are stronger and the resulting interaction produces an output that is larger during the reflex. During voluntary head movements, inputs related to head on trunk movement combine destructively with vestibular signals, and often cancel the sensory reafferent consequences of self-generated movements. Cancellation of sensory vestibular signals was observed in all of the antidromically identified secondary vestibulospinal units, even though many of these units were not significantly affected by reflexive head on trunk movements. The results imply that the inputs to vestibular neurons related to head on trunk rotation during reflexive and voluntary movements arise from different sources. We suggest that the relative strength of reflexive head on trunk input to different vestibular neurons might reflect the different functional roles they have in controlling the posture of the neck and body.
New large volume Calabi-Yau threefolds
NASA Astrophysics Data System (ADS)
Altman, Ross; He, Yang-Hui; Jejjala, Vishnu; Nelson, Brent D.
2018-02-01
In previous work, we have commenced the task of unpacking the 473 800 776 reflexive polyhedra by Kreuzer and Skarke into a database of Calabi-Yau threefolds [R. Altman et al. J. High Energy Phys. 02 (2015) 158., 10.1007/JHEP02(2015)158] (see www.rossealtman.com). In this paper, following a pedagogical introduction, we present a new algorithm to isolate Swiss cheese solutions characterized by "holes," or small 4-cycles, descending from the toric divisors inherent to the original four dimensional reflexive polyhedra. Implementing these methods, we find 2268 explicit Swiss cheese manifolds, over half of which have h1 ,1=6 . Many of our solutions have multiple large cycles. Such Swiss cheese geometries facilitate moduli stabilization in string compactifications and provide flat directions for cosmological inflation.
Design of an open-ended plenoptic camera for three-dimensional imaging of dusty plasmas
NASA Astrophysics Data System (ADS)
Sanpei, Akio; Tokunaga, Kazuya; Hayashi, Yasuaki
2017-08-01
Herein, the design of a plenoptic imaging system for three-dimensional reconstructions of dusty plasmas using an integral photography technique has been reported. This open-ended system is constructed with a multi-convex lens array and a typical reflex CMOS camera. We validated the design of the reconstruction system using known target particles. Additionally, the system has been applied to observations of fine particles floating in a horizontal, parallel-plate radio-frequency plasma. Furthermore, the system works well in the range of our dusty plasma experiment. We can identify the three-dimensional positions of dust particles from a single-exposure image obtained from one viewing port.
The Reflexive Adaptations of School Principals in a "Local" South African Space
ERIC Educational Resources Information Center
Fataar, Aslam
2009-01-01
This paper is an analysis of the work of three principals in an impoverished black township in post-apartheid South Africa. Based on qualitative approaches, it discusses the principals' entry into the township, and their navigation of their schools' surrounding social dynamics. It combines the lenses of "space" and…
Pettorossi, V E; Manni, E; Errico, P; Ferraresi, A; Bortolami, R
1997-03-01
The cervico-ocular reflex (COR) was studied alone or in combination with the vestibulo-ocular reflex (VOR) in the rabbit. Step stimulations of the body with respect to the fixed head induced small slow compensatory responses followed by large compensatory quick phases (QP). These responses remained aligned with the horizon at different head pitch angles. The QP reorientation in space was due to the gravity influence on the otolithic receptors. The vestibular induced QPs exhibit a similar pattern. Because of this reorientation, the reduction of the amplitude of the vestibular induced QPs, due to the addition of the COR, was maintained even at different static head positions. The electrolytic lesion of the ophthalmic branch of the trigeminal nerve deeply affected the space orientation of the COR. In particular, the cervically induced compensatory QPs of the eye ipsilateral to the lesion showed a remarkable variability of their trajectories and they lost space reorientation. These findings suggest that the coordinate system controlling the QPs is influenced by signals originating from both head position in space and eye position in the orbit.
NASA Technical Reports Server (NTRS)
1992-01-01
Engineering Development Lab., Inc.'s E-2000 Neck Baro Reflex System was developed for cardiovascular studies of astronauts. It is regularly used on Space Shuttle Missions, and a parallel version has been developed as a research tool to facilitate studies of blood pressure reflex controls in patients with congestive heart failure, diabetes, etc. An advanced version, the PPC-1000, was developed in 1991, and the technology has been refined substantially. The PPC provides an accurate means of generating pressure for a broad array of laboratory applications. An improved version, the E2010 Barosystem, is anticipated.
[The effect of bemitil on conditioned-reflex memory in normal rats and under stress exposures].
Pragina, L L; Tushmalova, N A; Inozemtsev, A N; Smirnov, A V
1999-01-01
The authors studied the effect of the actoprotector bemitil on the conditional-reflex memory of rats and its functional disorder by disturbance of the cause-effect (abatement of the avoidance reaction) or space relations. Intraperitoneal injections of 1.8 mg/kg of bemitil were given daily 30 min before the experiment. The training of animals improved authentically from experiment to experiment. Thus, the drug, possesses the nootropic properties. Exposure to stressogenic factors of various depth demonstrated the stress-protective effect of bemitil.
Fridman, Gene Y.; Davidovics, Natan S.; Dai, Chenkai; Migliaccio, Americo A.
2010-01-01
There is no effective treatment available for individuals unable to compensate for bilateral profound loss of vestibular sensation, which causes chronic disequilibrium and blurs vision by disrupting vestibulo-ocular reflexes that normally stabilize the eyes during head movement. Previous work suggests that a multichannel vestibular prosthesis can emulate normal semicircular canals by electrically stimulating vestibular nerve branches to encode head movements detected by mutually orthogonal gyroscopes affixed to the skull. Until now, that approach has been limited by current spread resulting in distortion of the vestibular nerve activation pattern and consequent inability to accurately encode head movements throughout the full 3-dimensional (3D) range normally transduced by the labyrinths. We report that the electrically evoked 3D angular vestibulo-ocular reflex exhibits vector superposition and linearity to a sufficient degree that a multichannel vestibular prosthesis incorporating a precompensatory 3D coordinate transformation to correct misalignment can accurately emulate semicircular canals for head rotations throughout the range of 3D axes normally transduced by a healthy labyrinth. PMID:20177732
NASA Technical Reports Server (NTRS)
Shelhamer, Mark; Goldberg, Jefim; Minor, Lloyd B.; Paloski, William H.; Young, Laurence R.; Zee, David S.
1999-01-01
Impairment of gaze and head stabilization reflexes can lead to disorientation and reduced performance in sensorimotor tasks such as piloting of spacecraft. Transitions between different gravitoinertial force (gif) environments - as during different phases of space flight - provide an extreme test of the adaptive capabilities of these mechanisms. We wish to determine to what extent the sensorimotor skills acquired in one gravity environment will transfer to others, and to what extent gravity serves as a context cue for inhibiting such transfer. We use the general approach of adapting a response (saccades, vestibuloocular reflex: VOR, or vestibulocollic reflex: VCR) to a particular change in gain or phase in one gif condition, adapting to a different gain or phase in a second gif condition, and then seeing if gif itself - the context cue - can recall the previously-learned adapted responses. Previous evidence indicates that unless there is specific training to induce context-specificity, reflex adaptation is sequential rather than simultaneous. Various experiments in this project investigate the behavioral properties, neurophysiological basis, and anatomical substrate of context-specific learning, using otolith (gravity) signals as a context cue. In the following, we outline the methods for all experiments in this project, and provide details and results on selected experiments.
Vestibular reflexes of otolith origin
NASA Technical Reports Server (NTRS)
Wilson, Victor J.
1988-01-01
The vestibular system and its role in the maintenance of posture and in motion sickness is investigated using cats as experimental subjects. The assumption is that better understanding of the physiology of vestibular pathways is not only of intrinsic value, but will help to explain and eventually alleviate the disturbances caused by vestibular malfunction, or by exposure to an unusual environment such as space. The first project deals with the influence on the spinal cord of stimulation of the vestibular labyrinth, particularly the otoliths. A second was concerned with the properties and neural basis of the tonic neck reflex. These two projects are related, because vestibulospinal and tonic neck reflexes interact in the maintenance of normal posture. The third project began with an interest in mechanisms of motion sickness, and eventually shifted to a study of central control of respiratory muscles involved in vomiting.
Beraneck, Mathieu; Bojados, Mickael; Le Séac'h, Anne; Jamon, Marc; Vidal, Pierre-Paul
2012-01-01
The vestibular organs consist of complementary sensors: the semicircular canals detect rotations while the otoliths detect linear accelerations, including the constant pull of gravity. Several fundamental questions remain on how the vestibular system would develop and/or adapt to prolonged changes in gravity such as during long-term space journey. How do vestibular reflexes develop if the appropriate assembly of otoliths and semi-circular canals is perturbed? The aim of present work was to evaluate the role of gravity sensing during ontogeny of the vestibular system. In otoconia-deficient mice (ied), gravity cannot be sensed and therefore maculo-ocular reflexes (MOR) were absent. While canals-related reflexes were present, the ied deficit also led to the abnormal spatial tuning of the horizontal angular canal-related VOR. To identify putative otolith-related critical periods, normal C57Bl/6J mice were subjected to 2G hypergravity by chronic centrifugation during different periods of development or adulthood (Adult-HG) and compared to non-centrifuged (control) C57Bl/6J mice. Mice exposed to hypergravity during development had completely normal vestibulo-ocular reflexes 6 months after end of centrifugation. Adult-HG mice all displayed major abnormalities in maculo-ocular reflexe one month after return to normal gravity. During the next 5 months, adaptation to normal gravity occurred in half of the individuals. In summary, genetic suppression of gravity sensing indicated that otolith-related signals might be necessary to ensure proper functioning of canal-related vestibular reflexes. On the other hand, exposure to hypergravity during development was not sufficient to modify durably motor behaviour. Hence, 2G centrifugation during development revealed no otolith-specific critical period.
Beraneck, Mathieu; Bojados, Mickael; Le Séac’h, Anne; Jamon, Marc; Vidal, Pierre-Paul
2012-01-01
The vestibular organs consist of complementary sensors: the semicircular canals detect rotations while the otoliths detect linear accelerations, including the constant pull of gravity. Several fundamental questions remain on how the vestibular system would develop and/or adapt to prolonged changes in gravity such as during long-term space journey. How do vestibular reflexes develop if the appropriate assembly of otoliths and semi-circular canals is perturbed? The aim of present work was to evaluate the role of gravity sensing during ontogeny of the vestibular system. In otoconia-deficient mice (ied), gravity cannot be sensed and therefore maculo-ocular reflexes (MOR) were absent. While canals-related reflexes were present, the ied deficit also led to the abnormal spatial tuning of the horizontal angular canal-related VOR. To identify putative otolith-related critical periods, normal C57Bl/6J mice were subjected to 2G hypergravity by chronic centrifugation during different periods of development or adulthood (Adult-HG) and compared to non-centrifuged (control) C57Bl/6J mice. Mice exposed to hypergravity during development had completely normal vestibulo-ocular reflexes 6 months after end of centrifugation. Adult-HG mice all displayed major abnormalities in maculo-ocular reflexe one month after return to normal gravity. During the next 5 months, adaptation to normal gravity occurred in half of the individuals. In summary, genetic suppression of gravity sensing indicated that otolith-related signals might be necessary to ensure proper functioning of canal-related vestibular reflexes. On the other hand, exposure to hypergravity during development was not sufficient to modify durably motor behaviour. Hence, 2G centrifugation during development revealed no otolith-specific critical period. PMID:22808156
Wang, Huixue; Gao, Yingji; Ji, Lixin; Bai, Wanshan
2018-05-01
The clinical value of soleus muscle H-reflex monitoring in general anesthesia percutaneous interlaminar approach was investigated. A total of 80 cases with unilateral L5-S1 disc herniation between January 2015 and October 2016 were randomly divided into control group (without soleus muscle H-reflex monitoring, n=40) and observation group (with soleus muscle H-reflex monitoring, n=40). Results showed that the operation time of the observation group was shorter than that of the control group (P<0.05), and the blood loss during the operation was less than that of the control group (P<0.05). The length of postoperative hospital stay was shorter than that of the control group (P<0.05). At 24 h after operation, the amplitude of H-reflex in diseased side soleus muscle was significantly lower than that in healthy side (P<0.05). The preoperative, postoperative and 24 h postoperatively, the latency of H-reflex in diseased side soleus muscle was shorter than that of healthy side (P<0.05). The latency and amplitude of H-reflex latency in soleus muscle were significantly lower (P<0.05), and the height of intervertebral space in observation group was significantly higher than that in control group (P<0.05). The total percentage of postsurgical sensory dysfunction, dyskinesia, post-root canal stenosis, disc herniation and cerebrospinal fluid leakage was lower than that of the control group (P<0.05). Japanese Orthopaedic Association score of the observation group was significantly higher at 1 month, and 1 year after operation lower than the control group (P<0.05). Taken together, soleus muscle H-reflex monitoring can effectively reduce the damage to the nerve roots under percutaneous endoscopic intervertebral endoscopic surgery under general anesthesia, improve the accuracy of surgery, reduce the complications, shorten the operation time and reduce the surgical bleeding, which is more beneficial to patients smooth recovery.
NASA Technical Reports Server (NTRS)
Angelaki, D. E.; McHenry, M. Q.; Hess, B. J.
2000-01-01
The dynamics and three-dimensional (3-D) properties of the primate translational vestibuloocular reflex (trVOR) for high-frequency (4-12 Hz, +/-0.3-0.4 g) lateral motion were investigated during near-target viewing at center and eccentric targets. Horizontal response gains increased with frequency and depended on target eccentricity. The larger the horizontal and vertical target eccentricity, the steeper the dependence of horizontal response gain on frequency. In addition to horizontal eye movements, robust torsional response components also were present at all frequencies. During center-target fixation, torsional response phase was opposite (anticompensatory) to that expected for an "apparent" tilt response. Instead torsional response components depended systematically on vertical-target eccentricity, increasing in amplitude when looking down and reversing phase when looking up. As a result the trVOR eye velocity vector systematically tilted away from a purely horizontal direction, through an angle that increased with vertical eccentricity with a slope of approximately 0.7. This systematic dependence of torsional eye velocity tilt on vertical eye position suggests that the trVOR might follow the 3-D kinematic requirements that have been shown to govern visually guided eye movements and near-target fixation.
NASA Technical Reports Server (NTRS)
Hess, B. J.; Angelaki, D. E.
1997-01-01
The kinematic constraints of three-dimensional eye positions were investigated in rhesus monkeys during passive head and body rotations relative to gravity. We studied fast and slow phase components of the vestibulo-ocular reflex (VOR) elicited by constant-velocity yaw rotations and sinusoidal oscillations about an earth-horizontal axis. We found that the spatial orientation of both fast and slow phase eye positions could be described locally by a planar surface with torsional variation of <2.0 +/- 0.4 degrees (displacement planes) that systematically rotated and/or shifted relative to Listing's plane. In supine/prone positions, displacement planes pitched forward/backward; in left/right ear-down positions, displacement planes were parallel shifted along the positive/negative torsional axis. Dynamically changing primary eye positions were computed from displacement planes. Torsional and vertical components of primary eye position modulated as a sinusoidal function of head orientation in space. The torsional component was maximal in ear-down positions and approximately zero in supine/prone orientations. The opposite was observed for the vertical component. Modulation of the horizontal component of primary eye position exhibited a more complex dependence. In contrast to the torsional component, which was relatively independent of rotational speed, modulation of the vertical and horizontal components of primary position depended strongly on the speed of head rotation (i.e., on the frequency of oscillation of the gravity vector component): the faster the head rotated relative to gravity, the larger was the modulation. Corresponding results were obtained when a model based on a sinusoidal dependence of instantaneous displacement planes (and primary eye position) on head orientation relative to gravity was fitted to VOR fast phase positions. When VOR fast phase positions were expressed relative to primary eye position estimated from the model fits, they were confined approximately to a single plane with a small torsional standard deviation ( approximately 1.4-2.6 degrees). This reduced torsional variation was in contrast to the large torsional spread (well >10-15 degrees ) of fast phase positions when expressed relative to Listing's plane. We conclude that primary eye position depends dynamically on head orientation relative to space rather than being fixed to the head. It defines a gravity-dependent coordinate system relative to which the torsional variability of eye positions is minimized even when the head is moved passively and vestibulo-ocular reflexes are evoked. In this general sense, Listing's law is preserved with respect to an otolith-controlled reference system that is defined dynamically by gravity.
Three-dimensional organization of vestibular related eye movements to rotational motion in pigeons
NASA Technical Reports Server (NTRS)
Dickman, J. D.; Beyer, M.; Hess, B. J.
2000-01-01
During rotational motions, compensatory eye movement adjustments must continually occur in order to maintain objects of visual interest as stable images on the retina. In the present study, the three-dimensional organization of the vestibulo-ocular reflex in pigeons was quantitatively examined. Rotations about different head axes produced horizontal, vertical, and torsional eye movements, whose component magnitude was dependent upon the cosine of the stimulus axis relative to the animal's visual axis. Thus, the three-dimensional organization of the VOR in pigeons appears to be compensatory for any direction of head rotation. Frequency responses of the horizontal, vertical, and torsional slow phase components exhibited high pass filter properties with dominant time constants of approximately 3 s.
Habituation to novel visual vestibular environments with special reference to space flight
NASA Technical Reports Server (NTRS)
Young, L. R.; Kenyon, R. V.; Oman, C. M.
1981-01-01
The etiology of space motion sickness and the underlying physiological mechanisms associated with spatial orientation in a space environment were investigated. Human psychophysical experiments were used as the basis for the research concerning the interaction of visual and vestibular cues in the development of motion sickness. Particular emphasis is placed on the conflict theory in terms of explaining these interactions. Research on the plasticity of the vestibulo-ocular reflex is discussed.
Short-duration spaceflight impairs human carotid baroreceptor-cardiac reflex responses
NASA Astrophysics Data System (ADS)
Fritsch, Janice M.; Charles, John B.; Bennett, Barbara S.; Jones, Michele M.; Eckberg, Dwain L.
1992-08-01
The effect of a spaceflight on the vagally mediated baroreceptor-cardiac reflex responses of humans were investigated by measuring the responses (provoked by neck pressure changes) in supine position and the heart rate and blood pressure in the supine and standing positions in 16 astronauts before and after 4- to 5-day long Space Shuttle missions. The results showed that exposures to spaceflight resulted in reduced baseline levels of the vagal-cardiac outflow and the vagally mediated responses to changes of the arterial baroreceptor input and that these changes contribute to postflight reductions of astronauts' ability to maintain standing arterial pressures.
NASA Technical Reports Server (NTRS)
Lackner, J. R.; Graybiel, A.
1981-01-01
Recordings of horizontal nystagmus were obtained on 16 male subjects exposed to repeated patterns of horizontal angular acceleration, constant velocity rotation, and sudden-stop deceleration in the laboratory and in the free-fall and high-force periods of parabolic flight. Nystagmus intensity was a clear function of gravitoinertial force level: slow phase velocity and beat frequency increased during exposure to high force levels and decreased in free-fall compared to values obtained at 1 G. These findings indicate that the gain of the vestibulo-ocular reflex decreases in free-fall. This fact likely accounts for the disorientation and dizziness sometimes experienced by astronauts when moving their heads in the early phases of orbital flight and again after splashdown. The implications of the present findings, both for the etiology and for the treatment of space motion sickness, are discussed.
Sensor fusion in identified visual interneurons.
Parsons, Matthew M; Krapp, Holger G; Laughlin, Simon B
2010-04-13
Animal locomotion often depends upon stabilization reflexes that use sensory feedback to maintain trajectories and orientation. Such stabilizing reflexes are critically important for the blowfly, whose aerodynamic instability permits outstanding maneuverability but increases the demands placed on flight control. Flies use several sensory systems to drive reflex responses, and recent studies have provided access to the circuitry responsible for combining and employing these sensory inputs. We report that lobula plate VS neurons combine inputs from two optical sensors, the ocelli and the compound eyes. Both systems deliver essential information on in-flight rotations, but our neuronal recordings reveal that the ocelli encode this information in three axes, whereas the compound eyes encode in nine. The difference in dimensionality is reconciled by tuning each VS neuron to the ocellar axis closest to its compound eye axis. We suggest that this simple projection combines the speed of the ocelli with the accuracy of the compound eyes without compromising either. Our findings also support the suggestion that the coordinates of sensory information processing are aligned with axes controlling the natural modes of the fly's flight to improve the efficiency with which sensory signals are transformed into appropriate motor commands.
Thurtell, M J; Black, R A; Halmagyi, G M; Curthoys, I S; Aw, S T
1999-05-01
Vertical eye position-dependence of the human vestibuloocular reflex during passive and active yaw head rotations. The effect of vertical eye-in-head position on the compensatory eye rotation response to passive and active high acceleration yaw head rotations was examined in eight normal human subjects. The stimuli consisted of brief, low amplitude (15-25 degrees ), high acceleration (4,000-6,000 degrees /s2) yaw head rotations with respect to the trunk (peak velocity was 150-350 degrees /s). Eye and head rotations were recorded in three-dimensional space using the magnetic search coil technique. The input-output kinematics of the three-dimensional vestibuloocular reflex (VOR) were assessed by finding the difference between the inverted eye velocity vector and the head velocity vector (both referenced to a head-fixed coordinate system) as a time series. During passive head impulses, the head and eye velocity axes aligned well with each other for the first 47 ms after the onset of the stimulus, regardless of vertical eye-in-head position. After the initial 47-ms period, the degree of alignment of the eye and head velocity axes was modulated by vertical eye-in-head position. When fixation was on a target 20 degrees up, the eye and head velocity axes remained well aligned with each other. However, when fixation was on targets at 0 and 20 degrees down, the eye velocity axis tilted forward relative to the head velocity axis. During active head impulses, the axis tilt became apparent within 5 ms of the onset of the stimulus. When fixation was on a target at 0 degrees, the velocity axes remained well aligned with each other. When fixation was on a target 20 degrees up, the eye velocity axis tilted backward, when fixation was on a target 20 degrees down, the eye velocity axis tilted forward. The findings show that the VOR compensates very well for head motion in the early part of the response to unpredictable high acceleration stimuli-the eye position- dependence of the VOR does not become apparent until 47 ms after the onset of the stimulus. In contrast, the response to active high acceleration stimuli shows eye position-dependence from within 5 ms of the onset of the stimulus. A model using a VOR-Listing's law compromise strategy did not accurately predict the patterns observed in the data, raising questions about how the eye position-dependence of the VOR is generated. We suggest, in view of recent findings, that the phenomenon could arise due to the effects of fibromuscular pulleys on the functional pulling directions of the rectus muscles.
Orlando, Roy C
2011-06-01
Chronic cough is one of the extra-oesophageal manifestations of gastrooesophageal reflux disease (GORD). It is presumed to occur either directly by microaspiration of acidic gastric contents into the airway or indirectly by a reflex triggered by contact of acidic refluxates with the oesophageal epithelium in GORD. How contact of the oesophageal epithelium with acidic refluxates promotes sensitization for chronic cough is unknown, but like heartburn, which is a necessary accompaniment, it requires acid activation of nociceptors within the oesophageal mucosa. Dilated intercellular spaces within the oesophageal epithelium, a reflection of an increase in paracellular permeability, is a histopathologic feature of both erosive and non-erosive forms of GORD. Since it correlates with the symptom of heartburn, it is hypothesized herein that the increase in paracellular permeability to acid reflected by dilated intercellular spaces in oesophageal epithelium also serves as mediator of the signals that produce the reflex-induced sensitization for cough--a sensitization that can occur centrally within the medullary Nucleus Tractus Solitarius or peripherally within the tracheobronchial tree. Copyright © 2010 Elsevier Ltd. All rights reserved.
Approaching threatening stimuli cause an expansion of defensive peripersonal space.
Bufacchi, R J
2017-10-01
When sudden environmental stimuli signaling threat occur in the portion of space surrounding the body (defensive peripersonal space), defensive responses are enhanced. Recently Bisio et al. (Bisio A, Garbarini F, Biggio M, Fossataro C, Ruggeri P, Bove M. J Neurosci 37: 2415-2424, 2017) showed that a marker of defensive peripersonal space, the defensive hand-blink reflex, is modulated by the motion of the eliciting threatening stimulus. These results can be parsimoniously explained by the continuous monitoring of environmental threats, resulting in an expansion of defensive peripersonal space when threatening stimuli approach. Copyright © 2017 the American Physiological Society.
Escobar-Corona, Carlos; Torres-Castillo, Sergio; Rodríguez-Torres, Erika Elizabeth; Segura-Alegría, Bertha; Jiménez-Estrada, Ismael; Quiroz-González, Salvador
2017-05-01
This study explored the effect of electroacupuncture stimulation (EA) on alterations in the Hoffman reflex (H-reflex) response and gait locomotion provoked by spinal cord injury (SCI) in the rat. A compression lesion of the spinal cord was evoked by insufflating a Fogarty balloon located in the epidural space at the T8-9 spinal level of adult Wistar male rats (200-250 gr; n=60). In different groups of SCI rats, EA (frequencies: 2, 50 and 100Hz) was applied simultaneously to Huantiao (GB30), Yinmen (BL37), Jizhong (GV6) and Zhiyang (GV9) acupoints from the third post-injury day until the experimental session. At 1, 2, 3 and 4 post-injury weeks, the BBB scores of the SCI group of rats treated with EA at 50Hz showed a gradual but greater enhancement of locomotor activity than the other groups of rats. Unrestrained gait kinematic analysis of SCI rats treated with EA-50Hz stimulation showed a significant improvement in stride duration, length and speed (p<0.05), whereas a discrete recovery of gait locomotion was observed in the other groups of animals. After four post-injury weeks, the H-reflex amplitude and H-reflex/M wave amplitude ratio obtained in SCI rats had a noticeable enhancement (217%) compared to sham rats (n=10). Meanwhile, SCI rats treated with EA at 50Hz manifested a decreased facilitation of the H-reflex amplitude and H/M amplitude ratio (154%) and a reduced frequency-dependent amplitude depression of the H-reflex (66%). In addition, 50 Hz-EA treatment induced a recovery of the presynaptic depression of the Gs-VRP evoked by PBSt conditioning stimulation in the SCI rat (63.2±8.1%; n=9). In concordance with the latter, it could be suggested that 50 Hz-EA stimulation reduced the hyper-excitability of motoneurons and provokes a partial improvement of the locomotive performance and H reflex responses by a possible recovery of presynaptic mechanisms in the spinal cord of experimentally injured rats. Copyright © 2017 Elsevier Inc. All rights reserved.
Golkar, Mahsa A.; Sobhani Tehrani, Ehsan; Kearney, Robert E.
2017-01-01
Dynamic joint stiffness is a dynamic, nonlinear relationship between the position of a joint and the torque acting about it, which can be used to describe the biomechanics of the joint and associated limb(s). This paper models and quantifies changes in ankle dynamic stiffness and its individual elements, intrinsic and reflex stiffness, in healthy human subjects during isometric, time-varying (TV) contractions of the ankle plantarflexor muscles. A subspace, linear parameter varying, parallel-cascade (LPV-PC) algorithm was used to identify the model from measured input position perturbations and output torque data using voluntary torque as the LPV scheduling variable (SV). Monte-Carlo simulations demonstrated that the algorithm is accurate, precise, and robust to colored measurement noise. The algorithm was then used to examine stiffness changes associated with TV isometric contractions. The SV was estimated from the Soleus EMG using a Hammerstein model of EMG-torque dynamics identified from unperturbed trials. The LPV-PC algorithm identified (i) a non-parametric LPV impulse response function (LPV IRF) for intrinsic stiffness and (ii) a LPV-Hammerstein model for reflex stiffness consisting of a LPV static nonlinearity followed by a time-invariant state-space model of reflex dynamics. The results demonstrated that: (a) intrinsic stiffness, in particular ankle elasticity, increased significantly and monotonically with activation level; (b) the gain of the reflex pathway increased from rest to around 10–20% of subject's MVC and then declined; and (c) the reflex dynamics were second order. These findings suggest that in healthy human ankle, reflex stiffness contributes most at low muscle contraction levels, whereas, intrinsic contributions monotonically increase with activation level. PMID:28579954
Mechanisms of Cardiopulmonary Adaptation to Microgravity. Part 2
NASA Technical Reports Server (NTRS)
1997-01-01
Session TP1 contains short reports concerning: (1) Autonomic Regulation of Circulation and Mechanical Function of Heart at Different Stages of 14th Month Space Flight; (2) Cardiovascular Oxygen Transport in Exercising Humans in Microgravity; (3) Venous Hemodynamic Changes Assessed by Air Plethysmography During a 16-Day Space Flight; (4) Respiratory Mechanics After 180 Days Space Mission (EUROMIR'95); (5) Assessment of the Sympathetic and the Parasympathetic Nervous Activity During Parabolic Flight by Pupillary Light Reflex; and(6) Vascular Response to Different Gravity.
The vestibulo-ocular reflex and its possible roles in space motion sickness
NASA Technical Reports Server (NTRS)
Watt, Douglas G. D.
1987-01-01
Prolonged exposure to an inappropriate vestibulo-ocular reflex (VOR) will usually lead to motion sickness, and it has been predicted on theoretical grounds that VOR gain may be decreased in weightlessness. While experiments during parabolic flight in aircraft tend to confirm this prediction, experiments during orbital spaceflight have led to apparently contradictory results. It is suggested that VOR gain is reduced initially, but that rapid compensatory mechanisms restore it to normal within minutes of reaching weightlessness. However, even though this process may lead to the rapid return of functionally normal gaze stability, it may not protect against the development of motion sickness.
Bisio, Ambra; Garbarini, Francesca; Biggio, Monica; Fossataro, Carlotta; Ruggeri, Piero; Bove, Marco
2017-03-01
The hand blink reflex is a subcortical defensive response, known to dramatically increase when the stimulated hand is statically positioned inside the defensive peripersonal space (DPPS) of the face. Here, we tested in a group of healthy human subjects the hand blink reflex in dynamic conditions, investigating whether the direction of the hand movements (up-to/down-from the face) could modulate it. We found that, on equal hand position, the response enhancement was present only when the hand approached to (and not receded from) the DPPS of the face. This means that, when the hand is close to the face but the subject is planning to move the hand down, the predictive motor system can anticipate the consequence of the movement: the "near" becomes "far." We found similar results both in passive movement condition, when only afferent (visual and proprioceptive) information can be used to estimate the final state of the system, and in motor imagery task, when only efferent (intentional) information is available to predict the consequences of the movement. All these findings provide evidence that the DPPS is dynamically shaped by predictive mechanisms run by the motor system and based on the integration of feedforward and sensory feedback signals. SIGNIFICANCE STATEMENT The defensive peripersonal space (DPPS) has a crucial role for survival, and its modulation is fundamental when we interact with the environment, as when we move our arms. Here, we focused on a defensive response, the hand blink reflex, known to increase when a static hand is stimulated inside the DPPS of the face. We tested the hand blink reflex in dynamic conditions (voluntary, passive, and imagined movements) and we found that, on equal hand position, the response enhancement was present only when the hand approached to (and not receded from) the DPPS of the face. This suggests that, through the integration of efferent and afferent signals, the safety boundary around the body is continuously shaped by the predictive motor system. Copyright © 2017 the authors 0270-6474/17/372415-10$15.00/0.
The Adaptive Effects Of Virtual Interfaces: Vestibulo-Ocular Reflex and Simulator Sickness.
1998-08-07
rearrangement: a pattern of stimulation differing from that existing as a result of normal interactions with the real world. Stimulus rearrangements can...is immersive and interactive . virtual interface: a system of transducers, signal processors, computer hardware and software that create an... interactive medium through which: 1) information is transmitted to the senses in the form of two- and three dimensional virtual images and 2) psychomotor
Evolution inclusions governed by the difference of two subdifferentials in reflexive Banach spaces
NASA Astrophysics Data System (ADS)
Akagi, Goro; Ôtani, Mitsuharu
The existence of strong solutions of Cauchy problem for the following evolution equation du(t)/dt+∂ϕ1(u(t))-∂ϕ2(u(t))∋f(t) is considered in a real reflexive Banach space V, where ∂ϕ1 and ∂ϕ2 are subdifferential operators from V into its dual V*. The study for this type of problems has been done by several authors in the Hilbert space setting. The scope of our study is extended to the V- V* setting. The main tool employed here is a certain approximation argument in a Hilbert space and for this purpose we need to assume that there exists a Hilbert space H such that V⊂H≡H*⊂V* with densely defined continuous injections. The applicability of our abstract framework will be exemplified in discussing the existence of solutions for the nonlinear heat equation: ut(x,t)-Δpu(x,t)-|u|u(x,t)=f(x,t), x∈Ω, t>0, u|=0, where Ω is a bounded domain in RN. In particular, the existence of local (in time) weak solution is shown under the subcritical growth condition q
[Pursed Lips Inspiration for Vocal Cord Dysfunction].
Maruyama, Yumiko; Tsukada, Yayoi; Hirai, Nobuyuki; Nakanishi, Yosuke; Yoshizaki, Tomokazu
2015-01-01
Paradoxical vocal cord motion (PVCM) during vocal cord dysfunction (VCD) generally occurs spasmodically and transiently. After we had experienced 36 cases of VCD and successfully treated with conservative treatment including "pursed lips inspiration" method, we experienced a boy who had persistent PVCM. It was observed his PVCM vanished when he breathed in through pursed lips, while it appeared again when he stopped pursed lips inspiration. An airway reflex has been reported where the negative pressure in the subglottic space resulting from the inspiratory effort against a narrowed glottis activates the vocal cord adductor. VCD is considered to have both acceleration of laryngeal closure reflex against airway stimuli and active adductive movement of vocal cords against negative pressure in the subglottic space as underlying factors. The pursed lips inspiration method enables VCD patients not only to accomplish slow and light breathing but also to decrease the difference in the pressure between the supra--and subglottic space by occluding the nasal cavity and voluntary puckering up of the mouth which generate negative pressure in the supraglottic space. This is the first report of the pursed lips inspiration method as a treatment for VCD. Pursed lips inspiration is a simple method which is easy to perform anytime, anywhere without any special equipment, and is considered to be worth trying for VCD.
Vestibular adaptation to space in monkeys.
Dai, M; Raphan, T; Kozlovskaya, I; Cohen, B
1998-07-01
Otolith-induced eye movements of rhesus monkeys were studied before and after the 1989 COSMOS 2044 and the 1992 to 1993 COSMOS 2229 flights. Two animals flew in each mission for approximately 2 weeks. After flight, spatial orientation of the angular vestibulo-ocular reflex was altered. In one animal the time constant of postrotatory nystagmus, which had been shortened by head tilts with regard to gravity before flight, was unaffected by the same head tilts after flight. In another animal, eye velocity, which tended to align with a gravitational axis before flight, moved toward a body axis after flight. This shift of orientation disappeared by 7 days after landing. After flight, the magnitude of compensatory ocular counter-rolling was reduced by about 70% in both dynamic and static tilts. Modulation in vergence in response to naso-occipital linear acceleration during off-vertical axis rotation was reduced by more than 50%. These changes persisted for 11 days after recovery. An up and down asymmetry of vertical nystagmus was diminished for 7 days. Gains of the semicircular canal-induced horizontal and vertical angular vestibulo-ocular reflexes were unaffected in both flights, but the gain of the roll angular vestibulo-ocular reflex was decreased. These data indicate that there are short- and long-term changes in otolith-induced eye movements after adaptation to microgravity. These experiments also demonstrate the unique value of the monkey as a model for studying effects of vestibular adaptation in space. Eye movements can be measured in three dimensions in response to controlled vestibular and visual stimulation, and the results are directly applicable to human beings. Studies in monkeys to determine how otolith afferent input and central processing is altered by adaptation to microgravity should be an essential component of future space-related research.
Vestibular adaptation to space in monkeys
NASA Technical Reports Server (NTRS)
Dai, M.; Raphan, T.; Kozlovskaya, I.; Cohen, B.
1998-01-01
Otolith-induced eye movements of rhesus monkeys were studied before and after the 1989 COSMOS 2044 and the 1992 to 1993 COSMOS 2229 flights. Two animals flew in each mission for approximately 2 weeks. After flight, spatial orientation of the angular vestibulo-ocular reflex was altered. In one animal the time constant of postrotatory nystagmus, which had been shortened by head tilts with regard to gravity before flight, was unaffected by the same head tilts after flight. In another animal, eye velocity, which tended to align with a gravitational axis before flight, moved toward a body axis after flight. This shift of orientation disappeared by 7 days after landing. After flight, the magnitude of compensatory ocular counter-rolling was reduced by about 70% in both dynamic and static tilts. Modulation in vergence in response to naso-occipital linear acceleration during off-vertical axis rotation was reduced by more than 50%. These changes persisted for 11 days after recovery. An up and down asymmetry of vertical nystagmus was diminished for 7 days. Gains of the semicircular canal-induced horizontal and vertical angular vestibulo-ocular reflexes were unaffected in both flights, but the gain of the roll angular vestibulo-ocular reflex was decreased. These data indicate that there are short- and long-term changes in otolith-induced eye movements after adaptation to microgravity. These experiments also demonstrate the unique value of the monkey as a model for studying effects of vestibular adaptation in space. Eye movements can be measured in three dimensions in response to controlled vestibular and visual stimulation, and the results are directly applicable to human beings. Studies in monkeys to determine how otolith afferent input and central processing is altered by adaptation to microgravity should be an essential component of future space-related research.
Jacoby, Sara F
2017-07-01
The integrity of critical ethnography requires engagement in reflexive practice at all phases of the research process. In this discussion paper, I explore the insights and challenges of reflexive practice in an ethnographic study of the recovery experiences of black trauma patients in a Philadelphia hospital. Observation and interviews were conducted with twelve patients who were admitted to trauma-designated units of the hospital over the course of a year. During fieldwork, I learned the ways that my background as a professional nurse structured my way of being in clinical space and facilitated a particular interpretation of clinical culture. In analysis, reflection on subjectivities through which I designed this ethnographic research allowed me to see beyond my preconceived and theoretically informed perspective to permit unexpected features of the field to emerge. Reflexive practice also guided my reconciliation of key practical and epistemological differences between clinical ethnographic research and the anthropologic tradition in which it is rooted. I conclude that with careful reflection to the subjectivities that influence the research process, interdisciplinary clinically relevant applied interpretations of critical ethnographic work can be used to generate detailed knowledge across contexts in clinical care, nursing practice, and patient experiences. © 2016 John Wiley & Sons Ltd.
Effects of weightlessness on human baroreflex function
NASA Technical Reports Server (NTRS)
Fritsch, Janice M.; Eckberg, Dwain L.
1992-01-01
Impaired cardiovascular function, characterized by orthostatic intolerance and reduced exercise capacity, is a result of space travel. We hypothesized that postflight baroreflex dysfunction may contribute. We studied the vagally mediated carotid baroreceptor-cardiac reflex response of 6 astronauts before, during, and after the ten day SLS-l mission. A series of R-waves triggered pressure and suction steps (from 40 to minus 65 mmHg) were delivered to a neck chamber during held expirtation. Resulting R-R interval changes were plotted against carotid distending pressure (systolic - neck pressure), and curve parameters calculated. After an initial rise, the operational point declined consistently during the flight and reached a nadir on landing day, but had recovered to preflight levels by L + 4. Slope and range of the response declined throughout the flight, were slightly recovered by the time measurements were made on landing day, but still were reduced on L + 4. These data indicate that space flight results in a significant impairment of the carotid baroreceptor cardiac reflex response.
NASA Technical Reports Server (NTRS)
Mulavara, Ajitkumar; Ruttley, Tara; Cohen, Helen; Peters, Brian; Miller, Chris; Brady, Rachel; Merkle, Lauren; Bloomberg, Jacob
2010-01-01
Exposure to the microgravity conditions of space flight induces adaptive modification in the control of vestibular-mediated reflexive head movement during locomotion after space flight. Space flight causes astronauts to be exposed to somatosensory adaptation in both the vestibular and body load-sensing (BLS) systems. The goal of these studies was to examine the contributions of vestibular and BLS-mediated somatosensory influences on head movement control during locomotion after long-duration space flight. Subjects were asked to walk on a treadmill driven at 1.8 m/s while performing a visual acuity task. Data were collected using the same testing protocol from three independent subject groups; 1) normal subjects before and after exposure to 30 minutes of 40% bodyweight unloaded treadmill walking, 2) bilateral labyrinthine deficient (LD) patients and 3) astronauts who performed the protocol before and after long duration space flight. Motion data from head and trunk segmental motion data were obtained to calculate the angular head pitch (HP) movements during walking trials while subjects performed the visual task, to estimate the contributions of vestibular reflexive mechanisms in HP movements. Results showed that exposure to unloaded locomotion caused a significant increase in HP movements, whereas in the LD patients the HP movements were significantly decreased. Astronaut subjects results showed a heterogeneous response of both increases and decreases in the amplitude of HP movement. We infer that BLS-mediated somatosensory input centrally modulates vestibular input and can adaptively modify head-movement control during locomotion. Thus, space flight may cause a central adaptation mediated by the converging vestibular and body load-sensing somatosensory systems.
The Optokinetic Cervical Reflex (OKCR) in Pilots of High-Performance Aircraft.
1997-04-01
Coupled System virtual reality - the attempt to create a realistic, three-dimensional environment or synthetic immersive environment in which the user ...factors interface between the pilot and the flight environment. The final section is a case study of head- and helmet-mounted displays (HMD) and the impact...themselves as actually moving (flying) through a virtual environment. However, in the studies of Held, et al. (1975) and Young, et al. (1975) the
Mondy, T; Fenwick, Jennifer; Leap, Nicky; Foureur, Maralyn
2016-12-01
limited efforts have been made to understand the complex relationships between women's experiences of birth and the influence of the design and environment of a birth space. Domestic aesthetics in a birth space are believed to be an important aspect of optimal birth unit design. to explore the concept of domesticity within the birth space. The specific objectives were to explore, describe and compare birth spaces with different domestic characteristics and subsequently, how laboring women worked within these spaces during the labour process. This project was situated within a larger ongoing body of work exploring birth unit design. a qualitative approach, using the techniques of video ethnography and reflexive interviewing, was used. Video data consisted of films of the labours of six Australian women who gave birth in 2012. Filming took place in two different tertiary hospitals in Sydney NSW (n=5 women), as well as a stand-alone Birth Centre (n=1 woman). Video footage of a woman labouring at home was used to compare and contrast women's experiences. Latent content analysis was used to analyse the data set. In addition there were 17 one-hour video-reflexive interviews that were audio-taped and fully transcribed (nine interviews with women and/or their support people and eight with midwives). Field note data accompanied both the video recording as well as the reflexive interviews. in general, women labouring in conventional hospital labour and birth rooms acted and interacted with the environment in a passive way. The spaces clearly did not resemble homely or 'domestic' spaces. This forced women to adapt to the space. In essence all but one of the women labouring and birthing in these spaces took on the role of a 'patient'. One participant responded quite differently to the conventional hospital space. 'Domestication of the space' was the mechanism this woman used to retain a sense of ownership within the birth space. In contrast, in the domestic birth environments (Birth Centre and home) women effortlessly claimed ownership of the space, expressing their identity in a myriad of ways. In these domestic spaces, women were not required to change or modify their birth spaces as the design, furnishings and semiotics of the space openly encouraged them to be active, creative and take ownership of the space. the findings of this study add to the existing literature on birth unit design and more specifically contribute to an understanding of how the features of domesticity within the birth setting may shape the experience of labouring women and their care providers. The evidence gained from the study will assist in the ongoing movement to humanise birth spaces and develop further understandings of how home-like birth spaces should look. Those designing, building, furnishing, managing, accessing and working in Birthing Services could all benefit from the consideration of how environments designed for the care of birthing women, may be affecting the outcomes and experiences of women and their families. Copyright © 2016 Elsevier Ltd. All rights reserved.
Garske, Luke A; Lal, Ravin; Stewart, Ian B; Morris, Norman R; Cross, Troy J; Adams, Lewis
2017-05-01
Chest wall strapping has been used to assess mechanisms of dyspnea with restrictive lung disease. This study examined the hypothesis that dyspnea with restriction depends principally on the degree of reflex ventilatory stimulation. We compared dyspnea at the same (iso)ventilation when added dead space provided a component of the ventilatory stimulus during exercise. Eleven healthy men undertook a randomized controlled crossover trial that compared four constant work exercise conditions: 1 ) control (CTRL): unrestricted breathing at 90% gas exchange threshold (GET); 2 ) CTRL+dead space (DS): unrestricted breathing with 0.6-l dead space, at isoventilation to CTRL due to reduced exercise intensity; 3 ) CWS: chest wall strapping at 90% GET; and 4 ) CWS+DS: chest strapping with 0.6-l dead space, at isoventilation to CWS with reduced exercise intensity. Chest strapping reduced forced vital capacity by 30.4 ± 2.2% (mean ± SE). Dyspnea at isoventilation was unchanged with CTRL+DS compared with CTRL (1.93 ± 0.49 and 2.17 ± 0.43, 0-10 numeric rating scale, respectively; P = 0.244). Dyspnea was lower with CWS+DS compared with CWS (3.40 ± 0.52 and 4.51 ± 0.53, respectively; P = 0.003). Perceived leg fatigue was reduced with CTRL+DS compared with CTRL (2.36 ± 0.48 and 2.86 ± 0.59, respectively; P = 0.049) and lower with CWS+DS compared with CWS (1.86 ± 0.30 and 4.00 ± 0.79, respectively; P = 0.006). With unrestricted breathing, dead space did not change dyspnea at isoventilation, suggesting that dyspnea does not depend on the mode of reflex ventilatory stimulation in healthy individuals. With chest strapping, dead space presented a less potent stimulus to dyspnea, raising the possibility that leg muscle work contributes to dyspnea perception independent of the ventilatory stimulus. NEW & NOTEWORTHY Chest wall strapping was applied to healthy humans to simulate restrictive lung disease. With chest wall strapping, dyspnea was reduced when dead space substituted for part of a constant exercise stimulus to ventilation. Dyspnea associated with chest wall strapping depended on the contribution of leg muscle work to ventilatory stimulation. Chest wall strapping might not be a clinically relevant model to determine whether an alternative reflex ventilatory stimulus mimics the intensity of exertional dyspnea. Copyright © 2017 the American Physiological Society.
NASA Technical Reports Server (NTRS)
Wood, S. J.; Clarke, A. H.; Rupert, A. H.; Harm, D. L.; Clement, G. R.
2009-01-01
Two joint ESA-NASA studies are examining changes in otolith-ocular reflexes and motion perception following short duration space flights, and the operational implications of post-flight tilt-translation ambiguity for manual control performance. Vibrotactile feedback of tilt orientation is also being evaluated as a countermeasure to improve performance during a closed-loop nulling task. METHODS. Data is currently being collected on astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation is utilized to elicit otolith reflexes in the lateral plane without concordant roll canal cues. Unilateral centrifugation (400 deg/s, 3.5 cm radius) stimulates one otolith positioned off-axis while the opposite side is centered over the axis of rotation. During this paradigm, roll-tilt perception is measured using a subjective visual vertical task and ocular counter-rolling is obtained using binocular video-oculography. During a second paradigm (216 deg/s, <20 cm radius), the effects of stimulus frequency (0.15 - 0.6 Hz) are examined on eye movements and motion perception. A closed-loop nulling task is also performed with and without vibrotactile display feedback of chair radial position. PRELIMINARY RESULTS. Data collection is currently ongoing. Results to date suggest there is a trend for perceived tilt and translation amplitudes to be increased at the low and medium frequencies on landing day compared to pre-flight. Manual control performance is improved with vibrotactile feedback. DISCUSSION. One result of this study will be to characterize the variability (gain, asymmetry) in both otolithocular responses and motion perception during variable radius centrifugation, and measure the time course of postflight recovery. This study will also address how adaptive changes in otolith-mediated reflexes correspond to one's ability to perform closed-loop nulling tasks following G-transitions, and whether manual control performance can be improved with vibrotactile feedback of orientation.
NASA Technical Reports Server (NTRS)
Wood, Scott J.; Clarke, A. H.; Rupert, A. H.; Harm, D. L.; Clement, G. R.
2009-01-01
Two joint ESA-NASA studies are examining changes in otolith-ocular reflexes and motion perception following short duration space flights, and the operational implications of post-flight tilt-translation ambiguity for manual control performance. Vibrotactile feedback of tilt orientation is also being evaluated as a countermeasure to improve performance during a closed-loop nulling task. Data is currently being collected on astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation is utilized to elicit otolith reflexes in the lateral plane without concordant roll canal cues. Unilateral centrifugation (400 deg/s, 3.5 cm radius) stimulates one otolith positioned off-axis while the opposite side is centered over the axis of rotation. During this paradigm, roll-tilt perception is measured using a subjective visual vertical task and ocular counter-rolling is obtained using binocular video-oculography. During a second paradigm (216 deg/s, less than 20 cm radius), the effects of stimulus frequency (0.15 - 0.6 Hz) are examined on eye movements and motion perception. A closed-loop nulling task is also performed with and without vibrotactile display feedback of chair radial position. Data collection is currently ongoing. Results to date suggest there is a trend for perceived tilt and translation amplitudes to be increased at the low and medium frequencies on landing day compared to pre-flight. Manual control performance is improved with vibrotactile feedback. One result of this study will be to characterize the variability (gain, asymmetry) in both otolith-ocular responses and motion perception during variable radius centrifugation, and measure the time course of post-flight recovery. This study will also address how adaptive changes in otolith-mediated reflexes correspond to one's ability to perform closed-loop nulling tasks following G-transitions, and whether manual control performance can be improved with vibrotactile feedback of orientation.
... infants; Tonic neck reflex; Galant reflex; Truncal incurvation; Rooting reflex; Parachute reflex; Grasp reflex ... up if both hands are grasping your fingers. ROOTING REFLEX This reflex occurs when the baby's cheek ...
"Places of Remembrance": Spaces for Historical and Political Literacy. A Lesson Report
ERIC Educational Resources Information Center
Offen, Susanne
2017-01-01
Purpose: The article shows the use of specific educational media in social studies in vocational schools to foster a differentiated historical and political literacy. Design/methodology/approach: Accordingly, the article examines a sequence of lessons taught by the author in a vocational classroom, fostering reflexive historical-political…
NASA Technical Reports Server (NTRS)
Dickman, J. D.; Angelaki, D. E.
1999-01-01
During linear accelerations, compensatory reflexes should continually occur in order to maintain objects of visual interest as stable images on the retina. In the present study, the three-dimensional organization of the vestibulo-ocular reflex in pigeons was quantitatively examined during linear accelerations produced by constant velocity off-vertical axis yaw rotations and translational motion in darkness. With off-vertical axis rotations, sinusoidally modulated eye-position and velocity responses were observed in all three components, with the vertical and torsional eye movements predominating the response. Peak torsional and vertical eye positions occurred when the head was oriented with the lateral visual axis of the right eye directed orthogonal to or aligned with the gravity vector, respectively. No steady-state horizontal nystagmus was obtained with any of the rotational velocities (8-58 degrees /s) tested. During translational motion, delivered along or perpendicular to the lateral visual axis, vertical and torsional eye movements were elicited. No significant horizontal eye movements were observed during lateral translation at frequencies up to 3 Hz. These responses suggest that, in pigeons, all linear accelerations generate eye movements that are compensatory to the direction of actual or perceived tilt of the head relative to gravity. In contrast, no translational horizontal eye movements, which are known to be compensatory to lateral translational motion in primates, were observed under the present experimental conditions.
1983-11-01
In this Spacelab-1 mission onboard photograph, astronaut Byron Lichtenberg performs a drop experiment, one of the Vestibular Experiments in Space investigations. The experiment examined spinal reflexes to determine whether they changed in microgravity. In Earth's environment, the otoliths signal the muscles to prepare for jolts associated with falling. During the flight, the normal reflex between the otoliths and the muscles was partially inhibited early in flight, declined further as the flight progressed, and returned to normal immediately after landing, suggesting that the brain ignored or reinterpreted otolith signals during space flight. Crewmembers reported a lack of awareness of position and location of feet, difficulty in maintaining balance, and a perception that falls were more sudden, faster, and harder than similar drops experienced in preflight. Crewmembers experienced illusions as they performed prescribed movement tests. When crew members viewed various targets and then pointed at them while blindfolded, their perception of target location and position of their own limbs was inaccurate in flight compared with similar tests on the ground. The Spacelab-1 was a multidisciplinary mission; that is, investigations were performed in several different fields of scientific research. The overall goal of the mission was to verify Spacelab performance through a variety of scientific experiments. The Spacelab-1 was launched aboard the Space Shuttle Orbiter Columbia for the STS-9 mission on November 28, 1983. The Marshall Space Flight Center had management responsibilities for the mission.
Quantitative analysis of eyes and other optical systems in linear optics.
Harris, William F; Evans, Tanya; van Gool, Radboud D
2017-05-01
To show that 14-dimensional spaces of augmented point P and angle Q characteristics, matrices obtained from the ray transference, are suitable for quantitative analysis although only the latter define an inner-product space and only on it can one define distances and angles. The paper examines the nature of the spaces and their relationships to other spaces including symmetric dioptric power space. The paper makes use of linear optics, a three-dimensional generalization of Gaussian optics. Symmetric 2 × 2 dioptric power matrices F define a three-dimensional inner-product space which provides a sound basis for quantitative analysis (calculation of changes, arithmetic means, etc.) of refractive errors and thin systems. For general systems the optical character is defined by the dimensionally-heterogeneous 4 × 4 symplectic matrix S, the transference, or if explicit allowance is made for heterocentricity, the 5 × 5 augmented symplectic matrix T. Ordinary quantitative analysis cannot be performed on them because matrices of neither of these types constitute vector spaces. Suitable transformations have been proposed but because the transforms are dimensionally heterogeneous the spaces are not naturally inner-product spaces. The paper obtains 14-dimensional spaces of augmented point P and angle Q characteristics. The 14-dimensional space defined by the augmented angle characteristics Q is dimensionally homogenous and an inner-product space. A 10-dimensional subspace of the space of augmented point characteristics P is also an inner-product space. The spaces are suitable for quantitative analysis of the optical character of eyes and many other systems. Distances and angles can be defined in the inner-product spaces. The optical systems may have multiple separated astigmatic and decentred refracting elements. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.
Anisotropic fractal media by vector calculus in non-integer dimensional space
NASA Astrophysics Data System (ADS)
Tarasov, Vasily E.
2014-08-01
A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.
The second modern condition? Compressed modernity as internalized reflexive cosmopolitization.
Kyung-Sup, Chang
2010-09-01
Compressed modernity is a civilizational condition in which economic, political, social and/or cultural changes occur in an extremely condensed manner in respect to both time and space, and in which the dynamic coexistence of mutually disparate historical and social elements leads to the construction and reconstruction of a highly complex and fluid social system. During what Beck considers the second modern stage of humanity, every society reflexively internalizes cosmopolitanized risks. Societies (or their civilizational conditions) are thereby being internalized into each other, making compressed modernity a universal feature of contemporary societies. This paper theoretically discusses compressed modernity as nationally ramified from reflexive cosmopolitization, and, then, comparatively illustrates varying instances of compressed modernity in advanced capitalist societies, un(der)developed capitalist societies, and system transition societies. In lieu of a conclusion, I point out the declining status of national societies as the dominant unit of (compressed) modernity and the interactive acceleration of compressed modernity among different levels of human life ranging from individuals to the global community. © London School of Economics and Political Science 2010.
NASA Astrophysics Data System (ADS)
Ritzmann, Ramona; Freyler, Kathrin; Krause, Anne; Gollhofer, Albert
2016-10-01
Scopolamine is used to counteract motion sickness in parabolic flight (PF) experiments. Although the drug's anticholinergic properties effectively impede vomiting, recent studies document other sensory side-effects in the central nervous system that may considerably influence sensorimotor performance. This study aimed to quantify such effects in order to determine if they are of methodological and operational significance for sensorimotor control. Ten subjects of a PF campaign received a weight-sex-based dose of a subcutaneous scopolamine injection. Sensorimotor performance was recorded before medication, 20min, 2h and 4h after injection in four space-relevant paradigms: balance control in one-leg stance with eyes open (protocol 1) and closed as well as force-generating capacity in countermovement jumps and hops (protocol 2). Postural sway, forces and joint angles were recorded. Neuromuscular control was assessed by electromyography and peripheral nerve stimulation; H-reflexes and M-waves were used to monitor spinal excitability of the Ia afferent reflex circuitry and maximal motor output. (1) H-reflex amplitudes, latencies and functional reflexes remained unchanged after scopolamine injection. (2) M-waves, neuromuscular activation intensities and antagonistic muscle coordination did not change with scopolamine administration. (3) Balance performance and force-generating capacity were not impeded by scopolamine. We found no evidence for changes in sensorimotor control in response to scopolamine injection. Sensory processing of daily relevant reflexes, spinal excitability, maximal motor output and performance parameters were not sensitive to the medication. We conclude that scopolamine administration can be used to counteract motion sickness in PF without methodological and operational concerns or interference regarding sensorimotor skills associated with neuromuscular control.
NASA Technical Reports Server (NTRS)
Young, L. R.
1976-01-01
Progress in the development of a cohesive theory of the underlying physiological mechanisms associated with spatial orientation in unusual environments is described. Results can be applied to providing means of preventing and/or minimizing the space motion sickness which has been observed during prolonged space missions. Three major areas were investigated: (1) the interaction of visual and vestibular cues in conflict in the human, (2) the plasticity of the vestibulo-ocular reflex in monkeys, and (3) end organ function in the ray with particular emphasis on the effect of ionic concentration.
Trading spaces: building three-dimensional nets from two-dimensional tilings
Castle, Toen; Evans, Myfanwy E.; Hyde, Stephen T.; Ramsden, Stuart; Robins, Vanessa
2012-01-01
We construct some examples of finite and infinite crystalline three-dimensional nets derived from symmetric reticulations of homogeneous two-dimensional spaces: elliptic (S2), Euclidean (E2) and hyperbolic (H2) space. Those reticulations are edges and vertices of simple spherical, planar and hyperbolic tilings. We show that various projections of the simplest symmetric tilings of those spaces into three-dimensional Euclidean space lead to topologically and geometrically complex patterns, including multiple interwoven nets and tangled nets that are otherwise difficult to generate ab initio in three dimensions. PMID:24098839
Farny, Caleb H.; Clement, Gregory T.
2009-01-01
Thermal imaging measurements using ultrasound phase contrast have been performed in tissue phantoms heated with a focused ultrasound source. Back projection and reflex transmission imaging principles were employed to detect sound speed-induced changes in the phase caused by an increase in the temperature. The temperature was determined from an empirical relationship for the temperature dependence on sound speed. The phase contrast was determined from changes in the sound field measured with a hydrophone scan conducted before and during applied heating. The lengthy scanning routine used to mimic a large two-dimensional array required a steady-state temperature distribution within the phantom. The temperature distribution in the phantom was validated with magnetic resonance (MR) thermal imaging measurements. The peak temperature was found to agree within 1°C with MR and good agreement was found between the temperature profiles. The spatial resolution was 0.3 × 0.3 × 0.3 mm, comparing favorably with the 0.625 × 0.625 × 1.5 mm MR spatial resolution. PMID:19683380
Effects of Bed Rest on Conduction Velocity of the Triceps Surae Stretch Reflex and Postural Control
NASA Technical Reports Server (NTRS)
Reschke, M. F.; Wood, S. J.; Cerisano, J. M.; Kofman, I. S.; Fisher, E. A.; Esteves, J. T.; Taylor, L. C.; DeDios, Y. E.; Harm, D. L.
2011-01-01
Despite rigorous exercise and nutritional management during space missions, astronauts returning from microgravity exhibit neuromuscular deficits and a significant loss in muscle mass in the postural muscles of the lower leg. Similar changes in the postural muscles occur in subjects participating in long-duration bed rest studies. These adaptive muscle changes manifest as a reduction in reflex conduction velocity during head-down bed rest. Because the stretch reflex encompasses both the peripheral (muscle spindle and nerve axon) and central (spinal synapse) components involved in adaptation to calf muscle unloading, it may be used to provide feedback on the general condition of neuromuscular function, and might be used to evaluate the effectiveness of countermeasures aimed at preserving muscle mass and function during periods of unloading. Stretch reflexes were measured on 18 control subjects who spent 60 to 90 days in continuous 6 deg head-down bed rest. Using a motorized system capable of rotating the foot around the ankle joint (dorsiflexion) through an angle of 10 degrees at a peak velocity of about 250 deg/sec, a stretch reflex was recorded from the subject's left triceps surae muscle group. Using surface electromyography, about 300 reflex responses were obtained and ensemble-averaged on 3 separate days before bed rest, 3 to 4 times in bed, and 3 times after bed rest. The averaged responses for each test day were examined for reflex latency and conduction velocity (CV) across gender. Computerized posturography was also conducted on these same subjects before and after bed rest as part of the standard measures. Peak-to-peak sway was measured during Sensory Organization Tests (SOTs) to evaluate changes in the ability to effectively use or suppress visual, vestibular, and proprioceptive information for postural control. Although no gender differences were found, a significant increase in reflex latency and a significant decrease in CV were observed during the bed rest period, with a return to baseline 3 to 5 days after bed rest, depending on the duration of bed rest. In addition, a relationship between CV and loss of muscle strength in the lower leg was observed post bed rest for most subjects. Immediately post-bed rest, most subjects showed decreased performance on SOTs, with the greater decrements on sway-referenced support and head movement conditions. Post-bed rest decrements were less than typically observed following spaceflight. Decrements in postural control and the stretch reflex can be primarily attributed to the unloading mechanisms this ground-based analog provides. The stretch reflex is a concise test measurement that can be obtained during the head-down phase of bed rest, as it does not interfere with the bed rest paradigm. This makes it an ideal tool that can detect, early on, whether a countermeasure is successful in preserving muscle function.
On Keeping Public Visual Fieldnotes as Reflexive Ethnographic Practice
ERIC Educational Resources Information Center
Burkholder, Casey
2016-01-01
These "Notes from the Field" describe one doctoral student's public visual fieldnotes practice during her data collection for her dissertation. In the creation of a public digital space for participants and the public to engage with the fieldnotes through online comments and in-person conversations, this shifts the practice of keeping…
ERIC Educational Resources Information Center
Moon, Seungho
2016-01-01
An arts-based afterschool program is introduced in advancing children's democratic citizenship and a sense of community. The ARtS Initiative (Aesthetic, Reflexive thoughts, & Sharing) has reimagined arts and aesthetics for young people in urban settings, providing an unquantifiable experience focused on promoting pluralistic societies. The…
Organizational Members as Storywriters: On Organizing Practices of Reflexivity
ERIC Educational Resources Information Center
Gherardi, Silvia; Cozza, Michela; Poggio, Barbara
2018-01-01
Purpose: The purpose of this paper is to describe how organizational members became storywriters of an important process of organizational change. Writing became a practice designed to create a space, a time and a methodology with which to author the process of change and create a learning context. The written stories produced both the…
Fractional-dimensional Child-Langmuir law for a rough cathode
NASA Astrophysics Data System (ADS)
Zubair, M.; Ang, L. K.
2016-07-01
This work presents a self-consistent model of space charge limited current transport in a gap combined of free-space and fractional-dimensional space (Fα), where α is the fractional dimension in the range 0 < α ≤ 1. In this approach, a closed-form fractional-dimensional generalization of Child-Langmuir (CL) law is derived in classical regime which is then used to model the effect of cathode surface roughness in a vacuum diode by replacing the rough cathode with a smooth cathode placed in a layer of effective fractional-dimensional space. Smooth transition of CL law from the fractional-dimensional to integer-dimensional space is also demonstrated. The model has been validated by comparing results with an experiment.
NASA Technical Reports Server (NTRS)
Holland, Albert W. (Editor)
1987-01-01
Topics discussed in this volume include space motion sickness, cardiovascular adaptation, fluid shifts, extravehicular activity, general physiology, perception, vestibular response modifications, vestibular physiology, and pharmacology. Papers are presented on the clinical characterization and etiology of space motion sickness, ultrasound techniques in space medicine, fluid shifts in weightlessness, Space Shuttle inflight and postflight fluid shifts measured by leg volume changes, and the probability of oxygen toxicity in an 8-psi space suit. Consideration is also given to the metabolic and hormonal status of crewmembers in short-term space flights, adaptive changes in perception of body orientation and mental image rotation in microgravity, the effects of a visual-vestibular stimulus on the vestibulo-ocular reflex, rotation tests in the weightless phase of parabolic flight, and the mechanisms of antimotion sickness drugs.
Xenopus laevis - A success story in biological research in Space
NASA Astrophysics Data System (ADS)
Horn, E.
A feature of sensory, neuronal and motor systems is the existence of a critical period during their development. Environmental modifications, in particular stimulus depri-vation, during this period of life affects development in a long-term manner. For gravity sensory systems, space flights offer the only opportunity for deprivation conditions. Studies in the amphibian Xenopus laevis presented the most complete picture. The presentation demonstrates the importance of Xenopus laevis as an ex-perimental model animal in the past and even for future research in Space. Studies are presented which range from fertilization in Space and anatomical studies during early development under weightlessness up to post-flight studies on the anatomy of the peripheral sense organ, the spinal motor activity and behavior. Gravity depriva-tion induces anatomical as well as behavioral and neurophysiological modifications, which are normalized either during flight (thickening of the blastocoel roof) or after reentry in 1g-conditions (swimming and reflex behavior, spinal motor activity). The physiological changes can be explained by mechanisms of physiological adaptation. However, the studies also revealed stages which were insensitive to gravity depriva-tion; they point to the existence of a critical period. Observations on morphological mal-formations are described which are reversible after termination of microgravity and which are linked to a depression of vestibular reflex behavior. They might be caused by a competition between dorsalization and ventralization inducing growth factors. This observation offers the possibility for a genetic approach in finding ba-sics for microgravity effects on the development of Xenopus, and in a general frame, on the development of vertebrates including men. At the present stage of research, it remains open whether adaptive processes during exposure to altered gravity or the existence of a critical period in vestibular development are responsible for develop-mental modifications observed during and after exposure to altered gravity. Also extensive hypergravity studies on the vestibuloocular reflex didn't contribute to a clarification between these alternatives. Thus both deprivation and augmentation studies have to be extended to older tadpole stages and longer exposure periods. The necessary hardware was developed recently. However, the most important depriva-tion approach is limited due to the too low number of space flights. Supported by DLR, grants 01QV89250-5, 50WB9553-7, 50WB0140 and by DFG, grants Ho664/16-1
Postural and Spatial Orientation Driven by Virtual Reality
Keshner, Emily A.; Kenyon, Robert V.
2009-01-01
Orientation in space is a perceptual variable intimately related to postural orientation that relies on visual and vestibular signals to correctly identify our position relative to vertical. We have combined a virtual environment with motion of a posture platform to produce visual-vestibular conditions that allow us to explore how motion of the visual environment may affect perception of vertical and, consequently, affect postural stabilizing responses. In order to involve a higher level perceptual process, we needed to create a visual environment that was immersive. We did this by developing visual scenes that possess contextual information using color, texture, and 3-dimensional structures. Update latency of the visual scene was close to physiological latencies of the vestibulo-ocular reflex. Using this system we found that even when healthy young adults stand and walk on a stable support surface, they are unable to ignore wide field of view visual motion and they adapt their postural orientation to the parameters of the visual motion. Balance training within our environment elicited measurable rehabilitation outcomes. Thus we believe that virtual environments can serve as a clinical tool for evaluation and training of movement in situations that closely reflect conditions found in the physical world. PMID:19592796
Are Covert Saccade Functionally Relevant in Vestibular Hypofunction?
Hermann, R; Pelisson, D; Dumas, O; Urquizar, Ch; Truy, E; Tilikete, C
2018-06-01
The vestibulo-ocular reflex maintains gaze stabilization during angular or linear head accelerations, allowing adequate dynamic visual acuity. In case of bilateral vestibular hypofunction, patients use saccades to compensate for the reduced vestibulo-ocular reflex function, with covert saccades occurring even during the head displacement. In this study, we questioned whether covert saccades help maintain dynamic visual acuity, and evaluated which characteristic of these saccades are the most relevant to improve visual function. We prospectively included 18 patients with chronic bilateral vestibular hypofunction. Subjects underwent evaluation of dynamic visual acuity in the horizontal plane as well as video recording of their head and eye positions during horizontal head impulse tests in both directions (36 ears tested). Frequency, latency, consistency of covert saccade initiation, and gain of covert saccades as well as residual vestibulo-ocular reflex gain were calculated. We found no correlation between residual vestibulo-ocular reflex gain and dynamic visual acuity. Dynamic visual acuity performance was however positively correlated with the frequency and gain of covert saccades and negatively correlated with covert saccade latency. There was no correlation between consistency of covert saccade initiation and dynamic visual acuity. Even though gaze stabilization in space during covert saccades might be of very short duration, these refixation saccades seem to improve vision in patients with bilateral vestibular hypofunction during angular head impulses. These findings emphasize the need for specific rehabilitation technics that favor the triggering of covert saccades. The physiological origin of covert saccades is discussed.
(3 + 1)-dimensional topological phases and self-dual quantum geometries encoded on Heegaard surfaces
NASA Astrophysics Data System (ADS)
Dittrich, Bianca
2017-05-01
We apply the recently suggested strategy to lift state spaces and operators for (2 + 1)-dimensional topological quantum field theories to state spaces and operators for a (3 + 1)-dimensional TQFT with defects. We start from the (2 + 1)-dimensional TuraevViro theory and obtain a state space, consistent with the state space expected from the Crane-Yetter model with line defects.
Biological Movement and Laws of Physics.
Latash, Mark L
2017-07-01
Living systems may be defined as systems able to organize new, biology-specific, laws of physics and modify their parameters for specific tasks. Examples include the force-length muscle dependence mediated by the stretch reflex, and the control of movements with modification of the spatial referent coordinates for salient performance variables. Low-dimensional sets of referent coordinates at a task level are transformed to higher-dimensional sets at lower hierarchical levels in a way that ensures stability of performance. Stability of actions can be controlled independently of the actions (e.g., anticipatory synergy adjustments). Unintentional actions reflect relaxation processes leading to drifts of corresponding referent coordinates in the absence of changes in external load. Implications of this general framework for movement disorders, motor development, motor skill acquisition, and even philosophy are discussed.
Fu, Xiaoming; Peng, Chun; Li, Zan; Liu, Shan; Tan, Minmin; Song, Jinlin
2017-01-01
To explore a new technique for reconstructing and measuring three-dimensional (3D) models of orthodontic plaster casts using multi-baseline digital close-range photogrammetry (MBDCRP) with a single-lens reflex camera. Thirty sets of orthodontic plaster casts that do not exhibit severe horizontal overlap (>2 mm) between any two teeth were recorded by a single-lens reflex camera with 72 pictures taken in different directions. The 3D models of these casts were reconstructed and measured using the open source software MeshLab. These parameters, including mesio-distal crown diameter, arch width, and arch perimeter, were recorded six times on both the 3D digital models and on plaster casts by two examiners. Statistical analysis was carried out using the Bland-Altman method to measure agreement between the novel method and the traditional calliper method by calculating the differences between mean values. The average differences between the measurements of the photogrammetric 3D models and the plaster casts were 0.011-0.402mm. The mean differences between measurements obtained by the photogrammetric 3D models and the dental casts were not significant except for the lower arch perimeter (P>0.05), and all the differences were regarded as clinically acceptable (<0.5 mm). Measurements obtained by MBDCRP are compared well with those obtained from plaster casts, indicating that MBDCRP is an alternate way to store and measure dental plaster casts without severe horizontal overlap between any two teeth.
ERIC Educational Resources Information Center
Flores, Judith; Garcia, Silvia
2009-01-01
Judith Flores and Silvia Garcia (University of Utah) draw from the work of their mentor, Rina Benmayor and "Telling to live: Latina feminist testimonios" to establish an organization for Latinas who are staff, faculty, students, alumni, and community members at a predominantly White institution (PWI). Critical race feminism (CRF),…
Lightweight Helmet For Eye/Balance Studies
NASA Technical Reports Server (NTRS)
Mcstravick, M. Catherine; Proctor, David R.; Wood, Scott J.
1988-01-01
Lightweight helmet serves as mounting platform for stimulus and sensor modules in experiments on role of vestibulo-ocular reflex in motion sickness and space-adaptation syndrome. Fitted liner and five inflatable air bladders stabilize helmet with respect to subject's head. Personal bite board attached to chin-bar assembly makes hard palate in subject's mouth serve as final position reference for helmet.
Is the Frame Broken? Seeking New Metaphors for Textual Study in English
ERIC Educational Resources Information Center
McKnight, Lucinda
2015-01-01
This article draws from a doctoral study of how female teachers design English curriculum around girls' popular culture in a contemporary coeducational secondary setting and focuses on how English teachers contemplate the study of texts in the space of school-based curriculum planning. The article presents an argument for reflexivity around how we…
Theory of Space Charge Limited Current in Fractional Dimensional Space
NASA Astrophysics Data System (ADS)
Zubair, Muhammad; Ang, L. K.
The concept of fractional dimensional space has been effectively applied in many areas of physics to describe the fractional effects on the physical systems. We will present some recent developments of space charge limited (SCL) current in free space and solid in the framework of fractional dimensional space which may account for the effect of imperfectness or roughness of the electrode surface. For SCL current in free space, the governing law is known as the Child-Langmuir (CL) law. Its analogy in a trap-free solid (or dielectric) is known as Mott-Gurney (MG) law. This work extends the one-dimensional CL Law and MG Law for the case of a D-dimensional fractional space with 0 < D <= 1 where parameter D defines the degree of roughness of the electrode surface. Such a fractional dimensional space generalization of SCL current theory can be used to characterize the charge injection by the imperfectness or roughness of the surface in applications related to high current cathode (CL law), and organic electronics (MG law). In terms of operating regime, the model has included the quantum effects when the spacing between the electrodes is small.
Anisotropic fractal media by vector calculus in non-integer dimensional space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru
2014-08-15
A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensionalmore » space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.« less
Della Santina, Charles C.; Migliaccio, Americo A.; Hayden, Russell; Melvin, Thuy-Anh; Fridman, Gene Y.; Chiang, Bryce; Davidovics, Natan S.; Dai, Chenkai; Carey, John P.; Minor, Lloyd B.; Anderson, Iee-Ching; Park, HongJu; Lyford-Pike, Sofia; Tang, Shan
2012-01-01
Bilateral loss of vestibular sensation can disable individuals whose vestibular hair cells are injured by ototoxic medications, infection, Ménière’s disease or other insults to the labyrinth including surgical trauma during cochlear implantation. Without input to vestibulo-ocular and vestibulo-spinal reflexes that normally stabilize the eyes and body, affected patients suffer blurred vision during head movement, postural instability, and chronic disequilibrium. While individuals with some residual sensation often compensate for their loss through rehabilitation exercises, those who fail to do so are left with no adequate treatment options. An implantable neuroelectronic vestibular prosthesis that emulates the normal labyrinth by sensing head movement and modulating activity on appropriate branches of the vestibular nerve could significantly improve quality of life for these otherwise chronically dizzy patients. This brief review describes the impact and current management of bilateral loss of vestibular sensation, animal studies supporting the feasibility of prosthetic vestibular stimulation, and a vestibular prosthesis designed to restore sensation of head rotation in all directions. Similar to a cochlear implant in concept and size, the Johns Hopkins Multichannel Vestibular Prosthesis (MVP) includes miniature gyroscopes to sense head rotation, a microcontroller to process inputs and control stimulus timing, and current sources switched between pairs of electrodes implanted within the vestibular labyrinth. In rodents and rhesus monkeys rendered bilaterally vestibular-deficient via treatment with gentamicin and/or plugging of semicircular canals, the MVP partially restores the vestibulo-ocular reflex for head rotations about any axis of rotation in 3-dimensional space. Our efforts now focus on addressing issues prerequisite to human implantation, including refinement of electrode designs and surgical technique to enhance stimulus selectivity and preserve cochlear function, optimization of stimulus protocols, and reduction of device size and power consumption. PMID:21756683
Fractional-dimensional Child-Langmuir law for a rough cathode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zubair, M., E-mail: muhammad-zubair@sutd.edu.sg; Ang, L. K., E-mail: ricky-ang@sutd.edu.sg
This work presents a self-consistent model of space charge limited current transport in a gap combined of free-space and fractional-dimensional space (F{sup α}), where α is the fractional dimension in the range 0 < α ≤ 1. In this approach, a closed-form fractional-dimensional generalization of Child-Langmuir (CL) law is derived in classical regime which is then used to model the effect of cathode surface roughness in a vacuum diode by replacing the rough cathode with a smooth cathode placed in a layer of effective fractional-dimensional space. Smooth transition of CL law from the fractional-dimensional to integer-dimensional space is also demonstrated. The model has beenmore » validated by comparing results with an experiment.« less
Vestibulospinal control of reflex and voluntary head movement
NASA Technical Reports Server (NTRS)
Boyle, R.; Peterson, B. W. (Principal Investigator)
2001-01-01
Secondary canal-related vestibulospinal neurons respond to an externally applied movement of the head in the form of a firing rate modulation that encodes the angular velocity of the movement, and reflects in large part the input "head velocity in space" signal carried by the semicircular canal afferents. In addition to the head velocity signal, the vestibulospinal neurons can carry a more processed signal that includes eye position or eye velocity, or both (see Boyle on ref. list). To understand the control signals used by the central vestibular pathways in the generation of reflex head stabilization, such as the vestibulocollic reflex (VCR), and the maintenance of head posture, it is essential to record directly from identified vestibulospinal neurons projecting to the cervical spinal segments in the alert animal. The present report discusses two key features of the primate vestibulospinal system. First, the termination morphology of vestibulospinal axons in the cervical segments of the spinal cord is described to lay the structural basis of vestibulospinal control of head/neck posture and movement. And second, the head movement signal content carried by the same class of secondary vestibulospinal neurons during the actual execution of the VCR and during self-generated, or active, rapid head movements is presented.
Studies of the horizontal vestibulo-ocular reflex on STS 7 and 8
NASA Technical Reports Server (NTRS)
Thornton, William E.; Uri, John J.; Moore, Thomas P.; Pool, Sam L.
1988-01-01
Unpaced voluntary horizontal head oscillation was used to study the Vestibulo-Ocular Reflex (VOR) on Shuttle flights STS 7 and 8. Ten subjects performed head oscillations at 0.33 Hz + or - 30 deg amplitude under the followng conditions: VVOR (visual VOR), eyes open and fixed on a stationary target; VOR-EC, with eyes closed and fixed on the same target in imagination; and VOR-S (VOR suppression), with eyes open and fixed on a head-synchronized target. Effects of weightlessness, flight phase, and Space Motion Sickness (SMS) on head oscillation characteristics were examined. A significant increase in head oscillation frequency was noted inflight in subjects free from SMS. In subjects susceptible to SMS, frequency was reduced during their Symptomatic period. The data also suggest that the amplitude and peak velocity of head oscillation were reduced early inflight. No significant changes were noted in reflex gain or phase in any of the test conditions; however, there was a suggestion of an increase in VVOR and VOR-ES gain early inflight in asymptomatic subjects. A significant difference in VOR-S was found between SMS susceptible and non-susceptible subjects. There is no evidence that any changes in VOR characteristics contributed to SMS.
Engward, Hilary; Davis, Geraldine
2015-07-01
A discussion of the meaning of reflexivity in research with the presentation of examples of how a model of reflexivity was used in a grounded theory research project. Reflexivity requires the researcher to make transparent the decisions they make in the research process and is therefore important in developing quality in nursing research. The importance of being reflexive is highlighted in the literature in relation to nursing research, however, practical guidance as to how to go about doing research reflexively is not always clearly articulated. This is a discussion paper. The concept of reflexivity in research is explored using the Alvesson and Skoldberg model of reflexivity and practical examples of how a researcher developed reflexivity in a grounded theory project are presented. Nurse researchers are encouraged to explore and apply the concept of reflexivity in their research practices to develop transparency in the research process and to increase robustness in their research. The Alvesson and Skoldberg model is of value in applying reflexivity in qualitative nursing research, particularly in grounded theory research. Being reflexive requires the researcher to be completely open about decisions that are made in the research process. The Alvesson and Skolberg model of reflexivity is a useful model that can enhance reflexivity in the research process. It can be a useful practical tool to develop reflexivity in grounded theory research. © 2015 John Wiley & Sons Ltd.
Role of orientation reference selection in motion sickness
NASA Technical Reports Server (NTRS)
Peterka, Robert J.; Black, F. Owen
1992-01-01
The overall objective of this proposal is to understand the relationship between human orientation control and motion sickness susceptibility. Three areas related to orientation control will be investigated. These three areas are (1) reflexes associated with the control of eye movements and posture, (2) the perception of body rotation and position with respect to gravity, and (3) the strategies used to resolve sensory conflict situations which arise when different sensory systems provide orientation cues which are not consistent with one another or with previous experience. Of particular interest is the possibility that a subject may be able to ignore an inaccurate sensory modality in favor of one or more other sensory modalities which do provide accurate orientation reference information. We refer to this process as sensory selection. This proposal will attempt to quantify subjects' sensory selection abilities and determine if this ability confers some immunity to the development of motion sickness symptoms. Measurements of reflexes, motion perception, sensory selection abilities, and motion sickness susceptibility will concentrate on pitch and roll motions since these seem most relevant to the space motion sickness problem. Vestibulo-ocular (VOR) and oculomotor reflexes will be measured using a unique two-axis rotation device developed in our laboratory over the last seven years. Posture control reflexes will be measured using a movable posture platform capable of independently altering proprioceptive and visual orientation cues. Motion perception will be quantified using closed loop feedback technique developed by Zacharias and Young (Exp Brain Res, 1981). This technique requires a subject to null out motions induced by the experimenter while being exposed to various confounding sensory orientation cues. A subject's sensory selection abilities will be measured by the magnitude and timing of his reactions to changes in sensory environments. Motion sickness susceptibility will be measured by the time required to induce characteristic changes in the pattern of electrogastrogram recordings while exposed to various sensory environments during posture and motion perception tests. The results of this work are relevant to NASA's interest in understanding the etiology of space motion sickness. If any of the reflex, perceptual, or sensory selection abilities of subjects are found to correlate with motion sickness susceptibility, this work may be an important step in suggesting a method of predicting motion sickness susceptibility. If sensory selection can provide a means to avoid sensory conflict, then further work may lead to training programs which could enhance a subject's sensory selection ability and therefore minimize motion sickness susceptibility.
Variability in Hoffmann and tendon reflexes in healthy male subjects
NASA Technical Reports Server (NTRS)
Good, E.; Do, S.; Jaweed, M.
1992-01-01
There is a time dependent decrease in amplitude of H- and T-reflexes during Zero-G exposure and subsequently an increase in the amplitude of the H-reflex 2-4 hours after return to a 1-G environment. These alterations have been attributed to the adaptation of the human neurosensory system to gravity. The Hoffman reflex (H-reflex) is an acknowledged method to determine the integrity of the monosynaptic reflex arc. However deep tendon reflexes (DTR's or T-reflexes), elicited by striking the tendon also utilize the entire reflex arc. The objective of this study was to compare the variability in latency and amplitude of the two reflexes in healthy subjects. Methods: Nine healthy male subjects, 27-43 years in age, 161-175 cm in height plus 60-86 Kg in weight, underwent weekly testing for four weeks with a Dan-Tec EMG counterpoint EMG system. Subjects were studied prone and surface EMG electrodes were placed on the right and left soleus muscles. The H-reflex was obtained by stimulating the tibial nerve in the politeal fossa with a 0.2 msec square wave pulse delivered at 2 Hz until the maximum H-reflex was obtained. The T-reflex was invoked by tapping the achilles tendon with a self triggering reflex hammer connected to the EMG system. The latencies and amplitudes for the H- and T-reflexes were measured. Results: These data indicate that the amplitudes of these reflexes varied considerably. However, latencies to invoked responses were consistent. The latency of the T-reflex was approximately 3-5 msec longer than the H-reflex. Conclusion: The T-reflex is easily obtained, requires less time, and is more comfortable to perform. Qualitative data can be obtained by deploying self triggering, force plated reflex hammers both in the 1-G and Zero-G environment.
Fractal electrodynamics via non-integer dimensional space approach
NASA Astrophysics Data System (ADS)
Tarasov, Vasily E.
2015-09-01
Using the recently suggested vector calculus for non-integer dimensional space, we consider electrodynamics problems in isotropic case. This calculus allows us to describe fractal media in the framework of continuum models with non-integer dimensional space. We consider electric and magnetic fields of fractal media with charges and currents in the framework of continuum models with non-integer dimensional spaces. An application of the fractal Gauss's law, the fractal Ampere's circuital law, the fractal Poisson equation for electric potential, and equation for fractal stream of charges are suggested. Lorentz invariance and speed of light in fractal electrodynamics are discussed. An expression for effective refractive index of non-integer dimensional space is suggested.
A Note on the Asymptotic Behavior of Nonlinear Semigroups and the Range of Accretive Operators.
1981-04-01
Crandall (see [2, p. 166]) and Pazy [10) in Hilbert space. For recent developments in Ranach spaces see the papers by Kohlberg and Neyman [8, 9] and...essentially due to Kohlberg and Neyman [91 who use a different argument. They also show that if E is not reflexive and strictly convex (or if E* is...ACKNOWLEDGMENTS. I am grateful to Professor A. Pazy for several helpful conversations. I also wish to thank 5. Kohlberg , A. Neyman and A. T. Plant for
2008-03-01
multiplicative corrections as well as space mapping transformations for models defined over a lower dimensional space. A corrected surrogate model for the...correction functions used in [72]. If the low fidelity model g(x̃) is defined over a lower dimensional space then a space mapping transformation is...required. As defined in [21, 72], space mapping is a method of mapping between models of different dimensionality or fidelity. Let P denote the space
Simulation of realistic retinoscopic measurement
NASA Astrophysics Data System (ADS)
Tan, Bo; Chen, Ying-Ling; Baker, K.; Lewis, J. W.; Swartz, T.; Jiang, Y.; Wang, M.
2007-03-01
Realistic simulation of ophthalmic measurements on normal and diseased eyes is presented. We use clinical data of ametropic and keratoconus patients to construct anatomically accurate three-dimensional eye models and simulate the measurement of a streak retinoscope with all the optical elements. The results show the clinical observations including the anomalous motion in high myopia and the scissors reflex in keratoconus. The demonstrated technique can be applied to other ophthalmic instruments and to other and more extensively abnormal eye conditions. It provides promising features for medical training and for evaluating and developing ocular instruments.
ERIC Educational Resources Information Center
Tummons, Jonathan; Macleod, Anna; Kits, Olga
2015-01-01
This article draws on an ongoing ethnography of distributed medical education (DME) provision in Canada in order to explore the methodological choices of the researchers as well as the wider pluralisation of ethnographic frameworks that is reflected within current research literature. The article begins with a consideration of the technologically…
The Secret between Storytelling and Retelling: Tea, School, & Narrative
ERIC Educational Resources Information Center
Yu, Jie
2014-01-01
In this paper, I will tell two of my personal stories to try to explore the secret or opaque space between the original telling and retelling of stories in narrative inquiry. Based upon my difficult struggles with the two stories of tea, school, and narrative, I suggest that narrative inquiry has to be a complex loop of relationship, reflexivity,…
Decreased otolith-mediated vestibular response in 25 astronauts induced by long-duration spaceflight
Hallgren, Emma; Kornilova, Ludmila; Fransen, Erik; Glukhikh, Dmitrii; Moore, Steven T.; Clément, Gilles; Van Ombergen, Angelique; MacDougall, Hamish; Naumov, Ivan
2016-01-01
The information coming from the vestibular otolith organs is important for the brain when reflexively making appropriate visual and spinal corrections to maintain balance. Symptoms related to failed balance control and navigation are commonly observed in astronauts returning from space. To investigate the effect of microgravity exposure on the otoliths, we studied the otolith-mediated responses elicited by centrifugation in a group of 25 astronauts before and after 6 mo of spaceflight. Ocular counterrolling (OCR) is an otolith-driven reflex that is sensitive to head tilt with regard to gravity and tilts of the gravito-inertial acceleration vector during centrifugation. When comparing pre- and postflight OCR, we found a statistically significant decrease of the OCR response upon return. Nine days after return, the OCR was back at preflight level, indicating a full recovery. Our large study sample allows for more general physiological conclusions about the effect of prolonged microgravity on the otolith system. A deconditioned otolith system is thought to be the cause of several of the negative effects seen in returning astronauts, such as spatial disorientation and orthostatic intolerance. This knowledge should be taken into account for future long-term space missions. PMID:27009158
The Local Stellar Velocity Field via Vector Spherical Harmonics
NASA Technical Reports Server (NTRS)
Makarov, V. V.; Murphy, D. W.
2007-01-01
We analyze the local field of stellar tangential velocities for a sample of 42,339 nonbinary Hipparcos stars with accurate parallaxes, using a vector spherical harmonic formalism.We derive simple relations between the parameters of the classical linear model (Ogorodnikov-Milne) of the local systemic field and low-degree terms of the general vector harmonic decomposition. Taking advantage of these relationships, we determine the solar velocity with respect to the local stars of (V(sub X), V(sub Y), V(sub Z)) = (10.5, 18.5, 7.3) +/- 0.1 km s(exp -1) not for the asymmetric drift with respect to the local standard of rest. If only stars more distant than 100 pc are considered, the peculiar solar motion is (V(sub X), V(sub Y), V(sub Z)) = (9.9, 15.6, 6.9) +/- 0.2 km s(exp -1). The adverse effects of harmonic leakage, which occurs between the reflex solar motion represented by the three electric vector harmonics in the velocity space and higher degree harmonics in the proper-motion space, are eliminated in our analysis by direct subtraction of the reflex solar velocity in its tangential components for each star...
Crevillén-García, D
2018-04-01
Time-consuming numerical simulators for solving groundwater flow and dissolution models of physico-chemical processes in deep aquifers normally require some of the model inputs to be defined in high-dimensional spaces in order to return realistic results. Sometimes, the outputs of interest are spatial fields leading to high-dimensional output spaces. Although Gaussian process emulation has been satisfactorily used for computing faithful and inexpensive approximations of complex simulators, these have been mostly applied to problems defined in low-dimensional input spaces. In this paper, we propose a method for simultaneously reducing the dimensionality of very high-dimensional input and output spaces in Gaussian process emulators for stochastic partial differential equation models while retaining the qualitative features of the original models. This allows us to build a surrogate model for the prediction of spatial fields in such time-consuming simulators. We apply the methodology to a model of convection and dissolution processes occurring during carbon capture and storage.
The effects of hyperventilation on postural control mechanisms.
Sakellari, V; Bronstein, A M; Corna, S; Hammon, C A; Jones, S; Wolsley, C J
1997-09-01
The effect of hyperventilation on postural balance was investigated. Voluntary hyperventilation increased body sway in normal subjects, particularly in the sagittal plane. The possibility that this hyperventilation-induced unsteadiness is due to interference with lower limb somatosensory input, vestibular reflexes or cerebellar function was assessed. (i) The effect of hyperventilation on peripheral compound sensory action potentials (SAPs) and somatosensory evoked potentials (SEPs) (recorded centrally, from the scalp) elicited by electrical stimulation of the sural nerve was measured in six normal adults. A reduction in the scalp SEP amplitude and an increase in the peripheral SAP amplitude were observed during hyperventilation, which reversed during the recovery period. These changes indicate increased peripheral neural excitability which could lead to a higher level of ectopic activity; the latter would interfere with central reception of peripheral input. (ii) The click-evoked vestibulo-collic reflex was recorded to study the effect of hyperventilation on vestibulo-spinal activity. EMG recordings from both sternocleidomastoid muscles of six healthy subjects were made in response to loud clicks presented to either ear. Neither the amplitude nor the latency of the response were altered significantly by hyperventilation. (iii) Eye-movement recordings were obtained in the six normal subjects to assess the effect of hyperventilation on the vestibulo-ocular reflex and its visual suppression, the latter being a function largely mediated by the cerebellum; no changes were detected. (iv) Three-dimensional eye-movement recordings and body-sway measurements were obtained in six patients with longstanding unilateral vestibular loss in order to evaluate if hyperventilation disrupts vestibular compensation. In all patients, a horizontal nystagmus either appeared or was significantly enhanced for > or = 60 s after voluntary hyperventilation. Sway was also enhanced by hyperventilation in these patients, particularly in the frontal plane. This study suggests that hyperventilation disrupts mechanisms mediating vestibular compensation. The increase in sway may be, at least partly, mediated by deranged peripheral and central somatosensory signals from the lower limbs. Hyperventilation seems to spare vestibular reflex activity and cerebellar-mediated eye movements.
National Rugby League athletes and tendon tap reflex assessment: a matched cohort clinical study.
Maurini, James; Ohmsen, Paul; Condon, Greg; Pope, Rodney; Hing, Wayne
2016-11-04
Limited research suggests elite athletes may differ from non-athletes in clinical tendon tap reflex responses. In this matched cohort study, 25 elite rugby league athletes were compared with 29 non-athletes to examine differences in tendon reflex responses. Relationships between reflex responses and lengths of players' careers were also examined. Biceps, triceps, patellar and Achilles tendon reflexes were clinically assessed. Right and left reflexes were well correlated for each tendon (r S = 0.7-0.9). The elite rugby league athletes exhibited significantly weaker reflex responses than non-athletes in all four tendons (p < 0.005). Biceps reflexes demonstrated the largest difference and Achilles reflexes the smallest difference. Moderate negative correlations (r S = -0.3-0.6) were observed between reflex responses and lengths of players' careers. Future research is required to further elucidate mechanisms resulting in the observed differences in tendon reflexes and to ensure clinical tendon tap examinations and findings can be interpreted appropriately in this athletic population.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crockett, D.P.; Smith, W.K.; Proshansky, E.
1989-10-08
We report on computer-assisted three-dimensional reconstruction of spinal cord activity associated with stimulation of the plantar cushion (PC) as revealed by (14C)-2-deoxy-D-glucose (2-DG) serial autoradiographs. Moderate PC stimulation in cats elicits a reflex phasic plantar flexion of the toes. Four cats were chronically spinalized at about T6 under barbiturate anesthesia. Four to 11 days later, the cats were injected (i.v.) with 2-DG (100 microCi/kg) and the PC was electrically stimulated with needle electrodes at 2-5 times threshold for eliciting a reflex. Following stimulation, the spinal cord was processed for autoradiography. Subsequently, autoradiographs, representing approximately 8-18 mm from spinal segments L6-S1,more » were digitized for computer analysis and 3-D reconstruction. Several strategies of analysis were employed: (1) Three-dimensional volume images were color-coded to represent different levels of functional activity. (2) On the reconstructed volumes, virtual sections were made in the horizontal, sagittal, and transverse planes to view regions of 2-DG activity. (3) In addition, we were able to sample different regions within the grey and white matter semi-quantitatively (i.e., pixel intensity) from section to section to reveal differences between ipsi- and contralateral activity, as well as possible variation between sections. These analyses revealed 2-DG activity associated with moderate PC stimulation, not only in the ipsilateral dorsal horn as we had previously demonstrated, but also in both the ipsilateral and contralateral ventral horns, as well as in the intermediate grey matter. The use of novel computer analysis techniques--combined with an unanesthetized preparation--enabled us to demonstrate that the increased metabolic activity in the lumbosacral spinal cord associated with PC stimulation was much more extensive than had heretofore been observed.« less
Tudury, Eduardo Alberto; de Figueiredo, Marcella Luiz; Fernandes, Thaiza Helena Tavares; Araújo, Bruno Martins; Bonelli, Marília de Albuquerque; Diogo, Camila Cardoso; Silva, Amanda Camilo; Santos, Cássia Regina Oliveira; Rocha, Nadyne Lorrayne Farias Cardoso
2017-02-01
Objectives This study aimed to test the extensor carpi radialis and cranial tibial reflexes in cats before and after anesthetic block of the brachial and lumbosacral plexus, respectively, to determine whether they depend on a myotatic reflex arc. Methods Fifty-five cats with a normal neurologic examination that were referred for elective gonadectomy were divided into group 1 (29 cats) for testing the extensor carpi radialis reflex, and group 2 (26 cats) for testing the cranial tibial reflex. In group 1, the extensor carpi radialis reflex was tested after anesthetic induction and 15 mins after brachial plexus block with lidocaine. In group 2, the cranial tibial, withdrawal and patellar reflexes were elicited in 52 hindlimbs and retested 15 mins after epidural anesthesia. Results In group 1, before the anesthetic block, 55.17% of the cats had a decreased and 44.83% had a normal extensor carpi radialis reflex. After the block, 68.96% showed a decreased and 27.59% a normal reflex. No cat had an increased or absent reflex before anesthetic block. In group 2, prior to the anesthetic block, 15.38% of the cats had a decreased cranial tibial reflex and 84.62% had a normal response, whereas after the block it was decreased in 26.92% and normal in 73.08% of the cats. None of the cats had an increased or absent reflex. Regarding the presence of both reflexes before and after anesthetic block, there was no significant difference at 1% ( P = 0.013). Conclusions and relevance The extensor carpi radialis and cranial tibial reflexes in cats are not strictly myotatic reflexes, as they are independent of the reflex arc, and may be idiomuscular responses. Therefore, they are not reliable for neurologic examination in this species.
[H reflex in patients with spastic quadriplegia].
Miyama, Sahoko; Arimoto, Kiyoshi; Kimiya, Satoshi
2009-01-01
Hoffmann reflex (H reflex) is an electrically elicited spinal monosynaptic reflex. H reflex was examined in 18 patients with spastic quadriplegia who had perinatal or postnatal problems. H reflex was elicitable in 11 patients for the abductor pollicis brevis (61.1%), 10 for the abductor digiti minimi (55.6%) and 16 for the abductor hallucis (88.9%). Because the abductor pollicis brevis and the abductor digiti minimi do not exhibit H reflex in normal subjects, it was suggested that the excitability of alpha motor neurons innervating these muscles was increased. H reflex was not detected for the extensor digitorum brevis in any patients, indicating the difference in the excitability among alpha motor neurons. In some patients, H reflex did not disappear under supramaximal stimuli. We conclude that the mechanism of evolution of H reflex in patients with spastic quadriplegia is different from that in normal subjects.
Makihara, Yukiko; Segal, Richard L; Wolpaw, Jonathan R; Thompson, Aiko K
2014-09-15
In normal animals, operant conditioning of the spinal stretch reflex or the H-reflex has lesser effects on synergist muscle reflexes. In rats and people with incomplete spinal cord injury (SCI), soleus H-reflex operant conditioning can improve locomotion. We studied in normal humans the impact of soleus H-reflex down-conditioning on medial (MG) and lateral gastrocnemius (LG) H-reflexes and on locomotion. Subjects completed 6 baseline and 30 conditioning sessions. During conditioning trials, the subject was encouraged to decrease soleus H-reflex size with the aid of visual feedback. Every sixth session, MG and LG H-reflexes were measured. Locomotion was assessed before and after conditioning. In successfully conditioned subjects, the soleus H-reflex decreased 27.2%. This was the sum of within-session (task dependent) adaptation (13.2%) and across-session (long term) change (14%). The MG H-reflex decreased 14.5%, due mainly to task-dependent adaptation (13.4%). The LG H-reflex showed no task-dependent adaptation or long-term change. No consistent changes were detected across subjects in locomotor H-reflexes, EMG activity, joint angles, or step symmetry. Thus, in normal humans, soleus H-reflex down-conditioning does not induce long-term changes in MG/LG H-reflexes and does not change locomotion. In these subjects, task-dependent adaptation of the soleus H-reflex is greater than it is in people with SCI, whereas long-term change is less. This difference from results in people with SCI is consistent with the fact that long-term change is beneficial in people with SCI, since it improves locomotion. In contrast, in normal subjects, long-term change is not beneficial and may necessitate compensatory plasticity to preserve satisfactory locomotion. Copyright © 2014 the American Physiological Society.
On the geometry of the space-time and motion of the spinning bodies
NASA Astrophysics Data System (ADS)
Trenčevski, Kostadin
2013-03-01
In this paper an alternative theory about space-time is given. First some preliminaries about 3-dimensional time and the reasons for its introduction are presented. Alongside the 3-dimensional space (S) the 3-dimensional space of spatial rotations (SR) is considered independently from the 3-dimensional space. Then it is given a model of the universe, based on the Lie groups of real and complex orthogonal 3 × 3 matrices in this 3+3+3-dimensional space. Special attention is dedicated for introduction and study of the space S × SR, which appears to be isomorphic to SO(3,ℝ) × SO(3,ℝ) or S 3 × S 3. The influence of the gravitational acceleration to the spinning bodies is considered. Some important applications of these results about spinning bodies are given, which naturally lead to violation of Newton's third law in its classical formulation. The precession of the spinning axis is also considered.
Vestibular activation of sympathetic nerve activity
NASA Technical Reports Server (NTRS)
Ray, C. A.; Carter, J. R.
2003-01-01
AIM: The vestibulosympathetic reflex refers to sympathetic nerve activation by the vestibular system. Animal studies indicate that the vestibular system assists in blood pressure regulation during orthostasis. Although human studies clearly demonstrate activation of muscle sympathetic nerve activity (MSNA) during engagement of the otolith organs, the role of the vestibulosympathetic reflex in maintaining blood pressure during orthostasis is not well-established. Examination of the vestibulosympathetic reflex with other cardiovascular reflexes indicates that it is a powerful and independent reflex. Ageing, which is associated with an increased risk for orthostatic hypotension, attenuates the vestibulosympathetic reflex. The attenuated reflex is associated with a reduction in arterial pressure. CONCLUSION: These findings suggest that the vestibulosympathetic reflex assists in blood pressure regulation in humans, but future studies examining this reflex in other orthostatically intolerant populations are necessary to address this hypothesis.
Li, Zan; Liu, Shan; Tan, Minmin; Song, Jinlin
2017-01-01
Objective To explore a new technique for reconstructing and measuring three-dimensional (3D) models of orthodontic plaster casts using multi-baseline digital close-range photogrammetry (MBDCRP) with a single-lens reflex camera. Study design Thirty sets of orthodontic plaster casts that do not exhibit severe horizontal overlap (>2 mm) between any two teeth were recorded by a single-lens reflex camera with 72 pictures taken in different directions. The 3D models of these casts were reconstructed and measured using the open source software MeshLab. These parameters, including mesio-distal crown diameter, arch width, and arch perimeter, were recorded six times on both the 3D digital models and on plaster casts by two examiners. Statistical analysis was carried out using the Bland–Altman method to measure agreement between the novel method and the traditional calliper method by calculating the differences between mean values. Results The average differences between the measurements of the photogrammetric 3D models and the plaster casts were 0.011–0.402mm. The mean differences between measurements obtained by the photogrammetric 3D models and the dental casts were not significant except for the lower arch perimeter (P>0.05), and all the differences were regarded as clinically acceptable (<0.5 mm). Conclusions Measurements obtained by MBDCRP are compared well with those obtained from plaster casts, indicating that MBDCRP is an alternate way to store and measure dental plaster casts without severe horizontal overlap between any two teeth. PMID:28640827
ERIC Educational Resources Information Center
Tremblay, Annie
2006-01-01
This study, a partial replication of Bruhn de Garavito (1999a; 1999b), investigates the second language (L2) acquisition of Spanish reflexive passives and reflexive impersonals by French- and English-speaking adults at an advanced level of proficiency. The L2 acquisition of Spanish reflexive passives and reflexive impersonals by native French and…
LeMoyne, Robert; Mastroianni, Timothy
2014-01-01
The patellar tendon reflex constitutes a fundamental aspect of the conventional neurological evaluation. Dysfunctional characteristics of the reflex response can augment the diagnostic acuity of a clinician for subsequent referral to more advanced medical resources. The capacity to quantify the reflex response while alleviating the growing strain on specialized medical resources is a topic of interest. The quantification of the tendon reflex response has been successfully demonstrated with considerable accuracy and consistency through using a potential energy impact pendulum attached to a reflex hammer for evoking the tendon reflex with a smartphone, such as an iPhone, application representing a wireless accelerometer platform to quantify reflex response. Another sensor integrated into the smartphone, such as an iPhone, is the gyroscope, which measures rate of angular rotation. A smartphone application enables wireless transmission through Internet connectivity of the gyroscope signal recording of the reflex response as an email attachment. The smartphone wireless gyroscope application demonstrates considerable accuracy and consistency for the quantification of the tendon reflex response.
H-reflex modulation in the human medial and lateral gastrocnemii during standing and walking
Makihara, Yukiko; Segal, Richard L.; Wolpaw, Jonathan R.; Thompson, Aiko K.
2011-01-01
Introduction The soleus H-reflex is dynamically modulated during walking. However, modulation of the gastrocnemii H-reflexes has not been studied systematically. Methods The medial and lateral gastrocnemii (MG and LG) and soleus H-reflexes were measured during standing and walking in humans. Results Maximum H-reflex amplitude was significantly smaller in MG (mean 1.1 mV) or LG (1.1 mV) than in soleus (3.3 mV). Despite these size differences, the reflex amplitudes of the three muscles were positively correlated. The MG and LG H-reflexes were phase- and task-dependently modulated in ways similar to the soleus H-reflex. Discussion Although there are anatomical and physiological differences between the soleus and gastrocnemii muscles, the reflexes of the three muscles are similarly modulated during walking and between standing and walking. The findings support the hypothesis that these reflexes are synergistically modulated during walking to facilitate ongoing movement. PMID:22190317
LeMoyne, Robert; Mastroianni, Timothy; Grundfest, Warren; Nishikawa, Kiisa
2013-01-01
The patellar tendon reflex represents an inherent aspect of the standard neurological evaluation. The features of the reflex response provide initial perspective regarding the status of the nervous system. An iPhone wireless accelerometer application integrated with a potential energy impact pendulum attached to a reflex hammer has been successfully developed, tested, and evaluated for quantifying the patellar tendon reflex. The iPhone functions as a wireless accelerometer platform. The wide coverage range of the iPhone enables the quantification of reflex response samples in rural and remote settings. The iPhone has the capacity to transmit the reflex response acceleration waveform by wireless transmission through email. Automated post-processing of the acceleration waveform provides feature extraction of the maximum acceleration of the reflex response ascertained after evoking the patellar tendon reflex. The iPhone wireless accelerometer application demonstrated the utility of the smartphone as a biomedical device, while providing accurate and consistent quantification of the reflex response.
ERIC Educational Resources Information Center
Eckhoff, Angela
2017-01-01
This research documents the use of digital media by young children in outdoor play spaces. The research was conducted at a child care center on an urban university campus in the southeastern USA. The research employed a participatory design and used a qualitative, reflexive approach to include the child's voice, ideas, and understandings of their…
(abstract) An Ada Language Modular Telerobot Task Execution System
NASA Technical Reports Server (NTRS)
Backes, Paul; Long, Mark; Steele, Robert
1993-01-01
A telerobotic task execution system is described which has been developed for space flight applications. The Modular Telerobot Task Execution System (MOTES) provides the remote site task execution capability in a local-remote telerobotic system. The system provides supervised autonomous control, shared control, and teleoperation for a redundant manipulator. The system is capable of nominal task execution as well as monitoring and reflex motion.
Vector calculus in non-integer dimensional space and its applications to fractal media
NASA Astrophysics Data System (ADS)
Tarasov, Vasily E.
2015-02-01
We suggest a generalization of vector calculus for the case of non-integer dimensional space. The first and second orders operations such as gradient, divergence, the scalar and vector Laplace operators for non-integer dimensional space are defined. For simplification we consider scalar and vector fields that are independent of angles. We formulate a generalization of vector calculus for rotationally covariant scalar and vector functions. This generalization allows us to describe fractal media and materials in the framework of continuum models with non-integer dimensional space. As examples of application of the suggested calculus, we consider elasticity of fractal materials (fractal hollow ball and fractal cylindrical pipe with pressure inside and outside), steady distribution of heat in fractal media, electric field of fractal charged cylinder. We solve the correspondent equations for non-integer dimensional space models.
Soleus H-reflex gain in humans walking and running under simulated reduced gravity
NASA Technical Reports Server (NTRS)
Ferris, D. P.; Aagaard, P.; Simonsen, E. B.; Farley, C. T.; Dyhre-Poulsen, P.
2001-01-01
The Hoffmann (H-) reflex is an electrical analogue of the monosynaptic stretch reflex, elicited by bypassing the muscle spindle and directly stimulating the afferent nerve. Studying H-reflex modulation provides insight into how the nervous system centrally modulates stretch reflex responses.A common measure of H-reflex gain is the slope of the relationship between H-reflex amplitude and EMG amplitude. To examine soleus H-reflex gain across a range of EMG levels during human locomotion, we used simulated reduced gravity to reduce muscle activity. We hypothesised that H-reflex gain would be independent of gravity level.We recorded EMG from eight subjects walking (1.25 m s-1) and running (3.0 m s-1) at four gravity levels (1.0, 0.75, 0.5 and 0.25 G (Earth gravity)). We normalised the stimulus M-wave and resulting H-reflex to the maximal M-wave amplitude (Mmax) elicited throughout the stride to correct for movement of stimulus and recording electrodes relative to nerve and muscle fibres. Peak soleus EMG amplitude decreased by 30% for walking and for running over the fourfold change in gravity. As hypothesised, slopes of linear regressions fitted to H-reflex versus EMG data were independent of gravity for walking and running (ANOVA, P > 0.8). The slopes were also independent of gait (P > 0.6), contrary to previous studies. Walking had a greater y-intercept (19.9% Mmax) than running (-2.5% Mmax; P < 0.001). At all levels of EMG, walking H-reflex amplitudes were higher than running H-reflex amplitudes by a constant amount. We conclude that the nervous system adjusts H-reflex threshold but not H-reflex gain between walking and running. These findings provide insight into potential neural mechanisms responsible for spinal modulation of the stretch reflex during human locomotion.
Soleus H-reflex gain in humans walking and running under simulated reduced gravity
Ferris, Daniel P; Aagaard, Per; Simonsen, Erik B; Farley, Claire T; Dyhre-Poulsen, Poul
2001-01-01
The Hoffmann (H-) reflex is an electrical analogue of the monosynaptic stretch reflex, elicited by bypassing the muscle spindle and directly stimulating the afferent nerve. Studying H-reflex modulation provides insight into how the nervous system centrally modulates stretch reflex responses. A common measure of H-reflex gain is the slope of the relationship between H-reflex amplitude and EMG amplitude. To examine soleus H-reflex gain across a range of EMG levels during human locomotion, we used simulated reduced gravity to reduce muscle activity. We hypothesised that H-reflex gain would be independent of gravity level. We recorded EMG from eight subjects walking (1.25 m s−1) and running (3.0 m s−1) at four gravity levels (1.0, 0.75, 0.5 and 0.25 G (Earth gravity)). We normalised the stimulus M-wave and resulting H-reflex to the maximal M-wave amplitude (Mmax) elicited throughout the stride to correct for movement of stimulus and recording electrodes relative to nerve and muscle fibres. Peak soleus EMG amplitude decreased by ≈30% for walking and for running over the fourfold change in gravity. As hypothesised, slopes of linear regressions fitted to H-reflex versus EMG data were independent of gravity for walking and running (ANOVA, P > 0.8). The slopes were also independent of gait (P > 0.6), contrary to previous studies. Walking had a greater y-intercept (19.9%Mmax) than running (-2.5%Mmax; P < 0.001). At all levels of EMG, walking H-reflex amplitudes were higher than running H-reflex amplitudes by a constant amount. We conclude that the nervous system adjusts H-reflex threshold but not H-reflex gain between walking and running. These findings provide insight into potential neural mechanisms responsible for spinal modulation of the stretch reflex during human locomotion. PMID:11136869
Pitts, Teresa
2014-01-01
Cough and swallow are highly coordinated reflex behaviors whose common purpose is to protect the airway. The pharynx is the common tube for air and food/liquid movement from the mouth into the thorax, has been largely overlooked, and is potentially seen as just a passive space. The thyropharyngeus muscle responds to cough inducing stimuli to prepare a transient holding area for material that has been removed from the subglottic airway. The cricopharyngeus muscle participates with the larynx to ensure regulation of pressure when a bolus/air is moving from the upper airway through to the thorax (i.e inspiration or swallow) or the reverse (i.e expiration reflex or vomiting).These vital mechanisms have not been evaluated in clinical conditions, but could be impaired in many neurodegenerative diseases leading to aspiration pneumonia. These newly described airway protective mechanisms need further study, especially in healthy and pathologic human populations. PMID:24297325
"What Do You Think We Should Do?": Relationship and Reflexivity in Participant Observation.
Elliot, Michelle L
2015-07-01
This article uses three concepts as a framework by which to examine how the interrelational elements of ethnographic approaches to qualitative inquiry reflect dimensions of therapeutic engagement. Participant observation, reflexivity, and context are all widely and routinely included within research methods; however, they are less frequently attended to directly in their experiential capacity through the lens of the researcher, clinician turned investigator. A unique study design will be profiled to reflect the complicated juxtaposition between methods, questions, sample population, time, space, and identity. Studying occupational therapy students traveling abroad for a short-term immersion experience, this narrative study called on a necessary and attentive awareness of locality as the researcher traveled with the group. Conducting ethnographic research where the researcher's therapeutic skills aided and constrained relationships resulted in rich, guarded, and relevant insights that parallel the therapeutic use of self in occupational therapy practice.
Neurodevelopmental Reflex Testing in Neonatal Rat Pups.
Nguyen, Antoinette T; Armstrong, Edward A; Yager, Jerome Y
2017-04-24
Neurodevelopmental reflex testing is commonly used in clinical practice to assess the maturation of the nervous system. Neurodevelopmental reflexes are also referred to as primitive reflexes. They are sensitive and consistent with later outcomes. Abnormal reflexes are described as an absence, persistence, reappearance, or latency of reflexes, which are predictive indices of infants that are at high risk for neurodevelopmental disorders. Animal models of neurodevelopmental disabilities, such as cerebral palsy, often display aberrant developmental reflexes, as would be observed in human infants. The techniques described assess a variety of neurodevelopmental reflexes in neonatal rats. Neurodevelopmental reflex testing offers the investigator a testing method that is not otherwise available in such young animals. The methodology presented here aims to assist investigators in examining developmental milestones in neonatal rats as a method of detecting early-onset brain injury and/or determining the effectiveness of therapeutic interventions. The methodology presented here aims to provide a general guideline for investigators.
Neural encoding of large-scale three-dimensional space-properties and constraints.
Jeffery, Kate J; Wilson, Jonathan J; Casali, Giulio; Hayman, Robin M
2015-01-01
How the brain represents represent large-scale, navigable space has been the topic of intensive investigation for several decades, resulting in the discovery that neurons in a complex network of cortical and subcortical brain regions co-operatively encode distance, direction, place, movement etc. using a variety of different sensory inputs. However, such studies have mainly been conducted in simple laboratory settings in which animals explore small, two-dimensional (i.e., flat) arenas. The real world, by contrast, is complex and three dimensional with hills, valleys, tunnels, branches, and-for species that can swim or fly-large volumetric spaces. Adding an additional dimension to space adds coding challenges, a primary reason for which is that several basic geometric properties are different in three dimensions. This article will explore the consequences of these challenges for the establishment of a functional three-dimensional metric map of space, one of which is that the brains of some species might have evolved to reduce the dimensionality of the representational space and thus sidestep some of these problems.
Reliability of the Achilles tendon tap reflex evoked during stance using a pendulum hammer.
Mildren, Robyn L; Zaback, Martin; Adkin, Allan L; Frank, James S; Bent, Leah R
2016-01-01
The tendon tap reflex (T-reflex) is often evoked in relaxed muscles to assess spinal reflex circuitry. Factors contributing to reflex excitability are modulated to accommodate specific postural demands. Thus, there is a need to be able to assess this reflex in a state where spinal reflex circuitry is engaged in maintaining posture. The aim of this study was to determine whether a pendulum hammer could provide controlled stimuli to the Achilles tendon and evoke reliable muscle responses during normal stance. A second aim was to establish appropriate stimulus parameters for experimental use. Fifteen healthy young adults stood on a forceplate while taps were applied to the Achilles tendon under conditions in which postural sway was constrained (by providing centre of pressure feedback) or unconstrained (no feedback) from an invariant release angle (50°). Twelve participants repeated this testing approximately six months later. Within one experimental session, tap force and T-reflex amplitude were found to be reliable regardless of whether postural sway was constrained (tap force ICC=0.982; T-reflex ICC=0.979) or unconstrained (tap force ICC=0.968; T-reflex ICC=0.964). T-reflex amplitude was also reliable between experimental sessions (constrained ICC=0.894; unconstrained ICC=0.890). When a T-reflex recruitment curve was constructed, optimal mid-range responses were observed using a 50° release angle. These results demonstrate that reliable Achilles T-reflexes can be evoked in standing participants without the need to constrain posture. The pendulum hammer provides a simple method to allow researchers and clinicians to gather information about reflex circuitry in a state where it is involved in postural control. Copyright © 2015 Elsevier B.V. All rights reserved.
Factors Affecting the Occurrence of Spinal Reflexes in Brain Dead Cases.
Hosseini, Mahsa Sadat; Ghorbani, Fariba; Ghobadi, Omid; Najafizadeh, Katayoun
2015-08-01
Brain death is defined as the permanent absence of all cortical and brain stem reflexes. A wide range of spontaneous or reflex movements that are considered medullary reflexes are observed in heart beating cases that appear brain dead, which may create uncertainty about the diagnosis of brain death and cause delays in deceased-donor organ donation process. We determined the frequency and type of medullary reflexes and factors affecting their occurrence in brain dead cases. During 1 year, 122 cases who fulfilled the criteria for brain death were admitted to the special intensive care unit for organ procurement of Masih Daneshvari Hospital. Presence of spinal reflexes was evaluated by trained coordinators and was recorded in a form in addition to other information including demographic characteristics, cause of brain death, time from detection of brain death, history of craniotomy, vital signs, serum electrolyte levels, and parameters of arterial blood gas determination. Most cases (63%) included in this study were male, and mean age was 33 ± 15 y. There was > 1 spinal reflex observed in 40 cases (33%). The most frequent reflex was plantar response (17%) following by myoclonus (10%), triple flexion reflex (9%), pronator extension reflex (8%), and undulating toe reflex (7%). Mean systolic blood pressure was significantly higher in cases who exhibited medullary reflexes than other cases (126 ± 19 mm Hg vs 116 ± 17 mm Hg; P = .007). Spinal reflexes occur frequently in brain dead cases, especially when they become hemodynamically stable after treatment in the organ procurement unit. Observing these movements by caregivers and family members has a negative effect on obtaining family consent and organ donation. Increasing awareness about spinal reflexes is necessary to avoid suspicion about the brain death diagnosis and delays in organ donation.
Stability of Internal Space in Kaluza-Klein Theory
NASA Astrophysics Data System (ADS)
Maeda, K.; Soda, J.
1998-12-01
We extend a model studied by Li and Gott III to investigate a stability of internal space in Kaluza-Klein theory. Our model is a four-dimensional de-Sitter space plus a n-dimensional compactified internal space. We introduce a solution of the semi-classical Einstein equation which shows us the fact that a n-dimensional compactified internal space can be stable by the Casimir effect. The self-consistency of this solution is checked. One may apply this solution to study the issue of the Black Hole singularity.
Three-dimensional marginal separation
NASA Technical Reports Server (NTRS)
Duck, Peter W.
1988-01-01
The three dimensional marginal separation of a boundary layer along a line of symmetry is considered. The key equation governing the displacement function is derived, and found to be a nonlinear integral equation in two space variables. This is solved iteratively using a pseudo-spectral approach, based partly in double Fourier space, and partly in physical space. Qualitatively, the results are similar to previously reported two dimensional results (which are also computed to test the accuracy of the numerical scheme); however quantitatively the three dimensional results are much different.
Shemmell, Jonathan; An, Je Hi; Perreault, Eric J.
2009-01-01
The motor cortex assumes an increasingly important role in higher mammals relative to that in lower mammals. This is true to such an extent that the human motor cortex is deeply involved in reflex regulation and it is common to speak of “transcortical reflex loops”. Such loops appear to add flexibility to the human stretch reflex, once considered to be immutable, allowing it to adapt across a range of functional tasks. However, the purpose of this adaptation remains unclear. A common proposal is that stretch reflexes contribute to the regulation of limb stability; increased reflex sensitivity during tasks performed in unstable environments supports this hypothesis. Alternatively, prior to movement onset, stretch reflexes can assist an imposed stretch, opposite to what would be expected from a stabilizing response. Here we show that stretch reflex modulation in tasks that require changes in limb stability is mediated by motor cortical pathways, and that these differ from pathways contributing to reflex modulation that depends on how the subject is instructed to react to an imposed perturbation. By timing muscle stretches such that the modulated portion of the reflex occurred within a cortical silent period induced by transcranial magnetic stimulation, we abolished the increase in reflex sensitivity observed when individuals stabilized arm posture within a compliant environment. Conversely, reflex modulation caused by altered task instruction was unaffected by cortical silence. These results demonstrate that task-dependent changes in reflex function can be mediated through multiple neural pathways and that these pathways have task specific roles. PMID:19846713
Shemmell, Jonathan; An, Je Hi; Perreault, Eric J
2009-10-21
The motor cortex assumes an increasingly important role in higher mammals relative to that in lower mammals. This is true to such an extent that the human motor cortex is deeply involved in reflex regulation and it is common to speak of "transcortical reflex loops." Such loops appear to add flexibility to the human stretch reflex, once considered to be immutable, allowing it to adapt across a range of functional tasks. However, the purpose of this adaptation remains unclear. A common proposal is that stretch reflexes contribute to the regulation of limb stability; increased reflex sensitivity during tasks performed in unstable environments supports this hypothesis. Alternatively, before movement onset, stretch reflexes can assist an imposed stretch, opposite to what would be expected from a stabilizing response. Here we show that stretch reflex modulation in tasks that require changes in limb stability is mediated by motor cortical pathways, and that these differ from pathways contributing to reflex modulation that depend on how the subject is instructed to react to an imposed perturbation. By timing muscle stretches such that the modulated portion of the reflex occurred within a cortical silent period induced by transcranial magnetic stimulation, we abolished the increase in reflex sensitivity observed when individuals stabilized arm posture within a compliant environment. Conversely, reflex modulation caused by altered task instruction was unaffected by cortical silence. These results demonstrate that task-dependent changes in reflex function can be mediated through multiple neural pathways and that these pathways have task-specific roles.
Higher-dimensional Bianchi type-VIh cosmologies
NASA Astrophysics Data System (ADS)
Lorenz-Petzold, D.
1985-09-01
The higher-dimensional perfect fluid equations of a generalization of the (1 + 3)-dimensional Bianchi type-VIh space-time are discussed. Bianchi type-V and Bianchi type-III space-times are also included as special cases. It is shown that the Chodos-Detweiler (1980) mechanism of cosmological dimensional-reduction is possible in these cases.
Persistence of deep-tendon reflexes during partial cataplexy.
Barateau, Lucie; Pizza, Fabio; Lopez, Régis; Antelmi, Elena; Plazzi, Giuseppe; Dauvilliers, Yves
2018-05-01
Deep-tendon reflexes are abolished during generalized cataplexy, but whether this is the case in partial cataplexy currently remains unknown. Partial cataplexy may mimic other neurologic/psychiatric phenomena, and knowledge of the reflexes status may provide information for differential diagnosis. We assessed whether deep-tendon reflexes are persistent during partial cataplexy. Five drug-free patients with typical diagnoses of narcolepsy and clear-cut partial cataplexy were diagnosed in Reference Narcolepsy Centers in France and Italy. Biceps and patellar reflexes were elicited by physicians in charge and video-documented during cataplexy. Reflexes were assessed several times for each patient in different conditions and for various localizations of cataplexy. The absence of tendon reflexes and complete loss of muscle tone during generalized cataplexy was confirmed, but the persistence of those reflexes during several partial cataplectic attacks at different ages, gender, localization of cataplexy (upper limbs, face) and reflexes (biceps, patellar) in drug-naive or withdrawal conditions was documented. The persistence of tendon reflexes during several partial cataplexy episodes contrasts with their absence during generalized cataplexy. This discovery has clinical implications: the persistence of tendon reflexes does not rule out cataplexy diagnosis for partial attacks, whereas their transient abolishment or persistence during generalized attacks indicates cataplexy or pseudocataplexy, respectively. Copyright © 2018. Published by Elsevier B.V.
High-Dimensional Function Approximation With Neural Networks for Large Volumes of Data.
Andras, Peter
2018-02-01
Approximation of high-dimensional functions is a challenge for neural networks due to the curse of dimensionality. Often the data for which the approximated function is defined resides on a low-dimensional manifold and in principle the approximation of the function over this manifold should improve the approximation performance. It has been show that projecting the data manifold into a lower dimensional space, followed by the neural network approximation of the function over this space, provides a more precise approximation of the function than the approximation of the function with neural networks in the original data space. However, if the data volume is very large, the projection into the low-dimensional space has to be based on a limited sample of the data. Here, we investigate the nature of the approximation error of neural networks trained over the projection space. We show that such neural networks should have better approximation performance than neural networks trained on high-dimensional data even if the projection is based on a relatively sparse sample of the data manifold. We also find that it is preferable to use a uniformly distributed sparse sample of the data for the purpose of the generation of the low-dimensional projection. We illustrate these results considering the practical neural network approximation of a set of functions defined on high-dimensional data including real world data as well.
THE GENERALIZATION OF SIERPINSKI CARPET AND MENGER SPONGE IN n-DIMENSIONAL SPACE
NASA Astrophysics Data System (ADS)
Yang, Yun; Feng, Yuting; Yu, Yanhua
In this paper, we generalize Sierpinski carpet and Menger sponge in n-dimensional space, by using the generations and characterizations of affinely-equivalent Sierpinski carpet and Menger sponge. Exactly, Menger sponge in 4-dimensional space could be drawn out clearly under an affine transformation. Furthermore, the method could be used to a much broader class in fractals.
ERIC Educational Resources Information Center
Taylor, Myra; Houghton, Stephen; Chapman, Elaine
2004-01-01
The present research studied the symptomatologic overlap of AD/HD behaviours and retention of four primitive reflexes (Moro, Tonic Labyrinthine Reflex [TLR], Asymmetrical Tonic Neck Reflex [ATNR], Symmetrical Tonic Neck Reflex [STNR]) in 109 boys aged 7-10 years. Of these, 54 were diagnosed with AD/HD, 34 manifested sub-syndromal coordination,…
Development of the Stretch Reflex in the Newborn: Reciprocal Excitation and Reflex Irradiation.
ERIC Educational Resources Information Center
Myklebust, Barbara M.; Gottlieb, Gerald L.
1993-01-01
When tendon jerk reflexes were tested in seven newborns from one- to three-days old, stretch reflex responses in all major muscle groups of the lower limb were elicited. This "irradiation of reflexes" is a normal phenomenon in newborns, with the pathway becoming suppressed during normal maturation. In individuals with cerebral palsy,…
Optimal Detection Range of RFID Tag for RFID-based Positioning System Using the k-NN Algorithm.
Han, Soohee; Kim, Junghwan; Park, Choung-Hwan; Yoon, Hee-Cheon; Heo, Joon
2009-01-01
Positioning technology to track a moving object is an important and essential component of ubiquitous computing environments and applications. An RFID-based positioning system using the k-nearest neighbor (k-NN) algorithm can determine the position of a moving reader from observed reference data. In this study, the optimal detection range of an RFID-based positioning system was determined on the principle that tag spacing can be derived from the detection range. It was assumed that reference tags without signal strength information are regularly distributed in 1-, 2- and 3-dimensional spaces. The optimal detection range was determined, through analytical and numerical approaches, to be 125% of the tag-spacing distance in 1-dimensional space. Through numerical approaches, the range was 134% in 2-dimensional space, 143% in 3-dimensional space.
Vestibular functions and sleep in space experiments. [using rhesus and owl monkeys
NASA Technical Reports Server (NTRS)
Perachio, A. A.
1977-01-01
Physical indices of sleep were continuously monitored in an owl monkey living in a chamber continuously rotating at a constant angular velocity. The electrophysiological data obtained from chronically implanted electrodes was analyzed to determine the chronic effects of vestibular stimulation on sleep and wakefulness cycles. The interaction of linear and angular acceleration on the vestibulo-ocular reflex was investigated in three rhesus monkeys at various angular accelerations.
Optimal Control of Evolution Mixed Variational Inclusions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alduncin, Gonzalo, E-mail: alduncin@geofisica.unam.mx
2013-12-15
Optimal control problems of primal and dual evolution mixed variational inclusions, in reflexive Banach spaces, are studied. The solvability analysis of the mixed state systems is established via duality principles. The optimality analysis is performed in terms of perturbation conjugate duality methods, and proximation penalty-duality algorithms to mixed optimality conditions are further presented. Applications to nonlinear diffusion constrained problems as well as quasistatic elastoviscoplastic bilateral contact problems exemplify the theory.
Reflexive obstacle avoidance for kinematically-redundant manipulators
NASA Technical Reports Server (NTRS)
Karlen, James P.; Thompson, Jack M., Jr.; Farrell, James D.; Vold, Havard I.
1989-01-01
Dexterous telerobots incorporating 17 or more degrees of freedom operating under coordinated, sensor-driven computer control will play important roles in future space operations. They will also be used on Earth in assignments like fire fighting, construction and battlefield support. A real time, reflexive obstacle avoidance system, seen as a functional requirement for such massively redundant manipulators, was developed using arm-mounted proximity sensors to control manipulator pose. The project involved a review and analysis of alternative proximity sensor technologies for space applications, the development of a general-purpose algorithm for synthesizing sensor inputs, and the implementation of a prototypical system for demonstration and testing. A 7 degree of freedom Robotics Research K-2107HR manipulator was outfitted with ultrasonic proximity sensors as a testbed, and Robotics Research's standard redundant motion control algorithm was modified such that an object detected by sensor arrays located at the elbow effectively applies a force to the manipulator elbow, normal to the axis. The arm is repelled by objects detected by the sensors, causing the robot to steer around objects in the workspace automatically while continuing to move its tool along the commanded path without interruption. The mathematical approach formulated for synthesizing sensor inputs can be employed for redundant robots of any kinematic configuration.
Hsu, Li‐Ju; Zelenin, Pavel V.; Orlovsky, Grigori N.
2016-01-01
Key points Spinal reflexes are substantial components of the motor control system in all vertebrates and centrally driven reflex modifications are essential to many behaviours, but little is known about the neuronal mechanisms underlying these modifications.To study this issue, we took advantage of an in vitro brainstem–spinal cord preparation of the lamprey (a lower vertebrate), in which spinal reflex responses to spinal cord bending (caused by signals from spinal stretch receptor neurons) can be evoked during different types of fictive behaviour.Our results demonstrate that reflexes observed during fast forward swimming are reversed during escape behaviours, with the reflex reversal presumably caused by supraspinal commands transmitted by a population of reticulospinal neurons.NMDA receptors are involved in the formation of these commands, which are addressed primarily to the ipsilateral spinal networks.In the present study the neuronal mechanisms underlying reflex reversal have been characterized for the first time. Abstract Spinal reflexes can be modified during different motor behaviours. However, our knowledge about the neuronal mechanisms underlying these modifications in vertebrates is scarce. In the lamprey, a lower vertebrate, body bending causes activation of intraspinal stretch receptor neurons (SRNs) resulting in spinal reflexes: activation of motoneurons (MNs) with bending towards either the contralateral or ipsilateral side (a convex or concave response, respectively). The present study had two main aims: (i) to investigate how these spinal reflexes are modified during different motor behaviours, and (ii) to reveal reticulospinal neurons (RSNs) transmitting commands for the reflex modification. For this purpose in in vitro brainstem–spinal cord preparation, RSNs and reflex responses to bending were recorded during different fictive behaviours evoked by supraspinal commands. We found that during fast forward swimming MNs exhibited convex responses. By contrast, during escape behaviours, MNs exhibited concave responses. We found RSNs that were activated during both stimulation causing reflex reversal without initiation of any specific behaviour, and stimulation causing reflex reversal during escape behaviour. We suggest that these RSNs transmit commands for the reflex modification. Application of the NMDA antagonist (AP‐5) to the brainstem significantly decreased the reversed reflex, suggesting involvement of NMDA receptors in the formation of these commands. Longitudinal split of the spinal cord did not abolish the reflex reversal caused by supraspinal commands, suggesting an important role for ipsilateral networks in determining this type of motor response. This is the first study to reveal the neuronal mechanisms underlying supraspinal control of reflex reversal. PMID:27589479
The use of virtual reality to reimagine two-dimensional representations of three-dimensional spaces
NASA Astrophysics Data System (ADS)
Fath, Elaine
2015-03-01
A familiar realm in the world of two-dimensional art is the craft of taking a flat canvas and creating, through color, size, and perspective, the illusion of a three-dimensional space. Using well-explored tricks of logic and sight, impossible landscapes such as those by surrealists de Chirico or Salvador Dalí seem to be windows into new and incredible spaces which appear to be simultaneously feasible and utterly nonsensical. As real-time 3D imaging becomes increasingly prevalent as an artistic medium, this process takes on an additional layer of depth: no longer is two-dimensional space restricted to strategies of light, color, line and geometry to create the impression of a three-dimensional space. A digital interactive environment is a space laid out in three dimensions, allowing the user to explore impossible environments in a way that feels very real. In this project, surrealist two-dimensional art was researched and reimagined: what would stepping into a de Chirico or a Magritte look and feel like, if the depth and distance created by light and geometry were not simply single-perspective illusions, but fully formed and explorable spaces? 3D environment-building software is allowing us to step into these impossible spaces in ways that 2D representations leave us yearning for. This art project explores what we gain--and what gets left behind--when these impossible spaces become doors, rather than windows. Using sketching, Maya 3D rendering software, and the Unity Engine, surrealist art was reimagined as a fully navigable real-time digital environment. The surrealist movement and its key artists were researched for their use of color, geometry, texture, and space and how these elements contributed to their work as a whole, which often conveys feelings of unexpectedness or uneasiness. The end goal was to preserve these feelings while allowing the viewer to actively engage with the space.
High dimensional feature reduction via projection pursuit
NASA Technical Reports Server (NTRS)
Jimenez, Luis; Landgrebe, David
1994-01-01
The recent development of more sophisticated remote sensing systems enables the measurement of radiation in many more spectral intervals than previously possible. An example of that technology is the AVIRIS system, which collects image data in 220 bands. As a result of this, new algorithms must be developed in order to analyze the more complex data effectively. Data in a high dimensional space presents a substantial challenge, since intuitive concepts valid in a 2-3 dimensional space to not necessarily apply in higher dimensional spaces. For example, high dimensional space is mostly empty. This results from the concentration of data in the corners of hypercubes. Other examples may be cited. Such observations suggest the need to project data to a subspace of a much lower dimension on a problem specific basis in such a manner that information is not lost. Projection Pursuit is a technique that will accomplish such a goal. Since it processes data in lower dimensions, it should avoid many of the difficulties of high dimensional spaces. In this paper, we begin the investigation of some of the properties of Projection Pursuit for this purpose.
Dua, Kulwinder; Surapaneni, Sri Naveen; Kuribayashi, Shiko; Hafeezullah, Mohammed; Shaker, Reza
2011-06-01
Direct evidence to support the airway protective function of aerodigestive reflexes triggered by pharyngeal stimulation was previously demonstrated by abolishing these reflexes by topical pharyngeal anesthesia in normal subjects. Studies have also shown that these reflexes deteriorate in cigarette smokers. Aim of this study was to determine the influence of defective pharyngeal aerodigestive reflexes on airway protection in cigarette smokers. Pharyngoglottal Closure reflex; PGCR, Pharyngo-UES Contractile reflex; PUCR, and Reflexive Pharyngeal Swallow; RPS were studied in 15 healthy non-smokers (24.2±3.3 SD y, 7 males) and 15 healthy chronic smokers (27.3±8.1, 7 males). To elicit these reflexes and to evaluate aspiration, colored water was perfused into the hypopharynx at the rate of 1 mL/min. Maximum volume of water that can safely dwell in the hypopharynx before spilling into the larynx (Hypopharyngeal Safe Volume; HPSV) and the threshold volume to elicit PGCR, PUCR, and RPS were determined in smokers and results compared with non-smokers. At baseline, RPS was elicited in all non-smokers (100%) and in only 3 of 15 smokers (20%; P<.001). None of the non-smokers showed evidence of laryngeal spillage of water, whereas 12 of 15 smokers with absent RPS had laryngeal spillage. Pharyngeal anesthesia abolished RPS reflex in all non-smokers resulting in laryngeal spillage. The HPSV was 0.61±0.06 mL and 0.76±0.06 mL in non-smokers and smokers respectively (P=.1). Deteriorated reflexive pharyngeal swallow in chronic cigarette smokers predispose them to risks of aspiration and similarly, abolishing this reflex in non-smokers also results in laryngeal spillage. These observations directly demonstrate the airway protective function of RPS. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.
Representations of body and space: theoretical concepts and controversies.
Trojan, Jörg
2015-09-01
Recent years have seen a revived interest in how body and space are represented perceptually and how they affect human cognition and behaviour. Various conceptualisations of body and space have been proposed, alternately stressing neurophysiological, cognitive, or social aspects, but unified approaches are scarce. This short paper will give an overview of different views on body and space. At least three relevant dimensions can be identified in which concepts of body and space may differ: (1) perspective: while we conceptually differentiate between body and space perception, they imply each other and the underlying mechanisms overlap. (2) Level: representations of body and space may emerge at different processing levels, from spinal mechanisms guiding reflex movements to those we construct in our imagination. (3) Affect: representations of body and space are closely linked to affect, but this relationship has not received enough attention yet. Despite many empirical findings, our current views on body and space representations remain ambiguous. One problem may lie in the implicit diversity of "bodies" and "spaces" examined in different studies. Specifications of these concepts may help understand existing results better and are important for guiding future research.
Reversible grasp reflexes in normal pressure hydrocephalus.
Thomas, Rhys H; Bennetto, Luke; Silva, Mark T
2009-05-01
We present two cases of normal pressure hydrocephalus in combination with grasp reflexes. In both cases the grasp reflexes disappeared following high volume cerebrospinal fluid removal. In one of the cases the grasp reflexes returned over a period of weeks but again resolved following definitive cerebrospinal fluid shunting surgery, and remained absent until final follow up at 9 months. We hypothesise that resolving grasp reflexes following high volume CSF removal has both diagnostic and prognostic value in normal pressure hydrocephalus, encouraging larger studies on the relevance of primitive reflexes in NPH.
2008-01-01
the sensor is a data cloud in multi- dimensional space with each band generating an axis of dimension. When the data cloud is viewed in two or three...endmember of interest is not a true endmember in the data space . A ) B) Figure 8: Linear mixture models. A ) two- dimensional ...multi- dimensional space . A classifier is a computer algorithm that takes
2008-01-09
The image data as acquired from the sensor is a data cloud in multi- dimensional space with each band generating an axis of dimension. When the data... The color of a material is defined by the direction of its unit vector in n- dimensional spectral space . The length of the vector relates only to how...to n- dimensional space . SAM determines the similarity
Goodman, Shawn S; Keefe, Douglas H
2006-06-01
Otoacoustic emissions serve as a noninvasive probe of the medial olivocochlear (MOC) reflex. Stimulus frequency otoacoustic emissions (SFOAEs) elicited by a low-level probe tone may be the optimal type of emission for studying MOC effects because at low levels, the probe itself does not elicit the MOC reflex [Guinan et al. (2003) J. Assoc. Res. Otolaryngol. 4:521]. Based on anatomical considerations, the MOC reflex activated by ipsilateral acoustic stimulation (mediated by the crossed olivocochlear bundle) is predicted to be stronger than the reflex to contralateral stimulation. Broadband noise is an effective activator of the MOC reflex; however, it is also an effective activator of the middle-ear muscle (MEM) reflex, which can make results difficult to interpret. The MEM reflex may be activated at lower levels than measured clinically, and most previous human studies have not explicitly included measurements to rule out MEM reflex contamination. The current study addressed these issues using a higher-frequency SFOAE probe tone to test for cochlear changes mediated by the MOC reflex, while simultaneously monitoring the MEM reflex using a low-frequency probe tone. Broadband notched noise was presented ipsilaterally at various levels to elicit probe-tone shifts. Measurements are reported for 15 normal-hearing subjects. With the higher-frequency probe near 1.5 kHz, only 20% of subjects showed shifts consistent with an MOC reflex in the absence of an MEM-induced shift. With the higher-frequency probe near 3.5 kHz, up to 40% of subjects showed shifts in the absence of an MEM-induced shift. However, these responses had longer time courses than expected for MOC-induced shifts, and may have been dominated by other cochlear processes, rather than MOC reflex. These results suggest caution in the interpretation of effects observed using ipsilaterally presented acoustic activators intended to excite the MOC reflex.
Answers in search of a question: 'proofs' of the tri-dimensionality of space
NASA Astrophysics Data System (ADS)
Callender, Craig
From Kant's first published work to recent articles in the physics literature, philosophers and physicists have long sought an answer to the question: Why does space have three dimensions? In this paper, I will flesh out Kant's claim with a brief detour through Gauss' law. I then describe Büchel's version of the common argument that stable orbits are possible only if space is three dimensional. After examining objections by Russell and van Fraassen, I develop three original criticisms of my own. These criticisms are relevant to both historical and contemporary proofs of the dimensionality of space (in particular, a recent one by Burgbacher, Lämmerzahl, and Macias). In general, I argue that modern "proofs" of the dimensionality of space have gone off track.
Retention of primitive reflexes and delayed motor development in very low birth weight infants.
Marquis, P J; Ruiz, N A; Lundy, M S; Dillard, R G
1984-06-01
Primitive reflexes and motor development were evaluated in 127 very low birth weight (VLBW) infants (birth weight less than 1501 grams) at four months corrected age. The asymmetrical tonic neck reflex, tonic labyrinth reflex, and Moro reflex were assessed for each child. The ability of each child to reach (obtain a red ring) and roll were observed. The child's performance on the gross motor scale of the Denver Development Screening Test was recorded. Thirty-seven term infants were administered identical evaluations at four months of age. The VLBW infants retained stronger primitive reflexes and exhibited a significantly higher incidence of motor delays than term infants. Significant correlations existed between the strength of the primitive reflexes and early motor development for VLBW infants. This study confirms a high incidence of motor delays among VLBW infants and demonstrates a clear association between retained primitive reflexes and delayed motor development in VLBW infants.
Interlimb Reflexes Induced by Electrical Stimulation of Cutaneous Nerves after Spinal Cord Injury
Butler, Jane E.; Godfrey, Sharlene; Thomas, Christine K.
2016-01-01
Whether interlimb reflexes emerge only after a severe insult to the human spinal cord is controversial. Here the aim was to examine interlimb reflexes at rest in participants with chronic (>1 year) spinal cord injury (SCI, n = 17) and able-bodied control participants (n = 5). Cutaneous reflexes were evoked by delivering up to 30 trains of stimuli to either the superficial peroneal nerve on the dorsum of the foot or the radial nerve at the wrist (5 pulses, 300 Hz, approximately every 30 s). Participants were instructed to relax the test muscles prior to the delivery of the stimuli. Electromyographic activity was recorded bilaterally in proximal and distal arm and leg muscles. Superficial peroneal nerve stimulation evoked interlimb reflexes in ipsilateral and contralateral arm and contralateral leg muscles of SCI and control participants. Radial nerve stimulation evoked interlimb reflexes in the ipsilateral leg and contralateral arm muscles of control and SCI participants but only contralateral leg muscles of control participants. Interlimb reflexes evoked by superficial peroneal nerve stimulation were longer in latency and duration, and larger in magnitude in SCI participants. Interlimb reflex properties were similar for both SCI and control groups for radial nerve stimulation. Ascending interlimb reflexes tended to occur with a higher incidence in participants with SCI, while descending interlimb reflexes occurred with a higher incidence in able-bodied participants. However, the overall incidence of interlimb reflexes in SCI and neurologically intact participants was similar which suggests that the neural circuitry underlying these reflexes does not necessarily develop after central nervous system injury. PMID:27049521
Compactification on phase space
NASA Astrophysics Data System (ADS)
Lovelady, Benjamin; Wheeler, James
2016-03-01
A major challenge for string theory is to understand the dimensional reduction required for comparison with the standard model. We propose reducing the dimension of the compactification by interpreting some of the extra dimensions as the energy-momentum portion of a phase-space. Such models naturally arise as generalized quotients of the conformal group called biconformal spaces. By combining the standard Kaluza-Klein approach with such a conformal gauge theory, we may start from the conformal group of an n-dimensional Euclidean space to form a 2n-dimensional quotient manifold with symplectic structure. A pair of involutions leads naturally to two n-dimensional Lorentzian manifolds. For n = 5, this leaves only two extra dimensions, with a countable family of possible compactifications and an SO(5) Yang-Mills field on the fibers. Starting with n=6 leads to 4-dimensional compactification of the phase space. In the latter case, if the two dimensions each from spacetime and momentum space are compactified onto spheres, then there is an SU(2)xSU(2) (left-right symmetric electroweak) field between phase and configuration space and an SO(6) field on the fibers. Such a theory, with minor additional symmetry breaking, could contain all parts of the standard model.
Snow, M E; Crippen, G M
1991-08-01
The structure of the AMBER potential energy surface of the cyclic tetrapeptide cyclotetrasarcosyl is analyzed as a function of the dimensionality of coordinate space. It is found that the number of local energy minima decreases as the dimensionality of the space increases until some limit at which point equipotential subspaces appear. The applicability of energy embedding methods to finding global energy minima in this type of energy-conformation space is explored. Dimensional oscillation, a computationally fast variant of energy embedding is introduced and found to sample conformation space widely and to do a good job of finding global and near-global energy minima.
The Dynamics of the Stapedial Acoustic Reflex.
NASA Astrophysics Data System (ADS)
Moss, Sherrin Mary
Available from UMI in association with The British Library. This thesis aims to separate the neural and muscular components of the stapedial acoustic reflex, both anatomically and physiologically. It aims to present an hypothesis to account for the differences between ipsilateral and contralateral reflex characteristics which have so far been unexplained, and achieve a greater understanding of the mechanisms underlying the reflex dynamics. A technique enabling faithful reproduction of the time course of the reflex is used throughout the experimental work. The technique measures tympanic membrane displacement as a result of reflex stapedius muscle contraction. The recorded response can be directly related to the mechanics of the middle ear and stapedius muscle contraction. Some development of the technique is undertaken by the author. A model of the reflex neural arc and stapedius muscle dynamics is evolved that is based upon a second order system. The model is unique in that it includes a latency in the ipsilateral negative feedback loop. Oscillations commonly observed on reflex responses are seen to be produced because of the inclusion of a latency in the feedback loop. The model demonstrates and explains the complex relationships between neural and muscle dynamic parameters observed in the experimental work. This more comprehensive understanding of the interaction between the stapedius dynamics and the neural arc of the reflex would not usually have been possible using human subjects, coupled with a non-invasive measurement technique. Evidence from the experimental work revealed the ipsilateral reflex to have, on average, a 5 dB lower threshold than the contralateral reflex. The oscillatory charcteristics, and the steady state response, of the contralateral reflex are also seen to be significantly different from those of the ipsilateral reflex. An hypothesis to account for the experimental observations is proposed. It is propounded that chemical neurotransmitters, and their effect upon the contralateral reflex arc from the site of the superior olivary complex to the motoneurones innervating the stapedius, account for the difference between the contralateral and ipsilateral reflex thresholds and dynamic characteristics. In the past two years the measurement technique used for the experimental work has developed from an audiological to a neurological diagnostic tool. This has enabled the results from the study to be applied in the field for valuable biomechanical and neurological explanations of the reflex response. (Abstract shortened by UMI.).
Sensory feedback from the urethra evokes state-dependent lower urinary tract reflexes in rat.
Danziger, Zachary C; Grill, Warren M
2017-08-15
The lower urinary tract is regulated by reflexes responsible for maintaining continence and producing efficient voiding. It is unclear how sensory information from the bladder and urethra engages differential, state-dependent reflexes to either maintain continence or promote voiding. Using a new in vivo experimental approach, we quantified how sensory information from the bladder and urethra are integrated to switch reflex responses to urethral sensory feedback from maintaining continence to producing voiding. The results demonstrate how sensory information regulates state-dependent reflexes in the lower urinary tract and contribute to our understanding of the pathophysiology of urinary retention and incontinence where sensory feedback may engage these reflexes inappropriately. Lower urinary tract reflexes are mediated by peripheral afferents from the bladder (primarily in the pelvic nerve) and the urethra (in the pudendal and pelvic nerves) to maintain continence or initiate micturition. If fluid enters the urethra at low bladder volumes, reflexes relax the bladder and evoke external urethral sphincter (EUS) contraction (guarding reflex) to maintain continence. Conversely, urethral flow at high bladder volumes, excites the bladder (micturition reflex) and relaxes the EUS (augmenting reflex). We conducted measurements in a urethane-anaesthetized in vivo rat preparation to characterize systematically the reflexes evoked by fluid flow through the urethra. We used a novel preparation to manipulate sensory feedback from the bladder and urethra independently by controlling bladder volume and urethral flow. We found a distinct bladder volume threshold (74% of bladder capacity) above which flow-evoked bladder contractions were 252% larger and evoked phasic EUS activation 2.6 times as often as responses below threshold, clearly demonstrating a discrete transition between continence (guarding) and micturition (augmenting) reflexes. Below this threshold urethral flow evoked tonic EUS activity, indicative of the guarding reflex, that was proportional to the urethral flow rate. These results demonstrate the complementary roles of sensory feedback from the bladder and urethra in regulating reflexes in the lower urinary tract that depend on the state of the bladder. Understanding the neural control of functional reflexes and how they are mediated by sensory information in the bladder and urethra will open new opportunities, especially in neuromodulation, to treat pathologies of the lower urinary tract. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
NASA Astrophysics Data System (ADS)
Bolonkin, A.
The purpose of this article is to call attention to the revolutionary idea of multi-reflection. This idea allows the design of new engines, space propulsion systems, storage of a beam and solar energy, transmission of energy over millions of kilometers, a new weapon, etc. This method and its main innovations were offered by the author in 1983 in the former USSR. Now the author shows in a series of articles the huge possibilities of this idea in many fields such as space, aviation, energy, energy transmission, beam amplification, light transformation and so on. This article considers the direct transfer of light beam energy to mechanical energy and back.
Zheng, Chaojun; Zhu, Yu; Lv, Feizhou; Ma, Xiaosheng; Xia, Xinlei; Wang, Lixun; Jin, Xiang; Weber, Robert; Jiang, Jianyuan; Anuvat, Kevin
2014-12-01
The H-reflex of the flexor carpi radialis (FCR H-reflex) has not been commonly used for the diagnosis of cervical radiculopathy when compared with the routinely tested soleus H-reflex. Although both S1 and S2 roots innervate the soleus, the H-reflex is selectively related to S1 nerve root function clinically. Flexor carpi radialis is also innervated by two nerve roots which are C6 and C7. Although they are among the most common roots involved in cervical radiculopathy, few studies reported if the attenuation of the FCR H-reflex is caused by lesions affecting C7 or C6 nerve roots, or both. We aimed to identify whether an abnormal FCR H-reflex was attributed to the C7 or C6 nerve root lesion, or both. The sensitivities of needle electromyography, FCR H-reflex, and provocative tests in unilateral C7 or C6 radiculopathy were also compared in this study. A concentric needle electrode recorded bilateral FCR H-reflexes in 41 normal subjects (control group), 51 patients with C7 radiculopathy, and 54 patients with C6 radiculopathy. Clinical, radiological, and surgical approaches identified the precise single cervical nerve root involved in all patient groups. The H-reflex and M-wave latencies were measured and compared bilaterally. Abnormal FCR H-reflex was defined as the absence of the H-reflex or a side-to-side difference over 1.5 milliseconds which was based on the normal side-to-side difference of the H-reflex latency of 16.9 milliseconds (SD = 1.7 milliseconds) from the control group. We also determined standard median and ulnar conduction and needle electromyography. The provocative tests included bilateral determination of the Shoulder Abduction and Spurling's tests in all radiculopathy group patients. Abnormal FCR H-reflexes were recorded in 45 (88.2%) of C7 radiculopathy group patients, and 2 (3.7%) of C6 radiculopathy group patients (P < 0.05). Needle electromyography was abnormal in 41 (80.4%) of C7 radiculopathy patients and 43 (79.6%) of C6 radiculopathy patients. Provocative tests were positive in 15 (29.4%) of C7 radiculopathy patients and 25 (46.3%) of C6 radiculopathy patients. Flexor carpi radialis H-Reflex provides a sensitive assessment of evaluating the C7 spinal reflex pathway. Clinically, a combination of the FCR H-reflex with needle electromyography may yield the highest level of diagnostic information for evaluating clinical cases of C7 radiculopathy.
A sparse grid based method for generative dimensionality reduction of high-dimensional data
NASA Astrophysics Data System (ADS)
Bohn, Bastian; Garcke, Jochen; Griebel, Michael
2016-03-01
Generative dimensionality reduction methods play an important role in machine learning applications because they construct an explicit mapping from a low-dimensional space to the high-dimensional data space. We discuss a general framework to describe generative dimensionality reduction methods, where the main focus lies on a regularized principal manifold learning variant. Since most generative dimensionality reduction algorithms exploit the representer theorem for reproducing kernel Hilbert spaces, their computational costs grow at least quadratically in the number n of data. Instead, we introduce a grid-based discretization approach which automatically scales just linearly in n. To circumvent the curse of dimensionality of full tensor product grids, we use the concept of sparse grids. Furthermore, in real-world applications, some embedding directions are usually more important than others and it is reasonable to refine the underlying discretization space only in these directions. To this end, we employ a dimension-adaptive algorithm which is based on the ANOVA (analysis of variance) decomposition of a function. In particular, the reconstruction error is used to measure the quality of an embedding. As an application, the study of large simulation data from an engineering application in the automotive industry (car crash simulation) is performed.
A new hypothesis of cause of syncope: trigeminocardiac reflex during extraction of teeth.
Arakeri, Gururaj; Arali, Veena
2010-02-01
Transient Loss Of Consciousness (TLOC) or vasovagal syncope is well known phenomenon in dental/maxillofacial surgery. Despite considerable study of vasovagal syncope, its pathophysiology remains to be fully elucidated. After having encountered a case of trigeminocardiac reflex after extraction of maxillary first molar we observed and studied 400 extractions under local anesthesia to know the relation between trigeminocardiac reflex and syncope. We make hypothesis that trigeminocardiac reflex which is usually seen under general anesthesia when all sympathetic reflexes are blunted can also occur under local anesthesia during extractions of maxillary molars (dento-cardiac reflex) and mediate syncope.
On the Ck-embedding of Lorentzian manifolds in Ricci-flat spaces
NASA Astrophysics Data System (ADS)
Avalos, R.; Dahia, F.; Romero, C.
2018-05-01
In this paper, we investigate the problem of non-analytic embeddings of Lorentzian manifolds in Ricci-flat semi-Riemannian spaces. In order to do this, we first review some relevant results in the area and then motivate both the mathematical and physical interests in this problem. We show that any n-dimensional compact Lorentzian manifold (Mn, g), with g in the Sobolev space Hs+3, s >n/2 , admits an isometric embedding in a (2n + 2)-dimensional Ricci-flat semi-Riemannian manifold. The sharpest result available for these types of embeddings, in the general setting, comes as a corollary of Greene's remarkable embedding theorems R. Greene [Mem. Am. Math. Soc. 97, 1 (1970)], which guarantee the embedding of a compact n-dimensional semi-Riemannian manifold into an n(n + 5)-dimensional semi-Euclidean space, thereby guaranteeing the embedding into a Ricci-flat space with the same dimension. The theorem presented here improves this corollary in n2 + 3n - 2 codimensions by replacing the Riemann-flat condition with the Ricci-flat one from the beginning. Finally, we will present a corollary of this theorem, which shows that a compact strip in an n-dimensional globally hyperbolic space-time can be embedded in a (2n + 2)-dimensional Ricci-flat semi-Riemannian manifold.
Maximum projection designs for computer experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joseph, V. Roshan; Gul, Evren; Ba, Shan
Space-filling properties are important in designing computer experiments. The traditional maximin and minimax distance designs only consider space-filling in the full dimensional space. This can result in poor projections onto lower dimensional spaces, which is undesirable when only a few factors are active. Restricting maximin distance design to the class of Latin hypercubes can improve one-dimensional projections, but cannot guarantee good space-filling properties in larger subspaces. We propose designs that maximize space-filling properties on projections to all subsets of factors. We call our designs maximum projection designs. As a result, our design criterion can be computed at a cost nomore » more than a design criterion that ignores projection properties.« less
Maximum projection designs for computer experiments
Joseph, V. Roshan; Gul, Evren; Ba, Shan
2015-03-18
Space-filling properties are important in designing computer experiments. The traditional maximin and minimax distance designs only consider space-filling in the full dimensional space. This can result in poor projections onto lower dimensional spaces, which is undesirable when only a few factors are active. Restricting maximin distance design to the class of Latin hypercubes can improve one-dimensional projections, but cannot guarantee good space-filling properties in larger subspaces. We propose designs that maximize space-filling properties on projections to all subsets of factors. We call our designs maximum projection designs. As a result, our design criterion can be computed at a cost nomore » more than a design criterion that ignores projection properties.« less
The Reflexes of the Fundus Oculi
Ballantyne, A. J.
1940-01-01
The fundus reflexes reveal, in a manner not yet completely understood, the texture and contour of the reflecting surfaces and the condition of the underlying tissues. In this way they may play an important part in the biomicroscopy of the eye. The physiological reflexes are seen at their best in the eyes of young subjects, in well-pigmented eyes, with undilated pupils and with emmetropic refraction. Their absence during the first two decades, or their presence after the forties, their occurrence in one eye only, their appearance, disappearance or change of character should suggest the possibility of some pathological state. The investigation and interpretation of the reflexes are notably assisted by comparing the appearances seen with long and short wave lights such as those of the sodium and mercury vapour lamps, in addition to the usual ophthalmoscopic lights. Most of the surface reflexes disappear in the light of the sodium lamp, sometimes revealing important changes in the deeper layers of the retina and choroid. The physiological reflexes, chiefly formed on the surface of the internal limiting membrane, take the forms of the familiar watered silk or patchy reflexes, the peri-macular halo, the fan reflex in the macular depression and the reflex from the foveal pit. The watered silk or patchy reflexes often show a delicate striation which follows the pattern of the nerve-fibre layer, or there may be a granular or criss-cross texture. Reflexes which entirely lack these indications of “texture” should be considered as possibly pathological. This applies to the “beaten metal” reflexes and to those formed on the so-called hyaloid membrane. The occurrence of physiological reflexes in linear form is doubtful, and the only admittedly physiological punctate reflexes are the so-called Gunn's dots. Surface reflexes which are broken up into small points or flakes are pathological, and are most frequently seen in the central area of the fundus in cases of pigmentary degeneration of the retina or after the subsidence of severe retinitis or retino-choroiditis. A mirror reflex from the layer of pigmented epithelium or from the external limiting membrane is sometimes recognizable in normal eyes, especially in the brunette fundus. In such, it forms the background to a striking picture of the fine circumfoveal vessels. Pathological reflexes from the level of the pigmented epithelium or of the external limiting membrane are also observed, and these often present a granular, frosted or crystalline appearance. They may indicate a senile change, or result from trauma or from retino-choroidal degeneraion. Somewhat similar reflexes may sometimes be present as small frosted patches anterior to the retinal vessels. Linear sinuous, whether appearing in annular form, as straight needles, as broader single sinuous lines, as the tapering, branched double reflexes of Vogt, or in association with traction or pressure folds, in the retina, are probably always pathological. By the use of selected light of long and short wave lengths, it can be shown that intraretinal or true retinal folds may exist with or without the surface reflexes which indicate a corresponding folding of the internal limiting membrane. On the other hand, superficial linear reflexes of various types may occur without evidence of retinal folding. Annular reflexes usually accompany a rounded elevation of the retina due to tumour, hæmorrhage or exudate, but may indicate the presence of rounded depressions; traction folds occur where there is choroido-retinal scarring, or in association with macular hole or cystic degeneraion at the macula; pressure folds in cases of orbital cyst, abscess or neoplasm; and the other linear reflexes in association with papillo-retinal œdema, for example, in retrobulbar neuritis, in hypertensive neuro-retinitis, in contusio bulbi and in anterior uveitis. Punctate reflexes, other than Gunn's dots, are also pathological. They may occur as one variety of “fragmented” surface reflexes, or as evidence of the presence of some highly refractile substance, such as cholesterin or calcium carbonate, in a retinal exudate or other lesion. It is characteristic of the pathological reflexes that they come and go and change their character according to the progress of the pathological condition. The linear reflexes in particular may change from one from to another, and may be finally transformed into surface reflexes of physiological character. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7Fig. 8Fig. 9Fig. 10Fig. 11Fig. 12Fig. 13Fig. 14Fig. 15Fig. 16Fig. 17Fig. 18Fig. 19Fig. 20Fig. 21Fig. 22Fig. 23Fig. 24Fig. 25Fig. 26 PMID:19992307
Three-dimensional desirability spaces for quality-by-design-based HPLC development.
Mokhtar, Hatem I; Abdel-Salam, Randa A; Hadad, Ghada M
2015-04-01
In this study, three-dimensional desirability spaces were introduced as a graphical representation method of design space. This was illustrated in the context of application of quality-by-design concepts on development of a stability indicating gradient reversed-phase high-performance liquid chromatography method for the determination of vinpocetine and α-tocopheryl acetate in a capsule dosage form. A mechanistic retention model to optimize gradient time, initial organic solvent concentration and ternary solvent ratio was constructed for each compound from six experimental runs. Then, desirability function of each optimized criterion and subsequently the global desirability function were calculated throughout the knowledge space. The three-dimensional desirability spaces were plotted as zones exceeding a threshold value of desirability index in space defined by the three optimized method parameters. Probabilistic mapping of desirability index aided selection of design space within the potential desirability subspaces. Three-dimensional desirability spaces offered better visualization and potential design spaces for the method as a function of three method parameters with ability to assign priorities to this critical quality as compared with the corresponding resolution spaces. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
[Clinical techniques for use in neurological physical examinations. II. Motor and reflex functions].
Rodríguez-García, P L; Rodríguez-Pupo, L; Rodríguez-García, D
The aim of this study is to highlight the chief practical aspects of the techniques used in the neurological physical examination of the motor and reflex functions. We recommend clinicians to carry out a brief but consistent and effective exploration in a systematic, flexible and orderly manner to check for abnormalities in the motor and reflex functions of the nervous system. Should any anomalies be detected, then a more detailed and thorough neurological exploration must be performed selectively. We present a detailed review of the practical aspects of the main techniques used in the physical examination of these neurological categories. The motor function is explored using techniques that examine muscle tone, muscle strength, muscle fatigability, hypokinesia, tremor, coordination and gait. Lastly, in this category several manoeuvres that are useful in hysterical or mimicking paralyses are also dealt with. Reflexes to examination are usually divided into: 1. Myotatic reflexes; 2. Cutaneomucous reflexes; 3. Spinal cord or defence automatism reflexes; 4. Posture and attitude reflexes. We also add the study of primitive pathological reflexes, remote reflexes, synkinesias and signs of meningeal irritation. We present a detailed description of the main clinical techniques used in the neurological physical examination of motility and reflexes, as well as an approach that allows them to be performed on adult patients. In addition, we underline the importance of physically examining the nervous system in contemporary medicine and the need to continually perfect the way these techniques are performed in order to achieve an efficient clinical practice.
The trigeminocardiac reflex – a comparison with the diving reflex in humans
Lemaitre, Frederic; Schaller, Bernhard
2015-01-01
The trigeminocardiac reflex (TCR) has previously been described in the literature as a reflexive response of bradycardia, hypotension, and gastric hypermotility seen upon mechanical stimulation in the distribution of the trigeminal nerve. The diving reflex (DR) in humans is characterized by breath-holding, slowing of the heart rate, reduction of limb blood flow and a gradual rise in the mean arterial blood pressure. Although the two reflexes share many similarities, their relationship and especially their functional purpose in humans have yet to be fully elucidated. In the present review, we have tried to integrate and elaborate these two phenomena into a unified physiological concept. Assuming that the TCR and the DR are closely linked functionally and phylogenetically, we have also highlighted the significance of these reflexes in humans. PMID:25995761
Elasticity of fractal materials using the continuum model with non-integer dimensional space
NASA Astrophysics Data System (ADS)
Tarasov, Vasily E.
2015-01-01
Using a generalization of vector calculus for space with non-integer dimension, we consider elastic properties of fractal materials. Fractal materials are described by continuum models with non-integer dimensional space. A generalization of elasticity equations for non-integer dimensional space, and its solutions for the equilibrium case of fractal materials are suggested. Elasticity problems for fractal hollow ball and cylindrical fractal elastic pipe with inside and outside pressures, for rotating cylindrical fractal pipe, for gradient elasticity and thermoelasticity of fractal materials are solved.
Phases of five-dimensional theories, monopole walls, and melting crystals
NASA Astrophysics Data System (ADS)
Cherkis, Sergey A.
2014-06-01
Moduli spaces of doubly periodic monopoles, also called monopole walls or monowalls, are hyperkähler; thus, when four-dimensional, they are self-dual gravitational instantons. We find all monowalls with lowest number of moduli. Their moduli spaces can be identified, on the one hand, with Coulomb branches of five-dimensional supersymmetric quantum field theories on 3 × T 2 and, on the other hand, with moduli spaces of local Calabi-Yau metrics on the canonical bundle of a del Pezzo surface. We explore the asymptotic metric of these moduli spaces and compare our results with Seiberg's low energy description of the five-dimensional quantum theories. We also give a natural description of the phase structure of general monowall moduli spaces in terms of triangulations of Newton polygons, secondary polyhedra, and associahedral projections of secondary fans.
Wh-filler-gap dependency formation guides reflexive antecedent search
Frazier, Michael; Ackerman, Lauren; Baumann, Peter; Potter, David; Yoshida, Masaya
2015-01-01
Prior studies on online sentence processing have shown that the parser can resolve non-local dependencies rapidly and accurately. This study investigates the interaction between the processing of two such non-local dependencies: wh-filler-gap dependencies (WhFGD) and reflexive-antecedent dependencies. We show that reflexive-antecedent dependency resolution is sensitive to the presence of a WhFGD, and argue that the filler-gap dependency established by WhFGD resolution is selected online as the antecedent of a reflexive dependency. We investigate the processing of constructions like (1), where two NPs might be possible antecedents for the reflexive, namely which cowgirl and Mary. Even though Mary is linearly closer to the reflexive, the only grammatically licit antecedent for the reflexive is the more distant wh-NP, which cowgirl. (1). Which cowgirl did Mary expect to have injured herself due to negligence? Four eye-tracking text-reading experiments were conducted on examples like (1), differing in whether the embedded clause was non-finite (1 and 3) or finite (2 and 4), and in whether the tail of the wh-dependency intervened between the reflexive and its closest overt antecedent (1 and 2) or the wh-dependency was associated with a position earlier in the sentence (3 and 4). The results of Experiments 1 and 2 indicate the parser accesses the result of WhFGD formation during reflexive antecedent search. The resolution of a wh-dependency alters the representation that reflexive antecedent search operates over, allowing the grammatical but linearly distant antecedent to be accessed rapidly. In the absence of a long-distance WhFGD (Experiments 3 and 4), wh-NPs were not found to impact reading times of the reflexive, indicating that the parser's ability to select distant wh-NPs as reflexive antecedents crucially involves syntactic structure. PMID:26500579
Astronaut Joseph P. Allen, STS-5 crew member, in front of open hatch
NASA Technical Reports Server (NTRS)
1982-01-01
Astronaut Joseph P. Allen, right, STS-5 mission specialist, slips on jacket portion of his Shuttle constant-wear garment in the White room at Launch Pad 39A at the Kennedy Space Center (KSC). Astronaut William B. Lenoir, STS-5's other mission specialist, left, waits to enter the Columbia, whose open hatch is at center. Electrodes on Allen's face and head are for monitoring his reflexes during launch.
Chung, Sun G.; Ren, Yupeng; Liu, Lin; Roth, Elliot J.; Rymer, W. Zev
2013-01-01
This study characterizes tonic and phasic stretch reflex and stiffness and viscosity changes associated with spastic hemiparesis. Perturbations were applied to the ankle of 27 hemiparetic and 36 healthy subjects under relaxed or active contracting conditions. A nonlinear delay differential equation model characterized phasic and tonic stretch reflex gains, elastic stiffness, and viscous damping. Tendon reflex was characterized with reflex gain and threshold. Reflexively, tonic reflex gain was increased in spastic ankles at rest (P < 0.038) and was not regulated with muscle contraction, indicating impaired tonic stretch reflex. Phasic-reflex gain in spastic plantar flexors was higher and increased faster with plantar flexor contraction (P < 0.012) than controls (P < 0.023) and higher in dorsi-flexors at lower torques (P < 0.038), primarily because of its increase at rest (P = 0.045), indicating exaggerated phasic stretch reflex especially in more spastic plantar flexors, which showed higher phasic stretch reflex gain than dorsi-flexors (P < 0.032). Spasticity was associated with increased tendon reflex gain (P = 0.002) and decreased threshold (P < 0.001). Mechanically, stiffness in spastic ankles was higher than that in controls across plantar flexion/dorsi-flexion torque levels (P < 0.032), and the more spastic plantar flexors were stiffer than dorsi-flexors at comparable torques (P < 0.031). Increased stiffness in spastic ankles was mainly due to passive stiffness increase (P < 0.001), indicating increased connective tissues/shortened fascicles. Viscous damping in spastic ankles was increased across the plantar flexion torque levels and at lower dorsi-flexion torques, reflecting increased passive viscous damping (P = 0.033). The more spastic plantar flexors showed higher viscous damping than dorsi-flexors at comparable torque levels (P < 0.047). Simultaneous characterizations of reflex and nonreflex changes in spastic hemiparesis may help to evaluate and treat them more effectively. PMID:23636726
Soleus and lateral gastrocnemius H-reflexes during standing with unstable footwear.
Friesenbichler, Bernd; Lepers, Romuald; Maffiuletti, Nicola A
2015-05-01
Unstable footwear has been shown to increase lower extremity muscle activity, but the reflex response to perturbations induced by this intervention is unknown. Twenty healthy subjects stood in stable and unstable footwear conditions (presented randomly) while H-reflex amplitude and background muscle activity were measured in the soleus and lateral gastrocnemius (LG) muscles. Wearing unstable footwear resulted in larger H-reflexes (normalized to the maximal M-wave) for the LG (+12%; P = 0.025), but not for the soleus (+4%; P > 0.05). Background activity of both muscles was significantly higher in the unstable condition. The H-reflex facilitation observed with unstable footwear was unexpected, as challenging postural conditions usually result in reflex depression. Increased muscle activity, decreased presynaptic inhibition, and/or more forward postural position may have (over-)compensated the expected reflex depression. Differences between LG and soleus H-reflex modulation may be due to diverging motor unit recruitment thresholds. © 2015 Wiley Periodicals, Inc.
Kojima, Yu; Fujii, Hisao; Katsui, Renta; Nakajima, Yoshiyuki; Takaki, Miyako
2006-10-01
The defecation reflex is composed of rectal distension-evoked rectal (R-R) reflex contractions and synchronous internal anal sphincter (R-IAS) reflex relaxations in guinea pigs. These R-R and R-IAS reflexes are controlled via extrinsic sacral excitatory nerve pathway (pelvic nerves), lumbar inhibitory nerve pathways (colonic nerves) and by intrinsic cholinergic excitatory and nitrergic inhibitory nerve pathways. The effect of mosapride (a prokinetic benzamide) on the intrinsic reflexes, mediated via enteric 5-HT(4) receptors, was evaluated by measuring the mechanical activity of the rectum and IAS in anesthetized guinea pigs using an intrinsic R-R and R-IAS reflex model resulting from chronic (two to nine days) lumbosacral denervation (PITH). In this model, the myenteric plexus remains undamaged and the distribution of myenteric and intramuscular interstitial cells of Cajal is unchanged. Although R-R and R-IAS reflex patterns markedly changed, the reflex indices (reflex pressure or force curve-time integral) of both the R-R contractions and the synchronous R-IAS relaxations were unchanged. The frequency of the spontaneous R and IAS motility was also unchanged. Mosapride (0.1-1.0 mg/kg) dose-dependently increased both intrinsic R-R (maximum: 1.82) and R-IAS reflex indices (maximum: 2.76) from that of the control (1.0) 6-9 days following chronic PITH. The dose-response curve was similar to that in the intact guinea pig, and had shifted to the left from that in the guinea pig after acute PITH. A specific 5-HT(4) receptor antagonist, GR 113808 (1.0 mg/kg), decreased both reflex indices by approximately 50% and antagonized the effect of mosapride 1.0 mg/kg. This was quite different from the result in the intact guinea pig where GR 113808 (1.0 mg/kg) did not affect either of the reflex indices. The present results indicate that mosapride enhanced the intrinsic R-R and R-IAS reflexes and functionally compensated for the deprivation of extrinsic innervation. The actions of mosapride were mediated through endogenously active, intrinsic 5-HT(4) receptors which may be post-synaptically located in the myenteric plexus of the anorectum.
van Osch, L; van Schooneveld, M; Bleekerwagemakers, E M
1990-12-01
The golden tapetal reflex in the ocular fundus is considered pathognomonic of the carrier state in some families with X-linked retinitis pigmentosa (XRP). Reports concerning affected males with this characteristic reflex are scarce. A six-year-old boy with XRP having a tapetal reflex is described. Recently the tapetal reflex has drawn attention in linkage studies. XRP is probably genetically heterogeneous and has at least two genetic forms. The finding of a tapetal reflex in one or more female carriers in a family with XRP may be helpful in differentiating between these two genetic forms.
Development of lower body negative pressure as a countermeasure for orthostatic intolerance
NASA Technical Reports Server (NTRS)
Fortney, Suzanne M.
1991-01-01
Exposure to prolonged (1-4 hr) lower body negative pressure (LBNP) is a countermeasure against postflight orthostatic intolerance which is used in the Soviet space program and planned for use in the American space program. LBNP in combination with fluid-loading is believed to act by promoting a transient positive fluid balance resulting in an increase in vascular, as well as extravascular fluid. Inflight LBNP also may provide beneficial orthostatic effects by restoring baroreceptor reflex functions and/or lower body venous compliance. Current research efforts at the Johnson Space Center are directed toward increasing the effectiveness and efficiency of the LBNP and saline countermeasure. A promising avenue may involve combining pharmacologic agents, such as inhaled anti-diuretic hormone, or mineralocorticoids, with mechanical stimuli such as LBNP.
Suppression of the oculocephalic reflex (doll's eyes phenomenon) in normal full-term babies.
Snir, Moshe; Hasanreisoglu, Murat; Hasanreisoglue, Murat; Goldenberg-Cohen, Nitza; Friling, Ronit; Katz, Kalman; Nachum, Yoav; Benjamini, Yoav; Herscovici, Zvi; Axer-Siegel, Ruth
2010-05-01
To determine the precise age of suppression of the oculocephalic reflex in infants and its relationship to specific clinical characteristics. The oculocephalic reflex was prospectively tested in 325 healthy full-term babies aged 1 to 32 weeks attending an orthopedic outpatient clinic. Two ophthalmologists raised the baby's head 30 degrees above horizontal and rapidly rotated it in the horizontal and vertical planes while watching the conjugate eye movement. Suppression of the reflex, by observer agreement, was analyzed in relation to gestational age, postpartum age, postconceptional age, birth weight, and current weight. The data were fitted to a logistic regression model to determine the probability of suppression of the reflex according to the clinical variables. The oculocephalic reflex was suppressed in 75% of babies by the age of 11.5 weeks and in more than 95% of babies aged 20 weeks. Although postpartum age had a greater influence than gestational age, both were significantly correlated with suppression of the reflex (p = 0.01 and p = 0.04, respectively; two-sided t-test). Postpartum age was the best single variable explaining absence of the reflex. On logistic regression with cross-validation, the model including postpartum age and current weight yielded the best results; both these factors were highly correlated with suppression of the reflex (r = 0.74). The oculocephalic reflex is suppressed in the vast majority of normal infants by age 11.5 weeks. The disappearance of the reflex occurs gradually and longitudinally and is part of the normal maturation of the visual system.
Aural Acoustic Stapedius-Muscle Reflex Threshold Procedures to Test Human Infants and Adults.
Keefe, Douglas H; Feeney, M Patrick; Hunter, Lisa L; Fitzpatrick, Denis F
2017-02-01
Power-based procedures are described to measure acoustic stapedius-muscle reflex threshold and supra-threshold responses in human adult and infant ears at frequencies from 0.2 to 8 kHz. The stimulus set included five clicks in which four pulsed activators were placed between each pair of clicks, with each stimulus set separated from the next by 0.79 s to allow for reflex decay. Each click response was used to detect the presence of reflex effects across frequency that were elicited by a pulsed broadband-noise or tonal activator in the ipsilateral or contralateral test ear. Acoustic reflex shifts were quantified in terms of the difference in absorbed sound power between the initial baseline click and the later four clicks in each set. Acoustic reflex shifts were measured over a 40-dB range of pulsed activators, and the acoustic reflex threshold was objectively calculated using a maximum 10 likelihood procedure. To illustrate the principles underlying these new reflex tests, reflex shifts in absorbed sound power and absorbance are presented for data acquired in an adult ear with normal hearing and in two infant ears in the initial and follow-up newborn hearing screening exams, one with normal hearing and the other with a conductive hearing loss. The use of absorbed sound power was helpful in classifying an acoustic reflex shift as present or absent. The resulting reflex tests are in use in a large study of wideband clinical diagnosis and monitoring of middle-ear and cochlear function in infant and adult ears.
Dimensionality reduction of collective motion by principal manifolds
NASA Astrophysics Data System (ADS)
Gajamannage, Kelum; Butail, Sachit; Porfiri, Maurizio; Bollt, Erik M.
2015-01-01
While the existence of low-dimensional embedding manifolds has been shown in patterns of collective motion, the current battery of nonlinear dimensionality reduction methods is not amenable to the analysis of such manifolds. This is mainly due to the necessary spectral decomposition step, which limits control over the mapping from the original high-dimensional space to the embedding space. Here, we propose an alternative approach that demands a two-dimensional embedding which topologically summarizes the high-dimensional data. In this sense, our approach is closely related to the construction of one-dimensional principal curves that minimize orthogonal error to data points subject to smoothness constraints. Specifically, we construct a two-dimensional principal manifold directly in the high-dimensional space using cubic smoothing splines, and define the embedding coordinates in terms of geodesic distances. Thus, the mapping from the high-dimensional data to the manifold is defined in terms of local coordinates. Through representative examples, we show that compared to existing nonlinear dimensionality reduction methods, the principal manifold retains the original structure even in noisy and sparse datasets. The principal manifold finding algorithm is applied to configurations obtained from a dynamical system of multiple agents simulating a complex maneuver called predator mobbing, and the resulting two-dimensional embedding is compared with that of a well-established nonlinear dimensionality reduction method.
Affective Modulation of the Startle Eyeblink and Postauricular Reflexes in Autism Spectrum Disorder
ERIC Educational Resources Information Center
Dichter, Gabriel S.; Benning, Stephen D.; Holtzclaw, Tia N.; Bodfish, James W.
2010-01-01
Eyeblink and postauricular reflexes to standardized affective images were examined in individuals without (n = 37) and with (n = 20) autism spectrum disorders (ASDs). Affective reflex modulation in control participants replicated previous findings. The ASD group, however, showed anomalous reflex modulation patterns, despite similar self-report…
An Overview of the Regional Experiments for Land-atmosphere Exchanges 2012 (REFLEX 2012) Campaign
NASA Astrophysics Data System (ADS)
Timmermans, Wim J.; van der Tol, Christiaan; Timmermans, Joris; Ucer, Murat; Chen, Xuelong; Alonso, Luis; Moreno, Jose; Carrara, Arnaud; Lopez, Ramon; de la Cruz Tercero, Fernando; Corcoles, Horacio L.; de Miguel, Eduardo; Sanchez, Jose A. G.; Pérez, Irene; Franch, Belen; Munoz, Juan-Carlos J.; Skokovic, Drazen; Sobrino, Jose; Soria, Guillem; MacArthur, Alasdair; Vescovo, Loris; Reusen, Ils; Andreu, Ana; Burkart, Andreas; Cilia, Chiara; Contreras, Sergio; Corbari, Chiara; Calleja, Javier F.; Guzinski, Radoslaw; Hellmann, Christine; Herrmann, Ittai; Kerr, Gregoire; Lazar, Adina-Laura; Leutner, Benjamin; Mendiguren, Gorka; Nasilowska, Sylwia; Nieto, Hector; Pachego-Labrador, Javier; Pulanekar, Survana; Raj, Rahul; Schikling, Anke; Siegmann, Bastian; von Bueren, Stefanie; Su, Zhongbo (Bob)
2015-12-01
The REFLEX 2012 campaign was initiated as part of a training course on the organization of an airborne campaign to support advancement of the understanding of land-atmosphere interaction processes. This article describes the campaign, its objectives and observations, remote as well as in situ. The observations took place at the experimental Las Tiesas farm in an agricultural area in the south of Spain. During the period of ten days, measurements were made to capture the main processes controlling the local and regional land-atmosphere exchanges. Apart from multi-temporal, multi-directional and multi-spatial space-borne and airborne observations, measurements of the local meteorology, energy fluxes, soil temperature profiles, soil moisture profiles, surface temperature, canopy structure as well as leaf-level measurements were carried out. Additional thermo-dynamical monitoring took place at selected sites. After presenting the different types of measurements, some examples are given to illustrate the potential of the observations made.
Oak, Eileen
2016-01-01
This article examines the viability of the Risk Predictor Model (RPM) and its counterpart the actuarial risk assessment (ARA) tool in the form of the Tuituia Assessment Framework to address child vulnerability in New Zealand. In doing so, it suggests that these types of risk-assessment tools fail to address issues of contingency and complexity at the heart of the relationship-based nature of social work practice. Such developments have considerable implications for the capacity to enhance critical reflexive practice skills, whilst the introduction of these risk tools is occurring at a time when the reflexive space is being eroded as a result of the increased regulation of practice and supervision. It is further asserted that the primary aim of such instruments is not so much to detect risk, but rather to foster professional conformity with these managerialist risk-management systems so prevalent in contemporary Western societies. PMID:27559223
NASA Technical Reports Server (NTRS)
Kukreja, Sunil L.; Wallin, Ragnar; Boyle, Richard D.
2013-01-01
The vestibulo-ocular reflex (VOR) is a well-known dual mode bifurcating system that consists of slow and fast modes associated with nystagmus and saccade, respectively. Estimation of continuous-time parameters of nystagmus and saccade models are known to be sensitive to estimation methodology, noise and sampling rate. The stable and accurate estimation of these parameters are critical for accurate disease modelling, clinical diagnosis, robotic control strategies, mission planning for space exploration and pilot safety, etc. This paper presents a novel indirect system identification method for the estimation of continuous-time parameters of VOR employing standardised least-squares with dual sampling rates in a sparse structure. This approach permits the stable and simultaneous estimation of both nystagmus and saccade data. The efficacy of this approach is demonstrated via simulation of a continuous-time model of VOR with typical parameters found in clinical studies and in the presence of output additive noise.
Self-organization of meaning and the reflexive communication of information
Leydesdorff, Loet; Petersen, Alexander M.; Ivanova, Inga
2017-01-01
Following a suggestion from Warren Weaver, we extend the Shannon model of communication piecemeal into a complex systems model in which communication is differentiated both vertically and horizontally. This model enables us to bridge the divide between Niklas Luhmann’s theory of the self-organization of meaning in communications and empirical research using information theory. First, we distinguish between communication relations and correlations among patterns of relations. The correlations span a vector space in which relations are positioned and can be provided with meaning. Second, positions provide reflexive perspectives. Whereas the different meanings are integrated locally, each instantiation opens global perspectives – ‘horizons of meaning’ – along eigenvectors of the communication matrix. These next-order codifications of meaning can be expected to generate redundancies when interacting in instantiations. Increases in redundancy indicate new options and can be measured as local reduction of prevailing uncertainty (in bits). The systemic generation of new options can be considered as a hallmark of the knowledge-based economy. PMID:28232771
Supervised Classification Techniques for Hyperspectral Data
NASA Technical Reports Server (NTRS)
Jimenez, Luis O.
1997-01-01
The recent development of more sophisticated remote sensing systems enables the measurement of radiation in many mm-e spectral intervals than previous possible. An example of this technology is the AVIRIS system, which collects image data in 220 bands. The increased dimensionality of such hyperspectral data provides a challenge to the current techniques for analyzing such data. Human experience in three dimensional space tends to mislead one's intuition of geometrical and statistical properties in high dimensional space, properties which must guide our choices in the data analysis process. In this paper high dimensional space properties are mentioned with their implication for high dimensional data analysis in order to illuminate the next steps that need to be taken for the next generation of hyperspectral data classifiers.
Balancing Newtonian gravity and spin to create localized structures
NASA Astrophysics Data System (ADS)
Bush, Michael; Lindner, John
2015-03-01
Using geometry and Newtonian physics, we design localized structures that do not require electromagnetic or other forces to resist implosion or explosion. In two-dimensional Euclidean space, we find an equilibrium configuration of a rotating ring of massive dust whose inward gravity is the centripetal force that spins it. We find similar solutions in three-dimensional Euclidean and hyperbolic spaces, but only in the limit of vanishing mass. Finally, in three-dimensional Euclidean space, we generalize the two-dimensional result by finding an equilibrium configuration of a spherical shell of massive dust that supports itself against gravitational collapse by spinning isoclinically in four dimensions so its three-dimensional acceleration is everywhere inward. These Newtonian ``atoms'' illuminate classical physics and geometry.
An Energy Model of Place Cell Network in Three Dimensional Space.
Wang, Yihong; Xu, Xuying; Wang, Rubin
2018-01-01
Place cells are important elements in the spatial representation system of the brain. A considerable amount of experimental data and classical models are achieved in this area. However, an important question has not been addressed, which is how the three dimensional space is represented by the place cells. This question is preliminarily surveyed by energy coding method in this research. Energy coding method argues that neural information can be expressed by neural energy and it is convenient to model and compute for neural systems due to the global and linearly addable properties of neural energy. Nevertheless, the models of functional neural networks based on energy coding method have not been established. In this work, we construct a place cell network model to represent three dimensional space on an energy level. Then we define the place field and place field center and test the locating performance in three dimensional space. The results imply that the model successfully simulates the basic properties of place cells. The individual place cell obtains unique spatial selectivity. The place fields in three dimensional space vary in size and energy consumption. Furthermore, the locating error is limited to a certain level and the simulated place field agrees to the experimental results. In conclusion, this is an effective model to represent three dimensional space by energy method. The research verifies the energy efficiency principle of the brain during the neural coding for three dimensional spatial information. It is the first step to complete the three dimensional spatial representing system of the brain, and helps us further understand how the energy efficiency principle directs the locating, navigating, and path planning function of the brain.
Multidimensionally encoded magnetic resonance imaging.
Lin, Fa-Hsuan
2013-07-01
Magnetic resonance imaging (MRI) typically achieves spatial encoding by measuring the projection of a q-dimensional object over q-dimensional spatial bases created by linear spatial encoding magnetic fields (SEMs). Recently, imaging strategies using nonlinear SEMs have demonstrated potential advantages for reconstructing images with higher spatiotemporal resolution and reducing peripheral nerve stimulation. In practice, nonlinear SEMs and linear SEMs can be used jointly to further improve the image reconstruction performance. Here, we propose the multidimensionally encoded (MDE) MRI to map a q-dimensional object onto a p-dimensional encoding space where p > q. MDE MRI is a theoretical framework linking imaging strategies using linear and nonlinear SEMs. Using a system of eight surface SEM coils with an eight-channel radiofrequency coil array, we demonstrate the five-dimensional MDE MRI for a two-dimensional object as a further generalization of PatLoc imaging and O-space imaging. We also present a method of optimizing spatial bases in MDE MRI. Results show that MDE MRI with a higher dimensional encoding space can reconstruct images more efficiently and with a smaller reconstruction error when the k-space sampling distribution and the number of samples are controlled. Copyright © 2012 Wiley Periodicals, Inc.
Six-dimensional real and reciprocal space small-angle X-ray scattering tomography
NASA Astrophysics Data System (ADS)
Schaff, Florian; Bech, Martin; Zaslansky, Paul; Jud, Christoph; Liebi, Marianne; Guizar-Sicairos, Manuel; Pfeiffer, Franz
2015-11-01
When used in combination with raster scanning, small-angle X-ray scattering (SAXS) has proven to be a valuable imaging technique of the nanoscale, for example of bone, teeth and brain matter. Although two-dimensional projection imaging has been used to characterize various materials successfully, its three-dimensional extension, SAXS computed tomography, poses substantial challenges, which have yet to be overcome. Previous work using SAXS computed tomography was unable to preserve oriented SAXS signals during reconstruction. Here we present a solution to this problem and obtain a complete SAXS computed tomography, which preserves oriented scattering information. By introducing virtual tomography axes, we take advantage of the two-dimensional SAXS information recorded on an area detector and use it to reconstruct the full three-dimensional scattering distribution in reciprocal space for each voxel of the three-dimensional object in real space. The presented method could be of interest for a combined six-dimensional real and reciprocal space characterization of mesoscopic materials with hierarchically structured features with length scales ranging from a few nanometres to a few millimetres—for example, biomaterials such as bone or teeth, or functional materials such as fuel-cell or battery components.
Six-dimensional real and reciprocal space small-angle X-ray scattering tomography.
Schaff, Florian; Bech, Martin; Zaslansky, Paul; Jud, Christoph; Liebi, Marianne; Guizar-Sicairos, Manuel; Pfeiffer, Franz
2015-11-19
When used in combination with raster scanning, small-angle X-ray scattering (SAXS) has proven to be a valuable imaging technique of the nanoscale, for example of bone, teeth and brain matter. Although two-dimensional projection imaging has been used to characterize various materials successfully, its three-dimensional extension, SAXS computed tomography, poses substantial challenges, which have yet to be overcome. Previous work using SAXS computed tomography was unable to preserve oriented SAXS signals during reconstruction. Here we present a solution to this problem and obtain a complete SAXS computed tomography, which preserves oriented scattering information. By introducing virtual tomography axes, we take advantage of the two-dimensional SAXS information recorded on an area detector and use it to reconstruct the full three-dimensional scattering distribution in reciprocal space for each voxel of the three-dimensional object in real space. The presented method could be of interest for a combined six-dimensional real and reciprocal space characterization of mesoscopic materials with hierarchically structured features with length scales ranging from a few nanometres to a few millimetres--for example, biomaterials such as bone or teeth, or functional materials such as fuel-cell or battery components.
The Use of an Alternative Extraoral Periapical Technique for Patients with Severe Gag Reflex
e Silva, Mauro Henrique Chagas; Santos, Mariane Floriano Lopes; de Lima, Carolina Oliveira; Campos, Celso Neiva
2016-01-01
Gag reflex is a physiologic mechanism that promotes contraction of the muscles of the tongue and pharyngeal walls. Different factors, including intraoral radiographic films and sensors, may trigger this reflex. Patients with severe gag reflex may not be able to tolerate the presence of intraoral radiographic films or sensors during root canal therapy (RCT). This factor may prevent an appropriate intraoral radiograph, which is important in RCT. Different approaches have been used to facilitate dental procedures in patients suffering from severe gag reflex. The use of an extraoral radiographic technique is an alternative method to obtain working length confirmation in patients with severe gag reflex. In this report of 2 cases, the use of an extraoral radiographic technique as an alternative approach during RCT in patients with severe gag reflex associated with phobic behavior and trismus was successfully demonstrated. PMID:27547474
The parallel programming of voluntary and reflexive saccades.
Walker, Robin; McSorley, Eugene
2006-06-01
A novel two-step paradigm was used to investigate the parallel programming of consecutive, stimulus-elicited ('reflexive') and endogenous ('voluntary') saccades. The mean latency of voluntary saccades, made following the first reflexive saccades in two-step conditions, was significantly reduced compared to that of voluntary saccades made in the single-step control trials. The latency of the first reflexive saccades was modulated by the requirement to make a second saccade: first saccade latency increased when a second voluntary saccade was required in the opposite direction to the first saccade, and decreased when a second saccade was required in the same direction as the first reflexive saccade. A second experiment confirmed the basic effect and also showed that a second reflexive saccade may be programmed in parallel with a first voluntary saccade. The results support the view that voluntary and reflexive saccades can be programmed in parallel on a common motor map.
[Effects of morphine on pupillary light reflex in monkeys].
Meng, Zhi-Qiang; Zhang, Yu-Hua; Chen, Nan-Hui; Miao, Ying-Da; Hu, Xin-Tian; Ma, Yuan-Ye
2010-06-01
The pupil size of both human and other animals can be affected by light. Many kinds of psychiatrical and psychological disorders, such as drug abuse, associate with abnormal properties of pupillary light reflex. Thus, the properties of pupillary light reflex could serve as an indicator for drug abuse detection. However, the effect of drug abuse on pupillary light reflex is till unclear. To assess the effects of addictive drugs on pupillary light reflex quantificationally, in the present study, we examined the effects of morphine on pupil diameter and pupillary light reflex in rhesus monkeys. By measuring the pupil diameter at different timing points before and after the administration of morphine, we found that morphine administration reduced the diameter of pupil and decreased the constriction rate. Our present results provide an experimental support for applying the properties of pupillary light reflex as a reference in addicts' detection.
Cosmological perturbations in the (1 + 3 + 6)-dimensional space-times
NASA Astrophysics Data System (ADS)
Tomita, K.
2014-12-01
Cosmological perturbations in the (1+3+6)-dimensional space-times including photon gas without viscous processes are studied on the basis of Abbott et al.'s formalism [R. B. Abbott, B. Bednarz, and S. D. Ellis, Phys. Rev. D 33, 2147 (1986)]. Space-times consist of outer space (the 3-dimensional expanding section) and inner space (the 6-dimensional section). The inner space expands initially and later contracts. Abbott et al. derived only power-type solutions, which appear at the final stage of the space-times, in the small wave-number limit. In this paper, we derive not only small wave-number solutions, but also large wave-number solutions. It is found that the latter solutions depend on the two wave-numbers k_r and k_R (which are defined in the outer and inner spaces, respectively), and that the k_r-dependent and k_R-dependent parts dominate the total perturbations when (k_r/r(t))/(k_R/R(t)) ≫ 1 or ≪ 1, respectively, where r(t) and R(t) are the scale-factors in the outer and inner spaces. By comparing the behaviors of these perturbations, moreover, changes in the spectrum of perturbations in the outer space with time are discussed.
Snout and Visual Rooting Reflexes in Infantile Autism. Brief Report.
ERIC Educational Resources Information Center
Minderaa, Ruud B.; And Others
1985-01-01
The authors conducted extensive neurological evaluations of 42 autistic individuals and were surprised to discover a consistently positive snout reflex in most of them. Difficulties with assessing the reflex are noted. The authors then reassessed the Ss for a series of primitive reflexes which are interpreted as signs of diffuse cortical brain…
The Limits of Institutional Reflexivity in Bulgarian Universities
ERIC Educational Resources Information Center
Slantcheva, Snejana
2004-01-01
This article focuses on the notion of institutional reflexivity. Its theoretical framework is based on the views of a group of sociologists--Anthony Giddens, Ulrich Beck, Scott Lash--who developed the concept of reflexive modernization. The article applies the notion of institutional reflexivity to the field of higher education and reviews the…
Park, Kang Min; Kim, Sung Eun; Lee, Byung In
2016-01-01
The pathogenesis of card game-induced reflex epilepsy has not been determined so far. The aim of this study was to evaluate structural abnormalities using voxel-based morphometry (VBM) analysis, which may give some clue about the pathogenesis in card game-induced reflex epilepsy. The 3 subjects were diagnosed with card game-induced reflex epilepsy. Evaluation involved a structured interview to obtain clinical information and brain MRI. In VBM analysis, Statistical Parametric Mapping 8 running on the MATLAB platform was employed to analyze the structural differences between patients with card game-induced reflex epilepsy and age- and sex-matched control subjects. The results of VBM analysis revealed that patients with card game-induced reflex epilepsy had significantly increased gray matter volume in the right occipital and parietal lobe. However, there were no structures with decreased gray matter volume in patients with card game-induced reflex epilepsy compared with control subjects. In addition, we found that the patients with card game-induced reflex epilepsy had onset of seizures in adulthood rather than in adolescence, and all of the patients were men. The parieto-occipital lobes might be partially involved in the neuronal network responsible for card game-induced reflex epilepsy. © 2016 S. Karger AG, Basel.
Marín Gabriel, Miguel A; Olza Fernández, Ibone; Malalana Martínez, Ana M; González Armengod, Carmen; Costarelli, Valeria; Millán Santos, Isabel; Fernández-Cañadas Morillo, Aurora; Pérez Riveiro, Pilar; López Sánchez, Francisco; García Murillo, Lourdes
2015-05-01
Several synthetic peptide manipulations during the time surrounding birth can alter the specific neurohormonal status in the newborn brain. This study is aimed at assessing whether intrapartum oxytocin administration has any effect on primitive neonatal reflexes and determining whether such an effect is dose-dependent. A cohort prospective study was conducted at a tertiary hospital. Mother-infant dyads who received intrapartum oxytocin (n=53) were compared with mother-infant dyads who did not receive intrapartum oxytocin (n=45). Primitive neonatal reflexes (endogenous, antigravity, motor, and rhythmic reflexes) were quantified by analyzing videotaped breastfeeding sessions in a biological nurturing position. Two observers blind to the group assignment and the oxytocin dose analyzed the videotapes and assesed the newborn's state of consciousness according to the Brazelton scale. The release of all rhythmic reflexes (p=0.01), the antigravity reflex (p=0.04), and total primitive neonatal reflexes (p=0.02) in the group exposed to oxytocin was lower than in the group not exposed to oxytocin. No correlations were observed between the dose of oxytocin administered and the percentage of primitive neonatal reflexes released (r=0.03; p=0.82). Intrapartum oxytocin administration might inhibit the expression of several primitive neonatal reflexes associated with breastfeeding. This correlation does not seem to be dose-dependent.
Transition probabilities for non self-adjoint Hamiltonians in infinite dimensional Hilbert spaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagarello, F., E-mail: fabio.bagarello@unipa.it
In a recent paper we have introduced several possible inequivalent descriptions of the dynamics and of the transition probabilities of a quantum system when its Hamiltonian is not self-adjoint. Our analysis was carried out in finite dimensional Hilbert spaces. This is useful, but quite restrictive since many physically relevant quantum systems live in infinite dimensional Hilbert spaces. In this paper we consider this situation, and we discuss some applications to well known models, introduced in the literature in recent years: the extended harmonic oscillator, the Swanson model and a generalized version of the Landau levels Hamiltonian. Not surprisingly we willmore » find new interesting features not previously found in finite dimensional Hilbert spaces, useful for a deeper comprehension of this kind of physical systems.« less
Dendritic spine dysgenesis contributes to hyperreflexia after spinal cord injury
Bandaru, Samira P.; Liu, Shujun; Waxman, Stephen G.
2014-01-01
Hyperreflexia and spasticity are chronic complications in spinal cord injury (SCI), with limited options for safe and effective treatment. A central mechanism in spasticity is hyperexcitability of the spinal stretch reflex, which presents symptomatically as a velocity-dependent increase in tonic stretch reflexes and exaggerated tendon jerks. In this study we tested the hypothesis that dendritic spine remodeling within motor reflex pathways in the spinal cord contributes to H-reflex dysfunction indicative of spasticity after contusion SCI. Six weeks after SCI in adult Sprague-Dawley rats, we observed changes in dendritic spine morphology on α-motor neurons below the level of injury, including increased density, altered spine shape, and redistribution along dendritic branches. These abnormal spine morphologies accompanied the loss of H-reflex rate-dependent depression (RDD) and increased ratio of H-reflex to M-wave responses (H/M ratio). Above the level of injury, spine density decreased compared with below-injury spine profiles and spine distributions were similar to those for uninjured controls. As expected, there was no H-reflex hyperexcitability above the level of injury in forelimb H-reflex testing. Treatment with NSC23766, a Rac1-specific inhibitor, decreased the presence of abnormal dendritic spine profiles below the level of injury, restored RDD of the H-reflex, and decreased H/M ratios in SCI animals. These findings provide evidence for a novel mechanistic relationship between abnormal dendritic spine remodeling in the spinal cord motor system and reflex dysfunction in SCI. PMID:25505110
Phadke, Chetan P; Flynn, Sheryl M; Thompson, Floyd J; Behrman, Andrea L; Trimble, Mark H; Kukulka, Carl G
2009-07-01
To examine paired reflex depression changes post 20-minute bout each of 2 training environments: stationary bicycle ergometer training (bicycle training) and treadmill with body weight support and manual assistance (locomotor training). Pretest-posttest repeated-measures. Locomotor laboratory. Motor incomplete SCI (n=12; mean, 44+/-16y); noninjured subjects (n=11; mean, 30.8+/-8.3y). All subjects received each type of training on 2 separate days. Paired reflex depression at different interstimulus intervals (10 s, 1 s, 500 ms, 200 ms, and 100 ms) was measured before and after both types of training. (1) Depression was significantly less post-SCI compared with noninjured subjects at all interstimulus intervals and (2) post-SCI at 100-millisecond interstimulus interval: reflex depression significantly increased postbicycle training in all SCI subjects and in the chronic and spastic subgroups (P<.05). Phase-dependent regulation of reflex excitability, essential to normal locomotion, coordinated by pre- and postsynaptic inhibitory processes (convergent action of descending and segmental inputs onto spinal circuits) is impaired post-SCI. Paired reflex depression provides a quantitative assay of inhibitory processes contributing to phase-dependent changes in reflex excitability. Because bicycle training normalized reflex depression, we propose that bicycling may have a potential role in walking rehabilitation, and future studies should examine the long-term effects on subclinical measures of reflex activity and its relationship to functional outcomes.
Kao, Pei-Chun; Lewis, Cara L; Ferris, Daniel P
2010-07-26
To improve design of robotic lower limb exoskeletons for gait rehabilitation, it is critical to identify neural mechanisms that govern locomotor adaptation to robotic assistance. Previously, we demonstrated soleus muscle recruitment decreased by approximately 35% when walking with a pneumatically-powered ankle exoskeleton providing plantar flexor torque under soleus proportional myoelectric control. Since a substantial portion of soleus activation during walking results from the stretch reflex, increased reflex inhibition is one potential mechanism for reducing soleus recruitment when walking with exoskeleton assistance. This is clinically relevant because many neurologically impaired populations have hyperactive stretch reflexes and training to reduce the reflexes could lead to substantial improvements in their motor ability. The purpose of this study was to quantify soleus Hoffmann (H-) reflex responses during powered versus unpowered walking. We tested soleus H-reflex responses in neurologically intact subjects (n=8) that had trained walking with the soleus controlled robotic ankle exoskeleton. Soleus H-reflex was tested at the mid and late stance while subjects walked with the exoskeleton on the treadmill at 1.25 m/s, first without power (first unpowered), then with power (powered), and finally without power again (second unpowered). We also collected joint kinematics and electromyography. When the robotic plantar flexor torque was provided, subjects walked with lower soleus electromyographic (EMG) activation (27-48%) and had concomitant reductions in H-reflex amplitude (12-24%) compared to the first unpowered condition. The H-reflex amplitude in proportion to the background soleus EMG during powered walking was not significantly different from the two unpowered conditions. These findings suggest that the nervous system does not inhibit the soleus H-reflex in response to short-term adaption to exoskeleton assistance. Future studies should determine if the findings also apply to long-term adaption to the exoskeleton.
Brandimore, Alexandra E.; Troche, Michelle S.; Huber, Jessica E.; Hegland, Karen W.
2015-01-01
Background: Cough is a defensive behavior that can be initiated in response to a stimulus in the airway (reflexively), or on command (voluntarily). There is evidence to suggest that physiological differences exist between reflex and voluntary cough; however, the output (mechanistic and airflow) differences between the cough types are not fully understood. Therefore, the aims of this study were to determine the lung volume, respiratory kinematic, and airflow differences between reflex and voluntary cough in healthy young adults. Methods: Twenty-five participants (14 female; 18–29 years) were recruited for this study. Participants were evaluated using respiratory inductance plethysmography calibrated with spirometry. Experimental procedures included: (1) respiratory calibration, (2) three voluntary sequential cough trials, and (3) three reflex cough trials induced with 200 μM capsaicin. Results: Lung volume initiation (LVI; p = 0.003) and lung volume excursion (LVE; p < 0.001) were significantly greater for voluntary cough compared to reflex cough. The rib cage and abdomen significantly influenced LVI for voluntary cough (p < 0.001); however, only the rib cage significantly impacted LVI for reflex cough (p < 0.001). LVI significantly influenced peak expiratory flow rate (PEFR) for voluntary cough (p = 0.029), but not reflex cough (p = 0.610). Discussion: Production of a reflex cough results in significant mechanistic and airflow differences compared to voluntary cough. These findings suggest that detection of a tussigenic stimulus modifies motor aspects of the reflex cough behavior. Further understanding of the differences between reflex and voluntary cough in older adults and in persons with dystussia (cough dysfunction) will be essential to facilitate the development of successful cough treatment paradigms. PMID:26500560
Matsuo, Kiyoshi; Ban, Ryokuya; Ban, Midori; Yuzuriha, Shunsuke
2014-01-01
The mixed orbicularis oculi muscle lacks an intramuscular proprioceptive system such as muscle spindles, to induce reflex contraction of its slow-twitch fibers. We evaluated whether the mechanoreceptors in Müller's muscle function as extrinsic mechanoreceptors to induce reflex contraction of the slow-twitch fibers of the orbicularis oculi in addition to those of the levator and frontalis muscles. We evaluated in patients with aponeurosis-disinserted blepharoptosis whether strong stretching of the mechanoreceptors in Müller's muscle from upgaze with unilateral lid load induced reflex contraction of the orbicularis oculi slow-twitch fibers and whether anesthesia of Müller's muscle precluded the contraction. We compared the electromyographic responses of the bilateral orbicularis oculi muscles to unilateral intraoperative direct stimulation of the trigeminal proprioceptive nerve with those to unilateral transcutaneous electrical stimulation of the supraorbital nerve. Upgaze with a unilateral 3-g lid load induced reflex contraction of the bilateral orbicularis oculi muscles with ipsilateral dominance. Anesthesia of Müller's muscle precluded the reflex contraction. The orbicularis oculi reflex evoked by stimulation of the trigeminal proprioceptive nerve differed from that by electrical stimulation of the supraorbital nerve in terms of the intensity of current required to induce the reflex, the absence of R1, and duration. The mechanoreceptors in Müller's muscle functions as an extramuscular proprioceptive system to induce reflex contraction of the orbital orbicularis oculi slow-twitch fibers. Whereas reflex contraction of the pretarsal orbicularis fast-twitch fibers functions in spontaneous or reflex blinking, that of the orbital orbicularis oculi slow-twitch fibers may factor in grimacing and blepharospasm.
Ban, Ryokuya; Ban, Midori; Yuzuriha, Shunsuke
2014-01-01
Objective: The mixed orbicularis oculi muscle lacks an intramuscular proprioceptive system such as muscle spindles, to induce reflex contraction of its slow-twitch fibers. We evaluated whether the mechanoreceptors in Müller's muscle function as extrinsic mechanoreceptors to induce reflex contraction of the slow-twitch fibers of the orbicularis oculi in addition to those of the levator and frontalis muscles. Methods: We evaluated in patients with aponeurosis-disinserted blepharoptosis whether strong stretching of the mechanoreceptors in Müller's muscle from upgaze with unilateral lid load induced reflex contraction of the orbicularis oculi slow-twitch fibers and whether anesthesia of Müller's muscle precluded the contraction. We compared the electromyographic responses of the bilateral orbicularis oculi muscles to unilateral intraoperative direct stimulation of the trigeminal proprioceptive nerve with those to unilateral transcutaneous electrical stimulation of the supraorbital nerve. Results: Upgaze with a unilateral 3-g lid load induced reflex contraction of the bilateral orbicularis oculi muscles with ipsilateral dominance. Anesthesia of Müller's muscle precluded the reflex contraction. The orbicularis oculi reflex evoked by stimulation of the trigeminal proprioceptive nerve differed from that by electrical stimulation of the supraorbital nerve in terms of the intensity of current required to induce the reflex, the absence of R1, and duration. Conclusions: The mechanoreceptors in Müller's muscle functions as an extramuscular proprioceptive system to induce reflex contraction of the orbital orbicularis oculi slow-twitch fibers. Whereas reflex contraction of the pretarsal orbicularis fast-twitch fibers functions in spontaneous or reflex blinking, that of the orbital orbicularis oculi slow-twitch fibers may factor in grimacing and blepharospasm. PMID:25210572
Ban, Ryokuya; Matsuo, Kiyoshi; Osada, Yoshiro; Ban, Midori; Yuzuriha, Shunsuke
2010-01-01
We have proposed a hypothetical mechanism to involuntarily sustain the effective eyelid retraction, which consists of not only voluntary but also reflexive contractions of the levator palpebrae superior muscle (LPSM). Voluntary contraction of fast-twitch fibres of the LPSM stretches the mechanoreceptors in Mueller's muscle to evoke trigeminal proprioception, which induces continuous reflexive contraction of slow-twitch fibres of the LPSM through the trigeminal proprioceptive nerve fibres innervating the mechanoreceptors in Mueller's muscle via the oculomotor neurons, as a tonic trigemino-oculomotor reflex. In the common skeletal mixed muscles, electrical stimulation of the proprioceptive nerve, which apparently connects the mechanoreceptors in muscle spindles to the motoneurons, induces the electromyographic response as the Hoffmann reflex. To verify the presence of the trigemino-oculomotor reflex, we confirmed whether intra-operative electrical simulation of the transverse trigeminal proprioceptive nerve on the proximal Mueller's muscle evokes an electromyographic response in the LPSM under general anaesthesia in 12 patients. An ipsilateral, phasic, short-latency response (latency: 2.8+/-0.3 ms) was induced in the ipsilateral LPSM in 10 of 12 subjects. As successful induction of the short-latency response in the ipsilateral LPSM corresponds to the Hoffmann reflex in the common skeletal mixed muscles, the present study is the first electromyographic verification of the presence of the monosynaptic trigemino-oculomotor reflex to induce reflexive contraction of the LPSM. The presence of the trigemino-oculomotor reflex may elucidate the unexplainable blepharoptosis due to surgery, trauma and tumour, all of which may damage the trigeminal proprioceptive nerve fibres to impair the trigemino-oculomotor reflex. Copyright (c) 2008. Published by Elsevier Ltd.
Contributions of Altered Stretch Reflex Coordination to Arm Impairments Following Stroke
Ravichandran, Vengateswaran J.; Krutky, Matthew A.; Perreault, Eric J.
2010-01-01
Patterns of stereotyped muscle coactivation, clinically referred to as synergies, emerge following stroke and impair arm function. Although researchers have focused on cortical contributions, there is growing evidence that altered stretch reflex pathways may also contribute to impairment. However, most previous reflex studies have focused on passive, single-joint movements without regard to their coordination during volitional actions. The purpose of this study was to examine the effects of stroke on coordinated activity of stretch reflexes elicited in multiple arm muscles following multijoint perturbations. We hypothesized that cortical injury results in increased stretch reflexes of muscles characteristic of the abnormal flexor synergy during active arm conditions. To test this hypothesis, we used a robot to apply position perturbations to impaired arms of 10 stroke survivors and dominant arms of 8 healthy age-matched controls. Corresponding reflexes were assessed during volitional contractions simulating different levels of gravitational support, as well as during voluntary flexion and extension of the elbow and shoulder. Reflexes were quantified by average rectified surface electromyogram, recorded from eight muscles spanning the elbow and shoulder. Reflex coordination was quantified using an independent components analysis. We found stretch reflexes elicited in the stroke group were significantly less sensitive to changes in background muscle activation compared with those in the control group (P < 0.05). We also observed significantly increased reflex coupling between elbow flexor and shoulder abductor–extensor muscles in stroke subjects relative to that in control subjects. This increased coupling was present only during volitional tasks that required elbow flexion (P < 0.001), shoulder extension (P < 0.01), and gravity opposition (P < 0.01), but not during the “no load” condition. During volitional contractions, reflex amplitudes scaled with the level of impairment, as assessed by Fugl-Meyer scores (r2 = 0.63; P < 0.05). We conclude that altered reflex coordination is indicative of motor impairment level and may contribute to impaired arm function following stroke. PMID:20962072
Neuroanatomical basis of Sandifer's syndrome: a new vagal reflex?
Cerimagic, Denis; Ivkic, Goran; Bilic, Ervina
2008-01-01
Sandifer's syndrome is a gastrointestinal disorder with neurological features. It is characterized by reflex torticollis following deglutition in patients with gastroesophageal reflux and/or hiatal hernia. The authors believe that neurological manifestations of the syndrome are the consequence of vagal reflex with the reflex center in nucleus tractus solitarii (NTS). Three models for the neuroanatomical basis of the hypothetic reflex arc are presented. In the first one the hypothetic reflex arc is based on the classic hypothesis of two components nervus accessorius (n.XI) - radix cranialis (RC) and radix spinalis (RS) The nervous impulses are transmitted by nervus vagus (n.X) general visceral afferent (GVA) fibers to NTS situated in medulla oblongata, then by interneuronal connections on nucleus ambiguus (NA) and nucleus dorsalis nervi vagi (NDX). Special visceral efferent fibers (SVE) impulses from NA are in part transferred to n.XI ramus externus (RE) (carrying the majority of general somatic efferent (GSE) fibers) via hypothetic anastomoses in the region of foramen jugulare. This leads to contraction of trapezius and sternocleidomastoideus muscles, and the occurrence of intermittent torticollis. In the second suggested neuroanatomical model the hypothetic reflex arc is organized in the absence of n.XI RC, the efferent part of the reflex arc continues as NA, which is motor nucleus of nervus glossopharyngeus (n.IX) and n.X in this case while distal roots of n.XI that appear at the level of the olivary nucleus lower edge represent n.X roots. In the third presented model the hypothetic reflex arc includes no jugular transfer and could be realized via interneuronal connections directly from NTS to the spinal motoneurons within nucleus radicis spinalis nervi accessorii (NRS n.XI) or from NA to NRS n.XI. The afferent segment of the postulated reflex arc in all three models is mediated via n.X. We conclude that Sandifer's syndrome is a clinical manifestation of another vagal reflex that could be termed a "vagocervical" or "esophagocervical" reflex, based on the neuroanatomical hypotheses elaborated in this paper.
ERIC Educational Resources Information Center
Depaepe, Marc; Simon, Frank
2003-01-01
Discusses the history of open-air schools using an evaluation of Belgian schools. Expounds on the complex relationship between educational space and the educational act, and between traditional and progressive education. Demonstrates that open-air schools provided the same education as traditional schools and were not a real alternative for…
Responses evoked by a vestibular implant providing chronic stimulation.
Thompson, Lara A; Haburcakova, Csilla; Gong, Wangsong; Lee, Daniel J; Wall, Conrad; Merfeld, Daniel M; Lewis, Richard F
2012-01-01
Patients with bilateral vestibular loss experience dehabilitating visual, perceptual, and postural difficulties, and an implantable vestibular prosthesis that could improve these symptoms would be of great benefit to these patients. In previous work, we have shown that a one-dimensional, unilateral canal prosthesis can improve the vestibulooccular reflex (VOR) in canal-plugged squirrel monkeys. In addition to the VOR, the potential effects of a vestibular prosthesis on more complex, highly integrative behaviors, such as the perception of head orientation and posture have remained unclear. We tested a one-dimensional, unilateral prosthesis in a rhesus monkey with bilateral vestibular loss and found that chronic electrical stimulation partially restored the compensatory VOR and also that percepts of head orientation relative to gravity were improved. However, the one-dimensional prosthetic stimulation had no clear effect on postural stability during quiet stance, but sway evoked by head-turns was modestly reduced. These results suggest that not only can the implementation of a vestibular prosthesis provide partial restitution of VOR but may also improve perception and posture in the presence of bilateral vestibular hypofunction (BVH). In this review, we provide an overview of our previous and current work directed towards the eventual clinical implementation of an implantable vestibular prosthesis.
Zhang, Miaomiao; Wells, William M; Golland, Polina
2016-10-01
Using image-based descriptors to investigate clinical hypotheses and therapeutic implications is challenging due to the notorious "curse of dimensionality" coupled with a small sample size. In this paper, we present a low-dimensional analysis of anatomical shape variability in the space of diffeomorphisms and demonstrate its benefits for clinical studies. To combat the high dimensionality of the deformation descriptors, we develop a probabilistic model of principal geodesic analysis in a bandlimited low-dimensional space that still captures the underlying variability of image data. We demonstrate the performance of our model on a set of 3D brain MRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Our model yields a more compact representation of group variation at substantially lower computational cost than models based on the high-dimensional state-of-the-art approaches such as tangent space PCA (TPCA) and probabilistic principal geodesic analysis (PPGA).
Modelling Parsing Constraints with High-Dimensional Context Space.
ERIC Educational Resources Information Center
Burgess, Curt; Lund, Kevin
1997-01-01
Presents a model of high-dimensional context space, the Hyperspace Analogue to Language (HAL), with a series of simulations modelling human empirical results. Proposes that HAL's context space can be used to provide a basic categorization of semantic and grammatical concepts; model certain aspects of morphological ambiguity in verbs; and provide…
Evaluation of biological models using Spacelab
NASA Technical Reports Server (NTRS)
Tollinger, D.; Williams, B. A.
1980-01-01
Biological models of hypogravity effects are described, including the cardiovascular-fluid shift, musculoskeletal, embryological and space sickness models. These models predict such effects as loss of extracellular fluid and electrolytes, decrease in red blood cell mass, and the loss of muscle and bone mass in weight-bearing portions of the body. Experimentation in Spacelab by the use of implanted electromagnetic flow probes, by fertilizing frog eggs in hypogravity and fixing the eggs at various stages of early development and by assessing the role of the vestibulocular reflex arc in space sickness is suggested. It is concluded that the use of small animals eliminates the uncertainties caused by corrective or preventive measures employed with human subjects.
Seeing Earth Through the Eyes of an Astronaut
NASA Technical Reports Server (NTRS)
Dawson, Melissa
2014-01-01
The Human Exploration Science Office within the ARES Directorate has undertaken a new class of handheld camera photographic observations of the Earth as seen from the International Space Station (ISS). For years, astronauts have attempted to describe their experience in space and how they see the Earth roll by below their spacecraft. Thousands of crew photographs have documented natural features as diverse as the dramatic clay colors of the African coastline, the deep blues of the Earth's oceans, or the swirling Aurora Borealis of Australia in the upper atmosphere. Dramatic recent improvements in handheld digital single-lens reflex (DSLR) camera capabilities are now allowing a new field of crew photography: night time-lapse imagery.
"On Becoming a Critically Reflexive Practitioner" Redux: What Does It Mean to "Be" Reflexive?
ERIC Educational Resources Information Center
Cunliffe, Ann L.
2016-01-01
In this commentary, Cunliffe states that is convinced that reflexivity offers a way of foregrounding our moral and ethical responsibility for people and for the world around us. To "BE" reflexive was defined as embracing "subjective understandings of reality as a basis for thinking more critically about the impact of our…
Introducing Reflexivity to Evaluation Practice: An In-Depth Case Study
ERIC Educational Resources Information Center
van Draanen, Jenna
2017-01-01
There is currently a paucity of literature in the field of evaluation regarding the practice of reflection and reflexivity and a lack of available tools to guide this practice--yet using a reflexive model can enhance evaluation practice. This paper focuses on the methods and results of a reflexive inquiry that was conducted during a participatory…
Meinck, H M; Ricker, K; Conrad, B
1984-01-01
Neurophysiological investigations of a patient suffering from the stiff-man syndrome revealed that exteroceptive reflexes, in particular those elicited from the skin, were excessively enhanced. In contrast, no abnormalities were found within the monosynaptic reflex arc. Clomipramine injection severely aggravated the clinical symptoms whereas diazepam, clonidine, and tizanidine decreased both muscular stiffness and abnormal exteroceptive reflexes. The hypothesis is put forward that the stiff-man syndrome is a disorder of descending brain-stem systems which exert a net inhibitory control on axial and limb girdle muscle tone as well as on exteroceptive reflex transmission. Detection of abnormal exteroceptive reflex activity in conjunction with neuropharmacological testing might help in the diagnosis of this rare disease. PMID:6707674
[Reflex seizures, cinema and television].
Olivares-Romero, Jesús
2015-12-16
In movies and television series are few references to seizures or reflex epilepsy even though in real life are an important subgroup of total epileptic syndromes. It has performed a search on the topic, identified 25 films in which they appear reflex seizures. Most seizures observed are tonic-clonic and visual stimuli are the most numerous, corresponding all with flashing lights. The emotions are the main stimuli in higher level processes. In most cases it is not possible to know if a character suffers a reflex epilepsy or suffer reflex seizures in the context of another epileptic syndrome. The main conclusion is that, in the movies, the reflex seizures are merely a visual reinforcing and anecdotal element without significant influence on the plot.
Fully Three-Dimensional Virtual-Reality System
NASA Technical Reports Server (NTRS)
Beckman, Brian C.
1994-01-01
Proposed virtual-reality system presents visual displays to simulate free flight in three-dimensional space. System, virtual space pod, is testbed for control and navigation schemes. Unlike most virtual-reality systems, virtual space pod would not depend for orientation on ground plane, which hinders free flight in three dimensions. Space pod provides comfortable seating, convenient controls, and dynamic virtual-space images for virtual traveler. Controls include buttons plus joysticks with six degrees of freedom.
NASA Technical Reports Server (NTRS)
Angelaki, D. E.; Hess, B. J.
1996-01-01
1. The dynamic contribution of otolith signals to three-dimensional angular vestibuloocular reflex (VOR) was studied during off-vertical axis rotations in rhesus monkeys. In an attempt to separate response components to head velocity from those to head position relative to gravity during low-frequency sinusoidal oscillations, large oscillation amplitudes were chosen such that peak-to-peak head displacements exceeded 360 degrees. Because the waveforms of head position and velocity differed in shape and frequency content, the particular head position and angular velocity sensitivity of otolith-ocular responses could be independently assessed. 2. During both constant velocity rotation and low-frequency sinusoidal oscillations, the otolith system generated two different types of oculomotor responses: 1) modulation of three-dimensional eye position and/or eye velocity as a function of head position relative to gravity, as presented in the preceding paper, and 2) slow-phase eye velocity as a function of head angular velocity. These two types of otolith-ocular responses have been analyzed separately. In this paper we focus on the angular velocity responses of the otolith system. 3. During constant velocity off-vertical axis rotations, a steady-state nystagmus was elicited that was maintained throughout rotation. During low-frequency sinusoidal off-vertical axis oscillations, dynamic otolith stimulation resulted primarily in a reduction of phase leads that characterize low-frequency VOR during earth-vertical axis rotations. Both of these effects are the result of an internally generated head angular velocity signal of otolithic origin that is coupled through a low-pass filter to the VOR. No change in either VOR gain or phase was observed at stimulus frequencies larger than 0.1 Hz. 4. The dynamic otolith contribution to low-frequency angular VOR exhibited three-dimensional response characteristics with some quantitative differences in the different response components. For horizontal VOR, the amplitude of the steady-state slow-phase velocity during constant velocity rotation and the reduction of phase leads during sinusoidal oscillation were relatively independent of tilt angle (for angles larger than approximately 10 degrees). For vertical and torsional VOR, the amplitude of steady-state slow-phase eye velocity during constant velocity rotation increased, and the phase leads during sinusoidal oscillation decreased with increasing tilt angle. The largest steady-state response amplitudes and smallest phase leads were observed during vertical/torsional VOR about an earth-horizontal axis. 5. The dynamic range of otolith-borne head angular velocity information in the VOR was limited to velocities up to approximately 110 degrees/s. Higher head velocities resulted in saturation and a decrease in the amplitude of the steady-state response components during constant velocity rotation and in increased phase leads during sinusoidal oscillations. 6. The response characteristics of otolith-borne angular VORs were also studied in animals after selective semicircular canal inactivation. Otolith angular VORs exhibited clear low-pass filtered properties with a corner frequency of approximately 0.05-0.1 Hz. Vectorial summation of canal VOR alone (elicited during earth-vertical axis rotations) and otolith VOR alone (elicited during off-vertical axis oscillations after semicircular canal inactivation) could not predict VOR gain and phase during off-vertical axis rotations in intact animals. This suggests a more complex interaction of semicircular canal and otolith signals. 7. The results of this study show that the primate low-frequency enhancement of VOR dynamics during off-vertical axis rotation is independent of a simultaneous activation of the vertical and torsional "tilt" otolith-ocular reflexes that have been characterized in the preceding paper. (ABSTRACT TRUNCATED).
Three dimensional eye movements of squirrel monkeys following postrotatory tilt
NASA Technical Reports Server (NTRS)
Merfeld, D. M.; Young, L. R.; Paige, G. D.; Tomko, D. L.
1993-01-01
Three-dimensional squirrel monkey eye movements were recorded during and immediately following rotation around an earth-vertical yaw axis (160 degrees/s steady state, 100 degrees/s2 acceleration and deceleration). To study interactions between the horizontal angular vestibulo-ocular reflex (VOR) and head orientation, postrotatory VOR alignment was changed relative to gravity by tilting the head out of the horizontal plane (pitch or roll tilt between 15 degrees and 90 degrees) immediately after cessation of motion. Results showed that in addition to post rotatory horizontal nystagmus, vertical nystagmus followed tilts to the left or right (roll), and torsional nystagmus followed forward or backward (pitch) tilts. When the time course and spatial orientation of eye velocity were considered in three dimensions, the axis of eye rotation always shifted toward alignment with gravity, and the postrotatory horizontal VOR decay was accelerated by the tilts. These phenomena may reflect a neural process that resolves the sensory conflict induced by this postrotatory tilt paradigm.
Certain approximation problems for functions on the infinite-dimensional torus: Lipschitz spaces
NASA Astrophysics Data System (ADS)
Platonov, S. S.
2018-02-01
We consider some questions about the approximation of functions on the infinite-dimensional torus by trigonometric polynomials. Our main results are analogues of the direct and inverse theorems in the classical theory of approximation of periodic functions and a description of the Lipschitz spaces on the infinite-dimensional torus in terms of the best approximation.
Simulating Scenes In Outer Space
NASA Technical Reports Server (NTRS)
Callahan, John D.
1989-01-01
Multimission Interactive Picture Planner, MIP, computer program for scientifically accurate and fast, three-dimensional animation of scenes in deep space. Versatile, reasonably comprehensive, and portable, and runs on microcomputers. New techniques developed to perform rapidly calculations and transformations necessary to animate scenes in scientifically accurate three-dimensional space. Written in FORTRAN 77 code. Primarily designed to handle Voyager, Galileo, and Space Telescope. Adapted to handle other missions.
Tendon reflex is suppressed during whole-body vibration.
Karacan, Ilhan; Cidem, Muharrem; Yilmaz, Gizem; Sebik, Oguz; Cakar, Halil Ibrahim; Türker, Kemal Sıtkı
2016-10-01
In this study we have investigated the effect of whole body vibration (WBV) on the tendon reflex (T-reflex) amplitude. Fifteen young adult healthy volunteer males were included in this study. Records of surface EMG of the right soleus muscle and accelerometer taped onto the right Achilles tendon were obtained while participant stood upright with the knees in extension, on the vibration platform. Tendon reflex was elicited before and during WBV. Subjects completed a set of WBV. Each WBV set consisted of six vibration sessions using different frequencies (25, 30, 35, 40, 45, 50Hz) applied randomly. In each WBV session the Achilles tendon was tapped five times with a custom-made reflex hammer. The mean peak-to-peak (PP) amplitude of T-reflex was 1139.11±498.99µV before vibration. It decreased significantly during WBV (p<0.0001). The maximum PP amplitude of T-reflex was 1333±515μV before vibration. It decreased significantly during WBV (p<0.0001). No significant differences were obtained in the mean acceleration values of Achilles tendon with tapping between before and during vibration sessions. This study showed that T-reflex is suppressed during WBV. T-reflex suppression indicates that the spindle primary afferents must have been pre-synaptically inhibited during WBV similar to the findings in high frequency tendon vibration studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Olza Fernández, Ibone; Malalana Martínez, Ana M.; González Armengod, Carmen; Costarelli, Valeria; Millán Santos, Isabel; Fernández-Cañadas Morillo, Aurora; Pérez Riveiro, Pilar; López Sánchez, Francisco; García Murillo, Lourdes
2015-01-01
Abstract Aim: Several synthetic peptide manipulations during the time surrounding birth can alter the specific neurohormonal status in the newborn brain. This study is aimed at assessing whether intrapartum oxytocin administration has any effect on primitive neonatal reflexes and determining whether such an effect is dose-dependent. Materials and Methods: A cohort prospective study was conducted at a tertiary hospital. Mother–infant dyads who received intrapartum oxytocin (n=53) were compared with mother–infant dyads who did not receive intrapartum oxytocin (n=45). Primitive neonatal reflexes (endogenous, antigravity, motor, and rhythmic reflexes) were quantified by analyzing videotaped breastfeeding sessions in a biological nurturing position. Two observers blind to the group assignment and the oxytocin dose analyzed the videotapes and assesed the newborn's state of consciousness according to the Brazelton scale. Results: The release of all rhythmic reflexes (p=0.01), the antigravity reflex (p=0.04), and total primitive neonatal reflexes (p=0.02) in the group exposed to oxytocin was lower than in the group not exposed to oxytocin. No correlations were observed between the dose of oxytocin administered and the percentage of primitive neonatal reflexes released (r=0.03; p=0.82). Conclusions: Intrapartum oxytocin administration might inhibit the expression of several primitive neonatal reflexes associated with breastfeeding. This correlation does not seem to be dose-dependent. PMID:25785487
Grindstaff, Terry L; Pietrosimone, Brian G; Sauer, Lindsay D; Kerrigan, D Casey; Patrie, James T; Hertel, Jay; Ingersoll, Christopher D
2014-08-01
Manual therapies, directed to the knee and lumbopelvic region, have demonstrated the ability to improve neuromuscular quadriceps function in individuals with knee pathology. It remains unknown if manual therapies may alter impaired spinal reflex excitability, thus identifying a potential mechanism in which manual therapy may improve neuromuscular function following knee injury. To determine the effect of local and distant mobilisation/manipulation interventions on quadriceps spinal reflex excitability. Seventy-five individuals with a history of knee joint injury and current quadriceps inhibition volunteered for this study. Participants were randomised to one of five intervention groups: lumbopelvic manipulation (grade V), lumbopelvic manipulation positioning (no thrust), grade IV patellar mobilisation, grade I patellar mobilisation, and control (no treatment). Changes in spinal reflex excitability were quantified by assessing the Hoffmann reflex (H-reflex), presynaptic, and postsynaptic excitability. A hierarchical linear-mixed model for repeated measures was performed to compare changes in outcome variables between groups over time (pre, post 0, 30, 60, 90 min). There were no significant differences in H-reflex, presynaptic, or postsynaptic excitability between groups across time. Manual therapies directed to the knee or lumbopelvic region did not acutely change quadriceps spinal reflex excitability. Although manual therapies may improve impairments and functional outcomes the underlying mechanism does not appear to be related to changes in spinal reflex excitability. Copyright © 2014 Elsevier Ltd. All rights reserved.
No evidence hip joint angle modulates intrinsically produced stretch reflex in human hopping.
Gibson, W; Campbell, A; Allison, G
2013-09-01
Motor output in activities such as walking and hopping is suggested to be mediated neurally by purported stretch reflex augmentation of muscle output. Reflex EMG activity during these tasks has been frequently investigated in the soleus muscle; with alterations in reflex amplitude being associated with changes in hip joint angle/phase of the gait cycle. Previous work has focussed on reflex activity induced by an artificial perturbation or by induction of H-reflexes. As such, it is currently unknown if stretch reflex activity induced intrinsically (as part of the task) is modulated by changes in hip joint angle. This study investigated whether hip joint angle modulated reflex EMG 'burst' activity during a hopping task performed on a custom-built partially reclined sleigh. Ten subjects participated; EMG and kinematic data (VICON motor capture system) was collected for each hop cycle. Participants completed 5 sets of 30s of self-paced hopping in (1) hip neutral and (2) hip 60° flexion conditions. There was no difference in EMG 'burst' activity or in sagittal plane kinematics (knee/ankle) in the hopping task between the two conditions. The results indicate that during a functional task such as hopping, changes in hip angle do not alter the stretch reflex-like activity associated with landing. Copyright © 2013 Elsevier B.V. All rights reserved.
Hirayama, Jiro; Yamagata, Masatsune; Takahashi, Kazuhisa; Moriya, Hideshige
2005-05-01
The effect of noxious electrical stimulation of the peroneal nerve on the stretch reflex electromyogram activity of the hamstring muscle (semitendinous) was studied. To verify the following hypothetical mechanisms underlying tight hamstrings in lumbar disc herniation: stretch reflex muscle activity of hamstrings is increased by painful inputs from an injured spinal nerve root and the increased stretch reflex muscle activity is maintained by central sensitization. It is reported that stretch reflex activity of the trunk muscles is induced by noxious stimulation of the sciatic nerve and maintained by central sensitization. In spinalized rats (transected spinal cord), the peroneal nerve was stimulated electrically as a conditioning stimulus. Stretch reflex electromyogram activity of the semitendinous muscle was recorded before and after the conditioning stimulus. Even after electrical stimulation was terminated, an increased stretch reflex activity of the hamstring muscle was observed. It is likely that a central sensitization mechanism at the spinal cord level was involved in the increased reflex activity. Central sensitization may play a part in the neuronal mechanisms of tight hamstrings in lumbar disc herniation.
Passmore, Steven R; Bruno, Paul A
2012-09-07
The Jendrassik maneuver (JM) is a remote facilitation muscular contraction shown to affect amplitude and temporal components of the human stretch reflex. Conflicting theoretical models exist regarding the neurological mechanism related to its ability to reinforce reflex parameters. One mechanism involves the gamma motoneurons of the fusimotor system, which are subject to both physical and mental activity. A second mechanism describes reduced alpha motoneuron presynaptic inhibition, which is not subject to mental activity. In the current study, we determined if mental activity could be used to create a reflex facilitation comparable to a remote muscle contraction. Using a within-participants design, we investigated the relative effect of the JM and a successfully employed mental task (Stroop task) on the amplitude and temporal components of the patellar tendon reflex. We found that the addition of mental activity had no influence on the patellar tendon reflex parameters measured, while the JM provided facilitation (increased reflex amplitude, decreased total reflex time). The findings from this study support the view that the mechanism for the JM is a reduction in presynaptic inhibition of alpha motoneurons as it is influenced by physical and not mental activity.
Emotional Dissonance and Burnout: The Moderating Role of Team Reflexivity and Re-Evaluation.
Andela, Marie; Truchot, Didier
2017-08-01
The aim of the present study was to better understand the relationship between emotional dissonance and burnout by exploring the buffering effects of re-evaluation and team reflexivity. The study was conducted with a sample of 445 nurses and healthcare assistants from a general hospital. Team reflexivity was evaluated with the validation of the French version of the team reflexivity scale (Facchin, Tschan, Gurtner, Cohen, & Dupuis, 2006). Burnout was measured with the MBI General Survey (Schaufeli, Leiter, Maslach, & Jackson, 1996). Emotional dissonance and re-evaluation were measured with the scale developed by Andela, Truchot, & Borteyrou (2015). With reference to Rimé's theoretical model (2009), we suggested that both dimensions of team reflexivity (task and social reflexivity) respond to both psychological necessities induced by dissonance (cognitive clarification and socio-affective necessities). Firstly, results indicated that emotional dissonance was related to burnout. Secondly, regression analysis confirmed the buffering role of re-evaluation and social reflexivity on the emotional exhaustion of emotional dissonance. Overall, results contribute to the literature by highlighting the moderating effect of re-evaluation and team reflexivity in analysing the relationship between emotional dissonance and burnout. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Reflex responses of lip muscles in young and older women.
Wohlert, A B
1996-06-01
The perioral reflex in response to innocuous mechanical stimulation of the lip vermilion was studied in 20 young and 20 older women. Responses to stimuli at the right and left sides of both the upper and lower lips were recorded. Results show significant specificity of response, especially for upper lip sites. Reflex response at the site of stimulation was greatest in amplitude and shortest in latency, followed by response at sites ipsilateral to the site of stimulation. Younger subjects showed greater localizing tendency than older subjects. Stimulation was significantly less likely to produce a reflex response in the older group. When reflex responses did occur, they were significantly lower in amplitude and longer in latency than the responses of the younger group. Nonetheless, reflex responses were common in both groups, with responses at the site of stimulation occurring 78% of the time in older women and 90% of the time in younger women. Every participant showed at least one reflex response to lip stimulation. Results suggest decreasing complexity of synaptic drive to the perioral system in old age but also show that reflexive response does not deteriorate completely, remaining an available element for motor control in normal older women.
Basis adaptation in homogeneous chaos spaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tipireddy, Ramakrishna; Ghanem, Roger
2014-02-01
We present a new meth for the characterization of subspaces associated with low-dimensional quantities of interet (QoI). The probability density function of these QoI is found to be concentrated around one-dimensional subspaces for which we develop projection operators. Our approach builds on the properties of Gaussian Hilbert spaces and associated tensor product spaces.
Robust video copy detection approach based on local tangent space alignment
NASA Astrophysics Data System (ADS)
Nie, Xiushan; Qiao, Qianping
2012-04-01
We propose a robust content-based video copy detection approach based on local tangent space alignment (LTSA), which is an efficient dimensionality reduction algorithm. The idea is motivated by the fact that the content of video becomes richer and the dimension of content becomes higher. It does not give natural tools for video analysis and understanding because of the high dimensionality. The proposed approach reduces the dimensionality of video content using LTSA, and then generates video fingerprints in low dimensional space for video copy detection. Furthermore, a dynamic sliding window is applied to fingerprint matching. Experimental results show that the video copy detection approach has good robustness and discrimination.
Reflex limb dilatation following norepinephrine and angiotensin II in conscious dogs
NASA Technical Reports Server (NTRS)
Vatner, S. F.; Mcritchie, R. J.
1976-01-01
The extent to which norepinephrine (NE) and angiotensin II (AN) constrict the mesenteric, renal, and iliac beds in conscious dogs is evaluated with a view to elicit opposing reflex actions tempering the vasoconstriction in the limb of the animals tested. The afferent and efferent mechanisms mediating this reflex are analyzed. It is shown that intravenous NE and AN cause striking reflex iliac dilatation in the limb of the conscious dog. The afferent arc of this reflex involves both arterial baroreceptor and vagal path-ways, whereas the efferent mechanism involves an interaction of alpha-adrenergic and histaminergic receptors.
Paradigm shift regarding the transversalis fascia, preperitoneal space, and Retzius' space.
Asakage, N
2018-06-01
There has been confusion in the anatomical recognition when performing inguinal hernia operations in Japan. From now on, a paradigm shift from the concept of two-dimensional layer structure to the three-dimensional space recognition is necessary to promote an understanding of anatomy. Along with the formation of the abdominal wall, the extraperitoneal space is formed by the transversalis fascia and preperitoneal space. The transversalis fascia is a somatic vascular fascia originating from an arteriovenous fascia. It is a dense areolar tissue layer at the outermost of the extraperitoneal space that runs under the diaphragm and widely lines the body wall muscle. The umbilical funiculus is taken into the abdominal wall and transformed into the preperitoneal space that is a local three-dimensional cavity enveloping preperitoneal fasciae composed of the renal fascia, vesicohypogastric fascia, and testiculoeferential fascia. The Retzius' space is an artificial cavity formed at the boundary between the transversalis fascia and preperitoneal space. In the underlay mesh repair, the mesh expands in the range spanning across the Retzius' space and preperitoneal space.
Hörmander multipliers on two-dimensional dyadic Hardy spaces
NASA Astrophysics Data System (ADS)
Daly, J.; Fridli, S.
2008-12-01
In this paper we are interested in conditions on the coefficients of a two-dimensional Walsh multiplier operator that imply the operator is bounded on certain of the Hardy type spaces Hp, 0
Creating Body Shapes From Verbal Descriptions by Linking Similarity Spaces.
Hill, Matthew Q; Streuber, Stephan; Hahn, Carina A; Black, Michael J; O'Toole, Alice J
2016-11-01
Brief verbal descriptions of people's bodies (e.g., "curvy," "long-legged") can elicit vivid mental images. The ease with which these mental images are created belies the complexity of three-dimensional body shapes. We explored the relationship between body shapes and body descriptions and showed that a small number of words can be used to generate categorically accurate representations of three-dimensional bodies. The dimensions of body-shape variation that emerged in a language-based similarity space were related to major dimensions of variation computed directly from three-dimensional laser scans of 2,094 bodies. This relationship allowed us to generate three-dimensional models of people in the shape space using only their coordinates on analogous dimensions in the language-based description space. Human descriptions of photographed bodies and their corresponding models matched closely. The natural mapping between the spaces illustrates the role of language as a concise code for body shape that captures perceptually salient global and local body features. © The Author(s) 2016.
Lychakov, D V
2016-01-01
The review contains data on functional shifts in fishes, amphibians and birds caused by changes in the otolith system operation after stay under weightlessness conditions. These data are of theoretical and practical significance and are important to resolve some fundamental problems of vestibulogy. The analysis of the results of space experiments has shown that weightlessness conditions do not exert a substantial impact on formation and functional state of the otolith system in embryonic fishes, amphibians and birds developed during space flight. Weightlessness conditions do pot inhibit embryonic development of lower vertebrates but even have rather beneficial effect on it. This is consistent with conclusions concerning development of mammalian fetuses. The experimental results show that weightlessness can cause similar functional and behavioral vestibular shifts both in lower vertebrates and in mammals. For example, immediately after an orbital flight the vestibuloocular reflex in fish larvae and tadpoles (without lordosis) was stronger than in control individuals. A similar shift of the otolith reflex was observed in the majority of cosmonauts after short-term orbital flights. Immediately after landing adult terrestrial vertebrates, as well as human beings, exhibit lower activity levels, worse equilibrium and coordination of movements. Another interesting finding observed after landing of the cosmic apparatus was an unusual looping character of tadpole swimming. It is supposed that the unusual motor activity of animals as well as appearance of illusions in cosmonauts and astronauts after switching from 1 to 0 g have the same nature and are related to the change in character of otolith organs stimulation. Considering this similarity of vestibular reactions, using animals seems rather perspective. Besides it allows applying in experiments various invasive techniques.
Flexion Reflex Can Interrupt and Reset the Swimming Rhythm.
Elson, Matthew S; Berkowitz, Ari
2016-03-02
The spinal cord can generate the hip flexor nerve activity underlying leg withdrawal (flexion reflex) and the rhythmic, alternating hip flexor and extensor activities underlying locomotion and scratching, even in the absence of brain inputs and movement-related sensory feedback. It has been hypothesized that a common set of spinal interneurons mediates flexion reflex and the flexion components of locomotion and scratching. Leg cutaneous stimuli that evoke flexion reflex can alter the timing of (i.e., reset) cat walking and turtle scratching rhythms; in addition, reflex responses to leg cutaneous stimuli can be modified during cat and human walking and turtle scratching. Both of these effects depend on the phase (flexion or extension) of the rhythm in which the stimuli occur. However, similar interactions between leg flexion reflex and swimming have not been reported. We show here that a tap to the foot interrupted and reset the rhythm of forward swimming in spinal, immobilized turtles if the tap occurred during the swim hip extensor phase. In addition, the hip flexor nerve response to an electrical foot stimulus was reduced or eliminated during the swim hip extensor phase. These two phase-dependent effects of flexion reflex on the swim rhythm and vice versa together demonstrate that the flexion reflex spinal circuit shares key components with or has strong interactions with the swimming spinal network, as has been shown previously for cat walking and turtle scratching. Therefore, leg flexion reflex circuits likely share key spinal interneurons with locomotion and scratching networks across limbed vertebrates generally. The spinal cord can generate leg withdrawal (flexion reflex), locomotion, and scratching in limbed vertebrates. It has been hypothesized that there is a common set of spinal cord neurons that produce hip flexion during flexion reflex, locomotion, and scratching based on evidence from studies of cat and human walking and turtle scratching. We show here that flexion reflex and swimming also share key spinal cord components based on evidence from turtles. Foot stimulation can reset the timing of the swimming rhythm and the response to each foot stimulation can itself be altered by the swim rhythm. Collectively, these studies suggest that spinal cord neuronal networks underlying flexion reflex, multiple forms of locomotion, and scratching share key components. Copyright © 2016 the authors 0270-6474/16/362819-08$15.00/0.
The Moro reaction: More than a reflex, a ritualized behavior of nonverbal communication.
Rousseau, Pierre V; Matton, Florence; Lecuyer, Renaud; Lahaye, Willy
2017-02-01
To propose a phylogenetic significance to the Moro reflex which remains unexplained since its publication in 1918 because both hands are free at the end of the gesture. Among the 75 videos of healthy term newborns we have filmed in a research project on antenatal education to parenthood, we describe a sequence that clearly showed the successive movements of the Moro reflex and we report the occurrence of this reflex in the videos that were recorded from Time 0 of birth defined as the moment that lies between the birth of the thorax and the pelvis of the infant. The selected sequence showed the following succession of the newborn's actions: quick extension-adduction of both arms, the orientation of the body, head and eyes towards a human person, and full extension-abduction of both arms with spreading of the fingers, crying and a distressed face. There were 13 Moro reflexes between 2 and 14s from Time 0 of birth. We found a significant association between the occurrence of the Moro reflex and the placement of the newborn at birth in supine position on the mother's abdomen (p=0.002). The quick extension-adduction of both arms which started the sequence may be considered as a startle reflex controlled by the neural fear system and the arm extension-adduction which followed as a Moro reflex. The characteristics of all Moro reflexes were those of ritualization: amplitude, duration, stereotype of the gestures. This evolutionary process turns a physiological behavior, grasping in this case, to a non-verbal communicative behavior whose meaning is a request to be picked up in the arms. The gestures associated with the Moro reflex: crying and orientation of the body, head, and eyes towards a human person, are gestures of intention to communicate which support our hypothesis. The neural mechanism of the Moro reaction probably involves both the fear and the separation-distress systems. This paper proposes for the first time a phylogenetic significance to the Moro reflex: a ritualized behavior of nonverbal communication. Professionals should avoid stimulating the newborns' fear system by unnecessarily triggering Moro reflexes. Antenatal education should teach parents to respond to the Moro reflexes of their newborn infant by picking her up in their arms with mother talk. Copyright © 2017 Elsevier Inc. All rights reserved.
A new twist on gyroscopic sensing: body rotations lead to torsion in flapping, flexing insect wings.
Eberle, A L; Dickerson, B H; Reinhall, P G; Daniel, T L
2015-03-06
Insects perform fast rotational manoeuvres during flight. While two insect orders use flapping halteres (specialized organs evolved from wings) to detect body dynamics, it is unknown how other insects detect rotational motions. Like halteres, insect wings experience gyroscopic forces when they are flapped and rotated and recent evidence suggests that wings might indeed mediate reflexes to body rotations. But, can gyroscopic forces be detected using only changes in the structural dynamics of a flapping, flexing insect wing? We built computational and robotic models to rotate a flapping wing about an axis orthogonal to flapping. We recorded high-speed video of the model wing, which had a flexural stiffness similar to the wing of the Manduca sexta hawkmoth, while flapping it at the wingbeat frequency of Manduca (25 Hz). We compared the three-dimensional structural dynamics of the wing with and without a 3 Hz, 10° rotation about the yaw axis. Our computational model revealed that body rotation induces a new dynamic mode: torsion. We verified our result by measuring wing tip displacement, shear strain and normal strain of the robotic wing. The strains we observed could stimulate an insect's mechanoreceptors and trigger reflexive responses to body rotations. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
A new twist on gyroscopic sensing: body rotations lead to torsion in flapping, flexing insect wings
Eberle, A. L.; Dickerson, B. H.; Reinhall, P. G.; Daniel, T. L.
2015-01-01
Insects perform fast rotational manoeuvres during flight. While two insect orders use flapping halteres (specialized organs evolved from wings) to detect body dynamics, it is unknown how other insects detect rotational motions. Like halteres, insect wings experience gyroscopic forces when they are flapped and rotated and recent evidence suggests that wings might indeed mediate reflexes to body rotations. But, can gyroscopic forces be detected using only changes in the structural dynamics of a flapping, flexing insect wing? We built computational and robotic models to rotate a flapping wing about an axis orthogonal to flapping. We recorded high-speed video of the model wing, which had a flexural stiffness similar to the wing of the Manduca sexta hawkmoth, while flapping it at the wingbeat frequency of Manduca (25 Hz). We compared the three-dimensional structural dynamics of the wing with and without a 3 Hz, 10° rotation about the yaw axis. Our computational model revealed that body rotation induces a new dynamic mode: torsion. We verified our result by measuring wing tip displacement, shear strain and normal strain of the robotic wing. The strains we observed could stimulate an insect's mechanoreceptors and trigger reflexive responses to body rotations. PMID:25631565
Early Cretaceous Umkomasia from Mongolia: implications for homology of corystosperm cupules.
Shi, Gongle; Leslie, Andrew B; Herendeen, Patrick S; Herrera, Fabiany; Ichinnorov, Niiden; Takahashi, Masamichi; Knopf, Patrick; Crane, Peter R
2016-06-01
Corystosperms, a key extinct group of Late Permian to Early Cretaceous plants, are important for understanding seed plant phylogeny, including the evolution of the angiosperm carpel and anatropous bitegmic ovule. Here, we describe a new species of corystosperm seed-bearing organ, Umkomasia mongolica sp. nov., based on hundreds of three-dimensionally preserved mesofossils from the Early Cretaceous of Mongolia. Individual seed-bearing units of U. mongolica consist of a bract subtending an axis that bifurcates, with each fork (cupule stalk) bearing a cupule near the tip. Each cupule is formed by the strongly reflexed cupule stalk and two lateral flaps that partially enclose an erect seed. The seed is borne at, or close to, the tip of the reflexed cupule stalk, with the micropyle oriented towards the stalk base. The corystosperm cupule is generally interpreted as a modified leaf that bears a seed on its abaxial surface. However, U. mongolica suggests that an earlier interpretation, in which the seed is borne directly on an axis (shoot), is equally likely. The 'axial' interpretation suggests a possible relationship of corystosperms to Ginkgo. It also suggests that the cupules of corystosperms may be less distinct from those of Caytonia than has previously been supposed. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
ERIC Educational Resources Information Center
Wolpaw, Jonathan R.; Chen, Xiang Yang
2006-01-01
Operant conditioning of the H-reflex, the electrical analog of the spinal stretch reflex, is a simple model of skill acquisition and involves plasticity in the spinal cord. Previous work showed that the cerebellum is essential for down-conditioning the H-reflex. This study asks whether the cerebellum is also essential for maintaining…
Indicators used in livestock to assess unconsciousness after stunning: a review.
Verhoeven, M T W; Gerritzen, M A; Hellebrekers, L J; Kemp, B
2015-02-01
Assessing unconsciousness is important to safeguard animal welfare shortly after stunning at the slaughter plant. Indicators that can be visually evaluated are most often used when assessing unconsciousness, as they can be easily applied in slaughter plants. These indicators include reflexes originating from the brain stem (e.g. eye reflexes) or from the spinal cord (e.g. pedal reflex) and behavioural indicators such as loss of posture, vocalisations and rhythmic breathing. When physically stunning an animal, for example, captive bolt, most important indicators looked at are posture, righting reflex, rhythmic breathing and the corneal or palpebral reflex that should all be absent if the animal is unconscious. Spinal reflexes are difficult as a measure of unconsciousness with this type of stunning, as they may occur more vigorous. For stunning methods that do not physically destroy the brain, for example, electrical and gas stunning, most important indicators looked at are posture, righting reflex, natural blinking response, rhythmic breathing, vocalisations and focused eye movement that should all be absent if the animal is unconscious. Brain stem reflexes such as the cornea reflex are difficult as measures of unconsciousness in electrically stunned animals, as they may reflect residual brain stem activity and not necessarily consciousness. Under commercial conditions, none of the indicators mentioned above should be used as a single indicator to determine unconsciousness after stunning. Multiple indicators should be used to determine unconsciousness and sufficient time should be left for the animal to die following exsanguination before starting invasive dressing procedures such as scalding or skinning. The recording and subsequent assessment of brain activity, as presented in an electroencephalogram (EEG), is considered the most objective way to assess unconsciousness compared with reflexes and behavioural indicators, but is only applied in experimental set-ups. Studies performed in an experimental set-up have often looked at either the EEG or reflexes and behavioural indicators and there is a scarcity of studies that correlate these different readout parameters. It is recommended to study these correlations in more detail to investigate the validity of reflexes and behavioural indicators and to accurately determine the point in time at which the animal loses consciousness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomizawa, Shinya; Nozawa, Masato
2006-06-15
We study vacuum solutions of five-dimensional Einstein equations generated by the inverse scattering method. We reproduce the black ring solution which was found by Emparan and Reall by taking the Euclidean Levi-Civita metric plus one-dimensional flat space as a seed. This transformation consists of two successive processes; the first step is to perform the three-solitonic transformation of the Euclidean Levi-Civita metric with one-dimensional flat space as a seed. The resulting metric is the Euclidean C-metric with extra one-dimensional flat space. The second is to perform the two-solitonic transformation by taking it as a new seed. Our result may serve asmore » a stepping stone to find new exact solutions in higher dimensions.« less
NASA Astrophysics Data System (ADS)
Le Floch, Bruno; Turiaci, Gustavo J.
2017-12-01
We relate Liouville/Toda CFT correlators on Riemann surfaces with boundaries and cross-cap states to supersymmetric observables in four-dimensional N=2 gauge theories. Our construction naturally involves four-dimensional theories with fields defined on different ℤ2 quotients of the sphere (hemisphere and projective space) but nevertheless interacting with each other. The six-dimensional origin is a ℤ2 quotient of the setup giving rise to the usual AGT correspondence. To test the correspondence, we work out the ℝℙ4 partition function of four-dimensional N=2 theories by combining a 3d lens space and a 4d hemisphere partition functions. The same technique reproduces known ℝℙ2 partition functions in a form that lets us easily check two-dimensional Seiberg-like dualities on this nonorientable space. As a bonus we work out boundary and cross-cap wavefunctions in Toda CFT.
NASA Technical Reports Server (NTRS)
Gdowski, G. T.; McCrea, R. A.; Peterson, B. W. (Principal Investigator)
1999-01-01
Single-unit recordings were obtained from 107 horizontal semicircular canal-related central vestibular neurons in three alert squirrel monkeys during passive sinusoidal whole-body rotation (WBR) while the head was free to move in the yaw plane (2.3 Hz, 20 degrees /s). Most of the units were identified as secondary vestibular neurons by electrical stimulation of the ipsilateral vestibular nerve (61/80 tested). Both non-eye-movement (n = 52) and eye-movement-related (n = 55) units were studied. Unit responses recorded when the head was free to move were compared with responses recorded when the head was restrained from moving. WBR in the absence of a visual target evoked a compensatory vestibulocollic reflex (VCR) that effectively reduced the head velocity in space by an average of 33 +/- 14%. In 73 units, the compensatory head movements were sufficiently large to permit the effect of the VCR on vestibular signal processing to be assessed quantitatively. The VCR affected the rotational responses of different vestibular neurons in different ways. Approximately one-half of the units (34/73, 47%) had responses that decreased as head velocity decreased. However, the responses of many other units (24/73) showed little change. These cells had signals that were better correlated with trunk velocity than with head velocity. The remaining units had responses that were significantly larger (15/73, 21%) when the VCR produced a decrease in head velocity. Eye-movement-related units tended to have rotational responses that were correlated with head velocity. On the other hand, non-eye-movement units tended to have rotational responses that were better correlated with trunk velocity. We conclude that sensory vestibular signals are transformed from head-in-space coordinates to trunk-in-space coordinates on many secondary vestibular neurons in the vestibular nuclei by the addition of inputs related to head rotation on the trunk. This coordinate transformation is presumably important for controlling postural reflexes and constructing a central percept of body orientation and movement in space.
Knikou, Maria; Kay, Elizabeth; Schmit, Brian D.
2007-01-01
Spinal integration of sensory signals associated with hip position, muscle loading, and cutaneous sensation of the foot contributes to movement regulation. The exact interactive effects of these sensory signals under controlled dynamic conditions are unknown. The purpose of the present study was to establish the effects of combined plantar cutaneous afferent excitation and hip movement on the Hoffmann (H) and flexion reflexes in people with a spinal cord injury (SCI). The flexion and H-reflexes were elicited through stimulation of the right sural (at non-nociceptive levels) and posterior tibial nerves respectively. Reflex responses were recorded from the ipsilateral tibialis anterior (TA) (flexion reflex) and soleus (H-reflex) muscles. The plantar cutaneous afferents were stimulated at three times the perceptual threshold (200 Hz, 24-ms pulse train) at conditioning–test intervals that ranged from 3 to 90 ms. Sinusoidal movements were imposed to the right hip joint at 0.2 Hz with subjects supine. Control and conditioned reflexes were recorded as the hip moved in flexion and extension. Leg muscle activity and sagittal-plane joint torques were recorded. We found that excitation of plantar cutaneous afferents facilitated the soleus H-reflex and the long latency flexion reflex during hip extension. In contrast, the short latency flexion reflex was depressed by plantar cutaneous stimulation during hip flexion. Oscillatory joint forces were present during the transition phase of the hip movement from flexion to extension when stimuli were delivered during hip flexion. Hip-mediated input interacts with feedback from the foot sole to facilitate extensor and flexor reflex activity during the extension phase of movement. The interactive effects of these sensory signals may be a feature of impaired gait, but when they are appropriately excited, they may contribute to locomotion recovery in these patients. PMID:17543951
2010-01-01
Background To improve design of robotic lower limb exoskeletons for gait rehabilitation, it is critical to identify neural mechanisms that govern locomotor adaptation to robotic assistance. Previously, we demonstrated soleus muscle recruitment decreased by ~35% when walking with a pneumatically-powered ankle exoskeleton providing plantar flexor torque under soleus proportional myoelectric control. Since a substantial portion of soleus activation during walking results from the stretch reflex, increased reflex inhibition is one potential mechanism for reducing soleus recruitment when walking with exoskeleton assistance. This is clinically relevant because many neurologically impaired populations have hyperactive stretch reflexes and training to reduce the reflexes could lead to substantial improvements in their motor ability. The purpose of this study was to quantify soleus Hoffmann (H-) reflex responses during powered versus unpowered walking. Methods We tested soleus H-reflex responses in neurologically intact subjects (n=8) that had trained walking with the soleus controlled robotic ankle exoskeleton. Soleus H-reflex was tested at the mid and late stance while subjects walked with the exoskeleton on the treadmill at 1.25 m/s, first without power (first unpowered), then with power (powered), and finally without power again (second unpowered). We also collected joint kinematics and electromyography. Results When the robotic plantar flexor torque was provided, subjects walked with lower soleus electromyographic (EMG) activation (27-48%) and had concomitant reductions in H-reflex amplitude (12-24%) compared to the first unpowered condition. The H-reflex amplitude in proportion to the background soleus EMG during powered walking was not significantly different from the two unpowered conditions. Conclusion These findings suggest that the nervous system does not inhibit the soleus H-reflex in response to short-term adaption to exoskeleton assistance. Future studies should determine if the findings also apply to long-term adaption to the exoskeleton. PMID:20659331
Convergence of flexor reflex and corticospinal inputs on tibialis anterior network in humans.
Mackey, Ann S; Uttaro, Denise; McDonough, Maureen P; Krivis, Lisa I; Knikou, Maria
2016-01-01
Integration between descending and ascending inputs at supraspinal and spinal levels is a key characteristic of neural control of movement. In this study, we characterized convergence of the flexor reflex and corticospinal inputs on the tibialis anterior (TA) network in healthy human subjects. Specifically, we characterized the modulation profiles of the spinal TA flexor reflex following subthreshold and suprathreshold transcranial magnetic stimulation (TMS). We also characterized the modulation profiles of the TA motor evoked potentials (MEPs) following medial arch foot stimulation at sensory and above reflex threshold. TA flexor reflexes were evoked following stimulation of the medial arch of the foot with a 30 ms pulse train at innocuous intensities. TA MEPs were evoked following TMS of the leg motor cortex area. TMS at 0.7 and at 1.2 MEP resting threshold increased the TA flexor reflex when TMS was delivered 40-100 ms after foot stimulation, and decreased the TA flexor reflex when TMS was delivered 25-110 ms before foot stimulation. Foot stimulation at sensory and above flexor reflex threshold induced a similar time-dependent modulation in resting TA MEPs, that were facilitated when foot stimulation was delivered 40-100 ms before TMS. The flexor reflex and MEPs recorded from the medial hamstring muscle were modulated in a similar manner to that observed for the TA flexor reflex and MEP. Cutaneomuscular afferents from the distal foot can increase the output of the leg motor cortex area. Descending motor volleys that directly or indirectly depolarize flexor motoneurons increase the output of the spinal FRA interneuronal network. The parallel facilitation of flexor MEPs and flexor reflexes is likely cortical in origin. Afferent mediated facilitation of corticospinal excitability can be utilized to strengthen motor cortex output in neurological disorders. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Cheema, P.K.; Raphael, S.; El-Maraghi, R.; Li, J.; McClure, R.; Zibdawi, L.; Chan, A.; Victor, J.C.; Dolley, A.; Dziarmaga, A.
2017-01-01
Background Testing for mutation of the EGFR (epidermal growth factor receptor) gene is a standard of care for patients with advanced nonsquamous non-small-cell lung cancer (nsclc). To improve timely access to EGFR results, a few centres implemented reflex testing, defined as a request for EGFR testing by the pathologist at the time of a nonsquamous nsclc diagnosis. We evaluated the impact of reflex testing on EGFR testing rates. Methods A retrospective observational review of the Web-based AstraZeneca Canada EGFR Database from 1 April 2010 to 31 March 2014 found centres within Ontario that had requested EGFR testing through the database and that had implemented reflex testing (with at least 2 years’ worth of data, including the pre- and post-implementation period). Results The 7 included centres had requested EGFR tests for 2214 patients. The proportion of pathologists requesting EGFR tests increased after implementation of reflex testing (53% vs. 4%); conversely, the proportion of medical oncologists requesting tests decreased (46% vs. 95%, p < 0.001). After implementation of reflex testing, the mean number of patients having EGFR testing per centre per month increased significantly [12.6 vs. 4.9 (range: 4.5–14.9), p < 0.001]. Before reflex testing, EGFR testing rates showed a significant monthly increase over time (1.37 more tests per month; 95% confidence interval: 1.19 to 1.55 tests; p < 0.001). That trend could not account for the observed increase with reflex testing, because an immediate increase in EGFR test requests was observed with the introduction of reflex testing (p = 0.003), and the overall trend was sustained throughout the post–reflex testing period (p < 0.001). Conclusions Reflex EGFR testing for patients with nonsquamous nsclc was successfully implemented at multiple centres and was associated with an increase in EGFR testing. PMID:28270720
Direct solution of the H(1s)-H + long-range interaction problem in momentum space
NASA Astrophysics Data System (ADS)
Koga, Toshikatsu
1985-02-01
Perturbation equations for the H(1s)-H+ long-range interaction are solved directly in momentum space up to the fourth order with respect to the reciprocal of the internuclear distance. As in the hydrogen atom problem, the Fock transformation is used which projects the momentum vector of an electron from the three-dimensional hyperplane onto the four-dimensional hypersphere. Solutions are given as linear combinations of several four-dimensional spherical harmonics. The present results add an example to the momentum-space solution of the nonspherical potential problem.
On low-energy effective action in three-dimensional = 2 and = 4 supersymmetric electrodynamics
NASA Astrophysics Data System (ADS)
Buchbinder, I. L.; Merzlikin, B. S.; Samsonov, I. B.
2013-11-01
We discuss general structure of low-energy effective actions in = 2 and = 4 three-dimensional supersymmetric electrodynamics (SQED) in gauge superfield sector. There are specific terms in the effective action having no four-dimensional analogs. Some of these terms are responsible for the moduli space metric in the Coulomb branch of the theory. We find two-loop quantum corrections to the moduli space metric in the = 2 SQED and show that in the = 4 SQED the moduli space does not receive two-loop quantum corrections.
On the frames of spaces of finite-dimensional Lie algebras of dimension at most 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorbatsevich, V V
2014-05-31
In this paper, the frames of spaces of complex n-dimensional Lie algebras (that is, the intersections of all irreducible components of these spaces) are studied. A complete description of the frames and their projectivizations for n ≤ 6 is given. It is also proved that for n ≤ 6 the projectivizations of these spaces are simply connected. Bibliography: 7 titles.
Koyama, Soichiro; Tanabe, Shigeo; Takeda, Kazuya; Sakurai, Hiroaki; Kanada, Yoshikiyo
2016-03-01
Neurophysiological studies in healthy subjects suggest that increased spinal inhibitory reflexes from the tibialis anterior (TA) muscle to the soleus (SOL) muscle might contribute to decreased spasticity. While 50 Hz is an effective frequency for transcutaneous electrical nerve stimulation (TENS) in healthy subjects, in stroke survivors, the effects of TENS on spinal reflex circuits and its appropriate frequency are not well known. We examined the effects of different frequencies of TENS on spinal inhibitory reflexes from the TA to SOL muscle in stroke survivors. Twenty chronic stroke survivors with ankle plantar flexor spasticity received 50-, 100-, or 200-Hz TENS over the deep peroneal nerve (DPN) of the affected lower limb for 30 min. Before and immediately after TENS, reciprocal Ia inhibition (RI) and presynaptic inhibition of the SOL alpha motor neuron (D1 inhibition) were assessed by adjusting the unconditioned H-reflex amplitude. Furthermore, during TENS, the time courses of spinal excitability and spinal inhibitory reflexes were assessed via the H-reflex, RI, and D1 inhibition. None of the TENS protocols affected mean RI, whereas D1 inhibition improved significantly following 200-Hz TENS. In a time-series comparison during TENS, repeated stimulation did not produce significant changes in the H-reflex, RI, or D1 inhibition regardless of frequency. These results suggest that the frequency-dependent effect of TENS on spinal reflexes only becomes apparent when RI and D1 inhibition are measured by adjusting the amplitude of the unconditioned H-reflex. However, 200-Hz TENS led to plasticity of synaptic transmission from the antagonist to spastic muscles in stroke survivors.
Neuromuscular function during drop jumps in young and elderly males.
Piirainen, Jarmo M; Linnamo, Vesa; Sippola, Niina; Avela, Janne
2012-12-01
The Hoffman reflex (H-reflex), indicating alpha-motoneuron pool activity, has been shown to be task - and in resting conditions - age dependent. How aging affects H-reflex activity during explosive movements is not clear at present. The purpose of this study was to examine the effects of aging on H-reflexes during drop jumps, and its possible role in drop jump performance. Ten young (26.8 ± 2.7 years) and twenty elderly (64.2 ± 2.7 years) subjects participated in the study. Maximal drop jump performance and soleus H-reflex response (H/M jump) 20 ms after ground contact were measured in a sledge ergometer. Maximal H-reflex, maximal M-wave, Hmax/Mmax-ratio and H-reflex excitability curves were measured during standing rest. Although in young the H-reflex response (Hmax/Mmax) was 6.5% higher during relaxed standing and 19.7% higher during drop jumps (H jump/M jump) than in the elderly group, these differences were not statistically significant. In drop jumps, the elderly subjects had lower jumping height (30.4%, p < 0.001), longer braking time (32.4%, p < 0.01), lower push-off force (18.0%, p < 0.05) and longer push-off time (31.0% p < 0.01). H jump/M jump correlated with the average push-off force (r = 0.833, p < 0.05) and with push-off time (r = -0.857, p < 0.01) in young but not in the elderly. Correlations between H-reflex response and jumping parameters in young may indicate different jumping and activation strategies in drop jumps. However, it does not fully explain age related differences in jumping performance, since age related differences in H-reflex activity were non-significant. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hasegawa, Ayako; Sato, Takuichi; Hoshikawa, Yasushi; Ishida, Naoko; Tanda, Naoko; Kawamura, Yoshiaki; Kondo, Takashi; Takahashi, Nobuhiro
2014-07-01
Postoperative pneumonia may occur when upper respiratory tract protective reflexes such as cough and/or swallowing reflexes are impaired; thus, silent aspiration of oral bacteria may be a causative factor in postoperative pneumonia. This study aimed to quantify and identify bacteria in intraoperative bronchial fluids and to evaluate the relationship between impairment of cough/swallowing reflexes and silent aspiration of oral bacteria in elderly patients. After obtaining informed consent, cough and swallowing reflexes were assessed using an ultrasonic nebulizer and a nasal catheter, respectively. Using a micro-sampling probe, intraoperative bronchial fluids were collected from nine subjects with pulmonary carcinoma and cultured anaerobically on blood agar plates. After 7 days, CFUs were counted and isolated bacteria were identified by 16S rRNA gene sequencing. Four subjects (aged 71.0 ± 8.4 years) had impaired swallowing reflexes with normal cough reflexes, whereas five subjects (73.6 ± 6.5 years) had normal cough and swallowing reflexes. The bacterial counts (mean CFU ± SD) tended to be higher in intraoperative bronchial fluids of subjects with impaired swallowing reflexes ([5.1 ± 7.7] × 10(5)) than in those of subjects with normal reflexes ([1.2 ± 1.9] × 10(5)); however, this difference was not statistically significant. Predominant isolates from intraoperative bronchial fluids were Streptococcus (41.8%), Veillonella (11.4%), Gemella (8.9%), Porphyromonas (7.6%), Olsenella (6.3%) and Eikenella (6.3%). These findings indicate that intraoperative bronchial fluids contain bacteria, probably derived from the oral microbiota, and suggest that silent aspiration of oral bacteria occurs in elderly patients irrespective of impairment of swallowing reflex. © 2014 The Societies and Wiley Publishing Asia Pty Ltd.
Hip proprioceptors preferentially modulate reflexes of the leg in human spinal cord injury
Onushko, Tanya; Hyngstrom, Allison
2013-01-01
Stretch-sensitive afferent feedback from hip muscles has been shown to trigger long-lasting, multijoint reflex responses in people with chronic spinal cord injury (SCI). These reflexes could have important implications for control of leg movements during functional activities, such as walking. Because the control of leg movement relies on reflex regulation at all joints of the limb, we sought to determine whether stretch of hip muscles modulates reflex activity at the knee and ankle and, conversely, whether knee and ankle stretch afferents affect hip-triggered reflexes. A custom-built servomotor apparatus was used to stretch the hip muscles in nine chronic SCI subjects by oscillating the legs about the hip joint bilaterally from 10° of extension to 40° flexion. To test whether stretch-related feedback from the knee or ankle would be affected by hip movement, patellar tendon percussions and Achilles tendon vibration were delivered when the hip was either extending or flexing. Surface electromyograms (EMGs) and joint torques were recorded from both legs. Patellar tendon percussions and Achilles tendon vibration both elicited reflex responses local to the knee or ankle, respectively, and did not influence reflex responses observed at the hip. Rather, the movement direction of the hip modulated the reflex responses local to the joint. The patellar tendon reflex amplitude was larger when the perturbation was delivered during hip extension compared with hip flexion. The response to Achilles vibration was modulated by hip movement, with an increased tonic component during hip flexion compared with extension. These results demonstrate that hip-mediated sensory signals modulate activity in distal muscles of the leg and appear to play a unique role in modulation of spastic muscle activity throughout the leg in SCI. PMID:23615544
Are H-reflex and M-wave recruitment curve parameters related to aerobic capacity?
Piscione, Julien; Grosset, Jean-François; Gamet, Didier; Pérot, Chantal
2012-10-01
Soleus Hoffmann reflex (H-reflex) amplitude is affected by a training period and type and level of training are also well known to modify aerobic capacities. Previously, paired changes in H-reflex and aerobic capacity have been evidenced after endurance training. The aim of this study was to investigate possible links between H- and M-recruitment curve parameters and aerobic capacity collected on a cohort of subjects (56 young men) that were not involved in regular physical training. Maximal H-reflex normalized with respect to maximal M-wave (H(max)/M(max)) was measured as well as other parameters of the H- or M-recruitment curves that provide information about the reflex or direct excitability of the motoneuron pool, such as thresholds of stimulus intensity to obtain H or M response (H(th) and M(th)), the ascending slope of H-reflex, or M-wave recruitment curves (H(slp) and M(slp)) and their ratio (H(slp)/M(slp)). Aerobic capacity, i.e., maximal oxygen consumption and maximal aerobic power (MAP) were, respectively, estimated from a running field test and from an incremental test on a cycle ergometer. Maximal oxygen consumption was only correlated with M(slp), an indicator of muscle fiber heterogeneity (p < 0.05), whereas MAP was not correlated with any of the tested parameters (p > 0.05). Although higher H-reflex are often described for subjects with a high aerobic capacity because of endurance training, at a basic level (i.e., without training period context) no correlation was observed between maximal H-reflex and aerobic capacity. Thus, none of the H-reflex or M-wave recruitment curve parameters, except M(slp), was related to the aerobic capacity of young, untrained male subjects.
Locomotor impact of beneficial or nonbeneficial H-reflex conditioning after spinal cord injury
Chen, Yi; Chen, Lu; Liu, Rongliang; Wang, Yu; Wolpaw, Jonathan R.
2013-01-01
When new motor learning changes neurons and synapses in the spinal cord, it may affect previously learned behaviors that depend on the same spinal neurons and synapses. To explore these effects, we used operant conditioning to strengthen or weaken the right soleus H-reflex pathway in rats in which a right spinal cord contusion had impaired locomotion. When up-conditioning increased the H-reflex, locomotion improved. Steps became longer, and step-cycle asymmetry (i.e., limping) disappeared. In contrast, when down-conditioning decreased the H-reflex, locomotion did not worsen. Steps did not become shorter, and asymmetry did not increase. Electromyographic and kinematic analyses explained how H-reflex increase improved locomotion and why H-reflex decrease did not further impair it. Although the impact of up-conditioning or down-conditioning on the H-reflex pathway was still present during locomotion, only up-conditioning affected the soleus locomotor burst. Additionally, compensatory plasticity apparently prevented the weaker H-reflex pathway caused by down-conditioning from weakening the locomotor burst and further impairing locomotion. The results support the hypothesis that the state of the spinal cord is a “negotiated equilibrium” that serves all the behaviors that depend on it. When new learning changes the spinal cord, old behaviors undergo concurrent relearning that preserves or improves their key features. Thus, if an old behavior has been impaired by trauma or disease, spinal reflex conditioning, by changing a specific pathway and triggering a new negotiation, may enable recovery beyond that achieved simply by practicing the old behavior. Spinal reflex conditioning protocols might complement other neurorehabilitation methods and enhance recovery. PMID:24371288
de Oliveira Silva, Danilo; Magalhães, Fernando Henrique; Faria, Nathálie Clara; Ferrari, Deisi; Pazzinatto, Marcella Ferraz; Pappas, Evangelos; de Azevedo, Fábio Mícolis
2017-01-01
To determine the association between the amplitude of vastus medialis (VM) Hoffmann reflex (H-reflex) and pain level, self-reported physical function, and chronicity of pain in women with patellofemoral pain (PFP). Cross-sectional study. Laboratory of biomechanics and motor control. Women diagnosed with PFP (N=15) aged 18 to 35 years. Not applicable. Data on worst pain level during the previous month, self-reported physical function, and symptom duration (chronicity) were collected from the participants. Maximum evoked responses were obtained by electrical stimulation applied to the femoral nerve and peak-to-peak amplitudes of normalized maximal H-reflexes (maximal Hoffmann reflex/maximal motor wave ratios) of the VM were calculated. A Pearson product-moment correlation matrix (r) was used to explore the relations between the amplitude of VM H-reflex and worst pain during the previous month, self-reported function, and chronicity of pain. Strong negative correlations were found between the amplitude of VM H-reflex and worst pain in the previous month (r=-.71; P=.003) and chronicity (r=-.74; P=.001). A strong positive correlation was found between the amplitude of VM H-reflex and self-reported physical function (r=.62; P=.012). The strong and significant relations reported in this study suggest that women with PFP showing greater VM H-reflex excitability tend to have lower pain, better physical function, and more recent symptoms. Therefore, rehabilitation strategies designed to increase the excitability of the monosynaptic stretch reflex should be considered in the treatment of women with PFP if their effectiveness is demonstrated in future studies. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Learning reflexively from a health promotion professional development program in Canada.
Tremblay, Marie-Claude; Richard, Lucie; Brousselle, Astrid; Beaudet, Nicole
2014-09-01
In recent decades, reflexivity has received much attention in the professional education and training literature, especially in the public health and health promotion fields. Despite general agreement on the importance of reflexivity, there appears to be no consensus on how to assess reflexivity or to conceptualize the different forms developed among professionals and participants of training programs. This paper presents an analysis of the reflexivity outcomes of the Health Promotion Laboratory, an innovative professional development program aimed at supporting practice changes among health professionals by fostering competency development and reflexivity. More specifically, this paper explores the difference between two levels of reflexivity (formative and critical) and highlights some implications of each for practice. Data were collected through qualitative interviews with participants from two intervention sites. Results showed that involvement in the Health Promotion Laboratory prompted many participants to modify their vision of their practice and professional role, indicating an impact on reflexivity. In many cases, new understandings seem to have played a formative function in enabling participants to improve their practice and their role as health promoters. The reflective process also served a critical function culminating in a social and moral understanding of the impacts on society of the professionals' practices and roles. This type of outcome is greatly desired in health promotion, given the social justice and equity concerns of this field of practice. By redefining the theoretical concept of reflexivity on two levels and discussing their impacts on practice, this study supports the usefulness of both levels of reflexivity. © The Author (2013). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
EM in high-dimensional spaces.
Draper, Bruce A; Elliott, Daniel L; Hayes, Jeremy; Baek, Kyungim
2005-06-01
This paper considers fitting a mixture of Gaussians model to high-dimensional data in scenarios where there are fewer data samples than feature dimensions. Issues that arise when using principal component analysis (PCA) to represent Gaussian distributions inside Expectation-Maximization (EM) are addressed, and a practical algorithm results. Unlike other algorithms that have been proposed, this algorithm does not try to compress the data to fit low-dimensional models. Instead, it models Gaussian distributions in the (N - 1)-dimensional space spanned by the N data samples. We are able to show that this algorithm converges on data sets where low-dimensional techniques do not.
Functional Connectivity among Spikes in Low Dimensional Space during Working Memory Task in Rat
Tian, Xin
2014-01-01
Working memory (WM) is critically important in cognitive tasks. The functional connectivity has been a powerful tool for understanding the mechanism underlying the information processing during WM tasks. The aim of this study is to investigate how to effectively characterize the dynamic variations of the functional connectivity in low dimensional space among the principal components (PCs) which were extracted from the instantaneous firing rate series. Spikes were obtained from medial prefrontal cortex (mPFC) of rats with implanted microelectrode array and then transformed into continuous series via instantaneous firing rate method. Granger causality method is proposed to study the functional connectivity. Then three scalar metrics were applied to identify the changes of the reduced dimensionality functional network during working memory tasks: functional connectivity (GC), global efficiency (E) and casual density (CD). As a comparison, GC, E and CD were also calculated to describe the functional connectivity in the original space. The results showed that these network characteristics dynamically changed during the correct WM tasks. The measure values increased to maximum, and then decreased both in the original and in the reduced dimensionality. Besides, the feature values of the reduced dimensionality were significantly higher during the WM tasks than they were in the original space. These findings suggested that functional connectivity among the spikes varied dynamically during the WM tasks and could be described effectively in the low dimensional space. PMID:24658291
Joyce, G. C.; Rack, Peter M. H.; Ross, H. F.
1974-01-01
1. The mechanical resistance of the human forearm has been measured during imposed sinusoidal flexion-extension movements of the elbow joint. 2. The force required to move the limb can be divided into components required to move the mass, and components required to overcome the resistance offered by elastic and frictional properties of the muscles and other soft tissues. 3. When during a vigorous flexing effort the limb was subjected to a small amplitude sinusoidal movement each extension was followed by a considerable reflex contraction of the flexor muscles. At low frequencies of movement this reflex provided an added resistance to extension, but at 8-12 Hz the delay in the reflex pathway was such that the reflex response to extension occurred after the extension phase of the movement was over and during the subsequent flexion movement. The reflex activity then assisted the movement whereas at other frequencies it impeded it. 4. The reflex response to movement increased as the subject exerted a greater flexing force. 5. Small movements generated a relatively larger reflex response than big ones. 6. Even with large amplitudes of movement when the reflex activity was relatively small, the limb resisted extension with a high level of stiffness; this was comparable with the short range stiffness of muscles in experimental animals. 7. The fact that at some frequencies the reflex response assisted the movement implies that with appropriate loading the limb could undergo a self-sustaining oscillation at those frequencies. PMID:4420490
Ultimate concerns in late modernity: Archer, Bourdieu and reflexivity.
Farrugia, David; Woodman, Dan
2015-12-01
Through a critique of Margaret Archer's theory of reflexivity, this paper explores the theoretical contribution of a Bourdieusian sociology of the subject for understanding social change. Archer's theory of reflexivity holds that conscious 'internal conversations' are the motor of society, central both to human subjectivity and to the 'reflexive imperative' of late modernity. This is established through critiques of Bourdieu, who is held to erase creativity and meaningful personal investments from subjectivity, and late modernity is depicted as a time when a 'situational logic of opportunity' renders embodied dispositions and the reproduction of symbolic advantages obsolete. Maintaining Archer's focus on 'ultimate concerns' in a context of social change, this paper argues that her theory of reflexivity is established through a narrow misreading and rejection of Bourdieu's work, which ultimately creates problems for her own approach. Archer's rejection of any pre-reflexive dimensions to subjectivity and social action leaves her unable to sociologically explain the genesis of 'ultimate concerns', and creates an empirically dubious narrative of the consequences of social change. Through a focus on Archer's concept of 'fractured reflexivity', the paper explores the theoretical necessity of habitus and illusio for understanding the social changes that Archer is grappling with. In late modernity, reflexivity is valorized just as the conditions for its successful operation are increasingly foreclosed, creating 'fractured reflexivity' emblematic of the complex contemporary interaction between habitus, illusio, and accelerating social change. © London School of Economics and Political Science 2015.
On reflexivity and the conduct of the self in everyday life: reflections on Bourdieu and Archer.
Akram, Sadiya; Hogan, Anthony
2015-12-01
This article provides a critique of the concept of reflexivity in social theory today and argues against the tendency to define agency exclusively in terms of reflexivity. Margaret Archer, in particular, is highlighted as a key proponent of this thesis. Archer argues that late modernity is characterized by reflexivity but, in our view, this position neglects the impact of more enduring aspects of agency, such as the routinization of social life and the role of the taken-for-granted. These concepts were pivotal to Bourdieu and Giddens' theorization of everyday life and action and to Foucault's understanding of technologies of the self. We offer Bourdieu's habitus as a more nuanced approach to theorizing agency, and provide an alternative account of reflexivity. Whilst accepting that reflexivity is a core aspect of agency, we argue that it operates to a backdrop of the routinization of social life and operates from within and not outside of habitus. We highlight the role of the breach in reflexivity, suggesting that it opens up a critical window for agents to initiate change. The article suggests caution in over-ascribing reflexivity to agency, instead arguing that achieving reflexivity and change is a difficult and fraught process, which has emotional and moral consequences. The effect of this is that people often prefer the status quo, rather than to risk change and uncertainty. © London School of Economics and Political Science 2015.
Analysis of factors related to vagally mediated reflex bradycardia during gastrectomy.
Kim, Duk-Kyung; Ahn, Hyun Joo; Lee, Seung Won; Choi, Ji Won
2015-12-01
Because vagally mediated reflex bradycardia occurs frequently during gastrectomy and is potentially harmful, we compared the incidence of clinically significant reflex bradycardia between patients undergoing laparoscopic gastrectomy (LG) and open gastrectomy (OG) and examined whether the type of surgery (OG vs. LG) was an independent risk factor for clinically significant reflex bradycardia. This prospective observational study evaluated 358 adult patients (age 18-70 years) who were undergoing elective OG or LG for gastric cancer resection. Symptomatic reflex bradycardia was defined as a sudden decrease in heart rate to <50 beats per minute (bpm), or to 50-59 bpm with a systolic blood pressure <70 mmHg, associated with a specific surgical maneuver. If bradycardia or hypotension developed, atropine or ephedrine was administered, in accordance with a predefined treatment protocol. The overall incidence of symptomatic reflex bradycardia was 24.6% (88/358). Univariate analysis revealed the incidence of symptomatic reflex bradycardia in the LG group was significantly lower than that in the OG group [13.0% (13/100) vs. 29.1% (75/258), p = 0.002]. Multivariate logistic regression analysis revealed that the type of surgery (OG vs. LG), advanced age, preoperative bradycardia, type of muscle relaxant (vecuronium vs. rocuronium), no use of intravenous remifentanil, and low core temperature, were independent risk factors for symptomatic reflex bradycardia (odds ratio 3.184; 95% confidence interval 1.490-6.800; p = 0.003). The LG approach was associated with a reduced risk of clinically significant reflex bradycardia compared with the OG approach.
Euclidean sections of protein conformation space and their implications in dimensionality reduction
Duan, Mojie; Li, Minghai; Han, Li; Huo, Shuanghong
2014-01-01
Dimensionality reduction is widely used in searching for the intrinsic reaction coordinates for protein conformational changes. We find the dimensionality–reduction methods using the pairwise root–mean–square deviation as the local distance metric face a challenge. We use Isomap as an example to illustrate the problem. We believe that there is an implied assumption for the dimensionality–reduction approaches that aim to preserve the geometric relations between the objects: both the original space and the reduced space have the same kind of geometry, such as Euclidean geometry vs. Euclidean geometry or spherical geometry vs. spherical geometry. When the protein free energy landscape is mapped onto a 2D plane or 3D space, the reduced space is Euclidean, thus the original space should also be Euclidean. For a protein with N atoms, its conformation space is a subset of the 3N-dimensional Euclidean space R3N. We formally define the protein conformation space as the quotient space of R3N by the equivalence relation of rigid motions. Whether the quotient space is Euclidean or not depends on how it is parameterized. When the pairwise root–mean–square deviation is employed as the local distance metric, implicit representations are used for the protein conformation space, leading to no direct correspondence to a Euclidean set. We have demonstrated that an explicit Euclidean-based representation of protein conformation space and the local distance metric associated to it improve the quality of dimensionality reduction in the tetra-peptide and β–hairpin systems. PMID:24913095
Effective degrees of freedom of a random walk on a fractal
NASA Astrophysics Data System (ADS)
Balankin, Alexander S.
2015-12-01
We argue that a non-Markovian random walk on a fractal can be treated as a Markovian process in a fractional dimensional space with a suitable metric. This allows us to define the fractional dimensional space allied to the fractal as the ν -dimensional space Fν equipped with the metric induced by the fractal topology. The relation between the number of effective spatial degrees of freedom of walkers on the fractal (ν ) and fractal dimensionalities is deduced. The intrinsic time of random walk in Fν is inferred. The Laplacian operator in Fν is constructed. This allows us to map physical problems on fractals into the corresponding problems in Fν. In this way, essential features of physics on fractals are revealed. Particularly, subdiffusion on path-connected fractals is elucidated. The Coulomb potential of a point charge on a fractal embedded in the Euclidean space is derived. Intriguing attributes of some types of fractals are highlighted.
Yang-Mills instantons in Kähler spaces with one holomorphic isometry
NASA Astrophysics Data System (ADS)
Chimento, Samuele; Ortín, Tomás; Ruipérez, Alejandro
2018-03-01
We consider self-dual Yang-Mills instantons in 4-dimensional Kähler spaces with one holomorphic isometry and show that they satisfy a generalization of the Bogomol'nyi equation for magnetic monopoles on certain 3-dimensional metrics. We then search for solutions of this equation in 3-dimensional metrics foliated by 2-dimensional spheres, hyperboloids or planes in the case in which the gauge group coincides with the isometry group of the metric (SO(3), SO (1 , 2) and ISO(2), respectively). Using a generalized hedgehog ansatz the Bogomol'nyi equations reduce to a simple differential equation in the radial variable which admits a universal solution and, in some cases, a particular one, from which one finally recovers instanton solutions in the original Kähler space. We work out completely a few explicit examples for some Kähler spaces of interest.
Liebi, Marianne; Georgiadis, Marios; Kohlbrecher, Joachim; Holler, Mirko; Raabe, Jörg; Usov, Ivan; Menzel, Andreas; Schneider, Philipp; Bunk, Oliver; Guizar-Sicairos, Manuel
2018-01-01
Small-angle X-ray scattering tensor tomography, which allows reconstruction of the local three-dimensional reciprocal-space map within a three-dimensional sample as introduced by Liebi et al. [Nature (2015), 527, 349-352], is described in more detail with regard to the mathematical framework and the optimization algorithm. For the case of trabecular bone samples from vertebrae it is shown that the model of the three-dimensional reciprocal-space map using spherical harmonics can adequately describe the measured data. The method enables the determination of nanostructure orientation and degree of orientation as demonstrated previously in a single momentum transfer q range. This article presents a reconstruction of the complete reciprocal-space map for the case of bone over extended ranges of q. In addition, it is shown that uniform angular sampling and advanced regularization strategies help to reduce the amount of data required.
Charged black lens in de Sitter space
NASA Astrophysics Data System (ADS)
Tomizawa, Shinya
2018-02-01
We obtain a charged black lens solution in the five-dimensional Einstein-Maxwell-Chern-Simons theory with a positive cosmological constant. It is shown that the solution obtained here describes the formation of a black hole with the spatial cross section of a sphere from that of the lens space of L (n ,1 ) in five-dimensional de Sitter space.
VizieR Online Data Catalog: RefleX : X-ray-tracing code (Paltani+, 2017)
NASA Astrophysics Data System (ADS)
Paltani, S.; Ricci, C.
2017-11-01
We provide here the RefleX executable, for both Linux and MacOSX, together with the User Manual and example script file and output file Running (for instance): reflex_linux will produce the file reflex.out Note that the results may differ slightly depending on the OS, because of slight differences in some implementations numerical computations. The difference are scientifically meaningless. (5 data files).
The vestibulosympathetic reflex in humans: neural interactions between cardiovascular reflexes
NASA Technical Reports Server (NTRS)
Ray, Chester A.; Monahan, Kevin D.
2002-01-01
1. Over the past 5 years, there has been emerging evidence that the vestibular system regulates sympathetic nerve activity in humans. We have studied this issue in humans by using head-down rotation (HDR) in the prone position. 2. These studies have clearly demonstrated increases in muscle sympathetic nerve activity (MSNA) and calf vascular resistance during HDR. These responses are mediated by engagement of the otolith organs and not the semicircular canals. 3. However, differential activation of sympathetic nerve activity has been observed during HDR. Unlike MSNA, skin sympathetic nerve activity does not increase with HDR. 4. Examination of the vestibulosympathetic reflex with other cardiovascular reflexes (i.e. barorereflexes and skeletal muscle reflexes) has shown an additive interaction for MSNA. 5. The additive interaction between the baroreflexes and vestibulosympathetic reflex suggests that the vestibular system may assist in defending against orthostatic challenges in humans by elevating MSNA beyond that of the baroreflexes. 6. In addition, the further increase in MSNA via otolith stimulation during isometric handgrip, when arterial pressure is elevated markedly, indicates that the vestibulosympathetic reflex is a powerful activator of MSNA and may contribute to blood pressure and flow regulation during dynamic exercise. 7. Future studies will help evaluate the importance of the vestibulosympathetic reflex in clinical conditions associated with orthostatic hypotension.
Adaptation to sensory-motor reflex perturbations is blind to the source of errors.
Hudson, Todd E; Landy, Michael S
2012-01-06
In the study of visual-motor control, perhaps the most familiar findings involve adaptation to externally imposed movement errors. Theories of visual-motor adaptation based on optimal information processing suppose that the nervous system identifies the sources of errors to effect the most efficient adaptive response. We report two experiments using a novel perturbation based on stimulating a visually induced reflex in the reaching arm. Unlike adaptation to an external force, our method induces a perturbing reflex within the motor system itself, i.e., perturbing forces are self-generated. This novel method allows a test of the theory that error source information is used to generate an optimal adaptive response. If the self-generated source of the visually induced reflex perturbation is identified, the optimal response will be via reflex gain control. If the source is not identified, a compensatory force should be generated to counteract the reflex. Gain control is the optimal response to reflex perturbation, both because energy cost and movement errors are minimized. Energy is conserved because neither reflex-induced nor compensatory forces are generated. Precision is maximized because endpoint variance is proportional to force production. We find evidence against source-identified adaptation in both experiments, suggesting that sensory-motor information processing is not always optimal.
Hoseini, Najmeh; Koceja, David M; Riley, Zachary A
2011-10-24
Spasticity in chronic hemiparetic stroke patients has primarily been treated pharmacologically. However, there is increasing evidence that physical rehabilitation can help manage hyper-excitability of reflexes (hyperreflexia), which is a primary contributor to spasticity. In the present study, one chronic hemiparetic stroke patient operantly conditioned the soleus H-reflex while training on a balance board for two weeks. The results showed a minimal decrease in the Hmax-Mmax ratio for both the affected and unaffected limb, indicating that the H-reflex was not significantly altered with training. Alternatively, paired-reflex depression (PRD), a measure of history-dependent changes in reflex excitability, could be conditioned. This was evident by the rightward shift and decreased slope of reflex excitability in the affected limb. The non-affected limb decreased as well, although the non-affected limb was very sensitive to PRD initially, whereas the affected limb was not. Based on these results, it was concluded that PRD is a better index of hyperreflexia, and this measurement could be more informative of synapse function than simple H-reflexes. This study presents a novel and non-pharmacological means of managing spasticity that warrants further investigation with the potential of being translated to the clinic. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Detection of amblyopia utilizing generated retinal reflexes
NASA Technical Reports Server (NTRS)
Kerr, J. H.; Hay, S. H.
1981-01-01
Investigation confirmed that GRR images can be consistently obtained and that these images contain information required to detect the optical inequality of one eye compared to the fellow eye. Digital analyses, electro-optical analyses, and trained observers were used to evaluate the GRR images. Two and three dimensional plots were made from the digital analyses results. These plotted data greatly enhanced the GRR image content, and it was possible for nontrained observers to correctly identify normal vs abnormal ocular status by viewing the plots. Based upon the criteria of detecting equality or inequality of ocular status of a person's eyes, the trained observer correctly identified the ocular status of 90% of the 232 persons who participated in this program.
Three-Dimensional Localized-Delocalized Anderson Transition in the Time Domain
NASA Astrophysics Data System (ADS)
Delande, Dominique; Morales-Molina, Luis; Sacha, Krzysztof
2017-12-01
Systems which can spontaneously reveal periodic evolution are dubbed time crystals. This is in analogy with space crystals that display periodic behavior in configuration space. While space crystals are modeled with the help of space periodic potentials, crystalline phenomena in time can be modeled by periodically driven systems. Disorder in the periodic driving can lead to Anderson localization in time: the probability for detecting a system at a fixed point of configuration space becomes exponentially localized around a certain moment in time. We here show that a three-dimensional system exposed to a properly disordered pseudoperiodic driving may display a localized-delocalized Anderson transition in the time domain, in strong analogy with the usual three-dimensional Anderson transition in disordered systems. Such a transition could be experimentally observed with ultracold atomic gases.
Generalized versus partial reflex seizures: a review.
Italiano, Domenico; Ferlazzo, Edoardo; Gasparini, Sara; Spina, Edoardo; Mondello, Stefania; Labate, Angelo; Gambardella, Antonio; Aguglia, Umberto
2014-08-01
In this review we assess our currently available knowledge about reflex seizures with special emphasis on the difference between "generalized" reflex seizures induced by visual stimuli, thinking, praxis and language tasks, and "focal" seizures induced by startle, eating, music, hot water, somatosensory stimuli and orgasm. We discuss in particular evidence from animal, clinical, neurophysiological and neuroimaging studies supporting the concept that "generalized" reflex seizures, usually occurring in the setting of IGE, should be considered as focal seizures with quick secondary generalization. We also review recent advances in genetic and therapeutic approach of reflex seizures. Copyright © 2014 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
Electromechanical analogs of human reflexes.
Littman, M G; Liker, M; Stubbeman, W; Russakow, J; McGee, C; Gelfand, J; Call, B J
1989-01-01
The conclusion to be drawn from our modeling is that the combined stretch and tendon reflexes alone can endow artificial muscle with a springlike feel as well as give it a baseline tone. In response to questions that motor physiologists often ask as to what variables the system controls, the answer here is clear: the stretch and tendon reflexes act together to maintain both a tension set-point and a length set-point, but in so doing they also give the system a springlike feel because of the existence of a servo error. The main goal of our studies is to understand the integration of reflexes, and thus far we have only begun to explore the two lowest-level spinal reflexes. We are in the process of expanding this work by developing a much more refined arm explicitly modeled after the human arm. This new arm is to be activated by a minimum of 10 muscles, each of which is reflexively driven, and it will allow us to explore the integration of higher-level reflex action such as automatic inhibition of antagonists and facilitation of synergists.
Chen, Yung-Sheng; Zhou, Shi; Cartwright, Colleen
2014-04-01
This study investigated the effects of ankle joint position and submaximal contraction intensity on soleus (SOL) H-reflex modulation. Twenty young (25.1 ± 4.8 years) and 20 older adults (74.2 ± 5.1 years) performed plantar flexions during 10%, 30% and 50% maximal voluntary contractions (MVC) and at ankle positions of neutral (0°), plantar flexion (20°) and dorsiflexion (-20°) in a sitting position. The SOL H-reflex gain in older adults was relatively lower than that in young adults during 10%, 30% and 50% MVC. The SOL H-reflex gain was significantly affected by the intensity of plantar flexion in the respective ankle joint position in both age groups. The latency of H-reflex was prolonged in older adults and was ankle joint dependent in young adults. Young adults demonstrated a shorter duration of the H-reflex response than that of older adults. The results indicated that there were age-related changes in the SOL H-reflex during the ankle plantar flexors activities.
Saxena, Udit; Allan, Chris; Allen, Prudence
2017-06-01
Previous studies have suggested elevated reflex thresholds in children with auditory processing disorders (APDs). However, some aspects of the child's ear such as ear canal volume and static compliance of the middle ear could possibly affect the measurements of reflex thresholds and thus impact its interpretation. Sound levels used to elicit reflexes in a child's ear may be higher than predicted by calibration in a standard 2-cc coupler, and lower static compliance could make visualization of very small changes in impedance at threshold difficult. For this purpose, it is important to evaluate threshold data with consideration of differences between children and adults. A set of studies were conducted. The first compared reflex thresholds obtained using standard clinical procedures in children with suspected APD to that of typically developing children and adults to test the replicability of previous studies. The second study examined the impact of ear canal volume on estimates of reflex thresholds by applying real-ear corrections. Lastly, the relationship between static compliance and reflex threshold estimates was explored. The research is a set of case-control studies with a repeated measures design. The first study included data from 20 normal-hearing adults, 28 typically developing children, and 66 children suspected of having an APD. The second study included 28 normal-hearing adults and 30 typically developing children. In the first study, crossed and uncrossed reflex thresholds were measured in 5-dB step size. Reflex thresholds were analyzed using repeated measures analysis of variance (RM-ANOVA). In the second study, uncrossed reflex thresholds, real-ear correction, ear canal volume, and static compliance were measured. Reflex thresholds were measured using a 1-dB step size. The effect of real-ear correction and static compliance on reflex threshold was examined using RM-ANOVA and Pearson correlation coefficient, respectively. Study 1 replicated previous studies showing elevated reflex thresholds in many children with suspected APD when compared to data from adults using standard clinical procedures, especially in the crossed condition. The thresholds measured in children with suspected APD tended to be higher than those measured in the typically developing children. There were no significant differences between the typically developing children and adults. However, when real-ear calibrated stimulus levels were used, it was found that children's thresholds were elicited at higher levels than in the adults. A significant relationship between reflex thresholds and static compliance was found in the adult data, showing a trend for higher thresholds in ears with lower static compliance, but no such relationship was found in the data from the children. This study suggests that reflex measures in children should be adjusted for real-ear-to-coupler differences before interpretation. The data in children with suspected APD support previous studies suggesting abnormalities in reflex thresholds. The lack of correlation between threshold and static compliance estimates in children as was observed in the adults may suggest a nonmechanical explanation for age and clinically related effects. American Academy of Audiology
Kerfriden, P.; Schmidt, K.M.; Rabczuk, T.; Bordas, S.P.A.
2013-01-01
We propose to identify process zones in heterogeneous materials by tailored statistical tools. The process zone is redefined as the part of the structure where the random process cannot be correctly approximated in a low-dimensional deterministic space. Such a low-dimensional space is obtained by a spectral analysis performed on pre-computed solution samples. A greedy algorithm is proposed to identify both process zone and low-dimensional representative subspace for the solution in the complementary region. In addition to the novelty of the tools proposed in this paper for the analysis of localised phenomena, we show that the reduced space generated by the method is a valid basis for the construction of a reduced order model. PMID:27069423
2017-01-01
We study the G-strand equations that are extensions of the classical chiral model of particle physics in the particular setting of broken symmetries described by symmetric spaces. These equations are simple field theory models whose configuration space is a Lie group, or in this case a symmetric space. In this class of systems, we derive several models that are completely integrable on finite dimensional Lie group G, and we treat in more detail examples with symmetric space SU(2)/S1 and SO(4)/SO(3). The latter model simplifies to an apparently new integrable nine-dimensional system. We also study the G-strands on the infinite dimensional group of diffeomorphisms, which gives, together with the Sobolev norm, systems of 1+2 Camassa–Holm equations. The solutions of these equations on the complementary space related to the Witt algebra decomposition are the odd function solutions. PMID:28413343
Hypercyclic subspaces for Frechet space operators
NASA Astrophysics Data System (ADS)
Petersson, Henrik
2006-07-01
A continuous linear operator is hypercyclic if there is an such that the orbit {Tnx} is dense, and such a vector x is said to be hypercyclic for T. Recent progress show that it is possible to characterize Banach space operators that have a hypercyclic subspace, i.e., an infinite dimensional closed subspace of, except for zero, hypercyclic vectors. The following is known to hold: A Banach space operator T has a hypercyclic subspace if there is a sequence (ni) and an infinite dimensional closed subspace such that T is hereditarily hypercyclic for (ni) and Tni->0 pointwise on E. In this note we extend this result to the setting of Frechet spaces that admit a continuous norm, and study some applications for important function spaces. As an application we also prove that any infinite dimensional separable Frechet space with a continuous norm admits an operator with a hypercyclic subspace.
On the n-symplectic structure of faithful irreducible representations
NASA Astrophysics Data System (ADS)
Norris, L. K.
2017-04-01
Each faithful irreducible representation of an N-dimensional vector space V1 on an n-dimensional vector space V2 is shown to define a unique irreducible n-symplectic structure on the product manifold V1×V2 . The basic details of the associated Poisson algebra are developed for the special case N = n2, and 2n-dimensional symplectic submanifolds are shown to exist.
Three-Dimensional Lissajous Figures.
ERIC Educational Resources Information Center
D'Mura, John M.
1989-01-01
Described is a mechanically driven device for generating three-dimensional harmonic space figures with different frequencies and phase angles on the X, Y, and Z axes. Discussed are apparatus, viewing stereo pairs, equations of motion, and using space figures in classroom. (YP)
Three dimensional δf simulations of beams in the SSC
NASA Astrophysics Data System (ADS)
Koga, J.; Tajima, T.; Machida, S.
1993-12-01
A three dimensional δf strong-strong algorithm has been developed to apply to the study of such effects as space charge and beam-beam interaction phenomena in the Superconducting Super Collider (SSC). The algorithm is obtained from the merging of the particle tracking code Simpsons used for 3 dimensional space charge effects and a δf code. The δf method is used to follow the evolution of the non-gaussian part of the beam distribution. The advantages of this method are twofold. First, the Simpsons code utilizes a realistic accelerator model including synchrotron oscillations and energy ramping in 6 dimensional phase space with electromagnetic fields of the beams calculated using a realistic 3 dimensional field solver. Second, the beams are evolving in the fully self-consistent strong-strong sense with finite particle fluctuation noise is greatly reduced as opposed to the weak-strong models where one beam is fixed.
Self-dual Skyrmions on the spheres S2 N +1
NASA Astrophysics Data System (ADS)
Amari, Y.; Ferreira, L. A.
2018-04-01
We construct self-dual sectors for scalar field theories on a (2 N +2 )-dimensional Minkowski space-time with the target space being the 2 N +1 -dimensional sphere S2 N +1. The construction of such self-dual sectors is made possible by the introduction of an extra functional in the action that renders the static energy and the self-duality equations conformally invariant on the (2 N +1 )-dimensional spatial submanifold. The conformal and target-space symmetries are used to build an ansatz that leads to an infinite number of exact self-dual solutions with arbitrary values of the topological charge. The five-dimensional case is discussed in detail, where it is shown that two types of theories admit self-dual sectors. Our work generalizes the known results in the three-dimensional case that lead to an infinite set of self-dual Skyrmion solutions.
What is a reflex? A guide for understanding disorders of consciousness.
Fischer, David B; Truog, Robert D
2015-08-11
Uncertainty in diagnosing disorders of consciousness, and specifically in determining whether consciousness has been lost or retained, poses challenging scientific and ethical questions. Recent neuroimaging-based tests for consciousness have cast doubt on the reliability of behavioral criteria in assessing states of consciousness and generate new questions about the assumptions used in formulating coherent diagnostic criteria. The reflex, a foundational diagnostic tool, offers unique insight into these disorders; behaviors produced by unconscious patients are thought to be purely reflexive, whereas those produced by conscious patients can be volitional. Further investigation, however, reveals that reflexes cannot be reliably distinguished from conscious behaviors on the basis of any generalizable empirical characteristics. Ambiguity between reflexive and conscious behaviors undermines the capacity of the reflex to distinguish between disorders of consciousness and has implications for how these disorders should be conceptualized in future diagnostic criteria. © 2015 American Academy of Neurology.
When planning results in loss of control: intention-based reflexivity and working-memory
Meiran, Nachshon; Cole, Michael W.; Braver, Todd S.
2012-01-01
In this review, the authors discuss the seemingly paradoxical loss of control associated with states of high readiness to execute a plan, termed “intention-based reflexivity.” The review suggests that the neuro-cognitive systems involved in the preparation of novel plans are different than those involved in preparation of practiced plans (i.e., those that have been executed beforehand). When the plans are practiced, intention-based reflexivity depends on the prior availability of response codes in long-term memory (LTM). When the plans are novel, reflexivity is observed when the plan is pending and the goal has not yet been achieved. Intention-based reflexivity also depends on the availability of working-memory (WM) limited resources and the motivation to prepare. Reflexivity is probably related to the fact that, unlike reactive control (once a plan is prepared), proactive control tends to be relatively rigid. PMID:22586382
NASA Astrophysics Data System (ADS)
Flanagan, P. M.; Chutkow, J. G.; Riggs, M. T.; Cristiano, V. D.
1987-05-01
We describe the design of a reliable, user-friendly preprototype system for quantifying the tendon stretch reflexes in humans and large mammals. A hand-held, instrumented reflex gun, the impactor of which contains a single force sensor, interfaces with a computer. The resulting test system can deliver sequences of reproducible stimuli at graded intensities and adjustable durations to a muscle's tendon ("tendon taps"), measure the impacting force of each tap, and record the subsequent reflex muscle contraction from the same tendon -- all automatically. The parameters of the reflex muscle contraction include latency; mechanical threshold; and peak time, peak magnitude, and settling time. The results of clinical tests presented in this paper illustrate the system's potential usefulness in detecting neurologic dysfunction affecting the tendon stretch reflexes, in documenting the course of neurologic illnesses and their response to therapy, and in clinical and laboratory neurologic research.
Pacharawongsakda, Eakasit; Theeramunkong, Thanaruk
2013-12-01
Predicting protein subcellular location is one of major challenges in Bioinformatics area since such knowledge helps us understand protein functions and enables us to select the targeted proteins during drug discovery process. While many computational techniques have been proposed to improve predictive performance for protein subcellular location, they have several shortcomings. In this work, we propose a method to solve three main issues in such techniques; i) manipulation of multiplex proteins which may exist or move between multiple cellular compartments, ii) handling of high dimensionality in input and output spaces and iii) requirement of sufficient labeled data for model training. Towards these issues, this work presents a new computational method for predicting proteins which have either single or multiple locations. The proposed technique, namely iFLAST-CORE, incorporates the dimensionality reduction in the feature and label spaces with co-training paradigm for semi-supervised multi-label classification. For this purpose, the Singular Value Decomposition (SVD) is applied to transform the high-dimensional feature space and label space into the lower-dimensional spaces. After that, due to limitation of labeled data, the co-training regression makes use of unlabeled data by predicting the target values in the lower-dimensional spaces of unlabeled data. In the last step, the component of SVD is used to project labels in the lower-dimensional space back to those in the original space and an adaptive threshold is used to map a numeric value to a binary value for label determination. A set of experiments on viral proteins and gram-negative bacterial proteins evidence that our proposed method improve the classification performance in terms of various evaluation metrics such as Aiming (or Precision), Coverage (or Recall) and macro F-measure, compared to the traditional method that uses only labeled data.
Khosrawi, Saeid; Fallah, Salman
2013-03-01
The H-reflex is a useful electrophysiological procedure for evaluating the status of the peripheral nervous system, especially at the proximal segment of the peripheral nerve. The purpose of this study is to investigate the relation between triceps surae H-reflex and M- response latencies and thigh length in normal population, in order to determine if there is any regression equation between them. After screening 75 volunteers by considering inclusion and exclusion criteria, 72 of them were selected to enroll into our study (34 men and 38 women with the mean age of 36.04 ± 7.7 years). In all of the subjects H-reflex and M-response latencies were recorded by standard electrophysiological techniques and thigh length was measured. Finally, our data was analyzed for its relations with respect to ages in both sexes by appropriate statistical and mathematical methods. Mean ± SD for H-reflex latency was 27.94 ± 1.6 ms. We found a significant correlation between H-reflex latency and M-latency (r = 0.28), no significant correlation was found between H-reflex latency and thigh length (r = -0.051). Finally based on our findings we introduce a new formula in this paper. We found a significant correlation among of M-response latency and other variables (H-reflex latency and thigh length). Despite this it was eliminated from our formula. The relationship between H-reflex latency and age was significant. Further studies are required to delineate the clinical usage and interpretation of the formula, which we found in this study.
Comparison of voluntary and reflex cough effectiveness in Parkinson’s disease
Hegland, Karen Wheeler; Troche, Michelle S.; Brandimore, Alexandra E.; Davenport, Paul W.; Okun, Michael S.
2016-01-01
Introduction Multiple airway protective mechanisms are impacted with Parkinson’s disease (PD), including swallowing and cough. Cough serves to eject material from the lower airways, and can be produced voluntarily (on command) and reflexively in response to aspirate material or other airway irritants. Voluntary cough effectiveness is reduced in PD however it is not known whether reflex cough is affected as well. The goal of this study was to compare the effectiveness between voluntary and reflex cough in patients with idiopathic PD. Methods Twenty patients with idiopathic PD participated. Cough airflow data were recorded via facemask in line with a pneumotachograph. A side delivery port connected the nebulizer for delivery of capsaicin, which was used to induce cough. Three voluntary coughs and three reflex coughs were analyzed from each participant. A two-way repeated measures analysis of variance was used to compare voluntary versus reflex cough airflow parameters. Results Significant differences were found for peak expiratory flow rate (PEFR) and cough expired volume (CEV) between voluntary and reflex cough. Specifically, both PEFR and CEV were reduced for reflex as compared to voluntary cough. Conclusion Cough PEFR and CEV are indicative of cough effectiveness in terms of the ability to remove material from the lower airways. Differences between these two cough types likely reflect differences in the coordination of the respiratory and laryngeal subsystems. Clinicians should be aware that evaluation of cough function using voluntary cough tasks overestimates the PEFR and CEV that would be achieved during reflex cough in patients with PD. PMID:25246315
[Comparative study on the reflex responses of carotid and aortic baroreceptors in the rabbit].
Li, Z; Ho, S Y
1989-08-01
In 81 anesthetized rabbits, the baroreflex control of heart rate (HR), hind-limb vascular resistance (HVR) and renal sympathetic nerve activity (RSNA) was observed during arterial baroreceptor loading and unloading by intravenously injecting phenylephrine (PE) and nitroprusside (NP). The results were as follows: (1) An increase of arterial pressure with PE caused reduction in HR, HVR and RSNA, while a decrease of arterial pressure with NP evoked opposite responses. These reflex responses were reproducible. (2) By either carotid baroreceptor denervation (CBRX) or aortic baroreceptor denervation (ABRX), the reflex changes of HR induced by injecting PE and NP were impaired (P less than 0.01), while the reflex responses in HVP remained unchanged. Despite of the enhanced basal RSNA following ABRX or CBRX, the magnitude of reflex inhibition in RSNA during injecting NP was similar to that before denervation, whereas that of the reflex excitation in RSNA during injecting NP was reduced (P less than 0.05). (3) After complete sino-aortic denervation (SAD), the change of arterial pressure following PE or NP injection was enhanced, but the reflex changes in HR, HVR and RSNA were significantly diminished (P less than 0.001). (4) Vagotomy abolished the residual reflex changes observed after SAD. The results indicate that the aortic and carotid baroreceptors may regulate HR in a simple additive manner, while the aortic baroreceptor seems to be more important. Furthermore, both the aortic and carotid baroreceptors may play important roles for the reflex control of HVR and RSNA, and operate mutually by the way of inhibitory summation.
The Dynamics of Successive Induction in Larval Zebrafish
Charles Sherrington identified the properties of the synapse by purely behavioral means the study of reflexes -more than 100 years ago. They were subsequently confirmed neurophysiologically. Studying reflex interaction, he also showed that activating one reflex often facilitates...
2013-01-01
Background Reflexology is an alternative medical practice that produces beneficial effects by applying pressure to specific reflex areas. Our previous study suggested that reflexological stimulation induced cortical activation in somatosensory cortex corresponding to the stimulated reflex area; however, we could not rule out the possibility of a placebo effect resulting from instructions given during the experimental task. We used functional magnetic resonance imaging (fMRI) to investigate how reflexological stimulation of the reflex area is processed in the primary somatosensory cortex when correct and pseudo-information about the reflex area is provided. Furthermore, the laterality of activation to the reflexological stimulation was investigated. Methods Thirty-two healthy Japanese volunteers participated. The experiment followed a double-blind design. Half of the subjects received correct information, that the base of the second toe was the eye reflex area, and pseudo-information, that the base of the third toe was the shoulder reflex area. The other half of the subjects received the opposite information. fMRI time series data were acquired during reflexological stimulation to both feet. The experimenter stimulated each reflex area in accordance with an auditory cue. The fMRI data were analyzed using a conventional two-stage approach. The hemodynamic responses produced by the stimulation of each reflex area were assessed using a general linear model on an intra-subject basis, and a two-way repeated-measures analysis of variance was performed on an intersubject basis to determine the effect of reflex area laterality and information accuracy. Results Our results indicated that stimulation of the eye reflex area in either foot induced activity in the left middle postcentral gyrus, the area to which tactile sensation to the face projects, as well as in the postcentral gyrus contralateral foot representation area. This activity was not affected by pseudo information. The results also indicate that the relationship between the reflex area and the projection to the primary somatosensory cortex has a lateral pattern that differs from that of the actual somatotopical representation of the body. Conclusion These findings suggest that a robust relationship exists between neural processing of somatosensory percepts for reflexological stimulation and the tactile sensation of a specific reflex area. PMID:23711332
Addessi, Anna Rita; Anelli, Filomena; Benghi, Diber; Friberg, Anders
2017-01-01
In this article children's musical improvisation is investigated through the "reflexive interaction" paradigm. We used a particular system, the MIROR-Impro, implemented in the framework of the MIROR project (EC-FP7), which is able to reply to the child playing a keyboard by a "reflexive" output, mirroring (with repetitions and variations) her/his inputs. The study was conducted in a public primary school, with 47 children, aged 6-7. The experimental design used the convergence procedure, based on three sample groups allowing us to verify if the reflexive interaction using the MIROR-Impro is necessary and/or sufficient to improve the children's abilities to improvise. The following conditions were used as independent variables: to play only the keyboard, the keyboard with the MIROR-Impro but with not-reflexive reply, the keyboard with the MIROR-Impro with reflexive reply. As dependent variables we estimated the children's ability to improvise in solos, and in duets. Each child carried out a training program consisting of 5 weekly individual 12 min sessions. The control group played the complete package of independent variables; Experimental Group 1 played the keyboard and the keyboard with the MIROR-Impro with not-reflexive reply; Experimental Group 2 played only the keyboard with the reflexive system. One week after, the children were asked to improvise a musical piece on the keyboard alone (Solo task), and in pairs with a friend (Duet task). Three independent judges assessed the Solo and the Duet tasks by means of a grid based on the TAI-Test for Ability to Improvise rating scale. The EG2, which trained only with the reflexive system, reached the highest average results and the difference with EG1, which did not used the reflexive system, is statistically significant when the children improvise in a duet. The results indicate that in the sample of participants the reflexive interaction alone could be sufficient to increase the improvisational skills, and necessary when they improvise in duets. However, these results are in general not statistically significant. The correlation between Reflexive Interaction and the ability to improvise is statistically significant. The results are discussed on the light of the recent literature in neuroscience and music education.
The Middle Ear Muscle Reflex in Rat: Developing a Biomarker of Auditory Nerve Degeneration.
Chertoff, Mark E; Martz, Ashley; Sakumura, Joey T; Kamerer, Aryn M; Diaz, Francisco
The long-term goal of this research is to determine whether the middle ear muscle reflex can be used to predict the number of healthy auditory nerve fibers in hearing-impaired ears. In this study, we develop a high-impedance source and an animal model of the middle ear muscle reflex and explore the influence of signal frequency and level on parameters of the reflex to determine an optimal signal to examine auditory nerve fiber survival. A high-impedance source was developed using a hearing aid receiver attached to a 0.06 diameter 10.5-cm length tube. The impedance probe consisted of a microphone probe placed near the tip of a tube coupled to a sound source. The probe was calibrated by inserting it into a syringe of known volumes and impedances. The reflex in the anesthetized rat was measured with elicitor stimuli ranging from 3 to 16 kHz presented at levels ranging from 35 to 100 dB SPL to one ear while the reflex was measured in the opposite ear containing the probe and probe stimulus. The amplitude of the reflex increased with elicitor level and was largest at 3 kHz. The lowest threshold was approximately 54 dB SPL for the 3-kHz stimulus. The rate of decay of the reflex was greatest at 16 kHz followed by 10 and 3 kHz. The rate of decay did not change significantly with elicitor signal level for 3 and 16 kHz, but decreased as the level of the 10-kHz elicitor increased. A negative feedback model accounts for the reflex decay by having the strength of feedback dependent on auditory nerve input. The rise time of the reflex varied with frequency and changed with level for the 10- and 16-kHz signals but not significantly for the 3-kHz signal. The latency of the reflex increased with a decrease in elicitor level, and the change in latency with level was largest for the 10-kHz stimulus. Because the amplitude of the reflex in rat was largest with an elicitor signal at 3 kHz, had the lowest threshold, and yielded the least amount of decay, this may be the ideal frequency to estimate auditory nerve survival in hearing-impaired ears.
Echocardiography Comparison Between Two and Three Dimensional Echocardiograms
NASA Technical Reports Server (NTRS)
2003-01-01
Echocardiography uses sound waves to image the heart and other organs. Developing a compact version of the latest technology improved the ease of monitoring crew member health, a critical task during long space flights. NASA researchers plan to adapt the three-dimensional (3-D) echocardiogram for space flight. The two-dimensional (2-D) echocardiogram utilized in orbit on the International Space Station (ISS) was effective, but difficult to use with precision. A heart image from a 2-D echocardiogram (left) is of a better quality than that from a 3-D device (right), but the 3-D imaging procedure is more user-friendly.
Nebula: reconstruction and visualization of scattering data in reciprocal space.
Reiten, Andreas; Chernyshov, Dmitry; Mathiesen, Ragnvald H
2015-04-01
Two-dimensional solid-state X-ray detectors can now operate at considerable data throughput rates that allow full three-dimensional sampling of scattering data from extended volumes of reciprocal space within second to minute time-scales. For such experiments, simultaneous analysis and visualization allows for remeasurements and a more dynamic measurement strategy. A new software, Nebula , is presented. It efficiently reconstructs X-ray scattering data, generates three-dimensional reciprocal space data sets that can be visualized interactively, and aims to enable real-time processing in high-throughput measurements by employing parallel computing on commodity hardware.
Nebula: reconstruction and visualization of scattering data in reciprocal space
Reiten, Andreas; Chernyshov, Dmitry; Mathiesen, Ragnvald H.
2015-01-01
Two-dimensional solid-state X-ray detectors can now operate at considerable data throughput rates that allow full three-dimensional sampling of scattering data from extended volumes of reciprocal space within second to minute timescales. For such experiments, simultaneous analysis and visualization allows for remeasurements and a more dynamic measurement strategy. A new software, Nebula, is presented. It efficiently reconstructs X-ray scattering data, generates three-dimensional reciprocal space data sets that can be visualized interactively, and aims to enable real-time processing in high-throughput measurements by employing parallel computing on commodity hardware. PMID:25844083
Stochastic solution to quantum dynamics
NASA Technical Reports Server (NTRS)
John, Sarah; Wilson, John W.
1994-01-01
The quantum Liouville equation in the Wigner representation is solved numerically by using Monte Carlo methods. For incremental time steps, the propagation is implemented as a classical evolution in phase space modified by a quantum correction. The correction, which is a momentum jump function, is simulated in the quasi-classical approximation via a stochastic process. The technique, which is developed and validated in two- and three- dimensional momentum space, extends an earlier one-dimensional work. Also, by developing a new algorithm, the application to bound state motion in an anharmonic quartic potential shows better agreement with exact solutions in two-dimensional phase space.
Stimulation of cardiovascular adaptability during prolonged space exposure
NASA Technical Reports Server (NTRS)
Gorman, H. A.
1971-01-01
The deconditioning effects of weightlessness on the cardiovascular system of astronauts are discussed. It is believed that man cannot tolerate indefinite exposure to weightlessness without considerable circulatory deterioration. Analyses of data collected from space flights to date substantiate these beliefs, and confirm the fact that some form of compensation must be provided to keep the cardiovascular system of space travelers properly conditioned. Sequential pulsatile devices were investigated to produce periodic hydrostatic pressure gradients in the venous system of eight subhuman primates. Intermittent venous pooling of blood in the extremities triggers and stimulates the vascular reflex mechanisms of the cardiovascular system that may have significant benefits in maintaining the circulatory system in proper tone under weightless conditions. Electrocardiograms, blood pressure measurements, cardiac output and stroke volume determinations were used to evaluate the efficiency of the described technique. Results were amazingly consistent to indicate an efficient system for intermittently exercising the heart within safe and medically acceptable limits.
Distance and Size Perception in Astronauts during Long-Duration Spaceflight
Clément, Gilles; Skinner, Anna; Lathan, Corinna
2013-01-01
Exposure to microgravity during spaceflight is known to elicit orientation illusions, errors in sensory localization, postural imbalance, changes in vestibulo-spinal and vestibulo-ocular reflexes, and space motion sickness. The objective of this experiment was to investigate whether an alteration in cognitive visual-spatial processing, such as the perception of distance and size of objects, is also taking place during prolonged exposure to microgravity. Our results show that astronauts on board the International Space Station exhibit biases in the perception of their environment. Objects’ heights and depths were perceived as taller and shallower, respectively, and distances were generally underestimated in orbit compared to Earth. These changes may occur because the perspective cues for depth are less salient in microgravity or the eye-height scaling of size is different when an observer is not standing on the ground. This finding has operational implications for human space exploration missions. PMID:25369884
Sanghera, Balihar
2016-01-01
This article examines how individuals are reflexive beings who interpret the world in relation to things that matter to them, and how charitable acts are evaluated and embedded in their lives with different degrees of meaning and importance. Rather than framing the discussion of charitable practices in terms of an altruism/egoism binary or imputing motivations and values to social structures, the article explains how reflexivity is an important and neglected dimension of social practices, and how it interacts with sympathy, sentiments and discourses to shape giving. The study also shows that there are different modes of reflexivity, which have varied effects on charity and volunteering. PMID:28232772
Role of orientation reference selection in motion sickness, supplement 2S
NASA Technical Reports Server (NTRS)
Peterka, Robert J.; Black, F. Owen
1987-01-01
Previous experiments with moving platform posturography have shown that different people have varying abilities to resolve conflicts among vestibular, visual, and proprioceptive sensory signals. The conceptual basis of the present proposal hinges on the similarities between the space motion sickness problem and the sensory orientation reference selection problems associated with benign paroxysmal positional vertigo (BPPV) syndrome. These similarities include both etiology related to abnormal vertical canal-otolith function, and motion sickness initiating events provoked by pitch and roll head movements. The objectives are to explore and quantify the orientation reference selection abilities of subjects and the relation of this selection to motion sickness in humans. The overall objectives are to determine: if motion sickness susceptibility is related to sensory orientation reference selection abilities of subjects; if abnormal vertical canal-otolith function is the source of abnormal posture control strategies and if it can be quantified by vestibular and oculomotor reflex measurements, and if it can be quantified by vestibular and oculomotor reflex measurements; and quantifiable measures of perception of vestibular and visual motion cues can be related to motion sickness susceptibility and to orientation reference selection ability.
Underwater Noise and the Conservation of Divers’ Hearing: A Review. Volume 1
1989-10-01
reflex attenuation, since the tensor tympani is unaffected and since Bell ’ palsy may affect the VIIIth (auditory) nerve as well as the VIlth (facial...studied acoustic reflexes in patients with acute facial nerve paralysis (Bell’s palsy ). These patients had absent stapedius reflexes on the side of the...voluntary middle ear muscle activation. 24 Bell’s palsy cases; attenuation estimated by shift in reflex amplitude- intensity functions (contralateral), re
Assessment of H reflex sensitivity with M wave alternation consequent to fatiguing contractions.
Hwang, Ing-Shiou; Huang, Cheng-Ya; Wu, Pei-Shan; Chen, Yi-Ching; Wang, Chun-Hou
2008-09-01
The objective of this study was to examine the changes in H reflex sensitivity after neuromuscular fatigue associated with fluctuations of the M wave. In the maximal and submaximal voluntary contraction (MVC and SMVC) paradigms, subjects performed voluntary plantarflexion at 100% MVC and 40% MVC respectively until the limit of torque maintenance was reached. In the submaximal electrical stimulation (SMES) paradigm, the tricep surae was exhausted with sustained electrical stimulation of 40% of the maximal tolerable intensity at a 40-Hz stimulus rate. The H reflexes and maximal M waves (M(max)) of the soleus were recorded before and after the three fatigue paradigms, and the H reflex was standardized with M(max) to minimize possible bias due to fatigue-induced M wave fluctuation. The results showed a significant increase in the standardized H reflex due to the SMES paradigm in spite of M(max) potentiation. The SMVC paradigm led to a reduction in size of the standardized H reflex without modification of M(max), whereas the standardized H reflex was not mediated by the MVC paradigm, which contributed to a noticeable M(max) potentiation. The present study underscored the fact that the H reflex sensitivity and M wave amplitude were not necessarily suppressed consequent to neuromuscular fatigue, but varied with the activation history of a muscle for size-dependent efficacy of the Ia transmission pathways and postactivation potentiation.
Tan, U
1994-03-01
Relations of grasp-reflex strengths to serum free-thyroid hormone levels were studied in human neonates. In right-dominant (RH) males and females without familial sinistrality (-FS), grasp-reflex strengths from right (R) and left (L) inversely correlated with serum triiodothyronine (T3). In RH, +FS males, grasp-reflex strengths from R and L hands directly correlated with T3 (no correlations in RH, +FS females). There was no significant correlation between grasp reflex and T3 in non-right-handed (NRH), -FS neonates. In NRH +FS neonates, there was a significant negative linear correlation between grasp reflex from left and T3 only in NRH, +FS males. The following correlations were found between grasp reflex and thyroxine (T4): direct relation in RH, +FS males and females; inverse relation in NRH, -FS females only for the right hand; inverse correlations in NRH, +FS females. The R-L grasp reflex directly correlated with T3 in RH, -FS males, and inversely correlated with T3 in RH, -FS females (no significant correlations in others). These results indicated that thyroid hormones may influence cerebral maturation and lateralization differentially according to genetically predetermined cerebral organization. The generalizations of the hormonal effects on, at least, cerebral functioning would be wrong, if the genetically predetermined main features of the brain are neglected.
The Neuroanatomical Correlates of Training-Related Perceptuo-Reflex Uncoupling in Dancers
Nigmatullina, Yuliya; Hellyer, Peter J.; Nachev, Parashkev; Sharp, David J.; Seemungal, Barry M.
2015-01-01
Sensory input evokes low-order reflexes and higher-order perceptual responses. Vestibular stimulation elicits vestibular-ocular reflex (VOR) and self-motion perception (e.g., vertigo) whose response durations are normally equal. Adaptation to repeated whole-body rotations, for example, ballet training, is known to reduce vestibular responses. We investigated the neuroanatomical correlates of vestibular perceptuo-reflex adaptation in ballet dancers and controls. Dancers' vestibular-reflex and perceptual responses to whole-body yaw-plane step rotations were: (1) Briefer and (2) uncorrelated (controls' reflex and perception were correlated). Voxel-based morphometry showed a selective gray matter (GM) reduction in dancers' vestibular cerebellum correlating with ballet experience. Dancers' vestibular cerebellar GM density reduction was related to shorter perceptual responses (i.e. positively correlated) but longer VOR duration (negatively correlated). Contrastingly, controls' vestibular cerebellar GM density negatively correlated with perception and VOR. Diffusion-tensor imaging showed that cerebral cortex white matter (WM) microstructure correlated with vestibular perception but only in controls. In summary, dancers display vestibular perceptuo-reflex dissociation with the neuronatomical correlate localized to the vestibular cerebellum. Controls' robust vestibular perception correlated with a cortical WM network conspicuously absent in dancers. Since primary vestibular afferents synapse in the vestibular cerebellum, we speculate that a cerebellar gating of perceptual signals to cortical regions mediates the training-related attenuation of vestibular perception and perceptuo-reflex uncoupling. PMID:24072889
Frigon, Alain; Thibaudier, Yann; Johnson, Michael D.; Heckman, C.J.; Hurteau, Marie-France
2012-01-01
Spasticity is a condition that can include increased muscle tone, clonus, spasms, and hyperreflexia. In this study, we report the effect of manually stimulating the dorsal lumbosacral skin on spontaneous locomotor-like activity and on a variety of reflex responses in 5 decerebrate chronic spinal cats treated with clonidine. Cats were spinalized 1 month before the terminal experiment. Stretch reflexes were evoked by stretching the left triceps surae muscles. Crossed reflexes were elicited by electrically stimulating the right tibial or superficial peroneal nerves. Windup of reflex responses was evoked by electrically stimulating the left tibial or superficial peroneal nerves. We found that pinching the skin of the back abolished spontaneous locomotor-like activity. We also found that back pinch abolished the rhythmic activity observed during reflex testing without eliminating the reflex responses. Some of the rhythmic episodes of activity observed during reflex testing were consistent with clonus with an oscillation frequency greater than 3 Hz. Pinching the skin of the back effectively abolished rhythmic activity occurring spontaneously or evoked during reflex testing, irrespective of oscillation frequency. The results are consistent with the hypothesis that locomotion and clonus are produced by common central pattern-generators. Stimulating the skin of the back could prove helpful in managing undesired rhythmic activity in spinal cord-injured humans. PMID:22487200
Emotion, reflexivity and social change in the era of extreme fossil fuels.
Davidson, Debra J
2018-05-09
Reflexivity is an important sociological lens through which to examine the means by which people engage in actions that contribute to social reproduction or social elaboration. Reflexivity theorists have largely overlooked the central place of emotions in reflexive processing, however, thus missing opportunities to enhance our understanding of reflexivity by capitalizing on recent scholarship on emotions emanating from other fields of inquiry. This paper explores the role of emotion in reflexivity, with a qualitative analysis of social responses to hydraulic fracturing in Alberta, Canada, utilizing narrative analysis of long-form interviews with rural landowners who have experienced direct impacts from hydraulic fracturing, and have attempted to voice their concerns in the public sphere. Based on interviews with a selection of two interview participants, the paper highlights the means by which emotions shape reflexivity in consequential ways, beginning with personal and highly individualized emotional responses to contingent situations, which then factor into the social interactions engaged in the pursuit of personal projects. The shared emotional context that emerges then plays a substantial role in shaping outcomes and their implications for social stasis or change. This study exemplifies the extent to which reflexive processing in response to breaches in the social order can be emotionally tumultuous affairs, constituting a significant personal toll that many may be unwilling to pay. © London School of Economics and Political Science 2018.
Modulation of H-Reflex Depression with Paired-Pulse Stimulation in Healthy Active Humans.
Oza, Preeti D; Dudley-Javoroski, Shauna; Shields, Richard K
2017-01-01
Depression of the Hoffman reflex (H-reflex) is used to examine spinal control mechanisms during exercise, fatigue, and vibration and in response to training. H-reflex depression protocols frequently use trains of stimuli; this is time-consuming and prevents instantaneous assessment of motor neuronal excitability. The purpose of this study was to determine if paired-pulse H-reflex depression is reproducible and whether paired-pulse stimulation adequately estimates the depression induced by the more traditional ten-pulse train. H-reflexes were elicited via ten-pulse trains at 0.1, 0.2, 1, 2, and 5 Hz in ten neurologically intact individuals on two separate days. We measured the depression elicited by the second pulse (H2) and the mean depression elicited by pulses 2-10 (Hmean). H2 was consistent at all frequencies on both days ( r 2 = 0.97, p < 0.05, and ICC (3,1) = 0.81). H2 did not differ from Hmean ( p > 0.05). The results indicate that paired-pulse H-reflex depression has high between-day reliability and yields depression estimates that are comparable to those obtained via ten-pulse trains. Paired-pulse H-reflex depression may be especially useful for studies that require rapid assessment of motor neuronal excitability, such as during exercise, fatigue, and vibration, or to establish recovery curves following inhibition.
The effects of mental representation on performance in a navigation task
NASA Technical Reports Server (NTRS)
Barshi, Immanuel; Healy, Alice F.
2002-01-01
In three experiments, we investigated the mental representations employed when instructions were followed that involved navigation in a space displayed as a grid on a computer screen. Performance was affected much more by the number of instructional units than by the number of words per unit. Performance in a three-dimensional space was independent of the number of dimensions along which participants navigated. However, memory for and accuracy in following the instructions were reduced when the task required mentally representing a three-dimensional space, as compared with representing a two-dimensional space, although the words used in the instructions were identical in the two cases. These results demonstrate the interdependence of verbal and spatial memory representations, because individuals' immediate memory for verbal navigation instructions is affected by their mental representation of the space referred to by the instructions.
Adiabatic Invariant Approach to Transverse Instability: Landau Dynamics of Soliton Filaments.
Kevrekidis, P G; Wang, Wenlong; Carretero-González, R; Frantzeskakis, D J
2017-06-16
Consider a lower-dimensional solitonic structure embedded in a higher-dimensional space, e.g., a 1D dark soliton embedded in 2D space, a ring dark soliton in 2D space, a spherical shell soliton in 3D space, etc. By extending the Landau dynamics approach [Phys. Rev. Lett. 93, 240403 (2004)PRLTAO0031-900710.1103/PhysRevLett.93.240403], we show that it is possible to capture the transverse dynamical modes (the "Kelvin modes") of the undulation of this "soliton filament" within the higher-dimensional space. These are the transverse stability or instability modes and are the ones potentially responsible for the breakup of the soliton into structures such as vortices, vortex rings, etc. We present the theory and case examples in 2D and 3D, corroborating the results by numerical stability and dynamical computations.
From Glass Formation to Icosahedral Ordering by Curving Three-Dimensional Space.
Turci, Francesco; Tarjus, Gilles; Royall, C Patrick
2017-05-26
Geometric frustration describes the inability of a local molecular arrangement, such as icosahedra found in metallic glasses and in model atomic glass formers, to tile space. Local icosahedral order, however, is strongly frustrated in Euclidean space, which obscures any causal relationship with the observed dynamical slowdown. Here we relieve frustration in a model glass-forming liquid by curving three-dimensional space onto the surface of a 4-dimensional hypersphere. For sufficient curvature, frustration vanishes and the liquid "freezes" in a fully icosahedral structure via a sharp "transition." Frustration increases upon reducing the curvature, and the transition to the icosahedral state smoothens while glassy dynamics emerge. Decreasing the curvature leads to decoupling between dynamical and structural length scales and the decrease of kinetic fragility. This sheds light on the observed glass-forming behavior in Euclidean space.
Chapple, W D
1997-09-01
Reflex activation of the ventral superficial muscles (VSM) in the abdomen of the hermit crab, Pagurus pollicarus, was studied using sinusoidal and stochastic longitudinal vibration of the muscle while recording the length and force of the muscle and the spike times of three exciter motoneurons. In the absence of vibration, the interspike interval histograms of the two larger motoneurons were bimodal; cutting sensory nerves containing most of the mechanoreceptor input removed the short interval peak in the histogram, indicating that the receptors are important in maintaining tonic firing. Vibration of the muscle evoked a reflex increase in motoneuron frequency that habituated after an initial peak but remained above control levels for the duration of stimulation. Motoneuron frequency increased with root mean square (rms) stimulus amplitude. Average stiffness during stimulation was about two times the stiffness of passive muscle. The reflex did not alter muscle dynamics. Estimated transfer functions were calculated from the fast Fourier transform of length and force signals. Coherence was >0.9 for the frequency range of 3-35 Hz. Stiffness magnitude gradually increased over this range in both reflex activated and passive muscle; phase was between 10 and 20 degrees. Reflex stiffness decreased with increasing stimulus amplitudes, but at larger amplitudes, this decrease was much less pronounced; in this range stiffness was regulated by the reflex. The sinusoidal frequency at which reflex bursts were elicited was approximately 6 Hz, consistent with previous measurements using ramp stretch. During reflex excitation, there was an increase in amplitude of the short interval peak in the interspike interval histogram; this was reduced when the majority of afferent pathways was removed. A phase histogram of motoneuron firing during sinusoidal vibration had a peak at approximately 110 ms, also suggesting that an important component of the reflex is via direct projections from the mechanoreceptors. These results are consistent with the hypothesis that a robust feedforward regulation of abdominal stiffness during continuous disturbances is achieved by mechanoreceptors signalling the absolute value of changing forces; habituation of the reflex, its high-threshold for low frequency disturbances and the activation kinetics of the muscle further modify reflex dynamics.
Similarity solutions of some two-space-dimensional nonlinear wave evolution equations
NASA Technical Reports Server (NTRS)
Redekopp, L. G.
1980-01-01
Similarity reductions of the two-space-dimensional versions of the Korteweg-de Vries, modified Korteweg-de Vries, Benjamin-Davis-Ono, and nonlinear Schroedinger equations are presented, and some solutions of the reduced equations are discussed. Exact dispersive solutions of the two-dimensional Korteweg-de Vries equation are obtained, and the similarity solution of this equation is shown to be reducible to the second Painleve transcendent.
High-Dimensional Intrinsic Interpolation Using Gaussian Process Regression and Diffusion Maps
Thimmisetty, Charanraj A.; Ghanem, Roger G.; White, Joshua A.; ...
2017-10-10
This article considers the challenging task of estimating geologic properties of interest using a suite of proxy measurements. The current work recast this task as a manifold learning problem. In this process, this article introduces a novel regression procedure for intrinsic variables constrained onto a manifold embedded in an ambient space. The procedure is meant to sharpen high-dimensional interpolation by inferring non-linear correlations from the data being interpolated. The proposed approach augments manifold learning procedures with a Gaussian process regression. It first identifies, using diffusion maps, a low-dimensional manifold embedded in an ambient high-dimensional space associated with the data. Itmore » relies on the diffusion distance associated with this construction to define a distance function with which the data model is equipped. This distance metric function is then used to compute the correlation structure of a Gaussian process that describes the statistical dependence of quantities of interest in the high-dimensional ambient space. The proposed method is applicable to arbitrarily high-dimensional data sets. Here, it is applied to subsurface characterization using a suite of well log measurements. The predictions obtained in original, principal component, and diffusion space are compared using both qualitative and quantitative metrics. Considerable improvement in the prediction of the geological structural properties is observed with the proposed method.« less
High-Dimensional Intrinsic Interpolation Using Gaussian Process Regression and Diffusion Maps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thimmisetty, Charanraj A.; Ghanem, Roger G.; White, Joshua A.
This article considers the challenging task of estimating geologic properties of interest using a suite of proxy measurements. The current work recast this task as a manifold learning problem. In this process, this article introduces a novel regression procedure for intrinsic variables constrained onto a manifold embedded in an ambient space. The procedure is meant to sharpen high-dimensional interpolation by inferring non-linear correlations from the data being interpolated. The proposed approach augments manifold learning procedures with a Gaussian process regression. It first identifies, using diffusion maps, a low-dimensional manifold embedded in an ambient high-dimensional space associated with the data. Itmore » relies on the diffusion distance associated with this construction to define a distance function with which the data model is equipped. This distance metric function is then used to compute the correlation structure of a Gaussian process that describes the statistical dependence of quantities of interest in the high-dimensional ambient space. The proposed method is applicable to arbitrarily high-dimensional data sets. Here, it is applied to subsurface characterization using a suite of well log measurements. The predictions obtained in original, principal component, and diffusion space are compared using both qualitative and quantitative metrics. Considerable improvement in the prediction of the geological structural properties is observed with the proposed method.« less
Parks, Vanessa N.; Peng, Juan; Dzodzomenyo, Samuel; Fernandez, Soledad; Shaker, Reza; Splaingard, Mark
2012-01-01
Electrocortical arousal (ECA) as an effect of visceral provocation or of its temporal relationships with aerodigestive reflexes in premature neonates is not known. We tested the hypothesis that esophageal provocation results in both esophageal reflex responses and ECAs during sleep and that ECAs are dependent on the frequency characteristics of esophageal neuromotor responses. We defined the spatiotemporal relationship of ECAs in relation to 1) spontaneous pharyngoesophageal swallow sequences and gastroesophageal reflux (GER) events and 2) sensory-motor characteristics of esophageal reflexes. Sixteen healthy premature neonates born at 27.9 ± 3.4 wk were tested at 36.8 ± 1.9 wk postmenstrual age. Ninety-five midesophageal and 31 sham stimuli were given in sleep during concurrent manometry and videopolysomnography. With stimulus onset as reference point, we scored the response latency, frequency occurrence and duration of arousals, peristaltic reflex, and upper esophageal sphincter contractile reflex (UESCR). Changes in polysomnography-respiratory patterns and esophageal sensory-motor parameters were scored by blinded observers. Significantly (for each characteristic listed, P < 0.05), swallow sequences were associated with arousals and sleep state changes, and arousals were associated with incomplete peristalsis, response delays to lower esophageal sphincter relaxation, and prolonged esophageal clearance. GER events (73.5%) provoked arousals, and arousals were associated with response delays to peristaltic reflexes or clearance, sleep state modification, and prolonged respiratory arousal. Midesophageal stimuli (54%) provoked arousals and were associated with increased frequency, prolonged latency, prolonged response duration of peristaltic reflexes and UESCR, and increased frequency of sleep state changes and respiratory arousals. In human neonates, ECAs are provoked upon esophageal stimulation; the sensory-motor characteristics of esophageal reflexes are distinct when accompanied by arousals. Aerodigestive homeostasis is defended by multiple tiers of aerodigestive safety mechanisms, and when esophageal reflexes are delayed, cortical hypervigilance (ECAs) occurs. PMID:21852361
Age-related differences in trunk muscle reflexive behaviors.
Shojaei, Iman; Nussbaum, Maury A; Bazrgari, Babak
2016-10-03
Reports of larger passive and similar intrinsic trunk stiffness in older vs. younger populations suggest a diminishing demand for reflexive contributions of trunk muscles to spinal stability with aging. It remains unclear, though, whether such diminishing demands result in deterioration of trunk muscle reflexive behaviors. A cross-sectional study was completed to assess age-related differences in the latency and likelihood of trunk muscle reflexive responses to sudden perturbations. Sixty healthy individuals, aged 20-70 years, were recruited to form five equal-sized and gender-balanced age groups. Using a displacement-control, sudden perturbation paradigm, the latency and likelihood of trunk muscle reflexive responses to sudden perturbations were estimated, and the influences of age, gender, and level of effort (20% versus 30% of maximum voluntary exertion-MVE) were evaluated. There were no consistent age-related differences found in any of the measures of trunk muscle reflexive behavior. However, the latency of muscle response to perturbation was generally higher among older individuals, and this difference was significant in the condition involving 30% MVE effort. With an increase in level of effort (from 20% to 30% of MVE), there was a ~7% increase in the latency of trunk muscle responses to anteriorly-directed perturbations as well as ~ 15% (21%) decrease (increase) in response likelihood during anteriorly (posteriorly) directed perturbations. Furthermore, the reflexive response likelihood of trunk muscles was 28% (58%) larger (smaller) in female vs. male participants during anteriorly (posteriorly) directed perturbations. Our results did not, in general, support the hypothesis of an age-related decay in reflexive trunk muscle behaviors. Larger reflexive responses were associated with lower trunk intrinsic stiffness among females and during a lower level of effort, suggesting a secondary role for reflexive responses in spinal stability. Such secondary compensatory responses appear, however, to be consistent over a wide age range. Copyright © 2016 Elsevier Ltd. All rights reserved.
Reflexive convention: civil partnership, marriage and family.
Heaphy, Brian
2017-09-14
Drawing on an analysis of qualitative interview data from a study of formalized same-sex relationships (civil partnerships) this paper examines the enduring significance of marriage and family as social institutions. In doing so, it intervenes in current debates in the sociology of family and personal life about how such institutions are undermined by reflexivity or bolstered by convention. Against the backdrop of dominating sociological frames for understanding the links between the changing nature of marriage and family and same-sex relationship recognition, the paper analyses the diverse and overlapping ways (including the simple, relational, strategic, ambivalent and critical ways) in which same-sex partners reflexively constructed and engaged with marriage and family conventions. My analysis suggests that instead of viewing reflexivity and convention as mutually undermining, as some sociologists of family and personal life do, it is insightful to explore how diverse forms of reflexivity and convention interact in everyday life to reconfigure the social institutions of marriage and family, but do not undermine them as such. I argue the case for recognizing the ways in which 'reflexive convention', or reflexive investment in convention, contributes to the continuing significance of marriage and family as social institutions. © London School of Economics and Political Science 2017.
Shah, Sachin P; Waxman, Sergio
2013-01-01
The Bezold-Jarisch reflex, a well-described phenomenon, occurs upon the stimulation of intracardiac mechanoreceptors and is mediated by vagal afferent nerve fibers. Several factors can sensitize the cardiovascular system to develop this reflex, including acute myocardial ischemia, natriuretic peptides, and, rarely, nitroglycerin administration in the setting of acute myocardial infarction. The development of the Bezold-Jarisch reflex in the presence of severe coronary artery stenosis, specifically left main coronary artery stenosis, has not been described. We report 2 cases of patients who underwent elective coronary angiography and were given intra-arterial nitroglycerin during radial sheath insertion to reduce radial artery spasm. In both patients, bradycardia and hypotension developed along with diaphoresis, consistent with the Bezold-Jarisch reflex. Coronary angiography revealed critical (>90%) left main coronary artery stenosis in both patients. Critical left main coronary artery stenosis might sensitize mechanoreceptors or vagal afferents to the development of the Bezold-Jarisch reflex after intra-arterial nitroglycerin use; however, the mechanism of this possible relationship is unclear. In addition to discussing our patients' cases, we review the medical literature relevant to the Bezold-Jarisch reflex.
Robotic investigation on effect of stretch reflex and crossed inhibitory response on bipedal hopping
Rosendo, Andre; Ikemoto, Shuhei; Shimizu, Masahiro; Hosoda, Koh
2018-01-01
To maintain balance during dynamic locomotion, the effects of proprioceptive sensory feedback control (e.g. reflexive control) should not be ignored because of its simple sensation and fast reaction time. Scientists have identified the pathways of reflexes; however, it is difficult to investigate their effects during locomotion because locomotion is controlled by a complex neural system and current technology does not allow us to change the control pathways in living humans. To understand these effects, we construct a musculoskeletal bipedal robot, which has similar body structure and dynamics to those of a human. By conducting experiments on this robot, we investigate the effects of reflexes (stretch reflex and crossed inhibitory response) on posture during hopping, a simple and representative bouncing gait with complex dynamics. Through over 300 hopping trials, we confirm that both the stretch reflex and crossed response can contribute to reducing the lateral inclination during hopping. These reflexive pathways do not use any prior knowledge of the dynamic information of the body such as its inclination. Beyond improving the understanding of the human neural system, this study provides roboticists with biomimetic ideas for robot locomotion control. PMID:29593088
Delwaide, P J; Figiel, C; Richelle, C
1977-06-01
The influence of passive changes in upper limb position on the excitability of three myotatic arc reflexes (soleus, quadriceps, and biceps femoris) of the lower limb has been explored on 42 volunteers. The results indicate that the excitability of the three myotatic arcs can be influenced at a distance by postural modifications of the upper limb. When the ipsilateral upper limb is forwards or the contralateral backwards, a facilitation of both soleus and quadriceps tendon reflexes is observed while the biceps femoris reflexes are reduced. This pattern of facilitation and inhibition is reversed when the ipsilateral upper limb is backwards or the contralateral forwards. The facilitations as well as inhibitions of proximal myotatic arc reflexes are quantitatively more marked than that of the soleus reflex. Facilitation and inhibition are not linearly related to the angle of the arm with the trunk. Effects begin at a considerable angle, become maximal at 45 degrees, and progressively disappear for greater values. It is suggested that the distinct pattern of facilitation and inhibition which is exerted in reciprocal fashion on extensor and flexor motor nuclei might depend on the long propriospinal neurones connecting cervical and lumbar enlargements.
de Jong, Irja Marije; Kupper, Frank; Broerse, Jacqueline
2018-01-24
Emerging RRI practices have goals with respect to learning, governance and achieving RRI outcomes (action). However, few practices actually achieve the action phase as actors lack room to manoeuvre, and lack guidance on how to move forward because of the inherent unscriptedness of the emerging RRI practice. In this explorative research an emerging RRI practice is studied to identify factors and barriers to the creation of adaptive space, in which actors can be responsive to the other and adapt, and a narrative can be created in the act of doing. This paper describes how formal and informal ways of organizing emerging RRI practices contribute to adaptive space, and how the metaphorical heuristic of improvisational theatre provides clear action principles to actors involved in emerging RRI practices in action. The RRI practice studied here lies in the domain of juvenile justice, where barriers that restrict room to manoeuvre are abundant. Five factors - 'informality over formality', 'shared action space', 'be flexible', 'keep the action moving' and 'put the relationship central' - were identified to facilitate reflexivity and adaptation in this space.
Self-dual phase space for (3 +1 )-dimensional lattice Yang-Mills theory
NASA Astrophysics Data System (ADS)
Riello, Aldo
2018-01-01
I propose a self-dual deformation of the classical phase space of lattice Yang-Mills theory, in which both the electric and magnetic fluxes take value in the compact gauge Lie group. A local construction of the deformed phase space requires the machinery of "quasi-Hamiltonian spaces" by Alekseev et al., which is reviewed here. The results is a full-fledged finite-dimensional and gauge-invariant phase space, the self-duality properties of which are largely enhanced in (3 +1 ) spacetime dimensions. This enhancement is due to a correspondence with the moduli space of an auxiliary noncommutative flat connection living on a Riemann surface defined from the lattice itself, which in turn equips the duality between electric and magnetic fluxes with a neat geometrical interpretation in terms of a Heegaard splitting of the space manifold. Finally, I discuss the consequences of the proposed deformation on the quantization of the phase space, its quantum gravitational interpretation, as well as its relevance for the construction of (3 +1 )-dimensional topological field theories with defects.
Contribution of supraspinal systems to generation of automatic postural responses
Deliagina, Tatiana G.; Beloozerova, Irina N.; Orlovsky, Grigori N.; Zelenin, Pavel V.
2014-01-01
Different species maintain a particular body orientation in space due to activity of the closed-loop postural control system. In this review we discuss the role of neurons of descending pathways in operation of this system as revealed in animal models of differing complexity: lower vertebrate (lamprey) and higher vertebrates (rabbit and cat). In the lamprey and quadruped mammals, the role of spinal and supraspinal mechanisms in the control of posture is different. In the lamprey, the system contains one closed-loop mechanism consisting of supraspino-spinal networks. Reticulospinal (RS) neurons play a key role in generation of postural corrections. Due to vestibular input, any deviation from the stabilized body orientation leads to activation of a specific population of RS neurons. Each of the neurons activates a specific motor synergy. Collectively, these neurons evoke the motor output necessary for the postural correction. In contrast to lampreys, postural corrections in quadrupeds are primarily based not on the vestibular input but on the somatosensory input from limb mechanoreceptors. The system contains two closed-loop mechanisms – spinal and spino-supraspinal networks, which supplement each other. Spinal networks receive somatosensory input from the limb signaling postural perturbations, and generate spinal postural limb reflexes. These reflexes are relatively weak, but in intact animals they are enhanced due to both tonic supraspinal drive and phasic supraspinal commands. Recent studies of these supraspinal influences are considered in this review. A hypothesis suggesting common principles of operation of the postural systems stabilizing body orientation in a particular plane in the lamprey and quadrupeds, that is interaction of antagonistic postural reflexes, is discussed. PMID:25324741
NASA Astrophysics Data System (ADS)
Cui, Tiangang; Marzouk, Youssef; Willcox, Karen
2016-06-01
Two major bottlenecks to the solution of large-scale Bayesian inverse problems are the scaling of posterior sampling algorithms to high-dimensional parameter spaces and the computational cost of forward model evaluations. Yet incomplete or noisy data, the state variation and parameter dependence of the forward model, and correlations in the prior collectively provide useful structure that can be exploited for dimension reduction in this setting-both in the parameter space of the inverse problem and in the state space of the forward model. To this end, we show how to jointly construct low-dimensional subspaces of the parameter space and the state space in order to accelerate the Bayesian solution of the inverse problem. As a byproduct of state dimension reduction, we also show how to identify low-dimensional subspaces of the data in problems with high-dimensional observations. These subspaces enable approximation of the posterior as a product of two factors: (i) a projection of the posterior onto a low-dimensional parameter subspace, wherein the original likelihood is replaced by an approximation involving a reduced model; and (ii) the marginal prior distribution on the high-dimensional complement of the parameter subspace. We present and compare several strategies for constructing these subspaces using only a limited number of forward and adjoint model simulations. The resulting posterior approximations can rapidly be characterized using standard sampling techniques, e.g., Markov chain Monte Carlo. Two numerical examples demonstrate the accuracy and efficiency of our approach: inversion of an integral equation in atmospheric remote sensing, where the data dimension is very high; and the inference of a heterogeneous transmissivity field in a groundwater system, which involves a partial differential equation forward model with high dimensional state and parameters.
Higher dimensional Taub-NUT spaces and applications
NASA Astrophysics Data System (ADS)
Stelea, Cristian Ionut
In the first part of this thesis we discuss classes of new exact NUT-charged solutions in four dimensions and higher, while in the remainder of the thesis we make a study of their properties and their possible applications. Specifically, in four dimensions we construct new families of axisymmetric vacuum solutions using a solution-generating technique based on the hidden SL(2,R) symmetry of the effective action. In particular, using the Schwarzschild solution as a seed we obtain the Zipoy-Voorhees generalisation of the Taub-NUT solution and of the Eguchi-Hanson soliton. Using the C-metric as a seed, we obtain and study the accelerating versions of all the above solutions. In higher dimensions we present new classes of NUT-charged spaces, generalising the previously known even-dimensional solutions to odd and even dimensions, as well as to spaces with multiple NUT-parameters. We also find the most general form of the odd-dimensional Eguchi-Hanson solitons. We use such solutions to investigate the thermodynamic properties of NUT-charged spaces in (A)dS backgrounds. These have been shown to yield counter-examples to some of the conjectures advanced in the still elusive dS/CFT paradigm (such as the maximal mass conjecture and Bousso's entropic N-bound). One important application of NUT-charged spaces is to construct higher dimensional generalisations of Kaluza-Klein magnetic monopoles, generalising the known 5-dimensional Kaluza-Klein soliton. Another interesting application involves a study of time-dependent higher-dimensional bubbles-of-nothing generated from NUT-charged solutions. We use them to test the AdS/CFT conjecture as well as to generate, by using stringy Hopf-dualities, new interesting time-dependent solutions in string theory. Finally, we construct and study new NUT-charged solutions in higher-dimensional Einstein-Maxwell theories, generalising the known Reissner-Nordstrom solutions.
Segal, Neil A; Frick, Eric; Duryea, Jeffrey; Nevitt, Michael C; Niu, Jingbo; Torner, James C; Felson, David T; Anderson, Donald D
2017-07-01
The objective of this project was to determine the relationship between medial tibiofemoral joint space width measured on fixed-flexion radiographs and the three-dimensional joint space width distribution on low-dose, standing CT (SCT) imaging. At the 84-month visit of the Multicenter Osteoarthritis Study, 20 participants were recruited. A commercial SCT scanner for the foot and ankle was modified to image knees while standing. Medial tibiofemoral joint space width was assessed on radiographs at fixed locations from 15% to 30% of compartment width using validated software and on SCT by mapping the distances between three-dimensional subchondral bone surfaces. Individual joint space width values from radiographs were compared with three-dimensional joint space width values from corresponding sagittal plane locations using paired t-tests and correlation coefficients. For the four medial-most tibiofemoral locations, radiographic joint space width values exceeded the minimal joint space width on SCT by a mean of 2.0 mm and were approximately equal to the 61st percentile value of the joint space width distribution at each respective sagittal-plane location. Correlation coefficients at these locations were 0.91-0.97 and the offsets between joint space width values from radiographs and SCT measurements were consistent. There were greater offsets and variability in the offsets between modalities closer to the tibial spine. Joint space width measurements on fixed-flexion radiographs are highly correlated with three-dimensional joint space width from SCT. In addition to avoiding bony overlap obscuring the joint, a limitation of radiographs, the current study supports a role for SCT in the evaluation of tibiofemoral OA. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1388-1395, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Involvement of ERK phosphorylation in brainstem neurons in modulation of swallowing reflex in rats
Tsujimura, Takanori; Kondo, Masahiro; Kitagawa, Junichi; Tsuboi, Yoshiyuki; Saito, Kimiko; Tohara, Haruka; Ueda, Koichiro; Sessle, Barry J; Iwata, Koichi
2009-01-01
In order to evaluate the neuronal mechanisms underlying functional abnormalities of swallowing in orofacial pain patients, this study investigated the effects of noxious orofacial stimulation on the swallowing reflex, phosphorylated extracellular signal-regulated kinase (pERK) and γ-aminobutyric acid (GABA) immunohistochemical features in brainstem neurons, and also analysed the effects of brainstem lesioning and of microinjection of GABA receptor agonist or antagonist into the nucleus tractus solitarii (NTS) on the swallowing reflex in anaesthetized rats. The swallowing reflex elicited by topical administration of distilled water to the pharyngolaryngeal region was inhibited after capsaicin injection into the facial (whisker pad) skin or lingual muscle. The capsaicin-induced inhibitory effect on the swallowing reflex was itself depressed after the intrathecal administration of MAPK kinase (MEK) inhibitor. No change in the capsaicin-induced inhibitory effect was observed after trigeminal spinal subnucleus caudalis lesioning, but the inhibitory effect was diminished by paratrigeminal nucleus (Pa5) lesioning. Many pERK-like immunoreactive neurons in the NTS showed GABA immunoreactivity. The local microinjection of the GABAA receptor agonist muscimol into the NTS produced a significant reduction in swallowing reflex, and the capsaicin-induced depression of the swallowing reflex was abolished by microinjection of the GABAA receptor antagonist bicuculline into the NTS. The present findings suggest that facial skin–NTS, lingual muscle–NTS and lingual muscle–Pa5–NTS pathways are involved in the modulation of swallowing reflex by facial and lingual pain, respectively, and that the activation of GABAergic NTS neurons is involved in the inhibition of the swallowing reflex following noxious stimulation of facial and intraoral structures. PMID:19124539
Schwarz, Gilbert M; Hirtler, Lena
2017-05-01
The technique of triggering the cremasteric reflex and its respective signaling pathway is not described uniformly throughout the literature. As this reflex is a useful sign in diagnosing testicular torsion, orchitis, varicocele, and undescended testis, it seems desirable to identify and define the correct mechanism. Our aim was to investigate how the cremasteric reflex and its signaling pathway are described in the current literature and how the variability of the innervation of the inguinal region could affect the frequency of this reflex. Thirty-five original articles and 18 current textbooks were included after searching PubMed (MEDLINE) and Scopus for the terms "cremaster muscle," "cremasteric reflex," and "genitofemoral nerve" and after applying all exclusion criteria. This systematic review was performed according to the PRISMA Statement Rules. Eliciting the cremasteric reflex was defined either as "rubbing of the upper inner thigh" or "rubbing of the skin under the inguinal ligament." Four different afferent pathways among studies and three different pathways among textbooks were described and the frequency of an intact reflex ranged between 42.7 and 92.5% in newborns and between 61.7 and 100% in boys between 24 months and 12 years. Owing to the huge differences among the studies investigated and the lack of convincing results, it is not possible to define the correct way to elicit the cremasteric reflex. Four hypotheses about the afferent pathway are proposed on the basis of the literature. Further studies should be performed, concentrating on the afferent pathway(s) with respect to the individual innervation of the inguinal region. Clin. Anat. 30:498-507, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Biasiotta, A; Peddireddy, A; Wang, K; Romaniello, A; Frati, A; Svensson, P; Arendt-Nielsen, L
2007-10-01
To investigate the influence of conditioning cutaneous nociceptive inputs by a new "pinch" model on the jaw-stretch reflex and the exteroceptive suppression periods (ES1 and ES2) in jaw muscles. The jaw-stretch reflex was evoked with the use of a custom-made muscle stretcher and electrical stimuli were used to evoke an early and late exteroceptive suppression period (ES1 and ES2) in the jaw-closing muscles. Electromyographic (EMG) activity was recorded bilaterally from the masseter and temporalis muscles. These brainstem reflexes were recorded in 19 healthy men (28.8+/-1.1 years) during three different conditions: one painful clip applied to the earlobe; one painful clip applied to the nostril, and four painful clips applied simultaneously to the earlobe, nostril, eyebrow, and lower lip. Pain intensity induced by the application of the clips was scored continuously by the subjects on a 100mm visual analogue scale (VAS). The highest VAS pain scores were evoked by placement of four clips (79+/-0.5mm). There was no significant modulation of the jaw-stretch reflex (ANOVAs: P=0.929), the ES1 (P=0.298) or ES2 (P=0.082) in any of the three painful conditions. Intense and tonic cutaneous pain could be elicited by this new "pinch" pain model; however, there was no significant modulation on either excitatory or inhibitory brainstem reflex responses. The novel observation that high-intensity pinch stimuli applied to the craniofacial region fail to modulate two different brainstem reflexes is in contrast to other experimental pain studies documented facilitation of the jaw-stretch reflexes or inhibition of exteroceptive suppression periods. The clinical implication of the present findings is that only some craniofacial pain conditions could be expected to show perturbation of the brainstem reflex responses.
Does spasticity contribute to walking dysfunction after stroke?
Ada, L.; Vattanasilp, W.; O'Dwyer, N.; Crosbie, J.
1998-01-01
OBJECTIVES—Clinically, it is assumed that spasticity of the calf muscles interferes with walking after stroke. The aim was to examine this assumption by evaluating the contribution of spasticity in the gastrocnemius muscle to walking dysfunction in an ambulant stroke population several months after stroke. METHODS—Fourteen stroke patients who were able to walk independently and 15 neurologically normal control subjects were recruited. Both resting and action stretch reflexes of the gastrocnemius muscle were investigated under conditions that simulated walking. Resting tonic stretch reflexes were measured to assess spasticity whereas action tonic stretch reflexes were measured to assess the possible contribution of spasticity to gait dysfunction. RESULTS—Two thirds of the stroke patients exhibited resting tonic stretch reflexes which indicate spasticity, whereas none of the control subjects did. However, the stroke patients exhibited action tonic stretch reflexes that were of similar magnitude to the control subjects, suggesting that their reflex activity during walking was not different from that of control subjects. Furthermore, there was no evidence that the action stretch reflex in the stroke patients contributed a higher resistance to stretch than the control subjects. CONCLUSIONS—Whereas most of the stroke patients exhibited spasticity when measured both clinically and physiologically, they did not exhibit an increase in resistance to dorsiflexion due to exaggerated action tonic stretch reflexes. It is concluded that it is unlikely that spasticity causes problems in walking after stroke in ambulant patients. Therefore, it seems inappropriate to routinely reduce or inhibit the reflex response to improve functional movement in stroke rehabilitation. Factors other than spasticity should be considered when analysing walking after stroke, so that appropriate treatment is provided to patients. PMID:9598679
Sárkány, P; Tassonyi, E; Nemes, R; Timkó, A; Pongrácz, A; Fülesdi, Béla
2011-12-01
Neuromuscular monitoring prior to emergence from anaesthesia has been shown to be necessary to achieve adequate airway protection in order to decrease postoperative pulmonary complications. In the present study we hypothesized that stapedius reflex measurement allows the detection of residual neuromuscular blockade using the stapedius muscle following the administration of rocuronium. Parallel stapedius and acceleromyographic measurements were performed on 20 patients undergoing cholecystectomy. Acceleromyographic measurements were continuously performed during the course of anaesthesia, whereas the stapedius reflex was measured on different occasions: (1) after premedication but before anaesthesia induction, (2) after induction, but before administration of muscle relaxant, (3) after administration of muscle relaxant, (4) during the course of surgical anaesthesia at regular intervals, and (5) continuously performed during emergence from anaesthesia, until the stapedius reflex threshold returned to normal. The intensity of the sound energy at which the stapedius reflex is detectable was similar: 89.5 ± 9.9 dB(mean ± SD) after premedication and after anaesthetic induction. However, after administration of rocuronium, when the twitch height decreased to 5%, the stapedius reflex disappeared, indicating a total block of the stapedius muscle.During the recovery phase (twitch>10%) significantly higher sound energies compared to baseline values were necessary to evoke the reflex, indicating residual inhibition of the stapedius muscle. At the point where stapedius reflex threshold returned to normal the twitch height averaged about 50% showing low sensitivity of the tympanometry in detecting residual neuromuscular blockade. The neuromuscular effect of rocuronium on the stapedius muscle can be detected using stapedius reflex measurements. Due to its methodological limitation and low sensitivity, the method cannot be recommended for the monitoring of residual neuromuscular blockade.
Reflex regulation during sustained and intermittent submaximal contractions in humans
Duchateau, Jacques; Balestra, Costantino; Carpentier, Alain; Hainaut, Karl
2002-01-01
To investigate whether the intensity and duration of a sustained contraction influences reflex regulation, we compared sustained fatiguing contractions at 25 % and 50 % of maximal voluntary contraction (MVC) force in the human abductor pollicis brevis (APB) muscle. Because the activation of motoneurones during fatigue may be reflexively controlled by the metabolic status of the muscle, we also compared reflex activities during sustained and intermittent (6 s contraction, 4 s rest) contractions at 25 % MVC for an identical duration. The short-latency Hoffmann(H) reflex and the long-latency reflex (LLR) were recorded during voluntary contractions, before, during and after the fatigue tests, with each response normalised to the compound muscle action potential (M-wave). The results showed that fatigue during sustained contractions was inversely related to the intensity, and hence the duration, of the effort. The MVC force and associated surface electromyogram (EMG) declined by 26.2 % and 35.2 %, respectively, after the sustained contraction at 50 % MVC, and by 34.2 % and 44.2 % after the sustained contraction at 25 % MVC. Although the average EMG increased progressively with time during the two sustained fatiguing contractions, the amplitudes of the H and LLR reflexes decreased significantly. Combined with previous data (Duchateau & Hainaut, 1993), the results show that the effect on the H reflex is independent of the intensity of the sustained contraction, whereas the decline in the LLR is closely related to the duration of the contraction. Because there were no changes in the intermittent test at 25 % MVC, the results indicate that the net excitatory spinal and supraspinal reflex-mediated input to the motoneurone pool is reduced. This decline in excitation to the motoneurones, however, can be temporarily compensated by an enhancement of the central drive. PMID:12068054
Johnson, P J; Bornstein, J C; Burcher, E
1998-01-01
The role of NK1 and NK3 receptors in synaptic transmission between myenteric neurons during motility reflexes in the guinea-pig ileum was investigated by recording intracellularly the reflex responses of the circular muscle to distension or compression of the mucosal villi. Experiments were performed in a three-chambered organ bath that enabled drugs to be selectively applied to different sites along the reflex pathways.When applied in the recording chamber, an NK1 receptor antagonist, SR140333 (100 nM), reduced by 40–50% the amplitudes of inhibitory junction potentials (i.j.ps) evoked in the circular muscle by activation of descending reflex pathways. This effect was abolished when synaptic transmission in the stimulus region was blocked with physiological saline containing 0.1 mM Ca2+ plus 10 mM Mg2+, leaving only the component of the descending reflex pathway conducted via long anally directed collaterals of intrinsic sensory neurons.SR140333 (100 nM) had no effect on descending reflex i.j.ps when applied to the stimulus region. Ascending reflexes were also unaffected by SR140333 in the stimulus region or between the stimulus and recording sites.Septide (10 nM), an NK1 receptor agonist, enhanced descending reflexes by 30–60% when in the recording chamber. [Sar9,Met(O2)11]substance P had no effect at 10 nM, but potentiated distension-evoked reflexes at 100 nM.A selective NK3 receptor antagonist, SR142801 (100 nM), when applied to the stimulus region, reduced the amplitude of descending reflex responses to compression by 40%, but had no effect on responses to distension. SR142801 (100 nM) had no effect when applied to other regions of the descending reflex pathways.SR142801 (100 nM) only inhibited ascending reflexes when applied at the recording site. However, after nicotinic transmission in the stimulus region was blocked, SR142801 (100 nM) at this site reduced responses to compression.Contractions of the circular muscle of isolated rings of ileum evoked by low concentrations of septide, but not [Sar9,Met(O2)11]substance P, were potentiated by tetrodotoxin (300 nM).Contractile responses evoked by an NK3 receptor agonist, senktide, were non-competitively inhibited by SR142801. After excitatory neuromuscular transmission was blocked, senktide produced inhibitory responses that were also antagonised by SR142801, but to a lesser extent and in an apparently competitive manner.These results indicate that tachykinins acting via NK1 receptors partly mediate transmission to inhibitory motor neurons. NK3 receptors play a role in transmission from intrinsic sensory neurons and from ascending interneurons to excitatory motor neurons during motility reflexes. PMID:9723948
ColDICE: A parallel Vlasov–Poisson solver using moving adaptive simplicial tessellation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sousbie, Thierry, E-mail: tsousbie@gmail.com; Department of Physics, The University of Tokyo, Tokyo 113-0033; Research Center for the Early Universe, School of Science, The University of Tokyo, Tokyo 113-0033
2016-09-15
Resolving numerically Vlasov–Poisson equations for initially cold systems can be reduced to following the evolution of a three-dimensional sheet evolving in six-dimensional phase-space. We describe a public parallel numerical algorithm consisting in representing the phase-space sheet with a conforming, self-adaptive simplicial tessellation of which the vertices follow the Lagrangian equations of motion. The algorithm is implemented both in six- and four-dimensional phase-space. Refinement of the tessellation mesh is performed using the bisection method and a local representation of the phase-space sheet at second order relying on additional tracers created when needed at runtime. In order to preserve in the bestmore » way the Hamiltonian nature of the system, refinement is anisotropic and constrained by measurements of local Poincaré invariants. Resolution of Poisson equation is performed using the fast Fourier method on a regular rectangular grid, similarly to particle in cells codes. To compute the density projected onto this grid, the intersection of the tessellation and the grid is calculated using the method of Franklin and Kankanhalli [65–67] generalised to linear order. As preliminary tests of the code, we study in four dimensional phase-space the evolution of an initially small patch in a chaotic potential and the cosmological collapse of a fluctuation composed of two sinusoidal waves. We also perform a “warm” dark matter simulation in six-dimensional phase-space that we use to check the parallel scaling of the code.« less
NASA Astrophysics Data System (ADS)
Jia, Bing
2014-03-01
A comb-shaped chaotic region has been simulated in multiple two-dimensional parameter spaces using the Hindmarsh—Rose (HR) neuron model in many recent studies, which can interpret almost all of the previously simulated bifurcation processes with chaos in neural firing patterns. In the present paper, a comb-shaped chaotic region in a two-dimensional parameter space was reproduced, which presented different processes of period-adding bifurcations with chaos with changing one parameter and fixed the other parameter at different levels. In the biological experiments, different period-adding bifurcation scenarios with chaos by decreasing the extra-cellular calcium concentration were observed from some neural pacemakers at different levels of extra-cellular 4-aminopyridine concentration and from other pacemakers at different levels of extra-cellular caesium concentration. By using the nonlinear time series analysis method, the deterministic dynamics of the experimental chaotic firings were investigated. The period-adding bifurcations with chaos observed in the experiments resembled those simulated in the comb-shaped chaotic region using the HR model. The experimental results show that period-adding bifurcations with chaos are preserved in different two-dimensional parameter spaces, which provides evidence of the existence of the comb-shaped chaotic region and a demonstration of the simulation results in different two-dimensional parameter spaces in the HR neuron model. The results also present relationships between different firing patterns in two-dimensional parameter spaces.
On infinite-dimensional state spaces
NASA Astrophysics Data System (ADS)
Fritz, Tobias
2013-05-01
It is well known that the canonical commutation relation [x, p] = i can be realized only on an infinite-dimensional Hilbert space. While any finite set of experimental data can also be explained in terms of a finite-dimensional Hilbert space by approximating the commutation relation, Occam's razor prefers the infinite-dimensional model in which [x, p] = i holds on the nose. This reasoning one will necessarily have to make in any approach which tries to detect the infinite-dimensionality. One drawback of using the canonical commutation relation for this purpose is that it has unclear operational meaning. Here, we identify an operationally well-defined context from which an analogous conclusion can be drawn: if two unitary transformations U, V on a quantum system satisfy the relation V-1U2V = U3, then finite-dimensionality entails the relation UV-1UV = V-1UVU; this implication strongly fails in some infinite-dimensional realizations. This is a result from combinatorial group theory for which we give a new proof. This proof adapts to the consideration of cases where the assumed relation V-1U2V = U3 holds only up to ɛ and then yields a lower bound on the dimension.
Misslisch, H; Hess, B J M
2002-11-01
This study examined two kinematical features of the rotational vestibulo-ocular reflex (VOR) of the monkey in near vision. First, is there an effect of eye position on the axes of eye rotation during yaw, pitch and roll head rotations when the eyes are converged to fixate near targets? Second, do the three-dimensional positions of the left and right eye during yaw and roll head rotations obey the binocular extension of Listing's law (L2), showing eye position planes that rotate temporally by a quarter as far as the angle of horizontal vergence? Animals fixated near visual targets requiring 17 or 8.5 degrees vergence and placed at straight ahead, 20 degrees up, down, left, or right during yaw, pitch, and roll head rotations at 1 Hz. The 17 degrees vergence experiments were performed both with and without a structured visual background, the 8.5 degrees vergence experiments with a visual background only. A 40 degrees horizontal change in eye position never influenced the axis of eye rotation produced by the VOR during pitch head rotation. Eye position did not affect the VOR eye rotation axes, which stayed aligned with the yaw and roll head rotation axes, when torsional gain was high. If torsional gain was low, eccentric eye positions produced yaw and roll VOR eye rotation axes that tilted somewhat in the directions predicted by Listing's law, i.e., with or opposite to gaze during yaw or roll. These findings were seen in both visual conditions and in both vergence experiments. During yaw and roll head rotations with a 40 degrees vertical change in gaze, torsional eye position followed on average the prediction of L2: the left eye showed counterclockwise (ex-) torsion in down gaze and clockwise (in-) torsion in up gaze and vice versa for the right eye. In other words, the left and right eye's position plane rotated temporally by about a quarter of the horizontal vergence angle. Our results indicate that torsional gain is the central mechanism by which the brain adjusts the retinal image stabilizing function of the VOR both in far and near vision and the three dimensional eye positions during yaw and roll head rotations in near vision follow on average the predictions of L2, a kinematic pattern that is maintained by the saccadic/quick phase system.
The legacy of care as reflexive learning
García, Marta Rodríguez; Moya, Jose Luis Medina
2016-01-01
Abstract Objective: to analyze whether the tutor's use of reflexive strategies encourages the students to reflect. The goal is to discover what type of strategies can help to achieve this and how tutors and students behave in the practical context. Method: a qualitative and ethnographic focus was adopted. Twenty-seven students and 15 tutors from three health centers participated. The latter had received specific training on reflexive clinical tutoring. The analysis was developed through constant comparisons of the categories. Results: the results demonstrate that the tutors' use of reflexive strategies such as didactic questioning, didactic empathy and pedagogical silence contributes to encourage the students' reflection and significant learning. Conclusions: reflexive practice is key to tutors' training and students' learning. PMID:27305180
Reconsidering reflexivity: introducing the case for intellectual entrepreneurship.
Cutcliffe, John R
2003-01-01
In this article, the author reconsiders reflexivity and attempts to examine some unresolved issues by drawing particular attention to the relationship between reflexivity and certain related phenomena/processes: the researcher's a priori knowledge, values, beliefs; empathy within qualitative research; the presence and influence of the researcher's tacit knowledge, and May's "magic" in method. Given the limitations of some reflexive activity identified in this article, the author introduces the case for greater intellectual entrepreneurship within the context of qualitative research. He suggests that excessive emphasis on reflexive activity might inhibit intellectual entrepreneurship. Wherein intellectual entrepreneurship implies a conscious and deliberate attempt on the part of academics to explore the world of ideas boldly; to take more risks in theory development and to move away from being timid researchers.
How Can Hypnodontics Manage Severe Gag Reflex for Root Canal Therapy? A Case Report
Ramazani, Mohsen; zarenejad, Nafiseh; Parirokh, Masoud; Zahedpasha, Samir
2016-01-01
In endodontics, severe involuntary gagging can have a severe impact on treatment procedure. There are many ways to ease the gag reflex, one of which is hypnosis. A 34-year-old male was referred for root canal treatment of a molar tooth. He had not received any dental treatments for the past nine years due to fear of severe gag reflex. Three hypnotic sessions based upon eye fixation, progressive muscle relaxation and guided imagery techniques were spent for psychosomatic management. The gag reflex was controlled and reduced to a normal level, and the required dental treatments including root canal therapy and restoration were performed successfully. This report shows that hypnosis can control gag reflex for dental treatments. PMID:27141226
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hyun Jung; McDonnell, Kevin T.; Zelenyuk, Alla
2014-03-01
Although the Euclidean distance does well in measuring data distances within high-dimensional clusters, it does poorly when it comes to gauging inter-cluster distances. This significantly impacts the quality of global, low-dimensional space embedding procedures such as the popular multi-dimensional scaling (MDS) where one can often observe non-intuitive layouts. We were inspired by the perceptual processes evoked in the method of parallel coordinates which enables users to visually aggregate the data by the patterns the polylines exhibit across the dimension axes. We call the path of such a polyline its structure and suggest a metric that captures this structure directly inmore » high-dimensional space. This allows us to better gauge the distances of spatially distant data constellations and so achieve data aggregations in MDS plots that are more cognizant of existing high-dimensional structure similarities. Our MDS plots also exhibit similar visual relationships as the method of parallel coordinates which is often used alongside to visualize the high-dimensional data in raw form. We then cast our metric into a bi-scale framework which distinguishes far-distances from near-distances. The coarser scale uses the structural similarity metric to separate data aggregates obtained by prior classification or clustering, while the finer scale employs the appropriate Euclidean distance.« less
Wigner surmises and the two-dimensional homogeneous Poisson point process.
Sakhr, Jamal; Nieminen, John M
2006-04-01
We derive a set of identities that relate the higher-order interpoint spacing statistics of the two-dimensional homogeneous Poisson point process to the Wigner surmises for the higher-order spacing distributions of eigenvalues from the three classical random matrix ensembles. We also report a remarkable identity that equates the second-nearest-neighbor spacing statistics of the points of the Poisson process and the nearest-neighbor spacing statistics of complex eigenvalues from Ginibre's ensemble of 2 x 2 complex non-Hermitian random matrices.
An exact solution of the Currie-Hill equations in 1 + 1 dimensional Minkowski space
NASA Astrophysics Data System (ADS)
Balog, János
2014-11-01
We present an exact two-particle solution of the Currie-Hill equations of Predictive Relativistic Mechanics in 1 + 1 dimensional Minkowski space. The instantaneous accelerations are given in terms of elementary functions depending on the relative particle position and velocities. The general solution of the equations of motion is given and by studying the global phase space of this system it is shown that this is a subspace of the full kinematic phase space.
A Few New 2+1-Dimensional Nonlinear Dynamics and the Representation of Riemann Curvature Tensors
NASA Astrophysics Data System (ADS)
Wang, Yan; Zhang, Yufeng; Zhang, Xiangzhi
2016-09-01
We first introduced a linear stationary equation with a quadratic operator in ∂x and ∂y, then a linear evolution equation is given by N-order polynomials of eigenfunctions. As applications, by taking N=2, we derived a (2+1)-dimensional generalized linear heat equation with two constant parameters associative with a symmetric space. When taking N=3, a pair of generalized Kadomtsev-Petviashvili equations with the same eigenvalues with the case of N=2 are generated. Similarly, a second-order flow associative with a homogeneous space is derived from the integrability condition of the two linear equations, which is a (2+1)-dimensional hyperbolic equation. When N=3, the third second flow associative with the homogeneous space is generated, which is a pair of new generalized Kadomtsev-Petviashvili equations. Finally, as an application of a Hermitian symmetric space, we established a pair of spectral problems to obtain a new (2+1)-dimensional generalized Schrödinger equation, which is expressed by the Riemann curvature tensors.
Zhang, Miaomiao; Wells, William M; Golland, Polina
2017-10-01
We present an efficient probabilistic model of anatomical variability in a linear space of initial velocities of diffeomorphic transformations and demonstrate its benefits in clinical studies of brain anatomy. To overcome the computational challenges of the high dimensional deformation-based descriptors, we develop a latent variable model for principal geodesic analysis (PGA) based on a low dimensional shape descriptor that effectively captures the intrinsic variability in a population. We define a novel shape prior that explicitly represents principal modes as a multivariate complex Gaussian distribution on the initial velocities in a bandlimited space. We demonstrate the performance of our model on a set of 3D brain MRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Our model yields a more compact representation of group variation at substantially lower computational cost than the state-of-the-art method such as tangent space PCA (TPCA) and probabilistic principal geodesic analysis (PPGA) that operate in the high dimensional image space. Copyright © 2017 Elsevier B.V. All rights reserved.
Effective degrees of freedom of a random walk on a fractal.
Balankin, Alexander S
2015-12-01
We argue that a non-Markovian random walk on a fractal can be treated as a Markovian process in a fractional dimensional space with a suitable metric. This allows us to define the fractional dimensional space allied to the fractal as the ν-dimensional space F(ν) equipped with the metric induced by the fractal topology. The relation between the number of effective spatial degrees of freedom of walkers on the fractal (ν) and fractal dimensionalities is deduced. The intrinsic time of random walk in F(ν) is inferred. The Laplacian operator in F(ν) is constructed. This allows us to map physical problems on fractals into the corresponding problems in F(ν). In this way, essential features of physics on fractals are revealed. Particularly, subdiffusion on path-connected fractals is elucidated. The Coulomb potential of a point charge on a fractal embedded in the Euclidean space is derived. Intriguing attributes of some types of fractals are highlighted.
Three-dimensional motor schema based navigation
NASA Technical Reports Server (NTRS)
Arkin, Ronald C.
1989-01-01
Reactive schema-based navigation is possible in space domains by extending the methods developed for ground-based navigation found within the Autonomous Robot Architecture (AuRA). Reformulation of two dimensional motor schemas for three dimensional applications is a straightforward process. The manifold advantages of schema-based control persist, including modular development, amenability to distributed processing, and responsiveness to environmental sensing. Simulation results show the feasibility of this methodology for space docking operations in a cluttered work area.
THE EFFECT OF PENETRATING RADIATION ON THE REFLEXES FROM INTESTINAL RECEPTORS (in Russian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dzharakyan, T.K.; Fakhrutdinov, G.F.
1958-03-01
The reflexes from the chemo-, baro-, and thermoceptors of the small intestine were studied in acute and chronic experiments on dogs after the general action of penetrating radiation (400 r). Regular changes were revealed in the reflexes. They consisted of an increase of the vegetative components (vascular- motor, cardiac, and respiratory) and other components (movement of the head and the body) of the reflex reaction in response to the action of the stimulants of the threshold value, as well as in considerable increase of the consequent period. The changes in the reflexes appear on the 6th to 10th day aftermore » the actwon of penetrating radiation and increase with development of this disease. The intensity of these changes depend on the gravity of the radiation sickness. In the authors' opinion the changes in the reflexes are due to disturbance of the functional condition of the subcortical ganglia of the central nervous system. (tr-auth)« less
Collier, Aileen; Wyer, Mary
2016-06-01
Patient safety research has to date offered few opportunities for patients and families to be actively involved in the research process. This article describes our collaboration with patients and families in two separate studies, involving end-of-life care and infection control in acute care. We used the collaborative methodology of video-reflexive ethnography, which has been primarily used with clinicians, to involve patients and families as active participants and collaborators in our research. The purpose of this article is to share our experiences and findings that iterative researcher reflexivity in the field was critical to the progress and success of each study. We present and analyze the complexities of reflexivity-in-the-field through a framework of multilayered reflexivity. We share our lessons here for other researchers seeking to actively involve patients and families in patient safety research using collaborative visual methods. © The Author(s) 2015.
Kurt, Melike; Moored, Keith
2018-04-19
We present experiments that examine the modes of interaction, the collective performance and the role of three-dimensionality in two pitching propulsors in an in-line arrangement. Both two-dimensional foils and three-dimensional rectangular wings of $AR = 2$ are examined. \\kwm{In contrast to previous work, two interaction modes distinguished as the coherent and branched wake modes are not observed to be directly linked to the propulsive efficiency, although they are linked to peak thrust performance and minimum power consumption as previously described \\cite[]{boschitsch2014propulsive}.} \\kwm{In fact, in closely-spaced propulsors peak propulsive efficiency of the follower occurs near its minimum power and this condition \\kwm{ reveals a} branched wake mode. Alternatively, for propulsors spaced far apart peak propulsive efficiency of the follower occurs near its peak thrust and this condition \\kwm{reveals a} coherent wake mode.} By examining the collective performance, it is discovered that there is an optimal spacing between the propulsors to maximize the collective efficiency. For two-dimensional foils the optimal spacing of $X^* = 0.75$ and the synchrony of $\\phi = 2\\pi /3$ leads to a collective efficiency and thrust enhancement of 50\\% and 32\\%, respectively, as compared to two isolated foils. In comparison, for $AR = 2$ wings the optimal spacing of $X^* = 0.25$ and the synchrony of $\\phi = 7\\pi /6$ leads to a collective efficiency and thrust enhancement of 30\\% and 22\\%, respectively. In addition, at the optimal conditions the collective lateral force coefficients in both the two- and three-dimensional cases are negligible, while operating off these conditions can lead to non-negligible lateral forces. Finally, the peak efficiency of the collective and the follower are shown to have opposite trends with increasing spacing in two- and three-dimensional flows. This is correlated to the breakdown of the impinging vortex on the follower wing in three-dimensions. These results can aid in the design of networked bio-inspired control elements that through integrated sensing can synchronize to three-dimensional flow interactions. © 2018 IOP Publishing Ltd.
Numerical relativity for D dimensional axially symmetric space-times: Formalism and code tests
NASA Astrophysics Data System (ADS)
Zilhão, Miguel; Witek, Helvi; Sperhake, Ulrich; Cardoso, Vitor; Gualtieri, Leonardo; Herdeiro, Carlos; Nerozzi, Andrea
2010-04-01
The numerical evolution of Einstein’s field equations in a generic background has the potential to answer a variety of important questions in physics: from applications to the gauge-gravity duality, to modeling black hole production in TeV gravity scenarios, to analysis of the stability of exact solutions, and to tests of cosmic censorship. In order to investigate these questions, we extend numerical relativity to more general space-times than those investigated hitherto, by developing a framework to study the numerical evolution of D dimensional vacuum space-times with an SO(D-2) isometry group for D≥5, or SO(D-3) for D≥6. Performing a dimensional reduction on a (D-4) sphere, the D dimensional vacuum Einstein equations are rewritten as a 3+1 dimensional system with source terms, and presented in the Baumgarte, Shapiro, Shibata, and Nakamura formulation. This allows the use of existing 3+1 dimensional numerical codes with small adaptations. Brill-Lindquist initial data are constructed in D dimensions and a procedure to match them to our 3+1 dimensional evolution equations is given. We have implemented our framework by adapting the Lean code and perform a variety of simulations of nonspinning black hole space-times. Specifically, we present a modified moving puncture gauge, which facilitates long-term stable simulations in D=5. We further demonstrate the internal consistency of the code by studying convergence and comparing numerical versus analytic results in the case of geodesic slicing for D=5, 6.
Caorsi, Valentina Zaffaroni; Colombo, Patrick; Abadie, Michelle; Brack, Ismael Verrastro; Dasoler, Bibiana Terra; Borges-Martins, Márcio
2018-01-01
Aposematic signals as well as body behaviours may be important anti-predator defences. Species of the genus Melanophryniscus are characterised by having toxic lipophilic alkaloids in the skin and for presenting a red ventral colouration, which can be observed when they perform the behaviour called the unken reflex. Both the reflex behaviour and the colouration pattern are described as defence mechanisms. However, there are currently no studies testing their effectiveness against predators. This study aimed to test experimentally if both ventral conspicuous colouration and the unken reflex in Melanophryniscus cambaraensis function as aposematic signals against visually oriented predators (birds). We simulated the species studied using three different clay toad models as follows: (a) in a normal position with green coloured bodies, (b) in the unken reflex position with green coloured body and extremities and (c) in the unken reflex position with a green body and red extremities. Models were distributed on a known M. cambaraensis breeding site and in the adjacent forest. More than half of the attacks on the models were from birds; however, there was no preference for any model type. Thus, just the presence of the red colour associated with the motionless unken reflex position does not seem to prevent attacks from potential predators. It is possible that the effective aposematic signal in Melanophryniscus is achieved through the unken reflex movement together with the subsequent exhibition of the warning colouration and the secretion of toxins. PMID:29596437
Neural effects of muscle stretching on the spinal reflexes in multiple lower-limb muscles.
Masugi, Yohei; Obata, Hiroki; Inoue, Daisuke; Kawashima, Noritaka; Nakazawa, Kimitaka
2017-01-01
While previous studies have shown that muscle stretching suppresses monosynaptic spinal reflex excitability in stretched muscles, its effects on non-stretched muscles is still largely unknown. The purpose of this study was to examine the effects of muscle stretching on monosynaptic spinal reflex in non-stretched muscles. Ten healthy male subjects participated in this study. Muscle stretching of the right triceps surae muscle was performed using a motor torque device for 1 minute. Three different dorsiflexion torques (at approximately 5, 10, and 15 Nm) were applied during muscle stretching. Spinal reflexes evoked by transcutaneous spinal cord stimulation were recorded in both the lower-limb muscles before, during, and at 0 and 5 min following muscle stretching. The amplitudes of the spinal reflexes in both the stretched and non-stretched muscles in the right (ipsilateral) leg were smaller during stretching compared to before, and at 0 and 5 min after stretching. Furthermore, the degree of reduction in the amplitude of the spinal reflexes in the right (ipsilateral) leg muscles increased significantly as the dorsiflexion torque (i.e., stretching of the right triceps surae muscles) increased. In contrast, reduction in the amplitude of the spinal reflexes with increasing dorsiflexion torque was not seen in the left (contralateral) leg muscles. Our results clearly indicate that muscle stretching has inhibitory effects on monosynaptic spinal reflexes, not only in stretched muscles, but also in non-stretched muscles of the ipsilateral leg.
Neural effects of muscle stretching on the spinal reflexes in multiple lower-limb muscles
Obata, Hiroki; Inoue, Daisuke; Kawashima, Noritaka; Nakazawa, Kimitaka
2017-01-01
While previous studies have shown that muscle stretching suppresses monosynaptic spinal reflex excitability in stretched muscles, its effects on non-stretched muscles is still largely unknown. The purpose of this study was to examine the effects of muscle stretching on monosynaptic spinal reflex in non-stretched muscles. Ten healthy male subjects participated in this study. Muscle stretching of the right triceps surae muscle was performed using a motor torque device for 1 minute. Three different dorsiflexion torques (at approximately 5, 10, and 15 Nm) were applied during muscle stretching. Spinal reflexes evoked by transcutaneous spinal cord stimulation were recorded in both the lower-limb muscles before, during, and at 0 and 5 min following muscle stretching. The amplitudes of the spinal reflexes in both the stretched and non-stretched muscles in the right (ipsilateral) leg were smaller during stretching compared to before, and at 0 and 5 min after stretching. Furthermore, the degree of reduction in the amplitude of the spinal reflexes in the right (ipsilateral) leg muscles increased significantly as the dorsiflexion torque (i.e., stretching of the right triceps surae muscles) increased. In contrast, reduction in the amplitude of the spinal reflexes with increasing dorsiflexion torque was not seen in the left (contralateral) leg muscles. Our results clearly indicate that muscle stretching has inhibitory effects on monosynaptic spinal reflexes, not only in stretched muscles, but also in non-stretched muscles of the ipsilateral leg. PMID:28662201
Cionni, Robert J; Pei, Ron; Dimalanta, Ramon; Lubeck, David
2015-08-01
To evaluate the intensity and stability of the red reflex produced by ophthalmic surgical microscopes with nearly-collimated versus focused illumination systems and to assess surgeon preference in a simulated surgical setting. This two-part evaluation consisted of postproduction surgical video analysis of red reflex intensity and a microscope use and preference survey completed by 13 experienced cataract surgeons. Survey responses were based on bench testing and experience in a simulated surgical setting. A microscope with nearly-collimated beam illumination and two focused beam microscopes were assessed. Red reflex intensity and stability were greater with the nearly-collimated microscope illumination system. In the bench testing survey, surgeons reported that the red reflex was maintained over significantly greater distances away from pupillary center, and depth of focus was numerically greater with nearly-collimated illumination relative to focused illumination. Most participating surgeons (≥64%) reported a preference for the microscope with nearly-collimated illumination with regard to red reflex stability, depth of focus, visualization, surgical working distance, and perceived patient comfort. The microscope with nearly-collimated illumination produced a more intense and significantly more stable red reflex and was preferred overall by more surgeons. This is the first report of an attempt to quantify red reflex intensity and stability and to evaluate surgically-relevant parameters between microscope systems. The data and methods presented here may provide a basis for future studies attempting to quantify differences between surgical microscopes that may affect surgeon preference and microscope use in ophthalmic surgery.
Guzmán-López, Jessica; Selvi, Aikaterini; Solà-Valls, Núria; Casanova-Molla, Jordi; Valls-Solé, Josep
2015-12-01
Modulation of spinal reflexes depends largely on the integrity of the corticospinal tract. A useful method to document the influence of descending tracts on reflexes is to examine the effects of transcranial magnetic stimulation (TMS) on the soleus H reflex elicited by posterior tibial nerve electrical stimuli (PTS). In 12 healthy volunteers, we investigated how postural or voluntary muscle contraction modified such descending modulation. We first characterized the effects of TMS at 95 % of motor threshold for leg responses on the H reflex elicited by a preceding PTS at inter-stimuli intervals (ISIs) between 0 and 120 ms at rest and, then, during voluntary plantar flexion (pf), dorsal flexion (df), and standing still (ss). During pf, there was an increase in the facilitation of the H reflex at ISIs 0-20 ms. During df, there were no effects of TMS on the H reflex. During ss, there was inhibition at ISIs 40-60 ms. Our observations suggest that muscle contraction prevails over the baseline effects of TMS on the soleus H reflex. While contraction of the antagonist (df) suppressed most of the effects, contraction of the agonist had different effects depending on the type of activity (pf or ss). The characterization of the interaction between descending corticospinal volleys and segmental peripheral inputs provides useful information on motor control for physiological research and further understanding of the effects of spinal cord lesions.
Ji, Shuiwang
2013-07-11
The structured organization of cells in the brain plays a key role in its functional efficiency. This delicate organization is the consequence of unique molecular identity of each cell gradually established by precise spatiotemporal gene expression control during development. Currently, studies on the molecular-structural association are beginning to reveal how the spatiotemporal gene expression patterns are related to cellular differentiation and structural development. In this article, we aim at a global, data-driven study of the relationship between gene expressions and neuroanatomy in the developing mouse brain. To enable visual explorations of the high-dimensional data, we map the in situ hybridization gene expression data to a two-dimensional space by preserving both the global and the local structures. Our results show that the developing brain anatomy is largely preserved in the reduced gene expression space. To provide a quantitative analysis, we cluster the reduced data into groups and measure the consistency with neuroanatomy at multiple levels. Our results show that the clusters in the low-dimensional space are more consistent with neuroanatomy than those in the original space. Gene expression patterns and developing brain anatomy are closely related. Dimensionality reduction and visual exploration facilitate the study of this relationship.
Bearing Fault Diagnosis Based on Statistical Locally Linear Embedding
Wang, Xiang; Zheng, Yuan; Zhao, Zhenzhou; Wang, Jinping
2015-01-01
Fault diagnosis is essentially a kind of pattern recognition. The measured signal samples usually distribute on nonlinear low-dimensional manifolds embedded in the high-dimensional signal space, so how to implement feature extraction, dimensionality reduction and improve recognition performance is a crucial task. In this paper a novel machinery fault diagnosis approach based on a statistical locally linear embedding (S-LLE) algorithm which is an extension of LLE by exploiting the fault class label information is proposed. The fault diagnosis approach first extracts the intrinsic manifold features from the high-dimensional feature vectors which are obtained from vibration signals that feature extraction by time-domain, frequency-domain and empirical mode decomposition (EMD), and then translates the complex mode space into a salient low-dimensional feature space by the manifold learning algorithm S-LLE, which outperforms other feature reduction methods such as PCA, LDA and LLE. Finally in the feature reduction space pattern classification and fault diagnosis by classifier are carried out easily and rapidly. Rolling bearing fault signals are used to validate the proposed fault diagnosis approach. The results indicate that the proposed approach obviously improves the classification performance of fault pattern recognition and outperforms the other traditional approaches. PMID:26153771
Supersymmetry and the rotation group
NASA Astrophysics Data System (ADS)
McKeon, D. G. C.
2018-04-01
A model invariant under a supersymmetric extension of the rotation group 0(3) is mapped, using a stereographic projection, from the spherical surface S2 to two-dimensional Euclidean space. The resulting model is not translation invariant. This has the consequence that fields that are supersymmetric partners no longer have a degenerate mass. This degeneracy is restored once the radius of S2 goes to infinity, and the resulting supersymmetry transformation for the fields is now mass dependent. An analogous model on the surface S4 is introduced and its projection onto four-dimensional Euclidean space is examined. This model in turn suggests a supersymmetric model on (3 + 1)-dimensional Minkowski space.
Asymptotical AdS space from nonlinear gravitational models with stabilized extra dimensions
NASA Astrophysics Data System (ADS)
Günther, U.; Moniz, P.; Zhuk, A.
2002-08-01
We consider nonlinear gravitational models with a multidimensional warped product geometry. Particular attention is payed to models with quadratic scalar curvature terms. It is shown that for certain parameter ranges, the extra dimensions are stabilized if the internal spaces have a negative constant curvature. In this case, the four-dimensional effective cosmological constant as well as the bulk cosmological constant become negative. As a consequence, the homogeneous and isotropic external space is asymptotically AdS4. The connection between the D-dimensional and the four-dimensional fundamental mass scales sets a restriction on the parameters of the considered nonlinear models.
The Dynamics of Successive Induction in Larval Zebrafish
ERIC Educational Resources Information Center
Staddon, J. E. R.; MacPhail, R. C.; Padilla, S.
2010-01-01
Charles Sherrington identified the properties of the synapse by purely behavioral means--the study of reflexes--more than 100 years ago. They were subsequently confirmed neurophysiologically. Studying reflex interaction, he also showed that activating one reflex often facilitates another, antagonistic one: "successive induction," which has since…
21 CFR 890.1450 - Powered reflex hammer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Powered reflex hammer. 890.1450 Section 890.1450 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1450 Powered reflex...
21 CFR 890.1450 - Powered reflex hammer.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Powered reflex hammer. 890.1450 Section 890.1450 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1450 Powered reflex...
21 CFR 890.1450 - Powered reflex hammer.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Powered reflex hammer. 890.1450 Section 890.1450 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1450 Powered reflex...
21 CFR 890.1450 - Powered reflex hammer.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Powered reflex hammer. 890.1450 Section 890.1450 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1450 Powered reflex...
21 CFR 890.1450 - Powered reflex hammer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Powered reflex hammer. 890.1450 Section 890.1450 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1450 Powered reflex...
NASA Astrophysics Data System (ADS)
Martini, Luiz Cesar
2014-04-01
This article results from Introducing the Dimensional Continuous Space-Time Theory that was published in reference 1. The Dimensional Continuous Space-Time Theory shows a series of facts relative to matter, energy, space and concludes that empty space is inelastic, absolutely stationary, motionless, perpetual, without possibility of deformation neither can it be destroyed or created. A elementary cell of empty space or a certain amount of empty space can be occupied by any quantity of energy or matter without any alteration or deformation. As a consequence of these properties and being a integral part of the theory, the principles of Relativity Theory must be changed to become simple and intuitive.
Boeyens, Jan C.A.; Levendis, Demetrius C.
2012-01-01
Molecular symmetry is intimately connected with the classical concept of three-dimensional molecular structure. In a non-classical theory of wave-like interaction in four-dimensional space-time, both of these concepts and traditional quantum mechanics lose their operational meaning, unless suitably modified. A required reformulation should emphasize the importance of four-dimensional effects like spin and the symmetry effects of space-time curvature that could lead to a fundamentally different understanding of molecular symmetry and structure in terms of elementary number theory. Isolated single molecules have no characteristic shape and macro-biomolecules only develop robust three-dimensional structure in hydrophobic response to aqueous cellular media. PMID:22942753
Review of Virtual Environment Interface Technology.
1996-03-01
1.9 SpacePad 56 1.10 CyberTrack 3.2 57 1.11 Wayfinder-VR 57 1.12 Mouse-Sense3D 57 1.13 Selcom AB, SELSPOT H 57 1.14 OPTOTRAK 3020 58 1.15...Wayfinder-VR 57 Figure 38. Mouse-Sense3D 57 Figure 39. SELSPOTII 58 Figure 40. OPTOTRAK 3020 58 Figure 41. MacReflex 58 Figure 42. DynaSight 59...OPTOTRAK3020 The OPTOTRAK 3020 by Northern Digital Inc. is an infra-red (IR)-based, non- contact position and motion measurement sys- tem. Small IR LEDs
Handy elementary algebraic properties of the geometry of entanglement
NASA Astrophysics Data System (ADS)
Blair, Howard A.; Alsing, Paul M.
2013-05-01
The space of separable states of a quantum system is a hyperbolic surface in a high dimensional linear space, which we call the separation surface, within the exponentially high dimensional linear space containing the quantum states of an n component multipartite quantum system. A vector in the linear space is representable as an n-dimensional hypermatrix with respect to bases of the component linear spaces. A vector will be on the separation surface iff every determinant of every 2-dimensional, 2-by-2 submatrix of the hypermatrix vanishes. This highly rigid constraint can be tested merely in time asymptotically proportional to d, where d is the dimension of the state space of the system due to the extreme interdependence of the 2-by-2 submatrices. The constraint on 2-by-2 determinants entails an elementary closed formformula for a parametric characterization of the entire separation surface with d-1 parameters in the char- acterization. The state of a factor of a partially separable state can be calculated in time asymptotically proportional to the dimension of the state space of the component. If all components of the system have approximately the same dimension, the time complexity of calculating a component state as a function of the parameters is asymptotically pro- portional to the time required to sort the basis. Metric-based entanglement measures of pure states are characterized in terms of the separation hypersurface.
Spatial coordination of compensatory eye movements in vertebrates: form and function.
Graf, W
1988-01-01
The semicircular canals of the labyrinth of vertebrates provide one way of motion detection in three-dimensional space. The fully developed form of the vertebrate labyrinth consists of six semicircular canals, three on each side of the head, whose spatial arrangement (vertical canals are placed diagonally in the head, horizontal canals are oriented earth horizontally) follows three interconnected principles: 1) bilateral symmetry, 2) push-pull operational mode, and 3) mutual orthogonality. Other sensory and motor systems related to vestibular reflexes, such as the extraocular muscles or the "optokinetic" coordinate axes encoded in the activity of the visually driven cells of the accessory optic system, share the same geometrical framework. This framework is also reflected in the anatomical networks mediating compensatory eye movements, linking each of the semicircular canals to a particular set of extraocular muscles (so-called principal vestibuloocular reflex connections to yoke muscles). These classical vestibulo-oculomotor relationships have been verified at many levels of the vertebrate hierarchy, including lateral- and frontal-eyed animals. The particular spatial orientation of the semicircular canals requires further comment and phylogenetic evaluation. The spatial arrangement of the vertical canals is already present in fossil ostracoderms, and is also exemplified in lampreys, the modern forms of once abundant agnathan species that populated the Silurian and Devonian oceans. The lampreys and ostracoderms lack horizontal canals, which appear later in all descendent vertebrates. The fully developed vertebrate labyrinth with its six semicircular canals displays distinct differences that are obvious when comparing distant taxa (e.g. elasmobranchs versus other vertebrates). Whereas the common crus of the semicircular canals in teleosts through mammals is formed between the anterior and the posterior semicircular canal, it occurs between the anterior and the horizontal canal in elasmobranchs. However, despite this morphological difference, these two vertebrate labyrinth prototypes constitute a functionally identical solution. A similar analysis holds for certain invertebrate species (crab, octopus, squid), which display an even wider variety in the physical expressions of movement detection systems when compared to vertebrates. Although the physical expressions of motion detection systems differ in the animal kingdom, the functional solutions (providing the best signal-to-noise ratio) with adherence to bilateral symmetry, push-pull operational mode, and mutual orthogonality are identical.(ABSTRACT TRUNCATED AT 400 WORDS)
Kim, Hwi; Min, Sung-Wook; Lee, Byoungho; Poon, Ting-Chung
2008-07-01
We propose a novel optical sectioning method for optical scanning holography, which is performed in phase space by using Wigner distribution functions together with the fractional Fourier transform. The principle of phase-space optical sectioning for one-dimensional signals, such as slit objects, and two-dimensional signals, such as rectangular objects, is first discussed. Computer simulation results are then presented to substantiate the proposed idea.
Arif, Muhammad
2012-06-01
In pattern classification problems, feature extraction is an important step. Quality of features in discriminating different classes plays an important role in pattern classification problems. In real life, pattern classification may require high dimensional feature space and it is impossible to visualize the feature space if the dimension of feature space is greater than four. In this paper, we have proposed a Similarity-Dissimilarity plot which can project high dimensional space to a two dimensional space while retaining important characteristics required to assess the discrimination quality of the features. Similarity-dissimilarity plot can reveal information about the amount of overlap of features of different classes. Separable data points of different classes will also be visible on the plot which can be classified correctly using appropriate classifier. Hence, approximate classification accuracy can be predicted. Moreover, it is possible to know about whom class the misclassified data points will be confused by the classifier. Outlier data points can also be located on the similarity-dissimilarity plot. Various examples of synthetic data are used to highlight important characteristics of the proposed plot. Some real life examples from biomedical data are also used for the analysis. The proposed plot is independent of number of dimensions of the feature space.
Phase space interrogation of the empirical response modes for seismically excited structures
NASA Astrophysics Data System (ADS)
Paul, Bibhas; George, Riya C.; Mishra, Sudib K.
2017-07-01
Conventional Phase Space Interrogation (PSI) for structural damage assessment relies on exciting the structure with low dimensional chaotic waveform, thereby, significantly limiting their applicability to large structures. The PSI technique is presently extended for structure subjected to seismic excitations. The high dimensionality of the phase space for seismic response(s) are overcome by the Empirical Mode Decomposition (EMD), decomposing the responses to a number of intrinsic low dimensional oscillatory modes, referred as Intrinsic Mode Functions (IMFs). Along with their low dimensionality, a few IMFs, retain sufficient information of the system dynamics to reflect the damage induced changes. The mutually conflicting nature of low-dimensionality and the sufficiency of dynamic information are taken care by the optimal choice of the IMF(s), which is shown to be the third/fourth IMFs. The optimal IMF(s) are employed for the reconstruction of the Phase space attractor following Taken's embedding theorem. The widely referred Changes in Phase Space Topology (CPST) feature is then employed on these Phase portrait(s) to derive the damage sensitive feature, referred as the CPST of the IMFs (CPST-IMF). The legitimacy of the CPST-IMF is established as a damage sensitive feature by assessing its variation with a number of damage scenarios benchmarked in the IASC-ASCE building. The damage localization capability, remarkable tolerance to noise contamination and the robustness under different seismic excitations of the feature are demonstrated.
Symplectic multiparticle tracking model for self-consistent space-charge simulation
Qiang, Ji
2017-01-23
Symplectic tracking is important in accelerator beam dynamics simulation. So far, to the best of our knowledge, there is no self-consistent symplectic space-charge tracking model available in the accelerator community. In this paper, we present a two-dimensional and a three-dimensional symplectic multiparticle spectral model for space-charge tracking simulation. This model includes both the effect from external fields and the effect of self-consistent space-charge fields using a split-operator method. Such a model preserves the phase space structure and shows much less numerical emittance growth than the particle-in-cell model in the illustrative examples.
Symplectic multiparticle tracking model for self-consistent space-charge simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiang, Ji
Symplectic tracking is important in accelerator beam dynamics simulation. So far, to the best of our knowledge, there is no self-consistent symplectic space-charge tracking model available in the accelerator community. In this paper, we present a two-dimensional and a three-dimensional symplectic multiparticle spectral model for space-charge tracking simulation. This model includes both the effect from external fields and the effect of self-consistent space-charge fields using a split-operator method. Such a model preserves the phase space structure and shows much less numerical emittance growth than the particle-in-cell model in the illustrative examples.
Age Related Decline in Postural Control Mechanisms.
ERIC Educational Resources Information Center
Stelmach, George E.; And Others
1989-01-01
Studied voluntary and reflexive mechanisms of postural control of young (N=8) and elderly (N=8) adults through measurement of reflexive reactions to large-fast and small-slow ankle rotation postural disturbances. Found reflexive mechanisms relatively intact for both groups although elderly appeared more disadvantaged when posture was under the…
Informed Reflexivity: Enacting Epistemic Virtue
ERIC Educational Resources Information Center
Weinstock, Michael; Kienhues, Dorothe; Feucht, Florian C.; Ryan, Mary
2017-01-01
To discuss reflexive practice in relation to epistemic cognition, we posit informed reflexivity as an epistemic virtue that is informed by its particular context and purposes of knowing and action and promotes use of reliable processes to achieve epistemic aims. It involves reasoning about social relationships in which a person is embedded when…
Erecting Closets and Outing Ourselves: Uncomfortable Reflexivity and Community-Based Research
ERIC Educational Resources Information Center
Reed, Sarah J.; Miller, Robin Lin; Nnawulezi, Nkiru; Valenti, Maria T.
2012-01-01
Feminist scholars and community psychologists have argued that reflexivity is a necessary component to conducting socially conscious research. Reflexivity, however, is rarely evident in community psychology. In this article, we share the uncomfortable realities that surfaced during a community-based research project in which we adapted and…
A Movement Account of Long-Distance Reflexives
ERIC Educational Resources Information Center
McKeown, Rebecca Katherine
2013-01-01
This thesis examines reflexive pronouns, such as Icelandic "sig" (Cf. Thrainsson 2007), which may be bound from outside of an infinitive clause (which I call MD "medium distance" binding) in addition to being bound locally. I propose that such reflexives are linked to their antecedents via sisterhood followed by movement: the…
The Reflexive Imperative among High-Achieving Adolescents: A Flemish Case Study
ERIC Educational Resources Information Center
Van Lancker, Inge
2016-01-01
The socio-cultural conditions of late modernity induce a "reflexive imperative" amongst young people, which also results in metapragmatic and metalinguistic behaviour, as has been demonstrated by linguistic ethnographers (LE). However, recent LE studies on reflexivity in Western European settings have mainly focused on how groups of…
Collaborative Research in Contexts of Inequality: The Role of Social Reflexivity
ERIC Educational Resources Information Center
Leibowitz, Brenda; Bozalek, Vivienne; Farmer, Jean; Garraway, James; Herman, Nicoline; Jawitz, Jeff; McMillan, Wendy; Mistri, Gita; Ndebele, Clever; Nkonki, Vuyisile; Quinn, Lynn; van Schalkwyk, Susan; Vorster, Jo-Anne; Winberg, Chris
2017-01-01
This article reports on the role and value of social reflexivity in collaborative research in contexts of extreme inequality. Social reflexivity mediates the enablements and constraints generated by the internal and external contextual conditions impinging on the research collaboration. It fosters the ability of participants in a collaborative…
A modular telerobotic task execution system
NASA Technical Reports Server (NTRS)
Backes, Paul G.; Tso, Kam S.; Hayati, Samad; Lee, Thomas S.
1990-01-01
A telerobot task execution system is proposed to provide a general parametrizable task execution capability. The system includes communication with the calling system, e.g., a task planning system, and single- and dual-arm sensor-based task execution with monitoring and reflexing. A specific task is described by specifying the parameters to various available task execution modules including trajectory generation, compliance control, teleoperation, monitoring, and sensor fusion. Reflex action is achieved by finding the corresponding reflex action in a reflex table when an execution event has been detected with a monitor.
Role of the cerebellum and the vestibular apparatus in regulation of orthostatic reflexes in the cat
NASA Technical Reports Server (NTRS)
Doba, N.; Reis, D. J.
1974-01-01
The contribution of the fastigial nucleus and the vestibular nerves (eighth cranial nerves) to the orthostatic reflexes in anesthetized, paralyzed cats was studied. Bilateral lesions of the rostral fastigial nucleus resulted in impairment of the reflex changes in blood pressure, femoral arterial flow, and resistance evoked by head-up tilting to 30 deg or 60 deg. The rostral fastigial nucleus, which might be triggered by the vestibular apparatus, appears to participate in concert with the baroreceptors in the initiation and possibly the maintenance of the orthostatic reflexes.
[Facial diplegia with atypical paresthesia. A variant of Guillain-Barré syndrome].
Dal Verme, Agustín; Acosta, Paula; Margan, Mercedes; Pagnini, Cecilia; Dellepiane, Eugenia; Peralta, Christian
2015-01-01
Guillain-Barré syndrome is an acute demyelinating disease which presents in a classic form with muscular weakness and the lack of reflexes. There are multiple variations and atypical forms of the disease, being facial diplegia with paresthesia one of them. Also, the absence of reflexes in this syndrome is typical but not constant, since 10% of patients present reflexes. We describe a case of atypical presentation with bilateral facial palsy, paresthesia, brisk reflexes and weakness in the lower limbs in a 33 year old woman.
[Red reflex: prevention way to blindness in childhood].
de Aguiar, Adriana Sousa Carvalho; Cardoso, Maria Vera Lúcia Moreira Leitão; Lúcio, Ingrid Martins Leite
2007-01-01
This study had as objective to investigate the result and the colour gradation of red reflex test in newborns (NB). It is a exploratory, quantitative study and the sample was 180 NB from maternity ward in Fortaleza-CE. From this, 156 showed result "no altered" and 24 "suspect". About the aspect of red reflex, 144 NB showed the same coloration in the two eyes, in 35 of this, the colour was red, in 33, orange reddish, in 46 orange colour, in 24 light yellow, in 6 yellow with whitish stains central. Of the suspect cases, the reflex was light yellow with whitish stains with lines. The nurse trained to accomplish the red reflex test can have important role at Neonatal Unit with actions about the prevention of ocular alterations in the childhood.
Del Paso, Gustavo A Reyes; González, M Isabel; Hernández, José Antonio; Duschek, Stefan; Gutiérrez, Nicolás
2009-09-01
This study explored the effects of tonic blood pressure on the association between baroreceptor cardiac reflex sensitivity and cognitive performance. Sixty female participants completed a mental arithmetic task. Baroreceptor reflex sensitivity was assessed using sequence analysis. An interaction was found, indicating that the relationship between baroreceptor reflex sensitivity and cognitive performance is modulated by blood pressure levels. Reflex sensitivity was inversely associated to performance indices in the subgroup of participants with systolic blood pressure above the mean, whereas the association was positive in participants with systolic values below the mean. These results are in accordance with the findings in the field of pain perception and suggest that tonic blood pressure modulates the inhibitory effects of baroreceptor stimulation on high central nervous functions.
Reshetnikov, Aleksei P; Kasatkin, Anton A; Urakov, Aleksandr L; Baimurzin, Dmitrii Y
2017-01-01
Pharmacological sedation is one of the effective ways of prevention of gag reflex development in patients experiencing anxiety and fright before dental treatment. We are reporting a case where we could successfully eliminate exaggerated gag reflex (intravenous [IV] Gagging Severity Index) in a dental patient using IV sedation with dexmedetomidine. IV administration of dexmedetomidine provided elimination of gag reflex at a depth of sedation for the patient with the Richmond Agitation-Sedation Scale score of -2 and -1. The patient received dexmedetomidine 1.0 μg/kg for 10 min and then a continuous infusion of dexmedetomidine 0.4 μg/kg/h. The use of dexmedetomidine for sedation may be an alternative to other pharmacological agents in patients with dental anxiety accompanied by exaggerated gag reflex.
Time course of the soleus M response and H reflex after lidocaine tibial nerve block in the rat.
Buffenoir, Kévin; Decq, Philippe; Pérot, Chantal
2013-01-01
In spastic subjects, lidocaine is often used to induce a block predictive of the result provided by subsequent surgery. Lidocaine has been demonstrated to inhibit the Hoffmann (H) reflex to a greater extent than the direct motor (M) response induced by electrical stimulation, but the timecourse of these responses has not been investigated. An animal (rat) model of the effects of lidocaine on M and H responses was therefore developed to assess this time course. M and H responses were recorded in 18 adult rats before and after application of lidocaine to the sciatic nerve. Two to five minutes after lidocaine injection, M responses were markedly reduced (mean reduction of 44%) and H reflexes were completely abolished. Changes were observed more rapidly for the H reflex. The effects of lidocaine then persisted for 100 minutes. The effect of lidocaine was therefore more prolonged on the H reflex than on the M response. This study confirms that lidocaine blocks not only alpha motoneurons but also Ia afferent fibres responsible for the H reflex. The authors describe, for the first time, the detailed time course of the effect of lidocaine on direct or reflex activation of motoneurons in the rat.
The Relationship between MOC Reflex and Masked Threshold
Garinis, Angela; Werner, Lynne; Abdala, Carolina
2011-01-01
Otoacoustic emission (OAE) amplitude can be reduced by acoustic stimulation. This effect is produced by the medial olivocochlear (MOC) reflex. Past studies have shown that the MOC reflex is related to listening in noise and attention. In the present study, the relationship between strength of the contralateral MOC reflex and masked threshold was investigated in 19 adults. Detection thresholds were determined for a 1000-Hz, 300-ms tone presented simultaneously with one repetition of a 300-ms masker in an ongoing train of 300-ms masker bursts at 600-ms intervals. Three masking conditions were tested: 1) broadband noise 2) a fixed-frequency 4-tone complex masker and 3) a random-frequency 4-tone complex masker. Broadband noise was expected to produce energetic masking and the tonal maskers were expected to produce informational masking in some listeners. DPOAEs were recorded at fine frequency interval from 500 to 4000 Hz, with and without contralateral acoustic stimulation. MOC reflex strength was estimated as a reduction in baseline level and a shift in frequency of DPOAE fine-structure maxima near 1000-Hz. MOC reflex and psychophysical testing were completed in separate sessions. Individuals with poorer thresholds in broadband noise and in random-frequency maskers were found to have stronger MOC reflexes. PMID:21878379
The role of nervus intermedius in side specific nasal responses.
Nichani, J R; Malik, V; Woolford, T J; Ramsden, R T; Homer, J J
2010-03-02
Nervus intermedius (NI) dysfunction is common in patients who have had vestibular schwannoma (VS) surgery. Such patients have a unilateral parasympathetic-denervated nasal cavity. A number of side-specific nasal reflexes have been demonstrated in normal individuals, including hand cold-water immersion. It is not understood whether these reflexes have parasympathetic or sympathic efferent pathways. We aimed to evaluate the side specific nasal reflex to cold-water immersion in post-operative VS patients with NI dysfunction, in order to determine the nature of the efferent pathway of these reflexes. Side specific responses to cold-water immersion were tested by acoustic rhinometry in 10 normal individuals and 18 patients with NI dysfunction (proven by Schirmer s test) after VS surgery. A consistent pattern of ipsilateral congestion and contralateral decongestion after the cold-water immersion was seen in normal individuals (p smaller than 0.001). We found no consistent response in VS patients both ipsilateral and contralateral to the side of NI dysfunction. We confirm the consistent side-specific nasal reflexes to cold-water hand immersion in normal individuals. This is disturbed in patients with NI dysfunction. We have also shown unexpectantly that the contralateral side-specific reflex is disturbed in these patients. These data suggest that the reflex is parasympathetic and crosses the midline.
Effects of pirfenidone on increased cough reflex sensitivity in guinea pigs.
Okazaki, Akihito; Ohkura, Noriyuki; Fujimura, Masaki; Katayama, Nobuyuki; Kasahara, Kazuo
2013-10-01
Pirfenidone, an antifibrotic drug with anti-inflammatory and antioxidant effects, delays fibrosis in idiopathic pulmonary fibrosis (IPF). Patients with IPF have a greater cough reflex sensitivity to inhaled capsaicin than healthy people, and cough is an independent predictor of IPF disease progression; however, the effects of pirfenidone on cough reflex sensitivity are unknown. After challenge with an aerosolized antigen in actively sensitized guinea pigs, pirfenidone was administered intraperitoneally, and the cough reflex sensitivity was measured at 48 h after the challenge. Bronchoalveolar lavage (BAL) was performed, and the tracheal tissue was collected. Pirfenidone suppressed the capsaicin-induced increase in cough reflex sensitivity in a dose-dependent manner. Additionally, increased levels of prostaglandin E2, substance P, and leukotriene B4, but not histamine, in the BAL fluid were dose dependently suppressed by pirfenidone. The decrease in neutral endopeptidase activity in the tracheal tissue was also alleviated by pirfenidone treatment. The total number of cells and components in the BAL fluid was not influenced. These results suggest that pirfenidone ameliorates isolated cough based on increased cough reflex sensitivity associated with allergic airway diseases, and potentially relieve chronic cough in IPF patients who often have increased cough reflex sensitivity. Prospective studies on cough-relieving effects of pirfenidone in patients with IPF are therefore warranted. Copyright © 2013 Elsevier Ltd. All rights reserved.
Restoring walking after spinal cord injury: operant conditioning of spinal reflexes can help.
Thompson, Aiko K; Wolpaw, Jonathan R
2015-04-01
People with incomplete spinal cord injury (SCI) frequently suffer motor disabilities due to spasticity and poor muscle control, even after conventional therapy. Abnormal spinal reflex activity often contributes to these problems. Operant conditioning of spinal reflexes, which can target plasticity to specific reflex pathways, can enhance recovery. In rats in which a right lateral column lesion had weakened right stance and produced an asymmetrical gait, up-conditioning of the right soleus H-reflex, which increased muscle spindle afferent excitation of soleus, strengthened right stance and eliminated the asymmetry. In people with hyperreflexia due to incomplete SCI, down-conditioning of the soleus H-reflex improved walking speed and symmetry. Furthermore, modulation of electromyographic activity during walking improved bilaterally, indicating that a protocol that targets plasticity to a specific pathway can trigger widespread plasticity that improves recovery far beyond that attributable to the change in the targeted pathway. These improvements were apparent to people in their daily lives. They reported walking faster and farther, and noted less spasticity and better balance. Operant conditioning protocols could be developed to modify other spinal reflexes or corticospinal connections; and could be combined with other therapies to enhance recovery in people with SCI or other neuromuscular disorders. © The Author(s) 2014.
The behaviour of the long-latency stretch reflex in patients with Parkinson's disease
Rothwell, Jc; Obeso, Ja; Traub, Mm; Marsden, Cd
1983-01-01
The size of the long-latency stretch reflex was measured in a proximal (triceps) and distal (flexor pollicis longus) muscle in 47 patients with Parkinson's disease, and was compared with that seen in a group of 12 age-matched normal control subjects. The patients were classified clinically into four groups according to the degree of rigidity at the elbow or tremor. Stretch reflexes were evaluated while the subject was exerting a small force against a constant preload supplied by a torque motor, and the size of the reflex response was measured as fractional increase over basal levels of activity. When stretches were given at random intervals by increasing the force exerted by the motor by a factor of 2 or 3, there was a clear trend for the more severely affected patients to have larger long latency responses in the triceps muscle, although there was no change in the size of the short-latency, spinal component of the response. In contrast, there was no change in the size of the long-latency response of the flexor pollicis longus in any group of patients with Parkinson's disease. Despite any differences in reflex size, the inherent muscle stiffness of both muscles appeared to be normal in all groups of patients with Parkinson's disease, since the displacement trajectory of the limb following the force increase was the same as control values in the short (25 ms) period before reflex compensation could intervene. In 20 of the patients and in seven of the control subjects, servo-controlled, ramp positional disturbances were given to the thumb. Up to a velocity of 300°/s, the size of the long-latency stretch reflex was proportional to the log velocity of stretch. This technique revealed, in both moderately and severely rigid patients, increases in the reflex sensitivity of the flexor pollicis longus, which had not been clear using step torque stretches alone. However, whether using ramp or step displacements, long latency stretch reflex gain was not closely related to rigidity; reflex size was within the normal range in many patients with severe rigidity. Enhanced long latency stretch reflexes thus contribute to, but may not be solely responsible for, rigidity in Parkinson's disease. PMID:6842198
Addessi, Anna Rita; Anelli, Filomena; Benghi, Diber; Friberg, Anders
2017-01-01
In this article children’s musical improvisation is investigated through the “reflexive interaction” paradigm. We used a particular system, the MIROR-Impro, implemented in the framework of the MIROR project (EC-FP7), which is able to reply to the child playing a keyboard by a “reflexive” output, mirroring (with repetitions and variations) her/his inputs. The study was conducted in a public primary school, with 47 children, aged 6–7. The experimental design used the convergence procedure, based on three sample groups allowing us to verify if the reflexive interaction using the MIROR-Impro is necessary and/or sufficient to improve the children’s abilities to improvise. The following conditions were used as independent variables: to play only the keyboard, the keyboard with the MIROR-Impro but with not-reflexive reply, the keyboard with the MIROR-Impro with reflexive reply. As dependent variables we estimated the children’s ability to improvise in solos, and in duets. Each child carried out a training program consisting of 5 weekly individual 12 min sessions. The control group played the complete package of independent variables; Experimental Group 1 played the keyboard and the keyboard with the MIROR-Impro with not-reflexive reply; Experimental Group 2 played only the keyboard with the reflexive system. One week after, the children were asked to improvise a musical piece on the keyboard alone (Solo task), and in pairs with a friend (Duet task). Three independent judges assessed the Solo and the Duet tasks by means of a grid based on the TAI-Test for Ability to Improvise rating scale. The EG2, which trained only with the reflexive system, reached the highest average results and the difference with EG1, which did not used the reflexive system, is statistically significant when the children improvise in a duet. The results indicate that in the sample of participants the reflexive interaction alone could be sufficient to increase the improvisational skills, and necessary when they improvise in duets. However, these results are in general not statistically significant. The correlation between Reflexive Interaction and the ability to improvise is statistically significant. The results are discussed on the light of the recent literature in neuroscience and music education. PMID:28184205
Spastic long-lasting reflexes in the awake rat after sacral spinal cord injury.
Bennett, D J; Sanelli, L; Cooke, C L; Harvey, P J; Gorassini, M A
2004-05-01
Following chronic sacral spinal cord transection in rats the affected tail muscles exhibit marked spasticity, with characteristic long-lasting tail spasms evoked by mild stimulation. The purpose of the present paper was to characterize the long-lasting reflex seen in tail muscles in response to electrical stimulation of the tail nerves in the awake spastic rat, including its development with time and relation to spasticity. Before and after sacral spinal transection, surface electrodes were placed on the tail for electrical stimulation of the caudal nerve trunk (mixed nerve) and for recording EMG from segmental tail muscles. In normal and acute spinal rats caudal nerve trunk stimulation evoked little or no EMG reflex. By 2 wk after injury, the same stimulation evoked long-lasting reflexes that were 1) very low threshold, 2) evoked from rest without prior EMG activity, 3) of polysynaptic latency with >6 ms central delay, 4) about 2 s long, and 5) enhanced by repeated stimulation (windup). These reflexes produced powerful whole tail contractions (spasms) and developed gradually over the weeks after the injury (< or =52 wk tested), in close parallel to the development of spasticity. Pure low-threshold cutaneous stimulation, from electrical stimulation of the tip of the tail, also evoked long-lasting spastic reflexes, not seen in acute spinal or normal rats. In acute spinal rats a strong C-fiber stimulation of the tip of the tail (20 x T) could evoke a weak EMG response lasting about 1 s. Interestingly, when this C-fiber stimulation was used as a conditioning stimulation to depolarize the motoneuron pool in acute spinal rats, a subsequent low-threshold stimulation of the caudal nerve trunk evoked a 300-500 ms long reflex, similar to the onset of the long-lasting reflex in chronic spinal rats. A similar conditioned reflex was not seen in normal rats. Thus there is an unusually long low-threshold polysynaptic input to the motoneurons (pEPSP) that is normally inhibited by descending control. This pEPSP is released from inhibition immediately after injury but does not produce a long-lasting reflex because of a lack of motoneuron excitability. With chronic injury the motoneuron excitability is increased markedly, and the pEPSP then triggers sustained motoneuron discharges associated with long-lasting reflexes and muscle spasms.
System optimization on coded aperture spectrometer
NASA Astrophysics Data System (ADS)
Liu, Hua; Ding, Quanxin; Wang, Helong; Chen, Hongliang; Guo, Chunjie; Zhou, Liwei
2017-10-01
For aim to find a simple multiple configuration solution and achieve higher refractive efficiency, and based on to reduce the situation disturbed by FOV change, especially in a two-dimensional spatial expansion. Coded aperture system is designed by these special structure, which includes an objective a coded component a prism reflex system components, a compensatory plate and an imaging lens Correlative algorithms and perfect imaging methods are available to ensure this system can be corrected and optimized adequately. Simulation results show that the system can meet the application requirements in MTF, REA, RMS and other related criteria. Compared with the conventional design, the system has reduced in volume and weight significantly. Therefore, the determining factors are the prototype selection and the system configuration.
Satanarachchi, Niranji; Mino, Takashi
2014-01-01
This paper aims to explore the prominent implications of the process of observing complex dynamics linked to sustainability in human-natural systems and to propose a framework for sustainability evaluation by introducing the concept of sustainability boundaries. Arguing that both observing and evaluating sustainability should engage awareness of complex dynamics from the outset, we try to embody this idea in the framework by two complementary methods, namely, the layer view- and dimensional view-based methods, which support the understanding of a reflexive and iterative sustainability process. The framework enables the observation of complex dynamic sustainability contexts, which we call observation metastructures, and enable us to map the contexts to sustainability boundaries.
Echtermeyer, Sandra; Metelmann, Philine H; Hemprich, Alexander; Dannhauer, Karl-Heinz; Krey, Karl-Friedrich
2017-01-01
This study aims to describe morphological peculiarities of maxillary and mandibular first molars in Europeans, Asians and Europeans with cleft lip and palate. Reflex microscopy was used to obtain three-dimensional morphometric landmarks from 40 models (11 Europeans and 13 Asians without cleft lip and palate, 16 Europeans with unilateral cleft lip and palate). The cases were examined using traditional morphometry and geometric morphometry, and visualized using thin-plate splines. Classic morphometry showed no right/left differences in the study groups and no significant differences with regard to the cleft side in patients with cleft lip and palate. In Asians, a significantly greater mesiodistal width was found. Geometric morphometry showed an enlarged centroid size in Asians (maxilla and mandible). In cleft patients, the cleft site did not appear to impact the morphology of first molars. Unilateral clefting did not affect the size and shape of molars; however, characteristic ethnicity-based differences were in fact identified. The results are relevant for orthodontic treatment with preadjusted appliances, and prosthetic CAD/CAM restorations.
Using sketch-map coordinates to analyze and bias molecular dynamics simulations
Tribello, Gareth A.; Ceriotti, Michele; Parrinello, Michele
2012-01-01
When examining complex problems, such as the folding of proteins, coarse grained descriptions of the system drive our investigation and help us to rationalize the results. Oftentimes collective variables (CVs), derived through some chemical intuition about the process of interest, serve this purpose. Because finding these CVs is the most difficult part of any investigation, we recently developed a dimensionality reduction algorithm, sketch-map, that can be used to build a low-dimensional map of a phase space of high-dimensionality. In this paper we discuss how these machine-generated CVs can be used to accelerate the exploration of phase space and to reconstruct free-energy landscapes. To do so, we develop a formalism in which high-dimensional configurations are no longer represented by low-dimensional position vectors. Instead, for each configuration we calculate a probability distribution, which has a domain that encompasses the entirety of the low-dimensional space. To construct a biasing potential, we exploit an analogy with metadynamics and use the trajectory to adaptively construct a repulsive, history-dependent bias from the distributions that correspond to the previously visited configurations. This potential forces the system to explore more of phase space by making it desirable to adopt configurations whose distributions do not overlap with the bias. We apply this algorithm to a small model protein and succeed in reproducing the free-energy surface that we obtain from a parallel tempering calculation. PMID:22427357
NASA Astrophysics Data System (ADS)
Bloshanskiĭ, I. L.
1984-02-01
The precise geometry is found of measurable sets in N-dimensional Euclidean space on which generalized localization almost everywhere holds for multiple Fourier series which are rectangularly summable.Bibliography: 14 titles.
Analysis of spectral operators in one-dimensional domains
NASA Technical Reports Server (NTRS)
Maday, Y.
1985-01-01
Results are proven concerning certain projection operators on the space of all polynomials of degree less than or equal to N with respect to a class of one-dimensional weighted Sobolev spaces. The results are useful in the theory of the approximation of partial differential equations with spectral methods.
A real negative selection algorithm with evolutionary preference for anomaly detection
NASA Astrophysics Data System (ADS)
Yang, Tao; Chen, Wen; Li, Tao
2017-04-01
Traditional real negative selection algorithms (RNSAs) adopt the estimated coverage (c0) as the algorithm termination threshold, and generate detectors randomly. With increasing dimensions, the data samples could reside in the low-dimensional subspace, so that the traditional detectors cannot effectively distinguish these samples. Furthermore, in high-dimensional feature space, c0 cannot exactly reflect the detectors set coverage rate for the nonself space, and it could lead the algorithm to be terminated unexpectedly when the number of detectors is insufficient. These shortcomings make the traditional RNSAs to perform poorly in high-dimensional feature space. Based upon "evolutionary preference" theory in immunology, this paper presents a real negative selection algorithm with evolutionary preference (RNSAP). RNSAP utilizes the "unknown nonself space", "low-dimensional target subspace" and "known nonself feature" as the evolutionary preference to guide the generation of detectors, thus ensuring the detectors can cover the nonself space more effectively. Besides, RNSAP uses redundancy to replace c0 as the termination threshold, in this way RNSAP can generate adequate detectors under a proper convergence rate. The theoretical analysis and experimental result demonstrate that, compared to the classical RNSA (V-detector), RNSAP can achieve a higher detection rate, but with less detectors and computing cost.
Ocular Counter-Rolling During Centrifugation and Static Tilt
NASA Technical Reports Server (NTRS)
Cohen, Bernard; Clement, Gilles; Moore, Steven; Curthoys, Ian; Dai, Mingjia; Koizuka, Izumi; Kubo, Takeshi; Raphan, Theodore
2003-01-01
Activation of the gravity sensors in the inner ear-the otoliths-generates reflexes that act to maintain posture and gaze. Ocular counter-rolling (OCR) is an example of such a reflex. When the head is tilted to the side, the eyes rotate around the line of sight in the opposite direction (i.e., counter-rolling). While turning comers, undergoing centrifugation, or making side-to-side tilting head movements, the OCR reflex orients the eyes towards the sum of the accelerations from body movements and gravity. Deconditioning of otolith-mediated reflexes following adaptation to microgravity has been proposed as the basis of many of the postural, locomotor, and gaze control problems experienced by returning astronauts. Evidence suggests that OCR is reduced postflight in about 75% of astronauts tested; but the data are sparse, primarily due to difficulties in recording rotational eye movements. During the Neurolab mission, a short-arm human centrifuge was flown that generated sustained sideways accelerations of 0.5-G and one-G to the head and upper body. This produces OCR; and so for the first time, the responses to sustained centrifugation could be studied without the influence of Earth's gravity on the results. This allowed us to determine the relative importance of sideways and vertical acceleration in the generation of OCR. This also provided the first test of the effects of exposure to artificial gravity in space on postflight otolith-ocular reflexes. There was little difference between the responses to centrifugation in microgravity and on Earth. In both conditions, the induced OCR was roughly proportional to the applied acceleration, with the OCR magnitude during 0.5-G centrifugation approximately 60% of that generated during one-G centrifugation. The overall mean OCR from the four payload crewmembers in response to one-G of sideways acceleration was 5.7 plus or minus 1.1 degree (mean and SD) on Earth. Inflight one-G centrifugation generated 5.7 plus or minus 1.1 degree of OCR, which was a small but significant decrease in OCR magnitude. The postflight OCR was 5.9 plus or minus 1.4 degree, which was not significantly different from preflight values. During both 0.5-G and one-G centrifugation in microgravity, where the head vertical gravitational component was absent, the OCR magnitude was not significantly different from that produced by an equivalent acceleration during static tilt on Earth. This suggests that the larger OCR magnitude observed during centrifugation on Earth was due to the larger body vertical linear acceleration component, which may have activated either the otoliths or the body tilt receptors. In contrast to previous studies, there was no decrease in OCR gain postflight. Our findings raise the possibility that inflight exposure to artificial gravity, in the form of intermittent one-G and 0.5-G centripetal acceleration, may have been a countermeasure to deconditioning of otolith-based orientation reflexes.
The Extraction of One-Dimensional Flow Properties from Multi-Dimensional Data Sets
NASA Technical Reports Server (NTRS)
Baurle, Robert A.; Gaffney, Richard L., Jr.
2007-01-01
The engineering design and analysis of air-breathing propulsion systems relies heavily on zero- or one-dimensional properties (e.g. thrust, total pressure recovery, mixing and combustion efficiency, etc.) for figures of merit. The extraction of these parameters from experimental data sets and/or multi-dimensional computational data sets is therefore an important aspect of the design process. A variety of methods exist for extracting performance measures from multi-dimensional data sets. Some of the information contained in the multi-dimensional flow is inevitably lost when any one-dimensionalization technique is applied. Hence, the unique assumptions associated with a given approach may result in one-dimensional properties that are significantly different than those extracted using alternative approaches. The purpose of this effort is to examine some of the more popular methods used for the extraction of performance measures from multi-dimensional data sets, reveal the strengths and weaknesses of each approach, and highlight various numerical issues that result when mapping data from a multi-dimensional space to a space of one dimension.
The Art of Extracting One-Dimensional Flow Properties from Multi-Dimensional Data Sets
NASA Technical Reports Server (NTRS)
Baurle, R. A.; Gaffney, R. L.
2007-01-01
The engineering design and analysis of air-breathing propulsion systems relies heavily on zero- or one-dimensional properties (e:g: thrust, total pressure recovery, mixing and combustion efficiency, etc.) for figures of merit. The extraction of these parameters from experimental data sets and/or multi-dimensional computational data sets is therefore an important aspect of the design process. A variety of methods exist for extracting performance measures from multi-dimensional data sets. Some of the information contained in the multi-dimensional flow is inevitably lost when any one-dimensionalization technique is applied. Hence, the unique assumptions associated with a given approach may result in one-dimensional properties that are significantly different than those extracted using alternative approaches. The purpose of this effort is to examine some of the more popular methods used for the extraction of performance measures from multi-dimensional data sets, reveal the strengths and weaknesses of each approach, and highlight various numerical issues that result when mapping data from a multi-dimensional space to a space of one dimension.
Opioid modulation of reflex versus operant responses following stress in the rat.
King, C D; Devine, D P; Vierck, C J; Mauderli, A; Yezierski, R P
2007-06-15
In pre-clinical models intended to evaluate nociceptive processing, acute stress suppresses reflex responses to thermal stimulation, an effect previously described as stress-induced "analgesia." Suggestions that endogenous opioids mediate this effect are based on demonstrations that stress-induced hyporeflexia is enhanced by high dose morphine (>5 mg/kg) and is reversed by naloxone. However, reflexes and pain sensations can be modulated differentially. Therefore, in the present study direct comparisons were made of opioid agonist and antagonist actions, independently and in combination with acute restraint stress in Long Evans rats, on reflex lick-guard (L/G) and operant escape responses to nociceptive thermal stimulation (44.5 degrees C). A high dose of morphine (>8 mg/kg) was required to reduce reflex responding, but a moderate dose of morphine (1 mg/kg) significantly reduced escape responding. The same moderate dose (and also 5 mg/kg) of morphine significantly enhanced reflex responding. Naloxone (3 mg/kg) significantly enhanced escape responding but did not affect L/G responding. Restraint stress significantly suppressed L/G reflexes (hyporeflexia) but enhanced escape responses (hyperalgesia). Stress-induced hyperalgesia was significantly reduced by morphine and enhanced by naloxone. In contrast, stress-induced hyporeflexia was blocked by both naloxone and 1 mg/kg of morphine. Thus, stress-induced hyperalgesia was opposed by endogenous opioid release and by administration of morphine. Stress-induced hyporeflexia was dependent upon endogenous opioid release but was counteracted by a moderate dose of morphine. These data demonstrate a differential modulation of reflex and operant outcome measures by stress and by separate or combined opioid antagonism or administration of morphine.
OPERANT CONDITIONING OF A SPINAL REFLEX CAN IMPROVE LOCOMOTION AFTER SPINAL CORD INJURY IN HUMANS
Thompson, Aiko K.; Pomerantz, Ferne; Wolpaw, Jonathan R.
2013-01-01
Operant conditioning protocols can modify the activity of specific spinal cord pathways and can thereby affect behaviors that use these pathways. To explore the therapeutic application of these protocols, we studied the impact of down-conditioning the soleus H-reflex in people with impaired locomotion caused by chronic incomplete spinal cord injury. After a baseline period in which soleus H-reflex size was measured and locomotion was assessed, subjects completed either 30 H-reflex down-conditioning sessions (DC subjects) or 30 sessions in which the H-reflex was simply measured (Unconditioned (UC) subjects), and locomotion was reassessed. Over the 30 sessions, the soleus H-reflex decreased in two-thirds of the DC subjects (a success rate similar to that in normal subjects) and remained smaller several months later. In these subjects, locomotion became faster and more symmetrical, and the modulation of EMG activity across the step-cycle increased bilaterally. Furthermore, beginning about halfway through the conditioning sessions, all of these subjects commented spontaneously that they were walking faster and farther in their daily lives, and several noted less clonus, easier stepping, and/or other improvements. The H-reflex did not decrease in the other DC subjects or in any of the UC subjects; and their locomotion did not improve. These results suggest that reflex conditioning protocols can enhance recovery of function after incomplete spinal cord injuries and possibly in other disorders as well. Because they are able to target specific spinal pathways, these protocols could be designed to address each individual’s particular deficits, and might thereby complement other rehabilitation methods. PMID:23392666
[Developing team reflexivity as a learning and working tool for medical teams].
Riskin, Arieh; Bamberger, Peter
2014-01-01
Team reflexivity is a collective activity in which team members review their previous work, and develop ideas on how to modify their work behavior in order to achieve better future results. It is an important learning tool and a key factor in explaining the varying effectiveness of teams. Team reflexivity encompasses both self-awareness and agency, and includes three main activities: reflection, planning, and adaptation. The model of briefing-debriefing cycles promotes team reflexivity. Its key elements include: Pre-action briefing--setting objectives, roles, and strategies the mission, as well as proposing adaptations based on what was previously learnt from similar procedures; Post-action debriefing--reflecting on the procedure performed and reviewing the extent to which objectives were met, and what can be learnt for future tasks. Given the widespread attention to team-based work systems and organizational learning, efforts should be made toward ntroducing team reflexivity in health administration systems. Implementation could be difficult because most teams in hospitals are short-lived action teams formed for a particular event, with limited time and opportunity to consciously reflect upon their actions. But it is precisely in these contexts that reflexive processes have the most to offer instead of the natural impulsive collective logics. Team reflexivity suggests a potential solution to the major problems of iatorgenesis--avoidable medical errors, as it forces all team members to participate in a reflexive process together. Briefing-debriefing technology was studied mainly in surgical teams and was shown to enhance team-based learning and to improve quality-related outcomes and safety.
Cionni, Robert J.; Pei, Ron; Dimalanta, Ramon; Lubeck, David
2015-01-01
Purpose To evaluate the intensity and stability of the red reflex produced by ophthalmic surgical microscopes with nearly-collimated versus focused illumination systems and to assess surgeon preference in a simulated surgical setting. Methods This two-part evaluation consisted of postproduction surgical video analysis of red reflex intensity and a microscope use and preference survey completed by 13 experienced cataract surgeons. Survey responses were based on bench testing and experience in a simulated surgical setting. A microscope with nearly-collimated beam illumination and two focused beam microscopes were assessed. Results Red reflex intensity and stability were greater with the nearly-collimated microscope illumination system. In the bench testing survey, surgeons reported that the red reflex was maintained over significantly greater distances away from pupillary center, and depth of focus was numerically greater with nearly-collimated illumination relative to focused illumination. Most participating surgeons (≥64%) reported a preference for the microscope with nearly-collimated illumination with regard to red reflex stability, depth of focus, visualization, surgical working distance, and perceived patient comfort. Conclusions The microscope with nearly-collimated illumination produced a more intense and significantly more stable red reflex and was preferred overall by more surgeons. Translational Relevance This is the first report of an attempt to quantify red reflex intensity and stability and to evaluate surgically-relevant parameters between microscope systems. The data and methods presented here may provide a basis for future studies attempting to quantify differences between surgical microscopes that may affect surgeon preference and microscope use in ophthalmic surgery. PMID:26290778
Contribution of the maculo-ocular reflex to gaze stability in the rabbit.
Pettorossi, V E; Errico, P; Santarelli, R M
1991-01-01
The contribution of the maculo-ocular reflex to gaze stability was studied in 10 pigmented rabbits by rolling the animals at various angles of sagittal inclination of the rotation and/or longitudinal animal axes. At low frequencies (0.005-0.01 Hz) of sinusoidal stimulation the vestibulo-ocular reflex (VOR) was due to macular activation, while at intermediate and high frequencies it was mainly due to ampullar activation. The following results were obtained: 1) maculo-ocular reflex gain decreased as a function of the cosine of the angle between the rotation axis and the earth's horizontal plane. No change in gain was observed when longitudinal animal axis alone was inclined. 2) At 0 degrees of rotation axis and with the animal's longitudinal axis inclination also set at 0 degrees, the maculo-ocular reflex was oriented about 20 degrees forward and upward with respect to the earth's vertical axis. This orientation remained constant with sagittal inclinations of the rotation and/or longitudinal animal axes ranging from approximately 5 degrees upward to 30 degrees downward. When the longitudinal animal axis was inclined beyond these limits, the eye trajectory tended to follow the axis inclination. In the upside down position, the maculo-ocular reflex was anticompensatory, oblique and fixed with respect to orbital coordinates. 3) Ampullo-ocular reflex gain did not change with inclinations of the rotation and/or longitudinal animal axes. The ocular responses were consistently oriented to the stimulus plane. At intermediate frequencies the eye movement trajectory was elliptic because of directional differences between the ampullo- and maculo-ocular reflexes.(ABSTRACT TRUNCATED AT 250 WORDS)
Park, Bong Soo; Lee, Yoo Jin; Park, Jin-Han; Kim, Il Hwan; Park, Si Hyung; Lee, Ho-Joon; Park, Kang Min
2018-06-01
We evaluated global topology and organization of regional hubs in the brain networks and microstructural abnormalities in the white matter of patients with reflex syncope. Twenty patients with reflex syncope and thirty healthy subjects were recruited, and they underwent diffusion tensor imaging (DTI) scans. Graph theory was applied to obtain network measures based on extracted DTI data, using DSI Studio. We then investigated differences in the network measures between the patients with reflex syncope and the healthy subjects. We also analyzed microstructural abnormalities of white matter using tract-based spatial statistics analysis (TBSS). Measures of global topology were not different between patients with reflex syncope and healthy subjects. However, in reflex syncope patients, the strength measures of the right angular, left inferior frontal, left middle orbitofrontal, left superior medial frontal, and left middle temporal gyrus were lower than in healthy subjects. The betweenness centrality measures of the left middle orbitofrontal, left fusiform, and left lingual gyrus in patients were lower than those in healthy subjects. The PageRank centrality measures of the right angular, left middle orbitofrontal, and left superior medial frontal gyrus in patients were lower than those in healthy subjects. Regarding the analysis of the white matter microstructure, there were no differences in the fractional anisotropy and mean diffusivity values between the two groups. We have identified a reorganization of network hubs in the brain network of patients with reflex syncope. These alterations in brain network may play a role in the pathophysiologic mechanism underlying reflex syncope. © 2018 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.
Avian reflex and electroencephalogram responses in different states of consciousness.
Sandercock, Dale A; Auckburally, Adam; Flaherty, Derek; Sandilands, Victoria; McKeegan, Dorothy E F
2014-06-22
Defining states of clinical consciousness in animals is important in veterinary anaesthesia and in studies of euthanasia and welfare assessment at slaughter. The aim of this study was to validate readily observable reflex responses in relation to different conscious states, as confirmed by EEG analysis, in two species of birds under laboratory conditions (35-week-old layer hens (n=12) and 11-week-old turkeys (n=10)). We evaluated clinical reflexes and characterised electroencephalograph (EEG) activity (as a measure of brain function) using spectral analyses in four different clinical states of consciousness: conscious (fully awake), semi-conscious (sedated), unconscious-optimal (general anaesthesia), unconscious-sub optimal (deep hypnotic state), as well as assessment immediately following euthanasia. Jaw or neck muscle tone was the most reliable reflex measure distinguishing between conscious and unconscious states. Pupillary reflex was consistently observed until respiratory arrest. Nictitating membrane reflex persisted for a short time (<1 min) after respiratory arrest and brain death (isoelectric EEG). The results confirm that the nictitating membrane reflex is a conservative measure of death in poultry. Using spectral analyses of the EEG waveforms it was possible to readily distinguish between the different states of clinical consciousness. In all cases, when birds progressed from a conscious to unconscious state; total spectral power (PTOT) significantly increased, whereas median (F50) and spectral edge (F95) frequencies significantly decreased. This study demonstrates that EEG analysis can differentiate between clinical states (and loss of brain function at death) in birds and provides a unique integration of reflex responses and EEG activity. Copyright © 2014 Elsevier Inc. All rights reserved.
Oxygen-conserving reflexes of the brain: the current molecular knowledge.
Schaller, B; Cornelius, J F; Sandu, N; Ottaviani, G; Perez-Pinzon, M A
2009-04-01
The trigemino-cardiac reflex (TCR) may be classified as a sub-phenomenon in the group of the so-called 'oxygen-conserving reflexes'. Within seconds after the initiation of such a reflex, there is neither a powerful and differentiated activation of the sympathetic system with subsequent elevation in regional cerebral blood flow (CBF) with no changes in the cerebral metabolic rate of oxygen (CMRO(2)) or in the cerebral metabolic rate of glucose (CMRglc). Such an increase in regional CBF without a change of CMRO(2) or CMRglc provides the brain with oxygen rapidly and efficiently and gives substantial evidence that the TCR is an oxygen-conserving reflex. This system, which mediates reflex protection projects via currently undefined pathways from the rostral ventrolateral medulla oblongata to the upper brainstem and/or thalamus which finally engage a small population of neurons in the cortex. This cortical centre appears to be dedicated to reflexively transduce a neuronal signal into cerebral vasodilatation and synchronization of electrocortical activity. Sympathetic excitation is mediated by cortical-spinal projection to spinal pre-ganglionic sympathetic neurons whereas bradycardia is mediated via projections to cardiovagal motor medullary neurons. The integrated reflex response serves to redistribute blood from viscera to brain in response to a challenge to cerebral metabolism, but seems also to initiate a preconditioning mechanism. Better and more detailed knowledge of the cascades, transmitters and molecules engaged in such endogenous (neuro) protection may provide new insights into novel therapeutic options for a range of disorders characterized by neuronal death and into cortical organization of the brain.
Nam, Julia EunJu; Mueller, Klaus
2013-02-01
Gaining a true appreciation of high-dimensional space remains difficult since all of the existing high-dimensional space exploration techniques serialize the space travel in some way. This is not so foreign to us since we, when traveling, also experience the world in a serial fashion. But we typically have access to a map to help with positioning, orientation, navigation, and trip planning. Here, we propose a multivariate data exploration tool that compares high-dimensional space navigation with a sightseeing trip. It decomposes this activity into five major tasks: 1) Identify the sights: use a map to identify the sights of interest and their location; 2) Plan the trip: connect the sights of interest along a specifyable path; 3) Go on the trip: travel along the route; 4) Hop off the bus: experience the location, look around, zoom into detail; and 5) Orient and localize: regain bearings in the map. We describe intuitive and interactive tools for all of these tasks, both global navigation within the map and local exploration of the data distributions. For the latter, we describe a polygonal touchpad interface which enables users to smoothly tilt the projection plane in high-dimensional space to produce multivariate scatterplots that best convey the data relationships under investigation. Motion parallax and illustrative motion trails aid in the perception of these transient patterns. We describe the use of our system within two applications: 1) the exploratory discovery of data configurations that best fit a personal preference in the presence of tradeoffs and 2) interactive cluster analysis via cluster sculpting in N-D.
Conformal Yano-Killing Tensors for Space-times with Cosmological Constant
NASA Astrophysics Data System (ADS)
Czajka, P.; Jezierski, J.
We present a new method for constructing conformal Yano-Killing tensors in five-di\\-men\\-sio\\-nal Anti-de Sitter space-time. The found tensors are represented in two different coordinate systems. We also discuss, in terms of CYK tensors, global charges which are well defined for asymptotically (five-dimensional) Anti-de Sitter space-time. Additionally in Appendix we present our own derivation of conformal Killing one-forms in four-dimensional Anti-de Sitter space-time as an application of the Theorem presented in the paper.
Wigner functions from the two-dimensional wavelet group.
Ali, S T; Krasowska, A E; Murenzi, R
2000-12-01
Following a general procedure developed previously [Ann. Henri Poincaré 1, 685 (2000)], here we construct Wigner functions on a phase space related to the similitude group in two dimensions. Since the group space in this case is topologically homeomorphic to the phase space in question, the Wigner functions so constructed may also be considered as being functions on the group space itself. Previously the similitude group was used to construct wavelets for two-dimensional image analysis; we discuss here the connection between the wavelet transform and the Wigner function.
NASA Astrophysics Data System (ADS)
Chaichenets, Leonid; Hundertmark, Dirk; Kunstmann, Peer; Pattakos, Nikolaos
2017-10-01
We prove global existence for the one-dimensional cubic nonlinear Schrödinger equation in modulation spaces Mp,p‧ for p sufficiently close to 2. In contrast to known results, [9] and [14], our result requires no smallness condition on initial data. The proof adapts a splitting method inspired by work of Vargas-Vega, Hyakuna-Tsutsumi and Grünrock to the modulation space setting and exploits polynomial growth of the free Schrödinger group on modulation spaces.
On six-dimensional pseudo-Riemannian almost g.o. spaces
NASA Astrophysics Data System (ADS)
Dušek, Zdeněk; Kowalski, Oldřich
2007-09-01
We modify the "Kaplan example" (a six-dimensional nilpotent Lie group which is a Riemannian g.o. space) and we obtain two pseudo-Riemannian homogeneous spaces with noncompact isotropy group. These examples have the property that all geodesics are homogeneous up to a set of measure zero. We also show that the (incomplete) geodesic graphs are strongly discontinuous at the boundary, i.e., the limits along certain curves are always infinite.
ERIC Educational Resources Information Center
Glass, Michael R.
2014-01-01
Fieldwork in urban geography courses can encourage reflexivity among students regarding the cities they encounter. This article outlines how student reflexivity was encouraged within a new international field research course in Singapore and Malaysia. Drawing on examples from students' field exercises written during an intensive and occasionally…
Iris Pigmentation and Fractionated Reaction and Reflex Time.
ERIC Educational Resources Information Center
Hale, Bruce D.; And Others
Behavioral measures, fractionated reaction and reflex times by means of electromyography, were used to determine if the eye color differences are found in the central or peripheral regions of the nervous system. The purpose of this research was to determine the truth of the hypothesis that dark-eyed individuals have faster reflex and reaction time…
Approaches to Reflexivity: Navigating Educational and Career Pathways
ERIC Educational Resources Information Center
Dyke, Martin; Johnston, Brenda; Fuller, Alison
2012-01-01
This paper provides a critical appraisal of approaches to reflexivity in sociology. It uses data from social network research to argue that Archer's approach to reflexivity provides a valuable lens with which to understand how people navigate their education and career pathways. The paper is also critical of Archer's methodology and typology of…
"Madam, Are You One of Them?" "Reflexivities of Discomfort" in Researching an "Illicit" Subject
ERIC Educational Resources Information Center
Namatende-Sakwa, Lydia
2018-01-01
Informed largely by Affect theory (2004), this paper takes up "reflexivities of discomfort" to reflexively engage with my affective struggles as a Christian, heterosexual, mother, educator, undertaking a study on homosexuality, which is a thorny issue in Uganda. It a methodological prologue, reflecting my thoughts and struggles before I…
Favouring Reflexivity in Technology-Enhanced Learning Systems: Towards Smart Uses of Traces
ERIC Educational Resources Information Center
George, Sébastien; Michel, Christine; Ollagnier-Beldame, Magali
2016-01-01
During learning activities, reflexive processes allow learners to realise what they have done, understand why, decide on new actions and gain motivation. They help learners to regulate their actions by themselves, that is, to develop metacognitive regulation skills. Computer environments can support reflexive processes to support human learning,…
Changes in Soleus H-Reflex Modulation after Treadmill Training in Children with Cerebral Palsy
ERIC Educational Resources Information Center
Hodapp, Maike; Vry, Julia; Mall, Volker; Faist, Michael
2009-01-01
In healthy children, short latency leg muscle reflexes are profoundly modulated throughout the step cycle in a functionally meaningful way and contribute to the electromyographic (EMG) pattern observed during gait. With maturation of the corticospinal tract, the reflex amplitudes are depressed via supraspinal inhibitory mechanisms. In the soleus…
F response and H reflex analysis of physiological unity of gravity and antigravity muscles in man.
García, H A; Fisher, M A
1977-01-01
Observational differences between reflex (H reflex) and antidromic (F response) activation of segmental motoneurons by a peripheral electrical stimulus are described. In contrast to H reflexes, the percentage of F responses found after a series of stimuli is directly related to the pick-up field of the recording electrode consistent with this response being due to the variable activation of a small fraction of the available motoneuron pool. Despite the differing physiological mechanisms, both F responses and H reflexes can be used to demonstrate similar relative "central excitatory states" for antigravity muscles (i.e. extensors in the lower extremity and flexors in the upper extremity) and their antagonist gravity muscles. H reflexes were elicited not only in their usual location in certain antigravity muscles but also in unusual locations by length/tension changes in agonist and antagonist groups as well as by passive stretch. The data argue for the physiological unity of similarly acting gravity and antigravity muscles as well as supporting a meaningful role of group II afferents in normal segmental motoneuron pool excitability.
Effect of cervicolabyrinthine impulsation on the spinal reflex apparatus
NASA Technical Reports Server (NTRS)
Yarotskiy, A. I.
1980-01-01
In view of the fact that the convergence effect of vestibular impulsation may both stimulate and inhibit intra and intersystemic coordination of physiological processes, an attempt was made to define the physiological effect on the spinal reflex apparatus of the convergence of cervicolabyrinthine impulsation on a model of the unconditioned motor reflex as a mechanism of the common final pathway conditioning the formation and realization of a focused beneficial result of human motor activities. More than 100 persons subjected to rolling effect and angular acceleration during complexly coordinated muscular loading were divided according to typical variants of the functional structure of the patella reflex in an experiment requiring 30 rapid counterclockwise head revolutions at 2/sec with synchronous recording of a 20 item series of patella reflex acts. A knee jerk coefficient was used in calculations. In 85 percent of the cases 2 patellar reflexograms show typical braking and release of knee reflex and 1 shows an extreme local variant. The diagnostic and prognostic value of these tests is suggested for determining adaptive possibilities of functional systems in respect to acceleration and proprioceptive stimuli.
Contraction induced h reflexes in the diagnosis of cervical radiculopathy.
Bodofsky, Elliot B; Campellone, Joseph V; Cohen, Stephen J; Caten, Holly N; Schindelheim, Adam M
2015-06-01
To determine whether Contraction Induced H Reflexes (CIHR) can accurately detect cervical radiculopathy. Comparison of CIHR results with Needle Electromyography at academic outpatient Electromyography/Nerve Conduction laboratories. Participants were all patients over 18 with a needle electromyography diagnosis of cervical radiculopathy. Patients were tested for CIHR in at least two upper extremity muscles in electromyographically proven myotomes bilaterally. Patients were requested to perform a moderate contraction while stimulus was applied proximally (elbow or Erb's point). Outcome measures included H Reflex onset latency and side-to-side latency differences. These were compared against previously established normal values. Overall, 10 of 15 patients who met criteria for cervical radiculopathy showed CIHR abnormalities (sensitivity = 67%; 95% confidence interval, 43-91). Counting each side and level separately, CIHR identified 16/27 radiculopathies (sensitivity = 59.2%; 95% confidence interval, 40.6-77.8). Contraction Induced H Reflexes identified 1 possible radiculopathy not seen on electromyography (specificity = 98%; 95% confidence interval, 95-100). Contraction induced H Reflexes have a sensitivity and specificity for cervical radiculopathy similar to the resting Gastroc-Soleus H Reflex.
On infinite-dimensional state spaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fritz, Tobias
It is well known that the canonical commutation relation [x, p]=i can be realized only on an infinite-dimensional Hilbert space. While any finite set of experimental data can also be explained in terms of a finite-dimensional Hilbert space by approximating the commutation relation, Occam's razor prefers the infinite-dimensional model in which [x, p]=i holds on the nose. This reasoning one will necessarily have to make in any approach which tries to detect the infinite-dimensionality. One drawback of using the canonical commutation relation for this purpose is that it has unclear operational meaning. Here, we identify an operationally well-defined context frommore » which an analogous conclusion can be drawn: if two unitary transformations U, V on a quantum system satisfy the relation V{sup -1}U{sup 2}V=U{sup 3}, then finite-dimensionality entails the relation UV{sup -1}UV=V{sup -1}UVU; this implication strongly fails in some infinite-dimensional realizations. This is a result from combinatorial group theory for which we give a new proof. This proof adapts to the consideration of cases where the assumed relation V{sup -1}U{sup 2}V=U{sup 3} holds only up to {epsilon} and then yields a lower bound on the dimension.« less
Unusual Presentation of Spasm of Near Reflex Mimicking Large-Angle Acute Acquired Comitant Esotropia
Shanker, Varshini; Nigam, Vishal
2015-01-01
Abstract We report the case of an 11-year-old boy who presented with sudden esotropia, binocular diplopia, and blurred vision. The patient was neurologically normal. He had a large, constant, comitant, alternating esotropia associated with minimal accommodative spasm. Ocular motility and pupillary reactions were normal. He was diagnosed to have spasm of the near reflex presenting as acute onset of esotropia. The esotropia was persistent despite treatment and eventually resolved with prolonged cycloplegic therapy. This unusual case illustrates that spasm of the near reflex can have unique and variable presentations. Spasm of the near reflex needs to be considered in the differential diagnosis of every case of acute, acquired, comitant esotropia. This is the first case of spasm of the near reflex where persistent esotropia is reported in the absence of any neurological disorder. PMID:27928354
Modulation of spinal reflexes by sexual films of increasing intensity.
Both, Stephanie; Boxtel, Geert; Stekelenburg, Jeroen; Everaerd, Walter; Laan, Ellen
2005-11-01
Sexual arousal can be viewed as an emotional state generating sex-specific autonomic and general somatic motor system responses that prepare for sexual action. In the present study modulation of spinal tendious (T) reflexes by sexual films of varying intensity was investigated. T reflexes were expected to increase as a function of increased film intensity. Through use of a between-subjects design, participants were exposed to three erotic films of low, moderate, and high intensity or to three films of moderate intensity. Self-report and genital data confirmed the induction of increasing versus stable levels of sexual arousal. Exposure to the films of increasing intensity resulted in increasing T reflexes. The results indicate that T reflex modulation is sensitive to varying levels of sexual arousal and may be of use in research on behavioral mechanisms underlying appetitive motivation.
NASA Astrophysics Data System (ADS)
Hoover, Wm. G.; Hoover, Carol G.
2012-02-01
We compare the Gram-Schmidt and covariant phase-space-basis-vector descriptions for three time-reversible harmonic oscillator problems, in two, three, and four phase-space dimensions respectively. The two-dimensional problem can be solved analytically. The three-dimensional and four-dimensional problems studied here are simultaneously chaotic, time-reversible, and dissipative. Our treatment is intended to be pedagogical, for use in an updated version of our book on Time Reversibility, Computer Simulation, and Chaos. Comments are very welcome.
Hyper-spectral image segmentation using spectral clustering with covariance descriptors
NASA Astrophysics Data System (ADS)
Kursun, Olcay; Karabiber, Fethullah; Koc, Cemalettin; Bal, Abdullah
2009-02-01
Image segmentation is an important and difficult computer vision problem. Hyper-spectral images pose even more difficulty due to their high-dimensionality. Spectral clustering (SC) is a recently popular clustering/segmentation algorithm. In general, SC lifts the data to a high dimensional space, also known as the kernel trick, then derive eigenvectors in this new space, and finally using these new dimensions partition the data into clusters. We demonstrate that SC works efficiently when combined with covariance descriptors that can be used to assess pixelwise similarities rather than in the high-dimensional Euclidean space. We present the formulations and some preliminary results of the proposed hybrid image segmentation method for hyper-spectral images.
Images as embedding maps and minimal surfaces: Movies, color, and volumetric medical images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimmel, R.; Malladi, R.; Sochen, N.
A general geometrical framework for image processing is presented. The authors consider intensity images as surfaces in the (x,I) space. The image is thereby a two dimensional surface in three dimensional space for gray level images. The new formulation unifies many classical schemes, algorithms, and measures via choices of parameters in a {open_quote}master{close_quotes} geometrical measure. More important, it is a simple and efficient tool for the design of natural schemes for image enhancement, segmentation, and scale space. Here the authors give the basic motivation and apply the scheme to enhance images. They present the concept of an image as amore » surface in dimensions higher than the three dimensional intuitive space. This will help them handle movies, color, and volumetric medical images.« less
Acoustic Reflex Testing in Neonatal Hearing Screening and Subsequent Audiological Evaluation.
Jacob-Corteletti, Lilian Cássia Bórnia; Araújo, Eliene Silva; Duarte, Josilene Luciene; Zucki, Fernanda; Alvarenga, Kátia de Freitas
2018-06-18
The aims of the study were to examine the acoustic reflex screening and threshold in healthy neonates and those at risk of hearing loss and to determine the effect of birth weight and gestational age on acoustic stapedial reflex (ASR). We assessed 18 healthy neonates (Group I) and 16 with at least 1 risk factor for hearing loss (Group II); all of them passed the transient evoked otoacoustic emission test that assessed neonatal hearing. The test battery included an acoustic reflex screening with activators of 0.5, 1, 2, and 4 kHz and broadband noise and an acoustic reflex threshold test with all of them, except for the broadband noise activator. In the evaluated neonates, the main risk factors were the gestational age at birth and a low birth weight; hence, these were further analyzed. The lower the gestational age at birth and birth weight, the less likely that an acoustic reflex would be elicited by pure-tone activators. This effect was significant at the frequencies of 0.5, 1, and 2 kHz for gestational age at birth and at the frequencies of 1 and 2 kHz for birth weight. When the broadband noise stimulus was used, a response was elicited in all neonates in both groups. When the pure-tone stimulus was used, the Group II showed the highest acoustic reflex thresholds and the highest percentage of cases with an absent ASR. The ASR threshold varied from 50 to 100 dB HL in both groups. Group II presented higher mean ASR thresholds than Group I, this difference being significant at frequencies of 1, 2, and 4 kHz. Birth weight and gestational age at birth were related to the elicitation of the acoustic reflex. Neonates with these risk factors for hearing impairment were less likely to exhibit the acoustic reflex and had higher thresholds.
Role of the flocculus of the cerebellum in motor learning of the vestibulo-ocular reflex
NASA Technical Reports Server (NTRS)
Highstein, S. M.
1998-01-01
Structure-function studies at the systems level are an effective method for understanding the relationship of the central nervous system to behavior. Motor learning or adaptation of the vestibulo-ocular reflex is a clear example wherein this approach has been productive. During a vestibulo-ocular reflex the brain converts a head velocity signal, transduced through the vestibular semicircular canals, into an eye movement command delivered to the extraocular muscles. If the viewed target remains on the fovea of the retina, the reflex is compensatory, and its gain, eye velocity/head velocity, is one. When the image of the viewed object slips across the retina, visual acuity decreases, and the gain of the reflex, which is no longer one, is plastically adapted or adjusted until retinal stability is restored. The anatomic substrate for this plasticity thus involves brain structures in which visual-vestibular interaction can potentially occur, as well as vestibular and visual sensory and oculomotor motor structures. Further, it has been known for many years that removal of the flocculus of the cerebellum permanently precludes further vestibulo-ocular reflex adaptation, demonstrating the involvement of the cerebellum in this behavior. Maekawa and Simpson (J Neurophysiol 1973;36: 649-66) discovered that one visual input to the flocculus involved the accessory optic system and the inferior olive. Ensuing work has demonstrated that the visual signals used to adapt the vestibulo-ocular reflex are transmitted by this accessory optic system to the flocculus and subsequently to brain stem structures involved in vestibulo-ocular reflex plasticity. Presently the inclusive list of anatomic sites involved in vestibulo-ocular reflex circuitry and its adaptive plasticity is small. Our laboratory continues to believe that this behavior should be caused by interactions within this small class of neurons. By studying each class of identified neuron and its interactions with others within the list, we hope to ultimately understand the mechanisms used by the brain in the expression of this behavior.
Mechanical Characteristics of Reflex Durign Upright Posture in Paralyzed Subjects
NASA Astrophysics Data System (ADS)
Kim, Yongchul; Youm, Youngil; Lee, Bumsuk; Kim, Youngho; Choi, Hyeonki
The characteristics of flexor reflexes have been investigated in the previous studies with human subjects who were seated or supine position. However, researchers did not describe how the spinal circuits are used in different hip angles for paralyzed subjects, such as the standing position with walker or cane. In upright posture the compatibility between a flexor reflex of leg and body balance is a special problem for lower limb injured subjects. Therefore, the purpose of this study was to investigate the effects of hip angle change on the flexor reflex evoked in standing paralyzed subjects supported by walker. In this study, six spinal cord injured and four stroke subjects were recruited through the inpatient physical therapy clinics of Korea national rehabilitation hospital. A single axis electronic goniometer was mounted on the lateral side of the hip joint of the impaired limb to record movements in the sagittal plane at this joint. The electronic goniometer was connected to a data acquisition system, through amplifiers to a computer. Since subject' posture influenced characteristics of the flexion reflex response, the subjects were supported in an upright posture by the help of parallelogram walder. Two series of tests were performed on each leg. The first series of the tests investigated the influence of hip angle during stationary standing posture on flexion reflex response. The hip angle was adjusted by the foot plate. The second examined the effect of the voluntary action of subject on swing motion during the gait. The electrically induced flexion reflex simultaneously produced the flexion of the hip, knee and dorsiflexion of the ankle enabling the swing phase of walking. Form the experimental results we observed that the reflex response of hip joint was largerwith the hip in the extended position than in the flexed position during standing posture. Under voluntary movement on flexion reflex during gaint, the peak hip angle induced by stimulation was increased in spinal cord injury and stroke patients by subject' voluntary movement.
NASA Astrophysics Data System (ADS)
Kawata, Y.; Niki, N.; Ohmatsu, H.; Aokage, K.; Kusumoto, M.; Tsuchida, T.; Eguchi, K.; Kaneko, M.
2015-03-01
Advantages of CT scanners with high resolution have allowed the improved detection of lung cancers. In the recent release of positive results from the National Lung Screening Trial (NLST) in the US showing that CT screening does in fact have a positive impact on the reduction of lung cancer related mortality. While this study does show the efficacy of CT based screening, physicians often face the problems of deciding appropriate management strategies for maximizing patient survival and for preserving lung function. Several key manifold-learning approaches efficiently reveal intrinsic low-dimensional structures latent in high-dimensional data spaces. This study was performed to investigate whether the dimensionality reduction can identify embedded structures from the CT histogram feature of non-small-cell lung cancer (NSCLC) space to improve the performance in predicting the likelihood of RFS for patients with NSCLC.
Rarefied gas flow through two-dimensional nozzles
NASA Technical Reports Server (NTRS)
De Witt, Kenneth J.; Jeng, Duen-Ren; Keith, Theo G., Jr.; Chung, Chan-Hong
1989-01-01
A kinetic theory analysis is made of the flow of a rarefied gas from one reservoir to another through two-dimensional nozzles with arbitrary curvature. The Boltzmann equation simplified by a model collision integral is solved by means of finite-difference approximations with the discrete ordinate method. The physical space is transformed by a general grid generation technique and the velocity space is transformed to a polar coordinate system. A numerical code is developed which can be applied to any two-dimensional passage of complicated geometry for the flow regimes from free-molecular to slip. Numerical values of flow quantities can be calculated for the entire physical space including both inside the nozzle and in the outside plume. Predictions are made for the case of parallel slots and compared with existing literature data. Also, results for the cases of convergent or divergent slots and two-dimensional nozzles with arbitrary curvature at arbitrary knudsen number are presented.
NASA Astrophysics Data System (ADS)
Yongzhi, WANG; hui, WANG; Lixia, LIAO; Dongsen, LI
2017-02-01
In order to analyse the geological characteristics of salt rock and stability of salt caverns, rough three-dimensional (3D) models of salt rock stratum and the 3D models of salt caverns on study areas are built by 3D GIS spatial modeling technique. During implementing, multi-source data, such as basic geographic data, DEM, geological plane map, geological section map, engineering geological data, and sonar data are used. In this study, the 3D spatial analyzing and calculation methods, such as 3D GIS intersection detection method in three-dimensional space, Boolean operations between three-dimensional space entities, three-dimensional space grid discretization, are used to build 3D models on wall rock of salt caverns. Our methods can provide effective calculation models for numerical simulation and analysis of the creep characteristics of wall rock in salt caverns.
[Phylo- and ontogenetic aspects of erect posture and walking in developmental neurology].
Berényi, Marianne; Katona, Ferenc; Sanchez, Carmen; Mandujano, Mario
2011-07-30
The group or profile of elementary neuromotor patterns is different from the primitive reflex group which is now called the "primitive reflex profile." All these elementary neuromotor patterns are characterized by a high degree of organization, persistence, and stereotypy. In many regards, these patterns are predecessors or precursors of from them the specific human motor patterns which appear spontaneously later as crawling, creeping, sitting, and walking with erect posture. On the basis of our experiences it can be stated that the elementary neuromotor patterns can be activated in all neonates and young infants as congenital motor functions. With regards to their main properties and functional forms, the normal patterns can be divided into two main groups: (1) One group is characterized by lifting of the head and complex chains of movements which are directed to the verticalization of the body; (2) The other group is characterized by complex movements directed to locomotion and change of body position. The neuromotor patterns can be activated by placing the human infant in specific body positions that trigger the vestibulospinal and the reticulospinal systems, the archicerebellum and the basal gangliae. Most of these systems display early myelinisation and are functioning very soon. Many of the elementary neuromotor patterns reflect the most important - spontaneously developing forms of human movements such as sitting upright in space and head elevation crawling and walking. The majority of the human neuromotor patterns are human specific. When the infant is put in an activating position, crawling, sitting up, and walking begin and last as long as the activating position is maintained. Each elementary neuromotor pattern is a repeated, continuous train of complex movements in response to a special activating position. The brainstem is not sufficient to organize these complex movements, the integrity of the basal ganglia is also necessary. Elementary sensorimotor patterns during human ontogenesis reflect phylogenetic develpoment of species specific human functions. During ontogenesis spontaneous motor development gradually arises from these early specific sensorimotor predecessors.. The regular use of the elementary neuromotor patterns for diagnostic puposes has several distinct advantages. The neuromotor patterns have a natural stereotypy in normal infants and, therefore, deflections from this regular pattern may be detected easily, thus, the activation of the elementary neuromotor pattern is a more suitable method for identifying defects in the motor activity of the neonate or young infant than the assessment of the primitive reflexes. The "stiumulus positions," which activate specific movements according to how the human neonate or young infant is positioned, do not activate such motor patterns in neonate or young primates including apes. The characteristic locomotor pattern in these adult primates, including the apes, is swinging and involves brachiation with an extreme prehensility. This species specific motor activity is reflected in the orangutan and gibbon neonates by an early extensive grasp. However, according to our investigations, no crawling, creeping, elementary walk, or sitting up can be activated in them. Neonates grasp the hair of the mother, a vital function for the survival of the young. In contemporary nonhuman primates including apes, the neonate brain is more mature. Thus, pronounced differences can be observed between early motor ontogenesis in the human and all other primates. The earliest human movements are complex performances rather than simple reflexes. The distinction between primitive reflexes and elementary neuromotor patterns is essential. Primitive reflexes are controlled by the brainstem. All can be activated in primates. These reflexes have short durations and contrary to elementary sensorimotor patterns occur only once in response to one stimulus, e.g., one head drop elicits one abduction-adduction of the upper extremities correlated to adduction and flexion of the lower extremities to a lesser degree with the Moro reflex. Elementary neuromotor patterns are much more complex and most of them including elementary walk may be elicited as early as the 19th-20th gestational week, though less perfectly than later.
Dutia, M B; Price, R F
1987-01-01
1. Interactions between the sagittal vestibulo-collic reflex (v.c.r.) and the cervico-collic stretch reflex (c.c.r.) have been studied in the neck extensor muscles biventer cervicis (b.c.) in the decerebrate cat. The v.c.r. was evoked by a 'standard' vestibular stimulus consisting of a sinusoidal nose-up, nose-down head movement of 6-8 deg amplitude at 1 Hz. The c.c.r. was evoked by sinusoidal stretching of the b.c. muscles at 1 Hz. The amplitude of muscle stretching, and its phase in relation to head movement, were systematically varied. 2. When muscle stretching was applied in phase with head movement (so that the muscles were stretched as the head moved in the nose-down direction), the gain of the combined (v.c.r. + c.c.r.) reflex in the b.c. muscles increased above that of the v.c.r. If the muscle stretching was applied out of phase with head movement (so that the muscles shortened as the head moved downward), the gain of the combined reflex was reduced to a value below that of the v.c.r. 3. The effects on the gain of the combined reflex varied in proportion to the amplitude of muscle stretching. The gain and phase of the combined reflex is modelled reasonably well by a linear vectorial addition between the v.c.r. and the c.c.r. over a wide range of amplitudes of muscle stretching. The linear summation model contains a proportionality constant K, which may represent a factor by which the two reflexes are 'calibrated' against each other. 4. If one of the b.c. muscles was held at a fixed length and the other stretched sinusoidally, the c.c.r. was evoked only in the stimulated muscle. Vestibular stimulation then summed with the c.c.r in the stimulated muscle, while on the contralateral side the reflex response was the same as that of the v.c.r. alone. It would appear therefore that the motoneurone pools of the b.c. muscles are organized as independent entities without mutually excitatory or inhibitory reflex linkages. This arrangement presumably allows flexibility in the supraspinal control of the b.c. muscles, which are often used either as synergists during sagittal head movement or as antagonists during horizontal or roll movements of the head. 5. The interaction between the v.c.r. and the c.c.r. results in an apparent 'servo-assistance' role for the muscle afferent feed-back from the b.c. muscles, amplifying or attenuating the reflex response of the muscles to a given head movement.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:3498829
NASA Astrophysics Data System (ADS)
Shashkov, Andrey; Lovtsov, Alexander; Tomilin, Dmitry
2017-04-01
According to present knowledge, countless numerical simulations of the discharge plasma in Hall thrusters were conducted. However, on the one hand, adequate two-dimensional (2D) models require a lot of time to carry out numerical research of the breathing mode oscillations or the discharge structure. On the other hand, existing one-dimensional (1D) models are usually too simplistic and do not take into consideration such important phenomena as neutral-wall collisions, magnetic field induced by Hall current and double, secondary, and stepwise ionizations together. In this paper a one-dimensional with three-dimensional velocity space (1D3V) hybrid-PIC model is presented. The model is able to incorporate all the phenomena mentioned above. A new method of neutral-wall collisions simulation in described space was developed and validated. Simulation results obtained for KM-88 and KM-60 thrusters are in a good agreement with experimental data. The Bohm collision coefficient was the same for both thrusters. Neutral-wall collisions, doubly charged ions, and induced magnetic field were proved to stabilize the breathing mode oscillations in a Hall thruster under some circumstances.
Killing Forms on the Five-Dimensional Einstein-Sasaki Y(p, q) Spaces
NASA Astrophysics Data System (ADS)
Visinescu, Mihai
2012-12-01
We present the complete set of Killing-Yano tensors on the five-dimensional Einstein-Sasaki Y(p, q) spaces. Two new Killing-Yano tensors are identified, associated with the complex volume form of the Calabi-Yau metric cone. The corresponding hidden symmetries are not anomalous and the geodesic equations are superintegrable.
NASA Astrophysics Data System (ADS)
Prasetyo, I.; Ramadhan, H. S.
2017-07-01
Here we present some solutions with noncanonical global monopole in nonlinear sigma model in 4-dimensional spacetime. We discuss some blackhole solutions and its horizons. We also obtain some compactification solutions. We list some possible compactification channels from 4-space to 2 × 2-spaces of constant curvatures.
Group-theoretical approach to the construction of bases in 2{sup n}-dimensional Hilbert space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, A.; Romero, J. L.; Klimov, A. B., E-mail: klimov@cencar.udg.mx
2011-06-15
We propose a systematic procedure to construct all the possible bases with definite factorization structure in 2{sup n}-dimensional Hilbert space and discuss an algorithm for the determination of basis separability. The results are applied for classification of bases for an n-qubit system.
Expansion of visual space during optokinetic afternystagmus (OKAN).
Kaminiarz, André; Krekelberg, Bart; Bremmer, Frank
2008-05-01
The mechanisms underlying visual perceptual stability are usually investigated using voluntary eye movements. In such studies, errors in perceptual stability during saccades and pursuit are commonly interpreted as mismatches between actual eye position and eye-position signals in the brain. The generality of this interpretation could in principle be tested by investigating spatial localization during reflexive eye movements whose kinematics are very similar to those of voluntary eye movements. Accordingly, in this study, we determined mislocalization of flashed visual targets during optokinetic afternystagmus (OKAN). These eye movements are quite unique in that they occur in complete darkness and are generated by subcortical control mechanisms. We found that during horizontal OKAN slow phases, subjects mislocalize targets away from the fovea in the horizontal direction. This corresponds to a perceived expansion of visual space and is unlike mislocalization found for any other voluntary or reflexive eye movement. Around the OKAN fast phases, we found a bias in the direction of the fast phase prior to its onset and opposite to the fast-phase direction thereafter. Such a biphasic modulation has also been reported in the temporal vicinity of saccades and during optokinetic nystagmus (OKN). A direct comparison, however, showed that the modulation during OKAN was much larger and occurred earlier relative to fast-phase onset than during OKN. A simple mismatch between the current eye position and the eye-position signal in the brain is unlikely to explain such disparate results across similar eye movements. Instead, these data support the view that mislocalization arises from errors in eye-centered position information.
The meaning of home at the end of life: A video-reflexive ethnography study.
Collier, Aileen; Phillips, Jane L; Iedema, Rick
2015-09-01
While 'home' is cited most frequently as being the preferred place of death, most people will die in institutions. Yet, the meaning and significance of home for people nearing the end of life has not been fully explored. The aim of this article is to critically examine the meaning of home for dying patients and their families. The qualitative study used video-reflexive ethnography methods. Data were collected and analysed over an 18-month period. Participants were recruited from two Australian sites: a palliative care day hospital and an acute hospital. Participants included patients with a prognosis of 6 months or less (n = 29), their nominated family member(s) (n = 5) and clinicians (n = 36) caring for them. Patients and families were 'followed' through care settings including the palliative care unit and into their own homes. Whether or not participants deemed space(s) safe or unsafe was closely related to the notion of home. Six themes emerged concerning this relationship: 'No place like home'; 'Safety, home and the hospital'; 'Hospital "becomes" home'; 'Home "becomes" hospital'; 'Hospital and "connections with home"'; and 'The built environment'. Home is a dynamic concept for people nearing the end of life and is concerned with expression of social and cultural identity including symbolic and affective connections, as opposed to being merely a physical dwelling place or street address. Clinicians caring for people nearing the end of life can foster linkages with home by facilitating connections with loved ones and meaningful artefacts. © The Author(s) 2015.
Efficient Stochastic Inversion Using Adjoint Models and Kernel-PCA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thimmisetty, Charanraj A.; Zhao, Wenju; Chen, Xiao
2017-10-18
Performing stochastic inversion on a computationally expensive forward simulation model with a high-dimensional uncertain parameter space (e.g. a spatial random field) is computationally prohibitive even when gradient information can be computed efficiently. Moreover, the ‘nonlinear’ mapping from parameters to observables generally gives rise to non-Gaussian posteriors even with Gaussian priors, thus hampering the use of efficient inversion algorithms designed for models with Gaussian assumptions. In this paper, we propose a novel Bayesian stochastic inversion methodology, which is characterized by a tight coupling between the gradient-based Langevin Markov Chain Monte Carlo (LMCMC) method and a kernel principal component analysis (KPCA). Thismore » approach addresses the ‘curse-of-dimensionality’ via KPCA to identify a low-dimensional feature space within the high-dimensional and nonlinearly correlated parameter space. In addition, non-Gaussian posterior distributions are estimated via an efficient LMCMC method on the projected low-dimensional feature space. We will demonstrate this computational framework by integrating and adapting our recent data-driven statistics-on-manifolds constructions and reduction-through-projection techniques to a linear elasticity model.« less
Exploring Replica-Exchange Wang-Landau sampling in higher-dimensional parameter space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valentim, Alexandra; Rocha, Julio C. S.; Tsai, Shan-Ho
We considered a higher-dimensional extension for the replica-exchange Wang-Landau algorithm to perform a random walk in the energy and magnetization space of the two-dimensional Ising model. This hybrid scheme combines the advantages of Wang-Landau and Replica-Exchange algorithms, and the one-dimensional version of this approach has been shown to be very efficient and to scale well, up to several thousands of computing cores. This approach allows us to split the parameter space of the system to be simulated into several pieces and still perform a random walk over the entire parameter range, ensuring the ergodicity of the simulation. Previous work, inmore » which a similar scheme of parallel simulation was implemented without using replica exchange and with a different way to combine the result from the pieces, led to discontinuities in the final density of states over the entire range of parameters. From our simulations, it appears that the replica-exchange Wang-Landau algorithm is able to overcome this diculty, allowing exploration of higher parameter phase space by keeping track of the joint density of states.« less
A Go-type opsin mediates the shadow reflex in the annelid Platynereis dumerilii.
Ayers, Thomas; Tsukamoto, Hisao; Gühmann, Martin; Veedin Rajan, Vinoth Babu; Tessmar-Raible, Kristin
2018-04-18
The presence of photoreceptive molecules outside the eye is widespread among animals, yet their functions in the periphery are less well understood. Marine organisms, such as annelid worms, exhibit a 'shadow reflex', a defensive withdrawal behaviour triggered by a decrease in illumination. Herein, we examine the cellular and molecular underpinnings of this response, identifying a role for a photoreceptor molecule of the G o -opsin class in the shadow response of the marine bristle worm Platynereis dumerilii. We found Pdu-Go-opsin1 expression in single specialised cells located in adult Platynereis head and trunk appendages, known as cirri. Using gene knock-out technology and ablation approaches, we show that the presence of Go-opsin1 and the cirri is necessary for the shadow reflex. Consistently, quantification of the shadow reflex reveals a chromatic dependence upon light of approximately 500 nm in wavelength, matching the photoexcitation characteristics of the Platynereis Go-opsin1. However, the loss of Go-opsin1 does not abolish the shadow reflex completely, suggesting the existence of a compensatory mechanism, possibly acting through a ciliary-type opsin, Pdu-c-opsin2, with a Lambda max of approximately 490 nm. We show that a Go-opsin is necessary for the shadow reflex in a marine annelid, describing a functional example for a peripherally expressed photoreceptor, and suggesting that, in different species, distinct opsins contribute to varying degrees to the shadow reflex.