Sample records for dimensional velocity structure

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polat, Orhan, E-mail: orhan.polat@deu.edu.tr; Özer, Çaglar, E-mail: caglar.ozer@deu.edu.tr; Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Department of Geophysical Engineering, Izmir-Turkey

    In this study; we examined one dimensional crustal velocity structure of Izmir gulf and surroundings. We used nearly one thousand high quality (A and B class) earthquake data which recorded by Disaster and Emergency Management Presidency (AFAD) [1], Bogazici University (BU-KOERI) [2] and National Observatory of Athens (NOA) [3,4]. We tried several synthetic tests to understand power of new velocity structure, and examined phase residuals, RMS values and shifting tests. After evaluating these tests; we decided one dimensional velocity structure and minimum 1-D P wave velocities, hypocentral parameter and earthquake locations from VELEST algorithm. Distribution of earthquakes was visibly improvedmore » by using new minimum velocity structure.« less

  2. Three-dimensional P-wave velocity structure of Mt. Etna, Italy

    USGS Publications Warehouse

    Villasenor, A.; Benz, H.M.; Filippi, L.; De Luca, G.; Scarpa, R.; Patane, G.; Vinciguerra, S.

    1998-01-01

    The three-dimensional P-wave velocity structure of Mt. Etna is determined to depths of 15 km by tomographic inversion of first arrival times from local earthquakes recorded by a network of 29 permanent and temporary seismographs. Results show a near-vertical low-velocity zone that extends from beneath the central craters to a depth of 10 km. This low-velocity region is coincident with a band of steeply-dipping seismicity, suggesting a magmatic conduit that feeds the summit eruptions. The most prominent structure is an approximately 8-km-diameter high-velocity body located between 2 and 12 km depth below the southeast flank of the volcano. This high-velocity body is interpreted as a remnant mafic intrusion that is an important structural feature influencing both volcanism and east flank slope stability and faulting.

  3. Effects of three-dimensional velocity structure on the seismicity of the 1984 Morgan Hill, California, aftershock sequence

    USGS Publications Warehouse

    Michael, A.J.

    1988-01-01

    A three-dimensional velocity model for the area surrounding the 24 April 1984 Morgan Hill earthquake has been developed by simultaneously inverting local earthquake and refraction arrival-time data. This velocity model corresponds well to the surface geology of the region, predominantly showing a low-velocity region associated with the sedimentary sequence to the south-west of the Madrone Springs fault. The focal mechanisms were also determined for 946 earthquakes using both the one-dimensional and three-dimensional earth models. Both earth models yield similar focal mechanisms for these earthquakes. -from Author

  4. CELFE/NASTRAN Code for the Analysis of Structures Subjected to High Velocity Impact

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1978-01-01

    CELFE (Coupled Eulerian Lagrangian Finite Element)/NASTRAN Code three-dimensional finite element code has the capability for analyzing of structures subjected to high velocity impact. The local response is predicted by CELFE and, for large problems, the far-field impact response is predicted by NASTRAN. The coupling of the CELFE code with NASTRAN (CELFE/NASTRAN code) and the application of the code to selected three-dimensional high velocity impact problems are described.

  5. Anisotropic S-wave velocity structure from joint inversion of surface wave group velocity dispersion: A case study from India

    NASA Astrophysics Data System (ADS)

    Mitra, S.; Dey, S.; Siddartha, G.; Bhattacharya, S.

    2016-12-01

    We estimate 1-dimensional path average fundamental mode group velocity dispersion curves from regional Rayleigh and Love waves sampling the Indian subcontinent. The path average measurements are combined through a tomographic inversion to obtain 2-dimensional group velocity variation maps between periods of 10 and 80 s. The region of study is parametrised as triangular grids with 1° sides for the tomographic inversion. Rayleigh and Love wave dispersion curves from each node point is subsequently extracted and jointly inverted to obtain a radially anisotropic shear wave velocity model through global optimisation using Genetic Algorithm. The parametrization of the model space is done using three crustal layers and four mantle layers over a half-space with varying VpH , VsV and VsH. The anisotropic parameter (η) is calculated from empirical relations and the density of the layers are taken from PREM. Misfit for the model is calculated as a sum of error-weighted average dispersion curves. The 1-dimensional anisotropic shear wave velocity at each node point is combined using linear interpolation to obtain 3-dimensional structure beneath the region. Synthetic tests are performed to estimate the resolution of the tomographic maps which will be presented with our results. We envision to extend this to a larger dataset in near future to obtain high resolution anisotrpic shear wave velocity structure beneath India, Himalaya and Tibet.

  6. Asymptotic structure and similarity solutions for three-dimensional turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Degani, A. T.; Walker, J. D. A.

    1989-01-01

    The asymptotic structure of the three-dimensional turbulent boundary layer is investigated in the limit of large Reynolds numbers. A self-consistent, but relatively complex, two-layer structure exists and the simplest situation, corresponding to a plane of symmetry, is considered in this paper as a first step. The adjustment of the streamwise velocity to relative rest, through an outer defect layer and then an inner wall layer, is similar to that in two-dimensional flow. The adjustment of the cross-streamwise velocity is more complicated and it is shown that two terms in the expansion are required to obtain useful results, and in particular to obtain the velocity skew angle at the wall near the symmetry plane. The conditions under which self-similarity is achieved near a plane of symmetry are investigated. A set of ordinary differential equations is developed which describe the streamwise and cross-streamwise velocities near a plane of symmetry in a self-similar flow through two orders of magnitude. Calculated numerical solutions of these equations yield trends which are consistent with experimental observations.

  7. The development of laser speckle velocimetry for the study of vortical flows

    NASA Technical Reports Server (NTRS)

    Krothapalli, A.

    1991-01-01

    A new experimental technique commonly known as PIDV (particle image displacement velocity) was developed to measure an instantaneous two dimensional velocity fluid in a selected plane of the flow field. This technique was successfully applied to the study of several problems: (1) unsteady flows with large scale vortical structures; (2) the instantaneous two dimensional flow in the transition region of a rectangular air jet; and (3) the instantaneous flow over a circular bump in a transonic flow. In several other experiments PIDV is routinely used as a non-intrusive measurement technique to obtain instantaneous two dimensional velocity fields.

  8. East African upper mantle shear wave velocity structure derived from Rayleigh wave tomography

    NASA Astrophysics Data System (ADS)

    O'Donnell, J.; Nyblade, A.; Adams, A. N.; Mulibo, G.; Tugume, F.

    2011-12-01

    An expanded model of the three-dimensional shear wave velocity structure of the upper mantle beneath East Africa is being developed using data from the latest phases of the AfricaArray East African Seismic Experiment in conjunction with data from preceding studies. The combined dataset encompasses seismic stations which span Tanzania, Uganda and Zambia. From the new data, fundamental mode Rayleigh wave phase velocities are being measured at periods ranging from 20 to 180 seconds using the two-plane-wave method. These measurements will be combined with similarly processed measurements from previous studies and inverted for an upper mantle three-dimensional shear wave velocity model. In particular, the model will further constrain the morphology of the low velocity anomaly which underlies the East African Plateau extending to the southwest beneath Zambia.

  9. Joint inversion of seismic and gravity data for imaging seismic velocity structure of the crust and upper mantle beneath Utah, United States

    NASA Astrophysics Data System (ADS)

    Syracuse, E. M.; Zhang, H.; Maceira, M.

    2017-10-01

    We present a method for using any combination of body wave arrival time measurements, surface wave dispersion observations, and gravity data to simultaneously invert for three-dimensional P- and S-wave velocity models. The simultaneous use of disparate data types takes advantage of the differing sensitivities of each data type, resulting in a comprehensive and higher resolution three-dimensional geophysical model. In a case study for Utah, we combine body wave first arrivals mainly from the USArray Transportable Array, Rayleigh wave group and phase velocity dispersion data, and Bouguer gravity anomalies to invert for crustal and upper mantle structure of the region. Results show clear delineations, visible in both P- and S-wave velocities, between the three main tectonic provinces in the region. Without the inclusion of the surface wave and gravity constraints, these delineations are less clear, particularly for S-wave velocities. Indeed, checkerboard tests confirm that the inclusion of the additional datasets dramatically improves S-wave velocity recovery, with more subtle improvements to P-wave velocity recovery, demonstrating the strength of the method in successfully recovering seismic velocity structure from multiple types of constraints.

  10. 3-dimensional structure of the Indian Ocean inferred from long period surface waves

    NASA Astrophysics Data System (ADS)

    Montagner, Jean-Paul

    1986-04-01

    To improve the lateral resolution of the first global 3 - dimensional models of seismic wave velocities, regional studies have to be undertaken. The dispersion of Rayleigh waves along 86 paths across the Indian Ocean and surrounding regions is investigated in the period range 40 - 300 s. The regionalization of group velocity according to the age of the sea floor shows an increase of velocity with age up to 150 s only, similar to the results in the Pacific Ocean. But here, this relationship vanishes more quickly at long period. Therefore the correlation of the deep structure with surface tectonics seems to be shallower in the Indian Ocean than in the Pacific Ocean. A tomographic method is applied to compute the geographical distributions of group velocity and azimuthal anisotropy and then the 3-D structure of S-wave velocity. Horizontal wavelengths of 2000 km for velocity and 3000 km for azimuthal anisotropy distribution can be resolved. Except for the central part of the South East Indian ridge which displays high velocities at all depths, the inversion corroborates a good correlation between lithospheric structure down to 120 km and surface tectonics: low velocities along the central and southeast Indian ridges, velocity increasing with the age of the sea floor, high velocities under African, Indian and Australian shields. At greater depths, the low velocity zones under the Gulf of Aden and the western part of the Southeast Indian ridges hold but the low velocity anomaly of the Central Indian ridge is offset eastward. The low velocity anomalies suggest uprising material and complex plate boundary.

  11. Ring structure of a neutral gas cloud studied in a one-dimensional expansion into space

    NASA Technical Reports Server (NTRS)

    Davidson, R. E.

    1972-01-01

    A one dimensional treatment of the expansion of a gas cloud of uncharged particles into vacuum is discussed. It is determined that the whole cloud does not change from continuum to free molecular flow at the same time. Some regions of the cloud make the transition sooner than others. An explanation of the ring structure observed during barium cloud experiments is presented using this conclusion. An analysis of the velocity distributions for the two kinds of flow yields a velocity distribution for the whole cloud that exhibits ring structure.

  12. GFZ Wireless Seismic Array (GFZ-WISE), a Wireless Mesh Network of Seismic Sensors: New Perspectives for Seismic Noise Array Investigations and Site Monitoring

    PubMed Central

    Picozzi, Matteo; Milkereit, Claus; Parolai, Stefano; Jaeckel, Karl-Heinz; Veit, Ingo; Fischer, Joachim; Zschau, Jochen

    2010-01-01

    Over the last few years, the analysis of seismic noise recorded by two dimensional arrays has been confirmed to be capable of deriving the subsoil shear-wave velocity structure down to several hundred meters depth. In fact, using just a few minutes of seismic noise recordings and combining this with the well known horizontal-to-vertical method, it has also been shown that it is possible to investigate the average one dimensional velocity structure below an array of stations in urban areas with a sufficient resolution to depths that would be prohibitive with active source array surveys, while in addition reducing the number of boreholes required to be drilled for site-effect analysis. However, the high cost of standard seismological instrumentation limits the number of sensors generally available for two-dimensional array measurements (i.e., of the order of 10), limiting the resolution in the estimated shear-wave velocity profiles. Therefore, new themes in site-effect estimation research by two-dimensional arrays involve the development and application of low-cost instrumentation, which potentially allows the performance of dense-array measurements, and the development of dedicated signal-analysis procedures for rapid and robust estimation of shear-wave velocity profiles. In this work, we present novel low-cost wireless instrumentation for dense two-dimensional ambient seismic noise array measurements that allows the real–time analysis of the surface-wavefield and the rapid estimation of the local shear-wave velocity structure for site response studies. We first introduce the general philosophy of the new system, as well as the hardware and software that forms the novel instrument, which we have tested in laboratory and field studies. PMID:22319298

  13. Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence

    NASA Technical Reports Server (NTRS)

    Kerr, R. A.

    1983-01-01

    In a three dimensional simulation higher order derivative correlations, including skewness and flatness factors, are calculated for velocity and passive scalar fields and are compared with structures in the flow. The equations are forced to maintain steady state turbulence and collect statistics. It is found that the scalar derivative flatness increases much faster with Reynolds number than the velocity derivative flatness, and the velocity and mixed derivative skewness do not increase with Reynolds number. Separate exponents are found for the various fourth order velocity derivative correlations, with the vorticity flatness exponent the largest. Three dimensional graphics show strong alignment between the vorticity, rate of strain, and scalar-gradient fields. The vorticity is concentrated in tubes with the scalar gradient and the largest principal rate of strain aligned perpendicular to the tubes. Velocity spectra, in Kolmogorov variables, collapse to a single curve and a short minus 5/3 spectral regime is observed.

  14. Three-dimensional shear wave velocity structure in the Atlantic upper mantle

    NASA Astrophysics Data System (ADS)

    James, Esther Kezia Candace

    Oceanic lithosphere constitutes the upper boundary layer of the Earth's convecting mantle. Its structure and evolution provide a vital window on the dynamics of the mantle and important clues to how the motions of Earth's surface plates are coupled to convection in the mantle below. The three-dimensional shear-velocity structure of the upper mantle beneath the Atlantic Ocean is investigated to gain insight into processes that drive formation of oceanic lithosphere. Travel times are measured for approximately 10,000 fundamental-mode Rayleigh waves, in the period range 30-130 seconds, traversing the Atlantic basin. Paths with >30% of their length through continental upper mantle are excluded to maximize sensitivity to the oceanic upper mantle. The lateral distribution of Rayleigh wave phase velocity in the Atlantic upper mantle is explored with two approaches. One, phase velocity is allowed to vary only as a function of seafloor age. Two, a general two-dimensional parameterization is utilized in order to capture perturbations to age-dependent structure. Phase velocity shows a strong dependence on seafloor age, and removing age-dependent velocity from the 2-D maps highlights areas of anomalously low velocity, almost all of which are proximal to locations of hotspot volcanism. Depth-dependent variations in vertically-polarized shear velocity (Vsv) are determined with two sets of 3-D models: a layered model that requires constant VSV in each depth layer, and a splined model that allows VSV to vary continuously with depth. At shallow depths (˜75 km) the seismic structure shows the expected dependence on seafloor age. At greater depths (˜200 km) high-velocity lithosphere is found only beneath the oldest seafloor; velocity variations beneath younger seafloor may result from temperature or compositional variations within the asthenosphere. The age-dependent phase velocities are used to constrain temperature in the mantle and show that, in contrast to previous results for the Pacific, phase velocities for the Atlantic are not consistent with a half-space cooling model but are best explained by a plate-cooling model with thickness of 75 km and mantle temperature of 1400°C. Comparison with data such as basalt chemistry and seafloor elevation helps to separate thermal and compositional effects on shear velocity.

  15. Joint inversion of seismic and gravity data for imaging seismic velocity structure of the crust and upper mantle beneath Utah, United States

    DOE PAGES

    Syracuse, Ellen Marie; Zhang, Haijiang; Maceira, Monica

    2017-07-11

    Here, we present a method for using any combination of body wave arrival time measurements, surface wave dispersion observations, and gravity data to simultaneously invert for three-dimensional P- and S-wave velocity models. The simultaneous use of disparate data types takes advantage of the differing sensitivities of each data type, resulting in a comprehensive and higher resolution three-dimensional geophysical model. In a case study for Utah, we combine body waves first arrivals mainly from the USArray Transportable Array, Rayleigh wave group and phase velocity dispersion data, and Bouguer gravity anomalies to invert for crustal and upper mantle structure of the region.more » Results show clear delineations, visible in both P- and S-wave velocities, between the three main tectonic provinces in the region. In conclusion, without the inclusion of the surface wave and gravity constraints, these delineations are less clear, particularly for S-wave velocities. Indeed, checkerboard tests confirm that the inclusion of the additional datasets dramatically improves S-wave velocity recovery, with more subtle improvements to P-wave velocity recovery, demonstrating the strength of the method in successfully recovering seismic velocity structure from multiple types of constraints.« less

  16. Joint inversion of seismic and gravity data for imaging seismic velocity structure of the crust and upper mantle beneath Utah, United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syracuse, Ellen Marie; Zhang, Haijiang; Maceira, Monica

    Here, we present a method for using any combination of body wave arrival time measurements, surface wave dispersion observations, and gravity data to simultaneously invert for three-dimensional P- and S-wave velocity models. The simultaneous use of disparate data types takes advantage of the differing sensitivities of each data type, resulting in a comprehensive and higher resolution three-dimensional geophysical model. In a case study for Utah, we combine body waves first arrivals mainly from the USArray Transportable Array, Rayleigh wave group and phase velocity dispersion data, and Bouguer gravity anomalies to invert for crustal and upper mantle structure of the region.more » Results show clear delineations, visible in both P- and S-wave velocities, between the three main tectonic provinces in the region. In conclusion, without the inclusion of the surface wave and gravity constraints, these delineations are less clear, particularly for S-wave velocities. Indeed, checkerboard tests confirm that the inclusion of the additional datasets dramatically improves S-wave velocity recovery, with more subtle improvements to P-wave velocity recovery, demonstrating the strength of the method in successfully recovering seismic velocity structure from multiple types of constraints.« less

  17. Factors influencing perceived angular velocity.

    PubMed

    Kaiser, M K; Calderone, J B

    1991-11-01

    The assumption that humans are able to perceive and process angular kinematics is critical to many structure-from-motion and optical flow models. The current studies investigate this sensitivity, and examine several factors likely to influence angular velocity perception. In particular, three factors are considered: (1) the extent to which perceived angular velocity is determined by edge transitions of surface elements, (2) the extent to which angular velocity estimates are influenced by instantaneous linear velocities of surface elements, and (3) whether element-velocity effects are related to three-dimensional (3-D) tangential velocities or to two-dimensional (2-D) image velocities. Edge-transition rate biased angular velocity estimates only when edges were highly salient. Element velocities influenced perceived angular velocity; this bias was related to 2-D image velocity rather than 3-D tangential velocity. Despite these biases, however, judgments were most strongly determined by the true angular velocity. Sensitivity to this higher order motion parameter was surprisingly good, for rotations both in depth (y-axis) and parallel to the line of sight (z-axis).

  18. Three-dimensional modeling of the Nevada Test Site and vicinity from teleseismic P-wave residuals

    USGS Publications Warehouse

    Monfort, Mary E.; Evans, John R.

    1982-01-01

    A teleseismic P-wave travel-time residual study is described which reveals the regional compressional-velocity structure of southern Nevada and neighboring parts of California to a depth of 280 km. During 1980, 98 teleseismic events were recorded at as many as 53 sites in this area. P-wave residuals were calculated relative to a network-wide average residual for each event and are displayed on maps of the stations for each of four event-azimuth quadrants. Fluctuations in these map-patterns of residuals with approach azimuth combined with results of linear, three-dimensional inversions of some 2887 residuals indicate the following characteristics of the velocity structure of the southern Nevada region: 1) a low-velocity body exists in the upper crust 50 km northeast of Beatty, Nevada, near the Miocene Timber Mountain-Silent Canyon caldera complex. Another highly-localized low-velocity anomaly occurs near the southwest corner of the Nevada Test Site (NTS). These two anomalies seem to be part of a low-velocity trough extending from Death Valley, California, to about 50 km north of NTS. 2) There is a high-velocity body in the mantle between 81 and 131 km deep centered about i0 km north of the edge of the Timber Mountain caldera, 3) a broad low-velocity body is delineated between 81 and 131 km deep centered about 30 km north of Las Vegas, 4) there is a monotonic increase in travel-time delays from west to east across the region, probably indicating an eastward decrease in velocity, and lower than average velocities in southeastern Nevada below 31 km, and 5) considerable complexity in three-dimensional velocity structure exists in this part of the southern Great Basin. Inversions of teleseismic P-wave travel-time residuals were also performed on data from 12 seismometers in the immediate vicinity of the Nevada Test Site to make good use of the closer station spacing i in that area. Results of these inversions show more details of the velocity structure but generally the same features as those found in the regional study.

  19. New Synthesis of Ocean Crust Velocity Structure From Two-Dimensional Profiles

    NASA Astrophysics Data System (ADS)

    Christeson, G. L.; Goff, J.; Carlson, R. L.; Reece, R.

    2017-12-01

    The velocity structure of typical oceanic crust consists of Layer 2, where velocities increase rapidly with depth from seafloor, and Layer 3, which is thicker and has a lower velocity gradient. Previous syntheses have found no correlation of velocity structure with spreading rate, even though we know that magmatic processes differ between slow-spreading and fast-spreading crust. We present a new synthesis of ocean crust velocity structure, compiling observations from two-dimensional studies in the Atlantic, Pacific, and Indian ocean basins. The Layer 2/3 boundary was picked from each publication at a change in gradient either on velocity-depth functions or contour plots (with at least 0.5 km/s contour interval), or from the appropriate layer boundary for layered models. We picked multiple locations at each seismic refraction profile if warranted by model variability. Preliminary results show statistically significant differences in average Layer 2 and Layer 3 thicknesses between slow-spreading and superfast-spreading crust, with Layer 2 thinner and Layer 3 thicker for the higher spreading rate crust. The thickness changes are about equivalent, resulting in no change in mean crustal thickness. The Layer 2/3 boundary is often interpreted as the top of the gabbros; however, a comparison with mapped magma lens depths at the ridge axis shows that the boundary is typically deeper than average axial melt lens depth at superfast-spreading crust, and shallower at intermediate-spreading crust.

  20. Three-dimensional velocity structure of crust and upper mantle in southwestern China and its tectonic implications

    USGS Publications Warehouse

    Wang, Chun-Yong; Chan, W.W.; Mooney, W.D.

    2003-01-01

    Using P and S arrival times from 4625 local and regional earthquakes recorded at 174 seismic stations and associated geophysical investigations, this paper presents a three-dimensional crustal and upper mantle velocity structure of southwestern China (21??-34??N, 97??-105??E). Southwestern China lies in the transition zone between the uplifted Tibetan plateau to the west and the Yangtze continental platform to the east. In the upper crust a positive velocity anomaly exists in the Sichuan Basin, whereas a large-scale negative velocity anomaly exists in the western Sichuan Plateau, consistent with the upper crustal structure under the southern Tibetan plateau. The boundary between these two anomaly zones is the Longmen Shan Fault. The negative velocity anomalies at 50-km depth in the Tengchong volcanic area and the Panxi tectonic zone appear to be associated with temperature and composition variations in the upper mantle. The Red River Fault is the boundary between the positive and negative velocity anomalies at 50-km depth. The overall features of the crustal and the upper mantle structures in southwestern China are a low average velocity, large crustal thickness variations, the existence of a high-conductivity layer in the crust or/and upper mantle, and a high heat flow value. All these features are closely related to the collision between the Indian and the Asian plates.

  1. Broadband Ground Motion Synthesis of the 1999 Turkey Earthquakes Based On: 3-D Velocity Inversion, Finite Difference Calculations and Emprical Greens Functions

    NASA Astrophysics Data System (ADS)

    Gok, R.; Kalafat, D.; Hutchings, L.

    2003-12-01

    We analyze over 3,500 aftershocks recorded by several seismic networks during the 1999 Marmara, Turkey earthquakes. The analysis provides source parameters of the aftershocks, a three-dimensional velocity structure from tomographic inversion, an input three-dimensional velocity model for a finite difference wave propagation code (E3D, Larsen 1998), and records available for use as empirical Green's functions. Ultimately our goal is to model the 1999 earthquakes from DC to 25 Hz and study fault rupture mechanics and kinematic rupture models. We performed the simultaneous inversion for hypocenter locations and three-dimensional P- and S- wave velocity structure of Marmara Region using SIMULPS14 along with 2,500 events with more than eight P- readings and an azimuthal gap of less than 180\\deg. The resolution of calculated velocity structure is better in the eastern Marmara than the western Marmara region due to the dense ray coverage. We used the obtained velocity structure as input into the finite difference algorithm and validated the model by using M < 4 earthquakes as point sources and matching long period waveforms (f < 0.5 Hz). We also obtained Mo, fc and individual station kappa values for over 500 events by performing a simultaneous inversion to fit these parameters with a Brune source model. We used the results of the source inversion to deconvolve out a Brune model from small to moderate size earthquakes (M < 4.0) to obtain empirical Green's function (EGF) for the higher frequency range of ground motion synthesis (0.5 < f > 25 Hz). We additionally obtained the source scaling relation (energy-moment) of these aftershocks. We have generated several scenarios constrained by a priori knowledge of the Izmit and Duzce rupture parameters to validate our prediction capability.

  2. Simulation of Water-Surface Elevations and Velocity Distributions at the U.S. Highway 13 Bridge over the Tar River at Greenville, North Carolina, Using One- and Two-Dimensional Steady-State Hydraulic Models

    USGS Publications Warehouse

    Wagner, Chad R.

    2007-01-01

    The use of one-dimensional hydraulic models currently is the standard method for estimating velocity fields through a bridge opening for scour computations and habitat assessment. Flood-flow contraction through bridge openings, however, is hydrodynamically two dimensional and often three dimensional. Although there is awareness of the utility of two-dimensional models to predict the complex hydraulic conditions at bridge structures, little guidance is available to indicate whether a one- or two-dimensional model will accurately estimate the hydraulic conditions at a bridge site. The U.S. Geological Survey, in cooperation with the North Carolina Department of Transportation, initiated a study in 2004 to compare one- and two-dimensional model results with field measurements at complex riverine and tidal bridges in North Carolina to evaluate the ability of each model to represent field conditions. The field data consisted of discharge and depth-averaged velocity profiles measured with an acoustic Doppler current profiler and surveyed water-surface profiles for two high-flow conditions. For the initial study site (U.S. Highway 13 over the Tar River at Greenville, North Carolina), the water-surface elevations and velocity distributions simulated by the one- and two-dimensional models showed appreciable disparity in the highly sinuous reach upstream from the U.S. Highway 13 bridge. Based on the available data from U.S. Geological Survey streamgaging stations and acoustic Doppler current profiler velocity data, the two-dimensional model more accurately simulated the water-surface elevations and the velocity distributions in the study reach, and contracted-flow magnitudes and direction through the bridge opening. To further compare the results of the one- and two-dimensional models, estimated hydraulic parameters (flow depths, velocities, attack angles, blocked flow width) for measured high-flow conditions were used to predict scour depths at the U.S. Highway 13 bridge by using established methods. Comparisons of pier-scour estimates from both models indicated that the scour estimates from the two-dimensional model were as much as twice the depth of the estimates from the one-dimensional model. These results can be attributed to higher approach velocities and the appreciable flow angles at the piers simulated by the two-dimensional model and verified in the field. Computed flood-frequency estimates of the 10-, 50-, 100-, and 500-year return-period floods on the Tar River at Greenville were also simulated with both the one- and two-dimensional models. The simulated water-surface profiles and velocity fields of the various return-period floods were used to compare the modeling approaches and provide information on what return-period discharges would result in road over-topping and(or) pressure flow. This information is essential in the design of new and replacement structures. The ability to accurately simulate water-surface elevations and velocity magnitudes and distributions at bridge crossings is essential in assuring that bridge plans balance public safety with the most cost-effective design. By compiling pertinent bridge-site characteristics and relating them to the results of several model-comparison studies, the framework for developing guidelines for selecting the most appropriate model for a given bridge site can be accomplished.

  3. Angular velocity discrimination

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.

    1990-01-01

    Three experiments designed to investigate the ability of naive observers to discriminate rotational velocities of two simultaneously viewed objects are described. Rotations are constrained to occur about the x and y axes, resulting in linear two-dimensional image trajectories. The results indicate that observers can discriminate angular velocities with a competence near that for linear velocities. However, perceived angular rate is influenced by structural aspects of the stimuli.

  4. Estimation of the vortex length scale and intensity from two-dimensional samples

    NASA Technical Reports Server (NTRS)

    Reuss, D. L.; Cheng, W. P.

    1992-01-01

    A method is proposed for estimating flow features that influence flame wrinkling in reciprocating internal combustion engines, where traditional statistical measures of turbulence are suspect. Candidate methods were tested in a computed channel flow where traditional turbulence measures are valid and performance can be rationally evaluated. Two concepts are tested. First, spatial filtering is applied to the two-dimensional velocity distribution and found to reveal structures corresponding to the vorticity field. Decreasing the spatial-frequency cutoff of the filter locally changes the character and size of the flow structures that are revealed by the filter. Second, vortex length scale and intensity is estimated by computing the ensemble-average velocity distribution conditionally sampled on the vorticity peaks. The resulting conditionally sampled 'average vortex' has a peak velocity less than half the rms velocity and a size approximately equal to the two-point-correlation integral-length scale.

  5. Shallow Subsurface Velocity Structure using the Ambient Noise for the Garhwal and Kumaon Himalaya.

    NASA Astrophysics Data System (ADS)

    LAL, S.; Joshi, A.; S.; P.

    2017-12-01

    Abstract: In this paper effort has been made to obtain one dimensional subsurface velocity structure using H/V spectral ratio method Nakamura (1989). The complete study shows that ambient noises are reflective of structural properties of underlying strata. Data has been obtained at stations from foothills of Himalaya up to higher Himalaya along road using strong motion accelerograph in the Garhwal and Kumaon Himalaya along the two transects lines. Noise data has been processed using the seismosignal software. The ratio between the Fourier amplitude spectra of the horizontal components to the vertical component of the ambient noise had been used to consider the site effects of the concerned site. The relation given by Lermo and Chavez-Garcia (1993) between the thickness of layer and average S- wave velocity of the sedimentary layer has been utilized to obtain sub surface velocity model. To fit the synthetic H/V curve with the observed H/V curve, technique given by Castellaro and Mulargia (2009) is used in the present study. This model is improved via forward modelling to give final one dimensional velocity structure at a particular station. Velocity structures obtained at all stations are used to obtain continuous velocity models for concerned area using Kringing interpolation, which is correlated with the geology and tectonic of region. Keywords: Ambient noise, H/V spectral ratio, Site characterization, Accelerograph, Velocity ReferencesNakamura Y (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. QR RTRI 30(1):25-30. Castellaro S, Mulargia F (2009). The effect of velocity inversions on H/V. PAGEOPH 166:567-592. Lermo, J., & Chavez-Garcia, F. J. (1993). Site effect evaluation using spectral ratios with only one station Bulletin Seismological Society of America, 83, 1574-1594.

  6. Calculation of wake vortex structures in the near-field wake behind cruising aircraft

    NASA Astrophysics Data System (ADS)

    Ehret, T.; Oertel, H.

    Wake flows behind cruising aircraft influence the distribution of the exhaust gases. A three-dimensional vortex filament method was developed to calculate the vortex structures and the velocity field of the vorticity dominated wake flows as an integration of the Biot-Savart law. For three-dimensional vortex filament calculations, self-induction singularities were prevented using a finite vortex core for each vortex filament. Numerical simulations show the vortex structures and the velocity field in the wake behind a cruising Boeing 747 as a result of the integration of the Biot-Savart law. It is further shown how the structures of the fully rolled-up trailing vortices depend on the wing span loading, i.e. the circulation distribution.

  7. Three-dimensional structural analysis using interactive graphics

    NASA Technical Reports Server (NTRS)

    Biffle, J.; Sumlin, H. A.

    1975-01-01

    The application of computer interactive graphics to three-dimensional structural analysis was described, with emphasis on the following aspects: (1) structural analysis, and (2) generation and checking of input data and examination of the large volume of output data (stresses, displacements, velocities, accelerations). Handling of three-dimensional input processing with a special MESH3D computer program was explained. Similarly, a special code PLTZ may be used to perform all the needed tasks for output processing from a finite element code. Examples were illustrated.

  8. The structure of a three-dimensional turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Degani, A. T.; Smith, F. T.; Walker, J. D. A.

    1993-01-01

    The three-dimensional turbulent boundary layer is shown to have a self-consistent two-layer asymptotic structure in the limit of large Reynolds number. In a streamline coordinate system, the streamwise velocity distribution is similar to that in two-dimensional flows, having a defect-function form in the outer layer which is adjusted to zero at the wall through an inner wall layer. An asymptotic expansion accurate to two orders is required for the cross-stream velocity which is shown to exhibit a logarithmic form in the overlap region. The inner wall-layer flow is collateral to leading order but the influence of the pressure gradient, at large but finite Reynolds numbers, is not negligible and can cause substantial skewing of the velocity profile near the wall. Conditions under which the boundary layer achieves self-similarity and the governing set of ordinary differential equations for the outer layer are derived. The calculated solution of these equations is matched asymptotically to an inner wall-layer solution and the composite profiles so formed describe the flow throughout the entire boundary layer. The effects of Reynolds number and cross-stream pressure gradient on the crossstream velocity profile are discussed and it is shown that the location of the maximum cross-stream velocity is within the overlap region.

  9. Current-driven plasmonic boom instability in three-dimensional gated periodic ballistic nanostructures

    NASA Astrophysics Data System (ADS)

    Aizin, G. R.; Mikalopas, J.; Shur, M.

    2016-05-01

    An alternative approach of using a distributed transmission line analogy for solving transport equations for ballistic nanostructures is applied for solving the three-dimensional problem of electron transport in gated ballistic nanostructures with periodically changing width. The structures with varying width allow for modulation of the electron drift velocity while keeping the plasma velocity constant. We predict that in such structures biased by a constant current, a periodic modulation of the electron drift velocity due to the varying width results in the instability of the plasma waves if the electron drift velocity to plasma wave velocity ratio changes from below to above unity. The physics of such instability is similar to that of the sonic boom, but, in the periodically modulated structures, this analog of the sonic boom is repeated many times leading to a larger increment of the instability. The constant plasma velocity in the sections of different width leads to resonant excitation of the unstable plasma modes with varying bias current. This effect (that we refer to as the superplasmonic boom condition) results in a strong enhancement of the instability. The predicted instability involves the oscillating dipole charge carried by the plasma waves. The plasmons can be efficiently coupled to the terahertz electromagnetic radiation due to the periodic geometry of the gated structure. Our estimates show that the analyzed instability should enable powerful tunable terahertz electronic sources.

  10. Station corrections for the Katmai Region Seismic Network

    USGS Publications Warehouse

    Searcy, Cheryl K.

    2003-01-01

    Most procedures for routinely locating earthquake hypocenters within a local network are constrained to using laterally homogeneous velocity models to represent the Earth's crustal velocity structure. As a result, earthquake location errors may arise due to actual lateral variations in the Earth's velocity structure. Station corrections can be used to compensate for heterogeneous velocity structure near individual stations (Douglas, 1967; Pujol, 1988). The HYPOELLIPSE program (Lahr, 1999) used by the Alaska Volcano Observatory (AVO) to locate earthquakes in Cook Inlet and the Aleutian Islands is a robust and efficient program that uses one-dimensional velocity models to determine hypocenters of local and regional earthquakes. This program does have the capability of utilizing station corrections within it's earthquake location proceedure. The velocity structures of Cook Inlet and Aleutian volcanoes very likely contain laterally varying heterogeneities. For this reason, the accuracy of earthquake locations in these areas will benefit from the determination and addition of station corrections. In this study, I determine corrections for each station in the Katmai region. The Katmai region is defined to lie between latitudes 57.5 degrees North and 59.00 degrees north and longitudes -154.00 and -156.00 (see Figure 1) and includes Mount Katmai, Novarupta, Mount Martin, Mount Mageik, Snowy Mountain, Mount Trident, and Mount Griggs volcanoes. Station corrections were determined using the computer program VELEST (Kissling, 1994). VELEST inverts arrival time data for one-dimensional velocity models and station corrections using a joint hypocenter determination technique. VELEST can also be used to locate single events.

  11. An efficient closed-form solution for acoustic emission source location in three-dimensional structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xibing; Dong, Longjun, E-mail: csudlj@163.com; Australian Centre for Geomechanics, The University of Western Australia, Crawley, 6009

    This paper presents an efficient closed-form solution (ECS) for acoustic emission(AE) source location in three-dimensional structures using time difference of arrival (TDOA) measurements from N receivers, N ≥ 6. The nonlinear location equations of TDOA are simplified to linear equations. The unique analytical solution of AE sources for unknown velocity system is obtained by solving the linear equations. The proposed ECS method successfully solved the problems of location errors resulting from measured deviations of velocity as well as the existence and multiplicity of solutions induced by calculations of square roots in existed close-form methods.

  12. Sine-Gordon Equation in (1+2) and (1+3) dimensions: Existence and Classification of Traveling-Wave Solutions.

    PubMed

    Zarmi, Yair

    2015-01-01

    The (1+1)-dimensional Sine-Gordon equation passes integrability tests commonly applied to nonlinear evolution equations. Its kink solutions (one-dimensional fronts) are obtained by a Hirota algorithm. In higher space-dimensions, the equation does not pass these tests. Although it has been derived over the years for quite a few physical systems that have nothing to do with Special Relativity, the Sine-Gordon equation emerges as a non-linear relativistic wave equation. This opens the way for exploiting the tools of the Theory of Special Relativity. Using no more than the relativistic kinematics of tachyonic momentum vectors, from which the solutions are constructed through the Hirota algorithm, the existence and classification of N-moving-front solutions of the (1+2)- and (1+3)-dimensional equations for all N ≥ 1 are presented. In (1+2) dimensions, each multi-front solution propagates rigidly at one velocity. The solutions are divided into two subsets: Solutions whose velocities are lower than a limiting speed, c = 1, or are greater than or equal to c. To connect with concepts of the Theory of Special Relativity, c will be called "the speed of light." In (1+3)-dimensions, multi-front solutions are characterized by spatial structure and by velocity composition. The spatial structure is either planar (rotated (1+2)-dimensional solutions), or genuinely three-dimensional--branes. Planar solutions, propagate rigidly at one velocity, which is lower than, equal to, or higher than c. Branes must contain clusters of fronts whose speed exceeds c = 1. Some branes are "hybrids": different clusters of fronts propagate at different velocities. Some velocities may be lower than c but some must be equal to, or exceed, c. Finally, the speed of light cannot be approached from within the subset of slower-than-light solutions in both (1+2) and (1+3) dimensions.

  13. Seismic velocity structure of the forearc in northern Cascadia from Bayesian inversion of teleseismic data

    NASA Astrophysics Data System (ADS)

    Gosselin, J.; Audet, P.; Schaeffer, A. J.

    2017-12-01

    The seismic velocity structure in the forearc of subduction zones provides important constraints on material properties, with implications for seismogenesis. In Cascadia, previous studies have imaged a downgoing low-velocity zone (LVZ) characterized by an elevated P-to-S velocity ratio (Vp/Vs) down to 45 km depth, near the intersection with the mantle wedge corner, beyond which the signature of the LVZ disappears. These results, combined with the absence of a "normal" continental Moho, indicate that the down-going oceanic crust likely carries large amounts of overpressured free fluids that are released downdip at the onset of crustal eclogitization, and are further stored in the mantle wedge as serpentinite. These overpressured free fluids affect the stability of the plate interface and facilitate slow slip. These results are based on the inversion and migration of scattered teleseismic data for individual layer properties; a methodology which suffers from regularization and smoothing, non-uniqueness, and does not consider model uncertainty. This study instead applies trans-dimensional Bayesian inversion of teleseismic data collected in the forearc of northern Cascadia (the CAFÉ experiment in northern Washington) to provide rigorous, quantitative estimates of local velocity structure, and associated uncertainties (particularly Vp/Vs structure and depth to the plate interface). Trans-dimensional inversion is a generalization of fixed-dimensional inversion that includes the number (and type) of parameters required to describe the velocity model (or data error model) as unknown in the problem. This allows model complexity to be inherently determined by data information content, not by subjective regularization. The inversion is implemented here using the reversible-jump Markov chain Monte Carlo algorithm. The result is an ensemble set of candidate velocity-structure models which approximate the posterior probability density (PPD) of the model parameters. The solution to the inverse problem, and associated uncertainties, are described by properties of the PPD. The results obtained here will eventually be integrated with teleseismic data from OBS stations from the Cascadia Initiative to provide constraints across the entire seismogenic portion of the plate interface.

  14. Surface representations of two- and three-dimensional fluid flow topology

    NASA Technical Reports Server (NTRS)

    Helman, James L.; Hesselink, Lambertus

    1990-01-01

    We discuss our work using critical point analysis to generate representations of the vector field topology of numerical flow data sets. Critical points are located and characterized in a two-dimensional domain, which may be either a two-dimensional flow field or the tangential velocity field near a three-dimensional body. Tangent curves are then integrated out along the principal directions of certain classes of critical points. The points and curves are linked to form a skeleton representing the two-dimensional vector field topology. When generated from the tangential velocity field near a body in a three-dimensional flow, the skeleton includes the critical points and curves which provide a basis for analyzing the three-dimensional structure of the flow separation. The points along the separation curves in the skeleton are used to start tangent curve integrations to generate surfaces representing the topology of the associated flow separations.

  15. Three-dimensional inversion of regional P and S arrival times in the East Aleutians and sources of subduction zone gravity highs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abers, G.A.

    1994-03-10

    Free-air gravity highs over forearcs represent a large fraction of the power in the Earth`s anomalous field, yet their origin remains uncertain. Seismic velocities, as indicators of density, are estimated here as a means to compare the relative importance of upper plate sources for the gravity high with sources in the downgoing plate. P and S arrival times for local earthquakes, recorded by a seismic network in the eastern Aleutians, are inverted for three-dimensional velocity structure between the volcanic arc and the downgoing plate. A three-dimensional ray tracing scheme is used to invert the 7974 P and 6764 S arrivalsmore » for seismic velocities and hypocenters of 635 events. One-dimensional inversions show that station P residuals are systematically 0.25 - 0.5 s positive at stations 0-30 km north of the Aleutian volcanic arc, indicating slow material, while residuals at stations 10-30 km south of the arc are 0.1-0.25 s negative. Both features are explained in three-dimensional inversions by velocity variations at depths less than 25-35 km. Tests using a one-dimensional or a two-dimensional slab starting model show that below 100 km depth, velocities are poorly determined and trade off almost completely with hypocenters for earthquakes at these depths. The locations of forearc velocity highs, in the crust of the upper plate, correspond to the location of the gravity high between the trench and volcanic arc. Free-air anomalies, calculated from the three-dimensional velocity inversion result, match observed gravity for a linear density-velocity relationship between 0.1 and 0.3 (Mg m{sup {minus}3})/(km s{sup {minus}1}), when a 50-km-thick slab is included with a density of 0.055{+-}0.005 Mg m{sup {minus}3}. Values outside these ranges do not match the observed gravity. The slab alone contributes one third to one half of the total 75-150 mGal amplitude of the gravity high but predicts a high that is much broader than is observed.« less

  16. The upper mantle shear wave velocity structure of East Africa derived from Rayleigh wave tomography

    NASA Astrophysics Data System (ADS)

    O'Donnell, J.; Nyblade, A.; Adams, A. N.; Weeraratne, D. S.; Mulibo, G.; Tugume, F.

    2012-12-01

    An expanded model of the three-dimensional shear wave velocity structure of the upper mantle beneath East Africa has been developed using data from the latest phases of the AfricaArray East African Seismic Experiment in conjunction with data from preceding studies. The combined dataset consists of 331 events recorded on a total of 95 seismic stations spanning Kenya, Uganda, Tanzania, Zambia and Malawi. In this latest study, 149 events were used to determine fundamental mode Rayleigh wave phase velocities at periods ranging from 20 to 182 seconds using the two-plane-wave method. These were subsequently combined with the similarly processed published measurements and inverted for an updated upper mantle three-dimensional shear wave velocity model. Newly imaged features include a substantial fast anomaly in eastern Zambia that may have exerted a controlling influence on the evolution of the Western Rift Branch. Furthermore, there is a suggestion that the Eastern Rift Branch trends southeastward offshore eastern Tanzania.

  17. Three-dimensional flow visualization and vorticity dynamics in revolving wings

    NASA Astrophysics Data System (ADS)

    Cheng, Bo; Sane, Sanjay P.; Barbera, Giovanni; Troolin, Daniel R.; Strand, Tyson; Deng, Xinyan

    2013-01-01

    We investigated the three-dimensional vorticity dynamics of the flows generated by revolving wings using a volumetric 3-component velocimetry system. The three-dimensional velocity and vorticity fields were represented with respect to the base axes of rotating Cartesian reference frames, and the second invariant of the velocity gradient was evaluated and used as a criterion to identify two core vortex structures. The first structure was a composite of leading, trailing, and tip-edge vortices attached to the wing edges, whereas the second structure was a strong tip vortex tilted from leading-edge vortices and shed into the wake together with the vorticity generated at the tip edge. Using the fundamental vorticity equation, we evaluated the convection, stretching, and tilting of vorticity in the rotating wing frame to understand the generation and evolution of vorticity. Based on these data, we propose that the vorticity generated at the leading edge is carried away by strong tangential flow into the wake and travels downwards with the induced downwash. The convection by spanwise flow is comparatively negligible. The three-dimensional flow in the wake also exhibits considerable vortex tilting and stretching. Together these data underscore the complex and interconnected vortical structures and dynamics generated by revolving wings.

  18. Seismic velocity structure of the crust and shallow mantle of the Central and Eastern United States by seismic surface wave imaging

    USGS Publications Warehouse

    Pollitz, Fred; Mooney, Walter D.

    2016-01-01

    Seismic surface waves from the Transportable Array of EarthScope's USArray are used to estimate phase velocity structure of 18 to 125 s Rayleigh waves, then inverted to obtain three-dimensional crust and upper mantle structure of the Central and Eastern United States (CEUS) down to ∼200 km. The obtained lithosphere structure confirms previously imaged CEUS features, e.g., the low seismic-velocity signature of the Cambrian Reelfoot Rift and the very low velocity at >150 km depth below an Eocene volcanic center in northwestern Virginia. New features include high-velocity mantle stretching from the Archean Superior Craton well into the Proterozoic terranes and deep low-velocity zones in central Texas (associated with the late Cretaceous Travis and Uvalde volcanic fields) and beneath the South Georgia Rift (which contains Jurassic basalts). Hot spot tracks may be associated with several imaged low-velocity zones, particularly those close to the former rifted Laurentia margin.

  19. Effective group index of refraction in non-thermal plasma photonic crystals

    NASA Astrophysics Data System (ADS)

    Mousavi, A.; Sadegzadeh, S.

    2015-11-01

    Plasma photonic crystals (PPCs) are periodic arrays that consist of alternate layers of micro-plasma and dielectric. These structures are used to control the propagation of electromagnetic waves. This paper presents a survey of research on the effect of non-thermal plasma with bi-Maxwellian distribution function on one dimensional PPC. A plasma with temperature anisotropy is not in thermodynamic equilibrium and can be described by the bi-Maxwellian distribution function. By using Kronig-Penny's model, the dispersion relation of electromagnetic modes in one dimensional non-thermal PPC (NPPC) is derived. The band structure, group velocity vg, and effective group index of refraction neff(g) of such NPPC structure with TeO2 as the material of dielectric layers have been studied. The concept of negative group velocity and negative neff(g), which indicates an anomalous behaviour of the PPCs, are also observed in the NPPC structures. Our numerical results provide confirmatory evidence that unlike PPCs there are finite group velocity and non-zero effective group indexes of refraction in photonic band gaps (PBGs) that lie in certain ranges of normalized frequency. In other words, inside the PBGs of NPPCs, neff(g) becomes non-zero and photons travel with a finite group velocity. In this special case, this velocity varies alternately between 20c and negative values of the order 103c (c is the speed of light in vacuum).

  20. The three-dimensional turbulent boundary layer near a plane of symmetry

    NASA Technical Reports Server (NTRS)

    Degani, A. T.; Smith, F. T.; Walker, J. D. A.

    1992-01-01

    The asymptotic structure of the three-dimensional turbulent boundary layer near a plane of symmetry is considered in the limit of large Reynolds number. A self-consistent two-layer structure is shown to exist wherein the streamwise velocity is brought to rest through an outer defect layer and an inner wall layer in a manner similar to that in two-dimensional boundary layers. The cross-stream velocity distribution is more complex and two terms in the asymptotic expansion are required to yield a complete profile which is shown to exhibit a logarithmic region. The flow in the inner wall layer is demonstrated to be collateral to leading order; pressure-gradient effects are formally of higher order but can cause the velocity profile to skew substantially near the wall at the large but finite Reynolds numbers encountered in practice. The governing set of ordinary differential equations describing a self-similar flow is derived. The calculated numerical solutions of these equations are matched asymptotically to an inner wall-layer solution and the results show trends that are consistent with experimental observations.

  1. Three-dimensional S-wave tomography under Axial Seamount

    NASA Astrophysics Data System (ADS)

    Baillard, C.; Wilcock, W. S. D.; Arnulf, A. F.; Tolstoy, M.; Waldhauser, F.

    2017-12-01

    Axial Seamount is a submarine volcano located at the intersection of the Juande Fuca Ridge and the Cobb-Eickelberg hotspot 500 km off the coast of thenorthwestern United States. The seamount, which rises 1 km above the seafloor, ischaracterized by a shallow caldera that is elongated in the N-S direction, measure 8km by 3 km and sits on top of a 14 km by 3 km magma reservoir. Two eruptive eventsin 1998 and 2011 motivated the deployment in 2014 of a real time cabled observatorywithin the Axial caldera, as part of the Ocean Observatories Initiative (OOI).Theobservatory includes a network of seven seismometers that span the southern half ofthe caldera. Five months after the observatory came on-line in November 2014, thevolcano erupted on April 24, 2015. Well over 100,000 events were located in thevicinity of the caldera, delineating an outward dipping ring fault that extends fromnear the surface to the magma body at 2 km depth and which accommodatesinflation and deflation of the volcano.The initial earthquake locations have beenobtained with a one-dimensional velocity model but the travel time residuals suggeststrong heterogeneities. A three-dimensional P-wave velocity model, obtained bycombining multichannel and ocean bottom seismometer refraction data, is being usedto refine locations but the three-dimensional S-wave structure is presently unknown.In most mid-ocean ridge settings, the distribution of earthquakes is not conducive forjoint inversions for S-wave velocity and hypocentral parameters because there are fewcrossing ray paths but at Axial the presence of a ring fault that is seismically active atall depths on both the east and west side of the caldera, provides a reasonablegeometry for such efforts. We will present the results of joint inversions that assumethe existing three-dimensional P wave velocity model and solve for VP/VS structure andhypocentral parameters using LOTOS, an algorithm that solves the forward problemusing ray bending.The resulting model of S-wave velocities will provide newconstraints on the volcanic structure of the caldera, the distribution and characteristicsof fractures, and the effects of hydrothermal circulation. The model will also lead toimproved earthquakes locations that are critical for a fine scale interpretation of thefault system.

  2. Potential, velocity, and density fields from redshift-distance samples: Application - Cosmography within 6000 kilometers per second

    NASA Technical Reports Server (NTRS)

    Bertschinger, Edmund; Dekel, Avishai; Faber, Sandra M.; Dressler, Alan; Burstein, David

    1990-01-01

    A potential flow reconstruction algorithm has been applied to the real universe to reconstruct the three-dimensional potential, velocity, and mass density fields smoothed on large scales. The results are shown as maps of these fields, revealing the three-dimensional structure within 6000 km/s distance from the Local Group. The dominant structure is an extended deep potential well in the Hydra-Centaurus region, stretching across the Galactic plane toward Pavo, broadly confirming the Great Attractor (GA) model of Lynden-Bell et al. (1988). The Local Supercluster appears to be an extended ridge on the near flank of the GA, proceeding through the Virgo Southern Extension to the Virgo and Ursa Major clusters. The Virgo cluster and the Local Group are both falling toward the bottom of the GA potential well with peculiar velocities of 658 + or - 121 km/s and 565 + or - 125 km/s, respectively.

  3. Distribution of electromagnetic field and group velocities in two-dimensional periodic systems with dissipative metallic components

    NASA Astrophysics Data System (ADS)

    Kuzmiak, Vladimir; Maradudin, Alexei A.

    1998-09-01

    We study the distribution of the electromagnetic field of the eigenmodes and corresponding group velocities associated with the photonic band structures of two-dimensional periodic systems consisting of an array of infinitely long parallel metallic rods whose intersections with a perpendicular plane form a simple square lattice. We consider both nondissipative and lossy metallic components characterized by a complex frequency-dependent dielectric function. Our analysis is based on the calculation of the complex photonic band structure obtained by using a modified plane-wave method that transforms the problem of solving Maxwell's equations into the problem of diagonalizing an equivalent non-Hermitian matrix. In order to investigate the nature and the symmetry properties of the eigenvectors, which significantly affect the optical properties of the photonic lattices, we evaluate the associated field distribution at the high symmetry points and along high symmetry directions in the two-dimensional first Brillouin zone of the periodic system. By considering both lossless and lossy metallic rods we study the effect of damping on the spatial distribution of the eigenvectors. Then we use the Hellmann-Feynman theorem and the eigenvectors and eigenfrequencies obtained from a photonic band-structure calculation based on a standard plane-wave approach applied to the nondissipative system to calculate the components of the group velocities associated with individual bands as functions of the wave vector in the first Brillouin zone. From the group velocity of each eigenmode the flow of energy is examined. The results obtained indicate a strong directional dependence of the group velocity, and confirm the experimental observation that a photonic crystal is a potentially efficient tool in controlling photon propagation.

  4. Dynamical transitions of a driven Ising interface

    NASA Astrophysics Data System (ADS)

    Sahai, Manish K.; Sengupta, Surajit

    2008-03-01

    We study the structure of an interface in a three-dimensional Ising system created by an external nonuniform field H(r,t) . H changes sign over a two-dimensional plane of arbitrary orientation. When the field is pulled with velocity ve , [i.e., H(r,t)=H(r-vet) ], the interface undergoes several dynamical transitions. For low velocities it is pinned by the field profile and moves along with it, the distribution of local slopes undergoing a series of commensurate-incommensurate transitions. For large ve the interface depins and grows with Kardar-Parisi-Zhang exponents.

  5. Rayleigh-wave phase-velocity maps and three-dimensional shear velocity structure of the western US from local non-plane surface wave tomography

    USGS Publications Warehouse

    Pollitz, F.F.; Snoke, J. Arthur

    2010-01-01

    We utilize two-and-three-quarter years of vertical-component recordings made by the Transportable Array (TA) component of Earthscope to constrain three-dimensional (3-D) seismic shear wave velocity structure in the upper 200 km of the western United States. Single-taper spectral estimation is used to compile measurements of complex spectral amplitudes from 44 317 seismograms generated by 123 teleseismic events. In the first step employed to determine the Rayleigh-wave phase-velocity structure, we implement a new tomographic method, which is simpler and more robust than scattering-based methods (e.g. multi-plane surface wave tomography). The TA is effectively implemented as a large number of local arrays by defining a horizontal Gaussian smoothing distance that weights observations near a given target point. The complex spectral-amplitude measurements are interpreted with the spherical Helmholtz equation using local observations about a succession of target points, resulting in Rayleigh-wave phase-velocity maps at periods over the range of 18–125 s. The derived maps depend on the form of local fits to the Helmholtz equation, which generally involve the nonplane-wave solutions of Friederich et al. In a second step, the phase-velocity maps are used to derive 3-D shear velocity structure. The 3-D velocity images confirm details witnessed in prior body-wave and surface-wave studies and reveal new structures, including a deep (>100 km deep) high-velocity lineament, of width ∼200 km, stretching from the southern Great Valley to northern Utah that may be a relic of plate subduction or, alternatively, either a remnant of the Mojave Precambrian Province or a mantle downwelling. Mantle seismic velocity is highly correlated with heat flow, Holocene volcanism, elastic plate thickness and seismicity. This suggests that shallow mantle structure provides the heat source for associated magmatism, as well as thinning of the thermal lithosphere, leading to relatively high stress concentration. Our images also confirm the presence of high-velocity mantle at 100 km depth beneath areas of suspected mantle delamination (southern Sierra Nevada; Grande Ronde uplift), low velocity mantle underlying active rift zones, and high velocity mantle associated with the subducting Juan de Fuca plate. Structure established during the Proterozoic appears to exert a lasting influence on subsequent volcanism and tectonism up to the Present.

  6. C4N3H monolayer: A two-dimensional organic Dirac material with high Fermi velocity

    NASA Astrophysics Data System (ADS)

    Pan, Hongzhe; Zhang, Hongyu; Sun, Yuanyuan; Li, Jianfu; Du, Youwei; Tang, Nujiang

    2017-11-01

    Searching for two-dimensional (2D) organic Dirac materials, which have more adaptable practical applications compared with inorganic ones, is of great significance and has been ongoing. However, only two such materials with low Fermi velocity have been discovered so far. Herein, we report the design of an organic monolayer with C4N3H stoichiometry that possesses fascinating structure and good stability in its free-standing state. More importantly, we demonstrate that this monolayer is a semimetal with anisotropic Dirac cones and very high Fermi velocity. This Fermi velocity is roughly one order of magnitude larger than the largest velocity ever reported in 2D organic Dirac materials, and it is comparable to that in graphene. The Dirac states in this monolayer arise from the extended π -electron conjugation system formed by the overlapping 2 pz orbitals of carbon and nitrogen atoms. Our finding paves the way to a search for more 2D organic Dirac materials with high Fermi velocity.

  7. Effective group index of refraction in non-thermal plasma photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mousavi, A.; Sadegzadeh, S., E-mail: sadegzadeh@azaruniv.edu

    Plasma photonic crystals (PPCs) are periodic arrays that consist of alternate layers of micro-plasma and dielectric. These structures are used to control the propagation of electromagnetic waves. This paper presents a survey of research on the effect of non-thermal plasma with bi-Maxwellian distribution function on one dimensional PPC. A plasma with temperature anisotropy is not in thermodynamic equilibrium and can be described by the bi-Maxwellian distribution function. By using Kronig-Penny's model, the dispersion relation of electromagnetic modes in one dimensional non-thermal PPC (NPPC) is derived. The band structure, group velocity v{sub g}, and effective group index of refraction n{sub eff}(g)more » of such NPPC structure with TeO{sub 2} as the material of dielectric layers have been studied. The concept of negative group velocity and negative n{sub eff}(g), which indicates an anomalous behaviour of the PPCs, are also observed in the NPPC structures. Our numerical results provide confirmatory evidence that unlike PPCs there are finite group velocity and non-zero effective group indexes of refraction in photonic band gaps (PBGs) that lie in certain ranges of normalized frequency. In other words, inside the PBGs of NPPCs, n{sub eff}(g) becomes non-zero and photons travel with a finite group velocity. In this special case, this velocity varies alternately between 20c and negative values of the order 10{sup 3}c (c is the speed of light in vacuum)« less

  8. Constraining the velocity structure of the Juan de Fuca plate from ridge to trench with a 2D tomographic study of wide angle OBS data

    NASA Astrophysics Data System (ADS)

    Boulahanis, B.; Canales, J. P.; Carbotte, S. M.; Carton, H. D.; Han, S.; Nedimovic, M. R.

    2016-12-01

    We conduct a two-dimensional travel time tomography study of a cross-plate, 300-km long, ocean bottom seismometer (OBS) transect collected as part of the Ridge to Trench (R2T) program to investigate the structure, evolution and state of hydration of the Juan de Fuca (JdF) plate from the ridge axis to subduction at the Cascadia margin offshore Washington. Our study employs the methodology of Korenaga et al. (2000) to derive a P-wave velocity model using wide-angle data from 15 OBSs spaced on average 15 km apart, spanning from the Endeavour segment of the JdF ridge to the Cascadia accretionary prism. A top down modeling approach is employed, first assessing velocities of the sediment layer, then the crust, and finally the upper mantle; at each stage of the inversion we fix the structure of the overlaying layers. Quality of data fit is evaluated using the root mean square value of the difference between predicted and observed travel times normalized by pick uncertainty. Previous studies provide a well-resolved multi-channel seismic (MCS) reflection image of this transect (Han et al., 2016), affording good constraints of the location of basement and Moho reflectors while allowing for comparison of the relationship between velocities and crustal structure. MCS results along this transect suggest evidence of little bending faulting confined to the sediment and upper-middle crust. An initial velocity model of the sediment layer above igneous crust is constructed utilizing the MCS derived sediment velocities. A one-dimensional velocity starting model of the oceanic crust is generated using the results of Horning et al. (in press) from a quasi-parallel cross-plate transect also acquired as part of the R2T study. Seismic velocities are compared to predicted velocities for crustal and mantle lithologies at temperatures estimated from a plate-cooling model and are used to provide constraints on water contents in these layers.

  9. Recovering the full velocity and density fields from large-scale redshift-distance samples

    NASA Technical Reports Server (NTRS)

    Bertschinger, Edmund; Dekel, Avishai

    1989-01-01

    A new method for extracting the large-scale three-dimensional velocity and mass density fields from measurements of the radial peculiar velocities is presented. Galaxies are assumed to trace the velocity field rather than the mass. The key assumption made is that the Lagrangian velocity field has negligible vorticity, as might be expected from perturbations that grew by gravitational instability. By applying the method to cosmological N-body simulations, it is demonstrated that it accurately reconstructs the velocity field. This technique promises a direct determination of the mass density field and the initial conditions for the formation of large-scale structure from galaxy peculiar velocity surveys.

  10. Emergence of the bifurcation structure of a Langmuir-Blodgett transfer model

    NASA Astrophysics Data System (ADS)

    Köpf, Michael H.; Thiele, Uwe

    2014-11-01

    We explore the bifurcation structure of a modified Cahn-Hilliard equation that describes a system that may undergo a first-order phase transition and is kept permanently out of equilibrium by a lateral driving. This forms a simple model, e.g., for the deposition of stripe patterns of different phases of surfactant molecules through Langmuir-Blodgett transfer. Employing continuation techniques the bifurcation structure is numerically investigated using the non-dimensional transfer velocity as the main control parameter. It is found that the snaking structure of steady front states is intertwined with a large number of branches of time-periodic solutions that emerge from Hopf or period-doubling bifurcations and end in global bifurcations (sniper and homoclinic). Overall the bifurcation diagram has a harp-like appearance. This is complemented by a two-parameter study in non-dimensional transfer velocity and domain size (as a measure of the distance to the phase transition threshold) that elucidates through which local and global codimension 2 bifurcations the entire harp-like structure emerges.

  11. Vertical velocity structure and geometry of clear air convective elements

    NASA Technical Reports Server (NTRS)

    Rowland, J. R.; Arnold, A.

    1975-01-01

    The paper discusses observations of individual convective elements with a high-power narrow-beam scanning radar, an FM-CW radar, and an acoustic sounder, including the determination of the vertical air velocity patterns of convective structures with the FM-CW radar and acoustic sounder. Data are presented which link the observed velocity structure and geometrical patterns to previously proposed models of boundary layer convection. It is shown that the high-power radar provides a clear three-dimensional picture of convective cells and fields over a large area with a resolution of 150 m, where the convective cells are roughly spherical. Analysis of time-height records of the FM-CW radar and acoustic sounder confirms the downdraft-entrainment mechanism of the convective cell. The Doppler return of the acoustic sounder and the insect-trail slopes on FM-CW radar records are independent but redundant methods for obtaining the vertical velocity patterns of convective structures.

  12. Three-dimensional P-wave velocity structure derived from local earthquakes at the Katmai group of volcanoes, Alaska

    USGS Publications Warehouse

    Jolly, A.D.; Moran, S.C.; McNutt, S.R.; Stone, D.B.

    2007-01-01

    The three-dimensional P-wave velocity structure beneath the Katmai group of volcanoes is determined by inversion of more than 10,000 rays from over 1000 earthquakes recorded on a local 18 station short-period network between September 1996 and May 2001. The inversion is well constrained from sea level to about 6??km below sea level and encompasses all of the Katmai volcanoes; Martin, Mageik, Trident, Griggs, Novarupta, Snowy, and Katmai caldera. The inversion reduced the average RMS travel-time error from 0.22??s for locations from the standard one-dimensional model to 0.13??s for the best three-dimensional model. The final model, from the 6th inversion step, reveals a prominent low velocity zone (3.6-5.0??km/s) centered at Katmai Pass and extending from Mageik to Trident volcanoes. The anomaly has values about 20-25% slower than velocities outboard of the region (5.0-6.5??km/s). Moderately low velocities (4.5-6.0??km/s) are observed along the volcanic axis between Martin and Katmai Caldera. Griggs volcano, located about 10??km behind (northwest of) the volcanic axis, has unremarkable velocities (5.0-5.7??km/s) compared to non-volcanic regions. The highest velocities are observed between Snowy and Griggs volcanoes (5.5-6.5??km/s). Relocated hypocenters for the best 3-D model are shifted significantly relative to the standard model with clusters of seismicity at Martin volcano shifting systematically deeper by about 1??km to depths of 0 to 4??km below sea level. Hypocenters for the Katmai Caldera are more tightly clustered, relocating beneath the 1912 scarp walls. The relocated hypocenters allow us to compare spatial frequency-size distributions (b-values) using one-dimensional and three-dimensional models. We find that the distribution of b is significantly changed for Martin volcano, which was characterized by variable values (0.8 < b < 2.0) with standard locations and more uniform values (0.8 < b < 1.2) after relocation. Other seismic clusters at Mageik (1.2 < b < 2.2), Trident (0.5 < b < 1.5) and Katmai Caldera (0.8 < b < 1.8) had stable b-values indicating the robustness of the observations. The strong high b-value region at Mageik volcano is mainly associated with an earthquake swarm in October, 1996 that possibly indicates a shallow intrusion or influx of gas. The new velocity and spatial b-value results, in conjunction with prior gravity (Bouguer anomalies up to - 40??mgal) and interferometry (several cm uplift) data, provide strong evidence in favor of partially molten rock at shallow depths beneath the Mageik-Katmai-Novarupta region. Moderately low velocities beneath Martin and Katmai suggest that old, mostly solidified intrusions exist beneath these volcanoes. Higher relative velocities beneath the Griggs and Snowy vents suggest that no magma is resident in the shallow crust beneath these volcanoes. ?? 2006 Elsevier B.V.

  13. Multichannel analysis of the surface waves of earth materials in some parts of Lagos State, Nigeria

    NASA Astrophysics Data System (ADS)

    Adegbola, R. B.; Oyedele, K. F.; Adeoti, L.; Adeloye, A. B.

    2016-09-01

    We present a method that utilizes multichannel analysis of surface waves (MASW), which was used to measure shear wave velocities, with a view to establishing the probable causes of road failure, subsidence and weakening of structures in some local government areas in Lagos, Nigeria. MASW data were acquired using a 24-channel seismograph. The acquired data were processed and transformed into a two-dimensional (2-D) structure reflective of the depth and surface wave velocity distribution within a depth of 0-15 m beneath the surface using SURFSEIS software. The shear wave velocity data were compared with other geophysical/ borehole data that were acquired along the same profile. The comparison and correlation illustrate the accuracy and consistency of MASW-derived shear wave velocity profiles. Rigidity modulus and N-value were also generated. The study showed that the low velocity/ very low velocity data are reflective of organic clay/ peat materials and thus likely responsible for the failure, subsidence and weakening of structures within the study areas.

  14. Effects of lung disease on the three-dimensional structure and air flow pattern in the human airway tree

    NASA Astrophysics Data System (ADS)

    van de Moortele, Tristan; Nemes, Andras; Wendt, Christine; Coletti, Filippo

    2016-11-01

    The morphological features of the airway tree directly affect the air flow features during breathing, which determines the gas exchange and inhaled particle transport. Lung disease, Chronic Obstructive Pulmonary Disease (COPD) in this study, affects the structural features of the lungs, which in turn negatively affects the air flow through the airways. Here bronchial tree air volume geometries are segmented from Computed Tomography (CT) scans of healthy and diseased subjects. Geometrical analysis of the airway centerlines and corresponding cross-sectional areas provide insight into the specific effects of COPD on the airway structure. These geometries are also used to 3D print anatomically accurate, patient specific flow models. Three-component, three-dimensional velocity fields within these models are acquired using Magnetic Resonance Imaging (MRI). The three-dimensional flow fields provide insight into the change in flow patterns and features. Additionally, particle trajectories are determined using the velocity fields, to identify the fate of therapeutic and harmful inhaled aerosols. Correlation between disease-specific and patient-specific anatomical features with dysfunctional airflow patterns can be achieved by combining geometrical and flow analysis.

  15. Regional three-dimensional seismic velocity model of the crust and uppermost mantle of northern California

    USGS Publications Warehouse

    Thurber, C.; Zhang, H.; Brocher, T.; Langenheim, V.

    2009-01-01

    We present a three-dimensional (3D) tomographic model of the P wave velocity (Vp) structure of northern California. We employed a regional-scale double-difference tomography algorithm that incorporates a finite-difference travel time calculator and spatial smoothing constraints. Arrival times from earthquakes and travel times from controlled-source explosions, recorded at network and/or temporary stations, were inverted for Vp on a 3D grid with horizontal node spacing of 10 to 20 km and vertical node spacing of 3 to 8 km. Our model provides an unprecedented, comprehensive view of the regional-scale structure of northern California, putting many previously identified features into a broader regional context and improving the resolution of a number of them and revealing a number of new features, especially in the middle and lower crust, that have never before been reported. Examples of the former include the complex subducting Gorda slab, a steep, deeply penetrating fault beneath the Sacramento River Delta, crustal low-velocity zones beneath Geysers-Clear Lake and Long Valley, and the high-velocity ophiolite body underlying the Great Valley. Examples of the latter include mid-crustal low-velocity zones beneath Mount Shasta and north of Lake Tahoe. Copyright 2009 by the American Geophysical Union.

  16. Magnetospheric Multiscale Observation of Plasma Velocity-Space Cascade: Hermite Representation and Theory.

    PubMed

    Servidio, S; Chasapis, A; Matthaeus, W H; Perrone, D; Valentini, F; Parashar, T N; Veltri, P; Gershman, D; Russell, C T; Giles, B; Fuselier, S A; Phan, T D; Burch, J

    2017-11-17

    Plasma turbulence is investigated using unprecedented high-resolution ion velocity distribution measurements by the Magnetospheric Multiscale mission (MMS) in the Earth's magnetosheath. This novel observation of a highly structured particle distribution suggests a cascadelike process in velocity space. Complex velocity space structure is investigated using a three-dimensional Hermite transform, revealing, for the first time in observational data, a power-law distribution of moments. In analogy to hydrodynamics, a Kolmogorov approach leads directly to a range of predictions for this phase-space transport. The scaling theory is found to be in agreement with observations. The combined use of state-of-the-art MMS data sets, novel implementation of a Hermite transform method, and scaling theory of the velocity cascade opens new pathways to the understanding of plasma turbulence and the crucial velocity space features that lead to dissipation in plasmas.

  17. Implication of Broadband Dispersion Measurements in Constraining Upper Mantle Velocity Structures

    NASA Astrophysics Data System (ADS)

    Kuponiyi, A.; Kao, H.; Cassidy, J. F.; Darbyshire, F. A.; Dosso, S. E.; Gosselin, J. M.; Spence, G.

    2017-12-01

    Dispersion measurements from earthquake (EQ) data are traditionally inverted to obtain 1-D shear-wave velocity models, which provide information on deep earth structures. However, in many cases, EQ-derived dispersion measurements lack short-period information, which theoretically should provide details of shallow structures. We show that in at least some cases short-period information, such as can be obtained from ambient seismic noise (ASN) processing, must be combined with EQ dispersion measurements to properly constrain deeper (e.g. upper-mantle) structures. To verify this, synthetic dispersion data are generated using hypothetical velocity models under four scenarios: EQ only (with and without deep low-velocity layers) and combined EQ and ASN data (with and without deep low-velocity layers). The now "broadband" dispersion data are inverted using a trans-dimensional Bayesian framework with the aim of recovering the initial velocity models and assessing uncertainties. Our results show that the deep low-velocity layer could only be recovered from the inversion of the combined ASN-EQ dispersion measurements. Given this result, we proceed to describe a method for obtaining reliable broadband dispersion measurements from both ASN and EQ and show examples for real data. The implication of this study in the characterization of lithospheric and upper mantle structures, such as the Lithosphere-Asthenosphere Boundary (LAB), is also discussed.

  18. Three-Dimensional Anisotropic Acoustic and Elastic Full-Waveform Seismic Inversion

    NASA Astrophysics Data System (ADS)

    Warner, M.; Morgan, J. V.

    2013-12-01

    Three-dimensional full-waveform inversion is a high-resolution, high-fidelity, quantitative, seismic imaging technique that has advanced rapidly within the oil and gas industry. The method involves the iterative improvement of a starting model using a series of local linearized updates to solve the full non-linear inversion problem. During the inversion, forward modeling employs the full two-way three-dimensional heterogeneous anisotropic acoustic or elastic wave equation to predict the observed raw field data, wiggle-for-wiggle, trace-by-trace. The method is computationally demanding; it is highly parallelized, and runs on large multi-core multi-node clusters. Here, we demonstrate what can be achieved by applying this newly practical technique to several high-density 3D seismic datasets that were acquired to image four contrasting sedimentary targets: a gas cloud above an oil reservoir, a radially faulted dome, buried fluvial channels, and collapse structures overlying an evaporate sequence. We show that the resulting anisotropic p-wave velocity models match in situ measurements in deep boreholes, reproduce detailed structure observed independently on high-resolution seismic reflection sections, accurately predict the raw seismic data, simplify and sharpen reverse-time-migrated reflection images of deeper horizons, and flatten Kirchhoff-migrated common-image gathers. We also show that full-elastic 3D full-waveform inversion of pure pressure data can generate a reasonable shear-wave velocity model for one of these datasets. For two of the four datasets, the inclusion of significant transversely isotropic anisotropy with a vertical axis of symmetry was necessary in order to fit the kinematics of the field data properly. For the faulted dome, the full-waveform-inversion p-wave velocity model recovers the detailed structure of every fault that can be seen on coincident seismic reflection data. Some of the individual faults represent high-velocity zones, some represent low-velocity zones, some have more-complex internal structure, and some are visible merely as offsets between two regions with contrasting velocity. Although this has not yet been demonstrated quantitatively for this dataset, it seems likely that at least some of this fine structure in the recovered velocity model is related to the detailed lithology, strain history and fluid properties within the individual faults. We have here applied this technique to seismic data that were acquired by the extractive industries, however this inversion scheme is immediately scalable and applicable to a much wider range of problems given sufficient quality and density of observed data. Potential targets range from shallow magma chambers beneath active volcanoes, through whole-crustal sections across plate boundaries, to regional and whole-Earth models.

  19. Crustal structure revealed by a deep seismic sounding profile of Baijing-Gaoming-Jinwan in the Pearl River Delta

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Ye, Xiuwei; Lv, Jinshui; Sun, Jinlong; Wang, Xiaona

    2018-02-01

    The Pearl River Estuary area, located in the middle part of the southern China coastal seismic belt, has long been considered a potential source of strong earthquakes above magnitude 7.0. To scientifically assess the potential strong earthquake risk in this area, a three-dimensional artificial seismic sounding experiment, consisting of a receiving array and seabed seismograph, was performed to reveal the deep crustal structure in this region. We used artificial ship-borne air-gun excitation shots as sources, and fixed and mobile stations as receivers to record seismic data from May to August 2015. This paper presents results along a line from the western side of the Pearl River Estuary to the western side of the Baijing-Gaoming-Jinwan profile. A two-dimensional velocity structure was constructed using seismic travel-time tomography. The inversion results show that the Moho depth is 27 km in the coastal area and 30 km in the northwest of the Pearl River Estuary area, indicating that the crust thins from land to sea. Two structural discontinuities and multiple low-velocity anomalies appear in the crustal section. Inside both discontinuity zones, a low-velocity layer, with a minimum velocity of 6.05 km s-1, exists at a depth of about 15 km, and another, with a minimum velocity of 6.37 km s-1, exists at a depth of about 21.5 km between the middle and lower crust. These low velocities suggest that the discontinuities may consist of partly molten material. Earthquakes with magnitudes higher than 5.0 occurred in the low-velocity layer along the profile. The deep Kaiping-Enping fault, rooted in the crust, may be one of the most important channels for deep material upwelling and is related to tectonic movement since the Cretaceous in the Pearl River Delta tectonic rift basin.

  20. Unraveling the Origin of the Bermuda Rise Using Receiver Functions: Insights from Mantle Discontinuity Structure

    NASA Astrophysics Data System (ADS)

    Burky, A.; Irving, J. C. E.; Simons, F.

    2017-12-01

    The Bermuda Rise is an enigmatic intraplate bathymetric feature which is considered a candidate hotspot in some catalogs, but remains a poor candidate due to the lack of an associated seamount chain and the absence of any present-day volcanism. Tomographic models of the seismic P and S wave velocity structure in the upper mantle and transition zone beneath Bermuda and the surrounding seafloor consistently resolve low velocity structures, but the magnitude, lateral dimensions, and position of these low velocity structures vary considerably between models. Due to these discrepancies, it remains difficult to attribute the observed velocity anomalies to thermal or chemical heterogeneity in this region. In addition to tomographic modeling, previous studies investigated the mantle transition zone structure beneath Bermuda by calculating receiver functions for GSN station BBSR, and suggested thinning of the transition zone as well as depressed discontinuity topography. In this study, we expand upon those studies by including the wealth of newly available data, and by incorporating a suite of three-dimensional velocity models. We calculate radial receiver functions in multiple frequency bands for the highest quality seismograms selected from over 5,000 waveforms recorded at station BBSR between October 2008 and August 2017 using the iterative deconvolution technique. We use various one- and three-dimensional velocity models to depth-convert our receiver functions to find the depths of the mantle transition zone discontinuities responsible for the signals in our receiver functions. The observed discontinuity topography is interpreted in the context of candidate mineralogical phase transitions and mantle temperature. To gain a more comprehensive understanding of our observations, we also calculate synthetic seismograms using AxiSEM, compute radial receiver functions for these synthetic data, and compare the results to the real receiver functions. Lastly, we discuss our results in the context of the geologic and geodynamic history of the Bermuda Rise.

  1. Existence regimes for shocks in inhomogeneous magneto-plasmas having entropy

    NASA Astrophysics Data System (ADS)

    Iqbal, Javed; Yaqub Khan, M.

    2018-04-01

    The finding of connection of plasma density and temperature with entropy gives an incitement to study different plasma models with respect to entropy. Nonlinear dissipative one- and two-dimensional structures (shocks) are investigated in nonuniform magnetized plasma with respect to entropy. The dissipation comes in the medium through ion-neutral collisions. The linear dispersion relation is derived. The Korteweg-deVries-Burgers and Kadomtsev-Petviashvili-Burgers equations are derived for nonlinear drift waves in 1-D and 2-D by employing the drift approximation. It is found that vd/u ( vd is the diamagnetic drift velocity and u is the velocity of nonlinear structure) plays a significant role in the shock formation. It is also found that entropy has a significant effect on the strength of shocks. It is noticed that v d/u determines the rarefactive and compressive nature of the shocks. It is observed that upper and lower bounds exist for the shock velocity. It is also observed that the existing regimes for both one- and two-dimensional shocks for kappa distributed electrons are different from shocks with Cairns distributed electrons. Both rarefactive and compressive shocks are found for the 1-D drift waves with kappa distributed electrons. Interestingly, it is noticed that entropy enhances the strength of one- and two-dimensional shocks.

  2. Laser Doppler velocimeter measurements of boundary layer velocity and turbulent intensities in Mach 2.5 flow

    NASA Technical Reports Server (NTRS)

    Sewell, Jesse; Chew, Larry

    1994-01-01

    In recent years, the interest in developing a high-speed civil transport has increased. This has led to an increase in research activity on compressible supersonic flows, in particular the boundary layer. The structure of subsonic boundary layers has been extensively documented using conditional sampling techniques which exploit the knowledge of both u and v velocities. Researchers using these techniques have been able to explore some of the complex three-dimensional motions which are responsible for Reynolds stress production and transport in the boundary layer. As interest in turbulent structure has grown to include supersonic flows, a need for simultaneous multicomponent velocity measurements in these flows has developed. The success of conditional analysis in determining the characteristics of coherent motions and structures in the boundary layer relies on accurate, simultaneous measurement of two instantaneous velocity components.

  3. Structure of the San Andreas fault zone at SAFOD from a seismic refraction survey

    USGS Publications Warehouse

    Hole, J.A.; Ryberg, T.; Fuis, G.S.; Bleibinhaus, F.; Sharma, A.K.

    2006-01-01

    Refraction traveltimes from a 46-km long seismic survey across the San Andreas Fault were inverted to obtain two-dimensional velocity structure of the upper crust near the SAFOD drilling project. The model contains strong vertical and lateral velocity variations from <2 km/s to ???6 km/s. The Salinian terrane west of the San Andreas Fault has much higher velocity than the Franciscan terrane east of the fault. Salinian basement deepens from 0.8 km subsurface at SAFOD to ???2.5 km subsurface 20 km to the southwest. A strong reflection and subtle velocity contrast suggest a steeply dipping fault separating the Franciscan terrane from the Great Valley Sequence. A low-velocity wedge of Cenozoic sedimentary rocks lies immediately southwest of the San Andreas Fault. This body is bounded by a steep fault just northeast of SAFOD and approaches the depth of the shallowest earthquakes. Multiple active and inactive fault strands complicate structure near SAFOD. Copyright 2006 by the American Geophysical Union.

  4. Propagation of gaseous detonation waves in a spatially inhomogeneous reactive medium

    NASA Astrophysics Data System (ADS)

    Mi, XiaoCheng; Higgins, Andrew J.; Ng, Hoi Dick; Kiyanda, Charles B.; Nikiforakis, Nikolaos

    2017-05-01

    Detonation propagation in a compressible medium wherein the energy release has been made spatially inhomogeneous is examined via numerical simulation. The inhomogeneity is introduced via step functions in the reaction progress variable, with the local value of energy release correspondingly increased so as to maintain the same average energy density in the medium and thus a constant Chapman-Jouguet (CJ) detonation velocity. A one-step Arrhenius rate governs the rate of energy release in the reactive zones. The resulting dynamics of a detonation propagating in such systems with one-dimensional layers and two-dimensional squares are simulated using a Godunov-type finite-volume scheme. The resulting wave dynamics are analyzed by computing the average wave velocity and one-dimensional averaged wave structure. In the case of sufficiently inhomogeneous media wherein the spacing between reactive zones is greater than the inherent reaction zone length, average wave speeds significantly greater than the corresponding CJ speed of the homogenized medium are obtained. If the shock transit time between reactive zones is less than the reaction time scale, then the classical CJ detonation velocity is recovered. The spatiotemporal averaged structure of the waves in these systems is analyzed via a Favre-averaging technique, with terms associated with the thermal and mechanical fluctuations being explicitly computed. The analysis of the averaged wave structure identifies the super-CJ detonations as weak detonations owing to the existence of mechanical nonequilibrium at the effective sonic point embedded within the wave structure. The correspondence of the super-CJ behavior identified in this study with real detonation phenomena that may be observed in experiments is discussed.

  5. Detection of spatio-temporal change of ocean acoustic velocity for observing seafloor crustal deformation applying seismological methods

    NASA Astrophysics Data System (ADS)

    Eto, S.; Nagai, S.; Tadokoro, K.

    2011-12-01

    Our group has developed a system for observing seafloor crustal deformation with a combination of acoustic ranging and kinematic GPS positioning techniques. One of the effective factors to reduce estimation error of submarine benchmark in our system is modeling variation of ocean acoustic velocity. We estimated various 1-dimensional velocity models with depth under some constraints, because it is difficult to estimate 3-dimensional acoustic velocity structure including temporal change due to our simple acquisition procedure of acoustic ranging data. We, then, applied the joint hypocenter determination method in seismology [Kissling et al., 1994] to acoustic ranging data. We assume two conditions as constraints in inversion procedure as follows: 1) fixed acoustic velocity in deeper part because it is usually stable both in space and time, 2) each inverted velocity model should be decreased with depth. The following two remarkable spatio-temporal changes of acoustic velocity 1) variations of travel-time residuals at the same points within short time and 2) larger differences between residuals at the neighboring points, which are one's of travel-time from different benchmarks. The First results cannot be explained only by the effect of atmospheric condition change including heating by sunlight. To verify the residual variations mentioned as the second result, we have performed forward modeling of acoustic ranging data with velocity models added velocity anomalies. We calculate travel time by a pseudo-bending ray tracing method [Um and Thurber, 1987] to examine effects of velocity anomaly on the travel-time differences. Comparison between these residuals and travel-time difference in forward modeling, velocity anomaly bodies in shallower depth can make these anomalous residuals, which may indicate moving water bodies. We need to apply an acoustic velocity structure model with velocity anomaly(s) in acoustic ranging data analysis and/or to develop a new system with a large number of sea surface stations to detect them, which may be able to reduce error of seafloor benchmarker position.

  6. Formation and Evolution of a Multi-Threaded Prominence

    NASA Technical Reports Server (NTRS)

    Luna, M.; Karpen, J. T.; DeVore, C. R.

    2012-01-01

    We investigate the process of formation and subsequent evolution of prominence plasma in a filament channel and its overlying arcade. We construct a three-dimensional time-dependent model of a filament-channel prominence suitable to be compared with observations. We combine this magnetic field structure with one-dimensional independent simulations of many flux tubes. The magnetic structure is a three-dimensional sheared double arcade, and the thermal non-equilibrium process governs the plasma evolution. We have found that the condensations in the corona can be divided into two populations: threads and blobs. Threads are massive condensations that linger in the field line dips. Blobs are ubiquitous small condensations that are produced throughout the filament and overlying arcade magnetic structure, and rapidly fall to the chromosphere. The total prominence mass is in agreement with observations. The threads are the principal contributors to the total mass, whereas the blob contribution is small. The motion of the threads is basically horizontal, while blobs move in all directions along the field. The peak velocities for both populations are comparable, but there is a weak tendency for the velocity to increase with the inclination, and the blobs with motion near vertical have the largest values of the velocity. We have generated synthetic images of the whole structure in an H proxy and in two EUV channels of the AIA instrument aboard SDO. These images show the plasma at cool, warm and hot temperatures. The theoretical differential emission measure of our system agrees very well with observations in the temperature range log T = 4.6-5.7. We conclude that the sheared-arcade magnetic structure and plasma dynamics fit well the abundant observational evidence.

  7. Moment tensor inversion of the 2016 southeast offshore Mie earthquake in the Tonankai region using a three-dimensional velocity structure model: effects of the accretionary prism and subducting oceanic plate

    NASA Astrophysics Data System (ADS)

    Takemura, Shunsuke; Kimura, Takeshi; Saito, Tatsuhiko; Kubo, Hisahiko; Shiomi, Katsuhiko

    2018-03-01

    The southeast offshore Mie earthquake occurred on April 1, 2016 near the rupture area of the 1944 Tonankai earthquake, where seismicity around the interface of the Philippine Sea plate had been very low until this earthquake. Since this earthquake occurred outside of seismic arrays, the focal mechanism and depth were not precisely constrained using a one-dimensional velocity model, as in a conventional approach. We conducted a moment tensor inversion of this earthquake by using a three-dimensional velocity structure model. Before the analysis of observed data, we investigated the effects of offshore heterogeneous structures such as the seawater, accretionary prism, and subducting oceanic plate by using synthetic seismograms in a full three-dimensional model and simpler models. The accretionary prism and subducting oceanic plate play important roles in the moment tensor inversion for offshore earthquakes in the subduction zone. Particularly, the accretionary prism, which controls the excitation and propagation of long-period surface waves around the offshore region, provides better estimations of the centroid depths and focal mechanisms of earthquakes around the Nankai subduction zone. The result of moment tensor inversion for the 2016 southeast offshore Mie earthquake revealed low-angle thrust faulting with a moment magnitude of 5.6. According to geophysical surveys in the Nankai Trough, our results suggest that the rupture of this earthquake occurred on the interface of the Philippine Sea plate, rather than on a mega-splay fault. Detailed comparisons of first-motion polarizations provided additional constraints of the rupture that occurred on the interface of the Philippine Sea plate.

  8. Coarse analysis of collective behaviors: Bifurcation analysis of the optimal velocity model for traffic jam formation

    NASA Astrophysics Data System (ADS)

    Miura, Yasunari; Sugiyama, Yuki

    2017-12-01

    We present a general method for analyzing macroscopic collective phenomena observed in many-body systems. For this purpose, we employ diffusion maps, which are one of the dimensionality-reduction techniques, and systematically define a few relevant coarse-grained variables for describing macroscopic phenomena. The time evolution of macroscopic behavior is described as a trajectory in the low-dimensional space constructed by these coarse variables. We apply this method to the analysis of the traffic model, called the optimal velocity model, and reveal a bifurcation structure, which features a transition to the emergence of a moving cluster as a traffic jam.

  9. Three Dimensional Compressible Turbulent Flow Computations for a Diffusing S-Duct With/Without Vortex Generators

    NASA Technical Reports Server (NTRS)

    Cho, Soo-Yong; Greber, Isaac

    1994-01-01

    Numerical investigations on a diffusing S-duct with/without vortex generators and a straight duct with vortex generators are presented. The investigation consists of solving the full three-dimensional unsteady compressible mass averaged Navier-Stokes equations. An implicit finite volume lower-upper time marching code (RPLUS3D) has been employed and modified. A three-dimensional Baldwin-Lomax turbulence model has been modified in conjunction with the flow physics. A model for the analysis of vortex generators in a fully viscous subsonic internal flow is evaluated. A vortical structure for modeling the shed vortex is used as a source term in the computation domain. The injected vortex paths in the straight duct are compared with the analysis by two kinds of prediction models. The flow structure by the vortex generators are investigated along the duct. Computed results of the flow in a circular diffusing S-duct provide an understanding of the flow structure within a typical engine inlet system. These are compared with the experimental wall static-pressure, static- and total-pressure field, and secondary velocity profiles. Additionally, boundary layer thickness, skin friction values, and velocity profiles in wall coordinates are presented. In order to investigate the effect of vortex generators, various vortex strengths are examined in this study. The total-pressure recovery and distortion coefficients are obtained at the exit of the S-duct. The numerical results clearly depict the interaction between the low velocity flow by the flow separation and the injected vortices.

  10. Multilocality and fusion rules on the generalized structure functions in two-dimensional and three-dimensional Navier-Stokes turbulence.

    PubMed

    Gkioulekas, Eleftherios

    2016-09-01

    Using the fusion-rules hypothesis for three-dimensional and two-dimensional Navier-Stokes turbulence, we generalize a previous nonperturbative locality proof to multiple applications of the nonlinear interactions operator on generalized structure functions of velocity differences. We call this generalization of nonperturbative locality to multiple applications of the nonlinear interactions operator "multilocality." The resulting cross terms pose a new challenge requiring a new argument and the introduction of a new fusion rule that takes advantage of rotational symmetry. Our main result is that the fusion-rules hypothesis implies both locality and multilocality in both the IR and UV limits for the downscale energy cascade of three-dimensional Navier-Stokes turbulence and the downscale enstrophy cascade and inverse energy cascade of two-dimensional Navier-Stokes turbulence. We stress that these claims relate to nonperturbative locality of generalized structure functions on all orders and not the term-by-term perturbative locality of diagrammatic theories or closure models that involve only two-point correlation and response functions.

  11. Zeldovich pancakes in observational data are cold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brinckmann, Thejs; Lindholmer, Mikkel; Hansen, Steen

    The present day universe consists of galaxies, galaxy clusters, one-dimensional filaments and two-dimensional sheets or pancakes, all of which combine to form the cosmic web. The so called ''Zeldovich pancakes' are very difficult to observe, because their overdensity is only slightly greater than the average density of the universe. Falco et al. [1] presented a method to identify Zeldovich pancakes in observational data, and these were used as a tool for estimating the mass of galaxy clusters. Here we expand and refine that observational detection method. We study two pancakes on scales of 10 Mpc, identified from spectroscopically observed galaxiesmore » near the Coma cluster, and compare with twenty numerical pancakes.We find that the observed structures have velocity dispersions of about 100 km/sec, which is relatively low compared to typical groups and filaments. These velocity dispersions are consistent with those found for the numerical pancakes. We also confirm that the identified structures are in fact two-dimensional structures. Finally, we estimate the stellar to total mass of the observational pancakes to be 2 · 10{sup −4}, within one order of magnitude, which is smaller than that of clusters of galaxies.« less

  12. AGN Space Telescope and Optical Reverberation Mapping Project. IV. Velocity-Delay Mapping of Broad Emission Lines in NGC 5548

    NASA Astrophysics Data System (ADS)

    Horne, Keith D.; Agn Storm Team

    2015-01-01

    Two-dimensional velocity-delay maps of AGN broad emission line regions can be recovered by modelling observations of reverberating emission-line profiles on the assumption that the line profile variations are driven by changes in ionising radiation from a compact source near the black hole. The observable light travel time delay resolves spatial structure on iso-delay paraboloids, while the doppler shift resolves kinematic structure along the observer's line-of-sight. Velocity-delay maps will be presented and briefly discussed for the Lyman alpha, CIV and Hbeta line profiles based on the HST and ground-based spectrophotometric monitoring of NGC 5548 during the 2014 AGN STORM campaign.

  13. Joint Inversion of Body-Wave Arrival Times and Surface-Wave Dispersion Data for Three-Dimensional Seismic Velocity Structure Around SAFOD

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Thurber, C. H.; Maceira, M.; Roux, P.

    2013-12-01

    The crust around the San Andreas Fault Observatory at depth (SAFOD) has been the subject of many geophysical studies aimed at characterizing in detail the fault zone structure and elucidating the lithologies and physical properties of the surrounding rocks. Seismic methods in particular have revealed the complex two-dimensional (2D) and three-dimensional (3D) structure of the crustal volume around SAFOD and the strong velocity reduction in the fault damage zone. In this study we conduct a joint inversion using body-wave arrival times and surface-wave dispersion data to image the P-and S-wave velocity structure of the upper crust surrounding SAFOD. The two data types have complementary strengths - the body-wave data have good resolution at depth, albeit only where there are crossing rays between sources and receivers, whereas the surface waves have very good near-surface resolution and are not dependent on the earthquake source distribution because they are derived from ambient noise. The body-wave data are from local earthquakes and explosions, comprising the dataset analyzed by Zhang et al. (2009). The surface-wave data are for Love waves from ambient noise correlations, and are from Roux et al. (2011). The joint inversion code is based on the regional-scale version of the double-difference (DD) tomography algorithm tomoDD. The surface-wave inversion code that is integrated into the joint inversion algorithm is from Maceira and Ammon (2009). The propagator matrix solver in the algorithm DISPER80 (Saito, 1988) is used for the forward calculation of dispersion curves from layered velocity models. We examined how the structural models vary as we vary the relative weighting of the fit to the two data sets and in comparison to the previous separate inversion results. The joint inversion with the 'optimal' weighting shows more clearly the U-shaped local structure from the Buzzard Canyon Fault on the west side of SAF to the Gold Hill Fault on the east side.

  14. One dimensional P wave velocity structure of the crust beneath west Java and accurate hypocentre locations from local earthquake inversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Supardiyono; Santosa, Bagus Jaya; Physics Department, Faculty of Mathematics and Natural Sciences, Sepuluh Nopember Institute of Technology, Surabaya

    A one-dimensional (1-D) velocity model and station corrections for the West Java zone were computed by inverting P-wave arrival times recorded on a local seismic network of 14 stations. A total of 61 local events with a minimum of 6 P-phases, rms 0.56 s and a maximum gap of 299 Degree-Sign were selected. Comparison with previous earthquake locations shows an improvement for the relocated earthquakes. Tests were carried out to verify the robustness of inversion results in order to corroborate the conclusions drawn out from our reasearch. The obtained minimum 1-D velocity model can be used to improve routine earthquakemore » locations and represents a further step toward more detailed seismotectonic studies in this area of West Java.« less

  15. Estimation of velocity structure around a natural gas reservoir at Yufutsu, Japan, by microtremor survey

    NASA Astrophysics Data System (ADS)

    Shiraishi, H.; Asanuma, H.; Tezuka, K.

    2010-12-01

    Seismic reflection survey has been commonly used for exploration and time-lapse monitoring of oil/gas resources. Seismic reflection images typically have reasonable reliability and resolution for commercial production. However, cost consideration sometimes avoids deployment of widely distributed array or repeating survey in cases of time lapse monitoring or exploration of small-scale reservoir. Hence, technologies to estimate structures and physical properties around the reservoir with limited cost would be effectively used. Microtremor survey method (MSM) has an ability to realize long-term monitoring of reservoir with low cost, because this technique has a passive nature and minimum numbers of the monitoring station is four. MSM has been mainly used for earthquake disaster prevention, because velocity structure of S-wave is directly estimated from velocity dispersion of the Rayleigh wave. The authors experimentally investigated feasibility of the MSM survey for exploration of oil/gas reservoir. The field measurement was carried out around natural gas reservoir at Yufutsu, Hokkaido, Japan. Four types of arrays with array radii of 30m, 100m, 300m and 600m are deployed in each area. Dispersion curves of the velocity of Rayleigh wave were estimated from observed microtremors, and S-wave velocity structures were estimated by an inverse analysis of the dispersion curves with genetic algorism (GA). The estimated velocity structures showed good consistency with one dimensional velocity structure by previous reflection surveys up to 4-5 km. We also found from the field experiment that a data of 40min is effective to estimate the velocity structure even the seismometers are deployed along roads with heavy traffic.

  16. Upper mantle structure of central and West Antarctica from array analysis of Rayleigh wave phase velocities

    NASA Astrophysics Data System (ADS)

    Heeszel, David S.; Wiens, Douglas A.; Anandakrishnan, Sridhar; Aster, Richard C.; Dalziel, Ian W. D.; Huerta, Audrey D.; Nyblade, Andrew A.; Wilson, Terry J.; Winberry, J. Paul

    2016-03-01

    The seismic velocity structure of Antarctica is important, both as a constraint on the tectonic history of the continent and for understanding solid Earth interactions with the ice sheet. We use Rayleigh wave array analysis methods applied to teleseismic data from recent temporary broadband seismograph deployments to image the upper mantle structure of central and West Antarctica. Phase velocity maps are determined using a two-plane wave tomography method and are inverted for shear velocity using a Monte Carlo approach to estimate three-dimensional velocity structure. Results illuminate the structural dichotomy between the East Antarctic Craton and West Antarctica, with West Antarctica showing thinner crust and slower upper mantle velocity. West Antarctica is characterized by a 70-100 km thick lithosphere, underlain by a low-velocity zone to depths of at least 200 km. The slowest anomalies are beneath Ross Island and the Marie Byrd Land dome and are interpreted as upper mantle thermal anomalies possibly due to mantle plumes. The central Transantarctic Mountains are marked by an uppermost mantle slow-velocity anomaly, suggesting that the topography is thermally supported. The presence of thin, higher-velocity lithosphere to depths of about 70 km beneath the West Antarctic Rift System limits estimates of the regionally averaged heat flow to less than 90 mW/m2. The Ellsworth-Whitmore block is underlain by mantle with velocities that are intermediate between those of the West Antarctic Rift System and the East Antarctic Craton. We interpret this province as Precambrian continental lithosphere that has been altered by Phanerozoic tectonic and magmatic activity.

  17. Three-Dimensional Velocity Structure in Southern California from Teleseismic Surface Waves and Body Waves.

    NASA Astrophysics Data System (ADS)

    Prindle-Sheldrake, K. L.; Tanimoto, T.

    2003-12-01

    Analysis of teleseismic waves generated by large earthquakes worldwide across the Southern California TriNet Seismic Broadband Array has yielded high quality measurements of both surface waves and body waves. Rayleigh waves and Love waves were previously analyzed using a spectral fitting technique (Tanimoto. and Prindle-Sheldrake, GRL 2002; Prindle-Sheldrake and Tanimoto, submitted to JGR), producing a three-dimensional S-wave velocity structure. Features in our velocity structure show some regional contrasts with respect to the starting model (SCEC 2.2), which has detailed crustal structure, but laterally homogeneous upper mantle structure. The most prominent of which is a postulated fast velocity anomaly located west of the Western Transverse Ranges that could be related to a rotated remnant plate from Farallon subduction. Analysis indicates that, while Rayleigh wave data are mostly sensitive to mantle structure, Love wave data require some modifications of crustal structure from SCEC 2.2 model. Recent advances in our velocity structure focus on accommodation of finite frequency effect, and the addition of body waves to the data. Thus far, 118 events have been analyzed for body waves. A simple geometrical approach is used to represent the finite frequency effect in phase velocity maps. Due to concerns that, for seismic phases between 10-100 seconds, structure away from the ray theoretical is also sampled by a propagating surface wave, we have adopted a technique which examines a normal mode formula in its asymptotic limit (Tanimoto, GRL 2003 in press). An ellipse, based on both distance from source to receiver and wavelength, can be used to approximate the effect on the structure along the ray path and adjacent structure. Three models were tested in order to select the appropriate distribution within the ellipse; the first case gives equal weight to all blocks within the ellipse; case 2 incorporates a Gaussian function which falls off perpendicular to the ray path, allowing the amplitude to peak at the receiver; case 3 is the same as case 2, yet removes the effect of the peak at the receiver. A major improvement is that the locale under consideration has expanded due to the effect of ray paths spreading over a larger area than the ray theoretical. Comparison of the three techniques yields very similar results, and all techniques show an exceptional correlation to the ray theoretical phase velocity maps. After analyzing our data in terms of the finite frequency effect, we find that little change has occurred as a result of employing this technique other than expanding our region of study. P-wave measurements were obtained from the data set for 118 events. Preliminary results show systematic patterns. We have successfully measured 30 S-wave events which we plan to incorporate into our velocity structure. Our goal is to proceed with a joint inversion of P-waves, S-waves and Surface waves for a collective Southern California velocity structure.

  18. Stratospheric Horizontal Wavenumber Spectra of Winds, Potential Temperature, and Atmospheric Tracers Observed by High-Altitude Aircraft

    NASA Technical Reports Server (NTRS)

    Bacmeister, Julio T.; Eckermann, Stephen D.; Newman, Paul A.; Lait, Leslie; Chan, K. R.; Loewenstein, Max; Proffitt, Michael H.; Gary, Bruce L.

    1996-01-01

    Horizontal wavenumber power spectra of vertical and horizontal wind velocities, potential temperatures, and ozone and N(2)O mixing ratios, as measured in the mid-stratosphere during 73 ER-2 flights (altitude approx. 20km) are presented. The velocity and potential temperature spectra in the 100 to 1-km wavelength range deviate significantly from the uniform -5/3 power law expected for the inverse energy-cascade regime of two-dimensional turbulence and also for inertial-range, three-dimensional turbulence. Instead, steeper spectra approximately consistent with a -3 power law are observed at horizontal scales smaller than 3 km for all velocity components as well as potential temperature. Shallower spectra are observed at scales longer than 6 km. For horizontal velocity and potential temperature the spectral indices at longer scales are between -1.5 and -2.0. For vertical velocity the spectrum at longer scales become flat. It is argued that the observed velocity and potential temperature spectra are consistent with gravity waves. At smaller scales, the shapes are also superficially consistent with a Lumley-Shur-Weinstock buoyant subrange of turbulence and/or nonlinear gravity waves. Contemporaneous spectra of ozone and N(sub 2)O mixing ratio in the 100 to 1-km wavelength range do conform to an approximately uniform -5/3 power law. It is argued that this may reflect interactions between gravity wave air-parcel displacements and laminar or filamentary structures in the trace gas mixing ratio field produced by enstropy-cascading two-dimensional turbulence.

  19. Three-dimensional Shock Structure of the Orion KL Outflow with IGRINS

    NASA Astrophysics Data System (ADS)

    Oh, Heeyoung; Pyo, Tae-Soo; Kaplan, Kyle; Yuk, In-Soo; Park, Byeong-Gon; Mace, Gregory; Park, Chan; Chun, Moo-Young; Pak, Soojong; Kim, Kang-Min; Sok Oh, Jae; Jeong, Ueejeong; Yu, Young Sam; Lee, Jae-Joon; Kim, Hwihyun; Hwang, Narae; Lee, Hye-In; Nguyen Le, Huynh Anh; Lee, Sungho; Jaffe, Daniel T.

    2016-12-01

    We report a study of the three-dimensional (3D) outflow structure of a 15″ × 13″ area around the H2 peak 1 in Orion KL with slit-scan observations (13 slits) using the Immersion Grating Infrared Spectrograph. The datacubes have a high-velocity resolution (˜7.5 km s-1), provide high-contrast imaging within ultra-narrow bands, and enable the detection of the main stream of the previously reported H2 outflow fingers. We identified 31 distinct fingers in the H2 1-0 S(1) λ2.122 μm emission. The line profile at each finger shows multiple-velocity peaks with a strong low-velocity component around the systemic velocity at {V}{LSR} = +8 km s-1 and high-velocity emission (| {V}{LSR}| = 45-135 km s-1), indicating a typical bow-shock. The observed radial velocity gradients of ˜4 km s-1 arcsec-1 agree well with the velocities inferred from large-scale proper motions, where the projected motion is proportional to the distance from a common origin. We construct a conceptual 3D map of the fingers with estimated inclination angles of 57°-74°. The extinction difference (ΔA v > 10 mag) between blueshifted and redshifted fingers indicates high internal extinction. The extinction, the overall angular spread, and the scale of the flow argue for an ambient medium with a very high density (105-106 cm-3), consistent with molecular line observations of the Orion Molecular Cloud core. The radial velocity gradients and the 3D distributions of the fingers together support the hypothesis of a simultaneous radial explosion of the Orion KL outflow. This paper includes data taken at The McDonald Observatory of The University of Texas at Austin.

  20. Wave propagation modelling of induced earthquakes at the Groningen gas production site

    NASA Astrophysics Data System (ADS)

    Paap, Bob; Kraaijpoel, Dirk; Bakker, Marcel; Gharti, Hom Nath

    2018-06-01

    Gas extraction from the Groningen natural gas field, situated in the Netherlands, frequently induces earthquakes in the reservoir that cause damage to buildings and pose a safety hazard and a nuisance to the local population. Due to the dependence of the national heating infrastructure on Groningen gas, the short-term mitigation measures are mostly limited to a combination of spatiotemporal redistribution of gas production and strengthening measures for buildings. All options become more effective with a better understanding of both source processes and seismic wave propagation. Detailed wave propagation simulations improve both the inference of source processes from observed ground motions and the forecast of ground motions as input for hazard studies and seismic network design. The velocity structure at the Groningen site is relatively complex, including both deep high-velocity and shallow low-velocity deposits showing significant thickness variations over relatively small spatial extents. We performed a detailed three-dimensional wave propagation modelling study for an induced earthquake in the Groningen natural gas field using the spectral-element method. We considered an earthquake that nucleated along a normal fault with local magnitude of {{{M}}_{{L}}} = 3. We created a dense mesh with element size varying from 12 to 96 m, and used a source frequency of 7 Hz, such that frequencies generated during the simulation were accurately sampled up to 10 Hz. The velocity/density model is constructed using a three-dimensional geological model of the area, including both deep high-velocity salt deposits overlying the source region and shallow low-velocity sediments present in a deep but narrow tunnel valley. The results show that the three-dimensional density/velocity model in the Groningen area clearly play a large role in the wave propagation and resulting surface ground motions. The 3d structure results in significant lateral variations in site response. The high-velocity salt deposits have a dispersive effect on the radiated wavefield, reducing the seismic energy reaching the surface near the epicentre. In turn, the presence of low-velocity tunnel valley deposits can locally cause a significant increase in peak ground acceleration. Here we study induced seismicity on a local scale and use SPECFEM3D to conduct full waveform simulations and show how local velocity variations can affect seismic records.

  1. Vibroacoustic response of structures and perturbation Reynolds stress near structure-turbulence interface

    NASA Technical Reports Server (NTRS)

    Maekawa, S.; Lin, Y. K.

    1977-01-01

    The interaction between a turbulent flow and certain types of structures which respond to its excitation is investigated. One-dimensional models were used to develop the basic ideas applied to a second model resembling the fuselage construction of an aircraft. In the two-dimensional case a simple membrane, with a small random variation in the membrane tension, was used. A decaying turbulence was constructed by superposing infinitely many components, each of which is convected as a frozen pattern at a different velocity. Structure-turbulence interaction results are presented in terms of the spectral densities of the structural response and the perturbation Reynolds stress in the fluid at the vicinity of the interface.

  2. Finite-time barriers to front propagation in two-dimensional fluid flows

    NASA Astrophysics Data System (ADS)

    Mahoney, John R.; Mitchell, Kevin A.

    2015-08-01

    Recent theoretical and experimental investigations have demonstrated the role of certain invariant manifolds, termed burning invariant manifolds (BIMs), as one-way dynamical barriers to reaction fronts propagating within a flowing fluid. These barriers form one-dimensional curves in a two-dimensional fluid flow. In prior studies, the fluid velocity field was required to be either time-independent or time-periodic. In the present study, we develop an approach to identify prominent one-way barriers based only on fluid velocity data over a finite time interval, which may have arbitrary time-dependence. We call such a barrier a burning Lagrangian coherent structure (bLCS) in analogy to Lagrangian coherent structures (LCSs) commonly used in passive advection. Our approach is based on the variational formulation of LCSs using curves of stationary "Lagrangian shear," introduced by Farazmand et al. [Physica D 278-279, 44 (2014)] in the context of passive advection. We numerically validate our technique by demonstrating that the bLCS closely tracks the BIM for a time-independent, double-vortex channel flow with an opposing "wind."

  3. Assessing waveform predictions of recent three-dimensional velocity models of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Bao, Xueyang; Shen, Yang

    2016-04-01

    Accurate velocity models are essential for both the determination of earthquake locations and source moments and the interpretation of Earth structures. With the increasing number of three-dimensional velocity models, it has become necessary to assess the models for accuracy in predicting seismic observations. Six models of the crustal and uppermost mantle structures in Tibet and surrounding regions are investigated in this study. Regional Rayleigh and Pn (or Pnl) waveforms from two ground truth events, including one nuclear explosion and one natural earthquake located in the study area, are simulated by using a three-dimensional finite-difference method. Synthetics are compared to observed waveforms in multiple period bands of 20-75 s for Rayleigh waves and 1-20 s for Pn/Pnl waves. The models are evaluated based on the phase delays and cross-correlation coefficients between synthetic and observed waveforms. A model generated from full-wave ambient noise tomography best predicts Rayleigh waves throughout the data set, as well as Pn/Pnl waves traveling from the Tarim Basin to the stations located in central Tibet. In general, the models constructed from P wave tomography are not well suited to predict Rayleigh waves, and vice versa. Possible causes of the differences between observed and synthetic waveforms, and frequency-dependent variations of the "best matching" models with the smallest prediction errors are discussed. This study suggests that simultaneous prediction for body and surface waves requires an integrated velocity model constructed with multiple seismic waveforms and consideration of other important properties, such as anisotropy.

  4. The development of laser speckle velocimetry for the study of vortical flows

    NASA Technical Reports Server (NTRS)

    Krothapalli, A.

    1991-01-01

    A research program was undertaken to develop a new experimental technique commonly known as particle image displacement velocity (PIVD) to measure an instantaneous two dimensional velocity field in a selected plane of flow field. This technique was successfully developed and applied to the study of several aerodynamic problems. A detailed description of the technique and a broad review of all the research activity carried out in this field are reported. A list of technical publications is also provided. The application of PIDV to unsteady flows with large scale structures is demonstrated in a study of the temporal evolution of the flow past an impulsively started circular cylinder. The instantaneous two dimensional flow in the transition region of a rectangular air jet was measured using PIDV and the details are presented. This experiment clearly demonstrates the PIDV capability in the measurement of turbulent flows. Preliminary experiments were also conducted to measure the instantaneous flow over a circular bump in a transonic flow. Several other experiments now routinely use PIDV as a non-intrustive measurement technique to obtain instantaneous two dimensional velocity fields.

  5. Existence regimes for the formation of nonlinear dissipative structures in inhomogeneous magnetoplasmas with non-Maxwellian electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masood, W.; National Centre for Physics, Shahdara Valley Road, Islamabad; Zahoor, Sara

    2016-09-15

    Nonlinear dissipative structures are studied in one and two dimensions in nonuniform magnetized plasmas with non-Maxwellian electrons. The dissipation is incorporated in the system through ion-neutral collisions. Employing the drift approximation, nonlinear drift waves are derived in 1D, whereas coupled drift-ion acoustic waves are derived in 2D in the weak nonlinearity limit. It is found that the ratio of the diamagnetic drift velocity to the velocity of nonlinear structure determines the nature (compressive or rarefactive) of the shock structure. The upper and lower bounds for velocity of the nonlinear shock structures are also found. It is noticed that the existencemore » regimes for the drift shock waves in one and two dimensions for Cairns distributed electrons are very distinct from those with kappa distributed electrons. Interestingly, it is found that both compressive and rarefactive shock structures could be obtained for the one dimensional drift waves with kappa distributed electrons.« less

  6. Existence regimes for the formation of nonlinear dissipative structures in inhomogeneous magnetoplasmas with non-Maxwellian electrons

    NASA Astrophysics Data System (ADS)

    Masood, W.; Zahoor, Sara; Gul-e-Ali, Ahmad, Ali

    2016-09-01

    Nonlinear dissipative structures are studied in one and two dimensions in nonuniform magnetized plasmas with non-Maxwellian electrons. The dissipation is incorporated in the system through ion-neutral collisions. Employing the drift approximation, nonlinear drift waves are derived in 1D, whereas coupled drift-ion acoustic waves are derived in 2D in the weak nonlinearity limit. It is found that the ratio of the diamagnetic drift velocity to the velocity of nonlinear structure determines the nature (compressive or rarefactive) of the shock structure. The upper and lower bounds for velocity of the nonlinear shock structures are also found. It is noticed that the existence regimes for the drift shock waves in one and two dimensions for Cairns distributed electrons are very distinct from those with kappa distributed electrons. Interestingly, it is found that both compressive and rarefactive shock structures could be obtained for the one dimensional drift waves with kappa distributed electrons.

  7. Resistivity and Seismic Surface Wave Tomography Results for the Nevşehir Kale Region: Cappadocia, Turkey

    NASA Astrophysics Data System (ADS)

    Coşkun, Nart; Çakır, Özcan; Erduran, Murat; Arif Kutlu, Yusuf

    2014-05-01

    The Nevşehir Kale region located in the middle of Cappadocia with approximately cone shape is investigated for existence of an underground city using the geophysical methods of electrical resistivity and seismic surface wave tomography together. Underground cities are generally known to exist in Cappadocia. The current study has obtained important clues that there may be another one under the Nevşehir Kale region. Two-dimensional resistivity and seismic profiles approximately 4-km long surrounding the Nevşehir Kale are measured to determine the distribution of electrical resistivities and seismic velocities under the profiles. Several high resistivity anomalies with a depth range 8-20 m are discovered to associate with a systematic void structure beneath the region. Because of the high resolution resistivity measurement system currently employed we were able to isolate the void structure from the embedding structure. Low seismic velocity zones associated with the high resistivity depths are also discovered. Using three-dimensional visualization techniques we show the extension of the void structure under the measured profiles.

  8. Formation of large-scale structures with sharp density gradient through Rayleigh-Taylor growth in a two-dimensional slab under the two-fluid and finite Larmor radius effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goto, R.; Hatori, T.; Miura, H., E-mail: miura.hideaki@nifs.ac.jp

    Two-fluid and the finite Larmor effects on linear and nonlinear growth of the Rayleigh-Taylor instability in a two-dimensional slab are studied numerically with special attention to high-wave-number dynamics and nonlinear structure formation at a low β-value. The two effects stabilize the unstable high wave number modes for a certain range of the β-value. In nonlinear simulations, the absence of the high wave number modes in the linear stage leads to the formation of the density field structure much larger than that in the single-fluid magnetohydrodynamic simulation, together with a sharp density gradient as well as a large velocity difference. Themore » formation of the sharp velocity difference leads to a subsequent Kelvin-Helmholtz-type instability only when both the two-fluid and finite Larmor radius terms are incorporated, whereas it is not observed otherwise. It is shown that the emergence of the secondary instability can modify the outline of the turbulent structures associated with the primary Rayleigh-Taylor instability.« less

  9. Mantle plumes and associated flow beneath Arabia and East Africa

    NASA Astrophysics Data System (ADS)

    Chang, Sung-Joon; Van der Lee, Suzan

    2011-02-01

    We investigate mantle plumes and associated flow beneath the lithosphere by imaging the three-dimensional S-velocity structure beneath Arabia and East Africa. This image shows elongated vertical and horizontal low-velocity anomalies down to at least mid mantle depths. This three-dimensional S-velocity model is obtained through the joint inversion of teleseismic S- and SKS-arrival times, regional S- and Rayleigh waveform fits, fundamental-mode Rayleigh-wave group velocities, and independent Moho constraints from receiver functions, reflection/refraction profiles, and gravity measurements. In the resolved parts of our S-velocity model we find that the Afar plume is distinctly separate from the Kenya plume, showing the Afar plume's origin in the lower mantle beneath southwestern Arabia. We identify another quasi-vertical low-velocity anomaly beneath Jordan and northern Arabia which extends into the lower mantle and may be related to volcanism in Jordan, northern Arabia, and possibly southern Turkey. Comparing locations of mantle plumes from the joint inversion with fast axes of shear-wave splitting, we confirm horizontal mantle flow radially away from Afar. Low-velocity channels in our model support southwestward flow beneath Ethiopia, eastward flow beneath the Gulf of Aden, but not northwestwards beneath the entire Red Sea. Instead, northward mantle flow from Afar appears to be channeled beneath Arabia.

  10. A New Algorithm with Plane Waves and Wavelets for Random Velocity Fields with Many Spatial Scales

    NASA Astrophysics Data System (ADS)

    Elliott, Frank W.; Majda, Andrew J.

    1995-03-01

    A new Monte Carlo algorithm for constructing and sampling stationary isotropic Gaussian random fields with power-law energy spectrum, infrared divergence, and fractal self-similar scaling is developed here. The theoretical basis for this algorithm involves the fact that such a random field is well approximated by a superposition of random one-dimensional plane waves involving a fixed finite number of directions. In general each one-dimensional plane wave is the sum of a random shear layer and a random acoustical wave. These one-dimensional random plane waves are then simulated by a wavelet Monte Carlo method for a single space variable developed recently by the authors. The computational results reported in this paper demonstrate remarkable low variance and economical representation of such Gaussian random fields through this new algorithm. In particular, the velocity structure function for an imcorepressible isotropic Gaussian random field in two space dimensions with the Kolmogoroff spectrum can be simulated accurately over 12 decades with only 100 realizations of the algorithm with the scaling exponent accurate to 1.1% and the constant prefactor accurate to 6%; in fact, the exponent of the velocity structure function can be computed over 12 decades within 3.3% with only 10 realizations. Furthermore, only 46,592 active computational elements are utilized in each realization to achieve these results for 12 decades of scaling behavior.

  11. High resolution simulations of energy absorption in dynamically loaded cellular structures

    NASA Astrophysics Data System (ADS)

    Winter, R. E.; Cotton, M.; Harris, E. J.; Eakins, D. E.; McShane, G.

    2017-03-01

    Cellular materials have potential application as absorbers of energy generated by high velocity impact. CTH, a Sandia National Laboratories Code which allows very severe strains to be simulated, has been used to perform very high resolution simulations showing the dynamic crushing of a series of two-dimensional, stainless steel metal structures with varying architectures. The structures are positioned to provide a cushion between a solid stainless steel flyer plate with velocities ranging from 300 to 900 m/s, and an initially stationary stainless steel target. Each of the alternative architectures under consideration was formed by an array of identical cells each of which had a constant volume and a constant density. The resolution of the simulations was maximised by choosing a configuration in which one-dimensional conditions persisted for the full period over which the specimen densified, a condition which is most readily met by impacting high density specimens at high velocity. It was found that the total plastic flow and, therefore, the irreversible energy dissipated in the fully densified energy absorbing cell, increase (a) as the structure becomes more rodlike and less platelike and (b) as the impact velocity increases. Sequential CTH images of the deformation processes show that the flow of the cell material may be broadly divided into macroscopic flow perpendicular to the compression direction and jetting-type processes (microkinetic flow) which tend to predominate in rod and rodlike configurations and also tend to play an increasing role at increased strain rates. A very simple analysis of a configuration in which a solid flyer impacts a solid target provides a baseline against which to compare and explain features seen in the simulations. The work provides a basis for the development of energy absorbing structures for application in the 200-1000 m/s impact regime.

  12. Vorticity and helicity decompositions and dynamics with real Schur form of the velocity gradient

    NASA Astrophysics Data System (ADS)

    Zhu, Jian-Zhou

    2018-03-01

    The real Schur form (RSF) of a generic velocity gradient field ∇u is exploited to expose the structures of flows, in particular, our field decomposition resulting in two vorticities with only mutual linkage as the topological content of the global helicity (accordingly decomposed into two equal parts). The local transformation to the RSF may indicate alternative (co)rotating frame(s) for specifying the objective argument(s) of the constitutive equation. When ∇u is uniformly of RSF in a fixed Cartesian coordinate frame, i.e., ux = ux(x, y) and uy = uy(x, y), but uz = uz(x, y, z), the model, with the decomposed vorticities both frozen-in to u, is for two-component-two-dimensional-coupled-with-one-component-three-dimensional flows in between two-dimensional-three-component (2D3C) and fully three-dimensional-three-component ones and may help curing the pathology in the helical 2D3C absolute equilibrium, making the latter effectively work in more realistic situations.

  13. Shape design sensitivity analysis and optimization of three dimensional elastic solids using geometric modeling and automatic regridding. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Yao, Tse-Min; Choi, Kyung K.

    1987-01-01

    An automatic regridding method and a three dimensional shape design parameterization technique were constructed and integrated into a unified theory of shape design sensitivity analysis. An algorithm was developed for general shape design sensitivity analysis of three dimensional eleastic solids. Numerical implementation of this shape design sensitivity analysis method was carried out using the finite element code ANSYS. The unified theory of shape design sensitivity analysis uses the material derivative of continuum mechanics with a design velocity field that represents shape change effects over the structural design. Automatic regridding methods were developed by generating a domain velocity field with boundary displacement method. Shape design parameterization for three dimensional surface design problems was illustrated using a Bezier surface with boundary perturbations that depend linearly on the perturbation of design parameters. A linearization method of optimization, LINRM, was used to obtain optimum shapes. Three examples from different engineering disciplines were investigated to demonstrate the accuracy and versatility of this shape design sensitivity analysis method.

  14. Shear-wave velocity structure of the Tongariro Volcanic Centre, New Zealand: Fast Rayleigh and slow Love waves indicate strong shallow anisotropy

    NASA Astrophysics Data System (ADS)

    Godfrey, Holly J.; Fry, Bill; Savage, Martha K.

    2017-04-01

    Models of the velocity structure of volcanoes can help define possible magma pathways and contribute to calculating more accurate earthquake locations, which can help with monitoring volcanic activity. However, shear-wave velocity of volcanoes is difficult to determine from traditional seismic techniques, such as local earthquake tomography (LET) or refraction/reflection surveys. Here we use the recently developed technique of noise cross correlation of continuous seismic data to investigate the subsurface shear-wave velocity structure of the Tongariro Volcanic Centre (TgVC) of New Zealand, focusing on the active Ruapehu and Tongariro Volcanoes. We observe both the fundamental and first higher-order modes of Rayleigh and Love waves within our noise dataset, made from stacks of 15 min cross-correlation functions. We manually pick group velocity dispersion curves from over 1900 correlation functions, of which we consider 1373 to be high quality. We subsequently invert a subset of the fundamental mode Rayleigh- and Love-wave dispersion curves both independently and jointly for one dimensional shear-wave velocity (Vs) profiles at Ruapehu and Tongariro Volcanoes. Vs increases very slowly at a rate of approximately 0.2 km/s per km depth beneath Ruapehu, suggesting that progressive hydrothermal alteration mitigates the effects of compaction driven velocity increases. At Tongariro, we observe larger Vs increases with depth, which we interpret as different layers within Tongariro's volcanic system above altered basement greywacke. Slow Vs, on the order of 1-2 km/s, are compatible with P-wave velocities (using a Vp/Vs ratio of 1.7) from existing velocity profiles of areas within the TgVC, and the observations of worldwide studies of shallow volcanic systems that used ambient noise cross-correlation methods. Most of the measured group velocities of fundamental mode Love-waves across the TgVC are 0.1-0.4 km/s slower than those of fundamental mode Rayleigh-waves in the frequency range of 0.25-1 Hz. First-higher mode Love-waves are similarly slower than first-higher mode Rayleigh waves. This is incompatible with synthetic dispersion curves we calculate using isotropic, layered velocity models appropriate for Ruapehu and Tongariro, in which Love waves travel more quickly than Rayleigh waves of the same period. The Love-Rayleigh discrepancy is likely due to structures such as dykes or cracks in the vertical plane having increased influence on surface-wave propagation. However, several measurements at Ruapehu have Love-wave group velocities that are faster than Rayleigh-wave group velocities. The differences between the Love- and Rayleigh-wave dispersion curves also vary with the azimuth of the interstation path across Ruapehu and Tongariro Volcanoes. Significant azimuthal dependence of both Love and Rayleigh-wave velocities are also observed. This suggests azimuthal anisotropy within the volcanic structures, which coupled with radial anisotropy, makes the Vs structures of Ruapehu and Tongariro Volcanoes anisotropic with orthorhombic or lower order symmetry. We suggest that further work to determine three-dimensional volcanic structures should include provisions for such anisotropy.

  15. Simultaneous sensing of light and sound velocities of fluids in a two-dimensional phoXonic crystal with defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amoudache, Samira; Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, B.P. 17 RP, 15000 Tizi-Ouzou; Pennec, Yan, E-mail: yan.pennec@univ-lille1.fr

    2014-04-07

    We theoretically investigate the potentiality of dual phononic-photonic (the so-called phoxonic) crystals for liquid sensing applications. We study the transmission through a two-dimensional (2D) crystal made of infinite cylindrical holes in a silicon substrate, where one row of holes oriented perpendicular to the propagation direction is filled with a liquid. The infiltrated holes may have a different radius than the regular holes. We show, in the defect structure, the existence of well-defined features (peaks or dips) in the transmission spectra of acoustic and optical waves and estimate their sensitivity to the sound and light velocity of the analyte. Some ofmore » the geometrical requirements behave in opposite directions when searching for an efficient sensing of either sound or light velocities. Hence, a compromise in the choice of the parameters may become necessary in making the phoxonic sensor.« less

  16. Structural Anomalies Detected in Ceramic Matrix Composites Using Combined Nondestructive Evaluation and Finite Element Analysis (NDE and FEA)

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Baaklini, George Y.; Bhatt, Ramakrishna T.

    2003-01-01

    Most reverse engineering approaches involve imaging or digitizing an object and then creating a computerized reconstruction that can be integrated, in three dimensions, into a particular design environment. The rapid prototyping technique builds high-quality physical prototypes directly from computer-aided design files. This fundamental technique for interpreting and interacting with large data sets is being used here via Velocity2 (an integrated image-processing software, ref. 1) using computed tomography (CT) data to produce a prototype three-dimensional test specimen model for analyses. A study at the NASA Glenn Research Center proposes to use these capabilities to conduct a combined nondestructive evaluation (NDE) and finite element analysis (FEA) to screen pretest and posttest structural anomalies in structural components. A tensile specimen made of silicon nitrite (Si3N4) ceramic matrix composite was considered to evaluate structural durability and deformity. Ceramic matrix composites are being sought as candidate materials to replace nickel-base superalloys for turbine engine applications. They have the unique characteristics of being able to withstand higher operating temperatures and harsh combustion environments. In addition, their low densities relative to metals help reduce component mass (ref. 2). Detailed three-dimensional volume rendering of the tensile test specimen was successfully carried out with Velocity2 (ref. 1) using two-dimensional images that were generated via computed tomography. Subsequent, three-dimensional finite element analyses were performed, and the results obtained were compared with those predicted by NDE-based calculations and experimental tests. It was shown that Velocity2 software can be used to render a three-dimensional object from a series of CT scan images with a minimum level of complexity. The analytical results (ref. 3) show that the high-stress regions correlated well with the damage sites identified by the CT scans and the experimental data. Furthermore, modeling of the voids collected via NDE offered an analytical advantage that resulted in more accurate assessments of the material s structural strength. The top figure shows a CT scan image of the specimen test section illustrating various hidden structural entities in the material and an optical image of the test specimen considered in this study. The bottom figure represents the stress response predicted from the finite element analyses (ref .3 ) for a selected CT slice where it clearly illustrates the correspondence of the high stress risers due to voids in the material with those predicted by the NDE. This study is continuing, and efforts are concentrated on improving the modeling capabilities to imitate the structural anomalies as detected.

  17. Lateral variations in upper-mantle seismic anisotropy in the Pacific from inversion of a surface-wave dispersion dataset

    NASA Astrophysics Data System (ADS)

    Eddy, C. L.; Ekstrom, G.; Nettles, M.; Gaherty, J. B.

    2017-12-01

    We present a three-dimensional model of the anisotropic velocity structure of the Pacific lithosphere and asthenosphere. The presence of seismic anisotropy in the oceanic upper mantle provides information about the geometry of flow in the mantle, the nature of the lithosphere-asthenosphere boundary, and the possible presence of partial melt in the asthenosphere. Our dataset consists of fundamental-mode dispersion for Rayleigh and Love waves measured between 25-250 s with paths crossing the Pacific Ocean. We invert the phase anomaly measurements directly for three-dimensional anisotropic velocity structure. Our models are radially anisotropic and include the full set of elastic parameters that describe azimuthal variations in velocity (e.g. Gc, Gs). We investigate the age dependence of seismic velocity and radial anisotropy and find that there are significant deviations from the velocities predicted by a simple oceanic plate cooling model. We observe strong radial anisotropy with vsh > vsv in the asthenosphere of the central Pacific. We investigate the radial anisotropy in the shallow lithosphere, where previous models have reported conflicting results. There is a contrast in both upper-mantle isotropic velocities and radial anisotropy between the Pacific and Nazca plates, across the East Pacific Rise. We also investigate lateral variations in azimuthal anisotropy throughout the Pacific upper mantle and find that there are large areas over which the anisotropy fast axis does not align with absolute plate motion, suggesting the presence of small-scale convection or pressure-driven flow beneath the base of the oceanic plate.

  18. Three-dimensional P-wave velocity structure in the greater Mount Rainier area from local earthquake tomography

    NASA Astrophysics Data System (ADS)

    Moran, Seth Charles

    1997-08-01

    One of the most striking features of seismicity in western Washington is the clustering of crustal earthquakes into one of several zones of concentrated seismicity. In this dissertation I explore the hypothesis that geologic structures, in conjunction with regional tectonic forces, are primarily responsible for controlling the location of seismicity in parts of western Washington. The primary tool for testing this hypothesis is a 3-dimensional image of the P-wave velocity structure of the greater Mount Rainier area that I derive using local earthquake tomography. I use P-wave arrival times from local earthquakes occurring between 1980 and 1996 recorded at short-period vertical component stations operated by the Pacific Northwest Seismograph Network (PNSN) and 18 temporary sites operated during a field experiment in 1995 and 1996. The tomographic methodology I use is similar to that described by Lees and Crosson (1989, 1990). In addition, I use the parameter separation method to decouple the hypocenter and velocity problems, don't use station corrections, and use ray-bending for 3-D raytracing, allowing for a full non-linear inversion. In the upper 4 km several low velocity features show good correlation with the Carbon River, Skate Creek, and Morton anticlines, as well as the Chehalis, Tacoma, and Seattle basins. There is also good correlation between high velocity features and surface exposures of several plutons. One seismic zone, the St. Helens Seismic Zone, correlates well with a planar low velocity feature. This correlation supports the idea that this seismic zone reflects a continuous structure roughly 50 km in length. A second zone, the Western Rainier Seismic Zone (WRSZ), does not correlate in any simple way with anomaly patterns, suggesting that the WRSZ does not represent a distinct fault. A 10 km-wide low velocity anomaly occurs 8 to 18 km beneath Mount Rainier, which I interpret to be due to a thermal aureole associated with the magmatic system beneath Mount Rainier. Volcano-tectonic earthquakes locate above this feature, and are interpreted to be caused by forces related to hydrothermal circulation and/or the cooling of magmatic bodies at depth.

  19. Spherical-shell boundaries for two-dimensional compressible convection in a star

    NASA Astrophysics Data System (ADS)

    Pratt, J.; Baraffe, I.; Goffrey, T.; Geroux, C.; Viallet, M.; Folini, D.; Constantino, T.; Popov, M.; Walder, R.

    2016-10-01

    Context. Studies of stellar convection typically use a spherical-shell geometry. The radial extent of the shell and the boundary conditions applied are based on the model of the star investigated. We study the impact of different two-dimensional spherical shells on compressible convection. Realistic profiles for density and temperature from an established one-dimensional stellar evolution code are used to produce a model of a large stellar convection zone representative of a young low-mass star, like our sun at 106 years of age. Aims: We analyze how the radial extent of the spherical shell changes the convective dynamics that result in the deep interior of the young sun model, far from the surface. In the near-surface layers, simple small-scale convection develops from the profiles of temperature and density. A central radiative zone below the convection zone provides a lower boundary on the convection zone. The inclusion of either of these physically distinct layers in the spherical shell can potentially affect the characteristics of deep convection. Methods: We perform hydrodynamic implicit large eddy simulations of compressible convection using the MUltidimensional Stellar Implicit Code (MUSIC). Because MUSIC has been designed to use realistic stellar models produced from one-dimensional stellar evolution calculations, MUSIC simulations are capable of seamlessly modeling a whole star. Simulations in two-dimensional spherical shells that have different radial extents are performed over tens or even hundreds of convective turnover times, permitting the collection of well-converged statistics. Results: To measure the impact of the spherical-shell geometry and our treatment of boundaries, we evaluate basic statistics of the convective turnover time, the convective velocity, and the overshooting layer. These quantities are selected for their relevance to one-dimensional stellar evolution calculations, so that our results are focused toward studies exploiting the so-called 321D link. We find that the inclusion in the spherical shell of the boundary between the radiative and convection zones decreases the amplitude of convective velocities in the convection zone. The inclusion of near-surface layers in the spherical shell can increase the amplitude of convective velocities, although the radial structure of the velocity profile established by deep convection is unchanged. The impact of including the near-surface layers depends on the speed and structure of small-scale convection in the near-surface layers. Larger convective velocities in the convection zone result in a commensurate increase in the overshooting layer width and a decrease in the convective turnover time. These results provide support for non-local aspects of convection.

  20. A one-dimensional with three-dimensional velocity space hybrid-PIC model of the discharge plasma in a Hall thruster

    NASA Astrophysics Data System (ADS)

    Shashkov, Andrey; Lovtsov, Alexander; Tomilin, Dmitry

    2017-04-01

    According to present knowledge, countless numerical simulations of the discharge plasma in Hall thrusters were conducted. However, on the one hand, adequate two-dimensional (2D) models require a lot of time to carry out numerical research of the breathing mode oscillations or the discharge structure. On the other hand, existing one-dimensional (1D) models are usually too simplistic and do not take into consideration such important phenomena as neutral-wall collisions, magnetic field induced by Hall current and double, secondary, and stepwise ionizations together. In this paper a one-dimensional with three-dimensional velocity space (1D3V) hybrid-PIC model is presented. The model is able to incorporate all the phenomena mentioned above. A new method of neutral-wall collisions simulation in described space was developed and validated. Simulation results obtained for KM-88 and KM-60 thrusters are in a good agreement with experimental data. The Bohm collision coefficient was the same for both thrusters. Neutral-wall collisions, doubly charged ions, and induced magnetic field were proved to stabilize the breathing mode oscillations in a Hall thruster under some circumstances.

  1. Impact of Wall Shear Stress and Pressure Variation on the Stability of Atherosclerotic Plaque

    NASA Astrophysics Data System (ADS)

    Taviani, V.; Li, Z. Y.; Sutcliffe, M.; Gillard, J.

    Rupture of vulnerable atheromatous plaque in the carotid and coronary arteries often leads to stroke and heart attack respectively. The mechanism of blood flow and plaque rupture in stenotic arteries is still not fully understood. A three dimensional rigid wall model was solved under steady and unsteady conditions assuming a time-varying inlet velocity profile to investigate the relative importance of axial forces and pressure drops in arteries with asymmetric stenosis. Flow-structure interactions were investigated for the same geometry and the results were compared with those retrieved with the corresponding one dimensional models. The Navier-Stokes equations were used as the governing equations for the fluid. The tube wall was assumed linearly elastic, homogeneous isotropic. The analysis showed that wall shear stress is small (less than 3.5%) with respect to pressure drop throughout the cycle even for severe stenosis. On the contrary, the three dimensional behavior of velocity, pressure and wall shear stress is in general very different from that predicted by one dimensional models. This suggests that the primary source of mistakes in one dimensional studies comes from neglecting the three dimensional geometry of the plaque. Neglecting axial forces only involves minor errors.

  2. Experimental Investigation of Premixed Turbulent Hydrocarbon/Air Bunsen Flames

    NASA Astrophysics Data System (ADS)

    Tamadonfar, Parsa

    Through the influence of turbulence, the front of a premixed turbulent flame is subjected to the motions of eddies that leads to an increase in the flame surface area, and the term flame wrinkling is commonly used to describe it. If it is assumed that the flame front would continue to burn locally unaffected by the stretch, then the total turbulent burning velocity is expected to increase proportionally to the increase in the flame surface area caused by wrinkling. When the turbulence intensity is high enough such that the stretch due to hydrodynamics and flame curvature would influence the local premixed laminar burning velocity, then the actual laminar burning velocity (that is, flamelet consumption velocity) should reflect the influence of stretch. To address this issue, obtaining the knowledge of instantaneous flame front structures, flame brush characteristics, and burning velocities of premixed turbulent flames is necessary. Two axisymmetric Bunsen-type burners were used to produce premixed turbulent flames, and three optical measurement techniques were utilized: Particle image velocimetry to measure the turbulence statistics; Rayleigh scattering method to measure the temperature fields of premixed turbulent flames, and Mie scattering method to visualize the flame front contours of premixed turbulent flames. Three hydrocarbons (methane, ethane, and propane) were used as the fuel in the experiments. The turbulence was generated using different perforated plates mounted upstream of the burner exit. A series of comprehensive parameters including the thermal flame front thickness, characteristic flame height, mean flame brush thickness, mean volume of the turbulent flame region, two-dimensional flame front curvature, local flame front angle, two-dimensional flame surface density, wrinkled flame surface area, turbulent burning velocity, mean flamelet consumption velocity, mean turbulent flame stretch factor, mean turbulent Markstein length and number, and mean fuel consumption rate were systematically evaluated from the experimental data. The normalized preheat zone and reaction zone thicknesses decreased with increasing non-dimensional turbulence intensity in ultra-lean premixed turbulent flames under a constant equivalence ratio of 0.6, whereas they increased with increasing equivalence ratios from 0.6 to 1.0 under a constant bulk flow velocity. The normalized preheat zone and reaction zone thicknesses showed no overall trend with increasing non-dimensional longitudinal integral length scale. The normalized preheat zone and reaction zone thicknesses decreased by increasing the Karlovitz number, suggesting that increasing the total stretch rate is the controlling mechanism in the reduction of flame front thickness for the experimental conditions studied in this thesis. In general, the leading edge and half-burning surface turbulent burning velocities were enhanced with increasing equivalence ratio from lean to stoichiometric mixtures, whereas they decreased with increasing equivalence ratio for rich mixtures. These velocities were enhanced with increasing total turbulence intensity. The leading edge and half-burning surface turbulent burning velocities for lean/stoichiometric mixtures were observed to be smaller than that for rich mixtures. The mean turbulent flame stretch factor displayed a dependence on the equivalence ratio and turbulence intensity. Results show that the mean turbulent flame stretch factors for lean/stoichiometric and rich mixtures were not equal when the unstrained premixed laminar burning velocity, non-dimensional bulk flow velocity, non-dimensional turbulence intensity, and non-dimensional longitudinal integral length scale were kept constant.

  3. Full-coverage film cooling: 3-dimensional measurements of turbulence structure and prediction of recovery region hydrodynamics

    NASA Technical Reports Server (NTRS)

    Yavuzkurt, S.; Moffat, R. J.; Kays, W. M.

    1979-01-01

    Hydrodynamic measurements were made with a triaxial hot-wire in the full-coverage region and the recovery region following an array of injection holes inclined downstream, at 30 degrees to the surface. The data were taken under isothermal conditions at ambient temperature and pressure for two blowing ratios: M = 0.9 and M = 0.4. Profiles of the three main velocity components and the six Reynolds stresses were obtained at several spanwise positions at each of the five locations down the test plate. A one-equation model of turbulence (using turbulent kinetic energy with an algebraic mixing length) was used in a two-dimensional computer program to predict the mean velocity and turbulent kinetic energy profiles in the recovery region. A new real-time hotwire scheme was developed to make measurements in the three-dimensional turbulent boundary layer over the full-coverage surface.

  4. Development of a thermal and structural analysis procedure for cooled radial turbines

    NASA Technical Reports Server (NTRS)

    Kumar, Ganesh N.; Deanna, Russell G.

    1988-01-01

    A procedure for computing the rotor temperature and stress distributions in a cooled radial turbine is considered. Existing codes for modeling the external mainstream flow and the internal cooling flow are used to compute boundary conditions for the heat transfer and stress analyses. An inviscid, quasi three-dimensional code computes the external free stream velocity. The external velocity is then used in a boundary layer analysis to compute the external heat transfer coefficients. Coolant temperatures are computed by a viscous one-dimensional internal flow code for the momentum and energy equation. These boundary conditions are input to a three-dimensional heat conduction code for calculation of rotor temperatures. The rotor stress distribution may be determined for the given thermal, pressure and centrifugal loading. The procedure is applied to a cooled radial turbine which will be tested at the NASA Lewis Research Center. Representative results from this case are included.

  5. Development of a thermal and structural analysis procedure for cooled radial turbines

    NASA Technical Reports Server (NTRS)

    Kumar, Ganesh N.; Deanna, Russell G.

    1988-01-01

    A procedure for computing the rotor temperature and stress distributions in a cooled radial turbine are considered. Existing codes for modeling the external mainstream flow and the internal cooling flow are used to compute boundary conditions for the heat transfer and stress analysis. The inviscid, quasi three dimensional code computes the external free stream velocity. The external velocity is then used in a boundary layer analysis to compute the external heat transfer coefficients. Coolant temperatures are computed by a viscous three dimensional internal flow cade for the momentum and energy equation. These boundary conditions are input to a three dimensional heat conduction code for the calculation of rotor temperatures. The rotor stress distribution may be determined for the given thermal, pressure and centrifugal loading. The procedure is applied to a cooled radial turbine which will be tested at the NASA Lewis Research Center. Representative results are given.

  6. Structure analysis of turbulent liquid phase by POD and LSE techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munir, S., E-mail: shahzad-munir@comsats.edu.pk; Muthuvalu, M. S.; Siddiqui, M. I.

    2014-10-24

    In this paper, vortical structures and turbulence characteristics of liquid phase in both single liquid phase and two-phase slug flow in pipes were studied. Two dimensional velocity vector fields of liquid phase were obtained by Particle image velocimetry (PIV). Two cases were considered one single phase liquid flow at 80 l/m and second slug flow by introducing gas at 60 l/m while keeping liquid flow rate same. Proper orthogonal decomposition (POD) and Linear stochastic estimation techniques were used for the extraction of coherent structures and analysis of turbulence in liquid phase for both cases. POD has successfully revealed large energymore » containing structures. The time dependent POD spatial mode coefficients oscillate with high frequency for high mode numbers. The energy distribution of spatial modes was also achieved. LSE has pointed out the coherent structured for both cases and the reconstructed velocity fields are in well agreement with the instantaneous velocity fields.« less

  7. Three-dimensional seismic velocity structure of Mauna Loa and Kilauea volcanoes in Hawaii from local seismic tomography

    USGS Publications Warehouse

    Lin, Guoqing; Shearer, Peter M.; Matoza, Robin S.; Okubo, Paul G.; Amelung, Falk

    2016-01-01

    We present a new three-dimensional seismic velocity model of the crustal and upper mantle structure for Mauna Loa and Kilauea volcanoes in Hawaii. Our model is derived from the first-arrival times of the compressional and shear waves from about 53,000 events on and near the Island of Hawaii between 1992 and 2009 recorded by the Hawaiian Volcano Observatory stations. The Vp model generally agrees with previous studies, showing high-velocity anomalies near the calderas and rift zones and low-velocity anomalies in the fault systems. The most significant difference from previous models is in Vp/Vs structure. The high-Vp and high-Vp/Vs anomalies below Mauna Loa caldera are interpreted as mafic magmatic cumulates. The observed low-Vp and high-Vp/Vs bodies in the Kaoiki seismic zone between 5 and 15 km depth are attributed to the underlying volcaniclastic sediments. The high-Vp and moderate- to low-Vp/Vs anomalies beneath Kilauea caldera can be explained by a combination of different mafic compositions, likely to be olivine-rich gabbro and dunite. The systematically low-Vp and low-Vp/Vs bodies in the southeast flank of Kilauea may be caused by the presence of volatiles. Another difference between this study and previous ones is the improved Vp model resolution in deeper layers, owing to the inclusion of events with large epicentral distances. The new velocity model is used to relocate the seismicity of Mauna Loa and Kilauea for improved absolute locations and ultimately to develop a high-precision earthquake catalog using waveform cross-correlation data.

  8. Two-dimensional streamflow simulations of the Jordan River, Midvale and West Jordan, Utah

    USGS Publications Warehouse

    Kenney, Terry A.; Freeman, Michael L.

    2011-01-01

    The Jordan River in Midvale and West Jordan, Utah, flows adjacent to two U.S. Environmental Protection Agency Superfund sites: Midvale Slag and Sharon Steel. At both sites, geotechnical caps extend to the east bank of the river. The final remediation tasks for these sites included the replacement of a historic sheet-pile dam and the stabilization of the river banks adjacent to the Superfund sites. To assist with these tasks, two hydraulic modeling codes contained in the U.S. Geological Survey (USGS) Multi-Dimensional Surface-Water Modeling System (MD_SWMS), System for Transport and River Modeling (SToRM) and Flow and Sediment Transport and Morphological Evolution of Channels (FaSTMECH), were used to provide predicted water-surface elevations, velocities, and boundary shear-stress values throughout the study reach of the Jordan River. A SToRM model of a 0.7 mile subreach containing the sheet-pile dam was used to compare water-surface elevations and velocities associated with the sheet-pile dam and a proposed replacement structure. Maps showing water-surface elevation and velocity differences computed from simulations of the historic sheet-pile dam and the proposed replacement structure topographies for streamflows of 500 and 1,000 cubic feet per second (ft3/s) were created. These difference maps indicated that the velocities associated with the proposed replacement structure topographies were less than or equal to those associated with the historic sheet-pile dam. Similarly, water-surface elevations associated with the proposed replacement structure topographies were all either greater than or equal to water-surface elevations associated with the sheet-pile dam. A FaSTMECH model was developed for the 2.5-mile study reach to aid engineers in bank stabilization designs. Predicted water-surface elevations, velocities and shear-stress values were mapped on an aerial photograph of the study reach to place these parameters in a spatial context. Profile plots of predicted cross-stream average water-surface elevations and cross-stream maximum and average velocities showed how these parameters change along the study reach for two simulated discharges of 1,040 ft3/s and 2,790 ft3/s. The profile plots for the simulated streamflow of 1,040 ft3/s show that the highest velocities are associated with the constructed sheet-pile replacement structure. Results for the simulated streamflow of 2,790 ft3/s indicate that the geometry of the 7800 South Bridge causes more backwater and higher velocities than the constructed sheet-pile replacement structure.

  9. Analysis of the three-dimensional structure of a bubble wake using PIV and Galilean decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, Y.A.; Schmidl, W.D.; Ortiz-Villafuerte, J.

    1999-07-01

    Bubbly flow plays a key role in a variety of natural and industrial processes. An accurate and complete description of the phase interactions in two-phase bubbly flow is not available at this time. These phase interactions are, in general, always three-dimensional and unsteady. Therefore, measurement techniques utilized to obtain qualitative and quantitative data from two-phase flow should be able to acquire transient and three-dimensional data, in order to provide information to test theoretical models and numerical simulations. Even for dilute bubble flows, in which bubble interaction is at a minimum, the turbulent motion of the liquid generated by the bubblemore » is yet to be completely understood. For many years, the design of systems with bubbly flows was based primarily on empiricism. Dilute bubbly flows are an extension of single bubble dynamics, and therefore improvements in the description and modeling of single bubble motion, the flow field around the bubble, and the dynamical interactions between the bubble and the flow will consequently improve bubbly flow modeling. The improved understanding of the physical phenomena will have far-reaching benefits in upgrading the operation and efficiency of current processes and in supporting the development of new and innovative approaches. A stereoscopic particle image velocimetry measurement of the flow generated by the passage of a single air-bubble rising in stagnant water, in a circular pipe is presented. Three-dimensional velocity fields within the measurement zone were obtained. Ensemble-averaged instantaneous velocities for a specific bubble path were calculated and interpolated to obtain mean three-dimensional velocity fields. A Galilean velocity decomposition is used to study the vorticity generated in the flow.« less

  10. P-wave velocity structure beneath the northern Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Park, Y.; Kim, K.; Jin, Y.

    2010-12-01

    We have imaged tomographically the tree-dimensional velocity structure of the upper mantle beneath the northern Antarctic Peninsula using teleseismic P waves. The data came from the seven land stations of the Seismic Experiment in Patagonia and Antarctica (SEPA) campaigned during 1997-1999, a permanent IRIS/GSN station (PMSA), and 3 seismic stations installed at scientific bases, Esperanza (ESPZ), Jubany (JUBA), and King Sejong (KSJ), in South Shetland Islands. All of the seismic stations are located in coast area, and the signal to noise ratios (SNR) are very low. The P-wave model was inverted from 95 earthquakes resulting in 347 ray paths with P- and PKP-wave arrivals. The inverted model shows a strong low velocity anmaly beneath the Bransfield Strait, and a fast anomaly beneath the South Shetland Islands. The low velocity anomaly beneath the Bransfield might be due to a back arc extension, and the fast velocity anomaly beneath the South Shetland Islands could indicates the cold subducted slab.

  11. Exploring load, velocity, and surface disorder dependence of friction with one-dimensional and two-dimensional models.

    PubMed

    Dagdeviren, Omur E

    2018-08-03

    The effect of surface disorder, load, and velocity on friction between a single asperity contact and a model surface is explored with one-dimensional and two-dimensional Prandtl-Tomlinson (PT) models. We show that there are fundamental physical differences between the predictions of one-dimensional and two-dimensional models. The one-dimensional model estimates a monotonic increase in friction and energy dissipation with load, velocity, and surface disorder. However, a two-dimensional PT model, which is expected to approximate a tip-sample system more realistically, reveals a non-monotonic trend, i.e. friction is inert to surface disorder and roughness in wearless friction regime. The two-dimensional model discloses that the surface disorder starts to dominate the friction and energy dissipation when the tip and the sample interact predominantly deep into the repulsive regime. Our numerical calculations address that tracking the minimum energy path and the slip-stick motion are two competing effects that determine the load, velocity, and surface disorder dependence of friction. In the two-dimensional model, the single asperity can follow the minimum energy path in wearless regime; however, with increasing load and sliding velocity, the slip-stick movement dominates the dynamic motion and results in an increase in friction by impeding tracing the minimum energy path. Contrary to the two-dimensional model, when the one-dimensional PT model is employed, the single asperity cannot escape to the minimum energy minimum due to constraint motion and reveals only a trivial dependence of friction on load, velocity, and surface disorder. Our computational analyses clarify the physical differences between the predictions of the one-dimensional and two-dimensional models and open new avenues for disordered surfaces for low energy dissipation applications in wearless friction regime.

  12. Many-body effects and ultraviolet renormalization in three-dimensional Dirac materials

    NASA Astrophysics Data System (ADS)

    Throckmorton, Robert; Hofmann, Johannes; Barnes, Edwin

    We develop a theory for electron-electron interaction-induced many-body effects in three dimensional (3D) Weyl or Dirac semimetals, including interaction corrections to the polarizability, electron self-energy, and vertex function, up to second order in the effective fine structure constant of the Dirac material. These results are used to derive the higher-order ultraviolet renormalization of the Fermi velocity, effective coupling, and quasiparticle residue, revealing that the corrections to the renormalization group (RG) flows of both the velocity and coupling counteract the leading-order tendencies of velocity enhancement and coupling suppression at low energies. This in turn leads to the emergence of a critical coupling above which the interaction strength grows with decreasing energy scale. In addition, we identify a range of coupling strengths below the critical point in which the Fermi velocity varies non-monotonically as the low-energy, non-interacting fixed point is approached. Furthermore, we find that while the higher-order correction to the flow of the coupling is generally small compared to the leading order, the corresponding correction to the velocity flow carries an additional factor of the Dirac cone flavor number relative to the leading-order result. Supported by LPS-MPO-CMTC.

  13. Ultra-low velocity zones beneath the Philippine and Tasman Seas revealed by a trans-dimensional Bayesian waveform inversion

    NASA Astrophysics Data System (ADS)

    Pachhai, Surya; Dettmer, Jan; Tkalčić, Hrvoje

    2015-11-01

    Ultra-low velocity zones (ULVZs) are small-scale structures in the Earth's lowermost mantle inferred from the analysis of seismological observations. These structures exhibit a strong decrease in compressional (P)-wave velocity, shear (S)-wave velocity, and an increase in density. Quantifying the elastic properties of ULVZs is crucial for understanding their physical origin, which has been hypothesized either as partial melting, iron enrichment, or a combination of the two. Possible disambiguation of these hypotheses can lead to a better understanding of the dynamic processes of the lowermost mantle, such as, percolation, stirring and thermochemical convection. To date, ULVZs have been predominantly studied by forward waveform modelling of seismic waves that sample the core-mantle boundary region. However, ULVZ parameters (i.e. velocity, density, and vertical and lateral extent) obtained through forward modelling are poorly constrained because inferring Earth structure from seismic observations is a non-linear inverse problem with inherent non-uniqueness. To address these issues, we developed a trans-dimensional hierarchical Bayesian inversion that enables rigorous estimation of ULVZ parameter values and their uncertainties, including the effects of model selection. The model selection includes treating the number of layers and the vertical extent of the ULVZ as unknowns. The posterior probability density (solution to the inverse problem) of the ULVZ parameters is estimated by reversible jump Markov chain Monte Carlo sampling that employs parallel tempering to improve efficiency/convergence. First, we apply our method to study the resolution of complex ULVZ structure (including gradually varying structure) by probabilistically inverting simulated noisy waveforms. Then, two data sets sampling the CMB beneath the Philippine and Tasman Seas are considered in the inversion. Our results indicate that both ULVZs are more complex than previously suggested. For the Philippine Sea data, we find a strong decrease in S-wave velocity, which indicates the presence of iron-rich material, albeit this result is accompanied with larger parameter uncertainties than in a previous study. For the Tasman Sea data, our analysis yields a well-constrained S-wave velocity that gradually decreases with depth. We conclude that this ULVZ represents a partial melt of iron-enriched material with higher melt content near its bottom.

  14. Some issues in the simulation of two-phase flows: The relative velocity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gräbel, J.; Hensel, S.; Ueberholz, P.

    In this paper we compare numerical approximations for solving the Riemann problem for a hyperbolic two-phase flow model in two-dimensional space. The model is based on mixture parameters of state where the relative velocity between the two-phase systems is taken into account. This relative velocity appears as a main discontinuous flow variable through the complete wave structure and cannot be recovered correctly by some numerical techniques when simulating the associated Riemann problem. Simulations are validated by comparing the results of the numerical calculation qualitatively with OpenFOAM software. Simulations also indicate that OpenFOAM is unable to resolve the relative velocity associatedmore » with the Riemann problem.« less

  15. A spatial length scale analysis of turbulent temperature and velocity fluctuations within and above an orchard canopy

    USGS Publications Warehouse

    Wang, Y.S.; Miller, D.R.; Anderson, D.E.; Cionco, R.M.; Lin, J.D.

    1992-01-01

    Turbulent flow within and above an almond orchard was measured with three-dimensional wind sensors and fine-wire thermocouple sensors arranged in a horizontal array. The data showed organized turbulent structures as indicated by coherent asymmetric ramp patterns in the time series traces across the sensor array. Space-time correlation analysis indicated that velocity and temperature fluctuations were significantly correlated over a transverse distance more than 4m. Integral length scales of velocity and temperature fluctuations were substantially greater in unstable conditions than those in stable conditions. The coherence spectral analysis indicated that Davenport's geometric similarity hypothesis was satisfied in the lower frequency region. From the geometric similarity hypothesis, the spatial extents of large ramp structures were also estimated with the coherence functions.

  16. Limit theorems for Lévy walks in d dimensions: rare and bulk fluctuations

    NASA Astrophysics Data System (ADS)

    Fouxon, Itzhak; Denisov, Sergey; Zaburdaev, Vasily; Barkai, Eli

    2017-04-01

    We consider super-diffusive Lévy walks in d≥slant 2 dimensions when the duration of a single step, i.e. a ballistic motion performed by a walker, is governed by a power-law tailed distribution of infinite variance and finite mean. We demonstrate that the probability density function (PDF) of the coordinate of the random walker has two different scaling limits at large times. One limit describes the bulk of the PDF. It is the d-dimensional generalization of the one-dimensional Lévy distribution and is the counterpart of the central limit theorem (CLT) for random walks with finite dispersion. In contrast with the one-dimensional Lévy distribution and the CLT this distribution does not have a universal shape. The PDF reflects anisotropy of the single-step statistics however large the time is. The other scaling limit, the so-called ‘infinite density’, describes the tail of the PDF which determines second (dispersion) and higher moments of the PDF. This limit repeats the angular structure of the PDF of velocity in one step. A typical realization of the walk consists of anomalous diffusive motion (described by anisotropic d-dimensional Lévy distribution) interspersed with long ballistic flights (described by infinite density). The long flights are rare but due to them the coordinate increases so much that their contribution determines the dispersion. We illustrate the concept by considering two types of Lévy walks, with isotropic and anisotropic distributions of velocities. Furthermore, we show that for isotropic but otherwise arbitrary velocity distributions the d-dimensional process can be reduced to a one-dimensional Lévy walk. We briefly discuss the consequences of non-universality for the d  >  1 dimensional fractional diffusion equation, in particular the non-uniqueness of the fractional Laplacian.

  17. Increased heat transfer to a cylindrical leading edge due to spanwise variations in the freestream velocity

    NASA Technical Reports Server (NTRS)

    Rigby, D. L.; Vanfossen, G. J.

    1991-01-01

    The present study numerically demonstrates how small spanwise variations in velocity upstream of a body can cause relatively large increases in the spanwise-averaged heat transfer to the leading edge. Vorticity introduced by spanwise variations, first decays as it drifts downstream, then amplifies in the stagnation region as a result of vortex stretching. This amplification can cause a periodic array of 3 D structures, similar to horseshoe vortices, to form. The numerical results indicate that, for the given wavelength, there is an amplitude threshold below which a structure does not form. A one-dimensional analysis, to predict the decay of vorticity in the absence of the body, in conjunction with the full numerical results indicated that the threshold is more accurately stated as minimum level of vorticity required in the leading edge region for a structure to form. It is possible, using the one-dimensional analysis, to compute an optimum wavelength in terms of the maximum vorticity reaching the leading edge region for given amplitude. A discussion is presented which relates experimentally observed trends to the trends of the present phenomena.

  18. Tomography and the Herglotz-Wiechert inverse formulation

    NASA Astrophysics Data System (ADS)

    Nowack, Robert L.

    1990-04-01

    In this paper, linearized tomography and the Herglotz-Wiechert inverse formulation are compared. Tomographic inversions for 2-D or 3-D velocity structure use line integrals along rays and can be written in terms of Radon transforms. For radially concentric structures, Radon transforms are shown to reduce to Abel transforms. Therefore, for straight ray paths, the Abel transform of travel-time is a tomographic algorithm specialized to a one-dimensional radially concentric medium. The Herglotz-Wiechert formulation uses seismic travel-time data to invert for one-dimensional earth structure and is derived using exact ray trajectories by applying an Abel transform. This is of historical interest since it would imply that a specialized tomographic-like algorithm has been used in seismology since the early part of the century (see Herglotz, 1907; Wiechert, 1910). Numerical examples are performed comparing the Herglotz-Wiechert algorithm and linearized tomography along straight rays. Since the Herglotz-Wiechert algorithm is applicable under specific conditions, (the absence of low velocity zones) to non-straight ray paths, the association with tomography may prove to be useful in assessing the uniqueness of tomographic results generalized to curved ray geometries.

  19. Anisotropic Structure of Rotating Homogeneous Turbulence at High Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Cambon, Claude; Mansour, Nagi N.; Squires, Kyle D.; Rai, Man Mohan (Technical Monitor)

    1995-01-01

    Large eddy simulation is used to investigate the development of anisotropies and the evolution towards a quasi two-dimensional state in rotating homogeneous turbulence at high Reynolds number. The present study demonstrates the existence of two transitions in the development of anisotropy. The first transition marks the onset of anisotropy and occurs when a macro-Rossby number (based on a longitudinal integral lengthscale) has decreased to near unity while the second transition occurs when a micro-Rossby number (defined in this work as the ratio of the rms fluctuating vorticity to background vorticity) has decreased to unity. The anisotropy marked by the first transition corresponds to a reduction in dimensionality while the second transition corresponds to a polarization of the flow, i.e., relative dominance of the velocity components in the plane normal to the rotation axis. Polarization is reflected by emergence of anisotropy measures based on the two-dimensional component of the turbulence. Investigation of the vorticity structure shows that the second transition is also characterized by an increasing tendency for alignment between the fluctuating vorticity vector and the background angular velocity vector with a preference for corrotative vorticity.

  20. Structure of large-scale flows and their oscillation in the thermal convection of liquid gallium.

    PubMed

    Yanagisawa, Takatoshi; Yamagishi, Yasuko; Hamano, Yozo; Tasaka, Yuji; Yoshida, Masataka; Yano, Kanako; Takeda, Yasushi

    2010-07-01

    This investigation observed large-scale flows in liquid gallium and the oscillation with Rayleigh-Bénard convection. An ultrasonic velocity profiling method was used to visualize the spatiotemporal flow pattern of the liquid gallium in a horizontally long rectangular vessel. Measuring the horizontal component of the flow velocity at several lines, an organized roll-like structure with four cells was observed in the 1×10(4)-2×10(5) range of Rayleigh numbers, and the rolls show clear oscillatory behavior. The long-term fluctuations in temperature observed in point measurements correspond to the oscillations of the organized roll structure. This flow structure can be interpreted as the continuous development of the oscillatory instability of two-dimensional roll convection that is theoretically investigated around the critical Rayleigh number. Both the velocity of the large-scale flows and the frequency of the oscillation increase proportional to the square root of the Rayleigh number. This indicates that the oscillation is closely related to the circulation of large-scale flow.

  1. Rapid Prototyping Integrated With Nondestructive Evaluation and Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Baaklini, George Y.

    2001-01-01

    Most reverse engineering approaches involve imaging or digitizing an object then creating a computerized reconstruction that can be integrated, in three dimensions, into a particular design environment. Rapid prototyping (RP) refers to the practical ability to build high-quality physical prototypes directly from computer aided design (CAD) files. Using rapid prototyping, full-scale models or patterns can be built using a variety of materials in a fraction of the time required by more traditional prototyping techniques (refs. 1 and 2). Many software packages have been developed and are being designed to tackle the reverse engineering and rapid prototyping issues just mentioned. For example, image processing and three-dimensional reconstruction visualization software such as Velocity2 (ref. 3) are being used to carry out the construction process of three-dimensional volume models and the subsequent generation of a stereolithography file that is suitable for CAD applications. Producing three-dimensional models of objects from computed tomography (CT) scans is becoming a valuable nondestructive evaluation methodology (ref. 4). Real components can be rendered and subjected to temperature and stress tests using structural engineering software codes. For this to be achieved, accurate high-resolution images have to be obtained via CT scans and then processed, converted into a traditional file format, and translated into finite element models. Prototyping a three-dimensional volume of a composite structure by reading in a series of two-dimensional images generated via CT and by using and integrating commercial software (e.g. Velocity2, MSC/PATRAN (ref. 5), and Hypermesh (ref. 6)) is being applied successfully at the NASA Glenn Research Center. The building process from structural modeling to the analysis level is outlined in reference 7. Subsequently, a stress analysis of a composite cooling panel under combined thermomechanical loading conditions was performed to validate this process.

  2. Seafloor age dependence of Rayleigh wave phase velocities in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Godfrey, Karen E.; Dalton, Colleen A.; Ritsema, Jeroen

    2017-05-01

    Variations in the phase velocity of fundamental-mode Rayleigh waves across the Indian Ocean are determined using two inversion approaches. First, variations in phase velocity as a function of seafloor age are estimated using a pure-path age-dependent inversion method. Second, a two-dimensional parameterization is used to solve for phase velocity within 1.25° × 1.25° grid cells. Rayleigh wave travel time delays have been measured between periods of 38 and 200 s. The number of measurements in the study area ranges between 4139 paths at a period of 200 s and 22,272 paths at a period of 40 s. At periods < 100 s, the phase velocity variations are strongly controlled by seafloor age and shown to be consistent with temperature variations predicted by the half-space-cooling model for a mantle potential temperature of 1400°C. The inferred thermal structure beneath the Indian Ocean is most similar to the structure of the Pacific upper mantle, where phase velocities can also be explained by a half-space-cooling model. The thermal structure is not consistent with that of the Atlantic upper mantle, which is best fit by a plate-cooling model and requires a thin plate. Removing age-dependent phase velocity from the 2-D maps of the Indian Ocean highlights anomalously high velocities at the Rodriguez Triple Junction and the Australian-Antarctic Discordance and anomalously low velocities immediately to the west of the Central Indian Ridge.

  3. Spatial structure of ion beams in an expanding plasma

    NASA Astrophysics Data System (ADS)

    Aguirre, E. M.; Scime, E. E.; Thompson, D. S.; Good, T. N.

    2017-12-01

    We report spatially resolved perpendicular and parallel, to the magnetic field, ion velocity distribution function (IVDF) measurements in an expanding argon helicon plasma. The parallel IVDFs, obtained through laser induced fluorescence (LIF), show an ion beam with v ≈ 8000 m/s flowing downstream and confined to the center of the discharge. The ion beam is measurable for tens of centimeters along the expansion axis before the LIF signal fades, likely a result of metastable quenching of the beam ions. The parallel ion beam velocity slows in agreement with expectations for the measured parallel electric field. The perpendicular IVDFs show an ion population with a radially outward flow that increases with distance from the plasma axis. Structures aligned to the expanding magnetic field appear in the DC electric field, the electron temperature, and the plasma density in the plasma plume. These measurements demonstrate that at least two-dimensional and perhaps fully three-dimensional models are needed to accurately describe the spontaneous acceleration of ion beams in expanding plasmas.

  4. 3-D velocity structure model for long-period ground motion simulation of the hypothetical Nankai Earthquake

    NASA Astrophysics Data System (ADS)

    Kagawa, T.; Petukhin, A.; Koketsu, K.; Miyake, H.; Murotani, S.; Tsurugi, M.

    2010-12-01

    Three dimensional velocity structure model of southwest Japan is provided to simulate long-period ground motions due to the hypothetical subduction earthquakes. The model is constructed from numerous physical explorations conducted in land and offshore areas and observational study of natural earthquakes. Any available information is involved to explain crustal structure and sedimentary structure. Figure 1 shows an example of cross section with P wave velocities. The model has been revised through numbers of simulations of small to middle earthquakes as to have good agreement with observed arrival times, amplitudes, and also waveforms including surface waves. Figure 2 shows a comparison between Observed (dash line) and simulated (solid line) waveforms. Low velocity layers have added on seismological basement to reproduce observed records. The thickness of the layer has been adjusted through iterative analysis. The final result is found to have good agreement with the results from other physical explorations; e.g. gravity anomaly. We are planning to make long-period (about 2 to 10 sec or longer) simulations of ground motion due to the hypothetical Nankai Earthquake with the 3-D velocity structure model. As the first step, we will simulate the observed ground motions of the latest event occurred in 1946 to check the source model and newly developed velocity structure model. This project is partly supported by Integrated Research Project for Long-Period Ground Motion Hazard Maps by Ministry of Education, Culture, Sports, Science and Technology (MEXT). The ground motion data used in this study were provided by National Research Institute for Earth Science and Disaster Prevention Disaster (NIED). Figure 1 An example of cross section with P wave velocities Figure 2 Observed (dash line) and simulated (solid line) waveforms due to a small earthquake

  5. Theory of the Lattice Boltzmann Equation: Symmetry properties of Discrete Velocity Sets

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert; Luo, Li-Shi

    2007-01-01

    In the lattice Boltzmann equation, continuous particle velocity space is replaced by a finite dimensional discrete set. The number of linearly independent velocity moments in a lattice Boltzmann model cannot exceed the number of discrete velocities. Thus, finite dimensionality introduces linear dependencies among the moments that do not exist in the exact continuous theory. Given a discrete velocity set, it is important to know to exactly what order moments are free of these dependencies. Elementary group theory is applied to the solution of this problem. It is found that by decomposing the velocity set into subsets that transform among themselves under an appropriate symmetry group, it becomes relatively straightforward to assess the behavior of moments in the theory. The construction of some standard two- and three-dimensional models is reviewed from this viewpoint, and procedures for constructing some new higher dimensional models are suggested.

  6. Verification and Improvement of the Three-Dimensional Basin Velocity Structure Model in the Osaka Sedimentary Basin, Japan Using Interstation Green's Functions and H/V Spectral Ratios of Microtremors

    NASA Astrophysics Data System (ADS)

    Asano, K.; Iwata, T.; Sekiguchi, H.; Somei, K.; Nishimura, T.; Miyakoshi, K.; Aoi, S.; Kunugi, T.

    2012-12-01

    The Osaka sedimentary basin is filled by the Plio-Pleistocene Osaka group, terrace deposits, and alluvium deposits with thickness of 1 to 2 km over the bedrock, and it is surrounded by active fault systems. The Uemachi active fault system underlies the Osaka urban area. In order to predict the strong ground motions for future events of the Uemachi fault and others, the precise basin velocity structure model is indispensable as well as the detailed source fault model. The velocity structure of the Osaka basin has been extensively investigated by using various techniques such as gravity anomaly measurements, reflection surveys, boring explorations, and microtremor measurements. Based on these surveys and ground motion simulations for observed events, the three-dimensional velocity structure models of the Osaka basin have been developed and improved for decades (e.g., Kagawa et al., 1993; Horikawa et al., 2003; Iwata et al., 2008; Iwaki and Iwata, 2011). Now we are trying to verify the velocity structure model of the Osaka basin and to improve it incorporating new data sets. We have conducted two kinds of observations in the Osaka basin. The first observation is continuous microtremor observation. We have temporarily installed three-component velocity sensors at 15 sites covering the Osaka basin to record microtremors continuously for more than one year. The seismic interferometry technique (e.g. Shapiro and Campillo, 2004) is applied to retrieve interstation Green's function for analyzing the wave propagation characteristics inside the sedimentary basin. Both Rayleigh- and Love-wave type signals are identified in 0.1-0.5 Hz from observed interstation Green's functions. The group velocities of Rayleigh and Love waves propagating between two stations are estimated from them using the multiple filter analysis method, and they are compared with the theoretical group-velocities of the model. For example, estimated Love-wave group velocity along a line inside the basin is as low as 350 m/s in 0.2-0.5 Hz. The second observation is a set of short-time (30~60 min) single-station microtremor observations to obtain H/V spectral ratios at sites. We observed microtremor at 100 strong motion stations of Osaka prefecture government, JMA, K-NET, KiK-net, and other institutes. The peak period of H/V ranges from about 1 to 7 s, and it depends on the bedrock depth at the observation site as previously pointed by Miyakoshi et al. (1997). Though the basin velocity model explains the characteristics of observed H/V spectral ratios at most sites, we found discrepancies between observed and predicted H/V peak periods at north part of Osaka bay area and hill area in southeastern part of the basin. By combining the observed constraints from the group velocities, waveform characteristics of interstation Green's functions, and H/V spectral ratios, we will improve the S-wave velocity structure model inside the Osaka basin.

  7. Three-dimensional seismic velocity structure of the San Francisco Bay area

    USGS Publications Warehouse

    Hole, J.A.; Brocher, T.M.; Klemperer, S.L.; Parsons, T.; Benz, H.M.; Furlong, K.P.

    2000-01-01

    Seismic travel times from the northern California earthquake catalogue and from the 1991 Bay Area Seismic Imaging Experiment (BASIX) refraction survey were used to obtain a three-dimensional model of the seismic velocity structure of the San Francisco Bay area. Nonlinear tomography was used to simultaneously invert for both velocity and hypocenters. The new hypocenter inversion algorithm uses finite difference travel times and is an extension of an existing velocity tomography algorithm. Numerous inversions were performed with different parameters to test the reliability of the resulting velocity model. Most hypocenters were relocated 12 km under the Sacramento River Delta, 6 km beneath Livermore Valley, 5 km beneath the Santa Clara Valley, and 4 km beneath eastern San Pablo Bay. The Great Valley Sequence east of San Francisco Bay is 4-6 km thick. A relatively high velocity body exists in the upper 10 km beneath the Sonoma volcanic field, but no evidence for a large intrusion or magma chamber exists in the crust under The Geysers or the Clear Lake volcanic center. Lateral velocity contrasts indicate that the major strike-slip faults extend subvertically beneath their surface locations through most of the crust. Strong lateral velocity contrasts of 0.3-0.6 km/s are observed across the San Andreas Fault in the middle crust and across the Hayward, Rogers Creek, Calaveras, and Greenville Faults at shallow depth. Weaker velocity contrasts (0.1-0.3 km/s) exist across the San Andreas, Hayward, and Rogers Creek Faults at all other depths. Low spatial resolution evidence in the lower crust suggests that the top of high-velocity mafic rocks gets deeper from west to east and may be offset under the major faults. The data suggest that the major strike-slip faults extend subvertically through the middle and perhaps the lower crust and juxtapose differing lithology due to accumulated strike-slip motion. The extent and physical properties of the major geologic units as constrained by the model should be used to improve studies of seismicity, strong ground motion, and regional stress.

  8. Velocity distribution of fragments of catastrophic impacts

    NASA Technical Reports Server (NTRS)

    Takagi, Yasuhiko; Kato, Manabu; Mizutani, Hitoshi

    1992-01-01

    Three dimensional velocities of fragments produced by laboratory impact experiments were measured for basalts and pyrophyllites. The velocity distribution of fragments obtained shows that the velocity range of the major fragments is rather narrow, at most within a factor of 3 and that no clear dependence of velocity on the fragment mass is observed. The NonDimensional Impact Stress (NDIS) defined by Mizutani et al. (1990) is found to be an appropriate scaling parameter to describe the overall fragment velocity as well as the antipodal velocity.

  9. Velocity and pressure fields associated with near-wall turbulence structures

    NASA Technical Reports Server (NTRS)

    Johansson, Arne V.; Alfredsson, P. Henrik; Kim, John

    1990-01-01

    Computer generated databases containing velocity and pressure fields in three-dimensional space at a sequence of time-steps, were used for the investigation of near-wall turbulence structures, their space-time evolution, and their associated pressure fields. The main body of the results were obtained from simulation data for turbulent channel flow at a Reynolds number of 180 (based on half-channel height and friction velocity) with a grid of 128 x 129 x and 128 points. The flow was followed over a total time of 141 viscous time units. Spanwise centering of the detected structures was found to be essential in order to obtain a correct magnitude of the associated Reynolds stress contribution. A positive wall-pressure peak is found immediately beneath the center of the structure. The maximum amplitude of the pressure pattern was, however, found in the buffer region at the center of the shear-layer. It was also found that these flow structures often reach a maximum strength in connection with an asymmetric spanwise motion, which motivated the construction of a conditional sampling scheme that preserved this asymmetry.

  10. A wind model for an elevated STOL-port configuration

    NASA Technical Reports Server (NTRS)

    Peterka, J. A.; Cermak, J. E.

    1974-01-01

    Measurements of mean velocity magnitude and direction as well as three-dimensional turbulence intensity were made in the flow over a model of an elevated STOL-port. A 1:300 scale model was placed in a wind tunnel flow simulating the mean velocity profile and turbulence characteristics of atmospheric winds over a typical city environment excluding detailed wake structures of possible nearby buildings. Hot-wire anemometer measurements of velocity and turbulence were made along approach and departure paths of aircraft operating on the runway centerline and at specified lateral distances from the centerline. Approach flow directions simulated were 0 and 30 degrees to the runway centerline.

  11. Subsurface structure and kinematics of the Calaveras-Hayward fault stepover from three-dimensional Vp and seismicity, San Francisco Bay region, California

    USGS Publications Warehouse

    Manaker, David M.; Michael, Andrew J.; Burgmann, Roland

    2005-01-01

    We perform a joint inversion for hypocenters and the 3D P-wave velocity structure of the stepover region using 477 earthquakes. We find strong velocity contrasts across the Calaveras and Hayward faults, corroborated by geologic, gravity, and aeromagnetic data. Detailed examination of two seismic lineaments in conjunction with the velocity model and independent geologic and geophysical evidence suggests that they represent the southern extension of a northeasterly dipping Hayward fault that splays off the Calaveras fault, directly accounting for the deep slip transfer. The Mission fault appears to be accommodating deformation within the block between the Hayward and Calaveras faults. Thus, the Calaveras and Hayward faults need to be considered as a single system for developing rupture scenarios for seismic hazard assessments.

  12. Flow structure at an ice-covered river confluence

    NASA Astrophysics Data System (ADS)

    Martel, Nancy; Biron, Pascale; Buffin-Bélanger, Thomas

    2017-04-01

    River confluences are known to exhibit complex relationships between flow structure, sediment transport and bed-form development. Flow structure at these sites is influenced by the junction angle, the momentum flux ratio (Mr) and bed morphology. In cold regions where an ice cover is present for most of the winter period, the flow structure is also likely affected by the roughness effect of the ice. However, very few studies have examined the impact of an ice cover on the flow structure at a confluence. The aims of this study are (1) to describe the evolution of an ice cover at a river confluence and (2) to characterize and compare the flow structure at a river confluence with and without an ice cover. The field site is a medium-sized confluence (around 40 m wide) between the Mit is and Neigette Rivers in the Bas-Saint-Laurent region, Quebec (Canada). The confluence was selected because a thick ice cover is present for most of the winter allowing for safe field work. Two winter field campaigns were conducted in 2015 and 2016 to obtain ice cover measurements in addition to hydraulic and morphological measurements. Daily monitoring of the evolution of the ice cover was made with a Reconyx camera. Velocity profiles were collected with an acoustic Doppler current profiler (ADCP) to reconstruct the three-dimensional flow structure. Time series of photographs allow the evolution of the ice cover to be mapped, linking the processes leading to the formation of the primary ice cover for each year. The time series suggests that these processes are closely related with both confluence flow zones and hydro-climatic conditions. Results on the thickness of the ice cover from in situ measurements reveal that the ice thickness tends to be thinner at the center of the confluence where high turbulent exchanges take place. Velocity measurements reveal that the ice cover affects velocity profiles by moving the highest velocities towards the center of the profiles. A spatio-temporal conceptual model is presented to illustrate the main differences on the three-dimensional flow structure at the river confluence with and without the ice cover.

  13. Spectral fitting inversion of low-frequency normal modes with self-coupling and cross-coupling of toroidal and spheroidal multiplets: numerical experiments to estimate the isotropic and anisotropic velocity structures

    NASA Astrophysics Data System (ADS)

    Oda, Hitoshi

    2016-06-01

    The aspherical structure of the Earth is described in terms of lateral heterogeneity and anisotropy of the P- and S-wave velocities, density heterogeneity, ellipticity and rotation of the Earth and undulation of the discontinuity interfaces of the seismic wave velocities. Its structure significantly influences the normal mode spectra of the Earth's free oscillation in the form of cross-coupling between toroidal and spheroidal multiplets and self-coupling between the singlets forming them. Thus, the aspherical structure must be conversely estimated from the free oscillation spectra influenced by the cross-coupling and self-coupling. In the present study, we improve a spectral fitting inversion algorithm which was developed in a previous study to retrieve the global structures of the isotropic and anisotropic velocities of the P and S waves from the free oscillation spectra. The main improvement is that the geographical distribution of the intensity of the S-wave azimuthal anisotropy is represented by a nonlinear combination of structure coefficients for the anisotropic velocity structure, whereas in the previous study it was expanded into a generalized spherical harmonic series. Consequently, the improved inversion algorithm reduces the number of unknown parameters that must be determined compared to the previous inversion algorithm and employs a one-step inversion method by which the structure coefficients for the isotropic and anisotropic velocities are directly estimated from the fee oscillation spectra. The applicability of the improved inversion is examined by several numerical experiments using synthetic spectral data, which are produced by supposing a variety of isotropic and anisotropic velocity structures, earthquake source parameters and station-event pairs. Furthermore, the robustness of the inversion algorithm is investigated with respect to the back-ground noise contaminating the spectral data as well as truncating the series expansions by finite terms to represent the three-dimensional velocity structures. As a result, it is shown that the improved inversion can estimate not only the isotropic and anisotropic velocity structures but also the depth extent of the anisotropic regions in the Earth. In particular, the cross-coupling modes are essential to correctly estimate the isotropic and anisotropic velocity structures from the normal mode spectra. In addition, we argue that the effect of the seismic anisotropy is not negligible when estimating only the isotropic velocity structure from the spheroidal mode spectra.

  14. Velocity distributions in a micromixer measured by NMR imaging.

    PubMed

    Ahola, Susanna; Telkki, Ville-Veikko; Stapf, Siegfried

    2012-04-24

    Velocity distributions (so-called propagators) with two-dimensional spatial resolution inside a chemical micromixer were measured by pulsed-field-gradient spin-echo (PGSE) nuclear magnetic resonance (NMR). A surface coil matching the volume of interest was built to enhance the signal-to-noise ratio. This enabled the acquisition of velocity maps with a very high spatial resolution of 29 μm × 39 μm. The measured propagators are compared with theoretical distributions and a good agreement is found. The results show that the propagator data provide much richer information about flow behaviour than conventional NMR velocity imaging and the information is essential for understanding the performance of a micromixer. It reveals, for example, deviations in the shape and size of the channel structures and multicomponent flow velocity distribution of overlapping channels. Propagator data efficiently compensate lost information caused by insufficient 3D resolution in conventional velocity imaging.

  15. Measurements and modeling of flow structure in the wake of a low profile wishbone vortex generator

    NASA Technical Reports Server (NTRS)

    Wendt, B. J.; Hingst, W. R.

    1994-01-01

    The results of an experimental examination of the vortex structures shed from a low profile 'wishbone' generator are presented. The vortex generator height relative to the turbulent boundary layer was varied by testing two differently sized models. Measurements of the mean three-dimensional velocity field were conducted in cross-stream planes downstream of the vortex generators. In all cases, a counter-rotating vortex pair was observed. Individual vortices were characterized by three descriptors derived from the velocity data; circulation, peak vorticity, and cross-stream location of peak vorticity. Measurements in the cross plane at two axial locations behind the smaller wishbone characterize the downstream development of the vortex pairs. A single region of stream wise velocity deficit is shared by both vortex cores. This is in contrast to conventional generators, where each core coincides with a region of velocity deficit. The measured cross-stream velocities for each case are compared to an Oseen model with matching descriptors. The best comparison occurs with the data from the larger wishbone.

  16. Mode-coupling theory for active Brownian particles

    NASA Astrophysics Data System (ADS)

    Liluashvili, Alexander; Ónody, Jonathan; Voigtmann, Thomas

    2017-12-01

    We present a mode-coupling theory (MCT) for the slow dynamics of two-dimensional spherical active Brownian particles (ABPs). The ABPs are characterized by a self-propulsion velocity v0 and by their translational and rotational diffusion coefficients Dt and Dr, respectively. Based on the integration-through-transients formalism, the theory requires as input only the equilibrium static structure factors of the passive system (where v0=0 ). It predicts a nontrivial idealized-glass-transition diagram in the three-dimensional parameter space of density, self-propulsion velocity, and rotational diffusivity that arise because at high densities, the persistence length of active swimming ℓp=v0/Dr interferes with the interaction length ℓc set by the caging of particles. While the low-density dynamics of ABPs is characterized by a single Péclet number Pe=v02/DrDt , close to the glass transition the dynamics is found to depend on Pe and ℓp separately. At fixed density, increasing the self-propulsion velocity causes structural relaxation to speed up, while decreasing the persistence length slows down the relaxation. The active-MCT glass is a nonergodic state that is qualitatively different from the passive glass. In it, correlations of initial density fluctuations never fully decay, but also an infinite memory of initial orientational fluctuations is retained in the positions.

  17. Time resolved flow-field measurements of a turbulent mixing layer over a rectangular cavity

    NASA Astrophysics Data System (ADS)

    Bian, Shiyao; Driscoll, James F.; Elbing, Brian R.; Ceccio, Steven L.

    2011-07-01

    High Reynolds number, low Mach number, turbulent shear flow past a rectangular, shallow cavity has been experimentally investigated with the use of dual-camera cinematographic particle image velocimetry (CPIV). The CPIV had a 3 kHz sampling rate, which was sufficient to monitor the time evolution of large-scale vortices as they formed, evolved downstream and impinged on the downstream cavity wall. The time-averaged flow properties (velocity and vorticity fields, streamwise velocity profiles and momentum and vorticity thickness) were in agreement with previous cavity flow studies under similar operating conditions. The time-resolved results show that the separated shear layer quickly rolled-up and formed eddies immediately downstream of the separation point. The vortices convect downstream at approximately half the free-stream speed. Vorticity strength intermittency as the structures approach the downstream edge suggests an increase in the three-dimensionality of the flow. Time-resolved correlations reveal that the in-plane coherence of the vortices decays within 2-3 structure diameters, and quasi-periodic flow features are present with a vortex passage frequency of ~1 kHz. The power spectra of the vertical velocity fluctuations within the shear layer revealed a peak at a non-dimensional frequency corresponding to that predicted using linear, inviscid instability theory.

  18. Three-dimensional structure of dominant instabilities in turbulent flow over smooth and rough boundaries

    NASA Astrophysics Data System (ADS)

    Grass, A. J.; Stuart, R. J.; Mansour-Tehrani, M.

    1991-01-01

    The current status of knowledge regarding coherent vortical structures in turbulent boundary layers and their role in turbulence generation are reviewed. The investigations reported in the study concentrate attention on rough-wall flows prevailing in the geophysical environment and include an experiment determining the three-dimensional form of the turbulence structures linked to the ejection and inrush events observed over rough walls and an experiment concerned with measuring the actual spanwise scale of the near-wall structures for boundary conditions ranging from hydrodynamically smooth to fully rough. It is demonstrated that horseshoe vortical structures are present and play an important role in rough-wall flows and they increase in scale with increasing wall distance, while a dominant spanwise wavelength occurs in the instantaneous cross-flow distribution of streamwise velocity close to the rough wall.

  19. Soap film flows: Statistics of two-dimensional turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vorobieff, P.; Rivera, M.; Ecke, R.E.

    1999-08-01

    Soap film flows provide a very convenient laboratory model for studies of two-dimensional (2-D) hydrodynamics including turbulence. For a gravity-driven soap film channel with a grid of equally spaced cylinders inserted in the flow, we have measured the simultaneous velocity and thickness fields in the irregular flow downstream from the cylinders. The velocity field is determined by a modified digital particle image velocimetry method and the thickness from the light scattered by the particles in the film. From these measurements, we compute the decay of mean energy, enstrophy, and thickness fluctuations with downstream distance, and the structure functions of velocity,more » vorticity, thickness fluctuation, and vorticity flux. From these quantities we determine the microscale Reynolds number of the flow R{sub {lambda}}{approx}100 and the integral and dissipation scales of 2D turbulence. We also obtain quantitative measures of the degree to which our flow can be considered incompressible and isotropic as a function of downstream distance. We find coarsening of characteristic spatial scales, qualitative correspondence of the decay of energy and enstrophy with the Batchelor model, scaling of energy in {ital k} space consistent with the k{sup {minus}3} spectrum of the Kraichnan{endash}Batchelor enstrophy-scaling picture, and power-law scalings of the structure functions of velocity, vorticity, vorticity flux, and thickness. These results are compared with models of 2-D turbulence and with numerical simulations. {copyright} {ital 1999 American Institute of Physics.}« less

  20. Magnetohydrodynamic models of bipolar knotty jet in henize 2-90

    NASA Technical Reports Server (NTRS)

    Lee, C.; Sahai, R.

    2004-01-01

    A remarkably linear, bipolar, knotty jet was recently discovered in Hen 2-90, an object classified as a young planetary nebula. Using two-dimensional, magnetohydrodynamic simulations, we investigate periodic variations in jet density and velocity as the mechanism for producing the jet and its knotty structures.

  1. A two-dimensional kinematic dynamo model of the ionospheric magnetic field at Venus

    NASA Technical Reports Server (NTRS)

    Cravens, T. E.; Wu, D.; Shinagawa, H.

    1990-01-01

    The results of a high-resolution, two-dimensional, time dependent, kinematic dynamo model of the ionospheric magnetic field of Venus are presented. Various one-dimensional models are considered and the two-dimensional model is then detailed. In this model, the two-dimensional magnetic induction equation, the magnetic diffusion-convection equation, is numerically solved using specified plasma velocities. Origins of the vertical velocity profile and of the horizontal velocities are discussed. It is argued that the basic features of the vertical magnetic field profile remain unaltered by horizontal flow effects and also that horizontal plasma flow can strongly affect the magnetic field for altitudes above 300 km.

  2. Rip Current Velocity Structure in Drifter Trajectories and Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Schmidt, W. E.; Slinn, D. N.

    2008-12-01

    Estimates of rip current velocity and cross-shore structure were made using surfzone drifters, bathymetric surveys, and rectified video images. Over 60 rip current trajectories were observed during a three year period at a Southern California beach in July 2000, 2001, and 2002. Incident wave heights (Hs) immediately offshore (~7 m depth) were obtained by initializing a refraction model with data from nearby directional wave buoys, and varied from 0.3 to 1.0 m. Tide levels varied over approximately 1 m and winds were light. Numerical simulations using the non-linear shallow water equations and modeled over measured bathymetry also produced similar flows and statistics. Time series of drifter position, sampled at 1 Hz, were first-differenced to produce velocity time series. Maximum observed velocities varied between 25 and 80 cm s-1, whereas model maximum velocities were lower by a factor 2 to 3. When velocity maxima were non-dimensionalized by respective trajectory mean velocity, both observed and modeled values varied between 1.5 and 3.5. Cross-shore location of rip current velocity maxima for both shore-normal and shore-oblique rip currents were strongly coincident with the surfzone edge (Xb), as determined by rectified video (observations) or breakpoint (model). Once outside of the surfzone, observed and modeled rip current velocities decreased to 10% of their peak values within 2 surfzone widths of the shoreline, a useful definition of rip current cross-shore extent.

  3. Trans-Dimensional Bayesian Imaging of 3-D Crustal and Upper Mantle Structure in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Kim, S.; Tkalcic, H.; Rhie, J.; Chen, Y.

    2016-12-01

    Imaging 3-D structures using stepwise inversions of ambient noise and receiver function data is now a routine work. Here, we carry out the inversion in the trans-dimensional and hierarchical extension of the Bayesian framework to obtain rigorous estimates of uncertainty and high-resolution images of crustal and upper mantle structures beneath Northeast (NE) Asia. The methods inherently account for data sensitivities by means of using adaptive parameterizations and treating data noise as free parameters. Therefore, parsimonious results from the methods are balanced out between model complexity and data fitting. This allows fully exploiting data information, preventing from over- or under-estimation of the data fit, and increases model resolution. In addition, the reliability of results is more rigorously checked through the use of Bayesian uncertainties. It is shown by various synthetic recovery tests that complex and spatially variable features are well resolved in our resulting images of NE Asia. Rayleigh wave phase and group velocity tomograms (8-70 s), a 3-D shear-wave velocity model from depth inversions of the estimated dispersion maps, and regional 3-D models (NE China, the Korean Peninsula, and the Japanese islands) from joint inversions with receiver function data of dense networks are presented. High-resolution models are characterized by a number of tectonically meaningful features. We focus our interpretation on complex patterns of sub-lithospheric low velocity structures that extend from back-arc regions to continental margins. We interpret the anomalies in conjunction with distal and distributed intraplate volcanoes in NE Asia. Further discussion on other imaged features will be presented.

  4. Three-dimensional crust and mantle structure of Kilauea Volcano, Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellsworth, W.L.; Koyanagi, R.Y.

    1977-11-10

    Teleseismic P wave arrival times recorded by a dense network of seismograph stations located on Kilauea volcano, Hawaii, are inverted to determine lateral variation in crust and upper mantle structure to a depth of 70 km. The crustal structure is dominated by relatively high velocities within the central summit complex and along the two radial rift zones compared with the nonrift flank of the volcano. Both the mean crustal velocity contrast between summit and nonrift flank and the distribution of velocities agree well with results from crustal refraction studies. Comparison of the velocity structure with Bouguer gravity anomalies over themore » volcano through a simple physical model also gives excellent agreement. Mantle structure appears to be more homogeneous than crustal structure. The root mean square velocity variation for the mantle averages only 1.5%, whereas variation within the crust exceeds 4%. The summit of Kilauea is underlain by normal velocity (8.1 km/s) material within the uppermost mantle (12--25 km), suggesting that large magma storage reservoirs are not present at this level and that the passageways from deeper sources must be quite narrow. No evidence is found for substantial volumes of partially molten rock (5%) within the mantle to depths of at least 40 km. Below about 30 km, low-velocity zones (1--2%) underlie the summits of Kilauea and nearby Mauna Loa and extend south of Kilauea into a broad offshore zone. Correlation of volcanic tremor source locations and persistent zones of mantle earthquakes with low-velocity mantle between 27.5- and 42.5-km depth suggests that a laterally extensive conduit system feeds magma to the volcanic summits from sources either at comparable depth or deeper within the mantle. The center of contemporary magmatic production and/or upwelling from deeper in the mantle appears to extend well to the south of the active volcanic summits, suggesting that the Hawaiian Island chain is actively extending to the southeast.« less

  5. Analysis of simple 2-D and 3-D metal structures subjected to fragment impact

    NASA Technical Reports Server (NTRS)

    Witmer, E. A.; Stagliano, T. R.; Spilker, R. L.; Rodal, J. J. A.

    1977-01-01

    Theoretical methods were developed for predicting the large-deflection elastic-plastic transient structural responses of metal containment or deflector (C/D) structures to cope with rotor burst fragment impact attack. For two-dimensional C/D structures both, finite element and finite difference analysis methods were employed to analyze structural response produced by either prescribed transient loads or fragment impact. For the latter category, two time-wise step-by-step analysis procedures were devised to predict the structural responses resulting from a succession of fragment impacts: the collision force method (CFM) which utilizes an approximate prediction of the force applied to the attacked structure during fragment impact, and the collision imparted velocity method (CIVM) in which the impact-induced velocity increment acquired by a region of the impacted structure near the impact point is computed. The merits and limitations of these approaches are discussed. For the analysis of 3-d responses of C/D structures, only the CIVM approach was investigated.

  6. Influence of vorticity distribution on singularities in linearized supersonic flow

    NASA Astrophysics Data System (ADS)

    Gopal, Vijay; Maddalena, Luca

    2018-05-01

    The linearized steady three-dimensional supersonic flow can be analyzed using a vector potential approach which transforms the governing equation to a standard form of two-dimensional wave equation. Of particular interest are the canonical horseshoe line-vortex distribution and the resulting induced velocity field in supersonic flow. In this case, the singularities are present at the vortex line itself and also at the surface of the cone of influence originating from the vertices of the horseshoe structure. This is a characteristic of the hyperbolic nature of the flow which renders the study of supersonic vortex dynamics a challenging task. It is conjectured in this work that the presence of the singularity at the cone of influence is associated with the step-function nature of the vorticity distribution specified in the canonical case. At the phenomenological level, if one considers the three-dimensional steady supersonic flow, then a sudden appearance of a line-vortex will generate a ripple of singularities in the induced velocity field which convect downstream and laterally spread, at the most, to the surface of the cone of influence. Based on these findings, this work includes an exploration of potential candidates for vorticity distributions that eliminate the singularities at the cone of influence. The analysis of the resulting induced velocity field is then compared with the canonical case, and it is observed that the singularities were successfully eliminated. The manuscript includes an application of the proposed method to study the induced velocity field in a confined supersonic flow.

  7. Fabrication of two-dimensional periodic structures on silicon after scanning irradiation with femtosecond laser multi-beams

    NASA Astrophysics Data System (ADS)

    Pan, An; Si, Jinhai; Chen, Tao; Li, Cunxia; Hou, Xun

    2016-04-01

    Two-dimensional (2D) periodic structures were fabricated on silicon surfaces by femtosecond laser irradiation in air and water, with the assistance of a microlens array (MLA) placed in the beam's path. By scanning the laser beam along the silicon surface, multiple grooves were simultaneously fabricated in parallel along with smaller laser-induced ripples. The 2D periodic structures contained long-periodic grooves and perpendicular short-periodic laser-induced ripples, which had periods of several microns and several hundred nanometers, respectively. We investigated the influence of laser power and scanning velocity on the morphological evolution of the 2D periodic structures in air and water. Large-area grid-like structures with ripples were fabricated by successively scanning once along each direction of the silicon's surface, which showed enhanced optical absorption. Hydrofluoric acid was then used to remove any oxygen and laser-induced defects for all-silicon structures.

  8. Three-dimensional Upper Crustal Velocity and Attenuation Structures of the Central Tibetan Plateau from Local Earthquake Tomography

    NASA Astrophysics Data System (ADS)

    Zhou, B.; Liang, X.; Lin, G.; Tian, X.; Zhu, G.; Mechie, J.; Teng, J.

    2017-12-01

    A series of V-shaped conjugate strike-slip faults are the most spectacular geologic features in the central Tibetan plateau. A previous study suggested that this conjugate strike-slip fault system accommodates the east-west extension and coeval north-south contraction. Another previous study suggested that the continuous convergence between the Indian and Eurasian continents and the eastward asthenospheric flow generated lithospheric paired general-shear (PGS) deformation, which then caused the development of conjugate strike-slip faults in central Tibet. Local seismic tomography can image three dimensional upper-crustal velocity and attenuation structures in central Tibet, which will provide us with more information about the spatial distribution of physical properties and compositional variations around the conjugate strike-slip fault zone. Ultimately, this information could improve our understanding of the development mechanism of the conjugate strike-slip fault system. In this study, we collected 6,809 Pg and 2,929 Sg arrival times from 414 earthquakes recorded by the temporary SANDWICH and permanent CNSN networks from November 2013 to November 2015. We also included 300 P and 17 S arrival times from 12 shots recorded by the INDEPTH III project during the summer of 1998 in the velocity tomography. We inverted for preliminary Vp and Vp/Vs models using the SIMUL2000 tomography algorithm, and then relocated the earthquakes with these preliminary velocity models. After that, we inverted for the final velocity models with these improved source locations and origin times. After the velocity inversion, we performed local attenuation tomography using t* measurements from the same dataset with an already existing approach. There are correlated features in the velocity and attenuation structures. From the surface to 10 km depth, the study area is dominated by high Vp and Qp anomalies. However, from 10 km to 20 km depth, there is a low Vp and Qp zone distributed along the conjugate strike-slip fault zone, with high Vp and Qp zones located north and south of the low Vp and Qp region. The prominent low velocity and Qp features in the image might reflect depth variations of physical properties or compositional differences related to the development of the conjugate strike-slip fault zone.

  9. The Seismic Attenuation Structure of the East Pacific Rise

    DTIC Science & Technology

    1992-02-27

    Kanamori, R. W. Clayton, Three- dimensional attenuation structure of Kilauea -East rift zone, Hawaii , J. Geophys. Res., submitted, 1990. Holt, M., Underwater...and J. J. Zucca, Active high-resolution seismic tomography of compressional wave velocity and attenuation at Medicine Lake volcano , northern California...zones of anomalously high S-wave attenuation in the upper crust near Ruapehu and Ngauruhoe volcanoes , New Zealand, J. Volcanol. Geotherm. Res., 10, 125

  10. United States Air Force Graduate Student Research Program. Program Management Report

    DTIC Science & Technology

    1988-12-01

    PRELIMINARY STRUCTURAL DESIGN/OPTIMIZATION by Richard A. Swift ABSTRACT Finite element analysis for use in structural design has advanced to the point where...Plates Subjected Gregory Schoeppner to Low Velocity Impact *** Same Report as Prof. William Wolfe * 57 Finite Element Analysis for Preliminary Richard...and dynamic load conditions using both radial and bias- ply tires. A detailed three-dimensional finite - element model of the wheel was generated for

  11. Comparison of Mars Science Laboratory Reaction Control System Jet Computations With Flow Visualization and Velocimetry

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Danehy, Paul M.; Johansen, Craig T.; Ashcraft, Scott W.; Novak, Luke A.

    2013-01-01

    Numerical predictions of the Mars Science Laboratory reaction control system jets interacting with a Mach 10 hypersonic flow are compared to experimental nitric oxide planar laser-induced fluorescence data. The steady Reynolds Averaged Navier Stokes equations using the Baldwin-Barth one-equation turbulence model were solved using the OVERFLOW code. The experimental fluorescence data used for comparison consists of qualitative two-dimensional visualization images, qualitative reconstructed three-dimensional flow structures, and quantitative two-dimensional distributions of streamwise velocity. Through modeling of the fluorescence signal equation, computational flow images were produced and directly compared to the qualitative fluorescence data.

  12. Motion of a curved vortex filament with decaying vortical core and axial velocity

    NASA Technical Reports Server (NTRS)

    Callegari, A. J.; Ting, L.

    1978-01-01

    The motion and decay of a curved vortex filament having large axial and circumferential velocity components in a three-dimensional stream are analyzed by using the method of matched asymptotic expansions of the incompressible Navier-Stokes equations. The small parameter is the square root of the ratio of the kinematic viscosity to the circulation. The outer region is analyzed by the classical Biot-Savart law, and its solution is matched to that of the inner region, where viscous effects are important. Equations describing the coupling between the inner vortex structure and the motion of the vortex filament as well as the time evolution of the inner vortex structure are obtained. Equations are derived for the motion of the vortex filament and for the change and decay in time and space of the leading-order circumferential and axial velocity and vorticity components. Solutions are constructed for these components in terms of initial data.

  13. Novel Ballistic Processing of Sn-0.7Cu Thick Films

    NASA Astrophysics Data System (ADS)

    Cavero, D.; Stewart, K.; Morsi, K.

    2017-01-01

    The present paper discusses a novel process (Ballistic Processing) for the ultra-rapid processing of textured and un-textured thick and potentially thin films. The effect of processing velocity (14.6 to 36.1 m/s) on the developed external structure and internal microstructure of Sn-0.7Cu thick film is discussed. Film thicknesses ranging from 6.08 to 12.79 μm were produced and characterized by two-dimensional hypoeutectic microstructures. Both film thickness and dendrite arm spacing decreased with an increase in processing velocity.

  14. Application of acoustic doppler current profilers for measuring three-dimensional flow fields and as a surrogate measurement of bedload transport

    USGS Publications Warehouse

    Conaway, Jeffrey S.

    2005-01-01

    Acoustic Doppler current profilers (ADCPs) have been in use in the riverine environment for nearly 20 years. Their application primarily has been focused on the measurement of streamflow discharge. ADCPs emit high-frequency sound pulses and receive reflected sound echoes from sediment particles in the water column. The Doppler shift between transmitted and return signals is resolved into a velocity component that is measured in three dimensions by simultaneously transmitting four independent acoustical pulses. To measure the absolute velocity magnitude and direction in the water column, the velocity magnitude and direction of the instrument must also be computed. Typically this is accomplished by ensonifying the streambed with an acoustical pulse that also provides a depth measurement for each of the four acoustic beams. Sediment transport on or near the streambed will bias these measurements and requires external positioning such as a differentially corrected Global Positioning Systems (GPS). Although the influence of hydraulic structures such as spur dikes and bridge piers is typically only measured and described in one or two dimensions, the use of differentially corrected GPS with ADCPs provides a fully three-dimensional measurement of the magnitude and direction of the water column at such structures. The measurement of these flow disturbances in a field setting also captures the natural pulsations of river flow that cannot be easily quantified or modeled by numerical simulations or flumes. Several examples of measured three-dimensional flow conditions at bridge sites throughout Alaska are presented. The bias introduced to the bottom-track measurement is being investigated as a surrogate measurement of bedload transport. By fixing the position of the ADCP for a known period of time the apparent velocity of the streambed at that position can be determined. Initial results and comparison to traditionally measured bedload values are presented. These initial results and those by other researchers are helping to determine a direction for further research of noncontact measurements of sediment transport. Copyright ASCE 2005.

  15. Bioclogging in Porous Media: Preferential Flow Paths and Anomalous Transport

    NASA Astrophysics Data System (ADS)

    Holzner, M.; Carrel, M.; Morales, V.; Derlon, N.; Beltran, M. A.; Morgenroth, E.; Kaufmann, R.

    2016-12-01

    Biofilms are sessile communities of microorganisms held together by an extracellular polymeric substance that enables surface colonization. In porous media (e.g. soils, trickling filters etc.) biofilm growth has been shown to affect the hydrodynamics in a complex fashion at the pore-scale by clogging individual pores and enhancing preferential flow pathways and anomalous transport. These phenomena are a direct consequence of microbial growth and metabolism, mass transfer processes and complex flow velocity fields possibly exhibiting pronounced three-dimensional features. Despite considerable past work, however, it is not fully understood how bioclogging interacts with flow and mass transport processes in porous media. In this work we use imaging techniques to determine the flow velocities and the distribution of biofilm in a porous medium. Three-dimensional millimodels are packed with a transparent porous medium and a glucose solution to match the optical refractive index. The models are inoculated with planktonic wildtype bacteria and biofilm cultivated for 60 h under a constant flow and nutrient conditions. The pore flow velocities in the increasingly bioclogged medium are measured using 3D particle tracking velocimetry (3D-PTV). The three-dimensional spatial distribution of the biofilm within the pore space is assessed by imaging the model with X-Ray microtomography. We find that biofilm growth increases the complexity of the pore space, leading to the formation of preferential flow pathways and "dead" pore zones. The probability of persistent high and low velocity regions (within preferential paths resp. stagnant flow regions) thus increases upon biofilm growth, leading to an enhancement of anomalous transport. The structural data seems to indicate that the largest pores are not getting clogged and carry the preferential flow, whereas intricated structures develop in the smallest pores, where the flow becomes almost stagnant. These findings may be relevant for applications such as bioremediation of contaminated aquifers, groundwater injection wells for geothermal or drinking water purposes, tertiary oil recovery.

  16. Determination of minority-carrier lifetime and surface recombination velocity with high spacial resolution

    NASA Technical Reports Server (NTRS)

    Watanabe, M.; Actor, G.; Gatos, H. C.

    1977-01-01

    Quantitative analysis of the electron beam induced current in conjunction with high-resolution scanning makes it possible to evaluate the minority-carrier lifetime three dimensionally in the bulk and the surface recombination velocity two dimensionally, with a high spacial resolution. The analysis is based on the concept of the effective excitation strength of the carriers which takes into consideration all possible recombination sources. Two-dimensional mapping of the surface recombination velocity of phosphorus-diffused silicon diodes is presented as well as a three-dimensional mapping of the changes in the minority-carrier lifetime in ion-implanted silicon.

  17. Waveform tomography of crustal structure in the south San Francisco Bay region

    USGS Publications Warehouse

    Pollitz, F.F.; Fletcher, J.P.

    2005-01-01

    We utilize a scattering-based seismic tomography technique to constrain crustal tructure around the southern San Francisco Bay region (SFBR). This technique is based on coupled traveling wave scattering theory, which has usually been applied to the interpretation of surface waves in large regional-scale studies. Using fully three-dimensional kernels, this technique is here applied to observed P, S, and surface waves of intermediate period (3-4 s dominant period) observed following eight selected regional events. We use a total of 73 seismograms recorded by a U.S. Geological Survey short-period seismic array in the western Santa Clara Valley, the Berkeley Digital Seismic Network, and the Northern California Seismic Network. Modifications of observed waveforms due to scattering from crustal structure include (positive or negative) amplification, delay, and generation of coda waves. The derived crustal structure explains many of the observed signals which cannot be explained with a simple layered structure. There is sufficient sensitivity to both deep and shallow crustal structure that even with the few sources employed in the present study, we obtain shallow velocity structure which is reasonably consistent with previous P wave tomography results. We find a depth-dependent lateral velocity contrast across the San Andreas fault (SAF), with higher velocities southwest of the SAF in the shallow crust and higher velocities northeast of the SAF in the midcrust. The method does not have the resolution to identify very slow sediment velocities in the upper approximately 3 km since the tomographic models are smooth at a vertical scale of about 5 km. Copyright 2005 by the American Geophysical Union.

  18. Crustal structure of the Southwest Subbasin, South China Sea, from wide-angle seismic tomography and seismic reflection imaging

    NASA Astrophysics Data System (ADS)

    Yu, Zhiteng; Li, Jiabiao; Ding, Weiwei; Zhang, Jie; Ruan, Aiguo; Niu, Xiongwei

    2017-06-01

    The Southwest Subbasin (SWSB) is an abyssal subbasin in the South China Sea (SCS), with many debates on its neotectonic process and crustal structure. Using two-dimensional seismic tomography in the SWSB, we derived a detailed P-wave velocity model of the basin area and the northern margin. The entire profile is approximately 311-km-long and consists of twelve oceanic bottom seismometers (OBSs). The average thickness of the crust beneath the basin is 5.3 km, and the Moho interface is relatively flat (10-12 km). No high velocity bodies are observed, and only two thin high-velocity structures ( 7.3 km/s) in the layer 3 are identified beneath the northern continent-ocean transition (COT) and the extinct spreading center. By analyzing the P-wave velocity model, we believe that the crust of the basin is a typical oceanic crust. Combined with the high resolution multi-channel seismic profile (MCS), we conclude that the profile shows asymmetric structural characteristics in the basin area. The continental margin also shows asymmetric crust between the north and south sides, which may be related to the large scale detachment fault that has developed in the southern margin. The magma supply decreased as the expansion of the SWSB from the east to the west.

  19. Time dependent deformation and stress in the lithosphere. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Yang, M.

    1980-01-01

    Efficient computer programs incorporating frontal solution and time stepping procedure were developed for the modelling of geodynamic problems. This scheme allows for investigating the quasi static phenomena including the effects of the rheological structure of a tectonically active region. From three dimensional models of strike slip earthquakes, it was found that lateral variation of viscosity affects the characteristics of surface deformations. The vertical deformation is especially informative about the viscosity structure in a strike slip fault zone. A three dimensional viscoelastic model of a thrust earthquake indicated that the transient disturbance on plate velocity due to a great plate boundary earthquake is significant at intermediate distances, but becomes barely measurable 1000 km away from the source.

  20. Acoustic near-field characteristics of a conical, premixed flame

    NASA Astrophysics Data System (ADS)

    Lee, Doh-Hyoung; Lieuwen, Tim C.

    2003-01-01

    The occurrence of self-excited pressure oscillations routinely plagues the development of combustion systems. These oscillations are often driven by interactions between the flame and acoustic perturbations. This study was performed to characterize the structure of the acoustic field in the near field of the flame and the manner in which it is influenced by oscillation frequency, combustor geometry, flame length and temperature ratio. The results of these calculations indicate that the acoustic velocity has primarily one- and two-dimensional features near the flame tip and base, respectively. The magnitude of the radial velocity components increases with temperature ratio across the flame, while their axial extent increases with frequency. However, the acoustic pressure has primarily one-dimensional characteristics. They also show that the acoustic field structure exhibits only moderate dependencies upon area expansion and flame temperature ratio for values typical of practical systems. Finally, they show that the local characteristics of the acoustic field, as well as the overall plane-wave reflection coefficient, exhibit a decreasing dependence upon the flame length as the area expansion ratio increases.

  1. Acoustic near-field characteristics of a conical, premixed flame.

    PubMed

    Lee, Doh-Hyoung; Lieuwen, Tim C

    2003-01-01

    The occurrence of self-excited pressure oscillations routinely plagues the development of combustion systems. These oscillations are often driven by interactions between the flame and acoustic perturbations. This study was performed to characterize the structure of the acoustic field in the near field of the flame and the manner in which it is influenced by oscillation frequency, combustor geometry, flame length and temperature ratio. The results of these calculations indicate that the acoustic velocity has primarily one- and two-dimensional features near the flame tip and base, respectively. The magnitude of the radial velocity components increases with temperature ratio across the flame, while their axial extent increases with frequency. However, the acoustic pressure has primarily one-dimensional characteristics. They also show that the acoustic field structure exhibits only moderate dependencies upon area expansion and flame temperature ratio for values typical of practical systems. Finally, they show that the local characteristics of the acoustic field, as well as the overall plane-wave reflection coefficient, exhibit a decreasing dependence upon the flame length as the area expansion ratio increases.

  2. Quantum calculations for one-dimensional cooling of helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vredenbregt, E.; Doery, M.; Bergeman, T.

    1993-05-01

    We report theoretical velocity distributions for sub-Doppler laser cooling of metastable He*(2{sup 3}S), calculated with the Density Matrix and Monte Carlo Wavefunction approaches. For low-field (B = 50 mG) magnetic-field induced laser cooling on the 2{sup 3}S {yields} (2{sup 3}P, J = 2) transition ({lambda} = 1083 nm), we get a narrow, sub-Doppler structure, consisting of three, {approximately}1 photon recoil wide peaks, spaced {approximately}1 recoil apart. With increasing field, this three-peak structure develops into two velocity-selective resonance (VSR) peaks, each {approximately}2 recoils wide. For the 2{sup 3}S {yields} (3{sup 3}P, J = 2) transition ({lambda} 389 nm), VSR peaks aremore » predicted to appear at low field without the third, central peak, which only develops at higher field (B = 200 mG). Additional computations deal with polarization-gradient cooling. In general, we find that for one-dimensional cooling calculations, the Density Matrix method is more efficient than the Monte Carlo Wavefunction approach. Experiments are currently under way to test the results.« less

  3. Localization of massless Dirac particles via spatial modulations of the Fermi velocity

    NASA Astrophysics Data System (ADS)

    Downing, C. A.; Portnoi, M. E.

    2017-08-01

    The electrons found in Dirac materials are notorious for being difficult to manipulate due to the Klein phenomenon and absence of backscattering. Here we investigate how spatial modulations of the Fermi velocity in two-dimensional Dirac materials can give rise to localization effects, with either full (zero-dimensional) confinement or partial (one-dimensional) confinement possible depending on the geometry of the velocity modulation. We present several exactly solvable models illustrating the nature of the bound states which arise, revealing how the gradient of the Fermi velocity is crucial for determining fundamental properties of the bound states such as the zero-point energy. We discuss the implications for guiding electronic waves in few-mode waveguides formed by Fermi velocity modulation.

  4. An exact solution of solute transport by one-dimensional random velocity fields

    USGS Publications Warehouse

    Cvetkovic, V.D.; Dagan, G.; Shapiro, A.M.

    1991-01-01

    The problem of one-dimensional transport of passive solute by a random steady velocity field is investigated. This problem is representative of solute movement in porous media, for example, in vertical flow through a horizontally stratified formation of variable porosity with a constant flux at the soil surface. Relating moments of particle travel time and displacement, exact expressions for the advection and dispersion coefficients in the Focker-Planck equation are compared with the perturbation results for large distances. The first- and second-order approximations for the dispersion coefficient are robust for a lognormal velocity field. The mean Lagrangian velocity is the harmonic mean of the Eulerian velocity for large distances. This is an artifact of one-dimensional flow where the continuity equation provides for a divergence free fluid flux, rather than a divergence free fluid velocity. ?? 1991 Springer-Verlag.

  5. Turbulent structure of three-dimensional flow behind a model car: 1. Exposed to uniform approach flow

    NASA Astrophysics Data System (ADS)

    Kozaka, Orçun E.; Özkan, Gökhan; Özdemir, Bedii I.

    2004-01-01

    Turbulent structure of flow behind a model car is investigated with local velocity measurements with emphasis on large structures and their relevance to aerodynamic forces. Results show that two counter-rotating helical vortices, which are formed within the inner wake region, play a key role in determining the flux of kinetic energy. The turbulence is generated within the outermost shear layers due to the instabilities, which also seem to be the basic drive for these relatively organized structures. The measured terms of the turbulent kinetic energy production, which are only part of the full expression, indicate that vortex centres act similar to the manifolds draining the energy in the streamwise direction. As the approach velocity increases, the streamwise convection becomes the dominant means of turbulent transport and, thus, the acquisition of turbulence by relatively non-turbulent flow around the wake region is suppressed.

  6. Investigating the Local Three-dimensional Velocity Structure of the 2008 Taoyuan Earthquake Sequence of Kaohsiung, Taiwan

    NASA Astrophysics Data System (ADS)

    Shih, M. H.; Huang, B. S.

    2016-12-01

    March 4, 2008, a moderate earthquake (ML 5.2) occurred in Taoyuan district of Kaohsiung County in the southern Taiwan. It was followed by numerous aftershocks in the following 48 hours, including three events with magnitude larger than 4. The Taoyuan earthquake sequence occurred during the TAIGER (Taiwan Integrated Geodynamic Research) project which is to image lithospheric structure of Taiwan orogeny. The high-resolution waveform data of this sequence were well-recorded by a large number of recording stations belong to several different permanent and TAIGER networks all around Taiwan. We had collected the waveform data and archived to a mega database. Then, we had identified 2,340 events from database in the preliminary locating process by using 1-D velocity model. In this study, we applied the double-difference tomography to investigate not only the fault geometry of the main shock but also the detailed 3-D velocity structure in this area. A total of 3,034 events were selected from preliminary locating result and CWBSN catalog in the vicinity. The resulting aftershocks are extended along the NE-SW direction and located on a 45° SE-dipping plane which agrees to one of the nodal planes of Global CMT solution (strike = 45°, dip = 40° and rake = 119°). We can identify a clear low-velocity area which is enclosed by events next to the main shock in the final 3D velocity model. We also recognized a 45°-dipping zone which is extended to the ground surface with low-velocity; meanwhile, velocity structure variation in study area correspond with major geologic units in Taiwan.

  7. Finite-Source Inversion for the 2004 Parkfield Earthquake using 3D Velocity Model Green's Functions

    NASA Astrophysics Data System (ADS)

    Kim, A.; Dreger, D.; Larsen, S.

    2008-12-01

    We determine finite fault models of the 2004 Parkfield earthquake using 3D Green's functions. Because of the dense station coverage and detailed 3D velocity structure model in this region, this earthquake provides an excellent opportunity to examine how the 3D velocity structure affects the finite fault inverse solutions. Various studies (e.g. Michaels and Eberhart-Phillips, 1991; Thurber et al., 2006) indicate that there is a pronounced velocity contrast across the San Andreas Fault along the Parkfield segment. Also the fault zone at Parkfield is wide as evidenced by mapped surface faults and where surface slip and creep occurred in the 1966 and the 2004 Parkfield earthquakes. For high resolution images of the rupture process"Ait is necessary to include the accurate 3D velocity structure for the finite source inversion. Liu and Aurchuleta (2004) performed finite fault inversions using both 1D and 3D Green's functions for 1989 Loma Prieta earthquake using the same source paramerization and data but different Green's functions and found that the models were quite different. This indicates that the choice of the velocity model significantly affects the waveform modeling at near-fault stations. In this study, we used the P-wave velocity model developed by Thurber et al (2006) to construct the 3D Green's functions. P-wave speeds are converted to S-wave speeds and density using by the empirical relationships of Brocher (2005). Using a finite difference method, E3D (Larsen and Schultz, 1995), we computed the 3D Green's functions numerically by inserting body forces at each station. Using reciprocity, these Green's functions are recombined to represent the ground motion at each station due to the slip on the fault plane. First we modeled the waveforms of small earthquakes to validate the 3D velocity model and the reciprocity of the Green"fs function. In the numerical tests we found that the 3D velocity model predicted the individual phases well at frequencies lower than 0.25 Hz but that the velocity model is fast at stations located very close to the fault. In this near-fault zone the model also underpredicts the amplitudes. This implies the need to include an additional low velocity zone in the fault zone to fit the data. For the finite fault modeling we use the same stations as in our previous study (Kim and Dreger 2008), and compare the results to investigate the effect of 3D Green's functions on kinematic source inversions. References: Brocher, T. M., (2005), Empirical relations between elastic wavespeeds and density in the Earth's crust, Bull. Seism. Soc. Am., 95, No. 6, 2081-2092. Eberhart-Phillips, D., and A.J. Michael, (1993), Three-dimensional velocity structure and seismicity in the Parkfield region, central California, J. Geophys. Res., 98, 15,737-15,758. Kim A., D. S. Dreger (2008), Rupture process of the 2004 Parkfield earthquake from near-fault seismic waveform and geodetic records, J. Geophys. Res., 113, B07308. Thurber, C., H. Zhang, F. Waldhauser, J. Hardebeck, A. Michaels, and D. Eberhart-Phillips (2006), Three- dimensional compressional wavespeed model, earthquake relocations, and focal mechanisms for the Parkfield, California, region, Bull. Seism. Soc. Am., 96, S38-S49. Larsen, S., and C. A. Schultz (1995), ELAS3D: 2D/3D elastic finite-difference wave propagation code, Technical Report No. UCRL-MA-121792, 19pp. Liu, P., and R. J. Archuleta (2004), A new nonlinear finite fault inversion with three-dimensional Green's functions: Application to the 1989 Loma Prieta, California, earthquake, J. Geophys. Res., 109, B02318.

  8. Forearc structure beneath southwestern British Columbia: A three-dimensional tomographic velocity model

    USGS Publications Warehouse

    Ramachandran, K.; Dosso, S.E.; Spence, G.D.; Hyndman, R.D.; Brocher, T.M.

    2005-01-01

    This paper presents a three-dimensional compressional wave velocity model of the forearc crust and upper mantle and the subducting Juan de Fuca plate beneath southwestern British Columbia and the adjoining straits of Georgia and Juan de Fuca. The velocity model was constructed through joint tomographic inversion of 50,000 first-arrival times from earthquakes and active seismic sources. Wrangellia rocks of the accreted Paleozoic and Mesozoic island arc assemblage underlying southern Vancouver Island in the Cascadia forearc are imaged at some locations with higher than average lower crustal velocities of 6.5-7.2 km/s, similar to observations at other island arc terranes. The mafic Eocene Crescent terrane, thrust landward beneath southern Vancouver Island, exhibits crustal velocities in the range of 6.0-6.7 km/s and is inferred to extend to a depth of more than 20 km. The Cenozoic Olympic Subduction Complex, an accretionary prism thrust beneath the Crescent terrane in the Olympic Peninsula, is imaged as a low-velocity wedge to depths of at least 20 km. Three zones with velocities of 7.0-7.5 km/s, inferred to be mafic and/or ultramafic units, lie above the subducting Juan de Fuca plate at depths of 25-35 km. The forearc upper mantle wedge beneath southeastern Vancouver Island and the Strait of Georgia exhibits low velocities of 7.2-7.5 km/s, inferred to correspond to ???20% serpentinization of mantle peridotites, and consistent with similar observations in other warm subduction zones. Estimated dip of the Juan de Fuca plate beneath southern Vancouver Island is ???11??, 16??, and 27?? at depths of 30, 40, and 50 km, respectively. Copyright 2005 by the American Geophysical Union.

  9. New constraints on the upper mantle structure of the Slave craton from Rayleigh wave inversion

    NASA Astrophysics Data System (ADS)

    Chen, Chin-Wu; Rondenay, Stéphane; Weeraratne, Dayanthie S.; Snyder, David B.

    2007-05-01

    Rayleigh wave phase and amplitude data are analyzed to provide new insight into the velocity structure of the upper mantle beneath the Slave craton, in the northwestern Canadian Shield. We invert for phase velocities at periods between 20 s-142 s (with greatest sensitivity at depths of 28-200 km) using crossing ray paths from events recorded by the POLARIS broadband seismic network and the Yellowknife array. Phase velocities obtained for the Slave province are comparable to those from other cratons at shorter periods, but exceed the global average by ~2% at periods above 60 s, suggesting that the Slave craton may be an end member in terms of its high degree of mantle depletion. The one-dimensional inversion of phase velocities yields high upper-mantle S-wave velocities of 4.7 +/- 0.2 km/s that persist to 220 +/- 65 km depth and thus define the cratonic lithosphere. Azimuthal anisotropy is well resolved at all periods with a dominant fast direction of N59°E +/- 20°, suggesting that upper mantle anisotropy beneath the Slave craton is influenced by both lithospheric fabric and sub-lithospheric flow.

  10. Flow disturbance due to presence of the vane anemometer

    NASA Astrophysics Data System (ADS)

    Bujalski, M.; Gawor, M.; Sobczyk, J.

    2014-08-01

    This paper presents the results of the preliminary experimental investigations of the disturbance of velocity field resulting from placing a vane anemometer in the analyzed air flow. Experiments were conducted in a wind tunnel with a closed loop. For the measurement process, Particle Image Velocimetry (PIV) method was used to visualize the flow structure and evaluate the instantaneous, two-dimensional velocity vector fields. Regions of inflow on the vane anemometer as well as flow behind it were examined. Ensemble averaged velocity distribution and root-mean-square (RMS) velocity fluctuations were determined. The results below are presented in the form of contour-velocity maps and profile plots. In order to investigate velocity fluctuations in the wake of vane anemometer with high temporal resolution hot-wire anemometry (HWA) technique was used. Frequency analysis by means of Fast Fourier Transform was carried out. The obtained results give evidence to a significant spatially and temporally complex flow disturbance in the vicinity of analyzed instrument.

  11. Three-dimensional seismic structure of a Mid-Atlantic Ridge segment characterized by active detachment faulting (TAG, 25°55’N-26°20’N)

    NASA Astrophysics Data System (ADS)

    Zhao, M.; Canales, J.

    2009-12-01

    The Trans-Atlantic Geotraverse (TAG) segment of the Mid-Atlantic Ridge (MAR) (25°55'N-26°20'N) is characterized by massive active and relict high-temperature hydrothermal deposits. Previous geological and geophysical studies indicate that the active TAG hydrothermal mound sits on the hanging wall of an active detachment fault. The STAG microseismicity study revealed that seismicity associated to detachment faulting extends deep into the crust/uppermost mantle (>6 km), forming an arcuate band (in plan view) extending along ~25 km of the rift valley floor (deMartin et al., Geology, 35, 711-714, 2007). Two-dimensional analysis of the STAG seismic refraction data acquired with ocean bottom seismometers (OBSs) showed that the eastern rift valley wall is associated with high P-wave velocities (>7 km/s) at shallow levels (>1 km depth), indicating uplift of lower crustal and/or upper mantle rocks along the detachment fault (Canales et al., Geochem., Geophys., Geosyst., 8, Q08004, doi:08010.01029/02007GC001629, 2008). Here we present a three-dimensional (3D) seismic tomography analysis of the complete STAG seismic refraction OBS dataset to illuminate the 3D crustal architecture of the TAG segment. Our new results provide, for the first time, a detailed picture of the complex, dome-shaped geometry and structure of a nascent oceanic core complex being exhumed by a detachment fault. Our results show a relatively low-velocity anomaly embedded within the high-velocity body forming the footwall of the detachment fault. The low velocity sits 2-3 km immediately beneath the active TAG hydrothermal mound. Although velocities within the low-velocity zone are too high (6 km/s) to represent partial melt, we speculate that this low velocity zone is intimately linked to hydrothermal processes taking place at TAG. We consider three possible scenarios for its origin: (1) a highly fissured zone produced by extensional stresses during footwall exhumation that may help localize fluid flow; (2) a hot -perhaps partially molten- gabbro pluton intruding the detachment fault footwall, which could provide some of the heat driving hydrothermal circulation at TAG; or (3) serpenitized peridotite, with hydration of the footwall being enhanced by hydrothermal fluid flow. This research was granted by the US-NSF (OCE-0137329) and the Chinese National Natural Science Foundation (40776025). M. Zhao was supported by China Scholarship Council (CSC) for 6 months of cooperative research at WHOI.

  12. Group velocity dispersion characteristics and one-dimensional regional shear velocity structure of the eastern Indian craton

    NASA Astrophysics Data System (ADS)

    Mandal, Prantik

    2017-02-01

    In the past three years, a semi-permanent network of fifteen 3-component broadband seismographs has become operational in the eastern Indian shield region occupying the Archean (∼2.5-3.6 Ga) Singhbhum-Odisha craton (SOC) and the Proterozoic (∼1.0-2.5 Ga) Chotanagpur Granitic Gneissic terrane (CGGT). The reliable and accurate broadband data for the recent 2015 Nepal earthquake sequence from 10 broadband stations of this network enabled us to estimate the group velocity dispersion characteristics and one-dimensional regional shear velocity structure of the region. First, we measure fundamental mode Rayleigh- and Love-wave group velocity dispersion curves in the period range of 7-70 s and then invert these curves to estimate the crustal and upper mantle structure below the eastern Indian craton (EIC). We observe that group velocities of Rayleigh and Love waves in SOC are relatively high in comparison to those of CGGT. This could be attributed to a relatively mafic-rich crust-mantle structure in SOC resulting from two episodes of magmatism associated with the 1.6 Ga Dalma and ∼117 Ma Rajmahal volcanisms. The best model for the EIC from the present study is found to be a two-layered crust, with a 14-km thick upper-crust (UC) of average shear velocity (Vs) of 3.0 km/s and a 26-km thick lower-crust (LC) of average Vs of 3.6 km/s. The present study detects a sharp drop in Vs (∼-2 to 3%) at 120-260 km depths, underlying the EIC, representing the probable seismic lithosphere-asthenosphere boundary (LAB) at 120 km depth. Such sharp fall in Vs below the LAB indicates a partially molten layer. Further, a geothermal gradient extrapolated from the surface heat flow shows that such a gradient would intercept the wet basalt solidus at 88-103 km depths, suggesting a 88-103 km thick thermal lithosphere below the EIC. This could also signal the presence of small amounts of partial melts. Thus, this 2-3% drop in Vs could be attributed to the presence of partial melts in the upper mantle related to the earlier volcanic episodes viz. back-arc volcanism associated with the Archean/Proterozoic subduction, 1.6 Ga Dalma volcanism, and ∼117 Ma Rajmahal volcanism. The main result of our modeling provides evidences for the absence of Keel or thick lithosphere below the EIC.

  13. The Numerical Analysis of a Turbulent Compressible Jet. Degree awarded by Ohio State Univ., 2000

    NASA Technical Reports Server (NTRS)

    DeBonis, James R.

    2001-01-01

    A numerical method to simulate high Reynolds number jet flows was formulated and applied to gain a better understanding of the flow physics. Large-eddy simulation was chosen as the most promising approach to model the turbulent structures due to its compromise between accuracy and computational expense. The filtered Navier-Stokes equations were developed including a total energy form of the energy equation. Subgrid scale models for the momentum and energy equations were adapted from compressible forms of Smagorinsky's original model. The effect of using disparate temporal and spatial accuracy in a numerical scheme was discovered through one-dimensional model problems and a new uniformly fourth-order accurate numerical method was developed. Results from two- and three-dimensional validation exercises show that the code accurately reproduces both viscous and inviscid flows. Numerous axisymmetric jet simulations were performed to investigate the effect of grid resolution, numerical scheme, exit boundary conditions and subgrid scale modeling on the solution and the results were used to guide the three-dimensional calculations. Three-dimensional calculations of a Mach 1.4 jet showed that this LES simulation accurately captures the physics of the turbulent flow. The agreement with experimental data was relatively good and is much better than results in the current literature. Turbulent intensities indicate that the turbulent structures at this level of modeling are not isotropic and this information could lend itself to the development of improved subgrid scale models for LES and turbulence models for RANS simulations. A two point correlation technique was used to quantify the turbulent structures. Two point space correlations were used to obtain a measure of the integral length scale, which proved to be approximately 1/2 D(sub j). Two point space-time correlations were used to obtain the convection velocity for the turbulent structures. This velocity ranged from 0.57 to 0.71 U(sub j).

  14. Growth of the lower continental crust via the relamination of arc magma

    NASA Astrophysics Data System (ADS)

    He, Yumei; Zheng, Tianyu; Ai, Yinshuang; Hou, Guangbing; Chen, Qi-Fu

    2018-01-01

    How does continental crust transition from basaltic mantle-derived magmas into an andesitic composition? The relamination hypothesis has been presented as an alternative dynamical mechanism to classical delamination theory to explain new crust generation and has been supported by petrological and geochemical studies as well as by thermomechanical numerical modeling. However, direct evidence of this process from detailed seismic velocity structures is lacking. Here, we imaged the three-dimensional (3D) velocity structures of the crust and uppermost mantle beneath the geologically stable Ordos terrane of the North China Craton (NCC). We identify a region of continental crust that exhibits extreme growth using teleseismic data and an imaging technique that models the Common Conversion Point (CCP) stacking profiles. Our results show an approximately 400 × 400 km2 wide growth zone that underlies the primitive crust at depths of 30-50 km and exhibits a gradual increase of velocity with depth. The upper layer of the growth zone has a shear wave velocity of 3.6-3.9 km/s (Vp = 6.2-6.8 km/s), indicating felsic material, and the lower layer has a shear wave velocity of 4.1-4.3 km/s (Vp = 7.2-7.5 km/s), which corresponds to mafic material. We suggest that this vertical evolution of the layered structure could be created by relamination and that the keel structure formed by relamination may be the root of the supernormal stability of the ancient Ordos terrane.

  15. Closed-form integrator for the quaternion (euler angle) kinematics equations

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A. (Inventor)

    2000-01-01

    The invention is embodied in a method of integrating kinematics equations for updating a set of vehicle attitude angles of a vehicle using 3-dimensional angular velocities of the vehicle, which includes computing an integrating factor matrix from quantities corresponding to the 3-dimensional angular velocities, computing a total integrated angular rate from the quantities corresponding to a 3-dimensional angular velocities, computing a state transition matrix as a sum of (a) a first complementary function of the total integrated angular rate and (b) the integrating factor matrix multiplied by a second complementary function of the total integrated angular rate, and updating the set of vehicle attitude angles using the state transition matrix. Preferably, the method further includes computing a quanternion vector from the quantities corresponding to the 3-dimensional angular velocities, in which case the updating of the set of vehicle attitude angles using the state transition matrix is carried out by (a) updating the quanternion vector by multiplying the quanternion vector by the state transition matrix to produce an updated quanternion vector and (b) computing an updated set of vehicle attitude angles from the updated quanternion vector. The first and second trigonometric functions are complementary, such as a sine and a cosine. The quantities corresponding to the 3-dimensional angular velocities include respective averages of the 3-dimensional angular velocities over plural time frames. The updating of the quanternion vector preserves the norm of the vector, whereby the updated set of vehicle attitude angles are virtually error-free.

  16. Correlational signatures of time-reversal symmetry breaking in two-dimensional flow

    NASA Astrophysics Data System (ADS)

    Hogg, Charlie; Ouellette, Nicholas

    2015-11-01

    Classical turbulence theories posit that broken spatial symmetries should be (statistically) restored at small scales. But since turbulent flows are inherently dissipative, time reversal symmetry is expected to remain broken throughout the cascade. However, the precise dynamical signature of this broken symmetry is not well understood. Recent work has shed new light on this fundamental question by considering the Lagrangian structure functions of power. Here, we take a somewhat different approach by studying the Lagrangian correlation functions of velocity and acceleration. We measured these correlations using particle tracking velocimetry in a quasi-two-dimensional electromagnetically driven flow that displayed net inverse energy transfer. We show that the correlation functions of the velocity and acceleration magnitudes are not symmetric in time, and that the degree of asymmetry can be related to the flux of energy between scales, suggesting that the asymmetry has a dynamical origin.

  17. Turbulence generation by waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaftori, D.; Nan, X.S.; Banerjee, S.

    The interaction between two-dimensional mechanically generated waves, and a turbulent stream was investigated experimentally in a horizontal channel, using a 3-D LDA synchronized with a surface position measuring device and a micro-bubble tracers flow visualization with high speed video. Results show that although the wave induced orbital motion reached all the way to the wall, the characteristics of the turbulence wall structures and the turbulence intensity close to the wall were not altered. Nor was the streaky nature of the wall layer. On the other hand, the mean velocity profile became more uniform and the mean friction velocity was increased.more » Close to the free surface, the turbulence intensity was substantially increased as well. Even in predominantly laminar flows, the introduction of 2-D waves causes three dimensional turbulence. The turbulence enhancement is found to be proportional to the wave strength.« less

  18. Time evolution of fine structures in the solar chromosphere.

    NASA Astrophysics Data System (ADS)

    Tsiropoula, G.; Alissandrakis, C. E.; Schmieder, B.

    1994-10-01

    We have studied the temporal evolution of two quiet chromospheric regions, one with a typical rosette and another with chains of mottles at the junction of three supergranules. The observations were obtained during 15 minutes with the Multichannel Subtractive Double Pass spectrograph (MSDP) operating in Hα at the Pic du Midi Observatory. We derived intensity maps and Doppler shift velocities at different wavelengths along the Hα profile over a two dimensional field of view. The observed contrast profiles were matched with theoretical contrast profiles using Beckers' cloud model for a more accurate determination of the line of sight velocity. A statistical analysis with cross correlation functions showed that the fine structures were stable in intensity over the observation period (15 min), but the line of sight velocity showed important changes within a few minutes. A detailed analysis of the velocities along the axes of dark mottles showed that the predominant pattern of bulk motion is that of downflow at their footpoints and alternating phases of upflow and downflow at their tops. This motion is consistent with Pikel'ner's model for spicules, which attributes this pattern to the reconnection of opposite magnetic filed lines. This picture is also consistent with the velocity reversals with time observed in spicules and may be associated to the systematic downflows observed in the transition region. Doppler shift velocities in dark mottles are too low compared to those derived with the cloud model; the latter are comparable to those reported for spicules, strengthening the view that these structures are identical.

  19. Potential of ultrasonic pulse velocity for evaluating the dimensional stability of oak and chestnut wood

    Treesearch

    Turker Dundar; Xiping Wang; Nusret As; Erkan Avci

    2016-01-01

    The objective of this study was to examine the potential of ultrasonic velocity as a rapid and nondestructive method to predict the dimensional stability of oak (Quercus petraea (Mattuschka) Lieblein) and chestnut (Castanea sativa Mill.) that are commonly used in flooring industry. Ultrasonic velocity, specific gravity, and radial, tangential and volumetric shrinkages...

  20. Disintegration of liquid sheets

    NASA Technical Reports Server (NTRS)

    Mansour, Adel; Chigier, Norman

    1990-01-01

    The development, stability, and disintegration of liquid sheets issuing from a two-dimensional air-assisted nozzle is studied. Detailed measurements of mean drop size and velocity are made using a phase Doppler particle analyzer. Without air flow the liquid sheet converges toward the axis as a result of surface tension forces. With airflow a quasi-two-dimensional expanding spray is formed. The air flow causes small variations in sheet thickness to develop into major disturbances with the result that disruption starts before the formation of the main break-up region. In the two-dimensional variable geometry air-blast atomizer, it is shown that the air flow is responsible for the formation of large, ordered, and small chaotic 'cell' structures.

  1. Three-dimensional vortex-induced vibrations of supported pipes conveying fluid based on wake oscillator models

    NASA Astrophysics Data System (ADS)

    Wang, L.; Jiang, T. L.; Dai, H. L.; Ni, Q.

    2018-05-01

    The present study develops a new three-dimensional nonlinear model for investigating vortex-induced vibrations (VIV) of flexible pipes conveying internal fluid flow. The unsteady hydrodynamic forces associated with the wake dynamics are modeled by two distributed van der Pol wake oscillators. In particular, the nonlinear partial differential equations of motion of the pipe and the wake are derived, taking into account the coupling between the structure and the fluid. The nonlinear equations of motion for the coupled system are then discretized by means of the Galerkin technique, resulting in a high-dimensional reduced-order model of the system. It is shown that the natural frequencies for in-plane and out-of-plane motions of the pipe may be different at high internal flow velocities beyond the threshold of buckling instability. The orientation angle of the postbuckling configuration is time-varying due to the disturbance of hydrodynamic forces, thus yielding sometimes unexpected results. For a buckled pipe with relatively low cross-flow velocity, interestingly, examining the nonlinear dynamics of the pipe indicates that the combined effects of the cross-flow-induced resonance of the in-plane first mode and the internal-flow-induced buckling on the IL and CF oscillation amplitudes may be significant. For higher cross-flow velocities, however, the effect of internal fluid flow on the nonlinear VIV responses of the pipe is not pronounced.

  2. Three-dimensional seismic velocity structure and earthquake relocations at Katmai, Alaska

    USGS Publications Warehouse

    Murphy, Rachel; Thurber, Clifford; Prejean, Stephanie G.; Bennington, Ninfa

    2014-01-01

    We invert arrival time data from local earthquakes occurring between September 2004 and May 2009 to determine the three-dimensional (3D) upper crustal seismic structure in the Katmai volcanic region. Waveforms for the study come from the Alaska Volcano Observatory's permanent network of 20 seismic stations in the area (predominantly single-component, short period instruments) plus a densely spaced temporary array of 11 broadband, 3-component stations. The absolute and relative arrival times are used in a double-difference seismic tomography inversion to solve for 3D P- and S-wave velocity models for an area encompassing the main volcanic centers. The relocated hypocenters provide insight into the geometry of seismogenic structures in the area, revealing clustering of events into four distinct zones associated with Martin, Mageik, Trident-Novarupta, and Mount Katmai. The seismic activity extends from about sea level to 2 km depth (all depths referenced to mean sea level) beneath Martin, is concentrated near 2 km depth beneath Mageik, and lies mainly between 2 and 4 km depth below Katmai and Trident-Novarupta. Many new features are apparent within these earthquake clusters. In particular, linear features are visible within all clusters, some associated with swarm activity, including an observation of earthquake migration near Trident in 2008. The final velocity model reveals a possible zone of magma storage beneath Mageik, but there is no clear evidence for magma beneath the Katmai-Novarupta area where the 1912 eruptive activity occurred, suggesting that the storage zone for that eruption may have largely been evacuated, or remnant magma has solidified.

  3. Finite Element Modeling of Multilayer Orthogonal Auxetic Composites under Low-Velocity Impact

    PubMed Central

    Jiang, Lili; Hu, Hong

    2017-01-01

    The multilayer orthogonal auxetic composites have been previously developed and tested to prove that they own excellent energy absorption and impact protection characteristics in a specific strain range under low-velocity impact. In this study, a three dimensional finite element (FE) model in ANSYS LS-DYNA was established to simulate the mechanical behavior of auxetic composites under low-velocity drop-weight impact. The simulation results including the Poisson’s ratio versus compressive strain curves and the contact stress versus compressive strain curves were compared with those in the experiments. The clear deformation pictures of the FE models have provided a simple and effective way for investigating the damage mechanism and optimizing the material, as well as structure design. PMID:28783054

  4. Analyzing the Magnetopause Internal Structure: New Possibilities Offered by MMS Tested in a Case Study

    NASA Astrophysics Data System (ADS)

    Rezeau, L.; Belmont, G.; Manuzzo, R.; Aunai, N.; Dargent, J.

    2018-01-01

    We explore the structure of the magnetopause using a crossing observed by the Magnetospheric Multiscale (MMS) spacecraft on 16 October 2015. Several methods (minimum variance analysis, BV method, and constant velocity analysis) are first applied to compute the normal to the magnetopause considered as a whole. The different results obtained are not identical, and we show that the whole boundary is not stationary and not planar, so that basic assumptions of these methods are not well satisfied. We then analyze more finely the internal structure for investigating the departures from planarity. Using the basic mathematical definition of what is a one-dimensional physical problem, we introduce a new single spacecraft method, called LNA (local normal analysis) for determining the varying normal, and we compare the results so obtained with those coming from the multispacecraft minimum directional derivative (MDD) tool developed by Shi et al. (2005). This last method gives the dimensionality of the magnetic variations from multipoint measurements and also allows estimating the direction of the local normal when the variations are locally 1-D. This study shows that the magnetopause does include approximate one-dimensional substructures but also two- and three-dimensional structures. It also shows that the dimensionality of the magnetic variations can differ from the variations of other fields so that, at some places, the magnetic field can have a 1-D structure although all the plasma variations do not verify the properties of a global one-dimensional problem. A generalization of the MDD tool is proposed.

  5. Time-resolved measurements of coherent structures in the turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    LeHew, J. A.; Guala, M.; McKeon, B. J.

    2013-04-01

    Time-resolved particle image velocimetry was used to examine the structure and evolution of swirling coherent structure (SCS), one interpretation of which is a marker for a three-dimensional coherent vortex structure, in wall-parallel planes of a turbulent boundary layer with a large field of view, 4.3 δ × 2.2 δ. Measurements were taken at four different wall-normal locations ranging from y/ δ = 0.08-0.48 at a friction Reynolds number, Re τ = 410. The data set yielded statistically converged results over a larger field of view than typically observed in the literature. The method for identifying and tracking swirling coherent structure is discussed, and the resulting trajectories, convection velocities, and lifespan of these structures are analyzed at each wall-normal location. The ability of a model in which the entirety of an individual SCS travels at a single convection velocity, consistent with the attached eddy hypothesis of Townsend (The structure of turbulent shear flows. Cambridge University Press, Cambridge, 1976), to describe the data is investigated. A methodology for determining whether such structures are "attached" or "detached" from the wall is also proposed and used to measure the lifespan and convection velocity distributions of these different structures. SCS were found to persist for longer periods of time further from the wall, particularly those inferred to be "detached" from the wall, which could be tracked for longer than 5 eddy turnover times.

  6. Teleseismic P-wave Delay Time Tomography of the southern Superior Province and Midcontinent Rift System (MRS) Region

    NASA Astrophysics Data System (ADS)

    Bollmann, T. A.; van der Lee, S.; Frederiksen, A. W.; Wolin, E.; Aleqabi, G. I.; Revenaugh, J.; Wiens, D. A.; Darbyshire, F. A.

    2014-12-01

    The Superior Province Rifting Earthscope Experiment (SPREE) and the northern midwest footprint of USArray's Transportable Array recorded continuous ground motion for a period of 2.5 years. From around 400 M>5.5 teleseismic earthquakes recorded at 337 stations, we measured body wave delay times for 255 of these earthquakes. The P wave delays are accumulated over more than 45 thousand wave paths with turning points in the lower mantle. We combine these delay times with a similar number delay times used in previous tomographic studies of the study region. The latter delay times stem from fewer stations, including Polaris and CNSN stations, and nearly a thousand earthquakes. We combine these two sets of delay times to image the three-dimensional distribution of seismic velocity variations beneath the southern Superior Province and surrounding provinces. This combined data coverage is illustrated in the accompanying figure for a total number of 447 stations . The coverage and the combined delays form the best configuration yet to image the three-dimensional distribution of seismic P and S-wave velocity variations beneath the southern Superior and surrounding provinces. Closely spaced stations (~12 km) along and across the MRS provide higher resolving power for lithospheric structure beneath the rift system. Conforming to expectations that the entire region is underlain by thick, cool lithosphere, a mean delay of -.55 +/- .54 s. This is very similar to the mean delays -.6s +/- .37s measured for this region before 2012. Event corrections range from -.2 +/-.54 s and correlate with tectonics for 80% of the earthquakes. An inversion of these nearly one hundred thousand P and around thirty thousand S-wave delay times for high-resolution P and S-wave velocity structure, respectively, does not show structures that are obviously related to the crustal signature of the MRS. None of structures imaged, align with or have a similar shape to the high Mid-continent Gravity Anomaly (MGA). However, a low-velocity structure is imaged in the lithosphere just east of the MGA.

  7. Resolution analysis of finite fault source inversion using one- and three-dimensional Green's functions 1. Strong motions

    USGS Publications Warehouse

    Graves, R.W.; Wald, D.J.

    2001-01-01

    We develop a methodology to perform finite fault source inversions from strong motion data using Green's functions (GFs) calculated for a three-dimensional (3-D) velocity structure. The 3-D GFs are calculated numerically by inserting body forces at each of the strong motion sites and then recording the resulting strains along the target fault surface. Using reciprocity, these GFs can be recombined to represent the ground motion at each site for any (heterogeneous) slip distribution on the fault. The reciprocal formulation significantly reduces the required number of 3-D finite difference computations to at most 3NS, where NS is the number of strong motion sites used in the inversion. Using controlled numerical resolution tests, we have examined the relative importance of accurate GFs for finite fault source inversions which rely on near-source ground motions. These experiments use both 1-D and 3-D GFs in inversions for hypothetical rupture models in order (1) to analyze the ability of the 3-D methodology to resolve trade-offs between complex source phenomena and 3-D path effects, (2) to address the sensitivity of the inversion results to uncertainties in the 3-D velocity structure, and (3) to test the adequacy of the 1-D GF method when propagation effects are known to be three-dimensional. We find that given "data" from a prescribed 3-D Earth structure, the use of well-calibrated 3-D GFs in the inversion provides very good resolution of the assumed slip distribution, thus adequately separating source and 3-D propagation effects. In contrast, using a set of inexact 3-D GFs or a set of hybrid 1-D GFs allows only partial recovery of the slip distribution. These findings suggest that in regions of complex geology the use of well-calibrated 3-D GFs has the potential for increased resolution of the rupture process relative to 1-D GFs. However, realizing this full potential requires that the 3-D velocity model and associated GFs should be carefully validated against the true 3-D Earth structure before performing the inverse problem with actual data. Copyright 2001 by the American Geophysical Union.

  8. Modeling a Propagating Sawtooth Flare Ribbon Structure as a Tearing Mode in the Presence of Velocity Shear

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Jacob; Longcope, Dana

    On 2014 April 18 (SOL2014-04-18T13:03), an M-class flare was observed by IRIS. The associated flare ribbon contained a quasi-periodic sawtooth pattern that was observed to propagate along the ribbon, perpendicular to the IRIS spectral slit, with a phase velocity of ∼15 km s{sup −1}. This motion resulted in periodicities in both intensity and Doppler velocity along the slit. These periodicities were reported by Brannon et al. to be approximately ±0.″5 in position and ±20 km s{sup −1} in velocity and were measured to be ∼180° out of phase with one another. This quasi-periodic behavior has been attributed by others tomore » bursty or patchy reconnection and slipping occurring during three-dimensional magnetic reconnection. Though able to account for periodicities in both intensity and Doppler velocity, these suggestions do not explicitly account for the phase velocity of the entire sawtooth structure or the relative phasing of the oscillations. Here we propose that the observations can be explained by a tearing mode (TM) instability occurring at a current sheet across which there is also a velocity shear. Using a linear model of this instability, we reproduce the relative phase of the oscillations, as well as the phase velocity of the sawtooth structure. We suggest a geometry and local plasma parameters for the April 18 flare that would support our hypothesis. Under this proposal, the combined spectral and spatial IRIS observations of this flare may provide the most compelling evidence to date of a TM occurring in the solar magnetic field.« less

  9. Three-Dimensional Shear Wave Velocity Structure of the Peru Flat Slab Subduction Segment

    NASA Astrophysics Data System (ADS)

    Knezevic Antonijevic, S.; Wagner, L. S.; Beck, S. L.; Zandt, G.; Long, M. D.

    2012-12-01

    Recent studies focused on flat slab subduction segments in central Chile (L. S. Wagner, 2006) and Alaska (B. R. Hacker and G. A. Aber, 2012) suggest significant differences in seismic velocity structures, and hence, composition in the mantle wedge between flat and normal "steep" subducting slabs. Instead of finding the low velocities and high Vp/Vs ratios common in normal subduction zones, these studies find low Vp, high Vs, and very low Vp/Vs above flat slabs. This may indicate the presence of dry, cold material in the mantle wedge. In order to investigate the seismic velocities of the upper mantle above the Peruvian flat segment, we have inverted for 2D Rayleigh wave phase velocity maps using data from the currently deployed 40 station PULSE seismic network and some adjacent stations from the CAUGHT seismic network. We then used the sensitivity of surface waves to shear wave velocity structure with depth to develop a 3D shear wave velocity model. This model will allow us to determine the nature of the mantle lithosphere above the flat slab, and how this may have influenced the development of local topography. For example, dry conditions (high Vs velocities) above the flat slab would imply greater strength of this material, possibly making it capable of causing further inland overthrusting, while wet conditions (low Vs) would imply weaker material. This could provide some insight into the ongoing debate over whether the Fitzcarrald arch (along the northern most flank of the Altiplano) could be a topographical response to the subducted Nazca ridge hundred kilometers away from the trench (N. Espurt, 2012, P. Baby, 2005, V. A. Ramos, 2012) or not (J. Martinod, 2005, M. Wipf, 2008, T. Gerya, 2008).

  10. Waveform inversion for 3-D earth structure using the Direct Solution Method implemented on vector-parallel supercomputer

    NASA Astrophysics Data System (ADS)

    Hara, Tatsuhiko

    2004-08-01

    We implement the Direct Solution Method (DSM) on a vector-parallel supercomputer and show that it is possible to significantly improve its computational efficiency through parallel computing. We apply the parallel DSM calculation to waveform inversion of long period (250-500 s) surface wave data for three-dimensional (3-D) S-wave velocity structure in the upper and uppermost lower mantle. We use a spherical harmonic expansion to represent lateral variation with the maximum angular degree 16. We find significant low velocities under south Pacific hot spots in the transition zone. This is consistent with other seismological studies conducted in the Superplume project, which suggests deep roots of these hot spots. We also perform simultaneous waveform inversion for 3-D S-wave velocity and Q structure. Since resolution for Q is not good, we develop a new technique in which power spectra are used as data for inversion. We find good correlation between long wavelength patterns of Vs and Q in the transition zone such as high Vs and high Q under the western Pacific.

  11. Velocity distributions on two-dimensional wing-duct inlets by conformal mapping

    NASA Technical Reports Server (NTRS)

    Perl, W; Moses, H E

    1948-01-01

    The conformal-mapping method of the Cartesian mapping function is applied to the determination of the velocity distribution on arbitrary two-dimensional duct-inlet shapes such as are used in wing installations. An idealized form of the actual wing-duct inlet is analyzed. The effects of leading edge stagger, inlet-velocity ratio, and section lift coefficients on the velocity distribution are included in the analysis. Numerical examples are given and, in part, compared with experimental data.

  12. User's guide to computer programs JET 5A and CIVM-JET 5B to calculate the large elastic-plastic dynamically-induced deformations of multilayer partial and/or complete structural rings

    NASA Technical Reports Server (NTRS)

    Wu, R. W. H.; Stagliano, T. R.; Witmer, E. A.; Spilker, R. L.

    1978-01-01

    These structural ring deflections lie essentially in one plane and, hence, are called two-dimensional (2-d). The structural rings may be complete or partial; the former may be regarded as representing a fragment containment ring while the latter may be viewed as a 2-d fragment-deflector structure. These two types of rings may be either free or supported in various ways (pinned-fixed, locally clamped, elastic-foundation supported, mounting-bracket supported, etc.). The initial geometry of each ring may be circular or arbitrarily curved; uniform-thickness or variable-thickness rings may be analyzed. Strain-hardening and strain-rate effects of initially-isotropic material are taken into account. An approximate analysis utilizing kinetic energy and momentum conservation relations is used to predict the after-impact velocities of each fragment and of the impact-affected region of the ring; this procedure is termed the collision-imparted velocity method (CIVM) and is used in the CIVM-JET 5 B program. This imparted-velocity information is used in conjunction with a finite-element structural response computation code to predict the transient, large-deflection, elastic-plastic responses of the ring. Similarly, the equations of motion of each fragment are solved in small steps in time. Provisions are made in the CIVM-JET 5B code to analyze structural ring response to impact attack by from 1 to 3 fragments, each with its own size, mass, translational velocity components, and rotational velocity. The effects of friction between each fragment and the impacted ring are included.

  13. The bifoil photodyne: a photonic crystal oscillator.

    PubMed

    Lugo, J E; Doti, R; Sanchez, N; de la Mora, M B; del Rio, J A; Faubert, J

    2014-01-15

    Optical tweezers is an example how to use light to generate a physical force. They have been used to levitate viruses, bacteria, cells, and sub cellular organisms. Nonetheless it would be beneficial to use such force to develop a new kind of applications. However the radiation pressure usually is small to think in moving larger objects. Currently, there is some research investigating novel photonic working principles to generate a higher force. Here, we studied theoretically and experimentally the induction of electromagnetic forces in one-dimensional photonic crystals when light impinges on the off-axis direction. The photonic structure consists of a micro-cavity like structure formed of two one-dimensional photonic crystals made of free-standing porous silicon, separated by a variable air gap and the working wavelength is 633 nm. We show experimental evidence of this force when the photonic structure is capable of making auto-oscillations and forced-oscillations. We measured peak displacements and velocities ranging from 2 up to 35 microns and 0.4 up to 2.1 mm/s with a power of 13 mW. Recent evidence showed that giant resonant light forces could induce average velocity values of 0.45 mm/s in microspheres embedded in water with 43 mW light power.

  14. The bifoil photodyne: a photonic crystal oscillator

    PubMed Central

    Lugo, J. E.; Doti, R.; Sanchez, N.; de la Mora, M. B.; del Rio, J. A.; Faubert, J.

    2014-01-01

    Optical tweezers is an example how to use light to generate a physical force. They have been used to levitate viruses, bacteria, cells, and sub cellular organisms. Nonetheless it would be beneficial to use such force to develop a new kind of applications. However the radiation pressure usually is small to think in moving larger objects. Currently, there is some research investigating novel photonic working principles to generate a higher force. Here, we studied theoretically and experimentally the induction of electromagnetic forces in one-dimensional photonic crystals when light impinges on the off-axis direction. The photonic structure consists of a micro-cavity like structure formed of two one-dimensional photonic crystals made of free-standing porous silicon, separated by a variable air gap and the working wavelength is 633 nm. We show experimental evidence of this force when the photonic structure is capable of making auto-oscillations and forced-oscillations. We measured peak displacements and velocities ranging from 2 up to 35 microns and 0.4 up to 2.1 mm/s with a power of 13 mW. Recent evidence showed that giant resonant light forces could induce average velocity values of 0.45 mm/s in microspheres embedded in water with 43 mW light power. PMID:24423985

  15. Numerical simulation of soft palate movement and airflow in human upper airway by fluid-structure interaction method

    NASA Astrophysics Data System (ADS)

    Sun, Xiuzhen; Yu, Chi; Wang, Yuefang; Liu, Yingxi

    2007-08-01

    In this paper, the authors present airflow field characteristics of human upper airway and soft palate movement attitude during breathing. On the basis of the data taken from the spiral computerized tomography images of a healthy person and a patient with Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS), three-dimensional models of upper airway cavity and soft palate are reconstructed by the method of surface rendering. Numerical simulation is performed for airflow in the upper airway and displacement of soft palate by fluid-structure interaction analysis. The reconstructed three-dimensional models precisely preserve the original configuration of upper airways and soft palate. The results of the pressure and velocity distributions in the airflow field are quantitatively determined, and the displacement of soft palate is presented. Pressure gradients of airway are lower for the healthy person and the airflow distribution is quite uniform in the case of free breathing. However, the OSAHS patient remarkably escalates both the pressure and velocity in the upper airway, and causes higher displacement of the soft palate. The present study is useful in revealing pathogenesis and quantitative mutual relationship between configuration and function of the upper airway as well as in diagnosing diseases related to anatomical structure and function of the upper airway.

  16. Investigation of the foundations of a Byzantine church by three-dimensional seismic tomography

    NASA Astrophysics Data System (ADS)

    Polymenakos, L.; Papamarinopoulos, S.; Miltiadou, A.; Charkiolakis, N.

    2005-02-01

    Byzantine public buildings are of high historical and cultural value. Churches, in particular, are of high architectural and artistic value because they are built using various materials and construction techniques and may contain significant frescoes and mosaics. The knowledge of the state of foundations and ground material conditions is important for their proper restoration and preservation. Seismic tomography is employed to investigate the foundation structure and ground material of a Byzantine church. Energy sources are placed across the floor of the church and surrounding courts, while recorders are placed in a subterranean crypt. Travel time data are analyzed and processed with a three-dimensional (3D) tomographic inversion software in order to construct seismic velocity images at the foundation and below foundation level. Velocity variations are known to correlate well with the lithological character of the earth materials, thus providing important structural and lithological information. A case study from a Byzantine church of 11th c. A.D. in the suburbs of Athens, Greece, is presented. The objective of this research is the nondestructive investigation of unknown underground structures or void spaces, mainly under the floor of the building. The results are interpreted in terms of the foundation elements as well as of significant variations in the earth material character.

  17. 3-D S-velocity structure in the lowermost mantle beneath the Northern Pacific

    NASA Astrophysics Data System (ADS)

    Suzuki, Y.; Kawai, K.; Geller, R. J.; Borgeaud, A. F. E.; Konishi, K.

    2017-12-01

    We previously (Suzuki et al., EPS, 2016) reported the results of waveform inversion to infer the three-dimensional (3-D) S-velocity structure in the lowermost 400 km of the mantle (the Dʺ region) beneath the Northern Pacific region. Our dataset consists of about 20,000 transverse component broadband body-wave seismograms observed at North American stations (mainly USArray) for 131 intermediate and deep earthquakes which occurred beneath the western Pacific subduction region. Synthetic resolution tests indicate that our methods and dataset can resolve the velocity structure in the target region with a horizontal scale of about 150 km and a vertical scale of about 50 km. The 3-D S-velocity model obtained in that study shows three prominent features: (i) horizontal high-velocity anomalies up to about 3 per cent faster than the Preliminary Reference Earth Model (PREM) with a thickness of a few hundred km and a lower boundary which is at most about 150 km above the core-mantle boundary (CMB), (ii) low-velocity anomalies about 2.5 per cent slower than PREM beneath the high-velocity anomalies at the base of the lower mantle, (iii) a thin (about 150 km) low-velocity structure continuous from the base of the low-velocity zone to at least 400 km above the CMB. We interpret these features respectively as: (i) remnants of slab material where the Mg-perovskite to Mg-post-perovskite phase transition could have occurred within the slab, (ii, iii) large amounts of hot and less dense materials beneath the cold Kula or Pacific slab remnants immediately above the CMB which ascend and form a passive plume upwelling at the edge of the slab remnants. Since our initial work we subsequently conducted waveform inversion using both the transverse- and radial-component horizontal waveform data to infer the isotropic shear velocity structure in the lowermost mantle beneath the Northern Pacific in more detail. We also compute partial derivatives with respect to the 5 independent elastic constants (A, C, F, L, N) of a transversely isotropy (TI) medium, and conduct a synthetic resolution test to examine the ability of our methods and dataset to resolve the anisotropic structure in this region using two-component waveform data.

  18. Pressure signature and evaluation of hammer pulses during underwater implosion in confining environments.

    PubMed

    Gupta, Sachin; Matos, Helio; Shukla, Arun; LeBlanc, James M

    2016-08-01

    The fluid structure interaction phenomenon occurring in confined implosions is investigated using high-speed three-dimensional digital image correlation (DIC) experiments. Aluminum tubular specimens are placed inside a confining cylindrical structure that is partially open to a pressurized environment. These specimens are hydrostatically loaded until they naturally implode. The implosion event is viewed, and recorded, through an acrylic window on the confining structure. The velocities captured through DIC are synchronized with the pressure histories to understand the effects of confining environment on the implosion process. Experiments show that collapse of the implodable volume inside the confining tube leads to strong oscillating water hammer waves. The study also reveals that the increasing collapse pressure leads to faster implosions. Both peak and average structural velocities increase linearly with increasing collapse pressure. The effects of the confining environment are better seen in relatively lower collapse pressure implosion experiments in which a long deceleration phase is observed following the peak velocity until wall contact initiates. Additionally, the behavior of the confining environment can be viewed and understood through classical water hammer theory. A one-degree-of-freedom theoretical model was created to predict the impulse pressure history for the particular problem studied.

  19. 2-dimensional triplicated waveform modeling of the mantle transition zone beneath Northeast Asia

    NASA Astrophysics Data System (ADS)

    Lai, Y.; Chen, L.; Wang, T.

    2017-12-01

    The Mantle Transition Zone (MTZ) of Northeast Asia has long been investigated by geoscientists for its critical importance where the subducted Pacific slab is stagnant above the 660km discontinuity, accompanied by complicated mantle processes. Taking advantages of the frequent occurrent deep earthquakes in subduction zone and dense seismic arrays in Northeast China, we successfully constructed the fine-scale P and SH velocity structure of a narrow azimuthal fan area based on 2-Dimensional (2D) triplicated waveform modeling for three deep close earthquakes, in which the triplicated waveforms are very sensitive to MTZ velocity structure in general, particularly the morphology of the stagnant slab in Northeast Asia. In our 2D triplication study, for the first time, we show a quite consistent feature of a high velocity layer for both Vp and Vs with the thickness of 140km and the length of 1200km just atop the 660km discontinuity, the western edge of the stagnant slab intersect with the North-South Gravity Lineament in China and has the subducting age of 30 Ma. Compared with a quite normal Vp, the Shear wave velocity reduction of -0.5% in the slab and -2.5% in the upper MTZ is required to reconcile the SH waves featured by the broad BOD. The high Vp/Vs ratio beneath Northeast Asia may imply a water-rich MTZ with the H2O content of 0.1-0.3 wt%. Particularly, a low velocity anomaly of about 150km wide was detected in the overall high-velocity stagnant slab by both P and SH triplicated waveform modeling, with the velocity anomaly value of -1% and -3%, respectively. The gap/window in the stagnant slab may provide a passage for hot deeper mantle materials to penetrate through the thick slab and feed the surface Changbaishan volcano. We also speculate that the existence of such a gap can be the manifestation of the original heterogeneity in the subducted slab and will further exacerbatethe impending gravitational instability and speed up mantle avalanche.

  20. Tectonic controls on magmatism in the Geysers-Clear Lake region: Evidence from new geophysical models

    USGS Publications Warehouse

    Stanley, W.D.; Benz, H.M.; Walters, M.A.; Villasenor, A.; Rodriguez, B.D.

    1998-01-01

    In order to study magmatism and geothermal systems in The Geysers-Clear Lake region, we developed a detailed three-dimensional tomographic velocity model based on local earthquakes. This high-resolution model resolves the velocity structure of the crust in the region to depths of approximately 12 km. The most significant velocity contrasts in The Geysers-Clear Lake region occur in the steam production area, where high velocities are associated with a Quaternary granitic pluton, and in the Mount Hannah region, where low velocities occur in a 5-km-thick section of Mesozoic argillites. In addition, a more regional tomographic model was developed using traveltimes from earthquakes covering most of northern California. This regional model sampled the whole crust, but at a lower resolution than the local model. The regional model outlines low velocities at depths of 8-12 km in The Geysers-Clear Lake area, which extend eastward to the Coast Range thrust. These low velocities are inferred to be related to unmetamorphosed Mesozoic sedimentary rocks. In addition, the regional velocity model indicates high velocities in the lower crust beneath the Clear Lake volcanic field, which we interpret to be associated with mafic underplating. No large silicic magma chamber is noted in either the local or regional tomographic models. A three-dimensional gravity model also has been developed in the area of the tomographic imaging. Our gravity model demonstrates that all density contrasts can be accounted for in the upper 5-7 km of the crust. Two-dimensional magnetotelluric models of data from a regional, east-west profile indicate high resistivities associated with the granitic pluton in The Geysers production area and low resistivities in the low-velocity section of Mesozoic argillites near Mount Hannah. No indication of midcrustal magma bodies is present in the magnetotelluric data. On the basis of heat flow and geologic evidence, Holocene intrusive activity is thought to have occurred near the Northwest Geysers, Mount Hannah, Sulphur Bank Mine, and perhaps other areas. The geophysical data provide no conclusive evidence for such activity, but the detailed velocity model is suggestive of intrusive activity near Mount Hannah similar to that in the 'felsite' of The Geysers production area. The geophysical models, seismicity patterns, distribution of volcanic vents, heat flow, and other data indicate that small, young intrusive bodies that were injected along a northeast trend from The Geysers to Clear Lake probably control the thermal regime.

  1. STARS: A general-purpose finite element computer program for analysis of engineering structures

    NASA Technical Reports Server (NTRS)

    Gupta, K. K.

    1984-01-01

    STARS (Structural Analysis Routines) is primarily an interactive, graphics-oriented, finite-element computer program for analyzing the static, stability, free vibration, and dynamic responses of damped and undamped structures, including rotating systems. The element library consists of one-dimensional (1-D) line elements, two-dimensional (2-D) triangular and quadrilateral shell elements, and three-dimensional (3-D) tetrahedral and hexahedral solid elements. These elements enable the solution of structural problems that include truss, beam, space frame, plane, plate, shell, and solid structures, or any combination thereof. Zero, finite, and interdependent deflection boundary conditions can be implemented by the program. The associated dynamic response analysis capability provides for initial deformation and velocity inputs, whereas the transient excitation may be either forces or accelerations. An effective in-core or out-of-core solution strategy is automatically employed by the program, depending on the size of the problem. Data input may be at random within a data set, and the program offers certain automatic data-generation features. Input data are formatted as an optimal combination of free and fixed formats. Interactive graphics capabilities enable convenient display of nodal deformations, mode shapes, and element stresses.

  2. Experimental Study of the Structure of a Wingtip Vortex

    NASA Technical Reports Server (NTRS)

    Anderson, Elgin A.; Wright, Christopher T.

    2000-01-01

    A complete look at the near-field development and subsequent role-up of a wingtip vortex from a NACA 0015 wing section is investigated. Two separate but equally important surveys of the vortex structure in the region adjacent to the wingtip and approximately one chord length downstream of the trailing edge are performed. The two surveys provide qualitative flow-visualization an quantitative velocity measurement data. The near-field development and subsequent role-up of the vortex structures is strongly influenced by the angle-of-attack and the end-cap treatment of the wing section. The velocity field near the wingtip of the NACA 0015 wing section was measured with a triple-sensor hot wire probe and compared to flow visualization images produced with titanium tetrachloride smoke injection and laser illumination. The flat end-cap results indicate the formation of multiple, relatively strong vortex structures as opposed to the formation of a single vortex produced with the round end-cap. The multiple vortices generated by the flat end-cap are seen to rotate around a common ce te in a helical pattern until they eventually merge into a single vortex. Compared to a non-dimensional loading parameter, the results of the velocity and flow visualization data shows a "jetlike" axial velocity profile for loading parameter values on the order of 0.1 and a "wakelike" profile for much lower loading parameter values.

  3. Upper Mantle Seismic Structure for NE Tibet From Multiscale Tomography Method

    NASA Astrophysics Data System (ADS)

    Guo, B.; Liu, Q.; Chen, J.

    2013-12-01

    In the real seismic experiments, the spatial sampling of rays inside the studied volume is basically nonuniform because of the unequispaced distribution of the seismic stations as well as the earthquake events. The conventional seismic tomography schemes adopt fixed size of cells or grid spacing while the actual resolution varies. As a result, either the phantom velocity anomalies may be aroused in regions that are poorly illuminated by the seismic rays, or the best detailed velocity model is unable to be extracted from those with fine ray coverage. We present an adaptive wavelet parameterization solution for three-dimensional traveltime seismic tomography problem and apply it to the study of the tectonics in the Northeast Tibet region. Different from the traditional parameterization schemes, we discretize the velocity model in terms of the Haar wavelets and the parameters are adjusted adaptively based on both the density and the azimuthal coverage of rays. Therefore, the fine grids are used in regions with the good data coverage, whereas the poorly resolved areas are represented by the coarse grids. Using the traveltime data recorded by the portable seismic array and the regional seismic network in the northeastern Tibet area, we investigate the P wave velocity structure of the crust and upper mantle. Our results show that the structure of the crust and upper mantle in the northeastern Tibet region manifests a strong laterally inhomogeneity, which appears not only in the adjacent areas between the different blocks, but also within each block. The velocity of the crust and upper mantle is highly different between the northeastern Tibet and the Ordos plateau. Of these two regions, the former possesses a low-velocity feature while the latter is referred to a high-velocity pattern. Between the northeastern Tibet and the Ordos plateau, there is a transition zone of about 200km wide, which is associated with an extremely complex velocity structure in crust and upper mantle.

  4. 3D P-wave velocity structure of the crust and relocation of earthquakes in the Lushan, China, source area

    NASA Astrophysics Data System (ADS)

    Yu, Xiangwei; Wang, Xiaona; Zhang, Wenbo

    2016-04-01

    Many researchers have investigated the Lushan source area with geological and geophysical approaches since the 2013 Lushan, China, earthquake happened. Compared with the previous tomographic studies, we have used a much large data set and an updated tomographic method to determine a small scale three-dimensional P wave velocity structure with spatial resolution less than 5km, which plays the important role for understanding the deep structure and the genetic mechanism beneath the Lushan area. The double difference seismic tomography method is applied to 50,711 absolute first arrival P wave arrival times and 7,294,691 high quality relative P arrival times of 5,285 events of Lushan seismic sequence to simultaneously determine the detailed crustal 3D P wave velocity structure and the hypocenter parameters in the Lushan seismic area. This method takes account of the path anomaly biases explicitly by making full use of valuable information of seismic wave propagation jointly with absolute and relative arrival time data. Our results show that the Lushan mainshock locates at 30.28N, 103.98E, with the depth of 16.38km. The front edge of aftershock in the northeast of mainshock present a spade with a steep dip angle, the aftershocks' extended length is about 12km. In the southwest of Lushan mainshock, the front edge of aftershock in low velocity zone slope gently, the aftershocks' extended length is about 23km. Our high-resolution tomographic model not only displays the general features contained in the previous models, but also reveals some new features. The Tianquan, Shuangshi and Daguan line lies in the transition zone between high velocity anomalies to the southeast and low velocity anomalies to the northwest at the ground surface. An obvious high-velocity anomaly is visible in Daxing area. With the depth increasing, Baoxing high velocity anomaly extends to Lingguan, while the southeast of the Tianquan, Shuangshi and Daguan line still shows low velocity. The high-velocity anomalies beneath Baoxing and Daxing connect each other in 10km depth, which makes the contrast between high and low velocity anomalies more sharp. Above 20km depth the velocity structure in southwest and northeast segment of mainshock shows a big difference: low-velocity anomalies are dominated the southwest segment, while high-velocity anomalies rule the northeast segment. Lushan aftershocks in southwest are distributed in low-velocity anomalies or the transition belt: the footwall represents low-velocity anomalies, while the hanging wall shows high-velocity anomalies. The northeastern aftershocks are distributed at the boundary between high-velocity anomalies in Baoxing and Daxing area. The P wave velocity structure of Lushan seismic area shows obviously lateral heterogeneity. The P wave velocity anomalies represent close relationship with topographic relief and geological structure. In Baoxingarea the complex rocks correspond obvious high-velocity anomalies extending down to 15km depth,while the Cenozoic rocks are correlated with low-velocity anomalies. Lushan mainshock locates at the leading edge of a low-velocity anomaly surrounded by the Baoxing and Daxing high-velocity anomalies. The main seismogenic layer dips to northwest. Meanwhile, a recoil seismic belt dips to southeast above the main seismogenic layer exists at the lower boundary of Baoxing high-velocity anomaly.

  5. On butterfly effect in higher derivative gravities

    NASA Astrophysics Data System (ADS)

    Alishahiha, Mohsen; Davody, Ali; Naseh, Ali; Taghavi, Seyed Farid

    2016-11-01

    We study butterfly effect in D-dimensional gravitational theories containing terms quadratic in Ricci scalar and Ricci tensor. One observes that due to higher order derivatives in the corresponding equations of motion there are two butterfly velocities. The velocities are determined by the dimension of operators whose sources are provided by the metric. The three dimensional TMG model is also studied where we get two butterfly velocities at generic point of the moduli space of parameters. At critical point two velocities coincide.

  6. Three Dimensional P-Wave Velocity Structure Beneath Eastern Turkey by Local Earthquake Tomography (LET) Method

    NASA Astrophysics Data System (ADS)

    Teoman, U. M.; Turkelli, N.; Gok, R.

    2005-12-01

    Recently, crustal structure and the tectonic evolution of Eastern Turkey region was extensively studied in the context of Eastern Turkey Seismic Experiment (ETSE) from late 1999 to August 2001. Collision of the Arabian and Eurasian plates has been occurring along East Anatolian Fault Zone (EAFZ) and the Bitlis Suture, which made Eastern Turkey an ideal platform for scientific research. High quality local earthquake data from the ETSE seismic network were used in order to determine the 3-D P-wave velocity structure of upper crust for Eastern Turkey. Within the 32-station network, 524 well locatable earthquakes with azimuthal gaps < 200° and number of P-wave observations > 8 (corresponding to 6842 P-phase readings) were selected from the initial data set and simultaneously inverted. 1-D reference velocity model was derived by an iterative 1-D velocity inversion including the updated hypocenters and the station delays. The following 3-D tomographic inversion was iteratively performed by SIMULPS14 algorithm in a ``damped least-squares'' sense using the appropriate ray tracing technique, model parametrization and control parameters. As far as resolution is concerned, S waves were not included in this study due to strong attenuation, insufficient number of S phase readings and higher picking errors with respect to P phases. Several tests with the synthetic data were conducted to assess the solution quality, suggesting that the velocity structure is well resolved down to ~17km. Overall,resulting 3-D P-wave velocity model led to a more reliable hypocenter determination indicated by reduced event scattering and a significant reduction of %50 both in variance and residual (rms) values.With the influence of improved velocity model, average location errors did not exceed ~1.5km in horizontal and ~4km in vertical directions. Tomographic images revealed the presence of lateral velocity variations in Eastern Turkey. Existence of relatively low velocity zones (5.6 < Vp < 6.0 km/sec) along most of the vertical profiles possibly indicates the influence of major tectonic structures such as North Anatolian Fault Zone (NAFZ), East Anatolian Fault Zone (EAFZ) and the Bitlis thrust belt correlated with the seismicity. Low velocity anomalies extend deeper along EAFZ down to ~15km compared to a depth of ~10km along NAFZ. Arabian plate is generally marked by relatively higher velocities (Vp > 6.2 km/sec) in 10-15 km depth range.

  7. An LES study of vertical-axis wind turbine wakes aerodynamics

    NASA Astrophysics Data System (ADS)

    Abkar, Mahdi; Dabiri, John O.

    2016-11-01

    In this study, large-eddy simulation (LES) combined with a turbine model is used to investigate the structure of the wake behind a vertical-axis wind turbine (VAWT). In the simulations, a recently developed minimum dissipation model is used to parameterize the subgrid-scale stress tensor, while the turbine-induced forces are modeled with an actuator-line technique. The LES framework is first tested in the simulation of the wake behind a model straight-bladed VAWT placed in the water channel, and then used to study the wake structure downwind of a full-scale VAWT sited in the atmospheric boundary layer. In particular, the self-similarity of the wake is examined, and it is found that the wake velocity deficit is well characterized by a two-dimensional elliptical Gaussian distribution. By assuming a self-similar Gaussian distribution of the velocity deficit, and applying mass and momentum conservation, an analytical model is developed and tested to predict the maximum velocity deficit downwind of the turbine.

  8. Evolving Gravitationally Unstable Disks over Cosmic Time: Implications for Thick Disk Formation

    NASA Astrophysics Data System (ADS)

    Forbes, John; Krumholz, Mark; Burkert, Andreas

    2012-07-01

    Observations of disk galaxies at z ~ 2 have demonstrated that turbulence driven by gravitational instability can dominate the energetics of the disk. We present a one-dimensional simulation code, which we have made publicly available, that economically evolves these galaxies from z ~ 2 to z ~ 0 on a single CPU in a matter of minutes, tracking column density, metallicity, and velocity dispersions of gaseous and multiple stellar components. We include an H2-regulated star formation law and the effects of stellar heating by transient spiral structure. We use this code to demonstrate a possible explanation for the existence of a thin and thick disk stellar population and the age-velocity-dispersion correlation of stars in the solar neighborhood: the high velocity dispersion of gas in disks at z ~ 2 decreases along with the cosmological accretion rate, while at lower redshift the dynamically colder gas forms the low velocity dispersion stars of the thin disk.

  9. Waveform inversion for 3-D S-velocity structure of D'' beneath the Northern Pacific: possible evidence for a remnant slab and a passive plume

    NASA Astrophysics Data System (ADS)

    Suzuki, Yuki; Kawai, Kenji; Geller, Robert J.; Borgeaud, Anselme F. E.; Konishi, Kensuke

    2016-12-01

    We conduct waveform inversion to infer the three-dimensional (3-D) S-velocity structure in the lowermost 400 km of the mantle (the D'' region) beneath the Northern Pacific region. Our dataset consists of about 20,000 transverse component broadband body-wave seismograms observed at North American stations for 131 intermediate and deep earthquakes which occurred beneath the western Pacific subduction region. We use S, ScS, and other phases that arrive between them. Resolution tests indicate that our methods and dataset can resolve the velocity structure in the target region with a horizontal scale of about 150 km and a vertical scale of about 50 km. The 3-D S-velocity model obtained in this study shows three prominent features: (1) prominent sheet-like lateral high-velocity anomalies up to ˜3% faster than the Preliminary Reference Earth Model (PREM) with a thickness of ˜200 km, whose lower boundary is ˜150 km above the core-mantle boundary (CMB). (2) A prominent low-velocity anomaly block located to the west of the Kamchatka peninsula, which is ˜2.5% slower than PREM, immediately above the CMB beneath the high-velocity anomalies. (3) A relatively thin (˜300 km) low-velocity structure continuous from the low-velocity anomaly "(2)" to at least 400 km above the CMB. We also detect a continuous low-velocity anomaly from the east of the Kamchatka peninsula at an altitude of 50 km above the CMB to the far east of the Kuril islands at an altitude of 400 km above the CMB. We interpret these features respectively as: (1) remnants of slab material where the bridgmanite to Mg-post-perovskite phase transition may have occurred within the slab, (2, 3) large amounts of hot and less dense materials beneath the cold Kula or Pacific slab remnants just above the CMB which ascend and form a passive plume upwelling at the edge of the slab remnants.[Figure not available: see fulltext.

  10. The Cosmic V-Web

    NASA Astrophysics Data System (ADS)

    Pomarède, Daniel; Hoffman, Yehuda; Courtois, Hélène M.; Tully, R. Brent

    2017-08-01

    The network of filaments with embedded clusters surrounding voids, which has been seen in maps derived from redshift surveys and reproduced in simulations, has been referred to as the cosmic web. A complementary description is provided by considering the shear in the velocity field of galaxies. The eigenvalues of the shear provide information regarding whether or not a region is collapsing in three dimensions, which is the condition for a knot, expanding in three dimensions, which is the condition for a void, or in the intermediate condition of a filament or sheet. The structures that are quantitatively defined by the eigenvalues can be approximated by iso-contours that provide a visual representation of the cosmic velocity (V) web. The current application is based on radial peculiar velocities from the Cosmicflows-2 collection of distances. The three-dimensional velocity field is constructed using the Wiener filter methodology in the linear approximation. Eigenvalues of the velocity shear are calculated at each point on a grid. Here, knots and filaments are visualized across a local domain of diameter ˜ 0.1c.

  11. 3-D crustal structure beneath the southern Korean Peninsula from local earthquakes

    NASA Astrophysics Data System (ADS)

    Kim, K. H.; Park, J. H.; Park, Y.; Hao, T.; Kang, S. Y.; Kim, H. J.

    2017-12-01

    Located at the eastern margin of the Eurasian continent, the geology and tectonic evolution of the Korean Peninsula are closely related to the rest of the Asian continent. Although the widespread deformation of eastern Asia and its relation to the geology and tectonics of the Korean Peninsula have been extensively studied, the answers to many fundamental questions about the peninsula's history remain inconclusive. The three-dimensional subsurface structure beneath the southern Korean Peninsula is poorly known, even though such information could be key in verifying or rejecting several competing models of the tectonic evolution of East Asia. We constructed a three-dimensional velocity model of the upper crust beneath the southern Korean Peninsula using 19,935 P-wave arrivals from 747 earthquakes recorded by high-density local seismic networks maintained by Korea Meteorological Administration and Korea Institute of Geosciences and Mineral Resources. Results show significant lateral and vertical variations: velocity increases from northwest to southeast at shallow depths, and significant velocity variations are observed across the South Korea Tectonic Line between the Okcheon Fold Belt and the Youngnam Massif. Collision between the North China and South China blocks during the Early Cretaceous might have caused extensive deformation and the observed negative velocity anomalies in the region. The results of the tomographic inversion, combined with the findings of previous studies of Bouguer and isostatic gravity anomalies, indicate the presence of high-density material in the upper and middle crust beneath the Gyeongsang Basin in the southeastern Korean Peninsula. Although our results partially support the indentation tectonic model, it is still premature to discard other tectonic evolution models because our study only covers the southern half of the peninsula.

  12. Kinematics of the CSE in VY CMa

    NASA Astrophysics Data System (ADS)

    Choi, Yoon Kyung

    2009-07-01

    We report on astrometric results of H2O and SiO masers in the circumstellar envelopes of VY Canis Majoris (VY CMa) carried out with VERA for 2 years. Absolute positions and proper motions of 3 different frequencies of masers were measured with phase-referencing analyses. Using the positions and the 3-dimensional velocities of the masers, we considered the 3-dimensional structures and kinematics of the circumstellar envelopes around VY CMa. The H2O masers show bipolar outflow along the line of sight, and the SiO masers have both expanding and contracting motions with less than 5 km/s.

  13. Application of two dimensional periodic molecular dynamics to interfaces.

    NASA Astrophysics Data System (ADS)

    Gay, David H.; Slater, Ben; Catlow, C. Richard A.

    1997-08-01

    We have applied two-dimensional molecular dynamics to the surface of a crystalline aspartame and the interface between the crystal face and a solvent (water). This has allowed us to look at the dynamic processes at the surface. Understanding the surface structure and properties are important to controlling the crystal morphology. The thermodynamic ensemble was constant Number, surface Area and Temperature (NAT). The calculations have been carried out using a 2D Ewald summation and 2D periodic boundary conditions for the short range potentials. The equations of motion integration has been carried out using the standard velocity Verlet algorithm.

  14. Simulation of the June 11, 2010, flood along the Little Missouri River near Langley, Arkansas, using a hydrologic model coupled to a hydraulic model

    USGS Publications Warehouse

    Westerman, Drew A.; Clark, Brian R.

    2013-01-01

    The results from the precipitation-runoff hydrologic model, the one-dimensional unsteady-state hydraulic model, and a separate two-dimensional model developed as part of a coincident study, each complement the other in terms of streamflow timing, water-surface elevations, and velocities propagated by the June 11, 2010, flood event. The simulated grids for water depth and stream velocity from each model were directly compared by subtracting the one-dimensional hydraulic model grid from the two-dimensional model grid. The absolute mean difference for the simulated water depth was 0.9 foot. Additionally, the absolute mean difference for the simulated stream velocity was 1.9 feet per second.

  15. The impact of wall shear stress and pressure drop on the stability of the atherosclerotic plaque.

    PubMed

    Li, Zhi-Yong; Taviani, Valentina; Gillard, Jonathan H

    2008-01-01

    Rupture of vulnerable atheromatous plaque in the carotid and coronary arteries often leads to stroke and heart attack respectively. The mechanism of blood flow and plaque rupture in stenotic arteries is still not fully understood. A three dimensional rigid wall model was solved under steady state conditions and unsteady conditions by assuming a time-varying inlet velocity profile to investigate the relative importance of axial forces and pressure drops in arteries with asymmetric stenosis. Flow-structure interactions were investigated for the same geometry and the results were compared with those retrieved with the corresponding 2D cross-section structural models. The Navier-Stokes equations were used as the governing equations for the fluid. The tube wall was assumed hyperelastic, homogeneous, isotropic and incompressible. The analysis showed that the three dimensional behavior of velocity, pressure and wall shear stress is in general very different from that predicted by cross-section models. Pressure drop across the stenosis was found to be much higher than shear stress. Therefore, pressure may be the more important mechanical trigger for plaque rupture other than shear stress, although shear stress is closely related to plaque formation and progression.

  16. 4D Magnetic Resonance Velocimetry in a 3D printed brain aneurysm

    NASA Astrophysics Data System (ADS)

    Amili, Omid; Schiavazzi, Daniele; Coletti, Filippo

    2016-11-01

    Cerebral aneurysms are of great clinical importance. It is believed that hemodynamics play a critical role in the development, growth, and rupture of brain arteries with such condition. The flow structure in the aneurysm sac is complex, unsteady, and three-dimensional. Therefore the time-resolved measurement of the three-dimensional three-component velocity field is crucial to predict the clinical outcome. In this study magnetic resonance velocimetry is used to assess the fluid dynamics inside a 3D printed model of a giant intracranial aneurysm. We reach sub-millimeter resolution while resolving sixteen instances within the cardiac cycle. The physiological flow waveform is imposed using an in-house built pump in a flow circuit where the cardiovascular impedance is matched. The flow evolution over time is reconstructed in detail. The complex flow structure is characterized by vortical and helical motions that reside in the aneurysm for most part of the cycle. The 4D pressured distribution is also reconstructed from the velocity field. The present case study was used in a previous CFD challenge, therefore these results may provide useful experimental comparison for simulations performed by other research groups.

  17. Three-dimensionality development inside standard parallelepipedic lid-driven cavities at /Re=1000

    NASA Astrophysics Data System (ADS)

    Migeon, C.; Pineau, G.; Texier, A.

    2003-04-01

    This paper considers the problem of the time-dependent laminar incompressible flow motion within parallelepipedic cavities in which one wall moves with uniform velocity after an impulsive start using a particle-streak and a dye-emission techniques. Of particular concern is the examination of the spanwise structures of the flow in view to point out how three-dimensionality arises and develops with time for a Reynolds number of 1000. For this purpose, attention is focused on the spanwise currents, the end-wall corner vortices and the structures resulting from the centrifugal instability. Among others, the study clearly shows the scenario of propagation of the spanwise currents by giving quantitative information on their velocity and on the time from which a given cross-plane becomes affected by such a 3-D perturbation. Furthermore, the numerous visualizations reveal the existence of only one corner-vortex on each end-wall; this vortex is quasi-toroidal shaped. Finally, concerning flow instability, the present results show that no well-formed counter-rotating vortices emerge for /Re=1000 during the start-up phase contrary to what was asserted so far. However, two successive initial phases of this instability development are revealed for the first time.

  18. 3D Measurements of coupled freestream turbulence and secondary flow effects on film cooling

    NASA Astrophysics Data System (ADS)

    Ching, David S.; Xu, Haosen H. A.; Elkins, Christopher J.; Eaton, John K.

    2018-06-01

    The effect of freestream turbulence on a single round film cooling hole is examined at two turbulence levels of 5 and 8% and compared to a baseline low freestream turbulence case. The hole is inclined at 30° and has length to diameter ratio L/D=4 and unity blowing ratio. Turbulence is generated with grid upstream of the hole in the main channel. The three-dimensional, three-component mean velocity field is acquired with magnetic resonance velocimetry (MRV) and the three-dimensional temperature field is acquired with magnetic resonance thermometry (MRT). The 8% turbulence grid produces weak mean secondary flows in the mainstream (peak crossflow velocities are 7% of U_bulk) which push the jet close to the wall and significantly change the adiabatic effectiveness distribution. By contrast, the 5% grid has a simpler structure and does not produce a measurable secondary flow structure. The grid turbulence causes little change to the temperature field, indicating that the turbulence generated in the shear layers around the jet dominates the freestream turbulence. The results suggest that secondary flows induced by complex turbulence generators may have caused some of the contradictory results in previous works.

  19. Non-Newtonian blood flow dynamics in a right internal carotid artery with a saccular aneurysm

    NASA Astrophysics Data System (ADS)

    Valencia, Alvaro; Zarate, Alvaro; Galvez, Marcelo; Badilla, Lautaro

    2006-02-01

    Flow dynamics plays an important role in the pathogenesis and treatment of cerebral aneurysms. The temporal and spatial variations of wall shear stress in the aneurysm are hypothesized to be correlated with its growth and rupture. In addition, the assessment of the velocity field in the aneurysm dome and neck is important for the correct placement of endovascular coils. This work describes the flow dynamics in a patient-specific model of carotid artery with a saccular aneurysm under Newtonian and non-Newtonian fluid assumptions. The model was obtained from three-dimensional rotational angiography image data and blood flow dynamics was studied under physiologically representative waveform of inflow. The three-dimensional continuity and momentum equations for incompressible and unsteady laminar flow were solved with a commercial software using non-structured fine grid with 283 115 tetrahedral elements. The intra-aneurysmal flow shows complex vortex structure that change during one pulsatile cycle. The effect of the non-Newtonian properties of blood on the wall shear stress was important only in the arterial regions with high velocity gradients, on the aneurysmal wall the predictions with the Newtonian and non-Newtonian blood models were similar.

  20. Lithospheric Structure of the Yamato Basin Inferred from Trans-dimensional Inversion of Receiver Functions

    NASA Astrophysics Data System (ADS)

    Akuhara, T.; Nakahigashi, K.; Shinohara, M.; Yamada, T.; Yamashita, Y.; Shiobara, H.; Mochizuki, K.

    2017-12-01

    The Yamato Basin, located at the southeast of the Japan Sea, has been formed by the back-arc opening of the Japan Sea. Wide-angle reflection surveys have revealed that the basin has anomalously thickened crust compared with a normal oceanic crust [e.g., Nakahigashi et al., 2013] while deeper lithospheric structure has not known so far. Revealing the lithospheric structure of the Yamato Basin will lead to better understanding of the formation process of the Japan Sea and thus the Japanese island. In this study, as a first step toward understanding the lithospheric structure, we aim to detect the lithosphere-asthenosphere boundary (LAB) using receiver functions (RFs). We use teleseismic P waveforms recorded by broad-band ocean-bottom seismometers (BBOBS) deployed at the Yamato Basin. We calculated radial-component RFs using the data with the removal of water reverberations from the vertical-component records [Akuhara et al., 2016]. The resultant RFs are more complicated than those calculated at an on-land station, most likely due to sediment-related reverberations. This complexity does not allow either direct detection of a Ps conversion from the LAB or forward modeling by a simple structure composed of a handful number of layers. To overcome this difficulty, we conducted trans-dimensional Markov Chain Monte Carlo inversion of RFs, where we do not need to assume the number of layers in advance [e.g., Bodin et al., 2012; Sambridge et al., 2014]. Our preliminary results show abrupt velocity reduction at 70 km depth, far greater depth than the expected LAB depth from the age of the lithosphere ( 20 Ma, although still debated). If this low-velocity jump truly reflects the LAB, the anomalously thickened lithosphere will provide a new constraint on the complex formation history of the Japan Sea. Further study, however, is required to deny the possibility that the obtained velocity jump is an artificial brought by the overfitting of noisy data.

  1. Kolmogorov-Kraichnan Scaling in the Inverse Energy Cascade of Two-Dimensional Plasma Turbulence

    NASA Astrophysics Data System (ADS)

    Antar, G. Y.

    2003-08-01

    Turbulence in plasmas that are magnetically confined, such as tokamaks or linear devices, is two dimensional or at least quasi two dimensional due to the strong magnetic field, which leads to extreme elongation of the fluctuations, if any, in the direction parallel to the magnetic field. These plasmas are also compressible fluid flows obeying the compressible Navier-Stokes equations. This Letter presents the first comprehensive scaling of the structure functions of the density and velocity fields up to 10th order in the PISCES linear plasma device and up to 6th order in the Mega-Ampère Spherical Tokamak (MAST). In the two devices, it is found that the scaling of the turbulent fields is in good agreement with the prediction of the Kolmogorov-Kraichnan theory for two-dimensional turbulence in the energy cascade subrange.

  2. Aeroelastic Flutter Behavior of Cantilever within a Nozzle-Diffuser Geometry

    NASA Astrophysics Data System (ADS)

    Tosi, Luis Phillipe; Colonius, Tim; Sherrit, Stewart; Lee, Hyeong Jae

    2015-11-01

    Aeroelastic flutter arises when the motion of a structure and its surrounding flowing fluid are coupled in a constructive manner, causing large amplitudes of vibration in the immersed solid. A cantilevered beam in axial flow within a nozzle-diffuser geometry exhibits interesting resonance behavior that presents good prospects for internal flow energy harvesting. Different modes can be excited as a function of throat velocity, nozzle geometry, fluid and cantilever material parameters. This work explores the relationship between the aeroelastic flutter instability boundaries and relevant non-dimensional parameters via experiments. Results suggest that for a linear expansion diffuser geometry, a non-dimensional stiffness, non-dimensional mass, and non-dimensional throat size are the critical parameters in mapping the instability. This map can serve as a guide to future work concerning possible electrical output and failure prediction in energy harvesters.

  3. Topology of two-dimensional turbulent flows of dust and gas

    NASA Astrophysics Data System (ADS)

    Mitra, Dhrubaditya; Perlekar, Prasad

    2018-04-01

    We perform direct numerical simulations (DNS) of passive heavy inertial particles (dust) in homogeneous and isotropic two-dimensional turbulent flows (gas) for a range of Stokes number, St<1 . We solve for the particles using both a Lagrangian and an Eulerian approach (with a shock-capturing scheme). In the latter, the particles are described by a dust-density field and a dust-velocity field. We find the following: the dust-density field in our Eulerian simulations has the same correlation dimension d2 as obtained from the clustering of particles in the Lagrangian simulations for St<1 ; the cumulative probability distribution function of the dust density coarse grained over a scale r , in the inertial range, has a left tail with a power-law falloff indicating the presence of voids; the energy spectrum of the dust velocity has a power-law range with an exponent that is the same as the gas-velocity spectrum except at very high Fourier modes; the compressibility of the dust-velocity field is proportional to St2. We quantify the topological properties of the dust velocity and the gas velocity through their gradient matrices, called A and B , respectively. Our DNS confirms that the statistics of topological properties of B are the same in Eulerian and Lagrangian frames only if the Eulerian data are weighed by the dust density. We use this correspondence to study the statistics of topological properties of A in the Lagrangian frame from our Eulerian simulations by calculating density-weighted probability distribution functions. We further find that in the Lagrangian frame, the mean value of the trace of A is negative and its magnitude increases with St approximately as exp(-C /St) with a constant C ≈0.1 . The statistical distribution of different topological structures that appear in the dust flow is different in Eulerian and Lagrangian (density-weighted Eulerian) cases, particularly for St close to unity. In both of these cases, for small St the topological structures have close to zero divergence and are either vortical (elliptic) or strain dominated (hyperbolic, saddle). As St increases, the contribution to negative divergence comes mostly from saddles and the contribution to positive divergence comes from both vortices and saddles. Compared to the Eulerian case, the Lagrangian (density-weighted Eulerian) case has less outward spirals and more converging saddles. Inward spirals are the least probable topological structures in both cases.

  4. Particle tracking approach for transport in three-dimensional discrete fracture networks: Particle tracking in 3-D DFNs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makedonska, Nataliia; Painter, Scott L.; Bui, Quan M.

    The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates massmore » balance-related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces, and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. As a result, we demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.« less

  5. Particle tracking approach for transport in three-dimensional discrete fracture networks: Particle tracking in 3-D DFNs

    DOE PAGES

    Makedonska, Nataliia; Painter, Scott L.; Bui, Quan M.; ...

    2015-09-16

    The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates massmore » balance-related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces, and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. As a result, we demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.« less

  6. The Three-Dimensional Structure of HH 32 from GMOS IFU Spectroscopy

    NASA Astrophysics Data System (ADS)

    Beck, Tracy L.; Riera, A.; Raga, A. C.; Aspin, C.

    2004-01-01

    We present new high-resolution spectroscopic observations of the Herbig-Haro object HH 32 from system verification observations made with the GMOS IFU at Gemini North Observatory. The three-dimensional spectral data cover a 8.7"×5.85" spatial field and 4820-7040 Å spectral region centered on the HH 32 A knot complex. We show the position-dependent line profiles and radial velocity channel maps of the Hα line, as well as line ratio velocity channel maps of [O III] λ5007/Hα, [O I] λ6300/Hα, [N II] λ6583/Hα, [S II] λλ(6716+6730)/Hα, and [S II] λ6716/λ6730. We find that the line emission and the line ratios vary significantly on spatial scales of ~1" and over velocities of ~50 km s-1. A ``3/2-dimensional'' bow shock model is qualitatively successful at reproducing the general features of the radial velocity channel maps, but it does not show the same complexity as the data, and it fails to reproduce the line ratios in our high spatial resolution maps. The observations of HH 32 A show two or three superposed bow shocks with separations of ~3", which we interpret as evidence of a line-of-sight superposition of two or three working surfaces located along the redshifted body of the HH 32 outflow. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the National Science Foundation on behalf of the Gemini partnership: the NSF, the Particle Physics and Astronomy Research Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil), and CONICET (Argentina).

  7. Do Disk Galaxies Have Different Central Velocity Dispersions At A Given Rotation Velocity?

    NASA Astrophysics Data System (ADS)

    Danilovich, Taissa; Jones, H.; Mould, J.; Taylor, E.; Tonini, C.; Webster, R.

    2011-05-01

    Hubble's classification of spiral galaxies was one dimensional. Actually it was 1.5 dimensional, as he distinguished barred spirals. Van den Bergh's was two dimensional: spirals had luminosity classes too. Other schemes are summarized at http://www.daviddarling.info/encyclopedia/G/galaxyclassification.html A more quantitative approach is to classify spiral galaxies by rotation velocity. Their central velocity dispersion (bulge) tends to be roughly one half of their rotation velocity (disk). There is a trend from σ/W = 0.8 to σ/W = 0.2 as one goes from W = 100 to 500 km/s, where W is twice the rotation velocity. But some fraction of spirals have a velocity dispersion up to a factor of two larger than that. In hierarchical galaxy formation models, the relative contributions of σ and W depend on the mass accretion history of the galaxy, which determines the mass distribution of the dynamical components such as disk, bulge and dark matter halo. The wide variety of histories that originate in the hierarchical mass assembly produce at any value of W a wide range of σ/W, that reaches high values in more bulge- dominated systems. In a sense the two classifiers were both right: spirals are mostly one dimensional, but σ/W (bulge to disk ratio) is often larger than average. Is this a signature of merger history?

  8. Tornado model for a magnetised plasma

    NASA Astrophysics Data System (ADS)

    Onishchenko, O. G.; Fedun, V.; Smolyakov, A.; Horton, W.; Pokhotelov, O. A.; Verth, G.

    2018-05-01

    A new analytical model of axially-symmetric magnetic vortices with both a twisted fluid flow and a magnetic field is proposed. The exact solution for the three-dimensional structure of the fluid velocity and the magnetic field is obtained within the framework of the ideal magnetohydrodynamic equations for an incompressible fluid in a gravitational field. A quasi-stationary localised vortex arises when the radial flow that tends to concentrate vorticity in a narrow column around the axis of symmetry is balanced by the vertical vortex advection in the axial direction. The explicit expressions for the velocity and magnetic field components are obtained. The proposed analytic model may be used to parameterise the observed solar tornadoes and can provide a new indirect way for estimating magnetic twist from the observed azimuthal velocity profiles.

  9. Passive scalar entrainment and mixing in a forced, spatially-developing mixing layer

    NASA Technical Reports Server (NTRS)

    Lowery, P. S.; Reynolds, W. C.; Mansour, N. N.

    1987-01-01

    Numerical simulations are performed for the forced, spatially-developing plane mixing layer in two and three dimensions. Transport of a passive scalar field is included in the computation. This, together with the allowance for spatial development in the simulations, affords the opportunity for study of the asymmetric entrainment of irrotational fluid into the layer. The inclusion of a passive scalar field provides a means for simulating the effect of this entrainment asymmetry on the generation of 'products' from a 'fast' chemical reaction. Further, the three-dimensional simulations provide useful insight into the effect of streamwise structures on these entrainment and 'fast' reaction processes. Results from a two-dimensional simulation indicate 1.22 parts high-speed fluid are entrained for every one part low-speed fluid. Inclusion of streamwise vortices at the inlet plane of a three-dimensional simulation indicate a further increase in asymmetric entrainment - 1.44:1. Results from a final three-dimensional simulation are presented. In this case, a random velocity perturbation is imposed at the inlet plane. The results indicate the 'natural' development of the large spanwise structures characteristic of the mixing layer.

  10. Energy structure of MHD flow coupling with outer resistance circuit

    NASA Astrophysics Data System (ADS)

    Huang, Z. Y.; Liu, Y. J.; Chen, Y. Q.; Peng, Z. L.

    2015-08-01

    Energy structure of MHD flow coupling with outer resistance circuit is studied to illuminate qualitatively and quantitatively the energy relation of this basic MHD flow system with energy input and output. Energy structure are analytically derived based on the Navier-Stocks equations for two-dimensional fully-developed flow and generalized Ohm's Law. The influences of applied magnetic field, Hall parameter and conductivity on energy structure are discussed based on the analytical results. Associated energies in MHD flow are deduced and validated by energy conservation. These results reveal that energy structure consists of two sub structures: electrical energy structure and internal energy structure. Energy structure and its sub structures provide an integrated theoretical energy path of the MHD system. Applied magnetic field and conductivity decrease the input energy, dissipation by fluid viscosity and internal energy but increase the ratio of electrical energy to input energy, while Hall parameter has the opposite effects. These are caused by their different effects on Bulk velocity, velocity profiles, voltage and current in outer circuit. Understanding energy structure helps MHD application designers to actively adjust the allocation of different parts of energy so that it is more reasonable and desirable.

  11. Three-dimensional models of P wave velocity and P-to-S velocity ratio in the southern central Andes by simultaneous inversion of local earthquake data

    NASA Astrophysics Data System (ADS)

    Graeber, Frank M.; Asch, Günter

    1999-09-01

    The PISCO'94 (Proyecto de Investigatión Sismológica de la Cordillera Occidental, 1994) seismological network of 31 digital broad band and short-period three-component seismometers was deployed in northern Chile between the Coastal Cordillera and the Western Cordillera. More than 5300 local seismic events were observed in a 100 day period. A subset of high-quality P and S arrival time data was used to invert simultaneously for hypocenters and velocity structure. Additional data from two other networks in the region could be included. The velocity models show a number of prominent anomalies, outlining an extremely thickened crust (about 70 km) beneath the forearc region, an anomalous crustal structure beneath the recent magmatic arc (Western Cordillera) characterized by very low velocities, and a high-velocity slab. A region of an increased Vp/Vs ratio has been found directly above the Wadati-Benioff zone, which might be caused by hydration processes. A zone of lower than average velocities and a high Vp/Vs ratio might correspond to the asthenospheric wedge. The upper edge of the Wadati-Benioff zone is sharply defined by intermediate depth hypocenters, while evidence for a double seismic zone can hardly be seen. Crustal events between the Precordillera and the Western Cordillera have been observed for the first time and are mainly located in the vicinity of the Salar de Atacama down to depths of about 40 km.

  12. Trans-dimensional and hierarchical Bayesian approaches toward rigorous estimation of seismic sources and structures in the Northeast Asia

    NASA Astrophysics Data System (ADS)

    Kim, Seongryong; Tkalčić, Hrvoje; Mustać, Marija; Rhie, Junkee; Ford, Sean

    2016-04-01

    A framework is presented within which we provide rigorous estimations for seismic sources and structures in the Northeast Asia. We use Bayesian inversion methods, which enable statistical estimations of models and their uncertainties based on data information. Ambiguities in error statistics and model parameterizations are addressed by hierarchical and trans-dimensional (trans-D) techniques, which can be inherently implemented in the Bayesian inversions. Hence reliable estimation of model parameters and their uncertainties is possible, thus avoiding arbitrary regularizations and parameterizations. Hierarchical and trans-D inversions are performed to develop a three-dimensional velocity model using ambient noise data. To further improve the model, we perform joint inversions with receiver function data using a newly developed Bayesian method. For the source estimation, a novel moment tensor inversion method is presented and applied to regional waveform data of the North Korean nuclear explosion tests. By the combination of new Bayesian techniques and the structural model, coupled with meaningful uncertainties related to each of the processes, more quantitative monitoring and discrimination of seismic events is possible.

  13. Three-dimensional flow field measurements in a radial inflow turbine scroll using LDV

    NASA Technical Reports Server (NTRS)

    Malak, M. F.; Hamed, A.; Tabakoff, W.

    1986-01-01

    The results of an experimental study of the three-dimensional flow field in a radial inflow turbine scroll are presented. A two-color LDV system was used in the measurement of three orthogonal velocity components at 758 points located throughout the scroll and the unvaned portion of the nozzle. The cold flow experimental results are presented for through-flow velocity contours and the cross velocity vectors.

  14. Velocity Field of the McMurdo Shear Zone from Annual Three-Dimensional Ground Penetrating Radar Imaging and Crevasse Matching

    NASA Astrophysics Data System (ADS)

    Ray, L.; Jordan, M.; Arcone, S. A.; Kaluzienski, L. M.; Koons, P. O.; Lever, J.; Walker, B.; Hamilton, G. S.

    2017-12-01

    The McMurdo Shear Zone (MSZ) is a narrow, intensely crevassed strip tens of km long separating the Ross and McMurdo ice shelves (RIS and MIS) and an important pinning feature for the RIS. We derive local velocity fields within the MSZ from two consecutive annual ground penetrating radar (GPR) datasets that reveal complex firn and marine ice crevassing; no englacial features are evident. The datasets were acquired in 2014 and 2015 using robot-towed 400 MHz and 200 MHz GPR over a 5 km x 5.7 km grid. 100 west-to-east transects at 50 m spacing provide three-dimensional maps that reveal the length of many firn crevasses, and their year-to-year structural evolution. Hand labeling of crevasse cross sections near the MSZ western and eastern boundaries reveal matching firn and marine ice crevasses, and more complex and chaotic features between these boundaries. By matching crevasse features from year to year both on the eastern and western boundaries and within the chaotic region, marine ice crevasses along the western and eastern boundaries are shown to align directly with firn crevasses, and the local velocity field is estimated and compared with data from strain rate surveys and remote sensing. While remote sensing provides global velocity fields, crevasse matching indicates greater local complexity attributed to faulting, folding, and rotation.

  15. A Bayesian model for highly accelerated phase-contrast MRI.

    PubMed

    Rich, Adam; Potter, Lee C; Jin, Ning; Ash, Joshua; Simonetti, Orlando P; Ahmad, Rizwan

    2016-08-01

    Phase-contrast magnetic resonance imaging is a noninvasive tool to assess cardiovascular disease by quantifying blood flow; however, low data acquisition efficiency limits the spatial and temporal resolutions, real-time application, and extensions to four-dimensional flow imaging in clinical settings. We propose a new data processing approach called Reconstructing Velocity Encoded MRI with Approximate message passing aLgorithms (ReVEAL) that accelerates the acquisition by exploiting data structure unique to phase-contrast magnetic resonance imaging. The proposed approach models physical correlations across space, time, and velocity encodings. The proposed Bayesian approach exploits the relationships in both magnitude and phase among velocity encodings. A fast iterative recovery algorithm is introduced based on message passing. For validation, prospectively undersampled data are processed from a pulsatile flow phantom and five healthy volunteers. The proposed approach is in good agreement, quantified by peak velocity and stroke volume (SV), with reference data for acceleration rates R≤10. For SV, Pearson r≥0.99 for phantom imaging (n = 24) and r≥0.96 for prospectively accelerated in vivo imaging (n = 10) for R≤10. The proposed approach enables accurate quantification of blood flow from highly undersampled data. The technique is extensible to four-dimensional flow imaging, where higher acceleration may be possible due to additional redundancy. Magn Reson Med 76:689-701, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  16. Aleutian basin oceanic crust

    USGS Publications Warehouse

    Christeson, Gail L.; Barth, Ginger A.

    2015-01-01

    We present two-dimensional P-wave velocity structure along two wide-angle ocean bottom seismometer profiles from the Aleutian basin in the Bering Sea. The basement here is commonly considered to be trapped oceanic crust, yet there is a change in orientation of magnetic lineations and gravity features within the basin that might reflect later processes. Line 1 extends ∼225 km from southwest to northeast, while Line 2 extends ∼225 km from northwest to southeast and crosses the observed change in magnetic lineation orientation. Velocities of the sediment layer increase from 2.0 km/s at the seafloor to 3.0–3.4 km/s just above basement, crustal velocities increase from 5.1–5.6 km/s at the top of basement to 7.0–7.1 km/s at the base of the crust, and upper mantle velocities are 8.1–8.2 km/s. Average sediment thickness is 3.8–3.9 km for both profiles. Crustal thickness varies from 6.2 to 9.6 km, with average thickness of 7.2 km on Line 1 and 8.8 km on Line 2. There is no clear change in crustal structure associated with a change in orientation of magnetic lineations and gravity features. The velocity structure is consistent with that of normal or thickened oceanic crust. The observed increase in crustal thickness from west to east is interpreted as reflecting an increase in melt supply during crustal formation.

  17. Three-dimensional upper crustal velocity structure beneath San Francisco Peninsula, California

    USGS Publications Warehouse

    Parsons, T.; Zoback, M.L.

    1997-01-01

    This paper presents new seismic data from, and crustal models of the San Francisco Peninsula. In much of central California the San Andreas fault juxtaposes the Cretaceous granitic Salinian terrane on its west and the Late Mesozoic/Early Tertiary Franciscan Complex on its east. On San Francisco Peninsula, however, the present-day San Andreas fault is completely within a Franciscan terrane, and the Pilarcitos fault, located southwest of the San Andreas, marks the Salinian-Franciscan boundary. This circumstance has evoked two different explanations: either the Pilarcitos is a thrust fault that has pushed Franciscan rocks over Salinian rocks or the Pilarcitos is a transform fault that has accommodated significant right-lateral slip. In an effort to better resolve the subsurface structure of the peninsula faults, we established a temporary network of 31 seismographs arrayed across the San Andreas fault and the subparallel Pilarcitos fault at ???1-2 km spacings. These instruments were deployed during the first 6 months of 1995 and recorded local earthquakes, air gun sources set off in San Francisco Bay, and explosive sources. Travel times from these sources were used to augment earthquake arrival times recorded by the Northern California Seismic Network and were inverted for three-dimensional velocity structure. Results show lateral velocity changes at depth (???0.5-7 km) that correlate with downward vertical projections of the surface traces of the San Andreas and Pilarcitos faults. We thus interpret the faults as high-angle to vertical features (constrained to a 70??-110?? dip range). From this we conclude that the Pilarcitos fault is probably an important strike-slip fault that accommodated much of the right-lateral plate boundary strain on the peninsula prior to the initiation of the modern-day San Andreas fault in this region sometime after about 3.0 m.y. ago.

  18. Revisiting Temporal Markov Chains for Continuum modeling of Transport in Porous Media

    NASA Astrophysics Data System (ADS)

    Delgoshaie, A. H.; Jenny, P.; Tchelepi, H.

    2017-12-01

    The transport of fluids in porous media is dominated by flow­-field heterogeneity resulting from the underlying permeability field. Due to the high uncertainty in the permeability field, many realizations of the reference geological model are used to describe the statistics of the transport phenomena in a Monte Carlo (MC) framework. There has been strong interest in working with stochastic formulations of the transport that are different from the standard MC approach. Several stochastic models based on a velocity process for tracer particle trajectories have been proposed. Previous studies have shown that for high variances of the log-conductivity, the stochastic models need to account for correlations between consecutive velocity transitions to predict dispersion accurately. The correlated velocity models proposed in the literature can be divided into two general classes of temporal and spatial Markov models. Temporal Markov models have been applied successfully to tracer transport in both the longitudinal and transverse directions. These temporal models are Stochastic Differential Equations (SDEs) with very specific drift and diffusion terms tailored for a specific permeability correlation structure. The drift and diffusion functions devised for a certain setup would not necessarily be suitable for a different scenario, (e.g., a different permeability correlation structure). The spatial Markov models are simple discrete Markov chains that do not require case specific assumptions. However, transverse spreading of contaminant plumes has not been successfully modeled with the available correlated spatial models. Here, we propose a temporal discrete Markov chain to model both the longitudinal and transverse dispersion in a two-dimensional domain. We demonstrate that these temporal Markov models are valid for different correlation structures without modification. Similar to the temporal SDEs, the proposed model respects the limited asymptotic transverse spreading of the plume in two-dimensional problems.

  19. Seismotectonics of the Loma Prieta, California, region determined from three-dimensional Vp, Vp/Vs, and seismicity

    USGS Publications Warehouse

    Eberhart-Phillips, D.; Michael, A.J.

    1998-01-01

    Three-dimensional Vp and Vp/Vs velocity models for the Loma Prieta region were developed from the inversion of local travel time data (21,925 P arrivals and 1,116 S arrivals) from earthquakes, refraction shots, and blasts recorded on 1700 stations from the Northern California Seismic Network and numerous portable seismograph deployments. The velocity and density models and microearthquake hypocenters reveal a complex structure that includes a San Andreas fault extending to the base of the seismogenic layer. A body with high Vp extends the length of the rupture and fills the 5 km wide volume between the Loma Prieta mainshock rupture and the San Andreas and Sargent faults. We suggest that this body controls both the pattern of background seismicity on the San Andreas and Sargent faults and the extent of rupture during the mainshock, thus explaining how the background seismicity outlined the along-strike and depth extent of the mainshock rupture on a different fault plane 5 km away. New aftershock focal mechanisms, based on three-dimensional ray tracing through the velocity model, support a heterogeneous postseismic stress field and can not resolve a uniform fault normal compression. The subvertical (or steeply dipping) San Andreas fault and the fault surfaces that ruptured in the 1989 Loma Prieta earthquake are both parts of the San Andreas fault zone and this section of the fault zone does not have a single type of characteristic event.

  20. Collisionless Dynamics and the Cosmic Web

    NASA Astrophysics Data System (ADS)

    Hahn, Oliver

    2016-10-01

    I review the nature of three-dimensional collapse in the Zeldovich approximation, how it relates to the underlying nature of the three-dimensional Lagrangian manifold and naturally gives rise to a hierarchical structure formation scenario that progresses through collapse from voids to pancakes, filaments and then halos. I then discuss how variations of the Zeldovich approximation (based on the gravitational or the velocity potential) have been used to define classifications of the cosmic large-scale structure into dynamically distinct parts. Finally, I turn to recent efforts to devise new approaches relying on tessellations of the Lagrangian manifold to follow the fine-grained dynamics of the dark matter fluid into the highly non-linear regime and both extract the maximum amount of information from existing simulations as well as devise new simulation techniques for cold collisionless dynamics.

  1. Range and egomotion estimation from compound photodetector arrays with parallel optical axis using optical flow techniques.

    PubMed

    Chahl, J S

    2014-01-20

    This paper describes an application for arrays of narrow-field-of-view sensors with parallel optical axes. These devices exhibit some complementary characteristics with respect to conventional perspective projection or angular projection imaging devices. Conventional imaging devices measure rotational egomotion directly by measuring the angular velocity of the projected image. Translational egomotion cannot be measured directly by these devices because the induced image motion depends on the unknown range of the viewed object. On the other hand, a known translational motion generates image velocities which can be used to recover the ranges of objects and hence the three-dimensional (3D) structure of the environment. A new method is presented for computing egomotion and range using the properties of linear arrays of independent narrow-field-of-view optical sensors. An approximate parallel projection can be used to measure translational egomotion in terms of the velocity of the image. On the other hand, a known rotational motion of the paraxial sensor array generates image velocities, which can be used to recover the 3D structure of the environment. Results of tests of an experimental array confirm these properties.

  2. Fault zone characteristics and basin complexity in the southern Salton Trough, California

    USGS Publications Warehouse

    Persaud, Patricia; Ma, Yiran; Stock, Joann M.; Hole, John A.; Fuis, Gary S.; Han, Liang

    2016-01-01

    Ongoing oblique slip at the Pacific–North America plate boundary in the Salton Trough produced the Imperial Valley (California, USA), a seismically active area with deformation distributed across a complex network of exposed and buried faults. To better understand the shallow crustal structure in this region and the connectivity of faults and seismicity lineaments, we used data primarily from the Salton Seismic Imaging Project to construct a three-dimensional P-wave velocity model down to 8 km depth and a velocity profile to 15 km depth, both at 1 km grid spacing. A VP = 5.65–5.85 km/s layer of possibly metamorphosed sediments within, and crystalline basement outside, the valley is locally as thick as 5 km, but is thickest and deepest in fault zones and near seismicity lineaments, suggesting a causative relationship between the low velocities and faulting. Both seismicity lineaments and surface faults control the structural architecture of the western part of the larger wedge-shaped basin, where two deep subbasins are located. We estimate basement depths, and show that high velocities at shallow depths and possible basement highs characterize the geothermal areas.

  3. The Analysis of Turbulent Flow by Hot Wire Signals. Ph.D. Thesis - Physikalische Ingenieurvissenschaft der Technischen Univ., 1981

    NASA Technical Reports Server (NTRS)

    Bartenwerfer, M.

    1982-01-01

    When measuring velocities in turbulent gas flow, approximation signal analysis with hot wire anemometers having one and two wire probes are used. A numeric test of standard analyses shows the resulting systemmatic error increases quickly with increasing turbulent intensity. Since it also depends on the turbulence structure, it cannot be corrected. The use of such probes is thus restricted to low turbulence. By means of three wire probes (in two dimensional flows with X wire probes) in principle, instantaneous values of velocity can be determined, and an asymmetric arrangement of wires has a theoretical advantage.

  4. Dimensional Crossover and Its Interplay with In-Plane Anisotropy of Upper Critical Field in β-(BDA-TTP)2SbF6

    NASA Astrophysics Data System (ADS)

    Yasuzuka, Syuma; Koga, Hiroaki; Yamamura, Yasuhisa; Saito, Kazuya; Uji, Shinya; Terashima, Taichi; Akutsu, Hiroki; Yamada, Jun-ichi

    2017-08-01

    Resistance measurements have been performed to investigate the dimensionality and the in-plane anisotropy of the upper critical field (Hc2) for β-(BDA-TTP)2SbF6 in fields H up to 15 T and at temperatures T from 1.5 to 7.5 K, where BDA-TTP stands for 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene. The upper critical fields parallel and perpendicular to the conduction layer are determined and dimensional crossover from anisotropic three-dimensional behavior to two-dimensional behavior is found at around 6 K. When the direction of H is varied within the conducting layer at 6.0 K, Hc2 shows twofold symmetry: Hc2 along the minimum Fermi wave vector (maximum Fermi velocity) is larger than that along the maximum Fermi wave vector (minimum Fermi velocity). The normal-state magnetoresistance has twofold symmetry similar to Hc2 and shows a maximum when the magnetic field is nearly parallel to the maximum Fermi wave vector. This tendency is consistent with the Fermi surface anisotropy. At 3.5 K, we found clear fourfold symmetry of Hc2 despite the fact that the normal-state magnetoresistance shows twofold symmetry arising from the Fermi surface anisotropy. The origin of the fourfold symmetry of Hc2 is discussed in terms of the superconducting gap structure in β-(BDA-TTP)2SbF6.

  5. Design and simulation of the micromixer with chaotic advection in twisted microchannels.

    PubMed

    Jen, Chun-Ping; Wu, Chung-Yi; Lin, Yu-Cheng; Wu, Ching-Yi

    2003-05-01

    Chaotic mixers with twisted microchannels were designed and simulated numerically in the present study. The phenomenon whereby a simple Eulerian velocity field may generate a chaotic response in the distribution of a Lagrangian marker is termed chaotic advection. Dynamic system theory indicates that chaotic particle motion can occur when a velocity field is either two-dimensional and time-dependent, or three-dimensional. In the present study, micromixers with three-dimensional structures of the twisted microchannel were designed in order to induce chaotic mixing. In addition to the basic T-mixer, three types of micromixers with inclined, oblique and wavelike microchannels were investigated. In the design of each twisted microchannel, the angle of the channels' bottoms alternates in each subsection. When the fluids enter the twisted microchannels, the flow sways around the varying structures within the microchannels. The designs of the twisted microchannels provide a third degree of freedom to the flow field in the microchannel. Therefore, chaotic regimes that lead to chaotic mixing may arise. The numerical results indicate that mixing occurs in the main channel and progressively larger mixing lengths are required as the Peclet number increased. The swaying of the flow in the twisted microchannel causes chaotic advection. Among the four micromixer designs, the micromixer with the inclined channel most improved mixing. Furthermore, using the inclined mixer with six subsections yielded optimum performance, decreasing the mixing length by up to 31% from that of the basic T-mixer.

  6. Seismic velocity variation along the Izu-Bonin arc estaimated from traveltime tomography using OBS data

    NASA Astrophysics Data System (ADS)

    Obana, K.; Tamura, Y.; Takahashi, T.; Kodaira, S.

    2014-12-01

    The Izu-Bonin (Ogasawara) arc is an intra-oceanic island arc along the convergent plate boundary between the subducting Pacific and overriding Philippine Sea plates. Recent active seismic studies in the Izu-Bonin arc reveal significant along-arc variations in crustal structure [Kodaira et al., 2007]. The thickness of the arc crust shows a remarkable change between thicker Izu (~30 km) and thinner Bonin (~10 km) arcs. In addition to this, several geological and geophysical contrasts, such as seafloor topography and chemical composition of volcanic rocks, between Izu and Bonin arc have been reported [e.g., Yuasa 1992]. We have conducted earthquake observations using ocean bottom seismographs (OBSs) to reveal seismic velocity structure of the crust and mantle wedge in the Izu-Bonin arc and to investigate origin of the along-arc structure variations. We deployed 40 short-period OBSs in Izu and Bonin area in 2006 and 2009, respectively. The OBS data were processed with seismic data recorded at routine seismic stations on Hachijo-jima, Aoga-shima, and Chichi-jima operated by National Research Institute for Earth Science and Disaster Prevention (NIED). More than 5000 earthquakes were observed during about three-months observation period in each experiment. We conducted three-dimensional seismic tomography using manually picked P- and S-wave arrival time data. The obtained image shows a different seismic velocity structures in the mantle beneath the volcanic front between Izu and Bonin arcs. Low P-wave velocity anomalies in the mantle beneath the volcanic front in the Izu arc are limited at depths deeper than those in the Bonin arc. On the other hand, P-wave velocity in the low velocity anomalies beneath volcanic front in the Bonin arc is slower than that in the Izu arc. These large-scale along-arc structure variations in the mantle could relate to the geological and geophysical contrasts between Izu and Bonin arcs.

  7. Continent-arc collision in the Banda Arc imaged by ambient noise tomography

    NASA Astrophysics Data System (ADS)

    Porritt, Robert W.; Miller, Meghan S.; O'Driscoll, Leland J.; Harris, Cooper W.; Roosmawati, Nova; Teofilo da Costa, Luis

    2016-09-01

    The tectonic configuration of the Banda region in southeast Asia captures the spatial transition from subduction of Indian Ocean lithosphere to subduction and collision of the Australian continental lithosphere beneath the Banda Arc. An ongoing broadband seismic deployment funded by NSF is aimed at better understanding the mantle and lithospheric structure in the region and the relationship of the arc-continent collision to orogenesis. Here, we present results from ambient noise tomography in the region utilizing this temporary deployment of 30 broadband instruments and 39 permanent stations in Indonesia, Timor Leste, and Australia. We measure dispersion curves for over 21,000 inter-station paths resulting in good recovery of the velocity structure of the crust and upper mantle beneath the Savu Sea, Timor Leste, and the Nusa Tenggara Timur (NTT) region of Indonesia. The resulting three dimensional model indicates up to ∼25% variation in shear velocity throughout the plate boundary region; first-order velocity anomalies are associated with the subducting oceanic lithosphere, subducted Australian continental lithosphere, obducted oceanic sediments forming the core of the island of Timor, and high velocity anomalies in the Savu Sea and Sumba. The structure in Sumba and the Savu Sea is consistent with an uplifting forearc sliver. Beneath the island of Timor, we confirm earlier inferences of pervasive crustal duplexing from surface mapping, and establish a link to underlying structural features in the lowermost crust and uppermost mantle that drive upper crustal shortening. Finally, our images of the volcanic arc under Flores, Wetar, and Alor show high velocity structures of the Banda Terrane, but also a clear low velocity anomaly at the transition between subduction of oceanic and continental lithosphere. Given that the footprint of the Banda Terrane has previously been poorly defined, this model provides important constraints on tectonic reconstructions that formerly have lacked information on the lower crust and uppermost mantle.

  8. Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, R.; Aluie, H.; Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14627

    The nonlinear evolution of the single-mode ablative Rayleigh-Taylor instability is studied in three dimensions. As the mode wavelength approaches the cutoff of the linear spectrum (short-wavelength modes), it is found that the three-dimensional (3D) terminal bubble velocity greatly exceeds both the two-dimensional (2D) value and the classical 3D bubble velocity. Unlike in 2D, the 3D short-wavelength bubble velocity does not saturate. The growing 3D bubble acceleration is driven by the unbounded accumulation of vorticity inside the bubble. The vorticity is transferred by mass ablation from the Rayleigh-Taylor spikes to the ablated plasma filling the bubble volume.

  9. Origin of the inertial deviation from Darcy's law: An investigation from a microscopic flow analysis on two-dimensional model structures

    NASA Astrophysics Data System (ADS)

    Agnaou, Mehrez; Lasseux, Didier; Ahmadi, Azita

    2017-10-01

    Inertial flow in porous media occurs in many situations of practical relevance among which one can cite flows in column reactors, in filters, in aquifers, or near wells for hydrocarbon recovery. It is characterized by a deviation from Darcy's law that leads to a nonlinear relationship between the pressure drop and the filtration velocity. In this work, this deviation, also known as the nonlinear, inertial, correction to Darcy's law, which is subject to controversy upon its origin and dependence on the filtration velocity, is studied through numerical simulations. First, the microscopic flow problem was solved computationally for a wide range of Reynolds numbers up to the limit of steady flow within ordered and disordered porous structures. In a second step, the macroscopic characteristics of the porous medium and flow (permeability and inertial correction tensors) that appear in the macroscale model were computed. From these results, different flow regimes were identified: (1) the weak inertia regime where the inertial correction has a cubic dependence on the filtration velocity and (2) the strong inertia (Forchheimer) regime where the inertial correction depends on the square of the filtration velocity. However, the existence and origin of those regimes, which depend also on the microstructure and flow orientation, are still not well understood in terms of their physical interpretations, as many causes have been conjectured in the literature. In the present study, we provide an in-depth analysis of the flow structure to identify the origin of the deviation from Darcy's law. For accuracy and clarity purposes, this is carried out on two-dimensional structures. Unlike the previous studies reported in the literature, where the origin of inertial effects is often identified on a heuristic basis, a theoretical justification is presented in this work. Indeed, a decomposition of the convective inertial term into two components is carried out formally allowing the identification of a correlation between the flow structure and the different inertial regimes. These components correspond to the curvature of the flow streamlines weighted by the local fluid kinetic energy on the one hand and the distribution of the kinetic energy along these lines on the other hand. In addition, the role of the recirculation zones in the occurrence and in the form of the deviation from Darcy's law was thoroughly analyzed. For the porous structures under consideration, it is shown that (1) the kinetic energy lost in the vortices is insignificant even at high filtration velocities and (2) the shape of the flow streamlines induced by the recirculation zones plays an important role in the variation of the flow structure, which is correlated itself to the different flow regimes.

  10. An Experimental Study of a Separated/Reattached Flow Behind a Backward-Facing Step. Re(sub h) = 37,000

    NASA Technical Reports Server (NTRS)

    Jovic, Srba

    1996-01-01

    An experimental study was carried out to investigate turbulent structure of a two-dimensional incompressible separating/reattaching boundary layer behind a backward-facing step. Hot-wire measurement technique was used to measure three Reynolds stresses and higher-order mean products of velocity fluctuations. The Reynolds number, Re(sub h), based on the step height, h, and the reference velocity, U(sub 0), was 37,000. The upstream oncoming flow was fully developed turbulent boundary layer with the Re(sub theta) = 3600. All turbulent properties, such as Reynolds stresses, increase dramatically downstream of the step within an internally developing mixing layer. Distributions of dimensionless mean velocity, turbulent quantities and antisymmetric distribution of triple velocity products in the separated free shear layer suggest that the shear layer above the recirculating region strongly resembles free-shear mixing layer structure. In the reattachment region close to the wall, turbulent diffusion term balances the rate of dissipation since advection and production terms appear to be negligibly small. Further downstream, production and dissipation begin to dominate other transport processes near the wall indicating the growth of an internal turbulent boundary layer. In the outer region, however, the flow still has a memory of the upstream disturbance even at the last measuring station of 51 step-heights. The data show that the structure of the inner layer recovers at a much faster rate than the outer layer structure. The inner layer structure resembles the near-wall structure of a plane zero pressure-gradient turbulent boundary layer (plane TBL) by 25h to 30h, while the outer layer structure takes presumably over 100h.

  11. Testing the limits of the Maxwell distribution of velocities for atoms flying nearly parallel to the walls of a thin cell.

    PubMed

    Todorov, Petko; Bloch, Daniel

    2017-11-21

    For a gas at thermal equilibrium, it is usually assumed that the velocity distribution follows an isotropic 3-dimensional Maxwell-Boltzmann (M-B) law. This assumption classically implies the assumption of a "cos θ" law for the flux of atoms leaving the surface. Actually, such a law has no grounds in surface physics, and experimental tests of this assumption have remained very few. In a variety of recently developed sub-Doppler laser spectroscopy techniques for gases one-dimensionally confined in a thin cell, the specific contribution of atoms moving nearly parallel to the boundary of the vapor container becomes essential. We report here on the implementation of an experiment to probe effectively the distribution of atomic velocities parallel to the windows for a thin (60 μm) Cs vapor cell. The principle of the setup relies on a spatially separated pump-probe experiment, where the variations of the signal amplitude with the pump-probe separation provide the information on the velocity distribution. The experiment is performed in a sapphire cell on the Cs resonance line, which benefits from a long-lived hyperfine optical pumping. Presently, we can analyze specifically the density of atoms with slow normal velocities ∼5-20 m/s, already corresponding to unusual grazing flight-at ∼85°-88.5° from the normal to the surface-and no deviation from the M-B law is found within the limits of our elementary setup. Finally we suggest tracks to explore more parallel velocities, when surface details-roughness or structure-and the atom-surface interaction should play a key role to restrict the applicability of an M-B-type distribution.

  12. Static structure of active Brownian hard disks

    NASA Astrophysics Data System (ADS)

    de Macedo Biniossek, N.; Löwen, H.; Voigtmann, Th; Smallenburg, F.

    2018-02-01

    We explore the changes in static structure of a two-dimensional system of active Brownian particles (ABP) with hard-disk interactions, using event-driven Brownian dynamics simulations. In particular, the effect of the self-propulsion velocity and the rotational diffusivity on the orientationally-averaged fluid structure factor is discussed. Typically activity increases structural ordering and generates a structure factor peak at zero wave vector which is a precursor of motility-induced phase separation. Our results provide reference data to test future statistical theories for the fluid structure of active Brownian systems. This manuscript was submitted for the special issue of the Journal of Physics: Condensed Matter associated with the Liquid Matter Conference 2017.

  13. Numerical Simulation of the Vortex-Induced Vibration of A Curved Flexible Riser in Shear Flow

    NASA Astrophysics Data System (ADS)

    Zhu, Hong-jun; Lin, Peng-zhi

    2018-06-01

    A series of fully three-dimensional (3D) numerical simulations of flow past a free-to-oscillate curved flexible riser in shear flow were conducted at Reynolds number of 185-1015. The numerical results obtained by the two-way fluid-structure interaction (FSI) simulations are in good agreement with the experimental results reported in the earlier study. It is further found that the frequency transition is out of phase not only in the inline (IL) and crossflow (CF) directions but also along the span direction. The mode competition leads to the non-zero nodes of the rootmean- square (RMS) amplitude and the relatively chaotic trajectories. The fluid-structure interaction is to some extent reflected by the transverse velocity of the ambient fluid, which reaches the maximum value when the riser reaches the equilibrium position. Moreover, the local maximum transverse velocities occur at the peak CF amplitudes, and the values are relatively large when the vibration is in the resonance regions. The 3D vortex columns are shed nearly parallel to the axis of the curved flexible riser. As the local Reynolds number increases from 0 at the bottom of the riser to the maximum value at the top, the wake undergoes a transition from a two-dimensional structure to a 3D one. More irregular small-scale vortices appeared at the wake region of the riser, undergoing large amplitude responses.

  14. Numerical predictions of EML (electromagnetic launcher) system performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnurr, N.M.; Kerrisk, J.F.; Davidson, R.F.

    1987-01-01

    The performance of an electromagnetic launcher (EML) depends on a large number of parameters, including the characteristics of the power supply, rail geometry, rail and insulator material properties, injection velocity, and projectile mass. EML system performance is frequently limited by structural or thermal effects in the launcher (railgun). A series of computer codes has been developed at the Los Alamos National Laboratory to predict EML system performance and to determine the structural and thermal constraints on barrel design. These codes include FLD, a two-dimensional electrostatic code used to calculate the high-frequency inductance gradient and surface current density distribution for themore » rails; TOPAZRG, a two-dimensional finite-element code that simultaneously analyzes thermal and electromagnetic diffusion in the rails; and LARGE, a code that predicts the performance of the entire EML system. Trhe NIKE2D code, developed at the Lawrence Livermore National Laboratory, is used to perform structural analyses of the rails. These codes have been instrumental in the design of the Lethality Test System (LTS) at Los Alamos, which has an ultimate goal of accelerating a 30-g projectile to a velocity of 15 km/s. The capabilities of the individual codes and the coupling of these codes to perform a comprehensive analysis is discussed in relation to the LTS design. Numerical predictions are compared with experimental data and presented for the LTS prototype tests.« less

  15. Finite Element Simulation of Low Velocity Impact Damage on an Aeronautical Carbon Composite Structure

    NASA Astrophysics Data System (ADS)

    Lemanle Sanga, Roger Pierre; Garnier, Christian; Pantalé, Olivier

    2016-12-01

    Low velocity barely visible impact damage (BVID) in laminated carbon composite structures has a major importance for aeronautical industries. This contribution leads with the development of finite element models to simulate the initiation and the propagation of internal damage inside a carbon composite structure due by a low velocity impact. Composite plates made from liquid resin infusion process (LRI) have been subjected to low energy impacts (around 25 J) using a drop weight machine. In the experimental procedure, the internal damage is evaluated using an infrared thermographic camera while the indentation depth of the face is measured by optical measurement technique. In a first time we developed a robust model using homogenised shells based on degenerated tri-dimensional brick elements and in a second time we decided to modelize the whole stacking sequence of homogeneous layers and cohesive interlaminar interfaces in order to compare and validate the obtained results. Both layer and interface damage initiation and propagation models based on the Hashin and the Benzeggagh-Kenane criteria have been used for the numerical simulations. Comparison of numerical results and experiments has shown the accuracy of the proposed models.

  16. Numerical investigation of turbulent channel flow

    NASA Technical Reports Server (NTRS)

    Moin, P.; Kim, J.

    1981-01-01

    Fully developed turbulent channel flow was simulated numerically at Reynolds number 13800, based on centerline velocity and channel halt width. The large-scale flow field was obtained by directly integrating the filtered, three dimensional, time dependent, Navier-Stokes equations. The small-scale field motions were simulated through an eddy viscosity model. The calculations were carried out on the ILLIAC IV computer with up to 516,096 grid points. The computed flow field was used to study the statistical properties of the flow as well as its time dependent features. The agreement of the computed mean velocity profile, turbulence statistics, and detailed flow structures with experimental data is good. The resolvable portion of the statistical correlations appearing in the Reynolds stress equations are calculated. Particular attention is given to the examination of the flow structure in the vicinity of the wall.

  17. Kinetic feature of dipolarization fronts produced by interchange instability in the magnetotail

    NASA Astrophysics Data System (ADS)

    Lyu, Haoyu

    2017-04-01

    A two-dimensional extended MHD simulation is performed to study the kinetic feature of depolarization fronts (DF) in the scale of the ion inertial length / ion Larmor radius. The interchange instability, arising due to the force imbalance between the tailward gradient of thermal pressure and Earthward magnetic curvature force, self-consistently produces the DF in the near-Earth region. Numerical investigations indicate that the DF is a tangential discontinuity, which means that the normal plasma velocity across the DF should be zero in the reference system that is static with the DF structure. The electric system, including electric field and current, is determined by Hall effect arising in the scale of ion inertial length. Hall effect not only mainly contributes on the electric field normal to the tangent plane of the DF, increases the current along the tangent plane of the DF, but also makes the DF structure asymmetric. The drifting motion of the large-scale DF structure is determined by the FLR effect arising in the scale of ion Larmor radius. The ion magnetization velocity induced by the FLR effect is towards to duskward at the subsolar point of the DF, but the y component of velocity in the region after the DF, which dominantly results in the drifting motion of the whole mushroom structure towards the dawn.

  18. Phagraphene: A Low-Energy Graphene Allotrope Composed of 5-6-7 Carbon Rings with Distorted Dirac Cones.

    PubMed

    Wang, Zhenhai; Zhou, Xiang-Feng; Zhang, Xiaoming; Zhu, Qiang; Dong, Huafeng; Zhao, Mingwen; Oganov, Artem R

    2015-09-09

    Using systematic evolutionary structure searching we propose a new carbon allotrope, phagraphene [fæ'græfi:n], standing for penta-hexa-hepta-graphene, because the structure is composed of 5-6-7 carbon rings. This two-dimensional (2D) carbon structure is lower in energy than most of the predicted 2D carbon allotropes due to its sp(2)-binding features and density of atomic packing comparable to graphene. More interestingly, the electronic structure of phagraphene has distorted Dirac cones. The direction-dependent cones are further proved to be robust against external strain with tunable Fermi velocities.

  19. Three-dimensional thermocapillary flow regimes with evaporation

    NASA Astrophysics Data System (ADS)

    Bekezhanova, V. B.; Goncharova, O. N.

    2017-10-01

    A three-dimensional problem of evaporative convection in a system of the immiscible media with a common thermocapillary interface is studied. New exact solution, which is a generalization of the Ostroumov - Birikh solution of the Navier - Stokes equations in the Oberbeck - Boussinesq approximation, is presented in order to describe the joint flows of the liquid and gas - vapor mixture in an infinite channel with a rectangular cross-section. The motion occurs in the bulk force field under action of a constant longitudinal temperature gradient. The velocity components depend only on the transverse coordinates. The functions of pressure, temperature and concentration of vapor in the gas are characterized by the linear dependence on the longitudinal coordinate. In the framework of the problem statement, which takes into account diffusive mass flux through the interface and zero vapor flux at the upper boundary of the channel, the influence of the gravity and intensity of the thermal action on flow structure is studied. The original three-dimensional problem is reduced to a chain of two-dimensional problems which are solved numerically with help of modification of the method of alternating directions. Arising flows can be characterized as a translational-rotational motion, under that the symmetrical double, quadruple or sextuple vortex structures are formed. Quantity, shape and structure of the vortexes also depend on properties of the working media.

  20. Velocimetry modalities for secondary flows in a curved artery test section

    NASA Astrophysics Data System (ADS)

    Bulusu, Kartik V.; Elkins, Christopher J.; Banko, Andrew J.; Plesniak, Michael W.; Eaton, John K.

    2014-11-01

    Secondary flow structures arise due to curvature-related centrifugal forces and pressure imbalances. These flow structures influence wall shear stress and alter blood particle residence times. Magnetic resonance velocimetry (MRV) and particle image velocimetry (PIV) techniques were implemented independently, under the same physiological inflow conditions (Womersley number = 4.2). A 180-degree curved artery test section with curvature ratio (1/7) was used as an idealized geometry for curved arteries. Newtonian blood analog fluids were used for both MRV and PIV experiments. The MRV-technique offers the advantage of three-dimensional velocity field acquisition without requiring optical access or flow markers. Phase-averaged, two-dimensional, PIV-data at certain cross-sectional planes and inflow phases were compared to phase-averaged MRV-data to facilitate the characterization of large-scale, Dean-type vortices. Coherent structures detection methods that included a novel wavelet decomposition-based approach to characterize these flow structures was applied to both PIV- and MRV-data. The overarching goal of this study is the detection of motific, three-dimensional shapes of secondary flow structures using MRV techniques with guidance obtained from high fidelity, 2D-PIV measurements. This material is based in part upon work supported by the National Science Foundation under Grant Number CBET-0828903, and GW Center for Biomimetics and Bioinspired Engineering (COBRE).

  1. Measurement of Zeta-Potential at Microchannel Wall by a Nanoscale Laser Induced Fluorescence Imaging

    NASA Astrophysics Data System (ADS)

    Kazoe, Yutaka; Sato, Yohei

    A nanoscale laser induced fluorescence imaging was proposed by using fluorescent dye and the evanescent wave with total internal reflection of a laser beam. The present study focused on the two-dimensional measurement of zeta-potential at the microchannel wall, which is an electrostatic potential at the wall surface and a dominant parameter of electroosmotic flow. The evanescent wave, which decays exponentially from the wall, was used as an excitation light of the fluorescent dye. The fluorescent intensity detected by a CCD camera is closely related to the zeta-potential. Two kinds of fluorescent dye solution at different ionic concentrations were injected into a T-shaped microchannel, and formed a mixing flow field in the junction area. The two-dimensional distribution of zeta-potential at the microchannel wall in the pressure-driven flow field was measured. The obtained zeta-potential distribution has a transverse gradient toward the mixing flow field and was changed by the difference in the averaged velocity of pressure-driven flow. To understand the ion motion in the mixing flow field, the three-dimensional flow structure was analyzed by the velocity measurement using micron-resolution particle image velocimetry and the numerical simulation. It is concluded that the two-dimensional distribution of zeta-potential at the microchannel wall was dependent on the ion motion in the flow field, which was governed by the convection and molecular diffusion.

  2. [3D visualization and analysis of vocal fold dynamics].

    PubMed

    Bohr, C; Döllinger, M; Kniesburges, S; Traxdorf, M

    2016-04-01

    Visual investigation methods of the larynx mainly allow for the two-dimensional presentation of the three-dimensional structures of the vocal fold dynamics. The vertical component of the vocal fold dynamics is often neglected, yielding a loss of information. The latest studies show that the vertical dynamic components are in the range of the medio-lateral dynamics and play a significant role within the phonation process. This work presents a method for future 3D reconstruction and visualization of endoscopically recorded vocal fold dynamics. The setup contains a high-speed camera (HSC) and a laser projection system (LPS). The LPS projects a regular grid on the vocal fold surfaces and in combination with the HSC allows a three-dimensional reconstruction of the vocal fold surface. Hence, quantitative information on displacements and velocities can be provided. The applicability of the method is presented for one ex-vivo human larynx, one ex-vivo porcine larynx and one synthetic silicone larynx. The setup introduced allows the reconstruction of the entire visible vocal fold surfaces for each oscillation status. This enables a detailed analysis of the three dimensional dynamics (i. e. displacements, velocities, accelerations) of the vocal folds. The next goal is the miniaturization of the LPS to allow clinical in-vivo analysis in humans. We anticipate new insight on dependencies between 3D dynamic behavior and the quality of the acoustic outcome for healthy and disordered phonation.

  3. Flow near a model spur dike with a fixed scoured bed

    USDA-ARS?s Scientific Manuscript database

    Three-dimensional flow velocities were measured using an acoustic Doppler velocimeter at a closely spaced grid over a fixed scoured bed with a submerged spur dike. Three-dimensional flow velocities were measured at 3484 positions around the trapezoidal shaped submerged model spur dike over a fixed ...

  4. Analytical computation of three-dimensional synthetic seismograms by Modal Summation: method, validation and applications

    NASA Astrophysics Data System (ADS)

    La Mura, Cristina; Gholami, Vahid; Panza, Giuliano F.

    2013-04-01

    In order to enable realistic and reliable earthquake hazard assessment and reliable estimation of the ground motion response to an earthquake, three-dimensional velocity models have to be considered. The propagation of seismic waves in complex laterally varying 3D layered structures is a complicated process. Analytical solutions of the elastodynamic equations for such types of media are not known. The most common approaches to the formal description of seismic wavefields in such complex structures are methods based on direct numerical solutions of the elastodynamic equations, e.g. finite-difference, finite-element method, and approximate asymptotic methods. In this work, we present an innovative methodology for computing synthetic seismograms, complete of the main direct, refracted, converted phases and surface waves in three-dimensional anelastic models based on the combination of the Modal Summation technique with the Asymptotic Ray Theory in the framework of the WKBJ - approximation. The three - dimensional models are constructed using a set of vertically heterogeneous sections (1D structures) that are juxtaposed on a regular grid. The distribution of these sections in the grid is done in such a way to fulfill the requirement of weak lateral inhomogeneity in order to satisfy the condition of applicability of the WKBJ - approximation, i.e. the lateral gradient of the parameters characterizing the 1D structure has to be small with respect to the prevailing wavelength. The new method has been validated comparing synthetic seismograms with the records available of three different earthquakes in three different regions: Kanto basin (Japan) triggered by the 1990 Odawara earthquake Mw= 5.1, Romanian territory triggered by the 30 May 1990 Vrancea intermediate-depth earthquake Mw= 6.9 and Iranian territory affected by the 26 December 2003 Bam earthquake Mw= 6.6. Besides the advantage of being a useful tool for assessment of seismic hazard and seismic risk reduction, it is characterized by high efficiency, in fact, once the study region is identified and the 3D model is constructed, the computation, at each station, of the three components of the synthetic signal (displacement, velocity, and acceleration) takes less than 3 hours on a 2 GHz CPU.

  5. A Scanning laser-velocimeter technique for measuring two-dimensional wake-vortex velocity distributions. [Langley Vortex Research Facility

    NASA Technical Reports Server (NTRS)

    Gartrell, L. R.; Rhodes, D. B.

    1980-01-01

    A rapid scanning two dimensional laser velocimeter (LV) has been used to measure simultaneously the vortex vertical and axial velocity distributions in the Langley Vortex Research Facility. This system utilized a two dimensional Bragg cell for removing flow direction ambiguity by translating the optical frequency for each velocity component, which was separated by band-pass filters. A rotational scan mechanism provided an incremental rapid scan to compensate for the large displacement of the vortex with time. The data were processed with a digital counter and an on-line minicomputer. Vaporized kerosene (0.5 micron to 5 micron particle sizes) was used for flow visualization and LV scattering centers. The overall measured mean-velocity uncertainity is less than 2 percent. These measurements were obtained from ensemble averaging of individual realizations.

  6. Mantle shear-wave tomography and the fate of subducted slabs.

    PubMed

    Grand, Steven P

    2002-11-15

    A new seismic model of the three-dimensional variation in shear velocity throughout the Earth's mantle is presented. The model is derived entirely from shear bodywave travel times. Multibounce shear waves, core-reflected waves and SKS and SKKS waves that travel through the core are used in the analysis. A unique aspect of the dataset used in this study is the use of bodywaves that turn at shallow depths in the mantle, some of which are triplicated. The new model is compared with other global shear models. Although competing models show significant variations, several large-scale structures are common to most of the models. The high-velocity anomalies are mostly associated with subduction zones. In some regions the anomalies only extend into the shallow lower mantle, whereas in other regions tabular high-velocity structures seem to extend to the deepest mantle. The base of the mantle shows long-wavelength high-velocity zones also associated with subduction zones. The heterogeneity seen in global tomography models is difficult to interpret in terms of mantle flow due to variations in structure from one subduction zone to another. The simplest interpretation of the seismic images is that slabs in general penetrate to the deepest mantle, although the flow is likely to be sporadic. The interruption in slab sinking is likely to be associated with the 660 km discontinuity.

  7. Stage-structured infection transmission and a spatial epidemic: a model for Lyme disease.

    PubMed

    Caraco, Thomas; Glavanakov, Stephan; Chen, Gang; Flaherty, Joseph E; Ohsumi, Toshiro K; Szymanski, Boleslaw K

    2002-09-01

    A greater understanding of the rate at which emerging disease advances spatially has both ecological and applied significance. Analyzing the spread of vector-borne disease can be relatively complex when the vector's acquisition of a pathogen and subsequent transmission to a host occur in different life stages. A contemporary example is Lyme disease. A long-lived tick vector acquires infection during the larval blood meal and transmits it as a nymph. We present a reaction-diffusion model for the ecological dynamics governing the velocity of the current epidemic's spread. We find that the equilibrium density of infectious tick nymphs (hence the risk of human disease) can depend on density-independent survival interacting with biotic effects on the tick's stage structure. The local risk of infection reaches a maximum at an intermediate level of adult tick mortality and at an intermediate rate of juvenile tick attacks on mammalian hosts. If the juvenile tick attack rate is low, an increase generates both a greater density of infectious nymphs and an increased spatial velocity. However, if the juvenile attack rate is relatively high, nymph density may decline while the epidemic's velocity still increases. Velocities of simulated two-dimensional epidemics correlate with the model pathogen's basic reproductive number (R0), but calculating R0 involves parameters of both host infection dynamics and the vector's stage-structured dynamics.

  8. Numerical Simulation of Flow Features and Energy Exchange Physics in Near-Wall Region with Fluid-Structure Interaction

    NASA Astrophysics Data System (ADS)

    Zhang, Lixiang; Wang, Wenquan; Guo, Yakun

    Large eddy simulation is used to explore flow features and energy exchange physics between turbulent flow and structure vibration in the near-wall region with fluid-structure interaction (FSI). The statistical turbulence characteristics in the near-wall region of a vibrating wall, such as the skin frictional coefficient, velocity, pressure, vortices, and the coherent structures have been studied for an aerofoil blade passage of a true three-dimensional hydroturbine. The results show that (i) FSI greatly strengthens the turbulence in the inner region of y+ < 25; and (ii) the energy exchange mechanism between the flow and the vibration depends strongly on the vibration-induced vorticity in the inner region. The structural vibration provokes a frequent action between the low- and high-speed streaks to balance the energy deficit caused by the vibration. The velocity profile in the inner layer near the vibrating wall has a significant distinctness, and the viscosity effect of the fluid in the inner region decreases due to the vibration. The flow features in the inner layer are altered by a suitable wall vibration.

  9. A new approach to fluid-structure interaction within graphics hardware accelerated smooth particle hydrodynamics considering heterogeneous particle size distribution

    NASA Astrophysics Data System (ADS)

    Eghtesad, Adnan; Knezevic, Marko

    2018-07-01

    A corrective smooth particle method (CSPM) within smooth particle hydrodynamics (SPH) is used to study the deformation of an aircraft structure under high-velocity water-ditching impact load. The CSPM-SPH method features a new approach for the prediction of two-way fluid-structure interaction coupling. Results indicate that the implementation is well suited for modeling the deformation of structures under high-velocity impact into water as evident from the predicted stress and strain localizations in the aircraft structure as well as the integrity of the impacted interfaces, which show no artificial particle penetrations. To reduce the simulation time, a heterogeneous particle size distribution over a complex three-dimensional geometry is used. The variable particle size is achieved from a finite element mesh with variable element size and, as a result, variable nodal (i.e., SPH particle) spacing. To further accelerate the simulations, the SPH code is ported to a graphics processing unit using the OpenACC standard. The implementation and simulation results are described and discussed in this paper.

  10. A new approach to fluid-structure interaction within graphics hardware accelerated smooth particle hydrodynamics considering heterogeneous particle size distribution

    NASA Astrophysics Data System (ADS)

    Eghtesad, Adnan; Knezevic, Marko

    2017-12-01

    A corrective smooth particle method (CSPM) within smooth particle hydrodynamics (SPH) is used to study the deformation of an aircraft structure under high-velocity water-ditching impact load. The CSPM-SPH method features a new approach for the prediction of two-way fluid-structure interaction coupling. Results indicate that the implementation is well suited for modeling the deformation of structures under high-velocity impact into water as evident from the predicted stress and strain localizations in the aircraft structure as well as the integrity of the impacted interfaces, which show no artificial particle penetrations. To reduce the simulation time, a heterogeneous particle size distribution over a complex three-dimensional geometry is used. The variable particle size is achieved from a finite element mesh with variable element size and, as a result, variable nodal (i.e., SPH particle) spacing. To further accelerate the simulations, the SPH code is ported to a graphics processing unit using the OpenACC standard. The implementation and simulation results are described and discussed in this paper.

  11. Velocity-dependent quantum phase slips in 1D atomic superfluids.

    PubMed

    Tanzi, Luca; Scaffidi Abbate, Simona; Cataldini, Federica; Gori, Lorenzo; Lucioni, Eleonora; Inguscio, Massimo; Modugno, Giovanni; D'Errico, Chiara

    2016-05-18

    Quantum phase slips are the primary excitations in one-dimensional superfluids and superconductors at low temperatures but their existence in ultracold quantum gases has not been demonstrated yet. We now study experimentally the nucleation rate of phase slips in one-dimensional superfluids realized with ultracold quantum gases, flowing along a periodic potential. We observe a crossover between a regime of temperature-dependent dissipation at small velocity and interaction and a second regime of velocity-dependent dissipation at larger velocity and interaction. This behavior is consistent with the predicted crossover from thermally-assisted quantum phase slips to purely quantum phase slips.

  12. Statistics of velocity gradients in two-dimensional Navier-Stokes and ocean turbulence.

    PubMed

    Schorghofer, Norbert; Gille, Sarah T

    2002-02-01

    Probability density functions and conditional averages of velocity gradients derived from upper ocean observations are compared with results from forced simulations of the two-dimensional Navier-Stokes equations. Ocean data are derived from TOPEX satellite altimeter measurements. The simulations use rapid forcing on large scales, characteristic of surface winds. The probability distributions of transverse velocity derivatives from the ocean observations agree with the forced simulations, although they differ from unforced simulations reported elsewhere. The distribution and cross correlation of velocity derivatives provide clear evidence that large coherent eddies play only a minor role in generating the observed statistics.

  13. Development of an integrated BEM for hot fluid-structure interaction

    NASA Technical Reports Server (NTRS)

    Banerjee, P. K.; Dargush, G. F.

    1989-01-01

    The Boundary Element Method (BEM) is chosen as a basic analysis tool principally because the definition of quantities like fluxes, temperature, displacements, and velocities is very precise on a boundary base discretization scheme. One fundamental difficulty is, of course, that the entire analysis requires a very considerable amount of analytical work which is not present in other numerical methods. During the last 18 months all of this analytical work was completed and a two-dimensional, general purpose code was written. Some of the early results are described. It is anticipated that within the next two to three months almost all two-dimensional idealizations will be examined. It should be noted that the analytical work for the three-dimensional case has also been done and numerical implementation will begin next year.

  14. Three dimensional images of geothermal systems: local earthquake P-wave velocity tomography at the Hengill and Krafla geothermal areas, Iceland, and The Geysers, California

    USGS Publications Warehouse

    Julian, B.R.; Prisk, A.; Foulger, G.R.; Evans, J.R.; ,

    1993-01-01

    Local earthquake tomography - the use of earthquake signals to form a 3-dimensional structural image - is now a mature geophysical analysis method, particularly suited to the study of geothermal reservoirs, which are often seismically active and severely laterally inhomogeneous. Studies have been conducted of the Hengill (Iceland), Krafla (Iceland) and The Geysers (California) geothermal areas. All three systems are exploited for electricity and/or heat production, and all are highly seismically active. Tomographic studies of volumes a few km in dimension were conducted for each area using the method of Thurber (1983).

  15. A High-Resolution, Three-Dimensional Model of Jupiter's Great Red Spot

    NASA Technical Reports Server (NTRS)

    Cho, James Y.-K.; delaTorreJuarez, Manuel; Ingersoll, Andrew P.; Dritschel, David G.

    2001-01-01

    The turbulent flow at the periphery of the Great Red Spot (GRS) contains many fine-scale filamentary structures, while the more quiescent core, bounded by a narrow high- velocity ring, exhibits organized, possibly counterrotating, motion. Past studies have neither been able to capture this complexity nor adequately study the effect of vertical stratification L(sub R)(zeta) on the GRS. We present results from a series of high-resolution, three-dimensional simulations that advect the dynamical tracer, potential vorticity. The detailed flow is successfully captured with a characteristic value of L(sub R) approx. equals 2000 km, independent of the precise vertical stratification profile.

  16. Dynamic three-dimensional phase-contrast technique in MRI: application to complex flow analysis around the artificial heart valve

    NASA Astrophysics Data System (ADS)

    Kim, Soo Jeong; Lee, Dong Hyuk; Song, Inchang; Kim, Nam Gook; Park, Jae-Hyeung; Kim, JongHyo; Han, Man Chung; Min, Byong Goo

    1998-07-01

    Phase-contrast (PC) method of magnetic resonance imaging (MRI) has bee used for quantitative measurements of flow velocity and volume flow rate. It is a noninvasive technique which provides an accurate two-dimensional velocity image. Moreover, Phase Contrast Cine magnetic resonance imaging combines the flow dependent contrast of PC-MRI with the ability of cardiac cine imaging to produce images throughout the cardiac cycle. However, the accuracy of the data acquired from the single through-plane velocity encoding can be reduced by the effect of flow direction, because in many practical cases flow directions are not uniform throughout the whole region of interest. In this study, we present dynamic three-dimensional velocity vector mapping method using PC-MRI which can visualize the complex flow pattern through 3D volume rendered images displayed dynamically. The direction of velocity mapping can be selected along any three orthogonal axes. By vector summation, the three maps can be combined to form a velocity vector map that determines the velocity regardless of the flow direction. At the same time, Cine method is used to observe the dynamic change of flow. We performed a phantom study to evaluate the accuracy of the suggested PC-MRI in continuous and pulsatile flow measurement. Pulsatile flow wave form is generated by the ventricular assistant device (VAD), HEMO-PULSA (Biomedlab, Seoul, Korea). We varied flow velocity, pulsatile flow wave form, and pulsing rate. The PC-MRI-derived velocities were compared with Doppler-derived results. The velocities of the two measurements showed a significant linear correlation. Dynamic three-dimensional velocity vector mapping was carried out for two cases. First, we applied to the flow analysis around the artificial heart valve in a flat phantom. We could observe the flow pattern around the valve through the 3-dimensional cine image. Next, it is applied to the complex flow inside the polymer sac that is used as ventricle in totally implantable artificial heart (TAH). As a result we could observe the flow pattern around the valves of the sac, though complex flow can not be detected correctly in the conventional phase contrast method. In addition, we could calculate the cardiac output from TAH sac by quantitative measurement of the volume of flow across the outlet valve.

  17. Intermittent Lagrangian velocities and accelerations in three-dimensional porous medium flow.

    PubMed

    Holzner, M; Morales, V L; Willmann, M; Dentz, M

    2015-07-01

    Intermittency of Lagrangian velocity and acceleration is a key to understanding transport in complex systems ranging from fluid turbulence to flow in porous media. High-resolution optical particle tracking in a three-dimensional (3D) porous medium provides detailed 3D information on Lagrangian velocities and accelerations. We find sharp transitions close to pore throats, and low flow variability in the pore bodies, which gives rise to stretched exponential Lagrangian velocity and acceleration distributions characterized by a sharp peak at low velocity, superlinear evolution of particle dispersion, and double-peak behavior in the propagators. The velocity distribution is quantified in terms of pore geometry and flow connectivity, which forms the basis for a continuous-time random-walk model that sheds light on the observed Lagrangian flow and transport behaviors.

  18. Three-dimensional seismic refraction tomography of the crustal structure at the ION site on the Ninetyeast Ridge, Indian Ocean

    NASA Astrophysics Data System (ADS)

    Schlindwein, Vera; Bönnemann, Christian; Reichert, Christian; Grevemeyer, Ingo; Flueh, Ernst

    2003-01-01

    We have performed a 3-D seismic refraction tomography of a 48 × 48 km2 area surrounding ODP site 757, which is planned to host an International Ocean Network (ION) permanent seismological observatory, called the Ninetyeast Ridge Observatory (NERO). The study area is located in the southern part of the Ninetyeast Ridge, the trail left by the Kerguelen hotspot on the Indian plate. The GEOMAR Research Centre for Marine Geosciences and the Federal Institute for Geosciences and Natural Resources acquired 18 wide-angle profiles recorded by 23 ocean bottom hydrophones during cruise SO131 of R/V Sonne in spring 1998. We apply a first arrival traveltime tomography technique using regularized inversion to recover the 3-D velocity structure relative to a 1-D background model that was constructed from a priori information and averaged traveltime data. The final velocity model revealed the crustal structure down to approximately 8 km depth. Resolution tests showed that structures with approximately 6 km horizontal extent can reliably be resolved down to that depth. The survey imaged the extrusive layer of the upper crust of the Ninetyeast Ridge, which varies in thickness between 3 and 4 km. A high-velocity anomaly coinciding with a positive magnetic anomaly represents a volcanic centre from which crust in this area is thought to have formed. A pronounced low-velocity anomaly is located underneath a thick sedimentary cover in a bathymetric depression. However, poor ray coverage of the uppermost kilometre of the crust in this area resulted in smearing of the shallow structure to a larger depth. Tests explicitly including the shallow low-velocity layer confirmed the existence of the deeper structure. The heterogeneity of the upper crust as observed by our study will have consequences for the waveforms of earthquake signals to be recorded by the future seismic observatory.

  19. Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, R.; Betti, R.; Sanz, J.

    The nonlinear evolution of the single-mode ablative Rayleigh-Taylor instability is studied in three dimensions. As the mode wavelength approaches the cutoff of the linear spectrum (short-wavelength modes), it is found that the three-dimensional (3D) terminal bubble velocity greatly exceeds both the two-dimensional (2D) value and the classical 3D bubble velocity. Unlike in 2D, the 3D short-wavelength bubble velocity does not saturate. The growing 3D bubble acceleration is driven by the unbounded accumulation of vorticity inside the bubble. As a result, the vorticity is transferred by mass ablation from the Rayleigh-Taylor spikes to the ablated plasma filling the bubble volume.

  20. ORPC RivGen Hydrokinetic Turbine Wake Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomson, Jim; Guerra, Maricarmen

    Field measurements of mean flow and turbulence parameters at the Kvichak river prior to and after the deployment of ORPC's RivGen hydrokinetic turbine. Data description and turbine wake analysis are presented in the attached manuscript "Wake measurements from a hydrokinetic river turbine" by Guerra and Thomson (recently submitted to Renewable Energy). There are three data sets: NoTurbine (prior to deployment), Not_Operational_Turbine (turbine underwater, but not operational), and Operational_Turbine. The data has been quality controlled and organized into a three-dimensional grid using a local coordinate system described in the paper. All data sets are in Matlab format (.mat). Variables available inmore » the data sets are: qx: X coordinate matrix (m) qy: Y coordinate matrix (m) z : z coordinate vector (m) lat : grid cell latitude (degrees) lon: grid cell longitude (degrees) U : velocity magnitude (m/s) Ux: x velocity (m/s) Vy: y velocity (m/s) W: vertical velocity (m/s) Pseudo_beam.b_i: pseudo-along beam velocities (i = 1 to 4) (m/s) (structure with raw data within each grid cell) beam5.b5: 5th-beam velocity (m/s) (structure with raw data within each grid cell) tke: turbulent kinetic energy (m2/s2) epsilon: TKE dissipation rate (m2/s3) Reynolds stresses: uu, vv, ww, uw, vw (m2/s2) Variables from the Not Operational Turbine data set are identified with _T Variables from the Operational Turbine data set are identified with _TO« less

  1. Determination of Flux rope axis for GS reconstruction

    NASA Astrophysics Data System (ADS)

    Tian, A.; Shi, Q.; Bai, S.; Zhang, S.

    2016-12-01

    It is important to give the axis direction and velocity of a magnetic flux ropes before employing Grad-Shafranov reconstruction. The ability of single-satellite based MVA (MVAB and CMVA) and multi-satellite based MDD methods in finding the invariant axis are tested by a model. The choice of principal axis given by MVA along the aimed direction is dependent on the distance of the path from the flux-rope axis. The MDD results are influenced by the ratio of Noise level/separation to the gradient of the structure. An accurate axial direction will be obtained when the ratio is less than 1. By a model, an example with failed HT method is displayed indicating the importance of the STD method in obtaining the velocity of such a structure. The applicability of trial and error method by Hu and Sonnerup(2012) was also used and discussed. Finally, all above methods were applied to a flux-rope observed by Cluster. It shows that the GS method can be easily carried out in the case of clearly known dimensionality and velocity.

  2. Reynolds number and settling velocity influence for finite-release particle-laden gravity currents in a basin

    NASA Astrophysics Data System (ADS)

    Francisco, E. P.; Espath, L. F. R.; Laizet, S.; Silvestrini, J. H.

    2018-01-01

    Three-dimensional highly resolved Direct Numerical Simulations (DNS) of particle-laden gravity currents are presented for the lock-exchange problem in an original basin configuration, similar to delta formation in lakes. For this numerical study, we focus on gravity currents over a flat bed for which density differences are small enough for the Boussinesq approximation to be valid. The concentration of particles is described in an Eulerian fashion by using a transport equation combined with the incompressible Navier-Stokes equations, with the possibility of particles deposition but no erosion nor re-suspension. The focus of this study is on the influence of the Reynolds number and settling velocity on the development of the current which can freely evolve in the streamwise and spanwise direction. It is shown that the settling velocity has a strong influence on the spatial extent of the current, the sedimentation rate, the suspended mass and the shape of the lobe-and-cleft structures while the Reynolds number is mainly affecting the size and number of vortical structures at the front of the current, and the energy budget.

  3. The Next Generation of Planetary Atmospheric Probes

    NASA Technical Reports Server (NTRS)

    Houben, Howard

    2005-01-01

    Entry probes provide useful insights into the structures of planetary atmospheres, but give only one-dimensional pictures of complex four-dimensional systems that vary on all temporal and spatial scales. This makes the interpretation of the results quite challenging, especially as regards atmospheric dynamics. Here is a planetary meteorologist's vision of what the next generation of atmospheric entry probe missions should be: Dedicated sounding instruments get most of the required data from orbit. Relatively simple and inexpensive entry probes are released from the orbiter, with low entry velocities, to establish ground truth, to clarify the vertical structure, and for adaptive observations to enhance the dataset in preparation for sensitive operations. The data are assimilated onboard in real time. The products, being immediately available, are of immense benefit for scientific and operational purposes (aerobraking, aerocapture, accurate payload delivery via glider, ballooning missions, weather forecasts, etc.).

  4. A three-dimensional model of co-rotating streams in the solar wind. 2: Hydrodynamic streams

    NASA Technical Reports Server (NTRS)

    Pizzo, V. J.

    1979-01-01

    Theoretical aspects of corotating solar wind dynamics on a global scale are explored by means of numerical simulations executed with a nonlinear, inviscid, adiabatic, single-fluid, three-dimensional (3-D) hydrodynamic formulation. A simple, hypothetical 3-D stream structure is defined on a source surface located at 35 solar radius and carefully documents its evolution to 1 AU under the influence of solar rotation. By manipulating the structure of this prototype configuration at the source surface, it is possible to elucidate the factors most strongly affecting stream evolution: (1) the intrinsic correlations among density, temperature, and velocity existing near the source; (2) the amplitude of the stream; (3) the longitudinal breadth of the stream; (4) the latitudinal breadth of the stream; and (5) the heliographic latitude of the centroid of the stream.

  5. Seismic Tomography of the Sacramento -- San Joaquin River Delta: Joint P-wave/Gravity and Ambient Noise Methods

    NASA Astrophysics Data System (ADS)

    Teel, Alexander C.

    The Sacramento -- San Joaquin River Delta (SSJRD) is an area that has been identified as having high seismic hazard but has resolution gaps in the seismic velocity models of the area due to a scarcity of local seismic stations and earthquakes. I present new three-dimensional (3D) P-wave velocity (Vp) and S-wave velocity (Vs) models for the SSJRD which fill in the sampling gaps of previous studies. I have created a new 3D seismic velocity model for the SSJRD, addressing an identified need for higher resolution velocity models in the region, using a new joint gravity/body-wave tomography algorithm. I am able to fit gravity and arrival-time residuals jointly using an empirical density-velocity relationship to take advantage of existing gravity data in the region to help fill in the resolution gaps of previous velocity models in the area. I find that the method enhances the ability to resolve the relief of basin structure relative to seismic-only tomography at this location. I find the depth to the basement to be the greatest in the northwest portion of the SSJRD and that there is a plateau in the basement structure beneath the southeast portion of the SSJRD. From my findings I infer that the SSJRD may be prone to focusing effects and basin amplification of ground motion. A 3D, Vs model for the SSJRD and surrounding area was created using ambient noise tomography. The empirical Green's functions are in good agreement with published cross-correlations and match earthquake waveforms sharing similar paths. The group velocity and shear velocity maps are in good agreement with published regional scale models. The new model maps velocity values on a local scale and successfully recovers the basin structure beneath the Delta. From this Vs model I find the maximum depth of the basin to reach approximately 15 km with the Great Valley Ophiolite body rising to a depth of 10 km east of the SSJRD. We consider our basement-depth estimates from the Vp model to be more robust than from the Vs model.

  6. Comparison of CME radial velocities from a flux rope model and an ice cream cone model

    NASA Astrophysics Data System (ADS)

    Kim, T.; Moon, Y.; Na, H.

    2011-12-01

    Coronal Mass Ejections (CMEs) on the Sun are the largest energy release process in the solar system and act as the primary driver of geomagnetic storms and other space weather phenomena on the Earth. So it is very important to infer their directions, velocities and three-dimensional structures. In this study, we choose two different models to infer radial velocities of halo CMEs since 2008 : (1) an ice cream cone model by Xue et al (2005) using SOHO/LASCO data, (2) a flux rope model by Thernisien et al. (2009) using the STEREO/SECCHI data. In addition, we use another flux rope model in which the separation angle of flux rope is zero, which is morphologically similar to the ice cream cone model. The comparison shows that the CME radial velocities from among each model have very good correlations (R>0.9). We will extending this comparison to other partial CMEs observed by STEREO and SOHO.

  7. Kinematics in the Circumnuclear Disk

    NASA Astrophysics Data System (ADS)

    Mills, Elisabeth; Casey-Clyde, J. Andrew; Rodriguez, Julio; Kruijssen, Diederik; Martin, Sergio; Moser, Lydia; Riquelme, Denise; Harada, Nanase; Zhao, Jun-Hui; Lu, Hauyu

    2018-01-01

    The Circumnuclear Disk (CND) extends from 1.5-5pc in radius around our Galaxy's central supermassive black hole, Sagittarius A*. New ALMA observations reveal that the CND is a more complex system than previously thought, containing multiple streams, filaments and other structures inconsistent with the uniform circular rotation that is typically assumed for this source. We will present position-position-velocity maps of this region using the HNC 3-2 and HCN 3-2 transitions, which reveal line of sight velocities that are highly discontinuous in several regions, suggesting the CND consists of several overlapping and possibly interacting clouds, rather than one continuous and circularized disk. In particular, we single out a uniquely linear stream on the eastern side of this region, which is continuous in both position and velocity, with a size of 3 x 0.1 pc and velocities ranging from -50 to 100 km/s. For this stream, we will also present the results of recently performed orbital fitting, establishing its 3 dimensional position in the central potential around Sagittarius A*.

  8. New Insights Concerning the Local Interstellar medium

    NASA Astrophysics Data System (ADS)

    Linsky, Jeffrey L.; Redfield, Seth

    2015-08-01

    We have been analyzing HST high-resolution ultraviolet spectra of nearby stars to measure the radial velocities, turbulence, temperature, and depletions on warm diffuse interstellar gas within a few parsecs of the Sun. These data reveal a picture of many partially-ionized warm gas clouds, each with their own vector velocity and physical characteristics. This picture has been recently challenged by Gry and Jenkins (2014), who argue for a single nonrigid cloud surrounding the Sun. We present a test of these two very different morphological structure by checking how well each predicts the radial velocities in a new data set (Malamut et al. 2014) that was not available when both models were constructed. We find that the multicloud model (Redfield & Linsky 2008) provides a much better fit to the new data. We compare the new IBEX results for the temperature and velocity of inflowing He gas (McComas et al. 2015) with the properties of the Local Interstellar Cloud and the G cloud. We also show a preliminary three-dimensional model for the local interstellar medium.

  9. Electron Debye scale Kelvin-Helmholtz instability: Electrostatic particle-in-cell simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sang-Yun; Lee, Ensang, E-mail: eslee@khu.ac.kr; Kim, Khan-Hyuk

    2015-12-15

    In this paper, we investigated the electron Debye scale Kelvin-Helmholtz (KH) instability using two-dimensional electrostatic particle-in-cell simulations. We introduced a velocity shear layer with a thickness comparable to the electron Debye length and examined the generation of the KH instability. The KH instability occurs in a similar manner as observed in the KH instabilities in fluid or ion scales producing surface waves and rolled-up vortices. The strength and growth rate of the electron Debye scale KH instability is affected by the structure of the velocity shear layer. The strength depends on the magnitude of the velocity and the growth ratemore » on the velocity gradient of the shear layer. However, the development of the electron Debye scale KH instability is mainly determined by the electric field generated by charge separation. Significant mixing of electrons occurs across the shear layer, and a fraction of electrons can penetrate deeply into the opposite side fairly far from the vortices across the shear layer.« less

  10. Velocity filtering applied to optical flow calculations

    NASA Technical Reports Server (NTRS)

    Barniv, Yair

    1990-01-01

    Optical flow is a method by which a stream of two-dimensional images obtained from a forward-looking passive sensor is used to map the three-dimensional volume in front of a moving vehicle. Passive ranging via optical flow is applied here to the helicopter obstacle-avoidance problem. Velocity filtering is used as a field-based method to determine range to all pixels in the initial image. The theoretical understanding and performance analysis of velocity filtering as applied to optical flow is expanded and experimental results are presented.

  11. Development of a Localized Low-Dimensional Approach to Turbulence Simulation

    NASA Astrophysics Data System (ADS)

    Juttijudata, Vejapong; Rempfer, Dietmar; Lumley, John

    2000-11-01

    Our previous study has shown that the localized low-dimensional model derived from a projection of Navier-Stokes equations onto a set of one-dimensional scalar POD modes, with boundary conditions at y^+=40, can predict wall turbulence accurately for short times while failing to give a stable long-term solution. The structures obtained from the model and later studies suggest our boundary conditions from DNS are not consistent with the solution from the localized model resulting in an injection of energy at the top boundary. In the current study, we develop low-dimensional models using one-dimensional scalar POD modes derived from an explicitly filtered DNS. This model problem has exact no-slip boundary conditions at both walls while the locality of the wall layer is still retained. Furthermore, the interaction between wall and core region is attenuated via an explicit filter which allows us to investigate the quality of the model without requiring complicated modeling of the top boundary conditions. The full-channel model gives reasonable wall turbulence structures as well as long-term turbulent statistics while still having difficulty with the prediction of the mean velocity profile farther from the wall. We also consider a localized model with modified boundary conditions in the last part of our study.

  12. Influence of plankton community structure on the sinking velocity of marine aggregates

    NASA Astrophysics Data System (ADS)

    Bach, L. T.; Boxhammer, T.; Larsen, A.; Hildebrandt, N.; Schulz, K. G.; Riebesell, U.

    2016-08-01

    About 50 Gt of carbon is fixed photosynthetically by surface ocean phytoplankton communities every year. Part of this organic matter is reprocessed within the plankton community to form aggregates which eventually sink and export carbon into the deep ocean. The fraction of organic matter leaving the surface ocean is partly dependent on aggregate sinking velocity which accelerates with increasing aggregate size and density, where the latter is controlled by ballast load and aggregate porosity. In May 2011, we moored nine 25 m deep mesocosms in a Norwegian fjord to assess on a daily basis how plankton community structure affects material properties and sinking velocities of aggregates (Ø 80-400 µm) collected in the mesocosms' sediment traps. We noted that sinking velocity was not necessarily accelerated by opal ballast during diatom blooms, which could be due to relatively high porosity of these rather fresh aggregates. Furthermore, estimated aggregate porosity (Pestimated) decreased as the picoautotroph (0.2-2 µm) fraction of the phytoplankton biomass increased. Thus, picoautotroph-dominated communities may be indicative for food webs promoting a high degree of aggregate repackaging with potential for accelerated sinking. Blooms of the coccolithophore Emiliania huxleyi revealed that cell concentrations of 1500 cells/mL accelerate sinking by about 35-40%, which we estimate (by one-dimensional modeling) to elevate organic matter transfer efficiency through the mesopelagic from 14 to 24%. Our results indicate that sinking velocities are influenced by the complex interplay between the availability of ballast minerals and aggregate packaging; both of which are controlled by plankton community structure.

  13. Flexible fiber in interaction with a dense granular flow close to the jamming transition

    NASA Astrophysics Data System (ADS)

    Algarra, Nicolas; Leang, Marguerite; Lazarus, Arnaud; Vandembroucq, Damien; Kolb, Evelyne

    2017-06-01

    We propose a new fluid/structure interaction in the unusual case of a dense granular medium flowing against an elastic fiber acting as a flexible intruder. We study experimentally the reconfiguration and the forces exerted on the flexible fiber produced by the flow at a constant and low velocity of a two-dimensional disordered packing of grains close but below the jamming transition.

  14. The Structural Formation and Physical Behaviour of Cross-Linked Epoxy Resins

    DTIC Science & Technology

    1981-04-01

    analysis , at which the heat evolution reaches a maximum, may be used for purposes of characterisation. Aliphatic polyamines react mere quickly than the...DTA, DSC), thermomechanical analysis (TMA), torsional vibration analysis (TVA), deter- mination of the dimensional stability under heat (eq ISO R 75 or...obtained by thermomechanical analysis , taking the temperature of maximum velocity of penetration of a loaded probe (rate of heating - 10°C/min

  15. Low Dimensional Tools for Flow-Structure Interaction Problems: Application to Micro Air Vehicles

    NASA Technical Reports Server (NTRS)

    Schmit, Ryan F.; Glauser, Mark N.; Gorton, Susan A.

    2003-01-01

    A low dimensional tool for flow-structure interaction problems based on Proper Orthogonal Decomposition (POD) and modified Linear Stochastic Estimation (mLSE) has been proposed and was applied to a Micro Air Vehicle (MAV) wing. The method utilizes the dynamic strain measurements from the wing to estimate the POD expansion coefficients from which an estimation of the velocity in the wake can be obtained. For this experiment the MAV wing was set at five different angles of attack, from 0 deg to 20 deg. The tunnel velocities varied from 44 to 58 ft/sec with corresponding Reynolds numbers of 46,000 to 70,000. A stereo Particle Image Velocimetry (PIV) system was used to measure the wake of the MAV wing simultaneously with the signals from the twelve dynamic strain gauges mounted on the wing. With 20 out of 2400 POD modes, a reasonable estimation of the flow flow was observed. By increasing the number of POD modes, a better estimation of the flow field will occur. Utilizing the simultaneously sampled strain gauges and flow field measurements in conjunction with mLSE, an estimation of the flow field with lower energy modes is reasonable. With these results, the methodology for estimating the wake flow field from just dynamic strain gauges is validated.

  16. Molecular dynamics simulation of a piston driven shock wave in a hard sphere gas. Final Contractor ReportPh.D. Thesis

    NASA Technical Reports Server (NTRS)

    Woo, Myeung-Jouh; Greber, Isaac

    1995-01-01

    Molecular dynamics simulation is used to study the piston driven shock wave at Mach 1.5, 3, and 10. A shock tube, whose shape is a circular cylinder, is filled with hard sphere molecules having a Maxwellian thermal velocity distribution and zero mean velocity. The piston moves and a shock wave is generated. All collisions are specular, including those between the molecules and the computational boundaries, so that the shock development is entirely causal, with no imposed statistics. The structure of the generated shock is examined in detail, and the wave speed; profiles of density, velocity, and temperature; and shock thickness are determined. The results are compared with published results of other methods, especially the direct simulation Monte-Carlo method. Property profiles are similar to those generated by direct simulation Monte-Carlo method. The shock wave thicknesses are smaller than the direct simulation Monte-Carlo results, but larger than those of the other methods. Simulation of a shock wave, which is one-dimensional, is a severe test of the molecular dynamics method, which is always three-dimensional. A major challenge of the thesis is to examine the capability of the molecular dynamics methods by choosing a difficult task.

  17. The Aerodynamic and Dynamic Loading of a Slender Structure by an Impacting Tornado-Like Vortex: The Influence of Relative Vortex-to-Structure Size on Structural Loading

    NASA Astrophysics Data System (ADS)

    Strasser, Matthew N.

    Structural loading produced by an impacting vortex is a hazardous phenomenon that is encountered in numerous applications ranging from the destruction of residences by tornados to the chopping of tip vortices by rotors. Adequate design of structures to resist vortex-induced structural loading necessitates study of the phenomenon that control the structural loading produced by an impacting vortex. This body of work extends the current knowledge base of vortex-structure interaction by evaluating the influence of the relative vortex-to-structure size on the structural loading that the vortex produces. A computer model is utilized to directly simulate the two-dimensional impact of an impinging vortex with a slender, cylindrical structure. The vortex's tangential velocity profile (TVP) is defined by a normalization of the Vatistas analytical (TVP) which realistically replicates the documented spectrum of measured vortex TVPs. The impinging vortex's maximum tangential velocity is fixed, and the vortex's critical radius is incremented from one to one-hundred times the structure's diameter. When the impinging vortex is small, it interacts with vortices produced on the structure by the free stream, and maximum force coefficient amplitudes vary by more than 400% when the impinging vortex impacts the structure at different times. Maximum drag and lift force coefficient amplitudes reach asymptotic values as the impinging vortex's size increases that are respectively 94.77% and 10.66% less than maximum force coefficients produced by an equivalent maximum velocity free stream. The vortex produces maximum structural loading when its path is shifted above the structure's centerline, and maximum drag and lift force coefficients are respectively up to 4.80% and 34.07% greater than maximum force coefficients produced by an equivalent-velocity free stream. Finally, the dynamic load factor (DLF) concept is used to develop a generalized methodology to assess the dynamic amplification of a structure's response to vortex loading and to assess the dynamic loading threat that tornados pose. Typical civil and residential structures will not experience significant response amplification, but responses of very flexible structures may be amplified by up to 2.88 times.

  18. Regional P wave velocity structure of the Northern Cascadia Subduction Zone

    USGS Publications Warehouse

    Ramachandran, K.; Hyndman, R.D.; Brocher, T.M.

    2006-01-01

    This paper presents the first regional three-dimensional, P wave velocity model for the Northern Cascadia Subduction. Zone (SW British Columbia and NW Washington State) constructed through tomographic inversion of first-arrival traveltime data from active source experiments together with earthquake traveltime data recorded at permanent stations. The velocity model images the structure of the subducting Juan de Fuca plate, megathrust, and the fore-arc crust and upper mantle. Beneath southern Vancouver Island the megathrust above the Juan de Fuca plate is characterized by a broad zone (25-35 km depth) having relatively low velocities of 6.4-6.6 km/s. This relative low velocity zone coincides with the location of most of the episodic tremors recently mapped beneath Vancouver Island, and its low velocity may also partially reflect the presence of trapped fluids and sheared lower crustal rocks. The rocks of the Olympic Subduction Complex are inferred to deform aseismically as evidenced by the lack of earthquakes withi the low-velocity rocks. The fore-arc upper mantle beneath the Strait of Georgia and Puget Sound is characterized by velocities of 7.2-7.6 km/s. Such low velocities represent regional serpentinization of the upper fore-arc mantle and provide evidence for slab dewatering and densification. Tertiary sedimentary basins in the Strait of Georgia and Puget Lowland imaged by the velocity model lie above the inferred region of slab dewatering and densification and may therefore partly result from a higher rate of slab sinking. In contrast, sedimentary basins in the Strait of Juan de Fuca lie in a synclinal depression in the Crescent Terrane. The correlation of in-slab earthquake hypocenters M>4 with P wave velocities greater than 7.8 km/s at the hypocenters suggests that they originate near the oceanic Moho of the subducting Juan de Fuca plate. Copyright 2006 by the American Geophysical Union.

  19. Three-dimensional velocity structure of Siletzia and other accreted terranes in the Cascadia forearc of Washington

    USGS Publications Warehouse

    Parsons, T.; Wells, R.E.; Fisher, M.A.; Flueh, E.; ten Brink, Uri S.

    1999-01-01

    Eocene mafic crust with high seismic velocities underlies much of the Oregon and Washington forearc and acts as a backstop for accretion of marine sedimentary rocks from the obliquely subducting Juan de Fuca slab. Arc-parallel migration of relatively strong blocks of this terrane, known as Siletzia, focuses upper crustal deformation along block boundaries, which are potential sources of earthquakes. In a three-dimensional velocity model of coastal Washington, we have combined surface geology, well data, and travel times from earthquakes and controlled source seismic experiments to resolve the major boundaries of the Siletz terrane with the adjacent accreted sedimentary prism and volcanic arc. In southern Washington and northern Oregon the Siletz terrane appears to be a thick block (???20 km) that extends west of the coastline and makes a high-angle contact with the offshore accreted sedimentary prism. On its east flank the high-velocity Siletz terrane boundary coincides with an en echelon zone of seismicity in the arc. In northern Washington the western edge of Siletzia makes a lower-angled, fault-bound contact with the accretionary prism. In addition, alternating, east-west trending uplifts and downwarps of the Siletz terrane centered on the antiformal Olympic Mountains may reflect focusing of north-south compression in the northern part of the Siletz terrane. This compressional strain may result from northward transport and clockwise rotation of the Siletz terrane into the relatively fixed Canadian Coast Mountains restraining bend along the coast.

  20. Three-dimensional finite element analysis for high velocity impact. [of projectiles from space debris

    NASA Technical Reports Server (NTRS)

    Chan, S. T. K.; Lee, C. H.; Brashears, M. R.

    1975-01-01

    A finite element algorithm for solving unsteady, three-dimensional high velocity impact problems is presented. A computer program was developed based on the Eulerian hydroelasto-viscoplastic formulation and the utilization of the theorem of weak solutions. The equations solved consist of conservation of mass, momentum, and energy, equation of state, and appropriate constitutive equations. The solution technique is a time-dependent finite element analysis utilizing three-dimensional isoparametric elements, in conjunction with a generalized two-step time integration scheme. The developed code was demonstrated by solving one-dimensional as well as three-dimensional impact problems for both the inviscid hydrodynamic model and the hydroelasto-viscoplastic model.

  1. On the construction of a direct numerical simulation of a breaking inertia-gravity wave in the upper mesosphere

    NASA Astrophysics Data System (ADS)

    Fruman, Mark D.; Remmler, Sebastian; Achatz, Ulrich; Hickel, Stefan

    2014-10-01

    A systematic approach to the direct numerical simulation (DNS) of breaking upper mesospheric inertia-gravity waves of amplitude close to or above the threshold for static instability is presented. Normal mode or singular vector analysis applied in a frame of reference moving with the phase velocity of the wave (in which the wave is a steady solution) is used to determine the most likely scale and structure of the primary instability and to initialize nonlinear "2.5-D" simulations (with three-dimensional velocity and vorticity fields but depending only on two spatial coordinates). Singular vector analysis is then applied to the time-dependent 2.5-D solution to predict the transition of the breaking event to three-dimensional turbulence and to initialize three-dimensional DNS. The careful choice of the computational domain and the relatively low Reynolds numbers, on the order of 25,000, relevant to breaking waves in the upper mesosphere, makes the three-dimensional DNS tractable with present-day computing clusters. Three test cases are presented: a statically unstable low-frequency inertia-gravity wave, a statically and dynamically stable inertia-gravity wave, and a statically unstable high-frequency gravity wave. The three-dimensional DNS are compared to ensembles of 2.5-D simulations. In general, the decay of the wave and generation of turbulence is faster in three dimensions, but the results are otherwise qualitatively and quantitatively similar, suggesting that results of 2.5-D simulations are meaningful if the domain and initial condition are chosen properly.

  2. The Kirkendall and Frenkel effects during 2D diffusion process

    NASA Astrophysics Data System (ADS)

    Wierzba, Bartek

    2014-11-01

    The two-dimensional approach for inter-diffusion and voids generation is presented. The voids evolution and growth is discussed. This approach is based on the bi-velocity (Darken) method which combines the Darken and Brenner concepts that the volume velocity is essential in defining the local material velocity in multi-component mixture at non-equilibrium. The model is formulated for arbitrary multi-component two-dimensional systems. It is shown that the voids growth is due to the drift velocity and vacancy migration. The radius of the void can be easily estimated. The distributions of (1) components, (2) vacancy and (3) voids radius over the distance is presented.

  3. Statistical comparison of coherent structures in fully developed turbulent pipe flow with and without drag reduction

    NASA Astrophysics Data System (ADS)

    Sogaro, Francesca; Poole, Robert; Dennis, David

    2014-11-01

    High-speed stereoscopic particle image velocimetry has been performed in fully developed turbulent pipe flow at moderate Reynolds numbers with and without a drag-reducing additive (an aqueous solution of high molecular weight polyacrylamide). Three-dimensional large and very large-scale motions (LSM and VLSM) are extracted from the flow fields by a detection algorithm and the characteristics for each case are statistically compared. The results show that the three-dimensional extent of VLSMs in drag reduced (DR) flow appears to increase significantly compared to their Newtonian counterparts. A statistical increase in azimuthal extent of DR VLSM is observed by means of two-point spatial autocorrelation of the streamwise velocity fluctuation in the radial-azimuthal plane. Furthermore, a remarkable increase in length of these structures is observed by three-dimensional two-point spatial autocorrelation. These results are accompanied by an analysis of the swirling strength in the flow field that shows a significant reduction in strength and number of the vortices for the DR flow. The findings suggest that the damping of the small scales due to polymer addition results in the undisturbed development of longer flow structures.

  4. A Comparison of 3D3C Velocity Measurement Techniques

    NASA Astrophysics Data System (ADS)

    La Foy, Roderick; Vlachos, Pavlos

    2013-11-01

    The velocity measurement fidelity of several 3D3C PIV measurement techniques including tomographic PIV, synthetic aperture PIV, plenoptic PIV, defocusing PIV, and 3D PTV are compared in simulations. A physically realistic ray-tracing algorithm is used to generate synthetic images of a standard calibration grid and of illuminated particle fields advected by homogeneous isotropic turbulence. The simulated images for the tomographic, synthetic aperture, and plenoptic PIV cases are then used to create three-dimensional reconstructions upon which cross-correlations are performed to yield the measured velocity field. Particle tracking algorithms are applied to the images for the defocusing PIV and 3D PTV to directly yield the three-dimensional velocity field. In all cases the measured velocity fields are compared to one-another and to the true velocity field using several metrics.

  5. Using travel times to simulate multi-dimensional bioreactive transport in time-periodic flows.

    PubMed

    Sanz-Prat, Alicia; Lu, Chuanhe; Finkel, Michael; Cirpka, Olaf A

    2016-04-01

    In travel-time models, the spatially explicit description of reactive transport is replaced by associating reactive-species concentrations with the travel time or groundwater age at all locations. These models have been shown adequate for reactive transport in river-bank filtration under steady-state flow conditions. Dynamic hydrological conditions, however, can lead to fluctuations of infiltration velocities, putting the validity of travel-time models into question. In transient flow, the local travel-time distributions change with time. We show that a modified version of travel-time based reactive transport models is valid if only the magnitude of the velocity fluctuates, whereas its spatial orientation remains constant. We simulate nonlinear, one-dimensional, bioreactive transport involving oxygen, nitrate, dissolved organic carbon, aerobic and denitrifying bacteria, considering periodic fluctuations of velocity. These fluctuations make the bioreactive system pulsate: The aerobic zone decreases at times of low velocity and increases at those of high velocity. For the case of diurnal fluctuations, the biomass concentrations cannot follow the hydrological fluctuations and a transition zone containing both aerobic and obligatory denitrifying bacteria is established, whereas a clear separation of the two types of bacteria prevails in the case of seasonal velocity fluctuations. We map the 1-D results to a heterogeneous, two-dimensional domain by means of the mean groundwater age for steady-state flow in both domains. The mapped results are compared to simulation results of spatially explicit, two-dimensional, advective-dispersive-bioreactive transport subject to the same relative fluctuations of velocity as in the one-dimensional model. The agreement between the mapped 1-D and the explicit 2-D results is excellent. We conclude that travel-time models of nonlinear bioreactive transport are adequate in systems of time-periodic flow if the flow direction does not change. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. A novel left heart simulator for the multi-modality characterization of native mitral valve geometry and fluid mechanics.

    PubMed

    Rabbah, Jean-Pierre; Saikrishnan, Neelakantan; Yoganathan, Ajit P

    2013-02-01

    Numerical models of the mitral valve have been used to elucidate mitral valve function and mechanics. These models have evolved from simple two-dimensional approximations to complex three-dimensional fully coupled fluid structure interaction models. However, to date these models lack direct one-to-one experimental validation. As computational solvers vary considerably, experimental benchmark data are critically important to ensure model accuracy. In this study, a novel left heart simulator was designed specifically for the validation of numerical mitral valve models. Several distinct experimental techniques were collectively performed to resolve mitral valve geometry and hemodynamics. In particular, micro-computed tomography was used to obtain accurate and high-resolution (39 μm voxel) native valvular anatomy, which included the mitral leaflets, chordae tendinae, and papillary muscles. Three-dimensional echocardiography was used to obtain systolic leaflet geometry. Stereoscopic digital particle image velocimetry provided all three components of fluid velocity through the mitral valve, resolved every 25 ms in the cardiac cycle. A strong central filling jet (V ~ 0.6 m/s) was observed during peak systole with minimal out-of-plane velocities. In addition, physiologic hemodynamic boundary conditions were defined and all data were synchronously acquired through a central trigger. Finally, the simulator is a precisely controlled environment, in which flow conditions and geometry can be systematically prescribed and resultant valvular function and hemodynamics assessed. Thus, this work represents the first comprehensive database of high fidelity experimental data, critical for extensive validation of mitral valve fluid structure interaction simulations.

  7. Three-Dimensional Electromagnetic Monte Carlo Particle-in-Cell Simulations of Critical Ionization Velocity Experiments in Space

    NASA Technical Reports Server (NTRS)

    Wang, J.; Biasca, R.; Liewer, P. C.

    1996-01-01

    Although the existence of the critical ionization velocity (CIV) is known from laboratory experiments, no agreement has been reached as to whether CIV exists in the natural space environment. In this paper we move towards more realistic models of CIV and present the first fully three-dimensional, electromagnetic particle-in-cell Monte-Carlo collision (PIC-MCC) simulations of typical space-based CIV experiments. In our model, the released neutral gas is taken to be a spherical cloud traveling across a magnetized ambient plasma. Simulations are performed for neutral clouds with various sizes and densities. The effects of the cloud parameters on ionization yield, wave energy growth, electron heating, momentum coupling, and the three-dimensional structure of the newly ionized plasma are discussed. The simulations suggest that the quantitative characteristics of momentum transfers among the ion beam, neutral cloud, and plasma waves is the key indicator of whether CIV can occur in space. The missing factors in space-based CIV experiments may be the conditions necessary for a continuous enhancement of the beam ion momentum. For a typical shaped charge release experiment, favorable CIV conditions may exist only in a very narrow, intermediate spatial region some distance from the release point due to the effects of the cloud density and size. When CIV does occur, the newly ionized plasma from the cloud forms a very complex structure due to the combined forces from the geomagnetic field, the motion induced emf, and the polarization. Hence the detection of CIV also critically depends on the sensor location.

  8. Wave-current generated turbulence over hemisphere bottom roughness

    NASA Astrophysics Data System (ADS)

    Barman, Krishnendu; Roy, Sayahnya; Debnath, Koustuv

    2018-03-01

    The present paper explores the effect of wave-current interaction on the turbulence characteristics and the distribution of eddy structure over artificially crammed rough bed prepared with hemispheres. The effect of the surface wave on temporal and spatial-averaged mean velocity, intensity, Reynolds shear stress over, within cavity and above the hemispherical bed are discussed. Detailed three-dimensional time series velocity components were measured in a tilting flume using 3-D Micro-Acoustic Doppler Velocimeter (ADV) at a Reynolds number, 62 × 103. This study reports the fractional contributions of burst-sweep cycles dominating the total shear stress near hemispherical rough surface both for current only flow as well as for wave-induced cases. Wavelet analysis of the fluctuating velocity signal shows that the superimposed wave of frequency 1 Hz is capable of modulating the energy containing a range of velocity fluctuations at the mid-depth of the cavity region (formed due to the crammed arrangement of the hemispheres). As a result, the large-scale eddies (with large values of wavelet coefficients) are concentrated at a pseudo-frequency which is equal to the wave oscillating frequency. On the other hand, it is observed that the higher wave frequency (2 Hz) is incapable of modulating the eddy structures at that particular region.

  9. Superresolution Imaging of Dynamic MreB Filaments in B. subtilis—A Multiple-Motor-Driven Transport?

    PubMed Central

    Olshausen, Philipp v.; Defeu Soufo, Hervé Joël; Wicker, Kai; Heintzmann, Rainer; Graumann, Peter L.; Rohrbach, Alexander

    2013-01-01

    The cytoskeletal protein MreB is an essential component of the bacterial cell-shape generation system. Using a superresolution variant of total internal reflection microscopy with structured illumination, as well as three-dimensional stacks of deconvolved epifluorescence microscopy, we found that inside living Bacillus subtilis cells, MreB forms filamentous structures of variable lengths, typically not longer than 1 μm. These filaments move along their orientation and mainly perpendicular to the long bacterial axis, revealing a maximal velocity at an intermediate length and a decreasing velocity with increasing filament length. Filaments move along straight trajectories but can reverse or alter their direction of propagation. Based on our measurements, we provide a mechanistic model that is consistent with all observations. In this model, MreB filaments mechanically couple several motors that putatively synthesize the cell wall, whereas the filaments’ traces mirror the trajectories of the motors. On the basis of our mechanistic model, we developed a mathematical model that can explain the nonlinear velocity length dependence. We deduce that the coupling of cell wall synthesis motors determines the MreB filament transport velocity, and the filament mechanically controls a concerted synthesis of parallel peptidoglycan strands to improve cell wall stability. PMID:24010660

  10. Superresolution imaging of dynamic MreB filaments in B. subtilis--a multiple-motor-driven transport?

    PubMed

    Olshausen, Philipp V; Defeu Soufo, Hervé Joël; Wicker, Kai; Heintzmann, Rainer; Graumann, Peter L; Rohrbach, Alexander

    2013-09-03

    The cytoskeletal protein MreB is an essential component of the bacterial cell-shape generation system. Using a superresolution variant of total internal reflection microscopy with structured illumination, as well as three-dimensional stacks of deconvolved epifluorescence microscopy, we found that inside living Bacillus subtilis cells, MreB forms filamentous structures of variable lengths, typically not longer than 1 μm. These filaments move along their orientation and mainly perpendicular to the long bacterial axis, revealing a maximal velocity at an intermediate length and a decreasing velocity with increasing filament length. Filaments move along straight trajectories but can reverse or alter their direction of propagation. Based on our measurements, we provide a mechanistic model that is consistent with all observations. In this model, MreB filaments mechanically couple several motors that putatively synthesize the cell wall, whereas the filaments' traces mirror the trajectories of the motors. On the basis of our mechanistic model, we developed a mathematical model that can explain the nonlinear velocity length dependence. We deduce that the coupling of cell wall synthesis motors determines the MreB filament transport velocity, and the filament mechanically controls a concerted synthesis of parallel peptidoglycan strands to improve cell wall stability. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Unloading Characteristics of Sand-drift in Wind-shallow Areas along Railway and the Effect of Sand Removal by Force of Wind

    PubMed Central

    Cheng, Jian-jun; Xin, Guo-Wei; Zhi, Ling-yan; Jiang, Fu-qiang

    2017-01-01

    Wind-shield walls decrease the velocity of wind-drift sand flow in transit. This results in sand accumulating in the wind-shadow zone of both windshield wall and track line, causing severe sand sediment hazard. This study reveals the characteristics of sand accumulation and the laws of wind-blown sand removal in the wind-shadow areas of three different types of windshield walls, utilizing three-dimensional numerical simulations and wind tunnel experiments and on-site sand sediment tests. The results revealed the formation of apparent vortex and acceleration zones on the leeward side of solid windshield walls. For uniform openings, the vortex area moved back and narrowed. When bottom-opening windshield walls were adopted, the track-supporting layer at the step became a conflux acceleration zone, forming a low velocity vortex zone near the track line. At high wind speeds, windshield walls with bottom-openings achieved improved sand dredging. Considering hydrodynamic mechanisms, the flow field structure on the leeward side of different types of windshield structures is a result of convergence and diffusion of fluids caused by an obstacle. This convergence and diffusion effect of air fluid is more apparent at high wind velocities, but not obvious at low wind velocities. PMID:28120915

  12. Direct laser writing of microstructures on optically opaque and reflective surfaces

    NASA Astrophysics Data System (ADS)

    Rekštytė, S.; Jonavičius, T.; Malinauskas, M.

    2014-02-01

    Direct laser writing (DLW) based on ultra-localized polymerization is an efficient way to produce three-dimensional (3D) micro/nano-structures for diverse applications in science and industry. It is attractive for its flexibility to materialize CAD models out of wide spectrum of materials on the desired substrates. In case of direct laser lithography, photo-crosslinking can be achieved by tightly focusing ultrashort laser pulses to a photo- or thermo-polymers. Selectively exposing material to laser radiation allows creating fully 3D structures with submicrometer spatial resolution. In this paper we present DLW results of hybrid organic-inorganic material SZ2080 on optically opaque and reflective surfaces, such as silicon and various metals (Cr, Ti, Au). Our studies prove that one can precisely fabricate 2D and 3D structures with lower than 1 μm spatial resolution even on glossy or rough surfaces (surface roughness rms 0.068-0.670 μm) using sample translation velocities of up to 1 mm/s. Using femtosecond high pulse repetition rate laser, sample translation velocity can reach over 1 mm/s ensuring repeatable submicrometer structuring resolution.

  13. Direct and inverse energy cascades in a forced rotating turbulence experiment

    NASA Astrophysics Data System (ADS)

    Campagne, Antoine; Gallet, Basile; Moisy, Frédéric; Cortet, Pierre-Philippe

    2014-12-01

    We present experimental evidence for a double cascade of kinetic energy in a statistically stationary rotating turbulence experiment. Turbulence is generated by a set of vertical flaps, which continuously injects velocity fluctuations towards the center of a rotating water tank. The energy transfers are evaluated from two-point third-order three-component velocity structure functions, which we measure using stereoscopic particle image velocimetry in the rotating frame. Without global rotation, the energy is transferred from large to small scales, as in classical three-dimensional turbulence. For nonzero rotation rates, the horizontal kinetic energy presents a double cascade: a direct cascade at small horizontal scales and an inverse cascade at large horizontal scales. By contrast, the vertical kinetic energy is always transferred from large to small horizontal scales, a behavior reminiscent of the dynamics of a passive scalar in two-dimensional turbulence. At the largest rotation rate, the flow is nearly two-dimensional, and a pure inverse energy cascade is found for the horizontal energy. To describe the scale-by-scale energy budget, we consider a generalization of the Kármán-Howarth-Monin equation to inhomogeneous turbulent flows, in which the energy input is explicitly described as the advection of turbulent energy from the flaps through the surface of the control volume where the measurements are performed.

  14. Imaging Coronal Mass Ejections and Large-Scale Solar Wind Structure Using IPS and Thomson-Scattered Sunlight (Invited)

    NASA Astrophysics Data System (ADS)

    Clover, J. M.; Jackson, B. V.; Buffington, A.; Hick, P. P.; Bisi, M. M.; Tokumaru, M.; Fujiki, K.

    2010-12-01

    The Solar Mass Ejection Imager (SMEI) observes Thomson-scattered white light from heliospheric electrons across almost all of the sky nearly all of the time since early 2003. Interplanetary scintillation (IPS) observations of velocity and g-level provide similar structure information but with a less-complete sky-and-time coverage. The Solar TErrestrial RElations Observatory (STEREO) twin spacecraft outer Heliospheric Imagers (HI-2) currently image the heliosphere in Thomson-scattered light near the ecliptic plane far from Earth. The Solar-Terrestrial Environment Laboratory (STELab) IPS observations provide IPS velocity and g-level values, which in conjunction with our tomographic reconstruction program, yield velocities and densities of the inner heliosphere in three dimensions. The same tomographic program substitutes SMEI Thomson-scattering brightness information for the g-level values to derive heliospheric densities from these data alone. We look at the global structure of the heliosphere concentrating mainly on three events from 2007 through the rise phase of Solar Cycle 24. The first event, observed in both the IPS and SMEI defines the three-dimensional velocity and density structure around the time of the shock observed at Earth on 02:02 UT 17 December 2007. The second event, seen only by SMEI, is that of the 23-26 April 2008 coronal mass ejection (CME) and its interplanetary counterpart. The third event is the CME (and its interplanetary counterpart) that took place 17 January 2010 and arrived at STEREO-B about four days later. For each event, we isolate the particular portion of the heliosphere attributed to the transient density structure using our tomographic technique, and then estimate its extent.

  15. Retrieval of Urban Boundary Layer Structures from Doppler Lidar Data. Part I: Accuracy Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Quanxin; Lin, Ching Long; Calhoun, Ron

    2008-01-01

    Two coherent Doppler lidars from the US Army Research Laboratory (ARL) and Arizona State University (ASU) were deployed in the Joint Urban 2003 atmospheric dispersion field experiment (JU2003) held in Oklahoma City. The dual lidar data are used to evaluate the accuracy of the four-dimensional variational data assimilation (4DVAR) method and identify the coherent flow structures in the urban boundary layer. The objectives of the study are three-fold. The first objective is to examine the effect of eddy viscosity models on the quality of retrieved velocity data. The second objective is to determine the fidelity of single-lidar 4DVAR and evaluatemore » the difference between single- and dual-lidar retrievals. The third objective is to correlate the retrieved flow structures with the ground building data. It is found that the approach of treating eddy viscosity as part of control variables yields better results than the approach of prescribing viscosity. The ARL single-lidar 4DVAR is able to retrieve radial velocity fields with an accuracy of 98% in the along-beam direction and 80-90% in the cross-beam direction. For the dual-lidar 4DVAR, the accuracy of retrieved radial velocity in the ARL cross-beam direction improves to 90-94%. By using the dual-lidar retrieved data as a reference, the single-lidar 4DVAR is able to recover fluctuating velocity fields with 70-80% accuracy in the along-beam direction and 60-70% accuracy in the cross-beam direction. Large-scale convective roll structures are found in the vicinity of downtown airpark and parks. Vortical structures are identified near the business district. Strong updrafts and downdrafts are also found above a cluster of restaurants.« less

  16. Forced free-shear layer measurements

    NASA Technical Reports Server (NTRS)

    Leboeuf, Richard L.

    1994-01-01

    Detailed three-dimensional three-component phase averaged measurements of the spanwise and streamwise vorticity formation and evolution in acoustically forced plane free-shear flows have been obtained. For the first time, phase-averaged measurements of all three velocity components have been obtained in both a mixing layer and a wake on three-dimensional grids, yielding the spanwise and streamwise vorticity distributions without invoking Taylor's hypothesis. Initially, two-frequency forcing was used to phase-lock the roll-up and first pairing of the spanwise vortical structures in a plane mixing layer. The objective of this study was to measure the near-field vortical structure morphology in a mixing layer with 'natural' laminar initial boundary layers. For the second experiment the second and third subharmonics of the fundamental roll-up frequency were added to the previous two-frequency forcing in order to phase-lock the roll-up and first three pairings of the spanwise rollers in the mixing layer. The objective of this study was to determine the details of spanwise scale changes observed in previous time-averaged measurements and flow visualization of unforced mixing layers. For the final experiment, single-frequency forcing was used to phase-lock the Karman vortex street in a plane wake developing from nominally two-dimensional laminar initial boundary layers. The objective of this study was to compare measurements of the three-dimensional structure in a wake developing from 'natural' initial boundary layers to existing models of wake vortical structure.

  17. A Zeeman slower for diatomic molecules

    NASA Astrophysics Data System (ADS)

    Petzold, M.; Kaebert, P.; Gersema, P.; Siercke, M.; Ospelkaus, S.

    2018-04-01

    We present a novel slowing scheme for beams of laser-coolable diatomic molecules reminiscent of Zeeman slowing of atomic beams. The scheme results in efficient compression of the one-dimensional velocity distribution to velocities trappable by magnetic or magneto-optical traps. We experimentally demonstrate our method in an atomic testbed and show an enhancement of flux below v = 35 m s‑1 by a factor of ≈20 compared to white light slowing. 3D Monte Carlo simulations performed to model the experiment show excellent agreement. We apply the same simulations to the prototype molecule 88Sr19F and expect 15% of the initial flux to be continuously compressed in a narrow velocity window at around 10 m s‑1. This is the first experimentally shown continuous and dissipative slowing technique in molecule-like level structures, promising to provide the missing link for the preparation of large ultracold molecular ensembles.

  18. Observations and interpretation of fundamental mode Rayleigh wavefields recorded by the Transportable Array (USArray)

    USGS Publications Warehouse

    Pollitz, F.F.

    2008-01-01

    Broadband recordings of the dense Transportable Array (TA) in the western United States provide unparalleled detailed images of long-period seismic surface wavefields. With 400 stations spanning most of the western United States, wavefronts of fundamental mode Rayleigh waves may be visualized coherently across the array at periods ???40 s. In order to constrain the Rayleigh wave phase velocity structure in the western United States, I assemble a data set of vertical component seismograms from 53 teleseismic events recorded by the TA from April 2006 to October 2007. Complex amplitude spectra from these recordings at peni ods 27-100 s are interpreted using the multiplane wave tomographic method of Friederich and Wielandt (1995) and Pollitz (1999). This analysis yields detailed surface wave phase velocity and three-dimensional shear wave velocity patterns across the North American plate boundary zone, elucidating the active processes in the highly heterogeneous western U.S. upper mantle.

  19. Driven phase space vortices in plasmas with nonextensive velocity distribution

    NASA Astrophysics Data System (ADS)

    Trivedi, Pallavi; Ganesh, Rajaraman

    2017-03-01

    The evolution of chirp-driven electrostatic waves in unmagnetized plasmas is numerically investigated by using a one-dimensional (1D) Vlasov-poisson solver with periodic boundary conditions. The initial velocity distribution of the 1D plasma is assumed to be governed by nonextensive q distribution [C. Tsallis, J. Stat. Phys. 52, 479 (1988)]. For an infinitesimal amplitude of an external drive, we investigate the effects of chirp driven dynamics that leads to the formation of giant phase space vortices (PSV) for both Maxwellian (q = 1) and non-Maxwellian ( q ≠ 1 ) plasmas. For non-Maxwellian plasmas, the formation of giant PSV with multiple extrema and phase velocities is shown to be dependent on the strength of "q". Novel features such as "shark"-like and transient "honeycomb"-like structures in phase space are discussed. Wherever relevant, we compare our results with previous work.

  20. Quantitative validation of carbon-fiber laminate low velocity impact simulations

    DOE PAGES

    English, Shawn A.; Briggs, Timothy M.; Nelson, Stacy M.

    2015-09-26

    Simulations of low velocity impact with a flat cylindrical indenter upon a carbon fiber fabric reinforced polymer laminate are rigorously validated. Comparison of the impact energy absorption between the model and experiment is used as the validation metric. Additionally, non-destructive evaluation, including ultrasonic scans and three-dimensional computed tomography, provide qualitative validation of the models. The simulations include delamination, matrix cracks and fiber breaks. An orthotropic damage and failure constitutive model, capable of predicting progressive damage and failure, is developed in conjunction and described. An ensemble of simulations incorporating model parameter uncertainties is used to predict a response distribution which ismore » then compared to experimental output using appropriate statistical methods. Lastly, the model form errors are exposed and corrected for use in an additional blind validation analysis. The result is a quantifiable confidence in material characterization and model physics when simulating low velocity impact in structures of interest.« less

  1. More Than Filaments and Cores: Statistical Study of Structure Formation and Dynamics in Nearby Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Chen, How-Huan; Goodman, Alyssa

    2018-01-01

    In the past decade, multiple attempts at understanding the connection between filaments and star forming cores have been made using observations across the entire epectrum. However, the filaments and the cores are usually treated as predefined--and well-defined--entities, instead of structures that often come at different sizes, shapes, with substantially different dynamics, and inter-connected at different scales. In my dissertation, I present an array of studies using different statistical methods, including the dendrogram and the probability distribution function (PDF), of structures at different size scales within nearby molecular clouds. These structures are identified using observations of different density tracers, and where possible, in the multi-dimensional parameter space of key dynamic properties--the LSR velocity, the velocity dispersion, and the column density. The goal is to give an overview of structure formation in nearby star-forming clouds, as well as of the dynamics in these structures. I find that the overall statistical properties of a larger structure is often the summation/superposition of sub-structures within, and that there could be significant variations due to local physical processes. I also find that the star formation process within molecular clouds could in fact take place in a non-monolithic manner, connecting potentially merging and/or transient structures, at different scales.

  2. The Augustine magmatic system as revealed by seismic tomography and relocated earthquake hypocenters from 1994 through 2009

    USGS Publications Warehouse

    Syracuse, E.M.; Thurber, C.H.; Power, J.A.

    2011-01-01

    We incorporate 14 years of earthquake data from the Alaska Volcano Observatory with data from a 1975 controlled-source seismic experiment to obtain the three-dimensional P and S wave velocity structure and the first high-precision earthquake locations at Augustine Volcano to be calculated in a fully three-dimensional velocity model. Velocity tomography shows two main features beneath Augustine: a narrow, high-velocity column beneath the summit, extending from ???2 km depth to the surface, and elevated velocities on the south flank. Our relocation results allow a thorough analysis of the spatio-temoral patterns of seismicity and the relationship to the magmatic and eruptive activity. Background seismicity is centered beneath the summit at an average depth of 0.6 km above sea level. In the weeks leading to the January 2006 eruption of Augustine, seismicity focused on a NW-SE line along the trend of an inflating dike. A series of drumbeat earthquakes occurred in the early weeks of the eruption, indicating further magma transport through the same dike system. During the six months following the onset of the eruption, the otherwise quiescent region 1 to 5 km below sea level centered beneath the summit became seismically active with two groups of earthquakes, differentiated by frequency content. The deep longer-period earthquakes occurred during the eruption and are interpreted as resulting from the movement of magma toward the summit, and the post-eruptive shorter-period earthquakes may be due to the relaxation of an emptied magma tube. The seismicity subsequently returned to its normal background rates and patterns. Copyright 2011 by the American Geophysical Union.

  3. Three-dimensional seismic tomography from P wave and S wave microearthquake travel times and rock physics characterization of the Campi Flegrei Caldera

    NASA Astrophysics Data System (ADS)

    Vanorio, T.; Virieux, J.; Capuano, P.; Russo, G.

    2005-03-01

    The Campi Flegrei (CF) Caldera experiences dramatic ground deformations unsurpassed anywhere in the world. The source responsible for this phenomenon is still debated. With the aim of exploring the structure of the caldera as well as the role of hydrothermal fluids on velocity changes, a multidisciplinary approach dealing with three-dimensional delay time tomography and rock physics characterization has been followed. Selected seismic data were modeled by using a tomographic method based on an accurate finite difference travel time computation which simultaneously inverts P wave and S wave first-arrival times for both velocity model parameters and hypocenter locations. The retrieved P wave and S wave velocity images as well as the deduced Vp/Vs images were interpreted by using experimental measurements of rock physical properties on CF samples to take into account steam/water phase transition mechanisms affecting P wave and S wave velocities. Also, modeling of petrophysical properties for site-relevant rocks constrains the role of overpressured fluids on velocity. A flat and low Vp/Vs anomaly lies at 4 km depth under the city of Pozzuoli. Earthquakes are located at the top of this anomaly. This anomaly implies the presence of fractured overpressured gas-bearing formations and excludes the presence of melted rocks. At shallow depth, a high Vp/Vs anomaly located at 1 km suggests the presence of rocks containing fluids in the liquid phase. Finally, maps of the Vp*Vs product show a high Vp*Vs horseshoe-shaped anomaly located at 2 km depth. It is consistent with gravity data and well data and might constitute the on-land remainder of the caldera rim, detected below sea level by tomography using active source seismic data.

  4. Reproduction of microseism H/V spectral features using a three-dimensional complex topographical model of the sediment-bedrock interface in the Osaka sedimentary basin

    NASA Astrophysics Data System (ADS)

    Uebayashi, Hirotoshi; Kawabe, Hidenori; Kamae, Katsuhiro

    2012-05-01

    Estimating the velocity structure of microseisms based on the horizontal-to-vertical spectral ratio (HVSR) is an extremely practical means of modelling the subsurface structure necessary for strong ground motion predictions. Thus, beyond the traditional framework of the 1-D velocity structure, the HVSR, derived from observation records of microseisms (microtremors with a frequency of about 1 Hz or lower originating from ocean waves) in areas where the sediment-bedrock interface has irregular topographies, was reproduced by finite differential method (FDM)-based simulation. This study was conducted for the Osaka sedimentary basin, the sediment-bedrock interface of which is three-dimensionally complicated and contains grabens, steps and ramps, because high-precision models for this basin have been constructed based on a wide range of existing exploration information. The HVSRs of two components (the east-west direction and the north-south direction to the vertical direction) derived from the FDM simulations were both well reproduced in terms of not only the peak frequency (HVfp) but also the spectral curves for a number of observation sites above the sediment-bedrock interface with complex geological features. These results suggest that with a sufficient number of observation sites for microtremors and highly accurate a priori information on geophysical constants in the sedimentary layer that spatially serves as the reference, the irregular-shaped sediment-bedrock interface may be estimated based on how well the HVSR curves and the HVfp agree between the observations and simulations. Furthermore, the FDM simulations confirmed observed phenomena such as the polarization of the amplitude of horizontal motions and broad or 'plateau-like' HVSR peaks of microseisms in grabens and step structures. It was determined that the HVfps in areas with these strong irregularities are higher than the peak frequency of Rayleigh wave ellipticity for the fundamental mode (RHVfp) based on the 1-D velocity structure. In addition, there was a difference of about 20 per cent at most between the HVfp derived from FDM simulations and the RHVfp in areas where the depth of the sediment-bedrock interface varies only slightly.

  5. Seismic evidence for central Taiwan magnetic low and deep-crustal deformation caused by plate collision

    NASA Astrophysics Data System (ADS)

    Cheng, Win-Bin

    2018-01-01

    Crustal seismic velocity structure was determined for the northern Taiwan using seismic travel-time data to investigate the northeastern extension of the northern South China Sea's high-magnetic belt. In order to increase the model resolution, a joint analysis of gravity anomaly and seismic travel-time data have been conducted. A total of 3385 events had been used in the inversion that was collected by the Central Weather Bureau Seismological Network from 1990 to 2015. The main features of the obtained three-dimensional velocity model are: (1) a relatively high Vp zone with velocity greater than 6.5 km/s is observed in the middle to lower crust, (2) the high Vp zone generally parallels to the north-south structural trending of the Chuchih fault and Hsuehshan Range, (3) at 25 km depth-slice, the high Vp zone shows structural trends change from northeastward to northward in central Taiwan, where the values of high-magnetic anomalies are rapidly decreasing to low values. A combination of seismic, GPS, and structural interpretations suggests that the entire crust has been deformed and demagnetized in consequence of the collision between the Philippine Sea plate and the Asian continental margin. We suggest that the feature of sharp bending of the high Vp zone would migrate southwestward and cause further crustal deformation of the Peikang High in the future.

  6. Apulian crust: Top to bottom

    NASA Astrophysics Data System (ADS)

    Amato, Alessandro; Bianchi, Irene; Agostinetti, Nicola Piana

    2014-12-01

    We investigate the crustal seismic structure of the Adria plate using teleseismic receiver functions (RF) recorded at 12 broadband seismic stations in the Apulia region. Detailed models of the Apulian crust, e.g. the structure of the Apulian Multi-layer Platform (AMP), are crucial for assessing the presence of potential décollements at different depth levels that may play a role in the evolution of the Apenninic orogen. We reconstruct S-wave velocity profiles applying a trans-dimensional Monte Carlo method for the inversion of RF data. Using this method, the resolution at the different depth level is completely dictated by the data and we avoid introducing artifacts in the crustal structure. We focus our study on three different key-elements: the Moho depth, the lower crust S-velocity, and the fine-structure of the AMP. We find a well defined and relatively flat Moho discontinuity below the region at 28-32 km depth, possibly indicating that the original Moho is still preserved in the area. The lower crust appears as a generally low velocity layer (average Vs = 3.7 km/s in the 15-26 km depth interval), likely suggestive of a felsic composition, with no significant velocity discontinuities except for its upper and lower boundaries where we find layering. Finally, for the shallow structure, the comparison of RF results with deep well stratigraphic and sonic log data allowed us to constrain the structure of the AMP and the presence of underlying Permo-Triassic (P-T) sediments. We find that the AMP structure displays small-scale heterogeneities in the region, with a thickness of the carbonates layers varying between 4 and 12 km, and is underlain by a thin, discontinuous layer of P-T terrigenous sediments, that are lacking in some areas. This fact may be due to the roughness in the original topography of the continental margins or to heterogeneities in its shallow structure due to the rifting process.

  7. Studies of supersonic, radiative plasma jet interaction with gases at the Prague Asterix Laser System facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicolaie, Ph.; Stenz, C.; Tikhonchuk, V.

    2008-08-15

    The interaction of laser driven jets with gas puffs at various pressures is investigated experimentally and is analyzed by means of numerical tools. In the experiment, a combination of two complementary diagnostics allowed to characterize the main structures in the interaction zone. By changing the gas composition and its density, the plasma cooling time can be controlled and one can pass from a quasiadiabatic outflow to a strongly radiation cooling jet. This tuning yields hydrodynamic structures very similar to those seen in astrophysical objects; the bow shock propagating through the gas, the shocked materials, the contact discontinuity, and the Machmore » disk. From a dimensional analysis, a scaling is made between both systems and shows the study relevance for the jet velocity, the Mach number, the jet-gas density ratio, and the dissipative processes. The use of a two-dimensional radiation hydrodynamic code, confirms the previous analysis and provides detailed structure of the interaction zone and energy repartition between jet and surrounding gases.« less

  8. Statistical assessment of optical phase fluctuations through turbulent mixing layers

    NASA Astrophysics Data System (ADS)

    Gardner, Patrick J.; Roggemann, Michael C.; Welsh, Byron M.; Bowersox, Rodney D.

    1995-09-01

    A lateral shearing interferometer is used to measure the slope of perturbed wavefronts after propagating through turbulent shear flows. This provides a two-dimensional flow visualization technique which is nonintrusive. The slope measurements are used to reconstruct the phase of the turbulence-corrupted wave front. Experiments were performed on a plane shear mixing layer of helium and nitrogen gas at fixed velocities, for five locations in the flow development. The two gases, having a density ratio of approximately seven, provide an effective means of simulating compressible shear layers. Statistical autocorrelation functions and structure functions are computed on the reconstructed phase maps. The autocorrelation function results indicate that the turbulence-induced phase fluctuations are not wide-sense stationary. The structure functions exhibit statistical homogeneity, indicating the phase fluctuation are stationary in first increments. However, the turbulence-corrupted phase is not isotropic. A five-thirds power law is shown to fit one-dimensional, orthogonal slices of the structure function, with scaling coefficients related to the location in the flow.

  9. Enhanced Spectral Anisotropies Near the Proton-Cyclotron Scale: Possible Two-Component Structure in Hall-FLR MHD Turbulence Simulations

    NASA Technical Reports Server (NTRS)

    Ghosh, Sanjoy; Goldstein, Melvyn L.

    2011-01-01

    Recent analysis of the magnetic correlation function of solar wind fluctuations at 1 AU suggests the existence of two-component structure near the proton-cyclotron scale. Here we use two-and-one-half dimensional and three-dimensional compressible MHD models to look for two-component structure adjacent the proton-cyclotron scale. Our MHD system incorporates both Hall and Finite Larmor Radius (FLR) terms. We find that strong spectral anisotropies appear adjacent the proton-cyclotron scales depending on selections of initial condition and plasma beta. These anisotropies are enhancements on top of related anisotropies that appear in standard MHD turbulence in the presence of a mean magnetic field and are suggestive of one turbulence component along the inertial scales and another component adjacent the dissipative scales. We compute the relative strengths of linear and nonlinear accelerations on the velocity and magnetic fields to gauge the relative influence of terms that drive the system with wave-like (linear) versus turbulent (nonlinear) dynamics.

  10. Numerical modelling of flow through foam's node.

    PubMed

    Anazadehsayed, Abdolhamid; Rezaee, Nastaran; Naser, Jamal

    2017-10-15

    In this work, for the first time, a three-dimensional model to describe the dynamics of flow through geometric Plateau border and node components of foam is presented. The model involves a microscopic-scale structure of one interior node and four Plateau borders with an angle of 109.5 from each other. The majority of the surfaces in the model make a liquid-gas interface where the boundary condition of stress balance between the surface and bulk is applied. The three-dimensional Navier-Stoke equation, along with continuity equation, is solved using the finite volume approach. The numerical results are validated against the available experimental results for the flow velocity and resistance in the interior nodes and Plateau borders. A qualitative illustration of flow in a node in different orientations is shown. The scaled resistance against the flow for different liquid-gas interface mobility is studied and the geometrical characteristics of the node and Plateau border components of the system are compared to investigate the Plateau border and node dominated flow regimes numerically. The findings show the values of the resistance in each component, in addition to the exact point where the flow regimes switch. Furthermore, a more accurate effect of the liquid-gas interface on the foam flow, particularly in the presence of a node in the foam network is obtained. The comparison of the available numerical results with our numerical results shows that the velocity of the node-PB system is lower than the velocity of single PB system for mobile interfaces. That is owing to the fact that despite the more relaxed geometrical structure of the node, constraining effect of merging and mixing of flow and increased viscous damping in the node component result in the node-dominated regime. Moreover, we obtain an accurate updated correlation for the dependence of the scaled average velocity of the node-Plateau border system on the liquid-gas interface mobility described by Boussinesq number. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Geotomography using refraction fan shots

    NASA Astrophysics Data System (ADS)

    Pavlis, Gary L.

    1986-05-01

    This paper introduces a new method for imaging lateral variations in the seismic velocity structure of the earth. The discussion is centered around the geometry of a pilot experiment conducted in Salt Creek valley near Bloomington, Indiana, but the methodology is more general in scope. In the pilot experiment, 24 explosions were fired at equal intervals around a circular area 190 m in diameter and recorded by geophones positioned diametrically opposite the source. Travel time residuals for the fan shots are inverted to estimate lateral velocity variations in a two-dimensional, bowl-shaped image reconstruction region under the circular array. A simple damped least squares inversion worked poorly when delay times were included as additional free parameters in the solution. A parameter separation procedure was more successful. The value of these data in determining structure was analyzed using synthetic data and resolving power calculations. Structure could be determined to high accuracy with little distortion in the center of the circular region where rays crossed from all directions, but results were comparatively poor near the fringes of the region where angular coverage was more limited. Inversion of the Salt Creek data indicates the observed variations in the residuals can be almost completely accounted for by variations in the weathered layer. The refractor velocity is nearly constant to a precision of 0.005 s/km, but there is a suggestion of a slight velocity decrease in the refractor at higher elevations above the water table.

  12. Two-dimensional airflow modeling underpredicts the wind velocity over dunes

    PubMed Central

    Michelsen, Britt; Strobl, Severin; Parteli, Eric J. R.; Pöschel, Thorsten

    2015-01-01

    We investigate the average turbulent wind field over a barchan dune by means of Computational Fluid Dynamics. We find that the fractional speed-up ratio of the wind velocity over the three-dimensional barchan shape differs from the one obtained from two-dimensional calculations of the airflow over the longitudinal cut along the dune’s symmetry axis — that is, over the equivalent transverse dune of same size. This finding suggests that the modeling of the airflow over the central slice of barchan dunes is insufficient for the purpose of the quantitative description of barchan dune dynamics as three-dimensional flow effects cannot be neglected. PMID:26572966

  13. Spatially resolved measurements of two-dimensional turbulent structures in DIII-D plasmas

    DOE PAGES

    Zemedkun, Samuel E.; Che, S.; Chen, Y.; ...

    2015-12-21

    Here, two-dimensional observations of spatially-coherent electron temperature fluctuations at drift wave scales (k ~1 cm -1) have been made using the electron cyclotron emission imaging (ECEI) diagnostic on the DIII-D tokamak. These measurements enable the extraction of spectral properties, including poloidal dispersion relations. Temperature fluctuation levels are found to be ˜ T e/< T e > = 1.2%, and the phase velocity of the fluctuations is found to be constant across frequencies, consistent with modes having real frequencies low compared to the rotation-induced Doppler shifts. Comparisons with radially global linear gyrokinetic simulations suggest that the observed modes may be trappedmore » electron modes (TEM).« less

  14. Four-dimensional (4D) tracking of high-temperature microparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhehui, E-mail: zwang@lanl.gov; Liu, Q.; Waganaar, W.

    High-speed tracking of hot and molten microparticles in motion provides rich information about burning plasmas in magnetic fusion. An exploding-wire apparatus is used to produce moving high-temperature metallic microparticles and to develop four-dimensional (4D) or time-resolved 3D particle tracking techniques. The pinhole camera model and algorithms developed for computer vision are used for scene calibration and 4D reconstructions. 3D positions and velocities are then derived for different microparticles. Velocity resolution approaches 0.1 m/s by using the local constant velocity approximation.

  15. Four-dimensional (4D) tracking of high-temperature microparticles

    NASA Astrophysics Data System (ADS)

    Wang, Zhehui; Liu, Q.; Waganaar, W.; Fontanese, J.; James, D.; Munsat, T.

    2016-11-01

    High-speed tracking of hot and molten microparticles in motion provides rich information about burning plasmas in magnetic fusion. An exploding-wire apparatus is used to produce moving high-temperature metallic microparticles and to develop four-dimensional (4D) or time-resolved 3D particle tracking techniques. The pinhole camera model and algorithms developed for computer vision are used for scene calibration and 4D reconstructions. 3D positions and velocities are then derived for different microparticles. Velocity resolution approaches 0.1 m/s by using the local constant velocity approximation.

  16. Four-dimensional (4D) tracking of high-temperature microparticles

    DOE PAGES

    Wang, Zhehui; Liu, Qiuguang; Waganaar, Bill; ...

    2016-07-08

    High-speed tracking of hot and molten microparticles in motion provides rich information about burning plasmas in magnetic fusion. An exploding-wire apparatus is used to produce moving high-temperature metallic microparticles and to develop four-dimensional (4D) or time-resolved 3D particle tracking techniques. The pinhole camera model and algorithms developed for computer vision are used for scene calibration and 4D reconstructions. 3D positions and velocities are then derived for different microparticles. As a result, velocity resolution approaches 0.1 m/s by using the local constant velocity approximation.

  17. Four-dimensional (4D) tracking of high-temperature microparticles.

    PubMed

    Wang, Zhehui; Liu, Q; Waganaar, W; Fontanese, J; James, D; Munsat, T

    2016-11-01

    High-speed tracking of hot and molten microparticles in motion provides rich information about burning plasmas in magnetic fusion. An exploding-wire apparatus is used to produce moving high-temperature metallic microparticles and to develop four-dimensional (4D) or time-resolved 3D particle tracking techniques. The pinhole camera model and algorithms developed for computer vision are used for scene calibration and 4D reconstructions. 3D positions and velocities are then derived for different microparticles. Velocity resolution approaches 0.1 m/s by using the local constant velocity approximation.

  18. Stereo Imaging Velocimetry

    NASA Technical Reports Server (NTRS)

    McDowell, Mark (Inventor); Glasgow, Thomas K. (Inventor)

    1999-01-01

    A system and a method for measuring three-dimensional velocities at a plurality of points in a fluid employing at least two cameras positioned approximately perpendicular to one another. The cameras are calibrated to accurately represent image coordinates in world coordinate system. The two-dimensional views of the cameras are recorded for image processing and centroid coordinate determination. Any overlapping particle clusters are decomposed into constituent centroids. The tracer particles are tracked on a two-dimensional basis and then stereo matched to obtain three-dimensional locations of the particles as a function of time so that velocities can be measured therefrom The stereo imaging velocimetry technique of the present invention provides a full-field. quantitative, three-dimensional map of any optically transparent fluid which is seeded with tracer particles.

  19. Three-dimensional kinematic correlates of ball velocity during maximal instep soccer kicking in males.

    PubMed

    Sinclair, Jonathan; Fewtrell, David; Taylor, Paul John; Bottoms, Lindsay; Atkins, Stephen; Hobbs, Sarah Jane

    2014-01-01

    Achieving a high ball velocity is important during soccer shooting, as it gives the goalkeeper less time to react, thus improving a player's chance of scoring. This study aimed to identify important technical aspects of kicking linked to the generation of ball velocity using regression analyses. Maximal instep kicks were obtained from 22 academy-level soccer players using a 10-camera motion capture system sampling at 500 Hz. Three-dimensional kinematics of the lower extremity segments were obtained. Regression analysis was used to identify the kinematic parameters associated with the development of ball velocity. A single biomechanical parameter; knee extension velocity of the kicking limb at ball contact Adjusted R(2) = 0.39, p ≤ 0.01 was obtained as a significant predictor of ball-velocity. This study suggests that sagittal plane knee extension velocity is the strongest contributor to ball velocity and potentially overall kicking performance. It is conceivable therefore that players may benefit from exposure to coaching and strength techniques geared towards the improvement of knee extension angular velocity as highlighted in this study.

  20. Towards a Comprehensive Seismic Velocity Model for the Broader Africa-Eurasia Collision Region, to Improve Nuclear Explosion Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    der Lee, S v; Flanagan, M P; Rodgers, A J

    2005-07-13

    We report on progress towards a new, comprehensive three-dimensional model of seismic velocity in a broad region encompassing the Middle East, northern Africa, the Mediterranean Sea, the Levant, the Arabian Peninsula, the Turkish-Iranian Plateau, Indus Valley, and the Hindu Kush. Our model will be based on regional waveform fits, surface wave group velocity measurements, teleseismic arrival times of S and P waves, receiver functions, and published results from active source experiments. We are in the process of assembling each of these data sets and testing the joint inversion for subsets of the data. Seismograms come from a variety of permanentmore » and temporary seismic stations in the region. Some of the data is easily accessible through, for example, IRIS, while collection of other data is more involved. This work builds on ongoing work by Schmid et al. (GJI, 2004, and manuscript in preparation). In these proceedings we highlight our data sets and their inferences, demonstrate the proposed new data-inversion modeling methodology, discuss results from preliminary inversions of subsets of the data, and demonstrate the prediction of arrival times with three-dimensional velocity models. We compare our preliminary inversion results to the results of Schmid et al., and the predicted arrival times to ground-truth data from the NNSA Knowledge Base. Our data sets are simultaneously redundant and highly complementary. The combined data coverage will ensure that our three-dimensional model comprises the crust, the upper mantle, including the transition zone, and the top of the lower mantle, with spatially varying, but useful resolution. The region of interest is one of the most structurally heterogeneous in the world. Continental collision, rifting and sea-floor spreading, back-arc spreading, oceanic subduction, rotating micro plates, continental shelf, and stable platforms, are just some of the region's characteristics. Seismicity and the distribution of seismic stations are also geographically heterogeneous. The crustal thickness ranges from near 20 to near 45 km under dry places in the Mediterranean region alone, which contains at least seven of the fourteen types of crust defined globally by Mooney et al. (1998). The S-velocity varies laterally by an entire 1 km/s over 1000 km within the uppermost mantle. On average the S-velocity is 50 to 150 m/s slower, between a depth of 150 km and the Moho, than global model iasp91. These lowered S velocities reflect the high amount of tectonic activity in the study region. In the transition zone the S-velocity is roughly 150 m/s higher than iasp91. These heightened S velocities likely reflect the numerous fragments of oceanic lithosphere that subducted in the study region during geologically relatively recent times.« less

  1. Diffusion in biased turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlad, M.; Spineanu, F.; Misguich, J. H.

    2001-06-01

    Particle transport in two-dimensional divergence-free stochastic velocity fields with constant average is studied. Analytical expressions for the Lagrangian velocity correlation and for the time-dependent diffusion coefficients are obtained. They apply to stationary and homogeneous Gaussian velocity fields.

  2. System and method for investigating sub-surface features and 3D imaging of non-linear property, compressional velocity VP, shear velocity VS and velocity ratio VP/VS of a rock formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vu, Cung Khac; Skelt, Christopher; Nihei, Kurt

    A system and a method for generating a three-dimensional image of a rock formation, compressional velocity VP, shear velocity VS and velocity ratio VP/VS of a rock formation are provided. A first acoustic signal includes a first plurality of pulses. A second acoustic signal from a second source includes a second plurality of pulses. A detected signal returning to the borehole includes a signal generated by a non-linear mixing process from the first and second acoustic signals in a non-linear mixing zone within an intersection volume. The received signal is processed to extract the signal over noise and/or signals resultingmore » from linear interaction and the three dimensional image of is generated.« less

  3. Fluid-Structure Interaction in Continuum Models of Bacterial Biofilms

    NASA Astrophysics Data System (ADS)

    Hicks, Jared A.

    Bacterial biofilms are aggregates of cells that adhere to nearly any solid-fluid interface. While many have harmful effects, such as industrial damage and nosocomial infections, certain biofilm species are now generating renewable energy as the fundamental components of Microbial Fuel Cells (MFCs). In an MFC, bacteria consume organic waste and, as they respire, produce free electrons. To do so efficiently, the bacteria must operate at peak metabolic activity, and so require an ample supply of nutrients. But existing MFC systems face several nutrient delivery problems, including clogging and downstream depletion. Ameliorating these problems will require a better understanding of the interplay between structural development and the surrounding fluid flow. In addition to delivering nutrients that affect biofilm growth, the fluid also exerts stresses that cause erosion, detachment, and deformation. These structural changes, in turn, affect the flow and alter the nutrient distribution. To account for this feedback effect, I have developed a continuum model that couples the growth and deformation processes. My model augments an existing growth model with evolution equations derived from Morphoelasticity Theory, by showing that the growth tensor can be directly related to the biofilm velocity potential. This result helps overcome one of the major practical limitations of Morphoelasticity--there is no physical framework for specifying the growth tensor. Through further analysis of the growth tensor, I define the related adjugate and anisotropic growth tensors, which can be more meaningful measures of growth for some models. Under the assumption of small strain, I show that there exists a small correction to the biofilm growth velocity (the accommodation velocity) that represents the effect of the elastic response on the evolution of the biofilm shape. I derive a solvability condition for the accommodation velocity, and show that it leads to a novel evolution equation for stress and strain in the biofilm, which couples the growth and deformation processes. Furthermore, I show that the introduction of a vorticity allows the accommodation velocity to be described by a system of Poisson equations, and that this vorticity arises naturally from Morphoelasticity theory and is related to the velocity solvability condition. I apply the modeling approach to a one-dimensional biofilm, and show that (a) the coupled growth process affects the evolution of the biofilm shape as expected, and (b) a non-coupled approach to biofilm strain introduces an error that grows over time. Numerical analysis of the one-dimensional strain evolution equation leads to several insights that inform the development of numerical methods for the two-dimensional case, including a split-step approach that reduces the fifth-order PDE to an advection equation for strain and a biharmonic equation for stress. Finally, I discuss some useful numerical methods for the simulation of elastic biofilm growth, particularly the discretization of the strain evolution equation(s). My overall approach is to track the evolving biofilm surface using a combination of the level-set method coupled with the eXtended Finite Element Method (XFEM). The major result is a novel mixed-XFEM discretization of the clamped-plate biharmonic equation, which I show to be first-order accurate for the trace of the solution on the interface.

  4. Three-dimensional imaging of the S-velocity structure for the crust and the upper mantle beneath the Arabian Sea from Rayleigh wave analysis

    NASA Astrophysics Data System (ADS)

    Corchete, V.

    2017-04-01

    A 3D imaging of S-velocity for the Arabian Sea crust and upper mantle structure is presented in this paper, determined by means of Rayleigh wave analysis, for depths ranging from zero to 300 km. The crust and upper mantle structure of this region of the earth never has been the subject of a surface wave tomography survey. The Moho map performed in the present study is a new result, in which a crustal thickening beneath the Arabian Fan sediments can be observed. This crustal thickening can be interpreted as a quasi-continental oceanic transitional structure. A crustal thickness of up to 20 km also can be observed for the Murray Ridge system in this Moho map. This crustal thickening can be due to that the Murray Ridge System consists of Indian continental crust. This continental crust is extremely thinned to the southwest of this region, as shown in this Moho map. This area can be interpreted as oceanic in origin. In the depth range from 30 to 60 km, the S-velocity presents its lower values at the Carlsberg Ridge region, because it is the younger region of the study area. In the depth range from 60 to 105 km of depth, the S-velocity pattern is very similar to that shown for the previous depth range, except for the regions in which the asthenosphere is reached, for these regions appear a low S-velocity pattern. The lithosphere-asthenosphere boundary (LAB), or equivalently the lithosphere thickness, determined in the present study is also a new result, in which the lithosphere thickness for the Arabian Fan can be estimated in 60-70 km. The lower lithospheric thickness observed in the LAB map, for the Arabian Fan, shows that this region may be in the transition zone between continental and oceanic structure. Finally, a low-velocity zone (LVZ) has been determined, for the whole study area, located between the LAB and the boundary of the asthenosphere base (or equivalently the lithosphere-asthenosphere system thickness). The asthenosphere-base map calculated in the present study is also a new result.

  5. Vocal Fold Pathologies and Three-Dimensional Flow Separation Phenomena

    NASA Astrophysics Data System (ADS)

    Apostoli, Adam G.; Weiland, Kelley S.; Plesniak, Michael W.

    2013-11-01

    Polyps and nodules are two different pathologies, which are geometric abnormalities that form on the medial surface of the vocal folds, and have been shown to significantly disrupt a person's ability to communicate. Although the mechanism by which the vocal folds self-oscillate and the three-dimensional nature of the glottal jet has been studied, the effect of irregularities caused by pathologies is not fully understood. Examining the formation and evolution of vortical structures created by a geometric protuberance is important, not only for understanding the aerodynamic forces exerted by these structures on the vocal folds, but also in the treatment of the above-mentioned pathological conditions. Using a wall-mounted prolate hemispheroid with a 2:1 aspect ratio in cross flow, the present investigation considers three-dimensional flow separation induced by a model vocal fold polyp. Building on previous work using skin friction line visualization, both the velocity flow field and wall pressure measurements around the model polyp are presented and compared. Supported by the National Science Foundation, Grant No. CBET-1236351 and GW Center for Biomimetics and Bioinspired Engineering (COBRE).

  6. Effect of nonthermal electrons on the propagation characteristics and stability of two-dimensional nonlinear electrostatic coherent structures in relativistic electron positron ion plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masood, W.; National Centre for Physics; Rizvi, H.

    2011-06-15

    Two-dimensional propagation of nonlinear ion acoustic shock and solitary waves in an unmagnetized plasma consisting of nonthermal electrons, Boltzmannian positrons, and singly charged hot ions streaming with relativistic velocities are investigated. The system of fluid equations is reduced to Kadomtsev-Petviashvili-Burgers and Kadomtsev-Petviashvili (KP) equations in the limit of small amplitude perturbation. The dependence of the ion acoustic shock and solitary waves on various plasma parameters are explored in detail. Interestingly, it is observed that increasing the nonthermal electron population increases the wave dispersion which enervates the strength of the ion acoustic shock wave; however, the same effect leads to anmore » enhancement of the soliton amplitude due to the absence of dissipation in the KP equation. The present investigation may be useful to understand the two-dimensional propagation characteristics of small but finite amplitude localized shock and solitary structures in planetary magnetospheres and auroral plasmas where nonthermal populations of electrons have been observed by several satellite missions.« less

  7. Two-dimensional sparse wavenumber recovery for guided wavefields

    NASA Astrophysics Data System (ADS)

    Sabeti, Soroosh; Harley, Joel B.

    2018-04-01

    The multi-modal and dispersive behavior of guided waves is often characterized by their dispersion curves, which describe their frequency-wavenumber behavior. In prior work, compressive sensing based techniques, such as sparse wavenumber analysis (SWA), have been capable of recovering dispersion curves from limited data samples. A major limitation of SWA, however, is the assumption that the structure is isotropic. As a result, SWA fails when applied to composites and other anisotropic structures. There have been efforts to address this issue in the literature, but they either are not easily generalizable or do not sufficiently express the data. In this paper, we enhance the existing approaches by employing a two-dimensional wavenumber model to account for direction-dependent velocities in anisotropic media. We integrate this model with tools from compressive sensing to reconstruct a wavefield from incomplete data. Specifically, we create a modified two-dimensional orthogonal matching pursuit algorithm that takes an undersampled wavefield image, with specified unknown elements, and determines its sparse wavenumber characteristics. We then recover the entire wavefield from the sparse representations obtained with our small number of data samples.

  8. Linear instability of compound liquid threads in the presence of surfactant

    NASA Astrophysics Data System (ADS)

    Ye, Han-yu; Yang, Li-jun; Fu, Qing-fei

    2017-08-01

    This paper investigates the linear instability of compound liquid threads in the presence of surfactant. The limitation of the one-dimensional approximation in previous work [Craster, Matar, and Papageorgiou, Phys. Fluids 15, 3409 (2003), 10.1063/1.1611879] is removed; hence the radial dependence of the axial velocity can be taken into account. Therefore both the stretching and the squeezing modes can be investigated. The disturbance growth rate is reduced with an increase of the dimensionless surface-tension gradient (whether in the stretching or squeezing mode). For the parameter range investigated, it is found that the squeezing mode is much more sensitive to the Marangoni effect than the stretching mode. The disturbance axial velocity and disturbance surfactant concentration for a typical case is investigated. It is found that the disturbance axial velocity is close to uniform in the stretching mode when the dimensionless surface-tension gradient and the wave number are small. In contrast, for wave numbers close to cutoff, or a large dimensionless surface-tension gradient, or in the squeezing mode, the disturbance axial velocity is not uniform. Analytical relations between growth rate and wave number valid in the long-wave limit are derived. In the stretching mode, the flow moves from an extension-dominated regime to a shear-dominated regime when β1+R σ β2 increases through 1 +R σ , where β1 and β2 are the dimensionless surface-tension gradient of the inner and outer interface, respectively, R is the radius ratio, and σ is the surface tension ratio. In the squeezing mode, whatever the values of β1 and β2, the flow is always in the shear-dominated regime. The expressions of the leading-order axial perturbation velocity in the long-wave limit are derived and they explain the applicability of one-dimensional models. It is found that the leading-order axial velocity in the extension-dominated regime is always uniform and one-dimensional models work well in this regime. For the shear-dominated regime, the leading-order axial velocity can be either nonuniform or close to uniform, depending on the ratio between the dimensionless surfactant diffusivity d1 and the Laplace number La : when d1≫La the velocity profile is close to uniform and one-dimensional models work well; otherwise the velocity profile is nonuniform and one-dimensional models fail.

  9. Estimation of the velocity and trajectory of three-dimensional reaching movements from non-invasive magnetoencephalography signals

    NASA Astrophysics Data System (ADS)

    Yeom, Hong Gi; Sic Kim, June; Chung, Chun Kee

    2013-04-01

    Objective. Studies on the non-invasive brain-machine interface that controls prosthetic devices via movement intentions are at their very early stages. Here, we aimed to estimate three-dimensional arm movements using magnetoencephalography (MEG) signals with high accuracy. Approach. Whole-head MEG signals were acquired during three-dimensional reaching movements (center-out paradigm). For movement decoding, we selected 68 MEG channels in motor-related areas, which were band-pass filtered using four subfrequency bands (0.5-8, 9-22, 25-40 and 57-97 Hz). After the filtering, the signals were resampled, and 11 data points preceding the current data point were used as features for estimating velocity. Multiple linear regressions were used to estimate movement velocities. Movement trajectories were calculated by integrating estimated velocities. We evaluated our results by calculating correlation coefficients (r) between real and estimated velocities. Main results. Movement velocities could be estimated from the low-frequency MEG signals (0.5-8 Hz) with significant and considerably high accuracy (p <0.001, mean r > 0.7). We also showed that preceding (60-140 ms) MEG signals are important to estimate current movement velocities and the intervals of brain signals of 200-300 ms are sufficient for movement estimation. Significance. These results imply that disabled people will be able to control prosthetic devices without surgery in the near future.

  10. Three-dimensional analysis for liquid hydrogen in a cryogenic storage tank with heat pipe pump system

    NASA Astrophysics Data System (ADS)

    Ho, Son H.; Rahman, Muhammad M.

    2008-01-01

    This paper presents a study on fluid flow and heat transfer of liquid hydrogen in a zero boil-off cryogenic storage tank in a microgravity environment. The storage tank is equipped with an active cooling system consisting of a heat pipe and a pump-nozzle unit. The pump collects cryogen at its inlet and discharges it through its nozzle onto the evaporator section of the heat pipe in order to prevent the cryogen from boiling off due to the heat leaking through the tank wall from the surroundings. A three-dimensional (3-D) finite element model is employed in a set of numerical simulations to solve for velocity and temperature fields of liquid hydrogen in steady state. Complex structures of 3-D velocity and temperature distributions determined from the model are presented. Simulations with an axisymmetric model were also performed for comparison. Parametric study results from both models predict that as the speed of the cryogenic fluid discharged from the nozzle increases, the mean or bulk cryogenic fluid speed increases linearly and the maximum temperature within the cryogenic fluid decreases.

  11. Spatial Studies of Ion Beams in an Expanding Plasma

    NASA Astrophysics Data System (ADS)

    Aguirre, Evan; Good, Timothy; Scime, Earl; Thompson, Derek

    2017-10-01

    We report spatially resolved perpendicular and parallel ion velocity distribution function (IVDF) measurements in an expanding argon helicon plasma. The parallel IVDFs, obtained through laser induced fluorescence (LIF), show an ion beam with v 8 km/s flowing downstream that is confined to the center of the discharge. The ion beam is confined to within a few centimeters radially and is measurable for tens of centimeters axially before the LIF signal fades, likely a result of metastable quenching of the beam ions. The axial ion beam velocity slows in agreement with collisional processes. The perpendicular IVDFs show an ion population with a radially outward flow that increases with radial location. The DC electric field, electron temperature, and the plasma density in the double layer plume are all consistent with magnetic field aligned structures. The upstream and downstream electric field measurements show clear evidence of an ion hole that maps along the magnetic field at the edge of the plasma. Current theories and simulations of double layers, which are one-dimensional, completely miss these critically important two-dimensional features.

  12. Particle Heating in Space and Laboratory Plasmas

    NASA Astrophysics Data System (ADS)

    Scime, E. E.; Keesee, A. M.; Aquirre, E.; Good, T.

    2017-12-01

    We report spatially resolved perpendicular and parallel ion velocity distribution function (IVDF) measurements in an expanding argon helicon plasma. The parallel IVDFs, obtained through laser induced fluorescence (LIF), show an ion beam with v ˜ 8 km/s flowing downstream that is confined to the center of the discharge. The ion beam is confined to within a few centimeters radially and is measurable for tens of centimeters axially before the LIF signal fades, likely a result of metastable quenching of the beam ions. The axial ion beam velocity slows in agreement with collisional processes. The perpendicular IVDFs show an ion population with a radially outward flow that increases with radial location. The DC electric field, electron temperature, and the plasma density in the double layer plume are all consistent with magnetic field aligned structures. The upstream and downstream electric field measurements show clear evidence of an ion hole that maps along the magnetic field at the edge of the plasma. Current theories and simulations of double layers, which are one-dimensional, completely miss these critically important two-dimensional features.

  13. Computer prediction of three-dimensional potential flow fields in which aircraft propellers operate. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Jumper, S. J.

    1982-01-01

    A computer program was developed to calculate the three dimensional, steady, incompressible, inviscid, irrotational flow field at the propeller plane (propeller removed) located upstream of an arbitrary airframe geometry. The program uses a horseshoe vortex of known strength to model the wing. All other airframe surfaces are modeled by a network source panels of unknown strength which is exposed to a uniform free stream and the wing-induced velocity field. By satisfying boundary conditions on each panel (the Neumann problem), relaxed boundary conditions being used on certain panels to simulate inlet inflow, the source strengths are determined. From the known source and wing vortex strengths, the resulting velocity fields on the airframe surface and at the propeller plane are obtained. All program equations are derived in detail, and a brief description of the program structure is presented. A user's manual which fully documents the program is cited. Computer predictions of the flow on the surface of a sphere and at a propeller plane upstream of the sphere are compared with the exact mathematical solutions. Agreement is good, and correct program operation is verified.

  14. Many-body effects and ultraviolet renormalization in three-dimensional Dirac materials

    NASA Astrophysics Data System (ADS)

    Throckmorton, Robert E.; Hofmann, Johannes; Barnes, Edwin; Das Sarma, S.

    2015-09-01

    We develop a theory for electron-electron interaction-induced many-body effects in three-dimensional Weyl or Dirac semimetals, including interaction corrections to the polarizability, electron self-energy, and vertex function, up to second order in the effective fine-structure constant of the Dirac material. These results are used to derive the higher-order ultraviolet renormalization of the Fermi velocity, effective coupling, and quasiparticle residue, revealing that the corrections to the renormalization group flows of both the velocity and coupling counteract the leading-order tendencies of velocity enhancement and coupling suppression at low energies. This in turn leads to the emergence of a critical coupling above which the interaction strength grows with decreasing energy scale. In addition, we identify a range of coupling strengths below the critical point in which the Fermi velocity varies nonmonotonically as the low-energy, noninteracting fixed point is approached. Furthermore, we find that while the higher-order correction to the flow of the coupling is generally small compared to the leading order, the corresponding correction to the velocity flow carries an additional factor of the Dirac cone flavor number (the multiplicity of electron species, e.g. ground-state valley degeneracy arising from the band structure) relative to the leading-order result. Thus, for materials with a larger multiplicity, the regime of velocity nonmonotonicity is reached for modest values of the coupling strength. This is in stark contrast to an approach based on a large-N expansion or the random phase approximation (RPA), where higher-order corrections are strongly suppressed for larger values of the Dirac cone multiplicity. This suggests that perturbation theory in the coupling constant (i.e., the loop expansion) and the RPA/large-N expansion are complementary in the sense that they are applicable in different parameter regimes of the theory. We show how our results for the ultraviolet renormalization of quasiparticle properties can be tested experimentally through measurements of quantities such as the optical conductivity or dielectric function (with carrier density or temperature acting as the scale being varied to induce the running coupling). Although experiments typically access the finite-density regime, we show that our zero-density results still capture clear many-body signatures that should be visible at higher temperatures even in real systems with disorder and finite doping.

  15. Aerodynamic parameters of across-wind self-limiting vibration for square sections after lock-in in smooth flow

    NASA Astrophysics Data System (ADS)

    Wu, Jong-Cheng; Chang, Feng-Jung

    2011-08-01

    The paper aims to identify the across-wind aerodynamic parameters of two-dimensional square section structures after the lock-in stage from the response measurements of wind tunnel tests under smooth wind flow conditions. Firstly, a conceivable self-limiting model was selected from the existent literature and the revisit of the analytical solution shows that the aerodynamic parameters (linear and nonlinear aerodynamic dampings Y1 and ɛ, and aerodynamic stiffness Y2) are not only functions of the section shape and reduced wind velocity but also dependent on both the mass ratio ( mr) and structural damping ratio ( ξ) independently, rather than on the Scruton number as a whole. Secondly, the growth-to-resonance (GTR) method was adopted for identifying the aerodynamic parameters of four different square section models (DN1, DN2, DN3 and DN4) by varying the density ranging from 226 to 409 kg/m 3. To improve the accuracy of the results, numerical optimization of the curve-fitting for experimental and analytical response in time domain was performed to finalize the results. The experimental results of the across-wind self-limiting steady-state amplitudes after lock-in stage versus the reduced wind velocity show that, except the tail part of the DN1 case slightly decreases indicating a pure vortex-induced lock-in persists, the DN2, DN3 and DN4 cases have a trend of monotonically increasing with the reduced wind velocity, which shows an asymptotic combination with the galloping behavior. Due to such a combination effect, all three aerodynamic parameters decrease as the reduced wind velocity increases and asymptotically approaches to a constant at the high branch. In the DN1 case, the parameters Y1 and Y2 decrease as the reduced wind velocity increases while the parameter ɛ slightly reverses in the tail part. The 3-dimensional surface plot of the Y1, ɛ and Y2 curves further show that, excluding the DN1 case, the parameters in the DN2, DN3 and DN4 cases almost follow a symmetric concave-up distribution versus the density under the same reduced wind velocity. This indicates that the aerodynamic parameters in the DN3 case are the minima along the density distribution.

  16. A system of three-dimensional complex variables

    NASA Technical Reports Server (NTRS)

    Martin, E. Dale

    1986-01-01

    Some results of a new theory of multidimensional complex variables are reported, including analytic functions of a three-dimensional (3-D) complex variable. Three-dimensional complex numbers are defined, including vector properties and rules of multiplication. The necessary conditions for a function of a 3-D variable to be analytic are given and shown to be analogous to the 2-D Cauchy-Riemann equations. A simple example also demonstrates the analogy between the newly defined 3-D complex velocity and 3-D complex potential and the corresponding ordinary complex velocity and complex potential in two dimensions.

  17. Dimensionality effects in void-induced explosive sensitivity

    DOE PAGES

    Herring, Stuart Davis; Germann, Timothy Clark; Gronbech-Jensen, Niels

    2016-09-02

    Here, the dimensionality of defects in high explosives controls their heat generation and the expansion of deflagrations from them. We compare the behaviour of spherical voids in three dimensions to that of circular voids in two dimensions. The behaviour is qualitatively similar, but the additional focusing along the extra transverse dimension significantly reduces the piston velocity needed to initiate reactions. However, the reactions do not grow as well in three dimensions, so detonations require larger piston velocities. Pressure exponents are seen to be similar to those for the two-dimensional system.

  18. A numerical study of the 2- and 3-dimensional unsteady Navier-Stokes equations in velocity-vorticity variables using compact difference schemes

    NASA Technical Reports Server (NTRS)

    Gatski, T. B.; Grosch, C. E.

    1984-01-01

    A compact finite-difference approximation to the unsteady Navier-Stokes equations in velocity-vorticity variables is used to numerically simulate a number of flows. These include two-dimensional laminar flow of a vortex evolving over a flat plate with an embedded cavity, the unsteady flow over an elliptic cylinder, and aspects of the transient dynamics of the flow over a rearward facing step. The methodology required to extend the two-dimensional formulation to three-dimensions is presented.

  19. One-dimensional analysis of supersonic two-stage HVOF process

    NASA Astrophysics Data System (ADS)

    Katanoda, Hiroshi; Hagi, Junichi; Fukuhara, Minoru

    2009-12-01

    The one-dimensional calculation of the gas/particle flows of a supersonic two-stage high-velocity oxy-fuel (HVOF) thermal spray process was performed. The internal gas flow was solved by numerically integrating the equations of the quasi-one-dimensional flow including the effects of pipe friction and heat transfer. As for the supersonic jet flow, semi-empirical equations were used to obtain the gas velocity and temperature along the center line. The velocity and temperature of the particle were obtained by an one-way coupling method. The material of the spray particle selected in this study is ultra high molecular weight polyethylene (UHMWPE). The temperature distributions in the spherical UHMWPE particles of 50 and 150µm accelerated and heated by the supersonic gas flow was clarified.

  20. Lift distribution and velocity field measurements for a three-dimensional, steady blade/vortex interaction

    NASA Technical Reports Server (NTRS)

    Dunagan, Stephen E.; Norman, Thomas R.

    1987-01-01

    A wind tunnel experiment simulating a steady three-dimensional helicopter rotor blade/vortex interaction is reported. The experimental configuration consisted of a vertical semispan vortex-generating wing, mounted upstream of a horizontal semispan rotor blade airfoil. A three-dimensional laser velocimeter was used to measure the velocity field in the region of the blade. Sectional lift coefficients were calculated by integrating the velocity field to obtain the bound vorticity. Total lift values, obtained by using an internal strain-gauge balance, verified the laser velocimeter data. Parametric variations of vortex strength, rotor blade angle of attack, and vortex position relative to the rotor blade were explored. These data are reported (with attention to experimental limitations) to provide a dataset for the validation of analytical work.

  1. Two-dimensional radiative transfer. I - Planar geometry. [in stellar atmospheres

    NASA Technical Reports Server (NTRS)

    Mihalas, D.; Auer, L. H.; Mihalas, B. R.

    1978-01-01

    Differential-equation methods for solving the transfer equation in two-dimensional planar geometries are developed. One method, which uses a Hermitian integration formula on ray segments through grid points, proves to be extremely well suited to velocity-dependent problems. An efficient elimination scheme is developed for which the computing time scales linearly with the number of angles and frequencies; problems with large velocity amplitudes can thus be treated accurately. A very accurate and efficient method for performing a formal solution is also presented. A discussion is given of several examples of periodic media and free-standing slabs, both in static cases and with velocity fields. For the free-standing slabs, two-dimensional transport effects are significant near boundaries, but no important effects were found in any of the periodic cases studied.

  2. Spatially Extended Relativistic Particles Out of Traveling Front Solutions of Sine-Gordon Equation in (1+2) Dimensions

    PubMed Central

    Zarmi, Yair

    2016-01-01

    Slower-than-light multi-front solutions of the Sine-Gordon in (1+2) dimensions, constructed through the Hirota algorithm, are mapped onto spatially localized structures, which emulate free, spatially extended, massive relativistic particles. A localized structure is an image of the junctions at which the fronts intersect. It propagates together with the multi-front solution at the velocity of the latter. The profile of the localized structure obeys the linear wave equation in (1+2) dimensions, to which a term that represents interaction with a slower-than-light, Sine-Gordon-multi-front solution has been added. This result can be also formulated in terms of a (1+2)-dimensional Lagrangian system, in which the Sine-Gordon and wave equations are coupled. Expanding the Euler-Lagrange equations in powers of the coupling constant, the zero-order part of the solution reproduces the (1+2)-dimensional Sine-Gordon fronts. The first-order part is the spatially localized structure. PACS: 02.30.Ik, 03.65.Pm, 05.45.Yv, 02.30.Ik. PMID:26930077

  3. Three-dimensional imaging of absolute blood flow velocity and blood vessel position under low blood flow velocity based on Doppler signal information included in scattered light from red blood cells

    NASA Astrophysics Data System (ADS)

    Kyoden, Tomoaki; Akiguchi, Shunsuke; Tajiri, Tomoki; Andoh, Tsugunobu; Hachiga, Tadashi

    2017-11-01

    The development of a system for in vivo visualization of occluded distal blood vessels for diabetic patients is the main target of our research. We herein describe two-beam multipoint laser Doppler velocimetry (MLDV), which measures the instantaneous multipoint flow velocity and can be used to observe the blood flow velocity in peripheral blood vessels. By including a motorized stage to shift the measurement points horizontally and in the depth direction while measuring the velocity, the path of the blood vessel in the skin could be observed using blood flow velocity in three-dimensional space. The relationship of the signal power density between the blood vessel and the surrounding tissues was shown and helped us identify the position of the blood vessel. Two-beam MLDV can be used to simultaneously determine the absolute blood flow velocity distribution and identify the blood vessel position in skin.

  4. Numerical modeling of interaction of the aircraft engine with concrete protective structures

    NASA Astrophysics Data System (ADS)

    Radchenko, P. A.; Batuev, S. P.; Radchenko, A. V.; Plevkov, V. S.

    2018-01-01

    The paper presents numerical modeling results considering interaction of Boeing 747 aircraft engine with nuclear power station protective shell. Protective shell has been given as a reinforced concrete structure with complex scheme of reinforcement. The engine has been simulated by cylinder projectile made from titanium alloy. The interaction velocity has comprised 180 m/s. The simulation is three-dimensional solved by finite element method using the author’s own software package EFES. Fracture and fragmentation of materials have been considered in calculations. Program software has been assessed to be used in calculation of multiple-contact objectives.

  5. A Computational and Experimental Study of Coflow Laminar Methane/Air Diffusion Flames: Effects of Fuel Dilution, Inlet Velocity, and Gravity

    NASA Technical Reports Server (NTRS)

    Cao, S.; Ma, B.; Bennett, B. A. V.; Giassi, D.; Stocker, D. P.; Takahashi, F.; Long, M. B.; Smooke, M. D.

    2014-01-01

    The influences of fuel dilution, inlet velocity, and gravity on the shape and structure of laminar coflow CH4-air diffusion flames were investigated computationally and experimentally. A series of nitrogen-diluted flames measured in the Structure and Liftoff in Combustion Experiment (SLICE) on board the International Space Station was assessed numerically under microgravity (mu g) and normal gravity (1g) conditions with CH4 mole fraction ranging from 0.4 to 1.0 and average inlet velocity ranging from 23 to 90 cm/s. Computationally, the MC-Smooth vorticity-velocity formulation was employed to describe the reactive gaseous mixture, and soot evolution was modeled by sectional aerosol equations. The governing equations and boundary conditions were discretized on a two-dimensional computational domain by finite differences, and the resulting set of fully coupled, strongly nonlinear equations was solved simultaneously at all points using a damped, modified Newton's method. Experimentally, flame shape and soot temperature were determined by flame emission images recorded by a digital color camera. Very good agreement between computation and measurement was obtained, and the conclusions were as follows. (1) Buoyant and nonbuoyant luminous flame lengths are proportional to the mass flow rate of the fuel mixture; computed and measured nonbuoyant flames are noticeably longer than their 1g counterparts; the effect of fuel dilution on flame shape (i.e., flame length and flame radius) is negligible when the flame shape is normalized by the methane flow rate. (2) Buoyancy-induced reduction of the flame radius through radially inward convection near the flame front is demonstrated. (3) Buoyant and nonbuoyant flame structure is mainly controlled by the fuel mass flow rate, and the effects from fuel dilution and inlet velocity are secondary.

  6. Upper crustal structure in Puget Lowland, Washington: Results from the 1998 Seismic Hazards Investigation in Puget Sound

    USGS Publications Warehouse

    Brocher, T.M.; Parsons, T.; Blakely, R.J.; Christensen, N.I.; Fisher, M.A.; Wells, R.E.; ten Brink, Uri S.; Pratt, T.L.; Crosson, R.S.; Creager, K.C.; Symons, N.P.; Preston, L.A.; Van Wagoner, T.; Miller, K.C.; Snelson, C.M.; Trehu, A.M.; Langenheim, V.E.; Spence, G.D.; Ramachandran, K.; Hyndman, R.A.; Mosher, D.C.; Zelt, B.C.; Weaver, C.S.

    2001-01-01

    A new three-dimensional (3-D) model shows seismic velocities beneath the Puget Lowland to a depth of 11 km. The model is based on a tomographic inversion of nearly one million first-arrival travel times recorded during the 1998 Seismic Hazards Investigation in Puget Sound (SHIPS), allowing higher-resolution mapping of subsurface structures than previously possible. The model allows us to refine the subsurface geometry of previously proposed faults (e.g., Seattle, Hood Canal, southern Whidbey Island, and Devils Mountain fault zones) as well as to identify structures (Tacoma, Lofall, and Sequim fault zones) that warrant additional study. The largest and most important of these newly identified structures lies along the northern boundary of the Tacoma basin; we informally refer to this structure here as the Tacoma fault zone. Although tomography cannot provide information on the recency of motion on any structure, Holocene earthquake activity on the Tacoma fault zone is suggested by seismicity along it and paleoseismic evidence for abrupt uplift of tidal marsh deposits to its north. The tomography reveals four large, west to northwest trending low-velocity basins (Tacoma, Seattle, Everett, and Port Townsend) separated by regions of higher velocity ridges that are coincident with fault-bounded uplifts of Eocene Crescent Formation basalt and pre-Tertiary basement. The shapes of the basins and uplifts are similar to those observed in gravity data; gravity anomalies calculated from the 3-D tomography model are in close agreement with the observed anomalies. In velocity cross sections the Tacoma and Seattle basins are asymmetric: the basin floor dips gently toward a steep boundary with the adjacent high-velocity uplift, locally with a velocity "overhang" that suggests a basin vergent thrust fault boundary. Crustal fault zones grow from minor folds into much larger structures along strike. Inferred structural relief across the Tacoma fault zone increases by several kilometers westward along the fault zone to Lynch Cove, where we interpret it as a zone of south vergent faulting overthrusting Tacoma basin. In contrast, structural relief along the Seattle fault zone decreases west of Seattle, which we interpret as evidence that the N-S directed compression is being accommodated by slip transfer between the Seattle and Tacoma fault zones. Together, the Tacoma and Seattle fault zones raise the Seattle uplift, one of a series of east-west trending, pop-up structures underlying Puget Lowland from the Black Hills to the San Juan Islands. Copyright 2001 by the American Geophysical Union.

  7. Upper crustal structure in Puget Lowland, Washington: Results from the 1998 Seismic Hazards Investigation in Puget Sound

    NASA Astrophysics Data System (ADS)

    Brocher, Thomas M.; Parsons, Tom; Blakely, Richard J.; Christensen, Nikolas I.; Fisher, Michael A.; Wells, Ray E.

    2001-01-01

    A new three-dimensional (3-D) model shows seismic velocities beneath the Puget Lowland to a depth of 11 km. The model is based on a tomographic inversion of nearly one million first-arrival travel times recorded during the 1998 Seismic Hazards Investigation in Puget Sound (SHIPS), allowing higher-resolution mapping of subsurface structures than previously possible. The model allows us to refine the subsurface geometry of previously proposed faults (e.g., Seattle, Hood Canal, southern Whidbey Island, and Devils Mountain fault zones) as well as to identify structures (Tacoma, Lofall, and Sequim fault zones) that warrant additional study. The largest and most important of these newly identified structures lies along the northern boundary of the Tacoma basin; we informally refer to this structure here as the Tacoma fault zone. Although tomography cannot provide information on the recency of motion on any structure, Holocene earthquake activity on the Tacoma fault zone is suggested by seismicity along it and paleoseismic evidence for abrupt uplift of tidal marsh deposits to its north. The tomography reveals four large, west to northwest trending low-velocity basins (Tacoma, Seattle, Everett, and Port Townsend) separated by regions of higher velocity ridges that are coincident with fault-bounded uplifts of Eocene Crescent Formation basalt and pre-Tertiary basement. The shapes of the basins and uplifts are similar to those observed in gravity data; gravity anomalies calculated from the 3-D tomography model are in close agreement with the observed anomalies. In velocity cross sections the Tacoma and Seattle basins are asymmetric: the basin floor dips gently toward a steep boundary with the adjacent high-velocity uplift, locally with a velocity "overhang" that suggests a basin vergent thrust fault boundary. Crustal fault zones grow from minor folds into much larger structures along strike. Inferred structural relief across the Tacoma fault zone increases by several kilometers westward along the fault zone to Lynch Cove, where we interpret it as a zone of south vergent faulting overthrusting Tacoma basin. In contrast, structural relief along the Seattle fault zone decreases west of Seattle, which we interpret as evidence that the N-S directed compression is being accommodated by slip transfer between the Seattle and Tacoma fault zones. Together, the Tacoma and Seattle fault zones raise the Seattle uplift, one of a series of east-west trending, pop-up structures underlying Puget Lowland from the Black Hills to the San Juan Islands.

  8. Edge-to-center plasma density ratios in two-dimensional plasma discharges

    NASA Astrophysics Data System (ADS)

    Lucken, R.; Croes, V.; Lafleur, T.; Raimbault, J.-L.; Bourdon, A.; Chabert, P.

    2018-03-01

    Edge-to-center plasma density ratios—so-called h factors—are important parameters for global models of plasma discharges as they are used to calculate the plasma losses at the reactor walls. There are well-established theories for h factors in the one-dimensional (1D) case. The purpose of this paper is to establish h factors in two-dimensional (2D) systems, with guidance from a 2D particle-in-cell (PIC) simulation. We derive analytical solutions of a 2D fluid theory that includes the effect of ion inertia, but assumes a constant (independent of space) ion collision frequency (using an average ion velocity) across the discharge. Predicted h factors from this 2D fluid theory have the same order of magnitude and the same trends as the PIC simulations when the average ion velocity used in the collision frequency is set equal to the ion thermal velocity. The best agreement is obtained when the average ion velocity varies with pressure (but remains independent of space), going from half the Bohm velocity at low pressure, to the thermal velocity at high pressure. The analysis also shows that a simple correction of the widely-used 1D heuristic formula may be proposed to accurately incorporate 2D effects.

  9. Numerical modeling of surface wave development under the action of wind

    NASA Astrophysics Data System (ADS)

    Chalikov, Dmitry

    2018-06-01

    The numerical modeling of two-dimensional surface wave development under the action of wind is performed. The model is based on three-dimensional equations of potential motion with a free surface written in a surface-following nonorthogonal curvilinear coordinate system in which depth is counted from a moving surface. A three-dimensional Poisson equation for the velocity potential is solved iteratively. A Fourier transform method, a second-order accuracy approximation of vertical derivatives on a stretched vertical grid and fourth-order Runge-Kutta time stepping are used. Both the input energy to waves and dissipation of wave energy are calculated on the basis of earlier developed and validated algorithms. A one-processor version of the model for PC allows us to simulate an evolution of the wave field with thousands of degrees of freedom over thousands of wave periods. A long-time evolution of a two-dimensional wave structure is illustrated by the spectra of wave surface and the input and output of energy.

  10. Numerical simulation of two-dimensional flow over a heated carbon surface with coupled heterogeneous and homogeneous reactions

    NASA Astrophysics Data System (ADS)

    Johnson, Ryan Federick; Chelliah, Harsha Kumar

    2017-01-01

    For a range of flow and chemical timescales, numerical simulations of two-dimensional laminar flow over a reacting carbon surface were performed to understand further the complex coupling between heterogeneous and homogeneous reactions. An open-source computational package (OpenFOAM®) was used with previously developed lumped heterogeneous reaction models for carbon surfaces and a detailed homogeneous reaction model for CO oxidation. The influence of finite-rate chemical kinetics was explored by varying the surface temperatures from 1800 to 2600 K, while flow residence time effects were explored by varying the free-stream velocity up to 50 m/s. The reacting boundary layer structure dependence on the residence time was analysed by extracting the ratio of chemical source and species diffusion terms. The important contributions of radical species reactions on overall carbon removal rate, which is often neglected in multi-dimensional simulations, are highlighted. The results provide a framework for future development and validation of lumped heterogeneous reaction models based on multi-dimensional reacting flow configurations.

  11. Aeroelastic Flutter Behavior of a Cantilever and Elastically Mounted Plate within a Nozzle-Diffuser Geometry

    NASA Astrophysics Data System (ADS)

    Tosi, Luis Phillipe; Colonius, Tim; Lee, Hyeong Jae; Sherrit, Stewart; Jet Propulsion Laboratory Collaboration; California Institute of Technology Collaboration

    2016-11-01

    Aeroelastic flutter arises when the motion of a structure and its surrounding flowing fluid are coupled in a constructive manner, causing large amplitudes of vibration in the immersed solid. A cantilevered beam in axial flow within a nozzle-diffuser geometry exhibits interesting resonance behavior that presents good prospects for internal flow energy harvesting. Different modes can be excited as a function of throat velocity, nozzle geometry, fluid and cantilever material parameters. Similar behavior has been also observed in elastically mounted rigid plates, enabling new designs for such devices. This work explores the relationship between the aeroelastic flutter instability boundaries and relevant non-dimensional parameters via experiments, numerical, and stability analyses. Parameters explored consist of a non-dimensional stiffness, a non-dimensional mass, non-dimensional throat size, and Reynolds number. A map of the system response in this parameter space may serve as a guide to future work concerning possible electrical output and failure prediction in harvesting devices.

  12. Three-dimensional flow structure and patterns of bed shear stress in an evolving compound meander bend

    USGS Publications Warehouse

    Engel, Frank; Rhoads, Bruce L.

    2016-01-01

    Compound meander bends with multiple lobes of maximum curvature are common in actively evolving lowland rivers. Interaction among spatial patterns of mean flow, turbulence, bed morphology, bank failures and channel migration in compound bends is poorly understood. In this paper, acoustic Doppler current profiler (ADCP) measurements of the three-dimensional (3D) flow velocities in a compound bend are examined to evaluate the influence of channel curvature and hydrologic variability on the structure of flow within the bend. Flow structure at various flow stages is related to changes in bed morphology over the study timeframe. Increases in local curvature within the upstream lobe of the bend reduce outer bank velocities at morphologically significant flows, creating a region that protects the bank from high momentum flow and high bed shear stresses. The dimensionless radius of curvature in the upstream lobe is one-third less than that of the downstream lobe, with average bank erosion rates less than half of the erosion rates for the downstream lobe. Higher bank erosion rates within the downstream lobe correspond to the shift in a core of high velocity and bed shear stresses toward the outer bank as flow moves through the two lobes. These erosion patterns provide a mechanism for continued migration of the downstream lobe in the near future. Bed material size distributions within the bend correspond to spatial patterns of bed shear stress magnitudes, indicating that bed material sorting within the bend is governed by bed shear stress. Results suggest that patterns of flow, sediment entrainment, and planform evolution in compound meander bends are more complex than in simple meander bends. Moreover, interactions among local influences on the flow, such as woody debris, local topographic steering, and locally high curvature, tend to cause compound bends to evolve toward increasing planform complexity over time rather than stable configurations.

  13. Prediction of Strong Earthquake Ground Motion for the M=7.4 and M=7.2 1999, Turkey Earthquakes based upon Geological Structure Modeling and Local Earthquake Recordings

    NASA Astrophysics Data System (ADS)

    Gok, R.; Hutchings, L.

    2004-05-01

    We test a means to predict strong ground motion using the Mw=7.4 and Mw=7.2 1999 Izmit and Duzce, Turkey earthquakes. We generate 100 rupture scenarios for each earthquake, constrained by a prior knowledge, and use these to synthesize strong ground motion and make the prediction. Ground motion is synthesized with the representation relation using impulsive point source Green's functions and synthetic source models. We synthesize the earthquakes from DC to 25 Hz. We demonstrate how to incorporate this approach into standard probabilistic seismic hazard analyses (PSHA). The synthesis of earthquakes is based upon analysis of over 3,000 aftershocks recorded by several seismic networks. The analysis provides source parameters of the aftershocks; records available for use as empirical Green's functions; and a three-dimensional velocity structure from tomographic inversion. The velocity model is linked to a finite difference wave propagation code (E3D, Larsen 1998) to generate synthetic Green's functions (DC < f < 0.5 Hz). We performed the simultaneous inversion for hypocenter locations and three-dimensional P-wave velocity structure of the Marmara region using SIMULPS14 along with 2,500 events. We also obtained source moment and corner frequency and individual station attenuation parameter estimates for over 500 events by performing a simultaneous inversion to fit these parameters with a Brune source model. We used the results of the source inversion to deconvolve out a Brune model from small to moderate size earthquake (M<4.0) recordings to obtain empirical Green's functions for the higher frequency range of ground motion (0.5 < f < 25.0 Hz). Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-ENG-48.

  14. Three-dimensional velocity structure and hypocenter distribution in the Campi Flegrei caldera, Italy

    NASA Astrophysics Data System (ADS)

    Aster, R. C.; Meyer, R. P.

    1988-06-01

    The Campi Flegrei (Phlegraean Fields) are dominated by a Quaternary explosive calders, about 10 km in diameter. Within the caldera are numerous later eruptive vents, the last of which formed in 1538 A.D. Well documented local elevation changes of ≈ 10 m have occurred in the caldera since Roman times. Recent inflation of the central caldera began in 1968, after over 400 years of subsidence. During this time more than 2 m of localized uplift occurred, predominantly from 1980 through 1985. Microearthquakes associated with this uplift were recorded by a portable three-component digital network deployed by the University of Wisconsin and the Vesuvius Observatory from August 1983 through May 1984. Those data have been used to obtain detailed information about the velocity structure of the caldera. A best-fit homogeneous half-space model was obtained by a systematic search for optimal residual statistics. A residual-based tomographic technique was applied to isolate a low-seismicity, anomalously-high {v p}/{v s} region in the central caldera, roughly coincident with the region of greatest uplift. Finally, P and S arrival times were used to simultaneously relocate 228 earthquakes and obtain a three-dimensional vp and vs model for the caldera. The results of this velocity study, considered along with drillhole findings, composite fault-plane solutions, and the space-time distribution of earthquakes, suggest that the {v p}/{v s} anomaly may represent an incompetent, highly fractured volume, saturated with liquid water. Hypocenter locations indicate a zone of concentrated seismicity north of the point of highest measured uplift. An inward-dipping elliptical hypocenter pattern suggests a ring fault.

  15. ENERGY DISSIPATION AND LANDAU DAMPING IN TWO- AND THREE-DIMENSIONAL PLASMA TURBULENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tak Chu; Howes, Gregory G.; Klein, Kristopher G.

    Plasma turbulence is ubiquitous in space and astrophysical plasmas, playing an important role in plasma energization, but the physical mechanisms leading to dissipation of the turbulent energy remain to be definitively identified. Kinetic simulations in two dimensions (2D) have been extensively used to study the dissipation process. How the limitation to 2D affects energy dissipation remains unclear. This work provides a model of comparison between two- and three-dimensional (3D) plasma turbulence using gyrokinetic simulations; it also explores the dynamics of distribution functions during the dissipation process. It is found that both 2D and 3D nonlinear gyrokinetic simulations of a low-betamore » plasma generate electron velocity-space structures with the same characteristics as that of the linear Landau damping of Alfvén waves in a 3D linear simulation. The continual occurrence of the velocity-space structures throughout the turbulence simulations suggests that the action of Landau damping may be responsible for the turbulent energy transfer to electrons in both 2D and 3D, and makes possible the subsequent irreversible heating of the plasma through collisional smoothing of the velocity-space fluctuations. Although, in the 2D case where variation along the equilibrium magnetic field is absent, it may be expected that Landau damping is not possible, a common trigonometric factor appears in the 2D resonant denominator, leaving the resonance condition unchanged from the 3D case. The evolution of the 2D and 3D cases is qualitatively similar. However, quantitatively, the nonlinear energy cascade and subsequent dissipation is significantly slower in the 2D case.« less

  16. Two-dimensional seismic velocity models of southern Taiwan from TAIGER transects

    NASA Astrophysics Data System (ADS)

    McIntosh, K. D.; Kuochen, H.; Van Avendonk, H. J.; Lavier, L. L.; Wu, F. T.; Okaya, D. A.

    2013-12-01

    We use a broad combination of wide-angle seismic data sets to develop high-resolution crustal-scale, two-dimensional, velocity models across southern Taiwan and the adjacent Huatung Basin. The data were recorded primarily during the TAIGER project and include records of thousands of marine airgun shots, several land explosive sources, and ~90 Earthquakes. Both airgun sources and earthquake data were recorded by dense land arrays, and ocean bottom seismographs (OBS) recorded airgun sources east of Taiwan. This combination of data sets enables us to develop a high-resolution upper- to mid-crustal model defined by marine and explosive sources, while also constraining the full crustal structure - with depths approaching 50 km - by using the earthquake and explosive sources. These data and the resulting models are particularly important for understanding the development of arc-continent collision in Taiwan. McIntosh et al. (2013) have shown that highly extended continental crust of the northeastern South China Sea rifted margin is underthrust at the Manila trench southwest of Taiwan but then is structurally underplated to the accretionary prism. This process of basement accretion is confirmed in the southern Central Range of Taiwan where basement outcrops can be directly linked to high seismic velocities measured in the accretionary prism well south of the continental shelf, even south of Taiwan. These observations indicate that the southern Central Range begins to grow well before there is any direct interaction between the North Luzon arc and the Eurasian continent. Our transects provide information on how the accreted mass behaves as it approaches the continental shelf and on deformation of the arc and forearc as this occurs. We suggest that arc-continent collision in Taiwan actually develops as arc-prism-continent collision.

  17. Influence of the Geometric Parameter on the Regimes of Natural Convection and Thermal Surface Radiation in a Closed Parallelepiped

    NASA Astrophysics Data System (ADS)

    Martyushev, S. G.; Miroshnichenko, I. V.; Sheremet, M. A.

    2015-11-01

    We have performed a numerical analysis of the stationary regimes of thermogravitational convection and thermal surface radiation in a closed differentially heated parallelepiped. The mathematical model formulated in dimensionless natural velocity-pressure-temperature variables was realized numerically in the control volume approach. Analysis of the radiative heat exchange was carried out on the basis of the surface radiation approach with the use of the balance method in the Polyak variant. We have obtained three-dimensional temperature and velocity fields, as well as dependences for the mean Nusselt number reflecting the influence of the geometric parameter, the Rayleigh number, and the reduced emissive factor of the walls on the flow structure and the heat transfer.

  18. Magnetron injection gun for a broadband gyrotron backward-wave oscillator

    NASA Astrophysics Data System (ADS)

    Yuan, C. P.; Chang, T. H.; Chen, N. C.; Yeh, Y. S.

    2009-07-01

    The magnetron injection gun is capable of generating relativistic electron beam with high velocity ratio and low velocity spread for a gyrotron backward-wave oscillator (gyro-BWO). However, the velocity ratio (α) varies drastically against both the magnetic field and the beam voltage, which significantly limits the tuning bandwidth of a gyro-BWO. This study remedies this drawback by adding a variable trim field to adjust the magnetic compression ratio when changing the operating conditions. Theoretical results obtained by employing a two-dimensional electron gun code (EGUN) demonstrate a constant velocity ratio of 1.5 with a low axial velocity spread of 6% from 3.4-4.8 Tesla. These results are compared with a three-dimensional particle-tracing code (computer simulation technology, CST). The underlying physics for constant α will be discussed in depth.

  19. Optical coherence tomography characterization of femtosecond laser manufactured microfluidic circuits

    NASA Astrophysics Data System (ADS)

    De Pretto, Lucas Ramos; Samad, Ricardo Elgul; de Rossi, Wagner; de Freitas, Anderson Zanardi

    2018-02-01

    Dimensional characterization of microfluidic circuits were performed using three-dimensional models constructed from OCT images of such circuits. Were fabricated microchannels on the same BK7 glass plate, under different laser ablation conditions and substrate displacement velocity in relation to laser beam. Were used the following combination of energy, from 30 μJ to 60 μJ and velocity from 588 mm/min to 1176 mm/min, at 1 kHz laser repetition rate and 40 fs of pulse duration (FWHM). For OCT imaging we used an OCP930SR (Thorlabs System Inc) with 930 nm central wavelength, 6 μm of lateral and axial resolution, and image of 500 x 512 pixel corresponding to 2.0 mm x 1.6 mm of lateral and axial scans respectively at 8 frames per second. We also characterized devices like, micropumps, microvalves and microreactors. It was possible register the micropumps and valves in action in real time. Using the OCT images analyses was possible to select the best combination of laser pulse energy and substrate velocity. All the devices were made in raster protocol, where laser beam pass through the same path in a controlled number of times, and with each iteration more material is removed and deeper the channels remain. We found a deformation at the edge of fabricated structures, due to velocity reduction of substrate in relation to laser beam, which causes more laser pulses superposition in these regions, and more material is ablated. The technique was thus evaluated as a potential tool to aid in the inspection of microchannels.

  20. Building the Peanut: Simulations and Observations of Peanut-shaped Structures and Ansae in Face-on Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Saha, Kanak; Graham, Alister W.; Rodríguez-Herranz, Isabel

    2018-01-01

    Peanut/x-shaped features observed in a significant fraction of disk galaxies are thought to have formed from vertically buckled bars. Despite being three-dimensional structures, they are preferentially detected in near edge-on projection. Only a few galaxies are found to have displayed such structures when their disks are relatively face-on—suggesting that either they are generally weak in face-on projection or many may be hidden by the light of their galaxy’s face-on disk. Here, we report on three (collisionless) simulated galaxies displaying peanut-shaped structures when their disks are seen both face-on and edge-on—resembling a three-dimensional peanut or dumbbell. Furthermore, these structures are accompanied by ansae and an outer ring at the end of the bar—as seen in real galaxies such as IC 5240. The same set of quantitative parameters used to measure peanut structures in real galaxies has been determined for the simulated galaxies, and a broad agreement is found. In addition, the peanut length grows in tandem with the bar, and is a maximum at half the length of the bar. Beyond the cutoff of these peanut structures, toward the end of the bar, we discover a new positive/negative feature in the B 6 radial profile associated with the isophotes of the ansae/ring. Our simulated, self-gravitating, three-dimensional peanut structures display cylindrical rotation even in the near-face-on disk projection. In addition, we report on a kinematic pinch in the velocity map along the bar minor axis, matching that seen in the surface density map.

  1. The Kolmogorov-Obukhov Statistical Theory of Turbulence

    NASA Astrophysics Data System (ADS)

    Birnir, Björn

    2013-08-01

    In 1941 Kolmogorov and Obukhov postulated the existence of a statistical theory of turbulence, which allows the computation of statistical quantities that can be simulated and measured in a turbulent system. These are quantities such as the moments, the structure functions and the probability density functions (PDFs) of the turbulent velocity field. In this paper we will outline how to construct this statistical theory from the stochastic Navier-Stokes equation. The additive noise in the stochastic Navier-Stokes equation is generic noise given by the central limit theorem and the large deviation principle. The multiplicative noise consists of jumps multiplying the velocity, modeling jumps in the velocity gradient. We first estimate the structure functions of turbulence and establish the Kolmogorov-Obukhov 1962 scaling hypothesis with the She-Leveque intermittency corrections. Then we compute the invariant measure of turbulence, writing the stochastic Navier-Stokes equation as an infinite-dimensional Ito process, and solving the linear Kolmogorov-Hopf functional differential equation for the invariant measure. Finally we project the invariant measure onto the PDF. The PDFs turn out to be the normalized inverse Gaussian (NIG) distributions of Barndorff-Nilsen, and compare well with PDFs from simulations and experiments.

  2. Multi-dimensional upwinding-based implicit LES for the vorticity transport equations

    NASA Astrophysics Data System (ADS)

    Foti, Daniel; Duraisamy, Karthik

    2017-11-01

    Complex turbulent flows such as rotorcraft and wind turbine wakes are characterized by the presence of strong coherent structures that can be compactly described by vorticity variables. The vorticity-velocity formulation of the incompressible Navier-Stokes equations is employed to increase numerical efficiency. Compared to the traditional velocity-pressure formulation, high order numerical methods and sub-grid scale models for the vorticity transport equation (VTE) have not been fully investigated. Consistent treatment of the convection and stretching terms also needs to be addressed. Our belief is that, by carefully designing sharp gradient-capturing numerical schemes, coherent structures can be more efficiently captured using the vorticity-velocity formulation. In this work, a multidimensional upwind approach for the VTE is developed using the generalized Riemann problem-based scheme devised by Parish et al. (Computers & Fluids, 2016). The algorithm obtains high resolution by augmenting the upwind fluxes with transverse and normal direction corrections. The approach is investigated with several canonical vortex-dominated flows including isolated and interacting vortices and turbulent flows. The capability of the technique to represent sub-grid scale effects is also assessed. Navy contract titled ``Turbulence Modelling Across Disparate Length Scales for Naval Computational Fluid Dynamics Applications,'' through Continuum Dynamics, Inc.

  3. Surface-wave tomography of Ireland and surroundings using ambient noise and teleseismic data

    NASA Astrophysics Data System (ADS)

    Bonadio, Raffaele; Arroucau, Pierre; Lebedev, Sergei; Meier, Thomas; Schaeffer, Andrew; Licciardi, Andrea; Piana Agostinetti, Nicola

    2016-04-01

    Ireland's geology is dominated by northeast-southwest structural trends and suture zones, mostly inferred from geological mapping and a few active source seismic experiments. However, their geometry and extent at depth and their continuity across the Irish Sea are still poorly known. Important questions also remain unanswered regarding the thickness and bulk properties of the sedimentary cover at the regional scale, the deformation and flow of the deep crust during the formation of Ireland, the thickness of Ireland's lithosphere today, and the thermal structure and dynamics of the asthenosphere beneath Ireland. In this work, we take advantage of abundant, newly available broadband data from temporary array deployments and permanent seismic networks in Ireland and Great Britain to produce high-resolution models of seismic velocity structure and anisotropy of the lithosphere. We combine Rayleigh and Love phase velocity measurements from waveform cross-correlation using both ambient noise and teleseismic data in order to produce high-quality dispersion curves for periods ranging from 1 to 300 s. The phase velocity measurement procedures are adapted from Meier et al.[2], Lebedev et al.[1] and Soomro et al.[3] and are automated in order to deal with the large amount of data and ensure consistency and reproducibility. For the nearly 200 stations used in this study, we obtain a very large number of dispersion curves from both ambient noise and teleseimic data. Dispersion measurements are then inverted in a tomographic procedure for surface-wave phase velocity maps in a very broad period range. The maps constrain the 3D seismic-velocity structure of the crust and upper mantle underlying Ireland and the Irish Sea. {9} Lebedev, S., T. Meier, R. D. van der Hilst. Asthenospheric flow and origin of volcanism in the Baikal Rift area, Earth Planet. Sci. Lett., 249, 415-424, 2006. Meier, T., K. Dietrich, B. Stockhert, H.P. Harjes, One-dimensional models of shear wave velocity for the eastern Mediterranean obtained from the inversion of Rayleigh wave phase velocities and tectonic implications, Geophys. J. Int. 156, 45-58, 2004. Soomro, R.A., C. Weidle, L. Cristiano, S. Lebedev, T. Meier. Phase velocities of Rayleigh and Love waves in central and northern Europe from automated, broadband, inter-station measurements, Geophys. J. Int., 204, 517-534, 2016.

  4. Seismic velocity structure in the western part of Nankai subduction zone

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Obana, K.; Takahashi, T.; Nakanishi, A.; Kodaira, S.; Kaneda, Y.

    2011-12-01

    In the Nankai Trough, three major seismogenic zones of megathrust earthquake exist (Tokai, Tonankai and Nankai earthquake regions). The Hyuga-nada region was distinguished from these seismogenic zones because of the lack of megathrust earthquake. However, recent studies show the possibility of simultaneous rupture of the Nankai and Hyuga-nada segments was also pointed out [e.g., Furumura et al, 2010 JGR]. Because seismic velocity structure is one of the useful and basic information for understanding the possibility of seismic linkage of Nankai and Hyuga-nada segments, Japan Agency for Marine-Earth Science and Technology has been carried out a series of wide-angle active source surveys and local seismic observations among the three major seismogenic zones and Hyuga-nada segment from 2008, as a part of "Research concerning Interaction Between the Tokai, Tonankai and Nankai Earthquakes' funded by Ministry of Education, Culture, Sports, Science and Technology, Japan". We are performing two set of three-dimensional seismic velocity tomographic inversions, one is in the Hyuga-nada region and the other is western part of the coseismic rupture area of 1946 Nankai earthquake, to discuss the relationship between the structural heterogeneities and the location of segment boundary between Hyuga-nada and Nankai segment. For the analysis of Hyuga-nada segment, we used both active and passive source data. The obtained velocity model clearly showed the subducted Kyushu-Palau ridge as thick low velocity Philippine Sea slab in the southwestern part. Our velocity image also indicates that "the thin oceanic crust zone" located between Nankai segment and Kyushu-Palau Ridge segment, founded by Nakanishi et al [2010, AGU] by analyzing of the active source survey, continuously exists from trough axis to near the coastline of Kyushu Island. The overriding plate just above the coseismic slip area of 1968 Hyuga-nada earthquake shows relatively high velocity. Although the tomographic study in the western part of Nankai seismogenic zone is still a preliminary stage and we used only a part of the passive source data, we found the anomalous high velocity zone in the overriding plate. This zone is located at just beneath the cape Ashizuri, corresponding to the boundary between the Nankai and Hyuga-nada segments. To clarify more detail structure, we will perform the joint inversion using both active and passive source data in the western Nankai seismogenic zone.

  5. 2-dimensional models of rapidly rotating stars I. Uniformly rotating zero age main sequence stars

    NASA Astrophysics Data System (ADS)

    Roxburgh, I. W.

    2004-12-01

    We present results for 2-dimensional models of rapidly rotating main sequence stars for the case where the angular velocity Ω is constant throughout the star. The algorithm used solves for the structure on equipotential surfaces and iteratively updates the total potential, solving Poisson's equation by Legendre polynomial decomposition; the algorithm can readily be extended to include rotation constant on cylinders. We show that this only requires a small number of Legendre polynomials to accurately represent the solution. We present results for models of homogeneous zero age main sequence stars of mass 1, 2, 5, 10 M⊙ with a range of angular velocities up to break up. The models have a composition X=0.70, Z=0.02 and were computed using the OPAL equation of state and OPAL/Alexander opacities, and a mixing length model of convection modified to include the effect of rotation. The models all show a decrease in luminosity L and polar radius Rp with increasing angular velocity, the magnitude of the decrease varying with mass but of the order of a few percent for rapid rotation, and an increase in equatorial radius Re. Due to the contribution of the gravitational multipole moments the parameter Ω2 Re3/GM can exceed unity in very rapidly rotating stars and Re/Rp can exceed 1.5.

  6. Echocardiographic nomograms for upper abdominal aorta Doppler systolic wave values and systo-diastolic diameters variations in children.

    PubMed

    Cantinotti, Massimiliano; Giordano, Raffaele; Corsini, Iuri; Dani, Carlo; Scalese, Marco; Murzi, Bruno; Assanta, Nadia; Spadoni, Isabella; Molinaro, Sabrina; Kutty, Shelby; Iervasi, Giorgio; Franchi, Eliana

    2018-04-01

    Abdominal aorta pulsatility and blood flow patterns are important diagnostic indicators in congenital heart disease. Reference values for these indexes are lacking. We prospectively studied abdominal aorta pulsed-wave Doppler systolic peak velocity, deceleration time, and wave duration, and two-dimensional vessel diameters in systole and diastole in healthy Caucasian children. Heteroscedasticity was accounted for by White or Breusch-Pagan test. Age, weight, height, heart rate (HR), and body surface area (BSA) were used as independent variables in different analyses to predict the mean values of each measurement. Structured Z-scores were then computed. In all, 853 subjects (age 0 days to 17 years; 45% females; BSA 0.12-2.12m 2 ) were studied. The predicted values and Z-score boundaries are presented. Data are also presented as mean±2 SDs for a given BSA. We report paediatric echocardiographic nomograms for multiple proximal abdominal aorta parameters including pulsed-wave Doppler systolic velocities, deceleration time, wave duration, and two-dimensional vessel diameter variations. Significant variations in these functional indexes with age were found that should be taken into account in clinical practice. At lower ages, steeper and shorter pulsed-wave Doppler peak velocity and limited pulsatility should be expected as physiologic findings. Copyright © 2017 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  7. Lagrangian statistics in weakly forced two-dimensional turbulence.

    PubMed

    Rivera, Michael K; Ecke, Robert E

    2016-01-01

    Measurements of Lagrangian single-point and multiple-point statistics in a quasi-two-dimensional stratified layer system are reported. The system consists of a layer of salt water over an immiscible layer of Fluorinert and is forced electromagnetically so that mean-squared vorticity is injected at a well-defined spatial scale ri. Simultaneous cascades develop in which enstrophy flows predominately to small scales whereas energy cascades, on average, to larger scales. Lagrangian correlations and one- and two-point displacements are measured for random initial conditions and for initial positions within topological centers and saddles. Some of the behavior of these quantities can be understood in terms of the trapping characteristics of long-lived centers, the slow motion near strong saddles, and the rapid fluctuations outside of either centers or saddles. We also present statistics of Lagrangian velocity fluctuations using energy spectra in frequency space and structure functions in real space. We compare with complementary Eulerian velocity statistics. We find that simultaneous inverse energy and enstrophy ranges present in spectra are not directly echoed in real-space moments of velocity difference. Nevertheless, the spectral ranges line up well with features of moment ratios, indicating that although the moments are not exhibiting unambiguous scaling, the behavior of the probability distribution functions is changing over short ranges of length scales. Implications for understanding weakly forced 2D turbulence with simultaneous inverse and direct cascades are discussed.

  8. Impact of left ventricular outflow tract area on systolic outflow velocity in hypertrophic cardiomyopathy: a real-time three-dimensional echocardiographic study

    NASA Technical Reports Server (NTRS)

    Qin, Jian Xin; Shiota, Takahiro; Lever, Harry M.; Rubin, David N.; Bauer, Fabrice; Kim, Yong Jin; Sitges, Marta; Greenberg, Neil L.; Drinko, Jeanne K.; Martin, Maureen; hide

    2002-01-01

    OBJECTIVES: The aim of this study was to use real-time three-dimensional echocardiography (3DE) to investigate the quantitative relation between minimal left ventricular (LV) outflow tract area (A(LVOT)) and maximal LV outflow tract (LVOT) velocity in patients with hypertrophic obstructive cardiomyopathy (HCM). BACKGROUND: In patients with HCM, LVOT velocity should change inversely with minimal A(LVOT) unless LVOT obstruction reduces the pumping capacity of the ventricle. METHODS: A total of 25 patients with HCM with systolic anterior motion (SAM) of the mitral valve leaflets underwent real-time 3DE. The smallest A(LVOT) during systole was measured using anatomically oriented two-dimensional "C-planes" within the pyramidal 3DE volume. Maximal velocity across LVOT was evaluated by two-dimensional Doppler echocardiography (2DE). For comparison with 3DE A(LVOT), the SAM-septal distance was determined by 2DE. RESULTS: Real-time 3DE provided unique information about the dynamic SAM-septal relation during systole, with A(LVOT) ranging from 0.6 to 5.2 cm(2) (mean: 2.2 +/- 1.4 cm(2)). Maximal velocity (v) correlated inversely with A(LVOT) (v = 496 A(LVOT)(-0.80), r = -0.95, p < 0.001), but the exponent (-0.80) was significantly different from -1.0 (95% confidence interval: -0.67 to -0.92), indicating a significant impact of small A(LVOT) on the peak LVOT flow rate. By comparison, the best correlation between velocity and 2DE SAM-septal distance was significantly (p < 0.01) poorer at -0.83, indicating the superiority of 3DE for assessing A(LVOT). CONCLUSIONS: Three-dimensional echocardiography-measured A(LVOT) provides an assessment of HCM geometry that is superior to 2DE methods. These data indicate that the peak LVOT flow rate appears to be significantly decreased by reduced A(LVOT). Real-time 3DE is a potentially valuable clinical tool for assessing patients with HCM.

  9. Measuring Temperature-Dependent Propagating Disturbances in Coronal Fan Loops Using Multiple SDO-AIA Channels and Surfing Transform Technique

    NASA Technical Reports Server (NTRS)

    Uritskiy, Vadim M.; Davila, Joseph M.; Viall, Nicholeen M.; Ofman, Leon

    2013-01-01

    A set of co-aligned high resolution images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) is used to investigate propagating disturbances (PDs) in warm fan loops at the periphery of a non-flaring active region NOAA AR 11082. To measure PD speeds at multiple coronal temperatures, a new data analysis methodology is proposed enabling quantitative description of sub visual coronal motions with low signal-to-noise ratios of the order of 0.1. The technique operates with a set of one-dimensional surfing signals extracted from position-timeplots of several AIA channels through a modified version of Radon transform. The signals are used to evaluate a two-dimensional power spectral density distribution in the frequency - velocity space which exhibits a resonance in the presence of quasi-periodic PDs. By applying this analysis to the same fan loop structures observed in several AIA channels, we found that the traveling velocity of PDs increases with the temperature of the coronal plasma following the square root dependence predicted for the slow mode magneto-acoustic wave which seems to be the dominating wave mode in the studied loop structures. This result extends recent observations by Kiddie et al. (2012) to a more general class of fan loop systems not associated with sunspots and demonstrating consistent slow mode activity in up to four AIA channels.

  10. The diffusive boundary layer of sediments: oxygen microgradients over a microbial mat

    NASA Technical Reports Server (NTRS)

    Jorgensen, B. B.; Des Marais, D. J.

    1990-01-01

    Oxygen microelectrodes were used to analyze the distribution of the diffusive boundary layer (DBL) at the sediment-water interface in relation to surface topography and flow velocity. The sediment, collected from saline ponds, was covered by a microbial mat that had high oxygen consumption rate and well-defined surface structure. Diffusion through the DBL constituted an important rate limitation to the oxygen uptake of the sediment. The mean effective DBL thickness decreased from 0.59 to 0.16 mm as the flow velocity of the overlying water was increased from 0.3 to 7.7 cm s-1 (measured 1 cm above the mat). The oxygen uptake rate concurrently increased from 3.9 to 9.4 nmol cm-2 min-1. The effects of surface roughness and topography on the thickness and distribution of the DBL were studied by three-dimensional mapping of the sediment-water interface and the upper DBL boundary at 0.1-mm spatial resolution. The DBL boundary followed mat structures that had characteristic dimensions > 1/2 DBL thickness but the DBL had a dampened relief relative to the mat. The effective surface area of the sediment-water interface and of the upper DBL boundary were 31 and 14% larger, respectively, than a flat plane. Surface topography thereby increased the oxygen flux across the sediment-water interface by 49% relative to a one-dimensional diffusion flux calculated from the vertical oxygen microgradients.

  11. An Application of Overset Grids to Payload/Fairing Three-Dimensional Internal Flow CFD Analysis

    NASA Technical Reports Server (NTRS)

    Kandula, Max; Nallasamy, R.; Schallhorn, P.; Duncil, L.

    2007-01-01

    The application of overset grids to the computational fluid dynamics analysis of three-dimensional internal flow in the payload/fairing of an expendable launch vehicle is described. In conjunction with the overset grid system, the flowfield in the payload/fairing configuration is obtained with the aid of OVERFLOW Navier-Stokes code. The solution exhibits a highly three dimensional complex flowfield with swirl, separation, and vortices. Some of the computed flow features are compared with the measured Laser-Doppler Velocimetry (LDV) data on a 1/5th scale model of the payload/fairing configuration. The counter-rotating vortex structures and the location of the saddle point predicted by the CFD analysis are in general agreement with the LDV data. Comparisons of the computed (CFD) velocity profiles on horizontal and vertical lines in the LDV measurement plane in the faring nose region show reasonable agreement with the LDV data.

  12. Anisotropic superconductivity and elongated vortices with unusual bound states in quasi-one-dimensional nickel-bismuth compounds

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Lin; Zhang, Yi-Min; Lv, Yan-Feng; Ding, Hao; Wang, Lili; Li, Wei; He, Ke; Song, Can-Li; Ma, Xu-Cun; Xue, Qi-Kun

    2018-04-01

    We report low-temperature scanning tunneling microscopy and spectroscopy studies of Ni-Bi films grown by molecular beam epitaxy. Highly anisotropic and twofold symmetric superconducting gaps are revealed in two distinct composites, Bi-rich NiBi3 and near-equimolar NixBi , both sharing quasi-one-dimensional crystal structure. We further reveal axially elongated vortices in both phases, but Caroli-de Gennes-Matricon states solely within the vortex cores of NiBi3. Intriguingly, although the localized bound state splits energetically off at a finite distance ˜10 nm away from a vortex center along the minor axis of elliptic vortex, no splitting is found along the major axis. We attribute the elongated vortices and unusual vortex behaviors to the combined effects of twofold superconducting gap and Fermi velocity. The findings provide a comprehensive understanding of the electron pairing and vortex matter in quasi-one-dimensional superconductors.

  13. Probability and Cumulative Density Function Methods for the Stochastic Advection-Reaction Equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barajas-Solano, David A.; Tartakovsky, Alexandre M.

    We present a cumulative density function (CDF) method for the probabilistic analysis of $d$-dimensional advection-dominated reactive transport in heterogeneous media. We employ a probabilistic approach in which epistemic uncertainty on the spatial heterogeneity of Darcy-scale transport coefficients is modeled in terms of random fields with given correlation structures. Our proposed CDF method employs a modified Large-Eddy-Diffusivity (LED) approach to close and localize the nonlocal equations governing the one-point PDF and CDF of the concentration field, resulting in a $(d + 1)$ dimensional PDE. Compared to the classsical LED localization, the proposed modified LED localization explicitly accounts for the mean-field advectivemore » dynamics over the phase space of the PDF and CDF. To illustrate the accuracy of the proposed closure, we apply our CDF method to one-dimensional single-species reactive transport with uncertain, heterogeneous advection velocities and reaction rates modeled as random fields.« less

  14. Combined study of the solar neighbourhood kinematics - Spherical harmonics and Taylor expansions

    NASA Astrophysics Data System (ADS)

    Hernandez-Pajares, M.; Nunez, J.

    1990-08-01

    This paper relates two methods of analyzing the kinematic parameters of the local macroscopic motions of the Galaxy: (1) the Ogorodnikov-Milne model (OM) that consists in the three-dimensional Taylor expansion of the mean velocity field, and (2) the two-dimensional spherical harmonic development of the velocity components (SH). The theoretical relations between the SH coefficients and the second-order OM ones for the radial velocity v(r), and the galactic heliocentric components of the velocity U, V, W are presented. Only the hypothesis of separability of the stellar density function of the sample into angular and radial parts is needed. They are applied to 4732 A-M stars included in the Figueras (1986) sample.

  15. A numerical study of three-dimensional vortex breakdown

    NASA Technical Reports Server (NTRS)

    Spall, Robert E.; Ash, Robert L.

    1987-01-01

    A numerical simulation of bubble-type vortex breakdown using a unique discrete form of the full 3-D, unsteady incompressible Navier-Stokes equations was performed. The Navier-Stokes equations were written in a vorticity-velocity form and the physical problem was not restricted to axisymmetric flow. The problem was parametized on a Rossby- Reynolds-number basis. Utilization of this parameter duo was shown to dictate the form of the free-field boundary condition specification and allowed control of axial breakdown location within the computational domain. The structure of the breakdown bubble was studied through time evolution plots of planar projected velocity vectors as well as through plots of particle traces and vortex lines. These results compared favorably with previous experimental studies. In addition, profiles of all three velocity components are presented at various axial stations and a Fourier analysis was performed to identify the dominant circumferential modes. The dynamics of the breakdown process were studied through plots of axial variation of rate of change of integrated total energy and rate of change of integrated enstrophy, as well as through contour plots of velocity, vorticity and pressure.

  16. Optimization of a jet-propelled particle injection system for the uniform transdermal delivery of drug/vaccine.

    PubMed

    Liu, Yi; Kendall, Mark A F

    2007-08-01

    A jet-propelled particle injection system, the biolistics, has been developed and employed to accelerate micro-particles for transdermal drug delivery. We have examined a prototype biolistic device employing a converging-diverging supersonic nozzle (CDSN), and found that the micro-particles were delivered with a wide velocity range (200-800 m/s) and spatial distribution. To provide a controllable system for transdermal drug delivery, we present a contoured shock-tube (CST) concept and its embodiment device. The CST configuration utilizes a quasi-steady, quasi-one dimensional and shock-free supersonic flow to deliver the micro-particles with an almost uniform velocity (the mean velocity and the standard deviation, 699 +/- 4.7 m/s) and spatial distribution. The transient gas and particle dynamics in both prototype devices are interrogated with the validated computational fluid dynamics (CFD) approach. The predicted results for static pressure and Mach number histories, gas flow structures, particle velocity distributions and gas-particle interactions are presented and interpreted. The implications for clinical uses are discussed. (c) 2007 Wiley Periodicals, Inc.

  17. Structures and Intermittency in a Passive Scalar Model

    NASA Astrophysics Data System (ADS)

    Vergassola, M.; Mazzino, A.

    1997-09-01

    Perturbative expansions for intermittency scaling exponents in the Kraichnan passive scalar model [Phys. Rev. Lett. 72, 1016 (1994)] are investigated. A one-dimensional compressible model is considered for this purpose. High resolution Monte Carlo simulations using an Ito approach adapted to an advecting velocity field with a very short correlation time are performed and lead to clean scaling behavior for passive scalar structure functions. Perturbative predictions for the scaling exponents around the Gaussian limit of the model are derived as in the Kraichnan model. Their comparison with the simulations indicates that the scale-invariant perturbative scheme correctly captures the inertial range intermittency corrections associated with the intense localized structures observed in the dynamics.

  18. Turbulent structures in wall-bounded shear flows observed via three-dimensional numerical simulators. [using the Illiac 4 computer

    NASA Technical Reports Server (NTRS)

    Leonard, A.

    1980-01-01

    Three recent simulations of tubulent shear flow bounded by a wall using the Illiac computer are reported. These are: (1) vibrating-ribbon experiments; (2) study of the evolution of a spot-like disturbance in a laminar boundary layer; and (3) investigation of turbulent channel flow. A number of persistent flow structures were observed, including streamwise and vertical vorticity distributions near the wall, low-speed and high-speed streaks, and local regions of intense vertical velocity. The role of these structures in, for example, the growth or maintenance of turbulence is discussed. The problem of representing the large range of turbulent scales in a computer simulation is also discussed.

  19. Computer program: Jet 3 to calculate the large elastic plastic dynamically induced deformations of free and restrained, partial and/or complete structural rings

    NASA Technical Reports Server (NTRS)

    Wu, R. W.; Witmer, E. A.

    1972-01-01

    A user-oriented FORTRAN 4 computer program, called JET 3, is presented. The JET 3 program, which employs the spatial finite-element and timewise finite-difference method, can be used to predict the large two-dimensional elastic-plastic transient Kirchhoff-type deformations of a complete or partial structural ring, with various support conditions and restraints, subjected to a variety of initial velocity distributions and externally-applied transient forcing functions. The geometric shapes of the structural ring can be circular or arbitrarily curved and with variable thickness. Strain-hardening and strain-rate effects of the material are taken into account.

  20. Solving the Vlasov equation in two spatial dimensions with the Schrödinger method

    NASA Astrophysics Data System (ADS)

    Kopp, Michael; Vattis, Kyriakos; Skordis, Constantinos

    2017-12-01

    We demonstrate that the Vlasov equation describing collisionless self-gravitating matter may be solved with the so-called Schrödinger method (ScM). With the ScM, one solves the Schrödinger-Poisson system of equations for a complex wave function in d dimensions, rather than the Vlasov equation for a 2 d -dimensional phase space density. The ScM also allows calculating the d -dimensional cumulants directly through quasilocal manipulations of the wave function, avoiding the complexity of 2 d -dimensional phase space. We perform for the first time a quantitative comparison of the ScM and a conventional Vlasov solver in d =2 dimensions. Our numerical tests were carried out using two types of cold cosmological initial conditions: the classic collapse of a sine wave and those of a Gaussian random field as commonly used in cosmological cold dark matter N-body simulations. We compare the first three cumulants, that is, the density, velocity and velocity dispersion, to those obtained by solving the Vlasov equation using the publicly available code ColDICE. We find excellent qualitative and quantitative agreement between these codes, demonstrating the feasibility and advantages of the ScM as an alternative to N-body simulations. We discuss, the emergence of effective vorticity in the ScM through the winding number around the points where the wave function vanishes. As an application we evaluate the background pressure induced by the non-linearity of large scale structure formation, thereby estimating the magnitude of cosmological backreaction. We find that it is negligibly small and has time dependence and magnitude compatible with expectations from the effective field theory of large scale structure.

  1. Fractal geometry in an expanding, one-dimensional, Newtonian universe.

    PubMed

    Miller, Bruce N; Rouet, Jean-Louis; Le Guirriec, Emmanuel

    2007-09-01

    Observations of galaxies over large distances reveal the possibility of a fractal distribution of their positions. The source of fractal behavior is the lack of a length scale in the two body gravitational interaction. However, even with new, larger, sample sizes from recent surveys, it is difficult to extract information concerning fractal properties with confidence. Similarly, three-dimensional N-body simulations with a billion particles only provide a thousand particles per dimension, far too small for accurate conclusions. With one-dimensional models these limitations can be overcome by carrying out simulations with on the order of a quarter of a million particles without compromising the computation of the gravitational force. Here the multifractal properties of two of these models that incorporate different features of the dynamical equations governing the evolution of a matter dominated universe are compared. For each model at least two scaling regions are identified. By employing criteria from dynamical systems theory it is shown that only one of them can be geometrically significant. The results share important similarities with galaxy observations, such as hierarchical clustering and apparent bifractal geometry. They also provide insights concerning possible constraints on length and time scales for fractal structure. They clearly demonstrate that fractal geometry evolves in the mu (position, velocity) space. The observed patterns are simply a shadow (projection) of higher-dimensional structure.

  2. Three-disk microswimmer in a supported fluid membrane

    NASA Astrophysics Data System (ADS)

    Ota, Yui; Hosaka, Yuto; Yasuda, Kento; Komura, Shigeyuki

    2018-05-01

    A model of three-disk micromachine swimming in a quasi-two-dimensional supported membrane is proposed. We calculate the average swimming velocity as a function of the disk size and the arm length. Due to the presence of the hydrodynamic screening length in the quasi-two-dimensional fluid, the geometric factor appearing in the average velocity exhibits three different asymptotic behaviors depending on the microswimmer size and the hydrodynamic screening length. This is in sharp contrast with a microswimmer in a three-dimensional bulk fluid that shows only a single scaling behavior. We also find that the maximum velocity is obtained when the disks are equal-sized, whereas it is minimized when the average arm lengths are identical. The intrinsic drag of the disks on the substrate does not alter the scaling behaviors of the geometric factor.

  3. Stratification, segregation, and mixing of granular materials in quasi-two-dimensional bounded heaps.

    PubMed

    Fan, Yi; Boukerkour, Youcef; Blanc, Thibault; Umbanhowar, Paul B; Ottino, Julio M; Lueptow, Richard M

    2012-11-01

    Segregation and mixing of granular mixtures during heap formation has important consequences in industry and agriculture. This research investigates three different final particle configurations of bidisperse granular mixtures--stratified, segregated and mixed--during filling of quasi-two-dimensional silos. We consider a large number and wide range of control parameters, including particle size ratio, flow rate, system size, and heap rise velocity. The boundary between stratified and unstratified states is primarily controlled by the two-dimensional flow rate, with the critical flow rate for the transition depending weakly on particle size ratio and flowing layer length. In contrast, the transition from segregated to mixed states is controlled by the rise velocity of the heap, a control parameter not previously considered. The critical rise velocity for the transition depends strongly on the particle size ratio.

  4. An Assessment of Stream Confluence Flow Dynamics using Large Scale Particle Image Velocimetry Captured from Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Lewis, Q. W.; Rhoads, B. L.

    2017-12-01

    The merging of rivers at confluences results in complex three-dimensional flow patterns that influence sediment transport, bed morphology, downstream mixing, and physical habitat conditions. The capacity to characterize comprehensively flow at confluences using traditional sensors, such as acoustic Doppler velocimeters and profiles, is limited by the restricted spatial resolution of these sensors and difficulties in measuring velocities simultaneously at many locations within a confluence. This study assesses two-dimensional surficial patterns of flow structure at a small stream confluence in Illinois, USA, using large scale particle image velocimetry (LSPIV) derived from videos captured by unmanned aerial systems (UAS). The method captures surface velocity patterns at high spatial and temporal resolution over multiple scales, ranging from the entire confluence to details of flow within the confluence mixing interface. Flow patterns at high momentum ratio are compared to flow patterns when the two incoming flows have nearly equal momentum flux. Mean surface flow patterns during the two types of events provide details on mean patterns of surface flow in different hydrodynamic regions of the confluence and on changes in these patterns with changing momentum flux ratio. LSPIV data derived from the highest resolution imagery also reveal general characteristics of large-scale vortices that form along the shear layer between the flows during the high-momentum ratio event. The results indicate that the use of LSPIV and UAS is well-suited for capturing in detail mean surface patterns of flow at small confluences, but that characterization of evolving turbulent structures is limited by scale considerations related to structure size, image resolution, and camera instability. Complementary methods, including camera platforms mounted at fixed positions close to the water surface, provide opportunities to accurately characterize evolving turbulent flow structures in confluences.

  5. The relationship between amplitude modulation, coherent structure and critical layers in wall turbulence

    NASA Astrophysics Data System (ADS)

    McKeon, Beverley

    2015-11-01

    The importance of critical layers in determining aspects of the structure of wall turbulence is discussed. We have shown (Jacobi & McKeon, 2013) that the amplitude modulation coefficient investigated most recently by Hutchins & Marusic (2007) and co-authors, which describes the correlation between large scales above a (spatial) wavelength filter with the envelope of small scales below the filter, is dominated by very large scale motion (VLSM) at a single wavelength. The resolvent analysis of McKeon & Sharma (2010) gives a suitable model for the three-dimensional, three-component form of the VLSM and energetic structure at other wavelengths. This model is used to identify the three-dimensional spatial variation of instantaneous critical layers in the presence of a mean velocity profile and to relate this to earlier observations of coherent structure in unperturbed flows (both experimental and via the resolvent model, Sharma & McKeon, 2013); to the phase relationships between scales identified by Chung & McKeon (2010, 2014); and to the structure of wall turbulence that has been modified by the addition of single synthetic scales, e.g. Jacobi & McKeon (2011), Duvvuri & McKeon (2015). The support of AFOSR under grant number FA 9550-12-1-0469 is gratefully acknowledged.

  6. Prediction of the low-velocity distribution from the pore structure in simple porous media

    NASA Astrophysics Data System (ADS)

    de Anna, Pietro; Quaife, Bryan; Biros, George; Juanes, Ruben

    2017-12-01

    The macroscopic properties of fluid flow and transport through porous media are a direct consequence of the underlying pore structure. However, precise relations that characterize flow and transport from the statistics of pore-scale disorder have remained elusive. Here we investigate the relationship between pore structure and the resulting fluid flow and asymptotic transport behavior in two-dimensional geometries of nonoverlapping circular posts. We derive an analytical relationship between the pore throat size distribution fλ˜λ-β and the distribution of the low fluid velocities fu˜u-β /2 , based on a conceptual model of porelets (the flow established within each pore throat, here a Hagen-Poiseuille flow). Our model allows us to make predictions, within a continuous-time random-walk framework, for the asymptotic statistics of the spreading of fluid particles along their own trajectories. These predictions are confirmed by high-fidelity simulations of Stokes flow and advective transport. The proposed framework can be extended to other configurations which can be represented as a collection of known flow distributions.

  7. QUANTIFYING OBSERVATIONAL PROJECTION EFFECTS USING MOLECULAR CLOUD SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaumont, Christopher N.; Offner, Stella S.R.; Shetty, Rahul

    2013-11-10

    The physical properties of molecular clouds are often measured using spectral-line observations, which provide the only probes of the clouds' velocity structure. It is hard, though, to assess whether and to what extent intensity features in position-position-velocity (PPV) space correspond to 'real' density structures in position-position-position (PPP) space. In this paper, we create synthetic molecular cloud spectral-line maps of simulated molecular clouds, and present a new technique for measuring the reality of individual PPV structures. Using a dendrogram algorithm, we identify hierarchical structures in both PPP and PPV space. Our procedure projects density structures identified in PPP space into correspondingmore » intensity structures in PPV space and then measures the geometric overlap of the projected structures with structures identified from the synthetic observation. The fractional overlap between a PPP and PPV structure quantifies how well the synthetic observation recovers information about the three-dimensional structure. Applying this machinery to a set of synthetic observations of CO isotopes, we measure how well spectral-line measurements recover mass, size, velocity dispersion, and virial parameter for a simulated star-forming region. By disabling various steps of our analysis, we investigate how much opacity, chemistry, and gravity affect measurements of physical properties extracted from PPV cubes. For the simulations used here, which offer a decent, but not perfect, match to the properties of a star-forming region like Perseus, our results suggest that superposition induces a ∼40% uncertainty in masses, sizes, and velocity dispersions derived from {sup 13}CO (J = 1-0). As would be expected, superposition and confusion is worst in regions where the filling factor of emitting material is large. The virial parameter is most affected by superposition, such that estimates of the virial parameter derived from PPV and PPP information typically disagree by a factor of ∼2. This uncertainty makes it particularly difficult to judge whether gravitational or kinetic energy dominate a given region, since the majority of virial parameter measurements fall within a factor of two of the equipartition level α ∼ 2.« less

  8. Two-dimensional lattice Boltzmann model for magnetohydrodynamics.

    PubMed

    Schaffenberger, Werner; Hanslmeier, Arnold

    2002-10-01

    We present a lattice Boltzmann model for the simulation of two-dimensional magnetohydro dynamic (MHD) flows. The model is an extension of a hydrodynamic lattice Boltzman model with 9 velocities on a square lattice resulting in a model with 17 velocities. Earlier lattice Boltzmann models for two-dimensional MHD used a bidirectional streaming rule. However, the use of such a bidirectional streaming rule is not necessary. In our model, the standard streaming rule is used, allowing smaller viscosities. To control the viscosity and the resistivity independently, a matrix collision operator is used. The model is then applied to the Hartmann flow, giving reasonable results.

  9. Ion-acoustic and electron-acoustic type nonlinear waves in dusty plasmas

    NASA Astrophysics Data System (ADS)

    Volosevich, A.-V.; Meister, C.-V.

    2003-04-01

    In the present work, two three-dimensional nonlinear theoretical models of electrostatic solitary waves are investigated within the frame of magnetohydrodynamics. Both times, a multi-component plasma is considered, which consists of hot electrons with a rather flexible distribution function, hot ions with Boltzmann-type distribution, and (negatively as well as positively charged) dust. Additionally, cold ion beams are taken into account in the model to study ion-acoustic structures (IAS), and cold electron beams are included into the model to investigate electron-acoustic structures (EAS). The numerical results of the considered theoretical models allow to make the following conclusions: 1) Electrostatic structures with negative potential (of rarefaction type) are formed both in the IAS model and in the EAS model, but structures with negative potential (of compressional type) are formed in the IAS model only. 2) The intervals of various plasma parameters (velocities of ion and electron beams, temperatures, densities of the plasma components, ions' masses), for which the existence of IAS and EAS solitary waves and structures is possible, are calculated. 3) Further, the parameters of the electrostatic structures (wave amplitudes, scales along and perpendicular to the magnetic field, velocities) are estimated. 4) The application of the present numerical simulation for multi-component plasmas to various astrophysical systems under different physical conditions is discussed.

  10. 3D numerical study of the propagation characteristics of a consequence of coronal mass ejections in a structured ambient solar wind

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Feng, X. S.

    2015-12-01

    CMEs have been identified as a prime causal link between solar activity and large, nonrecurrent geomagnetic storm. In order to improve geomagnetic storm predictions, a careful study of CME's propagation characteristics is important. Here, we analyze and quantitatively study the evolution and propagation characteristics of coronal mass ejections (CMEs) launched at several positions into a structured real ambient solar wind by using a three-dimensional (3D) numerical magnetohydrodynamics (MHD) simulation. The ambient solar wind structure during Carrington rotation 2095 is selected, which is an appropriate around activity minimum and declining phase. The CME is initiated by a simple spherical plasmoid model: a spheromak magnetic structure with high speed, high pressure and high plasma density plasmoid. We present a detailed analysis of the plasma, magnetic field, geoeffectiveness, and composition signatures of these CMEs. Results show that the motion and local appearance of a CME in interplanetary space is strongly affected by its interaction with the background solar wind structure, including its velocity, density, and magnetic structures. The simulations show that the initial launched position substantially affects the IP evolution of the CMEs influencing the propagation velocity, the shape, the trajectory and even the geo-effectiveness

  11. The Lévy noise-induced current reversal phenomenon for self-propelled particles in a two-dimensional potential

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Qu, Zhongwei; Li, Xuechao; Ma, Jianli

    2017-08-01

    Effects of Lévy noise on self-propelled particles in a two-dimensional potential is investigated. The current reversal phenomenon appears in the system. V (x-direction average velocity) changes from negative to positive with increasing asymmetry parameter β, and changes from positive to negative with increasing self-propelled velocity v0. V has a maximum with increasing modulation constant λ.

  12. Equilibrium properties and phase diagram of two-dimensional Yukawa systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartmann, P.; Donko, Z.; Kutasi, K.

    Properties of two-dimensional strongly coupled Yukawa systems are explored through molecular dynamics simulations. An effective coupling coefficient {gamma}{sup *} for the liquid phase is introduced on the basis of the constancy of the first peak amplitude of the pair-correlation functions. Thermodynamic quantities are calculated from the pair-correlation function. The solid-liquid transition of the system is investigated through the analysis of the bond-angular order parameter. The static structure function satisfies consistency relation, attesting to the reliability of the computational method. The response is shown to be governed by the correlational part of the inverse compressibility. An analysis of the velocity autocorrelationmore » demonstrates that this latter also exhibits a universal behavior.« less

  13. Metriplectic integrators for the Landau collision operator

    DOE PAGES

    Kraus, Michael; Hirvijoki, Eero

    2017-10-02

    Here, we present a novel framework for addressing the nonlinear Landau collision integral in terms of finite element and other subspace projection methods. We employ the underlying metriplectic structure of the Landau collision integral and, using a Galerkin discretization for the velocity space, we transform the infinite-dimensional system into a finite-dimensional, time-continuous metriplectic system. Temporal discretization is accomplished using the concept of discrete gradients. The conservation of energy, momentum, and particle densities, as well as the production of entropy is demonstrated algebraically for the fully discrete system. Due to the generality of our approach, the conservation properties and the monotonicmore » behavior of entropy are guaranteed for finite element discretizations, in general, independently of the mesh configuration.« less

  14. Numerical simulations of catastrophic disruption: Recent results

    NASA Technical Reports Server (NTRS)

    Benz, W.; Asphaug, E.; Ryan, E. V.

    1994-01-01

    Numerical simulations have been used to study high velocity two-body impacts. In this paper, a two-dimensional Largrangian finite difference hydro-code and a three-dimensional smooth particle hydro-code (SPH) are described and initial results reported. These codes can be, and have been, used to make specific predictions about particular objects in our solar system. But more significantly, they allow us to explore a broad range of collisional events. Certain parameters (size, time) can be studied only over a very restricted range within the laboratory; other parameters (initial spin, low gravity, exotic structure or composition) are difficult to study at all experimentally. The outcomes of numerical simulations lead to a more general and accurate understanding of impacts in their many forms.

  15. Energy transport in a shear flow of particles in a two-dimensional dusty plasma.

    PubMed

    Feng, Yan; Goree, J; Liu, Bin

    2012-11-01

    A shear flow of particles in a laser-driven two-dimensional (2D) dusty plasma is observed in a study of viscous heating and thermal conduction. Video imaging and particle tracking yields particle velocity data, which we convert into continuum data, presented as three spatial profiles: mean particle velocity (i.e., flow velocity), mean-square particle velocity, and mean-square fluctuations of particle velocity. These profiles and their derivatives allow a spatially resolved determination of each term in the energy and momentum continuity equations, which we use for two purposes. First, by balancing these terms so that their sum (i.e., residual) is minimized while varying viscosity η and thermal conductivity κ as free parameters, we simultaneously obtain values for η and κ in the same experiment. Second, by comparing the viscous heating and thermal conduction terms, we obtain a spatially resolved characterization of the viscous heating.

  16. A detached eddy simulation model for the study of lateral separation zones along a large canyon-bound river

    USGS Publications Warehouse

    Alvarez, Laura V.; Schmeeckle, Mark W.; Grams, Paul E.

    2017-01-01

    Lateral flow separation occurs in rivers where banks exhibit strong curvature. In canyon-boundrivers, lateral recirculation zones are the principal storage of fine-sediment deposits. A parallelized,three-dimensional, turbulence-resolving model was developed to study the flow structures along lateralseparation zones located in two pools along the Colorado River in Marble Canyon. The model employs thedetached eddy simulation (DES) technique, which resolves turbulence structures larger than the grid spacingin the interior of the flow. The DES-3D model is validated using Acoustic Doppler Current Profiler flowmeasurements taken during the 2008 controlled flood release from Glen Canyon Dam. A point-to-pointvalidation using a number of skill metrics, often employed in hydrological research, is proposed here forfluvial modeling. The validation results show predictive capabilities of the DES model. The model reproducesthe pattern and magnitude of the velocity in the lateral recirculation zone, including the size and position ofthe primary and secondary eddy cells, and return current. The lateral recirculation zone is open, havingcontinuous import of fluid upstream of the point of reattachment and export by the recirculation returncurrent downstream of the point of separation. Differences in magnitude and direction of near-bed andnear-surface velocity vectors are found, resulting in an inward vertical spiral. Interaction between therecirculation return current and the main flow is dynamic, with large temporal changes in flow direction andmagnitude. Turbulence structures with a predominately vertical axis of vorticity are observed in the shearlayer becoming three-dimensional without preferred orientation downstream.

  17. A detached eddy simulation model for the study of lateral separation zones along a large canyon-bound river

    NASA Astrophysics Data System (ADS)

    Alvarez, Laura V.; Schmeeckle, Mark W.; Grams, Paul E.

    2017-01-01

    Lateral flow separation occurs in rivers where banks exhibit strong curvature. In canyon-bound rivers, lateral recirculation zones are the principal storage of fine-sediment deposits. A parallelized, three-dimensional, turbulence-resolving model was developed to study the flow structures along lateral separation zones located in two pools along the Colorado River in Marble Canyon. The model employs the detached eddy simulation (DES) technique, which resolves turbulence structures larger than the grid spacing in the interior of the flow. The DES-3D model is validated using Acoustic Doppler Current Profiler flow measurements taken during the 2008 controlled flood release from Glen Canyon Dam. A point-to-point validation using a number of skill metrics, often employed in hydrological research, is proposed here for fluvial modeling. The validation results show predictive capabilities of the DES model. The model reproduces the pattern and magnitude of the velocity in the lateral recirculation zone, including the size and position of the primary and secondary eddy cells, and return current. The lateral recirculation zone is open, having continuous import of fluid upstream of the point of reattachment and export by the recirculation return current downstream of the point of separation. Differences in magnitude and direction of near-bed and near-surface velocity vectors are found, resulting in an inward vertical spiral. Interaction between the recirculation return current and the main flow is dynamic, with large temporal changes in flow direction and magnitude. Turbulence structures with a predominately vertical axis of vorticity are observed in the shear layer becoming three-dimensional without preferred orientation downstream.

  18. Crustal structure of the basin in the Southwest Subbasin, South China Sea

    NASA Astrophysics Data System (ADS)

    Yu, Z.; Li, J.; Ding, W.; Zhang, J.; Ruan, A.; Niu, X.; Yin, J.

    2016-12-01

    Using two-dimensional seismic tomography, we reported a detailed P-wave velocity model of the basin area and the northern margin in the southwest SWSB. We used two OBS profiles (OBS973-1 and OBS973-3), and 12 OBSs were involved into forward modeling and inversion. The whole profile is approximately 311-km-long. The average thickness of the crust beneath the basin is 5.33 km, and the Moho interface is about 10-12 km. No High Velocity Bodies (HVBs) are observed, and only two thin high-velocity structures ( 7.3 km/s) in the layer 3 are identified beneath the northern continent-ocean transition (COT) and the extinct spreading center. It is suggested that the basin area is a typical oceanic crust. Combined with other refraction profiles in the SWSB, the thickness of crust became thinner from the east to the west, indicating a decreasing magma supply. Besides, the continental block shows asymmetric crustal thickness: the southern margin represents thicker crust than the northern margin, which may be related to the large scale of detachment fault systems developed in the southern margin. Revealed from the multi-channel seismic (MCS) profile, the profile here shows asymmetric structural characteristics between the north and south section of the spreading center, which may be controlled by detachment faults. The initial rifting is likely to occur in the south of our study area.KEY WORDS crustal structure; South China Sea; Southwest Sub-basin Extinct spreading center, Asymmetric extension; Thinned crust

  19. Investigation of cortical structures at Etna Volcano through the analysis of array and borehole data.

    NASA Astrophysics Data System (ADS)

    Zuccarello, Luciano; Paratore, Mario; La Rocca, Mario; Ferrari, Ferruccio; Messina, Alfio Alex; Galluzzo, Danilo; Contrafatto, Danilo; Rapisarda, Salvatore

    2015-04-01

    A continuous monitoring of seismic activity is a fundamental task to detect the most common signals possibly related with volcanic activity, such as volcano-tectonic earthquakes, long-period events, and volcanic tremor. A reliable prediction of the ray-path propagated back from the recording site to the source is strongly limited by the poor knowledge of the local shallow velocity structure. Usually in volcanic environments the shallowest few hundreds meters of rock are characterized by strongly variable mechanical properties. Therefore the propagation of seismic signals through these shallow layers is strongly affected by lateral heterogeneity, attenuation, scattering, and interaction with the free surface. Driven by these motivations, between May and October 2014 we deployed a seismic array in the area called "Pozzo Pitarrone", where two seismic stations of the local monitoring network are installed, one at surface and one borehole at a depth of about 130 meters. The Pitarrone borehole is located in the middle northeastern flank along one of the main intrusion zones of Etna volcano, the so called NE-rift. With the 3D array we recorded seismic signals coming from the summit craters, and also from the seismogenetic fault called Pernicana Fault, which is located nearby. We used array data to analyse the dispersion characteristics of ambient noise vibrations and we derived one-dimensional (1D) shallow shear-velocity profiles through the inversion of dispersion curves measured by autocorrelation methods (SPAC). We observed a one-dimensional variation of shear-velocity between 430 m/s and 700 m/s to a depth of investigation of about 130 m. An abrupt velocity variation was recorded at a depth of about 60 m, probably corresponding to the transition between two different layers. Our preliminary results suggest a good correlation between the velocity model deducted with the stratigraphic section on Etna. The analysis of the entire data set will improve our knowledge about the (i) structure of the top layer and its relationship with geology, (ii) analysis of the signal to noise ratio (SNR) of volcanic signals as a function of frequency, (iii) study of seismic ray-path deformation caused by the interaction of the seismic waves with the free surface, (iv) evaluation of the attenuation of the seismic signals correlated with the volcanic activity. Moreover the knowledge of a shallow velocity model could improve the study of the source mechanism of low frequency events (VLP, LP and volcanic tremor), and give a new contribution to the seismic monitoring of Etna volcano through the detection and location of seismic sources by using 3D array techniques.

  20. Development of three-dimensional integrated microchannel-electrode system to understand the particles' movement with electrokinetics

    PubMed Central

    Obara, H.; Sapkota, A.; Takei, M.

    2016-01-01

    An optical transparent 3-D Integrated Microchannel-Electrode System (3-DIMES) has been developed to understand the particles' movement with electrokinetics in the microchannel. In this system, 40 multilayered electrodes are embedded at the 2 opposite sides along the 5 square cross-sections of the microchannel by using Micro Electro-Mechanical Systems technology in order to achieve the optical transparency at the other 2 opposite sides. The concept of the 3-DIMES is that the particles are driven by electrokinetic forces which are dielectrophoretic force, thermal buoyancy, electrothermal force, and electroosmotic force in a three-dimensional scope by selecting the excitation multilayered electrodes. As a first step to understand the particles' movement driven by electrokinetic forces in high conductive fluid (phosphate buffer saline (PBS)) with the 3-DIMES, the velocities of particles' movement with one pair of the electrodes are measured three dimensionally by Particle Image Velocimetry technique in PBS; meanwhile, low conductive fluid (deionized water) is used as a reference. Then, the particles' movement driven by the electrokinetic forces is discussed theoretically to estimate dominant forces exerting on the particles. Finally, from the theoretical estimation, the particles' movement mainly results from the dominant forces which are thermal buoyancy and electrothermal force, while the velocity vortex formed at the 2 edges of the electrodes is because of the electroosmotic force. The conclusions suggest that the 3-DIMES with PBS as high conductive fluid helps to understand the three-dimensional advantageous flow structures for cell manipulation in biomedical applications. PMID:27042247

  1. Imaging Critical Zone Using High Frequency Rayleigh Wave Group Velocity Measurements Extracted from Ambient Seismic Fields Gathered With 2400 Seismic Nodes in Southeastern Wyoming.

    NASA Astrophysics Data System (ADS)

    Keifer, I. S.; Dueker, K. G.

    2016-12-01

    In an effort to characterize critical zone development in varying regions, seismologist conduct seismic surveys to assist in the realization of critical zone properties e.g. porosity and regolith thickness. A limitation of traditional critical zone seismology is that data is normally collected along lines, to generate two dimensional transects of the subsurface seismic velocity, even though the critical zone structure is 3D. Hence, we deployed six seismic 2D arrays in southeastern Wyoming to gather ambient seismic fields so that 3D shear velocity models could be produced. The arrays were made up of nominally 400 seismic stations arranged in a 200-meter square grid layout. Each array produced a half Terabyte data volume, so a premium was placed on computational efficiency throughout this study, to handle the roughly 65 billion samples recorded by each array. The ambient fields were cross-correlated on the Yellowstone Super-Computer using the pSIN code (Chen et al., 2016), which decreased correlation run times by a factor of 300 with respect to workstation computers. Group delay times extracted from cross-correlations using 8 Hz frequency bands from 10 Hz to 100 Hz show frequency dispersion at sites with shallow regolith underlain by granite bedrock. Dimensionally, the group velocity map inversion is overdetermined, even after extensive culling of spurious group delay times. Model Resolution matrices for our six arrays show values > 0.7 for most of the modal domain, approaching unity at the center of the model domain; we are then confident that we have an adequate number of rays covering our array space, and should experience minimal smearing of our resultant model due to application of inverse solution on the data. After inverting for the group velocity maps, a second inversion is performed of the group velocity maps for the 3D shear velocity model. This inversion is underdetermined and a second order Tikhonov regularization is used to obtain stable inverse images. Results will be presented.

  2. Vertical rise velocity of equatorial plasma bubbles estimated from Equatorial Atmosphere Radar (EAR) observations and HIRB model simulations

    NASA Astrophysics Data System (ADS)

    Tulasi Ram, S.; Ajith, K. K.; Yokoyama, T.; Yamamoto, M.; Niranjan, K.

    2017-06-01

    The vertical rise velocity (Vr) and maximum altitude (Hm) of equatorial plasma bubbles (EPBs) were estimated using the two-dimensional fan sector maps of 47 MHz Equatorial Atmosphere Radar (EAR), Kototabang, during May 2010 to April 2013. A total of 86 EPBs were observed out of which 68 were postsunset EPBs and remaining 18 EPBs were observed around midnight hours. The vertical rise velocities of the EPBs observed around the midnight hours are significantly smaller ( 26-128 m/s) compared to those observed in postsunset hours ( 45-265 m/s). Further, the vertical growth of the EPBs around midnight hours ceases at relatively lower altitudes, whereas the majority of EPBs at postsunset hours found to have grown beyond the maximum detectable altitude of the EAR. The three-dimensional numerical high-resolution bubble (HIRB) model with varying background conditions are employed to investigate the possible factors that control the vertical rise velocity and maximum attainable altitudes of EPBs. The estimated rise velocities from EAR observations at both postsunset and midnight hours are, in general, consistent with the nonlinear evolution of EPBs from the HIRB model. The smaller vertical rise velocities (Vr) and lower maximum altitudes (Hm) of EPBs during midnight hours are discussed in terms of weak polarization electric fields within the bubble due to weaker background electric fields and reduced background ion density levels.Plain Language SummaryEquatorial plasma bubbles are plasma density irregularities in the ionosphere. The radio waves passing through these irregular density structures undergo severe degradation/scintillation that could cause severe disruption of satellite-based communication and augmentation systems such as GPS navigation. These bubbles develop at geomagnetic equator, grow vertically, and elongate along the field lines to latitudes away from the equator. The knowledge on bubble rise velocities and their maximum attainable altitudes improves the accuracy of scintillation forecasting at latitudes away from the equator and helps in mitigating the errors in satellite-based augmentation systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20160013719&hterms=Hofmann&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DHofmann','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20160013719&hterms=Hofmann&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DHofmann"><span>VLTI-AMBER Velocity-Resolved Aperture-Synthesis Imaging of Eta Carinae with a Spectral Resolution of 12 000: Studies of the Primary Star Wind and Innermost Wind-Wind Collision Zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Weigelt, G.; Hofmann, K.-H.; Schertl, D.; Clementel, N.; Corcoran, M. F.; Damineli, A.; de Wit, W.-J.; Grellmann, R.; Groh, J.; Guieu, S.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20160013719'); toggleEditAbsImage('author_20160013719_show'); toggleEditAbsImage('author_20160013719_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20160013719_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20160013719_hide"></p> <p>2016-01-01</p> <p>The mass loss from massive stars is not understood well. Eta Carinae is a unique object for studying the massive stellar wind during the luminous blue variable phase. It is also an eccentric binary with a period of 5.54 yr. The nature of both stars is uncertain, although we know from X-ray studies that there is a wind-wind collision whose properties change with orbital phase. Aims. We want to investigate the structure and kinematics of Car's primary star wind and wind-wind collision zone with a high spatial resolution of approx.6 mas (approx.14 au) and high spectral resolution of R = 12 000. Methods. Observations of Car were carried out with the ESO Very Large Telescope Interferometer (VLTI) and the AMBER instrument between approximately five and seven months before the August 2014 periastron passage. Velocity-resolved aperture-synthesis images were reconstructed from the spectrally dispersed interferograms. Interferometric studies can provide information on the binary orbit, the primary wind, and the wind collision. Results. We present velocity-resolved aperture-synthesis images reconstructed in more than 100 di erent spectral channels distributed across the Br(gamma) 2.166 micron emission line. The intensity distribution of the images strongly depends on wavelength. At wavelengths corresponding to radial velocities of approximately -140 to -376 km/s measured relative to line center, the intensity distribution has a fan-shaped structure. At the velocity of -277 km/s, the position angle of the symmetry axis of the fan is 126. The fan-shaped structure extends approximately 8.0 mas (approx.18:8 au) to the southeast and 5.8 mas (approx.13:6 au) to the northwest, measured along the symmetry axis at the 16% intensity contour. The shape of the intensity distributions suggests that the obtained images are the first direct images of the innermost wind-wind collision zone. Therefore, the observations provide velocity-dependent image structures that can be used to test three-dimensional hydrodynamical, radiative transfer models of the massive interacting winds of Eta Car.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/923471','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/923471"><span>Seismic velocity estimation from time migration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cameron, Maria Kourkina</p> <p>2007-01-01</p> <p>This is concerned with imaging and wave propagation in nonhomogeneous media, and includes a collection of computational techniques, such as level set methods with material transport, Dijkstra-like Hamilton-Jacobi solvers for first arrival Eikonal equations and techniques for data smoothing. The theoretical components include aspects of seismic ray theory, and the results rely on careful comparison with experiment and incorporation as input into large production-style geophysical processing codes. Producing an accurate image of the Earth's interior is a challenging aspect of oil recovery and earthquake analysis. The ultimate computational goal, which is to accurately produce a detailed interior map of themore » Earth's makeup on the basis of external soundings and measurements, is currently out of reach for several reasons. First, although vast amounts of data have been obtained in some regions, this has not been done uniformly, and the data contain noise and artifacts. Simply sifting through the data is a massive computational job. Second, the fundamental inverse problem, namely to deduce the local sound speeds of the earth that give rise to measured reacted signals, is exceedingly difficult: shadow zones and complex structures can make for ill-posed problems, and require vast computational resources. Nonetheless, seismic imaging is a crucial part of the oil and gas industry. Typically, one makes assumptions about the earth's substructure (such as laterally homogeneous layering), and then uses this model as input to an iterative procedure to build perturbations that more closely satisfy the measured data. Such models often break down when the material substructure is significantly complex: not surprisingly, this is often where the most interesting geological features lie. Data often come in a particular, somewhat non-physical coordinate system, known as time migration coordinates. The construction of substructure models from these data is less and less reliable as the earth becomes horizontally nonconstant. Even mild lateral velocity variations can significantly distort subsurface structures on the time migrated images. Conversely, depth migration provides the potential for more accurate reconstructions, since it can handle significant lateral variations. However, this approach requires good input data, known as a 'velocity model'. We address the problem of estimating seismic velocities inside the earth, i.e., the problem of constructing a velocity model, which is necessary for obtaining seismic images in regular Cartesian coordinates. The main goals are to develop algorithms to convert time-migration velocities to true seismic velocities, and to convert time-migrated images to depth images in regular Cartesian coordinates. Our main results are three-fold. First, we establish a theoretical relation between the true seismic velocities and the 'time migration velocities' using the paraxial ray tracing. Second, we formulate an appropriate inverse problem describing the relation between time migration velocities and depth velocities, and show that this problem is mathematically ill-posed, i.e., unstable to small perturbations. Third, we develop numerical algorithms to solve regularized versions of these equations which can be used to recover smoothed velocity variations. Our algorithms consist of efficient time-to-depth conversion algorithms, based on Dijkstra-like Fast Marching Methods, as well as level set and ray tracing algorithms for transforming Dix velocities into seismic velocities. Our algorithms are applied to both two-dimensional and three-dimensional problems, and we test them on a collection of both synthetic examples and field data.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H31M..04M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H31M..04M"><span>Stochastic dynamics of intermittent pore-scale particle motion in three-dimensional porous media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Morales, V. L.; Dentz, M.; Willmann, M.; Holzner, M.</p> <p>2017-12-01</p> <p>A proper understanding of velocity dynamics is key for making transport predictions through porous media at any scale. We study the velocity evolution process from particle dynamics at the pore-scale with particular interest in preasymptotic (non-Fickian) behavior. Experimental measurements from 3-dimensional particle tracking velocimetry are used to obtain Lagrangian velocity statistics for three different types of media heterogeneity. Particle velocities are found to be intermittent in nature, log-normally distributed and non-stationary. We show that these velocity characteristics can be captured with a correlated Ornstein-Uhlenbeck process for a random walk in space that is parameterized from velocity distributions. Our simple model is rigorously tested for accurate reproduction of velocity variability in magnitude and frequency. We further show that it captures exceptionally well the preasymptotic mean and mean squared displacement in the ballistic and superdiffusive regimes, and can be extended to determine if and when Fickian behavior will be reached. Our approach reproduces both preasymptotic and asymptotic transport behavior with a single transport model, demonstrating correct description of the fundamental controls of anomalous transport.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000PEPI..118...29R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000PEPI..118...29R"><span>Rayleigh-wave tomography of the Ontong-Java Plateau</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Richardson, W. Philip; Okal, Emile A.; Van der Lee, Suzan</p> <p>2000-02-01</p> <p>The deep structure of the Ontong-Java Plateau (OJP) in the westcentral Pacific is investigated through a 2-year deployment of four PASSCAL seismic stations used in a passive tomographic experiment. Single-path inversions of 230 Rayleigh waveforms from 140 earthquakes mainly located in the Solomon Trench confirm the presence of an extremely thick crust, with an average depth to the Mohorovičić discontinuity of 33 km. The thickest crusts (38 km) are found in the southcentral part of the plateau, around 2°S, 157°E. Lesser values remaining much thicker than average oceanic crust (15-26 km) are found on either side of the main structure, suggesting that the OJP spills over into the Lyra Basin to the west. Such thick crustal structures are consistent with formation of the plateau at the Pacific-Phoenix ridge at 121 Ma, while its easternmost part may have formed later (90 Ma) on more mature lithosphere. Single-path inversions also reveal a strongly developed low-velocity zone at asthenospheric depths in the mantle. A three-dimensional tomographic inversion resolves a low-velocity root of the OJP extending as deep as 300 km, with shear velocity deficiencies of ˜5%, suggesting the presence of a keel, dragged along with the plateau as the latter moves as part of the drift of the Pacific plate over the mantle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994JGR....9924135T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994JGR....9924135T"><span>Tomographic imaging of the shallow crustal structure of the East Pacific Rise at 9 deg 30 min N</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Toomey, Douglas R.; Solomon, Sean C.; Purdy, G. M.</p> <p>1994-12-01</p> <p>Compressional wave travel times from a seismic tomography experiment at 9 deg 30 min N on the East Pacific Rise are analyzed by a new tomographic method to determine the three-dimensional seismic velocity structure of the upper 2.5 km of oceanic crust within a 20 x 18 km area centered on the rise axis. The data comprise the travel times and associated uncertainties of 1459 compressional waves that have propagated above the axial magma chamber. A careful analysis of source and receiver parameters, in conjunction with an automated method of picking P wave onsets and assigning uncertainties, constrains the prior uncertainty in the data to 5 to 20 ms. The new tomographic method employs graph theory to estimate ray paths and travel times through strongly heterogeneous and densely parameterized seismic velocity models. The nonlinear inverse method uses a jumping strategy to minimize a functional that includes the penalty function, horizontal and vertical smoothing constraints, and prior model assumptions; all constraints applied to model perturbations are normalized to remove bias. We use the tomographic method to reject the null hypothesis that the axial seismic structure is two-dimensional. Three-dimensional models reveal a seismic structure that correlates well with cross- and along-axis variations in seafloor morphology, the location of the axial summit caldera, and the distribution of seafloor hydrothermal activity. The along-axis segmentation of the seismic structure above the axial magma chamber is consistent with the hypothesis that mantle-derived melt is preferentially injected midway along a locally linear segment of the rise and that the architecture of the crustal section is characterized by an en echelon series of elongate axial volcanoes approximately 10 km in length. The seismic data are compatible with a 300- to 500-m-thick thermal anomaly above a midcrustal melt lens; such an interpretation suggests that hydrothermal fluids may not have penetrated this region in the last 10(exp 3) years. Asymmetries in the seismic structure across the rise support the inferences that the thickness of seismic layer 2 and the average midcrustal temperature increase to the west of the rise axis. These anomalies may be the result of off-axis magmatism; alternatively, the asymmetric thermal anomaly may be the consequence of differences in the depth extent of hydrothermal cooling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016A%26A...595A.120M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016A%26A...595A.120M"><span>Dissecting a supernova impostor's circumstellar medium: MUSEing about the SHAPE of η Carinae's outer ejecta</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mehner, A.; Steffen, W.; Groh, J. H.; Vogt, F. P. A.; Baade, D.; Boffin, H. M. J.; Davidson, K.; de Wit, W. J.; Humphreys, R. M.; Martayan, C.; Oudmaijer, R. D.; Rivinius, T.; Selman, F.</p> <p>2016-11-01</p> <p>Aims: The role of episodic mass loss is one of the outstanding questions in massive star evolution. The structural inhomogeneities and kinematics of their nebulae are tracers of their mass-loss history. We conduct a three-dimensional morpho-kinematic analysis of the ejecta of η Car outside its famous Homunculus nebula. Methods: We carried out the first large-scale integral field unit observations of η Car in the optical, covering a field of view of 1'× 1' centered on the star. Observations with the Multi Unit Spectroscopic Explorer (MUSE) at the Very Large Telescope (VLT) reveal the detailed three-dimensional structure of η Car's outer ejecta. Morpho-kinematic modeling of these ejecta is conducted with the code SHAPE. Results: The largest coherent structure in η Car's outer ejecta can be described as a bent cylinder with roughly the same symmetry axis as the Homunculus nebula. This large outer shell is interacting with the surrounding medium, creating soft X-ray emission. Doppler velocities of up to 3000 km s-1 are observed. We establish the shape and extent of the ghost shell in front of the southern Homunculus lobe and confirm that the NN condensation can best be modeled as a bowshock in the orbital/equatorial plane. Conclusions: The SHAPE modeling of the MUSE observations provides a significant gain in the study of the three-dimensional structure of η Car's outer ejecta. Our SHAPE modeling indicates that the kinematics of the outer ejecta measured with MUSE can be described by a spatially coherent structure, and that this structure also correlates with the extended soft X-ray emission associated with the outer debris field. The ghost shell immediately outside the southern Homunculus lobe hints at a sequence of eruptions within the time frame of the Great Eruption from 1837-1858 or possibly a later shock/reverse shock velocity separation. Our 3D morpho-kinematic modeling and the MUSE observations constitute an invaluable dataset to be confronted with future radiation-hydrodynamics simulations. Such a comparison may shed light on the yet elusive physical mechanism responsible for η Car-like eruptions. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 094.D-0215(A).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMNG32B..02W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMNG32B..02W"><span>Temperature and velocity structure functions in the upper troposhere and lower stratosphere from aircraft measurements (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wroblewski, D. E.; Werne, J.; Cote, O.; Hacker, J.; Dobosy, R.</p> <p>2010-12-01</p> <p>High-resolution turbulence measurements of temperature and three components of velocity were acquired from the GROB 520T EGRETT high altitude research aircraft equipped with three NOAA/FRD built BAT probes. The research campaign spanned eight years with the goal of characterizing clear air turbulence (CAT) and optical turbulence (OpT) in the upper troposphere and lower stratosphere (UTLS), focusing on scales from 1 meter to 1 km, a range that encompasses three-dimensional phenomena critical to CAT and OpT, but for which a dearth of experimental data exists. This talk will cover structure function analysis from 129 separate level flight segments representing 41 hours of flight time and 12,600 km of flight distance. The scaling behavior for sub 100- meter scales will be discussed, with an emphasis on Kelvin-Helmholtz (KH) shear layer development as a phenomenological model for this scale range. Comparisons with micro-scale, direct numerical simulations of KH billows will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JSP...141..318G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JSP...141..318G"><span>Hamiltonian and Thermodynamic Modeling of Quantum Turbulence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grmela, Miroslav</p> <p>2010-10-01</p> <p>The state variables in the novel model introduced in this paper are the fields playing this role in the classical Landau-Tisza model and additional fields of mass, entropy (or temperature), superfluid velocity, and gradient of the superfluid velocity, all depending on the position vector and another tree dimensional vector labeling the scale, describing the small-scale structure developed in 4He superfluid experiencing turbulent motion. The fluxes of mass, momentum, energy, and entropy in the position space as well as the fluxes of energy and entropy in scales, appear in the time evolution equations as explicit functions of the state variables and of their conjugates. The fundamental thermodynamic relation relating the fields to their conjugates is left in this paper undetermined. The GENERIC structure of the equations serves two purposes: (i) it guarantees that solutions to the governing equations, independently of the choice of the fundamental thermodynamic relation, agree with the observed compatibility with thermodynamics, and (ii) it is used as a guide in the construction of the novel model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22127052-hierarchical-structure-magnetohydrodynamic-turbulence-position-position-velocity-space','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22127052-hierarchical-structure-magnetohydrodynamic-turbulence-position-position-velocity-space"><span>HIERARCHICAL STRUCTURE OF MAGNETOHYDRODYNAMIC TURBULENCE IN POSITION-POSITION-VELOCITY SPACE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Burkhart, Blakesley; Lazarian, A.; Goodman, Alyssa</p> <p>2013-06-20</p> <p>Magnetohydrodynamic turbulence is able to create hierarchical structures in the interstellar medium (ISM) that are correlated on a wide range of scales via the energy cascade. We use hierarchical tree diagrams known as dendrograms to characterize structures in synthetic position-position-velocity (PPV) emission cubes of isothermal magnetohydrodynamic turbulence. We show that the structures and degree of hierarchy observed in PPV space are related to the presence of self-gravity and the global sonic and Alfvenic Mach numbers. Simulations with higher Alfvenic Mach number, self-gravity and supersonic flows display enhanced hierarchical structure. We observe a strong dependency on the sonic and Alfvenic Machmore » numbers and self-gravity when we apply the statistical moments (i.e., mean, variance, skewness, kurtosis) to the leaf and node distribution of the dendrogram. Simulations with self-gravity, larger magnetic field and higher sonic Mach number have dendrogram distributions with higher statistical moments. Application of the dendrogram to three-dimensional density cubes, also known as position-position-position (PPP) cubes, reveals that the dominant emission contours in PPP and PPV are related for supersonic gas but not for subsonic. We also explore the effects of smoothing, thermal broadening, and velocity resolution on the dendrograms in order to make our study more applicable to observational data. These results all point to hierarchical tree diagrams as being a promising additional tool for studying ISM turbulence and star forming regions for obtaining information on the degree of self-gravity, the Mach numbers and the complicated relationship between PPV and PPP data.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA519903','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA519903"><span>Joint Inversion for 3-Dimensional S-Velocity Mantle Structure Along the Tethyan Margin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2007-09-01</p> <p>Hindu Kush and encompasses northeastern Africa, the Arabian peninsula, the Middle East, and part of the Atlantic Ocean for reference. We have fitted...several microplates within an area of one quarter of the Earth’s circumference yields this region rich with tectonic complexity. The three...assigned the largest errors. For the oceans we use a constraint of 10 km for Moho depth, but only for points also covered by data from our other data sets</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21344675-wave-propagation-downstream-high-power-helicon-dipolelike-magnetic-field','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21344675-wave-propagation-downstream-high-power-helicon-dipolelike-magnetic-field"><span>Wave propagation downstream of a high power helicon in a dipolelike magnetic field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Prager, James; Winglee, Robert; Roberson, B. Race</p> <p>2010-01-15</p> <p>The wave propagating downstream of a high power helicon source in a diverging magnetic field was investigated experimentally. The magnetic field of the wave has been measured both axially and radially. The three-dimensional structure of the propagating wave is observed and its wavelength and phase velocity are determined. The measurements are compared to predictions from helicon theory and that of a freely propagating whistler wave. The implications of this work on the helicon as a thruster are also discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ShWav..23..115K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ShWav..23..115K"><span>Photographic investigation into the mechanism of combustion in irregular detonation waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kiyanda, C. B.; Higgins, A. J.</p> <p>2013-03-01</p> <p>Irregular detonations are supersonic combustion waves in which the inherent multi-dimensional structure is highly variable. In such waves, it is questionable whether auto-ignition induced by shock compression is the only combustion mechanism present. Through the use of high-speed schlieren and self-emitted light photography, the velocity of the different components of detonation waves in a {{ CH}}_4+2{ O}_2 mixture is analyzed. The observed burn-out of unreacted pockets is hypothesized to be due to turbulent combustion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19830025961','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19830025961"><span>Three-dimensional turbulent-mixing-length modeling for discrete-hole coolant injection into a crossflow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wang, C. R.; Papell, S. S.</p> <p>1983-01-01</p> <p>Three dimensional mixing length models of a flow field immediately downstream of coolant injection through a discrete circular hole at a 30 deg angle into a crossflow were derived from the measurements of turbulence intensity. To verify their effectiveness, the models were used to estimate the anisotropic turbulent effects in a simplified theoretical and numerical analysis to compute the velocity and temperature fields. With small coolant injection mass flow rate and constant surface temperature, numerical results of the local crossflow streamwise velocity component and surface heat transfer rate are consistent with the velocity measurement and the surface film cooling effectiveness distributions reported in previous studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1983STIN...8334232W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1983STIN...8334232W"><span>Three-dimensional turbulent-mixing-length modeling for discrete-hole coolant injection into a crossflow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, C. R.; Papell, S. S.</p> <p>1983-09-01</p> <p>Three dimensional mixing length models of a flow field immediately downstream of coolant injection through a discrete circular hole at a 30 deg angle into a crossflow were derived from the measurements of turbulence intensity. To verify their effectiveness, the models were used to estimate the anisotropic turbulent effects in a simplified theoretical and numerical analysis to compute the velocity and temperature fields. With small coolant injection mass flow rate and constant surface temperature, numerical results of the local crossflow streamwise velocity component and surface heat transfer rate are consistent with the velocity measurement and the surface film cooling effectiveness distributions reported in previous studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011IzPSE..47..847Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011IzPSE..47..847Y"><span>One-dimensional velocity model of the Middle Kura Depresion from local earthquakes data of Azerbaijan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yetirmishli, G. C.; Kazimova, S. E.; Kazimov, I. E.</p> <p>2011-09-01</p> <p>We present the method for determining the velocity model of the Earth's crust and the parameters of earthquakes in the Middle Kura Depression from the data of network telemetry in Azerbaijan. Application of this method allowed us to recalculate the main parameters of the hypocenters of the earthquake, to compute the corrections to the arrival times of P and S waves at the observation station, and to significantly improve the accuracy in determining the coordinates of the earthquakes. The model was constructed using the VELEST program, which calculates one-dimensional minimal velocity models from the travel times of seismic waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S31A0784W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S31A0784W"><span>Shallow velocity structure above the Socorro Magma Body from ambient noise tomography using the large-N Sevilleta array, central Rio Grande Rift, New Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Worthington, L. L.; Ranasinghe, N. R.; Schmandt, B.; Jiang, C.; Finlay, T. S.; Bilek, S. L.; Aster, R. C.</p> <p>2017-12-01</p> <p>The Socorro Magma Body (SMB) is one of the largest recognized active mid-crustal magma intrusions globally. Inflation of the SMB drives sporadically seismogenic uplift at rates of up to of few millimeters per year. We examine the upper crustal structure of the northern section of the SMB region using ambient noise seismic data collected from the Sevilleta Array and New Mexico Tech (NMT) seismic network to constrain basin structure and identify possible upper crustal heterogeneities caused by heat flow and/or fluid or magma migration to shallower depths. The Sevilleta Array comprised 801 vertical-component Nodal seismic stations with 10-Hz seismometers deployed within the Sevilleta National Wildlife Refuge in the central Rio Grande rift north of Socorro, New Mexico, for a period of 12 days during February 2015. Five short period seismic stations from the NMT network located south of the Sevilleta array are also used to improve the raypath coverage outside the Sevilleta array. Inter-station ambient noise cross-correlations were computed from all available 20-minute time windows and stacked to obtain estimates of the vertical component Green's function. Clear fundamental mode Rayleigh wave energy is observed from 3 to 6 s period. Beamforming indicates prominent noise sources from the southwest, near Baja California, and the southeast, in the Gulf of Mexico. The frequency-time analysis method was implemented to measure fundamental mode Rayleigh wave phase velocities and the resulting inter-station travel times were inverted to obtain 2-D phase velocity maps. One-dimensional sensitivity kernels indicate that the Rayleigh wave phase velocity maps are sensitive to a depth interval of 1 to 8 km, depending on wave period. The maps show (up to 40%) variations in phase velocity within the Sevilleta Array, with the largest variations found for periods of 5-6 seconds. Holocene to upper Pleistocene, alluvial sediments found in the Socorro Basin consistently show lower phase velocities than the basin-bounding ranges. Two areas of localized low velocities will be the focus of future work and interpretation. One low velocity zone appears to be co-located with the area of maximum InSAR-observed uplift related to the SMB. A second low velocity zone surrounds the Paleogene-aged Black Butte Volcano.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvF...2b4601S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvF...2b4601S"><span>Helicity statistics in homogeneous and isotropic turbulence and turbulence models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sahoo, Ganapati; De Pietro, Massimo; Biferale, Luca</p> <p>2017-02-01</p> <p>We study the statistical properties of helicity in direct numerical simulations of fully developed homogeneous and isotropic turbulence and in a class of turbulence shell models. We consider correlation functions based on combinations of vorticity and velocity increments that are not invariant under mirror symmetry. We also study the scaling properties of high-order structure functions based on the moments of the velocity increments projected on a subset of modes with either positive or negative helicity (chirality). We show that mirror symmetry is recovered at small scales, i.e., chiral terms are subleading and they are well captured by a dimensional argument plus anomalous corrections. These findings are also supported by a high Reynolds numbers study of helical shell models with the same chiral symmetry of Navier-Stokes equations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992TUFEJ..41..441T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992TUFEJ..41..441T"><span>Study on general theory of kinematics and dynamics of wheeled mobile robots</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tsukishima, Takahiro; Sasaki, Ken; Takano, Masaharu; Inoue, Kenji</p> <p>1992-03-01</p> <p>This paper proposes a general theory of kinematics and dynamics of wheeled mobile robots (WMRs). Unlike robotic manipulators which are modeled as 3-dimensional serial link mechanism, WMRs will be modeled as planar linkage mechanism with multiple links branching out from the base and/or another link. Since this model resembles a tree with branches, it will be called 'tree-structured-link'. The end of each link corresponds to the wheel which is in contact with the floor. In dynamics of WMR, equation of motion of a WMR is derived from joint input torques incorporating wheel dynamics. The wheel dynamics determines forces and moments acting on wheels as a function of slip velocity. This slippage of wheels is essential in dynamics of WMR. It will also be shown that the dynamics of WMR reduces to kinematics when slippage of wheels is neglected. Furthermore, the equation of dynamics is rewritten in velocity input form, since most of industrial motors are velocity controlled.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1982aaaf.coll.....F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1982aaaf.coll.....F"><span>Aerodynamic models for a Darrieus wind turbine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fraunie, P.; Beguier, C.; Paraschivoiu, I.; Delclaux, F.</p> <p>1982-11-01</p> <p>Various models proposed for the aerodynamics of Darrieus wind turbines are reviewed. The magnitude of the L/D ratio for a Darrieus rotor blade is dependent on the profile, the Re, boundary layer characteristics, and the three-dimensional flow effects. The aerodynamic efficiency is theoretically the Betz limit, and the interference of one blade with another is constrained by the drag force integrated over all points on the actuator disk. A single streamtube model can predict the power available in a Darrieus, but the model lacks definition of the flow structure and the cyclic stresses. Techniques for calculating the velocity profiles and the consequent induced velocity at the blades are presented. The multiple streamtube theory has been devised to account for the repartition of the velocity in the rotor interior. The model has been expanded as the double multiple streamtube theory at Sandia Laboratories. Futher work is necessary, however, to include the effects of dynamic decoupling at high rotation speeds and to accurately describe blade behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22521803-discovery-collimated-bipolar-outflows-planetary-nebula-th','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22521803-discovery-collimated-bipolar-outflows-planetary-nebula-th"><span>DISCOVERY OF COLLIMATED BIPOLAR OUTFLOWS IN THE PLANETARY NEBULA TH 2-A</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Danehkar, A., E-mail: ashkbiz.danehkar@cfa.harvard.edu</p> <p></p> <p>We present a comprehensive set of spatially resolved, integral field spectroscopic mapping of the Wolf–Rayet planetary nebula Th 2-A, obtained using the Wide Field Spectrograph on the Australian National University 2.3-m telescope. Velocity-resolved Hα channel maps with a resolution of 20 km s{sup −1} allow us to identify different kinematic components within the nebula. This information is used to develop a three-dimensional morpho-kinematic model of the nebula using the interactive kinematic modeling tool shape. These results suggest that Th 2-A has a thick toroidal shell with an expansion velocity of 40 ± 10 km s{sup −1}, and a thin prolate ellipsoid withmore » collimated bipolar outflows toward its axis reaching velocities in the range of 70–110 km s{sup −1}, with respect to the central star. The relationship between its morpho-kinematic structure and peculiar [WO]-type stellar characteristics deserves further investigation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27711580','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27711580"><span>Hydrogenated borophene as a stable two-dimensional Dirac material with an ultrahigh Fermi velocity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xu, Li-Chun; Du, Aijun; Kou, Liangzhi</p> <p>2016-10-05</p> <p>The recent synthesis of monolayer borophene (triangular boron monolayer) on a substrate has opened the era of boron nanosheets (Science, 2015, 350, 1513), but the structural instability and a need to explore the novel physical properties are still open issues. Here we demonstrated that borophene can be stabilized by full surface hydrogenation (borophane), from first-principles calculations. Most interestingly, our calculations show that borophane has direction-dependent Dirac cones, which are mainly caused by the in-plane p x and p y orbitals of boron atoms. The Dirac fermions possess an ultrahigh Fermi velocity of up to 3.5 × 10 6 m s -1 under the HSE06 level, which is 4 times higher than that of graphene. The Young's moduli are calculated to be 190 and 120 GPa nm along two different directions, which are comparable to those of steel. The ultrahigh Fermi velocity and good mechanical features render borophane ideal for nanoelectronic applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1939b0030S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1939b0030S"><span>The analytical solution of the problem of a shock focusing in a gas for one-dimensional case</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shestakovskaya, E. S.; Magazov, F. G.</p> <p>2018-03-01</p> <p>The analytical solution of the problem of an imploding shock wave in the vessel with an impermeable wall is constructed for the cases of planar, cylindrical and spherical symmetry. The negative velocity is set at the vessel boundary. The velocity of cold ideal gas is zero. At the initial time the shock spreads from this point into the center of symmetry. The boundary moves under the particular law which conforms to the movement of the shock. In Euler variables it moves but in Lagrangian variables its trajectory is a vertical line. Equations that determine the structure of the gas flow between the shock front and the boundary as a function of time and the Lagrangian coordinate as well as the dependence of the entropy on the shock wave velocity are obtained. Self-similar coefficients and corresponding critical values of self-similar coordinates were found for a wide range of adiabatic index. The problem is solved for Lagrangian coordinates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16802998','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16802998"><span>Rotating states of self-propelling particles in two dimensions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Hsuan-Yi; Leung, Kwan-Tai</p> <p>2006-05-01</p> <p>We present particle-based simulations and a continuum theory for steady rotating flocks formed by self-propelling particles (SPPs) in two-dimensional space. Our models include realistic but simple rules for the self-propelling, drag, and interparticle interactions. Among other coherent structures, in particle-based simulations we find steady rotating flocks when the velocity of the particles lacks long-range alignment. Physical characteristics of the rotating flock are measured and discussed. We construct a phenomenological continuum model and seek steady-state solutions for a rotating flock. We show that the velocity and density profiles become simple in two limits. In the limit of weak alignment, we find that all particles move with the same speed and the density of particles vanishes near the center of the flock due to the divergence of centripetal force. In the limit of strong body force, the density of particles within the flock is uniform and the velocity of the particles close to the center of the flock becomes small.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MeScT..28c5201J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MeScT..28c5201J"><span>Image pre-processing method for near-wall PIV measurements over moving curved interfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jia, L. C.; Zhu, Y. D.; Jia, Y. X.; Yuan, H. J.; Lee, C. B.</p> <p>2017-03-01</p> <p>PIV measurements near a moving interface are always difficult. This paper presents a PIV image pre-processing method that returns high spatial resolution velocity profiles near the interface. Instead of re-shaping or re-orientating the interrogation windows, interface tracking and an image transformation are used to stretch the particle image strips near a curved interface into rectangles. Then the adaptive structured interrogation windows can be arranged at specified distances from the interface. Synthetic particles are also added into the solid region to minimize interfacial effects and to restrict particles on both sides of the interface. Since a high spatial resolution is only required in high velocity gradient region, adaptive meshing and stretching of the image strips in the normal direction is used to improve the cross-correlation signal-to-noise ratio (SN) by reducing the velocity difference and the particle image distortion within the interrogation window. A two dimensional Gaussian fit is used to compensate for the effects of stretching particle images. The working hypothesis is that fluid motion near the interface is ‘quasi-tangential flow’, which is reasonable in most fluid-structure interaction scenarios. The method was validated against the window deformation iterative multi-grid scheme (WIDIM) using synthetic image pairs with different velocity profiles. The method was tested for boundary layer measurements of a supersonic turbulent boundary layer on a flat plate, near a rotating blade and near a flexible flapping flag. This image pre-processing method provides higher spatial resolution than conventional WIDIM and good robustness for measuring velocity profiles near moving interfaces.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GGG....18.2149V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GGG....18.2149V"><span>Seismic structure and segmentation of the axial valley of the Mid-Cayman Spreading Center</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Van Avendonk, Harm J. A.; Hayman, Nicholas W.; Harding, Jennifer L.; Grevemeyer, Ingo; Peirce, Christine; Dannowski, Anke</p> <p>2017-06-01</p> <p>We report the results of a two-dimensional tomographic inversion of marine seismic refraction data from an array of ocean-bottom seismographs (OBSs), which produced an image of the crustal structure along the axial valley of the ultraslow spreading Mid-Cayman Spreading Center (MCSC). The seismic velocity model shows variations in the thickness and properties of the young oceanic crust that are consistent with the existence of two magmatic-tectonic segments along the 110 km long spreading center. Seismic wave speeds are consistent with exhumed mantle at the boundary between these two segments, but changes in the vertical gradient of seismic velocity suggest that volcanic crust occupies most of the axial valley seafloor along the seismic transect. The two spreading segments both have a low-velocity zone (LVZ) several kilometers beneath the seafloor, which may indicate the presence of shallow melt. However, the northern segment also has low seismic velocities (3 km/s) in a thick upper crustal layer (1.5-2.0 km), which we interpret as an extrusive volcanic section with high porosity and permeability. This segment hosts the Beebe vent field, the deepest known high-temperature black smoker hydrothermal vent system. In contrast, the southern spreading segment has seismic velocities as high as 4.0 km/s near the seafloor. We suggest that the porosity and permeability of the volcanic crust in the southern segment are much lower, thus limiting deep seawater penetration and hydrothermal recharge. This may explain why no hydrothermal vent system has been found in the southern half of the MCSC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.S41E..03I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.S41E..03I"><span>Long-period Ground Motion Simulation in the Osaka Basin during the 2011 Great Tohoku Earthquake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Iwata, T.; Kubo, H.; Asano, K.; Sato, K.; Aoi, S.</p> <p>2014-12-01</p> <p>Large amplitude long-period ground motions (1-10s) with long duration were observed in the Osaka sedimentary basin during the 2011 Tohoku earthquake (Mw9.0) and its aftershock (Ibaraki-Oki, Mw7.7), which is about 600 km away from the source regions. Sato et al. (2013) analyzed strong ground motion records from the source region to the Osaka basin and showed the following characteristics. (1) In the period range of 1 to 10s, the amplitude of horizontal components of the ground motion at the site-specific period is amplified in the Osaka basin sites. The predominant period is about 7s in the bay area where the largest pSv were observed. (2) The velocity Fourier amplitude spectra with their predominant period of around 7s are observed at the bedrock sites surrounding the Osaka basin. Those characteristics were observed during both of the mainshock and the largest aftershock. Therefore, large long-period ground motions in the Osaka basin are generated by the combination of propagation-path and basin effects. They simulated ground motions due to the largest aftershock as a simple point source model using three-dimensional FDM (GMS; Aoi and Fujiwara, 1999). They used a three-dimensional velocity structure based on the Japan Integrated Velocity Structure Model (JIVSM, Koketsu et al., 2012), with the minimum effective period of the computation of 3s. Their simulation result reproduced the observation characteristics well and it validates the applicability of the JIVSM for the long period ground motion simulation. In this study, we try to simulate long-period ground motions during the mainshock. The source model we used for the simulation is based on the SMGA model obtained by Asano and Iwata (2012). We succeed to simulate long-period ground motion propagation from Kanto area to the Osaka basin fairly well. The long-period ground motion simulations with the several Osaka basin velocity structure models are done for improving the model applicability. We used strong motion data recorded by K-NET, KiK-net and F-net of NIED, CEORKA, BRI, JMA, Osaka city waterworks bureau, and Osaka prefecture. GMS provided by NIED is used for the computation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006PhR...437...55M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006PhR...437...55M"><span>A tutorial on dynamical systems concepts applied to Lagrangian transport in oceanic flows defined as finite time data sets: Theoretical and computational issues</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mancho, Ana M.; Small, Des; Wiggins, Stephen</p> <p>2006-12-01</p> <p>In the past 15 years the framework and ideas from dynamical systems theory have been applied to a variety of transport and mixing problems in oceanic flows. The motivation for this approach comes directly from advances in observational capabilities in oceanography (e.g., drifter deployments, remote sensing capabilities, satellite imagery, etc.) which reveal space-time structures that are highly suggestive of the structures one visualizes in the global, geometrical study of dynamical systems theory. In this tutorial, we motivate this approach by showing the relationship between fluid transport in two-dimensional time-periodic incompressible flows and the geometrical structures that exist for two-dimensional area-preserving maps, such as hyperbolic periodic orbits, their stable and unstable manifolds and KAM (Kolmogorov-Arnold-Moser) tori. This serves to set the stage for the attempt to “transfer” this approach to more realistic flows modelling the ocean. However, in order to accomplish this several difficulties must be overcome. The first difficulty that confronts us that any attempt to carry out a dynamical systems approach to transport requires us to obtain the appropriate “dynamical system”, which is the velocity field describing the fluid flow. In general, adequate model velocity fields are obtained by numerical solution of appropriate partial differential equations describing the dynamical evolution of the velocity field. Numerical solution of the partial differential equations can only be done for a finite time interval, and since the ocean is generally not time-periodic, this leads to a new type of dynamical system: a finite-time, aperiodically time-dependent velocity field defined as a data set on a space-time grid. The global, geometrical analysis of transport in such dynamical systems requires both new concepts and new analytical and computational tools, as well as the necessity to discard some of the standard ideas and results from dynamical systems theory. The purpose of this tutorial is to describe these new concepts and analytical tools first using simple dynamical systems where quantities can be computed exactly. We then discuss their computational implications and implementation in the context of a model geophysical flow: a turbulent wind-driven double-gyre in the quasigeostrophic approximation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.7740F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.7740F"><span>Detection and reconstruction of large scale flow structures in a river by means of empirical mode decomposition combined with Hilbert transform</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Franca, Mário J.; Lemmin, Ulrich</p> <p>2014-05-01</p> <p>The occurrence of large scale flow structures (LSFS) coherently organized throughout the flow depth has been reported in field and laboratory experiments of flows over gravel beds, especially under low relative submergence conditions. In these, the instantaneous velocity is synchronized over the whole vertical profile oscillating at a low frequency above or below the time-averaged value. The detection of large scale coherently organized regions in the flow field is often difficult since it requires detailed simultaneous observations of the flow velocities at several levels. The present research avoids the detection problem by using an Acoustic Doppler Velocity Profiler (ADVP), which permits measuring three-dimensional velocities quasi-simultaneously over the full water column. Empirical mode decomposition (EMD) combined with the application of the Hilbert transform is then applied to the instantaneous velocity data to detect and isolate LSFS. The present research was carried out in a Swiss river with low relative submergence of 2.9, herein defined as h/D50, (where h is the mean flow depth and D50 the bed grain size diameter for which 50% of the grains have smaller diameters). 3D ADVP instantaneous velocity measurements were made on a 3x5 rectangular horizontal grid (x-y). Fifteen velocity profiles were equally spaced in the spanwise direction with a distance of 10 cm, and in the streamwise direction with a distance of 15 cm. The vertical resolution of the measurements is roughly 0.5 cm. A measuring grid covering a 3D control volume was defined. The instantaneous velocity profiles were measured for 3.5 min with a sampling frequency of 26 Hz. Oscillating LSFS are detected and isolated in the instantaneous velocity signal of the 15 measured profiles. Their 3D cycle geometry is reconstructed and investigated through phase averaging based on the identification of the instantaneous signal phase (related to the Hilbert transform) applied to the original raw signal. Results for all the profiles are consistent and indicate clearly the presence of LSFS throughout the flow depth with impact on the three components of the velocity profile and on the bed friction velocity. A high correlation of the movement is found throughout the flow depth, thus corroborating the hypothesis of large-scale coherent motion evolving over the whole water depth. These latter are characterized in terms of period, horizontal scale and geometry. The high spatial and temporal resolution of our ADVP was crucial for obtaining comprehensive results on coherent structures dynamics. EMD combined with the Hilbert transform have previously been successfully applied to geophysical flow studies. Here we show that this method can also be used for the analysis of river dynamics. In particular, we demonstrate that a clean, well-behaved intrinsic mode function can be obtained from a noisy velocity time series that allowed a precise determination of the vertical structure of the coherent structures. The phase unwrapping of the UMR and the identification of the phase related velocity components brings new insight into the flow dynamics Research supported by the Swiss National Science Foundation (2000-063818). KEY WORDS: large scale flow structures (LSFS); gravel-bed rivers; empirical mode decomposition; Hilbert transform</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1916520B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1916520B"><span>Structure of the lithosphere-asthenosphere system in the vicinity of the Tristan da Cunha hot spot as seen by surface waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bonadio, Raffaele; Geissler, Wolfram H.; Ravenna, Matteo; Lebedev, Sergei; Celli, Nicolas L.; Jokat, Wilfried; Jegen, Marion; Sens-Schönfelder, Christoph; Baba, Kiyoshi</p> <p>2017-04-01</p> <p>Tristan da Cunha is a volcanic island located above a hotspot in the South Atlantic. The deep mantle plume origin of the hotspot volcanism at the island is supported by anomalous geochemical data (Rohde et al., 2013 [1]) and global seismological evidences (French and Romanovicz, 2015 [2]). However, until recently, due to lack of local geophysical data in the South Atlantic and especially around Tristan da Cunha, the existence of a plume has not yet been confirmed. Therefore, an Ocean Bottom Seismometer experiment was carried out in 2012 and 2013 in the vicinity of the archipelago, with the aim of obtaining geophysical data that may help to get some more detailed insights into the structure of the upper mantle, possibly confirming the existence of a plume. In this work we study the shear wave velocity structure of the lithosphere-asthenosphere system beneath the Island. Rayleigh surface wave phase velocity dispersion curves have been obtained using a recent powerful implementation of the inter-station cross-correlation method (Meier et al., 2004 [3]; Soomro et al., 2016 [4]). The measured dispersion curves are used to invert for the 1D shear wave velocity structure beneath the study area and to obtain phase velocity tomographic maps. Our results show a pronounced low shear wave velocity anomaly between 70 and 120 km depth beneath the area; the lid shows high velocity, suggesting a cold, depleted and dehydrated shallow lithosphere, while the deeper lithosphere shows a velocity structure similar to young or rejuvenated Pacific oceanic lithosphere (Laske et al., 2011 [5]; Goes et al., 2012 [6]). Below the base of the lithosphere, shear wave velocities appear to be low, suggesting thermal effects and partial melting (as confirmed by petrological data). Decreasing velocities within the lithosphere south-westward reflect probably a thermal imprint of an underlying mantle plume. References [1] J.K. Rohde, P. van den Bogaard, K. Hoernle, F. Hauff, R. Werner, Evidence for an age progression along the Tristan-Gough volcanic track from new 40Ar/ 39Ar ages on phenocryst phases, Tectonophysics, Volume 604, p. 60-71 (2013). [2] S. French and B. Romanowicz, Broad plumes rooted at the base of the Earth's mantle beneath major hotspots, Nature, 525(7567), 95-99 (2015). [3] T. Meier, K. Dietrich, B. Stockhert and H. Harjes, One-dimensional models of shear wave velocity for the eastern Mediterranean obtained from the inversion of Rayleigh wave phase velocities and tectonic implications, Earth and Planetary Science Letters, 249(3), 415-424 (2004). [4] R.A. Soomro, C. Weidle, L. Cristiano, S. Lebedev, T. Meier and PASSEQ Working Group, Phase velocities of Rayleigh and Love waves in central and northern Europe from automated, broad-band, interstation measurements, Geophys. J. Int. (2016) 204, 517-534. [5] G. Laske, A. Markee, J.A. Orcutt, C.J. Wolfe, J.A. Collins and S.C. Solomon, R.S. Detrick, D. Bercovici and E.H. Hauri, Asymmetric shallow mantle structure beneath the Hawaiian Swell-evidence from Rayleigh waves recorded by the PLUME network, Geophys. J. Int. (2011) 187, 1725-1742. [6] S. Goes, J. Armitage, N. Harmon, H. Smith and R. Huismans, Low seismic velocities below mid-ocean ridges: Attenuation versus melt retention, Journal of geophysical research, Vol. 117, B12403, (2012).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MPLB...3150100Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MPLB...3150100Y"><span>Bright-dark soliton solutions for the (2+1)-dimensional variable-coefficient coupled nonlinear Schrödinger system in a graded-index waveguide</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yuan, Yu-Qiang; Tian, Bo; Xie, Xi-Yang; Chai, Jun; Liu, Lei</p> <p>2017-04-01</p> <p>Under investigation in this paper is the (2+1)-dimensional coupled nonlinear Schrödinger (NLS) system with variable coefficients, which describes the propagation of an optical beam inside the two-dimensional graded-index waveguide amplifier with the polarization effects. Through a similarity transformation, we convert that system into a set of the integrable defocusing (1+1)-dimensional coupled NLS equations, and subsequently construct the bright-dark soliton solutions for the original system which are converted from the ones of the latter set. With the graphic analysis, we discuss the soliton propagation and collision with r(t), which is related to the nonlinear, profile and gain/loss coefficients. When r(t) is a constant, one soliton propagates with the amplitude, width and velocity unvaried, while velocity and width of the one soliton can be affected, and two solitons possess the elastic collision; When r(t) is a linear function, velocity and width of the one soliton varies with t increasing, and collision of the two solitons is altered. Besides, bound-state solitons are seen.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S51D0635H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S51D0635H"><span>Imaging 3D crustal and upper mantle structures of the Northeast China using local and teleseismic data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, J.</p> <p>2017-12-01</p> <p>Northeast China is located in the composite part of Paleo Asia ocean and Pacific ocean Domain, it undergone multi-stage tectonism and has complicated geological structure. In this region, two major geologic and geophysical boundaries are distinct, the NNE-trending North South Gravity Lineament (NSGL) and Tanlu fault. With respect to North China Craton (NCC), Northeast China is more closely adjacent to the subduction zone of Pacific slab. Along the eastern boundary of Northeast China, the subducting Pacific plate approaches depths of 600 km, many deep earthquakes occurred here. This region becomes an ideal place to investigate deep structure related to deep subduction, deep earthquakes as well as intraplate volcanism. In this study, we determined high-resolution three dimensional P- and S-wave velocity models of the crust and upper mantle to 800 km depth by jointly inverting arrival times from local events and relative residuals from teleseismic events. Our results show that main velocity anomalies exhibited block feature and are generally oriented in NE to NNE direction, which is consistent with regional tectonic direction. The NSGL is characterized by a high-velocity (high-V) anomaly belt with a width of approximately 100 km, and the high-V anomaly extents to the bottom of upper mantle or mantle transition zone. The songliao basin, which is located between NSGL and Tanlu fault tectonic boundaries, obvious low-velocity anomaly extends to about depth of 200 km(. Under the Great Xing'an Range on the west side of NSGL, the low velocity extend to the lithosphere. Our results also show that most of deep earthquakes all occurred in deep subduction zone with high-velocity anomaly. Further, we also observed that extensive low velocity exists above deep-earthquakes zones, this result suggests that deep subduction of the Pacific slab maybe affect overlying lithosphere, resulting in the state of molten, semi-molten or high water.This research is supported by the National Science Foundation of China (91114204) and National Key R&D Plan (2017YFC0601406)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009PhDT.......155P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009PhDT.......155P"><span>Structure of the Sumatra-Andaman subduction zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pesicek, Jeremy Dale</p> <p></p> <p>We have conducted studies of the Sumatra-Andaman subduction zone using newly available teleseismic data resulting from the aftershock sequences of the 2004, 2005, and 2007 great earthquakes that occurred offshore of the island of Sumatra. In order to better exploit the new data, existing methodologies have been adapted and advanced in several ways to obtain results at a level of precision not previously possible from teleseismic data. Seismic tomography studies of the mantle were conducted using an improved iterative technique that accounts for fine-scale three-dimensional (3-D) velocity variations inside the study region and coarser global velocity variations outside the region. More precise earthquake locations were determined using a double-difference technique that has been extended to teleseismic distances using spherical ray tracing through the nested 3-D regional-global velocity models. Earthquake relocation was included in the iterative tomography scheme and was found to significantly enhance the recovery of slab velocity anomalies. Finally, because crustal structure is poorly constrained by the teleseismic data, 3-D density modeling of the crust was conducted using newly available satellite gravity data and a spherical prism gravity algorithm. The results of these studies better constrain the structure of the Sumatra-Andaman subduction zone, including the geometry of the mantle slab, position of the megathrust, and structural features of the downgoing plate. Tomography results reveal continuous upper mantle slab anomalies with significant variations in dip throughout the region. Broad curvature of the fast anomalies beneath northern Sumatra, similar to curvature of the trench and volcanic arc at the surface, is interpreted as folding of the upper mantle slab. Earthquake relocations show systematic shifts of the hypocenters to the northeast and to shallower depths, each with average changes of 5 km. Reduced scatter in the relocations better constrain the megathrust plate boundary and the regions of coseismic slip during the 2004 and 2005 great earthquakes. In addition, the relocations reveal discrete seismic features on the downgoing plate not previously visible in teleseismic catalogs. The new velocity model and earthquake locations provide the most comprehensive view of the deep structure of the Sumatra-Andaman subduction zone yet available.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140000906','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140000906"><span>Test of Shi et al. Method to Infer the Magnetic Reconnection Geometry from Spacecraft Data: MHD Simulation with Guide Field and Antiparallel Kinetic Simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Denton, R.; Sonnerup, B. U. O.; Swisdak, M.; Birn, J.; Drake, J. F.; Heese, M.</p> <p>2012-01-01</p> <p>When analyzing data from an array of spacecraft (such as Cluster or MMS) crossing a site of magnetic reconnection, it is desirable to be able to accurately determine the orientation of the reconnection site. If the reconnection is quasi-two dimensional, there are three key directions, the direction of maximum inhomogeneity (the direction across the reconnection site), the direction of the reconnecting component of the magnetic field, and the direction of rough invariance (the "out of plane" direction). Using simulated spacecraft observations of magnetic reconnection in the geomagnetic tail, we extend our previous tests of the direction-finding method developed by Shi et al. (2005) and the method to determine the structure velocity relative to the spacecraft Vstr. These methods require data from four proximate spacecraft. We add artificial noise and calibration errors to the simulation fields, and then use the perturbed gradient of the magnetic field B and perturbed time derivative dB/dt, as described by Denton et al. (2010). Three new simulations are examined: a weakly three-dimensional, i.e., quasi-two-dimensional, MHD simulation without a guide field, a quasi-two-dimensional MHD simulation with a guide field, and a two-dimensional full dynamics kinetic simulation with inherent noise so that the apparent minimum gradient was not exactly zero, even without added artificial errors. We also examined variations of the spacecraft trajectory for the kinetic simulation. The accuracy of the directions found varied depending on the simulation and spacecraft trajectory, but all the directions could be found within about 10 for all cases. Various aspects of the method were examined, including how to choose averaging intervals and the best intervals for determining the directions and velocity. For the kinetic simulation, we also investigated in detail how the errors in the inferred gradient directions from the unmodified Shi et al. method (using the unperturbed gradient) depended on the amplitude of the calibration errors. For an accuracy of 3 for the maximum gradient direction, the calibration errors could be as large as 3% of reconnection magnetic field, while for the same accuracy for the minimum gradient direction, the calibration errors could only be as large as 0.03% of the reconnection magnetic field. These results suggest that the maximum gradient direction can normally be determined by the unmodified Shi et al. method, while the modified method or some other method must be used to accurately determine the minimum gradient direction. The structure velocity was found with magnitude accurate to 2% and direction accurate to within 5%.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvF...3a4702R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvF...3a4702R"><span>Tracking coherent structures in massively-separated and turbulent flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rockwood, Matthew; Huang, Yangzi; Green, Melissa</p> <p>2018-01-01</p> <p>Coherent vortex structures are tracked in simulations of massively-separated and turbulent flows. Topological Lagrangian saddle points are found using intersections of the positive and negative finite-time Lyapunov exponent ridges, and these points are then followed in order to track individual coherent structure motion both in a complex interacting three-dimensional flow (turbulent channel) and during vortex formation (two-dimensional bluff body shedding). For a simulation of wall-bounded turbulence in a channel flow, tracking Lagrangian saddles shows that the average structure convection speed exhibits a similar trend as a previously published result based on velocity and pressure correlations, giving validity to the method. When this tracking method is applied in a study of a circular cylinder in cross-flow it shows that Lagrangian saddles rapidly accelerate away from the cylinder surface as the vortex sheds. This saddle behavior is compared with the time-resolved static pressure distribution on the circular cylinder, yielding locations on a cylinder surface where common sensors could detect this phenomenon, which is not available from force measurements or vortex circulation calculations. The current method of tracking coherent structures yields insight into the behavior of the coherent structures in both of the diverse flows presented, highlighting the breadth of its potential application.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.S13A1979M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.S13A1979M"><span>Receiver function structure beneath a broad-band seismic station in south Sumatra</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>MacPherson, K. A.; Hidayat, D.; Goh, S.</p> <p>2010-12-01</p> <p>We estimated the one-dimensional velocity structure beneath a broad-band station in south Sumatra by the forward modeling and inversion of receiver functions. Station PMBI belongs to the GEOFON seismic network maintained by GFZ-Potsdam, and at a longitude of 104.77° and latitude of -2.93°, sits atop the south Sumatran basin. This station is of interest to researchers at the Earth Observatory of Singapore, as data from it and other stations in Sumatra and Singapore will be incorporated into a regional velocity model for use in seismic hazard analyses. Three-component records from 193 events at teleseismic distances and Mw ≥ 5.0 were examined for this study and 67 records were deemed to have sufficient signal to noise characteristics to be retained for analysis. Observations are primarily from source zones in the Bougainville trench with back-azimuths to the east-south-east, the Japan and Kurile trenches with back-azimuths to the northeast, and a scattering of observations from other azimuths. Due to the level of noise present in even the higher-quality records, the usual frequency-domain deconvolution method of computing receiver functions was ineffective, and a time-domain iterative deconvolution was employed to obtain usable wave forms. Receiver functions with similar back-azimuths were stacked in order to improve their signal to noise ratios. The resulting wave forms are relatively complex, with significant energy being present in the tangential components, indicating heterogeneity in the underlying structure. A dip analysis was undertaken but no clear pattern was observed. However, it is apparent that polarities of the tangential components were generally reversed for records that sample the Sunda trench. Forward modeling of the receiver functions indicates the presence of a near-surface low-velocity layer (Vp≈1.9 km/s) and a Moho depth of ~31 km. Details of the crustal structure were investigated by employing time-domain inversions of the receiver functions. General features of those velocity models providing a good fit to the waveform include an approximately one kilometer thick near-surface low-velocity zone, a high-velocity layer over a velocity inversion at mid-crustal depths, and a crust-mantle transition at depths between 30 km and 34 km.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.S41A2152T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.S41A2152T"><span>Shear Wave Velocity Structure beneath the African-Anatolian Subduction Zone in Southwestern Turkey from Inversions of Rayleigh Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Teoman, U. M.; Sandvol, E. A.; Kahraman, M.; Sahin, S.; Turkelli, N.</p> <p>2011-12-01</p> <p>The ongoing subduction of the African Plate under western Anatolia results in a highly complex tectonic structure especially beneath Isparta Angle (IA) and the surroundings where the Hellenic and Cyprian slabs with different subduction geometries intersect. The primary objective is to accurately image the lithospheric structure at this convergent plate boundary and further understand the reasons responsible for the active deformation. Data was gathered from a temporary seismic network consisting of 10 broadband stations that was installed in August 2006 with the support from University of Missouri and nine more stations deployed in March 2007 with the support from Bogazici Research Fund (project ID:07T203). In addition, 21 permanent stations of Kandilli Observatory and Earthquake Research Institute (KOERI) and two from Süleyman Demirel University (SDU) together with five stations from IRIS/Geofon Network were also included to extend the station coverage. We used earthquakes in a distance range of 30-120 degrees with body wave magnitudes larger than 5.5. Depending on the signal to noise ratio, azimuthal coverage of events, and coherence from station, 81 events provided high-quality data for our analysis. The distribution of events shows a good azimuthal coverage, which is important for resolving both lateral heterogeneity and azimuthal anisotropy. We adopted a two-plane-wave inversion technique of Forsyth and Li (2003) to simultaneously solve for the incoming wave field and phase velocity. This relatively simpler representation of a more complex wavefield provided quite stable patterns of amplitude variations in many cases. To begin with, an average phase velocity dispersion curve was obtained and used as an input for tomographic inversions. Two-dimensional tomographic maps of isotropic and azimuthally anisotropic phase velocity variations were generated. Phase velocities can only tell us integrated information about the upper mantle. Furthermore, we inverted phase velocities for shear wave velocities (Saito,1988) in order to obtain direct information at a depth range of 30-300 km that can be interpreted in terms of major tectonic processes such as extension, slab detachment/tearing, STEP faults, volcanism, temperature anomalies, the presence of melt or dissolved water, etc. Resulting tomograms along horizontal and vertical depth sections provided valuable insights on the crustal and upper mantle structure beneath Southwestern Turkey down to almost 300 km.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1212239-high-resolution-velocimetry-energetic-tidal-currents-using-convergent-beam-acoustic-doppler-profiler','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1212239-high-resolution-velocimetry-energetic-tidal-currents-using-convergent-beam-acoustic-doppler-profiler"><span>High-resolution velocimetry in energetic tidal currents using a convergent-beam acoustic Doppler profiler</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sellar, Brian; Harding, Samuel F.; Richmond, Marshall C.</p> <p></p> <p>An array of convergent acoustic Doppler velocimeters has been developed and tested for the high resolution measurement of three-dimensional tidal flow velocities in an energetic tidal site. This configuration has been developed to increase spatial resolution of velocity measurements in comparison to conventional acoustic Doppler profilers (ADPs) which characteristically use diverging acoustic beams emanating from a single instrument. This is achieved using converging acoustic beams with a sample volume at the focal point of 0.03 m 3. The array is also able to simultaneously measure three-dimensional velocity components in a profile throughout the water column, and as such is referredmore » to herein as a converging-beam acoustic Doppler profiler (CADP). Mid-depth profiling is achieved through integration of the sensor platform with the operational Alstom 1MW DeepGen-IV Tidal Turbine. This proof-of-concept paper outlines system configuration and comparison to measurements provided by co-installed reference instrumentation. Comparison of CADP to standard ADP velocity measurements reveals a mean difference of 8 mm/s, standard deviation of 18 mm/s, and order-of-magnitude reduction in realizable length-scale. CADP focal point measurements compared to a proximal single-beam reference show peak cross-correlation coefficient of 0.96 over 4.0 s averaging period and a 47% reduction in Doppler noise. The dual functionality of the CADP as a profiling instrument with a high resolution focal point make this configuration a unique and valuable advancement in underwater velocimetry enabling improved turbulence, resource and structural loading quantification and validation of numerical simulations. Alternative modes of operation have been implemented including noise-reducing bi-static sampling. Since waves are simultaneously measured it is expected that derivatives of this system will be a powerful tool in wave-current interaction studies.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRC..123.1062W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRC..123.1062W"><span>Three-Dimensional Sediment Dynamics in Well-Mixed Estuaries: Importance of the Internally Generated Overtide, Spatial Settling Lag, and Gravitational Circulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wei, Xiaoyan; Kumar, Mohit; Schuttelaars, Henk M.</p> <p>2018-02-01</p> <p>To investigate the dominant sediment transport and trapping mechanisms, a semi-analytical three-dimensional model is developed resolving the dynamic effects of salt intrusion on sediment in well-mixed estuaries in morphodynamic equilibrium. As a study case, a schematized estuary with a converging width and a channel-shoal structure representative for the Delaware estuary is considered. When neglecting Coriolis effects, sediment downstream of the estuarine turbidity maximum (ETM) is imported into the estuary through the deeper channel and exported over the shoals. Within the ETM region, sediment is transported seaward through the deeper channel and transported landward over the shoals. The largest contribution to the cross-sectionally integrated seaward residual sediment transport is attributed to the advection of tidally averaged sediment concentrations by river-induced flow and tidal return flow. This contribution is mainly balanced by the residual landward sediment transport due to temporal correlations between the suspended sediment concentrations and velocities at the M2 tidal frequency. The M2 sediment concentration mainly results from spatial settling lag effects and asymmetric bed shear stresses due to interactions of M2 bottom velocities and the internally generated M4 tidal velocities, as well as the salinity-induced residual currents. Residual advection of tidally averaged sediment concentrations also plays an important role in the landward sediment transport. Including Coriolis effects hardly changes the cross-sectionally integrated sediment balance, but results in a landward (seaward) sediment transport on the right (left) side of the estuary looking seaward, consistent with observations from literature. The sediment transport/trapping mechanisms change significantly when varying the settling velocity and river discharge.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012ExFl...52..441D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012ExFl...52..441D"><span>Vortex formation and saturation for low-aspect-ratio rotating flat-plate fins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Devoria, Adam C.; Ringuette, Matthew J.</p> <p>2012-02-01</p> <p>We investigate experimentally the unsteady, three-dimensional vortex formation of low-aspect-ratio, trapezoidal flat-plate fins undergoing rotation from rest at a 90° angle of attack and Reynolds numbers of O(103). The objectives are to characterize the unsteady three-dimensional vortex structure, examine vortex saturation, and understand the effects of the root-to-tip flow for different velocity programs. The experiments are conducted in a water tank facility, and the diagnostic tools are dye flow visualization and digital particle image velocimetry. The dye visualizations show that the low-aspect-ratio plate produces symmetric ring-like vortices comprised mainly of tip-edge vorticity. They also indicate the presence of the root-to-tip velocity. For large rotational amplitudes, the primary ring-like vortex sheds and a secondary ring-like vortex is generated while the plate is still in motion, indicating saturation of the leading vortex. The time-varying vortex circulation in the flow symmetry plane provides quantitative evidence of vortex saturation. The phenomenon of saturation is observed for several plate velocity programs. The temporal development of the vortex circulation is often complex, which prevents an objective determination of an exact saturation time. This is the result of an interaction between the developing vortex and the root-to-tip flow, which breaks apart the vortex. However, it is possible to define a range of time during which the vortex reaches saturation. A formation-parameter definition is investigated and is found to reasonably predict the state corresponding to the pinch-off of the initial tip vortex across the velocity programs tested. This event is the lower bound on the saturation time range.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H33E1731M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H33E1731M"><span>Pores-scale hydrodynamics in a progressively bio-clogged three-dimensional porous medium: 3D particle tracking experiments and stochastic transport modelling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Morales, V. L.; Carrel, M.; Dentz, M.; Derlon, N.; Morgenroth, E.; Holzner, M.</p> <p>2017-12-01</p> <p>Biofilms are ubiquitous bacterial communities growing in various porous media including soils, trickling and sand filters and are relevant for applications such as the degradation of pollutants for bioremediation, waste water or drinking water production purposes. By their development, biofilms dynamically change the structure of porous media, increasing the heterogeneity of the pore network and the non-Fickian or anomalous dispersion. In this work, we use an experimental approach to investigate the influence of biofilm growth on pore scale hydrodynamics and transport processes and propose a correlated continuous time random walk model capturing these observations. We perform three-dimensional particle tracking velocimetry at four different time points from 0 to 48 hours of biofilm growth. The biofilm growth notably impacts pore-scale hydrodynamics, as shown by strong increase of the average velocity and in tailing of Lagrangian velocity probability density functions. Additionally, the spatial correlation length of the flow increases substantially. This points at the formation of preferential flow pathways and stagnation zones, which ultimately leads to an increase of anomalous transport in the porous media considered, characterized by non-Fickian scaling of mean-squared displacements and non-Gaussian distributions of the displacement probability density functions. A gamma distribution provides a remarkable approximation of the bulk and the high tail of the Lagrangian pore-scale velocity magnitude, indicating a transition from a parallel pore arrangement towards a more serial one. Finally, a correlated continuous time random walk based on a stochastic relation velocity model accurately reproduces the observations and could be used to predict transport beyond the time scales accessible to the experiment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.agu.org/pubs/crossref/2011/2010WR010043.shtml','USGSPUBS'); return false;" href="http://www.agu.org/pubs/crossref/2011/2010WR010043.shtml"><span>3-D flow and scour near a submerged wing dike: ADCP measurements on the Missouri River</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Jamieson, E.C.; Rennie, C.D.; Jacobson, R.B.; Townsend, R.D.</p> <p>2011-01-01</p> <p>Detailed mapping of bathymetry and three-dimensional water velocities using a boat-mounted single-beam sonar and acoustic Doppler current profiler (ADCP) was carried out in the vicinity of two submerged wing dikes located in the Lower Missouri River near Columbia, Missouri. During high spring flows the wing dikes become submerged, creating a unique combination of vertical flow separation and overtopping (plunging) flow conditions, causing large-scale three-dimensional turbulent flow structures to form. On three different days and for a range of discharges, sampling transects at 5 and 20 m spacing were completed, covering the area adjacent to and upstream and downstream from two different wing dikes. The objectives of this research are to evaluate whether an ADCP can identify and measure large-scale flow features such as recirculating flow and vortex shedding that develop in the vicinity of a submerged wing dike; and whether or not moving-boat (single-transect) data are sufficient for resolving complex three-dimensional flow fields. Results indicate that spatial averaging from multiple nearby single transects may be more representative of an inherently complex (temporally and spatially variable) three-dimensional flow field than repeated single transects. Results also indicate a correspondence between the location of calculated vortex cores (resolved from the interpolated three-dimensional flow field) and the nearby scour holes, providing new insight into the connections between vertically oriented coherent structures and local scour, with the unique perspective of flow and morphology in a large river.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010ApJ...713.1376F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010ApJ...713.1376F"><span>Damping of Magnetohydrodynamic Turbulence in Partially Ionized Gas and the Observed Difference of Velocities of Neutrals and Ions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Falceta-Gonçalves, D.; Lazarian, A.; Houde, M.</p> <p>2010-04-01</p> <p>Theoretical and observational studies on the turbulence of the interstellar medium developed fast in the past decades. The theory of supersonic magnetized turbulence, as well as the understanding of the projection effects of observed quantities, is still in progress. In this work, we explore the characterization of the turbulent cascade and its damping from observational spectral line profiles. We address the difference of ion and neutral velocities by clarifying the nature of the turbulence damping in the partially ionized. We provide theoretical arguments in favor of the explanation of the larger Doppler broadening of lines arising from neutral species compared to ions as arising from the turbulence damping of ions at larger scales. Also, we compute a number of MHD numerical simulations for different turbulent regimes and explicit turbulent damping, and compare both the three-dimensional distributions of velocity and the synthetic line profile distributions. From the numerical simulations, we place constraints on the precision with which one can measure the three-dimensional dispersion depending on the turbulence sonic Mach number. We show that no universal correspondence between the three-dimensional velocity dispersions measured in the turbulent volume and minima of the two-dimensional velocity dispersions available through observations exist. For instance, for subsonic turbulence the correspondence is poor at scales much smaller than the turbulence injection scale, while for supersonic turbulence the correspondence is poor for the scales comparable with the injection scale. We provide a physical explanation of the existence of such a two-dimensional to three-dimensional correspondence and discuss the uncertainties in evaluating the damping scale of ions that can be obtained from observations. However, we show that the statistics of velocity dispersion from observed line profiles can provide the spectral index and the energy transfer rate of turbulence. Also, by comparing two similar simulations with different viscous coefficients, it was possible to constrain the turbulent cut-off scale. This may especially prove useful since it is believed that ambipolar diffusion may be one of the dominant dissipative mechanisms in star-forming regions. In this case, the determination of the ambipolar diffusion scale may be used as a complementary method for the determination of magnetic field intensity in collapsing cores. We discuss the implications of our findings in terms of a new approach to magnetic field measurement proposed by Li & Houde.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.H51E0814R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.H51E0814R"><span>Field Investigation of Flow Structure and Channel Morphology at Confluent-Meander Bends</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Riley, J. D.; Rhoads, B. L.</p> <p>2007-12-01</p> <p>The movement of water and sediment through drainage networks is inevitably influenced by the convergence of streams and rivers at channel confluences. These focal components of fluvial systems produce a complex hydrodynamic environment, where rapid changes in flow structure and sediment transport occur to accommodate the merging of separate channel flows. The inherent geometric and hydraulic change at confluences also initiates the development of distinct geomorphic features, reflected in the bedform and shape of the channel. An underlying assumption of previous experimental and theoretical models of confluence dynamics has been that converging streams have straight channels with angular configurations. This generalized conceptualization was necessary to establish confluence planform as symmetrical or asymmetrical and to describe subsequent flow structure and geomorphic features at confluences. However, natural channels, particularly those of meandering rivers, curve and bend. This property and observation of channel curvature at natural junctions have led to the hypothesis that natural stream and river confluences tend to occur on the concave outer bank of meander bends. The resulting confluence planform, referred to as a confluent-meander bend, was observed over a century ago but has received little scientific attention. This paper examines preliminary data on three-dimensional flow structure and channel morphology at two natural confluent-meander bends of varying size and with differing tributary entrance locations. The large river confluence of the Vermilion River and Wabash River in west central Indiana and the comparatively small junction of the Little Wabash River and Big Muddy Creek in southeastern Illinois are the location of study sites for field investigation. Measurements of time-averaged three-dimensional velocity components were obtained at these confluences with an acoustic Doppler current profiler for flow events with differing momentum ratios. Bed and channel morphology were also surveyed with a digital fathometer to document geomorphic change. Preliminary analysis of the velocity data reveals the presence of a well-defined shear layer between the converging flows and secondary circulation in the main channel. The tributary channel appears to oppose high velocity flow directed toward the outer bank by centrifugal acceleration through the meander bend of the main channel, thereby diminishing erosion along the cut bank and possibly stabilizing the meander bend channel. The flow structure and channel morphology of the study sites are compared to consider the effect of spatial scale and geometric characteristics on confluent-meander bend dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvF...2l3402Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvF...2l3402Z"><span>Thermally induced rarefied gas flow in a three-dimensional enclosure with square cross-section</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhu, Lianhua; Yang, Xiaofan; Guo, Zhaoli</p> <p>2017-12-01</p> <p>Rarefied gas flow in a three-dimensional enclosure induced by nonuniform temperature distribution is numerically investigated. The enclosure has a square channel-like geometry with alternatively heated closed ends and lateral walls with a linear temperature distribution. A recently proposed implicit discrete velocity method with a memory reduction technique is used to numerically simulate the problem based on the nonlinear Shakhov kinetic equation. The Knudsen number dependencies of the vortices pattern, slip velocity at the planar walls and edges, and heat transfer are investigated. The influences of the temperature ratio imposed at the ends of the enclosure and the geometric aspect ratio are also evaluated. The overall flow pattern shows similarities with those observed in two-dimensional configurations in literature. However, features due to the three-dimensionality are observed with vortices that are not identified in previous studies on similar two-dimensional enclosures at high Knudsen and small aspect ratios.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920002085','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920002085"><span>The three-dimensional evolution of a plane mixing layer. Part 1: The Kelvin-Helmholtz roll-up</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rogers, Michael M.; Moser, Robert D.</p> <p>1991-01-01</p> <p>The Kelvin Helmholtz roll up of three dimensional, temporally evolving, plane mixing layers were simulated numerically. All simulations were begun from a few low wavenumber disturbances, usually derived from linear stability theory, in addition to the mean velocity profile. The spanwise disturbance wavelength was taken to be less than or equal to the streamwise wavelength associated with the Kelvin Helmholtz roll up. A standard set of clean structures develop in most of the simulations. The spanwise vorticity rolls up into a corrugated spanwise roller, with vortex stretching creating strong spanwise vorticity in a cup shaped region at the vends of the roller. Predominantly streamwise rib vortices develop in the braid region between the rollers. For sufficiently strong initial three dimensional disturbances, these ribs collapse into compact axisymmetric vortices. The rib vortex lines connect to neighboring ribs and are kinked in the opposite direction of the roller vortex lines. Because of this, these two sets of vortex lines remain distinct. For certain initial conditions, persistent ribs do not develop. In such cases the development of significant three dimensionality is delayed. When the initial three dimensional disturbance energy is about equal to, or less than, the two dimensional fundamental disturbance energy, the evolution of the three dimensional disturbance is nearly linear (with respect to the mean and the two dimensional disturbances), at least until the first Kelvin Helmholtz roll up is completed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25350721','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25350721"><span>Enhanced fluorescence from CdSe/ZnS quantum dot nanophosphors embedded in a one-dimensional photonic crystal backbone structure.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Min, Kyungtaek; Choi, Serok; Choi, Yunkyoung; Jeon, Heonsu</p> <p>2014-11-06</p> <p>A nano-engineered phosphor structure that produces enhanced fluorescence is reported. Two kinds of polymer materials with different refractive indices are spin-coated alternately to realize a one-dimensional (1D) photonic crystal (PC) phosphor platform, in which CdSe/ZnS core-shell quantum dots (QDs) were embedded as a fluorescence agent. The 1D PC phosphor structure is designed to match the pump photon energy with one of the photonic band-edges (PBEs), where the photon group velocity becomes zero, and thus the interaction between pump photons and fluorescent centres strengthened. A reference phosphor structure is also designed and fabricated; however, it has no PBE and exhibited bulk-like photonic properties. The fluorescence intensity from the 1D PC phosphors is examined during the pump photon energy scanning across the PBE. It is found that fluorescence from the 1D PC phosphor reaches its maximum when the pump photon energy coincides with the PBE, which is consistent with the theoretical prediction. In comparison with the reference phosphor, the fluorescence from the 1D PC phosphor is measured to be enhanced by a factor of 1.36.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JThSc..25...90S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JThSc..25...90S"><span>Verification on spray simulation of a pintle injector for liquid rocket engine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Son, Min; Yu, Kijeong; Radhakrishnan, Kanmaniraja; Shin, Bongchul; Koo, Jaye</p> <p>2016-02-01</p> <p>The pintle injector used for a liquid rocket engine is a newly re-attracted injection system famous for its wide throttle ability with high efficiency. The pintle injector has many variations with complex inner structures due to its moving parts. In order to study the rotating flow near the injector tip, which was observed from the cold flow experiment using water and air, a numerical simulation was adopted and a verification of the numerical model was later conducted. For the verification process, three types of experimental data including velocity distributions of gas flows, spray angles and liquid distribution were all compared using simulated results. The numerical simulation was performed using a commercial simulation program with the Eulerian multiphase model and axisymmetric two dimensional grids. The maximum and minimum velocities of gas were within the acceptable range of agreement, however, the spray angles experienced up to 25% error when the momentum ratios were increased. The spray density distributions were quantitatively measured and had good agreement. As a result of this study, it was concluded that the simulation method was properly constructed to study specific flow characteristics of the pintle injector despite having the limitations of two dimensional and coarse grids.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS23B2047T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS23B2047T"><span>A Data-Driven Approach to Develop Physically Sound Predictors: Application to Depth-Averaged Velocities and Drag Coefficients on Vegetated Flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tinoco, R. O.; Goldstein, E. B.; Coco, G.</p> <p>2016-12-01</p> <p>We use a machine learning approach to seek accurate, physically sound predictors, to estimate two relevant flow parameters for open-channel vegetated flows: mean velocities and drag coefficients. A genetic programming algorithm is used to find a robust relationship between properties of the vegetation and flow parameters. We use data published from several laboratory experiments covering a broad range of conditions to obtain: a) in the case of mean flow, an equation that matches the accuracy of other predictors from recent literature while showing a less complex structure, and b) for drag coefficients, a predictor that relies on both single element and array parameters. We investigate different criteria for dataset size and data selection to evaluate their impact on the resulting predictor, as well as simple strategies to obtain only dimensionally consistent equations, and avoid the need for dimensional coefficients. The results show that a proper methodology can deliver physically sound models representative of the processes involved, such that genetic programming and machine learning techniques can be used as powerful tools to study complicated phenomena and develop not only purely empirical, but "hybrid" models, coupling results from machine learning methodologies into physics-based models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010TJSAI...8To413G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010TJSAI...8To413G"><span>JASMINE: Infrared Space Astrometry Mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gouda, Naoteru; Working Group, Jasmine</p> <p></p> <p>JASMINE is an astrometry satellite mission that measures in an infrared band annual parallaxes, positions on the celestial sphere, and proper motions of stars in the bulge of the Milky Way (the Galaxy) with high accuracies. These measurements give us 3-dimensional positions and 2-dimensional velocities (tangential velocities) of many stars in the Galactic bulge. A completely new “map” of the Galactic bulge given by JASMINE will bring us many exciting scientific results. A target launch date is the first half of the 2020s. Before the launch of JASMINE, we are planning two other missions; Nano-JASMINE and Small-JASMINE. Nano-JASMINE uses a very small nano-satellite and it is determined to be launched in 2011. Small-JASMINE is a downsized version of JASMINE satellite which observes toward restricted small regions of the Galactic bulge. These satellite missions need severe stability of the pointing of telescopes and furthermore high stability of telescope structures to measure stellar positions with high accuracies. This fact requires severe control of the pointing of telescopes and thermal control in payload modules. The control systems are very important keys for success of space astrometry missions including the series of JASMINE missions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DFDL18007Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DFDL18007Z"><span>Three-dimensional modelling of thin liquid films over spinning disks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Kun; Wray, Alex; Yang, Junfeng; Matar, Omar</p> <p>2016-11-01</p> <p>In this research the dynamics of a thin film flowing over a rapidly spinning, horizontal disk is considered. A set of non-axisymmetric evolution equations for the film thickness, radial and azimuthal flow rates are derived using a boundary-layer approximation in conjunction with the Karman-Polhausen approximation for the velocity distribution in the film. These highly nonlinear partial differential equations are then solved numerically in order to reveal the formation of two and three-dimensional large-amplitude waves that travel from the disk inlet to its periphery. The spatio-temporal profile of film thickness provides us with visualization of flow structures over the entire disk and by varying system parameters(volumetric flow rate of fluid and rotational speed of disk) different wave patterns can be observed, including spiral, concentric, smooth waves and wave break-up in exceptional conditions. Similar types of waves can be found by experimentalists in literature and CFD simulation and our results show good agreement with both experimental and CFD results. Furthermore, the semi-parabolic velocity profile assumed in our model under the waves is directly compared with CFD data in various flow regimes in order to validate our model. EPSRC UK Programme Grant EP/K003976/1.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970020742','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970020742"><span>Tomographic Imaging of the Suns Interior</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kosovichev, A. G.</p> <p>1996-01-01</p> <p>A new method is presented of determining the three-dimensional sound-speed structure and flow velocities in the solar convection zone by inversion of the acoustic travel-time data recently obtained by Duvall and coworkers. The initial inversion results reveal large-scale subsurface structures and flows related to the active regions, and are important for understanding the physics of solar activity and large-scale convection. The results provide evidence of a zonal structure below the surface in the low-latitude area of the magnetic activity. Strong converging downflows, up to 1.2 km/s, and a substantial excess of the sound speed are found beneath growing active regions. In a decaying active region, there is evidence for the lower than average sound speed and for upwelling of plasma.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1253046-ground-motion-modeling-eastern-caucasus','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1253046-ground-motion-modeling-eastern-caucasus"><span>Ground Motion Modeling in the Eastern Caucasus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Pitarka, Arben; Gok, Rengin; Yetirmishli, Gurban; ...</p> <p>2016-05-13</p> <p>In this paper, we analyzed the performance of a preliminary three-dimensional (3D) velocity model of the Eastern Caucasus covering most of the Azerbaijan. The model was developed in support to long-period ground motion simulations and seismic hazard assessment from regional earthquakes in Azerbaijan. The model’s performance was investigated by simulating ground motion from the damaging Mw 5.9, 2012 Zaqatala earthquake, which was well recorded throughout the region by broadband seismic instruments. In our simulations, we use a parallelized finite-difference method of fourth-order accuracy. The comparison between the simulated and recorded ground motion velocity in the modeled period range of 3–20more » s shows that in general, the 3D velocity model performs well. Areas in which the model needs improvements are located mainly in the central part of the Kura basin and in the Caspian Sea coastal areas. Comparisons of simulated ground motion using our 3D velocity model and corresponding 1D regional velocity model were used to locate areas with strong 3D wave propagation effects. In areas with complex underground structure, the 1D model fails to produce the observed ground motion amplitude and duration, and spatial extend of ground motion amplification caused by wave propagation effects.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21092048','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21092048"><span>A three-dimensional bioprinting system for use with a hydrogel-based biomaterial and printing parameter characterization.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Song, Seung-Joon; Choi, Jaesoon; Park, Yong-Doo; Lee, Jung-Joo; Hong, So Young; Sun, Kyung</p> <p>2010-11-01</p> <p>Bioprinting is an emerging technology for constructing tissue or bioartificial organs with complex three-dimensional (3D) structures. It provides high-precision spatial shape forming ability on a larger scale than conventional tissue engineering methods, and simultaneous multiple components composition ability. Bioprinting utilizes a computer-controlled 3D printer mechanism for 3D biological structure construction. To implement minimal pattern width in a hydrogel-based bioprinting system, a study on printing characteristics was performed by varying printer control parameters. The experimental results showed that printing pattern width depends on associated printer control parameters such as printing flow rate, nozzle diameter, and nozzle velocity. The system under development showed acceptable feasibility of potential use for accurate printing pattern implementation in tissue engineering applications and is another example of novel techniques for regenerative medicine based on computer-aided biofabrication system. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NJPh...19e3026K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NJPh...19e3026K"><span>In situ imaging of the dynamics of photo-induced structural phase transition at high pressures by picosecond acoustic interferometry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kuriakose, Maju; Chigarev, Nikolay; Raetz, Samuel; Bulou, Alain; Tournat, Vincent; Zerr, Andreas; Gusev, Vitalyi E.</p> <p>2017-05-01</p> <p>Picosecond acoustic interferometry is used to monitor in time the motion of the phase transition boundary between two water ice phases, VII and VI, coexisting at a pressure of 2.15 GPa when compressed in a diamond anvil cell at room temperature. By analyzing the time-domain Brillouin scattering signals accumulated for a single incidence direction of probe laser pulses, it is possible to access ratios of sound velocity values and of the refractive indices of the involved phases, and to distinguish between the structural phase transition and a recrystallization process. Two-dimensional spatial imaging of the phase transition dynamics indicates that it is initiated by the pump and probe laser pulses, preferentially at the diamond/ice interface. This method should find applications in three-dimensional monitoring with nanometer spatial resolution of the temporal dynamics of low-contrast material inhomogeneities caused by phase transitions or chemical reactions in optically transparent media.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvE..95f3004H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvE..95f3004H"><span>Three-dimensional to two-dimensional transition in mode-I fracture microbranching in a perturbed hexagonal close-packed lattice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Heizler, Shay I.; Kessler, David A.</p> <p>2017-06-01</p> <p>Mode-I fracture exhibits microbranching in the high velocity regime where the simple straight crack is unstable. For velocities below the instability, classic modeling using linear elasticity is valid. However, showing the existence of the instability and calculating the dynamics postinstability within the linear elastic framework is difficult and controversial. The experimental results give several indications that the microbranching phenomenon is basically a three-dimensional (3D) phenomenon. Nevertheless, the theoretical effort has been focused mostly on two-dimensional (2D) modeling. In this paper we study the microbranching instability using three-dimensional atomistic simulations, exploring the difference between the 2D and the 3D models. We find that the basic 3D fracture pattern shares similar behavior with the 2D case. Nevertheless, we exhibit a clear 3D-2D transition as the crack velocity increases, whereas as long as the microbranches are sufficiently small, the behavior is pure 3D behavior, whereas at large driving, as the size of the microbranches increases, more 2D-like behavior is exhibited. In addition, in 3D simulations, the quantitative features of the microbranches, separating the regimes of steady-state cracks (mirror) and postinstability (mist-hackle) are reproduced clearly, consistent with the experimental findings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PrAeS..74...81L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PrAeS..74...81L"><span>Rarefied gas flow simulations using high-order gas-kinetic unified algorithms for Boltzmann model equations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Zhi-Hui; Peng, Ao-Ping; Zhang, Han-Xin; Yang, Jaw-Yen</p> <p>2015-04-01</p> <p>This article reviews rarefied gas flow computations based on nonlinear model Boltzmann equations using deterministic high-order gas-kinetic unified algorithms (GKUA) in phase space. The nonlinear Boltzmann model equations considered include the BGK model, the Shakhov model, the Ellipsoidal Statistical model and the Morse model. Several high-order gas-kinetic unified algorithms, which combine the discrete velocity ordinate method in velocity space and the compact high-order finite-difference schemes in physical space, are developed. The parallel strategies implemented with the accompanying algorithms are of equal importance. Accurate computations of rarefied gas flow problems using various kinetic models over wide ranges of Mach numbers 1.2-20 and Knudsen numbers 0.0001-5 are reported. The effects of different high resolution schemes on the flow resolution under the same discrete velocity ordinate method are studied. A conservative discrete velocity ordinate method to ensure the kinetic compatibility condition is also implemented. The present algorithms are tested for the one-dimensional unsteady shock-tube problems with various Knudsen numbers, the steady normal shock wave structures for different Mach numbers, the two-dimensional flows past a circular cylinder and a NACA 0012 airfoil to verify the present methodology and to simulate gas transport phenomena covering various flow regimes. Illustrations of large scale parallel computations of three-dimensional hypersonic rarefied flows over the reusable sphere-cone satellite and the re-entry spacecraft using almost the largest computer systems available in China are also reported. The present computed results are compared with the theoretical prediction from gas dynamics, related DSMC results, slip N-S solutions and experimental data, and good agreement can be found. The numerical experience indicates that although the direct model Boltzmann equation solver in phase space can be computationally expensive, nevertheless, the present GKUAs for kinetic model Boltzmann equations in conjunction with current available high-performance parallel computer power can provide a vital engineering tool for analyzing rarefied gas flows covering the whole range of flow regimes in aerospace engineering applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP21D1876A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP21D1876A"><span>Numerical model of turbulence, sediment transport, and morphodynamics tested in the Colorado River at Grand Canyon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alvarez, L. V.; Grams, P.</p> <p>2017-12-01</p> <p>We present a parallelized, three-dimensional, turbulence-resolving model using the Detached-Eddy Simulation (DES) technique, tested at the scale of the river-reach in the Colorado River. DES is a hybrid large eddy simulation (LES) and Reynolds-averaged Navier Stokes (RANS). RANS is applied to the near-bed grid cells, where grid resolution is not sufficient to fully resolve wall turbulence. LES is applied in the flow interior. We utilize the Spalart-Allmaras one equation turbulence closure with a rough wall extension. The model resolves large-scale turbulence using DES and simultaneously integrates the suspended sediment advection-diffusion equation. The Smith and McLean suspended sediment boundary condition is used to calculate the upward and downward settling of sediment fluxes in the grid cells attached to the bed. Model results compare favorably with ADCP measurements of flow taken on the Colorado River in Grand Canyon during the High Flow Experiment (HFE) of 2008. The model accurately reproduces the size and position of the major recirculation currents, and the error in velocity magnitude was found to be less than 17% or 0.22 m/s absolute error. The mean deviation of the direction of velocity with respect to the measured velocity was found to be 20 degrees. Large-scale turbulence structures with vorticity predominantly in the vertical direction are produced at the shear layer between the main channel and the separation zone. However, these structures rapidly become three-dimensional with no preferred orientation of vorticity. Cross-stream velocities, into the main recirculation zone just upstream of the point of reattachment and out of the main recirculation region just downstream of the point of separation, are highest near the bed. Lateral separation eddies are more efficient at storing and exporting sediment than previously modeled. The input of sediment to the eddy recirculation zone occurs in the interface of the eddy and main channel. Pulsation of the strength of the return current becomes a key factor to determine the rates of erosion and deposition in the main recirculation zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19398506','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19398506"><span>Flow and performance of an air-curtain biological safety cabinet.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Huang, Rong Fung; Chou, Chun I</p> <p>2009-06-01</p> <p>Using laser-assisted smoke flow visualization and tracer gas concentration detection techniques, this study examines aerodynamic flow properties and the characteristics of escape from containment, inward dispersion, and cross-cabinet contamination of a biological safety cabinet installed with an air curtain across the front aperture. The experimental method partially simulates the NSF/ANSI 49 standards with the difference that the biological tracer recommended by these standards is replaced by a mixture of 10% SF(6) in N(2). The air curtain is set up across the cabinet aperture plane by means of a narrow planar jet issued from the lower edge of the sash and a suction flow going through a suction slot installed at the front edge of the work surface. Varying the combination of jet velocity, suction flow velocity, and descending flow velocity reveals three types of characteristic flow modes: 'straight curtain', 'slightly concave curtain', and 'severely concave curtain'. Operating the cabinet in the straight curtain mode causes the air curtain to impinge on the doorsill and therefore induces serious escape from containment. In the severely concave curtain mode, drastically large inward dispersion and cross-cabinet contamination were observed because environmental air entered into the cabinet and a three-dimensional vortical flow structure formed in the cabinet. The slightly concave curtain mode presents a smooth and two-dimensional flow pattern with an air curtain separating the outside atmosphere from the inside space of the cabinet, and therefore exhibited negligibly small escape from containment, inward dispersion, and cross-cabinet contamination.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29334240','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29334240"><span>New method for estimating arterial pulse wave velocity at single site.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Abdessalem, Khaled Ben; Flaud, Patrice; Zobaidi, Samir</p> <p>2018-01-01</p> <p>The clinical importance of measuring local pulse wave velocity (PWV), has encouraged researchers to develop several local methods to estimate it. In this work, we proposed a new method, the sum-of-squares method [Formula: see text], that allows the estimations of PWV by using simultaneous measurements of blood pressure (P) and arterial diameter (D) at single-location. Pulse waveforms generated by: (1) two-dimensional (2D) fluid-structure interaction simulation (FSI) in a compliant tube, (2) one-dimensional (1D) model of 55 larger human systemic arteries and (3) experimental data were used to validate the new formula and evaluate several classical methods. The performance of the proposed method was assessed by comparing its results to theoretical PWV calculated from the parameters of the model and/or to PWV estimated by several classical methods. It was found that values of PWV obtained by the developed method [Formula: see text] are in good agreement with theoretical ones and with those calculated by PA-loop and D 2 P-loop. The difference between the PWV calculated by [Formula: see text] and PA-loop does not exceed 1% when data from simulations are used, 3% when in vitro data are used and 5% when in vivo data are used. In addition, this study suggests that estimated PWV from arterial pressure and diameter waveforms provide correct values while methods that require flow rate (Q) and velocity (U) overestimate or underestimate PWV.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1351187','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1351187"><span>Lagrangian statistics in weakly forced two-dimensional turbulence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Rivera, Michael K.; Ecke, Robert E.</p> <p></p> <p>Measurements of Lagrangian single-point and multiple-point statistics in a quasi-two-dimensional stratified layer system are reported. The system consists of a layer of salt water over an immiscible layer of Fluorinert and is forced electromagnetically so that mean-squared vorticity is injected at a well-defined spatial scale r i. Simultaneous cascades develop in which enstrophy flows predominately to small scales whereas energy cascades, on average, to larger scales. Lagrangian correlations and one- and two-point displacements are measured for random initial conditions and for initial positions within topological centers and saddles. Some of the behavior of these quantities can be understood in termsmore » of the trapping characteristics of long-lived centers, the slow motion near strong saddles, and the rapid fluctuations outside of either centers or saddles. We also present statistics of Lagrangian velocity fluctuations using energy spectra in frequency space and structure functions in real space. We compare with complementary Eulerian velocity statistics. We find that simultaneous inverse energy and enstrophy ranges present in spectra are not directly echoed in real-space moments of velocity difference. Nevertheless, the spectral ranges line up well with features of moment ratios, indicating that although the moments are not exhibiting unambiguous scaling, the behavior of the probability distribution functions is changing over short ranges of length scales. Furthermore, implications for understanding weakly forced 2D turbulence with simultaneous inverse and direct cascades are discussed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1351187-lagrangian-statistics-weakly-forced-two-dimensional-turbulence','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1351187-lagrangian-statistics-weakly-forced-two-dimensional-turbulence"><span>Lagrangian statistics in weakly forced two-dimensional turbulence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Rivera, Michael K.; Ecke, Robert E.</p> <p>2016-01-14</p> <p>Measurements of Lagrangian single-point and multiple-point statistics in a quasi-two-dimensional stratified layer system are reported. The system consists of a layer of salt water over an immiscible layer of Fluorinert and is forced electromagnetically so that mean-squared vorticity is injected at a well-defined spatial scale r i. Simultaneous cascades develop in which enstrophy flows predominately to small scales whereas energy cascades, on average, to larger scales. Lagrangian correlations and one- and two-point displacements are measured for random initial conditions and for initial positions within topological centers and saddles. Some of the behavior of these quantities can be understood in termsmore » of the trapping characteristics of long-lived centers, the slow motion near strong saddles, and the rapid fluctuations outside of either centers or saddles. We also present statistics of Lagrangian velocity fluctuations using energy spectra in frequency space and structure functions in real space. We compare with complementary Eulerian velocity statistics. We find that simultaneous inverse energy and enstrophy ranges present in spectra are not directly echoed in real-space moments of velocity difference. Nevertheless, the spectral ranges line up well with features of moment ratios, indicating that although the moments are not exhibiting unambiguous scaling, the behavior of the probability distribution functions is changing over short ranges of length scales. Furthermore, implications for understanding weakly forced 2D turbulence with simultaneous inverse and direct cascades are discussed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950025564','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950025564"><span>Laser Anemometer Measurements of the Three-Dimensional Rotor Flow Field in the NASA Low-Speed Centrifugal Compressor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hathaway, Michael D.; Chriss, Randall M.; Strazisar, Anthony J.; Wood, Jerry R.</p> <p>1995-01-01</p> <p>A laser anemometer system was used to provide detailed surveys of the three-dimensional velocity field within the NASA low-speed centrifugal impeller operating with a vaneless diffuser. Both laser anemometer and aerodynamic performance data were acquired at the design flow rate and at a lower flow rate. Floor path coordinates, detailed blade geometry, and pneumatic probe survey results are presented in tabular form. The laser anemometer data are presented in the form of pitchwise distributions of axial, radial, and relative tangential velocity on blade-to-blade stream surfaces at 5-percent-of-span increments, starting at 95-percent-of-span from the hub. The laser anemometer data are also presented as contour and wire-frame plots of throughflow velocity and vector plots of secondary velocities at all measurement stations through the impeller.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JaJAP..57gLF03K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JaJAP..57gLF03K"><span>Estimation of two-dimensional motion velocity using ultrasonic signals beamformed in Cartesian coordinate for measurement of cardiac dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kaburaki, Kaori; Mozumi, Michiya; Hasegawa, Hideyuki</p> <p>2018-07-01</p> <p>Methods for the estimation of two-dimensional (2D) velocity and displacement of physiological tissues are necessary for quantitative diagnosis. In echocardiography with a phased array probe, the accuracy in the estimation of the lateral motion is lower than that of the axial motion. To improve the accuracy in the estimation of the lateral motion, in the present study, the coordinate system for ultrasonic beamforming was changed from the conventional polar coordinate to the Cartesian coordinate. In a basic experiment, the motion velocity of a phantom, which was moved at a constant speed, was estimated by the conventional and proposed methods. The proposed method reduced the bias error and standard deviation in the estimated motion velocities. In an in vivo measurement, intracardiac blood flow was analyzed by the proposed method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900041225&hterms=coding+sheet&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dcoding%2Bsheet','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900041225&hterms=coding+sheet&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dcoding%2Bsheet"><span>A vector scanning processing technique for pulsed laser velocimetry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wernet, Mark P.; Edwards, Robert V.</p> <p>1989-01-01</p> <p>Pulsed-laser-sheet velocimetry yields two-dimensional velocity vectors across an extended planar region of a flow. Current processing techniques offer high-precision (1-percent) velocity estimates, but can require hours of processing time on specialized array processors. Sometimes, however, a less accurate (about 5 percent) data-reduction technique which also gives unambiguous velocity vector information is acceptable. Here, a direct space-domain processing technique is described and shown to be far superior to previous methods in achieving these objectives. It uses a novel data coding and reduction technique and has no 180-deg directional ambiguity. A complex convection vortex flow was recorded and completely processed in under 2 min on an 80386-based PC, producing a two-dimensional velocity-vector map of the flowfield. Pulsed-laser velocimetry data can thus be reduced quickly and reasonably accurately, without specialized array processing hardware.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011SPIE.8321E..03W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011SPIE.8321E..03W"><span>The measurements of water flow rates in the straight microchannel based on the scanning micro-PIV technique</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, H. L.; Han, W.; Xu, M.</p> <p>2011-12-01</p> <p>Measurement of the water flow rate in microchannel has been one of the hottest points in the applications of microfluidics, medical, biological, chemical analyses and so on. In this study, the scanning microscale particle image velocimetry (scanning micro-PIV) technique is used for the measurements of water flow rates in a straight microchannel of 200μm width and 60μm depth under the standard flow rates ranging from 2.481μL/min to 8.269μL/min. The main effort of this measurement technique is to obtain three-dimensional velocity distribution on the cross sections of microchannel by measuring velocities of the different fluid layers along the out-of-plane direction in the microchannel, so the water flow rates can be evaluated from the discrete surface integral of velocities on the cross section. At the same time, the three-dimensional velocity fields in the measured microchannel are simulated numerically using the FLUENT software in order to verify the velocity accuracy of measurement results. The results show that the experimental values of flow rates are well consistent to the standard flow rates input by the syringe pump and the compared results between numerical simulation and experiment are consistent fundamentally. This study indicates that the micro-flow rate evaluated from three-dimensional velocity by the scanning micro-PIV technique is a promising method for the micro-flow rate research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19780012125','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19780012125"><span>Unsteady loads due to propulsive lift configurations. Part B: Pressure and velocity measurements in a three dimensional wall jet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Catalano, G. D.; Morton, J. B.; Humphris, R. R.</p> <p>1978-01-01</p> <p>The effects of increasing the velocity ratio, lambda sub j were explored. The quantities measured include the width of the mixing region, the mean velocity field, turbulent intensities and time scales. In addition, wall and static pressure velocity correlations and coherences are presented. The velocity measurements were made using a laser Doppler velocimeter with a phase locked loop processor. The fluctuating pressures were monitored using condenser type microphones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JAG...149...52M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JAG...149...52M"><span>Pitfalls in velocity analysis for strongly contrasting, layered media - Example from the Chalk Group, North Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Montazeri, Mahboubeh; Uldall, Anette; Moreau, Julien; Nielsen, Lars</p> <p>2018-02-01</p> <p>Knowledge about the velocity structure of the subsurface is critical in key seismic processing sequences, for instance, migration, depth conversion, and construction of initial P- and S-wave velocity models for full-waveform inversion. Therefore, the quality of subsurface imaging is highly dependent upon the quality of the seismic velocity analysis. Based on a case study from the Danish part of the North Sea, we show how interference caused by multiples, converted waves, and thin-layer effects may lead to incorrect velocity estimation, if such effects are not accounted for. Seismic wave propagation inside finely layered reservoir rocks dominated by chalk is described by two-dimensional finite-difference wave field simulation. The rock physical properties used for the modeling are based on an exploration well from the Halfdan field in the Danish sector of the North Sea. The modeling results are compared to seismic data from the study area. The modeling shows that interference of primaries with multiples, converted waves and thin-bed effects can give rise to strong anomalies in standard velocity analysis plots. Consequently, root-mean-square (RMS) velocity profiles may be erroneously picked. In our study area, such mis-picking can introduce errors in, for example, the thickness estimation of the layers near the base of the studied sedimentary strata by 11% to 26%. Tests show that front muting and bandpass filtering cannot significantly improve the quality of velocity analysis in our study. However, we notice that spiking deconvolution applied before velocity analysis may to some extent reduce the impact of interference and, therefore, reduce the risk of erroneous picking of the velocity function.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.T23F..05C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.T23F..05C"><span>Multi Plumes and Their Flows beneath Arabia and East Africa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chang, S.; van der Lee, S.</p> <p>2010-12-01</p> <p>The three-dimensional S-velocity structure beneath Arabia and East Africa is estimated down to the lower mantle to investigate vertical and horizontal extension of low-velocity anomalies that bear out the presence of mantle plumes and their flows beneath lithosphere. We estimated this model through joint inversion of teleseismic S- and SKS-arrival times, regional S- and Rayleigh waveform fits, fundamental-mode Rayleigh-wave group velocities, and independent Moho constraints from receiver functions, reflection/refraction profiles, and gravity measurements. With the unprecedented resolution in our S-velocity model, we found different flow patterns of hot materials upwelling beneath Afar beneath the Red Sea and the Gulf of Aden. While the low-velocity anomaly from Afar is well confined beneath the Gulf of Aden, inferring mantle flow along the gulf, N-S channel of low velocity is found beneath Arabia, not along the Red Sea. The Afar plume is distinctively separate from the Kenya plume, showing its origin in the lower mantle beneath southwestern Arabia. We identified another low-velocity extension to the lower mantle beneath Jordan and northern Arabia, which is thought to have caused volcanism in Jordan, northern Arabia, and possibly southern Turkey. Comparing locations of mantle plumes from the joint inversion with fast axes of shear-wave splitting, we confirmed horizontal plume flow from Afar in NS direction beneath Arabia and in NE-SW direction beneath Ethiopia as a likely cause of the observed seismic anisotropy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5754057','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5754057"><span>Hemodynamics in a giant intracranial aneurysm characterized by in vitro 4D flow MRI</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Schiavazzi, Daniele; Moen, Sean; Jagadeesan, Bharathi; Van de Moortele, Pierre-François; Coletti, Filippo</p> <p>2018-01-01</p> <p>Experimental and computational data suggest that hemodynamics play a critical role in the development, growth, and rupture of cerebral aneurysms. The flow structure, especially in aneurysms with a large sac, is highly complex and three-dimensional. Therefore, volumetric and time-resolved measurements of the flow properties are crucial to fully characterize the hemodynamics. In this study, phase-contrast Magnetic Resonance Imaging is used to assess the fluid dynamics inside a 3D-printed replica of a giant intracranial aneurysm, whose hemodynamics was previously simulated by multiple research groups. The physiological inflow waveform is imposed in a flow circuit with realistic cardiovascular impedance. Measurements are acquired with sub-millimeter spatial resolution for 16 time steps over a cardiac cycle, allowing for the detailed reconstruction of the flow evolution. Moreover, the three-dimensional and time-resolved pressure distribution is calculated from the velocity field by integrating the fluid dynamics equations, and is validated against differential pressure measurements using precision transducers. The flow structure is characterized by vortical motions that persist within the aneurysm sac for most of the cardiac cycle. All the main flow statistics including velocity, vorticity, pressure, and wall shear stress suggest that the flow pattern is dictated by the aneurysm morphology and is largely independent of the pulsatility of the inflow, at least for the flow regimes investigated here. Comparisons are carried out with previous computational simulations that used the same geometry and inflow conditions, both in terms of cycle-averaged and systolic quantities. PMID:29300738</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22494122-su-impact-tumor-location-deformable-image-registration','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22494122-su-impact-tumor-location-deformable-image-registration"><span>SU-E-J-107: The Impact of the Tumor Location to Deformable Image Registration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sugawara, Y; Tohoku University School of Medicine, Sendai, Miyagi; Tachibana, H</p> <p>2015-06-15</p> <p>Purpose: For four-dimensional planning and adaptive radiotherapy, the accuracy of deformable image registration (DIR) is essential. We evaluated the accuracy of an in-house program with the free-downloadable DIR software library package (NiftyReg) and two commercially available DIR software programs (MIM Maestro and Velocity AI) in lung SBRT cancer patients. In addition to it, the relationship between the tumor location and the accuracy of the DIRs was investigated. Methods: The free-form deformation was implemented in the in-house program and the MIM. The Velocity was based on the B-spline algorithm. The accuracy of the three programs was evaluated in comparison for themore » structures on 4DCT image datasets between at the peak-inhale and at the peak-exhale. The dice similarity coefficient (DSC) and normalized DSC (NDSC) were measured for the gross tumor volumes from 19 lung SBRT patients. Results: The DSC measurement showed the median values of the DSC were 0.885, 0.872 and 0.798 for the In-house program, the MIM and the Velocity, respectively. The Velocity showed significant difference compared to the others. The median NDSC values were 1.027, 1.005 and 0.946 for the In-house, the MIM and the Velocity, respectively. This indicated that the spatial overlap agreement between the reference and the deformed structure for the in-house and MIM was comparable with the accuracy within 1mm uncertainty. There was larger discrepancy within 1–2mm uncertainty for the Velocity. The In-house and the MIM showed the higher NDSC values than the median values when the GTV was not attached to the chest wall and diaphragm(p < 0.05). However, there is no relationship between the accuracy and the tumor location in the Velocity. Conclusion: The difference of the DIR program would affect different accuracy and the accuracy may be reduced when the tumor is located or attached to chest wall or diaphragm.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoJI.tmp..187L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoJI.tmp..187L"><span>High-resolution surface wave tomography of the European crust and uppermost mantle from ambient seismic noise</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lu, Yang; Stehly, Laurent; Paul, Anne; AlpArray Working Group</p> <p>2018-05-01</p> <p>Taking advantage of the large number of seismic stations installed in Europe, in particular in the greater Alpine region with the AlpArray experiment, we derive a new high-resolution 3-D shear-wave velocity model of the European crust and uppermost mantle from ambient noise tomography. The correlation of up to four years of continuous vertical-component seismic recordings from 1293 broadband stations (10° W-35° E, 30° N-75° N) provides Rayleigh wave group velocity dispersion data in the period band 5-150 s at more than 0.8 million virtual source-receiver pairs. Two-dimensional Rayleigh wave group velocity maps are estimated using adaptive parameterization to accommodate the strong heterogeneity of path coverage. A probabilistic 3-D shear-wave velocity model, including probability densities for the depth of layer boundaries and S-wave velocity values, is obtained by non-linear Bayesian inversion. A weighted average of the probabilistic model is then used as starting model for the linear inversion step, providing the final Vs model. The resulting S-wave velocity model and Moho depth are validated by comparison with previous geophysical studies. Although surface-wave tomography is weakly sensitive to layer boundaries, vertical cross-sections through our Vs model and the associated probability of presence of interfaces display striking similarities with reference controlled-source (CSS) and receiver-function sections across the Alpine belt. Our model even provides new structural information such as a ˜8 km Moho jump along the CSS ECORS-CROP profile that was not imaged by reflection data due to poor penetration across a heterogeneous upper crust. Our probabilistic and final shear wave velocity models have the potential to become new reference models of the European crust, both for crustal structure probing and geophysical studies including waveform modeling or full waveform inversion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://pubs.water.usgs.gov/ofr2004-1255/','USGSPUBS'); return false;" href="http://pubs.water.usgs.gov/ofr2004-1255/"><span>VPV--The velocity profile viewer user manual</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Donovan, John M.</p> <p>2004-01-01</p> <p>The Velocity Profile Viewer (VPV) is a tool for visualizing time series of velocity profiles developed by the U.S. Geological Survey (USGS). The USGS uses VPV to preview and present measured velocity data from acoustic Doppler current profilers and simulated velocity data from three-dimensional estuarine, river, and lake hydrodynamic models. The data can be viewed as an animated three-dimensional profile or as a stack of time-series graphs that each represents a location in the water column. The graphically displayed data are shown at each time step like frames of animation. The animation can play at several different speeds or can be suspended on one frame. The viewing angle and time can be manipulated using mouse interaction. A number of options control the appearance of the profile and the graphs. VPV cannot edit or save data, but it can create a Post-Script file showing the velocity profile in three dimensions. This user manual describes how to use each of these features. VPV is available and can be downloaded for free from the World Wide Web at http://ca.water.usgs.gov/program/sfbay/vpv.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040112491&hterms=distribution+time&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Ddistribution%2Btime','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040112491&hterms=distribution+time&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Ddistribution%2Btime"><span>Real-time three-dimensional color Doppler echocardiography for characterizing the spatial velocity distribution and quantifying the peak flow rate in the left ventricular outflow tract</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tsujino, H.; Jones, M.; Shiota, T.; Qin, J. X.; Greenberg, N. L.; Cardon, L. A.; Morehead, A. J.; Zetts, A. D.; Travaglini, A.; Bauer, F.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20040112491'); toggleEditAbsImage('author_20040112491_show'); toggleEditAbsImage('author_20040112491_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20040112491_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20040112491_hide"></p> <p>2001-01-01</p> <p>Quantification of flow with pulsed-wave Doppler assumes a "flat" velocity profile in the left ventricular outflow tract (LVOT), which observation refutes. Recent development of real-time, three-dimensional (3-D) color Doppler allows one to obtain an entire cross-sectional velocity distribution of the LVOT, which is not possible using conventional 2-D echo. In an animal experiment, the cross-sectional color Doppler images of the LVOT at peak systole were derived and digitally transferred to a computer to visualize and quantify spatial velocity distributions and peak flow rates. Markedly skewed profiles, with higher velocities toward the septum, were consistently observed. Reference peak flow rates by electromagnetic flow meter correlated well with 3-D peak flow rates (r = 0.94), but with an anticipated underestimation. Real-time 3-D color Doppler echocardiography was capable of determining cross-sectional velocity distributions and peak flow rates, demonstrating the utility of this new method for better understanding and quantifying blood flow phenomena.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1925b0005L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1925b0005L"><span>Particle velocity distribution in a three-dimensional dusty plasma under microgravity conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Bin; Goree, J.; Pustylnik, M. Y.; Thomas, H. M.; Fortov, V. E.; Lipaev, A. M.; Usachev, A. D.; Molotkov, V. I.; Petrov, O. F.; Thoma, M. H.</p> <p>2018-01-01</p> <p>The velocity distribution function of dust particles immersed in a plasma was investigated under microgravity conditions. A three-dimensional (3D) cloud of polymer microspheres was suspended in a neon plasma, in the PK-4 instrument onboard the International Space Station (ISS). These dust particles were tracked using video microscopy in a cross section of the 3D dust cloud. The velocity distribution function (VDF) is found to have a non-Maxwellian shape with high-energy tails; it is fit well by a combination of low-energy Maxwellian core and a high-energy non-Gaussian Kappa-distribution halo. Similar non-Maxwellian VDFs are typically observed in space plasmas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27078291','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27078291"><span>Vortex clustering and universal scaling laws in two-dimensional quantum turbulence.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Skaugen, Audun; Angheluta, Luiza</p> <p>2016-03-01</p> <p>We investigate numerically the statistics of quantized vortices in two-dimensional quantum turbulence using the Gross-Pitaevskii equation. We find that a universal -5/3 scaling law in the turbulent energy spectrum is intimately connected with the vortex statistics, such as number fluctuations and vortex velocity, which is also characterized by a similar scaling behavior. The -5/3 scaling law appearing in the power spectrum of vortex number fluctuations is consistent with the scenario of passive advection of isolated vortices by a turbulent superfluid velocity generated by like-signed vortex clusters. The velocity probability distribution of clustered vortices is also sensitive to spatial configurations, and exhibits a power-law tail distribution with a -5/3 exponent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23705709','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23705709"><span>Inverse energy cascade and emergence of large coherent vortices in turbulence driven by Faraday waves.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Francois, N; Xia, H; Punzmann, H; Shats, M</p> <p>2013-05-10</p> <p>We report the generation of large coherent vortices via inverse energy cascade in Faraday wave driven turbulence. The motion of floaters in the Faraday waves is three dimensional, but its horizontal velocity fluctuations show unexpected similarity with two-dimensional turbulence. The inverse cascade is detected by measuring frequency spectra of the Lagrangian velocity, and it is confirmed by computing the third moment of the horizontal velocity fluctuations. This is observed in deep water in a broad range of wavelengths and vertical accelerations. The results broaden the scope of recent findings on Faraday waves in thin layers [A. von Kameke et al., Phys. Rev. Lett. 107, 074502 (2011)].</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JTurb..18..373A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JTurb..18..373A"><span>Self-similarity and flow characteristics of vertical-axis wind turbine wakes: an LES study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abkar, Mahdi; Dabiri, John O.</p> <p>2017-04-01</p> <p>Large eddy simulation (LES) is coupled with a turbine model to study the structure of the wake behind a vertical-axis wind turbine (VAWT). In the simulations, a tuning-free anisotropic minimum dissipation model is used to parameterise the subfilter stress tensor, while the turbine-induced forces are modelled with an actuator line technique. The LES framework is first validated in the simulation of the wake behind a model straight-bladed VAWT placed in the water channel and then used to study the wake structure downwind of a full-scale VAWT sited in the atmospheric boundary layer. In particular, the self-similarity of the wake is examined, and it is found that the wake velocity deficit can be well characterised by a two-dimensional multivariate Gaussian distribution. By assuming a self-similar Gaussian distribution of the velocity deficit, and applying mass and momentum conservation, an analytical model is developed and tested to predict the maximum velocity deficit downwind of the turbine. Also, a simple parameterisation of VAWTs for LES with very coarse grid resolutions is proposed, in which the turbine is modelled as a rectangular porous plate with the same thrust coefficient. The simulation results show that, after some downwind distance (x/D ≈ 6), both actuator line and rectangular porous plate models have similar predictions for the mean velocity deficit. These results are of particular importance in simulations of large wind farms where, due to the coarse spatial resolution, the flow around individual VAWTs is not resolved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900024785&hterms=rust&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Drust','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900024785&hterms=rust&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Drust"><span>Photoelectric return-stroke velocity and peak current estimates in natural and triggered lightning</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mach, Douglas M.; Rust, W. David</p> <p>1989-01-01</p> <p>Two-dimensional photoelectric return stroke velocities from 130 strokes are presented, including 86 negative natural, 41 negative triggered, one positive triggered, and two positive natural return strokes. For strokes starting near the ground and exceeding 500 m in length, the average velocity is 1.3 + or - 0.3 X 10 to the 8th m/s for natural return strokes and 1.2 + or - 0.3 X 10 to the 8th m/s for triggered return strokes. For strokes with lengths less than 500 m, the average velocities are slightly higher. Using the transmission line model (TLM), the shortest segment one-dimensional return stroke velocity, and either the maximum or plateau electric field, it is shown that natural strokes have a peak current distribution that is lognormal with a median value of 16 kA (maximum E) or 12 kA (plateau E). Triggered lightning has a medium peak current value of 21 kA (maximum E) or 15 kA (plateau E). Correlations are found between TLM peak currents and velocities for triggered and natural subsequent return strokes, but not between TLM peak currents and natural first return stroke velocities.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>