Qubit and fermionic Fock spaces from type II superstring black holes
NASA Astrophysics Data System (ADS)
Belhaj, A.; Bensed, M.; Benslimane, Z.; Sedra, M. B.; Segui, A.
Using Hodge diagram combinatorial data, we study qubit and fermionic Fock spaces from the point of view of type II superstring black holes based on complex compactifications. Concretely, we establish a one-to-one correspondence between qubits, fermionic spaces and extremal black holes in maximally supersymmetric supergravity obtained from type II superstring on complex toroidal and Calabi-Yau compactifications. We interpret the differential forms of the n-dimensional complex toroidal compactification as states of n-qubits encoding information on extremal black hole charges. We show that there are 2n copies of n qubit systems which can be split as 2n = 2n-1 + 2n-1. More precisely, 2n-1 copies are associated with even D-brane charges in type IIA superstring and the other 2n-1 ones correspond to odd D-brane charges in IIB superstring. This correspondence is generalized to a class of Calabi-Yau manifolds. In connection with black hole charges in type IIA superstring, an n-qubit system has been obtained from a canonical line bundle of n factors of one-dimensional projective space ℂℙ1.
Infinite tension limit of the pure spinor superstring
NASA Astrophysics Data System (ADS)
Berkovits, Nathan
2014-03-01
Mason and Skinner recently constructed a chiral infinite tension limit of the Ramond-Neveu-Schwarz superstring which was shown to compute the Cachazo-He-Yuan formulae for tree-level d = 10 Yang-Mills amplitudes and the NS-NS sector of tree-level d = 10 supergravity amplitudes. In this letter, their chiral infinite tension limit is generalized to the pure spinor superstring which computes a d = 10 superspace version of the Cachazo-He-Yuan formulae for tree-level d = 10 super-Yang-Mills and supergravity amplitudes.
Nondecoupling of maximal supergravity from the superstring.
Green, Michael B; Ooguri, Hirosi; Schwarz, John H
2007-07-27
We consider the conditions necessary for obtaining perturbative maximal supergravity in d dimensions as a decoupling limit of type II superstring theory compactified on a (10-d) torus. For dimensions d=2 and d=3, it is possible to define a limit in which the only finite-mass states are the 256 massless states of maximal supergravity. However, in dimensions d>or=4, there are infinite towers of additional massless and finite-mass states. These correspond to Kaluza-Klein charges, wound strings, Kaluza-Klein monopoles, or branes wrapping around cycles of the toroidal extra dimensions. We conclude that perturbative supergravity cannot be decoupled from string theory in dimensions>or=4. In particular, we conjecture that pure N=8 supergravity in four dimensions is in the Swampland.
Supersymmetric solutions of the cosmological, gauged, ℂ magic model
NASA Astrophysics Data System (ADS)
Chimento, Samuele; Ortín, Tomás; Ruipérez, Alejandro
2018-05-01
We construct supersymmetric solutions of theories of gauged N = 1 , d = 5 supergravity coupled to vector multiplets with a U(1)R Abelian (Fayet-Iliopoulos) gauging and an independent SU(2) gauging associated to an SU(2) isometry group of the Real Special scalar manifold. These theories provide minimal supersymmetrizations of 5-dimensional SU(2) Einstein-Yang-Mills theories with negative cosmological constant. We consider a minimal model with these gauge groups and the "magic model" based on the Jordan algebra J 3 ℂ with gauge group SU(3) × U(1)R, which is a consistent truncation of maximal SO(6)-gauged supergravity in d = 5 and whose solutions can be embedded in Type IIB Superstring Theory. We find several solutions containing selfdual SU(2) instantons, some of which asymptote to AdS5 and some of which are very small, supersymmetric, deformations of AdS5. We also show how some of those solutions can be embedded in Romans' SU(2) × U(1)-gauged half-maximal supergravity, which was obtained by Lu, Pope and Tran by compactification of the Type IIB Superstring effective action. This provides another way of uplifting those solutions to 10 dimensions.
DIS off glueballs from string theory: the role of the chiral anomaly and the Chern-Simons term
NASA Astrophysics Data System (ADS)
Kovensky, Nicolas; Michalski, Gustavo; Schvellinger, Martin
2018-04-01
We calculate the structure function F 3( x, q 2) of the hadronic tensor of deep inelastic scattering (DIS) of charged leptons from glueballs of N=4 SYM theory at strong coupling and at small values of the Bjorken parameter in the gauge/string theory duality framework. This is done in terms of type IIB superstring theory scattering amplitudes. From the AdS5 perspective, the relevant part of the scattering amplitude comes from the five-dimensional non-Abelian Chern-Simons terms in the SU(4) gauged supergravity obtained from dimensional reduction on S 5. From type IIB superstring theory we derive an effective Lagrangian describing the four-point interaction in the local approximation. The exponentially small regime of the Bjorken parameter is investigated using Pomeron techniques.
Supersymmetry, Supergravity, and Unification
NASA Astrophysics Data System (ADS)
Nath, Pran
2016-12-01
Dedication; Preface; 1. A brief history of unification; 2. Gravitation; 3. Non-abelian gauge theory; 4. Spontaneous breaking of global and local symmetries; 5. The Standard Model; 6. Anomalies; 7. Effective Lagrangians; 8. Supersymmetry; 9. Grand unification; 10. MSSM Lagrangian; 11. N = 1 supergravity; 12. Coupling of supergravity with matter and gauge fields; 13. Supergravity grand unification; 14. Phenomenology of supergravity grand unification; 15. CP violation in supergravity unified theories; 16. Proton stability in supergravity unified theories; 17. Cosmology, astroparticle physics and SUGRA unification; 18. Extended supergravities and supergravities from superstrings; 19. Specialized topics; 20. The future of unification; 21. Appendices; 22. Notations, conventions, and formulae; 23. Physical constants; 24. List of books and reviews for further reading; Index.
Computing the scalar field couplings in 6D supergravity
NASA Astrophysics Data System (ADS)
Saidi, El Hassan
2008-11-01
Using non-chiral supersymmetry in 6D space-time, we compute the explicit expression of the metric the scalar manifold SO(1,1)×{SO(4,20)}/{SO(4)×SO(20)} of the ten-dimensional type IIA superstring on generic K3. We consider as well the scalar field self-couplings in the general case where the non-chiral 6D supergravity multiplet is coupled to generic n vector supermultiplets with moduli space SO(1,1)×{SO(4,n)}/{SO(4)×SO(n)}. We also work out a dictionary giving a correspondence between hyper-Kähler geometry and the Kähler geometry of the Coulomb branch of 10D type IIA on Calabi-Yau threefolds. Others features are also discussed.
A superstring field theory for supergravity
NASA Astrophysics Data System (ADS)
Reid-Edwards, R. A.; Riccombeni, D. A.
2017-09-01
A covariant closed superstring field theory, equivalent to classical tendimensional Type II supergravity, is presented. The defining conformal field theory is the ambitwistor string worldsheet theory of Mason and Skinner. This theory is known to reproduce the scattering amplitudes of Cachazo, He and Yuan in which the scattering equations play an important role and the string field theory naturally incorporates these results. We investigate the operator formalism description of the ambitwsitor string and propose an action for the string field theory of the bosonic and supersymmetric theories. The correct linearised gauge symmetries and spacetime actions are explicitly reproduced and evidence is given that the action is correct to all orders. The focus is on the NeveuSchwarz sector and the explicit description of tree level perturbation theory about flat spacetime. Application of the string field theory to general supergravity backgrounds and the inclusion of the Ramond sector are briefly discussed.
String-inspired supergravity model at one loop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaillard, M.K.; Papadopoulos, A.; Pierce, D.M.
1992-03-15
We study a prototype supergravity model from superstrings, with three generations of matter fields in the untwisted sector, nonperturbatively induced supersymmetry breaking and including threshold corrections in conformity with modular invariance. The scale degeneracy of the vacuum is lifted at the one-loop level, allowing a determination of the fundamental parameters of the effective low-energy theory.
SUSY’s Ladder: Reframing sequestering at Large Volume
Reece, Matthew; Xue, Wei
2016-04-07
Theories with approximate no-scale structure, such as the Large Volume Scenario, have a distinctive hierarchy of multiple mass scales in between TeV gaugino masses and the Planck scale, which we call SUSY's Ladder. This is a particular realization of Split Supersymmetry in which the same small parameter suppresses gaugino masses relative to scalar soft masses, scalar soft masses relative to the gravitino mass, and the UV cutoff or string scale relative to the Planck scale. This scenario has many phenomenologically interesting properties, and can avoid dangers including the gravitino problem, flavor problems, and the moduli-induced LSP problem that plague othermore » supersymmetric theories. We study SUSY's Ladder using a superspace formalism that makes the mysterious cancelations in previous computations manifest. This opens the possibility of a consistent effective field theory understanding of the phenomenology of these scenarios, based on power-counting in the small ratio of string to Planck scales. We also show that four-dimensional theories with approximate no-scale structure enforced by a single volume modulus arise only from two special higher-dimensional theories: five-dimensional supergravity and ten-dimensional type IIB supergravity. As a result, this gives a phenomenological argument in favor of ten dimensional ultraviolet physics which is different from standard arguments based on the consistency of superstring theory.« less
NASA Astrophysics Data System (ADS)
1995-04-01
The following topics were dealt with: string theory, gauge theory, quantum gravity, quantum geometry, black hole physics and information loss, second quantisation of the Wilson loop, 2D Yang-Mills theory, topological field theories, equivariant cohomology, superstring theory and fermion masses, supergravity, topological gravity, waves in string cosmology, superstring theories, 4D space-time.
Type IIB supergravity solution for the T-dual of the η-deformed AdS 5 × S 5 superstring
NASA Astrophysics Data System (ADS)
Hoare, B.; Tseytlin, A. A.
2015-10-01
We find an exact type IIB supergravity solution that represents a one-parameter deformation of the T-dual of the AdS 5 × S 5 background (with T-duality applied in all 6 abelian bosonic isometric directions). The non-trivial fields are the metric, dilaton and RR 5-form only. The latter has remarkably simple "undeformed" form when written in terms of a "deformation-rotated" vielbein basis. An unusual feature of this solution is that the dilaton contains a linear dependence on the isometric coordinates of the metric precluding a straightforward reversal of T-duality. If we still formally dualize back, we find exactly the metric, B-field and product of dilaton with RR field strengths as recently extracted from the η-deformed AdS 5 × S 5 superstring action in arXiv:1507.04239. We also discuss similar solutions for deformed AdS n × S n backgrounds with n = 2 , 3. In the η → i limit we demonstrate that all these backgrounds can be interpreted as special limits of gauged WZW models and are also related to (a limit of) the Pohlmeyer-reduced models of the AdS n × S n superstrings.
Supergravitational conformal Galileons
NASA Astrophysics Data System (ADS)
Deen, Rehan; Ovrut, Burt
2017-08-01
The worldvolume actions of 3+1 dimensional bosonic branes embedded in a five-dimensional bulk space can lead to important effective field theories, such as the DBI conformal Galileons, and may, when the Null Energy Condition is violated, play an essential role in cosmological theories of the early universe. These include Galileon Genesis and "bouncing" cosmology, where a pre-Big Bang contracting phase bounces smoothly to the presently observed expanding universe. Perhaps the most natural arena for such branes to arise is within the context of superstring and M -theory vacua. Here, not only are branes required for the consistency of the theory, but, in many cases, the exact spectrum of particle physics occurs at low energy. However, such theories have the additional constraint that they must be N = 1 supersymmetric. This motivates us to compute the worldvolume actions of N = 1 supersymmetric three-branes, first in flat superspace and then to generalize them to N = 1 supergravitation. In this paper, for simplicity, we begin the process, not within the context of a superstring vacuum but, rather, for the conformal Galileons arising on a co-dimension one brane embedded in a maximally symmetric AdS 5 bulk space. We proceed to N = 1 supersymmetrize the associated worldvolume theory and then generalize the results to N = 1 supergravity, opening the door to possible new cosmological scenarios
Supergravitational conformal Galileons
Deen, Rehan; Ovrut, Burt
2017-08-04
The worldvolume actions of 3+1 dimensional bosonic branes embedded in a five-dimensional bulk space can lead to important effective field theories, such as the DBI conformal Galileons, and may, when the Null Energy Condition is violated, play an essential role in cosmological theories of the early universe. These include Galileon Genesis and “bouncing” cosmology, where a pre-Big Bang contracting phase bounces smoothly to the presently observed expanding universe. Perhaps the most natural arena for such branes to arise is within the context of superstring and M -theory vacua. Here, not only are branes required for the consistency of the theory,more » but, in many cases, the exact spectrum of particle physics occurs at low energy. However, such theories have the additional constraint that they must be N = 1 supersymmetric. This motivates us to compute the worldvolume actions of N = 1 supersymmetric three-branes, first in flat superspace and then to generalize them to N = 1 supergravitation. In this paper, for simplicity, we begin the process, not within the context of a superstring vacuum but, rather, for the conformal Galileons arising on a co-dimension one brane embedded in a maximally symmetric AdS 5 bulk space. We proceed to N = 1 supersymmetrize the associated worldvolume theory and then generalize the results to N = 1 supergravity, opening the door to possible new cosmological scenarios« less
Supergravitational conformal Galileons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deen, Rehan; Ovrut, Burt
The worldvolume actions of 3+1 dimensional bosonic branes embedded in a five-dimensional bulk space can lead to important effective field theories, such as the DBI conformal Galileons, and may, when the Null Energy Condition is violated, play an essential role in cosmological theories of the early universe. These include Galileon Genesis and “bouncing” cosmology, where a pre-Big Bang contracting phase bounces smoothly to the presently observed expanding universe. Perhaps the most natural arena for such branes to arise is within the context of superstring and M -theory vacua. Here, not only are branes required for the consistency of the theory,more » but, in many cases, the exact spectrum of particle physics occurs at low energy. However, such theories have the additional constraint that they must be N = 1 supersymmetric. This motivates us to compute the worldvolume actions of N = 1 supersymmetric three-branes, first in flat superspace and then to generalize them to N = 1 supergravitation. In this paper, for simplicity, we begin the process, not within the context of a superstring vacuum but, rather, for the conformal Galileons arising on a co-dimension one brane embedded in a maximally symmetric AdS 5 bulk space. We proceed to N = 1 supersymmetrize the associated worldvolume theory and then generalize the results to N = 1 supergravity, opening the door to possible new cosmological scenarios« less
Superspace geometrical realization of the N-extended super Virasoro algebra and its dual
NASA Astrophysics Data System (ADS)
Curto, C.; Gates, S. J., Jr.; Rodgers, V. G. J.
2000-05-01
We derive properties of N-extended /GR super Virasoro algebras. These include adding central extensions, identification of all primary fields and the action of the adjoint representation on its dual. The final result suggest identification with the spectrum of fields in supergravity theories and superstring/M-theory constructed from NSR N-extended supersymmetric /GR Virasoro algebras.
Five-Dimensional Gauged Supergravity with Higher Derivatives
NASA Astrophysics Data System (ADS)
Hanaki, Kentaro
This thesis summarizes the recent developments on the study of five-dimensional gauged supergravity with higher derivative terms, emphasizing in particular the application to understanding the hydrodynamic properties of gauge theory plasma via the AdS/CFT correspondence. We first review how the ungauged and gauged five-dimensional supergravity actions with higher derivative terms can be constructed using the off-shell superconformal formalism. Then we relate the gauged supergravity to four-dimensional gauge theory using the AdS/CFT correspondence and extract the physical quantities associated with gauge theory plasma from the dual classical supergravity computations. We put a particular emphasis on the discussion of the conjectured lower bound for the shear viscosity over entropy density ratio proposed by Kovtun, Son and Starinets, and discuss how higher derivative terms in supergravity and the introduction of chemical potential for the R-charge affect this bound.
Supersymmetric Yang-Mills theory on conformal supergravity backgrounds in ten dimensions
NASA Astrophysics Data System (ADS)
de Medeiros, Paul; Figueroa-O'Farrill, José
2016-03-01
We consider bosonic supersymmetric backgrounds of ten-dimensional conformal supergravity. Up to local conformal isometry, we classify the maximally supersymmetric backgrounds, determine their conformal symmetry superalgebras and show how they arise as near-horizon geometries of certain half-BPS backgrounds or as a plane-wave limit thereof. We then show how to define Yang-Mills theory with rigid supersymmetry on any supersymmetric conformal supergravity background and, in particular, on the maximally supersymmetric backgrounds. We conclude by commenting on a striking resemblance between the supersymmetric backgrounds of ten-dimensional conformal supergravity and those of eleven-dimensional Poincaré supergravity.
Exceptional Form of D=11 Supergravity
NASA Astrophysics Data System (ADS)
Hohm, Olaf; Samtleben, Henning
2013-12-01
Eleven-dimensional supergravity reveals large exceptional symmetries upon reduction, in accordance with the U-duality groups of M theory, but their higher-dimensional geometric origin has remained a mystery. In this Letter, we show that D=11 supergravity can be extended to be fully covariant under the exceptional groups En(n), n=6, 7, 8. Motivated by a similar formulation of double field theory we introduce an extended “exceptional spacetime.” We illustrate the construction by giving the explicit E6(6) covariant form: the full D=11 supergravity, in a 5+6 splitting of coordinates but without truncation, embeds into an E6(6) covariant 5+27 dimensional theory. We argue that this covariant form likewise comprises type IIB supergravity.
IIB supergravity and the E 6(6) covariant vector-tensor hierarchy
Ciceri, Franz; de Wit, Bernard; Varela, Oscar
2015-04-20
IIB supergravity is reformulated with a manifest local USp(8) invariance that makes the embedding of five-dimensional maximal supergravities transparent. In this formulation the ten-dimensional theory exhibits all the 27 one-form fields and 22 of the 27 two-form fields that are required by the vector-tensor hierarchy of the five-dimensional theory. The missing 5 two-form fields must transform in the same representation as a descendant of the ten-dimensional ‘dual graviton’. The invariant E 6(6) symmetric tensor that appears in the vector-tensor hierarchy is reproduced. Generalized vielbeine are derived from the supersymmetry transformations of the vector fields, as well as consistent expressions formore » the USp(8) covariant fermion fields. Implications are further discussed for the consistency of the truncation of IIB supergravity compactified on the five-sphere to maximal gauged supergravity in five space-time dimensions with an SO(6) gauge group.« less
Dimensionality in Supergravity Cosmology
NASA Astrophysics Data System (ADS)
Wu, Zhong Chao
2008-01-01
It is shown that in d = 11 supergravity, under a very reasonable ansatz, the observable spacetime must be 4-dimensional. The spacetime dimensionality, for the first time, is proven from the First Principle, instead of the Anthropic Principle.
NASA Astrophysics Data System (ADS)
de Wit, Bernard; Reys, Valentin
2017-12-01
Supergravity with eight supercharges in a four-dimensional Euclidean space is constructed at the full non-linear level by performing an off-shell time-like reduction of five-dimensional supergravity. The resulting four-dimensional theory is realized off-shell with the Weyl, vector and tensor supermultiplets and a corresponding multiplet calculus. Hypermultiplets are included as well, but they are themselves only realized with on-shell supersymmetry. We also briefly discuss the non-linear supermultiplet. The off-shell reduction leads to a full understanding of the Euclidean theory. A complete multiplet calculus is presented along the lines of the Minkowskian theory. Unlike in Minkowski space, chiral and anti-chiral multiplets are real and supersymmetric actions are generally unbounded from below. Precisely as in the Minkowski case, where one has different formulations of Poincaré supergravity upon introducing different compensating supermultiplets, one can also obtain different versions of Euclidean supergravity.
Rigid supersymmetric backgrounds of 3-dimensional Newton-Cartan supergravity
Knodel, Gino; Lisbao, Pedro; Liu, James T.
2016-06-06
Recently, a non-relativistic off-shell formulation of three dimensional Newton-Cartan supergravity was proposed as the c → ∞ limit of three dimensional N = 2 super-gravity [1]. Here in the present paper we study supersymmetric backgrounds within this theory. Using integrability constraints for the non-relativistic Killing spinor equations, we explicitly construct all maximally supersymmetric solutions, which admit four supercharges. In addition to these solutions, there aremore » $$\\frac{1}{2}$$ -BPS solutions with reduced supersymmetry. We give explicit examples of such backgrounds and derive necessary conditions for backgrounds preserving two supercharges. Finally, we address how supersymmetric backgrounds of N = 2 supergravity are connected to the solutions found here in the c → ∞ limit.« less
Romans supergravity from five-dimensional holograms
NASA Astrophysics Data System (ADS)
Chang, Chi-Ming; Fluder, Martin; Lin, Ying-Hsuan; Wang, Yifan
2018-05-01
We study five-dimensional superconformal field theories and their holographic dual, matter-coupled Romans supergravity. On the one hand, some recently derived formulae allow us to extract the central charges from deformations of the supersymmetric five-sphere partition function, whose large N expansion can be computed using matrix model techniques. On the other hand, the conformal and flavor central charges can be extracted from the six-dimensional supergravity action, by carefully analyzing its embedding into type I' string theory. The results match on the two sides of the holographic duality. Our results also provide analytic evidence for the symmetry enhancement in five-dimensional superconformal field theories.
Hidden symmetries and Lie algebra structures from geometric and supergravity Killing spinors
NASA Astrophysics Data System (ADS)
Açık, Özgür; Ertem, Ümit
2016-08-01
We consider geometric and supergravity Killing spinors and the spinor bilinears constructed out of them. The spinor bilinears of geometric Killing spinors correspond to the antisymmetric generalizations of Killing vector fields which are called Killing-Yano forms. They constitute a Lie superalgebra structure in constant curvature spacetimes. We show that the Dirac currents of geometric Killing spinors satisfy a Lie algebra structure up to a condition on 2-form spinor bilinears. We propose that the spinor bilinears of supergravity Killing spinors give way to different generalizations of Killing vector fields to higher degree forms. It is also shown that those supergravity Killing forms constitute a Lie algebra structure in six- and ten-dimensional cases. For five- and eleven-dimensional cases, the Lie algebra structure depends on an extra condition on supergravity Killing forms.
On an algebraic structure of dimensionally reduced magical supergravity theories
NASA Astrophysics Data System (ADS)
Fukuchi, Shin; Mizoguchi, Shun'ya
2018-06-01
We study an algebraic structure of magical supergravities in three dimensions. We show that if the commutation relations among the generators of the quasi-conformal group in the super-Ehlers decomposition are in a particular form, then one can always find a parameterization of the group element in terms of various 3d bosonic fields that reproduces the 3d reduced Lagrangian of the corresponding magical supergravity. This provides a unified treatment of all the magical supergravity theories in finding explicit relations between the 3d dimensionally reduced Lagrangians and particular coset nonlinear sigma models. We also verify that the commutation relations of E 6 (+ 2), the quasi-conformal group for A = C, indeed satisfy this property, allowing the algebraic interpretation of the structure constants and scalar field functions as was done in the F 4 (+ 4) magical supergravity.
String Theory Origin of Dyonic N=8 Supergravity and Its Chern-Simons Duals.
Guarino, Adolfo; Jafferis, Daniel L; Varela, Oscar
2015-08-28
We clarify the higher-dimensional origin of a class of dyonic gaugings of D=4 N=8 supergravity recently discovered, when the gauge group is chosen to be ISO(7). This dyonically gauged maximal supergravity arises from consistent truncation of massive IIA supergravity on S^6, and its magnetic coupling constant descends directly from the Romans mass. The critical points of the supergravity uplift to new four-dimensional anti-de Sitter space (AdS4) massive type IIA vacua. We identify the corresponding three-dimensional conformal field theory (CFT3) duals as super-Chern-Simons-matter theories with simple gauge group SU(N) and level k given by the Romans mass. In particular, we find a critical point that uplifts to the first explicit N=2 AdS4 massive IIA background. We compute its free energy and that of the candidate dual Chern-Simons theory by localization to a solvable matrix model, and find perfect agreement. This provides the first AdS4/CFT3 precision match in massive type IIA string theory.
Mass-deformed ABJM and black holes in AdS4
NASA Astrophysics Data System (ADS)
Bobev, Nikolay; Min, Vincent S.; Pilch, Krzysztof
2018-03-01
We find a class of new supersymmetric dyonic black holes in four-dimensional maximal gauged supergravity which are asymptotic to the SU(3) × U(1) invariant AdS4 Warner vacuum. These black holes can be embedded in eleven-dimensional supergravity where they describe the backreaction of M2-branes wrapped on a Riemann surface. The holographic dual description of these supergravity backgrounds is given by a partial topological twist on a Riemann surface of a three-dimensional N=2 SCFT that is obtained by a mass-deformation of the ABJM theory. We compute explicitly the topologically twisted index of this SCFT and show that it accounts for the entropy of the black holes.
Topological charges in SL(2,R) covariant massive 11-dimensional and type IIB supergravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callister, Andrew K.; Smith, Douglas J.
2009-12-15
In this paper we construct closed expressions that correspond to the topological charges of the various 1/2-BPS states of the maximal 10- and 11-dimensional supergravity theories. These expressions are related to the structure of the supersymmetry algebras in curved spacetimes. We mainly focus on IIB supergravity and 11-dimensional supergravity in a double M9-brane background, with an emphasis on the SL(2,R) multiplet structure of the charges and how these map between theories. This includes the charges corresponding to the multiplets of 7- and 9-branes in IIB. We find that examining the possible multiplet structures of the charges provides another tool formore » exploring the spectrum of BPS states that appear in these theories. As a prerequisite to constructing the charges we determine the field equations and multiplet structure of the 11-dimensional gauge potentials, extending previous results on the subject. The massive gauge transformations of the fields are also discussed. We also demonstrate how these massive gauge transformations are compatible with the construction of an SL(2,R) covariant kinetic term in the 11-dimensional Kaluza-Klein monopole worldvolume action.« less
Non-Abelian black string solutions of N = (2,0) , d = 6 supergravity
NASA Astrophysics Data System (ADS)
Cano, Pablo A.; Ortín, Tomás; Santoli, Camilla
2016-12-01
We show that, when compactified on a circle, N = (2, 0), d = 6 supergravity coupled to 1 tensor multiplet and n V vector multiplets is dual to N = (2 , 0) , d = 6 supergravity coupled to just n T = n V + 1 tensor multiplets and no vector multiplets. Both theories reduce to the same models of N = 2 , d = 5 supergravity coupled to n V 5 = n V + 2 vector fields. We derive Buscher rules that relate solutions of these theories (and of the theory that one obtains by dualizing the 3-form field strength) admitting an isometry. Since the relations between the fields of N = 2 , d = 5 supergravity and those of the 6-dimensional theories are the same with or without gaugings, we construct supersymmetric non-Abelian solutions of the 6-dimensional gauged theories by uplifting the recently found 5-dimensional supersymmetric non-Abelian black-hole solutions. The solutions describe the usual superpositions of strings and waves supplemented by a BPST instanton in the transverse directions, similar to the gauge dyonic string of Duff, Lü and Pope. One of the solutions obtained interpolates smoothly between two AdS3× S3 geometries with different radii.
Solution to the nonlinear field equations of ten dimensional supersymmetric Yang-Mills theory
NASA Astrophysics Data System (ADS)
Mafra, Carlos R.; Schlotterer, Oliver
2015-09-01
In this paper, we present a formal solution to the nonlinear field equations of ten-dimensional super Yang-Mills theory. It is assembled from products of linearized superfields which have been introduced as multiparticle superfields in the context of superstring perturbation theory. Their explicit form follows recursively from the conformal field theory description of the gluon multiplet in the pure spinor superstring. Furthermore, superfields of higher-mass dimensions are defined and their equations of motion are spelled out.
Reducing democratic type II supergravity on SU(3) × SU(3) structures
NASA Astrophysics Data System (ADS)
Cassani, Davide
2008-06-01
Type II supergravity on backgrounds admitting SU(3) × SU(3) structure and general fluxes is considered. Using the generalized geometry formalism, we study dimensional reductions leading to N = 2 gauged supergravity in four dimensions, possibly with tensor multiplets. In particular, a geometric formula for the full N = 2 scalar potential is given. Then we implement a truncation ansatz, and derive the complete N = 2 bosonic action. While the NSNS contribution is obtained via a direct dimensional reduction, the contribution of the RR sector is computed starting from the democratic formulation and demanding consistency with the reduced equations of motion.
Huang, Yu-tin; Johansson, Henrik
2013-04-26
We show that three-dimensional supergravity amplitudes can be obtained as double copies of either three-algebra super-Chern-Simons matter theory or two-algebra super-Yang-Mills theory when either theory is organized to display the color-kinematics duality. We prove that only helicity-conserving four-dimensional gravity amplitudes have nonvanishing descendants when reduced to three dimensions, implying the vanishing of odd-multiplicity S-matrix elements, in agreement with Chern-Simons matter theory. We explicitly verify the double-copy correspondence at four and six points for N = 12,10,8 supergravity theories and discuss its validity for all multiplicity.
On gauged maximal d = 8 supergravities
NASA Astrophysics Data System (ADS)
Lasso Andino, Óscar; Ortín, Tomás
2018-04-01
We study the gauging of maximal d = 8 supergravity using the embedding tensor formalism. We focus on SO(3) gaugings, study all the possible choices of gauge fields and construct explicitly the bosonic actions (including the complicated Chern–Simons terms) for all these choices, which are parametrized by a parameter associated to the 8-dimensional SL(2, {R}) duality group that relates all the possible choices which are, ultimately, equivalent from the purely 8-dimensional point of view. Our result proves that the theory constructed by Salam and Sezgin by Scherk–Schwarz compactification of d = 11 supergravity and the theory constructed in Alonso-Alberca (2001 Nucl. Phys. B 602 329) by dimensional reduction of the so called ‘massive 11-dimensional supergravity’ proposed by Meessen and Ortín in (1999 Nucl. Phys. B 541 195) are indeed related by an SL(2, {R}) duality even though they have two completely different 11-dimensional origins.
Scattering amplitudes in $$\\mathcal{N}=2 $$ Maxwell-Einstein and Yang-Mills/Einstein supergravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiodaroli, Marco; Gunaydin, Murat; Johansson, Henrik
We expose a double-copy structure in the scattering amplitudes of the generic Jordan family of N = 2 Maxwell-Einstein and Yang-Mills/Einstein supergravity theories in four and five dimensions. The Maxwell-Einstein supergravity amplitudes are obtained through the color/kinematics duality as a product of two gauge-theory factors; one originating from pure N = 2 super-Yang-Mills theory and the other from the dimensional reduction of a bosonic higher-dimensional pure Yang-Mills theory. We identify a specific symplectic frame in four dimensions for which the on-shell fields and amplitudes from the double-copy construction can be identified with the ones obtained from the supergravity Lagrangian andmore » Feynman-rule computations. The Yang-Mills/Einstein supergravity theories are obtained by gauging a compact subgroup of the isometry group of their Maxwell-Einstein counterparts. For the generic Jordan family this process is identified with the introduction of cubic scalar couplings on the bosonic gauge-theory side, which through the double copy are responsible for the non-abelian vector interactions in the supergravity theory. As a demonstration of the power of this structure, we present explicit computations at treelevel and one loop. Lastly, the double-copy construction allows us to obtain compact expressions for the supergravity superamplitudes, which are naturally organized as polynomials in the gauge coupling constant.« less
Scattering amplitudes in $$\\mathcal{N}=2 $$ Maxwell-Einstein and Yang-Mills/Einstein supergravity
Chiodaroli, Marco; Gunaydin, Murat; Johansson, Henrik; ...
2015-01-15
We expose a double-copy structure in the scattering amplitudes of the generic Jordan family of N = 2 Maxwell-Einstein and Yang-Mills/Einstein supergravity theories in four and five dimensions. The Maxwell-Einstein supergravity amplitudes are obtained through the color/kinematics duality as a product of two gauge-theory factors; one originating from pure N = 2 super-Yang-Mills theory and the other from the dimensional reduction of a bosonic higher-dimensional pure Yang-Mills theory. We identify a specific symplectic frame in four dimensions for which the on-shell fields and amplitudes from the double-copy construction can be identified with the ones obtained from the supergravity Lagrangian andmore » Feynman-rule computations. The Yang-Mills/Einstein supergravity theories are obtained by gauging a compact subgroup of the isometry group of their Maxwell-Einstein counterparts. For the generic Jordan family this process is identified with the introduction of cubic scalar couplings on the bosonic gauge-theory side, which through the double copy are responsible for the non-abelian vector interactions in the supergravity theory. As a demonstration of the power of this structure, we present explicit computations at treelevel and one loop. Lastly, the double-copy construction allows us to obtain compact expressions for the supergravity superamplitudes, which are naturally organized as polynomials in the gauge coupling constant.« less
Super-Lie n-algebra extensions, higher WZW models and super-p-branes with tensor multiplet fields
NASA Astrophysics Data System (ADS)
Fiorenza, Domenico; Sati, Hisham; Schreiber, Urs
2015-12-01
We formalize higher-dimensional and higher gauge WZW-type sigma-model local prequantum field theory, and discuss its rationalized/perturbative description in (super-)Lie n-algebra homotopy theory (the true home of the "FDA"-language used in the supergravity literature). We show generally how the intersection laws for such higher WZW-type σ-model branes (open brane ending on background brane) are encoded precisely in (super-)L∞-extension theory and how the resulting "extended (super-)space-times" formalize spacetimes containing σ-model brane condensates. As an application we prove in Lie n-algebra homotopy theory that the complete super-p-brane spectrum of superstring/M-theory is realized this way, including the pure σ-model branes (the "old brane scan") but also the branes with tensor multiplet worldvolume fields, notably the D-branes and the M5-brane. For instance the degree-0 piece of the higher symmetry algebra of 11-dimensional (11D) spacetime with an M2-brane condensate turns out to be the "M-theory super-Lie algebra". We also observe that in this formulation there is a simple formal proof of the fact that type IIA spacetime with a D0-brane condensate is the 11D sugra/M-theory spacetime, and of (prequantum) S-duality for type IIB string theory. Finally we give the non-perturbative description of all this by higher WZW-type σ-models on higher super-orbispaces with higher WZW terms in stacky differential cohomology.
Hidden conformal symmetry of rotating black holes in minimal five-dimensional gauged supergravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Setare, M. R.; Kamali, V.
2010-10-15
In the present paper we show that for a low frequency limit the wave equation of a massless scalar field in the background of nonextremal charged rotating black holes in five-dimensional minimal gauged and ungauged supergravity can be written as the Casimir of an SL(2,R) symmetry. Our result shows that the entropy of the black hole is reproduced by the Cardy formula. Also the absorption cross section is consistent with the finite temperature absorption cross section for a two-dimensional conformal field theory.
de Sitter space from dilatino condensates in massive IIA supergravity
NASA Astrophysics Data System (ADS)
Souères, Bertrand; Tsimpis, Dimitrios
2018-02-01
We use the superspace formulation of (massive) IIA supergravity to obtain the explicit form of the dilatino terms, and we find that the quartic-dilatino term is positive. The theory admits a ten-dimensional de Sitter solution, obtained by assuming a nonvanishing quartic-dilatino condensate which generates a positive cosmological constant. Moreover, in the presence of dilatino condensates, the theory admits formal four-dimensional de Sitter solutions of the form d S4×M6, where M6 is a six-dimensional Kähler-Einstein manifold of positive scalar curvature.
Superstring-inspired SO(10) GUT model with intermediate scale
NASA Astrophysics Data System (ADS)
Sasaki, Ken
1987-12-01
A new mechanism is proposed for the mixing of Weinberg-Salam Higgs fields in superstring-inspired SO(10) models with no SO(10) singlet fields. The higher-dimensional terms in the superpotential can generate both Higgs field mixing and a small mass for the physical neutrino. I would like to thank Professor C. Iso for hospitality extended to me at the Tokyo Institute of Technology.
NASA Astrophysics Data System (ADS)
Bubuianu, Laurenţiu; Irwin, Klee; Vacaru, Sergiu I.
2017-04-01
Heterotic supergravity with (1 + 3)-dimensional domain wall configurations and (warped) internal, six dimensional, almost-Kähler manifolds {{}6}\\text{X} are studied. Considering ten dimensional spacetimes with nonholonomic distributions and conventional double fibrations, 2 + 2 + ... = 2 + 2 + 3 + 3, and associated SU(3) structures on internal space, we generalize for real, internal, almost symplectic gravitational structures the constructions with gravitational and gauge instantons of tanh-kink type [1, 2]. They include the first {α\\prime} corrections to the heterotic supergravity action, parameterized in a form to imply nonholonomic deformations of the Yang-Mills sector and corresponding Bianchi identities. We show how it is possible to construct a variety of solutions depending on the type of nonholonomic distributions and deformations of ‘prime’ instanton configurations characterized by two real supercharges. This corresponds to N=1/2 supersymmetric, nonholonomic manifolds from the four dimensional point of view. Our method provides a unified description of embedding nonholonomically deformed tanh-kink-type instantons into half-BPS solutions of heterotic supergravity. This allows us to elaborate new geometric methods of constructing exact solutions of motion equations, with first order {α\\prime} corrections to the heterotic supergravity. Such a formalism is applied for general and/or warped almost-Kähler configurations, which allows us to generate nontrivial (1 + 3)-d domain walls and black hole deformations determined by quasiperiodic internal space structures. This formalism is utilized in our associated publication [3] in order to construct and study generic off-diagonal nonholonomic deformations of the Kerr metric, encoding contributions from heterotic supergravity.
Gauged supergravities from M-theory reductions
NASA Astrophysics Data System (ADS)
Katmadas, Stefanos; Tomasiello, Alessandro
2018-04-01
In supergravity compactifications, there is in general no clear prescription on how to select a finite-dimensional family of metrics on the internal space, and a family of forms on which to expand the various potentials, such that the lower-dimensional effective theory is supersymmetric. We propose a finite-dimensional family of deformations for regular Sasaki-Einstein seven-manifolds M 7, relevant for M-theory compactifications down to four dimensions. It consists of integrable Cauchy-Riemann structures, corresponding to complex deformations of the Calabi-Yau cone M 8 over M 7. The non-harmonic forms we propose are the ones contained in one of the Kohn-Rossi cohomology groups, which is finite-dimensional and naturally controls the deformations of Cauchy-Riemann structures. The same family of deformations can be also described in terms of twisted cohomology of the base M 6, or in terms of Milnor cycles arising in deformations of M 8. Using existing results on SU(3) structure compactifications, we briefly discuss the reduction of M-theory on our class of deformed Sasaki-Einstein manifolds to four-dimensional gauged supergravity.
A deformation of Sasakian structure in the presence of torsion and supergravity solutions
NASA Astrophysics Data System (ADS)
Houri, Tsuyoshi; Takeuchi, Hiroshi; Yasui, Yukinori
2013-07-01
A deformation of Sasakian structure in the presence of totally skew-symmetric torsion is discussed on odd-dimensional manifolds whose metric cones are Kähler with torsion. It is shown that such a geometry inherits similar properties to those of Sasakian geometry. As their example, we present an explicit expression of local metrics. It is also demonstrated that our example of the metrics admits the existence of hidden symmetry described by non-trivial odd-rank generalized closed conformal Killing-Yano tensors. Furthermore, using these metrics as an ansatz, we construct exact solutions in five-dimensional minimal gauged/ungauged supergravity and 11-dimensional supergravity. Finally, the global structures of the solutions are discussed. We obtain regular metrics on compact manifolds in five dimensions, which give natural generalizations of Sasaki-Einstein manifolds Yp, q and La, b, c. We also briefly discuss regular metrics on non-compact manifolds in 11 dimensions.
AdS6 solutions of type II supergravity
NASA Astrophysics Data System (ADS)
Apruzzi, Fabio; Fazzi, Marco; Passias, Achilleas; Rosa, Dario; Tomasiello, Alessandro
2014-11-01
Very few AdS6 × M 4 supersymmetric solutions are known: one in massive IIA, and two IIB solutions dual to it. The IIA solution is known to be unique; in this paper, we use the pure spinor approach to give a classification for IIB supergravity. We reduce the problem to two PDEs on a two-dimensional space Σ. M 4 is then a fibration of S 2 over Σ; the metric and fluxes are completely determined in terms of the solution to the PDEs. The results seem likely to accommodate near-horizon limits of ( p, q)-fivebrane webs studied in the literature as a source of CFT5's. We also show that there are no AdS6 solutions in eleven-dimensional supergravity.
Instabilities in Englert-type supergravity solutions
NASA Astrophysics Data System (ADS)
Page, Don N.; Pope, C. N.
1984-09-01
We show that all eleven-dimensional Englert-type supergravity solutions (in which the four-index field has internal components) constructed from internal spaces M7 having two or more Killing spinors, are unstable. Permanent address: Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom.
FAST TRACK COMMUNICATION Single-charge rotating black holes in four-dimensional gauged supergravity
NASA Astrophysics Data System (ADS)
Chow, David D. K.
2011-02-01
We consider four-dimensional U(1)4 gauged supergravity, and obtain asymptotically AdS4, non-extremal, charged, rotating black holes with one non-zero U(1) charge. The thermodynamic quantities are computed. We obtain a generalization that includes a NUT parameter. The general solution has a discrete symmetry involving inversion of the rotation parameter, and has a string frame metric that admits a rank-2 Killing-Stäckel tensor.
On supersymmetric anti-de Sitter, de Sitter and Minkowski flux backgrounds
NASA Astrophysics Data System (ADS)
Gran, U.; Gutowski, J. B.; Papadopoulos, G.
2018-03-01
We test the robustness of the conditions required for the existence of (supersymmetric) warped flux anti-de Sitter, de Sitter, and Minkowski backgrounds in supergravity theories using as examples suitable foliations of anti-de Sitter spaces. We find that there are supersymmetric de Sitter solutions in supergravity theories including maximally supersymmetric ones in 10- and 11-dimensional supergravities. Moreover, warped flux Minkowski backgrounds can admit Killing spinors which are not Killing on the Minkowski subspace and therefore cannot be put in a factorized form.
Gapped fermionic spectrum from a domain wall in seven dimension
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Subir; Rai, Nishal
2018-05-01
We obtain a domain wall solution in maximally gauged seven dimensional supergravity, which interpolates between two AdS spaces and spontaneously breaks a U (1) symmetry. We analyse frequency dependence of conductivity and find power law behaviour at low frequency. We consider certain fermions of supergravity in the background of this domain wall and compute holographic spectral function of the operators in the dual six dimensional theory. We find fermionic operators involving bosons with non-zero expectation value lead to gapped spectrum.
All symmetric space solutions of eleven-dimensional supergravity
NASA Astrophysics Data System (ADS)
Wulff, Linus
2017-06-01
We find all symmetric space solutions of eleven-dimensional supergravity completing an earlier classification by Figueroa-O’Farrill. They come in two types: AdS solutions and pp-wave solutions. We analyze the supersymmetry conditions and show that out of the 99 AdS geometries the only supersymmetric ones are the well known backgrounds arising as near-horizon limits of (intersecting) branes and preserving 32, 16 or 8 supersymmetries. The general form of the superisometry algebra for symmetric space backgrounds is also derived.
Scale invariance of the η-deformed AdS5 × S5 superstring, T-duality and modified type II equations
NASA Astrophysics Data System (ADS)
Arutyunov, G.; Frolov, S.; Hoare, B.; Roiban, R.; Tseytlin, A. A.
2016-02-01
We consider the ABF background underlying the η-deformed AdS5 ×S5 sigma model. This background fails to satisfy the standard IIB supergravity equations which indicates that the corresponding sigma model is not Weyl invariant, i.e. does not define a critical string theory in the usual sense. We argue that the ABF background should still define a UV finite theory on a flat 2d world-sheet implying that the η-deformed model is scale invariant. This property follows from the formal relation via T-duality between the η-deformed model and the one defined by an exact type IIB supergravity solution that has 6 isometries albeit broken by a linear dilaton. We find that the ABF background satisfies candidate type IIB scale invariance conditions which for the R-R field strengths are of the second order in derivatives. Surprisingly, we also find that the ABF background obeys an interesting modification of the standard IIB supergravity equations that are first order in derivatives of R-R fields. These modified equations explicitly depend on Killing vectors of the ABF background and, although not universal, they imply the universal scale invariance conditions. Moreover, we show that it is precisely the non-isometric dilaton of the T-dual solution that leads, after T-duality, to modification of type II equations from their standard form. We conjecture that the modified equations should follow from κ-symmetry of the η-deformed model. All our observations apply also to η-deformations of AdS3 ×S3 ×T4and AdS2 ×S2 ×T6models.
Scale invariance of the η-deformed AdS 5 × S 5 superstring, T-duality and modified type II equations
Arutyunov, G.; Frolov, S.; Hoare, B.; ...
2015-12-23
We consider the ABF background underlying the η-deformed AdS 5 × S 5 sigma model. This background fails to satisfy the standard IIB supergravity equations which indicates that the corresponding sigma model is not Weyl invariant, i.e. does not define a critical string theory in the usual sense. We argue that the ABF background should still define a UV finite theory on a flat 2d world-sheet implying that the η-deformed model is scale invariant. This property follows from the formal relation via T-duality between the η-deformed model and the one defined by an exact type IIB supergravity solution that hasmore » 6 isometries albeit broken by a linear dilaton. We find that the ABF background satisfies candidate type IIB scale invariance conditions which for the R–R field strengths are of the second order in derivatives. Surprisingly, we also find that the ABF background obeys an interesting modification of the standard IIB supergravity equations that are first order in derivatives of R–R fields. These modified equations explicitly depend on Killing vectors of the ABF background and, although not universal, they imply the universal scale invariance conditions. Moreover, we show that it is precisely the non-isometric dilaton of the T-dual solution that leads, after T-duality, to modification of type II equations from their standard form. We conjecture that the modified equations should follow from κ-symmetry of the η-deformed model. All our observations apply also to η-deformations of AdS 3 × S 3 × T 4 and AdS 2 × S 2 × T 6 models.« less
Stability analysis of compactifications of D = 11 supergravity with SU(3) × SU(2) × U(1) symmetry
NASA Astrophysics Data System (ADS)
Page, Don N.; Pope, C. N.
1984-09-01
We show that the Mpqr Freund-Rubin compactification of eleven-dimensional supergravity is classically stable if and only if 7/2761/2 < -p/q- < 17/117(66)1/2. Permanent address: Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom.
Dyonic AdS black holes in maximal gauged supergravity
NASA Astrophysics Data System (ADS)
Chow, David D. K.; Compère, Geoffrey
2014-03-01
We present two new classes of dyonic anti-de Sitter black hole solutions of four-dimensional maximal N =8, SO(8) gauged supergravity. They are (1) static black holes of N=2, U(1)4 gauged supergravity with four electric and four magnetic charges, with spherical, planar or hyperbolic horizons; and (2) rotating black holes of N =2, U(1)2 gauged supergravity with two electric and two magnetic charges. We study their thermodynamics, and point out that the formulation of a consistent thermodynamics for dyonic anti-de Sitter black holes is dependent on the existence of boundary conditions for the gauge fields. We identify several distinct classes of boundary conditions for gauge fields in U(1)4 supergravity. We study a general family of metrics containing the rotating solutions, and find Killing-Yano tensors with torsion in two conformal frames, which underlie separability.
Super-BMS3 algebras from {N}=2 flat supergravities
NASA Astrophysics Data System (ADS)
Lodato, Ivano; Merbis, Wout
2016-11-01
We consider two possible flat space limits of three dimensional {N}=(1, 1) AdS supergravity. They differ by how the supercharges are scaled with the AdS radius ℓ: the first limit (democratic) leads to the usual super-Poincaré theory, while a novel `twisted' theory of supergravity stems from the second (despotic) limit. We then propose boundary conditions such that the asymptotic symmetry algebras at null infinity correspond to supersymmetric extensions of the BMS algebras previously derived in connection to non- and ultra-relativistic limits of the {N}=(1, 1) Virasoro algebra in two dimensions. Finally, we study the supersymmetric energy bounds and find the explicit form of the asymptotic and global Killing spinors of supersymmetric solutions in both flat space supergravity theories.
24 +24 real scalar multiplet in four dimensional N =2 conformal supergravity
NASA Astrophysics Data System (ADS)
Hegde, Subramanya; Lodato, Ivano; Sahoo, Bindusar
2018-03-01
Starting from the 48 +48 component multiplet of supercurrents for a rigid N =2 tensor multiplet in four spacetime dimensions, we obtain the transformation of the linearized supergravity multiplet which couples to this supercurrent multiplet. At the linearized level, this 48 +48 component supergravity multiplet decouples into the 24 +24 component linearized standard Weyl multiplet and a 24 +24 component irreducible matter multiplet containing a real scalar field. By a consistent application of the supersymmetry algebra with field-dependent structure constants appropriate to N =2 conformal supergravity, we find the full transformation law for this multiplet in a conformal supergravity background. By performing a suitable field redefinition, we find that the multiplet is a generalization of the flat space multiplet, obtained by Howe et al. in Nucl. Phys. B214, 519 (1983), 10.1016/0550-3213(83)90249-3, to a conformal supergravity background. We also present a set of constraints which can be consistently imposed on this multiplet to obtain a restricted minimal 8 +8 off-shell matter multiplet. We also show, as an example, the precise embedding of the tensor multiplet inside this multiplet.
Kim, Sang-Woo; Nishimura, Jun; Tsuchiya, Asato
2012-01-06
We reconsider the matrix model formulation of type IIB superstring theory in (9+1)-dimensional space-time. Unlike the previous works in which the Wick rotation was used to make the model well defined, we regularize the Lorentzian model by introducing infrared cutoffs in both the spatial and temporal directions. Monte Carlo studies reveal that the two cutoffs can be removed in the large-N limit and that the theory thus obtained has no parameters other than one scale parameter. Moreover, we find that three out of nine spatial directions start to expand at some "critical time," after which the space has SO(3) symmetry instead of SO(9).
NASA Astrophysics Data System (ADS)
Bagchi, Arjun; Basu, Rudranil; Detournary, Stéphane; Parekh, Pulastya
2018-05-01
We propose a holographic duality between a 2 dimensional (2d) chiral superconformal field theory and a certain theory of supergravity in 3d with flatspace boundary conditions that is obtained as a double scaling limit of a parity breaking theory of supergravity. We show how the asymptotic symmetries of the bulk theory reduce from the "despotic" super Bondi-Metzner-Sachs algebra (or equivalently the inhomogeneous super Galilean conformal algebra) to a single copy of the super-Virasoro algebra in this limit and also reproduce the same reduction from a study of null vectors in the putative 2d dual field theory.
BFV-BRST quantization of two-dimensional supergravity
NASA Astrophysics Data System (ADS)
Fujiwara, T.; Igarashi, Y.; Kuriki, R.; Tabei, T.
1996-01-01
Two-dimensional supergravity theory is quantized as an anomalous gauge theory. In the Batalin-Fradkin (BF) formalism, the anomaly-canceling super-Liouville fields are introduced to identify the original second-class constrained system with a gauge-fixed version of a first-class system. The BFV-BRST quantization applies to formulate the theory in the most general class of gauges. A local effective action constructed in the configuration space contains two super-Liouville actions; one is a noncovariant but local functional written only in terms of two-dimensional supergravity fields, and the other contains the super-Liouville fields canceling the super-Weyl anomaly. Auxiliary fields for the Liouville and the gravity supermultiplets are introduced to make the BRST algebra close off-shell. Inclusion of them turns out to be essentially important especially in the super-light-cone gauge fixing, where the supercurvature equations (∂3-g++=∂2-χ++=0) are obtained as a result of BRST invariance of the theory. Our approach reveals the origin of the OSp(1,2) current algebra symmetry in a transparent manner.
Open/closed string duality and relativistic fluids
NASA Astrophysics Data System (ADS)
Niarchos, Vasilis
2016-07-01
We propose an open/closed string duality in general backgrounds extending previous ideas about open string completeness by Ashoke Sen. Our proposal sets up a general version of holography that works in gravity as a tomographic principle. We argue, in particular, that previous expectations of a supergravity/Dirac-Born-Infeld (DBI) correspondence are naturally embedded in this conjecture and can be tested in a well-defined manner. As an example, we consider the correspondence between open string field theories on extremal D-brane setups in flat space in the large-N , large 't Hooft limit, and asymptotically flat solutions in ten-dimensional type II supergravity. We focus on a convenient long-wavelength regime, where specific effects of higher-spin open string modes can be traced explicitly in the dual supergravity computation. For instance, in this regime we show how the full Abelian DBI action arises from supergravity as a straightforward reformulation of relativistic hydrodynamics. In the example of a (2 +1 )-dimensional open string theory this reformulation involves an Abelian Hodge duality. We also point out how different deformations of the DBI action, related to higher-derivative corrections and non-Abelian effects, can arise in this context as deformations in corresponding relativistic hydrodynamics.
Special Holonomy and Two-Dimensional Supersymmetric Sigma-Models
NASA Astrophysics Data System (ADS)
Stojevic, Vid
2006-11-01
Two-dimensional sigma-models describing superstrings propagating on manifolds of special holonomy are characterized by symmetries related to covariantly constant forms that these manifolds hold, which are generally non-linear and close in a field dependent sense. The thesis explores various aspects of the special holonomy symmetries.
Wu, Shuang-Qing
2008-03-28
I present the general exact solutions for nonextremal rotating charged black holes in the Gödel universe of five-dimensional minimal supergravity theory. They are uniquely characterized by four nontrivial parameters: namely, the mass m, the charge q, the Kerr equal rotation parameter a, and the Gödel parameter j. I calculate the conserved energy, angular momenta, and charge for the solutions and show that they completely satisfy the first law of black hole thermodynamics. I also study the symmetry and separability of the Hamilton-Jacobi and the massive Klein-Gordon equations in these Einstein-Maxwell-Chern-Simons-Gödel black hole backgrounds.
Quantum Field Theories Coupled to Supergravity: AdS/CFT and Local Couplings
NASA Astrophysics Data System (ADS)
Große, Johannes
2007-11-01
This article is based on my PhD thesis and covers the following topics: Holographic meson spectra in a dilaton flow background, the mixed Coulomb-Higgs branch in terms of instantons on D7 branes, and a dual description of heavy-light mesons. Moreover, in a second part the conformal anomaly of four dimensional supersymmetric quantum field theories coupled to classical N=1 supergravity is explored in a superfield formulation. The complete basis for the anomaly and consistency conditions, which arise from cohomological considerations, are given. Possible implications for an extension of Zamolodchikov's c-theorem to four dimensional supersymmetric quantum field theories are discussed.
BFV-BRST quantization of two-dimensional supergravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujiwara, T.; Igarashi, Y.; Kuriki, R.
1996-01-01
Two-dimensional supergravity theory is quantized as an anomalous gauge theory. In the Batalin-Fradkin (BF) formalism, the anomaly-canceling super-Liouville fields are introduced to identify the original second-class constrained system with a gauge-fixed version of a first-class system. The BFV-BRST quantization applies to formulate the theory in the most general class of gauges. A local effective action constructed in the configuration space contains two super-Liouville actions; one is a noncovariant but local functional written only in terms of two-dimensional supergravity fields, and the other contains the super-Liouville fields canceling the super-Weyl anomaly. Auxiliary fields for the Liouville and the gravity supermultiplets aremore » introduced to make the BRST algebra close off-shell. Inclusion of them turns out to be essentially important especially in the super-light-cone gauge fixing, where the supercurvature equations ({partial_derivative}{sup 3}{sub {minus}}{ital g}{sub +}{sub +}={partial_derivative}{sup 2}{sub {minus}}{chi}{sub +}{sub +}=0) are obtained as a result of BRST invariance of the theory. Our approach reveals the origin of the OSp(1,2) current algebra symmetry in a transparent manner. {copyright} {ital 1996 The American Physical Society.}« less
Functional determinants, index theorems, and exact quantum black hole entropy
NASA Astrophysics Data System (ADS)
Murthy, Sameer; Reys, Valentin
2015-12-01
The exact quantum entropy of BPS black holes can be evaluated using localization in supergravity. An important ingredient in this program, that has been lacking so far, is the one-loop effect arising from the quadratic fluctuations of the exact deformation (the QV operator). We compute the fluctuation determinant for vector multiplets and hyper multiplets around Q-invariant off-shell configurations in four-dimensional N=2 supergravity with AdS 2 × S 2 boundary conditions, using the Atiyah-Bott fixed-point index theorem and a subsequent zeta function regularization. Our results extend the large-charge on-shell entropy computations in the literature to a regime of finite charges. Based on our results, we present an exact formula for the quantum entropy of BPS black holes in N=2 supergravity. We explain cancellations concerning 1/8 -BPS black holes in N=8 supergravity that were observed in arXiv:1111.1161. We also make comments about the interpretation of a logarithmic term in the topological string partition function in the low energy supergravity theory.
Supersymmetric solutions of N =(1 ,1 ) general massive supergravity
NASA Astrophysics Data System (ADS)
Deger, N. S.; Nazari, Z.; Sarıoǧlu, Ö.
2018-05-01
We construct supersymmetric solutions of three-dimensional N =(1 ,1 ) general massive supergravity (GMG). Solutions with a null Killing vector are, in general, pp-waves. We identify those that appear at critical points of the model, some of which do not exist in N =(1 ,1 ) new massive supergravity (NMG). In the timelike case, we find that many solutions are common with NMG, but there is a new class that is genuine to GMG, two members of which are stationary Lifshitz and timelike squashed AdS spacetimes. We also show that in addition to the fully supersymmetric AdS vacuum, there is a second AdS background with a nonzero vector field that preserves 1 /4 supersymmetry.
Symmetry enhancement of extremal horizons in D = 5 supergravity
NASA Astrophysics Data System (ADS)
Kayani, U.
2018-06-01
We consider the near-horizon geometry of supersymmetric extremal black holes in un-gauged and gauged 5-dimensional supergravity, coupled to abelian vector multiplets. By analyzing the global properties of the Killing spinors, we prove that the near-horizon geometries undergo a supersymmetry enhancement. This follows from a set of generalized Lichnerowicz-type theorems we establish, together with an index theory argument. As a consequence, these solutions always admit a symmetry group.
Pilch, Krzysztof; Tyukov, Alexander; Warner, Nicholas P.
2016-05-02
In this study, we investigate a family of SU(3)×U(1)×U(1)-invariant holographic flows and Janus solutions obtained from gaugedmore » $$ \\mathcal{N} $$ = 8 supergravity in four dimensions. We give complete details of how to use the uplift formulae to obtain the corresponding solutions in M theory. While the flow solutions appear to be singular from the four-dimensional perspective, we find that the eleven-dimensional solutions are much better behaved and give rise to interesting new classes of compactification geometries that are smooth, up to orbifolds, in the infra-red limit. Our solutions involve new phases in which M2 branes polarize partially or even completely into M5 branes. We derive the eleven-dimensional supersymmetries and show that the eleven-dimensional equations of motion and BPS equations are indeed satisfied as a consequence of their four-dimensional counterparts. Apart from elucidating a whole new class of eleven-dimensional Janus and flow solutions, our work provides extensive and highly non-trivial tests of the recently-derived uplift formulae.« less
Charge orbits of extremal black holes in five-dimensional supergravity
NASA Astrophysics Data System (ADS)
Cerchiai, Bianca L.; Ferrara, Sergio; Marrani, Alessio; Zumino, Bruno
2010-10-01
We derive the U-duality charge orbits, as well as the related moduli spaces, of “large” and “small” extremal black holes in nonmaximal ungauged Maxwell-Einstein supergravities with symmetric scalar manifolds in d=5 space-time dimensions. The stabilizer groups of the various classes of orbits are obtained by determining and solving suitable U-invariant sets of constraints, both in “bare” and “dressed” charge bases, with various methods. After a general treatment of attractors in real special geometry (also considering nonsymmetric cases), the N=2 “magic” theories, as well as the N=2 Jordan symmetric sequence, are analyzed in detail. Finally, the half-maximal (N=4) matter-coupled supergravity is also studied in this context.
On asymptotic freedom and confinement from type-IIB supergravity
NASA Astrophysics Data System (ADS)
Kehagias, A.; Sfetsos, K.
1999-06-01
We present a new type-IIB supergravity vacuum that describes the strong coupling regime of a non-supersymmetric gauge theory. The latter has a running coupling such that the theory becomes asymptotically free in the ultraviolet. It also has a running theta angle due to a non-vanishing axion field in the supergravity solution. We also present a worm-hole solution, which has finite action per unit four-dimensional volume and two asymptotic regions, a flat space and an AdS5xS5. The corresponding N=2 gauge theory, instead of being finite, has a running coupling. We compute the quark-antiquark potential in this case and find that it exhibits, under certain assumptions, an area-law behaviour for large separations.
Universal consistent truncation for 6d/7d gauge/gravity duals
NASA Astrophysics Data System (ADS)
Passias, Achilleas; Rota, Andrea; Tomasiello, Alessandro
2015-10-01
Recently, AdS7 solutions of IIA supergravity have been classified; there are infinitely many of them, whose expression is known analytically, and with internal space of S 3 topology. Their field theory duals are six-dimensional (1,0) SCFT's. In this paper we show that for each of these AdS7 solutions there exists a consistent truncation from massive IIA supergravity to minimal gauged supergravity in seven dimensions. This theory has an SU(2) gauge group, and a single scalar, whose value is related to a certain distortion of the internal S 3. This explains the universality observed in recent work on AdS5 and AdS4 solutions dual to compactifications of the (1, 0) SCFT6's. Thanks to previous work on the minimal gauged supergravity, the truncation also implies the existence of holographic RG-flows connecting those solutions to the AdS7 vacuum, as well as new classes of IIA AdS3 solutions.
Abelian tensor hierarchy in 4D N = 1 conformal supergravity
NASA Astrophysics Data System (ADS)
Aoki, Shuntaro; Higaki, Tetsutaro; Yamada, Yusuke; Yokokura, Ryo
2016-09-01
We consider Abelian tensor hierarchy in four-dimensional N = 1 supergravity in the conformal superspace formalism, where the so-called covariant approach is used to antisymmetric tensor fields. We introduce p-form gauge superfields as superforms in the conformal superspace. We solve the Bianchi identities under the constraints for the super-forms. As a result, each of form fields is expressed by a single gauge invariant superfield. We also show the relation between the superspace formalism and the superconformal tensor calculus.
Chern-Simons-Antoniadis-Savvidy forms and standard supergravity
NASA Astrophysics Data System (ADS)
Izaurieta, F.; Salgado, P.; Salgado, S.
2017-04-01
In the context of the so called the Chern-Simons-Antoniadis-Savvidy (ChSAS) forms, we use the methods for FDA decomposition in 1-forms to construct a four-dimensional ChSAS supergravity action for the Maxwell superalgebra. On the another hand, we use the Extended Cartan Homotopy Formula to find a method that allows the separation of the ChSAS action into bulk and boundary contributions and permits the splitting of the bulk Lagrangian into pieces that reflect the particular subspace structure of the gauge algebra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porfyriadis, Achilleas P.
2009-04-15
The anomaly cancellation method proposed by Wilczek et al. is applied to the general charged rotating black holes in five-dimensional minimal gauged supergravity. Thus Hawking temperature and fluxes are found. The Hawking temperature obtained agrees with the surface gravity formula. The black holes have charge and two unequal angular momenta, and these give rise to appropriate terms in the effective U(1) gauge field of the reduced (1+1)-dimensional theory. In particular, it is found that the terms in this U(1) gauge field correspond exactly to the correct electrostatic potential and the two angular velocities on the horizon of the black holes,more » and so the results for the Hawking fluxes derived here from the anomaly cancellation method are in complete agreement with the ones obtained from integrating the Planck distribution.« less
N = 1 supercurrents of eleven-dimensional supergravity
NASA Astrophysics Data System (ADS)
Becker, Katrin; Becker, Melanie; Butter, Daniel; Linch, William D.
2018-05-01
Eleven-dimensional supergravity can be formulated in superspaces locally of the form X × Y where X is 4D N = 1 conformal superspace and Y is an arbitrary 7-manifold admitting a G 2-structure. The eleven-dimensional 3-form and the stable 3-form on Y define the lowest component of a gauge superfield on X × Y that is chiral as a superfield on X. This chiral field is part of a tensor hierarchy giving rise to a superspace Chern-Simons action and its real field strength defines a lifting of the Hitchin functional on Y to the G 2 superspace X × Y . These terms are those of lowest order in a superspace Noether expansion in seven N = 1 conformal gravitino superfields Ψ. In this paper, we compute the O(Ψ) action to all orders in the remaining fields. The eleven-dimensional origin of the resulting non-linear structures is parameterized by the choice of a complex spinor on Y encoding the off-shell 4D N = 1 subalgebra of the eleven-dimensional super-Poincaré algebra.
An /N=2 gauge theory and its supergravity dual
NASA Astrophysics Data System (ADS)
Brandhuber, A.; Sfetsos, K.
2000-09-01
We study flows on the scalar manifold of /N=8 gauged supergravity in five dimensions which are dual to certain mass deformations of /N=4 super Yang-Mills theory. In particular, we consider a perturbation of the gauge theory by a mass term for the adjoint hyper-multiplet, giving rise to an /N=2 theory. The exact solution of the 5-dim gauged supergravity equations of motion is found and the metric is uplifted to a ten-dimensional background of type-IIB supergravity. Using these geometric data and the AdS/CFT correspondence we analyze the spectra of certain operators as well as Wilson loops on the dual gauge theory side. The physical flows are parametrized by a single non-positive constant and describe part of the Coulomb branch of the /N=2 theory at strong coupling. We also propose a general criterion to distinguish between `physical' and `unphysical' curvature singularities. Applying it in many backgrounds arising within the AdS/CFT correspondence we find results that are in complete agreement with field theory expectations.
NASA Astrophysics Data System (ADS)
Kehagias, Alex; Riotto, Antonio
2018-02-01
We show that the minimal D = 5, N = 2 gauged supergravity set-up may encode naturally the recently proposed clockwork mechanism. The minimal embedding requires one vector multiplet in addition to the supergravity multiplet and the clockwork scalar is identified with the scalar in the vector multiplet. The scalar has a two-parameter potential and it can accommodate the clockwork, the Randall-Sundrum and a no-scale model with a flat potential, depending on the values of the parameters. The continuous clockwork background breaks half of the original supersymmetries, leaving a D = 4, N = 1 theory on the boundaries. We also show that the generated hierarchy by the clockwork is not exponential but rather power law. The reason is that four-dimensional Planck scale has a power-law dependence on the compactification radius, whereas the corresponding KK spectrum depends on the logarithm of the latter.
Critical non-Abelian vortex in four dimensions and little string theory
NASA Astrophysics Data System (ADS)
Shifman, M.; Yung, A.
2017-08-01
As was shown recently, non-Abelian vortex strings supported in four-dimensional N =2 supersymmetric QCD with the U(2) gauge group and Nf=4 quark multiplets (flavors) become critical superstrings. In addition to the translational moduli, non-Abelian strings under consideration carry six orientational and size moduli. Together, they form a ten-dimensional target space required for a superstring to be critical. The target space of the string sigma model is a product of the flat four-dimensional space and a Calabi-Yau noncompact threefold, namely, the conifold. We study closed string states which emerge in four dimensions and identify them with hadrons of four-dimensional N =2 QCD. One massless state was found previously; it emerges as a massless hypermultiplet associated with the deformation of the complex structure of the conifold. In this paper, we find a number of massive states. To this end, we exploit the approach used in LST little string theory, namely, the equivalence between the critical string on the conifold and noncritical c =1 string with the Liouville field and a compact scalar at the self-dual radius. The states we find carry "baryonic" charge (its definition differs from standard). We interpret them as "monopole necklaces" formed (at strong coupling) by the closed string with confined monopoles attached.
Quaternionic (super) twistors extensions and general superspaces
NASA Astrophysics Data System (ADS)
Cirilo-Lombardo, Diego Julio; Pervushin, Victor N.
2017-09-01
In a attempt to treat a supergravity as a tensor representation, the four-dimensional N-extended quaternionic superspaces are constructed from the (diffeomorphyc) graded extension of the ordinary Penrose-twistor formulation, performed in a previous work of the authors [D. J. Cirilo-Lombardo and V. N. Pervushin, Int. J. Geom. Methods Mod. Phys., doi: http://dx.doi.org/10.1142/S0219887816501139.], with N = p + k. These quaternionic superspaces have 4 + k(N - k) even-quaternionic coordinates and 4N odd-quaternionic coordinates, where each coordinate is a quaternion composed by four ℂ-fields (bosons and fermions respectively). The fields content as the dimensionality (even and odd sectors) of these superspaces are given and exemplified by selected physical cases. In this case, the number of fields of the supergravity is determined by the number of components of the tensor representation of the four-dimensional N-extended quaternionic superspaces. The role of tensorial central charges for any N even USp(N) = Sp(N, ℍℂ) ∩ U(N, ℍℂ) is elucidated from this theoretical context.
Integral group actions on symmetric spaces and discrete duality symmetries of supergravity theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carbone, Lisa; Murray, Scott H.; Sati, Hisham
For G = G(ℝ), a split, simply connected, semisimple Lie group of rank n and K the maximal compact subgroup of G, we give a method for computing Iwasawa coordinates of K∖G using the Chevalley generators and the Steinberg presentation. When K∖G is a scalar coset for a supergravity theory in dimensions ≥3, we determine the action of the integral form G(ℤ) on K∖G. We give explicit results for the action of the discrete U-duality groups SL{sub 2}(ℤ) and E{sub 7}(ℤ) on the scalar cosets SO(2)∖SL{sub 2}(ℝ) and [SU(8)/( ± Id)]∖E{sub 7(+7)}(ℝ) for type IIB supergravity in ten dimensions andmore » 11-dimensional supergravity reduced to D = 4 dimensions, respectively. For the former, we use this to determine the discrete U-duality transformations on the scalar sector in the Borel gauge and we describe the discrete symmetries of the dyonic charge lattice. We determine the spectrum-generating symmetry group for fundamental BPS solitons of type IIB supergravity in D = 10 dimensions at the classical level and we propose an analog of this symmetry at the quantum level. We indicate how our methods can be used to study the orbits of discrete U-duality groups in general.« less
Higher-dimensional lifts of Killing-Yano forms with torsion
NASA Astrophysics Data System (ADS)
Chow, David D. K.
2017-01-01
Using a Kaluza-Klein-type lift, it is shown how Killing-Yano forms with torsion can remain symmetries of a higher-dimensional geometry, subject to an algebraic condition between the Kaluza-Klein field strength and the Killing-Yano form. The lift condition’s significance is highlighted, and is satisfied by examples of black holes in supergravity.
Implementing odd-axions in dimensional oxidation of 4D non-geometric type IIB scalar potential
NASA Astrophysics Data System (ADS)
Shukla, Pramod
2016-01-01
In a setup of type IIB superstring compactification on an orientifold of a T6 /Z4 sixfold, the presence of geometric flux (ω) and non-geometric fluxes (Q, R) is implemented along with the standard NS-NS and RR three-form fluxes (H, F). After computing the F/D-term contributions to the N = 1 four dimensional effective scalar potential, we rearrange the same into 'suitable' pieces by using a set of new generalized flux orbits. Subsequently, we dimensionally oxidize the various pieces of the total four dimensional scalar potential to guess their ten-dimensional origin.
Predicted and Totally Unexpected in the Energy Frontier Opened by LHC
NASA Astrophysics Data System (ADS)
Zichichi, Antonino
2011-01-01
Opening lectures. Sid Coleman and Erice / A. Zichichi. Remembering Sidney Coleman / G.'t Hooft -- Predicted signals at LHC. From extra-dimensions: Multiple branes scenarios and their contenders / I. Antoniadis. Predicted signals at the LHC from technicolor / A. Martin. The one-parameter model at LHC / J. Maxin, E. Mayes and D. V. Nanopoulos. How supercritical string cosmology affects LHC / D. V. Nanopoulos. High scale physics connection to LHC data / P. Nath. Predicted signatures at the LHC from U(I) extensions of the standard model / P. Nath -- Hot theoretical topics. Progress on the ultraviolet finiteness of supergravity / Z. Bern. Status of supersymmetry: Foundations and applications / S. Ferrara and A. Marrani. Quantum gravity from dynamical triangulation / R. Loll. Status of superstring and M-theory / J. H. Schwarz. Some effects of instantons in QCD / G.'t Hooft. Crystalline gravity / G.'t Hooft -- QCD problems. Strongly coupled gauge theories / R. Kenway. Strongly interacting matter at high energy density / L. McLerran. Seminars on specialized topics. The nature and the mass of neutrinos. Majorana vs. Dirac / A. Bettini. The anomalous spin distributions in the nucleon / A. Deshpande. Results from PHENIX at RHIC / M. J. Tannenbaum -- Highlights from laboratories. Highlights from RHIC / Y. Akiba. News from the Gran Sasso Underground Laboratory / E. Coccia. Highlights from TRIUMF / N. S. Lockyer. Highlights from Superkamiokande / M. Koshiba. Highlights from Fermilab / P. J. Oddone. Highlights from IHEP / Y. Wang -- Special sessions for new talents. Fake supergravity and black hole evolution / A. Gnecchi. Track-based improvement in the jet transverse momentum resolution for ATLAS / Z. Marshall. Searches for supersymmetric dark matter with XENON / K. Ni. Running of Newton's constant and quantum gravitational effects / D. Reeb.
COSMOS-e'-soft Higgsotic attractors
NASA Astrophysics Data System (ADS)
Choudhury, Sayantan
2017-07-01
In this work, we have developed an elegant algorithm to study the cosmological consequences from a huge class of quantum field theories (i.e. superstring theory, supergravity, extra dimensional theory, modified gravity, etc.), which are equivalently described by soft attractors in the effective field theory framework. In this description we have restricted our analysis for two scalar fields - dilaton and Higgsotic fields minimally coupled with Einstein gravity, which can be generalized for any arbitrary number of scalar field contents with generalized non-canonical and non-minimal interactions. We have explicitly used R^2 gravity, from which we have studied the attractor and non-attractor phases by exactly computing two point, three point and four point correlation functions from scalar fluctuations using the In-In (Schwinger-Keldysh) and the δ N formalisms. We have also presented theoretical bounds on the amplitude, tilt and running of the primordial power spectrum, various shapes (equilateral, squeezed, folded kite or counter-collinear) of the amplitude as obtained from three and four point scalar functions, which are consistent with observed data. Also the results from two point tensor fluctuations and the field excursion formula are explicitly presented for the attractor and non-attractor phase. Further, reheating constraints, scale dependent behavior of the couplings and the dynamical solution for the dilaton and Higgsotic fields are also presented. New sets of consistency relations between two, three and four point observables are also presented, which shows significant deviation from canonical slow-roll models. Additionally, three possible theoretical proposals have presented to overcome the tachyonic instability at the time of late time acceleration. Finally, we have also provided the bulk interpretation from the three and four point scalar correlation functions for completeness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomizawa, Shinya
We show a uniqueness theorem for Kaluza-Klein black holes in the bosonic sector of five-dimensional minimal supergravity. More precisely, under the assumptions of the existence of two commuting axial isometries and a nondegenerate connected event horizon of the cross-section topology S{sup 3}, or lens space, we prove that a stationary charged rotating Kaluza-Klein black hole in five-dimensional minimal supergravity is uniquely characterized by its mass, two independent angular momenta, electric charge, magnetic flux, and nut charge, provided that there exists neither a nut nor a bolt (a bubble) in the domain of outer communication. We also show that under themore » assumptions of the same symmetry, same asymptotics, and the horizon cross section of S{sup 1}xS{sup 2}, a black ring within the same theory--if it exists--is uniquely determined by its dipole charge and rod intervals besides the charges and magnetic flux.« less
Higher derivatives in Type II and M-theory on Calabi-Yau threefolds
NASA Astrophysics Data System (ADS)
Grimm, Thomas W.; Mayer, Kilian; Weissenbacher, Matthias
2018-02-01
The four- and five-dimensional effective actions of Calabi-Yau threefold compactifications are derived with a focus on terms involving up to four space-time derivatives. The starting points for these reductions are the ten- and eleven-dimensional supergravity actions supplemented with the known eight-derivative corrections that have been inferred from Type II string amplitudes. The corrected background solutions are determined and the fluctuations of the Kähler structure of the compact space and the form-field back-ground are discussed. It is concluded that the two-derivative effective actions for these fluctuations only takes the expected supergravity form if certain additional ten- and eleven-dimensional higher-derivative terms for the form-fields are included. The main results on the four-derivative terms include a detailed treatment of higher-derivative gravity coupled to Kähler structure deformations. This is supplemented by a derivation of the vector sector in reductions to five dimensions. While the general result is only given as an expansion in the fluctuations, a complete treatment of the one-Kähler modulus case is presented for both Type II theories and M-theory.
Gauging hidden symmetries in two dimensions
NASA Astrophysics Data System (ADS)
Samtleben, Henning; Weidner, Martin
2007-08-01
We initiate the systematic construction of gauged matter-coupled supergravity theories in two dimensions. Subgroups of the affine global symmetry group of toroidally compactified supergravity can be gauged by coupling vector fields with minimal couplings and a particular topological term. The gauge groups typically include hidden symmetries that are not among the target-space isometries of the ungauged theory. The gaugings constructed in this paper are described group-theoretically in terms of a constant embedding tensor subject to a number of constraints which parametrizes the different theories and entirely encodes the gauged Lagrangian. The prime example is the bosonic sector of the maximally supersymmetric theory whose ungauged version admits an affine fraktur e9 global symmetry algebra. The various parameters (related to higher-dimensional p-form fluxes, geometric and non-geometric fluxes, etc.) which characterize the possible gaugings, combine into an embedding tensor transforming in the basic representation of fraktur e9. This yields an infinite-dimensional class of maximally supersymmetric theories in two dimensions. We work out and discuss several examples of higher-dimensional origin which can be systematically analyzed using the different gradings of fraktur e9.
Precision holography for N={2}^{\\ast } on S 4 from type IIB supergravity
NASA Astrophysics Data System (ADS)
Bobev, Nikolay; Gautason, Friðrik Freyr; van Muiden, Jesse
2018-04-01
We find a new supersymmetric solution of type IIB supergravity which is holographically dual to the planar limit of the four-dimensional N={2}^{\\ast } supersymmetric Yang-Mills theory on S 4. We study a probe fundamental string in this background which is dual to a supersymmetric Wilson loop in the N={2}^{\\ast } theory. Using holography we calculate the expectation value of this line operator to leading order in the 't Hooft coupling. The result is a non-trivial function of the mass parameter of the N={2}^{\\ast } theory that precisely matches the result from supersymmetric localization.
Manifesting enhanced cancellations in supergravity: integrands versus integrals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bern, Zvi; Enciso, Michael; Parra-Martinez, Julio
2017-05-25
We have found examples of `enhanced ultraviolet cancellations' with no known standard-symmetry explanation in a variety of supergravity theories. Furthermore, by examining one- and two-loop examples in four- and five-dimensional half-maximal supergravity, we argue that enhanced cancellations in general cannot be exhibited prior to integration. In light of this, we explore reorganizations of integrands into parts that are manifestly finite and parts that have poor power counting but integrate to zero due to integral identities. At two loops we find that in the large loop-momentum limit the required integral identities follow from Lorentz and SL(2) relabeling symmetry. We carry outmore » a nontrivial check at four loops showing that the identities generated in this way are a complete set. We propose that at L loops the combination of Lorentz and SL(L) symmetry is sufficient for displaying enhanced cancellations when they happen, whenever the theory is known to be ultraviolet finite up to (L - 1) loops.« less
Boomerang RG flows in M-theory with intermediate scaling
NASA Astrophysics Data System (ADS)
Donos, Aristomenis; Gauntlett, Jerome P.; Rosen, Christopher; Sosa-Rodriguez, Omar
2017-07-01
We construct novel RG flows of D=11 supergravity that asymptotically approach AdS 4 × S 7 in the UV with deformations that break spatial translations in the dual field theory. In the IR the solutions return to exactly the same AdS 4 × S 7 vacuum, with a renormalisation of relative length scales, and hence we refer to the flows as `boomerang RG flows'. For sufficiently large deformations, on the way to the IR the solutions also approach two distinct intermediate scaling regimes, each with hyperscaling violation. The first regime is Lorentz invariant with dynamical exponent z = 1 while the second has z = 5/2. Neither ofthe two intermediatescaling regimesare associatedwith exact hyperscaling violation solutions of D = 11 supergravity. The RG flow solutions are constructed using the four dimensional N = 2 STU gauged supergravity theory with vanishing gauge fields, but non-vanishing scalar and pseudoscalar fields. In the ABJM dual field theory the flows are driven by spatially modulated deformation parameters for scalar and fermion bilinear operators.
Gain enhancement with near-zero-index metamaterial superstrate
NASA Astrophysics Data System (ADS)
Bouzouad, M.; Chaker, S. M.; Bensafielddine, D.; Laamari, E. M.
2015-11-01
The objective of this paper was to use a near-zero-index ( n) metamaterial as a single- or a double-layer superstrate suspended above a microstrip patch antenna, operating at 43 GHz, for the gain enhancement. The single metamaterial layer superstrate consists of a periodic arrangement of Jerusalem cross unit cells and behaves as an homogeneous medium characterized by a refractive index close to zero. This metamaterial property allows gathering radiated waves from the antenna and collimates them toward the superstrate normal direction. The proposed design improves the antenna gain by 5.1 dB with the single-layer superstrate and 7 dB with the double-layer superstrate.
Higher derivative couplings in theories with sixteen supersymmetries
Lin, Ying -Hsuan; Shao, Shu -Heng; Yin, Xi; ...
2015-12-15
We give simple arguments for new non-renormalization theorems on higher derivative couplings of gauge theories to supergravity, with sixteen supersymmetries, by considerations of brane-bulk superamplitudes. This leads to some exact results on the effective coupling of D3-branes in type IIB string theory. As a result, we also derive exact results on higher dimensional operators in the torus compactification of the six dimensional (0, 2) superconformal theory.
New black holes in D =5 minimal gauged supergravity: Deformed boundaries and frozen horizons
NASA Astrophysics Data System (ADS)
Blázquez-Salcedo, Jose Luis; Kunz, Jutta; Navarro-Lérida, Francisco; Radu, Eugen
2018-04-01
A new class of black hole solutions of the five-dimensional minimal gauged supergravity is presented. They are characterized by the mass, the electric charge, two equal magnitude angular momenta and the magnitude of the magnetic potential at infinity. These black holes possess a horizon of spherical topology; however, both the horizon and the sphere at infinity can be arbitrarily squashed, with nonextremal solutions interpolating between black strings and black branes. A particular set of extremal configurations corresponds to a new one-parameter family of supersymmetric black holes. While their conserved charges are determined by the squashing of the sphere at infinity, these supersymmetric solutions possess the same horizon geometry.
Unifying Type-II Strings by Exceptional Groups
NASA Astrophysics Data System (ADS)
Arvanitakis, Alex S.; Blair, Chris D. A.
2018-05-01
We construct the exceptional sigma model: a two-dimensional sigma model coupled to a supergravity background in a manifestly (formally) ED (D )-covariant manner. This formulation of the background is provided by exceptional field theory (EFT), which unites the metric and form fields of supergravity in ED (D ) multiplets before compactification. The realization of the symmetries of EFT on the world sheet uniquely fixes the Weyl-invariant Lagrangian and allows us to relate our action to the usual type-IIA fundamental string action and a form of the type-IIB (m , n ) action. This uniqueness "predicts" the correct form of the couplings to gauge fields in both Neveu-Schwarz and Ramond sectors, without invoking supersymmetry.
The D 2 k R 4 invariants of mathcal{N} = 8 supergravity
NASA Astrophysics Data System (ADS)
Freedman, Daniel Z.; Tonni, Erik
2011-04-01
The existence of a linearized SUSY invariant for mathcal{N} = 8 supergravity whose gravitational components are usually called R 4 was established long ago by on-shell super-space arguments. Superspace and string theory methods have also established analogous higher dimensional D 2 k R 4 invariants. However, very little is known about the SUSY completions of these operators which involve other fields of the theory. In this paper we find the detailed component expansion of the linearized R 4 invariant starting from the corresponding superamplitude which generates all component matrix elements of the operator. It is then quite straightforward to extend results to the entire set of D 2 k R 4 operators.
COBE satellite measurement, hyperspheres, superstrings and the dimension of spacetime.
NASA Astrophysics Data System (ADS)
El Naschie, M. S.
1998-08-01
The first part of the paper attempts to establish connections between hypersphere backing in infinite dimensions, the expectation value of dimE(∞) spacetime and the COBE measurement of the microwave background radiation. One of the main results reported here is that the mean sphere in S(∞) spans a four dimensional manifold and is thus equal to the expectation value of the topological dimension of E(∞). In the second part the author introduces within a general theory, a probabilistic justification for a compactification which reduces an infinite dimensional spacetime E(∞) (n = ∞) to a four dimensional one (DT = n = 4).
NASA Astrophysics Data System (ADS)
Fernández-Melgarejo, José J.; Park, Minkyu; Shigemori, Masaki
2017-12-01
A supertube is a supersymmetric configuration in string theory which occurs when a pair of branes spontaneously polarizes and generates a new dipole charge extended along a closed curve. The dipole charge of a codimension-2 supertube is characterized by the U-duality monodromy as one goes around the supertube. For multiple codimension-2 supertubes, their monodromies do not commute in general. In this paper, we construct a supersymmetric solution of five-dimensional supergravity that describes two supertubes with such non-Abelian monodromies, in a certain perturbative expansion. In supergravity, the monodromies are realized as the multi-valuedness of the scalar fields, while in higher dimensions they correspond to non-geometric duality twists of the internal space. The supertubes in our solution carry NS5 and 5 2 2 dipole charges and exhibit the same monodromy structure as the SU(2) Seiberg-Witten geometry. The perturbative solution has AdS2 × S 2 asymptotics and vanishing four-dimensional angular momentum. We argue that this solution represents a microstate of four-dimensional black holes with a finite horizon and that it provides a clue for the gravity realization of a pure-Higgs branch state in the dual quiver quantum mechanics.
Democratic superstring field theory: gauge fixing
NASA Astrophysics Data System (ADS)
Kroyter, Michael
2011-03-01
We show that a partial gauge fixing of the NS sector of the democratic-picture superstring field theory leads to the non-polynomial theory. Moreover, by partially gauge fixing the Ramond sector we obtain a non-polynomial fully RNS theory at pictures 0 and 1/2 . Within the democratic theory and in the partially gauge fixed theory the equations of motion of both sectors are derived from an action. We also discuss a representation of the non-polynomial theory analogous to a manifestly two-dimensional representation of WZW theory and the action of bosonic pure-gauge solutions. We further demonstrate that one can consistently gauge fix the NS sector of the democratic theory at picture number -1. The resulting theory is new. It is a {mathbb{Z}_2} dual of the modified cubic theory. We construct analytical solutions of this theory and show that they possess the desired properties.
Local metrics admitting a principal Killing-Yano tensor with torsion
NASA Astrophysics Data System (ADS)
Houri, Tsuyoshi; Kubizňák, David; Warnick, Claude M.; Yasui, Yukinori
2012-08-01
In this paper we initiate a classification of local metrics admitting the principal Killing-Yano tensor with a skew-symmetric torsion. It is demonstrated that in such spacetimes rank-2 Killing tensors occur naturally and mutually commute. We reduce the classification problem to that of solving a set of partial differential equations, and we present some solutions to these PDEs. In even dimensions, three types of local metrics are obtained: one of them naturally generalizes the torsion-less case while the others occur only when the torsion is present. In odd dimensions, we obtain more varieties of local metrics. The explicit metrics constructed in this paper are not the most general possible admitting the required symmetry; nevertheless, it is demonstrated that they cover a wide variety of solutions of various supergravities, such as the Kerr-Sen black holes of (un-)gauged Abelian heterotic supergravity, the Chong-Cvetic-Lü-Pope black hole solution of five-dimensional minimal supergravity or the Kähler with torsion manifolds. The relation between generalized Killing-Yano tensors and various torsion Killing spinors is also discussed.
Poisson-Lie duals of the η deformed symmetric space sigma model
NASA Astrophysics Data System (ADS)
Hoare, Ben; Seibold, Fiona K.
2017-11-01
Poisson-Lie dualising the η deformation of the G/H symmetric space sigma model with respect to the simple Lie group G is conjectured to give an analytic continuation of the associated λ deformed model. In this paper we investigate when the η deformed model can be dualised with respect to a subgroup G0 of G. Starting from the first-order action on the complexified group and integrating out the degrees of freedom associated to different subalgebras, we find it is possible to dualise when G0 is associated to a sub-Dynkin diagram. Additional U1 factors built from the remaining Cartan generators can also be included. The resulting construction unifies both the Poisson-Lie dual with respect to G and the complete abelian dual of the η deformation in a single framework, with the integrated algebras unimodular in both cases. We speculate that extending these results to the path integral formalism may provide an explanation for why the η deformed AdS5 × S5 superstring is not one-loop Weyl invariant, that is the couplings do not solve the equations of type IIB supergravity, yet its complete abelian dual and the λ deformed model are.
Classical and quantum analysis of repulsive singularities in four-dimensional extended supergravity
NASA Astrophysics Data System (ADS)
Gaida, I.; Hollmann, H. R.; Stewart, J. M.
1999-07-01
Non-minimal repulsive singularities (`repulsons') in extended supergravity theories are investigated. The short-distance antigravity properties of the repulsons are tested at the classical and the quantum level by a scalar test-particle. Using a partial wave expansion it is shown that the particle is totally reflected at the origin. A high-frequency incoming particle undergoes a phase shift of icons/Journals/Common/pi" ALT="pi" ALIGN="TOP"/>/2. However, the phase shift for a low-frequency particle depends upon the physical data of the repulson. The curvature singularity at a finite distance rh turns out to be transparent for the scalar test-particle and the coordinate singularity at the origin serves as the repulsive barrier to bounce back the particles.
The effective supergravity of little string theory
NASA Astrophysics Data System (ADS)
Antoniadis, Ignatios; Delgado, Antonio; Markou, Chrysoula; Pokorski, Stefan
2018-02-01
In this work we present the minimal supersymmetric extension of the five-dimensional dilaton-gravity theory that captures the main properties of the holographic dual of little string theory. It is described by a particular gauging of N=2 supergravity coupled with one vector multiplet associated with the string dilaton, along the U(1) subgroup of SU(2) R-symmetry. The linear dilaton in the fifth coordinate solution of the equations of motion (with flat string frame metric) breaks half of the supersymmetries to N=1 in four dimensions. Interest in the linear dilaton model has lately been revived in the context of the clockwork mechanism, which has recently been proposed as a new source of exponential scale separation in field theory.
NASA Astrophysics Data System (ADS)
McReynolds, Sean
Five-dimensional N = 2 Yang-Mills-Einstein supergravity and its couplings to hyper and tensor multiplets are considered on an orbifold spacetime of the form M4 x S1/Gamma, where Gamma is a discrete group. As is well known in such cases, supersymmetry is broken to N = 1 on the orbifold fixed planes, and chiral 4D theories can be obtained from bulk hypermultiplets (or from the coupling of fixed-plane supported fields). Five-dimensional gauge symmetries are broken by boundary conditions for the fields, which are equivalent to some set of Gamma-parity assignments in the orbifold theory, allowing for arbitrary rank reduction. Furthermore, Wilson lines looping from one boundary to the other can break bulk gauge groups, or give rise to vacuum expectation values for scalars on the boundaries, which can result in spontaneous breaking of boundary gauge groups. The broken gauge symmetries do not survive as global symmetries of the low energy theories below the compactification scale due to 4 D minimal couplings to gauge fields. Axionic fields are a generic feature, just as in any compactification of M-theory (or string theory for that matter), and we exhibit the form of this field and its role as the QCD axion, capable of resolving the strong CP problem. The main motivation for the orbifold theories here is taken to be orbifold-GUTS, wherein a unified gauge group is sought in higher dimensions while allowing the orbifold reduction to handle problems such as rapid proton decay, exotic matter, mass hierarchies, etc. To that end, we discuss the allowable minimal SU(5), SO(10) and E6 GUT theories with all fields living in five dimensions. It is argued that, within the class of homogeneous quaternionic scalar manifolds characterizing the hypermultiplet couplings in 5D, supergravity admits a restricted set of theories that yield minimal phenomenological field content. In addition, non-compact gaugings are a novel feature of supergravity theories, and in particular we consider the example of an SU(5,1) YMESGT in which all of the fields of the theory are connected by local (susy and gauge) transformations that are symmetries of the Lagrangian. Such non-compact gaugings allow a novel type of gauge-Higgs unification in higher dimensions. The possibility of boundary-localized fields is considered only via anomaly arguments. (Abstract shortened by UMI.)
Priming the search for cosmic superstrings using GADGET2 simulations
NASA Astrophysics Data System (ADS)
Cousins, Bryce; Jia, Hewei; Braverman, William; Chernoff, David
2018-01-01
String theory is an extensive mathematical theory which, despite its broad explanatory power, is still lacking empirical support. However, this may change when considering the scope of cosmology, where “cosmic superstrings” may serve as observational evidence. According to string theory, these superstrings were stretched to cosmic scales in the early Universe and may now be detectable, via microlensing or gravitational radiation. Negative results from prior surveys have put some limits on superstring properties, so to investigate the parameter space more effectively, we ask: “where should we expect to find cosmic superstrings, and how many should we predict?” This research investigates these questions by simulating cosmic string behavior during structure formation in the universe using GADGET2. The sizes and locations of superstring clusters are assessed using kernel density estimation and radial correlation functions. Currently, only preliminary small-scale simulations have been performed, producing superstring clustering with low sensitivity. However, future simulations of greater magnitude will offer far higher resolution, allowing us to more precisely track superstring behavior within structures. Such results will guide future searches, most imminently those made possible by LSST and WFIRST.
The toric SO(10) F-theory landscape
NASA Astrophysics Data System (ADS)
Buchmüller, W.; Dierigl, M.; Oehlmann, P.-K.; Rühle, F.
2017-12-01
Supergravity theories in more than four dimensions with grand unified gauge symmetries are an important intermediate step towards the ultraviolet completion of the Standard Model in string theory. Using toric geometry, we classify and analyze six-dimensional F-theory vacua with gauge group SO(10) taking into account Mordell-Weil U(1) and discrete gauge factors. We determine the full matter spectrum of these models, including charged and neutral SO(10) singlets. Based solely on the geometry, we compute all matter multiplicities and confirm the cancellation of gauge and gravitational anomalies independent of the base space. Particular emphasis is put on symmetry enhancements at the loci of matter fields and to the frequent appearance of superconformal points. They are linked to non-toric Kähler deformations which contribute to the counting of degrees of freedom. We compute the anomaly coefficients for these theories as well by using a base-independent blow-up procedure and superconformal matter transitions. Finally, we identify six-dimensional supergravity models which can yield the Standard Model with high-scale supersymmetry by further compactification to four dimensions in an Abelian flux background.
Dynamical symmetry enhancement near N = 2, D = 4 gauged supergravity horizons
NASA Astrophysics Data System (ADS)
Gutowski, J.; Mohaupt, T.; Papadopoulos, G.
2017-03-01
We show that all smooth Killing horizons with compact horizon sections of 4-dimensional gauged N = 2 supergravity coupled to any number of vector multiplets preserve 2{c}_1(K)+4ℓ supersymmetries, where K is a pull-back of the Hodge bundle of the special Kähler manifold on the horizon spatial section. We also demonstrate that all such horizons with {c}_1(K)=0 exhibit an sl(2,R) symmetry and preserve either 4 or 8 supersymmetries. If the orbits of the sl(2,R) symmetry are 2-dimensional, the horizons are warped products of AdS2 with the horizon spatial section. Otherwise, the horizon section admits an isometry which preserves all the fields. The proof of these results is centered on the use of index theorem in conjunction with an appropriate generalization of the Lichnerowicz theorem for horizons that preserve at least one supersymmetry. In all {c}_1(K)=0 cases, we specify the local geometry of spatial horizon sections and demonstrate that the solutions are determined by first order non-linear ordinary differential equations on some of the fields.
Warm p-soup and near extremal black holes
NASA Astrophysics Data System (ADS)
Morita, Takeshi; Shiba, Shotaro; Wiseman, Toby; Withers, Benjamin
2014-04-01
We consider a model of D-dimensional supergravity coupled to elementary p-branes. We use gravitational arguments to deduce the low energy effective theory of N nearly parallel branes. This is a (p + 1)-dimensional scalar field theory, where the scalars represent the positions of the branes in their transverse space. We propose that the same theory in a certain temperature regime describes a ‘soup’ of strongly interacting branes, giving a microscopic description of near extremal black p-branes. We use natural approximations to estimate the energy density of this soup as a function of the physical parameters; N, temperature, brane tension and gravitational coupling. We also characterize the horizon radius, measured in the metric natural to the branes, with the thermal vev of the scalars. For both quantities we find agreement with the corresponding supergravity black brane results. Surprisingly, beyond the physical parameters, we are naturally able to reproduce certain irrational factors such as πs. We comment on how these ideas may explain why black hole thermodynamics arises in gauge theories with holographic duals at finite temperature.
More on the hidden symmetries of 11D supergravity
NASA Astrophysics Data System (ADS)
Andrianopoli, Laura; D'Auria, Riccardo; Ravera, Lucrezia
2017-09-01
In this paper we clarify the relations occurring among the osp (1 | 32) algebra, the M-algebra and the hidden superalgebra underlying the Free Differential Algebra of D=11 supergravity (to which we will refer as DF-algebra) that was introduced in the literature by D'Auria and Frè in 1981 and is actually a (Lorentz valued) central extension of the M-algebra including a nilpotent spinor generator, Q‧. We focus in particular on the 4-form cohomology in 11D superspace of the supergravity theory, strictly related to the presence in the theory of a 3-form A (3). Once formulated in terms of its hidden superalgebra of 1-forms, we find that A (3) can be decomposed into the sum of two parts having different group-theoretical meaning: One of them allows to reproduce the FDA of the 11D Supergravity due to non-trivial contributions to the 4-form cohomology in superspace, while the second one does not contribute to the 4-form cohomology, being a closed 3-form in the vacuum, defining however a one parameter family of trilinear forms invariant under a symmetry algebra related to osp (1 | 32) by redefining the spin connection and adding a new Maurer-Cartan equation. We further discuss about the crucial role played by the 1-form spinor η (dual to the nilpotent generator Q‧) for the 4-form cohomology of the eleven dimensional theory on superspace.
Conformal supergravity in five dimensions: new approach and applications
NASA Astrophysics Data System (ADS)
Butter, Daniel; Kuzenko, Sergei M.; Novak, Joseph; Tartaglino-Mazzucchelli, Gabriele
2015-02-01
We develop a new off-shell formulation for five-dimensional (5D) conformal supergravity obtained by gauging the 5D superconformal algebra in superspace. An important property of the conformal superspace introduced is that it reduces to the super-conformal tensor calculus (formulated in the early 2000's) upon gauging away a number of superfluous fields. On the other hand, a different gauge fixing reduces our formulation to the SU(2) superspace of arXiv:0802.3953, which is suitable to describe the most general off-shell supergravity-matter couplings. Using the conformal superspace approach, we show how to reproduce practically all off-shell constructions derived so far, including he supersymmetric extensions of R 2 terms, thus demonstrating the power of our formulation. Furthermore, we construct for the first time a supersymmetric completion of the Ricci tensor squared term using the standard Weyl multiplet coupled to an off-shell vector multiplet. In addition, we present several procedures to generate higher-order off-shell invariants in supergravity, including higher-derivative ones. The covariant projective multiplets proposed in arXiv:0802.3953 are lifted to conformal superspace, and a manifestly superconformal action principle is given. We also introduce unconstrained prepotentials for the vector multiplet, the multiplet (i.e., the linear multiplet without central charge) and multiplets, with n = 0 , 1 , . . . Superform formulations are given for the BF action and the non-abelian Chern-Simons action. Finally, we describe locally supersymmetric theories with gauged central charge in conformal superspace.
Flux compactification of M-theory on compact manifolds with spin(7) holonomy
NASA Astrophysics Data System (ADS)
Constantin, Dragos Eugeniu
2005-11-01
At the leading order, M-theory admits minimal supersymmetric compactifications if the internal manifold has exceptional holonomy. The inclusion of non-vanishing fluxes in M-theory and string theory compactifications induce a superpotential in the lower dimensional theory, which depends on the fluxes. In this work, we check the conjectured form of this superpotential in the case of warped M-theory compactifications on Spin (7) holonomy manifolds. We perform a Kaluza-Klein reduction of the eleven-dimensional supersymmetry transformation for the gravitino and we find by direct comparison the superpotential expression. We check the conjecture for the heterotic string compactified on a Calabi-Yau three-fold as well. The conjecture can be checked indirectly by inspecting the scalar potential obtained after the compactification of M-theory on Spin (7) holonomy manifolds with non-vanishing fluxes. The scalar potential can be written in terms of the superpotential and we show that this potential stabilizes all the moduli fields describing deformations of the metric except for the radial modulus. All the above analyses require the knowledge of the minimal supergravity action in three dimensions. Therefore we calculate the most general causal N = 1 three-dimensional, gauge invariant action coupled to matter in superspace and derive its component form using Ectoplasmic integration theory. We also show that the three-dimensional theory which results from the compactification is in agreement with the more general supergravity construction. The compactification procedure takes into account higher order quantum correction terms in the low energy effective action. We analyze the properties of these terms on a Spin (7) background. We derive a perturbative set of solutions which emerges from a warped compactification on a Spin (7) holonomy manifold with non-vanishing flux for the M-theory field strength and we show that in general the Ricci flatness of the internal manifold is lost, which means that the supergravity vacua are deformed away from the exceptional holonomy. Using the superpotential form we identify the supersymmetric vacua out of this general set of solutions.
NASA Astrophysics Data System (ADS)
Bossard, Guillaume; Katmadas, Stefanos; Turton, David
2018-02-01
The study of non-supersymmetric black hole microstates offers the potential to resolve the black hole information paradox. A system of equations was recently obtained that enables the systematic construction of non-supersymmetric smooth horizonless supergravity solutions, that are candidates to describe microstates of non-extremal black holes. Within this system we construct a family of six-dimensional supergravity solutions that feature two topologically-nontrivial three-cycles known as bolts. The two bolts touch at a single point and are supported by fluxes. We find that the fluxes on the two three-cycles can be either aligned or anti-aligned, and exhibit examples of both. We present several examples of smooth solutions, including near-extremal solutions that have an approximate AdS3 region, and far-from extremal solutions that have arbitrarily small charge compared to their mass.
Warped AdS 6 × S 2 in Type IIB supergravity III. Global solutions with seven-branes
NASA Astrophysics Data System (ADS)
D'Hoker, Eric; Gutperle, Michael; Uhlemann, Christoph F.
2017-11-01
We extend our previous construction of global solutions to Type IIB super-gravity that are invariant under the superalgebra F(4) and are realized on a spacetime of the form AdS 6 × S 2 warped over a Riemann surface Σ by allowing the supergravity fields to have non-trivial SL(2, ℝ) monodromy at isolated punctures on Σ. We obtain explicit solutions for the case where Σ is a disc, and the monodromy generators are parabolic elements of SL(2, ℝ) physically corresponding to the monodromy allowed in Type IIB string theory. On the boundary of Σ the solutions exhibit singularities at isolated points which correspond to semi-infinite five-branes, as is familiar from the global solutions without monodromy. In the interior of Σ, the solutions are everywhere regular, except at the punctures where SL(2, ℝ) monodromy resides and which physically correspond to the locations of [ p, q] seven-branes. The solutions have a compelling physical interpretation corresponding to fully localized five-brane intersections with additional seven-branes, and provide candidate holographic duals to the five-dimensional superconformal field theories realized on such intersections.
Flowing to higher dimensions: a new strongly-coupled phase on M2 branes
Pilch, Krzysztof; Tyukov, Alexander; Warner, Nicholas P.
2015-11-24
We describe a one-parameter family of new holographic RG flows that start from AdS 4 × S 7 and go to AdS 5ˆ×B6, where B6 is conformal to a Kahler manifold and AdS 5ˆ is Poincaré AdS 5 with one spatial direction compactified and fibered over B6. The new solutions “flow up dimensions,” going from the (2 + 1)-dimensional conformal field theory on M2 branes in the UV to a (3 + 1)-dimensional field theory on intersecting M5 branes in the infra-red. The M2 branes completely polarize into M5 branes along the flow and the Poincare sections of the AdSmore » 5ˆ are the (3 + 1)-dimensional common intersection of the M5 branes. The emergence of the extra dimension in the infra-red suggests a new strongly-coupled phase of the M2 brane and ABJM theories in which charged solitons are becoming massless. The flow solution is first analyzed by finding a four-dimensional N=2 supersymmetric flow in N=8 gauged supergravity. This is then generalized to a one parameter family of non-supersymmetric flows. The infra-red limit of the solutions appears to be quite singular in four dimensions but the uplift to eleven-dimensional supergravity is remarkable and regular (up to orbifolding). Our construction is a non-trivial application of the recently derived uplift formulae for fluxes, going well beyond the earlier constructions of stationary points solutions. As a result, the eleven-dimensional supersymmetry is also analyzed and shows how, for the supersymmetric flow, the M2-brane supersymmetry in the UV is polarized entirely into M5-brane supersymmetry in the infra-red.« less
Flowing to higher dimensions: a new strongly-coupled phase on M2 branes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pilch, Krzysztof; Tyukov, Alexander; Warner, Nicholas P.
We describe a one-parameter family of new holographic RG flows that start from AdS 4 × S 7 and go to AdS 5ˆ×B6, where B6 is conformal to a Kahler manifold and AdS 5ˆ is Poincaré AdS 5 with one spatial direction compactified and fibered over B6. The new solutions “flow up dimensions,” going from the (2 + 1)-dimensional conformal field theory on M2 branes in the UV to a (3 + 1)-dimensional field theory on intersecting M5 branes in the infra-red. The M2 branes completely polarize into M5 branes along the flow and the Poincare sections of the AdSmore » 5ˆ are the (3 + 1)-dimensional common intersection of the M5 branes. The emergence of the extra dimension in the infra-red suggests a new strongly-coupled phase of the M2 brane and ABJM theories in which charged solitons are becoming massless. The flow solution is first analyzed by finding a four-dimensional N=2 supersymmetric flow in N=8 gauged supergravity. This is then generalized to a one parameter family of non-supersymmetric flows. The infra-red limit of the solutions appears to be quite singular in four dimensions but the uplift to eleven-dimensional supergravity is remarkable and regular (up to orbifolding). Our construction is a non-trivial application of the recently derived uplift formulae for fluxes, going well beyond the earlier constructions of stationary points solutions. As a result, the eleven-dimensional supersymmetry is also analyzed and shows how, for the supersymmetric flow, the M2-brane supersymmetry in the UV is polarized entirely into M5-brane supersymmetry in the infra-red.« less
1/2-BPS D-branes from covariant open superstring in AdS4 × CP3 background
NASA Astrophysics Data System (ADS)
Park, Jaemo; Shin, Hyeonjoon
2018-05-01
We consider the open superstring action in the AdS4 × CP 3 background and investigate the suitable boundary conditions for the open superstring describing the 1/2-BPS D-branes by imposing the κ-symmetry of the action. This results in the classification of 1/2-BPS D-branes from covariant open superstring. It is shown that the 1/2-BPS D-brane configurations are restricted considerably by the Kähler structure on CP 3. We just consider D-branes without worldvolume fluxes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gava, Edi
2012-09-24
In these two lectures I discuss RG flow solutions in (1,0) six dimensional supergravity involving SU(2) Yang-Mills instantons. in the conformally flat part of the 6D metric. The solutions interpolate between two (4,0) supersymmetric AdS{sub 3} Multiplication-Sign S{sup 3} backgrounds with different values of AdS{sub 3} and S{sup 3} radii and describe RG flows in the dual 2D SCFT. The flows described are of v.e.v. type, driven by a vacuum expectation value of a (not exactly) marginal operator of dimension 2 in the UV. We give an interpretation of the supergravity solution in terms of the D1/D5 system in typemore » I string theory on K3, whose effective field theory is expected to flow to a (4,0) SCFT in the infrared.« less
Generalizing the bms3 and 2D-conformal algebras by expanding the Virasoro algebra
NASA Astrophysics Data System (ADS)
Caroca, Ricardo; Concha, Patrick; Rodríguez, Evelyn; Salgado-Rebolledo, Patricio
2018-03-01
By means of the Lie algebra expansion method, the centrally extended conformal algebra in two dimensions and the bms3 algebra are obtained from the Virasoro algebra. We extend this result to construct new families of expanded Virasoro algebras that turn out to be infinite-dimensional lifts of the so-called Bk, Ck and Dk algebras recently introduced in the literature in the context of (super)gravity. We also show how some of these new infinite-dimensional symmetries can be obtained from expanded Kač-Moody algebras using modified Sugawara constructions. Applications in the context of three-dimensional gravity are briefly discussed.
Effect of two different superstrate layers on bismuth titanate (BiT) array antennas.
Wee, F H; Malek, F; Al-Amani, A U; Ghani, Farid
2014-01-15
The microwave industry has shown increasing interest in electronic ceramic material (ECM) due to its advantages, such as light weight, low cost, low loss, and high dielectric strength. In this paper, simple antennas covered by superstrate layers for 2.30 GHz to 2.50 GHz are proposed. The antennas are compact and have the capability of producing high performance in terms of gain, directivity, and radiation efficiency. Bismuth titanate with high dielectric constant of 21, was utilized as the ECM, while the superstrate layers chosen included a split ring resonator and dielectric material. The superstrate layers were designed for some improvement in the performance of directivity, gain, and return loss. The proposed antennas were simulated and fabricated. The results obtained were small antennas that possess high gain and high directivity with 360°, omni-directional signal transmission that resonant types of conventional dipole antenna cannot achieve. The gain of the antenna with the superstrate layer was enhanced by about 1 dBi over the antenna without a superstrate layer at 2.40 GHz.
Effect of Two Different Superstrate Layers On Bismuth Titanate (BiT) Array Antennas
NASA Astrophysics Data System (ADS)
Wee, F. H.; Malek, F.; Al-Amani, A. U.; Ghani, Farid
2014-01-01
The microwave industry has shown increasing interest in electronic ceramic material (ECM) due to its advantages, such as light weight, low cost, low loss, and high dielectric strength. In this paper, simple antennas covered by superstrate layers for 2.30 GHz to 2.50 GHz are proposed. The antennas are compact and have the capability of producing high performance in terms of gain, directivity, and radiation efficiency. Bismuth titanate with high dielectric constant of 21, was utilized as the ECM, while the superstrate layers chosen included a split ring resonator and dielectric material. The superstrate layers were designed for some improvement in the performance of directivity, gain, and return loss. The proposed antennas were simulated and fabricated. The results obtained were small antennas that possess high gain and high directivity with 360°, omni-directional signal transmission that resonant types of conventional dipole antenna cannot achieve. The gain of the antenna with the superstrate layer was enhanced by about 1 dBi over the antenna without a superstrate layer at 2.40 GHz.
Vector curvaton with varying kinetic function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimopoulos, Konstantinos; Karciauskas, Mindaugas; Wagstaff, Jacques M.
2010-01-15
A new model realization of the vector curvaton paradigm is presented and analyzed. The model consists of a single massive Abelian vector field, with a Maxwell-type kinetic term. By assuming that the kinetic function and the mass of the vector field are appropriately varying during inflation, it is shown that a scale-invariant spectrum of superhorizon perturbations can be generated. These perturbations can contribute to the curvature perturbation of the Universe. If the vector field remains light at the end of inflation it is found that it can generate substantial statistical anisotropy in the spectrum and bispectrum of the curvature perturbation.more » In this case the non-Gaussianity in the curvature perturbation is predominantly anisotropic, which will be a testable prediction in the near future. If, on the other hand, the vector field is heavy at the end of inflation then it is demonstrated that particle production is approximately isotropic and the vector field alone can give rise to the curvature perturbation, without directly involving any fundamental scalar field. The parameter space for both possibilities is shown to be substantial. Finally, toy models are presented which show that the desired variation of the mass and kinetic function of the vector field can be realistically obtained, without unnatural tunings, in the context of supergravity or superstrings.« less
General N=1 supersymmetric flux vacua of massive type IIA string theory.
Behrndt, Klaus; Cvetic, Mirjam
2005-07-08
We derive conditions for the existence of four-dimensional N=1 supersymmetric flux vacua of massive type IIA string theory with general supergravity fluxes turned on. For an SU(3) singlet Killing spinor, we show that such flux vacua exist when the internal geometry is nearly Kähler. The geometry is not warped, all the allowed fluxes are proportional to the mass parameter, and the dilaton is fixed by a ratio of (quantized) fluxes. The four-dimensional cosmological constant, while negative, becomes small in the vacuum with the weak string coupling.
Short superstrings and the structure of overlapping strings.
Armen, C; Stein, C
1995-01-01
Given a collection of strings S = [s1,...,sn] over an alphabet sigma, a superstring alpha of S is a string containing each si as a substring, that is, for each i, 1 < or = i < or = n, alpha contains a block of magnitude of si consecutive characters that match si exactly. The shortest superstring problem is the problem of finding a superstring alpha of minimum length. The shortest superstring problem has applications in both computational biology and data compression. The shortest superstring problem is NP-hard (Gallant et al., 1980); in fact, it was recently shown to be MAX SNP-hard (Blum et al., 1994). Given the importance of the applications, several heuristics and approximation algorithms have been proposed. Constant factor approximation algorithms have been given in Blum et al. (1994) (factor of 3), Teng and Yao (1993) (factor of 2 8/9), Czumaj et al. (1994) (factor of 2 5/6), and Kosaraju et al. (1994) (factor of 2 50/63). Informally, the key to any algorithm for the shortest superstring problem is to identify sets of strings with large amounts of similarity, or overlap. Although the previous algorithms and their analyses have grown increasingly sophisticated, they reveal remarkably little about the structure of strings with large amounts of overlap. In this sense, they are solving a more general problem than the one at hand. In this paper, we study the structure of strings with large amounts of overlap and use our understanding to give an algorithm that finds a superstring whose length is no more than 2 3/4 times that of the optimal superstring. Our algorithm runs in O(magnitude of S + n3) time, which matches that of previous algorithms. We prove several interesting properties about short periodic strings, allowing us to answer questions of the following form: Given a string with some periodic structure, characterize all the possible periodic strings that can have a large amount of overlap with the first string.
Cosmological rotating black holes in five-dimensional fake supergravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nozawa, Masato; Maeda, Kei-ichi; Waseda Research Institute for Science and Engineering, Okubo 3-4-1, Shinjuku, Tokyo 169-8555
2011-01-15
In recent series of papers, we found an arbitrary dimensional, time-evolving, and spatially inhomogeneous solution in Einstein-Maxwell-dilaton gravity with particular couplings. Similar to the supersymmetric case, the solution can be arbitrarily superposed in spite of nontrivial time-dependence, since the metric is specified by a set of harmonic functions. When each harmonic has a single point source at the center, the solution describes a spherically symmetric black hole with regular Killing horizons and the spacetime approaches asymptotically to the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmology. We discuss in this paper that in 5 dimensions, this equilibrium condition traces back to the first-order 'Killing spinor'more » equation in 'fake supergravity' coupled to arbitrary U(1) gauge fields and scalars. We present a five-dimensional, asymptotically FLRW, rotating black-hole solution admitting a nontrivial 'Killing spinor', which is a spinning generalization of our previous solution. We argue that the solution admits nondegenerate and rotating Killing horizons in contrast with the supersymmetric solutions. It is shown that the present pseudo-supersymmetric solution admits closed timelike curves around the central singularities. When only one harmonic is time-dependent, the solution oxidizes to 11 dimensions and realizes the dynamically intersecting M2/M2/M2-branes in a rotating Kasner universe. The Kaluza-Klein-type black holes are also discussed.« less
Division Algebras, Supersymmetry and Higher Gauge Theory
NASA Astrophysics Data System (ADS)
Huerta, John Gmerek
2011-12-01
Starting from the four normed division algebras---the real numbers, complex numbers, quaternions and octonions, with dimensions k = 1, 2, 4 and 8, respectively---a systematic procedure gives a 3-cocycle on the Poincare Lie superalgebra in dimensions k + 2 = 3, 4, 6 and 10. A related procedure gives a 4-cocycle on the Poincare Lie superalgebra in dimensions k+3 = 4, 5, 7 and 11. The existence of these cocycles follow from certain spinor identities that hold only in these dimensions, and which are closely related to the existence of superstring and super-Yang--Mills theory in dimensions k + 2, and super-2-brane theory in dimensions k + 3. In general, an (n+1)-cocycle on a Lie superalgebra yields a 'Lie n-superalgebra': that is, roughly speaking, an n-term chain complex equipped with a bracket satisfying the axioms of a Lie superalgebra up to chain homotopy. We thus obtain Lie 2-superalgebras extending the Poincare superalgebra in dimensions 3, 4, 6, and 10, and Lie 3-superalgebras extending the Poincare superalgebra in dimensions 4, 5, 7 and 11. As shown in Sati, Schreiber and Stasheff's work on generalized connections valued in Lie n-superalgebras, Lie 2-superalgebra connections describe the parallel transport of strings, while Lie 3-superalgebra connections describe the parallel transport of 2-branes. Moreover, in the octonionic case, these connections concisely summarize the fields appearing in 10- and 11-dimensional supergravity. Generically, integrating a Lie n-superalgebra to a Lie n-supergroup yields a 'Lie n-supergroup' that is hugely infinite-dimensional. However, when the Lie n-superalgebra is obtained from an (n + 1)-cocycle on a nilpotent Lie superalgebra, there is a geometric procedure to integrate the cocycle to one on the corresponding nilpotent Lie supergroup. In general, a smooth (n+1)-cocycle on a supergroup yields a 'Lie n-supergroup': that is, a weak n-group internal to supermanifolds. Using our geometric procedure to integrate the 3-cocycle in dimensions 3, 4, 6 and 10, we obtain a Lie 2-supergroup extending the Poincare supergroup in those dimensions, and similarly integrating the 4-cocycle in dimensions 4, 5, 7 and 11, we obtain a Lie 3-supergroup extending the Poincare supergroup in those dimensions.
Multi-kW solar arrays for Earth orbit applications
NASA Technical Reports Server (NTRS)
1985-01-01
The multi-kW solar array program is concerned with developing the technology required to enable the design of solar arrays required to power the missions of the 1990's. The present effort required the design of a modular solar array panel consisting of superstrate modules interconnected to provide the structural support for the solar cells. The effort was divided into two tasks: (1) superstrate solar array panel design, and (2) superstrate solar array panel-to-panel design. The primary objective was to systematically investigate critical areas of the transparent superstrate solar array and evaluate the flight capabilities of this low cost approach.
Mass deformations of 5d SCFTs via holography
NASA Astrophysics Data System (ADS)
Gutperle, Michael; Kaidi, Justin; Raj, Himanshu
2018-02-01
Using six-dimensional Euclidean F (4) gauged supergravity we construct a holographic renormalization group flow for a CFT on S 5. Numerical solutions to the BPS equations are obtained and the free energy of the theory on S 5 is determined holographically by calculation of the renormalized on-shell supergravity action. In the process, we deal with subtle issues such as holographic renormalization and addition of finite counterterms. We then propose a candidate field theory dual to these solutions. This tentative dual is a supersymmetry-preserving deformation of the strongly-coupled non-Lagrangian SCFT derived from the D4-D8 system in string theory. In the IR, this theory is a mass deformation of a USp(2 N ) gauge theory. A localization calculation of the free energy is performed for this IR theory, which for reasonably small values of the deformation parameter is found to have the same qualitative behaviour as the holographic free energy.
BPS objects in D = 7 supergravity and their M-theory origin
NASA Astrophysics Data System (ADS)
Dibitetto, Giuseppe; Petri, Nicolò
2017-12-01
We study several different types of BPS flows within minimal N=1 , D = 7 supergravity with SU(2) gauge group and non-vanishing topological mass. After reviewing some known domain wall solutions involving only the metric and the ℝ+ scalar field, we move to considering more general flows involving a "dyonic" profile for the 3-form gauge potential. In this context, we consider flows featuring a Mkw3 as well as an AdS3 slicing, write down the corresponding flow equations, and integrate them analytically to obtain many examples of asymptotically AdS7 solutions in presence of a running 3-form. Furthermore, we move to adding the possibility of non-vanishing vector fields, find the new corresponding flows and integrate them numerically. Finally, we discuss the eleven-dimensional interpretation of the aforementioned solutions as effective descriptions of M2 - M5 bound states.
M-theory superstrata and the MSW string
Bena, Iosif; Martinec, Emil; Turton, David; ...
2017-06-26
The low-energy description of wrapped M5 branes in compactifications of M-theory on a Calabi-Yau threefold times a circle is given by a conformal field theory studied by Maldacena, Strominger and Witten and known as the MSW CFT. Taking the threefold to be T 6 or K3×T 2, we construct a map between a sub-sector of this CFT and a sub-sector of the D1-D5 CFT. We demonstrate this map by considering a set of D1-D5 CFT states that have smooth horizonless bulk duals, and explicitly constructing the supergravity solutions dual to the corresponding states of the MSW CFT. We thus obtainmore » the largest known class of solutions dual to MSW CFT microstates, and demonstrate that five-dimensional ungauged supergravity admits much larger families of smooth horizonless solutions than previously known.« less
Geometric U-folds in four dimensions
NASA Astrophysics Data System (ADS)
Lazaroiu, C. I.; Shahbazi, C. S.
2018-01-01
We describe a general construction of geometric U-folds compatible with a non-trivial extension of the global formulation of four-dimensional extended supergravity on a differentiable spin manifold. The topology of geometric U-folds depends on certain flat fiber bundles which encode how supergravity fields are globally glued together. We show that smooth non-trivial U-folds of this type can exist only in theories where both the scalar and space-time manifolds have non-trivial fundamental group and in addition the scalar map of the solution is homotopically non-trivial. Consistency with string theory requires smooth geometric U-folds to be glued using subgroups of the effective discrete U-duality group, implying that the fundamental group of the scalar manifold of such solutions must be a subgroup of the latter. We construct simple examples of geometric U-folds in a generalization of the axion-dilaton model of \
NASA Astrophysics Data System (ADS)
Bedra, Sami; Bedra, Randa; Benkouda, Siham; Fortaki, Tarek
2017-12-01
In this paper, the effects of both anisotropies in the substrate and superstrate loading on the resonant frequency and bandwidth of high-Tc superconducting circular microstrip patch in a substrate-superstrate configuration are investigated. A rigorous analysis is performed using a dyadic Galerkin's method in the vector Hankel transform domain. Galerkin's procedure is employed in the spectral domain where the TM and TE modes of the cylindrical cavity with magnetic side walls are used in the expansion of the disk current. The effect of the superconductivity of the patch is taken into account using the concept of the complex resistive boundary condition. London's equations and the two-fluid model of Gorter and Casimir are used in the calculation of the complex surface impedance of the superconducting circular disc. The accuracy of the analysis is tested by comparing the computed results with previously published data for several anisotropic substrate-superstrate materials. Good agreement is found among all sets of results. The numerical results obtained show that important errors can be made in the computation of the resonant frequencies and bandwidths of the superconducting resonators when substrate dielectric anisotropy, and/or superstrate anisotropy are ignored. Other theoretical results obtained show that the superconducting circular microstrip patch on anisotropic substrate-superstrate with properly selected permittivity values along the optical and the non-optical axes combined with optimally chosen structural parameters is more advantageous than the one on isotropic substrate-superstrate by exhibiting wider bandwidth characteristic.
Geometric structures of super-(Diff(S/sup 1/)/S/sup 1/)*
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidke, W.B.; Vokos, S.P.
Superconformal invariance is of central importance to a perturbative and non-perturbative formulation of stringy theory. The group that describes the invariances of the superstring is the super-Virasoro group, Super-Diff(S/sup 1/). The super-reparameterizations of the circle that leave a point fixed compose the quotient space Super-(Diff(S/sup 1/)/S/sup 1/). We investigate the holomorphic geometry of this infinite-dimensional Kaehler supermanifold and calculate its curvature. copyright 1989 Academic Press, Inc.
Refining the boundaries of the classical de Sitter landscape
NASA Astrophysics Data System (ADS)
Andriot, David; Blåbäck, Johan
2017-03-01
We derive highly constraining no-go theorems for classical de Sitter backgrounds of string theory, with parallel sources; this should impact the embedding of cosmological models. We study ten-dimensional vacua of type II supergravities with parallel and backreacted orientifold O p -planes and D p -branes, on four-dimensional de Sitter spacetime times a compact manifold. Vacua for p = 3, 7 or 8 are completely excluded, and we obtain tight constraints for p = 4, 5, 6. This is achieved through the derivation of an enlightening expression for the four-dimensional Ricci scalar. Further interesting expressions and no-go theorems are obtained. The paper is self-contained so technical aspects, including conventions, might be of more general interest.
On the dynamics of superstring compactification
NASA Astrophysics Data System (ADS)
Pollock, M. D.
2018-05-01
Compactification of the ten-dimensional heterotic superstring theory to four dimensions gives rise to two moduli potentials VA, VB, the positive semi-definiteness of which places constraints on the Euler characteristic \\bar{χ} of the internal space \\bar{g}_{μν}(y^{ξ}) and the adiabatic index γ of the effective matter source of energy-density ρ and pressure p = (γ -1)ρ that generates the physical four-space g_{ij}(xk), namely \\bar{χ} < 0, 4/3 ≤ γ ≤ 2, or \\bar{χ} > 0, 1 ≤ γ ≤ 4/3. Here, we show how fermion-bilinear condensation in the internal space, first put forward by Helayël-Neto and Smith, determines the field \\tilde{β} ≡ A_r B_r3, thus reducing the moduli space to a single canonical field \\tilde{σ}=2σB with a potential ˜ , which is positive semi-definite under the same conditions that ensure positive semi-definiteness of VA, VB, and has a minimum at a value of \\tilde{β} that is approximately constant far from the Planck era at t ≫ t_P. The fields σA, σB, which are canonically normalized in the zero-slope limit, are modified by contributions originating from the higher-derivative gravitational terms α^' \\hatR_E2 and α^' 3} \\hatR4, but the associated kinetic energy remains positive for times t ≳ t_P/2, guaranteeing classical stability of the solution, since the generalized indeterminacy principle implies a minimum physically measurable time t0 ≈ 50 t_P for the superstring theory.
On the fakeness of fake supergravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celi, Alessio; Proeyen, Antoine van; Ceresole, Anna
2005-02-15
We revisit and complete the study of curved BPS-domain walls in matter-coupled 5D, N=2 supergravity and carefully analyze the relation to gravitational theories known as ''fake supergravities.'' We first show that curved BPS-domain walls require the presence of nontrivial hypermultiplet scalars, whereas walls that are solely supported by vector multiplet scalars are necessarily flat, due to the constraints from very special geometry. We then recover fake supergravity as the effective description of true supergravity where one restricts the attention to the flowing scalar field of a given BPS-domain wall. In general, however, true supergravity can be simulated by fake supergravitymore » at most locally, based upon two choices: (i) a suitable adapted coordinate system on the scalar manifold, such that only one scalar field plays a dynamical role, and (ii) a gauge fixing of the SU(2) connection on the quaternionic-Kaehler manifold, as this connection does not fit the simple formalism of fake supergravity. Employing these gauge and coordinate choices, the BPS-equations for both vector and hypermultiplet scalars become identical to the fake supergravity equations, once the line of flow is determined by the full supergravity equations.« less
Constraints on tree-level higher order gravitational couplings in superstring theory.
Stieberger, Stephan
2011-03-18
We consider the scattering amplitudes of five and six gravitons at tree level in superstring theory. Their power series expansions in the Regge slope α' are analyzed through the order α'(8) showing some interesting constraints on higher order gravitational couplings in the effective superstring action such as the absence of R(5) terms. Furthermore, some transcendentality constraints on the coefficients of the nonvanishing couplings are observed: the absence of zeta values of even weight through the order α'(8) like the absence of ζ(2)ζ(3)R(6) terms. Our analysis is valid for any superstring background in any space-time dimension, which allows for a conformal field theory description.
Sensor And Method For Detecting A Superstrate
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Cari, James R. (Inventor); Ngo, Phong H. (Inventor); Fink, Patrick W. (Inventor); Siekierski, James D. (Inventor)
2006-01-01
Method and apparatus are provided for determining a superstrate on or near a sensor, e.g., for detecting the presence of an ice superstrate on an airplane wing or a road. In one preferred embodiment, multiple measurement cells are disposed along a transmission line. While the present invention is operable with different types of transmission lines, construction details for a presently preferred coplanar waveguide and a microstrip waveguide are disclosed. A computer simulation is provided as part of the invention for predicting results of a simulated superstrate detector system. The measurement cells may be physically partitioned, nonphysically partitioned with software or firmware, or include a combination of different types of partitions. In one embodiment, a plurality of transmission lines are utilized wherein each transmission line includes a plurality of measurement cells. The plurality of transmission lines may be multiplexed with the signal from each transmission line being applied to the same phase detector. In one embodiment, an inverse problem method is applied to determine the superstrate dielectric for a transmission line with multiple measurement cells.
G2-structures for N = 1 supersymmetric AdS4 solutions of M-theory
NASA Astrophysics Data System (ADS)
Grigorian, Sergey
2018-04-01
We study the N = 1 supersymmetric solutions of D = 11 supergravity obtained as a warped product of four-dimensional anti-de Sitter space with a seven-dimensional Riemannian manifold M. Using the octonion bundle structure on M we reformulate the Killing spinor equations in terms of sections of the octonion bundle on M. The solutions then define a single complexified G 2-structure on M or equivalently two real G 2-structures. We then study the torsion of these G 2-structures and the relationships between them.
A combinatorial approach to the design of vaccines.
Martínez, Luis; Milanič, Martin; Legarreta, Leire; Medvedev, Paul; Malaina, Iker; de la Fuente, Ildefonso M
2015-05-01
We present two new problems of combinatorial optimization and discuss their applications to the computational design of vaccines. In the shortest λ-superstring problem, given a family S1,...,S(k) of strings over a finite alphabet, a set Τ of "target" strings over that alphabet, and an integer λ, the task is to find a string of minimum length containing, for each i, at least λ target strings as substrings of S(i). In the shortest λ-cover superstring problem, given a collection X1,...,X(n) of finite sets of strings over a finite alphabet and an integer λ, the task is to find a string of minimum length containing, for each i, at least λ elements of X(i) as substrings. The two problems are polynomially equivalent, and the shortest λ-cover superstring problem is a common generalization of two well known combinatorial optimization problems, the shortest common superstring problem and the set cover problem. We present two approaches to obtain exact or approximate solutions to the shortest λ-superstring and λ-cover superstring problems: one based on integer programming, and a hill-climbing algorithm. An application is given to the computational design of vaccines and the algorithms are applied to experimental data taken from patients infected by H5N1 and HIV-1.
Tree-level S-matrix of Pohlmeyer reduced form of AdS 5 × S 5 superstring theory
NASA Astrophysics Data System (ADS)
Hoare, B.; Tseytlin, A. A.
2010-02-01
With a motivation to find a 2-d Lorentz-invariant solution of the AdS 5 × S 5 superstring we continue the study of the Pohlmeyer-reduced form of this theory. The reduced theory is constructed from currents of the superstring sigma model and is classically equivalent to it. Its action is that of G/ H = Sp(2, 2) × Sp(4)/[SU(2)]4 gauged WZW model deformed by an integrable potential and coupled to fermions. This theory is UV finite and is conjectured to be related to the superstring theory also at the quantum level. Expanded near the trivial vacuum it has the same elementary excitations (8+8 massive bosonic and fermionic 2-d degrees of freedom) as the AdS 5 × S 5 superstring in the S 5 light-cone gauge or near plane-wave expansion. In contrast to the superstring case, the interaction terms in the reduced action are manifestly 2-d Lorentz invariant. Since the theory is integrable, its S-matrix should be effectively determined by the two-particle scattering. Here we explicitly compute the tree-level two-particle S-matrix for the elementary excitations of the reduced theory. We find that this S-matrix has the same index structure and group factorization properties as the superstring S-matrix computed in hep-th/0611169 but has simpler coefficients, depending only on the difference of two rapidities. While the gauge-fixed form of the reduced action has only the bosonic [SU(2)]4 part of the PSU(2|2) × PSU(2|2) symmetry of the light-cone superstring spectrum as its manifest symmetry we conjecture that it should also have a hidden fermionic symmetry that effectively interchanges bosons and fermions and which should guide us towards understanding the relation between the two S-matrices.
Gauged Supergravities and Spontaneous Supersymmetry Breaking from the Double Copy Construction
NASA Astrophysics Data System (ADS)
Chiodaroli, M.; Günaydin, M.; Johansson, H.; Roiban, R.
2018-04-01
Supergravities with gauged R symmetry and Minkowski vacua allow for spontaneous supersymmetry breaking and, as such, provide a framework for building supergravity models of phenomenological relevance. In this Letter, we initiate the study of double copy constructions for these supergravities. We argue that, on general grounds, we expect their scattering amplitudes to be described by a double copy of the type (spontaneously broken gauge theory)⊗ (gauge theory with broken supersymmetry). We present a simple realization in which the resulting supergravity has U (1 )R gauge symmetry, spontaneously broken N =2 supersymmetry, and massive gravitini. This is the first instance of a double copy construction of a gauged supergravity and of a theory with spontaneously broken supersymmetry. The construction extends in a straightforward manner to a large family of gauged Yang-Mills-Einstein supergravity theories with or without spontaneous gauge-symmetry breaking.
Supergravity contributions to inflation in models with non-minimal coupling to gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Kumar; Dutta, Koushik; Domcke, Valerie, E-mail: kumar.das@saha.ac.in, E-mail: valerie.domcke@apc.univ-paris7.fr, E-mail: koushik.dutta@saha.ac.in
2017-03-01
This paper provides a systematic study of supergravity contributions relevant for inflationary model building in Jordan frame supergravity. In this framework, canonical kinetic terms in the Jordan frame result in the separation of the Jordan frame scalar potential into a tree-level term and a supergravity contribution which is potentially dangerous for sustaining inflation. We show that if the vacuum energy necessary for driving inflation originates dominantly from the F-term of an auxiliary field (i.e. not the inflaton), the supergravity corrections to the Jordan frame scalar potential are generically suppressed. Moreover, these supergravity contributions identically vanish if the superpotential vanishes alongmore » the inflationary trajectory. On the other hand, if the F-term associated with the inflaton dominates the vacuum energy, the supergravity contributions are generically comparable to the globally supersymmetric contributions. In addition, the non-minimal coupling to gravity inherent to Jordan frame supergravity significantly impacts the inflationary model depending on the size and sign of this coupling. We discuss the phenomenology of some representative inflationary models, and point out the relation to the recently much discussed cosmological 'attractor' models.« less
On N = 1 partition functions without R-symmetry
Knodel, Gino; Liu, James T.; Zayas, Leopoldo A. Pando
2015-03-25
Here, we examine the dependence of four-dimensional Euclidean N = 1 partition functions on coupling constants. In particular, we focus on backgrounds without R-symmetry, which arise in the rigid limit of old minimal supergravity. Backgrounds preserving a single supercharge may be classified as having either trivial or SU(2) structure, with the former including S 4. We show that, in the absence of additional symmetries, the partition function depends non-trivially on all couplings in the trivial structure case, and (anti)-holomorphically on couplings in the SU(2) structure case. In both cases, this allows for ambiguities in the form of finite counterterms, whichmore » in principle render the partition function unphysical. However, we argue that on dimensional grounds, ambiguities are restricted to finite powers in relevant couplings, and can therefore be kept under control. On the other hand, for backgrounds preserving supercharges of opposite chiralities, the partition function is completely independent of all couplings. In this case, the background admits an R-symmetry, and the partition function is physical, in agreement with the results obtained in the rigid limit of new minimal supergravity. Based on a systematic analysis of supersymmetric invariants, we also demonstrate that N = 1 localization is not possible for backgrounds without R-symmetry.« less
New variables for classical and quantum gravity in all dimensions: I. Hamiltonian analysis
NASA Astrophysics Data System (ADS)
Bodendorfer, N.; Thiemann, T.; Thurn, A.
2013-02-01
Loop quantum gravity (LQG) relies heavily on a connection formulation of general relativity such that (1) the connection Poisson commutes with itself and (2) the corresponding gauge group is compact. This can be achieved starting from the Palatini or Holst action when imposing the time gauge. Unfortunately, this method is restricted to D + 1 = 4 spacetime dimensions. However, interesting string theories and supergravity theories require higher dimensions and it would therefore be desirable to have higher dimensional supergravity loop quantizations at one’s disposal in order to compare these approaches. In this series of papers we take first steps toward this goal. The present first paper develops a classical canonical platform for a higher dimensional connection formulation of the purely gravitational sector. The new ingredient is a different extension of the ADM phase space than the one used in LQG which does not require the time gauge and which generalizes to any dimension D > 1. The result is a Yang-Mills theory phase space subject to Gauß, spatial diffeomorphism and Hamiltonian constraint as well as one additional constraint, called the simplicity constraint. The structure group can be chosen to be SO(1, D) or SO(D + 1) and the latter choice is preferred for purposes of quantization.
Consistent compactification of double field theory on non-geometric flux backgrounds
NASA Astrophysics Data System (ADS)
Hassler, Falk; Lüst, Dieter
2014-05-01
In this paper, we construct non-trivial solutions to the 2 D-dimensional field equations of Double Field Theory (DFT) by using a consistent Scherk-Schwarz ansatz. The ansatz identifies 2( D - d) internal directions with a twist U M N which is directly connected to the covariant fluxes ABC . It exhibits 2( D - d) linear independent generalized Killing vectors K I J and gives rise to a gauged supergravity in d dimensions. We analyze the covariant fluxes and the corresponding gauged supergravity with a Minkowski vacuum. We calculate fluctuations around such vacua and show how they gives rise to massive scalars field and vectors field with a non-abelian gauge algebra. Because DFT is a background independent theory, these fields should directly correspond the string excitations in the corresponding background. For ( D - d) = 3 we perform a complete scan of all allowed covariant fluxes and find two different kinds of backgrounds: the single and the double elliptic case. The later is not T-dual to a geometric background and cannot be transformed to a geometric setting by a field redefinition either. While this background fulfills the strong constraint, it is still consistent with the Killing vectors depending on the coordinates and the winding coordinates, thereby giving a non-geometric patching. This background can therefore not be described in Supergravity or Generalized Geometry.
Quantum spectral curve for the η-deformed AdS5 × S5 superstring
NASA Astrophysics Data System (ADS)
Klabbers, Rob; van Tongeren, Stijn J.
2017-12-01
The spectral problem for the AdS5 ×S5 superstring and its dual planar maximally supersymmetric Yang-Mills theory can be efficiently solved through a set of functional equations known as the quantum spectral curve. We discuss how the same concepts apply to the η-deformed AdS5 ×S5 superstring, an integrable deformation of the AdS5 ×S5 superstring with quantum group symmetry. This model can be viewed as a trigonometric version of the AdS5 ×S5 superstring, like the relation between the XXZ and XXX spin chains, or the sausage and the S2 sigma models for instance. We derive the quantum spectral curve for the η-deformed string by reformulating the corresponding ground-state thermodynamic Bethe ansatz equations as an analytic Y system, and map this to an analytic T system which upon suitable gauge fixing leads to a Pμ system - the quantum spectral curve. We then discuss constraints on the asymptotics of this system to single out particular excited states. At the spectral level the η-deformed string and its quantum spectral curve interpolate between the AdS5 ×S5 superstring and a superstring on "mirror" AdS5 ×S5, reflecting a more general relationship between the spectral and thermodynamic data of the η-deformed string. In particular, the spectral problem of the mirror AdS5 ×S5 string, and the thermodynamics of the undeformed AdS5 ×S5 string, are described by a second rational limit of our trigonometric quantum spectral curve, distinct from the regular undeformed limit.
Constraints on cosmic superstrings from Kaluza-Klein emission.
Dufaux, Jean-François
2012-07-06
Cosmic superstrings interact generically with a tower of light and/or strongly coupled Kaluza-Klein (KK) modes associated with the geometry of the internal space. We study the production of KK particles by cosmic superstring loops, and show that it is constrained by big bang nucleosynthesis. We study the resulting constraints in the parameter space of the underlying string theory model and highlight their complementarity with the regions that can be probed by current and upcoming gravitational wave experiments.
A L-Band Superstrate Lens Enhanced Antenna and Array for Tactical Operations
2013-07-01
unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The design of a 1.2 GHz microstrip antenna utilizing a superstrate layer for gain enhancement is...CA, 92152-5001 sam.chieh@navy.mil Abstract—The design of a 1.2 GHz microstrip antenna utilizing a superstrate layer for gain enhancement is...realized. The microstrip patch antenna is a widely used antenna in this regime as it is light weight and is easily scalable for increased gains. It has
d=4 attractors, effective horizon radius, and fake supergravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrara, Sergio; INFN-Laboratori Nazionali di Frascati, Via Enrico Fermi 40, I-00044 Frascati; Gnecchi, Alessandra
2008-09-15
We consider extremal black hole attractors [both Bogomol'nyi-Prasad-Sommerfield (BPS) and non-BPS] for N=3 and N=5 supergravity in d=4 space-time dimensions. Attractors for matter-coupled N=3 theory are similar to attractors in N=2 supergravity minimally coupled to Abelian vector multiplets. On the other hand, N=5 attractors are similar to attractors in N=4 pure supergravity, and in such theories only (1/N)-BPS nondegenerate solutions exist. All the above-mentioned theories have a simple interpretation in the first order (fake supergravity) formalism. Furthermore, such theories do not have a d=5 uplift. Finally we comment on the duality relations among the attractor solutions of N{>=}2 supergravities sharingmore » the same full bosonic sector.« less
Extra Dimensions of Space: Are They Going to be Found Soon?
Rubakov, Valery [Institute for Nuclear Research, Moscow, Russia
2017-12-09
Our space may well have more than 3 dimensions. Indeed, theories that pretend to be most fundamental choose to live in higher dimensions: a natural area for superstring/Mtheory is 9- or 10-dimensional space. Extra dimensions have been hidden so far, but they would open up above a certain energy threshold. A fascinating possibility is that this happens within reach of particle colliders. This lecture will address the motivation for such a viewpoint and implications of accessible extra dimensions for our understanding of nature.
Supersymmetric black holes with lens-space topology.
Kunduri, Hari K; Lucietti, James
2014-11-21
We present a new supersymmetric, asymptotically flat, black hole solution to five-dimensional supergravity. It is regular on and outside an event horizon of lens-space topology L(2,1). It is the first example of an asymptotically flat black hole with lens-space topology. The solution is characterized by a charge, two angular momenta, and a magnetic flux through a noncontractible disk region ending on the horizon, with one constraint relating these.
Geometric low-energy effective action in a doubled spacetime
NASA Astrophysics Data System (ADS)
Ma, Chen-Te; Pezzella, Franco
2018-05-01
The ten-dimensional supergravity theory is a geometric low-energy effective theory and the equations of motion for its fields can be obtained from string theory by computing β functions. With d compact dimensions, an O (d , d ; Z) geometric structure can be added to it giving the supergravity theory with T-duality manifest. In this paper, this is constructed through the use of a suitable star product whose role is the one to implement the weak constraint on the fields and the gauge parameters in order to have a closed gauge symmetry algebra. The consistency of the action here proposed is based on the orthogonality of the momenta associated with fields in their triple star products in the cubic terms defined for d ≥ 1. This orthogonality holds also for an arbitrary number of star products of fields for d = 1. Finally, we extend our analysis to the double sigma model, non-commutative geometry and open string theory.
Polarized deep inelastic scattering off the neutron from gauge/string duality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao Jianhua; Mou Zonggang; Department of Physics, Shandong University, Jinan, Shandong, 250100
2010-05-01
We investigate deep inelastic scattering off the polarized 'neutron' using gauge/string duality. The 'neutron' corresponds to a supergravity mode of the neutral dilatino. Through introducing the Pauli interaction term into the action in AdS{sub 5} space, we calculate the polarized deep inelastic structure functions of the 'neutron' in supergravity approximation at large t' Hooft coupling {lambda} and finite x with {lambda}{sup -1/2}<
Fabrication of nanocrystal ink based superstrate-type CuInS₂ thin film solar cells.
Cho, Jin Woo; Park, Se Jin; Kim, Woong; Min, Byoung Koun
2012-07-05
A CuInS₂ (CIS) nanocrystal ink was applied to thin film solar cell devices with superstrate-type configuration. Monodispersed CIS nanocrystals were synthesized by a colloidal synthetic route and re-dispersed in toluene to form an ink. A spray method was used to coat CIS films onto conducting glass substrates. Prior to CIS film deposition, TiO₂ and CdS thin films were also prepared as a blocking layer and a buffer layer, respectively. We found that both a TiO₂ blocking layer and a CdS buffer layer are necessary to generate photoresponses in superstrate-type devices. The best power conversion efficiency (∼1.45%) was achieved by the CIS superstrate-type thin film solar cell device with 200 and 100 nm thick TiO₂ and CdS films, respectively.
Matter-coupled de Sitter supergravity
NASA Astrophysics Data System (ADS)
Kallosh, R. E.
2016-05-01
The de Sitter supergravity describes the interaction of supergravity with general chiral and vector multiplets and also one nilpotent chiral multiplet. The extra universal positive term in the potential, generated by the nilpotent multiplet and corresponding to the anti-D3 brane in string theory, is responsible for the de Sitter vacuum stability in these supergravity models. In the flat-space limit, these supergravity models include the Volkov-Akulov model with a nonlinearly realized supersymmetry. We generalize the rules for constructing the pure de Sitter supergravity action to the case of models containing other matter multiplets. We describe a method for deriving the closed-form general supergravity action with a given potential K, superpotential W, and vectormatrix fAB interacting with a nilpotent chiral multiplet. It has the potential V = eK(|F2|+|DW|2-3|W|2), where F is the auxiliary field of the nilpotent multiplet and is necessarily nonzero. The de Sitter vacuums are present under the simple condition that |F2|-3|W|2 > 0. We present an explicit form of the complete action in the unitary gauge.
Branes and the Kraft-Procesi transition: classical case
NASA Astrophysics Data System (ADS)
Cabrera, Santiago; Hanany, Amihay
2018-04-01
Moduli spaces of a large set of 3 d N=4 effective gauge theories are known to be closures of nilpotent orbits. This set of theories has recently acquired a special status, due to Namikawa's theorem. As a consequence of this theorem, closures of nilpotent orbits are the simplest non-trivial moduli spaces that can be found in three dimensional theories with eight supercharges. In the early 80's mathematicians Hanspeter Kraft and Claudio Procesi characterized an inclusion relation between nilpotent orbit closures of the same classical Lie algebra. We recently [1] showed a physical realization of their work in terms of the motion of D3-branes on the Type IIB superstring embedding of the effective gauge theories. This analysis is restricted to A-type Lie algebras. The present note expands our previous discussion to the remaining classical cases: orthogonal and symplectic algebras. In order to do so we introduce O3-planes in the superstring description. We also find a brane realization for the mathematical map between two partitions of the same integer number known as collapse. Another result is that basic Kraft-Procesi transitions turn out to be described by the moduli space of orthosymplectic quivers with varying boundary conditions.
SAR reduction using a single SRR superstrate for a dual-band antenna.
Rosaline, Imaculate; Singaravelu, Raghavan
2017-01-01
A dual-band microstrip antenna operating at GSM 900 and GSM 1800 MHz is designed initially. Then a single split ring resonator (SRR) structure is used as a superstrate for this dual-band antenna. A circular current is induced in the SRR due to the perpendicular plane wave excitation, which in turn leads to an electric excitation coupled to the magnetic resonance. It also exhibits higher order excitations at 0.9 and 1.8 GHz which ultimately resulted in specific absorption rate (SAR) reduction of human head at both the designed frequencies of the antenna. The antenna and the SRR superstrate are printed on a 1.6 mm thick FR-4 substrate of dimension 59.6 × 49.6 mm 2 . Analysis of the SRR using the classic waveguide theory approach is discussed. Radiation pattern of the antenna in the presence of SRR superstrate and human head is also discussed. Prototype of the antenna along with the SRR superstrate is fabricated and measured for return loss and radiation pattern. Measurement results fairly agree with the simulated results. A human head phantom is utilized in the calculation of SAR.
Type II superstring field theory: geometric approach and operadic description
NASA Astrophysics Data System (ADS)
Jurčo, Branislav; Münster, Korbinian
2013-04-01
We outline the construction of type II superstring field theory leading to a geometric and algebraic BV master equation, analogous to Zwiebach's construction for the bosonic string. The construction uses the small Hilbert space. Elementary vertices of the non-polynomial action are described with the help of a properly formulated minimal area problem. They give rise to an infinite tower of superstring field products defining a {N} = 1 generalization of a loop homotopy Lie algebra, the genus zero part generalizing a homotopy Lie algebra. Finally, we give an operadic interpretation of the construction.
EFT for vortices with dilaton-dependent localized flux
NASA Astrophysics Data System (ADS)
Burgess, C. P.; Diener, Ross; Williams, M.
2015-11-01
We study how codimension-two objects like vortices back-react gravitationally with their environment in theories (such as 4D or higher-dimensional supergravity) where the bulk is described by a dilaton-Maxwell-Einstein system. We do so both in the full theory, for which the vortex is an explicit classical `fat brane' solution, and in the effective theory of `point branes' appropriate when the vortices are much smaller than the scales of interest for their back-reaction (such as the transverse Kaluza-Klein scale). We extend the standard Nambu-Goto description to include the physics of flux-localization wherein the ambient flux of the external Maxwell field becomes partially localized to the vortex, generalizing the results of a companion paper [4] from N=2 supergravity as the end-point of a hierarchical limit in which the Planck mass first and then the supersymmetry breaking scale are sent to infinity. We define, in the parent supergravity model, a new symplectic frame in which, in the rigid limit, manifest symplectic invariance is preserved and the electric and magnetic Fayet-Iliopoulos terms are fully originated from the dyonic components of the embedding tensor. The supergravity origin of several features of the resulting rigid supersymmetric theory are then elucidated, such as the presence of a traceless SU(2)- Lie algebra term in the Ward identity and the existence of a central charge in the supersymmetry algebra which manifests itself as a harmless gauge transformation on the gauge vectors of the rigid theory; we show that this effect can be interpreted as a kind of "superspace non-locality" which does not affect the rigid theory on space-time. To set the stage of our analysis we take the opportunity in this paper to provide and prove the relevant identities of the most general dyonic gauging of Special-Kaehler and Quaternionic-Kaehler isometries in a generic N=2 model, which include the supersymmetry Ward identity, in a fully symplectic-covariant formalism.
Superbranes, D = 11 CJS Supergravity and Enlarged Superspace Coordinates/Fields Correspondence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azcarraga, J.A. de; IFIC - CSIC-UVEG, Facultad de Fisica, 46100-Burjassot, Valencia
2005-04-25
We discuss the role of enlarged superspaces in two seemingly different contexts, the structure of the p-brane actions and that of the Cremmer-Julia-Scherk eleven-dimensional supergravity. Both provide examples of a common principle: the existence of an enlarged superspaces coordinates/fields correspondence by which all the (worldvolume or spacetime) fields of the theory are associated to coordinates of enlarged superspaces. In the context of p-branes, enlarged superspaces may be used to construct manifestly supersymmetry-invariant Wess-Zumino terms and as a way of expressing the Born-Infeld worldvolume fields of D-branes and the worldvolume M5-brane two-form in terms of fields associated to the coordinates ofmore » these enlarged superspaces. This is tantamount to saying that the Born-Infeld fields have a superspace origin, as do the other worldvolume fields, and that they have a composite structure. In D=11 supergravity theory enlarged superspaces arise when its underlying gauge structure is investigated and, as a result, the composite nature of the A3 field is revealed: there is a full one-parametric family of enlarged superspace groups that solve the problem of expressing A3 in terms of spacetime fields associated to their coordinates. The corresponding enlarged supersymmetry algebras turn out to be deformations of an expansion of the osp(1 vertical bar 32) algebra. The unifying mathematical structure underlying all these facts is the cohomology of the supersymmetry algebras involved.« less
Topological defects in alternative theories to cosmic inflation and string cosmology
NASA Astrophysics Data System (ADS)
Alexander, Stephon H. S.
The physics of the Early Universe is described in terms of the inflationary paradigm, which is based on a marriage between Einstein's general theory of relativity minimally coupled to quantum field theory. Inflation was posed to solve some of the outstanding problems of the Standard Big Bang Cosmology (SBB) such as the horizon, formation of structure and monopole problems. Despite its observational and theoretical successes, inflation is plagued with fine tuning and initial singularity problems. On the other hand, superstring/M theory, a theory of quantum gravity, possesses symmetries which naturally avoid space-time singularities. This thesis investigates alternative theories to cosmic inflation for solving the initial singularity, horizon and monopole problems, making use of topological defects. It was proposed by Dvali, Liu and Vaschaspati that the monopole problem can be solved without inflation if domain walls "sweep" up the monopoles in the early universe, thus reducing their number density significantly. Necessary for this mechanism to work is the presence of an attractive force between the monopole and the domain wall as well as a channel for the monopole's unwinding. We show numerically and analytically in two field theory models that for global defects the attraction is a universal result but the unwinding is model specific. The second part of this thesis investigates a string/M theory inspired model for solving the horizon problem. It was proposed by Moffat, Albrecht and Magueijo that the horizon problem is solved with a "phase transition" associated with a varying speed of light before the surface of last scattering. We provide a string/M theory mechanism based on assuming that our space-time is a D-3 brane probing a bulk supergravity black hole bulk background. This mechanism provides the necessary time variation of the velocity of light to solve the horizon problem. We suggest a mechanism which stablilizes the speed of light on the D-3 brane. We finally address the cosmological initial singularity problem using the target space duality inherent in string/M theory. It was suggested by Brandenberger and Vafa that superstring theory can solve the singularity problem and in addition explain why only three spatial dimensions can become large. We show that under specific conditions this mechanism still persists when including the effects of D-branes.
One-Loop Test of Quantum Black Holes in anti–de Sitter Space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, James T.; Pando Zayas, Leopoldo A.; Rathee, Vimal
Within 11-dimensional supergravity we compute the logarithmic correction to the entropy of magnetically charged asymptotically AdS4 black holes with arbitrary horizon topology. We find perfect agreement with the expected microscopic result arising from the dual field theory computation of the topologically twisted index. Our result relies crucially on a particular limit to the extremal black hole case and clarifies some aspects of quantum corrections in asymptotically AdS spacetimes.
One-Loop Test of Quantum Black Holes in anti–de Sitter Space
Liu, James T.; Pando Zayas, Leopoldo A.; Rathee, Vimal; ...
2018-06-01
Within 11-dimensional supergravity we compute the logarithmic correction to the entropy of magnetically charged asymptotically AdS4 black holes with arbitrary horizon topology. We find perfect agreement with the expected microscopic result arising from the dual field theory computation of the topologically twisted index. Our result relies crucially on a particular limit to the extremal black hole case and clarifies some aspects of quantum corrections in asymptotically AdS spacetimes.
One-Loop Test of Quantum Black Holes in anti-de Sitter Space
NASA Astrophysics Data System (ADS)
Liu, James T.; Pando Zayas, Leopoldo A.; Rathee, Vimal; Zhao, Wenli
2018-06-01
Within 11-dimensional supergravity we compute the logarithmic correction to the entropy of magnetically charged asymptotically AdS4 black holes with arbitrary horizon topology. We find perfect agreement with the expected microscopic result arising from the dual field theory computation of the topologically twisted index. Our result relies crucially on a particular limit to the extremal black hole case and clarifies some aspects of quantum corrections in asymptotically AdS spacetimes.
One-Loop Test of Quantum Black Holes in anti-de Sitter Space.
Liu, James T; Pando Zayas, Leopoldo A; Rathee, Vimal; Zhao, Wenli
2018-06-01
Within 11-dimensional supergravity we compute the logarithmic correction to the entropy of magnetically charged asymptotically AdS_{4} black holes with arbitrary horizon topology. We find perfect agreement with the expected microscopic result arising from the dual field theory computation of the topologically twisted index. Our result relies crucially on a particular limit to the extremal black hole case and clarifies some aspects of quantum corrections in asymptotically AdS spacetimes.
Detection of low tension cosmic superstrings
NASA Astrophysics Data System (ADS)
Chernoff, David F.; Tye, S.-H. Henry
2018-05-01
Cosmic superstrings of string theory differ from conventional cosmic strings of field theory. We review how the physical and cosmological properties of the macroscopic string loops influence experimental searches for these relics from the epoch of inflation. The universe's average density of cosmic superstrings can easily exceed that of conventional cosmic strings having the same tension by two or more orders of magnitude. The cosmological behavior of the remnant superstring loops is qualitatively distinct because the string tension is exponentially smaller than the string scale in flux compactifications in string theory. Low tension superstring loops live longer, experience less recoil (rocket effect from the emission of gravitational radiation) and tend to cluster like dark matter in galaxies. Clustering enhances the string loop density with respect to the cosmological average in collapsed structures in the universe. The enhancement at the Sun's position is ~ 105. We develop a model encapsulating the leading order string theory effects, the current understanding of the string network loop production and the influence of cosmological structure formation suitable for forecasting the detection of superstring loops via optical microlensing, gravitational wave bursts and fast radio bursts. We evaluate the detection rate of bursts from cusps and kinks by LIGO- and LISA-like experiments. Clustering dominates rates for G μ < 10‑11.9 (LIGO cusp), G μ<10‑11.2 (LISA cusp), G μ < 10‑10.6 (LISA kink); we forecast experimentally accessible gravitational wave bursts for G μ>10‑14.2 (LIGO cusp), G μ>10‑15 (LISA cusp) and G μ>10‑ 14.1 (LISA kink).
Yukawa couplings in superstring compactification. [in quantum gravity theory
NASA Technical Reports Server (NTRS)
Strominger, A.
1985-01-01
A topological formula is given for the entire tree-level contribution to the low-energy effective action of a Calabi-Yau superstring compactification. The constraints on proton lifetime in the Calabi-Yau compactification are discussed in detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnowitt, R.; Nath, P.
A survey is given of supersymmetry and supergravity and their phenomenology. Some of the topics discussed are the basic ideas of global supersymmetry, the minimal supersymmetric Standard Model (MSSM) and its phenomenology, the basic ideas of local supersymmetry (supergravity), grand unification, supersymmetry breaking in supergravity grand unified models, radiative breaking of SU(2) {times} U(1), proton decay, cosmological constraints, and predictions of supergravity grand unified models. While the number of detailed derivations are necessarily limited, a sufficient number of results are given so that a reader can get a working knowledge of this field.
Off-shell supergravity in five dimensions and supersymmetric brane world scenarios
NASA Astrophysics Data System (ADS)
Zucker, M.
2003-09-01
We review the construction of off-shell Poincaré supergravity in five dimensions. We describe in detail the minimal multiplet, which is the basic building block, containing the propagating fields of supergravity. All matter multiplets containing (8 + 8) components, being the smallest matter multiplets in five dimensions, are constructed. Using these multiplets the complete tensor calculus for supergravity is developed. As expected it turns out, that there exist three distinct minimal (i.e. containing (48 + 48) field components) off-shell supergravities. The lagrangians for these theories and their gauged variants are given explicitly. These results are used in the second part to develop a tensor calculus on the orbifold . Gauged supergravity on the orbifold with additional cosmological constants at the fixpoints, is constructed. This generalizes the work of Randall-Sundrum to local supersymmetry. The developed tensor calculus is used to extend this model to include matter located at the fixpoints. Chiral and super Yang-Mills multiplets at the fixpoints are considered.
A universal counting of black hole microstates in AdS4
NASA Astrophysics Data System (ADS)
Azzurli, Francesco; Bobev, Nikolay; Crichigno, P. Marcos; Min, Vincent S.; Zaffaroni, Alberto
2018-02-01
Many three-dimensional N=2 SCFTs admit a universal partial topological twist when placed on hyperbolic Riemann surfaces. We exploit this fact to derive a universal formula which relates the planar limit of the topologically twisted index of these SCFTs and their three-sphere partition function. We then utilize this to account for the entropy of a large class of supersymmetric asymptotically AdS4 magnetically charged black holes in M-theory and massive type IIA string theory. In this context we also discuss novel AdS2 solutions of eleven-dimensional supergravity which describe the near horizon region of large new families of supersymmetric black holes arising from M2-branes wrapping Riemann surfaces.
Inhomogeneous tensionless superstrings
NASA Astrophysics Data System (ADS)
Bagchi, Arjun; Banerjee, Aritra; Chakrabortty, Shankhadeep; Parekh, Pulastya
2018-02-01
We construct a novel tensionless limit of Superstring theory that realises the Inhomogeneous Super Galilean Conformal Algebra (SGCA I ) as the residual symmetry in the analogue of the conformal gauge, as opposed to previous constructions of the tensionless superstring, where a smaller symmetry algebra called the Homogeneous SGCA emerged as the residual gauge symmetry on the worldsheet. We obtain various features of the new tensionless theory intrinsically as well as from a systematic limit of the corresponding features of the tensile theory. We discuss why it is desirable and also natural to work with this new tensionless limit and the larger algebra.
D=10 Chiral Tensionless Super p-BRANES
NASA Astrophysics Data System (ADS)
Bozhilov, P.
We consider a model for tensionless (null) super-p-branes with N chiral supersymmetries in ten-dimensional flat space-time. After establishing the symmetries of the action, we give the general solution of the classical equations of motion in a particular gauge. In the case of a null superstring (p=1) we find the general solution in an arbitrary gauge. Then, using a harmonic superspace approach, the initial algebra of first- and second-class constraints is converted into an algebra of Lorentz-covariant, BFV-irreducible, first-class constraints only. The corresponding BRST charge is as for a first rank dynamical system.
String inspired brane world cosmology.
Germani, Cristiano; Sopuerta, Carlos F
2002-06-10
We consider brane world scenarios including the leading correction to the Einstein-Hilbert action suggested by superstring theory, the Gauss-Bonnet term. We obtain and study the complete set of equations governing the cosmological dynamics. We find they have the same form as those in Randall-Sundrum scenarios but with time-varying four-dimensional gravitational and cosmological constants. By studying the bulk geometry we show that this variation is produced by bulk curvature terms parametrized by the mass of a black hole. Finally, we show there is a coupling between these curvature terms and matter that can be relevant for early universe cosmology.
NASA Astrophysics Data System (ADS)
Craps, Ben; Evnin, Oleg; Nguyen, Kévin
2017-02-01
Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.
Big bang nucleosynthesis, the CMB, and the origin of matter and space-time
NASA Astrophysics Data System (ADS)
Mathews, Grant J.; Gangopadhyay, Mayukh; Sasankan, Nishanth; Ichiki, Kiyotomo; Kajino, Toshitaka
2018-04-01
We summarize some applications of big bang nucleosythesis (BBN) and the cosmic microwave background (CMB) to constrain the first moments of the creation of matter in the universe. We review the basic elements of BBN and how it constraints physics of the radiation-dominated epoch. In particular, how the existence of higher dimensions impacts the cosmic expansion through the projection of curvature from the higher dimension in the "dark radiation" term. We summarize current constraints from BBN and the CMB on this brane-world dark radiation term. At the same time, the existence of extra dimensions during the earlier inflation impacts the tensor to scalar ratio and the running spectral index as measured in the CMB. We summarize how the constraints on inflation shift when embedded in higher dimensions. Finally, one expects that the universe was born out of a complicated multiverse landscape near the Planck time. In these moments the energy scale of superstrings was obtainable during the early moments of chaotic inflation. We summarize the quest for cosmological evidence of the birth of space-time out of the string theory landscape. We will explore the possibility that a superstring excitations may have made itself known via a coupling to the field of inflation. This may have left an imprint of "dips" in the power spectrum of temperature fluctuations in the cosmic microwave background. The identification of this particle as a superstring is possible because there may be evidence for different oscillator states of the same superstring that appear on different scales on the sky. It will be shown that from this imprint one can deduce the mass, number of oscillations, and coupling constant for the superstring. Although the evidence is marginal, this may constitute the first observation of a superstring in Nature.
Inflation from higher dimensions
NASA Astrophysics Data System (ADS)
Nakada, Hiroshi; Ketov, Sergei V.
2017-12-01
We derive the scalar potential in four spacetime dimensions from an eight-dimensional (R +γ R4-2 Λ -F42) gravity model in the presence of the 4-form F4, with the (modified gravity) coupling constant γ and the cosmological constant Λ , by using the flux compactification of four extra dimensions on a 4-sphere with the warp factor. The scalar potential depends upon two scalar fields: the scalaron and the 4-sphere volume modulus. We demonstrate that it gives rise to a viable description of cosmological inflation in the early universe, with the scalaron playing the role of inflaton and the volume modulus to be (almost) stabilized at its minimum. We also speculate about a possibility of embedding our model in eight dimensions into a modified eight-dimensional supergavity that, in its turn, arises from a modified eleven-dimensional supergravity.
Elementary Particle Physics and High Energy Phenomena: Final Report for FY2010-13
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cumalat, John P.; de Alwis, Senarath P.; DeGrand, Thomas A.
2013-06-27
The work under this grant consists of experimental, theoretical, and phenomenological research on the fundamental properties of high energy subnuclear particles. The work is conducted at the University of Colorado, the European Organization for Nuclear Research (CERN), the Japan Proton Accelerator Research Complex (J-PARC), Fermi National Accelerator Laboratory (FNAL), SLAC National Accelerator Laboratory (SLAC), Los Alamos National Laboratory (LANL), and other facilities, employing neutrino-beam experiments, test beams of various particles, and proton-proton collider experiments. It emphasizes mass generation and symmetry-breaking, neutrino oscillations, bottom particle production and decay, detector development, supergravity, supersymmetry, superstrings, quantum chromodynamics, nonequilibrium statistical mechanics, cosmology, phase transitions,more » lattice gauge theory, and anomaly-free theories. The goals are to improve our understanding of the basic building blocks of matter and their interactions. Data from the Large Hadron Collider at CERN have revealed new interactions responsible for particle mass, and perhaps will lead to a more unified picture of the forces among elementary material constituents. To this end our research includes searches for manifestations of theories such as supersymmetry and new gauge bosons, as well as the production and decay of heavy-flavored quarks. Our current work at J-PARC, and future work at new facilities currently under conceptual design, investigate the specifics of how the neutrinos change flavor. The research is integrated with the training of students at all university levels, benefiting both the manpower and intellectual base for future technologies.« less
Highly effective action from large N gauge fields
NASA Astrophysics Data System (ADS)
Yang, Hyun Seok
2014-10-01
Recently Schwarz put forward a conjecture that the world-volume action of a probe D3-brane in an AdS5×S5 background of type IIB superstring theory can be reinterpreted as the highly effective action (HEA) of four-dimensional N =4 superconformal field theory on the Coulomb branch. We argue that the HEA can be derived from the noncommutative (NC) field theory representation of the AdS/CFT correspondence and the Seiberg-Witten (SW) map defining a spacetime field redefinition between ordinary and NC gauge fields. It is based only on the well-known facts that the master fields of large N matrices are higher-dimensional NC U(1) gauge fields and the SW map is a local coordinate transformation eliminating U(1) gauge fields known as the Darboux theorem in symplectic geometry.
Brane inflation and cosmic string tension in superstring theory
NASA Astrophysics Data System (ADS)
Firouzjahi, Hassan; Tye, S.-H. Henry
2005-03-01
In a simple reanalysis of the KKLMMT scenario, we argue that the slow roll condition in the D3-overline {D}3 -brane inflationary scenario in superstring theory requires no more than a moderate tuning. The cosmic string tension is very sensitive to the conformal coupling: with less fine-tuning, the cosmic string tension (as well as the ratio of tensor to scalar perturbation mode) increases rapidly and can easily saturate the present observational bound. In a multi-throat brane inflationary scenario, this feature substantially improves the chance of detecting and measuring the properties of the cosmic strings as a window to the superstring theory and our pre-inflationary universe.
Type IIB flux vacua from G-theory II
NASA Astrophysics Data System (ADS)
Candelas, Philip; Constantin, Andrei; Damian, Cesar; Larfors, Magdalena; Morales, Jose Francisco
2015-02-01
We find analytic solutions of type IIB supergravity on geometries that locally take the form Mink × M 4 × ℂ with M 4 a generalised complex manifold. The solutions involve the metric, the dilaton, NSNS and RR flux potentials (oriented along the M 4) parametrised by functions varying only over ℂ. Under this assumption, the supersymmetry equations are solved using the formalism of pure spinors in terms of a finite number of holomorphic functions. Alternatively, the solutions can be viewed as vacua of maximally supersymmetric supergravity in six dimensions with a set of scalar fields varying holomorphically over ℂ. For a class of solutions characterised by up to five holomorphic functions, we outline how the local solutions can be completed to four-dimensional flux vacua of type IIB theory. A detailed study of this global completion for solutions with two holomorphic functions has been carried out in the companion paper [1]. The fluxes of the global solutions are, as in F-theory, entirely codified in the geometry of an auxiliary K3 fibration over ℂℙ1. The results provide a geometric construction of fluxes in F-theory.
IIB duals of D = 3 {N} = 4 circular quivers
NASA Astrophysics Data System (ADS)
Assel, Benjamin; Bachas, Costas; Estes, John; Gomis, Jaume
2012-12-01
We construct the type-IIB AdS4 ⋉ K supergravity solutions which are dual to the three-dimensional {N} = 4 superconformal field theories that arise as infrared fixed points of circular-quiver gauge theories. These superconformal field theories are labeled by a triple ( {ρ, hat{ρ},L} ) subject to constraints, where ρ and hat{ρ} are two partitions of a number N, and L is a positive integer. We show that in the limit of large L the localized five- branes in our solutions are effectively smeared, and these type-IIB solutions are dual to the near-horizon geometry of M-theory M2-branes at a {{{{{{C}}^4}}} / {{( {{Z_k}× {Z_{widehat{k}}}} )}} .} orbifold singularity. Our IIB solutions resolve the singularity into localized five-brane throats, without breaking the conformal symmetry. The constraints satisfied by the triple ( {ρ, hat{ρ},L} ) , together with the enhanced non-abelian flavour symmetries of the superconformal field theories are precisely reproduced by the type-IIB supergravity solutions. As a bonus, we uncover a novel type of "orbifold equivalence" between different quantum field theories and provide quantitative evidence for this equivalence.
Global structure of five-dimensional fuzzballs
NASA Astrophysics Data System (ADS)
Gibbons, G. W.; Warner, N. P.
2014-01-01
We describe and study families of BPS microstate geometries, namely, smooth, horizonless asymptotically flat solutions to supergravity. We examine these solutions from the perspective of earlier attempts to find solitonic solutions in gravity and show how the microstate geometries circumvent the earlier ‘no-go’ theorems. In particular, we re-analyze the Smarr formula and show how it must be modified in the presence of non-trivial second homology. This, combined with the supergravity Chern-Simons terms, allows the existence of rich classes of BPS, globally hyperbolic, asymptotically flat, microstate geometries whose spatial topology is the connected sum of N copies of S2 × S2 with a ‘point at infinity’ removed. These solutions also exhibit ‘evanescent ergo-regions,’ that is, the non-space-like Killing vector guaranteed by supersymmetry is time-like everywhere except on time-like hypersurfaces (ergo-surfaces) where the Killing vector becomes null. As a by-product of our work, we are able to resolve the puzzle of why some regular soliton solutions violate the BPS bound: their spacetimes do not admit a spin structure.
Quaternionic Kähler Detour Complexes and {mathcal{N} = 2} Supersymmetric Black Holes
NASA Astrophysics Data System (ADS)
Cherney, D.; Latini, E.; Waldron, A.
2011-03-01
We study a class of supersymmetric spinning particle models derived from the radial quantization of stationary, spherically symmetric black holes of four dimensional {{mathcal N} = 2} supergravities. By virtue of the c-map, these spinning particles move in quaternionic Kähler manifolds. Their spinning degrees of freedom describe mini-superspace-reduced supergravity fermions. We quantize these models using BRST detour complex technology. The construction of a nilpotent BRST charge is achieved by using local (worldline) supersymmetry ghosts to generate special holonomy transformations. (An interesting byproduct of the construction is a novel Dirac operator on the superghost extended Hilbert space.) The resulting quantized models are gauge invariant field theories with fields equaling sections of special quaternionic vector bundles. They underly and generalize the quaternionic version of Dolbeault cohomology discovered by Baston. In fact, Baston’s complex is related to the BPS sector of the models we write down. Our results rely on a calculus of operators on quaternionic Kähler manifolds that follows from BRST machinery, and although directly motivated by black hole physics, can be broadly applied to any model relying on quaternionic geometry.
Analytical Tools for Investigating and Modeling Agent-Based Systems
2005-06-01
of Black Holes Cluster 10 : Juan M. Maldacena (1924), Journal of High Energy Physics Field theory models for tachyon and gauge field string dy...namics; Super-Poincare Invariant Superstring Field The- ory; Level Four Approximation to the Tachyon Potential in Superstring Field Theory; SO(32) Spinors
Better Back Contacts for Solar Cells on Flexible Substrates
NASA Technical Reports Server (NTRS)
Woods, Lawrence M.; Ribelin, Rosine M.
2006-01-01
Improved low-resistance, semitransparent back contacts, and a method of fabricating them, have been developed for solar photovoltaic cells that are made from thin films of I-III-VI2 semiconductor materials on flexible, high-temperatureresistant polyimide substrates or superstrates. The innovative aspect of the present development lies in the extension, to polyimide substrates or superstrates, of a similar prior development of improved low-resistance, semitransparent back contacts for I-III-VI2 solar cells on glass substrates or superstrates. A cell incorporating this innovation can be used either as a stand-alone photovoltaic device or as part of a monolithic stack containing another photovoltaic device that utilizes light of longer wavelengths.
Four-qubit systems and dyonic black Hole-Black branes in superstring theory
NASA Astrophysics Data System (ADS)
Belhaj, A.; Bensed, M.; Benslimane, Z.; Sedra, M. B.; Segui, A.
Using dyonic solutions in the type IIA superstring theory on Calabi-Yau (CY) manifolds, we reconsider the study of black objects and quantum information theory using string/string duality in six dimensions. Concretely, we relate four-qubits with a stringy quaternionic moduli space of type IIA compactification associated with a dyonic black solution formed by black holes (BHs) and black 2-branes (B2B) carrying eight electric charges and eight magnetic charges. This connection is made by associating the cohomology classes of the heterotic superstring on T4 to four-qubit states. These states are interpreted in terms of such dyonic charges resulting from the quaternionic symmetric space SO(4,4) SO(4)×SO(4) corresponding to a N = 4 sigma model superpotential in two dimensions. The superpotential is considered as a functional depending on four quaternionic fields mapped to a class of Clifford algebras denoted as Cl0,4. A link between such an algebra and the cohomology classes of T4 in heterotic superstring theory is also given.
ANOMALY STRUCTURE OF SUPERGRAVITY AND ANOMALY CANCELLATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butter, Daniel; Gaillard, Mary K.
2009-06-10
We display the full anomaly structure of supergravity, including new D-term contributions to the conformal anomaly. This expression has the super-Weyl and chiral U(1){sub K} transformation properties that are required for implementation of the Green-Schwarz mechanism for anomaly cancellation. We outline the procedure for full anomaly cancellation. Our results have implications for effective supergravity theories from the weakly coupled heterotic string theory.
Gauge and Non-Gauge Tensor Multiplets in 5D Conformal Supergravity
NASA Astrophysics Data System (ADS)
Kugo, T.; Ohashi, K.
2002-12-01
An off-shell formulation of two distinct tensor multiplets, a massive tensor multiplet and a tensor gauge multiplet, is presented in superconformal tensor calculus in five-dimensional space-time. Both contain a rank 2 antisymmetric tensor field, but there is no gauge symmetry in the former, while it is a gauge field in the latter. Both multiplets have 4 bosonic and 4 fermionic on-shell modes, but the former consists of 16 (boson)+16 (fermion) component fields, while the latter consists of 8 (boson)+8 (fermion) component fields.
A no-go theorem for monodromy inflation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andriot, David, E-mail: david.andriot@aei.mpg.de
2016-03-01
We study the embedding of the monodromy inflation mechanism by E. Silverstein and A. Westphal (2008) in a concrete compactification setting. To that end, we look for an appropriate vacuum of type IIA supergravity, corresponding to the minimum of the inflaton potential. We prove a no-go theorem on the existence of such a vacuum, using ten-dimensional equations of motion. Anti-de Sitter and Minkowski vacua are ruled out; de Sitter vacua are not excluded, but have a lower bound on their cosmological constant which is too high for phenomenology.
Ghostbusters in f ( R) supergravity
NASA Astrophysics Data System (ADS)
Fujimori, Toshiaki; Nitta, Muneto; Ohashi, Keisuke; Yamada, Yusuke
2018-05-01
f ( R) supergravity is known to contain a ghost mode associated with higher-derivative terms if it contains R n with n greater than two. We remove the ghost in f ( R) supergravity by introducing auxiliary gauge field to absorb the ghost. We dub this method as the ghostbuster mechanism [1]. We show that the mechanism removes the ghost super-multiplet but also terms including R n with n ≥ 3, after integrating out auxiliary degrees of freedom. For pure supergravity case, there appears an instability in the resultant scalar potential. We then show that the instability of the scalar potential can be cured by introducing matter couplings in such a way that the system has a stable potential.
NASA Astrophysics Data System (ADS)
Bouchama, Idris; Boudour, Samah; Bouarissa, Nadir; Rouabah, Zahir
2017-10-01
In this present contribution, AMPS-1D device simulator is employed to study the performances of superstrate SLG/TCO/p-Cu(In,Ga)Se2(CIGS)/n-ODC/n-In2Se3/Metal thin film solar cells. The impact of the TCO and Metal work functions on the cell performance has been investigated. The combination of optical transparency and electrical property for TCO front contact layer is found to yield high efficiency. The obtained results show that the TCO work function should be large enough to achieve high conversion efficiency for superstrate CIGS solar cell. Nevertheless, it is desirable for Metal back contact layer to have low work function to prevent the effect of band bending in the n-In2Se3/Metal interface. Several TCOs materials and metals have been tested respectively as a front and back contact layers for superstrate CIGS solar cells. An efficiency of 20.18%, with Voc ≈ 0.71 V, Jsc ≈ 35.36 mA/cm2 and FF ≈ 80.42%, has been achieved with ZnSn2O3-based as TCO front contact layer. In the case of SnO2:F front contact and indium back contact layers, an efficiency of 16.31%, with Voc ≈ 0.64 V, Jsc ≈ 31.4 mA/cm2 and FF ≈ 79.4%, has been obtained. The present results of simulation suggest an improvement of superstrate CIGS solar cells efficiency for feasible fabrication.
Pure spinors, function superspaces and supergravity theories in ten and eleven dimensions
NASA Astrophysics Data System (ADS)
Howe, P. S.
1991-12-01
The constraints of d = 10 supergravity coupled to super Yang-Mills and d = 11 supergravity are studied from the viewpoint of the differential geometry of certain function superspaces. For d = 10 the appropriate function space is loop superspace, and the presence of Chern-Simons terms in the coupling of supergravity to Yang-Mills is incorporated into the formalism via a central extension of the loop group of the Yang-Mills group. For d = 11 the function superspace is the space of maps from a compact two-manifold to superspace. In both cases the superspaces include additional commuting coordinates which are pure spinors. Permanent address: Department of Mathematics, King's College, London WC2R 2LS, UK.
Habemus superstratum! A constructive proof of the existence of superstrata
NASA Astrophysics Data System (ADS)
Bena, Iosif; Giusto, Stefano; Russo, Rodolfo; Shigemori, Masaki; Warner, Nicholas P.
2015-05-01
We construct the first example of a superstratum: a class of smooth horizonless supergravity solutions that are parameterized by arbitrary continuous functions of (at least) two variables and have the same charges as the supersymmetric D1-D5-P black hole. We work in Type IIB string theory on T 4 or K3 and our solutions involve a subset of fields that can be described by a six-dimensional supergravity with two tensor multiplets. The solutions can thus be constructed using a linear structure, and we give an explicit recipe to start from a superposition of modes specified by an arbitrary function of two variables and impose regularity to obtain the full horizonless solutions in closed form. We also give the precise CFT description of these solutions and show that they are not dual to descendants of chiral primaries. They are thus much more general than all the known solutions whose CFT dual is precisely understood. Hence our construction represents a substantial step toward the ultimate goal of constructing the fully generic superstratum that can account for a finite fraction of the entropy of the three-charge black hole in the regime of parameters where the classical black hole solution exists.
The topological structure of supergravity: an application to supersymmetric localization
NASA Astrophysics Data System (ADS)
Imbimbo, Camillo; Rosa, Dario
2018-05-01
The BRST algebra of supergravity is characterized by two different bilinears of the commuting supersymmetry ghosts: a vector γ μ and a scalar ϕ, the latter valued in the Yang-Mills Lie algebra. We observe that under BRST transformations γ and ϕ transform as the superghosts of, respectively, topological gravity and topological Yang-Mills coupled to topological gravity. This topological structure sitting inside any supergravity leads to universal equivariant cohomological equations for the curvatures 2-forms which hold on supersymmetric bosonic backgrounds. Additional equivariant cohomological equations can be derived for supersymmetric backgrounds of supergravities for which certain gauge invariant scalar bilinears of the commuting ghosts exist. Among those, N = (2 , 2) in d = 2, which we discuss in detail in this paper, and N = 2 in d = 4.
NASA Astrophysics Data System (ADS)
Guarino, Adolfo
2018-03-01
Supersymmetric {AdS}4, {AdS}2 × Σ 2 and asymptotically AdS4 black hole solutions are studied in the context of non-minimal N=2 supergravity models involving three vector multiplets (STU-model) and Abelian gaugings of the universal hypermultiplet moduli space. Such models correspond to consistent subsectors of the {SO}(p,q) and {ISO}(p,q) gauged maximal supergravities that arise from the reduction of 11D and massive IIA supergravity on {H}^{(p,q)} spaces down to four dimensions. A unified description of all the models is provided in terms of a square-root prepotential and the gauging of a duality-hidden symmetry pair of the universal hypermultiplet. Some aspects of M-theory and massive IIA holography are mentioned in passing.
Quantum supergravity, supergravity anomalies and string phenomenology
Gaillard, Mary K.
2016-03-15
I discuss the role of quantum effects in the phenomenology of effective supergravity theories from compactification of the weakly coupled heterotic string. An accurate incorporation of these effects requires a regularization procedure that respects local supersymmetry and BRST invariance and that retains information associated with the cut-off scale, which has physical meaning in an effective theory. I briefly outline the Pauli–Villars regularization procedure, describe some applications, and comment on what remains to be done to fully define the effective quantum field theory.
Impacts of supersymmetric higher derivative terms on inflation models in supergravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aoki, Shuntaro; Yamada, Yusuke, E-mail: shun-soccer@akane.waseda.jp, E-mail: yuusuke-yamada@asagi.waseda.jp
2015-07-01
We show the effects of supersymmetric higher derivative terms on inflation models in supergravity. The results show that such terms generically modify the effective kinetic coefficient of the inflaton during inflation if the cut off scale of the higher derivative operators is sufficiently small. In such a case, the η-problem in supergravity does not occur, and we find that the effective potential of the inflaton generically becomes a power type potential with a power smaller than two.
Chaotic inflation in Jordan frame supergravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hyun Min, E-mail: hyun.min.lee@cern.ch
2010-08-01
We consider the inflationary scenario with non-minimal coupling in 4D Jordan frame supergravity. We find that there occurs a tachyonic instability along the direction of the accompanying non-inflaton field in generic Jordan frame supergravity models. We propose a higher order correction to the Jordan frame function for solving the tachyonic mass problem and show that the necessary correction can be naturally generated by the heavy thresholds without spoiling the slow-roll conditions. We discuss the implication of the result on the Higgs inflation in NMSSM.
Far field focusing for a microwave patch antenna with composite substrate
NASA Astrophysics Data System (ADS)
Wan, Jian; Rybin, Oleg; Shulga, Sergey
2018-03-01
Modeling for a compact microwave antenna structure on base of a miniaturized rectangular patch antenna with composite substrate and magnetic superstrates is made in this study by using FDTD simulations. The resonant frequency of the antenna structure is supposed to be 15 GHz. The design of the antenna with composite substrate and without superstrate is made up by using the microwave miniaturization concept for rectangular patch antennas created by first author of this study. The optimal distance between the superstrate and antenna surface is found by using Fabry-Perot cavity theory as maximum values of power directivity and efficiency of the antenna is achieved. The comparative analysis with regard to some far and near field parameters of the above antenna structures and the antenna with dielectric substrate having same value of the relative permittivity is performed.
Hösel, Markus; Angmo, Dechan; Søndergaard, Roar R.; dos Reis Benatto, Gisele A.; Carlé, Jon E.; Jørgensen, Mikkel
2014-01-01
The fabrication of substrates and superstrates prepared by scalable roll‐to‐roll methods is reviewed. The substrates and superstrates that act as the flexible carrier for the processing of functional organic electronic devices are an essential component, and proposals are made about how the general availability of various forms of these materials is needed to accelerate the development of the field of organic electronics. The initial development of the replacement of indium‐tin‐oxide (ITO) for the flexible carrier materials is described and a description of how roll‐to‐roll processing development led to simplification from an initially complex make‐up to higher performing materials through a more simple process is also presented. This process intensification through process simplification is viewed as a central strategy for upscaling, increasing throughput, performance, and cost reduction. PMID:27980893
Anisotropic D3-D5 black holes with unquenched flavors
NASA Astrophysics Data System (ADS)
Penín, José Manuel; Ramallo, Alfonso V.; Zoakos, Dimitrios
2018-02-01
We construct a black hole geometry generated by the intersection of N c color D3- branes and N f flavor D5-branes along a 2+1 dimensional subspace. Working in the Veneziano limit in which N f is large and distributing homogeneously the D5-branes in the internal space, we calculate the solution of the equations of motion of supergravity plus sources which includes the backreaction of the flavor branes. The solution is analytic and dual to a 2+1 dimensional defect in a 3+1 dimensional gauge theory, with N f massless hypermultiplets living in the defect. The smeared background we obtain can be regarded as the holographic realization of a multilayered system. We study the thermodynamics of the resulting spatially anisotropic geometry and compute the first and second order transport coefficients for perturbations propagating along the defect. We find that, in our system, the dynamics of excitations within a layer can be described by a stack of effective D2-branes.
Thermodynamics and Hawking radiation of five-dimensional rotating charged Goedel black holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu Shuangqing; Peng Junjin; College of Science, Wuhan Textile University, Wuhan, Hubei 430074
2011-02-15
We study the thermodynamics of Goedel-type rotating charged black holes in five-dimensional minimal supergravity. These black holes exhibit some peculiar features such as the presence of closed timelike curves and the absence of a globally spatial-like Cauchy surface. We explicitly compute their energies, angular momenta, and electric charges that are consistent with the first law of thermodynamics. Besides, we extend the covariant anomaly cancellation method, as well as the approach of the effective action, to derive their Hawking fluxes. Both the methods of the anomaly cancellation and the effective action give the same Hawking fluxes as those from the Planckmore » distribution for blackbody radiation in the background of the charged rotating Goedel black holes. Our results further support that Hawking radiation is a quantum phenomenon arising at the event horizon.« less
Squashed, magnetized black holes in D = 5 minimal gauged supergravity
NASA Astrophysics Data System (ADS)
Blázquez-Salcedo, Jose Luis; Kunz, Jutta; Navarro-Lérida, Francisco; Radu, Eugen
2018-02-01
We construct a new class of black hole solutions in five-dimensional Einstein-Maxwell-Chern-Simons theory with a negative cosmological constant. These configurations are cohomogeneity-1, with two equal-magnitude angular momenta. In the generic case, they possess a non-vanishing magnetic potential at infinity with a boundary metric which is the product of time and a squashed three-dimensional sphere. Both extremal and non-extremal black holes are studied. The non-extremal black holes satisfying a certain relation between electric charge, angular momenta and magnitude of the magnetic potential at infinity do not trivialize in the limit of vanishing event horizon size, becoming particle-like (non-topological) solitonic configurations. Among the extremal black holes, we show the existence of a new one-parameter family of supersymmetric solutions, which bifurcate from a critical Gutowski-Reall configuration.
New families of interpolating type IIB backgrounds
NASA Astrophysics Data System (ADS)
Minasian, Ruben; Petrini, Michela; Zaffaroni, Alberto
2010-04-01
We construct new families of interpolating two-parameter solutions of type IIB supergravity. These correspond to D3-D5 systems on non-compact six-dimensional manifolds which are mathbb{T}2 fibrations over Eguchi-Hanson and multi-center Taub-NUT spaces, respectively. One end of the interpolation corresponds to a solution with only D5 branes and vanishing NS three-form flux. A topology changing transition occurs at the other end, where the internal space becomes a direct product of the four-dimensional surface and the two-torus and the complexified NS-RR three-form flux becomes imaginary self-dual. Depending on the choice of the connections on the torus fibre, the interpolating family has either mathcal{N}=2 or mathcal{N}=1 supersymmetry. In the mathcal{N}=2 case it can be shown that the solutions are regular.
Construction of all N=4 conformal supergravities.
Butter, Daniel; Ciceri, Franz; de Wit, Bernard; Sahoo, Bindusar
2017-02-24
All N=4 conformal supergravities in four space-time dimensions are constructed. These are the only N=4 supergravity theories whose actions are invariant under off-shell supersymmetry. They are encoded in terms of a holomorphic function that is homogeneous of zeroth degree in scalar fields that parametrize an SU(1,1)/U(1) coset space. When this function equals a constant the Lagrangian is invariant under continuous SU(1,1) transformations. The construction of these higher-derivative invariants also opens the door to various applications for nonconformal theories.
Divergences and boundary modes in $$ \\mathcal{N}=8 $$ supergravity
Larsen, Finn; Lisbao, Pedro
2016-01-07
We reconsider the one loop divergence ofmore » $$ \\mathcal{N}=8 $$ supergravity in four dimensions. We compute the finite effective potential of $$ \\mathcal{N}=8 $$ anti-deSitter supergravity and interpret it as logarithmic running of the cosmological constant. We show that quantum inequivalence between fields that are classically dual is due to boundary modes in AdS 4. In conclusion, the boundary modes are important in global AdS 4 but not in thermal AdS 4 since these geometries have different Euler characteristic.« less
Quantum Structure of Space and Time
NASA Astrophysics Data System (ADS)
Duff, M. J.; Isham, C. J.
2012-07-01
Foreword Abdus Salam; Preface; List of participants; Part I. Quantum Gravity, Fields and Topology: 1. Some remarks on gravity and quantum mechanics Roger Penrose; 2. An experimental test of quantum gravity Don N. Page and C. D. Geilker; 3. Quantum mechanical origin of the sandwich theorem in classical gravitation theory Claudio Teitelboim; 4. θ-States induced by the diffeomorphism group in canonically quantized gravity C. J. Isham; 5. Strong coupling quantum gravity: an introduction Martin Pilati; 6. Quantizing fourth order gravity theories S. M. Christensen; 7. Green's functions, states and renormalisation M. R. Brown and A. C. Ottewill; 8. Introduction to quantum regge calculus Martin Roček and Ruth Williams; 9. Spontaneous symmetry breaking in curved space-time D. J. Toms; 10. Spontaneous symmetry breaking near a black hole M. S. Fawcett and B. F. Whiting; 11. Yang-Mills vacua in a general three-space G. Kunstatter; 12. Fermion fractionization in physics R. Jackiw; Part II. Supergravity: 13. The new minimal formulation of N=1 supergravity and its tensor calculus M. F. Sohnius and P. C. West; 14. A new deteriorated energy-momentum tensor M. J. Duff and P. K. Townsend; 15. Off-shell N=2 and N=4 supergravity in five dimensions P. Howe; 16. Supergravity in high dimensions P. van Niewenhuizen; 17. Building linearised extended supergravities J. G. Taylor; 18. (Super)gravity in the complex angular momentum plane M. T. Grisaru; 19. The multiplet structure of solitons in the O(2) supergravity theory G. W. Gibbons; 20. Ultra-violet properties of supersymmetric gauge theory S. Ferrara; 21. Extended supercurrents and the ultra-violet finiteness of N=4 supersymmetric Yang-Mills theories K. S. Stelle; 22. Duality rotations B. Zumino; Part III. Cosmology and the Early Universe: 23. Energy, stability and cosmological constant S. Deser; 24. Phase transitions in the early universe T. W. B. Kibble; 25. Complete cosmological theories L. P. Grishchuk and Ya. B. Zeldovich; 26. The cosmological constant and the weak anthropic principle S. W. Hawking.
NASA Technical Reports Server (NTRS)
1978-01-01
Several aspects of module design are evaluated, including glass superstrate and metal substrate module configurations, the potential for hail damage, light absorption in glass superstrates, the economics of glass selection, and electrical design. Also, three alternate glass superstrate module configurations are evaluated by means of finite element computer analyses. Two panel sizes, 1.2 by 2.4 m (4 by 8 ft) and 2.4 by 4.8 m are used to support three module sizes, 0.6 by 1.2 m, 1.2 by 1.2 m, and 1.2 by 2.4 m, for design loadings of + or - 1.7 kPa, + or - 2.4 kPa, and + or - 3.6 kPa. Designs and cost estimates are presented for twenty panel types and nine array configurations at each of the three design loadings. Structural cost sensitivities of combined array configurations and panel cases are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pern, F.J.; Glick, S.H.; Czanderna, A.W.
The stabilization effects of various superstrate materials against UV-induced EVA discoloration and the effect of photocurrent enhancement by white light-reflecting substrates are summarized. Based on the results, some alternative PV module encapsulation schemes are proposed for improved module performance, where the current or modified formulations of EVA encapsulants still can be used so that the typical processing tools and conditions need not to be changed significantly. The schemes are designed in an attempt to eliminate or minimize the EVA yellow-browning and to increase the module power output. Four key experimental results from the studies of EVA discoloration and encapsulation aremore » to employ: (1) UV-absorbing (filtering) glasses as superstrates to protect EVA from UV-induced discoloration, (2) gas-permeable polymer films as superstrates and/or substrates to prevent EVA yellowing by permitting photobleaching reactions, (3) modified EVA formulations, and (4) internal reflection of the light by white substrates. {copyright} {ital 1996 American Institute of Physics.}« less
NASA Astrophysics Data System (ADS)
Anagnostopoulos, Konstantinos N.; Azuma, Takehiro; Ito, Yuta; Nishimura, Jun; Papadoudis, Stratos Kovalkov
2018-02-01
In recent years the complex Langevin method (CLM) has proven a powerful method in studying statistical systems which suffer from the sign problem. Here we show that it can also be applied to an important problem concerning why we live in four-dimensional spacetime. Our target system is the type IIB matrix model, which is conjectured to be a nonperturbative definition of type IIB superstring theory in ten dimensions. The fermion determinant of the model becomes complex upon Euclideanization, which causes a severe sign problem in its Monte Carlo studies. It is speculated that the phase of the fermion determinant actually induces the spontaneous breaking of the SO(10) rotational symmetry, which has direct consequences on the aforementioned question. In this paper, we apply the CLM to the 6D version of the type IIB matrix model and show clear evidence that the SO(6) symmetry is broken down to SO(3). Our results are consistent with those obtained previously by the Gaussian expansion method.
Spinorial Geometry and Supergravity
NASA Astrophysics Data System (ADS)
Gillard, Joe
2006-08-01
In the main part of this thesis, we present the foundations and initial results of the Spinorial Geometry formalism for solving Killing spinor equations. This method can be used for any supergravity theory, although we largely focus on D=11 supergravity. The D=5 case is investigated in an appendix. The exposition provides a comprehensive introduction to the formalism, and contains background material on the complex spin representations which, it is hoped, will provide a useful bridge between the mathematical literature and our methods. Many solutions to the D=11 Killing spinor equations are presented, and the consequences for the spacetime geometry are explored in each case. Also in this thesis, we consider another class of supergravity solutions, namely heterotic string backgrounds with (2,0) world-sheet supersymmetry. We investigate the consequences of taking alpha-prime corrections into account in the field equations, in order to remain consistent with anomaly cancellation, while requiring that spacetime supersymmetry is preserved.
Two-field analysis of no-scale supergravity inflation
Ellis, John; Garcia, Marcos A. G.; Nanopoulos, Dimitri V.; ...
2015-01-08
Since the building-blocks of supersymmetric models include chiral superfields containing pairs of effective scalar fields, a two-field approach is particularly appropriate for models of inflation based on supergravity. In this paper, we generalize the two-field analysis of the inflationary power spectrum to supergravity models with arbitrary Kähler potential. We show how two-field effects in the context of no-scale supergravity can alter the model predictions for the scalar spectral index n s and the tensor-to-scalar ratio r, yielding results that interpolate between the Planck-friendly Starobinsky model and BICEP2-friendly predictions. In particular, we show that two-field effects in a chaotic no-scale inflationmore » model with a quadratic potential are capable of reducing r to very small values << 0.1. Here, we also calculate the non-Gaussianity measure f NL, finding that is well below the current experimental sensitivity.« less
NASA Astrophysics Data System (ADS)
Gao, Jintao; Zhong, Yiwei; Guo, Zhancheng
2016-08-01
Selective precipitation and concentrating of perovskite crystals from titanium-bearing slag melt in the supergravity field was investigated in this study. Since perovskite was the first precipitated phase from the slag melt during the cooling process, and a greater precipitation quantity and larger crystal sizes of perovskite were obtained at 1593 K to 1563 K (1320 °C to 1290 °C), concentrating of perovskite crystals from the slag melt was carried out at this temperature range in the supergravity field, at which the perovskite transforms into solid particles while the other minerals remain in the liquid melt. The layered structures appeared significantly in the sample obtained by supergravity treatment, and all the perovskite crystals moved along the supergravity direction and concentrated as the perovskite-rich phase in the bottom area, whereas the molten slag concentrated in the upper area along the opposite direction, in which it was impossible to find any perovskite crystals. With the gravity coefficient of G = 750, the mass fraction of TiO2 in the perovskite-rich phase was up to 34.65 wt pct, whereas that of the slag phase was decreased to 12.23 wt pct, and the recovery ratio of Ti in the perovskite-rich phase was up to 75.28 pct. On this basis, an amplification experimental centrifugal apparatus was exploited and the continuous experiment with larger scale was further carried out, the results confirming that selective precipitation and concentrating of perovskite crystals from the titanium-bearing slag melt by supergravity was a feasible method.
Habemus superstratum! A constructive proof of the existence of superstrata
Bena, Iosif; Giusto, Stefano; Russo, Rodolfo; ...
2015-05-21
Here, we construct the first example of a superstratum: a class of smooth horizonless supergravity solutions that are parameterized by arbitrary continuous functions of (at least) two variables and have the same charges as the supersymmetric D1-D5-P black hole. We work in Type IIB string theory on T 4 or K 3 and our solutions involve a subset of fields that can be described by a six-dimensional supergravity with two tensor multiplets. The solutions can thus be constructed using a linear structure, and we give an explicit recipe to start from a superposition of modes specified by an arbitrary functionmore » of two variables and impose regularity to obtain the full horizonless solutions in closed form. We also give the precise CFT description of these solutions and show that they are not dual to descendants of chiral primaries. They are thus much more general than all the known solutions whose CFT dual is precisely understood. Hence our construction represents a substantial step toward the ultimate goal of constructing the fully generic superstratum that can account for a finite fraction of the entropy of the three-charge black hole in the regime of parameters where the classical black hole solution exists.« less
Thermoelectric generator and method for the fabrication thereof
Benson, David K.; Tracy, C. Edwin
1987-01-01
A thermoelectric generator using semiconductor elements for responding to a temperature gradient to produce electrical energy with all of the semiconductor elements being of the same type is disclosed. A continuous process for forming substrates on which the semiconductor elements and superstrates are deposited and a process for forming the semiconductor elements on the substrates are also disclosed. The substrates with the semiconductor elements thereon are combined with superstrates to form modules for use thermoelectric generators.
Thermoelectric generator and method for the fabrication thereof
Benson, D.K.; Tracy, C.E.
1984-08-01
A thermoelectric generator using semiconductor elements for responding to a temperature gradient to produce electrical energy with all of the semiconductor elements being of the same type is disclosed. A continuous process for forming substrates on which the semiconductor elements and superstrates are deposited and a process for forming the semiconductor elements on the substrates are also disclosed. The substrates with the semiconductor elements thereon are combined with superstrates to form modules for use as thermoelectric generators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinemann, M. D.; van Hest, M. F. A. M.; Contreras, M.
Cu(In,Ga)Se2 (CIGS) solar cells in superstrate configuration promise improved light management and higher stability compared to substrate devices, but they have yet to deliver comparable power conversion efficiencies (PCEs). Chemical reactions between the CIGS layer and the front contact were shown in the past to deteriorate the p-n junction in superstrate devices, which led to lower efficiencies compared to the substrate-type devices. This work aims to solve this problem by identifying a buffer layer between the CIGS layer and the front contact, acting as the electron transport layer, with an optimized electron affinity, doping density and chemical stability. Using combinatorialmore » material exploration we identified amorphous gallium oxide (a-GaOx) as a potentially suitable buffer layer material. The best results were obtained for a-GaOx with an electron affinity that was found to be comparable to that of CIGS. Based on the results of device simulations, it is assumed that detrimental interfacial acceptor states are present at the interface between CIGS and a-GaOx. However, these initial experiments indicate the potential of a-GaOx in this application, and how to reach performance parity with substrate devices, by further increase of its n-type doping density.« less
On curvature squared invariants in 6D supergravity
NASA Astrophysics Data System (ADS)
Novak, J.; Tartaglino-Mazzucchelli, G.
2018-02-01
We review recent developments in the construction of curvature squared invariants in off-shell \\mathscr{N} = (1, 0) supergravity in six dimensions. Based on the talk presented by GT-M at ISQS25 (Prague, Czech Republic, 6 { 10 June, 2017).
Removal of Inclusions from Molten Aluminum by Supergravity Filtration
NASA Astrophysics Data System (ADS)
Song, Gaoyang; Song, Bo; Yang, Zhanbing; Yang, Yuhou; Zhang, Jing
2016-12-01
A new approach to removing inclusions from aluminum melt by supergravity filtration was investigated. The molten aluminum containing MgAl2O4 spinel and coarse Al3Ti particles was isothermally filtered with different gravity coefficients, different filtering times, and various filtering temperatures under supergravity field. When the gravity coefficient G ≥ 50, the alloy samples were divided automatically into two parts: the upper residue and the lower filtered aluminum. All inclusions (MgAl2O4 and Al3Ti particles) were nearly intercepted in the upper residue by filter felt with average pore size of 44.78 μm. The removal efficiencies of oxide inclusions and Al3Ti particles exceeded 98 and 90 pct, respectively, at G ≥ 50, t = 2 minutes, T = 973 K (700 °C). Besides, the yield of purified aluminum was up to 92.1 pct at G = 600, t = 2 minutes, and T = 973 K (700 °C). The calculations of centrifugal pressure indicated that supergravity filtration could effectively overcome the pressure drop without meeting the rigorous requirement of height of molten metal, especially for using the fine-pore filter medium. Moreover, cake-mode filtration was the major mechanism of supergravity filtration of molten metal in this work.
Maartens, Roy; Koyama, Kazuya
2010-01-01
The observable universe could be a 1+3-surface (the "brane") embedded in a 1+3+ d -dimensional spacetime (the "bulk"), with Standard Model particles and fields trapped on the brane while gravity is free to access the bulk. At least one of the d extra spatial dimensions could be very large relative to the Planck scale, which lowers the fundamental gravity scale, possibly even down to the electroweak (∼ TeV) level. This revolutionary picture arises in the framework of recent developments in M theory. The 1+10-dimensional M theory encompasses the known 1+9-dimensional superstring theories, and is widely considered to be a promising potential route to quantum gravity. At low energies, gravity is localized at the brane and general relativity is recovered, but at high energies gravity "leaks" into the bulk, behaving in a truly higher-dimensional way. This introduces significant changes to gravitational dynamics and perturbations, with interesting and potentially testable implications for high-energy astrophysics, black holes, and cosmology. Brane-world models offer a phenomenological way to test some of the novel predictions and corrections to general relativity that are implied by M theory. This review analyzes the geometry, dynamics and perturbations of simple brane-world models for cosmology and astrophysics, mainly focusing on warped 5-dimensional brane-worlds based on the Randall-Sundrum models. We also cover the simplest brane-world models in which 4-dimensional gravity on the brane is modified at low energies - the 5-dimensional Dvali-Gabadadze-Porrati models. Then we discuss co-dimension two branes in 6-dimensional models.
Spin(7) compactifications and 1/4-BPS vacua in heterotic supergravity
NASA Astrophysics Data System (ADS)
Angus, Stephen; Matti, Cyril; Svanes, Eirik E.
2016-03-01
We continue the investigation into non-maximally symmetric compactifications of the heterotic string. In particular, we consider compactifications where the internal space is allowed to depend on two or more external directions. For preservation of supersymmetry, this implies that the internal space must in general be that of a Spin(7) manifold, which leads to a 1/4-BPS four-dimensional supersymmetric perturbative vacuum breaking all but one supercharge. We find that these solutions allow for internal geometries previously excluded by the domain-wall-type solutions, and hence the resulting four-dimensional superpotential is more generic. In particular, we find an interesting resemblance to the superpotentials that appear in non-geometric flux compactifications of type II string theory. If the vacua are to be used for phenomenological applications, they must be lifted to maximal symmetry by some non-perturbative or higher-order effect.
Black hole entropy in massive Type IIA
NASA Astrophysics Data System (ADS)
Benini, Francesco; Khachatryan, Hrachya; Milan, Paolo
2018-02-01
We study the entropy of static dyonic BPS black holes in AdS4 in 4d N=2 gauged supergravities with vector and hyper multiplets, and how the entropy can be reproduced with a microscopic counting of states in the AdS/CFT dual field theory. We focus on the particular example of BPS black holes in AdS{\\hspace{0pt}}4 × S6 in massive Type IIA, whose dual three-dimensional boundary description is known and simple. To count the states in field theory we employ a supersymmetric topologically twisted index, which can be computed exactly with localization techniques. We find a perfect match at leading order.
Holographic cosmology and phase transitions of SYM theory
NASA Astrophysics Data System (ADS)
Ghoroku, Kazuo; Meyer, René; Toyoda, Fumihiko
2017-10-01
We study the time development of strongly coupled N =4 supersymmetric Yang Mills (SYM) theory on cosmological Friedmann-Robertson-Walker (FRW) backgrounds via the AdS/CFT correspondence. We implement the cosmological background as a boundary metric fulfilling the Friedmann equation with a four-dimensional cosmological constant and a dark radiation term. We analyze the dual bulk solution of the type IIB supergravity and find that the time dependence of the FRW background strongly influences the dynamical properties of the SYM theory. We in particular find a phase transition between a confined and a deconfined phase. We also argue that some cosmological solutions could be related to the inflationary scenario.
Higher order corrections to holographic black hole chemistry
NASA Astrophysics Data System (ADS)
Sinamuli, Musema; Mann, Robert B.
2017-10-01
We investigate the holographic Smarr relation beyond the large N limit. By making use of the holographic dictionary, we find that the bulk correlates of subleading 1 /N corrections to this relation are related to the couplings in Lovelock gravity theories. We likewise obtain a holographic equation of state and check its validity for a variety of interesting and nontrivial black holes, including rotating planar black holes in Gauss-Bonnet-Born-Infeld gravity, and nonextremal rotating black holes in minimal five-dimensional gauged supergravity. We provide an explanation of the N -dependence of the holographic Smarr relation in terms of contributions due to planar and nonplanar diagrams in the dual theory.
N=2 supersymmetry in two-dimensional dilaton gravity
NASA Astrophysics Data System (ADS)
Nelson, William M.; Park, Youngchul
1993-11-01
Actions for D=2, N=2 supergravity coupled to a scalar field are calculated, and it is shown that the most general power-counting renormalizable dilaton gravity action has an N=2 locally supersymmetric extension. The presence of chiral terms in the action leads one to hope that nonrenormalization theorems similar to those in global SUSY will apply; this would eliminate some of the renormalization ambiguities which plague ordinary bosonic (and N=1) dilaton gravity. To investigate this, the model is studied in the superconformal gauge, where it is found that one chiral term becomes nonchiral, so that only one term is safe from renormalization.
The Big Bang, Superstring Theory and the origin of life on the Earth.
Trevors, J T
2006-03-01
This article examines the origin of life on Earth and its connection to the Superstring Theory, that attempts to explain all phenomena in the universe (Theory of Everything) and unify the four known forces and relativity and quantum theory. The four forces of gravity, electro-magnetism, strong and weak nuclear were all present and necessary for the origin of life on the Earth. It was the separation of the unified force into four singular forces that allowed the origin of life.
Localization of effective actions in open superstring field theory
NASA Astrophysics Data System (ADS)
Maccaferri, Carlo; Merlano, Alberto
2018-03-01
We consider the construction of the algebraic part of D-branes tree-level effective action from Berkovits open superstring field theory. Applying this construction to the quartic potential of massless fields carrying a specific worldsheet charge, we show that the full contribution to the potential localizes at the boundary of moduli space, reducing to elementary two-point functions. As examples of this general mechanism, we show how the Yang-Mills quartic potential and the instanton effective action of a Dp/D( p - 4) system are reproduced.
Supergravity, dark energy, and the fate of the universe
NASA Astrophysics Data System (ADS)
Kallosh, Renata; Linde, Andrei; Prokushkin, Sergey; Shmakova, Marina
2002-12-01
We propose a description of dark energy and acceleration of the universe in extended supergravities with de Sitter (dS) solutions. Some of them are related to M theory with noncompact internal spaces. Masses of ultralight scalars in these models are quantized in units of the Hubble constant: m2=nH2. If the dS solution corresponds to a minimum of the effective potential, the universe eventually becomes dS space. If the dS solution corresponds to a maximum or a saddle point, which is the case in all known models based on N=8 supergravity, the flat universe eventually stops accelerating and collapses to a singularity. We show that in these models, as well as in the simplest models of dark energy based on N=1 supergravity, the typical time remaining before the global collapse is comparable to the present age of the universe, t=O(1010) yr. We discuss the possibility of distinguishing between various models and finding our destiny using cosmological observations.
Topics in Higher-Derivative Supergravity and N = 2 Yang-Mills Theories
NASA Astrophysics Data System (ADS)
Hindawi, Ahmed Abdel-Ati
1997-09-01
In Part I of the thesis we discuss higher-derivative theories of gravity. We start by discussing the field content of quadratic higher-derivative gravity, together with a new example of a massless spin-two field consistently coupled to gravity. The full quadratic gravity theory is shown to be equivalent to a canonical second-order theory of a massive scalar field, a massive spin-two symmetric tensor field and gravity. It is shown that flat-space is the only stable vacuum, and that the spin-two field around it is always ghost-like. We give a procedure for exhibiting the new propagating degrees of freedom in a generic higher-derivative gravity, at the full non-linear level. We show that around any vacuum the elementary excitations remain the massless graviton, a massive scalar field and a massive ghost-like spin-two field. In Part II of the thesis we extend our investigations to the realm of supergravity. We consider the general form of quadratic (1, 1) supergravity in two dimensions. It is demonstrated that the theory possesses stable vacua with vanishing cosmological constant which spontaneously break supersymmetry. We then consider higher-derivative N=1 supergravity in four dimensions. We construct two classes of higher-derivative supergravity theories. They are found to be equivalent to Einstein supergravity coupled to one or two chiral superfields and have a rich vacuum structure. It is demonstrated that theories of the second class can possess a stable vacuum with vanishing cosmological constant that spontaneously breaks supersymmetry. We then proceed to show how spontaneous supersymmetry breaking in the vacuum state of higher-derivative supergravity is transmitted, as explicit soft supersymmetry-breaking terms, to the effective Lagrangian of the standard electroweak model. In Part III we use central charge superspace to give a geometrical construction of the N=2 Abelian vector-tensor multiplet consisting, under N=1 supersymmetry, of one vector and one linear multiplet. We derive the component field supersymmetry and central charge transformations, and show that there is a super-Lagrangian, the higher components of which are all total derivatives, allowing us to construct superfield and component actions.
Cosmic superstrings: Observable remnants of brane inflation
NASA Astrophysics Data System (ADS)
Wyman, Mark Charles
Brane inflation provides a natural dynamical model for the physics which underlie the inflationary paradigm. Besides their inflationary predictions, brane models imply another observable consequence: cosmic strings. In this dissertation I outline the background of how cosmic strings arise in brane inflationary models and how the properties of the strings and the models are mutually tied (Chapter 2). I then use cosmological observations to put limits on the properties of any actually-existing cosmic string network (Chapter 3). Next, I study the question of how cosmic superstrings, as the cosmic strings arising from string theory are known, could be distinct from classical gauge- theory cosmic strings. In particular, I propose an analytical model for the cosmological evolution of a network of binding cosmic strings (Chapter 4); I also describe the distinctive gravitational lensing phenomena that are caused by binding strings (Chapter 5). Finally, I lay out the background for the numerical study of a gauge theory model for the dynamics of cosmic superstring binding (Chapter 6).
The AdS{sub 5}xS{sup 5} superstring worldsheet S matrix and crossing symmetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janik, Romuald A.
2006-04-15
An S matrix satisfying the Yang-Baxter equation with symmetries relevant to the AdS{sub 5}xS{sup 5} superstring recently has been determined up to an unknown scalar factor. Such scalar factors are typically fixed using crossing relations; however, due to the lack of conventional relativistic invariance, in this case its determination remained an open problem. In this paper we propose an algebraic way to implement crossing relations for the AdS{sub 5}xS{sup 5} superstring worldsheet S matrix. We base our construction on a Hopf-algebraic formulation of crossing in terms of the antipode and introduce generalized rapidities living on the universal cover of themore » parameter space which is constructed through an auxillary, coupling-constant dependent, elliptic curve. We determine the crossing transformation and write functional equations for the scalar factor of the S matrix in the generalized rapidity plane.« less
A Module Experimental Process System Development Unit (MEPSDU)
NASA Technical Reports Server (NTRS)
1981-01-01
Design work for a photovoltaic module, fabricated using single crystal silicon dendritic web sheet material, resulted in the identification of surface treatment to the module glass superstrate which improved module efficiencies. A final solar module environmental test, a simulated hailstone impact test, was conducted on full size module superstrates to verify that the module's tempered glass superstrate can withstand specified hailstone impacts near the corners and edges of the module. Process sequence design work on the metallization process selective, liquid dopant investigation, dry processing, and antireflective/photoresist application technique tasks, and optimum thickness for Ti/Pd are discussed. A noncontact cleaning method for raw web cleaning was identified and antireflective and photoresist coatings for the dendritic webs were selected. The design of a cell string conveyor, an interconnect feed system, rolling ultrasonic spot bonding heat, and the identification of the optimal commercially available programmable control system are also discussed. An economic analysis to assess cost goals of the process sequence is also given.
NASA Astrophysics Data System (ADS)
Lan, Xi; Gao, Jintao; Huang, Zili; Guo, Zhancheng
2018-03-01
A novel approach for quickly separating a metal copper phase and iron-rich phase from copper slag at low temperature is proposed based on a super-gravity method. The morphology and mineral evolution of the copper slag with increasing temperature were studied using in situ high-temperature confocal laser scanning microscopy and ex situ scanning electron microscopy and X-ray diffraction methods. Fe3O4 particles dispersed among the copper slag were transformed into FeO by adding an appropriate amount of carbon as a reducing agent, forming the slag melt with SiO2 at low temperature and assisting separation of the copper phase from the slag. Consequently, in a super-gravity field, the metallic copper and copper matte were concentrated as the copper phase along the super-gravity direction, whereas the iron-rich slag migrated in the opposite direction and was quickly separated from the copper phase. Increasing the gravity coefficient (G) significantly enhanced the separation efficiency. After super-gravity separation at G = 1000 and 1473 K (1200 °C) for 3 minutes, the mass fraction of Cu in the separated copper phase reached 86.11 wt pct, while that in the separated iron-rich phase was reduced to 0.105 wt pct. The recovery ratio of Cu in the copper phase was as high as up to 97.47 pct.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Tingting; Northeast Petroleum University at Qinhuangdao, Qinhuangdao 066004; Shao, Guangjie, E-mail: shaoguangjie@ysu.edu.cn
A method of pulse electrodeposition under supergravity field was proposed to synthesize MnO{sub 2}-graphene composites. Supergravity is very efficient for promoting mass transfer and decreasing concentration polarization during the electrodeposition process. The synthesis was conducted on our homemade supergravity equipment. The strength of supergravity field depended on the rotating speed of the ring electrode. 3D flower like MnO{sub 2} spheres composed of nanoflakes were acquired when the rotating speed was 3000 rpm. Graphene nanosheets play as a role of conductive substrates for MnO{sub 2} growing. The composites are evaluated as electrode materials for supercapacitors. Electrochemical results show that the maximummore » specific capacitance of the MnO{sub 2}-graphene composite is 595.7 F g{sup −1} at a current density of 0.5 A g{sup −1}. In addition, the composite exhibits excellent cycle stability with no capacitance attenuation after 1000 cycles. The approach provides new ideas for developing supercapacitor electrode materials with high performance. - Graphical abstract: 3D flower like MnO{sub 2} spheres composed of nanoflakes were acquired at 3000 rpm. - Highlights: • MnO{sub 2}-graphene composites were prepared by pulse electrodeposition under supergravity. • 3D flower like MnO{sub 2} spheres are anchored on the graphene nanosheets. • The MnO{sub 2}-graphene electrode exhibits a specific capacitance of 595.7 F g{sup −1}.« less
Sound Speed of Primordial Fluctuations in Supergravity Inflation.
Hetz, Alexander; Palma, Gonzalo A
2016-09-02
We study the realization of slow-roll inflation in N=1 supergravities where inflation is the result of the evolution of a single chiral field. When there is only one flat direction in field space, it is possible to derive a single-field effective field theory parametrized by the sound speed c_{s} at which curvature perturbations propagate during inflation. The value of c_{s} is determined by the rate of bend of the inflationary path resulting from the shape of the F-term potential. We show that c_{s} must respect an inequality that involves the curvature tensor of the Kähler manifold underlying supergravity, and the ratio M/H between the mass M of fluctuations ortogonal to the inflationary path, and the Hubble expansion rate H. This inequality provides a powerful link between observational constraints on primordial non-Gaussianity and information about the N=1 supergravity responsible for inflation. In particular, the inequality does not allow for suppressed values of c_{s} (values smaller than c_{s}∼0.4) unless (a) the ratio M/H is of order 1 or smaller, and (b) the fluctuations of mass M affect the propagation of curvature perturbations by inducing on them a nonlinear dispersion relation during horizon crossing. Therefore, if large non-Gaussianity is observed, supergravity models of inflation would be severely constrained.
NASA Astrophysics Data System (ADS)
Lan, Xi; Gao, Jintao; Huang, Zili; Guo, Zhancheng
2018-06-01
A novel approach for quickly separating a metal copper phase and iron-rich phase from copper slag at low temperature is proposed based on a super-gravity method. The morphology and mineral evolution of the copper slag with increasing temperature were studied using in situ high-temperature confocal laser scanning microscopy and ex situ scanning electron microscopy and X-ray diffraction methods. Fe3O4 particles dispersed among the copper slag were transformed into FeO by adding an appropriate amount of carbon as a reducing agent, forming the slag melt with SiO2 at low temperature and assisting separation of the copper phase from the slag. Consequently, in a super-gravity field, the metallic copper and copper matte were concentrated as the copper phase along the super-gravity direction, whereas the iron-rich slag migrated in the opposite direction and was quickly separated from the copper phase. Increasing the gravity coefficient (G) significantly enhanced the separation efficiency. After super-gravity separation at G = 1000 and 1473 K (1200 °C) for 3 minutes, the mass fraction of Cu in the separated copper phase reached 86.11 wt pct, while that in the separated iron-rich phase was reduced to 0.105 wt pct. The recovery ratio of Cu in the copper phase was as high as up to 97.47 pct.
Constraining higher derivative supergravity with scattering amplitudes
Wang, Yifan; Yin, Xi
2015-08-31
We study supersymmetry constraints on higher derivative deformations of type IIB supergravity by consideration of superamplitudes. Thus, combining constraints of on-shell supervertices and basic results from string perturbation theory, we give a simple argument for the non-renormalization theorem of Green and Sethi, and some of its generalizations.
NASA Astrophysics Data System (ADS)
Fré, P.; Sorin, A. S.; Trigiante, M.
2014-04-01
The question whether the integrable one-field cosmologies classified in a previous paper by Fré, Sagnotti and Sorin can be embedded as consistent one-field truncations into Extended Gauged Supergravity or in N=1 supergravity gauged by a superpotential without the use of D-terms is addressed in this paper. The answer is that such an embedding is very difficult and rare but not impossible. Indeed, we were able to find two examples of integrable models embedded in supergravity in this way. Both examples are fitted into N=1 supergravity by means of a very specific and interesting choice of the superpotential W(z). The question whether there are examples of such an embedding in Extended Gauged Supergravity remains open. In the present paper, relying on the embedding tensor formalism we classified all gaugings of the N=2 STU model, confirming, in the absence on hypermultiplets, the uniqueness of the stable de Sitter vacuum found several years ago by Fré, Trigiante and Van Proeyen and excluding the embedding of any integrable cosmological model. A detailed analysis of the space of exact solutions of the first supergravity-embedded integrable cosmological model revealed several new features worth an in-depth consideration. When the scalar potential has an extremum at a negative value, the Universe necessarily collapses into a Big Crunch notwithstanding its spatial flatness. The causal structure of these Universes is quite different from that of the closed, positive curved, Universe: indeed, in this case the particle and event horizons do not coincide and develop complicated patterns. The cosmological consequences of this unexpected mechanism deserve careful consideration. The Cartan fieldshi associated with the Cartan generators of the Lie algebra G, whose number equals the rank r of G/H. For instance, in models associated with toroidal or orbifold compactifications, fields of this type are generically interpreted as radii of the underlying multi-tori. The axion fieldsbI associated with the roots of the Lie algebra G. The kinetic terms of Cartan scalars have the canonical form ∑ir α/i22 ∂μhi∂μ hi, up to constant coefficients, while for the axion scalars entering solvable coset representatives, the αi2 factors leave way to exponential functions exp[βihi] of Cartan fields. The scalar potentials of Gauged Supergravity are polynomial functions of the coset representatives, so that after the truncation to Cartan sectors, setting the axions to constant values, one is led naturally to combinations of exponentials of the type encountered in [1]. Yet the devil lies in the details, since the integrable potentials do result from exponential functions exp[βh], but with rigidly fixed ratios between the βi entering the exponents and the αi entering the kinetic terms. The candidate potentials are displayed in Tables 1 and 2 following the notations and the nomenclature of [1]. As a result, the possible role of integrable potentials in Gauged Supergravity theories is not evident a priori, and actually, the required ratios are quite difficult to be obtained. Notwithstanding these difficulties we were able to identify a pair of examples, showing that although rare, supergravity integrable cosmological models based on G/H scalar manifolds
Multiexponential models of (1+1)-dimensional dilaton gravity and Toda-Liouville integrable models
NASA Astrophysics Data System (ADS)
de Alfaro, V.; Filippov, A. T.
2010-01-01
We study general properties of a class of two-dimensional dilaton gravity (DG) theories with potentials containing several exponential terms. We isolate and thoroughly study a subclass of such theories in which the equations of motion reduce to Toda and Liouville equations. We show that the equation parameters must satisfy a certain constraint, which we find and solve for the most general multiexponential model. It follows from the constraint that integrable Toda equations in DG theories generally cannot appear without accompanying Liouville equations. The most difficult problem in the two-dimensional Toda-Liouville (TL) DG is to solve the energy and momentum constraints. We discuss this problem using the simplest examples and identify the main obstacles to solving it analytically. We then consider a subclass of integrable two-dimensional theories where scalar matter fields satisfy the Toda equations and the two-dimensional metric is trivial. We consider the simplest case in some detail. In this example, we show how to obtain the general solution. We also show how to simply derive wavelike solutions of general TL systems. In the DG theory, these solutions describe nonlinear waves coupled to gravity and also static states and cosmologies. For static states and cosmologies, we propose and study a more general one-dimensional TL model typically emerging in one-dimensional reductions of higher-dimensional gravity and supergravity theories. We especially attend to making the analytic structure of the solutions of the Toda equations as simple and transparent as possible.
Progress report for a research program in theoretical high energy physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, D.; Fried, H.M.; Jevicki, A.
This year's research has dealt with: superstrings in the early universe; the invisible axion emissions from SN1987A; quartic interaction in Witten's superstring field theory; W-boson associated multiplicity and the dual parton model; cosmic strings and galaxy formation; cosmic strings and baryogenesis; quark flavor mixing; p -- /bar p/ scattering at TeV energies; random surfaces; ordered exponentials and differential equations; initial value and back-reaction problems in quantum field theory; string field theory and Weyl invariance; the renormalization group and string field theory; the evolution of scalar fields in an inflationary universe, with and without the effects of gravitational perturbations; cosmic stringmore » catalysis of skyrmion decay; inflation and cosmic strings from dynamical symmetry breaking; the physic of flavor mixing; string-inspired cosmology; strings at high-energy densities and complex temperatures; the problem of non-locality in string theory; string statistical mechanics; large-scale structures with cosmic strings and neutrinos; the delta expansion for stochastic quantization; high-energy neutrino flux from ordinary cosmic strings; a physical picture of loop bremsstrahlung; cylindrically-symmetric solutions of four-dimensional sigma models; large-scale structure with hot dark matter and cosmic strings; the unitarization of the odderon; string thermodynamics and conservation laws; the dependence of inflationary-universe models on initial conditions; the delta expansion and local gauge invariance; particle physics and galaxy formation; chaotic inflation with metric and matter perturbations; grand-unified theories, galaxy formation, and large-scale structure; neutrino clustering in cosmic-string-induced wakes; and infrared approximations to nonlinear differential equations. 17 refs.« less
On the topology of the inflaton field in minimal supergravity models
NASA Astrophysics Data System (ADS)
Ferrara, Sergio; Fré, Pietro; Sorin, Alexander S.
2014-04-01
We consider global issues in minimal supergravity models where a single field inflaton potential emerges. In a particular case we reproduce the Starobinsky model and its description dual to a certain formulation of R + R 2 supergravity. For definiteness we confine our analysis to spaces at constant curvature, either vanishing or negative. Five distinct models arise, two flat models with respectively a quadratic and a quartic potential and three based on the space where its distinct isometries, elliptic, hyperbolic and parabolic are gauged. Fayet-Iliopoulos terms are introduced in a geometric way and they turn out to be a crucial ingredient in order to describe the de Sitter inflationary phase of the Starobinsky model.
Brane SUSY breaking and the gravitino mass
NASA Astrophysics Data System (ADS)
Kitazawa, Noriaki
2018-04-01
Supergravity models with spontaneously broken supersymmetry have been widely investigated over the years, together with some notable non-linear limits. Although in these models the gravitino becomes naturally massive absorbing the degrees of freedom of a Nambu-Goldstone fermion, there are cases in which the naive counting of degrees of freedom does not apply, in particular because of the absence of explicit gravitino mass terms in unitary gauge. The corresponding models require non-trivial de Sitter-like backgrounds, and it becomes of interest to clarify the fate of their Nambu-Goldstone modes. We elaborate on the fact that these non-trivial backgrounds can accommodate, consistently, gravitino fields carrying a number of degrees of freedom that is intermediate between those of massless and massive fields in a flat spacetime. For instance, in a simple supergravity model of this type with de Sitter background, the overall degrees of freedom of gravitino are as many as for a massive spin-3/2 field in flat spacetime, while the gravitino remains massless in the sense that it undergoes null-cone propagation in the stereographic picture. On the other hand, in the ten-dimensional USp(32) Type I Sugimoto model with "brane SUSY breaking", which requires a more complicated background, the degrees of freedom of gravitino are half as many of those of a massive one, and yet it somehow behaves again as a massless one.
Spontaneously broken Yang-Mills-Einstein supergravities as double copies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiodaroli, Marco; Günaydin, Murat; Johansson, Henrik
Color/kinematics duality and the double-copy construction have proved to be systematic tools for gaining new insight into gravitational theories. Extending our earlier work, in this article we introduce new double-copy constructions for large classes of spontaneously-broken Yang-Mills-Einstein theories with adjoint Higgs elds. One gaugetheory copy entering the construction is a spontaneously-broken (super-)Yang-Mills theory, while the other copy is a bosonic Yang-Mills-scalar theory with trilinear scalar interactions that display an explicitly-broken global symmetry. We show that the kinematic numerators of these gauge theories can be made to obey color/kinematics duality by exhibiting particular additional Lie-algebraic relations. We discuss in detail explicitmore » examples with N = 2 supersymmetry, focusing on Yang-Mills-Einstein supergravity theories belonging to the generic Jordan family in four and five dimensions, and identify the map between the supergravity and double-copy elds and parameters. We also briefly discuss the application of our results to N = 4 supergravity theories. The constructions are illustrated by explicit examples of tree-level and one-loop scattering amplitudes.« less
Spontaneously broken Yang-Mills-Einstein supergravities as double copies
Chiodaroli, Marco; Günaydin, Murat; Johansson, Henrik; ...
2017-06-13
Color/kinematics duality and the double-copy construction have proved to be systematic tools for gaining new insight into gravitational theories. Extending our earlier work, in this article we introduce new double-copy constructions for large classes of spontaneously-broken Yang-Mills-Einstein theories with adjoint Higgs elds. One gaugetheory copy entering the construction is a spontaneously-broken (super-)Yang-Mills theory, while the other copy is a bosonic Yang-Mills-scalar theory with trilinear scalar interactions that display an explicitly-broken global symmetry. We show that the kinematic numerators of these gauge theories can be made to obey color/kinematics duality by exhibiting particular additional Lie-algebraic relations. We discuss in detail explicitmore » examples with N = 2 supersymmetry, focusing on Yang-Mills-Einstein supergravity theories belonging to the generic Jordan family in four and five dimensions, and identify the map between the supergravity and double-copy elds and parameters. We also briefly discuss the application of our results to N = 4 supergravity theories. The constructions are illustrated by explicit examples of tree-level and one-loop scattering amplitudes.« less
Final Project Report for DOE Grant NO.: DE-SC0010534 Period: Sept 2013-March 31, 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunaydin, Murat
2016-08-01
Higher spin theories has been an active area of research in recent years. One of the main research activities of the PI Murat Gunaydin over the period of this grant has been the application of quasiconformal methods to construct and study higher spin (HS) algebras and superalgebras in various dimensions. Over the past decade work on amplitudes in gauge theories, supergravity and string theories has been a very active area of research. Enormous progress has been made in the understanding of the structure of amplitudes in these theories. The novel methods and results obtained have made it possible to domore » calculations in gauge theories and supergravity theories that go well beyond the calculations one can do using the old-fashioned Feynman diagram techniques. Work on amplitudes in matter-coupled supergravity theories has been the second main focus of the PI during the funding period. The previous work of the PI on supergravity theories has played a fundamentally important role in the current work on amplitudes.« less
Trivial solutions of generalized supergravity vs non-abelian T-duality anomaly
NASA Astrophysics Data System (ADS)
Wulff, Linus
2018-06-01
The equations that follow from kappa symmetry of the type II Green-Schwarz string are a certain deformation, by a Killing vector field K, of the type II supergravity equations. We analyze under what conditions solutions of these 'generalized' supergravity equations are trivial in the sense that they solve also the standard supergravity equations. We argue that for this to happen K must be null and satisfy dK =iK H with H = dB the NSNS three-form field strength. Non-trivial examples are provided by symmetric pp-wave solutions. We then analyze the consequences for non-abelian T-duality and the closely related homogenous Yang-Baxter sigma models. When one performs non-abelian T-duality of a string sigma model on a non-unimodular (sub)algebra one generates a non-vanishing K proportional to the trace of the structure constants. This is expected to lead to an anomaly but we show that when K satisfies the same conditions the anomaly in fact goes away leading to more possibilities for non-anomalous non-abelian T-duality.
NASA Astrophysics Data System (ADS)
Gao, Jin-tao; Guo, Lei; Zhong, Yi-wei; Ren, Hong-ru; Guo, Zhan-cheng
2016-07-01
A new approach of removing the phosphorus-rich phase from high-phosphorous iron ore by melt separation at 1573 K in a super- gravity field was investigated. The iron-slag separation by super-gravity resulted in phosphorus being effectively removed from the iron-rich phase and concentrated as a phosphorus-rich phase at a temperature below the melting point of iron. The samples obtained by super-gravity exhibited obvious layered structures. All the iron grains concentrated at the bottom of the sample along the super-gravity direction, whereas the molten slag concentrated in the upper part of the sample along the opposite direction. Meanwhile, fine apatite crystals collided and grew into larger crystals and concentrated at the slag-iron interface. Consequently, in the case of centrifugation with a gravity coefficient of G = 900, the mass fractions of the slag phase and iron-rich phase were similar to their respective theoretical values. The mass fraction of MFe in the iron-rich phase was as high as 97.77wt% and that of P was decreased to 0.092wt%.
Rholography, black holes and Scherk-Schwarz
Gaddam, Nava; Gnecchi, Alessandra; Vandoren, Stefan; ...
2015-06-10
We present a construction of a class of near-extremal asymptotically flat black hole solutions in four (or five) dimensional gauged supergravity with R-symmetry gaugings obtained from Scherk-Schwarz reductions on a circle. The entropy of these black holes is counted holographically by the well known MSW (or D1/D5) system, with certain twisted boundary conditions labeled by a twist parameter ρ. Here, we find that the corresponding (0, 4) (or (4, 4)) superconformal algebras are exactly those studied by Schwimmer and Seiberg, using a twist on the outer automorphism group. The interplay between R-symmetries, ρ-algebras and holography leads us to name ourmore » construction “Rholography”.« less
Rholography, black holes and Scherk-Schwarz
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaddam, Nava; Gnecchi, Alessandra; Vandoren, Stefan
We present a construction of a class of near-extremal asymptotically flat black hole solutions in four (or five) dimensional gauged supergravity with R-symmetry gaugings obtained from Scherk-Schwarz reductions on a circle. The entropy of these black holes is counted holographically by the well known MSW (or D1/D5) system, with certain twisted boundary conditions labeled by a twist parameter ρ. Here, we find that the corresponding (0, 4) (or (4, 4)) superconformal algebras are exactly those studied by Schwimmer and Seiberg, using a twist on the outer automorphism group. The interplay between R-symmetries, ρ-algebras and holography leads us to name ourmore » construction “Rholography”.« less
Tachyon driven quantum cosmology in string theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia-Compean, H.; Garcia-Jimenez, G.; Obregon, O.
2005-03-15
Recently an effective action of the SDp-brane decaying process in string theory has been proposed. This effective description involves the Tachyon driven matter coupled to bosonic ten-dimensional Type II supergravity. Here the Hamiltonian formulation of this system is given. Exact solutions for the corresponding quantum theory by solving the Wheeler-deWitt equation in the late-time limit of the rolling tachyon are found. The energy spectrum and the probability densities for several values of p are shown and their possible interpretation is discussed. In the process the effects of electromagnetic fields are also incorporated and it is shown that in this casemore » the interpretation of tachyon regarded as 'matter clock' is modified.« less
Anti-de Sitter-space/conformal-field-theory Casimir energy for rotating black holes.
Gibbons, G W; Perry, M J; Pope, C N
2005-12-02
We show that, if one chooses the Einstein static universe as the metric on the conformal boundary of Kerr-anti-de Sitter spacetime, then the Casimir energy of the boundary conformal field theory can easily be determined. The result is independent of the rotation parameters, and the total boundary energy then straightforwardly obeys the first law of thermodynamics. Other choices for the metric on the conformal boundary will give different, more complicated, results. As an application, we calculate the Casimir energy for free self-dual tensor multiplets in six dimensions and compare it with that of the seven-dimensional supergravity dual. They differ by a factor of 5/4.
Isometries, gaugings and {N} = 2 supergravity decoupling
NASA Astrophysics Data System (ADS)
Antoniadis, Ignatios; Derendinger, Jean-Pierre; Petropoulos, P. Marios; Siampos, Konstantinos
2016-11-01
We study off-shell rigid limits for the kinetic and scalar-potential terms of a single {N} = 2 hypermultiplet. In the kinetic term, these rigid limits establish relations between four-dimensional quaternion-Kähler and hyper-Kähler target spaces with symmetry. The scalar potential is obtained by gauging the graviphoton along an isometry of the quaternion-Kähler space. The rigid limits unveil two distinct cases. A rigid {N} = 2 theory on Minkowski or on AdS4 spacetime, depending on whether the isometry is translational or rotational respectively. We apply these results to the quaternion-Kähler space with Heisenberg ⋉ U(1) isometry, which describes the universal hypermultiplet at type-II string one-loop.
A string realisation of Ω-deformed Abelian N =2* theory
NASA Astrophysics Data System (ADS)
Angelantonj, Carlo; Antoniadis, Ignatios; Samsonyan, Marine
2017-10-01
The N =2* supersymmetric gauge theory is a massive deformation of N = 4, in which the adjoint hypermultiplet gets a mass. We present a D-brane realisation of the (non-)Abelian N =2* theory, and compute suitable topological amplitudes, which are expressed as a double series expansion. The coefficients determine couplings of higher-dimensional operators in the effective supergravity action that involve powers of the anti-self-dual N = 2 chiral Weyl superfield and of self-dual gauge field strengths superpartners of the D5-brane coupling modulus. In the field theory limit, the result reproduces the Nekrasov partition function in the two-parameter Ω-background, in agreement with a recent proposal.
Is it really naked? On cosmic censorship in string theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frolov, Andrei V.
We investigate the possibility of cosmic censorship violation in string theory using a characteristic double-null code, which penetrates horizons and is capable of resolving the spacetime all the way to the singularity. We perform high-resolution numerical simulations of the evolution of negative mass initial scalar field profiles, which were argued to provide a counterexample to cosmic censorship conjecture for AdS-asymptotic spacetimes in five-dimensional supergravity. In no instances formation of naked singularity is seen. Instead, numerical evidence indicates that black holes form in the collapse. Our results are consistent with earlier numerical studies, and explicitly show where the 'no black hole'more » argument breaks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baguet, A.; Pope, Christopher N.; Samtleben, H.
We prove an old conjecture by Duff, Nilsson, Pope and Warner asserting that the NSNS sector of supergravity (and more general the bosonic string) allows for a consistent Pauli reduction on any d-dimensional group manifold G, keeping the full set of gauge bosons of the G×G isometry group of the bi-invariant metric on G. The main tool of the construction is a particular generalised Scherk–Schwarz reduction ansatz in double field theory which we explicitly construct in terms of the group's Killing vectors. Examples include the consistent reduction from ten dimensions on S3×S3 and on similar product spaces. The construction ismore » another example of globally geometric non-toroidal compactifications inducing non-geometric fluxes.« less
On the BV formalism of open superstring field theory in the large Hilbert space
NASA Astrophysics Data System (ADS)
Matsunaga, Hiroaki; Nomura, Mitsuru
2018-05-01
We construct several BV master actions for open superstring field theory in the large Hilbert space. First, we show that a naive use of the conventional BV approach breaks down at the third order of the antifield number expansion, although it enables us to define a simple "string antibracket" taking the Darboux form as spacetime antibrackets. This fact implies that in the large Hilbert space, "string fields-antifields" should be reassembled to obtain master actions in a simple manner. We determine the assembly of the string anti-fields on the basis of Berkovits' constrained BV approach, and give solutions to the master equation defined by Dirac antibrackets on the constrained string field-antifield space. It is expected that partial gauge-fixing enables us to relate superstring field theories based on the large and small Hilbert spaces directly: reassembling string fields-antifields is rather natural from this point of view. Finally, inspired by these results, we revisit the conventional BV approach and construct a BV master action based on the minimal set of string fields-antifields.
N =4 supergravity next-to-maximally-helicity-violating six-point one-loop amplitude
NASA Astrophysics Data System (ADS)
Dunbar, David C.; Perkins, Warren B.
2016-12-01
We construct the six-point, next-to-maximally-helicity-violating one-loop amplitude in N =4 supergravity using unitarity and recursion. The use of recursion requires the introduction of rational descendants of the cut-constructible pieces of the amplitude and the computation of the nonstandard factorization terms arising from the loop integrals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramirez, C.; Rosales, E.
General relativity can be formulated as a SU(2) BF-theory with constraints, as shown by Plebanski. Jacobson has given a SL(2, C) invariant fermionic extension of it, from which supergravity turns out [6]. We present a supersymmetric, Sp(2|1) invariant extension of the theory of Plebanski. Consistency requires that the constraints are properly generalized, resulting as well the action of supergravity.
Complete D =11 embedding of SO(8) supergravity
NASA Astrophysics Data System (ADS)
Varela, Oscar
2018-02-01
The truncation formulas of D =11 supergravity on S7 to D =4 N =8 SO(8)-gauged supergravity are completed to include the full nonlinear dependence of the D =11 three-form potential A^ (3 ) on the D =4 fields, and their consistency is shown. The full embedding into A^ (3 ) is naturally expressed in terms of a restricted version, still N =8 but only SL(8)-covariant, of the D =4 tensor hierarchy. The redundancies introduced by this approach are removed at the level of the field strength F^ (4 ) by exploiting D =4 duality relations. Finally, new expressions for the full consistent truncation formulas are given that are explicit in all D =11 and D =4 fields.
Hairy black holes and duality in an extended supergravity model
NASA Astrophysics Data System (ADS)
Anabalón, Andrés; Astefanesei, Dumitru; Gallerati, Antonio; Trigiante, Mario
2018-04-01
We consider a D = 4, N=2 gauged supergravity with an electromagnetic Fayet-Iliopoulos term. We restrict to the uncharged, single dilaton consistent truncation and point out that the bulk Lagrangian is self-dual under electromagnetic duality. Within this truncation, we construct two families of exact hairy black hole solutions, which are asymptotically AdS 4. When a duality transformation is applied on these solutions, they are mapped to two other inequivalent families of hairy black hole solutions. The mixed boundary conditions of the scalar field correspond to adding a triple-trace operator to the dual field theory action. We also show that this truncation contains all the consistent single dilaton truncations of gauged N=8 supergravity with a possible ω-deformation.
NASA Astrophysics Data System (ADS)
Cappelli, Andrea; Castellani, Elena; Colomo, Filippo; Di Vecchia, Paolo
2012-04-01
Part I. Overview: 1. Introduction and synopsis; 2. Rise and fall of the hadronic string G. Veneziano; 3. Gravity, unification, and the superstring J. H. Schwarz; 4. Early string theory as a challenging case study for philosophers E. Castellani; Part II. The Prehistory: The Analytic S-Matrix: 5. Introduction to Part II; 6. Particle theory in the sixties: from current algebra to the Veneziano amplitude M. Ademollo; 7. The path to the Veneziano model H. R. Rubinstein; 8. Two-component duality and strings P. G. O. Freund; 9. Note on the prehistory of string theory M. Gell-Mann; Part III. The Dual Resonance Model: 10. Introduction to Part III; 11. From the S-matrix to string theory P. Di Vecchia; 12. Reminiscence on the birth of string theory J. A. Shapiro; 13. Personal recollections D. Amati; 14. Early string theory at Fermilab and Rutgers L. Clavelli; 15. Dual amplitudes in higher dimensions: a personal view C. Lovelace; 16. Personal recollections on dual models R. Musto; 17. Remembering the 'supergroup' collaboration F. Nicodemi; 18. The '3-Reggeon vertex' S. Sciuto; Part IV. The String: 19. Introduction to Part IV; 20. From dual models to relativistic strings P. Goddard; 21. The first string theory: personal recollections L. Susskind; 22. The string picture of the Veneziano model H. B. Nielsen; 23. From the S-matrix to string theory Y. Nambu; 24. The analogue model for string amplitudes D. B. Fairlie; 25. Factorization in dual models and functional integration in string theory S. Mandelstam; 26. The hadronic origins of string theory R. C. Brower; Part V. Beyond the Bosonic String: 27. Introduction to Part V; 28. From dual fermion to superstring D. I. Olive; 29. Dual models with fermions: memoirs of an early string theorist P. Ramond; 30. Personal recollections A. Neveu; 31. Aspects of fermionic dual models E. Corrigan; 32. The dual quark models K. Bardakci and M. B. Halpern; 33. Remembering the dawn of relativistic strings J.-L. Gervais; 34. Early string theory in Cambridge: personal recollections C. Montonen; Part VI. The Superstring: 35. Introduction to Part VI; 36. Supersymmetry in string theory F. Gliozzi; 37. Gravity from strings: personal reminiscences of early developments T. Yoneya; 38. From the Nambu-Goto to the σ-model action L. Brink; 39. Locally supersymmetric action for superstring P. Di Vecchia; 40. Personal recollections E. Cremmer; 41. The scientific contributions of Joël Scherk J. H. Schwarz; Part VII. Preparing the String Renaissance: 42. Introduction to Part VII; 43. From strings to superstrings: a personal perspective M. B. Green; 44. Quarks, strings and beyond A. M. Polyakov; 45. The rise of the superstring theory A. Cappelli and F. Colomo; Appendices; Index.
Ambitwistor formulations of R 2 gravity and ( DF)2 gauge theories
NASA Astrophysics Data System (ADS)
Azevedo, Thales; Engelund, Oluf Tang
2017-11-01
We consider D-dimensional amplitudes in R 2 gravities (conformal gravity in D = 4) and in the recently introduced ( DF)2 gauge theory, from the perspective of the CHY formulae and ambitwistor string theory. These theories are related through the BCJ double-copy construction, and the ( DF)2 gauge theory obeys color-kinematics duality. We work out the worldsheet details of these theories and show that they admit a formulation as integrals on the support of the scattering equations, or alternatively, as ambitwistor string theories. For gravity, this generalizes the work done by Berkovits and Witten on conformal gravity to D dimensions. The ambitwistor is also interpreted as a D-dimensional generalization of Witten's twistor string (SYM + conformal supergravity). As part of our ambitwistor investigation, we discover another ( DF)2 gauge theory containing a photon that couples to Einstein gravity. This theory can provide an alternative KLT description of Einstein gravity compared to the usual Yang-Mills squared.
NASA Astrophysics Data System (ADS)
Apruzzi, Fabio; Fazzi, Marco
2018-01-01
AdS7 solutions of massive type IIA have been classified, and are dual to a large class of six-dimensional (1, 0) SCFT's whose tensor branch deformations are described by linear quivers of SU groups. Quivers and AdS vacua depend solely on the group theory data of the NS5-D6-D8 brane configurations engineering the field theories. This has allowed for a direct holographic match of their a conformal anomaly. In this paper we extend the match to cases where O6 and O8-planes are present, thereby introducing SO and USp groups in the quivers. In all of them we show that the a anomaly computed in supergravity agrees with the holographic limit of the exact field theory result, which we extract from the anomaly polynomial. As a byproduct we construct special AdS7 vacua dual to nonperturbative F-theory configurations. Finally, we propose a holographic a-theorem for six-dimensional Higgs branch RG flows.
All Chern-Simons invariants of 4D, N = 1 gauged superform hierarchies
NASA Astrophysics Data System (ADS)
Becker, Katrin; Becker, Melanie; Linch, William D.; Randall, Stephen; Robbins, Daniel
2017-04-01
We give a geometric description of supersymmetric gravity/(non-)abelian p-form hierarchies in superspaces with 4D, N = 1 super-Poincaré invariance. These hierarchies give rise to Chern-Simons-like invariants, such as those of the 5D, N = 1 graviphoton and the eleven-dimensional 3-form but also generalizations such as Green-Schwarz-like/ BF -type couplings. Previous constructions based on prepotential superfields are reinterpreted in terms of p-forms in superspace thereby elucidating the underlying geometry. This vastly simplifies the calculations of superspace field-strengths, Bianchi identities, and Chern-Simons invariants. Using this, we prove the validity of a recursive formula for the conditions defining these actions for any such tensor hierarchy. Solving it at quadratic and cubic orders, we recover the known results for the BF -type and cubic Chern-Simons actions. As an application, we compute the quartic invariant ˜ AdAdAdA + . . . relevant, for example, to seven-dimensional supergravity compactifications.
Tiny graviton matrix theory/SYM correspondence: Analysis of BPS states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali-Akbari, M.; Torabian, M.; Department of Physics, Sharif University of Technology, P.O. Box 11365-9161, Tehran
2006-09-15
In this paper we continue analysis of the Matrix theory describing the DLCQ of type IIB string theory on AdS{sub 5}xS{sup 5} (and/or the plane-wave) background, i.e. the tiny graviton matrix theory (TGMT) [M. M. Sheikh-Jabbari, J. High Energy Phys. 09 (2004) 017.]. We study and classify 1/2, 1/4, and 1/8 BPS solutions of the TGMT which are generically of the form of rotating three-brane giants. These are branes whose shape are deformed three-spheres and hyperboloids. In lack of a classification of such ten-dimensional type IIb supergravity configurations, we focus on the dual N=4 four-dimensional 1/2, 1/4, and one 1/8more » BPS operators and show that they are in one-to-one correspondence with the states of the same set of quantum numbers in TGMT. This provides further evidence in support of the matrix theory.« less
Extremal Correlators in the Ads/cft Correspondence
NASA Astrophysics Data System (ADS)
D'Hoker, Eric; Freedman, Daniel Z.; Mathur, Samir D.; Matusis, Alec; Rastelli, Leonardo
The non-renormalization of the 3-point functions
Chaotic inflation from nonlinear sigma models in supergravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hellerman, Simeon; Kehayias, John; Yanagida, Tsutomu T.
2015-02-11
We present a common solution to the puzzles of the light Higgs or quark masses and the need for a shift symmetry and large field values in high scale chaotic inflation. One way to protect, for example, the Higgs from a large supersymmetric mass term is if it is the Nambu–Goldstone boson (NGB) of a nonlinear sigma model. However, it is well known that nonlinear sigma models (NLSMs) with nontrivial Kähler transformations are problematic to couple to supergravity. An additional field is necessary to make theKähler potential of the NLSM invariant in supergravity. This field must have a shift symmetrymore » — making it a candidate for the inflaton (or axion). We give an explicit example of such a model for the coset space SU(3)/SU(2) × U(1), with the Higgs as the NGB, including breaking the inflaton’s shift symmetry and producing a chaotic inflation potential. This construction can also be applied to other models, such as one based on E₇/SO(10) × U(1) × U(1) which incorporates the first two generations of (light) quarks as the Nambu–Goldstone multiplets, and has an axion in addition to the inflaton. Along the way we clarify and connect previous work on understanding NLSMs in supergravity and the origin of the extra field (which is the inflaton here), including a connection to Witten–Bagger quantization. This framework has wide applications to model building; a light particle from a NLSM requires, in supergravity, exactly the structure for chaotic inflaton or an axion« less
Dark matter and cosmological nucleosynthesis
NASA Technical Reports Server (NTRS)
Schramm, D. N.
1986-01-01
Existing dark matter problems, i.e., dynamics, galaxy formation and inflation, are considered, along with a model which proposes dark baryons as the bulk of missing matter in a fractal universe. It is shown that no combination of dark, nonbaryonic matter can either provide a cosmological density parameter value near unity or, as in the case of high energy neutrinos, allow formation of condensed matter at epochs when quasars already existed. The possibility that correlations among galactic clusters are scale-free is discussed. Such a distribution of matter would yield a fractal of 1.2, close to a one-dimensional universe. Biasing, cosmic superstrings, and percolated explosions and hot dark matter are theoretical approaches that would satisfy the D = 1.2 fractal model of the large-scale structure of the universe and which would also allow sufficient dark matter in halos to close the universe.
Low energy supergravity: R-parity breaking and the top quark mass
NASA Astrophysics Data System (ADS)
Carena, Marcela S.; Wagner, Carlos E. M.
1987-03-01
We study the process of spontaneous R-parity breaking in minimal low energy supergravity models. We show that it is very hard to obtain models with heavy top quarks if one wants to preserve the radiative breaking of SU(2)L⊗U(1)Y without breaking R-parity. Fellow of Consejo National de Investigaciones Cientificas y Tecnicas.
Gauge supergravity in D = 2 + 2
NASA Astrophysics Data System (ADS)
Castellani, Leonardo
2017-10-01
We present an action for chiral N = (1 , 0) supergravity in 2 + 2 dimensions. The fields of the theory are organized into an OSp(1|4) connection supermatrix, and are given by the usual vierbein V a , spin connection ω ab , and Majorana gravitino ψ. In analogy with a construction used for D = 10 + 2 gauge supergravity, the action is given by ∫STr( R 2 Γ), where R is the OSp(1|4) curvature supermatrix two-form, and Γ a constant supermatrix containing γ 5. It is similar, but not identical to the MacDowell-Mansouri action for D = 2 + 2 supergravity. The constant supermatrix breaks OSp(1|4) gauge invariance to a subalgebra OSp(1|2) ⊕ Sp(2), including a Majorana-Weyl supercharge. Thus half of the OSp(1|4) gauge supersymmetry survives. The gauge fields are the selfdual part of ω ab and the Weyl projection of ψ for OSp(1|2), and the antiselfdual part of ω ab for Sp(2). Supersymmetry transformations, being part of a gauge superalgebra, close off-shell. The selfduality condition on the spin connection can be consistently imposed, and the resulting "projected" action is OSp(1|2) gauge invariant.
NASA Astrophysics Data System (ADS)
Bandos, Igor A.; Ortín, Tomás
2016-08-01
We review and investigate different aspects of scalar fields in supergravity theories both when they parametrize symmetric spaces and when they parametrize spaces of special holonomy which are not necessarily symmetric (Kähler and Quaternionic-Kähler spaces): their rôle in the definition of derivatives of the fermions covariant under the R-symmetry group and (in gauged supergravities) under some gauge group, their dualization into ( d - 2)-forms, their role in the supersymmetry transformation rules (via fermion shifts, for instance) etc. We find a general definition of momentum map that applies to any manifold admitting a Killing vector and coincides with those of the holomorphic and tri-holomorphic momentum maps in Kähler and quaternionic-Kähler spaces and with an independent definition that can be given in symmetric spaces. We show how the momen-tum map occurs ubiquitously: in gauge-covariant derivatives of fermions, in fermion shifts, in the supersymmetry transformation rules of ( d - 2)-forms etc. We also give the general structure of the Noether-Gaillard-Zumino conserved currents in theories with fields of different ranks in any dimension.
Exp(1076) Shades of Black: Aspects of Black Hole Microstates
NASA Astrophysics Data System (ADS)
Vasilakis, Orestis
In this thesis we examine smooth supergravity solutions known as "microstate geometries". These solutions have neither a horizon, nor a singularity, yet they have the same asymptotic structure and conserved charges as black holes. Specifically we study supersymmetric and extremal non-supersymmetric solutions. The goal of this program is to construct enough microstates to account for the correct scaling behavior of the black hole entropy with respect to the charges within the supergravity approximation. For supersymmetric systems that are ⅛-BPS, microstate geometries account so far only for Q5/4 of the total entropy S ˜ Q3/2, while for non-supersymmetric systems the known microstate geometries are sporadic. For the supersymmetric case we construct solutions with three and four charges. Five-dimensional systems with three and four charges are ⅛-BPS. Thus they admit macroscopic horizons making the supergravity approximation valid. For the three-charge case we present some steps towards the construction of the superstratum, a microstate geometry depending on arbitrary functions of two variables, which is expected to provide the necessary entropy for this class of solutions. Specifically we construct multiple concentric solutions with three electric and two dipole magnetic charges which depend on arbitrary functions of two variables and examine their properties. These solutions have no KKM charge and thus are singular. For the four-charge case we construct microstate geometries by extending results available in the literature for three charges. We find smooth solutions in terms of bubbled geometries with ambipolar Gibbons-Hawking base space and by constructing the relevant supertubes. In the non-supersymmetric case we work with a three-charge system of extremal black holes known as almost-BPS, which provides a controlled way of breaking sypersymmetry. By using supertubes we construct the first systematic example of a family of almost-BPS microstate geometries and examine the moduli space of solutions. Furthermore by using brane probe analysis we show that, despite the breaking of supersymmetry, almost-BPS solutions receive no quantum corrections and thus must be subject to some kind of non-renormalization theorem.
Non-BPS attractors in 5 d and 6 d extended supergravity
NASA Astrophysics Data System (ADS)
Andrianopoli, L.; Ferrara, S.; Marrani, A.; Trigiante, M.
2008-05-01
We connect the attractor equations of a certain class of N=2, d=5 supergravities with their (1,0), d=6 counterparts, by relating the moduli space of non-BPS d=5 black hole/black string attractors to the moduli space of extremal dyonic black string d=6 non-BPS attractors. For d=5 real special symmetric spaces and for N=4,6,8 theories, we explicitly compute the flat directions of the black object potential corresponding to vanishing eigenvalues of its Hessian matrix. In the case N=4, we study the relation to the (2,0), d=6 theory. We finally describe the embedding of the N=2, d=5 magic models in N=8, d=5 supergravity as well as the interconnection among the corresponding charge orbits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birkedal-Hansen, A.; Binetruy, P.; Mambrini, Y.
We provide a detailed study of the phenomenology of orbifold compactifications of the heterotic string within the context of supergravity effective theories. Our investigation focuses on those models where the soft Lagrangian is dominated by loop contributions to the various soft supersymmetry breaking parameters. Such models typically predict non-universal soft masses and are thus significantly different from minimal supergravity and other universal models. We consider the pattern of masses that are governed by these soft terms and investigate the implications of certain indirect constraints on supersymmetric models, such as flavor-changing neutral currents, the anomalous magnetic moment of the muon andmore » the density of thermal relic neutralinos. These string-motivated models show novel behavior that interpolates between the phenomenology of unified supergravity models and models dominated by the superconformal anomaly.« less
Exact Holography of Massive M2-brane Theories and Entanglement Entropy
NASA Astrophysics Data System (ADS)
Jang, Dongmin; Kim, Yoonbai; Kwon, O.-Kab; Tolla, D. D.
2018-01-01
We test the gauge/gravity duality between the N = 6 mass-deformed ABJM theory with Uk(N) × U-k(N) gauge symmetry and the 11-dimensional supergravity on LLM geometries with SO(4)=ℤk × SO(4)=ℤk isometry. Our analysis is based on the evaluation of vacuum expectation values of chiral primary operators from the supersymmetric vacua of mass-deformed ABJM theory and from the implementation of Kaluza-Klein (KK) holography to the LLM geometries. We focus on the chiral primary operator (CPO) with conformal dimension Δ = 1. The non-vanishing vacuum expectation value (vev) implies the breaking of conformal symmetry. In that case, we show that the variation of the holographic entanglement entropy (HEE) from it's value in the CFT, is related to the non-vanishing one-point function due to the relevant deformation as well as the source field. Applying Ryu Takayanagi's HEE conjecture to the 4-dimensional gravity solutions, which are obtained from the KK reduction of the 11-dimensional LLM solutions, we calculate the variation of the HEE. We show how the vev and the value of the source field determine the HEE.
Condition on Ramond-Ramond fluxes for factorization of worldsheet scattering in anti-de Sitter space
NASA Astrophysics Data System (ADS)
Wulff, Linus
2017-11-01
Factorization of scattering is the hallmark of integrable 1 +1 dimensional quantum field theories. For factorization of scattering to be possible the set of masses and momenta must be conserved in any two-to-two scattering process. We use this fact to constrain the form of the Ramond-Ramond fluxes for integrable supergravity anti-de Sitter (AdS) backgrounds by analyzing tree-level scattering of two AdS bosons into two fermions on the worldsheet of a Berenstein-Maldacena-Nastase string. We find a condition which can be efficiently used to rule out integrability of AdS strings and therefore of the corresponding AdS/conformal field theory dualities, as we demonstrate for some simple examples.
Consistent Pauli reduction on group manifolds
Baguet, A.; Pope, Christopher N.; Samtleben, H.
2016-01-01
We prove an old conjecture by Duff, Nilsson, Pope and Warner asserting that the NSNS sector of supergravity (and more general the bosonic string) allows for a consistent Pauli reduction on any d-dimensional group manifold G, keeping the full set of gauge bosons of the G×G isometry group of the bi-invariant metric on G. The main tool of the construction is a particular generalised Scherk–Schwarz reduction ansatz in double field theory which we explicitly construct in terms of the group's Killing vectors. Examples include the consistent reduction from ten dimensions on S3×S3 and on similar product spaces. The construction ismore » another example of globally geometric non-toroidal compactifications inducing non-geometric fluxes.« less
Killing-Yano Symmetry in Supergravity Theories
NASA Astrophysics Data System (ADS)
Houri, Tsuyoshi
Killing-Yano symmetry has played an important role in the study of black hole physics. In supergravity theories, Killing-Yano symmetry is deformed by the presence of the fluxes which can be identified with skew-symmetric torsion. Therefore, we attempt to classify spacetimes admitting Killing-Yano symmetry with torsion. In particular, the classification problem of metrics admitting a principal Killing-Yano tensor with torsion is discussed.
Supersymmetric Janus solutions of dyonic ISO(7)-gauged N = 8 supergravity
NASA Astrophysics Data System (ADS)
Suh, Minwoo
2018-04-01
We study supersymmetric Janus solutions of dyonic ISO(7)-gauged N = 8 supergravity. We mostly find Janus solutions flowing to 3d N = 8 SYM phase which is the worldvolume theory on D2-branes and non-conformal. There are also solutions flowing from the critical points which are dual to 3d SCFTs from deformations of the D2-brane theory.
On the formulation of D=11 supergravity and the composite nature of its three-form gauge field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bandos, Igor A.; Institute for Theoretical Physics, NSC 'Kharkov Institute of Physics and Technology', UA61108, Kharkov; Azcarraga, Jose A. de
2005-05-01
The underlying gauge group structure of the D=11 Cremmer-Julia-Scherk supergravity becomes manifest when its three-form field A{sub 3} is expressed through a set of one-form gauge fields, B1a1a2, B1a1...a5, {eta}{sub 1{alpha}}, and E{sup a}, {psi}{sup {alpha}}. These are associated with the generators of the elements of a family of enlarged supersymmetry algebras E-bar (528 vertical bar 32+32)(s) parametrized by a real number s. We study in detail the composite structure of A{sub 3} extending previous results by D'Auria and Fre, stress the equivalence of the above problem to the trivialization of a standard supersymmetry algebra E(11 vertical bar 32) cohomologymore » four-cocycle on the enlarged E-bar (528 vertical bar 32+32)(s) superalgebras, and discuss its possible dynamical consequences. To this aim we consider the properties of the first order supergravity action with a composite A{sub 3} field and find the set of extra gauge symmetries that guarantee that the field theoretical degrees of freedom of the theory remain the same as with a fundamental A{sub 3}. The extra gauge symmetries are also present in the so-called rheonomic treatment of the first order D=11 supergravity action when A{sub 3} is composite. Our considerations on the composite structure of A{sub 3} provide one more application of the idea that there exists an extended superspace coordinates/fields correspondence. They also suggest that there is a possible embedding of D=11 supergravity into a theory defined on the enlarged superspace {sigma}-bar (528 vertical bar 32+32)(s)« less
Multiloop amplitudes of light-cone gauge superstring field theory: odd spin structure contributions
NASA Astrophysics Data System (ADS)
Ishibashi, Nobuyuki; Murakami, Koichi
2018-03-01
We study the odd spin structure contributions to the multiloop amplitudes of light-cone gauge superstring field theory. We show that they coincide with the amplitudes in the conformal gauge with two of the vertex operators chosen to be in the pictures different from the standard choice, namely (-1, -1) picture in the type II case and -1 picture in the heterotic case. We also show that the contact term divergences can be regularized in the same way as in the amplitudes for the even structures and we get the amplitudes which coincide with those obtained from the first-quantized approach.
Scaling properties of cosmic (super)string networks
NASA Astrophysics Data System (ADS)
Martins, C. J. A. P.
2014-10-01
I use a combination of state-of-the-art numerical simulations and analytic modelling to discuss the scaling properties of cosmic defect networks, including superstrings. Particular attention is given to the role of extra degrees of freedom in the evolution of these networks. Compared to the 'plain vanilla' case of Goto-Nambu strings, three such extensions play important but distinct roles in the network dynamics: the presence of charges/currents on the string worldsheet, the existence of junctions, and the possibility of a hierarchy of string tensions. I also comment on insights gained from studying simpler defect networks, including Goto-Nambu strings themselves, domain walls and semilocal strings.
Apollo(R) Thin Film Process Development: Final Technical Report, April 1998 - April 2002
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cunningham, D.W.
2002-10-01
BP Solar first started investigative work on CdTe photovoltaics in 1986. The module product name chosen for the CdTe devices is Apollo. The deposition method chosen was electrochemical deposition due to its simplicity and good control of stoichiometric composition. The window layer used is CdS, produced from a chemical-bath deposition. Initial work focused on increasing photovoltaic cell size from a few mm2 to 900 cm2. At BP Solar's Fairfield plant, work is focused on increasing semiconductor deposition to 1 m2. The primary objective of this subcontract is to establish the conditions required for the efficient plating of CdS/CdTe on large-area,more » transparent conducting tin-oxide-coated glass superstrate. The initial phase concentrates on superstrate sizes up to 0.55 m2. Later phases will include work on 0.94 m2 superstrates. The tasks in this subcontract have been split into four main categories: (1) CdS and CdTe film studies; (2) Enhanced laser processing; (3) Outdoor testing program for the Apollo module; and (4) Production waste abatement and closed loop study.« less
Loop Integrands for Scattering Amplitudes from the Riemann Sphere
NASA Astrophysics Data System (ADS)
Geyer, Yvonne; Mason, Lionel; Monteiro, Ricardo; Tourkine, Piotr
2015-09-01
The scattering equations on the Riemann sphere give rise to remarkable formulas for tree-level gauge theory and gravity amplitudes. Adamo, Casali, and Skinner conjectured a one-loop formula for supergravity amplitudes based on scattering equations on a torus. We use a residue theorem to transform this into a formula on the Riemann sphere. What emerges is a framework for loop integrands on the Riemann sphere that promises to have a wide application, based on off-shell scattering equations that depend on the loop momentum. We present new formulas, checked explicitly at low points, for supergravity and super-Yang-Mills amplitudes and for n -gon integrands at one loop. Finally, we show that the off-shell scattering equations naturally extend to arbitrary loop order, and we give a proposal for the all-loop integrands for supergravity and planar super-Yang-Mills theory.
α '-corrected black holes in String Theory
NASA Astrophysics Data System (ADS)
Cano, Pablo A.; Meessen, Patrick; Ortín, Tomás; Ramírez, Pedro F.
2018-05-01
We consider the well-known solution of the Heterotic Superstring effective action to zeroth order in α ' that describes the intersection of a fundamental string with momentum and a solitonic 5-brane and which gives a 3-charge, static, extremal, supersymmetric black hole in 5 dimensions upon dimensional reduction on T5. We compute explicitly the first-order in α ' corrections to this solution, including SU(2) Yang-Mills fields which can be used to cancel some of these corrections and we study the main properties of this α '-corrected solution: supersymmetry, values of the near-horizon and asymptotic charges, behavior under α '-corrected T-duality, value of the entropy (using Wald formula directly in 10 dimensions), existence of small black holes etc. The value obtained for the entropy agrees, within the limits of approximation, with that obtained by microscopic methods. The α ' corrections coming from Wald's formula prove crucial for this result.
Sv-map between type I and heterotic sigma models
NASA Astrophysics Data System (ADS)
Fan, Wei; Fotopoulos, A.; Stieberger, S.; Taylor, T. R.
2018-05-01
The scattering amplitudes of gauge bosons in heterotic and open superstring theories are related by the single-valued projection which yields heterotic amplitudes by selecting a subset of multiple zeta value coefficients in the α‧ (string tension parameter) expansion of open string amplitudes. In the present work, we argue that this relation holds also at the level of low-energy expansions (or individual Feynman diagrams) of the respective effective actions, by investigating the beta functions of two-dimensional sigma models describing world-sheets of open and heterotic strings. We analyze the sigma model Feynman diagrams generating identical effective action terms in both theories and show that the heterotic coefficients are given by the single-valued projection of the open ones. The single-valued projection appears as a result of summing over all radial orderings of heterotic vertices on the complex plane representing string world-sheet.
Aspects of T-Dually Extended Superspaces
NASA Astrophysics Data System (ADS)
Polacek, Martin
This dissertation is divided into three main parts where we derive various properties of the T-dually extended superspaces. In the first part we reformulate the manifestly T-dual description of the massless sector of the closed bosonic string, directly from the geometry associated with the (left and right) affine Lie algebra of the coset space Poincare/Lorentz. This construction initially doubles not only the (space-time) coordinates for translations but also those for Lorentz transformations (and their "dual"). As a result, the Lorentz connection couples directly to the string (as does the vielbein), rather than being introduced indirectly through covariant derivatives as previously. This not only reproduces the old definition of T-dual torsion, but automatically gives a general, covariant definition of T-dual curvature (but still with some undetermined connections). In the second part we give the manifestly T-dual formulation of the massless sector of the classical 3D Type II superstring in off-shell 3D N = 2 superspace, including the action. It has a simple relation to the known superspace of 4D N = 1 supergravity in 4D M-theory via 5D F-theory. The pre-potential appears as part of the vielbein, without derivatives. In the last and the most involved part we find the pre-potential in the superspace with AdS5 x S5 background. The pre-potential appears as part of the vielbeins, without derivatives. In both subspaces (AdS5 and S 5) we use Poincare coordinates. We pick one bulk coordinate in AdS5 and one bulk coordinate in S 5 to define the space-cone gauge. Such space-cone gauge destroys the bulk Lorentz covariance. However, it still preserves boundary Lorentz covariance (and gives projective superspace) SO ( 3, 1) ⊗ SO (4) and so symmetries of boundary CFT are manifest.
Minimal supergravity models of inflation
NASA Astrophysics Data System (ADS)
Ferrara, Sergio; Kallosh, Renata; Linde, Andrei; Porrati, Massimo
2013-10-01
We present a superconformal master action for a class of supergravity models with one arbitrary function defining the Jordan frame. It leads to a gauge-invariant action for a real vector multiplet, which upon gauge fixing describes a massive vector multiplet, or to a dual formulation with a linear multiplet and a massive tensor field. In both cases the models have one real scalar, the inflaton, naturally suited for single-field inflation. Vectors and tensors required by supersymmetry to complement a single real scalar do not acquire vacuum expectation values during inflation, so there is no need to stabilize the extra scalars that are always present in the theories with chiral matter multiplets. The new class of models can describe any inflaton potential that vanishes at its minimum and grows monotonically away from the minimum. In this class of supergravity models, one can fit any desirable choice of inflationary parameters ns and r.
One-loop supergravity on AdS 4 × S 7/Z k and comparison with ABJM theory
Liu, James T.; Zhao, Wenli
2016-11-18
The large-N limit of ABJM theory is holographically dual to M-theory on AdS 4 × S 7/Z k. The 3-sphere partition function has been obtained via localization, and its leading behavior F ABJM (0) ~ k 1/2N 3/2 is exactly reproduced in the dual theory by tree-level supergravity. In this paper, we extend this comparison to the sub-leading O(N 0) order by computing the one-loop supergravity free energy as a function of k and comparing it with the ABJM result. Curiously, we find that the expressions do not match, with F SUGRA (1)~k 6, while F ABJM (1)~ k 2.more » Finally, this suggests that the low-energy approximation Z M-theory = Z SUGRA breaks down at one-loop order.« less
Gravity from entanglement and RG flow in a top-down approach
NASA Astrophysics Data System (ADS)
Kwon, O.-Kab; Jang, Dongmin; Kim, Yoonbai; Tolla, D. D.
2018-05-01
The duality between a d-dimensional conformal field theory with relevant deformation and a gravity theory on an asymptotically AdS d+1 geometry, has become a suitable tool in the investigation of the emergence of gravity from quantum entanglement in field theory. Recently, we have tested the duality between the mass-deformed ABJM theory and asymptotically AdS4 gravity theory, which is obtained from the KK reduction of the 11-dimensional supergravity on the LLM geometry. In this paper, we extend the KK reduction procedure beyond the linear order and establish non-trivial KK maps between 4-dimensional fields and 11-dimensional fluctuations. We rely on this gauge/gravity duality to calculate the entanglement entropy by using the Ryu-Takayanagi holographic formula and the path integral method developed by Faulkner. We show that the entanglement entropies obtained using these two methods agree when the asymptotically AdS4 metric satisfies the linearized Einstein equation with nonvanishing energy-momentum tensor for two scalar fields. These scalar fields encode the information of the relevant deformation of the ABJM theory. This confirms that the asymptotic limit of LLM geometry is the emergent gravity of the quantum entanglement in the mass-deformed ABJM theory with a small mass parameter. We also comment on the issue of the relative entropy and the Fisher information in our setup.
Quark soup al dente: applied superstring theory
NASA Astrophysics Data System (ADS)
Myers, R. C.; Vázquez, S. E.
2008-06-01
In recent years, experiments have discovered an exotic new state of matter known as the strongly coupled quark gluon plasma (sQGP). At present, it seems that standard theoretical tools, such as perturbation theory and lattice gauge theory, are poorly suited to understand this new phase. However, recent progress in superstring theory has provided us with a theoretical laboratory for studying very similar systems of strongly interacting hot non-Abelian plasmas. This surprising new perspective extracts the fluid properties of the sQGP from physical processes in a black hole spacetime. Hence we may find the answers to difficult particle physics questions about the sQGP from straightforward calculations in classical general relativity.
Tensor hierarchy and generalized Cartan calculus in SL(3) × SL(2) exceptional field theory
NASA Astrophysics Data System (ADS)
Hohm, Olaf; Wang, Yi-Nan
2015-04-01
We construct exceptional field theory for the duality group SL(3) × SL(2). The theory is defined on a space with 8 `external' coordinates and 6 `internal' coordinates in the (3, 2) fundamental representation, leading to a 14-dimensional generalized spacetime. The bosonic theory is uniquely determined by gauge invariance under generalized external and internal diffeomorphisms. The latter invariance can be made manifest by introducing higher form gauge fields and a so-called tensor hierarchy, which we systematically develop to much higher degree than in previous studies. To this end we introduce a novel Cartan-like tensor calculus based on a covariant nil-potent differential, generalizing the exterior derivative of conventional differential geometry. The theory encodes the full D = 11 or type IIB supergravity, respectively.
In Search of the Ultimate Building Blocks
NASA Astrophysics Data System (ADS)
't Hooft, Gerard
1996-12-01
An apology; 1. The beginning of the journey to the small: cutting paper; 2. To molecules and atoms; 3. The magic mystery of the quanta; 4. Dazzling velocities; 5. The elementary particle zoo before 1970; 6. Life and death; 7. The crazy kaons; 8. The invisible quarks; 9. Fields or bootstraps?; 10. The Yang-Mills bonanza; 11. Superconducting empty space: the Higgs-Kibble machine; 12. Models; 13. Colouring in the strong forces; 14. The magnetic monopole; 15. Gypsy; 16. The brilliance of the standard model; 17. Anomalies; 18. Deceptive perfection; 19. Weighing neutrinos; 20. The great desert; 21. Technicolor; 22. Grand unification; 23. Supergravity; 24. Eleven dimensional space-time; 25. Attaching the super string; 26. Into the black hole; 27. Theories that do not yet exist … ; 28. Dominance of the rule of the smallest.
BOOK REVIEW: Supergravity Supergravity
NASA Astrophysics Data System (ADS)
Gregory, Ruth
2013-02-01
Supergravity is an essential ingredient in so many areas of ultra high energy physics, yet it is rarely taught systematically, even at the graduate level. Students most often have to learn along with applying, and must use the now classic older texts. For such core material, it is surprising that there are so few good texts on the subject. It is not necessarily that supergravity is so much more conceptually complex, rather that it is technical and therefore easy for a text to become dry, dense and rather indigestible. This book, written by two experts in the field, is therefore a breath of fresh air. It not only represents a comprehensive modern overview of the subject, but achieves this with clarity, accessibility, and even humour! To paraphrase the authors, if you are not impressed by this book, you should put it down and watch television instead. It starts by reviewing, or overviewing, aspects of field theory, basic supersymmetry and gravity that will be needed for the rest of the book. This first third or so of the book is very condensed, and will not be easy to follow for those who have not encountered the material before. However, the authors acknowledge this and give plenty of suggestions for more pedagogical texts in the relevant areas, thus it does not feel overly brief. The middle section deals with the construction of supergravity, starting with basic N = 1 supergravity in 4 and 11 dimensions and gradually extending the discussion to include matter multiplets. This part of the book systematically builds up understanding and construction of models, before moving on to superconformal methods. The purpose is not to cover all supergravity theories, but to focus on a few examples in detail, and to give sufficient expertise and information for the reader to be able to deal with any other models they might need. The final part of the book deals with applications, and includes two chapters on applications in adS/CFT, which will be of most interest to new students of supergravity. One of the strengths of the book is that it includes many exercises; these are designed to both reinforce the material covered, as well as to elucidate technical issues. They back up the process of learning, and feel part of the narrative rather than a test. If diligently followed, the reader will acquire a great deal of expertise by being guided through these critical learning processes. Another striking feature of the book is its inherent user friendliness. Not only is the layout of the book visually pleasing -- with plenty of margin space to scribble in if so inspired -- but the language of the authors is very accessible, and the gentle humour leavens the material being presented. When asked to work through the manipulations in the previous paragraphs forwards, then backwards, then forwards again, one tends to smile rather than give up! The authors are very aware that this can be challenging material, and have taken every effort to bring it to the reader in an appealing form. To sum up: this is a definitive text on the topic of supergravity. It contains all the relevant material one needs, or signposts clearly where the discussion has been `executive' and one might need to consult more detailed material depending on background. It is rather high level for a beginning graduate student, who has probably not met field theory or general relativity before, but for a more experienced student or researcher, the book is spot on. I found it more like a companion than a teacher, and heartily recommend it to anyone wanting to learn or revisit this fascinating, if technical, topic.
NASA Astrophysics Data System (ADS)
Das, Sonali; Banerjee, Chandan; Kundu, Avra; Dey, Prasenjit; Saha, Hiranmay; Datta, Swapan K.
2013-10-01
Antireflective coating on front glass of superstrate-type single junction amorphous silicon solar cells (SCs) has been applied using highly monodispersed and stable silica nanoparticles (NPs). The silica NPs having 300 nm diameter were synthesized by Stober technique where the size of the NPs was controlled by varying the alcohol medium. The synthesized silica NPs were analysed by dynamic light scattering technique and Fourier transform infrared spectroscopy. The NPs were spin coated on glass side of fluorinated tin oxide (SnO2: F) coated glass superstrate and optimization of the concentration of the colloidal solution, spin speed and number of coated layers was done to achieve minimum reflection characteristics. An estimation of the distribution of the NPs for different optimization parameters has been done using field-emission scanning electron microscopy. Subsequently, the transparent conducting oxide coated glass with the layer having the minimum reflectance is used for fabrication of amorphous silicon SC. Electrical analysis of the fabricated cell indicates an improvement of 6.5% in short-circuit current density from a reference of 12.40 mA cm-2 while the open circuit voltage and the fill factor remains unaltered. A realistic optical model has also been proposed to gain an insight into the system.
Entropy of black holes in N=2 supergravity
NASA Astrophysics Data System (ADS)
Chatterjee, A.
2018-07-01
Using the formalism of isolated horizons, we construct space of solutions of asymptotically flat extremal black holes in N=2 pure supergravity in 4 dimensions. We prove that the laws of black hole mechanics hold for these black holes. Further, restricting to constant area phase space, we show that the spherical horizons admit a Chern-Simons theory. Standard way of quantizing this topological theory and counting states confirms that entropy is indeed proportional to the area of horizon.
Generalizations of holographic renormalization group flows
NASA Astrophysics Data System (ADS)
Suh, Minwoo
The AdS/CFT correspondence conjectures the duality between type IIB supergravity on AdS5 × S5 and N = 4 super Yang-Mills theory. Mass deformations of N = 4 super Yang-Mills theory drive renormalization group (RG) flows. Holographic RG flows are described by domain wall solutions interpolating between AdS5 geometries at critical points of N = 8 gauged supergravity in five dimensions. In this thesis we study two directions of generalizations of holographic RG flows. First, motivated by the Janus solutions, we study holographic RG flows with dilaton and axion fields. To be specific, we consider the SU (3)-invariant flow with dilaton and axion fields, and discover the known supersymmetric Janus solution in five dimensions. Then, by employing the lift ansatz, we uplift the supersymmetric Janus solution of the SU(3)-invariant truncation with dilaton and axion fields to a solution of type IIB supergravity. We identify the uplifted solution to be one of the known supersymmetric Janus solution in type IIB supergravity. Furthermore, we consider the SU(2) × U(1)-invariant N = 2 and N = 1 supersymmetric flows with dilaton and axion fields. Second, motivated by the development in AdS/CMT, we study holographic RG flows with gauge fields. We consider the SU(3)-invariant flow with electric potentials or magnetic fields, and find first-order systems of flow equations for each case.
Geometry and supersymmetry of heterotic warped flux AdS backgrounds
NASA Astrophysics Data System (ADS)
Beck, S.; Gutowski, J.; Papadopoulos, G.
2015-07-01
We classify the geometries of the most general warped, flux AdS backgrounds of heterotic supergravity up to two loop order in sigma model perturbation theory. We show under some mild assumptions that there are no AdS n backgrounds with n ≠ 3. Moreover the warp factor of AdS3 backgrounds is constant, the geometry is a product AdS 3 × M 7 and such solutions preserve, 2, 4, 6 and 8 supersymmetries. The geometry of M 7 has been specified in all cases. For 2 supersymmetries, it has been found that M 7 admits a suitably restricted G 2 structure. For 4 supersymmetries, M 7 has an SU(3) structure and can be described locally as a circle fibration over a 6-dimensional KT manifold. For 6 and 8 supersymmetries, M 7 has an SU(2) structure and can be described locally as a S 3 fibration over a 4-dimensional manifold which either has an anti-self dual Weyl tensor or a hyper-Kähler structure, respectively. We also demonstrate a new Lichnerowicz type theorem in the presence of α' corrections.
Testing holography using lattice super-Yang-Mills theory on a 2-torus
NASA Astrophysics Data System (ADS)
Catterall, Simon; Jha, Raghav G.; Schaich, David; Wiseman, Toby
2018-04-01
We consider maximally supersymmetric SU (N ) Yang-Mills theory in Euclidean signature compactified on a flat two-dimensional torus with antiperiodic ("thermal") fermion boundary conditions imposed on one cycle. At large N , holography predicts that this theory describes certain black hole solutions in type IIA and IIB supergravity, and we use lattice gauge theory to test this. Unlike the one-dimensional quantum mechanics case where there is only the dimensionless temperature to vary, here we emphasize there are two more parameters which determine the shape of the flat torus. While a rectangular Euclidean torus yields a thermal interpretation, allowing for skewed tori modifies the holographic dual black hole predictions and results in another direction to test holography. Our lattice calculations are based on a supersymmetric formulation naturally adapted to a particular skewing. Using this we perform simulations up to N =16 with several lattice spacings for both skewed and rectangular tori. We observe the two expected black hole phases with their predicted behavior, with a transition between them that is consistent with the gravity prediction based on the Gregory-Laflamme transition.
NASA Astrophysics Data System (ADS)
Faux, Michael
2017-05-01
We introduce a finite off-shell hypermultiplet with no off-shell central charge. This requires 192+192 degrees of freedom, all but 8+8 of which are auxiliary or gauge. In the absence of supergravity, the model has a saddle-point vacuum instability implying ghost-like propagators. These are cured by realizing the model superconformally, such that the erstwhile ghosts are realized as compensators. Gauge fixing these links the physical hypermultiplets to supergravity. This evokes the prospect of realizing 𝒩 = 4 super-Yang-Mills theory off-shell.
Fayet-Iliopoulos terms in supergravity without gauged R-symmetry
NASA Astrophysics Data System (ADS)
Cribiori, Niccolò; Farakos, Fotis; Tournoy, Magnus; Van Proeyen, Antoine
2018-04-01
We construct a supergravity-Maxwell theory with a novel embedding of the Fayet-Iliopoulos D-term, leading to spontaneous supersymmetry breaking. The gauging of the R-symmetry is not required and a gravitino mass is allowed for a generic vacuum. When matter couplings are introduced, an uplift through a positive definite contribution to the scalar potential is obtained. We observe a notable similarity to the \\overline{D}3 uplift constructions and we give a natural description in terms of constrained multiplets.
A note on ‘gaugings’ in four spacetime dimensions and electric-magnetic duality
NASA Astrophysics Data System (ADS)
Henneaux, Marc; Julia, Bernard; Lekeu, Victor; Ranjbar, Arash
2018-02-01
The variety of consistent ‘gauging’ deformations of supergravity theories in four dimensions depends on the choice of Lagrangian formulation. One important goal is to get the most general deformations without making hidden assumptions. Ignoring supersymmetry we consider in this paper n v abelian vector potentials in four spacetime dimensions with non-minimal kinetic coupling to n s uncharged (possibly nonlinear) scalar fields. As in the case of extended supergravities, one model may possess different formulations related by \
Phase transitions in Yang-Mills theories and their gravity duals
NASA Astrophysics Data System (ADS)
Marsano, Joseph Daniel
This thesis is a study of the thermal phase structure of systems that admit dual gauge theory and string theory descriptions. In a pair of examples, we explore the connection between perturbative Yang-Mills and gravitational thermodynamics which arises from the fact that these descriptions probe different corners of a single phase diagram. The structure that emerges from a detailed study of these isolated regions generally suggests a natural conjecture how they may be connected to one another within the full phase diagram. This permits the identification of interesting phenomena in the gauge and gravity regimes under a continuous change in parameters. We begin by studying the AdS5/CFT 4 system which, when the supergravity description is valid, exhibits a first order Hawking-Page phase transition as a function of temperature from a thermal gas of gravitons to a large black hole. In the perturbative Yang-Mills regime, we find that the free theory exhibits a weakly first order deconfinement transition whose precise nature at small nonzero coupling depends on the result of a nontrivial perturbative computation. It is conjectured that this deconfinement transition is continuously connected in the full phase diagram to the Hawking-Page transition at strong coupling, with the confined phase identified with the graviton gas and the deconfined phase identified with the black hole. We then turn to the study of Gregory-Laflamme (GL) black hole/black string transitions in supergravity and their realization in a setup that admits a dual description via the maximally supersymmetric Yang-Mills theory on T2. The thermodynamics of Yang-Mills theories on low dimensional tori is studied in detail revealing an intricate structure of which the GL transition at strong coupling is a small piece. We are led to conjecture that GL physics is continuously connected to deconfinement in maximally supersymmetric 0 + 1-dimensional gauged matrix quantum mechanics. This identification will then permit us to probe GL transitions from the gauge theory point of view and comment on some puzzles regarding their precise nature.
Electromagnetic characterization of conformal antennas
NASA Technical Reports Server (NTRS)
Volakis, John L.; Kempel, Leo C.; Alexanian, Angelos; Jin, J. M.; Yu, C. L.; Woo, Alex C.
1992-01-01
The ultimate objective of this project is to develop a new technique which permits an accurate simulation of microstrip patch antennas or arrays with various feed, superstrate and/or substrate configurations residing in a recessed cavity whose aperture is planar, cylindrical or otherwise conformed to the substructure. The technique combines the finite element and boundary integral methods to formulate a system suitable for solution via the conjugate gradient method in conjunction with the fast Fourier transform. The final code is intended to compute both scattering and radiation patterns of the structure with an affordable memory demand. With upgraded capabilities, the four included papers examined the radar cross section (RCS), input impedance, gain, and resonant frequency of several rectangular configurations using different loading and substrate/superstrate configurations.
The next generation CdTe technology- Substrate foil based solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferekides, Chris
The main objective of this project was the development of one of the most promising Photovoltaic (PV) materials CdTe into a versatile, cost effective, and high throughput technology, by demonstrating substrate devices on foil substrates using high throughput fabrication conditions. The typical CdTe cell is of the superstrate configuration where the solar cell is fabricated on a glass superstrate by the sequential deposition of a TCO, n-type heterojunction partner, p-CdTe absorber, and back contact. Large glass modules are heavy and present significant challenges during manufacturing (uniform heating, etc.). If a substrate CdTe cell could be developed (the main goal ofmore » this project) a roll-to-toll high throughput technology could be developed.« less
Fluxes, holography and twistors: String theory paths to four dimensions
NASA Astrophysics Data System (ADS)
Gao, Peng
2007-12-01
There are presently three popular paths to obtain four dimensional physics from string theory: compactification, holography and twistor space. We present results in this thesis on each of them, discussing the geometric structure of flux compactifications, the interplay between holography and S -duality in M-theory and the perturbative amplitudes of the marginally deformed super-Yang-Mills theory obtained from topological string theory on a supertwistor space. First we analyze supersymmetric flux compactifications of ten dimensional string theories to four dimensions. Back reaction of the fluxes on the six dimensional internal geometry is characterized by G-structures. In type IIB compactification on SU(3)-structure manifold with N = 1 supersymmetry, we solve the equations dictating the five components of intrinsic torsion. We find that the six dimensional manifold always retains an integrable almost complex structure compatible with supersymmetry. In terms of the various vacuum fields, the axion/dilaton is found to be generically non-holomorphic, and the four dimensional cosmological constant is nonvanishing only if the SU(3) structure group is reduced to SU(2). The equations are solved by one holomorphic function. Around the poles and zeros of the holomorphic function, the geometry locally looks like the well known type-A and type-B solutions. When this function is a constant, the geometry can be viewed as a holographic RG flow. After classifying the type IIB SU(3)-structure flux vacua, we analyze the effect of non-perturbative corrections on the moduli space of N = 2 flux compactifications. At energy below the Kaluza-Klein scale, the four dimensional effective theory is a gauged supergravity theory with vanishing cosmological constant. The gauging of isometries on the hyper-multiplet moduli space is induced by the fluxes. We show that instanton corrections which could potentially lift the gauged isometries are in fact prohibited both in the type IIA and heterotic string theories by the inclusion of flux. Hence gauged supergravity is a robust framework for studying flux vacua even when these stringy effects are taken into account. The mechanisms which protect the gauged isometries are different in the two theories. Then we switch to the understanding of SL(2, Z ) duality transformations in asymptotically AdS4 x S7 spacetime with an Abelian gauge theory. The bulk duality acts non-trivially on the three-dimensional SCFT of coincident M2-branes on the conformal boundary. We develop a systematic method to holographically obtain the deformations of the boundary CFT manifested by generalized boundary conditions and show how SL(2, Z ) duality relates different deformations of the conformal vacuum. We analyze in detail marginal deformations and deformations by dimension 4 operators. In the case of massive deformations, the RG flow induces a Legendre transform as well as S-duality. Correlation functions in the CFT are computed by differentiating with respect to magnetic bulk sources, whereas correlation functions in the Legendre dual CFT are computed using electric bulk sources. Under massive deformations, the boundary effective action is generically minimized by massive self-dual configurations of the U(1) gauge field. We show that a massive and self-dual boundary condition corresponds to the unique self-dual topologically massive gauge theory in three dimensions. Thus, self-duality in three dimensions can be understood as a consequence of SL(2, Z ) invariance in the bulk of AdS4. We discuss various implications for understanding the strongly interacting worldvolume theory of M2-branes and more general dualities of the maximally supersymmetric AdS4 supergravity theory. Finally we study the twistor string theory whose D-instanton expansion gives the perturbative expansion of marginally deformed N = 4 super-Yang-Mills theories. More precisely this string theory is a topological B-model with both open and closed string sectors with target space CP3|4 , a super-Calabi-Yau manifold. The tree-level amplitudes in the N = 1 beta-deformed field theory are exactly reproduced by introducing non-anticommutative star-products among the D1 and D5 open strings. A related star-product gives the tree-level amplitudes of the non-supersymmetric gamma-deformed conformal field theory. The non-anticommutativity arises essentially from the deformation of the supertwistor space which reduces the amount of superconformal symmetries realized by the supertwistor space. The tree-level gluonic amplitudes in more general marginally deformed field theories are also discussed using twistor string theory.
Momentum fractionation on superstrata
Bena, Iosif; Martinec, Emil; Turton, David; ...
2016-05-11
Superstrata are bound states in string theory that carry D1, D5, and momentum charges, and whose supergravity descriptions are parameterized by arbitrary functions of (at least) two variables. In the D1-D5 CFT, typical three-charge states reside in highdegree twisted sectors, and their momentum charge is carried by modes that individually have fractional momentum. Understanding this momentum fractionation holographically is crucial for understanding typical black-hole microstates in this system. We use solution-generating techniques to add momentum to a multi-wound supertube and thereby construct the first examples of asymptotically-flat superstrata. The resulting supergravity solutions are horizonless and smooth up to well-understood orbifoldmore » singularities. Upon taking the AdS3 decoupling limit, our solutions are dual to CFT states with momentum fractionation. We give a precise proposal for these dual CFT states. Lastly, our construction establishes the very nontrivial fact that large classes of CFT states with momentum fractionation can be realized in the bulk as smooth horizonless supergravity solutions.« less
Eliminating the η-problem in SUGRA hybrid inflation with vector backreaction
NASA Astrophysics Data System (ADS)
Dimopoulos, Konstantinos; Lazarides, George; Wagstaff, Jacques M.
2012-02-01
It is shown that, when the inflaton field modulates the gauge kinetic function of the gauge fields in supergravity realisations of inflation, the dynamic backreaction leads to a new inflationary attractor solution, in which the inflaton's variation suffers additional impedance. As a result, slow-roll inflation can naturally occur along directions of the scalar potential which would be too steep and curved to support it otherwise. This provides a generic solution to the infamous eta-problem of inflation in supergravity. Moreover, it is shown that, in the new inflationary attractor, the spectral index of the generated curvature perturbations is kept mildly red despite eta of order unity. The above findings are applied to a model of hybrid inflation in supergravity with a generic Kähler potential. The spectral index of the generated curvature perturbations is found to be 0.97-0.98, in excellent agreement with observations. The gauge field can play the role of the vector curvaton after inflation but observable statistical anisotropy requires substantial tuning of the gauge coupling.
Physics of superheavy dark matter in supergravity
NASA Astrophysics Data System (ADS)
Addazi, Andrea; Marciano, Antonino; Ketov, Sergei V.; Khlopov, Maxim Yu.
New trends in inflationary model building and dark matter production in supergravity are considered. Starobinsky inflation is embedded into 𝒩 = 1 supergravity, avoiding instability problems, when the inflaton belongs to a vector superfield associated with a U(1) gauge symmetry, instead of a chiral superfield. This gauge symmetry can be spontaneously broken by the super-Higgs mechanism resulting in a massive vector supermultiplet including the (real scalar) inflaton field. Both supersymmetry (SUSY) and the R-symmetry can also be spontaneously broken by the Polonyi mechanism at high scales close to the inflationary scale. In this case, Polonyi particles and gravitinos become superheavy, and can be copiously produced during inflation by the Schwinger mechanism sourced by the universe expansion. The Polonyi mass slightly exceeds twice the gravitino mass, so that Polonyi particles are unstable and decay into gravitinos. Considering the mechanisms of superheavy gravitino production, we find that the right amount of cold dark matter composed of gravitinos can be achieved. In our scenario, the parameter space of the inflaton potential is directly related to the dark matter one, providing a new unifying framework of inflation and dark matter genesis. A multi-superfield extension of the supergravity framework with a single (inflaton) superfield can result in a formation of primordial nonlinear structures like mini- and stellar-mass black holes, primordial nongaussianity, and the running spectral index of density fluctuations. This framework can be embedded into the SUSY GUTs inspired by heterotic string compactifications on Calabi-Yau three-folds, thus unifying particle physics with quantum gravity.
Ultraviolet divergences in non-renormalizable supersymmetric theories
NASA Astrophysics Data System (ADS)
Smilga, A.
2017-03-01
We present a pedagogical review of our current understanding of the ultraviolet structure of N = (1,1) 6D supersymmetric Yang-Mills theory and of N = 8 4 D supergravity. These theories are not renormalizable, they involve power ultraviolet divergences and, in all probability, an infinite set of higherdimensional counterterms that contribute to on-mass-shell scattering amplitudes. A specific feature of supersymmetric theories (especially, of extended supersymmetric theories) is that these counterterms may not be invariant off shell under the full set of supersymmetry transformations. The lowest-dimensional nontrivial counterterm is supersymmetric on shell. Still higher counterterms may lose even the on-shell invariance. On the other hand, the full effective Lagrangian, generating the amplitudes and representing an infinite sum of counterterms, still enjoys the complete symmetry of original theory. We also discuss simple supersymmetric quantum-mechanical models that exhibit the same behaviour.
NASA Astrophysics Data System (ADS)
Genik, Richard Joyner, II
1998-12-01
A search for Supergravity squark and gluino decays into di-leptons is presented. A novel search strategy of optimizing kinematic thresholds at each point in the three dimensional space of m0- m1/2-tan β is employed. The model space is randomly scanned using a parameterized fast Monte Carlo. No events are observed above Standard Model background in 107.6 pb-1 of Tevatron data collected by the DØ detector between 1993-96. Exclusion contours are presented in the m0-m 1/2 plane. At the 95% confidence level, a lower limit is set on the mass of gluinos of 129 GeV/c2 and on the mass of squarks of 138 GeV/c2 for all tan β < 10.
Kähler-driven tribrid inflation
NASA Astrophysics Data System (ADS)
Antusch, Stefan; Nolde, David
2012-11-01
We discuss a new class of tribrid inflation models in supergravity, where the shape of the inflaton potential is dominated by effects from the Kähler potential. Tribrid inflation is a variant of hybrid inflation which is particularly suited for connecting inflation with particle physics, since the inflaton can be a D-flat combination of charged fields from the matter sector. In models of tribrid inflation studied so far, the inflaton potential was dominated by either loop corrections or by mixing effects with the waterfall field (as in "pseudosmooth" tribrid inflation). Here we investigate the third possibility, namely that tribrid inflation is dominantly driven by effects from higher-dimensional operators of the Kähler potential. We specify for which superpotential parameters the new regime is realized and show how it can be experimentally distinguished from the other two (loop-driven and "pseudosmooth") regimes.
Cosmic acceleration from M theory on twisted spaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neupane, Ishwaree P.; Wiltshire, David L.
2005-10-15
In a recent paper [I. P. Neupane and D. L. Wiltshire, Phys. Lett. B 619, 201 (2005).] we have found a new class of accelerating cosmologies arising from a time-dependent compactification of classical supergravity on product spaces that include one or more geometric twists along with nontrivial curved internal spaces. With such effects, a scalar potential can have a local minimum with positive vacuum energy. The existence of such a minimum generically predicts a period of accelerated expansion in the four-dimensional Einstein conformal frame. Here we extend our knowledge of these cosmological solutions by presenting new examples and discuss themore » properties of the solutions in a more general setting. We also relate the known (asymptotic) solutions for multiscalar fields with exponential potentials to the accelerating solutions arising from simple (or twisted) product spaces for internal manifolds.« less
Topological resolution of gauge theory singularities
NASA Astrophysics Data System (ADS)
Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo
2013-08-01
Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric SU(2) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit the singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.
Buried nanoantenna arrays: versatile antireflection coating.
Kabiri, Ali; Girgis, Emad; Capasso, Federico
2013-01-01
Reflection is usually a detrimental phenomenon in many applications such as flat-panel-displays, solar cells, photodetectors, infrared sensors, and lenses. Thus far, to control and suppress the reflection from a substrate, numerous techniques including dielectric interference coatings, surface texturing, adiabatic index matching, and scattering from plasmonic nanoparticles have been investigated. A new technique is demonstrated to manage and suppress reflection from lossless and lossy substrates. It provides a wider flexibility in design versus previous methods. Reflection from a surface can be suppressed over a narrowband, wideband, or multiband frequency range. The antireflection can be dependent or independent of the incident wave polarization. Moreover, antireflection at a very wide incidence angle can be attained. The reflection from a substrate is controlled by a buried nanoantenna array, a structure composed of (1) a subwavelength metallic array and (2) a dielectric cover layer referred to as a superstrate. The material properties and thickness of the superstrate and nanoantennas' geometry and periodicity control the phase and intensity of the wave circulating inside the superstrate cavity. A minimum reflectance of 0.02% is achieved in various experiments in the mid-infrared from a silicon substrate. The design can be integrated in straightforward way in optical devices. The proposed structure is a versatile AR coating to optically impedance matches any substrate to free space in selected any narrow and broadband spectral response across the entire visible and infrared spectrum.
A Simple Mathematical Model for Standard Model of Elementary Particles and Extension Thereof
NASA Astrophysics Data System (ADS)
Sinha, Ashok
2016-03-01
An algebraically (and geometrically) simple model representing the masses of the elementary particles in terms of the interaction (strong, weak, electromagnetic) constants is developed, including the Higgs bosons. The predicted Higgs boson mass is identical to that discovered by LHC experimental programs; while possibility of additional Higgs bosons (and their masses) is indicated. The model can be analyzed to explain and resolve many puzzles of particle physics and cosmology including the neutrino masses and mixing; origin of the proton mass and the mass-difference between the proton and the neutron; the big bang and cosmological Inflation; the Hubble expansion; etc. A novel interpretation of the model in terms of quaternion and rotation in the six-dimensional space of the elementary particle interaction-space - or, equivalently, in six-dimensional spacetime - is presented. Interrelations among particle masses are derived theoretically. A new approach for defining the interaction parameters leading to an elegant and symmetrical diagram is delineated. Generalization of the model to include supersymmetry is illustrated without recourse to complex mathematical formulation and free from any ambiguity. This Abstract represents some results of the Author's Independent Theoretical Research in Particle Physics, with possible connection to the Superstring Theory. However, only very elementary mathematics and physics is used in my presentation.
Killing-Yano symmetry of Kaluza-Klein black holes in five dimensions
NASA Astrophysics Data System (ADS)
Houri, Tsuyoshi; Yamamoto, Kei
2013-04-01
Using a generalized Killing-Yano equation in the presence of torsion, spacetime metrics admitting a rank-2 generalized Killing-Yano tensor are investigated in five dimensions under the assumption that its eigenvector associated with the zero eigenvalue is a Killing vector field. It is shown that such metrics are classified into three types and the corresponding local expressions are given explicitly. It is also shown that they cover some classes of charged, rotating Kaluza-Klein black hole solutions of minimal supergravity and Abelian heterotic supergravity.
Chiral superparticle and the full set of (1,0) supergravity constraints
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deriglazov, A.A.
1993-03-10
The author presents BFV quantization of manifestly Lorentz-covariant chiral particle action. Lagrangians for (1,1), (1,0), (0,1) chiral superparticles (CSP) invariant under the local Siegel-type transformations are considered; the mechanism of closing of local Siegel k-symmetry algebra in Lagrangian formulation for the (1,0) CSP is suggested. The full set of (1,0) supergravity constraints is obtained from the requirement of preserving local symmetries in a curved background. The possibility of extending the results to D = 10 case is discussed.
Counting supersymmetric branes
NASA Astrophysics Data System (ADS)
Kleinschmidt, Axel
2011-10-01
Maximal supergravity solutions are revisited and classified, with particular emphasis on objects of co-dimension at most two. This class of solutions includes branes whose tension scales with xxxx. We present a group theory derivation of the counting of these objects based on the corresponding tensor hierarchies derived from E 11 and discrete T- and U-duality transformations. This provides a rationale for the wrapping rules that were recently discussed for σ ≤ 3 in the literature and extends them. Explicit supergravity solutions that give rise to co-dimension two branes are constructed and analysed.
The axion mass in modular invariant supergravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butter, Daniel; Gaillard, Mary K.
2005-02-09
When supersymmetry is broken by condensates with a single condensing gauge group, there is a nonanomalous R-symmetry that prevents the universal axion from acquiring a mass. It has been argued that, in the context of supergravity, higher dimension operators will break this symmetry and may generate an axion mass too large to allow the identification of the universal axion with the QCD axion. We show that such contributions to the axion mass are highly suppressed in a class of models where the effective Lagrangian for gaugino and matter condensation respects modular invariance (T-duality).
NASA Technical Reports Server (NTRS)
Jester, T.
1985-01-01
The design of ARCO Solar, Inc.'s Genesis G100 photovoltaic module was driven by several criteria, including environmental stability (both electrical and mechanical), consumer aesthetics, low materials costs, and manufacturing ease. The module circuitry is designed as a 12 volt battery charger, using monolithic patterning techniques on a glass superstrate. This patterning and interconnect method proves amenable to high volume, low cost production throughput, and the use of glass serves the dual role of handling ease and availability. The mechanical design of the module centers on environmental stability. Packaging of the glass superstrate circuit must provide good resistance to thermal and humidity exposure along with hi-pot insulation and hailstone impact resistance. The options considered are given. Ethylene vinyl acetate (EVA) is chosen as the pottant material for its excellent weatherability.
CHAIRMEN'S PREFACE AND EDITORS' NOTE: Unification of Fundamental Interactions
NASA Astrophysics Data System (ADS)
Brink, Lars; Nilsson, Jan S.; Salomonson, Per; Skagerstam, Bo-Sture
1987-01-01
Chairmen's PrefaceIn 1984 we obtained a grant from the Nobel Foundation to organize a Nobel Symposium on "Unification of the Fundamental Interactions". In our proposal which we submitted in the fall of 1983 we stated that we wanted to cover the various attempts to unification such as GUT'S, supergravity, Kaluza-Klein theories and superstrings. What has happened in particle physics since then is already history. With the realization that certain superstring theories could be anomaly free, it became clear that these models could encompass earlier attempts to unification as well as solving the fundamental problem of quantum gravity. The excitement that some of us had felt for some time now spread through most of the particle physics community and this excitement certainly was evident during the Symposium. With the international advisory committee we originally chose a list of around 30 invitees which could best represent the various subjects listed above. When it came to the final planning of the programme essentially all talks dealt with superstrings! We were very fortunate that almost all of the invitees managed to come to the Symposium. From the western world only three were unable to participate, André Neveu, Steven Weinberg and Bruno Zumino. We certainly missed them during the meeting. We were particularly happy that Stephen Hawking managed to take part actively. Our real problem was to get participants from the Soviet Union. Out of eight invitations only one came through. We were very happy to have Renata Kallosh, who really did her utmost to enlighten us about not only her own work but also about recent progress in the USSR, However, we were very sorry that in spite of all our letters, telegrammes and endless attempts to get telephone calls through and despite the good relations between the Swedish and Soviet Academies of Sciences we had to miss Ludwig Faddeev, Valodja Gribov, Andrej Linde, Victor Ogievetsky, Sasha Polyakov, Misha Shifman and Arkadij Vainshtein. We had hoped that the Nobel Symposium should be a signal for improved relations between East and West, but in this respect we failed. The Symposium was held in the small town of Marstrand, a summer resort on an island outside Göteborg. The idea was to have it relatively close to home and to show the participants perhaps the best part of the local nature. Another motive was to keep the participants semi-isolated to provide ample time for discussions. With the somewhat heavy programme we found that even so, the days were not long enough. This Symposium was the second Nobel Symposium on elementary particle physics. The first one, also organized by our group, was held in 1968. We hope and believe that the next one need not be awaited another 18 years! The Symposium was made possible by a generous grant from the Nobel Foundation. An additional grant from the Royal Swedish Academy of Sciences was also essential. A grant from Nordita made it possible to invite some ten Nordic observers. We also gratefully acknowledge help with the organization of the Symposium from the city of Goteborg, the city of Kungälv, Volvo, Skandinaviska Enskilda banken, Ericsson AB and IBM Sweden. We thank all the participants for all their efforts, to come to our remote part of the world, to give excellent talks, to write up their talks astonishingly quickly and to share with us so much of their knowledge and expertise. Last but not least we are indebted to the members of the organizing committee, members of the group and the secretarial staff. Goteborg, August 1986 Editors' NoteIn these Proceedings the lectures are given in the order of their oral presentation at the Symposium. Regrettably, a few contributors could not participate (V. Gribov, A. Linde, V. Ogievetsky, M. Shifman and A. M. Polyakov). Their contributions have been placed close to the end of the Proceedings. As these authors did not have the opportunity of correcting the proofs, responsibility for printing errors must rest with the Editors. It is a pleasure to thank all the authors for their enthusiastic and rapid response in our efforts to bring the contributions to the stage of printing. Without the efficient and fruitful collaboration with Physica Scripta the publication of these Proceedings would have been substantially delayed.
NASA Astrophysics Data System (ADS)
Aboubrahim, Amin; Nath, Pran
2017-10-01
We investigate the possibility of testing supergravity unified models with scalar masses in the range 50-100 TeV and much lighter gaugino masses at the Large Hadron Collider. The analysis is carried out under the constraints that models produce the Higgs boson mass consistent with experiment and also produce dark matter consistent with WMAP and PLANCK experiments. A set of benchmarks in the supergravity parameter space are investigated using a combination of signal regions which are optimized for the model set. It is found that some of the models with scalar masses in the 50-100 TeV mass range are discoverable with as little as 100 fb-1 of integrated luminosity and should be accessible at the LHC RUN II. The remaining benchmark models are found to be discoverable with less than 1000 fb-1 of integrated luminosity and thus testable in the high luminosity era of the LHC, i.e., at HL-LHC. It is shown that scalar masses in the 50-100 TeV range but gaugino masses much lower in mass produce unification of gauge coupling constants, consistent with experimental data at low scale, with as good an accuracy (and sometimes even better) as models with low [O (1 ) TeV ] weak scale supersymmetry. Decay of the gravitinos for the supergravity model benchmarks are investigated and it is shown that they decay before the big bang nucleosynthesis (BBN). Further, we investigate the nonthermal production of neutralinos from gravitino decay and it is found that the nonthermal contribution to the dark matter relic density is negligible relative to that from the thermal production of neutralinos for reheat temperature after inflation up to 1 09 GeV . An analysis of the direct detection of dark matter for supergravity grand unified models (SUGRA) with high scalar masses is also discussed. SUGRA models with scalar masses in the range 50-100 TeV have several other attractive features such as they help alleviate the supersymmetric C P problem and help suppress proton decay from baryon and lepton number violating dimension five operators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu Shuangqing
We continue to investigate the separability of massive field equations for spin-0 and spin-1/2 charged particles in the general, nonextremal, rotating, charged, Chong-Cvetic-Lue-Pope black holes with two independent angular momenta and a nonzero cosmological constant in minimal D=5 gauged supergravity theory. We show that the complex Klein-Gordon equation and the modified Dirac equation with the inclusion of an extra counterterm can be separated by variables into purely radial and purely angular parts in this general Einstein-Maxwell-Chern-Simons background spacetime. A second-order symmetry operator that commutes with the complex Laplacian operator is constructed from the separated solutions and expressed compactly in termsmore » of a rank-2 Staeckel-Killing tensor which admits a simple diagonal form in the chosen pentad one-forms so that it can be understood as the square of a rank-3 totally antisymmetric tensor. A first-order symmetry operator that commutes with the modified Dirac operator is expressed in terms of a rank-3 generalized Killing-Yano tensor and its covariant derivative. The Hodge dual of this generalized Killing-Yano tensor is a generalized principal conformal Killing-Yano tensor of rank-2, which can generate a 'tower' of generalized (conformal) Killing-Yano and Staeckel-Killing tensors that are responsible for the whole hidden symmetries of this general, rotating, charged, Kerr-anti-de Sitter black hole geometry. In addition, the first laws of black hole thermodynamics have been generalized to the case that the cosmological constant can be viewed as a thermodynamical variable.« less
How thermal inflation can save minimal hybrid inflation in supergravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimopoulos, Konstantinos; Owen, Charlotte
2016-10-12
Minimal hybrid inflation in supergravity has been ruled out by the 2015 Planck observations because the spectral index of the produced curvature perturbation falls outside observational bounds. To resurrect the model, a number of modifications have been put forward but many of them spoil the accidental cancellation that resolves the η-problem and require complicated Kähler constructions to counterbalance the lost cancellation. In contrast, in this paper the model is rendered viable by supplementing the scenario with a brief period of thermal inflation, which follows the reheating of primordial inflation. The scalar field responsible for thermal inflation requires a large non-zeromore » vacuum expectation value (VEV) and a flat potential. We investigate the VEV of such a flaton field and its subsequent effect on the inflationary observables. We find that, for large VEV, minimal hybrid inflation in supergravity produces a spectral index within the 1-σ Planck bound and a tensor-to-scalar ratio which may be observable in the near future. The mechanism is applicable to other inflationary models.« less
Eliminating the η-problem in SUGRA hybrid inflation with vector backreaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimopoulos, Konstantinos; Wagstaff, Jacques M.; Lazarides, George, E-mail: k.dimopoulos1@lancaster.ac.uk, E-mail: lazaride@eng.auth.gr, E-mail: j.wagstaff@lancaster.ac.uk
2012-02-01
It is shown that, when the inflaton field modulates the gauge kinetic function of the gauge fields in supergravity realisations of inflation, the dynamic backreaction leads to a new inflationary attractor solution, in which the inflaton's variation suffers additional impedance. As a result, slow-roll inflation can naturally occur along directions of the scalar potential which would be too steep and curved to support it otherwise. This provides a generic solution to the infamous eta-problem of inflation in supergravity. Moreover, it is shown that, in the new inflationary attractor, the spectral index of the generated curvature perturbations is kept mildly redmore » despite eta of order unity. The above findings are applied to a model of hybrid inflation in supergravity with a generic Kähler potential. The spectral index of the generated curvature perturbations is found to be 0.97–0.98, in excellent agreement with observations. The gauge field can play the role of the vector curvaton after inflation but observable statistical anisotropy requires substantial tuning of the gauge coupling.« less
How to Remedy the η-problem of SUSY GUT hybrid inflation via vector backreaction
NASA Astrophysics Data System (ADS)
Lazarides, George
2012-07-01
It is shown that, in supergravity models of inflation where the gauge kinetic function of a gauge field is modulated by the inflaton, we can obtain a new inflationary attractor solution, in which the roll-over of the inflaton suffers additional impedance due to the vector field backreaction. As a result, directions of the scalar potential which, due to strong Kähler corrections, become too steep and curved to normally support slow-roll inflation can now naturally do so. This solves the infamous η problem of inflation in supergravity and also keeps the spectral index of the curvature perturbation mildly red despite η of order unity. This mechanism is applied to a model of hybrid inflation in supergravity with a generic Kähler potential. The spectral index of the curvature perturbation is found to be 0.97 - 0.98, in excellent agreement with data. The gauge field can act as vector curvaton generating statistical anisotropy in the curvature perturbation. However, this anisotropy could be possibly observable only if the gauge coupling constant is unnaturally small.
Spontaneous SUSY breaking without R symmetry in supergravity
NASA Astrophysics Data System (ADS)
Maekawa, Nobuhiro; Omura, Yuji; Shigekami, Yoshihiro; Yoshida, Manabu
2018-03-01
We discuss spontaneous supersymmetry (SUSY) breaking in a model with an anomalous U (1 )A symmetry. In this model, the size of the each term in the superpotential is controlled by the U (1 )A charge assignment and SUSY is spontaneously broken via the Fayet-Iliopoulos of U (1 )A at the metastable vacuum. In the global SUSY analysis, the gaugino masses become much smaller than the sfermion masses, because an approximate R symmetry appears at the SUSY breaking vacuum. In this paper, we show that gaugino masses can be as large as gravitino mass, taking the supergravity effect into consideration. This is because the R symmetry is not imposed so that the constant term in the superpotential, which is irrelevant to the global SUSY analysis, largely contributes to the soft SUSY breaking terms in the supergravity. As the mediation mechanism, we introduce the contributions of the field not charged under U (1 )A and the moduli field to cancel the anomaly of U (1 )A. We comment on the application of our SUSY breaking scenario to the grand unified theory.
Jordan frame supergravity and inflation in the NMSSM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrara, Sergio; INFN - Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati; Kallosh, Renata
2010-08-15
We present a complete explicit N=1, d=4 supergravity action in an arbitrary Jordan frame with nonminimal scalar-curvature coupling of the form {Phi}(z,z)R. The action is derived by suitably gauge fixing the superconformal action. The theory has a modified Kaehler geometry, and it exhibits a significant dependence on the frame function {Phi}(z,z) and its derivatives over scalars, in the bosonic as well as in the fermionic part of the action. Under certain simple conditions, the scalar kinetic terms in the Jordan frame have a canonical form. We consider an embedding of the next-to-minimal supersymmetric standard model (NMSSM) gauge theory into supergravity,more » clarifying the Higgs inflation model recently proposed by Einhorn and Jones. We find that the conditions for canonical kinetic terms are satisfied for the NMSSM scalars in the Jordan frame, which leads to a simple action. However, we find that the gauge singlet field experiences a strong tachyonic instability during inflation in this model. Thus, a modification of the model is required to support the Higgs-type inflation.« less
Two Virasoro symmetries in stringy warped AdS 3
Compere, Geoffrey; Guica, Monica; Rodriguez, Maria J.
2014-12-02
We study three-dimensional consistent truncations of type IIB supergravity which admit warped AdS 3 solutions. These theories contain subsectors that have no bulk dynamics. We show that the symplectic form for these theories, when restricted to the non-dynamical subsectors, equals the symplectic form for pure Einstein gravity in AdS 3. Consequently, for each consistent choice of boundary conditions in AdS 3, we can define a consistent phase space in warped AdS 3 with identical conserved charges. This way, we easily obtain a Virasoro × Virasoro asymptotic symmetry algebra in warped AdS 3; two different types of Virasoro × Kač-Moody symmetriesmore » are also consistent alternatives. Next, we study the phase space of these theories when propagating modes are included. We show that, as long as one can define a conserved symplectic form without introducing instabilities, the Virasoro × Virasoro asymptotic symmetries can be extended to the entire (linearised) phase space. In conclusion, this implies that, at least at semi-classical level, consistent theories of gravity in warped AdS 3 are described by a two-dimensional conformal field theory, as long as stability is not an issue.« less
A magnetically induced quantum critical point in holography
Gnecchi, A.; Gursoy, U.; Papadoulaki, O.; ...
2016-09-15
Here, we investigate quantum critical points in a 2+1 dimensional gauge theory at finite chemical potential χ and magnetic field B. The gravity dual is based on 4D N = 2 Fayet-Iliopoulos gauged supergravity and the solutions we consider — that are constructed analytically — are extremal, dyonic, asymptotically AdS4 black-branes with a nontrivial radial profile for the scalar field. We discover a line of second order fixed points at B = B c(χ) between the dyonic black brane and an extremal “thermal gas” solution with a singularity of good-type, according to the acceptability criteria of Gubser. The dual fieldmore » theory is a strongly coupled nonconformal field theory at finite charge and magnetic field, related to the ABJM theory deformed by a triple trace operator Φ 3. This line of fixed points might be useful in studying the various strongly interacting quantum critical phenomena such as the ones proposed to underlie the cuprate superconductors. We also find curious similarities between the behaviour of the VeV under B and that of the quark condensate in 2+1 dimensional NJL models.« less
Black holes, anti de Sitter space, and topological strings
NASA Astrophysics Data System (ADS)
Yin, Xi
This thesis is devoted to the study of black holes in string theory, their connection to two and three dimensional anti de-Sitter space, and topological strings. We start by proposing a relation between supersymmetric black holes in four and five dimensions, as well as connections between multi-centered black holes in four dimensions and black rings in five dimensions. This connection is then applied to counting supersymmetric dyonic black holes in four dimensional string compactifications with 16 and 32 supersymmetries, respectively. We then turn to the near horizon attractor geometry AdS 2 x S2 x CY 3, and study the classical supersymmetric D-branes in this background. We also find supersymmetric black hole solutions in supergravity in AdS2 x S2, although the solutions have regions of closed timelike curves. Finally we consider the M-theory attractor geometry AdS3 x S2 x CY3, and compute the elliptic genus of the dual (0, 4) CFT by counting wrapped M2-brane states in the bulk in a dilute gas approximation. This leads to a derivation of the conjectured relation between black hole partition function and topological string amplitudes.
BPS equations and non-trivial compactifications
NASA Astrophysics Data System (ADS)
Tyukov, Alexander; Warner, Nicholas P.
2018-05-01
We consider the problem of finding exact, eleven-dimensional, BPS supergravity solutions in which the compactification involves a non-trivial Calabi-Yau manifold, Y , as opposed to simply a T 6. Since there are no explicitly-known metrics on non-trivial, compact Calabi-Yau manifolds, we use a non-compact "local model" and take the compactification manifold to be Y={M}_{GH}× {T}^2 , where ℳGH is a hyper-Kähler, Gibbons-Hawking ALE space. We focus on backgrounds with three electric charges in five dimensions and find exact families of solutions to the BPS equations that have the same four supersymmetries as the three-charge black hole. Our exact solution to the BPS system requires that the Calabi-Yau manifold be fibered over the space-time using compensators on Y . The role of the compensators is to ensure smoothness of the eleven-dimensional metric when the moduli of Y depend on the space-time. The Maxwell field Ansatz also implicitly involves the compensators through the frames of the fibration. We examine the equations of motion and discuss the brane distributions on generic internal manifolds that do not have enough symmetry to allow smearing.
A systematic construction of microstate geometries with low angular momentum
NASA Astrophysics Data System (ADS)
Bena, Iosif; Heidmann, Pierre; Ramírez, Pedro F.
2017-10-01
We outline a systematic procedure to obtain horizonless microstate geometries that have the same charges as three-charge five-dimensional black holes with a macroscopically-large horizon area and an arbitrarily-small angular momentum. There are two routes through which such solutions can be constructed: using multi-center Gibbons-Hawking (GH) spaces or using superstratum technology. So far the only solutions corre-sponding to microstate geometries for black holes with no angular momentum have been obtained via superstrata [1], and multi-center Gibbons-Hawking spaces have been believed to give rise only to microstate geometries of BMPV black holes with a large angular mo-mentum [2]. We perform a thorough search throughout the parameter space of smooth horizonless solutions with four GH centers and find that these have an angular momentum that is generally larger than 80% of the cosmic censorship bound. However, we find that solutions with three GH centers and one supertube (which are smooth in six-dimensional supergravity) can have an arbitrarily-low angular momentum. Our construction thus gives a recipe to build large classes of microstate geometries for zero-angular-momentum black holes without resorting to superstratum technology.
Two Virasoro symmetries in stringy warped AdS 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Compere, Geoffrey; Guica, Monica; Rodriguez, Maria J.
We study three-dimensional consistent truncations of type IIB supergravity which admit warped AdS 3 solutions. These theories contain subsectors that have no bulk dynamics. We show that the symplectic form for these theories, when restricted to the non-dynamical subsectors, equals the symplectic form for pure Einstein gravity in AdS 3. Consequently, for each consistent choice of boundary conditions in AdS 3, we can define a consistent phase space in warped AdS 3 with identical conserved charges. This way, we easily obtain a Virasoro × Virasoro asymptotic symmetry algebra in warped AdS 3; two different types of Virasoro × Kač-Moody symmetriesmore » are also consistent alternatives. Next, we study the phase space of these theories when propagating modes are included. We show that, as long as one can define a conserved symplectic form without introducing instabilities, the Virasoro × Virasoro asymptotic symmetries can be extended to the entire (linearised) phase space. In conclusion, this implies that, at least at semi-classical level, consistent theories of gravity in warped AdS 3 are described by a two-dimensional conformal field theory, as long as stability is not an issue.« less
Threshold Effects Beyond the Standard Model
NASA Astrophysics Data System (ADS)
Taylor, T. R.
In this contribution to the Festschrift celebrating Gabriele Veneziano on his 65th birthday, I discuss the threshold effects of extra dimensions and their applications to physics beyond the standard model, focusing on superstring theory.
Marginal deformations of heterotic G 2 sigma models
NASA Astrophysics Data System (ADS)
Fiset, Marc-Antoine; Quigley, Callum; Svanes, Eirik Eik
2018-02-01
Recently, the infinitesimal moduli space of heterotic G 2 compactifications was described in supergravity and related to the cohomology of a target space differential. In this paper we identify the marginal deformations of the corresponding heterotic nonlinear sigma model with cohomology classes of a worldsheet BRST operator. This BRST operator is nilpotent if and only if the target space geometry satisfies the heterotic supersymmetry conditions. We relate this to the supergravity approach by showing that the corresponding cohomologies are indeed isomorphic. We work at tree-level in α' perturbation theory and study general geometries, in particular with non-vanishing torsion.
Topological resolution of gauge theory singularities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo
2013-08-21
Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric S U ( 2 ) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit themore » singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.« less
An analytic superfield formalism for tree superamplitudes in D=10 and D=11
NASA Astrophysics Data System (ADS)
Bandos, Igor
2018-05-01
Tree amplitudes of 10D supersymmetric Yang-Mills theory (SYM) and 11D supergravity (SUGRA) are collected in multi-particle counterparts of analytic on-shell superfields. These have essentially the same form as their chiral 4D counterparts describing N=4 SYM and N=8 SUGRA, but with components dependent on a different set of bosonic variables. These are the D=10 and D=11 spinor helicity variables, the set of which includes the spinor frame variable (Lorentz harmonics) and a scalar density, and generalized homogeneous coordinates of the coset SO(D-2)/SO(D-4)⊗ U(1) (internal harmonics). We present an especially convenient parametrization of the spinor harmonics (Lorentz covariant gauge fixed with the use of an auxiliary gauge symmetry) and use this to find (a gauge fixed version of) the 3-point tree superamplitudes of 10D SYM and 11D SUGRA which generalize the 4 dimensional anti-MHV superamplitudes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, S
2003-10-24
The effective QCD charge extracted from {tau} decay is remarkably constant at small momenta, implying the near-conformal behavior of hadronic interactions at small momentum transfer. The correspondence of large-N{sub c} supergravity theory in higher-dimensional anti-de Sitter spaces with gauge theory in physical space-time also has interesting implications for hadron phenomenology in the conformal limit, such as constituent counting rules for hard exclusive processes. The utility of light-front quantization and lightfront Fock wavefunctions for analyzing such phenomena and representing the dynamics of QCD bound states is reviewed. I also discuss the novel effects of initial- and final-state interactions in hard QCDmore » inclusive processes, including Bjorken-scaling single-spin asymmetries and the leading-twist diffractive and shadowing contributions to deep inelastic lepton-proton scattering.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunster, Claudio; Max-Planck-Institut fuer Gravitationsphysik; Henneaux, Marc
There exists a formulation of the Maxwell theory in terms of two vector potentials, one electric and one magnetic. The action is then manifestly invariant under electric-magnetic duality transformations, which are rotations in the two-dimensional internal space of the two potentials, and local. We ask the question: Can duality be gauged? The only known and battle-tested method of accomplishing the gauging is the Noether procedure. In its decanted form, it amounts to turning on the coupling by deforming the Abelian gauge group of the free theory, out of whose curvatures the action is built, into a non-Abelian group which becomesmore » the gauge group of the resulting theory. In this article, we show that the method cannot be successfully implemented for electric-magnetic duality. We thus conclude that, unless a radically new idea is introduced, electric-magnetic duality cannot be gauged. The implication of this result for supergravity is briefly discussed.« less
On classical de Sitter and Minkowski solutions with intersecting branes
NASA Astrophysics Data System (ADS)
Andriot, David
2018-03-01
Motivated by the connection of string theory to cosmology or particle physics, we study solutions of type II supergravities having a four-dimensional de Sitter or Minkowski space-time, with intersecting D p -branes and orientifold O p -planes. Only few such solutions are known, and we aim at a better characterisation. Modulo a few restrictions, we prove that there exists no classical de Sitter solution for any combination of D 3/ O 3 and D 7/ O 7, while we derive interesting constraints for intersecting D 5/ O 5 or D 6/ O 6, or combinations of D 4/ O 4 and D 8/ O 8. Concerning classical Minkowski solutions, we understand some typical features, and propose a solution ansatz. Overall, a central information appears to be the way intersecting D p / O p overlap each other, a point we focus on.
Effective theories and thresholds in particle physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaillard, M.K.
1991-06-07
The role of effective theories in probing a more fundamental underlying theory and in indicating new physics thresholds is discussed, with examples from the standard model and more speculative applications to superstring theory. 38 refs.
Noncommutative Field Theories and (super)string Field Theories
NASA Astrophysics Data System (ADS)
Aref'eva, I. Ya.; Belov, D. M.; Giryavets, A. A.; Koshelev, A. S.; Medvedev, P. B.
2002-11-01
In this lecture notes we explain and discuss some ideas concerning noncommutative geometry in general, as well as noncommutative field theories and string field theories. We consider noncommutative quantum field theories emphasizing an issue of their renormalizability and the UV/IR mixing. Sen's conjectures on open string tachyon condensation and their application to the D-brane physics have led to wide investigations of the covariant string field theory proposed by Witten about 15 years ago. We review main ingredients of cubic (super)string field theories using various formulations: functional, operator, conformal and the half string formalisms. The main technical tools that are used to study conjectured D-brane decay into closed string vacuum through the tachyon condensation are presented. We describe also methods which are used to study the cubic open string field theory around the tachyon vacuum: construction of the sliver state, "comma" and matrix representations of vertices.
On pp wave limit for η deformed superstrings
NASA Astrophysics Data System (ADS)
Roychowdhury, Dibakar
2018-05-01
In this paper, based on the notion of plane wave string/gauge theory duality, we explore the pp wave limit associated with the bosonic sector of η deformed superstrings propagating in ( AdS 5 × S 5) η . Our analysis reveals that in the presence of NS-NS and RR fluxes, the pp wave limit associated to full ABF background satisfies type IIB equations in its standard form. However, the beta functions as well as the string Hamiltonian start receiving non trivial curvature corrections as one starts probing beyond pp wave limit which thereby takes solutions away from the standard type IIB form. Furthermore, using uniform gauge, we also explore the BMN dynamics associated with short strings and compute the corresponding Hamiltonian density. Finally, we explore the Penrose limit associated with the HT background and compute the corresponding stringy spectrum for the bosonic sector.
NASA Technical Reports Server (NTRS)
Hepp, Aloysius F.; Harris, Jerry D.; Raffaelle, Ryne P.; Banger, Kulbinder K.; Smith, Mark A.; Cowen, Jonathan E.
2001-01-01
The key to achieving high specific power (watts per kilogram) space photovoltaic arrays is the development of high-efficiency thin-film solar cells that are fabricated on lightweight, space-qualified substrates such as Kapton (DuPont) or another polymer film. Cell efficiencies of 20 percent air mass zero (AM0) are required. One of the major obstacles to developing lightweight, flexible, thin-film solar cells is the unavailability of lightweight substrate or superstrate materials that are compatible with current deposition techniques. There are two solutions for working around this problem: (1) develop new substrate or superstrate materials that are compatible with current deposition techniques, or (2) develop new deposition techniques that are compatible with existing materials. The NASA Glenn Research Center has been focusing on the latter approach and has been developing a deposition technique for depositing thin-film absorbers at temperatures below 400 C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pern, F. J.; Glick, S. H.
We have conducted a series of accelerated exposure test (AET) studies for various crystalline-Si (c-Si) and amorphous-Si (a-Si) cell samples that were encapsulated with different superstrates, pottants, and substrates. Nonuniform browning patterns of ethylene vinyl acetate (EVA) pottants were observed for glass/EVA/glass-encapsulated c-Si cell samples under solar simulator exposures at elevated temperatures. The polymer/polymer-configured laminates with Tedlar or Tefzel did not discolor because of photobleaching reactions, but yellowed with polyester or nylon top films. Delamination was observed for the polyester/EVA layers on a-Si minimodules and for a polyolefin-based thermoplastic pottant at high temperatures. For all tested c-Si cell samples, irregularmore » changes in the current-voltage parameters were observed that could not be accounted for simply by the transmittance changes of the superstrate/pottant layers. Silicone-type adhesives used under UV-transmitting polymer top films were observed to cause greater cell current/efficiency loss than EVA or polyethylene pottants.« less
Compactification and inflation in the superstring theory from the condensation of gravitino pairs
NASA Astrophysics Data System (ADS)
Pollock, M. D.
1987-12-01
We discuss the possibility that inflation can occur in the E8×E8' heterotic superstring theory, if there is a pair condensation of the gravitino field ψA and also of the Majorana-Weyl spinor λ, as suggested by the Helayël-Neto and Smith. In the absence of a condensation of the anti-symmetric tensor field HMNP, then the associated potential V(θ,φ) is bounded from below and independent of the dilaton field φ. It can be made to vanish at the minimum, where the compactification scale θ is fixed. Alternatively, a small cosmological constant may remain (ultimately to be cancelled by radiative corrections at the lower energy scale of the gaugino condensation), which could in principle lead to inflation. Present address: Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Bombay 400 005, India.
Supergravity inflation free from harmful relics
NASA Astrophysics Data System (ADS)
Greene, Patrick B.; Kadota, Kenji; Murayama, Hitoshi
2003-08-01
We present a realistic supergravity inflation model that is free from the overproduction of potentially dangerous relics in cosmology, namely, moduli and gravitinos, which can lead to inconsistencies with the predictions of baryon asymmetry and nucleosynthesis. The radiative correction turns out to play a crucial role in our analysis, raising the mass of the supersymmetry breaking field to an intermediate scale. We pay particular attention to the nonthermal production of gravitinos using the nonminimal Kähler potential we obtained from loop correction. This nonthermal gravitino production is diminished, however, because of the relatively small scale of the inflaton mass and the small amplitudes of the hidden sector fields.
Separation of Non-metallic Inclusions from a Fe-Al-O Melt Using a Super-Gravity Field
NASA Astrophysics Data System (ADS)
Song, Gaoyang; Song, Bo; Guo, Zhancheng; Yang, Yuhou; Song, Mingming
2018-02-01
An innovative method for separating non-metallic inclusions from a high temperature melt using super gravity was systematically investigated. To explore the separation behavior of inclusion particles with densities less than that of metal liquid under a super-gravity field, a Fe-Al-O melt containing Al2O3 particles was treated with different gravity coefficients. Al2O3 particles migrated rapidly towards the reverse direction of the super gravity and gathered in the upper region of the sample. It was hard to find any inclusion particles with sizes greater than 2 μm in the middle and bottom areas. Additionally, the oxygen content in the middle region of the sample could be reduced to 0.0022 mass pct and the maximum removal rate of the oxygen content reached 61.4 pct. The convection in the melt along the direction of the super gravity was not generated by the super-gravity field, and the fluid velocity in the molten melt consisted only of the rotating tangential velocity. Moreover, the motion behavior of the Al2O3 particles was approximatively determined by Stokes' law along the direction of super gravity.
Reduced Cu(InGa)Se 2 Thickness in Solar Cells Using a Superstrate Configuration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shafarman, William N.
This project by the Institute of Energy Conversion (IEC) and the Department of Electrical and Computer Engineering at the University of Delaware sought to develop the technology and underlying science to enable reduced cost of Cu(InGa)Se 2 manufacturing by reducing the thickness of the Cu(InGa)Se 2 absorber layer by half compared to typical production. The approach to achieve this was to use the superstrate cell configuration in which light is incident on the cell through the glass. This structure facilitates optical enhancement approaches needed to achieve high efficiency with Cu(InGa)Se 2 thicknesses less than 1 µm. The primary objective wasmore » to demonstrate a Cu(InGa)Se 2 cell with absorber thickness 0.5 - 0.7 µm and 17% efficiency, along with a quantitative loss analysis to define a pathway to 20% efficiency. Additional objectives were the development of stable TCO and buffer layers or contact layers to withstand the Cu(InGa)Se 2 deposition temperature and of advanced optical enhancement methods. The underlying fundamental science needed to effectively transition these outcomes to large scale was addressed by extensive materials and device characterization and by development of comprehensive optical models. Two different superstrate configurations have been investigated. A frontwall cell is illuminated through the glass to the primary front junction of the device. This configuration has been used for previous efforts on superstrate Cu(InGa)Se 2 but performance has been limited by interdiffusion or reaction with CdS or other buffer layers. In this project, several approaches to overcome these limitations were explored using CdS, ZnO and ZnSe buffer layers. In each case, mechanisms that limit device performance were identified using detailed characterization of the materials and junctions. Due to the junction formation difficulties, efforts were concentrated on a new backwall configuration in which light is incident through the substrate into the back of the absorber layer. The primary junction is then formed after Cu(InGa)Se 2 deposition. This allows the potential benefits of superstrate cells for optical enhancement while maintaining processing advantages of the substrate configuration and avoiding the harmful effects of high temperature deposition on p-n junction formation. Backwall devices have outperformed substrate cells at absorber thicknesses of 0.1-0.5 µm through enhanced JSC due to easy incorporation of a Ag reflector and, with light incident on the absorber, the elimination of parasitic absorption in the CdS buffer. An efficiency of 9.7% has been achieved for a backwall Cu(InGa)Se 2 device with absorber thickness ~0.4 μm. A critical achievement that enabled implementation of the backwall cell was the development of a transparent back contact using MoO 3 or WO 3. Processes for controlled deposition of each material by reactive rf sputtering from metal targets were developed. These contacts have wide bandgaps making them well-suited for application as contacts for backwall devices as well as potential use in bifacial cells and as the top cell of tandem CuInSe 2-based devices. Optical enhancement will be critical for further improvements. Wet chemical texturing of ZnO films has been developed for a simple, low cost light-trapping scheme for backwall superstrate devices to enhance long wavelength quantum efficiency. An aqueous oxalic acid etch was developed and found to strongly texture sputtered ZnO with high haze ≈ 0.9 observed across the whole spectrum. And finally, advanced optical models have been developed to assist the characterization and optimization of Cu(InGa)Se 2 cells with thin absorbers« less
NASA Astrophysics Data System (ADS)
Derendinger, J.-P.; Scrucca, C. A.; Uranga, A. M.
2006-11-01
This special issue is devoted to the proceedings of the conference 'Winter School on Strings, Supergravity and Gauge Theories', which took place at CERN, the European Centre for Nuclear Research, in Geneva, Switzerland, from the 16 to the 20 of January 2006. This event was organized in the framework of the European Mobility Research and Training Network entitled 'Constituents, Fundamental Forces and Symmetries of the Universe'. It is part of a yearly series of scientific schools which have become a traditional rendezvous for young researchers of the community. The previous one was held at SISSA, in Trieste, Italy, in February 2005, and the next one will take place again at CERN, in January 2007. The school was primarily meant for young doctoral students and postdoctoral researchers working in the area of string theory. It consisted of five general lectures of four hours each, whose notes are published in the present proceedings, and five working group discussion sessions, focused on specific topics of the network research program. It was attended by approximately 250 participants. The topics of the lectures were chosen to provide an introduction to some of the areas of recent progress and to the open problems in string theory. String theory is expected to provide insights into the description of systems where the role of gravity is crucial. One prominent example of such systems are time-dependent backgrounds with big bang singularities, whose status in string theory is reviewed in the lecture notes by Ben Craps. In another main problem in quantum gravity, string theory gives a fascinating microscopic description of black holes and their properties. The lectures by Shiraz Minwalla review the thermal properties of black holes from their microscopic description in terms of a holographically dual large N field theory. Progress in the description of black hole microstates, and its interplay with the macroscopic description in terms of supergravity solutions via the attractor mechanism, are covered by the lectures by Atish Dabholkar and Boris Pioline. A final important mainstream topic in string theory, being a higher-dimensional theory, is its compactification to four dimensions, and the computation of four-dimensional physical properties in terms of the properties of the internal space. The lectures by Mariana Graña review recent progress in the classification of the most general supersymmetric backgrounds describing the compactified dimensions, and their role in determining the number of massless scalar moduli fields in four dimensions. The conference was financially supported by the European Commission under contract MRTN-CT-2004-005104 and by CERN. It was jointly organized by the Physics Institute of the University of Neuchâtel and the Theory Unit of the Physics Division of CERN. It is a great pleasure for us to warmly thank the Theory Unit of CERN for its very kind hospitality and for the high quality of the services and infrastructure that it has provided. We also acknowledge helpful administrative assistance from the Physics Institute of the University of Neuchâtel. Special thanks go finally to Denis Frank for his very valuable help in preparing the conference web pages, and to J Rostant, A-M Perrin and M-S Vascotto for their continuous and very reliable assistance.
Killing-Yano tensor and supersymmetry of the self-dual Plebański-Demiański solution
NASA Astrophysics Data System (ADS)
Nozawa, Masato; Houri, Tsuyoshi
2016-06-01
We explore various aspects of the self-dual Plebański-Demiański (PD) family in the Euclidean Einstein-Maxwell-Λ system. The Killing-Yano tensor which was recently found by Yasui and one of the present authors allows us to prove that the self-dual PD metric can be brought into the self-dual Carter metric by an orientation-reversing coordinate transformation. We show that the self-dual PD solution admits two independent Killing spinors in the framework of N = 2 minimal gauged supergravity, whereas the non-self-dual solution admits only a single Killing spinor. This can be demonstrated by casting the self-dual PD metric into two distinct Przanowski-Tod forms. As a by-product, a new example of the three-dimensional Einstein-Weyl space is presented. We also prove that the self-dual PD metric falls into two different Calderbank-Pedersen families, which are determined by a single function subjected to a linear equation on the two-dimensional hyperbolic space. Furthermore, we consider the hyper-Kähler case for which the metric falls into the Gibbons-Hawking class. We find that the condition for the nonexistence of the Dirac-Misner string enforces the solution with a nonvanishing acceleration parameter to the Eguchi-Hanson space.
Introduction to the AdS/CFT Correspondence
NASA Astrophysics Data System (ADS)
Nąstase, Horaǧiu
2015-09-01
Preface; Introduction; Part I. Background: 1. Elements of quantum field theory and gauge theory; 2. Basics of general relativity. Anti-de Sitter space; 3. Basics of supersymmetry; 4. Basics of supergravity; 5. Kaluza-Klein dimensional reduction; 6. Black holes and p-branes; 7. String theory actions and spectra; 8. Elements of conformal field theory; 9. D-branes; Part II. Basics of AdS/CFT for N = 4 SYM vs AdS5 × S5: 10. The AdS/CFT correspondence: motivation, definition and spectra; 11. Witten prescription and 3-point correlator calculations; 12. Holography in Lorentzian signature: Poincaré and global; 13. Solitonic objects in AdS/CFT; 14. Quarks and the Wilson loop; 15. Finite temperature and N = 4 SYM plasmas; 16. Scattering processes and gravitational shockwave limit; 17. The pp-wave correspondence; 18. Spin chains; Part III. AdS/CFT Developments and Gauge-Gravity Dualities: 19. Other conformal cases; 20. The 3 dimensional ABJM model vs. AdS4 × CP3; 21. Gravity duals; 22. Holographic renormalization; 23. RG flow between fixed points; 24. Phenomenological gauge-gravity duality I: AdS/QCD; 25. Phenomenological gauge-gravity duality II: AdS/CMT; 26. Gluon scattering: the Alday-Maldacena prescription; 27. Holographic entanglement entropy: the Ryu-Takayanagi prescription.
Gravitational wave signals from short-lived topological defects in the MSSM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamada, Ayuki; Department of Physics and Astronomy, University of California,Riverside, CA, 92507; Yamada, Masaki
2015-10-09
Supersymmetric theories, including the minimal supersymmetric standard model, usually contain many scalar fields whose potentials are absent in the exact supersymmetric limit and within the renormalizable level. Since their potentials are vulnerable to the finite energy density of the Universe through supergravity effects, these flat directions have nontrivial dynamics in the early Universe. Recently, we have pointed out that a flat direction may have a positive Hubble induced mass term during inflation whereas a negative one after inflation. In this case, the flat direction stays at the origin of the potential during inflation and then obtain a large vacuum expectationmore » value after inflation. After that, when the Hubble parameter decreases down to the mass of the flat direction, it starts to oscillate around the origin of the potential. In this paper, we investigate the dynamics of the flat direction with and without higher dimensional superpotentials and show that topological defects, such as cosmic strings and domain walls, form at the end of inflation and disappear at the beginning of oscillation of the flat direction. We numerically calculate their gravitational signals and find that the observation of gravitational signals would give us information of supersymmetric scale, the reheating temperature of the Universe, and higher dimensional operators.« less
Gravitational wave signals from short-lived topological defects in the MSSM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamada, Ayuki; Yamada, Masaki, E-mail: ayuki.kamada@ucr.edu, E-mail: yamadam@icrr.u-tokyo.ac.jp
2015-10-01
Supersymmetric theories, including the minimal supersymmetric standard model, usually contain many scalar fields whose potentials are absent in the exact supersymmetric limit and within the renormalizable level. Since their potentials are vulnerable to the finite energy density of the Universe through supergravity effects, these flat directions have nontrivial dynamics in the early Universe. Recently, we have pointed out that a flat direction may have a positive Hubble induced mass term during inflation whereas a negative one after inflation. In this case, the flat direction stays at the origin of the potential during inflation and then obtain a large vacuum expectationmore » value after inflation. After that, when the Hubble parameter decreases down to the mass of the flat direction, it starts to oscillate around the origin of the potential. In this paper, we investigate the dynamics of the flat direction with and without higher dimensional superpotentials and show that topological defects, such as cosmic strings and domain walls, form at the end of inflation and disappear at the beginning of oscillation of the flat direction. We numerically calculate their gravitational signals and find that the observation of gravitational signals would give us information of supersymmetric scale, the reheating temperature of the Universe, and higher dimensional operators.« less
U(1){sub R} mediation from the flux compactification in six dimensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hyun Min
We consider a supersymmetric completion of codimension-two branes with nonzero tension in a 6D gauged supergravity. As a consequence, we obtain the football solution with 4D Minkowski space as a new supersymmetric background that preserves 4D N = 1 SUSY. In the presence of brane multiplets, we derive the 4D effective supergravity action for the football background and show that the remaining modulus can be stabilized by a bulk non-perturbative correction with brane uplifting potentials at a zero vacuum energy. We find that the U(1){sub R} mediation can be a dominant source of SUSY breaking for a brane scalar withmore » nonzero R charge.« less
Does the first chaotic inflation model in supergravity provide the best fit to the Planck data?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linde, Andrei
2015-02-23
I describe the first model of chaotic inflation in supergravity, which was proposed by Goncharov and the present author in 1983. The inflaton potential of this model has a plateau-type behavior V{sub 0}(1−(8/3) e{sup −√6|ϕ|}) at large values of the inflaton field. This model predicts n{sub s}=1−(2/N)≈0.967 and r=(4/(3N{sup 2}))≈4×10{sup −4}, in good agreement with the Planck data. I propose a slight generalization of this model, which allows to describe not only inflation but also dark energy and supersymmetry breaking.
Critical N = (1, 1) general massive supergravity
NASA Astrophysics Data System (ADS)
Deger, Nihat Sadik; Moutsopoulos, George; Rosseel, Jan
2018-04-01
In this paper we study the supermultiplet structure of N = (1, 1) General Massive Supergravity at non-critical and critical points of its parameter space. To do this, we first linearize the theory around its maximally supersymmetric AdS3 vacuum and obtain the full linearized Lagrangian including fermionic terms. At generic values, linearized modes can be organized as two massless and 2 massive multiplets where supersymmetry relates them in the standard way. At critical points logarithmic modes appear and we find that in three of such points some of the supersymmetry transformations are non-invertible in logarithmic multiplets. However, in the fourth critical point, there is a massive logarithmic multiplet with invertible supersymmetry transformations.
On the stability of non-supersymmetric supergravity solutions
NASA Astrophysics Data System (ADS)
Imaanpur, Ali; Zameni, Razieh
2017-09-01
We examine the stability of some non-supersymmetric supergravity solutions that have been found recently. The first solution is AdS5 ×M6, for M6 an stretched CP3. We consider breathing and squashing mode deformations of the metric, and find that the solution is stable against small fluctuations of this kind. Next we consider type IIB solution of AdS2 ×M8, where the compact space is a U (1) bundle over N (1 , 1). We study its stability under the deformation of M8 and the 5-form flux. In this case we also find that the solution is stable under small fluctuation modes of the corresponding deformations.
Tribrid Inflation in Supergravity
NASA Astrophysics Data System (ADS)
Antusch, Stefan; Dutta, Koushik; Kostka, Philipp M.
We propose a novel class of F-term hybrid inflation models in supergravity (SUGRA) where the η-problem is resolved using either a Heisenberg symmetry or a shift symmetry of the Kähler potential. In addition to the inflaton and the waterfall field, this class (referred to as tribrid inflation) contains a third "driving" field which contributes the large vacuum energy during inflation by its F-term. In contrast to the "standard" hybrid scenario, it has several attractive features due to the property of vanishing inflationary superpotential (Winf = 0) during inflation. Quantum corrections induced by symmetry breaking terms in the superpotential generate a slope of the potential and lead to a spectral tilt consistent with recent WMAP observations.
Sneutrino driven GUT inflation in supergravity
NASA Astrophysics Data System (ADS)
Gonzalo, Tomás E.; Heurtier, Lucien; Moursy, Ahmad
2017-06-01
In this paper, we embed the model of flipped GUT sneutrino inflation — in a flipped SU(5) or SO(10) set up — developed by Ellis et al. in a supergravity framework. The GUT symmetry is broken by a waterfall which could happen at early or late stage of the inflationary period. The full field dynamics is thus studied in detail and these two main inflationary configurations are exposed, whose cosmological predictions are both in agreement with recent astrophysical measurements. The model has an interesting feature where the inflaton has natural decay channels to the MSSM particles allowed by the GUT gauge symmetry. Hence it can account for the reheating after the inflationary epoch.
Buried homojunction in CdS/Sb2Se3 thin film photovoltaics generated by interfacial diffusion
NASA Astrophysics Data System (ADS)
Zhou, Ying; Li, Yang; Luo, Jiajun; Li, Dengbing; Liu, Xinsheng; Chen, Chao; Song, Huaibing; Ma, Jingyuan; Xue, Ding-Jiang; Yang, Bo; Tang, Jiang
2017-07-01
Antimony selenide (Sb2Se3) emerges as a very promising non-toxic absorber material for thin film photovoltaics, and most of the devices, either in the superstrate or substrate configuration, employed CdS as the buffer layer. Due to the peculiar one-dimensional crystal structure of Sb2Se3, severe interfacial diffusion would be expected. In this letter, the interfacial diffusion in CdS/Sb2Se3 photovoltaics was carefully characterized from a combined material and device physics characterization. The results indicated that a buried homojunction located deep inside the Sb2Se3 absorber layer due to Cd diffusion, instead of the apparent CdS/Sb2Se3 heterojunction, dictated charge separation and device performance in Sb2Se3 thin film solar cells. Cd diffusion converted p-type Sb2Se3 into n-type by introducing a donor level with an activation energy of 0.22 eV. Our studies deepen the understanding of Sb2Se3 photovoltaics and shed light on their further performance optimization.
Inflation from the Superstring Vacuum
NASA Astrophysics Data System (ADS)
Pollock, M. D.
Quartic higher-derivative gravitational terms in the effective Lagrangian of the heterotic superstring theory renormalize the bare, four-dimensional gravitational coupling κ 02≡ 8π G0, due to the reduction process hat { R}4-> Rbar { R}3, according to the formula κ -2 = κ 0-2 [1+15ζ (3)bar χ/16λ B r3 + bar χ/384π 2 Ar ], where Ar and Br are the moduli for the physical space gij(xk) and internal space bar {g}μ ν (yξ ), respectively. The Euler characteristic bar χ is negative for a three-generation Calabi-Yau manifold, and therefore both the additional terms, of tree-level and one-loop origin, produce a decrease in κ-2, which changes sign when κ-2 = 0. The corresponding tree-level critical point is B rc = [15 ζ (3)|bar χ|/16λ ]1/3 = 0.357, if we set bar χ = -6 and λ = 15π2, for compactification onto a torus. Values B r < B rc yield the anti-gravity region κ-2 < 0, which is analytically accessible from the normal gravity region κ-2 > 0. The only non-singular, vacuum minimum of the potential V(B r) ≡ (15)/(32)ζ (3)bar χλ -1κ 0-2R B r-3-A tilde r {B} { R}2 B r-2 is located at the point B r=[1 + 1.58(2/A r) (4/˜ B) × 10-4] B rc, where κ -2 = 4.73(2/Ar )(4/˜ B) × 10-4κ 0-2, the quadratic trace anomaly { R}2 anom dominates over { R}4, and a phase of de Sitter expansion may occur, as first envisaged by Starobinsky, in approximate agreement with the constraint due to the effect of gravitational waves upon the anisotropy of the cosmic microwave background radiation. There is no non-singular minimum of the potential V(A r) ≡ bar χκ 0-2RA_ r-1/768π 2 - ((1)/(4) { R}2E + ˜ {B} B r-2 { R}2 )Ar.
NASA Astrophysics Data System (ADS)
Ravera, Lucrezia
2018-03-01
The purpose of this paper is to show that the so-called Maxwell superalgebra in four dimensions, which naturally involves the presence of a nilpotent fermionic generator, can be interpreted as a hidden superalgebra underlying N=1, {D}=4 supergravity extended to include a 2-form gauge potential associated to a 2-index antisymmetric tensor. In this scenario, the theory is appropriately discussed in the context of Free Differential Algebras (an extension of the Maurer-Cartan equations to involve higher-degree differential forms). The study is then extended to the Free Differential Algebra describing D = 11 supergravity, showing that, also in this case, there exists a super-Maxwell algebra underlying the theory. The same extra spinors dual to the nilpotent fermionic generators whose presence is crucial for writing a supersymmetric extension of the Maxwell algebras, both in the D = 4 and in the D = 11 case, turn out to be fundamental ingredients also to reproduce the D = 4 and D = 11 Free Differential Algebras on ordinary superspace, whose basis is given by the supervielbein. The analysis of the gauge structure of the supersymmetric Free Differential Algebras is carried on taking into account the gauge transformations from the hidden supergroup-manifold associated with the Maxwell superalgebras.
Advanced development of non-discoloring EVA-based PV encapsulants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holley, W.H.; Galica, J.P.; Argo, S.C.
1996-01-01
The purpose of this investigation was to better define the problem of field yellowing of EVA-based PV encapsulant, through laboratory study of probable chemical mechanisms and the development of stabilization strategies for protecting EVA from discoloration. EVA from fielded modules was analyzed for vinyl acetate content, unsaturation, and additive levels. These test results were then compared to results from Xenon Arc Weather-Ometer aged glass/EVA/glass laminates made in the laboratory. Variables evaluated in Weather-Ometer aged laminates included ``standard-cure`` A9918P EVA, ``fast-cure`` 15295P EVA, low iron glass superstrate containing cerium oxide, and systematic elimination or addition of specific additives. Six significant findingsmore » were revealed: 1) Improved ``standard-cure`` and ``fast-cure`` type EVA encapsulants, formulations X9903P and X15303P, respectively, showed little or no yellowing after extended Weather-Ometer exposure; 2) The use of {open_quote}{open_quote}fast-cure{close_quote}{close_quote} EVA reduced discoloration when compared with {open_quote}{open_quote}standard-cure{close_quote}{close_quote} A9918P EVA; 3) Glass superstrate containing cerium oxide resulted in a reduced rate of EVA discoloration; 4) {open_quote}{open_quote}Fast-cure{close_quote}{close_quote} EVA used with glass superstrate containing cerium oxide showed no visible yellowing after 32 weeks in the Weather-Ometer{emdash}a period estimated to be roughly equivalent to 20{endash}30 years of exposure in the Southwest; 5) Severely discolored EVA samples from the field showed no measurable loss of acetate group and little detectable unsaturation; and 6) EVA encapsulant with a Tefzel cover exhibited no yellowing after extended Weather-Ometer exposure. {copyright} {ital 1996 American Institute of Physics.}« less
4D superfield reduction of 5D orbifold SUGRA and heterotic M-theory
NASA Astrophysics Data System (ADS)
Paccetti Correia, Filipe; Schmidt, Michael G.; Tavartkiladze, Zurab
2006-09-01
We present a detailed study of the reduction to 4D of 5D supergravity compactified on the S/Z orbifold. For this purpose we develop and employ a recently proposed N=1 conformal superfield description of the 5D supergravity couplings to Abelian vector and hypermultiplets. In particular, we obtain a unique relation of the "radion" to chiral superfields as in global 5D SUSY and we can embed the universal hypermultiplet into this formalism. In our approach, it is transparent how the superconformal structure of the effective 4D actions is inherited from the one of the original 5D supergravity. We consider both ungauged and gauged 5D supergravities. This includes compactifications in unwarped geometries, generalizations of the supersymmetric Randall-Sundrum (RS) model as well as 5D heterotic M-theory. In the unwarped case, after obtaining the effective Kähler potentials and superpotentials, we demonstrate that the tree-level 4D potentials have flat and/or tachyonic directions. One-loop corrections to the Kähler potential and gaugino condensation are presented as suitable tools for moduli stabilization to be discussed in subsequent work. Turning to the RS-like models, we obtain a master formula for the Kähler potential for an arbitrary number of vector and hyper moduli, which we evaluate exactly for special cases. Finally, we formulate the superfield description of 5D heterotic M-theory and obtain its effective 4D description for the universal ( h=1) case, in the presence of an arbitrary number of bulk 5-branes. We present, as a check of our expressions, time-dependent solutions of 4D heterotic M-theory, which uplift to 5D solutions generalizing the ones recently found in [W. Chen, Z.-W. Chong, G.W. Gibbons, H. Lü, C.N. Pope, Hořava-Witten stability: Eppur si muove, Nucl. Phys. B 732 (2006) 118, hep-th/0502077].
Tachyons in the Galilean limit
NASA Astrophysics Data System (ADS)
Batlle, Carles; Gomis, Joaquim; Mezincescu, Luca; Townsend, Paul K.
2017-04-01
The Souriau massless Galilean particle of "colour" k and spin s is shown to be the Galilean limit of the Souriau tachyon of mass m = ik and spin s. We compare and contrast this result with the Galilean limit of the Nambu-Goto string and Green-Schwarz superstring.
Stochastic background from cosmic (super)strings: Popcorn-like and (Gaussian) continuous regimes
NASA Astrophysics Data System (ADS)
Regimbau, Tania; Giampanis, Stefanos; Siemens, Xavier; Mandic, Vuk
2012-03-01
In the era of the next generation of gravitational wave experiments a stochastic background from cusps of cosmic (super)strings is expected to be probed and, if not detected, to be significantly constrained. A popcornlike background can be, for part of the parameter space, as pronounced as the (Gaussian) continuous contribution from unresolved sources that overlap in frequency and time. We study both contributions from unresolved cosmic string cusps over a range of frequencies relevant to ground based interferometers, such as the LIGO/Virgo second generation and Einstein Telescope third generation detectors, the space antenna LISA, and pulsar timing arrays. We compute the sensitivity (at the 2σ level) in the parameter space for the LIGO/Virgo second generation detector, the Einstein Telescope detector, LISA, and pulsar timing arrays. We conclude that the popcorn regime is complementary to the continuous background. Its detection could therefore enhance confidence in a stochastic background detection and possibly help determine fundamental string parameters such as the string tension and the reconnection probability.
Open superstring field theory based on the supermoduli space
NASA Astrophysics Data System (ADS)
Ohmori, Kantaro; Okawa, Yuji
2018-04-01
We present a new approach to formulating open superstring field theory based on the covering of the supermoduli space of super-Riemann surfaces and explicitly construct a gauge-invariant action in the Neveu-Schwarz sector up to quartic interactions. The cubic interaction takes a form of an integral over an odd modulus of disks with three punctures and the associated ghost is inserted. The quartic interaction takes a form of an integral over one even modulus and two odd moduli, and it can be interpreted as the integral over the region of the supermoduli space of disks with four punctures which is not covered by Feynman diagrams with two cubic vertices and one propagator. As our approach is based on the covering of the supermoduli space, the resulting theory naturally realizes an A ∞ structure, and the two-string product and the three-string product used in defining the cubic and quartic interactions are constructed to satisfy the A ∞ relations to this order.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pern, F.J.; Glick, S.H.
We have conducted a series of accelerated exposure test (AET) studies for various crystalline-Si (c-Si) and amorphous-Si (a-Si) cell samples that were encapsulated with different superstrates, pottants, and substrates. Nonuniform browning patterns of ethylene vinyl acetate (EVA) pottants were observed for glass/EVA/glass-encapsulated c-Si cell samples under solar simulator exposures at elevated temperatures. The polymer/polymer-configured laminates with Tedlar or Tefzel did not discolor because of photobleaching reactions, but yellowed with polyester or nylon top films. Delamination was observed for the polyester/EVE layers on a-Si minimodules and for a polyolefin-based thermoplastic pottant at high temperatures. For all tested c-Si cell samples, irregularmore » changes in the current-voltage parameters were observed that could not be accounted for simply by the transmittance changes of the superstrate/pottant layers. Silicone-type adhesives used under UV-transmitting polymer top films were observed to cause greater cell current/efficiency loss than EVA or polyethylene pottants. {copyright} {ital 1999 American Institute of Physics.}« less
PhD Thesis: String theory in the early universe
NASA Astrophysics Data System (ADS)
Gwyn, Rhiannon
2009-11-01
The intersection of string theory with cosmology is unavoidable in the early universe, and its exploration may shine light on both fields. In this thesis, three papers at this intersection are presented and reviewed, with the aim of providing a thorough and pedagogical guide to their results. First, we address the longstanding problem of finding a string theory realisation of the axion. Using warped compactifications in heterotic string theory, we show that the axion decay constant can be lowered to acceptable values by the warp factor. Next, we move to the subject of cosmic strings, whose network evolution could have important consequences for astrophysics and cosmology. In particular, there are quantitative differences between cosmic superstring networks and GUT cosmic string networks. We investigate the properties of cosmic superstring networks in warped backgrounds, giving the tension and properties of three-string junctions in these backgrounds. Finally, we examine the possibility that cosmic strings in heterotic string theory could be responsible for generating the galactic magnetic fields that seeded those observed today.
Holography, black holes and condensed matter physics
NASA Astrophysics Data System (ADS)
Gentle, Simon Adam
In this thesis we employ holographic techniques to explore strongly-coupled quantum field theories at non-zero temperature and density. First we consider a state dual to a charged black hole with planar horizon and compute retarded Green's functions for conserved currents in the shear channel. We demonstrate the intricate motion of their poles and stress the importance of the residues at the poles beyond the hydrodynamic regime. We then explore the collective excitations of holographic quantum liquids arising on D3/D5 and D3/D7 brane intersections as a function of temperature and magnetic field in the probe limit. We observe a crossover from hydrodynamic charge diffusion to a sound mode similar to the zero sound mode in the collisionless regime of a Landau Fermi liquid. The location of this crossover is approximately independent of the magnetic field. The sound mode has a gap proportional to the magnetic field, leading to strong suppression of spectral weight for intermediate frequencies and sufficiently large magnetic fields. In the second part we explore the solution space of AdS gravity in the hope of learning general lessons about such theories. First we study charged scalar solitons in global AdS4. These solutions have a rich phase space and exhibit critical behaviour as a function of the scalar charge and scalar boundary conditions. We demonstrate how the planar limit of global solitons coincides generically with the zero-temperature limit of black branes with charged scalar hair. We exhibit these features in both phenomenological models and consistent truncations of eleven-dimensional supergravity. We then discover new branches of hairy black brane in SO(6) gauged supergravity. Despite the imbalance provided by three chemical potentials conjugate to the three R-charges, there is always at least one branch with charged scalar hair, emerging at a temperature where the normal phase is locally thermodynamically stable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmkvist, Jakob, E-mail: palmkvist@ihes.fr
We introduce an infinite-dimensional Lie superalgebra which is an extension of the U-duality Lie algebra of maximal supergravity in D dimensions, for 3 ⩽ D ⩽ 7. The level decomposition with respect to the U-duality Lie algebra gives exactly the tensor hierarchy of representations that arises in gauge deformations of the theory described by an embedding tensor, for all positive levels p. We prove that these representations are always contained in those coming from the associated Borcherds-Kac-Moody superalgebra, and we explain why some of the latter representations are not included in the tensor hierarchy. The most remarkable feature of ourmore » Lie superalgebra is that it does not admit a triangular decomposition like a (Borcherds-)Kac-Moody (super)algebra. Instead the Hodge duality relations between level p and D − 2 − p extend to negative p, relating the representations at the first two negative levels to the supersymmetry and closure constraints of the embedding tensor.« less
Holographic complexity and noncommutative gauge theory
NASA Astrophysics Data System (ADS)
Couch, Josiah; Eccles, Stefan; Fischler, Willy; Xiao, Ming-Lei
2018-03-01
We study the holographic complexity of noncommutative field theories. The four-dimensional N=4 noncommutative super Yang-Mills theory with Moyal algebra along two of the spatial directions has a well known holographic dual as a type IIB supergravity theory with a stack of D3 branes and non-trivial NS-NS B fields. We start from this example and find that the late time holographic complexity growth rate, based on the "complexity equals action" conjecture, experiences an enhancement when the non-commutativity is turned on. This enhancement saturates a new limit which is exactly 1/4 larger than the commutative value. We then attempt to give a quantum mechanics explanation of the enhancement. Finite time behavior of the complexity growth rate is also studied. Inspired by the non-trivial result, we move on to more general setup in string theory where we have a stack of D p branes and also turn on the B field. Multiple noncommutative directions are considered in higher p cases.
Quantum corrections to Bekenstein-Hawking black hole entropy and gravity partition functions
NASA Astrophysics Data System (ADS)
Bytsenko, A. A.; Tureanu, A.
2013-08-01
Algebraic aspects of the computation of partition functions for quantum gravity and black holes in AdS3 are discussed. We compute the sub-leading quantum corrections to the Bekenstein-Hawking entropy. It is shown that the quantum corrections to the classical result can be included systematically by making use of the comparison with conformal field theory partition functions, via the AdS3/CFT2 correspondence. This leads to a better understanding of the role of modular and spectral functions, from the point of view of the representation theory of infinite-dimensional Lie algebras. Besides, the sum of known quantum contributions to the partition function can be presented in a closed form, involving the Patterson-Selberg spectral function. These contributions can be reproduced in a holomorphically factorized theory whose partition functions are associated with the formal characters of the Virasoro modules. We propose a spectral function formulation for quantum corrections to the elliptic genus from supergravity states.
On Quadratic Divergences in Supergravity, Vacuum Energy and theSupersymmetric Flavor Problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaillard, Mary K.; Nelson, Brent D.
2005-11-18
We examine the phenomenological consequences ofquadratically divergent contributions to the scalar potential insupergravity effective Lagrangians. We focus specifically on the effectof these corrections on the vacuum configurationof scalar fields insoftly-broken supersymmetric theory is and the role these correctionsplay in generating non-diagonal soft scalar masses. Both effects can onlybe properly studied when the divergences are regulated in a manifestlysupersymmetric manner -- something which has ths far been neglected inpast treatments. We show how a supersymmetric regularization can impactpast conclusions about both types of phenomena and discuss what types ofhigh-energy theories are likely to be safe from unwanted flavor-changingneutral current interactions inmore » the context of supergravity theoriesderived from heterotic string compactifications.« less
Gravity with a cosmological constant from rational curves
NASA Astrophysics Data System (ADS)
Adamo, Tim
2015-11-01
We give a new formula for all tree-level correlators of boundary field insertions in gauged N=8 supergravity in AdS4; this is an analogue of the tree-level S-matrix in anti-de Sitter space. The formula is written in terms of rational maps from the Riemann sphere to twistor space, with no reference to bulk perturbation theory. It is polynomial in the cosmological constant, and equal to the classical scattering amplitudes of supergravity in the flat space limit. The formula is manifestly supersymmetric, independent of gauge choices on twistor space, and equivalent to expressions computed via perturbation theory at 3-point overline{MHV} and n-point MHV. We also show that the formula factorizes and obeys BCFW recursion in twistor space.
NASA Astrophysics Data System (ADS)
Ellis, John; Garcia, Marcos A. G.; Nanopoulos, Dimitri V.; Olive, Keith A.
2016-05-01
Supersymmetry is the most natural framework for physics above the TeV scale, and the corresponding framework for early-Universe cosmology, including inflation, is supergravity. No-scale supergravity emerges from generic string compactifications and yields a non-negative potential, and is therefore a plausible framework for constructing models of inflation. No-scale inflation yields naturally predictions similar to those of the Starobinsky model based on R+{R}2 gravity, with a tilted spectrum of scalar perturbations: {n}s∼ 0.96, and small values of the tensor-to-scalar perturbation ratio r\\lt 0.1, as favoured by Planck and other data on the cosmic microwave background (CMB). Detailed measurements of the CMB may provide insights into the embedding of inflation within string theory as well as its links to collider physics.
Inflation and leptogenesis from right handed sneutrinos in supergravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peloso, Marco, E-mail: peloso@physics.umn.edu
2016-06-21
We describe a supergravity model of inflation where the inflaton is identified with one linerar combination of two right handed sneutrino fields. The potential along the inflationary trajectory is flatter than that of massive chaotic inflation, resulting in a detectable but not ruled out tensor-to-scalar ratio r. In general, the potential for the two sneutrinos has complex phases. As a result, the two neutrinos can develop a nonvanishing lepton charge through a simple modification of the Affleck-Dine mechanism. [This talk summarizes the work of Evans, Ghergetta, and Peloso, Phys. Rev. D 92, no. 2, 021303 (2015) (Ref. 1). Please refermore » to that work for details and for a more comprehensive list of references.].« less
The Rising Landscape: A Visual Exploration of Superstring Revolutions in Physics.
ERIC Educational Resources Information Center
Chen, Chaomei; Kuljis, Jasna
2003-01-01
Discussion of knowledge domain visualization focuses on practical issues concerning modeling and visualizing scientific revolutions. Studies growth patterns of specialties derived from citation and cocitation data on string theory in physics, using the general framework of Thomas Kuhn's structure of scientific revolutions. (Author/LRW)
Five dimensional microstate geometries
NASA Astrophysics Data System (ADS)
Wang, Chih-Wei
In this thesis, we discuss the possibility of exploring the statistical mechanics description of a black hole from the point view of supergravity. Specifically, we study five dimensional microstate geometries of a black hole or black ring. At first, we review the method to find the general three-charge BPS supergravity solutions proposed by Bena and Warner. By applying this method, we show the classical merger of a black ring and black hole on [Special characters omitted.] base space in general are irreversible. On the other hand, we review the solutions on ambi-polar Gibbons-Hawking (GH) base which are bubbled geometries. There are many possible microstate geometries among the bubbled geometries. Particularly, we show that a generic blob of GH points that satisfy certain conditions can be either microstate geometry of a black hole or black ring without horizon. Furthermore, using the result of the entropy analysis in classical merger as a guide, we show that one can have a merger of a black-hole blob and a black-ring blob or two black-ring blobs that corresponds to a classical irreversible merger. From the irreversible mergers, we find the scaling solutions and deep microstates which are microstate geometries of a black hole/ring with macroscopic horizon. These solutions have the same AdS throats as classical black holes/rings but instead of having infinite throats, the throat is smoothly capped off at a very large depth with some local structure at the bottom. For solutions that produced from U (1) × U (1) invariant merger, the depth of the throat is limited by flux quantization. The mass gap is related with the depth of this throat and we show the mass gap of these solutions roughly match with the mass gap of the typical conformal-field-theory (CFT) states. Therefore, based on AdS/CFT correspondence, they can be dual geometries of the typical CFT states that contribute to the entropy of a black hole/ring. On the other hand, we show that for the solutions produced from more general merger (without U (1) × U (1) invariance), the throat can be arbitrarily deep. This presents a puzzle from the point view of AdS/CFT correspondence. We propose that this puzzle may be solved by some quantization of the angle or promoting the flux vectors to quantum spins. Finally, we suggest some future directions of further study including the puzzle of arbitrary long AdS throat and a general coarse-graining picture of microstate geometries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amariti, Antonio; Toldo, Chiara
We consider 4d N = 1 SCFTs, topologically twisted on compact constant curvature Riemann surfaces, giving rise to 2d N = (0; 2) SCFTs. The exact R-current of these 2d SCFT extremizes the central charge c 2d, similarly to the 4d picture, where the exact R-current maximizes the central charge a 4d. There are global currents that do not mix with the R-current in 4d but their mixing becomes non trivial in 2d. In this paper we study the holographic dual of this process by analyzing a 5d N = 2 truncation of T 1,1 with one Betti vector multiplet,more » dual to the baryonic current on the CFT side. The holographic realization of the flow across dimensions connects AdS 5 to AdS 3 vacua in the supergravity picture. We verify the existence of the flow to AdS 3 solutions and we retrieve the field theory results for the mixing of the Betti vector with the graviphoton. Moreover, we extract the central charge from the Brown-Henneaux formula, matching with the results obtained in field theory. We develop a general formalism to obtain the central charge of a 2d SCFT from 5d N = 2 gauged supergravity with a generic number of vector multiplets, showing that its extremization corresponds to an attractor mechanism for the scalars in the supergravity picture.« less
Betti multiplets, flows across dimensions and c-extremization
Amariti, Antonio; Toldo, Chiara
2017-07-10
We consider 4d N = 1 SCFTs, topologically twisted on compact constant curvature Riemann surfaces, giving rise to 2d N = (0; 2) SCFTs. The exact R-current of these 2d SCFT extremizes the central charge c 2d, similarly to the 4d picture, where the exact R-current maximizes the central charge a 4d. There are global currents that do not mix with the R-current in 4d but their mixing becomes non trivial in 2d. In this paper we study the holographic dual of this process by analyzing a 5d N = 2 truncation of T 1,1 with one Betti vector multiplet,more » dual to the baryonic current on the CFT side. The holographic realization of the flow across dimensions connects AdS 5 to AdS 3 vacua in the supergravity picture. We verify the existence of the flow to AdS 3 solutions and we retrieve the field theory results for the mixing of the Betti vector with the graviphoton. Moreover, we extract the central charge from the Brown-Henneaux formula, matching with the results obtained in field theory. We develop a general formalism to obtain the central charge of a 2d SCFT from 5d N = 2 gauged supergravity with a generic number of vector multiplets, showing that its extremization corresponds to an attractor mechanism for the scalars in the supergravity picture.« less
Supergravity backgrounds for deformations of AdS n × S n supercoset string models
Lunin, O.; Roiban, R.; Tseytlin, A. A.
2014-12-11
We considermore » type IIB supergravity backgrounds corresponding to the deformed AdS n × S n × T 10 - 2 n supercoset string models of the type constructed in arXiv:1309.5850[2] which depend on one deformation parameter κ. In AdS 2 × S 2 case we find that the deformed metric can be extended to a full supergravity solution with non-trivial dilaton, RR scalar and RR 5-form strength. The solution depends on a free parameter a that should be chosen as a particular function of κ to correspond to the deformed supercoset model. In AdS 3 × S 3 case the full solution supported by the dilaton, RR scalar and RR 3-form strength exists only in the two special cases, a = 0 and a = 1 . We conjecture that there may be a more general one-parameter solution supported by several RR fields that for particular a = a ( κ ) corresponds to the supercoset model. In the most complicated deformed AdS 5 × S 5 case we were able to find only the expressions for the dilaton and the RR scalar. The full solution is likely to be supported by a combination of the 5-form and 3-form field strengths. We comment on the singularity structure of the resulting metric and exact dilaton field.« less
Supergravity backgrounds for deformations of AdS n × S n supercoset string models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lunin, O.; Roiban, R.; Tseytlin, A. A.
We considermore » type IIB supergravity backgrounds corresponding to the deformed AdS n × S n × T 10 - 2 n supercoset string models of the type constructed in arXiv:1309.5850[2] which depend on one deformation parameter κ. In AdS 2 × S 2 case we find that the deformed metric can be extended to a full supergravity solution with non-trivial dilaton, RR scalar and RR 5-form strength. The solution depends on a free parameter a that should be chosen as a particular function of κ to correspond to the deformed supercoset model. In AdS 3 × S 3 case the full solution supported by the dilaton, RR scalar and RR 3-form strength exists only in the two special cases, a = 0 and a = 1 . We conjecture that there may be a more general one-parameter solution supported by several RR fields that for particular a = a ( κ ) corresponds to the supercoset model. In the most complicated deformed AdS 5 × S 5 case we were able to find only the expressions for the dilaton and the RR scalar. The full solution is likely to be supported by a combination of the 5-form and 3-form field strengths. We comment on the singularity structure of the resulting metric and exact dilaton field.« less
Betti multiplets, flows across dimensions and c-extremization
NASA Astrophysics Data System (ADS)
Amariti, Antonio; Toldo, Chiara
2017-07-01
We consider 4d N = 1 SCFTs, topologically twisted on compact constant curvature Riemann surfaces, giving rise to 2d N = (0, 2) SCFTs. The exact R-current of these 2d SCFT extremizes the central charge c 2 d , similarly to the 4d picture, where the exact R-current maximizes the central charge a 4 d . There are global currents that do not mix with the R-current in 4d but their mixing becomes non trivial in 2d. In this paper we study the holographic dual of this process by analyzing a 5d N = 2 truncation of T 1,1 with one Betti vector multiplet, dual to the baryonic current on the CFT side. The holographic realization of the flow across dimensions connects AdS5 to AdS3 vacua in the supergravity picture. We verify the existence of the flow to AdS3 solutions and we retrieve the field theory results for the mixing of the Betti vector with the graviphoton. Moreover, we extract the central charge from the Brown-Henneaux formula, matching with the results obtained in field theory. We develop a general formalism to obtain the central charge of a 2d SCFT from 5d N = 2 gauged supergravity with a generic number of vector multiplets, showing that its extremization corresponds to an attractor mechanism for the scalars in the supergravity picture.
Supergravity separation of Pb and Sn from waste printed circuit boards at different temperatures
NASA Astrophysics Data System (ADS)
Meng, Long; Wang, Zhe; Zhong, Yi-wei; Chen, Kui-yuan; Guo, Zhan-cheng
2018-02-01
Printed circuit boards (PCBs) contain many toxic substances as well as valuable metals, e.g., lead (Pb) and tin (Sn). In this study, a novel technology, named supergravity, was used to separate different mass ratios of Pb and Sn from Pb-Sn alloys in PCBs. In a supergravity field, the liquid metal phase can permeate from solid particles. Hence, temperatures of 200, 280, and 400°C were chosen to separate Pb and Sn from PCBs. The results depicted that gravity coefficient only affected the recovery rates of Pb and Sn, whereas it had little effect on the mass ratios of Pb and Sn in the obtained alloys. With an increase in gravity coefficient, the recovery values of Pb and Sn in each step of the separation process increased. In the single-step separation process, the mass ratios of Pb and Sn in Pb-Sn alloys were 0.55, 0.40, and 0.64 at 200, 280, and 400°C, respectively. In the two-step separation process, the mass ratios were 0.12 and 0.55 at 280 and 400°C, respectively. Further, the mass ratio was observed to be 0.76 at 400°C in the three-step separation process. This process provides an innovative approach to the recycling mechanism of Pb and Sn from PCBs.
NASA Astrophysics Data System (ADS)
Gunion, John F.; Han, Tao; Ohnemus, James
1995-08-01
The Table of Contents for the book is as follows: * Preface * Organizing and Advisory Committees * PLENARY SESSIONS * Looking Beyond the Standard Model from LEP1 and LEP2 * Virtual Effects of Physics Beyond the Standard Model * Extended Gauge Sectors * CLEO's Views Beyond the Standard Model * On Estimating Perturbative Coefficients in Quantum Field Theory and Statistical Physics * Perturbative Corrections to Inclusive Heavy Hadron Decay * Some Recent Developments in Sphalerons * Searching for New Matter Particles at Future Colliders * Issues in Dynamical Supersymmetry Breaking * Present Status of Fermilab Collider Accelerator Upgrades * The Extraordinary Scientific Opportunities from Upgrading Fermilab's Luminosity ≥ 1033 cm-2 sec-1 * Applications of Effective Lagrangians * Collider Phenomenology for Strongly Interacting Electroweak Sector * Physics of Self-Interacting Electroweak Bosons * Particle Physics at a TeV-Scale e+e- Linear Collider * Physics at γγ and eγ Colliders * Challenges for Non-Minimal Higgs Searchers at Future Colliders * Physics Potential and Development of μ+μ- Colliders * Beyond Standard Quantum Chromodynamics * Extracting Predictions from Supergravity/Superstrings for the Effective Theory Below the Planck Scale * Non-Universal SUSY Breaking, Hierarchy and Squark Degeneracy * Supersymmetric Phenomenology in the Light of Grand Unification * A Survey of Phenomenological Constraints on Supergravity Models * Precision Tests of the MSSM * The Search for Supersymmetry * Neutrino Physics * Neutrino Mass: Oscillations and Hot Dark Matter * Dark Matter and Large-Scale Structure * Electroweak Baryogenesis * Progress in Searches for Non-Baryonic Dark Matter * Big Bang Nucleosynthesis * Flavor Tests of Quark-Lepton * Where are We Coming from? What are We? Where are We Going? * Summary, Perspectives * PARALLEL SESSIONS * SUSY Phenomenology I * Is Rb Telling us that Superpartners will soon be Discovered? * Dark Matter in Constrained Minimal Supersymmetry * A Fourth Family in the MSSM? * Multi-channel Search for Supergravity at the Large Hadron Collider * Precise Predictions for Masses and Couplings in the Minimal Supersymmetric Standard Model * Radiative b Decays and the Detection of Supersymmetric Dark Matter * Bounds on ΔB = 1 Couplings in the Supersymmetric Standard Model * Testing Supersymmetry at the Next Linear Collider * SUSY Phenomenology II * Is There a Light Gluino Window? * Soft Supersymmetry Breaking and Finiteness * Consequences of Low Energy Dynamical Supersymmetry Breaking * String Model Theory and Phenomenology * Z2 × Z2 Orbifold Compactification - the Origin of Realistic Free Fermionic Models * Effective Supergravity from 4-D Fermionic Strings * String Models Featuring Direct Product Unification * Hadronic and Non-Perturbative Physics * Salient Features of High-Energy Multiparticle Distributions: 1-d Ising Model Captures Them All * Pion Fusion in the Equivalent Pion Approximation * Deterministic Theory of Atomic Structure * Disoriented Chiral Condensate * Higgs Physics * The LHC Phenomenology of the CP-Odd Scalar in Two-Doublet Models * Detection of Minimal Supersymmetric Model Higgs Bosons in γγ Collisions: Influence of SUSY Decay Modes * Electroweak Corrections to the Charged Higgs Production Cross-Section * A Comparison of Higgs Mass Bounds in the SM and the MSSM * Searching for Higgs Bosons on LHC Using b-Tagging * Top Quark and Flavor Physics * Flavor Mixing, CP Violation and a Heavy Top * New Fermion Families and Precision Electroweak Data * Dipole Operator Phenomenology and Quark Mass Generation: An Update * Possible Higgs Boson Effects on the Running of Third and Fourth Generation Quark Masses and Mixings * How the Top Family Differs * Fermion Masses in Extended Technicolour * New Developments in Perturbative QCD * Efficient Analytic Computation of Higher-Order QCD Amplitudes * Use of Recursion Relations to Compute One-Loop Helicity Amplitudes * Gluon Radiation Patterns in Hard Scattering Events * B Physics * Inclusive Hadronic Production of the Bc Meson via Heavy Quark Fragmentation * Helicity Probabilities for Heavy Quark Fragmentation into Heavy-Light Excited Mesons * Hadronic Penguins in B Decays and Extraction of α, β and γ * CP Violation Physics * Maximum Likelihood Method for New Physics Mixing Angles, and Projections to Using B Factory Results * CP Violation in Fermionic Decays of Higgs Bosons * Test of CP Violation in Non-Leptonic Hyperon Decays * CP Violation in the Weinberg Multi-Higgs Model * Triple-Product Spin-Momentum Correlations in Polarized Z Decays to Three Jets * Radiative CP Violation * HERA Results * A Search for Leptoquarks and Squarks in H1 at HERA * Search for Leptoquarks in ep Collisions at √ {s}=296; {GeV} * Search for Excited Fermions in ep Collisions at √ {s}=296; {GeV} * Tevatron Results * Measurement of Diboson Production at the Tevatron Collider with D0 * Search for SUSY in D0 * Search for SUSY at CDF * Search for First and Second Generation Leptoquarks with the D0 Detector * Search for Exotic Particles at CDF * e+e- and μ+μ- Physics * Aspects of Higgs Boson Searches * Measurements of the Forward-Backward Asymmetry of Quarks in the DELPHI Experiment at LEP * Astrophysics, Dark Matter, Cosmology and Neutrino Physics * A Model Independent Approach to Future Solar Neutrino Experiments * Neutrino Oscillations with Beams from AGN's and GRB's * Implication of Macho Detections for Dark Matter Searches * Chiral Restoration in the Early Universe: Pion Halo in the Sky * SEWS, Anomalous Couplings, and Precision EW * Do WL and H form a P-Wave Bound State? * An Update on Strong WLWL Scattering at the LHC * The Difficulties Involved in Calculating δρ * What Can We Learn from the Measurement R_{b}≡Γ(Z → bbar{b}/Γ(Z → Hadrons)? * Gauge Invariance and Anomalous Gauge Boson Couplings * Probing the Standard Model with Hadronic WZ Production * Consequences of Recent Electroweak Data and W-Mass for the Top Quark and Higgs Masses * Equivalence Theorem as a Criterion for Probing the Electroweak Symmetry Breaking Mechanism * Conference Schedule * Schedule of the Parallel Sessions * List of Participants
Tribrid Inflation in Supergravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antusch, Stefan; Dutta, Koushik; Kostka, Philipp M.
2010-02-10
We propose a novel class of F-term hybrid inflation models in supergravity (SUGRA) where the eta-problem is resolved using either a Heisenberg symmetry or a shift symmetry of the Kaehler potential. In addition to the inflaton and the waterfall field, this class (referred to as tribrid inflation) contains a third 'driving' field which contributes the large vacuum energy during inflation by its F-term. In contrast to the 'standard' hybrid scenario, it has several attractive features due to the property of vanishing inflationary superpotential (W{sub inf} = 0) during inflation. While the symmetries of the Kaehler potential ensure a flat inflatonmore » potential at tree-level, quantum corrections induced by symmetry breaking terms in the superpotential generate a slope of the potential and lead to a spectral tilt consistent with recent WMAP observations.« less
Conformal anomaly and off-shell extensions of gravity
NASA Astrophysics Data System (ADS)
Meissner, Krzysztof A.; Nicolai, Hermann
2017-08-01
The gauge dependence of the conformal anomaly for spin-3/2 and spin-2 fields in nonconformal supergravities has been a long standing puzzle. In this paper we argue that the "correct" gauge choice is the one that follows from requiring all terms that would imply a violation of the Wess-Zumino consistency condition to be absent in the counterterm, because otherwise the usual link between the anomaly and the one-loop divergence becomes invalid. Remarkably, the "good" choice of gauge is the one that confirms our previous result [K. A. Meissner and H. Nicolai, Phys. Lett. B 772, 169 (2017)., 10.1016/j.physletb.2017.06.031] that a complete cancellation of conformal anomalies in D =4 can only be achieved for N -extended (Poincaré) supergravities with N ≥5 .
On supersymmetric AdS6 solutions in 10 and 11 dimensions
NASA Astrophysics Data System (ADS)
Gutowski, J.; Papadopoulos, G.
2017-12-01
We prove a non-existence theorem for smooth, supersymmetric, warped AdS 6 solutions with connected, compact without boundary internal space in D = 11 and (massive) IIA supergravities. In IIB supergravity we show that if such AdS 6 solutions exist, then the NSNS and RR 3-form fluxes must be linearly independent and certain spinor bilinears must be appropriately restricted. Moreover we demonstrate that the internal space admits an so(3) action which leaves all the fields invariant and for smooth solutions the principal orbits must have co-dimension two. We also describe the topology and geometry of internal spaces that admit such a so(3) action and show that there are no solutions for which the internal space has topology F × S 2, where F is an oriented surface.
Logarithmic corrections to black hole entropy: the non-BPS branch
NASA Astrophysics Data System (ADS)
Castro, Alejandra; Godet, Victor; Larsen, Finn; Zeng, Yangwenxiao
2018-05-01
We compute the leading logarithmic correction to black hole entropy on the non-BPS branch of 4D N≥2 supergravity theories. This branch corresponds to finite temperature black holes whose extremal limit does not preserve supersymmetry, such as the D0 - D6 system in string theory. Starting from a black hole in minimal Kaluza-Klein theory, we discuss in detail its embedding into N=8 , 6, 4, 2 supergravity, its spectrum of quadratic fluctuations in all these environments, and the resulting quantum corrections. We find that the c-anomaly vanishes only when N≥6 , in contrast to the BPS branch where c vanishes for all N≥2 . We briefly discuss potential repercussions this feature could have in a microscopic description of these black holes.
Quantization of higher abelian gauge theory in generalized differential cohomology
NASA Astrophysics Data System (ADS)
Szabo, R.
We review and elaborate on some aspects of the quantization of certain classes of higher abelian gauge theories using techniques of generalized differential cohomology. Particular emphasis is placed on the examples of generalized Maxwell theory and Cheeger-Simons cohomology, and of Ramond-Ramond fields in Type II superstring theory and differential K-theory.
Observational physics of mirror world
NASA Technical Reports Server (NTRS)
Khlopov, M. YA.; Beskin, G. M.; Bochkarev, N. E.; Pustilnik, L. A.; Pustilnik, S. A.
1989-01-01
The existence of the whole world of shadow particles, interacting with each other and having no mutual interactions with ordinary particles except gravity is a specific feature of modern superstring models, being considered as models of the theory of everything. The presence of shadow particles is the necessary condition in the superstring models, providing compensation of the asymmetry of left and right chirality states of ordinary particles. If compactification of additional dimensions retains the symmetry of left and right states, shadow world turns to be the mirror one, with particles and fields having properties strictly symmetrical to the ones of corresponding ordinary particles and fields. Owing to the strict symmetry of physical laws for ordinary and mirror particles, the analysis of cosmological evolution of mirror matter provides rather definite conclusions on possible effects of mirror particles in the universe. A general qualitative discussion of possible astronomical impact of mirror matter is given, in order to make as wide as possible astronomical observational searches for the effects of mirror world, being the unique way to test the existence of mirror partners of ordinary particles in the Nature.
Light trapping in thin-film solar cells measured by Raman spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ledinský, M., E-mail: ledinsky@fzu.cz; Photovoltaics and Thin Film Electronics Laboratory, Institute of Microengineering; Moulin, E.
2014-09-15
In this study, Raman spectroscopy is used as a tool to determine the light-trapping capability of textured ZnO front electrodes implemented in microcrystalline silicon (μc-Si:H) solar cells. Microcrystalline silicon films deposited on superstrates of various roughnesses are characterized by Raman micro-spectroscopy at excitation wavelengths of 442 nm, 514 nm, 633 nm, and 785 nm, respectively. The way to measure quantitatively and with a high level of reproducibility the Raman intensity is described in details. By varying the superstrate texture and with it the light trapping in the μc-Si:H absorber layer, we find significant differences in the absolute Raman intensity measured in the near infraredmore » wavelength region (where light trapping is relevant). A good agreement between the absolute Raman intensity and the external quantum efficiency of the μc-Si:H solar cells is obtained, demonstrating the validity of the introduced method. Applications to thin-film solar cells, in general, and other optoelectronic devices are discussed.« less
Integrability of the Ad{{S}_{5}}\\times {{S}^{5}} superstring and its deformations
NASA Astrophysics Data System (ADS)
van Tongeren, Stijn J.
2014-10-01
This article reviews the application of integrability to the spectral problem of strings on Ad{{S}5}× {{S}5} and its deformations. We begin with a pedagogical introduction to integrable field theories culminating in the description of their finite-volume spectra through the thermodynamic Bethe ansatz (TBA). Next, we apply these ideas to the Ad{{S}5}× {{S}5} string and in later sections discuss how to account for particular integrable deformations. Through the AdS/CFT correspondence this gives an exact description of anomalous scaling dimensions of single trace operators in planar N=4 supersymmetry Yang-Mills theory, its ‘orbifolds’, and β and γ-deformed supersymmetric Yang-Mills theory. We also touch upon some subtleties arising in these deformed theories. Furthermore, we consider complex excited states (bound states) in the su(2) sector and give their TBA description. Finally we discuss the TBA for a quantum deformation of the Ad{{S}5}× {{S}5} superstring S-matrix, with close relations to among others Pohlmeyer reduced string theory, and briefly indicate more recent developments in this area.
Top-quark mass coupling and classification of weakly coupled heterotic superstring vacua
NASA Astrophysics Data System (ADS)
Rizos, J.
2014-06-01
The quest for the Standard Model among the huge number of string vacua is usually based on a set of phenomenological criteria related to the massless spectrum of string models. In this work we study criteria associated with interactions in the effective low energy theory and in particular with the presence of the coupling that provides mass to the top quark. Working in the context of the free-fermionic formulation of the heterotic superstring, we demonstrate that, in a big class of phenomenologically promising compactifications, these criteria can be expressed entirely in terms of the generalised GSO projection coefficients entering the definition of the models. They are shown to be very efficient in identifying phenomenologically viable vacua, especially in the framework of computer-based search, as they are met by approximately one every models. We apply our results in the investigation of a class of supersymmetric Pati-Salam vacua, comprising configurations, and we show that when combined with other phenomenological requirements they lead to a relatively small set of about Standard Model compatible models that can be fully classified.
Advances in all-sputtered CdTe solar cells on flexible substrates
NASA Astrophysics Data System (ADS)
Wieland, Kristopher; Mahabaduge, Hasitha; Vasko, Anthony; Compaan, Alvin
2010-03-01
The University of Toledo II-VI semiconductor group has developed magnetron sputtering (MS) for the deposition of thin films of CdS, CdTe, and related materials for photovoltaic applications. On glass superstrates, we have reached air mass 1.5 efficiencies of 14%.[1] Recently we have studied the use of MS for the fabrication of thin-film CdS/CdTe cells on flexible polyimide superstrates. This takes advantage of the high film quality that can be achieved at substrate temperatures below 300 C when RF MS is used. Our recent CdS/CdTe solar cells have reached 10.5% on flexible polyimide substrates. [2] This all-sputtered cell (except for back contact) has a structure of polyimide/ZnO:Al/ZnO/CdS/CdTe/Cu/Au. The physics of this device will be discussed through the use of spectral quantum efficiency and current-voltage measurements as a function of CdTe layer thickness. Pathways toward further increases in device efficiencies will also be discussed. [1] Appl. Phys. Lett. 85, 684 (2004) [2] Phys. Stat. Sol. (B) 241, No. 3, 779--782 (2004)
Towards generalized mirror symmetry for twisted connected sum G 2 manifolds
NASA Astrophysics Data System (ADS)
Braun, Andreas P.; Del Zotto, Michele
2018-03-01
We revisit our construction of mirror symmetries for compactifications of Type II superstrings on twisted connected sum G 2 manifolds. For a given G 2 manifold, we discuss evidence for the existence of mirror symmetries of two kinds: one is an autoequivalence for a given Type II superstring on a mirror pair of G 2 manifolds, the other is a duality between Type II strings with different chiralities for another pair of mirror manifolds. We clarify the role of the B-field in the construction, and check that the corresponding massless spectra are respected by the generalized mirror maps. We discuss hints towards a homological version based on BPS spectroscopy. We provide several novel examples of smooth, as well as singular, mirror G 2 backgrounds via pairs of dual projecting tops. We test our conjectures against a Joyce orbifold example, where we reproduce, using our geometrical methods, the known mirror maps that arise from the SCFT worldsheet perspective. Along the way, we discuss non-Abelian gauge symmetries, and argue for the generation of the Affleck-Harvey-Witten superpotential in the pure SYM case.
Fricke S-duality in CHL models
Persson, Daniel; Volpato, Roberto
2015-12-23
In this study, we consider four dimensional CHL models with sixteen spacetime supersymmetries obtained from orbifolds of type IIA superstring on K3×T 2 by a Z N symmetry acting (possibly) non-geometrically on K3. We show that most of these models (in particular, for geometric symmetries) are self-dual under a weak-strong duality acting on the heterotic axio-dilaton modulus S by a “Fricke involution” S → -1/NS. This is a novel symmetry of CHL models that lies outside of the standard SL(2,Z)-symmetry of the parent theory, heterotic strings on T 6. For self-dual models this implies that the lattice of purely electricmore » charges is N-modular, i.e. isometric to its dual up to a rescaling of its quadratic form by N. We verify this prediction by determining the lattices of electric and magnetic charges in all relevant examples. We also calculate certain BPS-saturated couplings and verify that they are invariant under the Fricke S-duality. For CHL models that are not self-dual, the strong coupling limit is dual to type IIA compactified on T 6/Z N, for some Z N-symmetry preserving half of the spacetime supersymmetries.« less
NASA Astrophysics Data System (ADS)
O'Donnell, Patrick J.; Smith, Brian Hendee
1996-11-01
The Table of Contents for the full book PDF is as follows: * Preface * Roberto Mendel, An Appreciaton * The Infamous Coulomb Gauge * Renormalized Path Integral in Quantum Mechanics * New Analysis of the Divergence of Perturbation Theory * The Last of the Soluble Two Dimensional Field Theories? * Rb and Heavy Quark Mixing * Rb Problem: Loop Contributions and Supersymmetry * QCD Radiative Effects in Inclusive Hadronic B Decays * CP-Violating Dipole Moments of Quarks in the Kobayashi-Maskawa Model * Hints of Dynamical Symmetry Breaking? * Pi Pi Scattering in an Effective Chiral Lagrangian * Pion-Resonance Parameters from QCD Sum Rules * Higgs Theorem, Effective Action, and its Gauge Invariance * SUSY and the Decay H_2^0 to gg * Effective Higgs-to-Light Quark Coupling Induced by Heavy Quark Loops * Heavy Charged Lepton Production in Superstring Inspired E6 Models * The Elastic Properties of a Flat Crystalline Membrane * Gauge Dependence of Topological Observables in Chern-Simons Theory * Entanglement Entropy From Edge States * A Simple General Treatment of Flavor Oscillations * From Schrödinger to Maupertuis: Least Action Principles from Quantum Mechanics * The Matrix Method for Multi-Loop Feynman Integrals * Simplification in QCD and Electroweak Calculations * Programme * List of Participants
An infinite swampland of U(1) charge spectra in 6D supergravity theories
NASA Astrophysics Data System (ADS)
Taylor, Washington; Turner, Andrew P.
2018-06-01
We analyze the anomaly constraints on 6D supergravity theories with a single abelian U(1) gauge factor. For theories with charges restricted to q = ±1 , ±2 and no tensor multiplets, anomaly-free models match those models that can be realized from F-theory compactifications almost perfectly. For theories with tensor multiplets or with larger charges, the F-theory constraints are less well understood. We show, however, that there is an infinite class of distinct massless charge spectra in the "swampland" of theories that satisfy all known quantum consistency conditions but do not admit a realization through F-theory or any other known approach to string compactification. We also compare the spectra of charged matter in abelian theories with those that can be realized from breaking nonabelian SU(2) and higher rank gauge symmetries.
CERN Winter School on Supergravity, Strings, and Gauge Theory 2010
None
2018-05-15
The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network Constituents, Fundamental Forces and Symmetries of the Universe. The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva.
NASA Astrophysics Data System (ADS)
Yang, Yuhou; Song, Bo; Song, Gaoyang; Yang, Zhanbing; Xin, Wenbin
2016-10-01
In this study, super-gravity technology was introduced in the lead bullion-refining process to investigate the enriching and separating laws of copper impurity from Pb-3 mass pct Cu melt. With the gravity coefficient G = 700 at the cooling rate of ν = 5 K min-1, the entire copper phase gathers at the upper area of the sample, and it is hard to find any copper particles at the bottom area of the sample. The floatation movement of copper phase was greatly intensified by super gravity and the mass pct of copper in tailing lead is up to 8.631 pct, while that in the refined lead is only 0.113 pct. The refining rate of lead bullion reached up to 94.27 pct. Copper-phase impurity can be separated effectively from Pb-3 mass pct Cu melt by filtration method in super-gravity field, and the separation efficiency increased with the increasing gravity coefficient in the range of G ≥ 10. After filtration at 613 K (340 °C) with gravity coefficient G = 100 for 10 minutes, the refined lead, with just 0.157 mass pct copper impurity, was separated to the bottom of the crucible, and the copper dross containing only 23.56 mass pct residual lead was intercepted by the carbon fiber felt, leading to the separation efficiency up to 96.18 pct (meaning a great reduction in metal loss).
Supergravity, complex parameters and the Janis-Newman algorithm
NASA Astrophysics Data System (ADS)
Erbin, Harold; Heurtier, Lucien
2015-08-01
The Demiański-Janis-Newman (DJN) algorithm is an original solution generating technique. For a long time it has been limited to producing rotating solutions, restricted to the case of a metric and real scalar fields, despite the fact that Demiański extended it to include more parameters such as a NUT charge. Recently two independent prescriptions have been given for extending the algorithm to gauge fields and thus electrically charged configurations. In this paper we aim to end setting up the algorithm by providing a missing but important piece, which is how the transformation is applied to complex scalar fields. We illustrate our proposal through several examples taken from N = 2 supergravity, including the stationary BPS solutions from Behrndt et al and Sen's axion-dilaton rotating black hole. Moreover we discuss solutions that include pairs of complex parameters, such as the mass and the NUT charge, or the electric and magnetic charges, and we explain how to perform the algorithm in this context (with the example of Kerr-Newman-Taub-NUT and dyonic Kerr-Newman black holes). The final formulation of the DJN algorithm can possibly handle solutions with five of the six Plebański-Demiański parameters along with any type of bosonic fields with spin less than two (exemplified with the stationary Israel-Wilson-Perjes solutions). This provides all the necessary tools for applications to general matter-coupled gravity and to (gauged) supergravity.
Novel Implementations of Wideband Tightly Coupled Dipole Arrays for Wide-Angle Scanning
NASA Astrophysics Data System (ADS)
Yetisir, Ersin
Ultra-wideband (UWB) antennas and arrays are essential for high data rate communications and for addressing spectrum congestion. Tightly coupled dipole arrays (TCDAs) are of particular interest due to their low-profile, bandwidth and scanning range. But existing UWB (>3:1 bandwidth) arrays still suffer from limited scanning, particularly at angles beyond 45° from broadside. Almost all previous wideband TCDAs have employed dielectric layers above the antenna aperture to improve scanning while maintaining impedance bandwidth. But even so, these UWB arrays have been limited to no more than 60° away from broadside. In this work, we propose to replace the dielectric superstrate with frequency selective surfaces (FSS). In effect, the FSS is used to create an effective dielectric layer placed over the antenna array. FSS also enables anisotropic responses and more design freedom than conventional isotropic dielectric substrates. Another important aspect of the FSS is its ease of fabrication and low weight, both critical for mobile platforms (e.g. unmanned air vehicles), especially at lower microwave frequencies. Specifically, it can be fabricated using standard printed circuit technology and integrated on a single board with active radiating elements and feed lines. In addition to the FSS superstrate, a modified version of the stripline-based folded Marchand balun is presented. As usual the balun serves to match the 50Ω coaxial cable to the high input impedance ( 200Ω) at the terminals of array elements. Doing so, earlier Wilkinson power dividers, which degrade efficiency during E-plane scanning, are eliminated. To verify the proposed array concept, 12x12 TCDA prototype was fabricated using the modified balun and the new FSS superstrate layer. The design and experimental data showed an impedance bandwidth of 6.1:1 with VSWR<3.2. The latter VSWR was achieved even when scanning down to +/-60° in the H-plane, +/-70° in the D-plane and +/-75° in the E-plane. All array components, including the FSS, radiating dipoles and the feed lines are placed on the same PCB, vertically oriented over the array ground plane, resulting in a low-cost and light-weight structure. The effects of finite aperture sizes in presence of FSS or dielectric superstrates are also considered. Specifically, we compare the performance of finite TCDAs with FSS or dielectric loading. The performance metric is beam pointing accuracy for moderate array sizes ( 30dBi gain) with various edge element terminations. It is shown that even terminating two unit cells at the array edges can provide effective suppression of edge-born waves and achieve excellent beam accuracy. This is the case when both the FSS elements and radiating dipoles are resistively loaded in the unit-cells along the aperture edges.
Physics from geometry: Non-Kahler compactifications, black rings anddS/CFT
NASA Astrophysics Data System (ADS)
Cyrier, Michelle
The spectrum that arises in four dimensions from compactification of ten dimensional string theory onto six dimensional manifolds is determined entirely by the geometry of the compactification manifold. The massless spectrum for compactifications on Calabi-Yau threefolds, which are Kahler and have complex structure, is well understood. In chapter 2 of this thesis, We study the compactification of heterotic string theory on manifolds that are non-Kahler. Such manifolds arise as a solution for compactifications of heterotic string theory with nonzero H-flux. We begin the study of the massless spectrum arising from compactification using this construction by counting zero modes of the linearized equations of motion for the gaugino in the supergravity approximation. We rephrase the question in terms of a cohomology problem and show that for a trivial gauge bundle, this cohomology reduces to the Dolbeault cohomology of the 3-fold, which we then compute. Another check of string theory is to study the entropy of black holes made in string theory. In Chapter 3, We review the microstate counting of four dimensional black holes made from M theory. We then describe a new solution in five dimensions, the supersymmetric black ring, and describe its microscopic entropy using a similar counting. These agree with the semi-classical Bekenstein-Hawking entropy for these black holes. Finally, one powerful tool for quantum gravity is the holographic duality of string theory in an Anti de Sitter background and a theory living on its conformal boundary. Strominger conjectured a similar duality between quantum gravity in a de Sitter background and the corresponding theory on its boundary. In chapter 4 we examine issues with different representations of the conformal field theory on the boundary for a massive quantum field theory living in the bulk and try to write down a sensible CFT.
Supergravity and the Unification of the Laws of Physics
ERIC Educational Resources Information Center
Freedman, Daniel Z.; van Nieuwenhuizen, Peter
1978-01-01
In this new theory the gravitational force arises from a symmetry relating particles with vastly different properties. The ultimate result may be a unified theory of all the basic forces in nature. (Author/BB)
Transparent superstrate terrestrial solar cell module
NASA Technical Reports Server (NTRS)
1977-01-01
The design, development, fabrication, and testing of the transparent solar cell module were examined. Cell performance and material process characteristics were determined by extensive tests and design modifications were made prior to preproduction fabrication. These tests included three cell submodules and two full size engineering modules. Along with hardware and test activity, engineering documentation was prepared and submitted.
Small field axion inflation with sub-Planckian decay constant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kadota, Kenji; Kobayashi, Tatsuo; Oikawa, Akane
2016-10-10
We study an axion inflation model recently proposed within the framework of type IIB superstring theory, where we pay a particular attention to a sub-Planckian axion decay constant. Our axion potential can lead to the small field inflation with a small tensor-to-scalar ratio, and a typical reheating temperature can be as low as GeV.
Matter field Kähler metric in heterotic string theory from localisation
NASA Astrophysics Data System (ADS)
Blesneag, Ştefan; Buchbinder, Evgeny I.; Constantin, Andrei; Lukas, Andre; Palti, Eran
2018-04-01
We propose an analytic method to calculate the matter field Kähler metric in heterotic compactifications on smooth Calabi-Yau three-folds with Abelian internal gauge fields. The matter field Kähler metric determines the normalisations of the N = 1 chiral superfields, which enter the computation of the physical Yukawa couplings. We first derive the general formula for this Kähler metric by a dimensional reduction of the relevant supergravity theory and find that its T-moduli dependence can be determined in general. It turns out that, due to large internal gauge flux, the remaining integrals localise around certain points on the compactification manifold and can, hence, be calculated approximately without precise knowledge of the Ricci-flat Calabi-Yau metric. In a final step, we show how this local result can be expressed in terms of the global moduli of the Calabi-Yau manifold. The method is illustrated for the family of Calabi-Yau hypersurfaces embedded in P^1× P^3 and we obtain an explicit result for the matter field Kähler metric in this case.
Hairy black hole stability in AdS, quantum mechanics on the half-line and holography
NASA Astrophysics Data System (ADS)
Anabalón, Andrés; Astefanesei, Dumitru; Oliva, Julio
2015-10-01
We consider the linear stability of 4-dimensional hairy black holes with mixed boundary conditions in Anti-de Sitter spacetime. We focus on the mass of scalar fields around the maximally supersymmetric vacuum of the gauged N=8 supergravity in four dimensions, m 2 = -2 l -2. It is shown that the Schrödinger operator on the half-line, governing the S 2, H 2 or {{R}}^2 invariant mode around the hairy black hole, allows for non-trivial self-adjoint extensions and each of them corresponds to a class of mixed boundary conditions in the gravitational theory. Discarding the self-adjoint extensions with a negative mode impose a restriction on these boundary conditions. The restriction is given in terms of an integral of the potential in the Schrödinger operator resembling the estimate of Simon for Schrödinger operators on the real line. In the context of AdS/CFT duality, our result has a natural interpretation in terms of the field theory dual effective potential.
Topological sources of soliton mass and supersymmetry breaking
NASA Astrophysics Data System (ADS)
Haas, Patrick A.
2018-06-01
We derive the Smarr formulae for two five-dimensional solutions of supergravity, which are asymptotically ; in particular, one has a magnetic ‘bolt’ in its center, and one is a two-center solution. We show for both spacetimes that supersymmetry—and so the BPS-bound—is broken by the holonomy and how each topological feature of a space-like hypersurface enters Smarr’s mass formula, with emphasis on the ones that give rise to the stated violation of the BPS-bound. In this light, we question if any violating extra-mass term in a spacetime with such asymptotics is only evident in the ADM mass while the Komar mass per se ‘tries’ to preserve BPS. Finally, we derive the cohomological fluxes for each situation and examine in a more general fashion how the breaking of supersymmetry—and so the BPS-bound violation—is associated with their topologies. In the second (and more complicated) scenario, we especially focus on the compact cycle linking the centers, and the contribution of non-vanishing bulk terms in the mass formula to the breaking of supersymmetry.
Note on gauge and gravitational anomalies of discrete Z N symmetries
NASA Astrophysics Data System (ADS)
Byakti, Pritibhajan; Ghosh, Diptimoy; Sharma, Tarun
2018-01-01
In this note, we discuss the consistency conditions which a discrete Z N symmetry should satisfy in order that it is not violated by gauge and gravitational instantons. As examples, we enlist all the Z N ℛ-symmetries as well as non-ℛ Z N symmetries (N=2,3,4) in the minimally supersymmetric standard model (MSSM) that are free from gauge and gravitational anomalies. We show that there exists non-anomalous discrete symmetries that forbid Baryon number violation up to dimension 6 level (in superspace). We also observe that there exists no non-anomalous Z 3 ℛ-symmetry in the MSSM. Furthermore, we point out that in a theory with one Majorana spin 3/2 gravitino, a large class of Z 4 ℛ-symmetries are violated in the presence of Eguchi-Hanson (EH) gravitational instanton. This is also in general true for higher Z N ℛ-symmetries. We also notice that in 4 dimensional N=1 supergravity, the global U(1) ℛ-symmetry is always violated by the EH instanton irrespective of the matter content of the theory.
NASA Astrophysics Data System (ADS)
Cirilo-Lombardo, Diego Julio
2009-04-01
The physical meaning of the particularly simple non-degenerate supermetric, introduced in the previous part by the authors, is elucidated and the possible connection with processes of topological origin in high energy physics is analyzed and discussed. New possible mechanism of the localization of the fields in a particular sector of the supermanifold is proposed and the similarity and differences with a 5-dimensional warped model are shown. The relation with gauge theories of supergravity based in the OSP(1/4) group is explicitly given and the possible original action is presented. We also show that in this non-degenerate super-model the physic states, in contrast with the basic states, are observables and can be interpreted as tomographic projections or generalized representations of operators belonging to the metaplectic group Mp(2). The advantage of geometrical formulations based on non-degenerate super-manifolds over degenerate ones is pointed out and the description and the analysis of some interesting aspects of the simplest Riemannian superspaces are presented from the point of view of the possible vacuum solutions.
Automorphic properties of low energy string amplitudes in various dimensions
NASA Astrophysics Data System (ADS)
Green, Michael B.; Russo, Jorge G.; Vanhove, Pierre
2010-04-01
This paper explores the moduli-dependent coefficients of higher-derivative interactions that appear in the low-energy expansion of the four-supergraviton amplitude of maximally supersymmetric string theory compactified on a d torus. These automorphic functions are determined for terms up to order ∂6R4 and various values of d by imposing a variety of consistency conditions. They satisfy Laplace eigenvalue equations with or without source terms, whose solutions are given in terms of Eisenstein series, or more general automorphic functions, for certain parabolic subgroups of the relevant U-duality groups. The ultraviolet divergences of the corresponding supergravity field theory limits are encoded in various logarithms, although the string theory expressions are finite. This analysis includes intriguing representations of SL(d) and SO(d,d) Eisenstein series in terms of toroidally compactified one and two-loop string and supergravity amplitudes.
Precision lattice test of the gauge/gravity duality at large N
Berkowitz, Evan; Rinaldi, Enrico; Hanada, Masanori; ...
2016-11-03
We perform a systematic, large-scale lattice simulation of D0-brane quantum mechanics. The large-N and continuum limits of the gauge theory are taken for the first time at various temperatures 0.4≤T≤1.0. As a way to test the gauge/gravity duality conjecture we compute the internal energy of the black hole as a function of the temperature directly from the gauge theory. We obtain a leading behavior that is compatible with the supergravity result E/N 2=7.41T 14/5: the coefficient is estimated to be 7.4±0.5 when the exponent is fixed and stringy corrections are included. This is the first confirmation of the supergravity predictionmore » for the internal energy of a black hole at finite temperature coming directly from the dual gauge theory. As a result, we also constrain stringy corrections to the internal energy.« less
Entanglement entropy of ABJM theory and entropy of topological black hole
NASA Astrophysics Data System (ADS)
Nian, Jun; Zhang, Xinyu
2017-07-01
In this paper we discuss the supersymmetric localization of the 4D N = 2 offshell gauged supergravity on the background of the AdS4 neutral topological black hole, which is the gravity dual of the ABJM theory defined on the boundary {S}^1× H^2 . We compute the large- N expansion of the supergravity partition function. The result gives the black hole entropy with the logarithmic correction, which matches the previous result of the entanglement entropy of the ABJM theory up to some stringy effects. Our result is consistent with the previous on-shell one-loop computation of the logarithmic correction to black hole entropy. It provides an explicit example of the identification of the entanglement entropy of the boundary conformal field theory with the bulk black hole entropy beyond the leading order given by the classical Bekenstein-Hawking formula, which consequently tests the AdS/CFT correspondence at the subleading order.
Fibre inflation and α-attractors
NASA Astrophysics Data System (ADS)
Kallosh, Renata; Linde, Andrei; Roest, Diederik; Westphal, Alexander; Yamada, Yusuke
2018-02-01
Fibre inflation is a specific string theory construction based on the Large Volume Scenario that produces an inflationary plateau. We outline its relation to α-attractor models for inflation, with the cosmological sector originating from certain string theory corrections leading to α = 2 and α = 1/2. Above a certain field range, the steepening effect of higher-order corrections leads first to the breakdown of single-field slow-roll and after that to the onset of 2-field dynamics: the overall volume of the extra dimensions starts to participate in the effective dynamics. Finally, we propose effective supergravity models of fibre inflation based on an \\overline{D3} uplift term with a nilpotent superfield. Specific moduli dependent \\overline{D3} induced geometries lead to cosmological fibre models but have in addition a de Sitter minimum exit. These supergravity models motivated by fibre inflation are relatively simple, stabilize the axions and disentangle the Hubble parameter from supersymmetry breaking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, S
2003-11-19
Theoretical and phenomenological evidence is now accumulating that the QCD coupling becomes constant at small virtuality; i.e., {alpha}{sub s}(Q{sup 2}) develops an infrared fixed point in contradiction to the usual assumption of singular growth in the infrared. For example, the hadronic decays of the {tau} lepton can be used to determine the effective charge {alpha}{sub {tau}}(m{sub {tau}{prime}}{sup 2}) for a hypothetical {tau}-lepton with mass in the range 0 < m{sub {tau}{prime}} < m{sub {tau}}. The {tau} decay data at low mass scales indicates that the effective charge freezes at a value of s = m{sub {tau}{prime}}{sup 2} of order 1more » GeV{sup 2} with a magnitude {alpha}{sub {tau}} {approx} 0.9 {+-} 0.1. The near-constant behavior of effective couplings suggests that QCD can be approximated as a conformal theory even at relatively small momentum transfer and why there are no significant running coupling corrections to quark counting rules for exclusive processes. The AdS/CFT correspondence of large N{sub c} supergravity theory in higher-dimensional anti-de Sitter space with supersymmetric QCD in 4-dimensional space-time also has interesting implications for hadron phenomenology in the conformal limit, including an all-orders demonstration of counting rules for exclusive processes and light-front wavefunctions. The utility of light-front quantization and light-front Fock wavefunctions for analyzing nonperturbative QCD and representing the dynamics of QCD bound states is also discussed.« less
Section sigma models coupled to symplectic duality bundles on Lorentzian four-manifolds
NASA Astrophysics Data System (ADS)
Lazaroiu, C. I.; Shahbazi, C. S.
2018-06-01
We give the global mathematical formulation of a class of generalized four-dimensional theories of gravity coupled to scalar matter and to Abelian gauge fields. In such theories, the scalar fields are described by a section of a surjective pseudo-Riemannian submersion π over space-time, whose total space carries a Lorentzian metric making the fibers into totally-geodesic connected Riemannian submanifolds. In particular, π is a fiber bundle endowed with a complete Ehresmann connection whose transport acts through isometries between the fibers. In turn, the Abelian gauge fields are "twisted" by a flat symplectic vector bundle defined over the total space of π. This vector bundle is endowed with a vertical taming which locally encodes the gauge couplings and theta angles of the theory and gives rise to the notion of twisted self-duality, of crucial importance to construct the theory. When the Ehresmann connection of π is integrable, we show that our theories are locally equivalent to ordinary Einstein-Scalar-Maxwell theories and hence provide a global non-trivial extension of the universal bosonic sector of four-dimensional supergravity. In this case, we show using a special trivializing atlas of π that global solutions of such models can be interpreted as classical "locally-geometric" U-folds. In the non-integrable case, our theories differ locally from ordinary Einstein-Scalar-Maxwell theories and may provide a geometric description of classical U-folds which are "locally non-geometric".
Testing no-scale supergravity with the Fermi Space Telescope LAT
NASA Astrophysics Data System (ADS)
Li, Tianjun; Maxin, James A.; Nanopoulos, Dimitri V.; Walker, Joel W.
2014-05-01
We describe a methodology for testing no-scale supergravity by the LAT instrument onboard the Fermi Space Telescope via observation of gamma ray emissions from lightest supersymmetric (SUSY) neutralino annihilations. For our test vehicle we engage the framework of the SUSY grand unified model no-scale flipped SU(5) with extra vector-like flippon multiplets derived from F-theory, known as { F}-SU(5). We show that through compression of the light stau and light bino neutralino mass difference, where internal bremsstrahlung photons give a dominant contribution, the photon yield from annihilation of SUSY dark matter can be elevated to a number of events potentially observable by the Fermi-LAT in the coming years. Likewise, the increased yield in no-scale { F}-SU(5) may also have rendered the existing observation of a 133 GeV monochromatic gamma ray line visible, if additional data should exclude systematic or statistical explanations. The question of intensity aside, no-scale { F}-SU(5) can indeed provide a natural weakly interacting massive particle candidate with a mass in the correct range to yield γγ and γZ emission lines at mχ ˜ 133 GeV and mχ ˜ 145 GeV, respectively. Additionally, we elucidate the emerging empirical connection between recent Planck satellite data and no-scale supergravity cosmological models which mimic the Starobinsky model of inflation. Together, these experiments furnish rich alternate avenues for testing no-scale { F}-SU(5), and similarly structured models, the results of which may lend independent credence to observations made at the Large Hadron Collider.
Some finite terms from ladder diagrams in three and four loop maximal supergravity
NASA Astrophysics Data System (ADS)
Basu, Anirban
2015-10-01
We consider the finite part of the leading local interactions in the low energy expansion of the four graviton amplitude from the ladder skeleton diagrams in maximal supergravity on T 2, at three and four loops. At three loops, we express the {D}8{{R}}4 and {D}10{{R}}4 amplitudes as integrals over the moduli space of an underlying auxiliary geometry. These amplitudes are evaluated exactly for special values of the the moduli of the auxiliary geometry, where the integrand simplifies. We also perform a similar analysis for the {D}8{{R}}4 amplitude at four loops that arise from the ladder skeleton diagrams for a special value of a parameter in the moduli space of the auxiliary geometry. While the dependence of the amplitudes on the volume of the T 2 is very simple, the dependence on the complex structure of the T 2 is quite intricate. In some of the cases, the amplitude consists of terms each of which factorizes into a product of two {SL}(2,{{Z}}) invariant modular forms. While one of the factors is a non-holomorphic Eisenstein series, the other factor splits into a sum of modular forms each of which satisfies a Poisson equation on moduli space with source terms that are bilinear in the Eisenstein series. This leads to several possible perturbative contributions unto genus 5 in type II string theory on S1. Unlike the one and two loop supergravity analysis, these amplitudes also receive non-perturbative contributions from bound states of three D-(anti)instantons in the IIB theory.
A note on the Hyper-CR equation, and gauged N = 2 supergravity
NASA Astrophysics Data System (ADS)
Dunajski, Maciej; Gutowski, Jan; Sabra, Wafic
2018-05-01
We construct a new class of solutions to the dispersionless hyper-CR equation, and show how any solution to this equation gives rise to a supersymmetric Einstein-Maxwell cosmological space-time in (3 + 1)-dimensions.
Solar-Array Substrate From Glass-Reinforced Concrete
NASA Technical Reports Server (NTRS)
Eirls, J. L.
1985-01-01
Design elminiates glass superstrate and associated metal framing. Panel has two trapezoidal stiffening ribs for structural support. Strategic placement of ribs with embedded support tubes (standard PVC tubing) minimizes bending moments and resulting stresses produced by installation and windloads. Glass-reinforced concrete panel has smooth flat surface suitable for solar substrate and includes structural bracing for rigidity and design adaptable to mass production.
A New Metasurface Superstrate Structure for Antenna Performance Enhancement.
Islam, Mohammad Tariqul; Ullah, Mohammad Habib; Singh, Mandeep Jit; Faruque, Mohammad Rashed Iqbal
2013-07-31
A new metasurface superstrate structure (MSS)-loaded dual band microstrip line-fed small patch antenna is presented in this paper. The proposed antenna was designed on a ceramic-filled bioplastic sandwich substrate with a high dielectric constant. The proposed 7 × 6 element, square-shaped, single-sided MSS significantly improved the bandwidth and gain of the proposed antenna. The proposed MSS incorporated a slotted patch antenna that effectively increased the measured operating bandwidth from 13.3% to 18.8% and from 14.8% to 23.2% in the lower and upper bands, respectively. Moreover, the average gain of the proposed MSS-based antenna was enhanced from 2.12 dBi to 3.02 dBi in the lower band and from 4.10 dBi to 5.28 dBi in the upper band compared to the patch antenna alone. In addition to the bandwidth and gain improvements, more directive radiation characteristics were also observed from the MSS antenna compared to the patch itself. The effects of the MSS elements and the ground plane length on the reflection coefficient of the antenna were analyzed and optimized. The overall performance makes the proposed antenna appropriate for RFID and WLAN applications.
NASA Astrophysics Data System (ADS)
Sundin, Per
2010-04-01
We perform a detailed study of the type IIA superstring in {text{Ad}}{{text{S}}_4} × mathbb{C}{mathbb{P}_3} . After introducing suitable bosonic light-cone and fermionic kappa worldsheet gauges we derive the pure boson and fermion SU(2|2)×U(1) covariant light-cone Hamiltonian up to quartic order in fields. As a first application of our derivation we calculate energy shifts for string configurations in a closed fermionic subsector and successfully match these with a set of light-cone Bethe equations. We then turn to investigate the mismatch between the degrees of freedom of scattering states and oscillatory string modes. Since only light string modes appear as fundamental Bethe roots in the scattering theory, the physical role of the remaining 4 F + 4 B massive oscillators is rather unclear. By continuing a line of research initiated by Zarembo, we shed light on this question by calculating quantum corrections for the propagators of the bosonic massive fields. We show that, once loop corrections are incorporated, the massive coordinates dissolve in a continuum state of two light particles.
A New Metasurface Superstrate Structure for Antenna Performance Enhancement
Islam, Mohammad Tariqul; Ullah, Mohammad Habib; Singh, Mandeep Jit; Faruque, Mohammad Rashed Iqbal
2013-01-01
A new metasurface superstrate structure (MSS)-loaded dual band microstrip line-fed small patch antenna is presented in this paper. The proposed antenna was designed on a ceramic-filled bioplastic sandwich substrate with a high dielectric constant. The proposed 7 × 6 element, square-shaped, single-sided MSS significantly improved the bandwidth and gain of the proposed antenna. The proposed MSS incorporated a slotted patch antenna that effectively increased the measured operating bandwidth from 13.3% to 18.8% and from 14.8% to 23.2% in the lower and upper bands, respectively. Moreover, the average gain of the proposed MSS-based antenna was enhanced from 2.12 dBi to 3.02 dBi in the lower band and from 4.10 dBi to 5.28 dBi in the upper band compared to the patch antenna alone. In addition to the bandwidth and gain improvements, more directive radiation characteristics were also observed from the MSS antenna compared to the patch itself. The effects of the MSS elements and the ground plane length on the reflection coefficient of the antenna were analyzed and optimized. The overall performance makes the proposed antenna appropriate for RFID and WLAN applications. PMID:28811432
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pern, F.J.; Glick, S.H.; Czanderna, A.W.
Results from extensive studies of the commercial ethylene vinyl acetate (EVA) formulations show that the UV absorber and curing-generated UV-excitable, {alpha},{beta}-unsaturated carbonyl chromophores facilitate the EVA discoloration, which is further enhanced by curing-generated acetic acid and probably residual peroxide curing agent also. Formation and concentration of the UV-excitable chromophores are substantially promoted by the antioxidant, Naugard P. The discoloration rate is greater under higher UV light intensity and temperatures. Heating in the dark at elevated temperatures (e.g., 85&hthinsp;{degree}C) in the air for {approximately}200 days only results in light yellowing. The discoloration reactions compete with photobleaching reactions, which destroy curing-generated chromophoresmore » and result in non-discoloring of EVA. By using better performance stabilizers to minimize the curing-generated UV-excitable chromophores, a new fast curing agent, and no UV absorber, the NREL-developed EVA formulations show a superior photothermal stability against browning to the commercial counterparts. Alternatively, the discoloration rate of the commercial EVA pottants can be considerably reduced by using UV-filtering glass superstrates that largely inhibit the UV-induced photooxidation reactions, or completely eliminated by using air-permeable polymer superstrate films that enable photobleaching reactions. {copyright} {ital 1999 American Institute of Physics.}« less
Relativistic strings - From soap films to a grand unified theory
NASA Astrophysics Data System (ADS)
Nesterenko, V. V.
1986-11-01
The concept of relativistic strings is considered in connection with the theory of minimal surfaces (e.g., soap films stretched onto closed wire contours). The role of relativistic strings in hadron physics is discussed. Attention is then given to the creation of a grand unified theory on the basis of the superstring concept. Finally, the role of relativistic strings in cosmology is examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kar, Debjit; Das, Debajyoti, E-mail: erdd@iacs.res.in
2016-07-14
With the advent of nc-Si solar cells having improved stability, the efficient growth of nc-Si i-layer of the top cell of an efficient all-Si solar cell in the superstrate configuration prefers nc-Si n-layer as its substrate. Accordingly, a wide band gap and high conducting nc-Si alloy material is a basic requirement at the n-layer. Present investigation deals with the development of phosphorous doped n-type nanocrystalline silicon quantum dots embedded in hydrogenated amorphous silicon carbide (nc-Si–QD/a-SiC:H) hetero-structure films, wherein the optical band gap can be widened by the presence of Si–C bonds in the amorphous matrix and the embedded high densitymore » tiny nc-Si–QDs could provide high electrical conductivity, particularly in P-doped condition. The nc-Si–QDs simultaneously facilitate further widening of the optical band gap by virtue of the associated quantum confinement effect. A complete investigation has been made on the electrical transport phenomena involving charge transfer by tunneling and thermionic emission prevailing in n-type nc-Si–QD/a-SiC:H thin films. Their correlation with different phases of the specific heterostructure has been carried out for detailed understanding of the material, in order to improve its device applicability. The n-type nc-Si–QD/a-SiC:H films exhibit a thermally activated electrical transport above room temperature and multi-phonon hopping (MPH) below room temperature, involving defects in the amorphous phase and the grain-boundary region. The n-type nc-Si–QD/a-SiC:H films grown at ∼300 °C, demonstrating wide optical gap ∼1.86–1.96 eV and corresponding high electrical conductivity ∼4.5 × 10{sup −1}–1.4 × 10{sup −2} S cm{sup −1}, deserve to be an effective foundation layer for the top nc-Si sub-cell of all-Si solar cells in n-i-p structure with superstrate configuration.« less
Superstring Compactification and Low Energy Phenomenology.
NASA Astrophysics Data System (ADS)
Mohapatra, Pramoda Kumar
We have presented some aspects of Superstring compactification from 10 to 4 dimensions and the effect of different types of compactification of the extra 6 dimensions on the low energy physics. We have reviewed the consequences of demanding the extra 6 dimensions to form a manifold as well as an N = 1 Supersymmetry at low energies. While doing this we have also highlighted some of the fundamental phenomenological problems like proton decay and neutrino mass and their possible solutions. The dissertation includes a description of the method of calculation of discrete symmetries and Yukawa couplings between different fermions and mirror fermions in these kinds of manifold compactification. The explicit calculations for one particular case with three fermion generations is presented. The reasons for the necessity of an intermediate scale of symmetry breaking (between Plank scale and the electro-weak scale) are explained and one particular scenerio of such symmetry breaking which preserves Supersymmetry is given. We have studied the effect of E _6 singlets on F-flatness and on the phenomenology. We have also reviewed the idea of compactification in a completely different way, i.e. not on a regular manifold but on a manifold with singularities called an orbifold. We have shown that with the so-called standard embedding, meaning identifying the gauge connection with the spin connection, needed for anomaly cancellation and modular invariance, only one model has a chance of being phenomenologically realistic. We have provided explicit tables of all the relevant quantum numbers of the fermions in the fundamental representation of the gauge group E _6 and showed that there are three possible ways of embedding electric charge in the generators of E _6. We have given the explicit form of the renormalization group equation for sin^2theta_{ rm W} and alpha_ {s} for the most usual chain of breaking E _6 down to SU(3)_ {c}otimes SU(2)_{L}otimes(1) _{Y}. The importance of the evolution of the coupling constant on the compactification is also stressed. We have analysed the successes and the limitations of Superstring theories and have mentioned the new frontiers in compactification.
NASA Astrophysics Data System (ADS)
Kar, Debjit; Das, Debajyoti
2016-07-01
With the advent of nc-Si solar cells having improved stability, the efficient growth of nc-Si i-layer of the top cell of an efficient all-Si solar cell in the superstrate configuration prefers nc-Si n-layer as its substrate. Accordingly, a wide band gap and high conducting nc-Si alloy material is a basic requirement at the n-layer. Present investigation deals with the development of phosphorous doped n-type nanocrystalline silicon quantum dots embedded in hydrogenated amorphous silicon carbide (nc-Si-QD/a-SiC:H) hetero-structure films, wherein the optical band gap can be widened by the presence of Si-C bonds in the amorphous matrix and the embedded high density tiny nc-Si-QDs could provide high electrical conductivity, particularly in P-doped condition. The nc-Si-QDs simultaneously facilitate further widening of the optical band gap by virtue of the associated quantum confinement effect. A complete investigation has been made on the electrical transport phenomena involving charge transfer by tunneling and thermionic emission prevailing in n-type nc-Si-QD/a-SiC:H thin films. Their correlation with different phases of the specific heterostructure has been carried out for detailed understanding of the material, in order to improve its device applicability. The n-type nc-Si-QD/a-SiC:H films exhibit a thermally activated electrical transport above room temperature and multi-phonon hopping (MPH) below room temperature, involving defects in the amorphous phase and the grain-boundary region. The n-type nc-Si-QD/a-SiC:H films grown at ˜300 °C, demonstrating wide optical gap ˜1.86-1.96 eV and corresponding high electrical conductivity ˜4.5 × 10-1-1.4 × 10-2 S cm-1, deserve to be an effective foundation layer for the top nc-Si sub-cell of all-Si solar cells in n-i-p structure with superstrate configuration.
NASA Astrophysics Data System (ADS)
Li, Tianjun; Maxin, James A.; Nanopoulos, Dimitri V.; Walker, Joel W.
2012-02-01
We suggest that non-trivial correlations between the dark matter particle mass and collider based probes of missing transverse energy H_{text{T}}^{text{miss}} may facilitate a two tiered approach to the initial discovery of supersymmetry and the subsequent reconstruction of the lightest supersymmetric particle (LSP) mass at the LHC. These correlations are demonstrated via extensive Monte Carlo simulation of seventeen benchmark models, each sampled at five distinct LHC center-of-mass beam energies, spanning the parameter space of No-Scale mathcal{F} -SU(5). This construction is defined in turn by the union of the mathcal{F} -lipped SU(5) Grand Unified Theory, two pairs of hypothetical TeV scale vector-like supersymmetric multiplets with origins in mathcal{F} -theory, and the dynamically established boundary conditions of No-Scale Supergravity. In addition, we consider a control sample comprised of a standard minimal Supergravity benchmark point. Led by a striking similarity between the H_{text{T}}^{text{miss}} distribution and the familiar power spectrum of a black body radiator at various temperatures, we implement a broad empirical fit of our simulation against a Poisson distribution ansätz. We advance the resulting fit as a theoretical blueprint for deducing the mass of the LSP, utilizing only the missing transverse energy in a statistical sampling of ≥ 9 jet events. Cumulative uncertainties central to the method subsist at a satisfactory 12-15% level. The fact that supersymmetric particle spectrum of No-Scale mathcal{F} -SU(5) has thrived the withering onslaught of early LHC data that is steadily decimating the Constrained Minimal Supersymmetric Standard Model and minimal Supergravity parameter spaces is a prime motivation for augmenting more conventional LSP search methodologies with the presently proposed alternative.
NASA Astrophysics Data System (ADS)
Araujo, T.; Ó Colgáin, E.; Sakamoto, J.; Sheikh-Jabbari, M. M.; Yoshida, K.
2017-11-01
We showed in previous work that for homogeneous Yang-Baxter (YB) deformations of AdS_5× S^5 the open string metric and coupling and as a result the closed string density e^{-2 Φ } √{g} remain undeformed. In this work, in addition to extending these results to the deformation associated with the modified CYBE or η -deformation, we identify the Page forms as the open string counterpart for RR fields and demonstrate case by case that the non-zero Page forms remain invariant under YB deformations. We give a physical meaning to the Killing vector I of generalized supergravity and show for all YB deformations: (1) I appears as a current for the center of mass motion on the worldvolume of a D-brane probing the background, (2) I is equal to the divergence of the noncommutativity parameter, (3) I exhibits "holographic" behavior where the radial component of I vanishes at the AdS boundary and (4) in pure spinor formalism I is related to a certain state in the BRST cohomology.
NASA Astrophysics Data System (ADS)
1999-04-01
The following topics are discussed: Black hole formation by canonical dynamics of gravitating shells; canonical quantum gravity; Vassiliev invariants; midisuperspace models; quantum spacetime; large-N limit of superconformal field theories and supergravity; world-volume fields and background coupling of branes; gauge enhancement and chirality changes in nonperturbative orbifold models; chiral p-forms; formally renormalizable gravitationally self-interacting string models; gauge supergravities for all odd dimensions; black hole radiation and S-matrix; primordial black holes; fluctuations in a thermal field and dissipation of a black hole spacetime in far-field limit; adiabatic interpretation of particle creation in a de Sitter universe; nonequilibrium dynamics of quantum fields in inflationary cosmology; magnetic fields in the early Universe; classical regime of a quantum universe obtained through a functional method; decoherence and correlations in semiclassical cosmology; fluid of primordial fluctuations; causal statistical mechanics calculation of initial cosmic entropy and quantum gravity prospects and black hole-D-brane correspondence.
Black holes and black strings of N = 2, d = 5 supergravity in the H-FGK formalism
NASA Astrophysics Data System (ADS)
Meessen, Patrick; Ortín, Tomás; Perz, Jan; Shahbazi, C. S.
2012-09-01
We study general classes and properties of extremal and non-extremal static black-hole solutions of N = 2, d = 5 supergravity coupled to vector multiplets using the recently proposed H-FGK formalism, which we also extend to static black strings. We explain how to determine the integration constants and physical parameters of the blackhole and black-string solutions. We derive some model-independent statements, including the transformation of non-extremal flow equations to the form of those for the extremal flow. We apply our methods to the construction of example solutions (among others a new extremal string solution of heterotic string theory on K 3 × S 1). In the cases where we have calculated it explicitly, the product of areas of the inner and outer horizon of a non-extremal solution coincides with the square of the moduli-independent area of the horizon of the extremal solution with the same charges.
Universality of multi-field α-attractors
NASA Astrophysics Data System (ADS)
Achúcarro, Ana; Kallosh, Renata; Linde, Andrei; Wang, Dong-Gang; Welling, Yvette
2018-04-01
We study a particular version of the theory of cosmological α-attractors with α=1/3, in which both the dilaton (inflaton) field and the axion field are light during inflation. The kinetic terms in this theory originate from maximal Script N=4 superconformal symmetry and from maximal Script N=8 supergravity. We show that because of the underlying hyperbolic geometry of the moduli space in this theory, it exhibits double attractor behavior: their cosmological predictions are stable not only with respect to significant modifications of the dilaton potential, but also with respect to significant modifications of the axion potential: nssimeq1‑2/N, rsimeq4/N2. We also show that the universality of predictions extends to other values of α lesssim Script O(1) with general two-field potentials that may or may not have an embedding in supergravity. Our results support the idea that inflation involving multiple, not stabilized, light fields on a hyperbolic manifold may be compatible with current observational constraints for a broad class of potentials.
R4 terms in supergravities via T -duality constraint
NASA Astrophysics Data System (ADS)
Razaghian, Hamid; Garousi, Mohammad R.
2018-05-01
It has been speculated in the literature that the effective actions of string theories at any order of α' should be invariant under the Buscher rules plus their higher covariant-derivative corrections. This may be used as a constraint to find effective actions at any order of α', in particular, the metric, the B -field, and the dilaton couplings in supergravities at order α'3 up to an overall factor. For the simple case of zero B -field and diagonal metric in which we have done the calculations explicitly, we have found that the constraint fixes almost all of the seven independent Riemann curvature couplings. There is only one term which is not fixed, because when metric is diagonal, the reduction of two R4 terms becomes identical. The Riemann curvature couplings that the T -duality constraint produces for both type II and heterotic theories are fully consistent with the existing couplings in the literature which have been found by the S-matrix and by the sigma-model approaches.
Tunnelling with a negative cosmological constant
NASA Astrophysics Data System (ADS)
Gibbons, G. W.
1996-02-01
The point of this paper is to see what light new results in hyperbolic geometry may throw on gravitational entropy and whether gravitational entropy is relevant for the quantum origin of the universe. We introduce some new gravitational instantons which mediate the birth from nothing of closed universes containing wormholes and suggest that they may contribute to the density matrix of the universe. We also discuss the connection between their gravitational action and the topological and volumetric entropies introduced in hyperbolic geometry. These coincide for hyperbolic 4-manifolds, and increase with increasing topological complexity of the 4-manifold. We raise the question of whether the action also increases with the topological complexity of the initial 3-geometry, measured either by its 3-volume or its Matveev complexity. We point out, in distinction to the non-supergravity case, that universes with domains of negative cosmological constant separated by supergravity domain walls cannot be born from nothing. Finally we point out that our wormholes provide examples of the type of Perpetual Motion machines envisaged by Frolov and Novikov.
Fayet-Iliopoulos terms in supergravity and D-term inflation
NASA Astrophysics Data System (ADS)
Antoniadis, I.; Chatrabhuti, A.; Isono, H.; Knoops, R.
2018-05-01
We analyse the consequences of a new gauge invariant Fayet-Iliopoulos (FI) term proposed recently to a class of inflation models driven by supersymmetry breaking with the inflaton being the superpartner of the goldstino. We first show that charged matter fields can be consistently added with the new term, as well as the standard FI term in supergravity in a Kähler frame where the U(1) is not an R-symmetry. We then show that the slow-roll conditions can be easily satisfied with inflation driven by a D-term depending on the two FI parameters. Inflation starts at initial conditions around the maximum of the potential where the U(1) symmetry is restored and stops when the inflaton rolls down to the minimum describing the present phase of our Universe. The resulting tensor-to-scalar ratio of primordial perturbations can be even at observable values in the presence of higher order terms in the Kähler potential.
PREFACE: Workshop on Higher Symmetries in Physics
NASA Astrophysics Data System (ADS)
Campoamor-Stursberg, Rutwig; María Ancochea, José; Castrillón, Marco
2009-07-01
This volume of Journal of Physics: Conference Series contains the Proceedings of the Workshop on Higher Symmetries in Physics (WHSP), held at the Universidad Complutense of Madrid (UCM) on 6-8 November 2008. This meeting constituted one of the activities of the research group GEODISIM-920920 of the Universidad Complutense, through the research project CCG07/ESP-2922 of the UCM/CAM for the academic year 2008/2009. The objective of this meeting was to provide a forum to facilitate the opportunity for interaction between specialists working in different fields of physics and mathematics, but who share a common interest in group theoretical, geometrical and symmetry methods applied to physical phenomena. This goal was achieved by means of lectures and technical presentations on different subjects, the only constraint being the current academic interest. The multidisciplinary character of the meeting allowed an effective exchange of ideas between different topics having a symmetry background, like higher order and n-Lie algebras and their cohomology theories, supergravity backgrounds, the geometric approach to the Quantum Hall effect, integrable and superintegrable systems, loop quantum gravity, master symmetries, constants of motion, Gowdy cosmological models, new methods for the Kronecker product decomposition of multiplets, the internal labelling problem or recent developments concerning Grand Unified Theories. The workshop consisted of three microcourses of three hours each and some plenary talks of one hour, as well as a small number of short communications. The Proceedings have been divided into two main sections, according to the structure of the meeting. The first one corresponds to the papers of the courses, which in addition to the material presented in the lectures also contain new and original results. The second part is devoted to the papers of the plenary talks and the remaining contributions. In some cases, the corresponding contributions are completely original, and expand or complement the topic presented at the workshop. Unfortunately, some of the speakers were not able to submit their contributions in time, for which reason they do not appear in these Proceedings. In addition to the contributions of the participants, other specialists in the field that could not attend the meeting, as well as some members of the scientific committee, were also invited by the Editors to submit their papers for this volume. The main motivation for the three courses was to provide a short and updated introduction to to current research topics, as well as to provide an overview for the non-specialists. We briefly describe the principal results of these lectures. The first course, given by Professor J A de Azcárraga (IFIC and University of Valencia) dealt with generalized Lie algebras and Filippov algebras. These structures, which enlarge naturally the notion of ordinary Lie algebras, have been shown to be of interest for the description of various physical phenomena, like the low energy dynamics of coincident M2-branes. The lecture presented an exhaustive review of the mathematical apparatus of these generalized structures, and recent developments on their cohomological properties were announced. The paper underlying these lectures expands the material covered during the course, and new results concerning the non-existence of central extensions and the cohomological rigidity of Filippov algebras are obtained. Professor J M Figueroa-O'Farrill (Maxwell Institute, University of Edinburgh) presented recent results concerning the homogeneity conjecture for supergravity backgrounds. The procedure to associate a Lie (super)algebra to a spin manifold with additional geometrical constraints was explained, and the most important examples of supersymmetric supergravity backgrounds commented. The lecture focused on two main results: on one hand, the recovery of the compact forms of the simple algebras B4, F4 and E8 by means of geometrical techniques, and the construction of the Killing superalgebra of 11-dimensional supergravity backgrounds. Criteria ensuring local homogeneity were described in terms of supersymmetry. Finally, the course of Professor M Rausch de Traubenberg (IPHC, Université de Strasbourg) reviewed the present status of higher order extensions of the Poincaré algebra. In this lecture, basing on some features of the Wess-Zumino model, additional algebraic structures are added in order to obtain a hierarchy of non-trivial extensions of the Poincaré algebra. Two different types, with interesting applications in the corresponding context, are presented. The first type corresponds to finite dimensional cubic extension in D-dimensional space-time. The latter induces a symmetry on generalized gauge fields, and the corresponding invariant Lagrangians are constructed explicitly. The remaining possibility is shown to be an infinite dimensional higher order extension inducing a symmetry that allows to connect relativistic anyons. This procedure presents some analogies with supersymmetry. All papers published in this volume of Journal of Physics: Conference Series contains have been peer reviewed through processes administered by the proceedings Editors. Reviews were conducted by expert referees to the professional and scientific standards expected of a proceedings journal published by IOP Publishing. This meeting was possible thanks to the financial and infrastructural assistance of the following Spanish institutions and projects: Universidad Complutense de Madrid (UCM) Instituto de Matemática Interdisciplinar (I.M.I.) of the UCM The Geometry, Mechanics and Control Network (GMC) CCG07/ESP-2922 of the UCM/Comunidad Autónoma de Madrid MTM2005-00173 of the Ministerio de Educación y Ciencia (MEC) MTM2006-09152 of the Ministerio de Educación y Ciencia (MEC) Consolider-Ingenio 2010 ''Programa de Investigación Intensiva sobre Mecánica Geométrica y Teoría de Control'' Finally, on behalf of the Organizing Committee, we would like to express our gratitude to the participants and assistants in the WHSP meeting for their presence and contributions, as well as to the members of the Scientific Committee for their help and outstanding efforts, with special mention to E Padrón from the Universidad de La Laguna and the GMC Network. R Campoamor-Stursberg, M Castrillón López and J M Ancochea Bermúdez Universidad Complutense de Madrid Editors of the WHSP Proceedings
Deriving all p-brane superalgebras via integrability
NASA Astrophysics Data System (ADS)
Grasso, D. T.; McArthur, I. N.
2018-03-01
In previous work we demonstrated that the enlarged super-Poincare algebras which underlie p-brane and D-brane actions in superstring theory can be directly determined based on the integrability of supersymmetry transformations assigned to fields appearing in Wess-Zumino terms. In that work we derived p-brane superalgebras for p = 2 and 3. Here we extend our previous results and give a compact expression for superalgebras for all valid p.
NASA Astrophysics Data System (ADS)
Cheshme Khavar, Amir Hossein; Mahjoub, Ali Reza; Taghavinia, Nima
2017-12-01
Superstrate configuration CuInS2 (CIS) solar cells are fabricated using a spray pyrolysis method. We avoided selenization process, cyanide etching and CdS buffer layer, to keep the process ‘green’. CIS layers are formed by spray pyrolysis of an aqueous precursor ink containing metal chloride salts and thiourea at 350 °C. We investigated the effect of intentional Zn doping on structural, morphological and photovoltaic response of the fabricated CIS films by dissolving ZnCl2 in aqueous precursor solution. At a zinc doping level ranging between 0.25 and 1.00 mol%, Zn doping is found to improve the CIS crystal growth and surface morphology of CIS films. Compared with the performance of the non-doped CIS cell, the Zn-doped CIS solar cell displayed a remarkable efficiency enhancement of 58-97% and the maximum enhancement was obtained at a Zn content of 0.5 mol%. The device structure consists of
Explicitly broken supersymmetry with exactly massless moduli
NASA Astrophysics Data System (ADS)
Dong, Xi; Freedman, Daniel Z.; Zhao, Yue
2016-06-01
The AdS/CFT correspondence is applied to an analogue of the little hierarchy problem in three-dimensional supersymmetric theories. The bulk is governed by a super-gravity theory in which a U(1) × U(1) R-symmetry is gauged by Chern-Simons fields. The bulk theory is deformed by a boundary term quadratic in the gauge fields. It breaks SUSY completely and sources an exactly marginal operator in the dual CFT. SUSY breaking is communicated by gauge interactions to bulk scalar fields and their spinor superpartners. The bulk-to-boundary propagator of the Chern-Simons fields is a total derivative with respect to the bulk coordinates. Integration by parts and the Ward identity permit evaluation of SUSY breaking effects to all orders in the strength of the deformation. The R-charges of scalars and spinors differ so large SUSY breaking mass shifts are generated. Masses of R-neutral particles such as scalar moduli are not shifted to any order in the deformation strength, despite the fact that they may couple to R-charged fields running in loops. We also obtain a universal deformation formula for correlation functions under an exactly marginal deformation by a product of holomorphic and anti-holomorphic U(1) currents.
Universal formula for the holographic speed of sound
NASA Astrophysics Data System (ADS)
Anabalón, Andrés; Andrade, Tomás; Astefanesei, Dumitru; Mann, Robert
2018-06-01
We consider planar hairy black holes in five dimensions with a real scalar field in the Breitenlohner-Freedman window and derive a universal formula for the holographic speed of sound for any mixed boundary conditions of the scalar field. As an example, we numerically construct the most general class of planar black holes coupled to a single scalar field in the consistent truncation of type IIB supergravity that preserves the SO (3) × SO (3) R-symmetry group of the gauge theory. For this particular family of solutions, we find that the speed of sound exceeds the conformal value. From a phenomenological point of view, the fact that the conformal bound can be violated by choosing the right mixed boundary conditions is relevant for the existence of neutron stars with a certain mass-size relationship for which a large value of the speed of sound codifies a stiff equation of state. In the way, we also shed light on a puzzle regarding the appearance of the scalar charges in the first law. Finally, we generalize the formula of the speed of sound to arbitrary dimensional scalar-metric theories whose parameters lie within the Breitenlohner-Freedman window.
Quantum supersymmetric Bianchi IX cosmology
NASA Astrophysics Data System (ADS)
Damour, Thibault; Spindel, Philippe
2014-11-01
We study the quantum dynamics of a supersymmetric squashed three-sphere by dimensionally reducing (to one timelike dimension) the action of D =4 simple supergravity for a S U (2 ) -homogeneous (Bianchi IX) cosmological model. The quantization of the homogeneous gravitino field leads to a 64-dimensional fermionic Hilbert space. After imposition of the diffeomorphism constraints, the wave function of the Universe becomes a 64-component spinor of spin(8,4) depending on the three squashing parameters, which satisfies Dirac-like, and Klein-Gordon-like, wave equations describing the propagation of a "quantum spinning particle" reflecting off spin-dependent potential walls. The algebra of the supersymmetry constraints and of the Hamiltonian one is found to close. One finds that the quantum Hamiltonian is built from operators that generate a 64-dimensional representation of the (infinite-dimensional) maximally compact subalgebra of the rank-3 hyperbolic Kac-Moody algebra A E3 . The (quartic-in-fermions) squared-mass term μ^ 2 entering the Klein-Gordon-like equation has several remarkable properties: (i) it commutes with all the other (Kac-Moody-related) building blocks of the Hamiltonian; (ii) it is a quadratic function of the fermion number NF; and (iii) it is negative in most of the Hilbert space. The latter property leads to a possible quantum avoidance of the singularity ("cosmological bounce"), and suggests imposing the boundary condition that the wave function of the Universe vanish when the volume of space tends to zero (a type of boundary condition which looks like a final-state condition when considering the big crunch inside a black hole). The space of solutions is a mixture of "discrete-spectrum states" (parametrized by a few constant parameters, and known in explicit form) and of continuous-spectrum states (parametrized by arbitrary functions entering some initial-value problem). The predominantly negative values of the squared-mass term lead to a "bottle effect" between small-volume universes and large-volume ones, and to a possible reduction of the continuous spectrum to a discrete spectrum of quantum states looking like excited versions of the Planckian-size universes described by the discrete states at fermionic levels NF=0 and 1.
Dilatonic parallelizable NS-NS backgrounds
NASA Astrophysics Data System (ADS)
Kawano, Teruhiko; Yamaguchi, Satoshi
2003-08-01
We complete the classification of parallelizable NS-NS backgrounds in type II supergravity by adding the dilatonic case to the result of Figueroa-O'Farrill on the non-dilatonic case. We also study the supersymmetry of these parallelizable backgrounds. It is shown that all the dilatonic parallelizable backgrounds have sixteen supersymmetries.
From osp(1|32)⊕osp(1|32) to the M-theory superalgebra: a contraction procedure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernández, J. J., E-mail: julio.j.fernandez@hotmail.es; Izquierdo, J. M., E-mail: izquierd@fta.uva.es; Olmo, M. A. del, E-mail: olmo@fta.uva.es
We show the impossibility to obtain the D’auria–Fré-type superalgebras that allow for an underlying gauge theoretical structure of D = 11 supergravity from the superalgebra osp(1|32)⊕osp(1|32)−, by means of aWeimar-Woods contraction.
The shadow world of superstring theories
NASA Technical Reports Server (NTRS)
Kolb, E. W.; Turner, M. S.; Seckel, D.
1985-01-01
Some possible astrophysical and cosmological implications of 'shadow matter', a form of matter which only interacts gravitationally with ordinary matter and which may or may not be identical in its properties to ordinary matter, are considered. The possible existence, amount, and location of shadow matter in the solar system are discussed, and the significance of shadow matter for primordial nucleosynthesis, macroscopic asymmetry, baryogenesis, double-bubble inflation, and asymmetric microphysics is addressed. Massive shadow states are discussed.
A locally supersymmetric SO(10, 2) invariant action for D = 12 supergravity
NASA Astrophysics Data System (ADS)
Castellani, Leonardo
2017-06-01
We present an action for N = 1 supergravity in 10 + 2 dimensions, containing the gauge fields of the OSp(1|64) superalgebra, i.e. one-forms B ( n) with n=1,2,5,6,9,10 antisymmetric D=12 Lorentz indices and a Majorana gravitino ψ. The vielbein and spin connection correspond to B (1) and B (2) respectively. The action is not gauge invariant under the full OSp(1|64) superalgebra, but only under a subalgebra \\tilde{F} (containing the F algebra OSp(1|32)), whose gauge fields are B (2), B (6), B (10) and the Weyl projected Majorana gravitino 1/2(1+{Γ}_{13})ψ . Supersymmetry transformations are therefore generated by a Majorana-Weyl supercharge and, being part of a gauge superalgebra, close off-shell. The action is simply ∫ STr( R 6 Γ) where R is the OSp(1|64) curvature supermatrix two-form, and Γ is a constant supermatrix involving Γ13 and breaking OSp(1|64) to its \\tilde{F} subalgebra. The usual Einstein-Hilbert term is included in the action.
The large N limit of superconformal field theories and supergravity
NASA Astrophysics Data System (ADS)
Maldacena, Juan
1999-07-01
We show that the large N limit of certain conformal field theories in various dimensions include in their Hilbert space a sector describing supergravity on the product of Anti-deSitter spacetimes, spheres and other compact manifolds. This is shown by taking some branes in the full M/string theory and then taking a low energy limit where the field theory on the brane decouples from the bulk. We observe that, in this limit, we can still trust the near horizon geometry for large N. The enhanced supersymmetries of the near horizon geometry correspond to the extra supersymmetry generators present in the superconformal group (as opposed to just the super-Poincare group). The 't Hooft limit of 3+1N=4 super-Yang-Mills at the conformal point is shown to contain strings: they are IIB strings. We conjecture that compactifications of M/string theory on various Anti-deSitter spacetimes is dual to various conformal field theories. This leads to a new proposal for a definition of M-theory which could be extended to include five non-compact dimensions.
The wasteland of random supergravities
NASA Astrophysics Data System (ADS)
Marsh, David; McAllister, Liam; Wrase, Timm
2012-03-01
We show that in a general {N} = {1} supergravity with N ≫ 1 scalar fields, an exponentially small fraction of the de Sitter critical points are metastable vacua. Taking the superpotential and Kähler potential to be random functions, we construct a random matrix model for the Hessian matrix, which is well-approximated by the sum of a Wigner matrix and two Wishart matrices. We compute the eigenvalue spectrum analytically from the free convolution of the constituent spectra and find that in typical configurations, a significant fraction of the eigenvalues are negative. Building on the Tracy-Widom law governing fluctuations of extreme eigenvalues, we determine the probability P of a large fluctuation in which all the eigenvalues become positive. Strong eigenvalue repulsion makes this extremely unlikely: we find P ∝ exp(- c N p ), with c, p being constants. For generic critical points we find p ≈ 1 .5, while for approximately-supersymmetric critical points, p ≈ 1 .3. Our results have significant implications for the counting of de Sitter vacua in string theory, but the number of vacua remains vast.
Worldsheet factorization for twistor-strings
NASA Astrophysics Data System (ADS)
Adamo, Tim
2014-04-01
We study the multiparticle factorization properties of two worldsheet theories which — at tree-level — describe the scattering of massless particles in four dimensions: the Berkovits-Witten twistor-string for = 4 super-Yang-Mills coupled to = 4 conformal supergravity, and the Skinner twistor-string for = 8 supergravity. By considering these string-like theories, we can study factorization at the level of the worldsheet before any Wick contractions or integrals have been performed; this is much simpler than considering the factorization properties of the amplitudes themselves. In Skinner's twistor-string this entails the addition of worldsheet gravity as well as a formalism that represents all external states in a manifestly symmetric way, which we develop explicitly at genus zero. We confirm that the scattering amplitudes of Skinner's theory, as well as the gauge theory amplitudes for the planar sector of the Berkovits-Witten theory, factorize appropriately at genus zero. In the non-planar sector, we find behavior indicative of conformal gravity in the Berkovits-Witten twistor-string. We contrast factorization in twistor-strings with the story in ordinary string theory, and also make some remarks on higher genus factorization and disconnected prescriptions.
NASA Astrophysics Data System (ADS)
Parameswaran, S. L.; Tasinato, G.; Zavala, I.
2006-03-01
We present a novel supersymmetric solution to a nonlinear sigma model coupled to supergravity. The solution represents a static, supersymmetric, codimension-two object, which is different to the familiar cosmic strings. In particular, we consider 6D chiral gauged supergravity, whose spectrum contains a number of hypermultiplets. The scalar components of the hypermultiplet are charged under a gauge field, and supersymmetry implies that they experience a simple paraboloid-like (or 2D infinite well) potential, which is minimised when they vanish. Unlike conventional vortices, the energy density of our configuration is not localized to a string-like core. The solutions have two timelike singularities in the internal manifold, which provide the necessary boundary conditions to ensure that the scalars do not lie at the minimum of their potential. The 4D spacetime is flat, and the solution is a continuous deformation of the so-called "rugby ball" solution, which has been studied in the context of the cosmological constant problem. It represents an unexpected class of supersymmetric solutions to the 6D theory, which have gravity, gauge fluxes and hyperscalars all active in the background.
Kicking the rugby ball: perturbations of 6D gauged chiral supergravity
NASA Astrophysics Data System (ADS)
Burgess, C. P.; de Rham, C.; Hoover, D.; Mason, D.; Tolley, A. J.
2007-02-01
We analyse the axially symmetric scalar perturbations of 6D chiral gauged supergravity compactified on the general warped geometries in the presence of two source branes. We find that all of the conical geometries are marginally stable for normalizable perturbations (in disagreement with some recent calculations) and the non-conical ones for regular perturbations, even though none of them are supersymmetric (apart from the trivial Salam Sezgin solution, for which there are no source branes). The marginal direction is the one whose presence is required by the classical scaling property of the field equations, and all other modes have positive squared mass. In the special case of the conical solutions, including (but not restricted to) the unwarped 'rugby-ball' solutions, we find closed-form expressions for the mode functions in terms of Legendre and hypergeometric functions. In so doing we show how to match the asymptotic near-brane form for the solution to the physics of the source branes, and thereby how to physically interpret perturbations which can be singular at the brane positions.
Black holes in higher spin supergravity
NASA Astrophysics Data System (ADS)
Datta, Shouvik; David, Justin R.
2013-07-01
We study black hole solutions in Chern-Simons higher spin supergravity based on the superalgebra sl(3|2). These black hole solutions have a U(1) gauge field and a spin 2 hair in addition to the spin 3 hair. These additional fields correspond to the R-symmetry charges of the supergroup sl(3|2). Using the relation between the bulk field equations and the Ward identities of a CFT with {N} = 2 super- {{{W}}_3} symmetry, we identify the bulk charges and chemical potentials with those of the boundary CFT. From these identifications we see that a suitable set of variables to study this black hole is in terms of the charges present in three decoupled bosonic sub-algebras of the {N} = 2 super- {{{W}}_3} algebra. The entropy and the partition function of these R-charged black holes are then evaluated in terms of the charges of the bulk theory as well as in terms of its chemical potentials. We then compute the partition function in the dual CFT and find exact agreement with the bulk partition function.
Lincoln, Don
2018-01-16
The quest to find the ultimate building blocks of nature is one of the oldest in all of physics. While we are far from knowing the answer to that question, one intriguing proposed answer is that all matter is composed of tiny âstrings.â The known particles are simply different vibrational patterns of these strings. In this video, Fermilabâs Dr. Don Lincoln explains this idea, using interesting and accessible examples of real-world vibrations.
String universality in ten dimensions.
Adams, Allan; Taylor, Washington; Dewolfe, Oliver
2010-08-13
We show that the N=1 supergravity theories in ten dimensions with gauge groups U(1){496} and E{8}×U(1){248} are not consistent quantum theories. Cancellation of anomalies cannot be made compatible with supersymmetry and Abelian gauge invariance. Thus, in ten dimensions all supersymmetric theories of gravity without known inconsistencies are realized in string theory.
NASA Astrophysics Data System (ADS)
Orgera, Jacopo
In this thesis we investigate some aspects of String Dualities. In particular, in the context of Twistor-String/Field Theories duality, we present some partial results toward the understanding of Conformal Supergravity amplitudes. Also, in the context of AdS/CFT duality, we investigate: the role of Euclidean Wormholes in quantum de-coherence and the semiclassical decay of certain non-supersimmetric vacua.
NASA Astrophysics Data System (ADS)
Dyckmanns, Malte; Vaughan, Owen
2017-06-01
We generalise the hyper-Kähler/quaternionic Kähler (HK/QK) correspondence to include para-geometries, and present a new concise proof that the target manifold of the HK/QK correspondence is quaternionic Kähler. As an application, we construct one-parameter deformations of the temporal and Euclidean supergravity c-map metrics and show that they are para-quaternionic Kähler.
Consequences of an Abelian family symmetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramond, P.
1996-01-01
The addition of an Abelian family symmetry to the Minimal Super-symmetric Standard Model reproduces the observed hierarchies of quark and lepton masses and quark mixing angles, only if it is anomalous. Green-Schwarz compensation of its anomalies requires the electroweak mixing angle to be sin{sup 2}{theta}{sub {omega}} = 3/8 at the string scale, without any assumed GUT structure, suggesting a superstring origin for the standard model. The analysis is extended to neutrino masses and the lepton mixing matrix.
Investigation of proposed process sequence for the array automated assembly task, phases 1 and 2
NASA Technical Reports Server (NTRS)
Mardesich, N.; Garcia, A.; Eskenas, K.
1980-01-01
Progress was made on the process sequence for module fabrication. A shift from bonding with a conformal coating to laminating with ethylene vinyl acetate and a glass superstrate is recommended for further module fabrication. The processes that were retained for the selected process sequence, spin-on diffusion, print and fire aluminum p+ back, clean, print and fire silver front contact and apply tin pad to aluminum back, were evaluated for their cost contribution.
On Gravitational Effects in the Schrödinger Equation
NASA Astrophysics Data System (ADS)
Pollock, M. D.
2014-04-01
The Schrödinger equation for a particle of rest mass and electrical charge interacting with a four-vector potential can be derived as the non-relativistic limit of the Klein-Gordon equation for the wave function , where and , or equivalently from the one-dimensional action for the corresponding point particle in the semi-classical approximation , both methods yielding the equation in Minkowski space-time , where and . We show that these two methods generally yield equations that differ in a curved background space-time , although they coincide when if is replaced by the effective mass in both the Klein-Gordon action and , allowing for non-minimal coupling to the gravitational field, where is the Ricci scalar and is a constant. In this case , where and , the correctness of the gravitational contribution to the potential having been verified to linear order in the thermal-neutron beam interferometry experiment due to Colella et al. Setting and regarding as the quasi-particle wave function, or order parameter, we obtain the generalization of the fundamental macroscopic Ginzburg-Landau equation of superconductivity to curved space-time. Conservation of probability and electrical current requires both electromagnetic gauge and space-time coordinate conditions to be imposed, which exemplifies the gravito-electromagnetic analogy, particularly in the stationary case, when div, where and . The quantum-cosmological Schrödinger (Wheeler-DeWitt) equation is also discussed in the -dimensional mini-superspace idealization, with particular regard to the vacuum potential and the characteristics of the ground state, assuming a gravitational Lagrangian which contains higher-derivative terms up to order . For the heterotic superstring theory , consists of an infinite series in , where is the Regge slope parameter, and in the perturbative approximation , is positive semi-definite for . The maximally symmetric ground state satisfying the field equations is Minkowski space for and anti-de Sitter space for.
Real weights, bound states and duality orbits
NASA Astrophysics Data System (ADS)
Marrani, Alessio; Riccioni, Fabio; Romano, Luca
2016-01-01
We show that the duality orbits of extremal black holes in supergravity theories with symmetric scalar manifolds can be derived by studying the stabilizing subalgebras of suitable representatives, realized as bound states of specific weight vectors of the corresponding representation of the duality symmetry group. The weight vectors always correspond to weights that are real, where the reality properties are derived from the Tits-Satake diagram that identifies the real form of the Lie algebra of the duality symmetry group. Both 𝒩 = 2 magic Maxwell-Einstein supergravities and the semisimple infinite sequences of 𝒩 = 2 and 𝒩 = 4 theories in D = 4 and 5 are considered, and various results, obtained over the years in the literature using different methods, are retrieved. In particular, we show that the stratification of the orbits of these theories occurs because of very specific properties of the representations: in the case of the theory based on the real numbers, whose symmetry group is maximally noncompact and therefore all the weights are real, the stratification is due to the presence of weights of different lengths, while in the other cases it is due to the presence of complex weights.
Non-analytic terms from nested divergences in maximal supergravity
NASA Astrophysics Data System (ADS)
Basu, Anirban
2016-07-01
The {D}4{{ R }}4 and {D}6{{ R }}4 coefficient functions in the effective action of type II string theory compactified on T d contain terms of the form {{ E }}1{{ln}}{g}d and {{ E }}2{({{ln}}{g}d)}2 in specific dimensions, where g d is the T-duality invariant string coupling, and {{ E }}1 and {{ E }}2 are U-duality invariant coefficient functions. We derive these non-analytic terms from nested ultraviolet divergences in two and three loop maximal supergravity. For the {D}4{{ R }}4 coupling, the contribution involves {{ E }}{{ R }4}{{ln}}{g}d, while for the {D}6{{ R }}4 coupling, it involves {{ E }}{{ R }4}{{ln}}{g}d, {{ E }}{D2{{ R }}4}{({{ln}}{g}d)}2 and {{ E }}{D4{{ R }}4}{{ln}}{g}d; where {{ E }}{{ R }4}, {{ E }}{D2{{ R }}4} and {{ E }}{D4{{ R }}4} are the {{ R }}4, {D}2{{ R }}4 and {D}4{{ R }}4 coefficient functions respectively. The contribution from {{ E }}{D2{{ R }}4}, the coefficient function of an amplitude that vanishes onshell, arises from a two loop nested subdivergence of the three loop amplitude.
Partial N=2 to N=1 supersymmetry breaking and gravity deformed chiral rings.
NASA Astrophysics Data System (ADS)
David, Justin R.; Gava, Edi; Narain, K. S.
2004-06-01
We present a derivation of the chiral ring relations, arising in Script N = 1 gauge theories in the presence of (anti-)self-dual background gravitational field Galphabetagamma and graviphoton field strength Falphabeta. These were previously considered in the literature in order to prove the relation between gravitational F-terms in the gauge theory and coefficients of the topological expansion of the related matrix integral. We consider the spontaneous breaking of Script N = 2 to Script N = 1 supergravity coupled to vector- and hyper-multiplets, and take a rigid limit which keeps a non-trivial Galphabetagamma and Falphabeta with a finite supersymmetry breaking scale. We derive the resulting effective, global, Script N = 1 theory and show that the chiral ring relations are just a consequence of the standard Script N = 2 supergravity Bianchi identities. We can also obtain models with matter in different representations and in particular quiver theories. We also show that, in the presence of non-trivial Falphabeta, consistency of the Konishi-anomaly loop equations with the chiral ring relations, demands that the gauge kinetic function and the superpotential, a priori unrelated for an Script N = 1 theory, should be derived from a prepotential, indicating an underlying Script N = 2 structure.
Holographic duals of 3d S-fold CFTs
NASA Astrophysics Data System (ADS)
Assel, Benjamin; Tomasiello, Alessandro
2018-06-01
We construct non-geometric AdS4 solutions of IIB string theory where the fields in overlapping patches are glued by elements of the S-duality group. We obtain them by suitable quotients of compact and non-compact geometric solutions. The quotient procedure suggests CFT duals as quiver theories with links involving the so-called T [U( N)] theory. We test the validity of the non-geometric solutions (and of our proposed holographic duality) by computing the three-sphere partition function Z of the CFTs. A first class of solutions is obtained by an S-duality quotient of Janus-type non-compact solutions and is dual to 3d N=4 SCFTs; for these we manage to compute Z of the dual CFT at finite N, and it agrees perfectly with the supergravity result in the large N limit. A second class has five-branes, it is obtained by a Möbius-like S-quotient of ordinary compact solutions and is dual to 3d N=3 SCFTs. For these, Z agrees with the supergravity result if one chooses the limit carefully so that the effect of the fivebranes does not backreact on the entire geometry. Other limits suggest the existence of IIA duals.
Starobinsky-Like Inflation and Running Vacuum in the Context of Supergravity
NASA Astrophysics Data System (ADS)
Basilakos, Spyros; Mavromatos, Nick; Solà, Joan
2016-07-01
We describe the primeval inflationary phase of the early Universe within a quantum field theoretical (QFT) framework that can be viewed as the effective action of vacuum decay in the early times. Interestingly enough, the model accounts for the "graceful exit" of the inflationary phase into the standard radiation regime. The underlying QFT framework considered here is Supergravity (SUGRA), more specifically an existing formulation in which the Starobinsky-type inflation (de-Sitter background) emerges from the quantum corrections to the effective action after integrating out the gravitino fields in their (dynamically induced) massive phase. We also demonstrate that the structure of the effective action in this model is consistent with the generic idea of renormalization group (RG) running of the cosmological parameters, specifically it follows from the corresponding RG equation for the vacuum energy density as a function of the Hubble rate, $\\rho_{\\Lambda}(H)$. Overall our combined approach amounts to a concrete-model realization of inflation triggered by vacuum decay in a fundamental physics context which, as it turns out, can also be extended for the remaining epochs of the cosmological evolution until the current dark energy era.
NASA Astrophysics Data System (ADS)
Shock, Jonathan P.
2006-10-01
Two points on the Coulomb branch of Script N = 4 super Yang Mills are investigated using their supergravity duals. By switching on condensates for the scalars in the Script N = 4 multiplet with a form which preserves a subgroup of the original R-symmetry, disk and sphere configurations of D3-branes are formed in the dual supergravity background. The analytic, canonical metric for these geometries is formulated and the singularity structure is studied. Quarks are introduced into the corresponding field theories using D7-brane probes and the meson spectrum is calculated. For one of the condensate configurations, a mass gap is found and shown analytically to be present in the massless limit. It is also found that there is a stepped spectrum with eigenstate degeneracy in the limit of small quark masses and this result is shown analytically. In the second, similar deformation it is necessary to understand the full D3-D7 brane interaction to study the limit of small quark masses. For quark masses larger than the condensate scale the spectrum is calculated and shown to be discrete as expected.
BOOK REVIEW: Modern Supersymmetry
NASA Astrophysics Data System (ADS)
Kulish, Petr P.
2006-12-01
We have spent more than twenty years applying supersymmetry (SUSY) to elementary particle physics and attempting to find an experimental manifestation of this symmetry. Terning's monograph demonstrates the strong influence of SUSY on theoretical elaborations in the field of elementary particles. It gives both an overview of modern supersymmetry in elementary particle physics and calculation techniques. The author, trying to be closer to applications of SUSY in the real world of elementary particles, is also anticipating the importance of supersymmetry for rigorous study of nonperturbative phenomena in quantum field theory. In particular, he presents the `exact' SUSY β function using instanton methods, phenomena of anomalies and dualities. Supersymmetry algebra is introduced by adding two anticommuting spinor generators to Poincaré algebra and by presenting massive and massless supermultiplets of its representations. The author prefers to use mostly the component description of field contents of the theories in question rather than the superfield formalism. Such a style makes the account closer to physical chartacteristics. Relations required by SUSY among β functions of the gauge, Yukawa and quartic interactions are checked by direct calculations as well as to all orders in perturbation theory, thus demonstrating that SUSY survives quantization. A discussion is included of the hierarchy problem of different scales of weak and strong interactions and its possible solution by the minimal supersymmetric standard model. Different SUSY breaking mechanisms are presented corresponding to a realistic phenomenology. The monograph can also be considered as a guide to `duality' relations connecting different SUSY gauge theories, supergravities and superstrings. This is demonstrated referring to the particular properties and characteristics of these theories (field contents, scaling dimensions of appropriate operators etc). In particular, the last chapter deals with the AdS/CFT correspondence. The author explains clearly most of the arguments in discussions and refers for further details to original papers (with corresponding arXiv numbers), selected lists of which appear at the end of each chapter (there are more than 300 references in the book). Considered as a whole the book covers primers on quantum fields, Feynman diagrams, renormalization procedure and renormalization groups, as well as the representation theory of classical linear Lie algebras. Some necessary information on irreducible representations of su(N), so(N) and sp(2N) is given in an appendix. There are in the text short historical and biographical notes concerning those scientists who made important contributions to the subject of the monograph: S Coleman, Yu Golfand, E Witten and others. Most of the seventeen chapters contain a few exercises to check the reader's understanding of the corresponding material. This monograph will be useful for graduate students and researchers in the field of elementary particles.
Topics in high-energy physics: The standard model and beyond
NASA Astrophysics Data System (ADS)
Blechman, Andrew Eric
This thesis is compiled from the various projects I completed as a graduate student at the Johns Hopkins University Physics Department. The first project studied threshold effects in excited charmed baryon decays. The strong decays of the L+c (2593) are sensitive to finite width effects. This distorts the shape of the invariant mass spectrum in L+c1 → L+c pi+pi- from a simple Breit-Wigner resonance, which has implications for the experimental extraction of the L+c (2593) mass and couplings. A fit is performed to unpublished CLEO data which gives M( L+c (2593))---M( L+c ) = 305.6 +/- 0.3 MeV and h22=0.24+0.23 -0.11 , with h2 the L+c → Sigmacpi strong coupling in the chiral Lagrangian. In the second project, by shining a hypermultiplet from one side of the bulk of a flat five-dimensional orbifold, supersymmetry is broken. The extra dimension is stabilized in a supersymmetric way, and supersymmetry breaking does not damage the radius stabilization mechanism. The low energy theory contains the radion and two complex scalars that are massless in the global supersymmetric limit and are stabilized by tree level supergravity effects. It is shown that radion mediation can play the dominant role in communicating supersymmetry breaking to the visible sector and contact terms are exponentially suppressed at tree level. The third project studied lepton flavor violation in flavor anarchic Randall-Sundrum models. All Yukawa couplings and mixing matrices are generated at the TeV-scale by wavefunction overlaps in the five-dimensional Anti-deSitter geometry present in this theory, without introducing any additional structure. This leads to a TeV-scale solution to both the flavor and electroweak hierarchy problems. A thorough scan of the available parameter space is performed, including the effects of allowing the Higgs boson to propagate in the full five-dimensional space-time. These models give constraints at the few TeV level throughout the natural range of parameters. Near-future experiments will definitively test this model.
Supersymmetric attractors, topological strings, and the M5-brane CFT
NASA Astrophysics Data System (ADS)
Guica, Monica M.
One of the purposes of this thesis is to present the consistent and unifying picture that emerges in string and M-theory with eight supercharges. On one hand, this involves classifying and relating supersymmetric objects that occur in N = 2 compactifications of string and M-theory on a Calabi-Yau manifold. These come in a surprisingly wide variety of four and five-dimensional black holes, black rings and their sometimes very complicated bound states. On the other hand, the topological string also makes its appearance in theories with eight supercharges, and turns out to compute certain black hole degeneracies. We dedicate the introduction and the first chapter to summarizing and reviewing the beautiful relationships between black holes, black rings, their dual conformal field theory and the topological string, and we also outline the remaining puzzles and issues. Some of the black holes in question can be obtained by multiply-wrapping an M-theory M5-brane on a self-intersecting four-cycle in the Calabi-Yau manifold. Their dual microscopic description is known, and consists of a two-dimensional conformal field theory (CFT) which is the low-energy limit of the gauge theory that resides on the worldvolume of the M5 brane. We show that in a certain limit the M5-brane CFT is - perhaps surprisingly - able to reproduce the entropy of a completely different type of black holes, those obtained from wrapped M2-branes, whose microscopic description has not yet been understood. We also argue that certain black hole bound states should also be described by the same CFT, which suggests a unifying description of the various black objects in eight-supercharge supergravity theories. Finally, we describe and present a proof of the so-called OSV conjecture, which states that the mixed partition function of N = 2 four-dimensional BPS black holes equals the modulus square of the type A topological string partition function. We also attempt to use this relationship to better understand corrections to the entropy of supersymmetric black holes and rings in five dimensions.
Inner space/outer space - The interface between cosmology and particle physics
NASA Astrophysics Data System (ADS)
Kolb, Edward W.; Turner, Michael S.; Lindley, David; Olive, Keith; Seckel, David
A collection of papers covering the synthesis between particle physics and cosmology is presented. The general topics addressed include: standard models of particle physics and cosmology; microwave background radiation; origin and evolution of large-scale structure; inflation; massive magnetic monopoles; supersymmetry, supergravity, and quantum gravity; cosmological constraints on particle physics; Kaluza-Klein cosmology; and future directions and connections in particle physics and cosmology.
Cosmological attractors and asymptotic freedom of the inflaton field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kallosh, Renata; Linde, Andrei
2016-06-28
We show that the inflaton coupling to all other fields is exponentially suppressed during inflation in the cosmological α-attractor models. In the context of supergravity, this feature is a consequence of the underlying hyperbolic geometry of the moduli space which has a flat direction corresponding to the inflaton field. A combination of these factors protects the asymptotic flatness of the inflaton potential.
Heterotic reduction of Courant algebroid connections and Einstein-Hilbert actions
NASA Astrophysics Data System (ADS)
Jurčo, Branislav; Vysoký, Jan
2016-08-01
We discuss Levi-Civita connections on Courant algebroids. We define an appropriate generalization of the curvature tensor and compute the corresponding scalar curvatures in the exact and heterotic case, leading to generalized (bosonic) Einstein-Hilbert type of actions known from supergravity. In particular, we carefully analyze the process of the reduction for the generalized metric, connection, curvature tensor and the scalar curvature.
A class of exact classical solutions to string theory.
Coley, A A
2002-12-31
We show that the recently obtained class of spacetimes for which all of the scalar curvature invariants vanish (which can be regarded as generalizations of pp-wave spacetimes) are exact solutions in string theory to all perturbative orders in the string tension scale. As a result the spectrum of the theory can be explicitly obtained, and these spacetimes are expected to provide some hints for the study of superstrings on more general backgrounds. Since these Lorentzian spacetimes suffer no quantum corrections to all loop orders they may also offer insights into quantum gravity.
Matrix theory interpretation of discrete light cone quantization string worldsheets
Grignani; Orland; Paniak; Semenoff
2000-10-16
We study the null compactification of type-IIA string perturbation theory at finite temperature. We prove a theorem about Riemann surfaces establishing that the moduli spaces of infinite-momentum-frame superstring worldsheets are identical to those of branched-cover instantons in the matrix-string model conjectured to describe M theory. This means that the identification of string degrees of freedom in the matrix model proposed by Dijkgraaf, Verlinde, and Verlinde is correct and that its natural generalization produces the moduli space of Riemann surfaces at all orders in the genus expansion.
Exploring the Invisible Universe: From Black Holes to Superstrings
NASA Astrophysics Data System (ADS)
Baaquie, Belal E.; Willeboordse, Frederick H.
2015-03-01
The book is written for a broad scientific audience with an interest in the leading theories about the Universe. The focus is on the physical Universe, and the laws of Physics are taken to be the guiding light in all our analysis. Starting from first principles and using self-evident reasoning, all the fundamental ideas that are employed in exploring the hidden and invisible realms of the Universe are shown to arise quite naturally, once one adopts the outlook that has come to light with the advances in Physics...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Binétruy, Pierre; Dufaux, Jean-François; Bohé, Alejandro
We review several cosmological backgrounds of gravitational waves accessible to direct-detection experiments, with a special emphasis on those backgrounds due to first-order phase transitions and networks of cosmic (super-)strings. For these two particular sources, we revisit in detail the computation of the gravitational wave background and improve the results of previous works in the literature. We apply our results to identify the scientific potential of the NGO/eLISA mission of ESA regarding the detectability of cosmological backgrounds.
Planar metamaterial based on hybridization for directive emission.
Ourir, Abdelwaheb; Abdeddaim, Redha; de Rosny, Julien
2012-07-30
We present the first experimental demonstration of a high-directivity using a mu and epsilon near zero (MENZ) metamaterial. We use the hybridization principles to design a planar MENZ structure based on the fishnet unit cell. Resonant mode engineering achieves an effective permittivity and permeability that approaches zeros around 10.5 GHz simultaneously. We use this metamaterial as a superstrate of a microstrip patch antenna. We show that the directivity of the antenna is effectively enhanced compared to that of the patch antenna alone at the desired frequency.
High sensitivity optical biosensor based on polymer materials and using the Vernier effect.
Azuelos, Paul; Girault, Pauline; Lorrain, Nathalie; Poffo, Luiz; Guendouz, Mohammed; Thual, Monique; Lemaître, Jonathan; Pirasteh, Parastesh; Hardy, Isabelle; Charrier, Joël
2017-11-27
We demonstrate the fabrication of a Vernier effect SU8/PMATRIFE polymer optical biosensor with high homogeneous sensitivity using a standard photolithography process. The sensor is based on one micro-resonator embedded on each arm of a Mach-Zehnder interferometer. Measurements are based on the refractive index variation of the optical waveguide superstrate with different concentrations of glucose solutions. The sensitivity of the sensor has been measured as 17558 nm/RIU and the limit of detection has been estimated to 1.1.10 -6 RIU.
Basic Research in Electronics (JSEP) Joint Services Electronics Program.
1987-12-31
poiNU362Z~ fi5v WALu i~n v.j WSW)F fulmB JELECTROUICS FROMM. (U) POLYTECHNIC UII FAW1406lL WY MEKR RESERCH INST At A OLINEN ET ft. 31 DEC S? UmC...range, as discussed in section 3. The fifth topic relates to a superstrate-substrate structure that permits a simple printed-circuit antenna to radiate...Antennas Loaded by Periodic Metal Strips. In last year’s Annual Report we presented a simple and accurate transverse equivalent network for the class
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aaltonen, T.; Amerio, S.; Amidei, D.
2014-07-23
We perform a search for new physics using final states consisting of three leptons and a large imbalance in transverse momentum resulting from proton-antiproton collisions at 1.96 TeV center-of-mass energy. We use data corresponding to 5.8 fb -1 of integrated luminosity recorded by the CDF II detector at the Tevatron collider. Our main objective is to investigate possible new low-momentum (down to 5 GeV/c) multi-leptonic final states not investigated by LHC experiments. Relative to previous CDF analyses, we expand the geometric and kinematic coverage of electrons and muons and utilize tau leptons that decay hadronically. Inclusion of tau leptons ismore » particularly important for supersymmetry (SUSY) searches. The results are consistent with standard-model predictions. By optimizing our event selection to increase sensitivity to the minimal supergravity (mSUGRA) SUSY model, we set limits on the associated production of chargino and neutralino, the SUSY partners of the electroweak gauge bosons. We exclude cross sections up to 0.1 pb and chargino masses up to 168 GeV/c 2 at 95% CL, for a suited set of mSUGRA parameters. We also exclude a region of the two-dimensional space of the masses of the neutralino and the supersymmetric partner of the tau lepton, not previously excluded at the Tevatron.« less
Tensionless Strings and Supersymmetric Sigma Models: Aspects of the Target Space Geometry
NASA Astrophysics Data System (ADS)
Bredthauer, Andreas
2007-01-01
In this thesis, two aspects of string theory are discussed, tensionless strings and supersymmetric sigma models. The equivalent to a massless particle in string theory is a tensionless string. Even almost 30 years after it was first mentioned, it is still quite poorly understood. We discuss how tensionless strings give rise to exact solutions to supergravity and solve closed tensionless string theory in the ten dimensional maximally supersymmetric plane wave background, a contraction of AdS(5)xS(5) where tensionless strings are of great interest due to their proposed relation to higher spin gauge theory via the AdS/CFT correspondence. For a sigma model, the amount of supersymmetry on its worldsheet restricts the geometry of the target space. For N=(2,2) supersymmetry, for example, the target space has to be bi-hermitian. Recently, with generalized complex geometry, a new mathematical framework was developed that is especially suited to discuss the target space geometry of sigma models in a Hamiltonian formulation. Bi-hermitian geometry is so-called generalized Kaehler geometry but the relation is involved. We discuss various amounts of supersymmetry in phase space and show that this relation can be established by considering the equivalence between the Hamilton and Lagrange formulation of the sigma model. In the study of generalized supersymmetric sigma models, we find objects that favor a geometrical interpretation beyond generalized complex geometry.
N =1 supergravitational heterotic galileons
NASA Astrophysics Data System (ADS)
Deen, Rehan; Ovrut, Burt
2017-11-01
Heterotic M -theory consists of a five-dimensional manifold of the form S 1 / Z 2 × M 4. It has been shown that one of the two orbifold planes, the "observable" sector, can have a low energy particle spectrum which is precisely the N = 1 super-symmetric standard model with three right-handed neutrino chiral supermultiplets. The other orbifold plane constitutes a "hidden" sector which, since its communication with the observable sector is suppressed, will be ignored in this paper. However, the finite fifth-dimension allows for the existence of three-brane solitons which, in order to render the vacuum anomaly free, must appear. That is, heterotic M -theory provides a natural framework for brane-world cosmological scenarios coupled to realistic particle physics. The complete worldvolume action of such three-branes is unknown. Here, treating these solitons as probe branes, we construct their scalar worldvolume Lagrangian as a derivative expansion of the heterotic DBI action. In analogy with similar calculations in the M 5 and AdS 5 context, this leads to the construction of "heterotic Galileons". However, realistic vacua of heterotic M -theory are necessarily N = 1 supersymmetric in four dimensions. Hence, we proceed to supersymmetrize the three-brane worldvolume action, first in flat superspace and then extend the results to N = 1 supergravity. Such a worldvolume action may lead to interesting cosmology, such as "bouncing" universe models, by allowing for the violation of the Null Energy Condition (NEC).
Large dimensions and small curvatures from supersymmetric brane back-reaction
NASA Astrophysics Data System (ADS)
Burgess, C. P.; van Nierop, L.
2011-04-01
We compute the back-reaction of pairs of codimension-two branes within an explicit flux-stabilized compactification, to trace how its properties depend on the parameters that define the brane-bulk couplings. Both brane tension and magnetic couplings to the stabilizing flux play an important role in the resulting dynamics, with the magnetic coupling allowing some of the flux to be localized on the branes (thus changing the flux-quantization conditions). We find that back-reaction lifts the classical flat directions of the bulk supergravity, and we calculate both the scalar potential and changes to the extra-dimensional and on-brane geometries that result, as functions of the assumed brane couplings. When linearized about simple rugby-ball geometries the resulting solutions allow a systematic exploration of the system's response. Several of the systems we explore have remarkable properties. Among these are a propensity for the extra dimensions to stabilize at exponentially large sizes, providing a mechanism for generating extremely large volumes. In some circumstances the brane-dilaton coupling allows the bulk dilaton to adjust to suppress the on-brane curvature parametrically below the change in brane tension, potentially providing a mechanism for reducing the vacuum energy. We explore the stability of this suppression to quantum effects in the case where their strength is controlled by the value of the field along the classical flat direction, and find it can (but need not) be stable.
Numerical Polynomial Homotopy Continuation Method and String Vacua
Mehta, Dhagash
2011-01-01
Finding vmore » acua for the four-dimensional effective theories for supergravity which descend from flux compactifications and analyzing them according to their stability is one of the central problems in string phenomenology. Except for some simple toy models, it is, however, difficult to find all the vacua analytically. Recently developed algorithmic methods based on symbolic computer algebra can be of great help in the more realistic models. However, they suffer from serious algorithmic complexities and are limited to small system sizes. In this paper, we review a numerical method called the numerical polynomial homotopy continuation (NPHC) method, first used in the areas of lattice field theories, which by construction finds all of the vacua of a given potential that is known to have only isolated solutions. The NPHC method is known to suffer from no major algorithmic complexities and is embarrassingly parallelizable , and hence its applicability goes way beyond the existing symbolic methods. We first solve a simple toy model as a warm-up example to demonstrate the NPHC method at work. We then show that all the vacua of a more complicated model of a compactified M theory model, which has an S U ( 3 ) structure, can be obtained by using a desktop machine in just about an hour, a feat which was reported to be prohibitively difficult by the existing symbolic methods. Finally, we compare the various technicalities between the two methods.« less
Applications of Subleading-Color Amplitudes in N = 4 SYM Theory
Naculich, Stephen G.; Nastase, Horatiu; Schnitzer, Howard J.
2011-01-01
A numore » mber of features and applications of subleading-color amplitudes of N = 4 SYM theory are reviewed. Particular attention is given to the IR divergences of the subleading-color amplitudes, the relationships of N = 4 SYM theory to N = 8 supergravity, and to geometric interpretations of one-loop subleading-color and N k MHV amplitudes of N = 4 SYM theory.« less
Starobinsky-like inflation and neutrino masses in a no-scale SO(10) model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellis, John; Theoretical Physics Department, CERN,CH-1211 Geneva 23; Garcia, Marcos A.G.
2016-11-08
Using a no-scale supergravity framework, we construct an SO(10) model that makes predictions for cosmic microwave background observables similar to those of the Starobinsky model of inflation, and incorporates a double-seesaw model for neutrino masses consistent with oscillation experiments and late-time cosmology. We pay particular attention to the behaviour of the scalar fields during inflation and the subsequent reheating.
CERN Winter School on Supergravity, Strings, and Gauge Theory 2010
McAllister, Liam
2018-05-14
The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher
CERN Winter School on Supergravity, Strings, and Gauge Theory 2010
None
2018-05-22
The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons.Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher
CERN Winter School on Supergravity, Strings, and Gauge Theory 2010
None
2018-06-28
The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher
CERN Winter School on Supergravity, Strings, and Gauge Theory 2010
None
2018-05-23
The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher
CERN Winter School on Supergravity, Strings, and Gauge Theory 2010
None
2017-12-09
The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher
Effects of grand unification interactions on weak symmetry breaking in supergravity theories
NASA Astrophysics Data System (ADS)
Moxhay, Peter; Yamamoto, Katsuji
Possible effects of grand unification interactions on SU(2) × U(1) breaking are investigated by explicitly considering a supersymmetric SU(5) model coupled to N = 1 supergravity. Some remarkable features concerning the effects of renormalization on the effective soft supersymmetry breaking terms of SU(5) in the GUT region MP - MG are clarified, which are relevant for determining the SU(3) × SU(2) × U(1) theory below MG. In particular, the (mass) 2 of the Higgs doublets, g Hm g2and g overlineHm g2, might become significantly small at M G (g H ⋍ g overlineH ≈ 0.1) through the effect of SU(5) couplings such as overlineHø EH . Then, gH can rather easily become negative below MG, so as to realize SU(2) × U(1) breaking naturally even for the "diet" top quark case ( mt ≈ 40 GeV). On the other hand, if g H ⋍ g overlineH ⋍ 1 at M G by neglecting the grand unification interactions, some careful tuning of μ32/ mg2 is required with an accuracy ⪅10 -2 to achieve SU(2) × U(1) breaking with "diet" top quark, though a mass term μ 32( overlineHH) may be present.
Early universe cosmology, effective supergravity, and invariants of algebraic forms
NASA Astrophysics Data System (ADS)
Sinha, Kuver
2015-09-01
The presence of light scalars can have profound effects on early universe cosmology, influencing its thermal history as well as paradigms like inflation and baryogenesis. Effective supergravity provides a framework to make quantifiable, model-independent studies of these effects. The Riemannian curvature of the Kähler manifold spanned by scalars belonging to chiral superfields, evaluated along supersymmetry breaking directions, provides an order parameter (in the sense that it must necessarily take certain values) for phenomena as diverse as slow roll modular inflation, nonthermal cosmological histories, and the viability of Affleck-Dine baryogenesis. Within certain classes of UV completions, the order parameter for theories with n scalar moduli is conjectured to be related to invariants of n -ary cubic forms (for example, for models with three moduli, the order parameter is given by a function on the ring of invariants spanned by the Aronhold invariants). Within these completions, and under the caveats spelled out, this may provide an avenue to obtain necessary conditions for the above phenomena that are in principle calculable given nothing but the intersection numbers of a Calabi-Yau compactification geometry. As an additional result, abstract relations between holomorphic sectional and bisectional curvatures are utilized to constrain Affleck-Dine baryogenesis on a wide class of Kähler geometries.
CERN Winter School on Supergravity, Strings, and Gauge Theory 2010
McAllister, Liam
2018-05-24
The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe";. The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions".This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde. Local organizers: A. Uranga, J. Walcher
CERN Winter School on Supergravity, Strings, and Gauge Theory 2010
Sen, Ashoke
2018-04-27
The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network". The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher.
CERN Winter School on Supergravity, Strings, and Gauge Theory 2010
None
2018-05-23
The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe";. The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher
[Towards an unified theory of the universe basic forces ("the everything theory")].
Aguilar Peris, José
2004-01-01
Numerous efforts have been made in order to unify all the basic forces in nature. In 1967 the fusion of electromagnetic and weak forces was obtained and in 1973 a theoretical bridge between the electroweak and the strong forces have been constructed. This theory is waiting for experimental proofs in the CERN large hadron collider. The last stage would be "the everything theory", which includes the gravitational force. Only the so called superstring theory is a good candidate to overcome the incompatibility of the quantum mechanics and the general relativity, but this theory is not already achieved.