Evaluación de la utilidad diagnóstica de la versión española del cuestionario al informador «AD8»☆
Pardo, C. Carnero; de la Vega Cotarelo, R.; Alcalde, S. López; Aparicio, C. Martos; Carrillo, R. Vílchez; Gavilán, E. Mora; Galvin, J.E.
2012-01-01
Introducción El AD8 es un cuestionario al informador breve que puede ser autoaplicado y facilita la identificación de deterioro cognitivo (DC); nuestro objetivo es evaluar la utilidad diagnóstica (UD) de una versión española. Material y métodos Estudio transversal en una muestra clínica de díadas paciente/ informador, 330 sujetos con sospecha de DC o demencia (DEM) y 71 controles. Se ha evaluado la consistencia interna (α de Cronbach) y la validez (correlaciones parciales con estadio GDS, Fototest e índice funcional [IF]). La UD se ha evaluado para no DC vs DC (GDS 3–4) por medio del área bajo la curva ROC (aROC) y se ha considerado mejor punto de corte aquel que hacía máximo el índice de Youden. Resultados En la muestra, 105 no tenían DC, 99 tenían DC sin DEM y 203 DEM. La consistencia interna es alta (α 0,90, IC del 95%, 0,89–0,92), al igual que las correlaciones con GDS (r = 0,72, p < 0,001), Fototest (r = −0,61, p < 0,001) e IF (r = 0,59, p < 0,001). El aROC del AD8 es 0,90 (IC del 95%, 0,86–0,93), sin diferencia significativa con la del Fototest (aROC 0,93, IC del 95%, 0,89–0,96); el mejor punto de corte es 3/4 con sensibilidad de 0,93 (IC del 95%, 0,88–0,96), especificidad de 0,81 (IC del 95%, 0,72–0,88) y el 88,8% de las clasificaciones correctas. El uso conjunto de AD8 y Fototest mejora de forma significativa la UD de ambos (aROC 0,96, IC del 95%, 0,93–0,98, p < 0,05). Conclusiones La versión española del AD8 conserva las cualidades psicométricas y la UD de la versión original; su uso combinado con el Fototest mejora de forma significativa la UD de ambos. PMID:22652137
Cuestionarios | Smokefree Español
Los cuestionarios de Smokefree son una manera divertida de obtener información importante sobre temas relacionados con dejar de fumar, como los síntomas de abstinencia, el estrés y el humo de segunda mano. Responda un cuestionario y mejore su método para dejar de fumar.
Black hole remnant and quantum tunnelling in three-dimensional Gödel spacetime
NASA Astrophysics Data System (ADS)
Li, Hui-Ling; Zu, Xiao-Tao
2015-05-01
Using the modified Dirac equation in a three-dimensional gravity background, we investigate the quantum correction to tunnelling radiation from a Gödel black hole, and discuss the black hole remnant employing fermion's tunnelling. The corrected tunnelling probability is derived, and the modified Hawking temperature is found as well. It is worth emphasizing that, only when the condition j> αω(3 r -- r +) is satisfied, emitting both a mass particle and a massless particle, the remnant of the Gödel black hole may arise.
Moraes, Manoel; Diaz, Marcos E-mail: marcos@astro.iag.usp.br
2009-12-15
The HR Del nova remnant was observed with the IFU-GMOS at Gemini North. The spatially resolved spectral data cube was used in the kinematic, morphological, and abundance analysis of the ejecta. The line maps show a very clumpy shell with two main symmetric structures. The first one is the outer part of the shell seen in H{alpha}, which forms two rings projected in the sky plane. These ring structures correspond to a closed hourglass shape, first proposed by Harman and O'Brien. The equatorial emission enhancement is caused by the superimposed hourglass structures in the line of sight. The second structure seen only in the [O III] and [N II] maps is located along the polar directions inside the hourglass structure. Abundance gradients between the polar caps and equatorial region were not found. However, the outer part of the shell seems to be less abundant in oxygen and nitrogen than the inner regions. Detailed 2.5-dimensional photoionization modeling of the three-dimensional shell was performed using the mass distribution inferred from the observations and the presence of mass clumps. The resulting model grids are used to constrain the physical properties of the shell as well as the central ionizing source. A sequence of three-dimensional clumpy models including a disk-shaped ionization source is able to reproduce the ionization gradients between polar and equatorial regions of the shell. Differences between shell axial ratios in different lines can also be explained by aspherical illumination. A total shell mass of 9 x 10{sup -4} M {sub sun} is derived from these models. We estimate that 50%-70% of the shell mass is contained in neutral clumps with density contrast up to a factor of 30.
Muñoz, Irene; Domínguez, Elena; Hernández, Marta S; Ruiz-Piñero, Marina; Isidro, Guillermo; Mayor-Toranzo, Eduardo; Sotelo, Eva M; Molina, Vicente; Uribe, Fernando; Guerrero-Peral, Ángel L
2015-07-16
Introduccion. El papel patogenico de la personalidad en la migraña no esta definido. Para su estudio se pueden utilizar instrumentos de medida dimensional o categorial, sin que haya tampoco acuerdo acerca del abordaje mas adecuado. Objetivo. Analizar la personalidad de pacientes con migraña cronica desde el punto de vista dimensional y categorial. Pacientes y metodos. Como test categorial utilizamos el cuestionario Salamanca, y, como dimensional, el Minnesota Multiphasic Personality Inventory-2 (MMPI-2). Evaluamos trastornos del animo con la escala de ansiedad y depresion hospitalaria y el impacto de la migraña mediante el Headache Impact Test-6 (HIT-6). Resultados. Incluimos 30 pacientes (26 mujeres), con una edad media de 40,7 ± 9,6 años. Un caso (3,3%) presentaba criterios de depresion, y 4 (13,3%), de ansiedad. En el test Salamanca, los rasgos de personalidad mas frecuentes fueron los integrados en el cluster C: anancastico (n = 28; 93,3%), ansioso (n = 18; 60%) y dependiente (n = 7; 23,3%). En el MMPI-2, 16 pacientes (53,3%) cumplian criterios de hipocondria; 7 (23,3%), de depresion, y 10 (33,3%), de histeria, rasgos integrados en la triada neurotica. Se objetivo una configuracion denominada 'conversiva V'. No hallamos correlacion entre los rasgos de personalidad y el tiempo de migraña cronica, la intensidad medida por el HIT-6 o el uso excesivo de medicacion sintomatica. Conclusiones. En el analisis de la personalidad en la migraña cronica destaca, desde el punto de vista dimensional, el neuroticismo, y respecto al categorial, el rasgo obsesivo-compulsivo o anancastico. Es necesario el estudio de series mas extensas y la comparacion con pacientes con migraña episodica y poblacion control.
López-Cepero, Javier; Fabelo, Humberto Eduardo; Rodríguez-Franco, Luis; Rodríguez-Díaz, F Javier
2016-01-01
This study provides psychometric information for the Dating Violence Questionnaire (DVQ), an instrument developed to assess intimate partner victimization among adolescents and youths. This instrument, an English version of Cuestionario de Violencia de Novios, assesses both frequency and discomfort associated with 8 types of abuse (detachment, humiliation, sexual, coercion, physical, gender-based, emotional punishment, and instrumental). Participant included 859 U.S. students enrolled in undergraduate psychology courses in a mid-Atlantic university (M = 19 years; SD = 1.5 years). One-third of the participants were males, and two-thirds were females. Regarding racial identity, around 55% of participants identified themselves as White, 22% as African American, 12% as Asian, whereas 11% selected other identities. Around 9% of participants identified themselves as Hispanic. Confirmatory factor analysis shows that the DVQ achieved adequate goodness-of-fit indexes for the original eight-factor model (X(2)/df <5; root mean square error of approximation [RMSEA] <.080), as well as higher parsimony when compared to simpler alternative models. The 8 scales demonstrated acceptable internal consistency indexes (α >.700), surpassing those found in the original Spanish validation. Descriptive analysis suggests higher victimization experience on subtle aggressions (detachment, coercion, and emotional punishment), with overt abuses (physical, instrumental) obtaining the smallest means; these findings were similar across gender, race identity, and ethnicity. Results of this validation study encourage the inclusion of DVQ in both research and applied contexts.
Soutello, Ana Lúcia Soares; Rodrigues, Roberta Cunha Matheus; Jannuzzi, Fernanda Freire; Spana, Thaís Moreira; Gallani, Maria Cecília Bueno Jayme; Nadruz Junior, Wilson
2011-01-01
This study aimed to evaluate the feasibility, acceptability, ceiling and floor effects, reliability, and convergent construct validity of the Brazilian version of the Mini Cuestionario de Calidad de Vida en la Hipertensión Arterial (MINICHAL). The study included 200 hypertensive outpatients in a university hospital and a primary healthcare unit. The MINICHAL was applied in 3.0 (± 1.0) minutes with 100% of the items answered. A "ceiling effect" was observed in both dimensions and in the total score, as well as evidence of measurement stability (ICC=0.74). The convergent validity was confirmed by significant positive correlations between similar dimensions of the MINICHAL and the SF-36, and significant negative correlations with the Minnesota Living with Heart Failure Questionnaire - MLHFQ, however, correlations between dissimilar constructs were also observed. It was concluded that the Brazilian version of the MINICHAL presents evidence of reliability and validity when applied to hypertensive outpatients.
Green, Daniel; Lawrence, Albion; McGreevy, John; Morrison, David R.; Silverstein, Eva; /SLAC /Stanford U., Phys. Dept.
2007-05-18
We show that string theory on a compact negatively curved manifold, preserving a U(1)b1 winding symmetry, grows at least b1 new effective dimensions as the space shrinks. The winding currents yield a ''D-dual'' description of a Riemann surface of genus h in terms of its 2h dimensional Jacobian torus, perturbed by a closed string tachyon arising as a potential energy term in the worldsheet sigma model. D-branes on such negatively curved manifolds also reveal this structure, with a classical moduli space consisting of a b{sub 1}-torus. In particular, we present an AdS/CFT system which offers a non-perturbative formulation of such supercritical backgrounds. Finally, we discuss generalizations of this new string duality.
Bayesian supervised dimensionality reduction.
Gönen, Mehmet
2013-12-01
Dimensionality reduction is commonly used as a preprocessing step before training a supervised learner. However, coupled training of dimensionality reduction and supervised learning steps may improve the prediction performance. In this paper, we introduce a simple and novel Bayesian supervised dimensionality reduction method that combines linear dimensionality reduction and linear supervised learning in a principled way. We present both Gibbs sampling and variational approximation approaches to learn the proposed probabilistic model for multiclass classification. We also extend our formulation toward model selection using automatic relevance determination in order to find the intrinsic dimensionality. Classification experiments on three benchmark data sets show that the new model significantly outperforms seven baseline linear dimensionality reduction algorithms on very low dimensions in terms of generalization performance on test data. The proposed model also obtains the best results on an image recognition task in terms of classification and retrieval performances.
El moho forma parte del medio ambiente natural. Afuera del hogar, el moho juega un papel en la naturaleza al desintegrar materias organicas tales como las hojas que se han caido o los arboles muertos. El moho puede crecer adentro del hogar cuando las espor
Three dimensional strained semiconductors
Voss, Lars; Conway, Adam; Nikolic, Rebecca J.; Leao, Cedric Rocha; Shao, Qinghui
2016-11-08
In one embodiment, an apparatus includes a three dimensional structure comprising a semiconductor material, and at least one thin film in contact with at least one exterior surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the three dimensional structure. In another embodiment, a method includes forming a three dimensional structure comprising a semiconductor material, and depositing at least one thin film on at least one surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the structure.
Dimensional comparison theory.
Möller, Jens; Marsh, Herb W
2013-07-01
Although social comparison (Festinger, 1954) and temporal comparison (Albert, 1977) theories are well established, dimensional comparison is a largely neglected yet influential process in self-evaluation. Dimensional comparison entails a single individual comparing his or her ability in a (target) domain with his or her ability in a standard domain (e.g., "How good am I in math compared with English?"). This article reviews empirical findings from introspective, path-analytic, and experimental studies on dimensional comparisons, categorized into 3 groups according to whether they address the "why," "with what," or "with what effect" question. As the corresponding research shows, dimensional comparisons are made in everyday life situations. They impact on domain-specific self-evaluations of abilities in both domains: Dimensional comparisons reduce self-concept in the worse off domain and increase self-concept in the better off domain. The motivational basis for dimensional comparisons, their integration with recent social cognitive approaches, and the interdependence of dimensional, temporal, and social comparisons are discussed.
Three-Dimensional Complex Variables
NASA Technical Reports Server (NTRS)
Martin, E. Dale
1988-01-01
Report presents new theory of analytic functions of three-dimensional complex variables. While three-dimensional system subject to more limitations and more difficult to use than the two-dimensional system, useful in analysis of three-dimensional fluid flows, electrostatic potentials, and other phenomena involving harmonic functions.
Higher dimensional massive bigravity
NASA Astrophysics Data System (ADS)
Do, Tuan Q.
2016-08-01
We study higher-dimensional scenarios of massive bigravity, which is a very interesting extension of nonlinear massive gravity since its reference metric is assumed to be fully dynamical. In particular, the Einstein field equations along with the following constraint equations for both physical and reference metrics of a five-dimensional massive bigravity will be addressed. Then, we study some well-known cosmological spacetimes such as the Friedmann-Lemaitre-Robertson-Walker, Bianchi type I, and Schwarzschild-Tangherlini metrics for the five-dimensional massive bigravity. As a result, we find that massive graviton terms will serve as effective cosmological constants in both physical and reference sectors if a special scenario, in which reference metrics are chosen to be proportional to physical ones, is considered for all mentioned metrics. Thanks to the constancy property of massive graviton terms, consistent cosmological solutions will be figured out accordingly.
Three dimensional quantum chromodynamics
NASA Astrophysics Data System (ADS)
Ferretti, G.; Rajeev, S. G.; Yang, Z.
1992-02-01
The subject of this talk is the study of the low energy behavior of three (2+1) dimensional Quantum Chromodynamics. We show the existence of a phase where parity is unbroken and the flavor group U(2n) is broken into a subgroup U(n)×U(n). We derive the low energy effective action for the theory and show that it has solitonic excitations with Fermi statistic, to be identified with the three dimensional ``baryon''. Finally, we study the current algebra for this effective action and we find a co-homologically nontrivial generalization of Kac-Moody algebras to three dimension.
On some structure results for Gödel-type spacetimes
NASA Astrophysics Data System (ADS)
Plaue, Matthias; Scherfner, Mike
2016-12-01
In this paper, we prove structure results on Gödel-type spacetimes, which we understand as stationary charged perfect fluid solutions of the Einstein-Maxwell equations with geodesic flow. Given in a standard product form, we investigate relations between the vorticity and the geometry of the fiber. For the four dimensional case in particular, we classify the Gödel-type spacetimes with constant vorticity scalar. We give a complete list of the solutions, which provides a generalization of an observation by Gödel, proved later by Ozsváth: The Gödel spacetime and Einstein's static universe are the only stationary Λ-dust solutions of Einstein's equations with positive energy density that are spatially homogeneous.
Kubota, Kazumi; Shimazu, Akihito; Kawakami, Norito; Takahashi, Masaya; Nakata, Akinori; Schaufeli, Wilmar B.
2016-01-01
Objetivo El objetivo de este estudio es demostrar la distinción entre engagement y trabajolismo, estudiando su relación con la calidad del sueño y el desempeño laboral. Método Un total de 447 enfermeras de 3 hospitales de Japón fueron entrevistadas mediante un cuestionario autoadministrado que incluía la escala Utrecht (UWES, Utrecht Work Engagement Scale), la Escala de Adicción al Trabajo Holandesa (DUWAS, Dutch Workaholism Scale), preguntas sobre la calidad del sueño (7 ítems) con respecto a (1) dificultad para conciliar el sueño, (2) dificultad para mantener el sueño, (3) despertar temprano por la mañana, (4) dormirse o tomar siestas durante el día, (5) somnolencia diurna excesiva en el trabajo, (6) dificultad para despertarse por la mañana, y (7) despertar cansado en la mañana, y el Cuestionario sobre Salud y Desempeño (CSD) de la Organización Mundial de la Salud. Resultados Los modelos de ecuaciones estructurales demostraron que el engagement se relaciona positivamente con la calidad del sueño y el rendimiento laboral, mientras que el trabajolismo tiene una relación negativa con la calidad del sueño y el desempeño laboral. Conclusión Los resultados indican que el engagement y el trabajolismo son conceptualmente diferentes. El primero tiene una connotación positiva, mientras que el segundo se asocia de manera negativa al bienestar (buena calidad del sueño y buen rendimiento en el trabajo). PMID:26752805
Dimensional Regularization is Generic
NASA Astrophysics Data System (ADS)
Fujikawa, Kazuo
The absence of the quadratic divergence in the Higgs sector of the Standard Model in the dimensional regularization is usually regarded to be an exceptional property of a specific regularization. To understand what is going on in the dimensional regularization, we illustrate how to reproduce the results of the dimensional regularization for the λϕ4 theory in the more conventional regularization such as the higher derivative regularization; the basic postulate involved is that the quadratically divergent induced mass, which is independent of the scale change of the physical mass, is kinematical and unphysical. This is consistent with the derivation of the Callan-Symanzik equation, which is a comparison of two theories with slightly different masses, for the λϕ4 theory without encountering the quadratic divergence. In this sense the dimensional regularization may be said to be generic in a bottom-up approach starting with a successful low energy theory. We also define a modified version of the mass independent renormalization for a scalar field which leads to the homogeneous renormalization group equation. Implications of the present analysis on the Standard Model at high energies and the presence or absence of SUSY at LHC energies are briey discussed.
Ohm-Kirchhoff's law and screening in two-dimensional electron liquid
NASA Astrophysics Data System (ADS)
Mareš, J. J.; Krištofik, J.; Hubík, P.
2002-01-01
Analysing some experimental facts, a modification of Ohm-Kirchhoff's constitutive transport relation containing diffusion-related term was established. Simultaneous application of this formula and basic ideas of stochastic electrodynamics to a two-dimensional electron liquid (2DEL) enabled us to obtain relations coupling screening and transport properties of the 2DEL, which may be useful, e.g. for the interpretation of low-temperature magneto-capacitance experiments.
Four-Dimensional Entropy from Three-Dimensional Gravity.
Carlip, S
2015-08-14
At the horizon of a black hole, the action of (3+1)-dimensional loop quantum gravity acquires a boundary term that is formally identical to an action for three-dimensional gravity. I show how to use this correspondence to obtain the entropy of the (3+1)-dimensional black hole from well-understood conformal field theory computations of the entropy in (2+1)-dimensional de Sitter space.
High three dimensional thermoelectric performance from low dimensional bands
Singh, David J; Chen, Xin; Parker, David S
2013-01-01
Reduced dimensionality has long been regarded as an important strategy for increasing thermoelectric performance, for example in superlattices and other engineered structures. Here we point out and illustrate by examples that three dimensional bulk materials can be made to behave as if they were two dimensional from the point of view of thermoelectric performance. Implications for the discovery of new practical thermoelectrics are discussed.
Five-dimensional crystallography
Schmidt, Marius; Graber, Tim; Henning, Robert; Srajer, Vukica
2010-01-01
A method for determining a comprehensive chemical kinetic mechanism in macromolecular reactions is presented. The method is based on five-dimensional crystallography, where, in addition to space and time, temperature is also taken into consideration and an analysis based on singular value decomposition is applied. First results of such a time-resolved crystallographic study are presented. Temperature-dependent time-resolved X-ray diffraction measurements were conducted on the newly upgraded BioCARS 14-ID-B beamline at the Advanced Photon Source and aimed at elucidating a comprehensive kinetic mechanism of the photoactive yellow protein photocycle. Extensive time series of crystallographic data were collected at two temperatures, 293 K and 303 K. Relaxation times of the reaction extracted from these time series exhibit measurable differences for the two temperatures, hence demonstrating that five-dimensional crystallography is feasible. PMID:20164643
Kerstein, A.R.
1996-12-31
One-Dimensional Turbulence is a new turbulence modeling strategy involving an unsteady simulation implemented in one spatial dimension. In one dimension, fine scale viscous and molecular-diffusive processes can be resolved affordably in simulations at high turbulence intensity. The mechanistic distinction between advective and molecular processes is thereby preserved, in contrast to turbulence models presently employed. A stochastic process consisting of mapping {open_quote}events{close_quote} applied to a one-dimensional velocity profile represents turbulent advection. The local event rate for given eddy size is proportional to the velocity difference across the eddy. These properties cause an imposed shear to induce an eddy cascade analogous in many respects to the eddy cascade in turbulent flow. Many scaling and fluctuation properties of self-preserving flows, and of passive scalars introduced into these flows, are reproduced.
Methods of Two-Dimensional Spectroscopy
NASA Astrophysics Data System (ADS)
Kneer, F.
One of the main fields of solar research is the study of dynamic processes of small-scale structures. For this purpose, time sequences of spectroscopic and polarimetric information in two spatial dimensions with best achievable quality are needed. The present contribution deals with the ways to obtain images in small wavelength bands. Among these are image scanners and the MSDP (Multi-Channel Subtractive Double Pass Spectrograph). Further potential instruments are scanning Fabry-Perot interferometers (FPI). The principles of such instruments are discussed. The results obtained hitherto from the FPI in the Vacuum Tower Telescope at the Observatorio del Teide are promising. Small-band, two-dimensional spectroscopy with spatial resolution close to the telescopic diffraction limit seems possible in the near future.
2014-09-26
linear electronic specific heat disappears in strong magnetic fields if Landau levels are not broadened. Thus, the amplitude of the magnetothermal...Molec. Crys. Liq. Crys. 121, 169 (1984). In consideration of mixing of low-lying Landau levels, the magneto- conductance of two-dimensional electrons...and narrowing can be explained when the Landau level filling factor v is larger than 1. Actually, we have shown that the resonance phenomena are
The dimensionality of discourse.
Doxas, Isidoros; Dennis, Simon; Oliver, William L
2010-03-16
The paragraph spaces of five text corpora, of different genres and intended audiences, in four different languages, all show the same two-scale structure, with the dimension at short distances being lower than at long distances. In all five cases the short-distance dimension is approximately eight. Control simulations with randomly permuted word instances do not exhibit a low dimensional structure. The observed topology places important constraints on the way in which authors construct prose, which may be universal.
The dimensionality of discourse
Doxas, Isidoros; Dennis, Simon; Oliver, William L.
2010-01-01
The paragraph spaces of five text corpora, of different genres and intended audiences, in four different languages, all show the same two-scale structure, with the dimension at short distances being lower than at long distances. In all five cases the short-distance dimension is approximately eight. Control simulations with randomly permuted word instances do not exhibit a low dimensional structure. The observed topology places important constraints on the way in which authors construct prose, which may be universal. PMID:20194761
Three Dimensional Dirac Semimetals
NASA Astrophysics Data System (ADS)
Zaheer, Saad
2014-03-01
Dirac points on the Fermi surface of two dimensional graphene are responsible for its unique electronic behavior. One can ask whether any three dimensional materials support similar pseudorelativistic physics in their bulk electronic spectra. This possibility has been investigated theoretically and is now supported by two successful experimental demonstrations reported during the last year. In this talk, I will summarize the various ways in which Dirac semimetals can be realized in three dimensions with primary focus on a specific theory developed on the basis of representations of crystal spacegroups. A three dimensional Dirac (Weyl) semimetal can appear in the presence (absence) of inversion symmetry by tuning parameters to the phase boundary separating a bulk insulating and a topological insulating phase. More generally, we find that specific rules governing crystal symmetry representations of electrons with spin lead to robust Dirac points at high symmetry points in the Brillouin zone. Combining these rules with microscopic considerations identifies six candidate Dirac semimetals. Another method towards engineering Dirac semimetals involves combining crystal symmetry and band inversion. Several candidate materials have been proposed utilizing this mechanism and one of the candidates has been successfully demonstrated as a Dirac semimetal in two independent experiments. Work carried out in collaboration with: Julia A. Steinberg, Steve M. Young, J.C.Y. Teo, C.L. Kane, E.J. Mele and Andrew M. Rappe.
One-Dimensionality and Whiteness
ERIC Educational Resources Information Center
Calderon, Dolores
2006-01-01
This article is a theoretical discussion that links Marcuse's concept of one-dimensional society and the Great Refusal with critical race theory in order to achieve a more robust interrogation of whiteness. The author argues that in the context of the United States, the one-dimensionality that Marcuse condemns in "One-Dimensional Man" is best…
Espectroscopia del Cometa Halley
NASA Astrophysics Data System (ADS)
Naranjo, O.; Fuenmayor, F.; Ferrin, L.; Bulka, P.; Mendoza, C.
1987-05-01
Se reportan observaciones espectroscópicas del cometa Halley. Los espectros fueron tomados usando el espectrógrafo del telescopio reflector de 1 metro del Observatorio Nacional de Venezuela. Se utilizó óptica azul, con una red de difracción de 600 lineas/min, obteniéndose una dispersión de 74.2 A/mm y una resolución de 2.5 A, en el rango espectral de 3500 a 6500 A. Seis placas fueron tomadas con emulsión IIa-O y dos con IIa-D. Los tiempos de exposición fueron entre 10 y 150 minutos. El cometa se encontraba entre 0.70 y 1.04 UA del Sol, y entre 1.28 y 0.73 UA de la Tierra. Las emisiones más prominentes en el espectro, son las del CN, C2, y C3. Otras emisiones detectadas corresponden a CH, NH2 y Na. Los espectros muestran un fuerte continuo, indicando un contenido significativo de polvo. Se detectó mayor intensidad del contínuo, en la dirección anti solar, lo cual es evidencia de la cola de polvo.
Uncertainty and Dimensional Calibrations
Doiron, Ted; Stoup, John
1997-01-01
The calculation of uncertainty for a measurement is an effort to set reasonable bounds for the measurement result according to standardized rules. Since every measurement produces only an estimate of the answer, the primary requisite of an uncertainty statement is to inform the reader of how sure the writer is that the answer is in a certain range. This report explains how we have implemented these rules for dimensional calibrations of nine different types of gages: gage blocks, gage wires, ring gages, gage balls, roundness standards, optical flats indexing tables, angle blocks, and sieves. PMID:27805114
Three-dimensional metamaterials
Burckel, David Bruce
2012-06-12
A fabrication method is capable of creating canonical metamaterial structures arrayed in a three-dimensional geometry. The method uses a membrane suspended over a cavity with predefined pattern as a directional evaporation mask. Metallic and/or dielectric material can be evaporated at high vacuum through the patterned membrane to deposit resonator structures on the interior walls of the cavity, thereby providing a unit cell of micron-scale dimension. The method can produce volumetric metamaterial structures comprising layers of such unit cells of resonator structures.
NASA Technical Reports Server (NTRS)
Juday, Richard D. (Inventor)
1992-01-01
A two-dimensional vernier scale is disclosed utilizing a cartesian grid on one plate member with a polar grid on an overlying transparent plate member. The polar grid has multiple concentric circles at a fractional spacing of the spacing of the cartesian grid lines. By locating the center of the polar grid on a location on the cartesian grid, interpolation can be made of both the X and Y fractional relationship to the cartesian grid by noting which circles coincide with a cartesian grid line for the X and Y direction.
Uncertainty and Dimensional Calibrations.
Doiron, Ted; Stoup, John
1997-01-01
The calculation of uncertainty for a measurement is an effort to set reasonable bounds for the measurement result according to standardized rules. Since every measurement produces only an estimate of the answer, the primary requisite of an uncertainty statement is to inform the reader of how sure the writer is that the answer is in a certain range. This report explains how we have implemented these rules for dimensional calibrations of nine different types of gages: gage blocks, gage wires, ring gages, gage balls, roundness standards, optical flats indexing tables, angle blocks, and sieves.
Prevalencia y tamizaje del Trastorno por Déficit de Atención con Hiperactividad en Costa Rica
Weiss, Nicholas T.; Schuler, Jovita; Monge, Silvia; McGough, James J.; Chavira, Denise; Bagnarello, Monica; Herrera, Luis Diego; Mathews, Carol A.
2015-01-01
Resumen La investigación tuvo como propósito estimar la prevalencia del Trastorno por Déficit de Atención con Hiperactividad (TDAH) en Costa Rica y determinar si la versión en español del cuestionario Swanson Nolan and Pelham Scale IV (SNAP-IV) es un instrumento de tamizaje útil en una población de niños y niñas escolares costarricenses. El instrumento fue entregado a padres y maestros de 425 niños entre 5 y 13 años de edad (promedio = 8.8). Todos fueron evaluados con el instrumento Swanson, Kotkin, Agler, M-Flynn and Pelham Scale (SKAMP). Su diagnóstico fue confirmado con una entrevista clínica. La sensibilidad y la especificidad del SNAP-IV fueron evaluadas como predictores de criterios de diagnóstico según el DSM-IV. La prevalencia puntual en la muestra del TDAH fue del 5%. El tamizaje más preciso lo hizo el SNAP-IV completado por el maestro en un corte de 20%, con una sensibilidad de 96% y una especificidad de un 82%. La sensibilidad de los instrumentos completados por los padres fue más baja que aquella de los maestros. El SNAP-IV completado por las maestras con un corte aislando el 20% de los mayores puntajes categorizó correctamente a un 87% de los sujetos. PMID:22432094
Dimensionality reduction for registration of high-dimensional data sets.
Xu, Min; Chen, Hao; Varshney, Pramod K
2013-08-01
Registration of two high-dimensional data sets often involves dimensionality reduction to yield a single-band image from each data set followed by pairwise image registration. We develop a new application-specific algorithm for dimensionality reduction of high-dimensional data sets such that the weighted harmonic mean of Cramér-Rao lower bounds for the estimation of the transformation parameters for registration is minimized. The performance of the proposed dimensionality reduction algorithm is evaluated using three remotes sensing data sets. The experimental results using mutual information-based pairwise registration technique demonstrate that our proposed dimensionality reduction algorithm combines the original data sets to obtain the image pair with more texture, resulting in improved image registration.
Dimensionality Reduction Particle Swarm Algorithm for High Dimensional Clustering
Cui, Xiaohui; ST Charles, Jesse Lee; Potok, Thomas E; Beaver, Justin M
2008-01-01
The Particle Swarm Optimization (PSO) clustering algorithm can generate more compact clustering results than the traditional K-means clustering algorithm. However, when clustering high dimensional datasets, the PSO clustering algorithm is notoriously slow because its computation cost increases exponentially with the size of the dataset dimension. Dimensionality reduction techniques offer solutions that both significantly improve the computation time, and yield reasonably accurate clustering results in high dimensional data analysis. In this paper, we introduce research that combines different dimensionality reduction techniques with the PSO clustering algorithm in order to reduce the complexity of high dimensional datasets and speed up the PSO clustering process. We report significant improvements in total runtime. Moreover, the clustering accuracy of the dimensionality reduction PSO clustering algorithm is comparable to the one that uses full dimension space.
Dimensional analysis revisited.
Günther, Bruno; Morgado, Enrique
2003-01-01
The applicability of dimensional analysis (DA) is discussed in relation to the metabolic scaling laws. The evolution of different theories of biological similarity has shown that the calculated reduced exponents (b) of Huxley's allometric equation are closely correlated with the numerical values obtained from the statistical analysis of empirical data. Body mass and body weight are not equivalent as biological reference systems, since in accordance to Newton's second law, the former has a dimension of a mass, while the latter should be dimensionally considered as a force (W = MLT-2). This distinction affects the coefficients of the mass exponent (alpha). This difference is of paramount importance in microgravity conditions (spaceflight) and of buoyancy during the fetal life in mammals. Furthermore, the coefficients (beta) of the length dimension, and (gamma) of the time dimension do not vary when mass or weight are utilized as reference systems. Consequently, the "specific metabolic time," that results from the ratio of basal oxygen consumption and body mass or body weight yields the "biological meaning" of the time dimension, which is of fractal nature.
Procesamiento Digital de Imagenes del Cometa Halley
NASA Astrophysics Data System (ADS)
Ferrin, L.; Fuenmayor, F.; Naranjo, O.; Bulka, P.; Mendoza, C.
1987-05-01
Se reportan observaciones fotográficas del cometa Halley, obtenidas con los telescopios Schmidt de 1-m del CIDA, y de 35 cms de la ULA. Se hicieron exposiciones desde 2 segundos a 30 minutos y se utilizaron emulsiones IIa-O, 103a-F, y 103a-D, guladas manualmente 0 automaticámente. Las imágenes fueron digitalizadas con el microdensitómetro PDS, y procesadas con el sistema HACIENDA del CCIBM. Se experimentó con la Transformada de Fourier en dos dimensiones, y con la aplicación de filtros de paso alto y bajo. Se encontró que el metodo de "autocorrelación" es el mejor para separar "la vegetación" de "la montaña". Se aplicaron diversas técnicas a fin de cubrir ambos extremos: a) enfatizar detalles débiles en la cola, y b) penetrar en las regiones más intensas de la coma. Se lograron ambos objetivos. Detalles en la cola permitieron determinar velocidades de propagación de unos 50 a 90 kms/ seg. Se pudieron detectar no menos de tres perturbaciones en "Y", y una en 5? Co de Cisne). Se cree que las primeras están asociadas a eventos de desconexión. Se puede separar la cola de gas de la de polvo. Las fotos de color permiten enfatizar diferentes regiones espectrales con mayor claridad aún. El "balance" del color puede ser hecho con la computadora.
Dimensional crossover in semiconductor nanostructures
NASA Astrophysics Data System (ADS)
McDonald, Matthew P.; Chatterjee, Rusha; Si, Jixin; Jankó, Boldizsár; Kuno, Masaru
2016-08-01
Recent advances in semiconductor nanostructure syntheses provide unprecedented control over electronic quantum confinement and have led to extensive investigations of their size- and shape-dependent optical/electrical properties. Notably, spectroscopic measurements show that optical bandgaps of one-dimensional CdSe nanowires are substantially (approximately 100 meV) lower than their zero-dimensional counterparts for equivalent diameters spanning 5-10 nm. But what, exactly, dictates the dimensional crossover of a semiconductor's electronic structure? Here we probe the one-dimensional to zero-dimensional transition of CdSe using single nanowire/nanorod absorption spectroscopy. We find that carrier electrostatic interactions play a fundamental role in establishing dimensional crossover. Moreover, the critical length at which this transition occurs is governed by the aspect ratio-dependent interplay between carrier confinement and dielectric contrast/confinement energies.
Dimensional crossover in semiconductor nanostructures
McDonald, Matthew P.; Chatterjee, Rusha; Si, Jixin; Jankó, Boldizsár; Kuno, Masaru
2016-01-01
Recent advances in semiconductor nanostructure syntheses provide unprecedented control over electronic quantum confinement and have led to extensive investigations of their size- and shape-dependent optical/electrical properties. Notably, spectroscopic measurements show that optical bandgaps of one-dimensional CdSe nanowires are substantially (approximately 100 meV) lower than their zero-dimensional counterparts for equivalent diameters spanning 5–10 nm. But what, exactly, dictates the dimensional crossover of a semiconductor's electronic structure? Here we probe the one-dimensional to zero-dimensional transition of CdSe using single nanowire/nanorod absorption spectroscopy. We find that carrier electrostatic interactions play a fundamental role in establishing dimensional crossover. Moreover, the critical length at which this transition occurs is governed by the aspect ratio-dependent interplay between carrier confinement and dielectric contrast/confinement energies. PMID:27577091
Three dimensional interactive display
NASA Technical Reports Server (NTRS)
Vranish, John M. (Inventor)
2005-01-01
A three-dimensional (3-D) interactive display and method of forming the same, includes a transparent capaciflector (TC) camera formed on a transparent shield layer on the screen surface. A first dielectric layer is formed on the shield layer. A first wire layer is formed on the first dielectric layer. A second dielectric layer is formed on the first wire layer. A second wire layer is formed on the second dielectric layer. Wires on the first wire layer and second wire layer are grouped into groups of parallel wires with a turnaround at one end of each group and a sensor pad at the opposite end. An operational amplifier is connected to each of the sensor pads and the shield pad biases the pads and receives a signal from connected sensor pads in response to intrusion of a probe. The signal is proportional to probe location with respect to the monitor screen.
Two-Dimensional Chirality in Three-Dimensional Chemistry.
ERIC Educational Resources Information Center
Wintner, Claude E.
1983-01-01
The concept of two-dimensional chirality is used to enhance students' understanding of three-dimensional stereochemistry. This chirality is used as a key to teaching/understanding such concepts as enaniotropism, diastereotopism, pseudoasymmetry, retention/inversion of configuration, and stereochemical results of addition to double bonds. (JN)
NASA Astrophysics Data System (ADS)
Olano, C.; Lemarchand, G.; Sanz, A. J.; Bava, J. A.
El objetivo principal de este proyecto consiste en el estudio de la distribución y abundancia del CH en nubes interestelares a través de la observación de las líneas hiperfinas del CH en 3,3 GHz. El CH es una molécula de amplia distribución en el espacio interestelar y una de las pocas especies que han sido observadas tanto con técnicas de radio como ópticas. Desde el punto de vista tecnológico se ha desarrollado un cabezal de receptor que permitirá la realización de observaciones polarimétricas en la frecuencia de 3,3 GHz, con una temperatura del sistema de 60 K y un ancho de banda de 140 MHz, y que será instalado en el foco primario de la antena parabólica del IAR. El cabezal del receptor es capaz de detectar señales polarizadas, separando las componentes de polarización circular derecha e izquierda. Para tal fin el cabezal consta de dos ramas receptoras que amplificarán la señal y la trasladarán a una frecuencia más baja (frecuencia intermedia), permitiendo de esa forma un mejor transporte de la señal a la sala de control para su posterior procesamiento. El receptor además de tener características polarimétricas, podrá ser usado en el continuo y en la línea, utilizando las ventajas observacionales y de procesamiento de señal que actualmente posee el IAR.
RASTREO DEL CANCER COLORRECTAL CONOCIMIENTO Y ACTITUD DE LA POBLACION
CASAL, ENRIQUE R.; VELAZQUEZ, ELIZABETH N.; MEJIA, RAUL M.; CUNEO, ALDO; PEREZ-STABLE, ELISEO J.
2014-01-01
Resumen El rastreo de cáncer colorrectal (CCR) cuenta con fuertes evidencias en su favor. Datos preliminares indican que a pesar de ello no se lleva a cabo con la frecuencia adecuada. Se intenta aquí determinar, dentro de un Sistema de Salud que cuenta con los recursos necesarios, los elementos que facilitan o generan barreras para concretar esta práctica preventiva, cuántos individuos lo ponen en práctica y qué predice esta conducta. Se realizó una encuesta telefónica a los afiliados de una Obra Social de empleados de la Universidad de Buenos Aires, de los que 132 completaron el cuestionario (tasa de respuesta 70%). Los elementos considerados facilitadores del rastreo obtuvieron respuestas afirmativas en el 64 a 97%, mientras que los que definían barreras un 11 a 27%. En este último grupo, una categoría diferenciada la constituía el miedo a los efectos adversos: 39%, y el sentimiento de vergüenza relacionado con los procedimientos: 30%. Un 33% de los encuestados tenían hecho un método de rastreo, mayoritariamente de sangre oculta (27), sigmoideoscopía (11) y colonoscopía (20). Una mayoría afirmó que “se haría el procedimiento si el médico se lo recomendara” (95%), o “no se lo haría excepto que su médico se lo aconseje” (87%). Contestar afirmativamente que “los médicos hacen lo mejor para los pacientes” se asoció con haberse hecho un método de rastreo de CCR, OR 1.55 (IC 95%: 1.02-2.37) p: 0.04. El grupo de individuos estudiado parece bien predispuesto para el rastreo del CCR, la recomendación médica sería aquí un determinante prominente para ponerlo en práctica. PMID:19414294
Three dimensional Dirac semimetals
NASA Astrophysics Data System (ADS)
Zaheer, Saad
We extend the physics of graphene to three dimensional systems by showing that Dirac points can exist on the Fermi surface of realistic materials in three dimensions. Many of the exotic electronic properties of graphene can be ascribed to the pseudorelativistic behavior of its charge carriers due to two dimensional Dirac points on the Fermi surface. We show that certain nonsymmorphic spacegroups exhibit Dirac points among the irreducible representations of the appropriate little group at high symmetry points on the surface of the Brillouin zone. We provide a list of all Brillouin zone momenta in the 230 spacegroups that can host Dirac points. We describe microscopic considerations necessary to design materials in one of the candidate spacegroups such that the Dirac point appears at the Fermi energy without any additional non-Dirac-like Fermi pockets. We use density functional theory based methods to propose six new Dirac semimetals: BiO 2 and SbO2 in the beta-cristobalite lattice (spacegroup 227), and BiCaSiO4, BiMgSiO4, BiAlInO 4, and BiZnSiO4 in the distorted spinels lattice (spacegroup 74). Additionally we derive effective Dirac Hamiltonians given group representative operators as well as tight binding models incorporating spin-orbit coupling. Finally we study the Fermi surface of zincblende (spacegroup 216) HgTe which is effectively point-like at Gamma in the Brillouin zone and exhibits accidental degeneracies along a threefold rotation axis. Whereas compressive strain gaps the band structure into a topological insulator, tensile strain shifts the accidental degeneracies away from Gamma and enlarges the Fermi surface. States on the Fermi surface exhibit nontrivial spin texture marked by winding of spins around the threefold rotation axis and by spin vortices indicating a change in the winding number. This is confirmed by microscopic calculations performed in tensile strained HgTe and Hg0.5Zn 0.5 Te as well as k.p theory. We conclude with a summary of recent
Three-dimensional echocardiographic technology.
Salgo, Ivan S
2007-05-01
This article addresses the current state of the art of technology in three-dimensional echocardiography as it applies to transducer design, beam forming, display, and quantification. Because three-dimensional echocardiography encompasses many technical and clinical areas, this article reviews its strengths and limitations and concludes with an analysis of what to use when.
Lenz's law and dimensional analysis
NASA Astrophysics Data System (ADS)
Pelesko, John A.; Cesky, Michael; Huertas, Sharon
2005-01-01
We show that the time it takes a magnet to fall through a nonmagnetic metallic tube may be found via dimensional analysis. The simple analysis makes this classic demonstration of Lenz's law accessible qualitatively and quantitatively to students with little knowledge of electromagnetism and only elementary knowledge of calculus. The analysis provides a new example of the power and limitations of dimensional analysis.
Two-dimensional NMR spectrometry
Farrar, T.C.
1987-06-01
This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t/sub 0/; an evolution period, t/sub 1/; and a detection period, t/sub 2/.
Higher dimensional loop quantum cosmology
NASA Astrophysics Data System (ADS)
Zhang, Xiangdong
2016-07-01
Loop quantum cosmology (LQC) is the symmetric sector of loop quantum gravity. In this paper, we generalize the structure of loop quantum cosmology to the theories with arbitrary spacetime dimensions. The isotropic and homogeneous cosmological model in n+1 dimensions is quantized by the loop quantization method. Interestingly, we find that the underlying quantum theories are divided into two qualitatively different sectors according to spacetime dimensions. The effective Hamiltonian and modified dynamical equations of n+1 dimensional LQC are obtained. Moreover, our results indicate that the classical big bang singularity is resolved in arbitrary spacetime dimensions by a quantum bounce. We also briefly discuss the similarities and differences between the n+1 dimensional model and the 3+1 dimensional one. Our model serves as a first example of higher dimensional loop quantum cosmology and offers the possibility to investigate quantum gravity effects in higher dimensional cosmology.
NASA Technical Reports Server (NTRS)
2007-01-01
Nevado del Huila Volcano in Colombia is actually a volcanic chain running north to south, capped by a glacier. With peaks ranging in height from 2,600 to 5,780 meters (8,530 to 18,960 feet), Nevado del Huila is a stratovolcano composed of alternating layers of hardened lava, solidified ash, and volcanic rocks. Its first recorded eruption occurred in the mid-sixteenth century. The long-dormant volcano erupted again in mid-April 2007. A few months before the eruption, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this image of Nevado del Huila, on February 23, 2007. In this image, the bright white area just east of the central summit is ice. Immediately west of the summit are bare rocks, appearing as blue-gray. West of those rocks, white reappears, but this patch of white results from clouds hovering in the nearby valley. In the east, the colors turn to brown (indicating bare rock) and bright green (indicating vegetation). ASTER photographed Nevado del Huila near the end of a long phase of quietude. On April 17, 2007, local authorities recorded seismic activity associated with rock fracturing on the volcano's central summit, according to the ReliefWeb Website. Activity intensified the following day with an eruption and mudflows, forcing thousands of nearby residents to evacuate. As the Associated Press reported, the eruption caused avalanches and floods that wiped away both houses and bridges. It marked the volcano's first recorded eruption since the Spanish colonized the area five centuries earlier. NASA image created by Jesse Allen, using data provided courtesy of the NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team.
Cloaking two-dimensional fermions
Lin, De-Hone
2011-09-15
A cloaking theory for a two-dimensional spin-(1/2) fermion is proposed. It is shown that the spinor of the two-dimensional fermion can be cloaked perfectly through controlling the fermion's energy and mass in a specific manner moving in an effective vector potential inside a cloaking shell. Different from the cloaking of three-dimensional fermions, the scaling function that determines the invisible region is uniquely determined by a nonlinear equation. It is also shown that the efficiency of the cloaking shell is unaltered under the Aharonov-Bohm effect.
Three-dimensional marginal separation
NASA Technical Reports Server (NTRS)
Duck, Peter W.
1988-01-01
The three dimensional marginal separation of a boundary layer along a line of symmetry is considered. The key equation governing the displacement function is derived, and found to be a nonlinear integral equation in two space variables. This is solved iteratively using a pseudo-spectral approach, based partly in double Fourier space, and partly in physical space. Qualitatively, the results are similar to previously reported two dimensional results (which are also computed to test the accuracy of the numerical scheme); however quantitatively the three dimensional results are much different.
Physical model of dimensional regularization
NASA Astrophysics Data System (ADS)
Schonfeld, Jonathan F.
2016-12-01
We explicitly construct fractals of dimension 4{-}ɛ on which dimensional regularization approximates scalar-field-only quantum-field theory amplitudes. The construction does not require fractals to be Lorentz-invariant in any sense, and we argue that there probably is no Lorentz-invariant fractal of dimension greater than 2. We derive dimensional regularization's power-law screening first for fractals obtained by removing voids from 3-dimensional Euclidean space. The derivation applies techniques from elementary dielectric theory. Surprisingly, fractal geometry by itself does not guarantee the appropriate power-law behavior; boundary conditions at fractal voids also play an important role. We then extend the derivation to 4-dimensional Minkowski space. We comment on generalization to non-scalar fields, and speculate about implications for quantum gravity.
Three Dimensional Modeling of Breaking
2005-09-30
R.A. Dalrymple, A.J.C. Crespo, and D. Cerquiero, "Uso de la Tecnica SPH para el Estudio de la Interaccion entre Olas y Estructuras," Ingenieria del...published] Rogers, B.D., R.A. Dalrymple, M. Gesteira, and O. Knio, ``Smoothed Particle Hydrodynamics for Naval Hydrodynamics,” Proc. Int. Workshop on
Observational effects from dimensional compactification
NASA Astrophysics Data System (ADS)
Kontou, Eleni-Alexandra; Blanco-Pillado, Jose-Juan; Hertzberg, Mark; Masoumi, Ali
2017-01-01
Many of the extensions of the Standard Model involve theories that live on a higher dimensional spacetime. On the other hand, all our observational evidence points to a 4-dimensional description of the universe at low energies so one way to accommodate these higher dimensional theories is to allow for a compactifation mechanism. In this work we explore the possibility that we can obtain any observational signature that points towards the existence of this type of process in our past. Certain so-called anomalies in the CMB data might be giving us a hint that the amount of inflation was just the minimal required to solve the cosmological problems but not longer. In such case, we might hope to see the effects of a previous state of the universe in the power spectrum of perturbations. We assume the spacetime is divided in two parts, the 3+1 dimensional manifold and an internal space of n flat compact dimensions. Before the compactification, the extra dimensions can either be expanding or contracting and we compare the observable consequences obtained within these different higher dimensional cosmological scenarios.
Three-dimensional perspective visualization
NASA Technical Reports Server (NTRS)
Hussey, Kevin
1991-01-01
It was demonstrated that image processing computer graphic techniques can provide an effective means of physiographic analysis of remotely sensed regions through the use of three-dimensional perspective rendering. THe methods used to simulate and animate three-dimensional surfaces from two-dimensional imagery and digital elevation models are explained. A brief historic look at JPL's efforts in this field and several examples of animations, illustrating the evolution of these techniques from 1985, are shown. JPL's current research in this area is discussed along with examples of technology transfer and potential commercial application. The software is part of the VICAR (Video Image Communication and Retrieval) image processing system which was developed at the Multimission Image Processing Laboratory of JPL.
NASA Technical Reports Server (NTRS)
Jackman, Charles H.; Douglass, Anne R.; Stolarski, Richard S.; Guthrie, Paul D.; Thompson, A. M.
1990-01-01
A two dimensional (altitude and latitude) model of the atmosphere is used to investigate problems relating to the variability of the dynamics and temperature of the atmosphere on the ozone distribution, solar cycle variations of atmospheric constituents, the sensitivity of model results to tropospheric trace gas sources, and assessment computations of changes in ozone related to manmade influences. In a comparison between two dimensional model results in which the odd nitrogen family was transported together and model results in which the odd nitrogen species was transported separately, it was found that the family approximations are adequate for perturbation scenario calculations.
Dimensional mutation and spacelike singularities
Silverstein, Eva
2006-04-15
I argue that string theory compactified on a Riemann surface crosses over at small volume to a higher dimensional background of supercritical string theory. Several concrete measures of the count of degrees of freedom of the theory yield the consistent result that at finite volume, the effective dimensionality is increased by an amount of order 2h/V for a surface of genus h and volume V in string units. This arises in part from an exponentially growing density of states of winding modes supported by the fundamental group, and passes an interesting test of modular invariance. Further evidence for a plethora of examples with the spacelike singularity replaced by a higher dimensional phase arises from the fact that the sigma model on a Riemann surface can be naturally completed by many gauged linear sigma models, whose RG flows approximate time evolution in the full string backgrounds arising from this in the limit of large dimensionality. In recent examples of spacelike singularity resolution by tachyon condensation, the singularity is ultimately replaced by a phase with all modes becoming heavy and decoupling. In the present case, the opposite behavior ensues: more light degrees of freedom arise in the small radius regime. We comment on the emerging zoology of cosmological singularities that results.
Three-dimensional stellarator codes
Garabedian, P. R.
2002-01-01
Three-dimensional computer codes have been used to develop quasisymmetric stellarators with modular coils that are promising candidates for a magnetic fusion reactor. The mathematics of plasma confinement raises serious questions about the numerical calculations. Convergence studies have been performed to assess the best configurations. Comparisons with recent data from large stellarator experiments serve to validate the theory. PMID:12140367
Three dimensional colorimetric assay assemblies
Charych, D.; Reichart, A.
2000-06-27
A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flu virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.
The Dimensionality of Grammatical Variation
ERIC Educational Resources Information Center
Sankoff, David; Cedergren, Henrietta J.
1976-01-01
Computer-based multidimensional scaling techniques are used to determine the dimensionality of grammatical variation in three large sets of data: Ross' (1973) Noun Phrase and fake Noun Phrase data; Sankoff's (1974) complementizer "que"-deletion (Montreal French) data; and Cedergren's (1973) syllable-final S-reduction (Panamanian Spanish) data. (DB)
Three dimensional colorimetric assay assemblies
Charych, Deborah; Reichart, Anke
2000-01-01
A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flu virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.
Creating Three-Dimensional Scenes
ERIC Educational Resources Information Center
Krumpe, Norm
2005-01-01
Persistence of Vision Raytracer (POV-Ray), a free computer program for creating photo-realistic, three-dimensional scenes and a link for Mathematica users interested in generating POV-Ray files from within Mathematica, is discussed. POV-Ray has great potential in secondary mathematics classrooms and helps in strengthening students' visualization…
Three-Dimensional Lissajous Figures.
ERIC Educational Resources Information Center
D'Mura, John M.
1989-01-01
Described is a mechanically driven device for generating three-dimensional harmonic space figures with different frequencies and phase angles on the X, Y, and Z axes. Discussed are apparatus, viewing stereo pairs, equations of motion, and using space figures in classroom. (YP)
4-dimensional spacetimes from 2-dimensional conformal null data
NASA Astrophysics Data System (ADS)
Goswami, Rituparno; Ellis, George F. R.
2017-03-01
In this paper we investigate whether the holographic principle proposed in string theory has a classical counterpart in general relativity theory. We show that there is a partial correspondence: at least in the case of vacuum Petrov type D spacetimes that admit a non-trivial Killing tensor, which encompass all the astrophysical black hole spacetimes, there exists a one-to-one correspondence between gravity in bulk and a 2-dimensional classical conformal scalar field on a null boundary.
Case Study: del Amo Bioventing
The attached presentation discusses the fundamentals of bioventing in the vadose zone. The basics of bioventing are presented. The experience to date with the del Amo Superfund Site is presented as a case study.
Discriminative Dimensionality Reduction for Multi-dimensional Sequences.
Su, Bing; Ding, Xiaoqing; Wang, Hao; Wu, Ying
2017-02-07
Since the observables at particular time instants in a temporal sequence exhibit dependencies, they are not independent samples. Thus, it is not plausible to apply i.i.d. assumption-based dimensionality reduction methods to sequence data. This paper presents a novel supervised dimensionality reduction approach for sequence data, called Linear Sequence Discriminant Analysis (LSDA). It learns a linear discriminative projection of the feature vectors in sequences to a lower-dimensional subspace by maximizing the separability of the sequence classes such that the entire sequences are holistically discriminated. The sequence class separability is constructed based on the sequence statistics, and the use of different statistics produces different LSDA methods. This paper presents and compares two novel LSDA methods, namely M-LSDA and D-LSDA. M-LSDA extracts model-based statistics by exploiting the dynamical structure of the sequence classes, and D-LSDA extracts the distance-based statistics by computing the pairwise similarity of samples from the same sequence class. Extensive experiments on several different tasks have demonstrated the effectiveness and the general applicability of the proposed methods.
Two-dimensional thermofield bosonization
Amaral, R.L.P.G.
2005-12-15
The main objective of this paper was to obtain an operator realization for the bosonization of fermions in 1 + 1 dimensions, at finite, non-zero temperature T. This is achieved in the framework of the real-time formalism of Thermofield Dynamics. Formally, the results parallel those of the T = 0 case. The well-known two-dimensional Fermion-Boson correspondences at zero temperature are shown to hold also at finite temperature. To emphasize the usefulness of the operator realization for handling a large class of two-dimensional quantum field-theoretic problems, we contrast this global approach with the cumbersome calculation of the fermion-current two-point function in the imaginary-time formalism and real-time formalisms. The calculations also illustrate the very different ways in which the transmutation from Fermi-Dirac to Bose-Einstein statistics is realized.
Three-dimensional display technologies.
Geng, Jason
2013-01-01
The physical world around us is three-dimensional (3D), yet traditional display devices can show only two-dimensional (2D) flat images that lack depth (i.e., the third dimension) information. This fundamental restriction greatly limits our ability to perceive and to understand the complexity of real-world objects. Nearly 50% of the capability of the human brain is devoted to processing visual information [Human Anatomy & Physiology (Pearson, 2012)]. Flat images and 2D displays do not harness the brain's power effectively. With rapid advances in the electronics, optics, laser, and photonics fields, true 3D display technologies are making their way into the marketplace. 3D movies, 3D TV, 3D mobile devices, and 3D games have increasingly demanded true 3D display with no eyeglasses (autostereoscopic). Therefore, it would be very beneficial to readers of this journal to have a systematic review of state-of-the-art 3D display technologies.
A New Approach To Teaching Dimensional Analysis.
ERIC Educational Resources Information Center
Churchill, Stuart W.
1997-01-01
Explains an approach to teaching dimensional analysis that differs slightly from the traditional approach. The difference lies in the novelty of exposition in the presentation and interpretation of dimensional analysis as a speculative process. (DDR)
Three-dimensional force-free looplike magnetohydrodynamic equilibria
NASA Technical Reports Server (NTRS)
Finn, John M.; Guzdar, Parvez N.; Usikov, Daniel
1994-01-01
Computations of three-dimensional force-free magnetohydrodynamic (MHD) equilibria, del x B = lambdaB with lambda = lambda(sub 0), a constant are presented. These equilibria are determined by boundary conditions on a surface corresponding to the solar photosphere. The specific boundary conditions used correspond to looplike magnetic fields in the corona. It is found that as lambda(sub 0) is increased, the loops of flux become kinked, and for sufficiently large lambda(sub 0), develop knots. The relationship between the kinking and knotting properties of these equilibria and the presence of a kink instability and related loss of equilibrium is explored. Clearly, magnetic reconnection must be involved for an unknotted loop equilibrium to become knotted, and speculations are made about the creation of a closed hyperbolic field line (X-line) about which this reconnection creating knotted field lines is centered.
Numerical solution of three-dimensional magnetic differential equations
Reiman, A.H.; Greenside, H.S.
1987-02-01
A computer code is described that solves differential equations of the form B . del f = h for a single-valued solution f, given a toroidal three-dimensional divergence-free field B and a single-valued function h. The code uses a new algorithm that Fourier decomposes a given function in a set of flux coordinates in which the field lines are straight. The algorithm automatically adjusts the required integration lengths to compensate for proximity to low order rational surfaces. Applying this algorithm to the Cartesian coordinates defines a transformation to magnetic coordinates, in which the magnetic differential equation can be accurately solved. Our method is illustrated by calculating the Pfirsch-Schlueter currents for a stellarator.
Two dimensional unstable scar statistics.
Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)
2006-12-01
This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.
NASA Technical Reports Server (NTRS)
Juday, Richard D.
1992-01-01
Modified vernier scale gives accurate two-dimensional coordinates from maps, drawings, or cathode-ray-tube displays. Movable circular overlay rests on fixed rectangular-grid overlay. Pitch of circles nine-tenths that of grid and, for greatest accuracy, radii of circles large compared with pitch of grid. Scale enables user to interpolate between finest divisions of regularly spaced rule simply by observing which mark on auxiliary vernier rule aligns with mark on primary rule.
Two-Dimensional Potential Flows
NASA Technical Reports Server (NTRS)
Schaefer, Manfred; Tollmien, W.
1949-01-01
Contents include the following: Characteristic differential equations - initial and boundary conditions. Integration of the second characteristic differential equations. Direct application of Meyer's characteristic hodograph table for construction of two-dimensional potential flows. Prandtl-Busemann method. Development of the pressure variation for small deflection angles. Numerical table: relation between deflection, pressure, velocity, mach number and mach angle for isentropic changes of state according to Prandtl-Meyer for air (k = 1.405). References.
Dimensional stability of natural fibers
Driscoll, Mark S.
2013-04-19
One of the main problems associated with the use of natural fibers as reinforcing agents in composites is their uptake of moisture. Many natural fibers are lignocellulosic, which causes them to swell and shrink as the amount of available moisture changes. Swelling and shrinking can cause composites to prematurely fail. This paper presents the results of a preliminary study that considers the use of two different low molecular weight monomers, hydroxyethyl methacrylate (HEMA) and hydroxyethyl acrylate (HEA), polymerized by electron beam ionizing radiation, to dimensionally stabilize natural fibers. Eight different treatments consisting of varying amounts of monomer, encapsulating agent, and cross-linkers, were evaluated for their ability to dimensionally stabilize sisal fiber. Results indicate that both polymerized HEA and HEMA can reduce the swelling of sisal fiber. The effectiveness of HEA and HEMA can be further enhanced with the use of a cross-linker (SR 454). The use of hydroxylated monomers to dimensionally stabilize natural fibers may play an important role in reducing delamination and improving fiber-resin adhesion in composites.
Rotational Invariant Dimensionality Reduction Algorithms.
Lai, Zhihui; Xu, Yong; Yang, Jian; Shen, Linlin; Zhang, David
2016-06-30
A common intrinsic limitation of the traditional subspace learning methods is the sensitivity to the outliers and the image variations of the object since they use the L₂ norm as the metric. In this paper, a series of methods based on the L₂,₁-norm are proposed for linear dimensionality reduction. Since the L₂,₁-norm based objective function is robust to the image variations, the proposed algorithms can perform robust image feature extraction for classification. We use different ideas to design different algorithms and obtain a unified rotational invariant (RI) dimensionality reduction framework, which extends the well-known graph embedding algorithm framework to a more generalized form. We provide the comprehensive analyses to show the essential properties of the proposed algorithm framework. This paper indicates that the optimization problems have global optimal solutions when all the orthogonal projections of the data space are computed and used. Experimental results on popular image datasets indicate that the proposed RI dimensionality reduction algorithms can obtain competitive performance compared with the previous L₂ norm based subspace learning algorithms.
Dimensional psychopharmacology in somatising patients.
Biondi, Massimo; Pasquini, Massimo
2015-01-01
Despite the recent DSM-5 review of somatoform disorders, which are now called somatic symptom and related disorders, the categorical definitions of these syndromes have inherent limitations because their causal mechanism or presumed aetiologies are still unknown. These limitations may affect everyday clinical practice and decision-making abilities. As a result, physicians have limited information at their disposal to treat these patients. Furthermore, the clinical presentations of somatic disorders may vary a lot. The purpose of this chapter is to illustrate a psychopathological dimensional approach to the somatising patient. This approach is constantly unconsciously applied in clinical practice using continuous variables, such as rating scales. Moreover, treatment strategies might be improved by adding a dimensional approach, simply recognising the prominent components of the presenting psychopathology of a given patient and addressing them with drugs according to their different mechanisms, targeting circuits and neurotransmitters. Some authors have proposed a shift from the nosological to functional application of psychotropic drugs, in which functional psychopharmacology will be dysfunction oriented and therefore inevitably geared towards utilising drug combinations. Here, we present a summary of the advantages of functional/dimensional psychopharmacology for the treatment of somatic symptoms and related disorders.
Dimensional stability of natural fibers
NASA Astrophysics Data System (ADS)
Driscoll, Mark S.; Smith, Jennifer L.; Woods, Sean; Tiss, Kenneth J.; Larsen, L. Scott
2013-04-01
One of the main problems associated with the use of natural fibers as reinforcing agents in composites is their uptake of moisture. Many natural fibers are lignocellulosic, which causes them to swell and shrink as the amount of available moisture changes. Swelling and shrinking can cause composites to prematurely fail. This paper presents the results of a preliminary study that considers the use of two different low molecular weight monomers, hydroxyethyl methacrylate (HEMA) and hydroxyethyl acrylate (HEA), polymerized by electron beam ionizing radiation, to dimensionally stabilize natural fibers. Eight different treatments consisting of varying amounts of monomer, encapsulating agent, and cross-linkers, were evaluated for their ability to dimensionally stabilize sisal fiber. Results indicate that both polymerized HEA and HEMA can reduce the swelling of sisal fiber. The effectiveness of HEA and HEMA can be further enhanced with the use of a cross-linker (SR 454). The use of hydroxylated monomers to dimensionally stabilize natural fibers may play an important role in reducing delamination and improving fiber-resin adhesion in composites.
Assessment of Dimensionality in Social Science Subtest
ERIC Educational Resources Information Center
Ozbek Bastug, Ozlem Yesim
2012-01-01
Most of the literature on dimensionality focused on either comparison of parametric and nonparametric dimensionality detection procedures or showing the effectiveness of one type of procedure. There is no known study to shown how to do combined parametric and nonparametric dimensionality analysis on real data. The current study is aimed to fill…
Orthogonality preserving infinite dimensional quadratic stochastic operators
Akın, Hasan; Mukhamedov, Farrukh
2015-09-18
In the present paper, we consider a notion of orthogonal preserving nonlinear operators. We introduce π-Volterra quadratic operators finite and infinite dimensional settings. It is proved that any orthogonal preserving quadratic operator on finite dimensional simplex is π-Volterra quadratic operator. In infinite dimensional setting, we describe all π-Volterra operators in terms orthogonal preserving operators.
Conocimientos y autoeficacia asociados a la prevención del VIH y SIDA en mujeres chilenas
Villegas Rodríguez, Natalia; Ferrer Lagunas, Lilian Marcela; Cianelli Acosta, Rosina; Miner, Sarah; Lara Campos, Loreto; Peragallo, Nilda
2014-01-01
Resumen Objetivo Evaluar la relación existente entre conocimientos y autoeficacia asociados al VIH/SIDA en mujeres chilenas en desventaja social. Metodología Estudio correlacional, que utiliza la medición basal del estudio “Testeando una intervención en VIH y SIDA en mujeres chilenas”, realizada entre 2006 y 2008, que tiene una muestra de 496 mujeres entre 18 y 49 años residentes en dos comunas de Santiago de Chile. Las participantes respondieron un cuestionario estructurado aplicado por entrevistadoras entrenadas. Este cuestionario incluyó preguntas sobre datos sociodemográficos, escala de conocimientos de conductas de riesgo y autoeficacia, entre otros. Resultados Edad promedio de 32.3±9.1 años, 72.2% vive con su pareja y 42.7% poseen educación media completa. La puntuación media de los conocimientos de la infección por el VIH fue de 8.9±2.5, mientras que para las tres escalas empleadas para medir autoeficacia fueron: “Normas de los pares” =9.8±3.6, “Intención de reducir conductas de riesgo” =12.2±3.6 y “Self Efficacy Form”=20.2±4.7. Los conocimientos tuvieron una correlación positiva débil con la “intención de reducir conductas de riesgo” (r=0.19; p<0.0001) y con la escala “Self Efficacy Form” (r=0.34; p<0.0001), pero no se relacionaron con las “normas de los pares en cuanto a relaciones sexuales seguras” (r=0.13; p=0.78). Conclusión Existe una débil correlación positiva entre el nivel de conocimientos sobre el VIH/SIDA y la autoeficacia en mujeres chilenas en desventaja social. PMID:25284914
Extra-dimensional models on the lattice
Knechtli, Francesco; Rinaldi, Enrico
2016-08-05
In this paper we summarize the ongoing effort to study extra-dimensional gauge theories with lattice simulations. In these models the Higgs field is identified with extra-dimensional components of the gauge field. The Higgs potential is generated by quantum corrections and is protected from divergences by the higher dimensional gauge symmetry. Dimensional reduction to four dimensions can occur through compactification or localization. Gauge-Higgs unification models are often studied using perturbation theory. Numerical lattice simulations are used to go beyond these perturbative expectations and to include nonperturbative effects. We describe the known perturbative predictions and their fate in the strongly-coupled regime for various extra-dimensional models.
Closed Timelike Curves and Geodesics of GÖDEL-TYPE Metrics
NASA Astrophysics Data System (ADS)
Sarioğlu, Özgür
2008-09-01
It is shown that the spacetimes described by Gödel-type metrics with both flat and non-flat backgrounds and with constant uk always have CTCs or CNCs. The geodesic curves of these spacetimes are characterized by a lower dimensional Lorentz force equation for a charged point particle in the relevant Riemannian background. An explicit example is given for which timelike and null geodesics can never be closed.
El libro del Relogio del Palacio de las Horas
NASA Astrophysics Data System (ADS)
Morales, J. D.
2009-08-01
This paper resume the investigation entitled ``El libro del Relogio del Palacio de las Horas''. That consist in an edition of the original text of the book of the Clock of the Palace of the Hours from the Books of the knowledge of Astronomy of Alfonso X (Manuscript 156, Complutense University). And a description of the astronomical functionality of the Clock of the Palace of the Hours. It includes a geometric description of the positional astronomy on which the operation of the Palace is based.
Three dimensional identification card and applications
NASA Astrophysics Data System (ADS)
Zhou, Changhe; Wang, Shaoqing; Li, Chao; Li, Hao; Liu, Zhao
2016-10-01
Three dimensional Identification Card, with its three-dimensional personal image displayed and stored for personal identification, is supposed be the advanced version of the present two-dimensional identification card in the future [1]. Three dimensional Identification Card means that there are three-dimensional optical techniques are used, the personal image on ID card is displayed to be three-dimensional, so we can see three dimensional personal face. The ID card also stores the three-dimensional face information in its inside electronics chip, which might be recorded by using two-channel cameras, and it can be displayed in computer as three-dimensional images for personal identification. Three-dimensional ID card might be one interesting direction to update the present two-dimensional card in the future. Three-dimension ID card might be widely used in airport custom, entrance of hotel, school, university, as passport for on-line banking, registration of on-line game, etc...
Quasicrystalline three-dimensional foams
NASA Astrophysics Data System (ADS)
Cox, S. J.; Graner, F.; Mosseri, R.; Sadoc, J.-F.
2017-03-01
We present a numerical study of quasiperiodic foams, in which the bubbles are generated as duals of quasiperiodic Frank–Kasper phases. These foams are investigated as potential candidates to the celebrated Kelvin problem for the partition of three-dimensional space with equal volume bubbles and minimal surface area. Interestingly, one of the computed structures falls close to (but still slightly above) the best known Weaire–Phelan periodic candidate. In addition we find a correlation between the normalized bubble surface area and the root mean squared deviation of the number of faces, giving an additional clue to understanding the main geometrical ingredients driving the Kelvin problem.
Dimensional regularization in configuration space
Bollini, C.G. |; Giambiagi, J.J.
1996-05-01
Dimensional regularization is introduced in configuration space by Fourier transforming in {nu} dimensions the perturbative momentum space Green functions. For this transformation, the Bochner theorem is used; no extra parameters, such as those of Feynman or Bogoliubov and Shirkov, are needed for convolutions. The regularized causal functions in {ital x} space have {nu}-dependent moderated singularities at the origin. They can be multiplied together and Fourier transformed (Bochner) without divergence problems. The usual ultraviolet divergences appear as poles of the resultant analytic functions of {nu}. Several examples are discussed. {copyright} {ital 1996 The American Physical Society.}
Two-Dimensional Colloidal Alloys
NASA Astrophysics Data System (ADS)
Law, Adam D.; Buzza, D. Martin A.; Horozov, Tommy S.
2011-03-01
We study the structure of mixed monolayers of large (3μm diameter) and small (1μm diameter) very hydrophobic silica particles at an octane-water interface as a function of the number fraction of small particles ξ. We find that a rich variety of two-dimensional hexagonal super-lattices of large (A) and small (B) particles can be obtained in this system due to strong and long-range electrostatic repulsions through the nonpolar octane phase. The structures obtained for the different compositions are in good agreement with zero temperature calculations and finite temperature computer simulations.
Two-dimensional colloidal alloys.
Law, Adam D; Buzza, D Martin A; Horozov, Tommy S
2011-03-25
We study the structure of mixed monolayers of large (3 μm diameter) and small (1 μm diameter) very hydrophobic silica particles at an octane-water interface as a function of the number fraction of small particles ξ. We find that a rich variety of two-dimensional hexagonal super-lattices of large (A) and small (B) particles can be obtained in this system due to strong and long-range electrostatic repulsions through the nonpolar octane phase. The structures obtained for the different compositions are in good agreement with zero temperature calculations and finite temperature computer simulations.
Statistical Downscaling in Multi-dimensional Wave Climate Forecast
NASA Astrophysics Data System (ADS)
Camus, P.; Méndez, F. J.; Medina, R.; Losada, I. J.; Cofiño, A. S.; Gutiérrez, J. M.
2009-04-01
Wave climate at a particular site is defined by the statistical distribution of sea state parameters, such as significant wave height, mean wave period, mean wave direction, wind velocity, wind direction and storm surge. Nowadays, long-term time series of these parameters are available from reanalysis databases obtained by numerical models. The Self-Organizing Map (SOM) technique is applied to characterize multi-dimensional wave climate, obtaining the relevant "wave types" spanning the historical variability. This technique summarizes multi-dimension of wave climate in terms of a set of clusters projected in low-dimensional lattice with a spatial organization, providing Probability Density Functions (PDFs) on the lattice. On the other hand, wind and storm surge depend on instantaneous local large-scale sea level pressure (SLP) fields while waves depend on the recent history of these fields (say, 1 to 5 days). Thus, these variables are associated with large-scale atmospheric circulation patterns. In this work, a nearest-neighbors analog method is used to predict monthly multi-dimensional wave climate. This method establishes relationships between the large-scale atmospheric circulation patterns from numerical models (SLP fields as predictors) with local wave databases of observations (monthly wave climate SOM PDFs as predictand) to set up statistical models. A wave reanalysis database, developed by Puertos del Estado (Ministerio de Fomento), is considered as historical time series of local variables. The simultaneous SLP fields calculated by NCEP atmospheric reanalysis are used as predictors. Several applications with different size of sea level pressure grid and with different temporal domain resolution are compared to obtain the optimal statistical model that better represents the monthly wave climate at a particular site. In this work we examine the potential skill of this downscaling approach considering perfect-model conditions, but we will also analyze the
Determinación del perfil instrumental del EBASIM
NASA Astrophysics Data System (ADS)
Nieva, M. F.; Rodriguez, M. V.; Pintado, O. I.
Se calcula el perfil instrumental para el telescopio de 2,15m del CASLEO con EBASIM. Para ello se usaron flats de cielo y el espectro solar FTS de Kurucz. El método, que se puede utilizar para otras configuraciones instrumentales, es convolucionar ambos espectros para obtener los coeficientes de corrección.
Dimensionality Reduction Through Classifier Ensembles
NASA Technical Reports Server (NTRS)
Oza, Nikunj C.; Tumer, Kagan; Norwig, Peter (Technical Monitor)
1999-01-01
In data mining, one often needs to analyze datasets with a very large number of attributes. Performing machine learning directly on such data sets is often impractical because of extensive run times, excessive complexity of the fitted model (often leading to overfitting), and the well-known "curse of dimensionality." In practice, to avoid such problems, feature selection and/or extraction are often used to reduce data dimensionality prior to the learning step. However, existing feature selection/extraction algorithms either evaluate features by their effectiveness across the entire data set or simply disregard class information altogether (e.g., principal component analysis). Furthermore, feature extraction algorithms such as principal components analysis create new features that are often meaningless to human users. In this article, we present input decimation, a method that provides "feature subsets" that are selected for their ability to discriminate among the classes. These features are subsequently used in ensembles of classifiers, yielding results superior to single classifiers, ensembles that use the full set of features, and ensembles based on principal component analysis on both real and synthetic datasets.
Three-dimensional display technologies
Geng, Jason
2014-01-01
The physical world around us is three-dimensional (3D), yet traditional display devices can show only two-dimensional (2D) flat images that lack depth (i.e., the third dimension) information. This fundamental restriction greatly limits our ability to perceive and to understand the complexity of real-world objects. Nearly 50% of the capability of the human brain is devoted to processing visual information [Human Anatomy & Physiology (Pearson, 2012)]. Flat images and 2D displays do not harness the brain’s power effectively. With rapid advances in the electronics, optics, laser, and photonics fields, true 3D display technologies are making their way into the marketplace. 3D movies, 3D TV, 3D mobile devices, and 3D games have increasingly demanded true 3D display with no eyeglasses (autostereoscopic). Therefore, it would be very beneficial to readers of this journal to have a systematic review of state-of-the-art 3D display technologies. PMID:25530827
Three-dimensional vortex methods
Greengard, C.A.
1984-08-01
Three-dimensional vortex methods for the computation of incompressible fluid flow are presented from a unified point of view. Reformulations of the filament method and of the method of Beale and Majda show them to be very similar algorithms; in both of them, the vorticity is evaluated by a discretization of the spatial derivative of the flow map. The fact that the filament method, the one which is most often used in practice, can be formulated as a version of the Beale and Majda algorithm in a curved coordinate system is used to give a convergence theorem for the filament method. The method of Anderson is also discussed, in which vorticity is evaluated by the exact differentiation of the approximate velocity field. It is shown that, in the inviscid version of this algorithm, each approximate vector of vorticity remains tangent to a material curve moving with the computed flow, with magnitude proportional to the stretching of this vortex line. This remains true even when time discretization is taken into account. It is explained that the expanding core vortex method converges to a system of equations different from the Navier-Stokes equations. Computations with the filament method of the inviscid interaction of two vortex rings are reported, both with single filaments in each ring and with a fully three-dimensional discretization of vorticity. The dependence on parameters is discussed, and convergence of the computed solutions is observed. 36 references, 4 figures.
Vortices of Two Dimensional Guiding Center Plasmas.
NASA Astrophysics Data System (ADS)
Ting, Antonio Chofai
A system of two dimensional guiding center plasma in a square conducting boundary is used as a model to study the anomalous transport is magnetically confined plasma. An external gravitational force is introduced to simulate the curvature and gradient of the magnetic field. For finite boundaries, it is a Hamiltonian system with finite phase space and negative temperature states are allowed. The statistical equilibrium states of this system are described by the solutions of a Poisson's equation with self-consistently determined charge density. In the limit of zero gravity, it can be reduced to the sinh-Poisson equation (DEL)('2)u + (lamda)('2)sinh u = 0. Previous numerical efforts have found solutions with vortex structures. A novel method of generating general exact solutions to this nonlinear boundary value problem is presented. These solutions are given by. (DIAGRAM, TABLE OR GRAPHIC OMITTED...PLEASE SEE DAI). where E(,i)'s are constants and the dependence of (gamma)(,j)'s on x and y are given by a set of coupled first order nonlinear ordinary differential equations. These equations can be linearized to give u(x,y) in terms of Riemann theta functions u(x,y) = 2ln (THETA)(l + 1/2)(THETA)(l) . The phases l evolve linearly in x and y while nonlinear superposition is displayed in the solution u(x,y). The self-consistent Poisson's equation with gravity is studied numerically. Different branches of solutions are obtained and their relations to the zero gravity solutions are discussed. The thermodynamically most favored structure of the system carries the feature of a heavy ion vortex on top of the light electron vortex. Branches of solutions are found to merge into each other as parameters in the equations were smoothly varied. A critical value of gravitational force exists such that below which there is a possibility of hysteresis between different equilibrium states. With the help of the nonzero gravity solutions, we also have a clearer picture of the transition from
One-dimensional Quantum Fluids
NASA Astrophysics Data System (ADS)
Gervais, Guillaume
2015-03-01
Fifty year ago, Joachim Mazdak Luttinger generalized the Tomonaga theory of interactions in a one-dimensional metal and show that the prior restrictions imposed by Tomonaga were not necessary. This model is now known as the Tomonaga- Luttinger liquid model (TLL) and most remarkably it does have mathematically exact solutions. In the case of electrons, it predicts that the spin and charge sector should separate, with each of them propagating with their own velocities. While there has been many attempts (some with great success) to observe TLL behaviour in clean quantum wires designed on an ultra-clean semiconductor platform, overall the Luttinger physics is experimentally still in its infancy. For instance, little is known regarding the 1D physics in a strongly-interacting neutral system, whether from the point-of-view of TLL theory or even localization physics. Helium-4, the paradigm superfluid, and Helium-3, the paradigm Fermi liquid, should in principleboth become Luttinger liquids if taken to the one-dimensional limit. In the bosonic case, this is supported by large-scale Quantum Monte Carlo simulations which found that a lengthscale of ~ 2 nm is sufficient for the system to crossover to the 1D regime and display universal Luttinger scaling. At McGill University, an experiment has been constructed to measure the liquid helium mass flow through a single nanopore. The technique consists of drilling a single nanopore in a SiN membrane using a TEM, and then applying a pressure gradient across the membrane. Previously published data in 45nm diameter hole determined the superfluid critical velocity to be close to the limit set by the Feynman vortex rings model. More recent work performed on nanopores with radii as small as 3 nm (and a length of 30nm) show the critical exponent for superfluid velocity to significantly deviate from its bulk value, 2/3. This is an important hint for the crossing over to the one-dimensional state in a strongly-correlated bosonic liquid.
Dynamic dimensionality reduction for hyperspectral imagery
NASA Astrophysics Data System (ADS)
Safavi, Haleh; Liu, Keng-Hao; Chang, Chein-I.
2011-06-01
Data dimensionality (DR) is generally performed by first fixing size of DR at a certain number, say p and then finding a technique to reduce an original data space to a low dimensional data space with dimensionality specified by p. This paper introduces a new concept of dynamic dimensionality reduction (DDR) which considers the parameter p as a variable by varying the value of p to make p adaptive compared to the commonly used DR, referred to as static dimensionality reduction (SDR) with the parameter p fixed at a constant value. In order to materialize the DDR another new concept, referred to as progressive DR (PDR) is also developed so that the DR can be performed progressively to adapt the variable size of data dimensionality determined by varying the value of p. The advantages of the DDR over SDR are demonstrated through experiments conducted for hyperspectral image classification.
Length and Dimensional Measurements at NIST
Swyt, Dennis A.
2001-01-01
This paper discusses the past, present, and future of length and dimensional measurements at NIST. It covers the evolution of the SI unit of length through its three definitions and the evolution of NBS-NIST dimensional measurement from early linescales and gage blocks to a future of atom-based dimensional standards. Current capabilities include dimensional measurements over a range of fourteen orders of magnitude. Uncertainties of measurements on different types of material artifacts range down to 7×10−8 m at 1 m and 8 picometers (pm) at 300 pm. Current work deals with a broad range of areas of dimensional metrology. These include: large-scale coordinate systems; complex form; microform; surface finish; two-dimensional grids; optical, scanning-electron, atomic-force, and scanning-tunneling microscopies; atomic-scale displacement; and atom-based artifacts. PMID:27500015
Length and Dimensional Measurements at NIST.
Swyt, D A
2001-01-01
This paper discusses the past, present, and future of length and dimensional measurements at NIST. It covers the evolution of the SI unit of length through its three definitions and the evolution of NBS-NIST dimensional measurement from early linescales and gage blocks to a future of atom-based dimensional standards. Current capabilities include dimensional measurements over a range of fourteen orders of magnitude. Uncertainties of measurements on different types of material artifacts range down to 7×10(-8) m at 1 m and 8 picometers (pm) at 300 pm. Current work deals with a broad range of areas of dimensional metrology. These include: large-scale coordinate systems; complex form; microform; surface finish; two-dimensional grids; optical, scanning-electron, atomic-force, and scanning-tunneling microscopies; atomic-scale displacement; and atom-based artifacts.
Dimensional Reduction for Generalized Continuum Polymers
NASA Astrophysics Data System (ADS)
Helmuth, Tyler
2016-10-01
The Brydges-Imbrie dimensional reduction formula relates the pressure of a d-dimensional gas of hard spheres to a model of (d+2)-dimensional branched polymers. Brydges and Imbrie's proof was non-constructive and relied on a supersymmetric localization lemma. The main result of this article is a constructive proof of a more general dimensional reduction formula that contains the Brydges-Imbrie formula as a special case. Central to the proof are invariance lemmas, which were first introduced by Kenyon and Winkler for branched polymers. The new dimensional reduction formulas rely on invariance lemmas for central hyperplane arrangements that are due to Mészáros and Postnikov. Several applications are presented, notably dimensional reduction formulas for (i) non-spherical bodies and (ii) for corrections to the pressure due to symmetry effects.
Topics in low-dimensional field theory
Crescimanno, M.J.
1991-04-30
Conformal field theory is a natural tool for understanding two- dimensional critical systems. This work presents results in the lagrangian approach to conformal field theory. The first sections are chiefly about a particular class of field theories called coset constructions and the last part is an exposition of the connection between two-dimensional conformal theory and a three-dimensional gauge theory whose lagrangian is the Chern-Simons density.
Efficient Two-Dimensional-FFT Program
NASA Technical Reports Server (NTRS)
Miko, J.
1992-01-01
Program computes 64 X 64-point fast Fourier transform in less than 17 microseconds. Optimized 64 X 64 Point Two-Dimensional Fast Fourier Transform combines performance of real- and complex-valued one-dimensional fast Fourier transforms (FFT's) to execute two-dimensional FFT and coefficients of power spectrum. Coefficients used in many applications, including analyzing spectra, convolution, digital filtering, processing images, and compressing data. Source code written in C, 8086 Assembly, and Texas Instruments TMS320C30 Assembly languages.
Two-dimensional quantum repeaters
NASA Astrophysics Data System (ADS)
Wallnöfer, J.; Zwerger, M.; Muschik, C.; Sangouard, N.; Dür, W.
2016-11-01
The endeavor to develop quantum networks gave rise to a rapidly developing field with far-reaching applications such as secure communication and the realization of distributed computing tasks. This ultimately calls for the creation of flexible multiuser structures that allow for quantum communication between arbitrary pairs of parties in the network and facilitate also multiuser applications. To address this challenge, we propose a two-dimensional quantum repeater architecture to establish long-distance entanglement shared between multiple communication partners in the presence of channel noise and imperfect local control operations. The scheme is based on the creation of self-similar multiqubit entanglement structures at growing scale, where variants of entanglement swapping and multiparty entanglement purification are combined to create high-fidelity entangled states. We show how such networks can be implemented using trapped ions in cavities.
High-dimensional entanglement certification
Huang, Zixin; Maccone, Lorenzo; Karim, Akib; Macchiavello, Chiara; Chapman, Robert J.; Peruzzo, Alberto
2016-01-01
Quantum entanglement is the ability of joint quantum systems to possess global properties (correlation among systems) even when subsystems have no definite individual property. Whilst the 2-dimensional (qubit) case is well-understood, currently, tools to characterise entanglement in high dimensions are limited. We experimentally demonstrate a new procedure for entanglement certification that is suitable for large systems, based entirely on information-theoretics. It scales more efficiently than Bell’s inequality and entanglement witness. The method we developed works for arbitrarily large system dimension d and employs only two local measurements of complementary properties. This procedure can also certify whether the system is maximally entangled. We illustrate the protocol for families of bipartite states of qudits with dimension up to 32 composed of polarisation-entangled photon pairs. PMID:27311935
Three-dimensional coil inductor
Bernhardt, Anthony F.; Malba, Vincent
2002-01-01
A three-dimensional coil inductor is disclosed. The inductor includes a substrate; a set of lower electrically conductive traces positioned on the substrate; a core placed over the lower traces; a set of side electrically conductive traces laid on the core and the lower traces; and a set of upper electrically conductive traces attached to the side traces so as to form the inductor. Fabrication of the inductor includes the steps of forming a set of lower traces on a substrate; positioning a core over the lower traces; forming a set of side traces on the core; connecting the side traces to the lower traces; forming a set of upper traces on the core; and connecting the upper traces to the side traces so as to form a coil structure.
Three-dimensional polarization algebra.
R Sheppard, Colin J; Castello, Marco; Diaspro, Alberto
2016-10-01
If light is focused or collected with a high numerical aperture lens, as may occur in imaging and optical encryption applications, polarization should be considered in three dimensions (3D). The matrix algebra of polarization behavior in 3D is discussed. It is useful to convert between the Mueller matrix and two different Hermitian matrices, representing an optical material or system, which are in the literature. Explicit transformation matrices for converting the column vector form of these different matrices are extended to the 3D case, where they are large (81×81) but can be generated using simple rules. It is found that there is some advantage in using a generalization of the Chandrasekhar phase matrix treatment, rather than that based on Gell-Mann matrices, as the resultant matrices are of simpler form and reduce to the two-dimensional case more easily. Explicit expressions are given for 3D complex field components in terms of Chandrasekhar-Stokes parameters.
Two-dimensional capillary origami
NASA Astrophysics Data System (ADS)
Brubaker, N. D.; Lega, J.
2016-01-01
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid.
Three-dimensional aromatic networks.
Toyota, Shinji; Iwanaga, Tetsuo
2014-01-01
Three-dimensional (3D) networks consisting of aromatic units and linkers are reviewed from various aspects. To understand principles for the construction of such compounds, we generalize the roles of building units, the synthetic approaches, and the classification of networks. As fundamental compounds, cyclophanes with large aromatic units and aromatic macrocycles with linear acetylene linkers are highlighted in terms of transannular interactions between aromatic units, conformational preference, and resolution of chiral derivatives. Polycyclic cage compounds are constructed from building units by linkages via covalent bonds, metal-coordination bonds, or hydrogen bonds. Large cage networks often include a wide range of guest species in their cavity to afford novel inclusion compounds. Topological isomers consisting of two or more macrocycles are formed by cyclization of preorganized species. Some complicated topological networks are constructed by self-assembly of simple building units.
Three-dimensional vortex methods
NASA Astrophysics Data System (ADS)
Greengard, C. A.
1984-08-01
Reformulations of the filament method and of the method of Beale and Majda show them to be very similar algorithms. The method of Anderson in which vorticity is evaluated by the exact differentiation of the approximate velocity field is discussed. It is shown that, in the inviscid version of this algorithm, each approximate vector of vorticity remains tangent to a material curve moving with the computed flow, with magnitude proportional to the stretching of this vortex line. It is explained that the expanding core vortex method converges to a system of equations different from the Navier-Stokes equations. Computations with the filament method of the inviscid interaction of two vortex rings are reported, both with single filaments in each ring and with a fully three-dimensional discretization of vorticity. The dependence on parameters is discussed, and convergence of the computed solutions is observed.
ERIC Educational Resources Information Center
Zoreda, Margaret Lee
This paper discusses Wilga Rivers' seven language teaching objectives. Particular focus is on the following three language teaching objectives: (1) giving students the experience of expressing themselves linguistically and culturally in a context different from that in which they grew up; (2) fostering students' understanding of other peoples'…
Dimensionality Reduction Library v 0.2
BROWN, WILLIAM; MARTIN, SHAWN; WATSON, JEAN-PAUL; & JIA, HAIXIA
2009-06-12
Dimensionality Reduction Library is a C++ library for dimensionality reduction. In the context of this library, dimensionality reduction is considered to consist of 1)estimation of the intrinsic dimensionality using sampled data, 2) Finding maps that reduce the diemsionality of data (forward map) or increase the dimensionality of data (reverse map) and 3) mapping arbitray coordiantes to high and low dimensionalities. The library is intended toprovide a consistent interface to multiple dimensionality reduction algorithms with an efficient C++ interface that runs efficiently on multicore architectures. A few routines have been optimized with an option for GPU acceleration or distributed computation. Currently the library offers intrinsic dimensionality estimation using point-PCA reconstruction error and/ residual variance. The following dimensionality reduction methods have been implemented: Principal Component Analysis Multidimensional Scaling Locally Linear Embedding IsoMap Autoencoder Neutral Networks An executable is also supplied that can be built to allow for command-line access to the library routines. A description for an applciation of the library for molecular structure analysis has been published.
One- and two-dimensional hydrogen atoms
NASA Astrophysics Data System (ADS)
Hassoun, G. Q.
1981-02-01
Certain one- and two-dimensional reductions of the three-dimensional Schrödinger equation of the hydrogen atom are considered. These reductions are carried out from the point of view of the two common sets of space coordinates: Cartesian and spherical. The resulting systems have features that relate more readily to the old quantum theory models of Bohr and Sommerfeld than the general three-dimensional hydrogen atom. Furthermore, the considerations yield interesting insights into the quantum mechanics of the hydrogen atom and may serve as helpful intermediary preparation, in an introductory presentation of the subject, for the unreduced three-dimensional case.
Dimensional Hierarchy of Fermionic Interacting Topological Phases
NASA Astrophysics Data System (ADS)
Queiroz, Raquel; Khalaf, Eslam; Stern, Ady
2016-11-01
We present a dimensional reduction argument to derive the classification reduction of fermionic symmetry protected topological phases in the presence of interactions. The dimensional reduction proceeds by relating the topological character of a d -dimensional system to the number of zero-energy bound states localized at zero-dimensional topological defects present at its surface. This correspondence leads to a general condition for symmetry preserving interactions that render the system topologically trivial, and allows us to explicitly write a quartic interaction to this end. Our reduction shows that all phases with topological invariant smaller than n are topologically distinct, thereby reducing the noninteracting Z classification to Zn.
Equivariant dimensional reduction and quiver gauge theories
NASA Astrophysics Data System (ADS)
Dolan, Brian P.; Szabo, Richard J.
2011-09-01
We review recent applications of equivariant dimensional reduction techniques to the construction of Yang-Mills-Higgs-Dirac theories with dynamical mass generation and exactly massless chiral fermions.
Sparse High Dimensional Models in Economics
Fan, Jianqing; Lv, Jinchi; Qi, Lei
2010-01-01
This paper reviews the literature on sparse high dimensional models and discusses some applications in economics and finance. Recent developments of theory, methods, and implementations in penalized least squares and penalized likelihood methods are highlighted. These variable selection methods are proved to be effective in high dimensional sparse modeling. The limits of dimensionality that regularization methods can handle, the role of penalty functions, and their statistical properties are detailed. Some recent advances in ultra-high dimensional sparse modeling are also briefly discussed. PMID:22022635
Dielectric response of metal/SrTiO{sub 3}/two-dimensional electron liquid heterostructures
Mikheev, Evgeny; Raghavan, Santosh; Stemmer, Susanne
2015-08-17
Maximizing the effective dielectric constant of the gate dielectric stack is important for electrostatically controlling high carrier densities inherent to strongly correlated materials. SrTiO{sub 3} is uniquely suited for this purpose, given its extremely high dielectric constant, which can reach 10{sup 4}. Here, we present a systematic study of the thickness dependence of the dielectric response and leakage of SrTiO{sub 3} that is incorporated into a vertical structure on a high-carrier-density two-dimensional electron liquid (2DEL). A simple model can be used to interpret the data. The results show a need for improved interface control in the design of metal/SrTiO{sub 3}/2DEL devices.
Mapping two-dimensional polar active fluids to two-dimensional soap and one-dimensional sandblasting
NASA Astrophysics Data System (ADS)
Chen, Leiming; Lee, Chiu Fan; Toner, John
2016-07-01
Active fluids and growing interfaces are two well-studied but very different non-equilibrium systems. Each exhibits non-equilibrium behaviour distinct from that of their equilibrium counterparts. Here we demonstrate a surprising connection between these two: the ordered phase of incompressible polar active fluids in two spatial dimensions without momentum conservation, and growing one-dimensional interfaces (that is, the 1+1-dimensional Kardar-Parisi-Zhang equation), in fact belong to the same universality class. This universality class also includes two equilibrium systems: two-dimensional smectic liquid crystals, and a peculiar kind of constrained two-dimensional ferromagnet. We use these connections to show that two-dimensional incompressible flocks are robust against fluctuations, and exhibit universal long-ranged, anisotropic spatio-temporal correlations of those fluctuations. We also thereby determine the exact values of the anisotropy exponent ζ and the roughness exponents χx,y that characterize these correlations.
Chen, Leiming; Lee, Chiu Fan; Toner, John
2016-07-25
Active fluids and growing interfaces are two well-studied but very different non-equilibrium systems. Each exhibits non-equilibrium behaviour distinct from that of their equilibrium counterparts. Here we demonstrate a surprising connection between these two: the ordered phase of incompressible polar active fluids in two spatial dimensions without momentum conservation, and growing one-dimensional interfaces (that is, the 1+1-dimensional Kardar-Parisi-Zhang equation), in fact belong to the same universality class. This universality class also includes two equilibrium systems: two-dimensional smectic liquid crystals, and a peculiar kind of constrained two-dimensional ferromagnet. We use these connections to show that two-dimensional incompressible flocks are robust against fluctuations, and exhibit universal long-ranged, anisotropic spatio-temporal correlations of those fluctuations. We also thereby determine the exact values of the anisotropy exponent ζ and the roughness exponents χx,y that characterize these correlations.
Three Dimensional Illustrating--Three-Dimensional Vision and Deception of Sensibility
ERIC Educational Resources Information Center
Szállassy, Noémi; Gánóczy, Anita; Kriska, György
2009-01-01
The wide-spread digital photography and computer use gave the opportunity for everyone to make three-dimensional pictures and to make them public. The new opportunities with three-dimensional techniques give chance for the birth of new artistic photographs. We present in detail the biological roots of three-dimensional visualization, the phenomena…
Three-Dimensional Co-Culture Process
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J. (Inventor); Wolf, David A. (Inventor)
1997-01-01
By the process of the present invention a variety of cells may be co-cultured to produce tissue which has 3-dimensionality and had some of the characteristics of in vivo tissue. The process provides enhanced 3-dimensional tissue which creates a multicellular organoid differentiation model.
Algorithmic dimensionality reduction for molecular structure analysis.
Brown, W Michael; Martin, Shawn; Pollock, Sara N; Coutsias, Evangelos A; Watson, Jean-Paul
2008-08-14
Dimensionality reduction approaches have been used to exploit the redundancy in a Cartesian coordinate representation of molecular motion by producing low-dimensional representations of molecular motion. This has been used to help visualize complex energy landscapes, to extend the time scales of simulation, and to improve the efficiency of optimization. Until recently, linear approaches for dimensionality reduction have been employed. Here, we investigate the efficacy of several automated algorithms for nonlinear dimensionality reduction for representation of trans, trans-1,2,4-trifluorocyclo-octane conformation--a molecule whose structure can be described on a 2-manifold in a Cartesian coordinate phase space. We describe an efficient approach for a deterministic enumeration of ring conformations. We demonstrate a drastic improvement in dimensionality reduction with the use of nonlinear methods. We discuss the use of dimensionality reduction algorithms for estimating intrinsic dimensionality and the relationship to the Whitney embedding theorem. Additionally, we investigate the influence of the choice of high-dimensional encoding on the reduction. We show for the case studied that, in terms of reconstruction error root mean square deviation, Cartesian coordinate representations and encodings based on interatom distances provide better performance than encodings based on a dihedral angle representation.
Dimensionality reduction in epidemic spreading models
NASA Astrophysics Data System (ADS)
Frasca, M.; Rizzo, A.; Gallo, L.; Fortuna, L.; Porfiri, M.
2015-09-01
Complex dynamical systems often exhibit collective dynamics that are well described by a reduced set of key variables in a low-dimensional space. Such a low-dimensional description offers a privileged perspective to understand the system behavior across temporal and spatial scales. In this work, we propose a data-driven approach to establish low-dimensional representations of large epidemic datasets by using a dimensionality reduction algorithm based on isometric features mapping (ISOMAP). We demonstrate our approach on synthetic data for epidemic spreading in a population of mobile individuals. We find that ISOMAP is successful in embedding high-dimensional data into a low-dimensional manifold, whose topological features are associated with the epidemic outbreak. Across a range of simulation parameters and model instances, we observe that epidemic outbreaks are embedded into a family of closed curves in a three-dimensional space, in which neighboring points pertain to instants that are close in time. The orientation of each curve is unique to a specific outbreak, and the coordinates correlate with the number of infected individuals. A low-dimensional description of epidemic spreading is expected to improve our understanding of the role of individual response on the outbreak dynamics, inform the selection of meaningful global observables, and, possibly, aid in the design of control and quarantine procedures.
Measuring Monotony in Two-Dimensional Samples
ERIC Educational Resources Information Center
Kachapova, Farida; Kachapov, Ilias
2010-01-01
This note introduces a monotony coefficient as a new measure of the monotone dependence in a two-dimensional sample. Some properties of this measure are derived. In particular, it is shown that the absolute value of the monotony coefficient for a two-dimensional sample is between /"r"/ and 1, where "r" is the Pearson's…
Teleportation schemes in infinite dimensional Hilbert spaces
Fichtner, Karl-Heinz; Freudenberg, Wolfgang; Ohya, Masanori
2005-10-01
The success of quantum mechanics is due to the discovery that nature is described in infinite dimension Hilbert spaces, so that it is desirable to demonstrate the quantum teleportation process in a certain infinite dimensional Hilbert space. We describe the teleportation process in an infinite dimensional Hilbert space by giving simple examples.
Marquez, Francisco; Rein, Charles R.; Arias, Oswaldo
1955-01-01
This report deals with the geographical distribution, prevalence, epidemiology, etiology, serological, clinical, and histopathological features, and treatment of mal del pinto, or pinta, in Mexico. Repository penicillin preparations (PAM and Panbiotic) have been found highly effective in the treatment of this endemic, non-venereal treponematosis. ImagesFIG. 1FIG. 2FIG. 3FIG. 4FIG. 5FIG. 6FIG. 7FIG. 8 PMID:13260889
Extra-dimensional models on the lattice
Knechtli, Francesco; Rinaldi, Enrico
2016-08-05
In this paper we summarize the ongoing effort to study extra-dimensional gauge theories with lattice simulations. In these models the Higgs field is identified with extra-dimensional components of the gauge field. The Higgs potential is generated by quantum corrections and is protected from divergences by the higher dimensional gauge symmetry. Dimensional reduction to four dimensions can occur through compactification or localization. Gauge-Higgs unification models are often studied using perturbation theory. Numerical lattice simulations are used to go beyond these perturbative expectations and to include nonperturbative effects. We describe the known perturbative predictions and their fate in the strongly-coupled regime formore » various extra-dimensional models.« less
Three-dimensional metallic boron nitride.
Zhang, Shunhong; Wang, Qian; Kawazoe, Yoshiyuki; Jena, Puru
2013-12-04
Boron nitride (BN) and carbon are chemical analogues of each other and share similar structures such as one-dimensional nanotubes, two-dimensional nanosheets characterized by sp(2) bonding, and three-dimensional diamond structures characterized by sp(3) bonding. However, unlike carbon which can be metallic in one, two, and three dimensions, BN is an insulator, irrespective of its structure and dimensionality. On the basis of state-of-the-art theoretical calculations, we propose a tetragonal phase of BN which is both dynamically stable and metallic. Analysis of its band structure, density of states, and electron localization function confirms the origin of the metallic behavior to be due to the delocalized B 2p electrons. The metallicity exhibited in the studied three-dimensional BN structures can lead to materials beyond conventional ceramics as well as to materials with potential for applications in electronic devices.
Multi-dimensional edge detection operators
NASA Astrophysics Data System (ADS)
Youn, Sungwook; Lee, Chulhee
2014-05-01
In remote sensing, modern sensors produce multi-dimensional images. For example, hyperspectral images contain hundreds of spectral images. In many image processing applications, segmentation is an important step. Traditionally, most image segmentation and edge detection methods have been developed for one-dimensional images. For multidimensional images, the output images of spectral band images are typically combined under certain rules or using decision fusions. In this paper, we proposed a new edge detection algorithm for multi-dimensional images using secondorder statistics. First, we reduce the dimension of input images using the principal component analysis. Then we applied multi-dimensional edge detection operators that utilize second-order statistics. Experimental results show promising results compared to conventional one-dimensional edge detectors such as Sobel filter.
Two Dimensional Plasmonic Cavities on Moire Surfaces
NASA Astrophysics Data System (ADS)
Balci, Sinan; Kocabas, Askin; Karabiyik, Mustafa; Kocabas, Coskun; Aydinli, Atilla
2010-03-01
We investigate surface plasmon polariton (SPP) cavitiy modes on two dimensional Moire surfaces in the visible spectrum. Two dimensional hexagonal Moire surface can be recorded on a photoresist layer using Interference lithography (IL). Two sequential exposures at slightly different angles in IL generate one dimensional Moire surfaces. Further sequential exposure for the same sample at slightly different angles after turning the sample 60 degrees around its own axis generates two dimensional hexagonal Moire cavity. Spectroscopic reflection measurements have shown plasmonic band gaps and cavity states at all the azimuthal angles (omnidirectional cavity and band gap formation) investigated. The plasmonic band gap edge and the cavity states energies show six fold symmetry on the two dimensional Moire surface as measured in reflection measurements.
Two-dimensional Quantum Gravity
NASA Astrophysics Data System (ADS)
Rolf, Juri
1998-10-01
This Ph.D. thesis pursues two goals: The study of the geometrical structure of two-dimensional quantum gravity and in particular its fractal nature. To address these questions we review the continuum formalism of quantum gravity with special focus on the scaling properties of the theory. We discuss several concepts of fractal dimensions which characterize the extrinsic and intrinsic geometry of quantum gravity. This work is partly based on work done in collaboration with Jan Ambjørn, Dimitrij Boulatov, Jakob L. Nielsen and Yoshiyuki Watabiki (1997). The other goal is the discussion of the discretization of quantum gravity and to address the so called quantum failure of Regge calculus. We review dynamical triangulations and show that it agrees with the continuum theory in two dimensions. Then we discuss Regge calculus and prove that a continuum limit cannot be taken in a sensible way and that it does not reproduce continuum results. This work is partly based on work done in collaboration with Jan Ambjørn, Jakob L. Nielsen and George Savvidy (1997).
Three dimensional magnetic abacus memory
Zhang, ShiLei; Zhang, JingYan; Baker, Alexander A.; Wang, ShouGuo; Yu, GuangHua; Hesjedal, Thorsten
2014-01-01
Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme. It is inspired by the idea of second quantisation, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered ‘quantised' Hall voltage, each representing a count of the spin-up and spin-down layers in the stack. This new memory system further allows for both flexible scaling of the system and fast communication among cells. The magnetic abacus provides a promising approach for future nonvolatile 3D magnetic random access memory. PMID:25146338
Three-dimensional colloidal lithography.
Nagai, Hironori; Poteet, Austen; Zhang, Xu A; Chang, Chih-Hao
2017-03-24
Light interactions with colloidal particles can generate a variety of complex three-dimensional (3D) intensity patterns, which can be utilized for nanolithography. The study of particle-light interactions can add more types of intensity patterns by manipulating key factors. Here we investigate a novel 3D nanolithography technique using colloidal particles under two-beam coherent illuminations. The fabricated 3D nanostructures are hollow, nested within periodic structures, and possess multiple chamber geometry. The effects of incident angles and particle size on the fabricated nanostructures were examined. The relative phase shift between particle position and interference pattern is identified as another significant parameter influencing the resultant nanostructures. A numerical model has been developed to show the evolution of nanostructure geometry with phase shifts, and experimental studies confirm the simulation results. Through the introduction of single colloidal particles, the fabrication capability of Lloyd's mirror interference can now be extended to fabrication of 3D nanostructure with complex shell geometry. The fabricated hollow nanostructures with grating background could find potential applications in the area of photonics, drug delivery, and nanofluidics.
Three-dimensional laser microvision.
Shimotahira, H; Iizuka, K; Chu, S C; Wah, C; Costen, F; Yoshikuni, Y
2001-04-10
A three-dimensional (3-D) optical imaging system offering high resolution in all three dimensions, requiring minimum manipulation and capable of real-time operation, is presented. The system derives its capabilities from use of the superstructure grating laser source in the implementation of a laser step frequency radar for depth information acquisition. A synthetic aperture radar technique was also used to further enhance its lateral resolution as well as extend the depth of focus. High-speed operation was made possible by a dual computer system consisting of a host and a remote microcomputer supported by a dual-channel Small Computer System Interface parallel data transfer system. The system is capable of operating near real time. The 3-D display of a tunneling diode, a microwave integrated circuit, and a see-through image taken by the system operating near real time are included. The depth resolution is 40 mum; lateral resolution with a synthetic aperture approach is a fraction of a micrometer and that without it is approximately 10 mum.
Three-Dimensional Laser Microvision
NASA Astrophysics Data System (ADS)
Shimotahira, Hiroshi; Iizuka, Keigo; Chu, Sun-Chun; Wah, Christopher; Costen, Furnie; Yoshikuni, Yuzo
2001-04-01
A three-dimensional (3-D) optical imaging system offering high resolution in all three dimensions, requiring minimum manipulation and capable of real-time operation, is presented. The system derives its capabilities from use of the superstructure grating laser source in the implementation of a laser step frequency radar for depth information acquisition. A synthetic aperture radar technique was also used to further enhance its lateral resolution as well as extend the depth of focus. High-speed operation was made possible by a dual computer system consisting of a host and a remote microcomputer supported by a dual-channel Small Computer System Interface parallel data transfer system. The system is capable of operating near real time. The 3-D display of a tunneling diode, a microwave integrated circuit, and a see-through image taken by the system operating near real time are included. The depth resolution is 40 m; lateral resolution with a synthetic aperture approach is a fraction of a micrometer and that without it is approximately 10 m.
Three-dimensional colloidal lithography
NASA Astrophysics Data System (ADS)
Nagai, Hironori; Poteet, Austen; Zhang, Xu A.; Chang, Chih-Hao
2017-03-01
Light interactions with colloidal particles can generate a variety of complex three-dimensional (3D) intensity patterns, which can be utilized for nanolithography. The study of particle–light interactions can add more types of intensity patterns by manipulating key factors. Here we investigate a novel 3D nanolithography technique using colloidal particles under two-beam coherent illuminations. The fabricated 3D nanostructures are hollow, nested within periodic structures, and possess multiple chamber geometry. The effects of incident angles and particle size on the fabricated nanostructures were examined. The relative phase shift between particle position and interference pattern is identified as another significant parameter influencing the resultant nanostructures. A numerical model has been developed to show the evolution of nanostructure geometry with phase shifts, and experimental studies confirm the simulation results. Through the introduction of single colloidal particles, the fabrication capability of Lloyd’s mirror interference can now be extended to fabrication of 3D nanostructure with complex shell geometry. The fabricated hollow nanostructures with grating background could find potential applications in the area of photonics, drug delivery, and nanofluidics.
The addictive dimensionality of obesity.
Volkow, Nora D; Wang, Gene-Jack; Tomasi, Dardo; Baler, Ruben D
2013-05-01
Our brains are hardwired to respond and seek immediate rewards. Thus, it is not surprising that many people overeat, which in some can result in obesity, whereas others take drugs, which in some can result in addiction. Though food intake and body weight are under homeostatic regulation, when highly palatable food is available, the ability to resist the urge to eat hinges on self-control. There is no homeostatic regulator to check the intake of drugs (including alcohol); thus, regulation of drug consumption is mostly driven by self-control or unwanted effects (i.e., sedation for alcohol). Disruption in both the neurobiological processes that underlie sensitivity to reward and those that underlie inhibitory control can lead to compulsive food intake in some individuals and compulsive drug intake in others. There is increasing evidence that disruption of energy homeostasis can affect the reward circuitry and that overconsumption of rewarding food can lead to changes in the reward circuitry that result in compulsive food intake akin to the phenotype seen with addiction. Addiction research has produced new evidence that hints at significant commonalities between the neural substrates underlying the disease of addiction and at least some forms of obesity. This recognition has spurred a healthy debate to try and ascertain the extent to which these complex and dimensional disorders overlap and whether or not a deeper understanding of the crosstalk between the homeostatic and reward systems will usher in unique opportunities for prevention and treatment of both obesity and drug addiction.
Schiek, Richard
2006-06-20
A method of generating two-dimensional masks from a three-dimensional model comprises providing a three-dimensional model representing a micro-electro-mechanical structure for manufacture and a description of process mask requirements, reducing the three-dimensional model to a topological description of unique cross sections, and selecting candidate masks from the unique cross sections and the cross section topology. The method further can comprise reconciling the candidate masks based on the process mask requirements description to produce two-dimensional process masks.
The eleven-dimensional uplift of four-dimensional supersymmetric RG flow
NASA Astrophysics Data System (ADS)
Ahn, Changhyun
2012-06-01
The squashed and stretched 7-dimensional internal metric preserving U(1)×U(1)×U(1)R symmetry possesses an Einstein-Kahler 2-fold which is a base manifold of 5-dimensional Sasaki-Einstein L space. The r(transverse to the domain wall)-dependence of the two 4-dimensional supergravity fields, that play the role of geometric parameters for squashing and stretching, makes the 11-dimensional Einstein-Maxwell equations consistent not only at the two critical points but also along the whole N=2 supersymmetric RG flow connecting them. The Ricci tensor of the solution has a common feature with the previous three 11-dimensional solutions. The 4-forms preserve only U(1)R symmetry for other generic parameters of the metric. We find an exact solution to the 11-dimensional Einstein-Maxwell equations corresponding to the lift of the 4-dimensional supersymmetric RG flow.
Four-Dimensional Graded Consciousness
Jonkisz, Jakub; Wierzchoń, Michał; Binder, Marek
2017-01-01
Both the multidimensional phenomenon and the polysemous notion of consciousness continue to prove resistant to consistent measurement and unambiguous definition. This is hardly surprising, given that there is no agreement even as regards the most fundamental issues they involve. One of the basic disagreements present in the continuing debate about consciousness pertains to its gradational nature. The general aim of this article is to show how consciousness might be graded and multidimensional at the same time. We therefore focus on the question of what it is, exactly, that is or could be graded in cases of consciousness, and how we can measure it. Ultimately, four different gradable aspects of consciousness will be described: quality, abstractness, complexity and usefulness, which belong to four different dimensions, these being understood, respectively, as phenomenal, semantic, physiological, and functional. Consequently, consciousness may be said to vary with respect to phenomenal quality, semantic abstraction, physiological complexity, and functional usefulness. It is hoped that such a four-dimensional approach will help to clarify and justify claims about the hierarchical nature of consciousness. The approach also proves explanatorily advantageous, as it enables us not only to draw attention to certain new and important differences in respect of subjective measures of awareness and to justify how a given creature may be ranked higher in one dimension of consciousness and lower in terms of another, but also allows for innovative explanations of a variety of well-known phenomena (amongst these, the interpretations of blindsight and locked-in syndrome will be briefly outlined here). Moreover, a 4D framework makes possible many predictions and hypotheses that may be experimentally tested (We point out a few such possibilities pertaining to interdimensional dependencies). PMID:28377738
Three-dimensional head anthropometric analysis
NASA Astrophysics Data System (ADS)
Enciso, Reyes; Shaw, Alex M.; Neumann, Ulrich; Mah, James
2003-05-01
Currently, two-dimensional photographs are most commonly used to facilitate visualization, assessment and treatment of facial abnormalities in craniofacial care but are subject to errors because of perspective, projection, lack metric and 3-dimensional information. One can find in the literature a variety of methods to generate 3-dimensional facial images such as laser scans, stereo-photogrammetry, infrared imaging and even CT however each of these methods contain inherent limitations and as such no systems are in common clinical use. In this paper we will focus on development of indirect 3-dimensional landmark location and measurement of facial soft-tissue with light-based techniques. In this paper we will statistically evaluate and validate a current three-dimensional image-based face modeling technique using a plaster head model. We will also develop computer graphics tools for indirect anthropometric measurements in a three-dimensional head model (or polygonal mesh) including linear distances currently used in anthropometry. The measurements will be tested against a validated 3-dimensional digitizer (MicroScribe 3DX).
Three-dimensional co-culture process
NASA Technical Reports Server (NTRS)
Wolf, David A. (Inventor); Goodwin, Thomas J. (Inventor)
1992-01-01
The present invention relates to a 3-dimensional co-culture process, more particularly to methods or co-culturing at least two types of cells in a culture environment, either in space or in unit gravity, with minimum shear stress, freedom for 3-dimensional spatial orientation of the suspended particles and localization of particles with differing or similar sedimentation properties in a similar spatial region to form 3-dimensional tissue-like structures. Several examples of multicellular 3-dimensional experiences are included. The protocol and procedure are also set forth. The process allows simultaneous culture of multiple cell types and supporting substrates in a manner which does not disrupt the 3-dimensional spatial orientation of these components. The co-cultured cells cause a mutual induction effect which mimics the natural hormonal signals and cell interactions found in the intact organism. This causes the tissues to differentiate and form higher 3-dimensional structures such as glands, junctional complexes polypoid geometries, and microvilli which represent the corresponding in-vitro structures to a greater degree than when the cell types are cultured individually or by conventional processes. This process was clearly demonstrated for the case of two epithelial derived colon cancer lines, each co-cultured with normal human fibroblasts and with microcarrier bead substrates. The results clearly demonstrate increased 3-dimensional tissue-like structure and biochemical evidence of an increased differentiation state. With the present invention a variety of cells may be co-cultured to produce tissue which has 3-dimensionality and has some of the characteristics of in-vitro tissue. The process provides enhanced 3-dimensional tissue which create a multicellular organoid differentiation model.
Quantifying Photonic High-Dimensional Entanglement
NASA Astrophysics Data System (ADS)
Martin, Anthony; Guerreiro, Thiago; Tiranov, Alexey; Designolle, Sébastien; Fröwis, Florian; Brunner, Nicolas; Huber, Marcus; Gisin, Nicolas
2017-03-01
High-dimensional entanglement offers promising perspectives in quantum information science. In practice, however, the main challenge is to devise efficient methods to characterize high-dimensional entanglement, based on the available experimental data which is usually rather limited. Here we report the characterization and certification of high-dimensional entanglement in photon pairs, encoded in temporal modes. Building upon recently developed theoretical methods, we certify an entanglement of formation of 2.09(7) ebits in a time-bin implementation, and 4.1(1) ebits in an energy-time implementation. These results are based on very limited sets of local measurements, which illustrates the practical relevance of these methods.
Low-dimensional Te-based nanostructures.
Wang, Qisheng; Safdar, Muhammad; Wang, Zhenxing; He, Jun
2013-07-26
Low-dimensional Te-based nanomaterials have attracted intense attention in recent years due to their novel physical properties including surface-state effects, photoelectricity, phase changes, and thermoelectricity. The recent development of synthesis methods of low-dimensional Te-based nanostructures is reviewed, such as van der Waals expitaxial growth and template-assisted solution-phase deposition. In addition, the unique properties of these materials, such as tunable surface states, high photoresponsivity, fast phase change, and high thermoelectricity figure of merit, are reviewed. The potential applications of low-dimensional Te-based nanostructures are broad but particularly promising for nanoscale electronic and photoelectronic devices.
On dimensional reduction of magical supergravity theories
NASA Astrophysics Data System (ADS)
Kan, Naoto; Mizoguchi, Shun'ya
2016-11-01
We prove, by a direct dimensional reduction and an explicit construction of the group manifold, that the nonlinear sigma model of the dimensionally reduced three-dimensional A = R magical supergravity is F 4 (+ 4) / (USp (6) × SU (2)). This serves as a basis for the solution generating technique in this supergravity as well as allows to give the Lie algebraic characterizations to some of the parameters and functions in the original D = 5 Lagrangian. Generalizations to other magical supergravities are also discussed.
Three-dimensional velocity measurements using LDA
NASA Astrophysics Data System (ADS)
Buchhave, Preben
The design requirements for and development of an LDA that measures the three components of the fluid velocity vector are described. The problems encountered in LDA measurements in highly turbulent flows, multivariate response, velocity bias, spatial resolution, temporal resolution, and dynamic range, are discussed. The use of the fringe and/or the reference beam methods to measure the three velocity components, and the use of color, frequency shift, and polarization to separate three velocity projections are examined. Consideration is given to the coordinate transformation, the presentation of three-dimensional LDA data, and the possibility of three-dimensional bias correction. Procedures for conducting three-dimensional LDA measurements are proposed.
Lyapunov exponents for infinite dimensional dynamical systems
NASA Technical Reports Server (NTRS)
Mhuiris, Nessan Mac Giolla
1987-01-01
Classically it was held that solutions to deterministic partial differential equations (i.e., ones with smooth coefficients and boundary data) could become random only through one mechanism, namely by the activation of more and more of the infinite number of degrees of freedom that are available to such a system. It is only recently that researchers have come to suspect that many infinite dimensional nonlinear systems may in fact possess finite dimensional chaotic attractors. Lyapunov exponents provide a tool for probing the nature of these attractors. This paper examines how these exponents might be measured for infinite dimensional systems.
Low-dimensional chaos in turbulence
NASA Technical Reports Server (NTRS)
Vastano, John A.
1989-01-01
Direct numerical simulations are being performed on two different fluid flows in an attempt to discover the mechanism underlying the transition to turbulence in each. The first system is Taylor-Couette flow; the second, two-dimensional flow over an airfoil. Both flows exhibit a gradual transition to high-dimensional turbulence through low-dimensional chaos. The hope is that the instabilities leading to chaos will be easier to relate to physical processes in this case, and that the understanding of these mechanisms can then be applied to a wider array of turbulent systems.
Three-dimensional stochastic vortex flows
NASA Astrophysics Data System (ADS)
Esposito, R.; Pulvirenti, M.
1989-08-01
It is well known that the dynamics of point vortices approximate, under suitable limits, the two-dimensional Euler flow for an ideal fluid. To find particle models for three-dimensional flows is a more intricate problem. A stochastic version of the algorithm introduced by Beale amd Maida (1982) for simulating the behavior of a three-dimensional Euler flow is introduced here, and convergence to the Navier-Stokes (NS) flow in R exp 3 is shown. The result is based on a stochastic Lagrangian picture of the NS equations.
Two Dimensional Mechanism for Insect Hovering
Jane Wang, Z.
2000-09-04
Resolved computation of two dimensional insect hovering shows for the first time that a two dimensional hovering motion can generate enough lift to support a typical insect weight. The computation reveals a two dimensional mechanism of creating a downward dipole jet of counterrotating vortices, which are formed from leading and trailing edge vortices. The vortex dynamics further elucidates the role of the phase relation between the wing translation and rotation in lift generation and explains why the instantaneous forces can reach a periodic state after only a few strokes. The model predicts the lower limits in Reynolds number and amplitude above which the averaged forces are sufficient. (c) 2000 The American Physical Society.
33 CFR 80.1118 - Marina Del Rey, CA.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Marina Del Rey, CA. 80.1118... NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1118 Marina Del Rey, CA. (a) A line drawn from Marina Del Rey Breakwater South Light 1 to Marina Del Rey Light 4. (b) A line drawn from Marina Del...
Three-dimensional patterning methods and related devices
Putnam, Morgan C.; Kelzenberg, Michael D.; Atwater, Harry A.; Boettcher, Shannon W.; Lewis, Nathan S.; Spurgeon, Joshua M.; Turner-Evans, Daniel B.; Warren, Emily L.
2016-12-27
Three-dimensional patterning methods of a three-dimensional microstructure, such as a semiconductor wire array, are described, in conjunction with etching and/or deposition steps to pattern the three-dimensional microstructure.
Analyzing High-Dimensional Multispectral Data
NASA Technical Reports Server (NTRS)
Lee, Chulhee; Landgrebe, David A.
1993-01-01
In this paper, through a series of specific examples, we illustrate some characteristics encountered in analyzing high- dimensional multispectral data. The increased importance of the second-order statistics in analyzing high-dimensional data is illustrated, as is the shortcoming of classifiers such as the minimum distance classifier which rely on first-order variations alone. We also illustrate how inaccurate estimation or first- and second-order statistics, e.g., from use of training sets which are too small, affects the performance of a classifier. Recognizing the importance of second-order statistics on the one hand, but the increased difficulty in perceiving and comprehending information present in statistics derived from high-dimensional data on the other, we propose a method to aid visualization of high-dimensional statistics using a color coding scheme.
Realisation of 3-dimensional data sets.
NASA Astrophysics Data System (ADS)
Brown, D.; Galsgaard, K.; Ireland, J.; Verwichte, E.; Walsh, R.
The visualisation of three-dimensional objects on two dimensions is a very common problem, but is a tricky one to solve. Every discipline has its way of solving it. The artist uses light-shade interaction, perspective, special colour coding. The architect produces projections of the object. The cartographer uses both colour-coding and shading to represent height elevations. There have been many attempts in the last century by the entertainment industry to produce a three-dimensional illusion, in the fifties it was fashionable to have 3d movies which utilize the anaglyph method. Nowadays one can buy "Magic Eye" postcards which show a hidden three dimensional picture if you stare at it half cross-eyed. This poster attempts to demonstrate how some of these techniques can be applied to three-dimensional data sets that can occur in solar physics.
Dynamic Dimensionality Identification for Quantum Control
NASA Astrophysics Data System (ADS)
Roslund, Jonathan; Rabitz, Herschel
2014-04-01
The control of quantum systems with shaped laser pulses presents a paradox since the relative ease with which solutions are discovered appears incompatible with the enormous variety of pulse shapes accessible with a standard pulse shaper. Quantum landscape theory indicates that the relevant search dimensionality is not dictated by the number of pulse shaper elements, but rather is related to the number of states participating in the controlled dynamics. The actual dimensionality is encoded within the sensitivity of the observed yield to all of the pulse shaper elements. To investigate this proposition, the Hessian matrix is measured for controlled transitions amongst states of atomic rubidium, and its eigendecomposition reveals a dimensionality consistent with that predicted by landscape theory. Additionally, this methodology furnishes a low-dimensional picture that captures the essence of the light-matter interaction and the ensuing system dynamics.
Two-dimensional plasmonic nanosurface for photovoltaics
NASA Astrophysics Data System (ADS)
Polemi, Alessia; Shuford, Kevin L.
2011-12-01
In this paper, we investigate a two-dimensional corrugated plasmonic nanosurface for efficient light trapping in a photovoltaic cell. Inspired by a well-known one-dimensional grating nanosurface, the present configuration is composed of two perpendicular gratings in the metal film that intersect to yield cross-shaped nanoelements. The surface corrugation is then covered by a silicon film. An additional degree of freedom can be introduced into the design by interrupting the grid in both directions. We show that this extra spacing between the array elements can be used to tune the absorption properties of the nanosurface. By including the effect of the solar spectrum, we demonstrate how this two-dimensional configuration is more efficient than its one-dimensional counterpart in terms of the actual short circuit photocurrent density. Finally, we propose possible extensions of this structure design, which can further enhance the solar cell performance.
Second virial coefficient of one dimensional gas
Mijatovic, M.
1982-08-01
The second virial coefficient of a one dimensional gas is calculated using the expressions for the scattering amplitude. The scattering amplitude is chosen in the form of rational function of wave vector.
Two-dimensional generalized Toda lattice
NASA Astrophysics Data System (ADS)
Mikhailov, A. V.; Olshanetsky, M. A.; Perelomov, A. M.
1981-12-01
The zero curvature representation is obtained for the two-dimensional generalized Toda lattices connected with semisimple Lie algebras. The reduction group and conservation laws are found and the mass spectrum is calculated.
One-Dimensional Czedli-Type Islands
ERIC Educational Resources Information Center
Horvath, Eszter K.; Mader, Attila; Tepavcevic, Andreja
2011-01-01
The notion of an island has surfaced in recent algebra and coding theory research. Discrete versions provide interesting combinatorial problems. This paper presents the one-dimensional case with finitely many heights, a topic convenient for student research.
Three Dimensional Optic Tissue Culture and Process
NASA Technical Reports Server (NTRS)
OConnor, Kim C. (Inventor); Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); Aten, Laurie A. (Inventor); Francis, Karen M. (Inventor); Caldwell, Delmar R. (Inventor); Prewett, Tacey L. (Inventor); Fitzgerald, Wendy S. (Inventor)
1999-01-01
A process for artificially producing three-dimensional optic tissue has been developed. The optic cells are cultured in a bioireactor at low shear conditions. The tissue forms as normal, functional tissue grows with tissue organization and extracellular matrix formation.
Three dimensional optic tissue culture and process
NASA Technical Reports Server (NTRS)
Spaulding, Glenn F. (Inventor); Prewett, Tacey L. (Inventor); Goodwin, Thomas J. (Inventor); Francis, Karen M. (Inventor); Cardwell, Delmar R. (Inventor); Oconnor, Kim (Inventor); Fitzgerald, Wendy S. (Inventor); Aten, Laurie A. (Inventor)
1994-01-01
A process for artificially producing three-dimensional optic tissue has been developed. The optic cells are cultured in a bioreactor at low shear conditions. The tissue forms normal, functional tissue organization and extracellular matrix.
Two-dimensional function photonic crystals
NASA Astrophysics Data System (ADS)
Liu, Xiao-Jing; Liang, Yu; Ma, Ji; Zhang, Si-Qi; Li, Hong; Wu, Xiang-Yao; Wu, Yi-Heng
2017-01-01
In this paper, we have studied two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , that can become true easily by electro-optical effect and optical kerr effect. We calculated the band gap structures of TE and TM waves, and found the TE (TM) wave band gaps of function photonic crystals are wider (narrower) than the conventional photonic crystals. For the two-dimensional function photonic crystals, when the dielectric constant functions change, the band gaps numbers, width and position should be changed, and the band gap structures of two-dimensional function photonic crystals can be adjusted flexibly, the needed band gap structures can be designed by the two-dimensional function photonic crystals, and it can be of help to design optical devices.
Factorizations of one-dimensional classical systems
Kuru, Senguel; Negro, Javier
2008-02-15
A class of one-dimensional classical systems is characterized from an algebraic point of view. The Hamiltonians of these systems are factorized in terms of two functions that together with the Hamiltonian itself close a Poisson algebra. These two functions lead directly to two time-dependent integrals of motion from which the phase motions are derived algebraically. The systems so obtained constitute the classical analogues of the well known factorizable one-dimensional quantum mechanical systems.
Two-dimensional order and disorder thermofields
Belvedere, L. V.
2006-11-15
The main objective of this paper was to obtain the two-dimensional order and disorder thermal operators using the Thermofield Bosonization formalism. We show that the general property of the two-dimensional world according with the bosonized Fermi field at zero temperature can be constructed as a product of an order and a disorder variables which satisfy a dual field algebra holds at finite temperature. The general correlation functions of the order and disorder thermofields are obtained.
Finite-dimensional collisionless kinetic theory
NASA Astrophysics Data System (ADS)
Burby, J. W.
2017-03-01
A collisionless kinetic plasma model may often be cast as an infinite-dimensional noncanonical Hamiltonian system. I show that, when this is the case, the model can be discretized in space and particles while preserving its Hamiltonian structure, thereby producing a finite-dimensional Hamiltonian system that approximates the original kinetic model. I apply the general theory to two example systems: the relativistic Vlasov-Maxwell system with spin and a gyrokinetic Vlasov-Maxwell system.
One dimensional representations in quantum optics
NASA Technical Reports Server (NTRS)
Janszky, J.; Adam, P.; Foldesi, I.; Vinogradov, An. V.
1993-01-01
The possibility of representing the quantum states of a harmonic oscillator not on the whole alpha-plane but on its one dimensional manifolds is considered. It is shown that a simple Gaussian distribution along a straight line describes a quadrature squeezed state while a similar Gaussian distribution along a circle leads to the amplitude squeezed state. The connection between the one dimensional representations and the usual Glauber representation is discussed.
Three-dimensional motor schema based navigation
NASA Technical Reports Server (NTRS)
Arkin, Ronald C.
1989-01-01
Reactive schema-based navigation is possible in space domains by extending the methods developed for ground-based navigation found within the Autonomous Robot Architecture (AuRA). Reformulation of two dimensional motor schemas for three dimensional applications is a straightforward process. The manifold advantages of schema-based control persist, including modular development, amenability to distributed processing, and responsiveness to environmental sensing. Simulation results show the feasibility of this methodology for space docking operations in a cluttered work area.
Three-dimensional magnetic field annihilation
NASA Astrophysics Data System (ADS)
Jardine, M.; Allen, H. R.; Grundy, R. E.
1993-11-01
We present a family of three-dimensional nonlinear solutions for magnetic field annihilation in a current sheet, including the effects of resistivity and viscosity. The different members of the family are characterized by the imposed vorticity of the flow that brings the field lines together. Since in a three- dimensional flow the vorticity can be increased by the stretching of vortex lines (an effect that is absent in two dimensions), we find some striking differences to our previous two-dimensional analysis. In both the two-dimensional and three-dimensional analyses, above a certain critical imposed vorticity omegacrit, the flow breaks up into cells with current sheet is completely altered. In the two-dimensional analysis, omegacrit is a steeply increasing function of the viscous Reynolds number R, whereas in the three-dimensional case, it quickly asymptotes to only omegacrit = 2v0/L where v0 and L are the characteristic velocity and length scale of the flow, respectively. The width of the current sheet, which depends on the speed at which field lines are carried into it, also responds differently to an increase in R. In two dimensions, the current sheet narrows for all vorticities, but three dimensions, it narrows when the imposed vorticity is negative and widens when it is positive. Also we find that the current density within the current sheet varies as the nature of the flow is changed, rather than being constant as in the the two-dimensional case. Finally, we find that there is a minimum value of the plasma beta betamin below which the plasma pressure is negative. For the nonsheared (neutral current sheet) case, betamin increases rapidly with the magnetic Reynolds number Rm such that this type of annihilation is only possible for a high-beta plasma. For a sheared magnetic field, however, betamin is much lower, making this type of annihilation more relevant to the sonar corona.
Using Del-1 to Tip the Angiogenic Balance in Endothelial Cells in Modular Constructs
Ciucurel, Ema C.; Vlahos, Alexander E.
2014-01-01
Modular tissue engineering is a method of building vascularized tissue-engineered constructs. Submillimeter-sized collagen pieces (modules) coated with a layer of endothelial cells (EC; vascular component), and with embedded functional cells, are self-assembled into a larger, three-dimensional tissue. In this study, we examined the use of developmental endothelial locus-1 (Del-1), an extracellular matrix protein with proangiogenic properties, as a means of tipping the angiogenic balance in human umbilical vein endothelial cells incorporated in modular tissue-engineered constructs. The motivation was to enhance the vascularization of these constructs upon transplantation in vivo, in this case, without the use of exogenous mesenchymal stromal cells. EC were transduced using a lentiviral construct to overexpress Del-1. The Del-1 EC formed more sprouts in a fibrin gel sprouting assay in vitro compared with eGFP (control) transduced EC, as expected. Del-1 EC had a distinct profile of gene expression (upregulation of matrix metalloproteinase-9 [MMP-9], urokinase-type plasminogen activator [uPA/PLAU], vascular endothelial growth factor [VEGF-A], and intercellular adhesion molecule-1 [ICAM-1]; downregulation of angiopoietin-2 [Ang2]), also supporting the notion of “tipping the angiogenic balance”. On the other hand, contrary to our expectations, when Del-1 EC-coated modules were implanted subcutaneously in a severe combined immunodeficient/beige animal model, the proangiogenic effect of Del-1 was less remarkable. There was only a small increase in the number of blood vessels formed in Del-1 implants compared with the eGFP implants, and only few blood vessels formed at the implant site in both cases. This was presumed due to limited EC survival after transplantation. We speculate that if we could improve EC survival in our study (for example, by adding other prosurvival factors or supporting cells), we would see a greater Del-1-induced angiogenic benefit in vivo as a
Central subspace dimensionality reduction using covariance operators.
Kim, Minyoung; Pavlovic, Vladimir
2011-04-01
We consider the task of dimensionality reduction informed by real-valued multivariate labels. The problem is often treated as Dimensionality Reduction for Regression (DRR), whose goal is to find a low-dimensional representation, the central subspace, of the input data that preserves the statistical correlation with the targets. A class of DRR methods exploits the notion of inverse regression (IR) to discover central subspaces. Whereas most existing IR techniques rely on explicit output space slicing, we propose a novel method called the Covariance Operator Inverse Regression (COIR) that generalizes IR to nonlinear input/output spaces without explicit target slicing. COIR's unique properties make DRR applicable to problem domains with high-dimensional output data corrupted by potentially significant amounts of noise. Unlike recent kernel dimensionality reduction methods that employ iterative nonconvex optimization, COIR yields a closed-form solution. We also establish the link between COIR, other DRR techniques, and popular supervised dimensionality reduction methods, including canonical correlation analysis and linear discriminant analysis. We then extend COIR to semi-supervised settings where many of the input points lack their labels. We demonstrate the benefits of COIR on several important regression problems in both fully supervised and semi-supervised settings.
Transition from a Two-Dimensional Superfluid to a One-Dimensional Mott Insulator
Bergkvist, Sara; Rosengren, Anders; Saers, Robert; Lundh, Emil; Rehn, Magnus; Kastberg, Anders
2007-09-14
A two-dimensional system of atoms in an anisotropic optical lattice is studied theoretically. If the system is finite in one direction, it is shown to exhibit a transition between a two-dimensional superfluid and a one-dimensional Mott insulating chain of superfluid tubes. Monte Carlo simulations are consistent with the expectation that the phase transition is of Kosterlitz-Thouless type. The effect of the transition on experimental time-of-flight images is discussed.
Three-dimensional map construction.
Jenks, G F; Brown, D A
1966-11-18
Three-dimensional maps are useful tools which have been neglected for some time. They shouldbe more commonly used, and familiarity with the techniques discussed in this article should dispel any qualms anyone might ve about needing artistic talent to nstruct them. The saving in time esulting from the use of an anamorphoser provides a further incentive. The anamorphoser transformations discussed above were all prepared by using straight slits, oriented at right angles to each other and placed so that all planes of the elements were parallel to each other. It is possible to vary these conditions in an infinite number of ways and thereby produce nonparallel tranceformations. Some of these variations are illustrated in Fig. 10. All the illustrations in Fig. 10 are transformations of the planimetric weather map shown in Fig. 8A. The variations used for the maps of Fig. 10 are as follows. (A) All planes parallel, with a curved rear slit; (B) all planes parallel, with curved slits front and rear; ( C) all planes parallel, with S-shaped rear slit; (D) all planes parallel, with an undulating rear slit; (E) all planes parallel, with curved front and undulating rear slit; (F) plane of the original rotated on the horizontal axis-both slits curved; (G) plane of the original rotated on thevertical axis- both slits curved; (H) plane of the original rotated on the horizontal axis -both slits straight. These are only a few of the many transformations which can be made with an anamorphoser, butthey do point toward some interesting possibilities. For example, it appears that maps based onone projection might be altered to satisfy the coordinates of a completely different projection. Note, for example, the change of parallels from concave to convex curves (Figs. 8A and 10A) and the change from converging meridians to diverging meridians (Figs. 8A and l0G). Similarly, the grids of maps B, F, and H of Fig. 10 approximate projections which are quite different from the original. Other
[Two-dimensional and three-dimensional CT diagnosis of alimentary tract].
Shiraga, N
2001-10-01
The recent development of multidetector-row CT(MDCT) has made it possible to obtain three-dimensional images of the alimentary tract that offer new diagnostic potential. In its two-dimensional diagnosis of the alimentary tract, MDCT has also changed the concept of the oral contrast agent. Before MDCT, we routinely used a positive contrast agent to distinguish the stomach and intestine from other organs and masses. The excellent slice profile acquired by MDCT can distinguish the alimentary tract and depict abnormal findings without the use of a positive contrast agent. With the use of an intravenous contrast medium, the alimentary tract itself, alimentary tumors, and inflammatory disease are well demarcated with water and air. Moreover, the combination of two-dimensional and three-dimensional diagnostic images makes it possible to detect and assess early gastric and colonic cancers as conventional gastroscopy and colonoscopy. Although the lack of texture information is one of the disadvantages of three-dimensional CT, three-dimensional CT diagnosis of the alimentary tract is less invasive and more objective than conventional studies. Advances in three-dimensional imaging with isotropic data sets will lead to the use of two-dimensional and three-dimensional CT diagnosis as one of the standard examinations of the alimentary tract.
Inter-dimensional effects in nano-structures.
Dick, Rainer
2012-10-23
: We report on two extensions of the traditional analysis of low-dimensional structures in terms of low-dimensional quantum mechanics. On one hand, we discuss the impact of thermodynamics in one or two dimensions on the behavior of fermions in low-dimensional systems. On the other hand, we use both quantum wells and interfaces with different effective electron or hole mass to study the question when charge carriers in interfaces or layers exhibit two-dimensional or three-dimensional behavior. We find in particular that systems with different effective masses in the bulk and in the interface exhibit separation of two-dimensional and three-dimensional behavior on different length scales, whereas quantum wells exhibit linear combination of two-dimensional and three-dimensional behavior on short length scales while the behavior on large length scales cannot be associated with either two-dimensional or three-dimensional behavior.
Calidad del aire interior en las escuelas
EPA ha desarrollado el Programa de Herramientas de Calidad del Aire Interior para las Escuelas para reducir la exposición a los contaminantes ambientales en las mismas a través de la adopción voluntaria de las prácticas para manejar la calidad del aire int
High dimensional feature reduction via projection pursuit
NASA Technical Reports Server (NTRS)
Jimenez, Luis; Landgrebe, David
1994-01-01
The recent development of more sophisticated remote sensing systems enables the measurement of radiation in many more spectral intervals than previously possible. An example of that technology is the AVIRIS system, which collects image data in 220 bands. As a result of this, new algorithms must be developed in order to analyze the more complex data effectively. Data in a high dimensional space presents a substantial challenge, since intuitive concepts valid in a 2-3 dimensional space to not necessarily apply in higher dimensional spaces. For example, high dimensional space is mostly empty. This results from the concentration of data in the corners of hypercubes. Other examples may be cited. Such observations suggest the need to project data to a subspace of a much lower dimension on a problem specific basis in such a manner that information is not lost. Projection Pursuit is a technique that will accomplish such a goal. Since it processes data in lower dimensions, it should avoid many of the difficulties of high dimensional spaces. In this paper, we begin the investigation of some of the properties of Projection Pursuit for this purpose.
Prior Knowledge Enhances the Category Dimensionality Effect
Hoffman, Aaron B.; Harris, Harlan D.; Murphy, Gregory L.
2008-01-01
A study of the combined influence of prior knowledge and stimulus dimensionality on category learning was conducted. Subjects learned category structures with the same number of necessary dimensions but more or fewer additional redundant dimensions, and with either knowledge-related or knowledge-unrelated features. Minimal-learning models predict that all subjects, regardless of condition, should learn either the same number of dimensions, or else should respond more slowly to each dimension. Despite similar learning rates and response times, subjects learned more features in the high-dimensional than in the low-dimensional condition. Furthermore, prior knowledge interacted with dimensionality, increasing what was learned especially in the high-dimensional case. A second experiment confirmed that the participants did in fact learn more features during the training phase, rather than simply inferring them at test. These effects can be explained by direct associations among features (representing prior knowledge) combined with feedback between features and the category label, as shown by simulations of the knowledge-resonance, or KRES, model of category learning. PMID:18426059
Dimensional measurements and operators in mathematical morphology
NASA Astrophysics Data System (ADS)
Soille, Pierre; Serra, Jean C.; Rivest, Jean-Francois
1992-04-01
In mathematical morphology, grey tone images are often considered as 3D Euclidean sets through their umbra or subgraph. This model allows one to extend measurements for sets to grey tone images. It has been shown that any valid measurement on Euclidean sets should satisfy some basic constraints such as invariance to displacements and to magnifications. However, when applied to subgraphs, these measurements may be meaningless as the image plane is not homogeneous with the grey tone axis. An additional constraint is introduced called dimensionality. This property holds for the inhomogeneity of image dimensions. A measurement on a grey tone image will be dimensional if the same measurement applied to this image after a magnification of its image plane and an affine transform of its grey tone axis can be related to the initial measure. The authors first recall valid measurements on sets and their properties. Then it is shown how to generalize to grey tone images and the dimensionality constraint is introduced. Set measurements are then reviewed to determine those satisfying the dimensionality criterion and consideration is given to the measure of the fractal dimension in the light of this new criterion. Eventually, dimensionality must also be considered when processing images. This is illustrated by a segmentation experiment.
New two dimensional compounds: beyond graphene
NASA Astrophysics Data System (ADS)
Lebegue, Sebastien
2015-03-01
In the field of nanosciences, the quest for materials with reduced dimensionality is only at its beginning. While a lot of effort has been put initially on graphene, the focus has been extended in the last past years to functionalized graphene, boron nitride, silicene, and transition metal dichalcogenides in the form of single layers. Although these two-dimensional compounds offer a larger range of properties than graphene, there is a constant need for new materials presenting equivalent or superior performances to the ones already known. Here I will present an approach that we have used to discover potential new two-dimensional materials. This approach corresponds to perform datamining in the Inorganic Crystal Structure Database using simple geometrical criterias, and allowed us to identify nearly 40 new materials that could be exfoliated into two-dimensional sheets. Then, their electronic structure (density of states and bandstructure) was obtained with density functional theory to predict whether the two-dimensional material is metallic or insulating, as well as if it undergoes magnetic ordering at low temperatures. If time allows, I will also present some of our recent results concerning the electronic structure of transition metal dichalcogenides bilayers.
Low-dimensional analysis of geomagnetic reversals
NASA Astrophysics Data System (ADS)
Morzfeld, M.; Fournier, A.; Hulot, G.
2015-12-01
Low-dimensional models for Earth's magnetic dipole have attracted attention recently because they may be a powerful tool to study the dominant dynamics over geological time-scales, where direct numerical simulation remains challenging. We investigate the extent to which several low-dimensional models can explain the Earth's dipole dynamics by comparing them to the signed relative paleointensity over the past 2 million years. Our comparisons of models and data are done by Bayesian statistics, which allows us to incorporate nonlinearity and uncertainty into the computations. The comparison, or data assimilation, reveals the strengths and weaknesses of each low-dimensional model and suggests improvements to the low-dimensional models. We also investigate if low-dimensional models can predict dipole reversals by performing extensive numerical experiments, and by hind-casting the Laschamp event, the Bruhnes-Matuyama reversal, as well as four other reversals documented over the past two million years. Our analysis stresses the need for models of geomagnetic reversals to faithfully account for the full spectrum of variability of paleomagnetic intensity.
NASA Astrophysics Data System (ADS)
Miao, Qian; Hu, Xiao-Rui; Chen, Yong
2014-02-01
We present a Maple computer algebra package, ONEOptimal, which can calculate one-dimensional optimal system of finite dimensional Lie algebra for nonlinear equations automatically based on Olver's theory. The core of this theory is viewing the Killing form of the Lie algebra as an invariant for the adjoint representation. Some examples are given to demonstrate the validity and efficiency of the program.
Dimensionality Reduction on Multi-Dimensional Transfer Functions for Multi-Channel Volume Data Sets.
Kim, Han Suk; Schulze, Jürgen P; Cone, Angela C; Sosinsky, Gina E; Martone, Maryann E
2010-09-21
The design of transfer functions for volume rendering is a non-trivial task. This is particularly true for multi-channel data sets, where multiple data values exist for each voxel, which requires multi-dimensional transfer functions. In this paper, we propose a new method for multi-dimensional transfer function design. Our new method provides a framework to combine multiple computational approaches and pushes the boundary of gradient-based multi-dimensional transfer functions to multiple channels, while keeping the dimensionality of transfer functions at a manageable level, i.e., a maximum of three dimensions, which can be displayed visually in a straightforward way. Our approach utilizes channel intensity, gradient, curvature and texture properties of each voxel. Applying recently developed nonlinear dimensionality reduction algorithms reduces the high-dimensional data of the domain. In this paper, we use Isomap and Locally Linear Embedding as well as a traditional algorithm, Principle Component Analysis. Our results show that these dimensionality reduction algorithms significantly improve the transfer function design process without compromising visualization accuracy. We demonstrate the effectiveness of our new dimensionality reduction algorithms with two volumetric confocal microscopy data sets.
Simple Two-Dimensional Corrections for One-Dimensional Pulse Tube Models
NASA Technical Reports Server (NTRS)
Lee, J. M.; Kittel, P.; Timmerhaus, K. D.; Radebaugh, R.
2004-01-01
One-dimensional oscillating flow models are very useful for designing pulse tubes. They are simple to use, not computationally intensive, and the physical relationship between temperature, pressure and mass flow are easy to understand when used in conjunction with phasor diagrams. They do not possess, however, the ability to directly calculate thermal and momentum diffusion in the direction transverse to the oscillating flow. To account for transverse effects, lumped parameter corrections, which are obtained though experiment, must be used. Or two-dimensional solutions of the differential fluid equations must be obtained. A linear two-dimensional solution to the fluid equations has been obtained. The solution provides lumped parameter corrections for one-dimensional models. The model accounts for heat transfer and shear flow between the gas and the tube. The complex Nusselt number and complex shear wall are useful in describing these corrections, with phase relations and amplitudes scaled with the Prandtl and Valensi numbers. The calculated ratio, a, between a two-dimensional solution of the oscillating temperature and velocity and a one-dimensional solution for the same shows a scales linearly with Va for Va less than 30. In this region alpha less than 0.5, that is, the enthalpy flow calculated with a two-dimensional model is 50% of a calculation using a one-dimensional model. For Va greater than 250, alpha = 0.8, showing that diffusion is still important even when it is confined to a thing layer near the tube wall.
Creating Two-Dimensional Nets of Three-Dimensional Shapes Using "Geometer's Sketchpad"
ERIC Educational Resources Information Center
Maida, Paula
2005-01-01
This article is about a computer lab project in which prospective teachers used Geometer's Sketchpad software to create two-dimensional nets for three-dimensional shapes. Since this software package does not contain ready-made tools for creating non-regular or regular polygons, the students used prior knowledge and geometric facts to create their…
Picture Perception in Infants: Generalization from Two-Dimensional to Three-Dimensional Displays
ERIC Educational Resources Information Center
Jowkar-Baniani, Gelareh; Schmuckler, Mark A.
2011-01-01
Two experiments investigated 9-month-old infants' abilities to recognize the correspondence between an actual three-dimensional (3D) object and its two-dimensional (2D) representation, looking specifically at representations that did not literally depict the actual object: schematic line drawings. In Experiment 1, infants habituated to a line…
The Art of Extracting One-Dimensional Flow Properties from Multi-Dimensional Data Sets
NASA Technical Reports Server (NTRS)
Baurle, R. A.; Gaffney, R. L.
2007-01-01
The engineering design and analysis of air-breathing propulsion systems relies heavily on zero- or one-dimensional properties (e:g: thrust, total pressure recovery, mixing and combustion efficiency, etc.) for figures of merit. The extraction of these parameters from experimental data sets and/or multi-dimensional computational data sets is therefore an important aspect of the design process. A variety of methods exist for extracting performance measures from multi-dimensional data sets. Some of the information contained in the multi-dimensional flow is inevitably lost when any one-dimensionalization technique is applied. Hence, the unique assumptions associated with a given approach may result in one-dimensional properties that are significantly different than those extracted using alternative approaches. The purpose of this effort is to examine some of the more popular methods used for the extraction of performance measures from multi-dimensional data sets, reveal the strengths and weaknesses of each approach, and highlight various numerical issues that result when mapping data from a multi-dimensional space to a space of one dimension.
Simulating higher-dimensional geometries in GADRAS using approximate one-dimensional solutions.
Thoreson, Gregory G.; Mitchell, Dean J; Harding, Lee T.
2013-02-01
The Gamma Detector Response and Analysis Software (GADRAS) software package is capable of simulating the radiation transport physics for one-dimensional models. Spherical shells are naturally one-dimensional, and have been the focus of development and benchmarking. However, some objects are not spherical in shape, such as cylinders and boxes. These are not one-dimensional. Simulating the radiation transport in two or three dimensions is unattractive because of the extra computation time required. To maintain computational efficiency, higher-dimensional geometries require approximations to simulate them in one-dimension. This report summarizes the theory behind these approximations, tests the theory against other simulations, and compares the results to experimental data. Based on the results, it is recommended that GADRAS users always attempt to approximate reality using spherical shells. However, if fissile material is present, it is imperative that the shape of the one-dimensional model matches the fissile material, including the use of slab and cylinder geometry.
Multi/infinite dimensional neural networks, multi/infinite dimensional logic theory.
Murthy, Garimella Rama
2005-06-01
A mathematical model of an arbitrary multi-dimensional neural network is developed and a convergence theorem for an arbitrary multi-dimensional neural network represented by a fully symmetric tensor is stated and proved. The input and output signal states of a multi-dimensional neural network/logic gate are related through an energy function, defined over the fully symmetric tensor (representing the connection structure of a multi-dimensional neural network). The inputs and outputs are related such that the minimum/maximum energy states correspond to the output states of the logic gate/neural network realizing a logic function. Similarly, a logic circuit consisting of the interconnection of logic gates, represented by a block symmetric tensor, is associated with a quadratic/higher degree energy function. Infinite dimensional logic theory is discussed through the utilization of infinite dimension/order tensors.
Three-dimensional separation and reattachment
NASA Technical Reports Server (NTRS)
Peake, D. J.; Tobak, M.
1982-01-01
The separation of three dimensional turbulent boundary layers from the lee of flight vehicles at high angles of attack is investigated. The separation results in dominant, large scale, coiled vortex motions that pass along the body in the general direction of the free stream. In all cases of three dimensional flow separation and reattachment, the assumption of continuous vector fields of skin friction lines and external flow streamlines, coupled with simple laws of topology, provides a flow grammar whose elemental constituents are the singular points: the nodes, spiral nodes (foci), and saddles. The phenomenon of three dimensional separation may be construed as either a local or a global event, depending on whether the skin friction line that becomes a line of separation originates at a node or a saddle point.
Topology of three-dimensional separated flows
NASA Technical Reports Server (NTRS)
Tobak, M.; Peake, D. J.
1981-01-01
Based on the hypothesis that patterns of skin-friction lines and external streamlines reflect the properties of continuous vector fields, topology rules define a small number of singular points (nodes, saddle points, and foci) that characterize the patterns on the surface and on particular projections of the flow (e.g., the crossflow plane). The restricted number of singular points and the rules that they obey are considered as an organizing principle whose finite number of elements can be combined in various ways to connect together the properties common to all steady three dimensional viscous flows. Introduction of a distinction between local and global properties of the flow resolves an ambiguity in the proper definition of a three dimensional separated flow. Adoption of the notions of topological structure, structural stability, and bifurcation provides a framework to describe how three dimensional separated flows originate and succeed each other as the relevant parameters of the problem are varied.
Three-dimensional separation and reattachment
NASA Technical Reports Server (NTRS)
Peake, D. J.; Tobak, M.
1982-01-01
The separation of three dimensional turbulent boundary layers from the lee of flight vehicles at high angles of attack is investigated. The separation results in dominant, large scale, coiled vortex motions that pass along the body in the general direction of the free stream. In all cases of three dimensional flow separation and reattachment, the assumption of continuous vector fields of skin friction lines and external flow streamlines, coupled with simple laws of topology, provides a flow grammar whose elemental constituents are the singular points: the nodes, spiral nodes (foci), and saddles. The phenomenon of three dimensional separation may be constrained as either a local or a global event, depending on whether the skin friction line that becomes a line of separation originates at a node or a saddle point.
One-dimensional Gromov minimal filling problem
NASA Astrophysics Data System (ADS)
Ivanov, Alexandr O.; Tuzhilin, Alexey A.
2012-05-01
The paper is devoted to a new branch in the theory of one-dimensional variational problems with branching extremals, the investigation of one-dimensional minimal fillings introduced by the authors. On the one hand, this problem is a one-dimensional version of a generalization of Gromov's minimal fillings problem to the case of stratified manifolds. On the other hand, this problem is interesting in itself and also can be considered as a generalization of another classical problem, the Steiner problem on the construction of a shortest network connecting a given set of terminals. Besides the statement of the problem, we discuss several properties of the minimal fillings and state several conjectures. Bibliography: 38 titles.
TWO-DIMENSIONAL TOPOLOGY OF COSMOLOGICAL REIONIZATION
Wang, Yougang; Xu, Yidong; Chen, Xuelei; Park, Changbom; Kim, Juhan E-mail: cbp@kias.re.kr
2015-11-20
We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two-dimensional genus curve for the early, middle, and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometre Array.
The dimensional design of machining technologies
NASA Astrophysics Data System (ADS)
Toca, A.; Stingaci, I.; Rusica, I.
2016-11-01
In the paper we analyze the mutual influence of constructive and technological dimensional links on conditions of formation of the machining accuracy sizes. It is shown, that the formation the sizes from technological locating datum surface demands higher accuracy of the technological sizes, but in this case, the machining allowances are more stable. At the formation the sizes by the means of transitions from technological locating datum surface to adjustment surface, the accuracy sizes is achieved without necessity of increase of an accuracy of the technological sizes, but thus, it is observed a growth of tolerances of the machining allowances and decreasing of the accuracy if some surface will not be machined. The dimensional optimality is not characterized only by the number of technological sizes, but it is necessary to take into account the growth (sometimes complicated) of the technological sizes accuracy (a case of formation of the sizes as closing link of dimensional chains).
Plasmonics with two-dimensional conductors.
Yoon, Hosang; Yeung, Kitty Y M; Kim, Philip; Ham, Donhee
2014-03-28
A wealth of effort in photonics has been dedicated to the study and engineering of surface plasmonic waves in the skin of three-dimensional bulk metals, owing largely to their trait of subwavelength confinement. Plasmonic waves in two-dimensional conductors, such as semiconductor heterojunction and graphene, contrast the surface plasmonic waves on bulk metals, as the former emerge at gigahertz to terahertz and infrared frequencies well below the photonics regime and can exhibit far stronger subwavelength confinement. This review elucidates the machinery behind the unique behaviours of the two-dimensional plasmonic waves and discusses how they can be engineered to create ultra-subwavelength plasmonic circuits and metamaterials for infrared and gigahertz to terahertz integrated electronics.
Three-dimensional imaging modalities in endodontics
Mao, Teresa
2014-01-01
Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome. PMID:25279337
Three-dimensional effects on airfoils
NASA Technical Reports Server (NTRS)
Chevallier, J. P.
1983-01-01
The effects of boundary layer flows along the walls of wind tunnels were studied to validate the transfer of two dimensional calculations to three dimensional transonic flowfield calculations. Results from trials in various wind tunnels were examind to determine the effects of the wall boundary flow on the control surfaces of an airfoil. Models sliding along a groove in the wall of a channel at sub- and transonic speeds were examined, with the finding that with either nonuniformities in the groove, or even if the channel walls are uniform, the lateral boundary layer can cause variations in the central flow region or alter the onset of shock at the transition point. Models for the effects in both turbulence and in the absence of turbulence are formulated, and it is noted that the characteristics of individual wind tunnels must be studied to quantify any existing three dimensional effects.
Three dimensional fabrication at small size scales
Leong, Timothy G.; Zarafshar, Aasiyeh M.; Gracias, David H.
2010-01-01
Despite the fact that we live in a three-dimensional (3D) world and macroscale engineering is 3D, conventional sub-mm scale engineering is inherently two-dimensional (2D). New fabrication and patterning strategies are needed to enable truly three-dimensionally-engineered structures at small size scales. Here, we review strategies that have been developed over the last two decades that seek to enable such millimeter to nanoscale 3D fabrication and patterning. A focus of this review is the strategy of self-assembly, specifically in a biologically inspired, more deterministic form known as self-folding. Self-folding methods can leverage the strengths of lithography to enable the construction of precisely patterned 3D structures and “smart” components. This self-assembling approach is compared with other 3D fabrication paradigms, and its advantages and disadvantages are discussed. PMID:20349446
Vision in our three-dimensional world
2016-01-01
Many aspects of our perceptual experience are dominated by the fact that our two eyes point forward. Whilst the location of our eyes leaves the environment behind our head inaccessible to vision, co-ordinated use of our two eyes gives us direct access to the three-dimensional structure of the scene in front of us, through the mechanism of stereoscopic vision. Scientific understanding of the different brain regions involved in stereoscopic vision and three-dimensional spatial cognition is changing rapidly, with consequent influences on fields as diverse as clinical practice in ophthalmology and the technology of virtual reality devices. This article is part of the themed issue ‘Vision in our three-dimensional world’. PMID:27269595
Two-Dimensional NMR Lineshape Analysis
NASA Astrophysics Data System (ADS)
Waudby, Christopher A.; Ramos, Andres; Cabrita, Lisa D.; Christodoulou, John
2016-04-01
NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions.
Two-Dimensional NMR Lineshape Analysis
Waudby, Christopher A.; Ramos, Andres; Cabrita, Lisa D.; Christodoulou, John
2016-01-01
NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions. PMID:27109776
Plasmonics with two-dimensional conductors
Yoon, Hosang; Yeung, Kitty Y. M.; Kim, Philip; Ham, Donhee
2014-01-01
A wealth of effort in photonics has been dedicated to the study and engineering of surface plasmonic waves in the skin of three-dimensional bulk metals, owing largely to their trait of subwavelength confinement. Plasmonic waves in two-dimensional conductors, such as semiconductor heterojunction and graphene, contrast the surface plasmonic waves on bulk metals, as the former emerge at gigahertz to terahertz and infrared frequencies well below the photonics regime and can exhibit far stronger subwavelength confinement. This review elucidates the machinery behind the unique behaviours of the two-dimensional plasmonic waves and discusses how they can be engineered to create ultra-subwavelength plasmonic circuits and metamaterials for infrared and gigahertz to terahertz integrated electronics. PMID:24567472
Three-dimensional imaging modalities in endodontics.
Mao, Teresa; Neelakantan, Prasanna
2014-09-01
Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome.
Dimensional crossover in dipolar magnetic layers
NASA Astrophysics Data System (ADS)
Bulenda, M.; Täuber, U. C.; Schwabl, F.
2000-01-01
We investigate the static critical behaviour of a uniaxial magnetic layer, with finite thickness L in one direction, yet infinitely extended in the remaining d dimensions. The magnetic dipole-dipole interaction is taken into account. We apply a variant of Wilson's momentum shell renormalization group approach to describe the crossover between the critical behaviour of the 3D Ising, 2D Ising, 3D uniaxial dipolar, and the 2D uniaxial dipolar universality classes. The corresponding renormalization group fixed points are in addition to different effective dimensionalities characterized by distinct analytic structures of the propagator, and are consequently associated with varying upper critical dimensions. While the limiting cases can be discussed by means of dimensional icons/Journals/Common/epsilon" ALT="epsilon" ALIGN="TOP"/> expansions with respect to the appropriate upper critical dimensions, respectively, the crossover features must be addressed in terms of the renormalization group flow trajectories at fixed dimensionality d .
Ligand-Stabilized Reduced-Dimensionality Perovskites.
Quan, Li Na; Yuan, Mingjian; Comin, Riccardo; Voznyy, Oleksandr; Beauregard, Eric M; Hoogland, Sjoerd; Buin, Andrei; Kirmani, Ahmad R; Zhao, Kui; Amassian, Aram; Kim, Dong Ha; Sargent, Edward H
2016-03-02
Metal halide perovskites have rapidly advanced thin-film photovoltaic performance; as a result, the materials' observed instabilities urgently require a solution. Using density functional theory (DFT), we show that a low energy of formation, exacerbated in the presence of humidity, explains the propensity of perovskites to decompose back into their precursors. We find, also using DFT, that intercalation of phenylethylammonium between perovskite layers introduces quantitatively appreciable van der Waals interactions. These drive an increased formation energy and should therefore improve material stability. Here we report reduced-dimensionality (quasi-2D) perovskite films that exhibit improved stability while retaining the high performance of conventional three-dimensional perovskites. Continuous tuning of the dimensionality, as assessed using photophysical studies, is achieved by the choice of stoichiometry in materials synthesis. We achieve the first certified hysteresis-free solar power conversion in a planar perovskite solar cell, obtaining a 15.3% certified PCE, and observe greatly improved performance longevity.
3-Dimensional Topographic Models for the Classroom
NASA Technical Reports Server (NTRS)
Keller, J. W.; Roark, J. H.; Sakimoto, S. E. H.; Stockman, S.; Frey, H. V.
2003-01-01
We have recently undertaken a program to develop educational tools using 3-dimensional solid models of digital elevation data acquired by the Mars Orbital Laser Altimeter (MOLA) for Mars as well as a variety of sources for elevation data of the Earth. This work is made possible by the use of rapid prototyping technology to construct solid 3-Dimensional models of science data. We recently acquired rapid prototyping machine that builds 3-dimensional models in extruded plastic. While the machine was acquired to assist in the design and development of scientific instruments and hardware, it is also fully capable of producing models of spacecraft remote sensing data. We have demonstrated this by using Mars Orbiter Laser Altimeter (MOLA) topographic data and Earth based topographic data to produce extruded plastic topographic models which are visually appealing and instantly engage those who handle them.
Clustering high dimensional data using RIA
NASA Astrophysics Data System (ADS)
Aziz, Nazrina
2015-05-01
Clustering may simply represent a convenient method for organizing a large data set so that it can easily be understood and information can efficiently be retrieved. However, identifying cluster in high dimensionality data sets is a difficult task because of the curse of dimensionality. Another challenge in clustering is some traditional functions cannot capture the pattern dissimilarity among objects. In this article, we used an alternative dissimilarity measurement called Robust Influence Angle (RIA) in the partitioning method. RIA is developed using eigenstructure of the covariance matrix and robust principal component score. We notice that, it can obtain cluster easily and hence avoid the curse of dimensionality. It is also manage to cluster large data sets with mixed numeric and categorical value.
Clustering high dimensional data using RIA
Aziz, Nazrina
2015-05-15
Clustering may simply represent a convenient method for organizing a large data set so that it can easily be understood and information can efficiently be retrieved. However, identifying cluster in high dimensionality data sets is a difficult task because of the curse of dimensionality. Another challenge in clustering is some traditional functions cannot capture the pattern dissimilarity among objects. In this article, we used an alternative dissimilarity measurement called Robust Influence Angle (RIA) in the partitioning method. RIA is developed using eigenstructure of the covariance matrix and robust principal component score. We notice that, it can obtain cluster easily and hence avoid the curse of dimensionality. It is also manage to cluster large data sets with mixed numeric and categorical value.
Higher dimensional numerical relativity: Code comparison
NASA Astrophysics Data System (ADS)
Witek, Helvi; Okawa, Hirotada; Cardoso, Vitor; Gualtieri, Leonardo; Herdeiro, Carlos; Shibata, Masaru; Sperhake, Ulrich; Zilhão, Miguel
2014-10-01
The nonlinear behavior of higher dimensional black hole spacetimes is of interest in several contexts, ranging from an understanding of cosmic censorship to black hole production in high-energy collisions. However, nonlinear numerical evolutions of higher dimensional black hole spacetimes are tremendously complex, involving different diagnostic tools and "dimensional reduction methods." In this work we compare two different successful codes to evolve Einstein's equations in higher dimensions, and show that the results of such different procedures agree to numerical precision, when applied to the collision from rest of two equal-mass black holes. We calculate the total radiated energy to be Erad/M =(9.0±0.5)×10-4 in five dimensions and Erad/M=(8.1±0.4)×10-4 in six dimensions.
Spectral Dimensionality and Scale of Urban Radiance
NASA Technical Reports Server (NTRS)
Small, Christopher
2001-01-01
Characterization of urban radiance and reflectance is important for understanding the effects of solar energy flux on the urban environment as well as for satellite mapping of urban settlement patterns. Spectral mixture analyses of Landsat and Ikonos imagery suggest that the urban radiance field can very often be described with combinations of three or four spectral endmembers. Dimensionality estimates of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) radiance measurements of urban areas reveal the existence of 30 to 60 spectral dimensions. The extent to which broadband imagery collected by operational satellites can represent the higher dimensional mixing space is a function of both the spatial and spectral resolution of the sensor. AVIRIS imagery offers the spatial and spectral resolution necessary to investigate the scale dependence of the spectral dimensionality. Dimensionality estimates derived from Minimum Noise Fraction (MNF) eigenvalue distributions show a distinct scale dependence for AVIRIS radiance measurements of Milpitas, California. Apparent dimensionality diminishes from almost 40 to less than 10 spectral dimensions between scales of 8000 m and 300 m. The 10 to 30 m scale of most features in urban mosaics results in substantial spectral mixing at the 20 m scale of high altitude AVIRIS pixels. Much of the variance at pixel scales is therefore likely to result from actual differences in surface reflectance at pixel scales. Spatial smoothing and spectral subsampling of AVIRIS spectra both result in substantial loss of information and reduction of apparent dimensionality, but the primary spectral endmembers in all cases are analogous to those found in global analyses of Landsat and Ikonos imagery of other urban areas.
Three-dimensional magnetic bubble memory system
NASA Technical Reports Server (NTRS)
Stadler, Henry L. (Inventor); Katti, Romney R. (Inventor); Wu, Jiin-Chuan (Inventor)
1994-01-01
A compact memory uses magnetic bubble technology for providing data storage. A three-dimensional arrangement, in the form of stacks of magnetic bubble layers, is used to achieve high volumetric storage density. Output tracks are used within each layer to allow data to be accessed uniquely and unambiguously. Storage can be achieved using either current access or field access magnetic bubble technology. Optical sensing via the Faraday effect is used to detect data. Optical sensing facilitates the accessing of data from within the three-dimensional package and lends itself to parallel operation for supporting high data rates and vector and parallel processing.
Small firm subsistence and market dimensionality
NASA Astrophysics Data System (ADS)
Bruggeman, Jeroen; Péli, Gábor
2014-04-01
In many markets, large and small firms coexist. As large firms can in principle out-compete small ones, the actual presence of the latter asks for an explanation. In ours, we focus on the dimensionality of markets, which can change as a consequence of product innovations, preference elaboration or institutions. We show that increasing market dimensionality substantially enlarges the market periphery relative to the market center, which creates new potential niches for small firms. We thereby provide a parsimonious explanation for small firm subsistence.
A dimensionality reducing model for distributed filtering.
NASA Technical Reports Server (NTRS)
Angel, E.; Jain, A. K.
1973-01-01
An approach is made to filtering of two-dimensional steady-state problems based on the notion of nearest neighbor interaction, i.e., at a given point in the spatial grid, the value at the variable of interest can be assumed to depend only on the values at adjacent grid points. It is shown that for linear steady-state problems significant dimensionality reductions can be accomplished. It was possible to achieve the desired results using a small amount of computer time and without getting into stability difficulties.
Higher dimensional charged gravastar admitting conformal motion
NASA Astrophysics Data System (ADS)
Bhar, Piyali
2014-12-01
In the present paper we have discussed about the higher dimensional charged gravastar admitting conformal motion. The gravastar, gravitationally vacuum condense star is generally considered as the alternative to black hole which has three regions with three different equation of state. (i) In interior region p=- ρ, (ii) in shell p= ρ, (iii) in exterior region p= ρ=0. p=- ρ is generally called the `false vacuum' or `degenerate vacuum' or ρ vacuum. We match our interior spacetime to the R-N higher dimensional spacetime in presence of thin shell.
Dimensionality of high temperature superconductivity in oxides
NASA Technical Reports Server (NTRS)
Chu, C. W.
1989-01-01
Many models have been proposed to account for the high temperature superconductivity observed in oxide systems. Almost all of these models proposed are based on the uncoupled low dimensional carrier Cu-O layers of the oxides. Results of several experiments are presented and discussed. They suggest that the high temperature superconductivity observed cannot be strictly two- or one-dimensional, and that the environment between the Cu-O layers and the interlayer coupling play an important role in the occurrence of such high temperature superconductivity. A comment on the very short coherence length reported is also made.
Dimensionality switching in molecule-based magnets.
Goddard, P. A.; Manson, J. L.; Singleton, J.; Franke, I.; Lancaster, T.; Steele, A. J.; Blundell, S. J.; Baines, C.; Pratt, F.; McDonald, R. D.; Valenzuela, O. A.; Sengupta, P.; Corbeyl, J. F.; Southerland, H. I.; Schlueter, J. A.
2012-01-01
Gaining control of the building blocks of magnetic materials and thereby achieving particular characteristics will make possible the design and growth of bespoke magnetic devices. While progress in the synthesis of molecular materials, and especially coordination polymers, represents a significant step towards this goal, the ability to tune the magnetic interactions within a particular framework remains in its infancy. Here we demonstrate a chemical method which achieves dimensionality selection via preferential inhibition of the magnetic exchange in an S=1/2 antiferromagnet along one crystal direction, switching the system from being quasi-two- to quasi-one-dimensional while effectively maintaining the nearest-neighbor coupling strength.
Mobility anisotropy of two-dimensional semiconductors
NASA Astrophysics Data System (ADS)
Lang, Haifeng; Zhang, Shuqing; Liu, Zhirong
2016-12-01
The carrier mobility of anisotropic two-dimensional semiconductors under longitudinal acoustic phonon scattering was theoretically studied using deformation potential theory. Based on the Boltzmann equation with the relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was derived, showing that the influence of effective mass on mobility anisotropy is larger than those of deformation potential constant or elastic modulus. Parameters were collected for various anisotropic two-dimensional materials (black phosphorus, Hittorf's phosphorus, BC2N , MXene, TiS3, and GeCH3) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio is overestimated by the previously described method.
Three-dimensional displays and stereo vision.
Westheimer, Gerald
2011-08-07
Procedures for three-dimensional image reconstruction that are based on the optical and neural apparatus of human stereoscopic vision have to be designed to work in conjunction with it. The principal methods of implementing stereo displays are described. Properties of the human visual system are outlined as they relate to depth discrimination capabilities and achieving optimal performance in stereo tasks. The concept of depth rendition is introduced to define the change in the parameters of three-dimensional configurations for cases in which the physical disposition of the stereo camera with respect to the viewed object differs from that of the observer's eyes.
A Psychophysical Approach to Dimensional Integrality
1980-03-01
CATALO GnUMS |5 14523-74T3 T~-9 - 4. VTEIC(wMd eak.) S . TYPX or 409OAt" A MP~mo@ COVS460 A Psychophysical Approach to Dimensional / T Technical h...Program TS . ..... i " "’ S L , ~Ar’thaton- X6221 Unclassified ENSRIITON ATMWA Aipproved for pubkl Memoas; Distribution Unl•i•ied Approved for public...release: distribution urlimited It. SUPSMEM?AfV VOTE" S t’. -key o01 (3" an m -WW** aide .,041 ew ausE 4W multi-dimensional scaling complex visual
Fabrication of three dimensional microstructure fiber
NASA Astrophysics Data System (ADS)
Luo, Ying; Ma, Jie; Chen, Zhe; Lu, Huihui; Zhong, Yongchun
2015-05-01
A method of fabricating three dimensional (3D) microstructured fiber is presented. Polystyrene (PS) microspheres were coated around the surface of a micro-fiber through isothermal heating evaporation induced self-assembly method. Scanning electron microscopy (SEM) image shows that the colloidal crystal has continuous, uniform, and well-ordered face-centered cubic (FCC) structure, with [111] crystallographic direction normal to the surface of micro-fiber. This micro-fiber with three-dimensional photonic crystals structure is very useful in the applications of micro-fiber sensors or filters.
Entropy exchange for infinite-dimensional systems
Duan, Zhoubo; Hou, Jinchuan
2017-01-01
In this paper the entropy exchange for channels and states in infinite-dimensional systems are defined and studied. It is shown that, this entropy exchange depends only on the given channel and the state. An explicit expression of the entropy exchange in terms of the state and the channel is proposed. The generalized Klein’s inequality, the subadditivity and the triangle inequality about the entropy including infinite entropy for the infinite-dimensional systems are established, and then, applied to compare the entropy exchange with the entropy change. PMID:28164995
Three-Dimensional Shallow Water Acoustics
2016-03-30
13-1-0026 entitled "Three- Dimensional Shallow Water Acoustics," Principal Investigator Dr. Ying-Tsong Lin. Sincerely, ;l1,J-Ju1 ~{hjM1...30/03/2016 01/01/2013-12/31/2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBERS Three-Dimensional Shallow Water Acoustics 5b, GRANT NUMBER N0001 4-13-1... Water Acoustics Dr. Ying-Tsong Lin Applied Ocean Physics and Engineering Department Woods Hole Oceanographic Institution, Woods Hole, MA 02543
Produccion Gaseosa del Cometa Halley: Erupciones Y Fotodisociacion del Radical OH
NASA Astrophysics Data System (ADS)
Silva, A. M.; Mirabel, I. F.
1990-11-01
RESUMEN:En este trabajo informamos la detecci6n de 20 erupciones en la li'nea de =18cm (1667MHz) del radical OH en el Cometa Halley.Las observaciones incluyen todos los monitoreos existentes y se extienden desde 120 dias antes del perihelio hasta 90 dias despues.Se detectan bruscos crecimientos en el flujo medido,hasta un factor 1O,seguidos por decaimientos lentos asociados con la fotodisociaci6n del OH. Se obtuvieron valores para el tiempo de vida fotoquimico del OH y del H2O basandose en el modelo desarrollado previamente por Silva(1988). Esos tiempos de vida estan de acuerdo con predicciones teoricas y con las observaciones en el Ultravioleta, y los resultados, los que son fuertemente dependientes de la velocidad heliocentrica del Coineta (variando hasta un factor 6), han sido calculados para varios rangos de velocidad entre +28 y -28 km/seg. Key wo'L :
Dimensionally Stable Ether-Containing Polyimide Copolymers
NASA Technical Reports Server (NTRS)
Fay, Catharine C. (Inventor); St.Clair, Anne K. (Inventor)
1999-01-01
Novel polyimide copolymers containing ether linkages were prepared by the reaction of an equimolar amount of dianhydride and a combination of diamines. The polyimide copolymers described herein possess the unique features of low moisture uptake, dimensional stability, good mechanical properties, and moderate glass transition temperatures. These materials have potential application as encapsulants and interlayer dielectrics.
One-Dimensional Fluids with Positive Potentials
NASA Astrophysics Data System (ADS)
Fantoni, Riccardo
2017-03-01
We study a class of one-dimensional classical fluids with penetrable particles interacting through positive, purely repulsive, pair-potentials. Starting from some lower bounds to the total potential energy, we draw results on the thermodynamic limit of the given model.
Low-Dimensional Topological Crystalline Insulators.
Wang, Qisheng; Wang, Feng; Li, Jie; Wang, Zhenxing; Zhan, Xueying; He, Jun
2015-09-01
Topological crystalline insulators (TCIs) are recently discovered topological phase with robust surface states residing on high-symmetry crystal surfaces. Different from conventional topological insulators (TIs), protection of surface states on TCIs comes from point-group symmetry instead of time-reversal symmetry in TIs. The distinct properties of TCIs make them promising candidates for the use in novel spintronics, low-dissipation quantum computation, tunable pressure sensor, mid-infrared detector, and thermoelectric conversion. However, similar to the situation in TIs, the surface states are always suppressed by bulk carriers, impeding the exploitation of topology-induced quantum phenomenon. One effective way to solve this problem is to grow low-dimensional TCIs which possess large surface-to-volume ratio, and thus profoundly increase the carrier contribution from topological surface states. Indeed, through persistent effort, researchers have obtained unique quantum transport phenomenon, originating from topological surface states, based on controllable growth of low-dimensional TCIs. This article gives a comprehensive review on the recent progress of controllable synthesis and topological surface transport of low-dimensional TCIs. The possible future direction about low-dimensional TCIs is also briefly discussed at the end of this paper.
Three-Dimensional Visualization of Particle Tracks.
ERIC Educational Resources Information Center
Julian, Glenn M.
1993-01-01
Suggests ways to bring home to the introductory physics student some of the excitement of recent discoveries in particle physics. Describes particle detectors and encourages the use of the Standard Model along with real images of particle tracks to determine three-dimensional views of tracks. (MVL)
[Dimensional modeling analysis for outpatient payments].
Guo, Yi-zhong; Guo, Yi-min
2008-09-01
This paper introduces a data warehouse model for outpatient payments, which is designed according to the requirements of the hospital financial management while dimensional modeling technique is combined with the analysis on the requirements. This data warehouse model can not only improve the accuracy of financial management requirements, but also greatly increase the efficiency and quality of the hospital management.
Dimensional Tolerances: Back to the Basics
ERIC Educational Resources Information Center
Devine, K. L.
2012-01-01
Students often have difficulty grasping the principles of dimensional tolerances and frequently fail to recognize that dimensioning practice has a significant impact on the tolerance of part features. This observation may be attributed to several factors, not the least of which are changes in prior student education and life experiences and…
Three Dimensional Display Of Meteorological Scientific Data
NASA Astrophysics Data System (ADS)
Grotch, Stanley L.
1988-01-01
Even a cursory reading of any daily newspaper shows that we are in the midst of a dramatic revolution in computer graphics. Virtually every day some new piece of hardware or software is announced, adding to the tools available to the working scientist. Three dimensional graphics form a significant part of this revolution having become virtually commonplace in advertising and on television.
Dimensional phase transition in small Yukawa clusters
Sheridan, T. E.; Wells, K. D.
2010-01-15
We investigate the one- to two-dimensional zigzag transition in clusters consisting of a small number of particles interacting through a Yukawa (Debye) potential and confined in a two-dimensional biharmonic potential well. Dusty (complex) plasma clusters with n<=19 monodisperse particles are characterized experimentally for two different confining wells. The well anisotropy is accurately measured, and the Debye shielding parameter is determined from the longitudinal breathing frequency. Debye shielding is shown to be important. A model for this system is used to predict equilibrium particle configurations. The experiment and model exhibit excellent agreement. The critical value of n for the zigzag transition is found to be less than that predicted for an unshielded Coulomb interaction. The zigzag transition is shown to behave as a continuous phase transition from a one-dimensional to a two-dimensional state, where the state variables are the number of particles, the well anisotropy and the Debye shielding parameter. A universal critical exponent for the zigzag transition is identified for transitions caused by varying the Debye shielding parameter.
Splitting Enables Overcoming the Curse of Dimensionality
2015-12-01
repeat the entire iteration. Numerical experiments on an Intel Laptop Core i5-5300U running at 2.3 GHz are now presented. We consider diagonal...The convergence is remarkably rapid: 10−6 to 10−8 seconds on a standard laptop , per function evaluation. Figure 1 depicts 2-dimensional slices at
Three-dimensional chiral photonic superlattices.
Thiel, M; Fischer, H; von Freymann, G; Wegener, M
2010-01-15
We investigate three-dimensional photonic superlattices composed of polymeric helices in various spatial checkerboard-like arrangements. Depending on the relative phase shift and handedness of the chiral building blocks, different circular-dichroism resonances appear or are suppressed. Samples corresponding to four different configurations are fabricated by direct laser writing. The measured optical transmittance spectra are in good agreement with numerical calculations.
3-dimensional imaging at nanometer resolutions
Werner, James H.; Goodwin, Peter M.; Shreve, Andrew P.
2010-03-09
An apparatus and method for enabling precise, 3-dimensional, photoactivation localization microscopy (PALM) using selective, two-photon activation of fluorophores in a single z-slice of a sample in cooperation with time-gated imaging for reducing the background radiation from other image planes to levels suitable for single-molecule detection and spatial location, are described.
One-Dimensional Oscillator in a Box
ERIC Educational Resources Information Center
Amore, Paolo; Fernandez, Francisco M.
2010-01-01
We discuss a quantum-mechanical model of two particles that interact by means of a harmonic potential and are confined to a one-dimensional box with impenetrable walls. We apply perturbation theory to the cases of different and equal masses and analyse the symmetry of the states in the latter case. We compare the approximate perturbation results…
High-resolution two dimensional advective transport
Smith, P.E.; Larock, B.E.
1989-01-01
The paper describes a two-dimensional high-resolution scheme for advective transport that is based on a Eulerian-Lagrangian method with a flux limiter. The scheme is applied to the problem of pure-advection of a rotated Gaussian hill and shown to preserve the monotonicity property of the governing conservation law.
Four-Dimensional Spatial Reasoning in Humans
ERIC Educational Resources Information Center
Aflalo, T. N.; Graziano, M. S. A.
2008-01-01
Human subjects practiced navigation in a virtual, computer-generated maze that contained 4 spatial dimensions rather than the usual 3. The subjects were able to learn the spatial geometry of the 4-dimensional maze as measured by their ability to perform path integration, a standard test of spatial ability. They were able to travel down a winding…
Three-dimensional colorimetric assay assemblies
Charych, Deborah; Reichert, Anke
2001-01-01
A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flue virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.
Three-dimensional rf structure calculations
Cooper, R.K.; Browman, M.J.; Weiland, T.
1988-01-01
The calculation of three-dimensional rf structures is rapidly approaching adolescence, after having been in its infancy for the last four years. This paper will show the kinds of calculations that are currently being performed in the frequency domain and is a companion paper to one in which time-domain calculations are described. 13 refs., 14 figs.
Three-dimensional RF structure calculations
NASA Astrophysics Data System (ADS)
Cooper, R. K.; Browman, M. J.; Weiland, T.
1989-04-01
The calculation of three-dimensional rf structures is rapidly approaching adolescence, after having been in its infancy for the last four years. This paper will show the kinds of calculations that are currently being performed in the frequency domain and is a companion paper to one in which time-domain calculations are described.
One-dimensional differential Hardy inequality.
Kalybay, Aigerim
2017-01-01
We establish necessary and sufficient conditions for the one-dimensional differential Hardy inequality to hold, including the overdetermined case. The solution is given in terms different from those of the known results. Moreover, the least constant for this inequality is estimated.
Two-Dimensional Motions of Rockets
ERIC Educational Resources Information Center
Kang, Yoonhwan; Bae, Saebyok
2007-01-01
We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the…
Three dimensional reconnection in astrophysical plasmas
NASA Technical Reports Server (NTRS)
Spicer, D. S.
1990-01-01
Theoretical issues related to three-dimensional reconnection and its application to the space and astrophysical environment are reviewed. Consideration is given to the meaning of reconnection in three dimensions, the way in which periodic and nonperiodic magnetic topologies alter the physics of reconnections, and the effects of chaotic magnetic fields on the reconnection process.
Two and three dimensional magnetotelluric inversion
Booker, J.
1993-01-01
Electrical conductivity depends on properties such as the presence of ionic fluids in interconnected pores that are difficult to sense with other remote sensing techniques. Thus improved imaging of underground electrical structure has wide practical importance in exploring for groundwater, mineral and geothermal resources, and in assessing the diffusion of fluids in oil fields and waste sites. Because the electromagnetic inverse problem is fundamentally multi-dimensional, most imaging algorithms saturate available computer power long before they can deal with the complete data set. We have developed an algorithm to directly invert large multi-dimensional data sets that is orders of magnitude faster than competing methods. We have proven that a two-dimensional (2D) version of the algorithm is highly effective for real data and have made substantial progress towards a three-dimensional (3D) version. We are proposing to cure identified shortcomings and substantially expand the utility of the existing 2D program, overcome identified difficulties with extending our method to three-dimensions (3D) and embark on an investigation of related EM imaging techniques which may have the potential for even further increasing resolution.
Two-Dimensional Turbulence in Magnetized Plasmas
ERIC Educational Resources Information Center
Kendl, A.
2008-01-01
In an inhomogeneous magnetized plasma the transport of energy and particles perpendicular to the magnetic field is in general mainly caused by quasi two-dimensional turbulent fluid mixing. The physics of turbulence and structure formation is of ubiquitous importance to every magnetically confined laboratory plasma for experimental or industrial…
Valley excitons in two-dimensional semiconductors
Yu, Hongyi; Cui, Xiaodong; Xu, Xiaodong; Yao, Wang
2014-12-30
Monolayer group-VIB transition metal dichalcogenides have recently emerged as a new class of semiconductors in the two-dimensional limit. The attractive properties include: the visible range direct band gap ideal for exploring optoelectronic applications; the intriguing physics associated with spin and valley pseudospin of carriers which implies potentials for novel electronics based on these internal degrees of freedom; the exceptionally strong Coulomb interaction due to the two-dimensional geometry and the large effective masses. The physics of excitons, the bound states of electrons and holes, has been one of the most actively studied topics on these two-dimensional semiconductors, where the excitons exhibit remarkably new features due to the strong Coulomb binding, the valley degeneracy of the band edges, and the valley dependent optical selection rules for interband transitions. Here we give a brief overview of the experimental and theoretical findings on excitons in two-dimensional transition metal dichalcogenides, with focus on the novel properties associated with their valley degrees of freedom.
[Three Dimensional Display in Nuclear Medicine].
Teraoka, Satomi; Souma, Tsutomu
2015-01-01
Imaging techniques to obtain a tomographic image in nuclear medicine such as PET and SPECT are widely used. It is necessary to interpreting all of the tomographic images obtained in order to accurately evaluate the individual lesion, whereas three dimensional display is often useful in order to overview and evaluate the feature of the entire lesion or disease such as the position, size and abnormal pattern. In Japan, the use of three dimensional image analysis workstation with an application of the co-registration and image fusion between the functional images such as PET or SPECT and anatomical images such as CT or MRI has been generalized. In addition, multimodality imaging system such as a PET/CT and SPECT/CT has been widespread. Therefore, it is expected to improve the diagnostic accuracy using three dimensionally image fusion to functional images with poor anatomical information. In this commentary, as an example of a three dimensional display that are commonly used in nuclear medicine examination in Japan, brain regions, cardiac region and bone and tumor region will be introduced separately.
Growing Three-Dimensional Cocultures Of Cells
NASA Technical Reports Server (NTRS)
Wolf, David A.; Goodwin, Thomas J.
1995-01-01
Laboratory process provides environmental conditions favoring simultaneous growth of cocultures of mammalian cells of more than one type. Cultures become three-dimensional tissuelike assemblies serving as organoid models of differentiation of cells. Process used, for example, to study growth of human colon cancers, starting from mixtures of normal colonic fibroblasts and partially differentiated colon adenocarcinoma cells.
Three-Dimensional Pointers for Stereoscopic Projection.
ERIC Educational Resources Information Center
Hayman, H. J. G.
1984-01-01
Because class size often limits student opportunity to handle individual models, teachers use stereoscopic projections to demonstrate structural features. Describes three-dimensional pointers for use with different projection systems so teachers can indicate a particular atom or bond to entire classes, avoiding the perspective problems inherent in…
Dimensionally Stable Graphite-Fiber/Glass Composites
NASA Technical Reports Server (NTRS)
Harris, Robert; Bergen, George J.; Studer, Philip A.
1992-01-01
Method of making composites of glass matrices reinforced by graphite fibers provides for control of proportions, orientations, and distributions of fibers in matrices and for fused bonds between fibers and matrices. Enables fabrication of composites of high specific strength and dimensional stability. Method particularly suitable for making low-thermal-expansion platforms for optical instruments.
Valley excitons in two-dimensional semiconductors
Yu, Hongyi; Cui, Xiaodong; Xu, Xiaodong; ...
2014-12-30
Monolayer group-VIB transition metal dichalcogenides have recently emerged as a new class of semiconductors in the two-dimensional limit. The attractive properties include: the visible range direct band gap ideal for exploring optoelectronic applications; the intriguing physics associated with spin and valley pseudospin of carriers which implies potentials for novel electronics based on these internal degrees of freedom; the exceptionally strong Coulomb interaction due to the two-dimensional geometry and the large effective masses. The physics of excitons, the bound states of electrons and holes, has been one of the most actively studied topics on these two-dimensional semiconductors, where the excitons exhibitmore » remarkably new features due to the strong Coulomb binding, the valley degeneracy of the band edges, and the valley dependent optical selection rules for interband transitions. Here we give a brief overview of the experimental and theoretical findings on excitons in two-dimensional transition metal dichalcogenides, with focus on the novel properties associated with their valley degrees of freedom.« less
Evaporation of 2-Dimensional Black Holes
NASA Astrophysics Data System (ADS)
Ramazanoglu, Fethi M.
2011-04-01
Violation of unitarity in black hole evaporation has been puzzling physicist since the seminal work of Hawking in the seventies. Although there are hopes for a resolution of the problem in a full theory of quantum gravity, it has eluded us so far. Even less ambitious efforts considering only quantum corrections beyond the external field approximation have proven hard to attack in 4 dimensions. All these obstacles directed researchers to investigate the black hole evaporation problem in simpler 2-dimensional models. In this talk, we will present results on a new investigation of one of these models, the 2-dimensional Callan-Giddings-Harvey-Strominger (CGHS) model. Using a combination of analytical and high precision numerical tools, we are able to resolve CGHS black hole evaporation within the mean field approximation all the way to the point where the black hole area vanishes. Our results confirm some of the assumptions of the standard paradigm, and strongly suggest the recovery of unitarity within the full quantum theory. On the other hand, there are several surprising new results, in particular remarkable universal behavior in the evaporation of initially macroscopic black holes. This suggests that information about the collapsing matter that formed the black hole can not be recovered from the evaporation radiation. Though this separation of the questions of information loss and unitarity is peculiar to the 2-dimensional model, insights into the higher dimensional case can still be garnered.
Three-Dimensional Printing Surgical Applications
Griffin, Michelle F.; Butler, Peter E.
2015-01-01
Introduction: Three-dimensional printing, a technology used for decades in the industrial field, gains a lot of attention in the medical field for its potential benefits. With advancement of desktop printers, this technology is accessible and a lot of research is going on in the medical field. Objective: To evaluate its application in surgical field, which may include but not limited to surgical planning, surgical education, implants, and prosthesis, which are the focus of this review. Methods: Research was conducted by searching PubMed, Web of science, and other reliable sources. We included original articles and excluded articles based on animals, those more than 10 years old, and those not in English. These articles were evaluated, and relevant studies were included in this review. Discussion: Three-dimensional printing shows a potential benefit in surgical application. Printed implants were used in patient in a few cases and show successful results; however, longer follow-up and more trials are needed. Surgical and medical education is believed to be more efficient with this technology than the current practice. Printed surgical instrument and surgical planning are also believed to improve with three-dimensional printing. Conclusion: Three-dimensional printing can be a very powerful tool in the near future, which can aid the medical field that is facing a lot of challenges and obstacles. However, despite the reported results, further research on larger samples and analytical measurements should be conducted to ensure this technology's impact on the practice. PMID:26301002
Three-dimensional implicit lambda methods
NASA Technical Reports Server (NTRS)
Napolitano, M.; Dadone, A.
1983-01-01
This paper derives the three dimensional lambda-formulation equations for a general orthogonal curvilinear coordinate system and provides various block-explicit and block-implicit methods for solving them, numerically. Three model problems, characterized by subsonic, supersonic and transonic flow conditions, are used to assess the reliability and compare the efficiency of the proposed methods.
Wang, Zhen
2016-05-01
The purpose of this study was to evaluate two types of impression materials which were frequently used for casting three-dimensional tool marks in China, namely (i) dental impression material and (ii) special elastomeric impression material for tool mark casting. The two different elastomeric impression materials were compared under equal conditions. The parameters measured were dimensional accuracies, the number of air bubbles, the ease of use, and the sharpness and quality of the individual characteristics present on casts. The results showed that dental impression material had the advantage of special elastomeric impression material in casting tool marks in crime scenes; hence, it combined ease of use, dimensional accuracy, sharpness and high quality.
The transition from three-dimensional to two-dimensional foam structures.
Jones, S A; Cox, S J
2011-08-01
A two-dimensional foam consists of a monolayer of bubbles. It can be created by squeezing the more familiar three-dimensional foam between two parallel glass plates. We describe and explain the minimum plate separation H which must be reached to fully effect the transition from three- to two- dimensional foam. We find that H/V(1/3) is close to one, where V is the average bubble volume, and increases slightly when the side-walls of the container are taken into account.
Orlita, M.; Faugeras, C.; Barra, A.-L.; Martinez, G.; Potemski, M.; Basko, D. M.; Teppe, F.; Knap, W.; Gavrilenko, V. I.; Mikhailov, N. N.; Dvoretskii, S. A.; Neugebauer, P.; Berger, C.
2015-03-21
Here, we report on a magneto-optical study of two distinct systems hosting massless fermions—two-dimensional graphene and three-dimensional HgCdTe tuned to the zero band gap condition at the point of the semiconductor-to-semimetal topological transition. Both materials exhibit, in the quantum regime, a fairly rich magneto-optical response, which is composed from a series of intra- and interband inter-Landau level resonances with for massless fermions typical √(B) dependence. The impact of the system's dimensionality and of the strength of the spin-orbit interaction on the optical response is also discussed.
NASA Astrophysics Data System (ADS)
Gu, Yingfei; Lee, Ching Hua; Wen, Xueda; Cho, Gil Young; Ryu, Shinsei; Qi, Xiao-Liang
2016-09-01
In this paper, we study (2 +1 ) -dimensional quantum anomalous Hall states, i.e., band insulators with quantized Hall conductance, using exact holographic mapping. Exact holographic mapping is an approach to holographic duality which maps the quantum anomalous Hall state to a different state living in (3 +1 ) -dimensional hyperbolic space. By studying topological response properties and the entanglement spectrum, we demonstrate that the holographic dual theory of a quantum anomalous Hall state is a (3 +1 ) -dimensional topological insulator. The dual description enables a characterization of topological properties of a system by the quantum entanglement between degrees of freedom at different length scales.
Metal Contacts on Low-Dimensional Materials
NASA Astrophysics Data System (ADS)
Yuan, Hui
As the scaling of the microelectronics is reaching nano regime, low-dimensional materials have been of increasing interest for future electronics applications. The low-dimensional materials, such as Si nanowires (SiNWs), carbon nanotubes (CNTs), graphene and transition metal dichalcogenides (TMDs), not only provide small body for further-scaled devices but also bring about new intrinsic properties for application in future optoelectronics, spintronics and so on. However, the small dimensions add significant difficulty for reducing contact resistance in the nanoelectronic devices. This dissertation presents a study of the metal contacts on low-dimensional materials. The focus of this work is on SiNWs and monolayer or few-layer MoS2. First, the metal contact on SiNW field effect transistors (FETs) was studied with a gate assisted Kelvin structure. In this work, I fabricated ambipolar SiNW FETs with Al contacts. The ambipolar characteristics and the gate assisted Kelvin structure enabled the measurement of the contact properties of both electron and hole flows at the same contact. In this work I found that the contact performance is affected by the carrier type that flows in the channel as well as the current direction. In addition, an inverter was designed and realized on a single SiNW leveraged by the ambipolar FET characteristics. Then, I have studied metal contacts on MoS2, which is one of typical two-dimensional semiconductors. In the first part of this work, Ag and Ti contacts on exfoliated MoS2 monolayers and few-layers are fabricated, characterized and analyzed. Based on the current-voltage (I-V) measurement, surface morphology and Raman spectroscopic measurement, I found that interface morphology plays an important role on the contact performance in MoS2 FETs. In the second part of this work, gate-assisted contact measurement was carried out on chemical vapor deposited low-dimensional MoS 2 layers. The contact resistance and current crowding have been
Thermodynamics of ultracold Bose gases at a dimensional crossover
NASA Astrophysics Data System (ADS)
Labouvie, Ralf; Vogler, Andreas; Guarrera, Vera; Ott, Herwig
2013-05-01
We have studied the thermodynamics of ultracold Bose gases in the crossover from a three-dimensional to a one-dimensional regime. In our experiment, we use a focused electron-beam to probe in situ atomic density distributions with high temporal and spatial resolution. Starting with a Bose-Einstein-Condensate in a single beam optical dipole trap we can create one-dimensional systems by loading the atoms in a two-dimensional blue-detuned optical lattice. With increasing strength of the lattices we go from a three-dimensional into a one-dimensional system. Furthermore we tune the interaction strengths of the one-dimensional quantum-gases from weak (quasi-condensate) to strong (Tonks-Girardeau). By measuring the density profiles and applying an inverse Abel-Transformation we extract the equation of states of these systems and characterize the crossover from the three-dimensional to the one-dimensional regime.
Numerical investigations in three-dimensional internal flows
NASA Technical Reports Server (NTRS)
Rose, William C.
1991-01-01
The present study is a preliminary investigation into the behavior of the flow within a 28 degree total geometric turning angle hypothetical Mach 10 inlet as calculated with the full three-dimensional Navier-Stokes equations. Comparison between the two-dimensional and three-dimensional solutions have been made. The overall compression is not significantly different between the two-dimensional and center plane three dimensional solutions. Approximately one-half to two-thirds of the inlet flow at the exit of the inlet behave nominally two-dimensionally. On the other hand, flow field non-uniformities in the three-dimensional solution indicate the potential significance of the sidewall boundary layer flows ingested into the inlet. The tailoring of the geometry at the inlet shoulder and on the cowl obtained in the two-dimensional parametric design study have also proved to be effective at controlling the boundary layer behavior in the three-dimensional code. The three-dimensional inlet solution remained started indicating that the two-dimensional design had a sufficient margin to allow for three-dimensional flow field effects. Although confidence is being gained in the use of SCRAM3D (three-dimensional full Navier-Stokes code) as applied to similar flow fields, the actual effects of the three-dimensional flow fields associated with sidewalls and wind tunnel installations can require verification with ground-based experiments.
Robust Nonnegative Patch Alignment for Dimensionality Reduction.
You, Xinge; Ou, Weihua; Chen, Chun Lung Philip; Li, Qiang; Zhu, Ziqi; Tang, Yuanyan
2015-11-01
Dimensionality reduction is an important method to analyze high-dimensional data and has many applications in pattern recognition and computer vision. In this paper, we propose a robust nonnegative patch alignment for dimensionality reduction, which includes a reconstruction error term and a whole alignment term. We use correntropy-induced metric to measure the reconstruction error, in which the weight is learned adaptively for each entry. For the whole alignment, we propose locality-preserving robust nonnegative patch alignment (LP-RNA) and sparsity-preserviing robust nonnegative patch alignment (SP-RNA), which are unsupervised and supervised, respectively. In the LP-RNA, we propose a locally sparse graph to encode the local geometric structure of the manifold embedded in high-dimensional space. In particular, we select large p -nearest neighbors for each sample, then obtain the sparse representation with respect to these neighbors. The sparse representation is used to build a graph, which simultaneously enjoys locality, sparseness, and robustness. In the SP-RNA, we simultaneously use local geometric structure and discriminative information, in which the sparse reconstruction coefficient is used to characterize the local geometric structure and weighted distance is used to measure the separability of different classes. For the induced nonconvex objective function, we formulate it into a weighted nonnegative matrix factorization based on half-quadratic optimization. We propose a multiplicative update rule to solve this function and show that the objective function converges to a local optimum. Several experimental results on synthetic and real data sets demonstrate that the learned representation is more discriminative and robust than most existing dimensionality reduction methods.
Stimuli Reduce the Dimensionality of Cortical Activity
Mazzucato, Luca; Fontanini, Alfredo; La Camera, Giancarlo
2016-01-01
The activity of ensembles of simultaneously recorded neurons can be represented as a set of points in the space of firing rates. Even though the dimension of this space is equal to the ensemble size, neural activity can be effectively localized on smaller subspaces. The dimensionality of the neural space is an important determinant of the computational tasks supported by the neural activity. Here, we investigate the dimensionality of neural ensembles from the sensory cortex of alert rats during periods of ongoing (inter-trial) and stimulus-evoked activity. We find that dimensionality grows linearly with ensemble size, and grows significantly faster during ongoing activity compared to evoked activity. We explain these results using a spiking network model based on a clustered architecture. The model captures the difference in growth rate between ongoing and evoked activity and predicts a characteristic scaling with ensemble size that could be tested in high-density multi-electrode recordings. Moreover, we present a simple theory that predicts the existence of an upper bound on dimensionality. This upper bound is inversely proportional to the amount of pair-wise correlations and, compared to a homogeneous network without clusters, it is larger by a factor equal to the number of clusters. The empirical estimation of such bounds depends on the number and duration of trials and is well predicted by the theory. Together, these results provide a framework to analyze neural dimensionality in alert animals, its behavior under stimulus presentation, and its theoretical dependence on ensemble size, number of clusters, and correlations in spiking network models. PMID:26924968
Stimuli Reduce the Dimensionality of Cortical Activity.
Mazzucato, Luca; Fontanini, Alfredo; La Camera, Giancarlo
2016-01-01
The activity of ensembles of simultaneously recorded neurons can be represented as a set of points in the space of firing rates. Even though the dimension of this space is equal to the ensemble size, neural activity can be effectively localized on smaller subspaces. The dimensionality of the neural space is an important determinant of the computational tasks supported by the neural activity. Here, we investigate the dimensionality of neural ensembles from the sensory cortex of alert rats during periods of ongoing (inter-trial) and stimulus-evoked activity. We find that dimensionality grows linearly with ensemble size, and grows significantly faster during ongoing activity compared to evoked activity. We explain these results using a spiking network model based on a clustered architecture. The model captures the difference in growth rate between ongoing and evoked activity and predicts a characteristic scaling with ensemble size that could be tested in high-density multi-electrode recordings. Moreover, we present a simple theory that predicts the existence of an upper bound on dimensionality. This upper bound is inversely proportional to the amount of pair-wise correlations and, compared to a homogeneous network without clusters, it is larger by a factor equal to the number of clusters. The empirical estimation of such bounds depends on the number and duration of trials and is well predicted by the theory. Together, these results provide a framework to analyze neural dimensionality in alert animals, its behavior under stimulus presentation, and its theoretical dependence on ensemble size, number of clusters, and correlations in spiking network models.
Sonic morphology: Aesthetic dimensional auditory spatial awareness
NASA Astrophysics Data System (ADS)
Whitehouse, Martha M.
The sound and ceramic sculpture installation, " Skirting the Edge: Experiences in Sound & Form," is an integration of art and science demonstrating the concept of sonic morphology. "Sonic morphology" is herein defined as aesthetic three-dimensional auditory spatial awareness. The exhibition explicates my empirical phenomenal observations that sound has a three-dimensional form. Composed of ceramic sculptures that allude to different social and physical situations, coupled with sound compositions that enhance and create a three-dimensional auditory and visual aesthetic experience (see accompanying DVD), the exhibition supports the research question, "What is the relationship between sound and form?" Precisely how people aurally experience three-dimensional space involves an integration of spatial properties, auditory perception, individual history, and cultural mores. People also utilize environmental sound events as a guide in social situations and in remembering their personal history, as well as a guide in moving through space. Aesthetically, sound affects the fascination, meaning, and attention one has within a particular space. Sonic morphology brings art forms such as a movie, video, sound composition, and musical performance into the cognitive scope by generating meaning from the link between the visual and auditory senses. This research examined sonic morphology as an extension of musique concrete, sound as object, originating in Pierre Schaeffer's work in the 1940s. Pointing, as John Cage did, to the corporeal three-dimensional experience of "all sound," I composed works that took their total form only through the perceiver-participant's participation in the exhibition. While contemporary artist Alvin Lucier creates artworks that draw attention to making sound visible, "Skirting the Edge" engages the perceiver-participant visually and aurally, leading to recognition of sonic morphology.
Three-dimensional structure of a sunspot light bridge
NASA Astrophysics Data System (ADS)
Felipe, T.; Collados, M.; Khomenko, E.; Kuckein, C.; Asensio Ramos, A.; Balthasar, H.; Berkefeld, T.; Denker, C.; Feller, A.; Franz, M.; Hofmann, A.; Joshi, J.; Kiess, C.; Lagg, A.; Nicklas, H.; Orozco Suárez, D.; Pastor Yabar, A.; Rezaei, R.; Schlichenmaier, R.; Schmidt, D.; Schmidt, W.; Sigwarth, M.; Sobotka, M.; Solanki, S. K.; Soltau, D.; Staude, J.; Strassmeier, K. G.; Volkmer, R.; von der Lühe, O.; Waldmann, T.
2016-11-01
Context. Active regions are the most prominent manifestations of solar magnetic fields; their generation and dissipation are fundamental problems in solar physics. Light bridges are commonly present during sunspot decay, but a comprehensive picture of their role in the removal of the photospheric magnetic field is still lacking. Aims: We study the three-dimensional configuration of a sunspot, and in particular, its light bridge, during one of the last stages of its decay. Methods: We present the magnetic and thermodynamical stratification inferred from full Stokes inversions of the photospheric Si i 10 827 Å and Ca i 10 839 Å lines obtained with the GREGOR Infrared Spectrograph of the GREGOR telescope at the Observatorio del Teide, Tenerife, Spain. The analysis is complemented by a study of continuum images covering the disk passage of the active region, which are provided by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. Results: The sunspot shows a light bridge with penumbral continuum intensity that separates the central umbra from a smaller umbra. We find that in this region the magnetic field lines form a canopy with lower magnetic field strength in the inner part. The photospheric light bridge is dominated by gas pressure (high-β), as opposed to the surrounding umbra, where the magnetic pressure is higher. A convective flow is observed in the light bridge. This flow is able to bend the magnetic field lines and to produce field reversals. The field lines merge above the light bridge and become as vertical and strong as in the surrounding umbra. We conclude that this occurs because two highly magnetized regions approach each other during the sunspot evolution. Movies associated to Figs. 2 and 13 are available at http://www.aanda.org
Educación sobre sexualidad y prevención del VIH: un diagnóstico para América Latina y el Caribe
DeMaria, Lisa M.; Galárraga, Omar; Campero, Lourdes; Walker, Dilys M.
2016-01-01
RESUMEN Objetivo Mostrar, a través de un diagnóstico en América Latina y el Caribe, el panorama legislativo y curricular sobre sexualidad y prevención contra el virus de inmunodeficiencia humana (VIH) en el ámbito escolar, contrastándolo con los comportamientos sexuales reportados en encuestas demográficas y de salud. Métodos En mayo de 2008 se realizó, con el apoyo del Fondo de Población de las Naciones Unidas (UNFPA), una encuesta a informantes clave en 34 países de la Región. El cuestionario autoaplicado solicitó información sustantiva de agentes de las diferentes partes interesadas, como ministerios de educación y de salud, sobre los programas de prevención contra el VIH/Sida que se están aplicando en las escuelas. Resultados Respondieron a la encuesta 27 países que representan 95,5% de la población objetivo (6 a 18 años de edad). La mayoría de los países informó tener al menos un libro de texto o un capítulo específico para enseñar los temas de educación sobre sexualidad y prevención del VIH. En la escuela secundaria se cubren la mayor parte de los temas pertinentes relevantes para la educación sobre sexualidad, pero no todos. Por ejemplo, el problema de la discriminación por orientación o preferencia sexual no se incluye en los programas escolares. Conclusiones El material educativo sobre sexualidad debe ser revisado y actualizado periódicamente de modo que refleje los avances en los temas y en la forma de tratar los contenidos. En cada país el currículo debe abordar el tema del respeto a la diversidad sobre orientación, preferencia e identidad sexuales, y en particular el manejo apropiado de la educación para prevenir infecciones de transmisión sexual (ITS) en hombres que tienen sexo con hombres. Los esfuerzos de evaluación de la efectividad de los programas deben contemplar desenlaces tales como marcadores biológicos (incidencia y prevalencia de ITS y embarazo) y no únicamente indicadores de conocimiento y
Three-Dimensional Frame Buffers For Interactive Analysis Of Three-Dimensional Data
NASA Astrophysics Data System (ADS)
Hunter, Gregory M.
1986-02-01
Two-dimensional data such as photos, x-rays, various types of satellite images, sonar, radar, seismic plots, etc., in many cases must be analyzed using frame buffers for purposes of medical diagnoses, crop estimates, mineral exploration, and so forth. In many cases the same types of sensors used to gather such samples in two dimensions can gather 3D data for even more effective analysis. Just as 2D arrays of data can be analyzed using frame buffers, three-dimensional data can be analyzed using SOLIDS-BUFFER memories. Image processors deal with samples from two-dimensional arrays and are based on frame buffers. The SOLIDS PROCESSOR system deals with samples from a three-dimensional volume, or solid, and is based on a 3D frame buffer. This paper focuses upon the SOLIDS-BUFFER system as used in the INSIGHT SOLIDS-PROCESSOR system from Phoenix Data Systems.
A Shell Multi-dimensional Hierarchical Cubing Approach for High-Dimensional Cube
NASA Astrophysics Data System (ADS)
Zou, Shuzhi; Zhao, Li; Hu, Kongfa
The pre-computation of data cubes is critical for improving the response time of OLAP systems and accelerating data mining tasks in large data warehouses. However, as the sizes of data warehouses grow, the time it takes to perform this pre-computation becomes a significant performance bottleneck. In a high dimensional data warehouse, it might not be practical to build all these cuboids and their indices. In this paper, we propose a shell multi-dimensional hierarchical cubing algorithm, based on an extension of the previous minimal cubing approach. This method partitions the high dimensional data cube into low multi-dimensional hierarchical cube. Experimental results show that the proposed method is significantly more efficient than other existing cubing methods.
Filling of three-dimensional space by two-dimensional sheet growth
NASA Astrophysics Data System (ADS)
Etzold, Merlin A.; McDonald, Peter J.; Faux, David A.; Routh, Alexander F.
2015-10-01
Models of three-dimensional space filling based on growth of two-dimensional sheets are proposed. Beginning from planar Eden-style growth of sheets, additional growth modes are introduced. These enable the sheets to form layered or disordered structures. The growth modes can also be combined. An off-lattice kinetic Monte Carlo-based computer algorithm is presented and used to study the kinetics of the new models and the resulting structures. It is possible to study space filling by two-dimensional growth in a three-dimensional domain with arbitrarily oriented sheets; the results agree with previously published models where the sheets are only able to grow in a limited set of directions. The introduction of a bifurcation mechanism gives rise to complex disordered structures that are of interest as model structures for the mesostructure of calcium silicate hydrate in hardened cement paste.
Two-Dimensional Versus Three-Dimensional Conceptualization in Astronomy Education
NASA Astrophysics Data System (ADS)
Reynolds, Michael David
Numerous science conceptual issues are naturally three-dimensional. Classroom presentations are often two -dimensional or at best multidimensional. Several astronomy topics are of this nature, e. g. mechanics of the phases of the moon. Textbooks present this three-dimensional topic in two-dimensions; such is often the case in the classroom. This study was conducted to examine conceptions exhibited by pairs of like-sex 11th grade standard physics students as they modeled the lunar phases. Student pairs, 13 male and 13 female, were randomly selected and assigned. Pairing comes closer to classroom emulation, minimizes needs for direct probes, and pair discussion is more likely to display variety and depth. Four hypotheses were addressed: (1) Participants who model three-dimensionally will more likely achieve a higher explanation score. (2) Students who experienced more earth or physical science exposure will more likely model three-dimensionally. (3) Pairs that exhibit a strong science or mathematics preference will more likely model three-dimensionally. (4) Males will model in three dimensions more than females. Students provided background information, including science course exposure and subject preference. Each pair laid out a 16-card set representing two complete lunar phase changes. The pair was asked to explain why the phases occur. Materials were provided for use, including disks, spheres, paper and pen, and flashlight. Activities were videotaped for later evaluation. Statistics of choice was a correlation determination between course preference and model type and ANOVA for the other hypotheses. It was determined that pairs who modeled three -dimensionally achieved a higher score on their phases mechanics explanation at p <.05 level. Pairs with earth science or physical science exposure, those who prefer science or mathematics, and male participants were not more likely to model three-dimensionally. Possible reasons for lack of significance was small sample
NASA Technical Reports Server (NTRS)
Misiakos, K.; Lindholm, F. A.
1986-01-01
Several parameters of certain three-dimensional semiconductor devices including diodes, transistors, and solar cells can be determined without solving the actual boundary-value problem. The recombination current, transit time, and open-circuit voltage of planar diodes are emphasized here. The resulting analytical expressions enable determination of the surface recombination velocity of shallow planar diodes. The method involves introducing corresponding one-dimensional models having the same values of these parameters.
Hirata, Yoshito; Aihara, Kazuyuki
2012-06-01
We introduce a low-dimensional description for a high-dimensional system, which is a piecewise affine model whose state space is divided by permutations. We show that the proposed model tends to predict wind speeds and photovoltaic outputs for the time scales from seconds to 100 s better than by global affine models. In addition, computations using the piecewise affine model are much faster than those of usual nonlinear models such as radial basis function models.
NASA Astrophysics Data System (ADS)
Chen, L. X.; Wu, Q. P.
2012-10-01
Recently, Dada et al. reported on the experimental entanglement concentration and violation of generalized Bell inequalities with orbital angular momentum (OAM) [Nat. Phys. 7, 677 (2011)]. Here we demonstrate that the high-dimensional entanglement concentration can be performed in arbitrary OAM subspaces with selectivity. Instead of violating the generalized Bell inequalities, the working principle of present entanglement concentration is visualized by the biphoton OAM Klyshko picture, and its good performance is confirmed and quantified through the experimental Shannon dimensionalities after concentration.
Chung, W. Joon; Goeckeler-Fried, Jennifer L.; Havasi, Viktoria; Chiang, Annette; Rowe, Steven M.; Plyler, Zackery E.; Hong, Jeong S.; Mazur, Marina; Piazza, Gary A.; Keeton, Adam B.; White, E. Lucile; Rasmussen, Lynn; Weissman, Allan M.; Denny, R. Aldrin; Brodsky, Jeffrey L.; Sorscher, Eric J.
2016-01-01
Small molecules that correct the folding defects and enhance surface localization of the F508del mutation in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) comprise an important therapeutic strategy for cystic fibrosis lung disease. However, compounds that rescue the F508del mutant protein to wild type (WT) levels have not been identified. In this report, we consider obstacles to obtaining robust and therapeutically relevant levels of F508del CFTR. For example, markedly diminished steady state amounts of F508del CFTR compared to WT CFTR are present in recombinant bronchial epithelial cell lines, even when much higher levels of mutant transcript are present. In human primary airway cells, the paucity of Band B F508del is even more pronounced, although F508del and WT mRNA concentrations are comparable. Therefore, to augment levels of “repairable” F508del CFTR and identify small molecules that then correct this pool, we developed compound library screening protocols based on automated protein detection. First, cell-based imaging measurements were used to semi-quantitatively estimate distribution of F508del CFTR by high content analysis of two-dimensional images. We evaluated ~2,000 known bioactive compounds from the NIH Roadmap Molecular Libraries Small Molecule Repository in a pilot screen and identified agents that increase the F508del protein pool. Second, we analyzed ~10,000 compounds representing diverse chemical scaffolds for effects on total CFTR expression using a multi-plate fluorescence protocol and describe compounds that promote F508del maturation. Together, our findings demonstrate proof of principle that agents identified in this fashion can augment the level of endoplasmic reticulum (ER) resident “Band B” F508del CFTR suitable for pharmacologic correction. As further evidence in support of this strategy, PYR-41—a compound that inhibits the E1 ubiquitin activating enzyme—was shown to synergistically enhance F508del rescue by C
Chung, W Joon; Goeckeler-Fried, Jennifer L; Havasi, Viktoria; Chiang, Annette; Rowe, Steven M; Plyler, Zackery E; Hong, Jeong S; Mazur, Marina; Piazza, Gary A; Keeton, Adam B; White, E Lucile; Rasmussen, Lynn; Weissman, Allan M; Denny, R Aldrin; Brodsky, Jeffrey L; Sorscher, Eric J
2016-01-01
Small molecules that correct the folding defects and enhance surface localization of the F508del mutation in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) comprise an important therapeutic strategy for cystic fibrosis lung disease. However, compounds that rescue the F508del mutant protein to wild type (WT) levels have not been identified. In this report, we consider obstacles to obtaining robust and therapeutically relevant levels of F508del CFTR. For example, markedly diminished steady state amounts of F508del CFTR compared to WT CFTR are present in recombinant bronchial epithelial cell lines, even when much higher levels of mutant transcript are present. In human primary airway cells, the paucity of Band B F508del is even more pronounced, although F508del and WT mRNA concentrations are comparable. Therefore, to augment levels of "repairable" F508del CFTR and identify small molecules that then correct this pool, we developed compound library screening protocols based on automated protein detection. First, cell-based imaging measurements were used to semi-quantitatively estimate distribution of F508del CFTR by high content analysis of two-dimensional images. We evaluated ~2,000 known bioactive compounds from the NIH Roadmap Molecular Libraries Small Molecule Repository in a pilot screen and identified agents that increase the F508del protein pool. Second, we analyzed ~10,000 compounds representing diverse chemical scaffolds for effects on total CFTR expression using a multi-plate fluorescence protocol and describe compounds that promote F508del maturation. Together, our findings demonstrate proof of principle that agents identified in this fashion can augment the level of endoplasmic reticulum (ER) resident "Band B" F508del CFTR suitable for pharmacologic correction. As further evidence in support of this strategy, PYR-41-a compound that inhibits the E1 ubiquitin activating enzyme-was shown to synergistically enhance F508del rescue by C18, a small
Validating two-dimensional leadership models on three-dimensionally structured fish schools
Nagy, Máté; Holbrook, Robert I.; Biro, Dora; Burt de Perera, Theresa
2017-01-01
Identifying leader–follower interactions is crucial for understanding how a group decides where or when to move, and how this information is transferred between members. Although many animal groups have a three-dimensional structure, previous studies investigating leader–follower interactions have often ignored vertical information. This raises the question of whether commonly used two-dimensional leader–follower analyses can be used justifiably on groups that interact in three dimensions. To address this, we quantified the individual movements of banded tetra fish (Astyanax mexicanus) within shoals by computing the three-dimensional trajectories of all individuals using a stereo-camera technique. We used these data firstly to identify and compare leader–follower interactions in two and three dimensions, and secondly to analyse leadership with respect to an individual's spatial position in three dimensions. We show that for 95% of all pairwise interactions leadership identified through two-dimensional analysis matches that identified through three-dimensional analysis, and we reveal that fish attend to the same shoalmates for vertical information as they do for horizontal information. Our results therefore highlight that three-dimensional analyses are not always required to identify leader–follower relationships in species that move freely in three dimensions. We discuss our results in terms of the importance of taking species' sensory capacities into account when studying interaction networks within groups. PMID:28280582
A sparse grid based method for generative dimensionality reduction of high-dimensional data
NASA Astrophysics Data System (ADS)
Bohn, Bastian; Garcke, Jochen; Griebel, Michael
2016-03-01
Generative dimensionality reduction methods play an important role in machine learning applications because they construct an explicit mapping from a low-dimensional space to the high-dimensional data space. We discuss a general framework to describe generative dimensionality reduction methods, where the main focus lies on a regularized principal manifold learning variant. Since most generative dimensionality reduction algorithms exploit the representer theorem for reproducing kernel Hilbert spaces, their computational costs grow at least quadratically in the number n of data. Instead, we introduce a grid-based discretization approach which automatically scales just linearly in n. To circumvent the curse of dimensionality of full tensor product grids, we use the concept of sparse grids. Furthermore, in real-world applications, some embedding directions are usually more important than others and it is reasonable to refine the underlying discretization space only in these directions. To this end, we employ a dimension-adaptive algorithm which is based on the ANOVA (analysis of variance) decomposition of a function. In particular, the reconstruction error is used to measure the quality of an embedding. As an application, the study of large simulation data from an engineering application in the automotive industry (car crash simulation) is performed.
Validating two-dimensional leadership models on three-dimensionally structured fish schools.
Watts, Isobel; Nagy, Máté; Holbrook, Robert I; Biro, Dora; Burt de Perera, Theresa
2017-01-01
Identifying leader-follower interactions is crucial for understanding how a group decides where or when to move, and how this information is transferred between members. Although many animal groups have a three-dimensional structure, previous studies investigating leader-follower interactions have often ignored vertical information. This raises the question of whether commonly used two-dimensional leader-follower analyses can be used justifiably on groups that interact in three dimensions. To address this, we quantified the individual movements of banded tetra fish (Astyanax mexicanus) within shoals by computing the three-dimensional trajectories of all individuals using a stereo-camera technique. We used these data firstly to identify and compare leader-follower interactions in two and three dimensions, and secondly to analyse leadership with respect to an individual's spatial position in three dimensions. We show that for 95% of all pairwise interactions leadership identified through two-dimensional analysis matches that identified through three-dimensional analysis, and we reveal that fish attend to the same shoalmates for vertical information as they do for horizontal information. Our results therefore highlight that three-dimensional analyses are not always required to identify leader-follower relationships in species that move freely in three dimensions. We discuss our results in terms of the importance of taking species' sensory capacities into account when studying interaction networks within groups.
Laser one-dimensional range profile and the laser two-dimensional range profile of cylinders
NASA Astrophysics Data System (ADS)
Gong, Yanjun; Wang, Mingjun; Gong, Lei
2015-10-01
Laser one-dimensional range profile, that is scattering power from pulse laser scattering of target, is a radar imaging technology. The laser two-dimensional range profile is two-dimensional scattering imaging of pulse laser of target. Laser one-dimensional range profile and laser two-dimensional range profile are called laser range profile(LRP). The laser range profile can reflect the characteristics of the target shape and surface material. These techniques were motivated by applications of laser radar to target discrimination in ballistic missile defense. The radar equation of pulse laser is given in this paper. This paper demonstrates the analytical model of laser range profile of cylinder based on the radar equation of the pulse laser. Simulations results of laser one-dimensional range profiles of some cylinders are given. Laser range profiles of cylinder, whose surface material with diffuse lambertian reflectance, is given in this paper. Laser range profiles of different pulse width of cylinder are given in this paper. The influences of geometric parameters, pulse width, attitude on the range profiles are analyzed.
Magnetization study of two dimensional helium three
NASA Astrophysics Data System (ADS)
Guo, Lei
This dissertation discusses a magnetization study of a two dimensional Fermi system. Our group developed a SQUID NMR system to study the magnetization of two dimensional 3He on both GTA grafoil and ZYX Graphite substrates. Benefiting from SQUID technology, our NMR experiments were performed at very low applied magnetic field thus avoid the masking of ordering by strong external field. Monolayer 3He films adsorbed on crystalline graphite are considered a nearly ideal example of a two dimensional system of highly correlated fermions. By controlling the 3He areal density, adsorbed films exhibit a wide range of structures with different temperature- dependent magnetic properties and heat capacities. Our recent experiments on two dimensional 3He adsorbed on ZYX graphite focused on the anti-ferromagnetic 4/7 phase and the ferromagnetic incommensurate solid state of a second 3He monolayer. Ferromagnetic order was observed in two dimensional 3He films on both Grafoil and highly oriented ZYX grade exfoliated graphite. The dipolar field plays an important role in magnetic ordering in two dimensional spin systems. The dipole-dipole interaction leads to a frequency shift of the NMR absorption line. The resulting 3He NMR lineshape on Grafoil was a broad peak shifted towards lower frequency with a background from the randomly oriented regions extending to positive frequencies. Compared to Grafoil, ZYX graphite has a much greater structural coherence and is more highly oriented. When studying magnetism of 3He films on ZYX substrate we found that the features we observed in our original Grafoil experiment were much more pronounced on ZYX graphite. In addition, we observed some multi-peak structure on the 3He NMR lineshape, which suggest a series of spin wave resonances. We also studied the magnetic properties of the second layer of 3He films on ZYX substrate at density around 4/7 phase. To eliminate the paramagnetic signal of the first layer solid, we pre-plated a 4He layer on the
Kirigami for Two-Dimensional Electronic Membranes
NASA Astrophysics Data System (ADS)
Qi, Zenan; Bahamon, Dario; Campbell, David; Park, Harold
2015-03-01
Two-dimensional materials have recently drawn tremendous attention because of their unique properties. In this work, we introduce the notion of two-dimensional kirigami, where concepts that have been used almost exclusively for macroscale structures are applied to dramatically enhance their stretchability. Specifically, we show using classical molecular dynamics simulations that the yield and fracture strains of graphene and MoS2 can be enhanced by about a factor of three using kirigami as compared to standard monolayers. Finally, using graphene as an example, we demonstrate that the kirigami structure may open up interesting opportunities in coupling to the electronic behavior of 2D materials. Authors acknowledge Mechanical Engineering and Physics departments at Boston University, and Mackgrafe at Mackenzie Presbyterian University.
Cooperative two-dimensional directed transport
NASA Astrophysics Data System (ADS)
Zheng, Zhigang; Chen, Hongbin
2010-11-01
A mechanism for the cooperative directed transport in two-dimensional ratchet potentials is proposed. With the aid of mutual couplings among particles, coordinated unidirectional motion along the ratchet direction can be achieved by transforming the energy from the transversal rocking force (periodic or stochastic) to the work in the longitude direction. Analytical predictions on the relation between the current and other parameters for the ac-driven cases are given, which are in good agreement with numerical simulations. Stochastic driving forces can give rise to the resonant directional transport. The effect of the free length, which has been explored in experiments on the motility of bipedal molecular motors, is investigated for both the single- and double-channel cases. The mechanism and results proposed in this letter may both shed light on the collective locomotion of molecular motors and open ways on studies in two-dimensional collaborative ratchet dynamics.
Toward two-dimensional search engines
NASA Astrophysics Data System (ADS)
Ermann, L.; Chepelianskii, A. D.; Shepelyansky, D. L.
2012-07-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank-CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed.
Quantum transport in d-dimensional lattices
Manzano, Daniel; Chuang, Chern; Cao, Jianshu
2016-04-28
We show that both fermionic and bosonic uniform d-dimensional lattices can be reduced to a set of independent one-dimensional chains. This reduction leads to the expression for ballistic energy fluxes in uniform fermionic and bosonic lattices. By the use of the Jordan–Wigner transformation we can extend our analysis to spin lattices, proving the coexistence of both ballistic and non-ballistic subspaces in any dimension and for any system size. Lastly, we then relate the nature of transport to the number of excitations in the homogeneous spin lattice, indicating that a single excitation always propagates ballistically and that the non-ballistic behaviour ofmore » uniform spin lattices is a consequence of the interaction between different excitations.« less
Three-dimensional bio-printing.
Gu, Qi; Hao, Jie; Lu, YangJie; Wang, Liu; Wallace, Gordon G; Zhou, Qi
2015-05-01
Three-dimensional (3D) printing technology has been widely used in various manufacturing operations including automotive, defence and space industries. 3D printing has the advantages of personalization, flexibility and high resolution, and is therefore becoming increasingly visible in the high-tech fields. Three-dimensional bio-printing technology also holds promise for future use in medical applications. At present 3D bio-printing is mainly used for simulating and reconstructing some hard tissues or for preparing drug-delivery systems in the medical area. The fabrication of 3D structures with living cells and bioactive moieties spatially distributed throughout will be realisable. Fabrication of complex tissues and organs is still at the exploratory stage. This review summarize the development of 3D bio-printing and its potential in medical applications, as well as discussing the current challenges faced by 3D bio-printing.
Real time three dimensional sensing system
Gordon, Steven J.
1996-01-01
The invention is a three dimensional sensing system which utilizes two flexibly located cameras for receiving and recording visual information with respect to a sensed object illuminated by a series of light planes. Each pixel of each image is converted to a digital word and the words are grouped into stripes, each stripe comprising contiguous pixels. One pixel of each stripe in one image is selected and an epi-polar line of that point is drawn in the other image. The three dimensional coordinate of each selected point is determined by determining the point on said epi-polar line which also lies on a stripe in the second image and which is closest to a known light plane.
Real time three dimensional sensing system
Gordon, S.J.
1996-12-31
The invention is a three dimensional sensing system which utilizes two flexibly located cameras for receiving and recording visual information with respect to a sensed object illuminated by a series of light planes. Each pixel of each image is converted to a digital word and the words are grouped into stripes, each stripe comprising contiguous pixels. One pixel of each stripe in one image is selected and an epi-polar line of that point is drawn in the other image. The three dimensional coordinate of each selected point is determined by determining the point on said epi-polar line which also lies on a stripe in the second image and which is closest to a known light plane. 7 figs.
One-Dimensional Photonic Crystal Superprisms
NASA Technical Reports Server (NTRS)
Ting, David
2005-01-01
Theoretical calculations indicate that it should be possible for one-dimensional (1D) photonic crystals (see figure) to exhibit giant dispersions known as the superprism effect. Previously, three-dimensional (3D) photonic crystal superprisms have demonstrated strong wavelength dispersion - about 500 times that of conventional prisms and diffraction gratings. Unlike diffraction gratings, superprisms do not exhibit zero-order transmission or higher-order diffraction, thereby eliminating cross-talk problems. However, the fabrication of these 3D photonic crystals requires complex electron-beam substrate patterning and multilayer thin-film sputtering processes. The proposed 1D superprism is much simpler in structural complexity and, therefore, easier to design and fabricate. Like their 3D counterparts, the 1D superprisms can exhibit giant dispersions over small spectral bands that can be tailored by judicious structure design and tuned by varying incident beam direction. Potential applications include miniature gas-sensing devices.
Electronics based on two-dimensional materials.
Fiori, Gianluca; Bonaccorso, Francesco; Iannaccone, Giuseppe; Palacios, Tomás; Neumaier, Daniel; Seabaugh, Alan; Banerjee, Sanjay K; Colombo, Luigi
2014-10-01
The compelling demand for higher performance and lower power consumption in electronic systems is the main driving force of the electronics industry's quest for devices and/or architectures based on new materials. Here, we provide a review of electronic devices based on two-dimensional materials, outlining their potential as a technological option beyond scaled complementary metal-oxide-semiconductor switches. We focus on the performance limits and advantages of these materials and associated technologies, when exploited for both digital and analog applications, focusing on the main figures of merit needed to meet industry requirements. We also discuss the use of two-dimensional materials as an enabling factor for flexible electronics and provide our perspectives on future developments.
Rainich conditions in (2 + 1)-dimensional gravity
NASA Astrophysics Data System (ADS)
Krongos, D. S.; Torre, C. G.
2017-01-01
In (3 + 1) spacetime dimensions, the Rainich conditions are a set of equations expressed solely in terms of the metric tensor which are equivalent to the Einstein-Maxwell equations for non-null electromagnetic fields. Here we provide the analogous conditions for (2 + 1)-dimensional gravity coupled to electromagnetism. Both the non-null and null cases are treated. The construction of these conditions is based upon reducing the problem to that of gravity coupled to a scalar field, which we have treated elsewhere. These conditions can be easily extended to other theories of (2 + 1)-dimensional gravity. For example, we apply the geometrization conditions to topologically massive gravity coupled to the electromagnetic field and obtain a family of plane-fronted wave solutions.
Intrinsic two-dimensional features as textons
NASA Technical Reports Server (NTRS)
Barth, E.; Zetzsche, C.; Rentschler, I.
1998-01-01
We suggest that intrinsic two-dimensional (i2D) features, computationally defined as the outputs of nonlinear operators that model the activity of end-stopped neurons, play a role in preattentive texture discrimination. We first show that for discriminable textures with identical power spectra the predictions of traditional models depend on the type of nonlinearity and fail for energy measures. We then argue that the concept of intrinsic dimensionality, and the existence of end-stopped neurons, can help us to understand the role of the nonlinearities. Furthermore, we show examples in which models without strong i2D selectivity fail to predict the correct ranking order of perceptual segregation. Our arguments regarding the importance of i2D features resemble the arguments of Julesz and co-workers regarding textons such as terminators and crossings. However, we provide a computational framework that identifies textons with the outputs of nonlinear operators that are selective to i2D features.
Two-dimensional fourier transform spectrometer
DeFlores, Lauren; Tokmakoff, Andrei
2016-10-25
The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
Two-dimensional fourier transform spectrometer
DeFlores, Lauren; Tokmakoff, Andrei
2013-09-03
The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
Bootstrapping the Three Dimensional Supersymmetric Ising Model.
Bobev, Nikolay; El-Showk, Sheer; Mazáč, Dalimil; Paulos, Miguel F
2015-07-31
We implement the conformal bootstrap program for three dimensional conformal field theories with N=2 supersymmetry and find universal constraints on the spectrum of operator dimensions in these theories. By studying the bounds on the dimension of the first scalar appearing in the operator product expansion of a chiral and an antichiral primary, we find a kink at the expected location of the critical three dimensional N=2 Wess-Zumino model, which can be thought of as a supersymmetric analog of the critical Ising model. Focusing on this kink, we determine, to high accuracy, the low-lying spectrum of operator dimensions of the theory, as well as the stress-tensor two-point function. We find that the latter is in an excellent agreement with an exact computation.
One-dimensional spinon spin currents
NASA Astrophysics Data System (ADS)
Hirobe, Daichi; Sato, Masahiro; Kawamata, Takayuki; Shiomi, Yuki; Uchida, Ken-Ichi; Iguchi, Ryo; Koike, Yoji; Maekawa, Sadamichi; Saitoh, Eiji
2017-01-01
Quantum spin fluctuation in a low-dimensional or frustrated magnet breaks magnetic ordering while keeping spin correlation. Such fluctuation has been a central topic in magnetism because of its relevance to high-Tc superconductivity and topological states. However, utilizing such spin states has been quite difficult. In a one-dimensional spin-1/2 chain, a particle-like excitation called a spinon is known to be responsible for spin fluctuation in a paramagnetic state. Spinons behave as a Tomonaga-Luttinger liquid at low energy, and the spin system is often called a quantum spin chain. Here we show that a quantum spin chain generates and carries spin current, which is attributed to spinon spin current. This is demonstrated by observing an anisotropic negative spin Seebeck effect along the spin chains in Sr2CuO3. The results show that spin current can flow even in an atomic channel owing to long-range spin fluctuation.
Two-dimensional optimal sensor placement
Zhang, H.
1995-05-01
A method for determining the optimal two-dimensional spatial placement of multiple sensors participating in a robot perception task is introduced in this paper. This work is motivated by the fact that sensor data fusion is an effective means of reducing uncertainties in sensor observations, and that the combined uncertainty varies with the relative placement of the sensors with respect to each other. The problem of optimal sensor placement is formulated and a solution is presented in the two dimensional space. The algebraic structure of the combined sensor uncertainty with respect to the placement of sensor is studied. A necessary condition for optimal placement is derived and this necessary condition is used to obtain an efficient closed-form solution for the global optimal placement. Numerical examples are provided to illustrate the effectiveness and efficiency of the solution. 11 refs.
Thermodynamics of higher dimensional black holes
Accetta, F.S.; Gleiser, M.
1986-05-01
We discuss the thermodynamics of higher dimensional black holes with particular emphasis on a new class of spinning black holes which, due to the increased number of Casimir invariants, have additional spin degrees of freedom. In suitable limits, analytic solutions in arbitrary dimensions are presented for their temperature, entropy, and specific heat. In 5 + 1 and 9 + 1 dimensions, more general forms for these quantities are given. It is shown that the specific heat for a higher dimensional black hole is negative definite if it has only one non-zero spin parameter, regardless of the value of this parameter. We also consider equilibrium configurations with both massless particles and massive string modes. 16 refs., 3 figs.
Two-dimensional ranking of Wikipedia articles
NASA Astrophysics Data System (ADS)
Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.
2010-10-01
The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.
Vortices in Low-Dimensional Magnetic Systems
NASA Astrophysics Data System (ADS)
Costa, B. V.
2011-05-01
Vortices are objects that are important to describe several physical phenomena. There are many examples of such objects in nature as in a large variety of physical situations like in fluid dynamics, superconductivity, magnetism, and biology. Historically, the interest in magnetic vortex-like excitations begun in the 1960s. That interest was mainly associated with an unusual phase-transition phenomenon in two-dimensional magnetic systems. More recently, direct experimental evidence for the existence of magnetic vortex states in nano-disks was found. The interest in such model was renewed due to the possibility of the use of magnetic nano-disks as bit elements in nano-scale memory devices. The goal of this study is to review some key points for the understanding of the vortex behavior and the progress that have been done in the study of vortices in low-dimensional magnetic systems.
Analysis of three-dimensional transonic compressors
NASA Technical Reports Server (NTRS)
Bourgeade, A.
1984-01-01
A method for computing the three-dimensional transonic flow around the blades of a compressor or of a propeller is given. The method is based on the use of the velocity potential, on the hypothesis that the flow is inviscid, irrotational and isentropic. The equation of the potential is solved in a transformed space such that the surface of the blade is mapped into a plane where the periodicity is implicit. This equation is in a nonconservative form and is solved with the help of a finite difference method using artificial time. A computer code is provided and some sample results are given in order to demonstrate the influence of three-dimensional effects and the blade's rotation.
Three dimensional contact/impact methodology
Kulak, R.F.
1987-01-01
The simulation of three-dimensional interface mechanics between reactor components and structures during static contact or dynamic impact is necessary to realistically evaluate their structural integrity to off-normal loads. In our studies of postulated core energy release events, we have found that significant structure-structure interactions occur in some reactor vessel head closure designs and that fluid-structure interactions occur within the reactor vessel. Other examples in which three-dimensional interface mechanics play an important role are: (1) impact response of shipping casks containing spent fuel, (2) whipping pipe impact on reinforced concrete panels or pipe-to-pipe impact after a pipe break, (3) aircraft crash on secondary containment structures, (4) missiles generated by turbine failures or tornados, and (5) drops of heavy components due to lifting accidents. The above is a partial list of reactor safety problems that require adequate treatment of interface mechanics and are discussed in this paper.
Three Dimensional Particle Tracking in Superfluid Helium
NASA Astrophysics Data System (ADS)
Megson, Peter
2016-11-01
Superfluid helium is a macroscopic quantum state which exhibits exotic physical properties, such as flow without friction and ballistic heat transport. Superfluid flow is irrotational except about line-like topological phase defects with quantized circulation, known as quatized vortices. The presence of these vortices and their dynamics is the dominating factor of turbulence in superfluid flows. One commonly studied regime of superfluid turbulence is thermal counterflow, where a local heat flux drives the formation and growth of a tangle of vortices. This talk will present experimental studies of counterflow turbulence performed using a multi-camera three-dimensional imaging apparatus with micron-sized ice tracer particles as well as fluorescent nanoparticles. In particular, we will discuss the measurement of three-dimensional velocties and their autocorrelations. Additionally, we are developing new techniques for optical studies of bulk superfluid helium, with particular focus on characterizing tracer particles and particle dispersal mechanisms. Funding from NSF DMR-1407472.
Phonon hydrodynamics in two-dimensional materials
NASA Astrophysics Data System (ADS)
Cepellotti, Andrea; Fugallo, Giorgia; Paulatto, Lorenzo; Lazzeri, Michele; Mauri, Francesco; Marzari, Nicola
2015-03-01
The conduction of heat in two dimensions displays a wealth of fascinating phenomena of key relevance to the scientific understanding and technological applications of graphene and related materials. Here, we use density-functional perturbation theory and an exact, variational solution of the Boltzmann transport equation to study fully from first-principles phonon transport and heat conductivity in graphene, boron nitride, molybdenum disulphide and the functionalized derivatives graphane and fluorographene. In all these materials, and at variance with typical three-dimensional solids, normal processes keep dominating over Umklapp scattering well-above cryogenic conditions, extending to room temperature and more. As a result, novel regimes emerge, with Poiseuille and Ziman hydrodynamics, hitherto typically confined to ultra-low temperatures, characterizing transport at ordinary conditions. Most remarkably, several of these two-dimensional materials admit wave-like heat diffusion, with second sound present at room temperature and above in graphene, boron nitride and graphane.
Transient One-dimensional Pipe Flow Analyzer
1986-04-08
TOPAZ-SNLL, the Transient One- dimensional Pipe flow AnalyZer code, is a user-friendly computer program for modeling the heat transfer, fluid mechanics, and thermodynamics of multi-species gas transfer in arbitrary arrangements of pipes, valves, vessels, and flow branches. Although the flow conservation equations are assumed to be one-dimensional and transient, multidimensional features of internal fluid flow and heat transfer may be accounted for using the available quasi-steady flow correlations (e.g., Moody friction factor correlation and various form loss and heat transfer correlations). Users may also model the effects of moving system boundaries such as pistons, diaphragms, and bladders. The features of fully compressible flow are modeled, including the propagation of shocks and rarefaction waves, as well as the establishment of multiple choke points along the flow path.
Four-dimensional spatial reasoning in humans.
Aflalo, T N; Graziano, M S A
2008-10-01
Human subjects practiced navigation in a virtual, computer-generated maze that contained 4 spatial dimensions rather than the usual 3. The subjects were able to learn the spatial geometry of the 4-dimensional maze as measured by their ability to perform path integration, a standard test of spatial ability. They were able to travel down a winding corridor to its end and then point back accurately toward the occluded origin. One interpretation is that the brain substrate for spatial navigation is not a built-in map of the 3-dimensional world. Instead it may be better described as a set of general rules for manipulating spatial information that can be applied with practice to a diversity of spatial frameworks.
Three-Dimensional Reflectance Traction Microscopy
Jones, Christopher A. R.; Groves, Nicholas Scott; Sun, Bo
2016-01-01
Cells in three-dimensional (3D) environments exhibit very different biochemical and biophysical phenotypes compared to the behavior of cells in two-dimensional (2D) environments. As an important biomechanical measurement, 2D traction force microscopy can not be directly extended into 3D cases. In order to quantitatively characterize the contraction field, we have developed 3D reflectance traction microscopy which combines confocal reflection imaging and partial volume correlation postprocessing. We have measured the deformation field of collagen gel under controlled mechanical stress. We have also characterized the deformation field generated by invasive breast cancer cells of different morphologies in 3D collagen matrix. In contrast to employ dispersed tracing particles or fluorescently-tagged matrix proteins, our methods provide a label-free, computationally effective strategy to study the cell mechanics in native 3D extracellular matrix. PMID:27304456
Extended inflation from higher dimensional theories
NASA Technical Reports Server (NTRS)
Holman, Richard; Kolb, Edward W.; Vadas, Sharon L.; Wang, Yun
1990-01-01
The possibility is considered that higher dimensional theories may, upon reduction to four dimensions, allow extended inflation to occur. Two separate models are analayzed. One is a very simple toy model consisting of higher dimensional gravity coupled to a scalar field whose potential allows for a first-order phase transition. The other is a more sophisticated model incorporating the effects of non-trivial field configurations (monopole, Casimir, and fermion bilinear condensate effects) that yield a non-trivial potential for the radius of the internal space. It was found that extended inflation does not occur in these models. It was also found that the bubble nucleation rate in these theories is time dependent unlike the case in the original version of extended inflation.
ERIC Educational Resources Information Center
LaGreca, Nancy
2012-01-01
This study explores the intertextuality between Aurora Caceres's "La rosa muerta" (1914) and the novel "Del amor, del dolor y del vicio" (1898) by her ex-husband, Enrique Gomez Carrillo. Caceres strategically mentions Gomez Carrillo's novel in "La rosa muerta" to invite a reading of her work in dialogue with his. Both narratives follow the sexual…
Dimensionality of object representations in monkey inferotemporal cortex.
Lehky, Sidney R; Kiani, Roozbeh; Esteky, Hossein; Tanaka, Keiji
2014-10-01
We have calculated the intrinsic dimensionality of visual object representations in anterior inferotemporal (AIT) cortex, based on responses of a large sample of cells stimulated with photographs of diverse objects. Because dimensionality was dependent on data set size, we determined asymptotic dimensionality as both the number of neurons and number of stimulus image approached infinity. Our final dimensionality estimate was 93 (SD: ± 11), indicating that there is basis set of approximately 100 independent features that characterize the dimensions of neural object space. We believe this is the first estimate of the dimensionality of neural visual representations based on single-cell neurophysiological data. The dimensionality of AIT object representations was much lower than the dimensionality of the stimuli. We suggest that there may be a gradual reduction in the dimensionality of object representations in neural populations going from retina to inferotemporal cortex as receptive fields become increasingly complex.
Dimensionality of object representations in monkey inferotemporal cortex
Lehky, Sidney R.; Kiani, Roozbeh; Esteky, Hossein; Tanaka, Keiji
2014-01-01
We have calculated the intrinsic dimensionality of visual object representations in anterior inferotemporal (AIT) cortex, based on responses of a large sample of cells stimulated with photographs of diverse objects. As dimensionality was dependent on data set size, we determined asymptotic dimensionality as both the number of neurons and number of stimulus image approached infinity. Our final dimensionality estimate was 93 (SD: ± 11), indicating that there is basis set of approximately a hundred independent features that characterize the dimensions of neural object space. We believe this is the first estimate of the dimensionality of neural visual representations based on single-cell neurophysiological data. The dimensionality of AIT object representations was much lower than the dimensionality of the stimuli. We suggest that there may be a gradual reduction in the dimensionality of object representations in neural populations going from retina to inferotemporal cortex, as receptive fields become increasingly complex. PMID:25058707
Three-dimensional adjustment of trilateration data
NASA Technical Reports Server (NTRS)
Sung, L.-Y.; Jackson, D. D.
1985-01-01
The three-dimensional locations of the monuments in the USGS Hollister trilateration network were adjusted to fit line length observations observed in 1977, using a Bayesian approach, and incorporating prior elevation estimates as data in the adjustment procedure. No significant discrepancies in the measured line lengths were found, but significant elevation adjustments (up to 1.85 m) were needed to fit the length data.
One and Two Dimensional Discrete Wavelet Transforms
1992-09-01
dimensional case in Chapter IV. Chapter V proposes another method for decomposing the data at the expense of physical memory , the so-called multiple-phase...more efficient. Practically, this savings in memory is very insignificant, since the number of practical resolution levels is approximately [log2( I...filters, N, and the current resolution level, m: Ie.1 = Ic0I + (N-1)(2`-1) (43) So enough memory must be allocated if we desire lower and lower
Epistasis analysis using multifactor dimensionality reduction.
Moore, Jason H; Andrews, Peter C
2015-01-01
Here we introduce the multifactor dimensionality reduction (MDR) methodology and software package for detecting and characterizing epistasis in genetic association studies. We provide a general overview of the method and then highlight some of the key functions of the open-source MDR software package that is freely distributed. We end with a few examples of published studies of complex human diseases that have used MDR.
Progress in Multi-Dimensional Upwind Differencing
1992-09-01
advances in each of these components are discussed; putting them all together is the present focus of a worldwide research effort. Some numerical results ...as 1983 by Phil Roe [1]. A study of discrete multi-dimensional wave models by Roe followed in 1985 (ICASE Report 85-18, also [21), but it took until...consider the numerical results shown in Figure :3 and 4, taken from [:34] and [35], respectively. In Figure 3a the exact and discrete Mach-number
Three-Dimensional Printing in Orthopedic Surgery.
Eltorai, Adam E M; Nguyen, Eric; Daniels, Alan H
2015-11-01
Three-dimensional (3D) printing is emerging as a clinically promising technology for rapid prototyping of surgically implantable products. With this commercially available technology, computed tomography or magnetic resonance images can be used to create graspable objects from 3D reconstructed images. Models can enhance patients' understanding of their pathology and surgeon preoperative planning. Customized implants and casts can be made to match an individual's anatomy. This review outlines 3D printing, its current applications in orthopedics, and promising future directions.
Mineralized Three-Dimensional Bone Constructs
NASA Technical Reports Server (NTRS)
Clarke, Mark S. F. (Inventor); Sundaresan, Alamelu (Inventor); Pellis, Neal R. (Inventor)
2013-01-01
The present disclosure provides ex vivo-derived mineralized three-dimensional bone constructs. The bone constructs are obtained by culturing osteoblasts and osteoclast precursors under randomized gravity vector conditions. Preferably, the randomized gravity vector conditions are obtained using a low shear stress rotating bioreactor, such as a High Aspect Ratio Vessel (HARV) culture system. The bone constructs of the disclosure have utility in physiological studies of bone formation and bone function, in drug discovery, and in orthopedics.
Mineralized three-dimensional bone constructs
NASA Technical Reports Server (NTRS)
Clarke, Mark S. F. (Inventor); Sundaresan, Alamelu (Inventor); Pellis, Neal R. (Inventor)
2011-01-01
The present disclosure provides ex vivo-derived mineralized three-dimensional bone constructs. The bone constructs are obtained by culturing osteoblasts and osteoclast precursors under randomized gravity vector conditions. Preferably, the randomized gravity vector conditions are obtained using a low shear stress rotating bioreactor, such as a High Aspect Ratio Vessel (HARV) culture system. The bone constructs of the disclosure have utility in physiological studies of bone formation and bone function, in drug discovery, and in orthopedics.
One Dimensional Analysis of Inertially Confined Plasmas.
1982-03-01
Sedov, L.I. Similarity and Dimensional Methods in Mechanics. New York: Academic Press, 1959. 26. Spitzer , Lyman , Jr . Physics of Fully Ionized Gases...Based on Maxwellian velocity distributions for both ions and electrons and defining t from the relation given by Spitzer (Ref 26:135), dt T...this coeffi- cient is given by Spitzer (Ttef 26:144), T (18) Heat flow caused by a temperature gradient results in a current, however, and this
Real Imagery as a Three Dimensional Display
1991-12-01
under two categories--stereoscopic and autostereoscopic displays. The difference between these two displays is that autostereoscopic displays do not...require the use of special viewing glasses whereas stereoscopic displays do. In order to place a minimum incumbrance on the viewer, the autostereoscopic ...fooled into believing that the scene is three dimensional. This is accomplished even though the second view that normally comes with an autostereoscopic
Three-dimensional ballistocardiography in weightlessness
NASA Technical Reports Server (NTRS)
Scano, A.
1981-01-01
An experiment is described the aim of which is to record a three dimensional ballistocardiogram under the condition of weightlessness and to compare it with tracings recorded on the same subject on the ground as a means of clarifying the meaning of ballistocardiogram waves in different physiological and perphaps pathological conditions. Another purpose is to investigate cardiovascular and possibly fluid adaptations to weightlessness from data collected almost simultaneously on the same subjects during the other cardiovascular during the other cardiovascular and metabolic experiments.
Margin Based Dimensionality Reduction and Generalization
2010-01-01
S w , for the facial recognition tasks. On the other hand, S-LDA does not perform well at lower dimensional subspaces. But it 62 The Open...generalized optimal set of dis- criminant vectors,” Pattern Recognition , vol. 25, no. 7, pp. 731- 739, 1992. [27] P. Phillips, “The facial recognition ...USA Abstract: Linear discriminant analysis (LDA) for dimension reduction has been applied to a wide variety of problems such as face recognition
A four dimensional variational analysis experiment
NASA Technical Reports Server (NTRS)
Hoffman, R.
1981-01-01
A demonstration that the four dimensional variational analysis method using the governing equations as exact constraints can be successfully employed for a perfect model and for a simple, but nonlinear, system is presented. The method is stable in an assimilation cycle. The method reconstructs the unobservable variables; in the case demonstrated, no velocity data was observed. The analysis errors are much smaller than the observing system errors.
Three-dimensional simulation of vortex breakdown
NASA Technical Reports Server (NTRS)
Kuruvila, G.; Salas, M. D.
1990-01-01
The integral form of the complete, unsteady, compressible, three-dimensional Navier-Stokes equations in the conservation form, cast in generalized coordinate system, are solved, numerically, to simulate the vortex breakdown phenomenon. The inviscid fluxes are discretized using Roe's upwind-biased flux-difference splitting scheme and the viscous fluxes are discretized using central differencing. Time integration is performed using a backward Euler ADI (alternating direction implicit) scheme. A full approximation multigrid is used to accelerate the convergence to steady state.
Three-dimensional display of document set
Lantrip, David B.; Pennock, Kelly A.; Pottier, Marc C.; Schur, Anne; Thomas, James J.; Wise, James A.
2006-09-26
A method for spatializing text content for enhanced visual browsing and analysis. The invention is applied to large text document corpora such as digital libraries, regulations and procedures, archived reports, and the like. The text content from these sources may e transformed to a spatial representation that preserves informational characteristics from the documents. The three-dimensional representation may then be visually browsed and analyzed in ways that avoid language processing and that reduce the analysts' effort.
Three-dimensional display of document set
Lantrip, David B [Oxnard, CA; Pennock, Kelly A [Richland, WA; Pottier, Marc C [Richland, WA; Schur, Anne [Richland, WA; Thomas, James J [Richland, WA; Wise, James A [Richland, WA
2001-10-02
A method for spatializing text content for enhanced visual browsing and analysis. The invention is applied to large text document corpora such as digital libraries, regulations and procedures, archived reports, and the like. The text content from these sources may be transformed to a spatial representation that preserves informational characteristics from the documents. The three-dimensional representation may then be visually browsed and analyzed in ways that avoid language processing and that reduce the analysts' effort.
Three-dimensional display of document set
Lantrip, David B.; Pennock, Kelly A.; Pottier, Marc C.; Schur, Anne; Thomas, James J.; Wise, James A.; York, Jeremy
2009-06-30
A method for spatializing text content for enhanced visual browsing and analysis. The invention is applied to large text document corpora such as digital libraries, regulations and procedures, archived reports, and the like. The text content from these sources may be transformed to a spatial representation that preserves informational characteristics from the documents. The three-dimensional representation may then be visually browsed and analyzed in ways that avoid language processing and that reduce the analysts' effort.
Three-Dimensional Dispaly Of Document Set
Lantrip, David B.; Pennock, Kelly A.; Pottier, Marc C.; Schur, Anne; Thomas, James J.; Wise, James A.
2003-06-24
A method for spatializing text content for enhanced visual browsing and analysis. The invention is applied to large text document corpora such as digital libraries, regulations and procedures, archived reports, and the like. The text content from these sources may be transformed to a spatial representation that preserves informational characteristics from the documents. The three-dimensional representation may then be visually browsed and analyzed in ways that avoid language processing and that reduce the analysts' effort.
Clustering, Dimensionality Reduction, and Side Information
2006-01-01
Tom, Timothy, Anthony, Twinsen, Dennis , Josie, Mitzi, Melody, Karen, Esther, Janni, Bean, Lok, Christal, Janice, and many more, has helped me to...types of outdoor images: brickface, sky, foliage, cement, window, path, and grass. The texture data set (texture) consists of 4000 19-dimensional Gabor ...different types of textures. The 19 features are based on Gabor filter responses. The four classes are of sizes 987, 999, 1027, and 987. The online
Three Dimensional Inverse Synthetic Aperture Radar Imaging
1995-12-01
to upsample the projection data in order to get sufficient image quality. Working within these memory constraints, three-dimensional images were... metallic film on the windscreen in order to block reflections from the cockpit. Photographs and scale drawings of the model are shown in Figures 11 and...as well as spurious responses in the final image. Theoretically, sufficient resolution should have been available without upsampling the original data
DIMENSIONALLY STABLE, CORROSION RESISTANT NUCLEAR FUEL
Kittel, J.H.
1963-10-31
A method of making a uranium alloy of improved corrosion resistance and dimensional stability is described. The alloy contains from 0-9 weight per cent of an additive of zirconium and niobium in the proportions by weight of 5 to 1 1/ 2. The alloy is cold rolled, heated to two different temperatures, air-cooled, heated to a third temperature, and quenched in water. (AEC)
Method and apparatus for three dimensional braiding
NASA Technical Reports Server (NTRS)
Farley, Gary L. (Inventor)
1997-01-01
A machine for three-dimensional braiding of fibers is provided in which carrier members travel on a curved, segmented and movable braiding surface. The carrier members are capable of independent, self-propelled motion along the braiding surface. Carrier member position on the braiding surface is controlled and monitored by computer. Also disclosed is a yarn take-up device capable of maintaining tension in the braiding fiber.
Method and apparatus for three dimensional braiding
NASA Technical Reports Server (NTRS)
Farley, Gary L. (Inventor)
1995-01-01
A machine for three-dimensional braiding of fibers is provided in which carrier members travel on a curved, segmented and movable braiding surface. The carrier members are capable of independent, self-propelled motion along the braiding surface. Carrier member position on the braiding surface is controlled and monitored by computer. Also disclosed is a yarn take-up device capable of maintaining tension in the braiding fiber.
Deeply subrecoil two-dimensional Raman cooling
Boyer, V.; Phillips, W.D.; Lising, L.J.; Rolston, S.L.
2004-10-01
We report the implementation of a two-dimensional Raman cooling scheme using sequential excitations along the orthogonal axes. Using square pulses, we have cooled a cloud of ultracold cesium atoms down to an rms velocity spread of 0.39(5) recoil velocities, corresponding to an effective transverse temperature of 30 nK (0.15T{sub rec}). This technique can be useful to improve cold-atom atomic clocks and is particularly relevant for clocks in microgravity.
Analytical calculation of two-dimensional spectra.
Bell, Joshua D; Conrad, Rebecca; Siemens, Mark E
2015-04-01
We demonstrate an analytical calculation of two-dimensional (2D) coherent spectra of electronic or vibrational resonances. Starting with the solution to the optical Bloch equations for a two-level system in the 2D time domain, we show that a fully analytical 2D Fourier transform can be performed if the projection-slice and Fourier-shift theorems of Fourier transforms are applied. Results can be fit to experimental 2D coherent spectra of resonances with arbitrary inhomogeneity.
Three-Dimensional (3D) Distribution
2009-03-11
witnessed by ongoing efforts in both Afghanistan and Iraq , must turn distribution challenges into opportunities by mastering Three-Dimensional (3D...sustainment. 5 Joint Logistics Functions •Supply •Services •Maintenance •Transportation • Health Service Support •General Engineering Joint Personnel...Maintenance •Transportation • Health Service Support •Explosive Ordinance Disposal •Human Resource Support •Legal Support •Religious Support •Financial
Two-Dimensional Processing for Radar Systems
2001-11-01
residuals. This OP algorithm is distinct from the least-squares predictive- transform (LSPT) algorithm of Guerci and Feria (1996) in three important...algorithm (Guerci and Feria , 1996) ; however, in the OP and MC algorithms high levels of dimensionality reduction are attained with P + Q << N. The data-based...results in the minimum number of computations for a block processing method (Guerci and Feria , 1996). 35 5.0 MAXIMUM CORRELATION (MC) The MC algorithm
Lossless compression for three-dimensional images
NASA Astrophysics Data System (ADS)
Tang, Xiaoli; Pearlman, William A.
2004-01-01
We investigate and compare the performance of several three-dimensional (3D) embedded wavelet algorithms on lossless 3D image compression. The algorithms are Asymmetric Tree Three-Dimensional Set Partitioning In Hierarchical Trees (AT-3DSPIHT), Three-Dimensional Set Partitioned Embedded bloCK (3D-SPECK), Three-Dimensional Context-Based Embedded Zerotrees of Wavelet coefficients (3D-CB-EZW), and JPEG2000 Part II for multi-component images. Two kinds of images are investigated in our study -- 8-bit CT and MR medical images and 16-bit AVIRIS hyperspectral images. First, the performances by using different size of coding units are compared. It shows that increasing the size of coding unit improves the performance somewhat. Second, the performances by using different integer wavelet transforms are compared for AT-3DSPIHT, 3D-SPECK and 3D-CB-EZW. None of the considered filters always performs the best for all data sets and algorithms. At last, we compare the different lossless compression algorithms by applying integer wavelet transform on the entire image volumes. For 8-bit medical image volumes, AT-3DSPIHT performs the best almost all the time, achieving average of 12% decreases in file size compared with JPEG2000 multi-component, the second performer. For 16-bit hyperspectral images, AT-3DSPIHT always performs the best, yielding average 5.8% and 8.9% decreases in file size compared with 3D-SPECK and JPEG2000 multi-component, respectively. Two 2D compression algorithms, JPEG2000 and UNIX zip, are also included for reference, and all 3D algorithms perform much better than 2D algorithms.
One-dimensional opal photonic crystals
NASA Astrophysics Data System (ADS)
Kapitonov, A. M.
2008-12-01
One-dimensional opals are 1D self-assembled close packed colloidal crystals consisting of monodisperse colloidal globules. Polystyrene globules with sizes in the 1.9-10 μm range sit on a flat substrate and touch two neighbors in diametrally opposite contact points. These opals are quasi-1D photonic crystals. Optical modes, including whispering gallery modes of individual globules, coupled collective modes, and nanojet-induced modes, are visualized in 1D opals.
Three-Dimensional Shallow Water Acoustics
2015-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Three-Dimensional Shallow Water Acoustics Dr. Ying...model to predict acoustic fluctuations and derive sound pressure sensitivity kernels due to 3-D sound speed perturbation in the water column. The...numerical method to be utilized is a tangent linear solution to predict acoustic fluctuations due to 3-D sound speed perturbation in the water column. This
Three-dimensional simulations of fracture dissolution
NASA Astrophysics Data System (ADS)
Starchenko, Vitaliy; Marra, Cameron J.; Ladd, Anthony J. C.
2016-09-01
Numerical studies of fracture dissolution are frequently based on two-dimensional models, where the fracture geometry is represented by an aperture field h(x,y). However, it is known that such models can break down when the spatial variations in aperture are rapid or large in amplitude; for example, in a rough fracture or when instabilities in the dissolution front develop into pronounced channels (or wormholes). Here we report a finite-volume implementation of a three-dimensional reactive transport model using the OpenFOAM® toolkit. Extensions to the OpenFOAM source code have been developed which displace and then relax the mesh in response to variations in the surface concentration; up to 100-fold increases in fracture aperture are possible without remeshing. Our code has simulated field-scale fractures with physical dimensions of about 10 m. We report simulations of smooth fractures, with small, well-controlled perturbations in fracture aperture introduced at the inlet. This allows for systematic convergence studies and for detailed comparisons with results from a two-dimensional model. Initially, the fracture aperture develops similarly in both models, but as local inhomogeneities develop the results start to diverge. We investigate numerically the onset of instabilities in the dissolution of fractures with small random variations in the initial aperture field. Our results show that elliptical cross sections, which are characteristic of karstic conduits, can develop very rapidly, on time scales of 10-20 years in calcite rocks.
Universal entanglement for higher dimensional cones
NASA Astrophysics Data System (ADS)
Bueno, Pablo; Myers, Robert C.
2015-12-01
The entanglement entropy of a generic d-dimensional conformal field theory receives a regulator independent contribution when the entangling surface contains a (hyper)conical singularity of opening angle Ω, codified in a function a ( d)(Ω). In arXiv:1505.04804, we proposed that for three-dimensional conformal field theories, the coefficient σ (3) characterizing the limit where the surface becomes smooth is proportional to the central charge C T appearing in the two-point function of the stress tensor. In this paper, we prove this relation for general three-dimensional holographic theories, and extend the result to general dimensions. In particular, we define a generalized coefficient σ ( d) to characterize the almost smooth limit of a (hyper)conical singularity in entangling surfaces in higher dimensions. We show then that this coefficient is universally related to C T for general holographic theories and provide a general formula for the ratio σ ( d) /C T in arbitrary dimensions. We conjecture that the latter ratio is universal for general CFTs. Further, based on our recent results in arXiv:1507.06997, we propose an extension of this relation to general Rényi entropies, which we show passes several consistency checks in d = 4 and 6.
Multiparallel Three-Dimensional Optical Microscopy
NASA Technical Reports Server (NTRS)
Nguyen, Lam K.; Price, Jeffrey H.; Kellner, Albert L.; Bravo-Zanoquera, Miguel
2010-01-01
Multiparallel three-dimensional optical microscopy is a method of forming an approximate three-dimensional image of a microscope sample as a collection of images from different depths through the sample. The imaging apparatus includes a single microscope plus an assembly of beam splitters and mirrors that divide the output of the microscope into multiple channels. An imaging array of photodetectors in each channel is located at a different distance along the optical path from the microscope, corresponding to a focal plane at a different depth within the sample. The optical path leading to each photodetector array also includes lenses to compensate for the variation of magnification with distance so that the images ultimately formed on all the photodetector arrays are of the same magnification. The use of optical components common to multiple channels in a simple geometry makes it possible to obtain high light-transmission efficiency with an optically and mechanically simple assembly. In addition, because images can be read out simultaneously from all the photodetector arrays, the apparatus can support three-dimensional imaging at a high scanning rate.
Recursive support vector machines for dimensionality reduction.
Tao, Qing; Chu, Dejun; Wang, Jue
2008-01-01
The usual dimensionality reduction technique in supervised learning is mainly based on linear discriminant analysis (LDA), but it suffers from singularity or undersampled problems. On the other hand, a regular support vector machine (SVM) separates the data only in terms of one single direction of maximum margin, and the classification accuracy may be not good enough. In this letter, a recursive SVM (RSVM) is presented, in which several orthogonal directions that best separate the data with the maximum margin are obtained. Theoretical analysis shows that a completely orthogonal basis can be derived in feature subspace spanned by the training samples and the margin is decreasing along the recursive components in linearly separable cases. As a result, a new dimensionality reduction technique based on multilevel maximum margin components and then a classifier with high accuracy are achieved. Experiments in synthetic and several real data sets show that RSVM using multilevel maximum margin features can do efficient dimensionality reduction and outperform regular SVM in binary classification problems.
Bose-Einstein Condensation in low dimensionality
NASA Astrophysics Data System (ADS)
Nho, Kwangsik; Landau, D. P.
2006-03-01
Using path integral Monte Carlo simulation methods[1], we have studied properties of Bose-Einstein Condensates harmonically trapped in low dimemsion. Each boson has a hard-sphere potential whose core radius equals its corresponding scattering length. We have tightly confined the motion of trapped particles in one or more direction by increasing the trap anisotropy in order to simulate lower dimensional atomic gases. We have investigated the effect of both the temperature and the dimemsionality on the energetics and structural properties such as the total energy, the density profile, and the superfluid fraction. Our results show that the physics of low dimensional bosonic systems is very different from that of their three dimensional counterparts[2]. The superfluid fraction for a quasi-2D boson gas decreases faster than that for both a quasi-1D system[3] and a true 3D system with increasing temperature. The superfluid fraction decreases gradually as the two-body interaction strength increases although it shows no noticable dependence for both a quasi-1D system and a true 3D system. [1] K. Nho and D. P. Landau, Phys. Rev. A. 70, 53614 (2004).[2] N. D. Mermin and H. Wagner, Phys. Rev. Lett. 22, 1133 (1966);1.5inP. C. Hohenberg, Phys. Rev. 158, 383 (1967).[3] K. Nho and D. Blume, Phys. Rev. Lett. 95, 193601 (2005).
3-dimensional fabrication of soft energy harvesters
NASA Astrophysics Data System (ADS)
McKay, Thomas; Walters, Peter; Rossiter, Jonathan; O'Brien, Benjamin; Anderson, Iain
2013-04-01
Dielectric elastomer generators (DEG) provide an opportunity to harvest energy from low frequency and aperiodic sources. Because DEG are soft, deformable, high energy density generators, they can be coupled to complex structures such as the human body to harvest excess mechanical energy. However, DEG are typically constrained by a rigid frame and manufactured in a simple planar structure. This planar arrangement is unlikely to be optimal for harvesting from compliant and/or complex structures. In this paper we present a soft generator which is fabricated into a 3 Dimensional geometry. This capability will enable the 3-dimensional structure of a dielectric elastomer to be customised to the energy source, allowing efficient and/or non-invasive coupling. This paper demonstrates our first 3 dimensional generator which includes a diaphragm with a soft elastomer frame. When the generator was connected to a self-priming circuit and cyclically inflated, energy was accumulated in the system, demonstrated by an increased voltage. Our 3D generator promises a bright future for dielectric elastomers that will be customised for integration with complex and soft structures. In addition to customisable geometries, the 3D printing process may lend itself to fabricating large arrays of small generator units and for fabricating truly soft generators with excellent impedance matching to biological tissue. Thus comfortable, wearable energy harvesters are one step closer to reality.
Three-dimensional printing of the retina
Lorber, Barbara; Hsiao, Wen-Kai; Martin, Keith R.
2016-01-01
Purpose of review Biological three-dimensional printing has received a lot of media attention over recent years with advances made in printing cellular structures, including skin and heart tissue for transplantation. Although limitations exist in creating functioning organs with this method, the hope has been raised that creating a functional retina to cure blindness is within reach. The present review provides an update on the advances made toward this goal. Recent findings It has recently been shown that two types of retinal cells, retinal ganglion cells and glial cells, can be successfully printed using a piezoelectric inkjet printer. Importantly, the cells remained viable and did not change certain phenotypic features as a result of the printing process. In addition, recent advances in the creation of complex and viable three-dimensional cellular structures have been made. Summary Some first promising steps toward the creation of a functional retina have been taken. It now needs to be investigated whether recent findings can be extended to other cells of the retina, including those derived from human tissue, and if a complex and viable retinal structure can be created through three-dimensional printing. PMID:27045545
Statistical Physics of High Dimensional Inference
NASA Astrophysics Data System (ADS)
Advani, Madhu; Ganguli, Surya
To model modern large-scale datasets, we need efficient algorithms to infer a set of P unknown model parameters from N noisy measurements. What are fundamental limits on the accuracy of parameter inference, given limited measurements, signal-to-noise ratios, prior information, and computational tractability requirements? How can we combine prior information with measurements to achieve these limits? Classical statistics gives incisive answers to these questions as the measurement density α =N/P --> ∞ . However, modern high-dimensional inference problems, in fields ranging from bio-informatics to economics, occur at finite α. We formulate and analyze high-dimensional inference analytically by applying the replica and cavity methods of statistical physics where data serves as quenched disorder and inferred parameters play the role of thermal degrees of freedom. Our analysis reveals that widely cherished Bayesian inference algorithms such as maximum likelihood and maximum a posteriori are suboptimal in the modern setting, and yields new tractable, optimal algorithms to replace them as well as novel bounds on the achievable accuracy of a large class of high-dimensional inference algorithms. Thanks to Stanford Graduate Fellowship and Mind Brain Computation IGERT grant for support.
In-lab three-dimensional printing
Partridge, Roland; Conlisk, Noel; Davies, Jamie A.
2012-01-01
The development of the microscope in 1590 by Zacharias Janssenby and Hans Lippershey gave the world a new way of visualizing details of morphogenesis and development. More recent improvements in this technology including confocal microscopy, scanning electron microscopy (SEM) and optical projection tomography (OPT) have enhanced the quality of the resultant image. These technologies also allow a representation to be made of a developing tissue’s three-dimensional (3-D) form. With all these techniques however, the image is delivered on a flat two-dimensional (2-D) screen. 3-D printing represents an exciting potential to reproduce the image not simply on a flat screen, but in a physical, palpable three-dimensional structure. Here we explore the scope that this holds for exploring and interacting with the structure of a developing organ in an entirely novel way. As well as being useful for visualization, 3-D printers are capable of rapidly and cost-effectively producing custom-made structures for use within the laboratory. We here describe the advantages of producing hardware for a tissue culture system using an inexpensive in-lab printer. PMID:22652907
Reconfigurable, braced, three-dimensional DNA nanostructures.
Goodman, Russell P; Heilemann, Mike; Doose, Sören; Erben, Christoph M; Kapanidis, Achillefs N; Turberfield, Andrew J
2008-02-01
DNA nanotechnology makes use of the exquisite self-recognition of DNA in order to build on a molecular scale. Although static structures may find applications in structural biology and computer science, many applications in nanomedicine and nanorobotics require the additional capacity for controlled three-dimensional movement. DNA architectures can span three dimensions and DNA devices are capable of movement, but active control of well-defined three-dimensional structures has not been achieved. We demonstrate the operation of reconfigurable DNA tetrahedra whose shapes change precisely and reversibly in response to specific molecular signals. Shape changes are confirmed by gel electrophoresis and by bulk and single-molecule Förster resonance energy transfer measurements. DNA tetrahedra are natural building blocks for three-dimensional construction; they may be synthesized rapidly with high yield of a single stereoisomer, and their triangulated architecture conveys structural stability. The introduction of shape-changing structural modules opens new avenues for the manipulation of matter on the nanometre scale.
(1+1)-dimensional separation of variables
NASA Astrophysics Data System (ADS)
Pucacco, Giuseppe; Rosquist, Kjell
2007-11-01
In this paper we explore general conditions which guarantee that the geodesic flow on a two-dimensional manifold with indefinite signature is locally separable. This is equivalent to showing that a two-dimensional natural Hamiltonian system on the hyperbolic plane possesses a second integral of motion which is a quadratic polynomial in the momenta associated with a secind rank Killing tensor. We examine the possibility that the integral is preserved by the Hamiltonian flow on a given energy hypersurface only (weak integrability) and derive the additional requirement necessary to have conservation at arbitrary values of the Hamiltonian (strong integrability). Using null coordinates, we show that the leading-order coefficients of the invariant are arbitrary functions of one variable in the case of weak integrability. These functions are quadratic polynomials in the coordinates in the case of strong integrability. We show that for (1+1)-dimensional systems, there are three possible types of conformal Killing tensors and, therefore, three distinct separability structures in contrast to the single standard Hamilton-Jacobi-type separation in the positive definite case. One of the new separability structures is the complex/harmonic type which is characterized by complex separation variables. The other new type is the linear/null separation which occurs when the conformal Killing tensor has a null eigenvector.
Three-dimensional turbopump flowfield analysis
NASA Technical Reports Server (NTRS)
Sharma, O. P.; Belford, K. A.; Ni, R. H.
1992-01-01
A program was conducted to develop a flow prediction method applicable to rocket turbopumps. The complex nature of a flowfield in turbopumps is described and examples of flowfields are discussed to illustrate that physics based models and analytical calculation procedures based on computational fluid dynamics (CFD) are needed to develop reliable design procedures for turbopumps. A CFD code developed at NASA ARC was used as the base code. The turbulence model and boundary conditions in the base code were modified, respectively, to: (1) compute transitional flows and account for extra rates of strain, e.g., rotation; and (2) compute surface heat transfer coefficients and allow computation through multistage turbomachines. Benchmark quality data from two and three-dimensional cascades were used to verify the code. The predictive capabilities of the present CFD code were demonstrated by computing the flow through a radial impeller and a multistage axial flow turbine. Results of the program indicate that the present code operated in a two-dimensional mode is a cost effective alternative to full three-dimensional calculations, and that it permits realistic predictions of unsteady loadings and losses for multistage machines.
Four-dimensional analysis of stomatognathic function.
Terajima, Masahiko; Endo, Mizuki; Aoki, Yoshimitsu; Yuuda, Kyouko; Hayasaki, Haruaki; Goto, Tazuko K; Tokumori, Kenji; Nakasima, Akihiko
2008-08-01
Many researchers have attempted to clarify the complex relationships between stomatognathic function and craniofacial morphology. Most studies investigated the trajectories of incisal or condylar points and measured temporomandibular morphology projected onto 2-dimensional radiographic films. Although these methods provided valuable information, their diagnostic capabilities were limited. We introduce a new 4-dimensional (4D) analysis of stomatognathic function that combines the 3-dimensional (3D) computed tomography of the cranium and mandible, dental surface imaging with a noncontact 3D laser scanner, and mandibular movement data recorded with a 6 degrees of freedom jaw-movement analyzer. This method performs dynamic and precise simulations that can analyze and display condyle to fossa distances and occlusal contacts during mandibular function. These comprehensive relationships can be analyzed and displayed not only at intercuspal position, but also at any mandibular position during functional movements. We believe that our 4D analyzing system will be useful for diagnosing temporomandibular disorders of patients with jaw deformities and other malocclusions.
Three-dimensional singular points in aerodynamics
NASA Technical Reports Server (NTRS)
Unal, Aynur
1988-01-01
When three-dimensional separation occurs on a body immersed in a flow governed by the incompressible Navier-Stokes equations, the geometrical surfaces formed by the three vector fields (velocity, vorticity and the skin-friction) and a scalar field (pressure) become interrelated through topological maps containing their respective singular points and extremal points. A mathematically consistent description of these singular points becomes inevitable when we want to study the geometry of the separation. A separated stream surface requires, for example, the existence of a saddle-type singular point on the skin-friction surface. This singular point is actually, in the proper language of mathematics, a saddle of index two. The index is a measure of the dimension of the outset (set leaving the singular point). Hence, when a saddle of index two is specified, a two dimensional surface that becomes separated from the osculating plane of the saddle is implied. The three-dimensional singular point is interpreted mathematically and the most common aerodynamical singular points are discussed through this perspective.
Multi-dimensional cosmology and GUP
Zeynali, K.; Motavalli, H.; Darabi, F. E-mail: f.darabi@azaruniv.edu
2012-12-01
We consider a multidimensional cosmological model with FRW type metric having 4-dimensional space-time and d-dimensional Ricci-flat internal space sectors with a higher dimensional cosmological constant. We study the classical cosmology in commutative and GUP cases and obtain the corresponding exact solutions for negative and positive cosmological constants. It is shown that for negative cosmological constant, the commutative and GUP cases result in finite size universes with smaller size and longer ages, and larger size and shorter age, respectively. For positive cosmological constant, the commutative and GUP cases result in infinite size universes having late time accelerating behavior in good agreement with current observations. The accelerating phase starts in the GUP case sooner than the commutative case. In both commutative and GUP cases, and for both negative and positive cosmological constants, the internal space is stabilized to the sub-Planck size, at least within the present age of the universe. Then, we study the quantum cosmology by deriving the Wheeler-DeWitt equation, and obtain the exact solutions in the commutative case and the perturbative solutions in GUP case, to first order in the GUP small parameter, for both negative and positive cosmological constants. It is shown that good correspondence exists between the classical and quantum solutions.
Electrostatically-tuned dimensional crossover in nanowires
NASA Astrophysics Data System (ADS)
Tomczyk, Michelle; Cheng, Guanglei; Huang, Mengchen; Lee, Hyungwoo; Eom, Chang-Beom; Irvin, Patrick; Levy, Jeremy
The electron system at the interface of two complex oxides, LaAlO3 and SrTiO3, exhibits a number of interesting strongly-correlated electronic properties, such as superconductivity and spin-orbit coupling. Reduced dimensionality is made accessible through nanowire devices created with conducting AFM lithography. Here, we describe an electrostatically-controlled dimensionality crossover in weak antilocalization behavior of LaAlO3/SrTiO3 nanowires at low temperature. These measurements give insight to the interplay of spin-orbit coupling and dimensionality. Characterizing the behavior of the strongly-correlated electronic properties in these reduced dimensions is necessary in order to develop this system as a multifunctional nanoelectronics platform. We gratefully acknowledge financial support from the following agencies and grants: ARO (W911NF-08-1-0317), AFOSR FA9550-10-1-0524 (JL) and FA9550-12-1-0342 (CBE), and NSF (DMR-1104191, DMR-1124131 (JL), ONR N00014-15-1-2847 (JL) and DMR-1234096 (CBE).
Three-Dimensional Audio Client Library
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.
2005-01-01
The Three-Dimensional Audio Client Library (3DAudio library) is a group of software routines written to facilitate development of both stand-alone (audio only) and immersive virtual-reality application programs that utilize three-dimensional audio displays. The library is intended to enable the development of three-dimensional audio client application programs by use of a code base common to multiple audio server computers. The 3DAudio library calls vendor-specific audio client libraries and currently supports the AuSIM Gold-Server and Lake Huron audio servers. 3DAudio library routines contain common functions for (1) initiation and termination of a client/audio server session, (2) configuration-file input, (3) positioning functions, (4) coordinate transformations, (5) audio transport functions, (6) rendering functions, (7) debugging functions, and (8) event-list-sequencing functions. The 3DAudio software is written in the C++ programming language and currently operates under the Linux, IRIX, and Windows operating systems.
Two dimensional echocardiographic detection of intraatrial masses.
DePace, N L; Soulen, R L; Kotler, M N; Mintz, G S
1981-11-01
With two dimensional echocardiography, a left atrial mass was detected in 19 patients. Of these, 10 patients with rheumatic mitral stenosis had a left atrial thrombus. The distinctive two dimensional echocardiographic features of left atrial thrombus included a mass of irregular nonmobile laminated echos within an enlarged atrial cavity, usually with a broad base of attachment to the posterior left atrial wall. Seven patients had a left atrial myxoma. Usually, the myxoma appeared as a mottled ovoid, sharply demarcated mobile mass attached to the interatrial septum. One patient had a right atrial angiosarcoma that appeared as a nonmobile mass extending from the inferior vena caval-right atrial junction into the right atrial cavity. One patient had a left atrial leiomyosarcoma producing a highly mobile mass attached to the lateral wall of the left atrium. M mode echocardiography detected six of the seven myxomas, one thrombus and neither of the other tumors. Thus, two dimensional echocardiography appears to be the technique of choice in the detection, localization and differentiation of intraatrial masses.
Three-dimensional deformation of orthodontic brackets
Melenka, Garrett W; Nobes, David S; Major, Paul W
2013-01-01
Braces are used by orthodontists to correct the misalignment of teeth in the mouth. Archwire rotation is a particular procedure used to correct tooth inclination. Wire rotation can result in deformation to the orthodontic brackets, and an orthodontic torque simulator has been designed to examine this wire–bracket interaction. An optical technique has been employed to measure the deformation due to size and geometric constraints of the orthodontic brackets. Images of orthodontic brackets are collected using a stereo microscope and two charge-coupled device cameras, and deformation of orthodontic brackets is measured using a three-dimensional digital image correlation technique. The three-dimensional deformation of orthodontic brackets will be evaluated. The repeatability of the three-dimensional digital image correlation measurement method was evaluated by performing 30 archwire rotation tests using the same bracket and archwire. Finally, five Damon 3MX and five In-Ovation R self-ligating brackets will be compared using this technique to demonstrate the effect of archwire rotation on bracket design. PMID:23762201
Three-Dimensional Imaging. Chapter 10
NASA Technical Reports Server (NTRS)
Kelso, R. M.; Delo, C.
1999-01-01
This chapter is concerned with three-dimensional imaging of fluid flows. Although relatively young, this field of research has already yielded an enormous range of techniques. These vary widely in cost and complexity, with the cheapest light sheet systems being within the budgets of most laboratories, and the most expensive Magnetic Resonance Imaging systems available to a select few. Taking the view that the most likely systems to be developed are those using light sheets, the authors will relate their knowledge and experience of such systems. Other systems will be described briefly and references provided. Flows are inherently three-dimensional in structure; even those generated around nominally 2-D surface geometry. It is becoming increasingly apparent to scientists and engineers that the three-dimensionalities, both large and small scale, are important in terms of overall flow structure and species, momentum, and energy transport. Furthermore, we are accustomed to seeing the world in three dimensions, so it is natural that we should wish to view, measure and interpret flows in three-dimensions. Unfortunately, 3-D images do not lend themselves to convenient presentation on the printed page, and this task is one of the challenges facing us.
Volumetric Three-Dimensional Display Systems
NASA Astrophysics Data System (ADS)
Blundell, Barry G.; Schwarz, Adam J.
2000-03-01
A comprehensive study of approaches to three-dimensional visualization by volumetric display systems This groundbreaking volume provides an unbiased and in-depth discussion on a broad range of volumetric three-dimensional display systems. It examines the history, development, design, and future of these displays, and considers their potential for application to key areas in which visualization plays a major role. Drawing substantially on material that was previously unpublished or available only in patent form, the authors establish the first comprehensive technical and mathematical formalization of the field, and examine a number of different volumetric architectures. System level design strategies are presented, from which proposals for the next generation of high-definition predictable volumetric systems are developed. To ensure that researchers will benefit from work already completed, they provide: * Descriptions of several recent volumetric display systems prepared from material supplied by the teams that created them * An abstract volumetric display system design paradigm * An historical summary of 90 years of development in volumetric display system technology * An assessment of the strengths and weaknesses of many of the systems proposed to date * A unified presentation of the underlying principles of volumetric display systems * A comprehensive bibliography Beautifully supplemented with 17 color plates that illustrate volumetric images and prototype displays, Volumetric Three-Dimensional Display Systems is an indispensable resource for professionals in imaging systems development, scientific visualization, medical imaging, computer graphics, aerospace, military planning, and CAD/CAE.
NASA Astrophysics Data System (ADS)
Bayuelo, Ezequiel
Este estudio examino y comparo las actitudes de los candidatos a maestros de ciencias y los maestros de ciencias en servicio acerca de la utilizacion de las herramientas computadorizadas en las clases de ciencias. Tambien identifico y diferencio el uso que ellos dan a estas herramientas en las clases de ciencias. Este estudio presenta un diseno descriptivo exploratorio. Constituyeron la muestra trescientos diez sujetos que fueron candidatos a maestros de ciencias o maestros de ciencias en servicio. Para recoger los datos se construyo y valido un cuestionario de treinta y un itemes. Se utilizaron las pruebas estadisticas no parametricas Kruskal Wallis y Chi-cuadrado (test de homogeneidad) para establecer las diferencias entre las actitudes de los sujetos con relacion al uso de las herramientas computadorizadas en las clases de ciencias. Los hallazgos evidenciaron que son positivas y muy parecidas las actitudes de los candidatos a maestros y maestros en servicio hacia el uso de las herramientas computadorizadas. No hubo diferencias entre los candidatos y maestros en servicio en terminos de las actitudes de confianza y empatia hacia el uso de las herramientas computadorizadas en las clases de ciencias. En aspectos como el uso del banco de datos bibliografico Eric y el uso de las herramientas computadorizadas en actividades educativas como explorar conceptos, conceptuar, aplicar lo aprendido y hacer asignaciones hubo diferencias estadisticamente significativas entre los candidatos y los maestros en servicio. Al comparar las frecuencias observadas con las esperadas hubo mas maestros en servicio y menos candidatos que indicaron usar el anterior banco de datos y las herramientas computadorizadas en las mencionadas actividades educativas.
Fault-tolerant computation with higher-dimensional systems
NASA Technical Reports Server (NTRS)
Gottesman, D.
1998-01-01
Instead of a quantum computer where the fundamental units are 2-dimensional qubits, the author considers a quantum computer made up of d-dimensional systems. There is a straightforward generalization of the class of stabilizer codes to d-dimensional systems, and he discusses the theory of fault-tolerant computation using such codes. He proves that universal fault-tolerant computation is possible with any higher-dimensional stabilizer code for prime d.
Cánovas-Conesa, A.; Gomariz-Peñalver, V.; Sánchez-Sauco, M.F.; Vega, D.C. Jaimes; Ortega-García, J.A.; García, M.J. Aranda; Marín, J.L. Delgado; Ascanio, A. Trujillo; Hernández, F. López; Jimenez, J.I. Ruiz; de Paco Matallana, C.; Soldin, O.P.; Solís, M. Sánchez
2016-01-01
Resumen Objetivos El objetivo de este estudio fue estudiar la asociación de la adherencia a la dieta mediterránea materna al inicio del embarazo y el riesgo de gastrosquisis en la descendencia. Métodos Estudio de casos-control. 11 casos incidentes de gastrosquisis en la Región de Murcia de 2007 a 2012 y 34 controles concurrentes. Cuestionario validado de Frecuencia Alimentaria (CFA) sobre la dieta periconcepcional de 98 ítems realizado ‘cara a cara’ en el momento del diagnóstico. Factores confundidores: tabaquismo, expositión a cannabis/marihuana, edad materna y paterna, índice de masa corporal, ingresos económicos y nivel de estudios. Estudio descriptivo y regresión logística multivariable. Resultados Las madres de niños con gastrosquisis son más jóvenes (20,8 años; IC 95% 17,3–24,2) y su dieta tiene un menor aporte calórico, de grasas saturadas y monoinsaturadas y de proteínas que los controles. Odds Ratio (OR) en el modelo multivariable controlado por los factores confundidores: edad materna (años) 0,70 (IC95% 0,51–0,96); ácidos grasos monoinsaturados (oleico, g) 0,79 (IC95% 0,65–0,97) y consumo de vegetales (raciones/semana) 0,70 (IC95% 0,48–1,00). Conclusiones Una dieta materna rica en ácido oleico y productos vegetales podría contribuir a prevenir el riesgo de oclusión vascular de las arterias onfalomesentéricas, disminuyendo el riesgo de gastrosquisis. PMID:23833926
Higher-dimensional Bianchi type-VIh cosmologies
NASA Astrophysics Data System (ADS)
Lorenz-Petzold, D.
1985-09-01
The higher-dimensional perfect fluid equations of a generalization of the (1 + 3)-dimensional Bianchi type-VIh space-time are discussed. Bianchi type-V and Bianchi type-III space-times are also included as special cases. It is shown that the Chodos-Detweiler (1980) mechanism of cosmological dimensional-reduction is possible in these cases.
Beginning Introductory Physics with Two-Dimensional Motion
ERIC Educational Resources Information Center
Huggins, Elisha
2009-01-01
During the session on "Introductory College Physics Textbooks" at the 2007 Summer Meeting of the AAPT, there was a brief discussion about whether introductory physics should begin with one-dimensional motion or two-dimensional motion. Here we present the case that by starting with two-dimensional motion, we are able to introduce a considerable…
New two-dimensional quantum models with shape invariance
Cannata, F.; Ioffe, M. V.; Nishnianidze, D. N.
2011-02-15
Two-dimensional quantum models which obey the property of shape invariance are built in the framework of polynomial two-dimensional supersymmetric quantum mechanics. They are obtained using the expressions for known one-dimensional shape invariant potentials. The constructed Hamiltonians are integrable with symmetry operators of fourth order in momenta, and they are not amenable to the conventional separation of variables.
Dimensionality reduction of collective motion by principal manifolds
NASA Astrophysics Data System (ADS)
Gajamannage, Kelum; Butail, Sachit; Porfiri, Maurizio; Bollt, Erik M.
2015-01-01
While the existence of low-dimensional embedding manifolds has been shown in patterns of collective motion, the current battery of nonlinear dimensionality reduction methods is not amenable to the analysis of such manifolds. This is mainly due to the necessary spectral decomposition step, which limits control over the mapping from the original high-dimensional space to the embedding space. Here, we propose an alternative approach that demands a two-dimensional embedding which topologically summarizes the high-dimensional data. In this sense, our approach is closely related to the construction of one-dimensional principal curves that minimize orthogonal error to data points subject to smoothness constraints. Specifically, we construct a two-dimensional principal manifold directly in the high-dimensional space using cubic smoothing splines, and define the embedding coordinates in terms of geodesic distances. Thus, the mapping from the high-dimensional data to the manifold is defined in terms of local coordinates. Through representative examples, we show that compared to existing nonlinear dimensionality reduction methods, the principal manifold retains the original structure even in noisy and sparse datasets. The principal manifold finding algorithm is applied to configurations obtained from a dynamical system of multiple agents simulating a complex maneuver called predator mobbing, and the resulting two-dimensional embedding is compared with that of a well-established nonlinear dimensionality reduction method.
Computer-Generated, Three-Dimensional Character Animation.
ERIC Educational Resources Information Center
Van Baerle, Susan Lynn
This master's thesis begins by discussing the differences between 3-D computer animation of solid three-dimensional, or monolithic, objects, and the animation of characters, i.e., collections of movable parts with soft pliable surfaces. Principles from two-dimensional character animation that can be transferred to three-dimensional character…
Hollerbach, K.; Van Vorhis, R.L.; Hollister, A.
1996-03-01
Wrist posture and rapid wrist movements are risk factors for work related musculoskeletal disorders. Measurement studies frequently involve optoelectronic methods in which markers are placed on the subject`s hand and wrist and the trajectories of the markers are tracked in three dimensional space. A goal of wrist posture measurements is to quantitatively establish wrist posture orientation. Accuracy and fidelity of the measurement data with respect to kinematic mechanisms are essential in wrist motion studies. Fidelity with the physical kinematic mechanism can be limited by the choice of kinematic modeling techniques and the representation of motion. Frequently, ergonomic studies involving wrist kinematics make use of two dimensional measurement and analysis techniques. Two dimensional measurement of human joint motion involves the analysis of three dimensional displacements in an obersver selected measurement plane. Accurate marker placement and alignment of joint motion plane with the observer plane are difficult. In nature, joint axes can exist at any orientation and location relative to an arbitrarily chosen global reference frame. An arbitrary axis is any axis that is not coincident with a reference coordinate. We calculate the errors that result from measuring joint motion about an arbitrary axis using two dimensional methods.
Candidate Quantum Spin Liquid due to Dimensional Reduction of a Two-Dimensional Honeycomb Lattice
Zhang, Bin; Zhang, Yan; Wang, Zheming; Wang, Dongwei; Baker, Peter J.; Pratt, Francis L.; Zhu, Daoben
2014-01-01
As with quantum spin liquids based on two-dimensional triangular and kagome lattices, the two-dimensional honeycomb lattice with either a strong spin-orbital coupling or a frustrating second-nearest-neighbor coupling is expected to be a source of candidate quantum spin liquids. An ammonium salt [(C3H7)3NH]2[Cu2(C2O4)3](H2O)2.2 containing hexagonal layers of Cu2+ was obtained from solution. No structural transition or long-range magnetic ordering was observed from 290 K to 2 K from single crystal X-ray diffraction, specific heat and susceptibility measurements. The anionic layers are separated by sheets of ammonium and H2O with distance of 3.5 Å and no significant interaction between anionic layers. The two-dimensional honeycomb lattice is constructed from Jahn-Teller distorted Cu2+ and oxalate anions, showing a strong antiferromagnetic interaction between S = 1/2 metal atoms with θ = −120 (1) K. Orbital analysis of the Cu2+ interactions through the oxalate-bridges suggests a stripe mode pattern of coupling with weak ferromagnetic interaction along the b axis, and strong antiferromagnetic interaction along the a axis. Analysis of the magnetic susceptibility shows that it is dominated by a quasi-one-dimensional contribution with spin chains that are at least as well isolated as those of well-known quasi-one-dimensional spin liquids. PMID:25245216
Calidad de Imagen del Telescopio UNAM212
NASA Astrophysics Data System (ADS)
Cobos, F. J.; Teiada de Vargas, C.
1987-05-01
El telescopio UNAM2l2, del Observatorio Astronómico Nacional, situado en la Sierra de San Pedro Mártir (Baja California, México), cumplira en un futuro muy cercano siete años de uso para fines de investigación astronómica. Aunque en este tiempo no se ha efectuado un estudio sistemático acerca de su comportamiento óptico y de los factores que influyen en la calidad de las imágenes, se han realizado pruebas diversas, estudios parciales y reuniones especificas, cuyos resultados no siempre se han difundido ampliamente y generalmente no se han presentado por escrito. Es por ello que hemos creido necesario intentar una recopilación de la información existente para poder con ella establecer un diagnóstjco que, aunque no sea definitivo, sirva de base para futuros trabajos tendientes a optimizar el comportamiento óptico del telescopio. Es evidente que un buen número de las conclusiones que se presentan son resultado del trabajo de muchas personas ó de esfuerzos colectivos. Asimismo, hemos tratado de localizar información bibliográfica que pueda ser de utilidad. Nuestro objetivo primordial ha consistido en centrarnos en la óptica del telescopio y su calidad, pero también se han considerado otros aspectos que puedan afectar las imágenes obtenidas tales como: celda del primario, `seeing' local y externo, flexiones posibles en la estructura mecánica del telescopio, etc.
Grave, Frank; Buser, Michael
2008-01-01
Visualization of general relativity illustrates aspects of Einstein's insights into the curved nature of space and time to the expert as well as the layperson. One of the most interesting models which came up with Einstein's theory was developed by Kurt Gödel in 1949. The Gödel universe is a valid solution of Einstein's field equations, making it a possible physical description of our universe. It offers remarkable features like the existence of an optical horizon beyond which time travel is possible. Although we know that our universe is not a Gödel universe, it is interesting to visualize physical aspects of a world model resulting from a theory which is highly confirmed in scientific history. Standard techniques to adopt an egocentric point of view in a relativistic world model have shortcomings with respect to the time needed to render an image as well as difficulties in applying a direct illumination model. In this paper we want to face both issues to reduce the gap between common visualization standards and relativistic visualization. We will introduce two techniques to speed up recalculation of images by means of preprocessing and lookup tables and to increase image quality through a special optimization applicable to the Gödel universe. The first technique allows the physicist to understand the different effects of general relativity faster and better by generating images from existing datasets interactively. By using the intrinsic symmetries of Gödel's spacetime which are expressed by the Killing vector field, we are able to reduce the necessary calculations to simple cases using the second technique. This even makes it feasible to account for a direct illumination model during the rendering process. Although the presented methods are applied to Gödel's universe, they can also be extended to other manifolds, for example light propagation in moving dielectric media. Therefore, other areas of research can benefit from these generic improvements.
Radio-Observaciones del OH EN la Coma del Cometa Halley Desde EL Hemisferio Sur
NASA Astrophysics Data System (ADS)
Silva, A. M.; Bajaja, E.; Morras, R.; Cersosimo, J. C.; Martin, M. C.; Arnal, E. M.; Poppel, W. G. L.; Colomb, F. R.; Mazzaro, J.; Olalde, J. C.; Boriakoff, V.; Mirabel, I. F.
1987-05-01
Se utilizó una antena de 30 metros del Instituto Argentino de Radioastronomía para observaciones diarias Cf ebrero a abril de 1986) de la transición en 1667 MHz ( λ = 18 cm) del OH en la coma del cometa Halley. De las observaciones realizadas se concluye: 1) El número promedio de moléculas de OH en la coma durante 37 días de observación fue de (8.9±3.5)x1034 moléculas, lo que implica una tasa de producción promedio de OH de 1.8x1029 moléculas seg-1 y consecuentemente una pérdida de masa promedio de 17±6 toneladas seg-1 . Este valor está de acuerdo con las mediciones realizadas por las sondas Vega y Giotto. 2) El monitoreo desde el lAR revela la existencia de variaciones bruscas en los flujos de absorción del OH. Estas variaciones son consistentes con los modelos que representan la producción gaseosa a partir de ejecciones y/o desprendimientos discretos de materia congelada del núcleo. 3) Las variaciones en la densidad de flujo son consistentes con las estimaciones de los tiem- pos de vida medios del H2O y del OH en presencia del campo de radiación solar. 4) Se encuentra una correlación entre la intensidad del flujo absorbido y anisotropías en Ia dinamica de la coma.
McChesney, P.J.
1999-01-01
El McVCO es un generador de frecuencias basado en un microcontrolador que reemplaza al oscilador controlado por voltaje (VCO) utilizado en telemetría analógica de datos sísmicas. Acepta señales de baja potencia desde un sismómetro y produce una señal subportadora modulada en frecuencia adecuada para enlaces telefónicos o vía radio a un lugar remoto de recolección de datos. La frecuencia de la subportadora y la ganancia pueden ser seleccionadas mediante un interruptor. Tiene la opción de poder operar con dos canales para la observación con ganancia alta y baja. El McVCO fue diseñado con el propósito de mejorar la telemetría analógica de las señales dentro de la Pacific Northwest Seismograph Network (PNSN) (Red Sismográfica del Noroeste del Pacífico). Su desarrollo recibió el respaldo del Programa de Geofísica de la Universidad de Washington y del "Volcano Hazards and Earthquake Hazards programs of the United States Geological Survey (USGS) (Programa de Investigaciones de Riesgos Volcánicos y Programa de Investigaciones de Riesgos Sísmicos de los EEUU). Cientos de instrumentos se han construido e instalado. Además de utilizarlo el PNSN, el McVCO es usado por el Observatorio Vulcanológico de Alaska para monitorear los volcanes aleutianos y por el USGS Volcano Disaster Assistance Program (Programa de Ayuda en las Catástrofes Volcánicas del USGS) para responder a crisis volcánicas en otros países. Este manual cubre el funcionamiento del McVCO, es una referencia técnica para aquellos que necesitan saber con más detalle cómo funciona el McVCO, y cubre una serie de temas que requieren un trato explícito o que derivan del despliegue del instrumento.
[Revista de Gastroenterologia del Peru: 25 years].
Celestino Fernández, Alvaro
2005-01-01
In this article is described in a very summarized form the history of the Revista de Gastroenterología del Perú (RGP) that dates from the same origins of the Sociedad de Gastroenterología del Perú, when based in October 30 of 1952 already glimpse the presence of the RGP as the official organ for the publication for studies of doctors of the society or foreign guests. We spent 29 years, and this idea becomes reality; and today the RGP turns to their XXV anniversary. The RGP, to locate itself as the Peruvian medical publication best reputation.
Zhang, Zhuhua; Liu, Xiaofei; Yu, Jin; Hang, Yang; Li, Yao; Guo, Yufeng; Xu, Ying; Sun, Xu; Zhou, Jianxin
2016-01-01
Low‐dimensional materials exhibit many exceptional properties and functionalities which can be efficiently tuned by externally applied force or fields. Here we review the current status of research on tuning the electronic and magnetic properties of low‐dimensional carbon, boron nitride, metal‐dichalcogenides, phosphorene nanomaterials by applied engineering strain, external electric field and interaction with substrates, etc, with particular focus on the progress of computational methods and studies. We highlight the similarities and differences of the property modulation among one‐ and two‐dimensional nanomaterials. Recent breakthroughs in experimental demonstration of the tunable functionalities in typical nanostructures are also presented. Finally, prospective and challenges for applying the tunable properties into functional devices are discussed. WIREs Comput Mol Sci 2016, 6:324–350. doi: 10.1002/wcms.1251 For further resources related to this article, please visit the WIREs website. Conflict of interest: The authors have declared no conflicts of interest for this article. PMID:27818710
Stability of a compressible two-dimensional vortex under a three-dimensional perturbation
NASA Astrophysics Data System (ADS)
Broadbent, E. G.
1984-04-01
It was shown by Kelvin that a two-dimensional vortex under a two-dimensional disturbance in incompressible flow responds at a discrete set of eigenvalues. These were found by Broadbent and Moore (1979) to become unstable in a compressible fluid. Three-dimensional perturbations are shown here also to be unstable, provided that the wavelength is greater than some critical value that depends on the Mach number of the vortex. A definition is given of a critical boundary dividing stable from unstable modes. Whereas the results for the most part relate to a Rankine vortex, some are also given for a vortex with a different velocity profile within the core; qualitatively, the same type of behavior is observed.
Three-dimensional reconstruction of surface nanoarchitecture from two-dimensional datasets
2014-01-01
The design of biomaterial surfaces relies heavily on the ability to accurately measure and visualize the three-dimensional surface nanoarchitecture of substrata. Here, we present a technique for producing three-dimensional surface models using displacement maps that are based on the data obtained from two-dimensional analyses. This technique is particularly useful when applied to scanning electron micrographs that have been calibrated using atomic force microscopy (AFM) roughness data. The evaluation of four different surface types, including thin titanium films, silicon wafers, polystyrene cell culture dishes and dragonfly wings confirmed that this technique is particularly effective for the visualization of conductive surfaces such as metallic titanium. The technique is particularly useful for visualizing surfaces that cannot be easily analyzed using AFM. The speed and ease with which electron micrographs can be recorded, combined with a relatively simple process for generating displacement maps, make this technique useful for the assessment of the surface topography of biomaterials. PMID:24410821
Two-dimensional materials and their prospects in transistor electronics.
Schwierz, F; Pezoldt, J; Granzner, R
2015-05-14
During the past decade, two-dimensional materials have attracted incredible interest from the electronic device community. The first two-dimensional material studied in detail was graphene and, since 2007, it has intensively been explored as a material for electronic devices, in particular, transistors. While graphene transistors are still on the agenda, researchers have extended their work to two-dimensional materials beyond graphene and the number of two-dimensional materials under examination has literally exploded recently. Meanwhile several hundreds of different two-dimensional materials are known, a substantial part of them is considered useful for transistors, and experimental transistors with channels of different two-dimensional materials have been demonstrated. In spite of the rapid progress in the field, the prospects of two-dimensional transistors still remain vague and optimistic opinions face rather reserved assessments. The intention of the present paper is to shed more light on the merits and drawbacks of two-dimensional materials for transistor electronics and to add a few more facets to the ongoing discussion on the prospects of two-dimensional transistors. To this end, we compose a wish list of properties for a good transistor channel material and examine to what extent the two-dimensional materials fulfill the criteria of the list. The state-of-the-art two-dimensional transistors are reviewed and a balanced view of both the pros and cons of these devices is provided.
Baño Piñero, Isabel; Canteras Jordana, Manuel; Carrillo García, Cesar; López Araez, Alicia; Martínez Roche, María Emilia
2015-04-01
Antecedentes: partimos de la hipótesis de que no existen suficientes cuestionarios validados que midan el impacto de las redes de apoyo a la lactancia materna para población hispano hablante. Objetivo: Por ese motivo, nos planteamos como objetivo general de este trabajo, elaborar y validar (a nivel de contenido y constructo) un instrumento de medida cuantitativa. Método: Se evaluó la validez de contenido sometiendo el cuestionario a un juicio de expertos en lactancia materna de la Región de Murcia. La prueba piloto se llevó a cabo entre los meses de marzo y abril de 2014. Las encuestas fueron realizadas directamente por las usuarias que acudían al grupo de apoyo a la lactancia “Lactando”. Para la validez de constructo se realizó un análisis factorial con el que se determinaron las distintas dimensiones que el cuestionario podría medir. Se realizó una estadística descriptiva de cada uno de los ítems. A través del análisis de componentes principales, se obtuvo la varianza total explicada, determinando así, los factores con los elementos que los definían. Resultados: A través del análisis factorial, el cuestionario obtuvo una alta consistencia interna para sus cinco componentes (satisfacción, consultas, experiencia, problemas y apoyo), consiguiendo valores de 0,942 a 0,632. Y un porcentaje de varianza total explicada elevado (11,157% - 5,093%). Conclusión: Este estudio ha servido para crear un instrumento pertinente y válido a nivel de contenido y de constructo, capaz de medir el impacto de las redes de apoyo a la lactancia a través de 5 dimensiones.
Slightly two- or three-dimensional self-similar solutions
NASA Astrophysics Data System (ADS)
Sari, Re'em; Bode, Nate; Yalinewich, Almog; MacFadyen, Andrew
2012-08-01
Self-similarity allows for analytic or semi-analytic solutions to many hydrodynamics problems. Most of these solutions are one-dimensional. Using linear perturbation theory, expanded around such a one-dimensional solution, we find self-similar hydrodynamic solutions that are two- or three-dimensional. Since the deviation from a one-dimensional solution is small, we call these slightly two-dimensional and slightly three-dimensional self-similar solutions, respectively. As an example, we treat strong spherical explosions of the second type. A strong explosion propagates into an ideal gas with negligible temperature and density profile of the form ρ(r, θ, ϕ) = r-ω[1 + σF(θ, ϕ)], where ω > 3 and σ ≪ 1. Analytical solutions are obtained by expanding the arbitrary function F(θ, ϕ) in spherical harmonics. We compare our results with two-dimensional numerical simulations, and find good agreement.
Some topological states in one-dimensional cold atomic systems
Mei, Feng; Zhang, Dan-Wei; Zhu, Shi-Liang
2015-07-15
Ultracold atoms trapped in optical lattices nowadays have been widely used to mimic various models from condensed-matter physics. Recently, many great experimental progresses have been achieved for producing artificial magnetic field and spin–orbit coupling in cold atomic systems, which turn these systems into a new platform for simulating topological states. In this paper, we give a review focusing on quantum simulation of topologically protected soliton modes and topological insulators in one-dimensional cold atomic system. Firstly, the recent achievements towards quantum simulation of one-dimensional models with topological non-trivial states are reviewed, including the celebrated Jackiw–Rebbi model and Su–Schrieffer–Heeger model. Then, we will introduce a dimensional reduction method for systematically constructing high dimensional topological states in lower dimensional models and review its applications on simulating two-dimensional topological insulators in one-dimensional optical superlattices.
The role of dimensionality in the decay of surface effects
NASA Astrophysics Data System (ADS)
Reuter, Matthew G.; Boffi, Nicholas M.; Ratner, Mark A.; Seideman, Tamar
2013-02-01
We computationally investigate the decay of surface effects in one-, two-, and three-dimensional materials using two-band tight-binding models. These general models facilitate a direct comparison between materials of differing dimensionality, which reveals that material dimensionality (not material-specific chemistry/physics) is the primary factor controlling the decay of surface effects. Our results corroborate more sophisticated, material-specific studies, finding that surface effects decay after ˜10, ˜25, and ≳ 100 layers in three-dimensional, two-dimensional, and one-dimensional materials, respectively. Physically, higher-dimensional materials screen surface effects more efficiently, as theoretically described by integration over each layer's Brillouin zone. Finally, we discuss several implications of these results.
NASA Astrophysics Data System (ADS)
Tan, I.-Hsing
1992-01-01
With the success of the optoelectronic devices based on the two-dimensional (2D) quantum well, it is a natural trend to continue to reduce system's dimensionality to 1D and 0D systems. However, extrinsic fabrication defects such as process-induced damage and pattern non-uniformity and intrinsic defects such as a slower hot carrier cooling rate can render the luminescence of the wires and dots extremely poor. In this dissertation, I will show that strain modulation and low-damage dry/wet etching techniques allow one to obtain high luminescence strain-induced quantum wires (SIQWs) and dots (SIQDs) with lateral dimensions less than 100 nm. The reduction of the fabrication-induced defects has allowed us to examine the intrinsic optical properties of the SIQWs and SIQDs through the photoluminescence (PL), PL excitation (PLE), and PL decay spectroscopy. Using epitaxial InGaAs layer as a stressor, we have achieved a ~20 meV of strain modulation and a ~7 meV of subband spacing in the SIQW structures having a lateral dimension of 75 nm and have observed an increase of FL decay time in the SIQD structures. The energy shifts, subband spacing, and increased PL decay time observed in the SIQWs and SIQDs can be well interpreted by our theoretical model, based on solving both the elasticity equation as well as the Luttinger-Kohn four-band Hamiltonian including strain.
Physical Mechanisms of Two-Dimensional Turbulence
NASA Astrophysics Data System (ADS)
Ecke, Robert
2004-03-01
Turbulence has slowly yielded its mysteries through over 100 years of persistent effort. Recently experimental techniques and computation power have reached the stage where significant progress has been made on this very challenging problem. Two dimensional turbulence offers some real advantages in terms of reduced degrees of freedom such that the problem can now be thoroughly explored from many perspectives. Further, two-dimensional turbulence exhibits the basic phenomena of direct-enstrophy and inverse-energy cascades thought to apply to oceanic and atmospheric systems. We have investigated the properties of turbulence in two spatial dimensions using experimental measurements of the grid turbulence in a flowing soap film^1 and of the electromagnetically-forced turbulence in a thin salt layer floating on a dense immiscible fluid underlayer. We have also explored 2D turbulence using several different direct numerical simulations of homogeneous, isotropic turbulence in a periodic box^2. The data for both consist of high resolution fields of velocity; some are statistically independent sets and others are temporally resolved for dynamics. From this data we construct conventional Eulerian statistics, directly measure energy and enstrophy transfer^1, identify coherent structures in the flow, determine Lagrangian quantities, and calculate stretching fields. This comprehensive experimental and numerical characterization elucidates the physical mechanisms of two-dimensional turbulence. ^1 M.K. Rivera, W.B. Daniel and R.E. Ecke, Phys. Rev. Lett. 90, 104502 (2003). ^2 S. Chen, R.E. Ecke, G. Eyink, X. Wang, and Z. Xiao, Phys. Rev. Lett. 91, 214501 (2003).
Three-dimensional stereo by photometric ratios
Wolff, L.B.; Angelopoulou, E.
1994-11-01
We present a methodology for corresponding a dense set of points on an object surface from photometric values for three-dimensional stereo computation of depth. The methodology utilizes multiple stereo pairs of images, with each stereo pair being taken of the identical scene but under different illumination. With just two stereo pairs of images taken under two different illumination conditions, a stereo pair of ratio images can be produced, one for the ratio of left-hand images and one for the ratio of right-hand images. We demonstrate how the photometric ratios composing these images can be used for accurate correspondence of object points. Object points having the same photometric ratio with respect to two different illumination conditions constitute a well-defined equivalence class of physical constraints defined by local surface orientation relative to illumination conditions. We formally show that for diffuse reflection the photometric ratio is invariant to varying camera characteristics, surface albedo, and viewpoint and that therefore the same photometric ratio in both images of a stereo pair implies the same equivalence class of physical constraints. The correspondence of photometric ratios along epipolar lines in a stereo pair of images under different illumination conditions is a correspondence of equivalent physical constraints, and the determination of depth from stereo can be performed. Whereas illumination planning is required, our photometric-based stereo methodology does not require knowledge of illumination conditions in the actual computation of three-dimensional depth and is applicable to perspective views. This technique extends the stereo determination of three-dimensional depth to smooth featureless surfaces without the use of precisely calibrated lighting. We demonstrate experimental depth maps from a dense set of points on smooth objects of known ground-truth shape, determined to within 1% depth accuracy.
Melting in three-dimensional and two-dimensional Yukawa systems
NASA Astrophysics Data System (ADS)
Vaulina, O. S.; Koss, X. G.
2015-10-01
Solid-liquid phase transitions in three-dimensional (3D) and two-dimensional (2D) Yukawa systems were studied numerically and analytically, including the melting of the fcc and bcc 3D lattices, and of a hexagonal primitive (hp) 2D lattice. An approach is proposed for the determination of the melting lines in these systems. The suggested approach takes into account the nonlinearity (anharmonicity) of pair interaction forces and allows one to correctly predict the conditions of melting for 3D and 2D crystal systems. The obtained results are compared with the existing theoretical and numerical data.
Two dimensional thick center vortex model
Rafibakhsh, Shahnoosh; Ahmadi, Alireza
2016-01-22
The potential between static color source is calculated in the SU (3) gauge group by introducing a two dimensional vortex flux. To generalize the model, the length of the Wilson loop is equal to R oriented along the x axis, and the vortex flux is considered as a function of x and y. The comparison between the generalized model and the original one shows that the intermediate linear regime is increased significantly and better agreement with Casimir scaling is achieved. Furthermore, the model is applied to calculate the potential between baryons.
Dimensional diversity in transition metal trihalides
Jianhua Lin; Miller, G.J. )
1993-04-14
Structural variations of the second- and third-row transition metal trihalides are rationalized via tight-binding band calculations and evaluation of Madelung energetic factors. The observed structure for a given metal halide is controlled by both the coordination geometry at the anion and the d electron configuration at the metal. As the polarizability of the halide increases, the M-X-M angle, in general, decreases so that three-dimensional frameworks occur for the fluorides, while layer and chain structures are found for the chlorides, bromides, and iodides. Within a particular halide system, systematic structural trends also occur as the d electron configuration changes. 56 refs., 23 figs., 4 tabs.
Electrodeposition of one-dimensional nanostructures.
She, Guangwei; Mu, Lixuan; Shi, Wensheng
2009-01-01
Electrodeposition is a simple and flexible method for the synthesis of one-dimensional (1D) nanostructures and has attracted more and more attention in recent years. 1D nanostructures of metals, semiconductors and polymers have been successfully fabricated by electrodeposition. Templates were often used in the electrochemical process to realize the 1D growth. On the other hand, some materials with intrinsic anisotropic crystal structures can also be prepared by the template-free electrochemical method. In this paper, we review the recent patents progress and offer some prospects of future directions in electrodeposition of 1D nanostructures.
Three-dimensional flow about penguin wings
NASA Astrophysics Data System (ADS)
Noca, Flavio; Sudki, Bassem; Lauria, Michel
2012-11-01
Penguins, contrary to airborne birds, do not need to compensate for gravity. Yet, the kinematics of their wings is highly three-dimensional and seems exceedingly complex for plain swimming. Is such kinematics the result of an evolutionary optimization or is it just a forced adaptation of an airborne flying apparatus to underwater swimming? Some answers will be provided based on flow dynamics around robotic penguin wings. Updates will also be presented on the development of a novel robotic arm intended to simulate penguin swimming and enable novel propulsion devices.
Universal absorption of two-dimensional systems
NASA Astrophysics Data System (ADS)
Stauber, T.; Noriega-Pérez, D.; Schliemann, J.
2015-03-01
We discuss the optical conductivity of several noninteracting two-dimensional semiconducting systems focusing on gapped Dirac and Schrödinger fermions as well as on a system mixing these two types. Close to the band gap, we can define a universal optical conductivity quantum of σ0=1/16 e/2ℏ for the pure systems. The effective optical conductivity then depends on the degeneracy factors gs (spin) and gv (valley) and on the curvature around the band gap ν , i.e., it generally reads σ =gsgvν σ0 . For a system composed of both types of carriers, the optical conductivity becomes nonuniversal.
Three-dimensional ultrasonic colloidal crystals
NASA Astrophysics Data System (ADS)
Caleap, Mihai; Drinkwater, Bruce W.
2016-05-01
Colloidal assembly represents a powerful method for the fabrication of functional materials. In this article, we describe how acoustic radiation forces can guide the assembly of colloidal particles into structures that serve as microscopic elements in novel acoustic metadevices or act as phononic crystals. Using a simple three-dimensional orthogonal system, we show that a diversity of colloidal structures with orthorhombic symmetry can be assembled with megahertz-frequency (MHz) standing pressure waves. These structures allow rapid tuning of acoustic properties and provide a new platform for dynamic metamaterial applications.
Electrode With Porous Three-Dimensional Support
Bernard, Patrick; Dauchier, Jean-Michel; Simonneau, Olivier
1999-07-27
Electrode including a paste containing particles of electrochemically active material and a conductive support consisting of a three-dimensional porous material comprising strands delimiting contiguous pores communicating via passages, characterized in that the average width L in .mu.m of said passages is related to the average diameter .O slashed. in .mu.m of said particles by the following equation, in which W and Y are dimensionless coefficients: wherein W=0.16 Y=1.69 X=202.4 .mu.m and Z=80 .mu.m
String breaking in four dimensional lattice QCD
Duncan, A.; Eichten, E.; Thacker, H.
2001-06-01
Virtual quark pair screening leads to breaking of the string between fundamental representation quarks in QCD. For unquenched four dimensional lattice QCD, this (so far elusive) phenomenon is studied using the recently developed truncated determinant algorithm (TDA). The dynamical configurations were generated on a 650 MHz PC. Quark eigenmodes up to 420 MeV are included exactly in these TDA studies performed at low quark mass on large coarse [but O(a{sup 2}) improved] lattices. A study of Wilson line correlators in Coulomb gauge extracted from an ensemble of 1000 two-flavor dynamical configurations reveals evidence for flattening of the string tension at distances R{approx}>1 fm.
Noise from two-dimensional vortices
NASA Technical Reports Server (NTRS)
Sanders, N. D.; Stockman, N. O.
1972-01-01
The fluctuating flow in an idealized model of a turbulent shear layer composed of many discrete vortices is analyzed. Computer solutions reveal irregular motions which are similar in many respects to observed flows in turbulent three-dimensional layers. The model is further simplified to a pair of equal co-rotating vortices and the noise generation is analyzed in terms of equivalent quadrupole oscillations. Results of the analysis in a uniform medium are consistent with Lighthill's results. New results are obtained for the effects of mean velocity gradients, compressibility, temperature inhomogenities, and gradients of the mean Mach number.
Dimensional changes of alginate dental impression materials.
Nallamuthu, N; Braden, M; Patel, M P
2006-12-01
The weight loss and corresponding dimensional changes of two dental alginate impression materials have been studied. The weight loss kinetics indicate this to be a diffusion controlled process, but with a boundary condition at the surface of the concentration decreasing exponentially with time. This is in marked contrast to most desorption processes, where the surface concentration becomes instantaneously zero. The appropriate theory has been developed for an exponential boundary condition, and its predictions compared with experimental data; the agreement was satisfactory. The diffusion coefficients for two thicknesses of the same material were not identical as predicted by theory; the possible reasons for this are discussed.
Ultra high purity, dimensionally stable INVAR 36
NASA Technical Reports Server (NTRS)
Sokolowski, Witold M. (Inventor); Lane, Marc S. (Inventor); Odonnell, Timothy P. (Inventor); Hsieh, Cheng H. (Inventor)
1994-01-01
An INVAR 36 material having long-term dimensional stability is produced by sintering a blend of powders of nickel and iron under pressure in an inert atmosphere to form an alloy containing less than 0.01 parts of carbon and less than 0.1 part aggregate and preferably 0.01 part individually of Mn, Si, P, S and Al impurities. The sintered alloy is heat treated and slowly and uniformly cooled to form a material having a coefficient of thermal expansion of less than 1 ppm/C and a temporal stability of less than 1 ppm/year.
Ultra high purity, dimensionally stable INVAR 36
NASA Technical Reports Server (NTRS)
Sokolowski, Witold M. (Inventor); Lane, Marc S. (Inventor); Hsieh, Cheng H. (Inventor); Odonnell, Timothy P. (Inventor)
1995-01-01
An INVAR 36 material having long-term dimensional stability is produced by sintering a blend of powders of nickel and iron under pressure in an inert atmosphere to form an alloy containing less than 0.01 parts of carbon and less than 0.1 part aggregate and preferably 0.01 part individually of Mn, Si, P, S and Al impurities. The sintered alloy is heat treated and slowly and uniformly cooled to form a material having a coefficient of thermal expansion of less than 1 ppm/C and a temporal stability of less than 1 ppm/year.
A one-dimensional tunable magnetic metamaterial.
Butz, S; Jung, P; Filippenko, L V; Koshelets, V P; Ustinov, A V
2013-09-23
We present experimental data on a one-dimensional super-conducting metamaterial that is tunable over a broad frequency band. The basic building block of this magnetic thin-film medium is a single-junction (rf-) superconducting quantum interference device (SQUID). Due to the nonlinear inductance of such an element, its resonance frequency is tunable in situ by applying a dc magnetic field. We demonstrate that this results in tunable effective parameters of our metamaterial consisting of 54 rf-SQUIDs. In order to obtain the effective magnetic permeability μr,eff from the measured data, we employ a technique that uses only the complex transmission coefficient S₂₁.
Higher-dimensional puncture initial data
Zilhao, Miguel; Ansorg, Marcus; Cardoso, Vitor; Gualtieri, Leonardo; Herdeiro, Carlos; Sperhake, Ulrich; Witek, Helvi
2011-10-15
We calculate puncture initial data, corresponding to single and binary black holes with linear momenta, which solve the constraint equations of D-dimensional vacuum gravity. The data are generated by a modification of the pseudospectral code presented in [M. Ansorg, B. Bruegmann, and W. Tichy, Phys. Rev. D 70, 064011 (2004).] and made available as the TwoPunctures thorn inside the Cactus computational toolkit. As examples, we exhibit convergence plots, the violation of the Hamiltonian constraint as well as the initial data for D=4,5,6,7. These initial data are the starting point to perform high-energy collisions of black holes in D dimensions.
Study of two-dimensional squeezed magnetopolarons
NASA Astrophysics Data System (ADS)
Zhang, Yanmin; Cheng, Ze; Wu, Zixia; Wang, Junfeng
2006-11-01
In this Letter, some properties of two-dimensional squeezed magnetopolarons are investigated. The Hamiltonian of magnetopolarons is dealt with by using squeezed state transformation, which is based on the Lee Low Pines and Huybrechts (LLP H) canonical transformations. This method makes it possible to consider bilinear terms of the phonon operators as well as linear terms arising from the LLP H transformations. Some exact results are obtained, such as the energies of ground and excited states for squeezed magnetopolarons and renormalized cyclotron masses for some possible transitions.
3DIVS: 3-Dimensional Immersive Virtual Sculpting
Kuester, F; Duchaineau, M A; Hamann, B; Joy, K I; Uva, A E
2001-10-03
Virtual Environments (VEs) have the potential to revolutionize traditional product design by enabling the transition from conventional CAD to fully digital product development. The presented prototype system targets closing the ''digital gap'' as introduced by the need for physical models such as clay models or mockups in the traditional product design and evaluation cycle. We describe a design environment that provides an intuitive human-machine interface for the creation and manipulation of three-dimensional (3D) models in a semi-immersive design space, focusing on ease of use and increased productivity for both designer and CAD engineers.
Pressure of two-dimensional Yukawa liquids
NASA Astrophysics Data System (ADS)
Feng, Yan; Goree, J.; Liu, Bin; Wang, Lei; Tian, Wen-de
2016-06-01
A simple analytic expression for the pressure of a two-dimensional Yukawa liquid is found by fitting results from a molecular dynamics simulation. The results verify that the pressure can be written as the sum of a potential term which is a simple multiple of the Coulomb potential energy at a distance of the Wigner-Seitz radius, and a kinetic term which is a multiple of the one for an ideal gas. Dimensionless coefficients for each of these terms are found empirically, by fitting. The resulting analytic expression, with its empirically determined coefficients, is plotted as isochores, or curves of constant area. These results should be applicable to monolayer dusty plasmas.
Low dimensional modeling of wall turbulence
NASA Astrophysics Data System (ADS)
Aubry, Nadine
2015-11-01
In this talk we will review the original low dimensional dynamical model of the wall region of a turbulent boundary layer [Aubry, Holmes, Lumley and Stone, Journal of Fluid Dynamics 192, 1988] and discuss its impact on the field of fluid dynamics. We will also invite a few researchers who would like to make brief comments on the influence Lumley had on their research paths. In collaboration with Philip Holmes, Program in Applied and Computational Mathematics and Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ.
Three-dimensional simulations of burning thermals
NASA Astrophysics Data System (ADS)
Aspden, Andy; Bell, John; Woosley, Stan
2010-11-01
Flame ignition in type Ia supernovae (SNe Ia) leads to isolated bubbles of burning buoyant fluid. As a bubble rises due to gravity, it becomes deformed by shear instabilities and transitions to a turbulent buoyant vortex ring. Morton, Taylor and Turner (1956) introduced the entrainment assumption, which can be applied to inert thermals. In this study, we use the entrainment assumption, suitably modified to account for burning, to predict the late-time asymptotic behaviour of these turbulent buoyant vortex rings in SNe Ia. The theory is validated against three- dimensional simulations with adaptive mesh refinement at effective resolutions up to 4096^3.
Dynamics of film. [two dimensional continua theory
NASA Technical Reports Server (NTRS)
Zak, M.
1979-01-01
The general theory of films as two-dimensional continua are elaborated upon. As physical realizations of such a model this paper examines: inextensible films, elastic films, and nets. The suggested dynamic equations have enabled us to find out the characteristic speeds of wave propagation of the invariants of external and internal geometry and formulate the criteria of instability of their shape. Also included herein is a detailed account of the equation describing the film motions beyond the limits of the shape stability accompanied by the formation of wrinkles. The theory is illustrated by examples.
Two-dimensional meniscus in a wedge
Kagan, M.; Pinczewski, W.V.; Oren, P.E.
1995-03-15
This paper presents a closed-form analytical solution of the augmented Young-Laplace equation for the meniscus profile in a two-dimensional wedge-shaped capillary. The solution is valid for monotonic forms of disjoining pressure which are repulsive in nature. In the limit of negligible disjoining pressure, it is shown to reduce to the classical solution of constant curvature. The character of the solution is examined and examples of practical interest which demonstrate the application of the solution to the computation of the meniscus profile in a wedge-shaped capillary are discussed.
Hydroelectric structures studies using 3-dimensional methods
Harrell, T.R.; Jones, G.V.; Toner, C.K. )
1989-01-01
Deterioration and degradation of aged, hydroelectric project structures can significantly affect the operation and safety of a project. In many cases, hydroelectric headworks (in particular) have complicated geometrical configurations, loading patterns and hence, stress conditions. An accurate study of such structures can be performed using 3-dimensional computer models. 3-D computer models can be used for both stability evaluation and for finite element stress analysis. Computer aided engineering processes facilitate the use of 3-D methods in both pre-processing and post-processing of data. Two actual project examples are used to emphasize the authors' points.
Three-dimensional relativistic electromagnetic subcycle solitons.
Esirkepov, Timur; Nishihara, Katsunobu; Bulanov, Sergei V; Pegoraro, Francesco
2002-12-30
Three-dimensional (3D) relativistic electromagnetic subcycle solitons were observed in 3D particle-in-cell simulations of an intense short-laser-pulse propagation in an underdense plasma. Their structure resembles that of an oscillating electric dipole with a poloidal electric field and a toroidal magnetic field that oscillate in phase with the electron density with frequency below the Langmuir frequency. On the ion time scale, the soliton undergoes a Coulomb explosion of its core, resulting in ion acceleration, and then evolves into a slowly expanding quasineutral cavity.
One-dimensional ZnO nanostructures.
Jayadevan, K P; Tseng, T Y
2012-06-01
The wide-gap semiconductor ZnO with nanostructures such as nanoparticle, nanorod, nanowire, nanobelt, nanotube has high potential for a variety of applications. This article reviews the fundamentals of one-dimensional ZnO nanostructures, including processing, structure, property, application and their processing-microstructure-property correlation. Various fabrication methods of the ZnO nanostructures including vapor-liquid-solid process, vapor-solid growth, solution growth, solvothermal growth, template-assisted growth and self-assembly are introduced. The characterization and properties of the ZnO nanostructures are described. The possible applications of these nanostructures are also discussed.
Three-dimensional Printing in Developing Countries
Ibrahim, Ahmed M. S.; Jose, Rod R.; Rabie, Amr N.; Gerstle, Theodore L.; Lee, Bernard T.
2015-01-01
Summary: The advent of 3-dimensional (3D) printing technology has facilitated the creation of customized objects. The lack of regulation in developing countries renders conventional means of addressing various healthcare issues challenging. 3D printing may provide a venue for addressing many of these concerns in an inexpensive and easily accessible fashion. These may potentially include the production of basic medical supplies, vaccination beads, laboratory equipment, and prosthetic limbs. As this technology continues to improve and prices are reduced, 3D printing has the potential ability to promote initiatives across the entire developing world, resulting in improved surgical care and providing a higher quality of healthcare to its residents. PMID:26301132
Two-dimensional photonic crystal surfactant detection.
Zhang, Jian-Tao; Smith, Natasha; Asher, Sanford A
2012-08-07
We developed a novel two-dimensional (2-D) crystalline colloidal array photonic crystal sensing material for the visual detection of amphiphilic molecules in water. A close-packed polystyrene 2-D array monolayer was embedded in a poly(N-isopropylacrylamide) (PNIPAAm)-based hydrogel film. These 2-D photonic crystals placed on a mirror show intense diffraction that enables them to be used for visual determination of analytes. Binding of surfactant molecules attaches ions to the sensor that swells the PNIPAAm-based hydrogel. The resulting increase in particle spacing red shifts the 2-D diffracted light. Incorporation of more hydrophobic monomers increases the sensitivity to surfactants.
High resolution three-dimensional doping profiler
Thundat, Thomas G.; Warmack, Robert J.
1999-01-01
A semiconductor doping profiler provides a Schottky contact at one surface and an ohmic contact at the other. While the two contacts are coupled to a power source, thereby establishing an electrical bias in the semiconductor, a localized light source illuminates the semiconductor to induce a photocurrent. The photocurrent changes in accordance with the doping characteristics of the semiconductor in the illuminated region. By changing the voltage of the power source the depth of the depletion layer can be varied to provide a three dimensional view of the local properties of the semiconductor.
33 CFR 80.1118 - Marina Del Rey, CA.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Marina Del Rey, CA. 80.1118 Section 80.1118 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1118 Marina Del Rey, CA. (a) A line drawn from Marina Del Rey Breakwater South Light...
Hopeful (protein InDel) monsters?
Tóth-Petróczy, Agnes; Tawfik, Dan S
2014-06-10
In this issue of Structure, Arpino and colleagues describe in atomic detail how a protein stomachs a deletion within a helix, an event that rarely occurs in nature or in the lab. Can insertions and deletions (InDels) trigger dramatic structural transitions?
Lurry, Dee L.; Reutter, David C.; Wells, Frank C.; Rivera, M.C.; Munoz, A.
1998-01-01
La Oficina del Estudio Geologico de los Estados Unidos (U.S. Geological Survey, 0 USGS) ha monitoreado la calidad del agua de la cuenca del Rio Grande (Rio Bravo del Norte) desde 1995 como parte de la rediseiiada Red Nacional para Contabilizar la Calidad del Agua de los Rios (National Stream Quality Accounting Network, o NASOAN) (Hooper and others, 1997). EI programa NASOAN fue diseiiado para caracterizar las concentraciones y el transporte de sedimento y constituyentes quimicos seleccionados, encontrados en los grandes rios de los Estados Unidos - incluyendo el Misisipi, el Colorado y el Columbia, ademas del Rio Grande. En estas cuatro cuencas, el USGS opera actualmente (1998) una red de 40 puntos de muestreo pertenecientes a NASOAN, con un enfasis en cuantificar el flujo en masa (la cantidad de material que pasa por la estacion, expresado en toneladas por dial para cada constituyente. Aplicacando un enfoque consistente, basado en la cuantificacion de flujos en la cuenca del Rio Grande, el programa NASOAN esta generando la informacion necesaria para identificar fuentes regionales de diversos contaminantes, incluyendo sustancias qui micas agricolas y trazas elementos en la cuenca. EI efecto de las grandes reservas en el Rio Grande se puede observar segun los flujos de constituyentes discurren a 10 largo del rio. EI analisis de los flujos de constituyentes a escala de la cuenca proveera los medios para evaluar la influencia de la actividad humana sobre las condiciones de calidad del agua del Rio Grande.
Tip selection in three-dimensional dendrites
NASA Astrophysics Data System (ADS)
Foster, M. R.; Tanveer, S.
2004-11-01
Dendrites are well-known to have a fully three-dimensional structure, often with four equally-spaced fins emanating from the steady parabolic tip, the pattern for which has now a good theoretical foundation.(McFadden, Coriell & Sekerka, J. Crys. Growth) 208 (2000) The four fins are of course related to four-fold crystalline anisotropy of quite small magnitude. We follow Tanveer(Tanveer, S. Phys. Rev. A) 40 (1989) in carefully exploring the matching of the inner solution in the neighborhood of the singularity nearest the real line to the small-surface-energy regular perturbation expansion, in order to obtain the (selected) tip radius and the amplitude of the fin. We consider the case for which the anisotropy parameter, α, is much larger than a dimensionless capillary length to the 4/7 power. We confirm what was already found in a slightly different parameter range(Ben Amar & Brener, Phys. Rev. Lett.) 71 (1993)--that the inner equation is essentially that of the two-dimensional case, with azimuthally-dependent parameters. We compare our results with those of Ben Amar & Brener.
Two-Dimensional Phononic Crystals: Disorder Matters.
Wagner, Markus R; Graczykowski, Bartlomiej; Reparaz, Juan Sebastian; El Sachat, Alexandros; Sledzinska, Marianna; Alzina, Francesc; Sotomayor Torres, Clivia M
2016-09-14
The design and fabrication of phononic crystals (PnCs) hold the key to control the propagation of heat and sound at the nanoscale. However, there is a lack of experimental studies addressing the impact of order/disorder on the phononic properties of PnCs. Here, we present a comparative investigation of the influence of disorder on the hypersonic and thermal properties of two-dimensional PnCs. PnCs of ordered and disordered lattices are fabricated of circular holes with equal filling fractions in free-standing Si membranes. Ultrafast pump and probe spectroscopy (asynchronous optical sampling) and Raman thermometry based on a novel two-laser approach are used to study the phononic properties in the gigahertz (GHz) and terahertz (THz) regime, respectively. Finite element method simulations of the phonon dispersion relation and three-dimensional displacement fields furthermore enable the unique identification of the different hypersonic vibrations. The increase of surface roughness and the introduction of short-range disorder are shown to modify the phonon dispersion and phonon coherence in the hypersonic (GHz) range without affecting the room-temperature thermal conductivity. On the basis of these findings, we suggest a criteria for predicting phonon coherence as a function of roughness and disorder.
Three-dimensional television: a broadcaster's perspective
NASA Astrophysics Data System (ADS)
Jolly, S. J. E.; Armstrong, M.; Salmon, R. A.
2009-02-01
The recent resurgence of interest in the stereoscopic cinema and the increasing availability to the consumer of stereoscopic televisions and computer displays are leading broadcasters to consider, once again, the feasibility of stereoscopic broadcasting. High Definition Television is now widely deployed, and the R&D departments of broadcasters and consumer electronics manufacturers are starting to plan future enhancements to the experience of television. Improving the perception of depth via stereoscopy is a strong candidate technology. In this paper we will consider the challenges associated with the production, transmission and display of different forms of "three-dimensional" television. We will explore options available to a broadcaster wishing to start a 3D service using the technologies available at the present time, and consider how they could be improved to enable many more television programmes to be recorded and transmitted in a 3D-compatible form, paying particular attention to scenarios such as live broadcasting, where the workflows developed for the stereoscopic cinema are inapplicable. We will also consider the opportunities available for broadcasters to reach audiences with "three-dimensional" content via other media in the near future: for example, distributing content via the existing stereoscopic cinema network, or over the Internet to owners of stereoscopic computer displays.
On the dimensionality of ecological stability.
Donohue, Ian; Petchey, Owen L; Montoya, José M; Jackson, Andrew L; McNally, Luke; Viana, Mafalda; Healy, Kevin; Lurgi, Miguel; O'Connor, Nessa E; Emmerson, Mark C
2013-04-01
Ecological stability is touted as a complex and multifaceted concept, including components such as variability, resistance, resilience, persistence and robustness. Even though a complete appreciation of the effects of perturbations on ecosystems requires the simultaneous measurement of these multiple components of stability, most ecological research has focused on one or a few of those components analysed in isolation. Here, we present a new view of ecological stability that recognises explicitly the non-independence of components of stability. This provides an approach for simplifying the concept of stability. We illustrate the concept and approach using results from a field experiment, and show that the effective dimensionality of ecological stability is considerably lower than if the various components of stability were unrelated. However, strong perturbations can modify, and even decouple, relationships among individual components of stability. Thus, perturbations not only increase the dimensionality of stability but they can also alter the relationships among components of stability in different ways. Studies that focus on single forms of stability in isolation therefore risk underestimating significantly the potential of perturbations to destabilise ecosystems. In contrast, application of the multidimensional stability framework that we propose gives a far richer understanding of how communities respond to perturbations.
Two component-three dimensional catalysis
Schwartz, Michael; White, James H.; Sammells, Anthony F.
2002-01-01
This invention relates to catalytic reactor membranes having a gas-impermeable membrane for transport of oxygen anions. The membrane has an oxidation surface and a reduction surface. The membrane is coated on its oxidation surface with an adherent catalyst layer and is optionally coated on its reduction surface with a catalyst that promotes reduction of an oxygen-containing species (e.g., O.sub.2, NO.sub.2, SO.sub.2, etc.) to generate oxygen anions on the membrane. The reactor has an oxidation zone and a reduction zone separated by the membrane. A component of an oxygen containing gas in the reduction zone is reduced at the membrane and a reduced species in a reactant gas in the oxidation zone of the reactor is oxidized. The reactor optionally contains a three-dimensional catalyst in the oxidation zone. The adherent catalyst layer and the three-dimensional catalyst are selected to promote a desired oxidation reaction, particularly a partial oxidation of a hydrocarbon.
Nanowired three-dimensional cardiac patches
NASA Astrophysics Data System (ADS)
Dvir, Tal; Timko, Brian P.; Brigham, Mark D.; Naik, Shreesh R.; Karajanagi, Sandeep S.; Levy, Oren; Jin, Hongwei; Parker, Kevin K.; Langer, Robert; Kohane, Daniel S.
2011-11-01
Engineered cardiac patches for treating damaged heart tissues after a heart attack are normally produced by seeding heart cells within three-dimensional porous biomaterial scaffolds. These biomaterials, which are usually made of either biological polymers such as alginate or synthetic polymers such as poly(lactic acid) (PLA), help cells organize into functioning tissues, but poor conductivity of these materials limits the ability of the patch to contract strongly as a unit. Here, we show that incorporating gold nanowires within alginate scaffolds can bridge the electrically resistant pore walls of alginate and improve electrical communication between adjacent cardiac cells. Tissues grown on these composite matrices were thicker and better aligned than those grown on pristine alginate and when electrically stimulated, the cells in these tissues contracted synchronously. Furthermore, higher levels of the proteins involved in muscle contraction and electrical coupling are detected in the composite matrices. It is expected that the integration of conducting nanowires within three-dimensional scaffolds may improve the therapeutic value of current cardiac patches.
FRET Imaging in Three-dimensional Hydrogels
Taboas, Juan M.
2016-01-01
Imaging of Förster resonance energy transfer (FRET) is a powerful tool for examining cell biology in real-time. Studies utilizing FRET commonly employ two-dimensional (2D) culture, which does not mimic the three-dimensional (3D) cellular microenvironment. A method to perform quenched emission FRET imaging using conventional widefield epifluorescence microscopy of cells within a 3D hydrogel environment is presented. Here an analysis method for ratiometric FRET probes that yields linear ratios over the probe activation range is described. Measurement of intracellular cyclic adenosine monophosphate (cAMP) levels is demonstrated in chondrocytes under forskolin stimulation using a probe for EPAC1 activation (ICUE1) and the ability to detect differences in cAMP signaling dependent on hydrogel material type, herein a photocrosslinking hydrogel (PC-gel, polyethylene glycol dimethacrylate) and a thermoresponsive hydrogel (TR-gel). Compared with 2D FRET methods, this method requires little additional work. Laboratories already utilizing FRET imaging in 2D can easily adopt this method to perform cellular studies in a 3D microenvironment. It can further be applied to high throughput drug screening in engineered 3D microtissues. Additionally, it is compatible with other forms of FRET imaging, such as anisotropy measurement and fluorescence lifetime imaging (FLIM), and with advanced microscopy platforms using confocal, pulsed, or modulated illumination. PMID:27500354
Dimensional accuracy of 3D printed vertebra
NASA Astrophysics Data System (ADS)
Ogden, Kent; Ordway, Nathaniel; Diallo, Dalanda; Tillapaugh-Fay, Gwen; Aslan, Can
2014-03-01
3D printer applications in the biomedical sciences and medical imaging are expanding and will have an increasing impact on the practice of medicine. Orthopedic and reconstructive surgery has been an obvious area for development of 3D printer applications as the segmentation of bony anatomy to generate printable models is relatively straightforward. There are important issues that should be addressed when using 3D printed models for applications that may affect patient care; in particular the dimensional accuracy of the printed parts needs to be high to avoid poor decisions being made prior to surgery or therapeutic procedures. In this work, the dimensional accuracy of 3D printed vertebral bodies derived from CT data for a cadaver spine is compared with direct measurements on the ex-vivo vertebra and with measurements made on the 3D rendered vertebra using commercial 3D image processing software. The vertebra was printed on a consumer grade 3D printer using an additive print process using PLA (polylactic acid) filament. Measurements were made for 15 different anatomic features of the vertebral body, including vertebral body height, endplate width and depth, pedicle height and width, and spinal canal width and depth, among others. It is shown that for the segmentation and printing process used, the results of measurements made on the 3D printed vertebral body are substantially the same as those produced by direct measurement on the vertebra and measurements made on the 3D rendered vertebra.
Three dimensional force balance of asymmetric droplets
NASA Astrophysics Data System (ADS)
Kim, Yeseul; Lim, Su Jin; Cho, Kun; Weon, Byung Mook
2016-11-01
An equilibrium contact angle of a droplet is determined by a horizontal force balance among vapor, liquid, and solid, which is known as Young's law. Conventional wetting law is valid only for axis-symmetric droplets, whereas real droplets are often asymmetric. Here we show that three-dimensional geometry must be considered for a force balance for asymmetric droplets. By visualizing asymmetric droplets placed on a free-standing membrane in air with X-ray microscopy, we are able to identify that force balances in one side and in other side control pinning behaviors during evaporation of droplets. We find that X-ray microscopy is powerful for realizing the three-dimensional force balance, which would be essential in interpretation and manipulation of wetting, spreading, and drying dynamics for asymmetric droplets. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B01007133).
Multi-dimensional MHD simple waves
Webb, G. M.; Ratkiewicz, R.; Brio, M.; Zank, G. P.
1996-07-20
In this paper we consider a formalism for multi-dimensional simple MHD waves using ideas developed by Boillat. For simple wave solutions one assumes that all the physical variables (the density {rho}, gas pressure p, fluid velocity u, gas entropy S, and magnetic induction B in the MHD case) depend on a single phase function {phi}(r,t). The simple wave solution ansatz and the MHD equations then require that the phase function {phi} satisfies an implicit equation of the form f({phi})=r{center_dot}n({phi})-{lambda}({phi})t, where n({phi})={nabla}{phi}/|{nabla}{phi}| is the wave normal, {lambda}({phi})={omega}/k=-{phi}{sub t}/|{nabla}{phi}| is the normal speed of the wave front, and f({phi}) is an arbitrary differentiable function of {phi}. The formalism allows for more general simple waves than that usually dealt with in which n({phi}) is a constant unit vector that does not vary along the wave front. The formalism has implications for shock formation and wave breaking for multi-dimensional waves.
Multi-dimensional MHD simple waves
NASA Technical Reports Server (NTRS)
Webb, G. M.; Ratkiewicz, R.; Brio, M.; Zank, G. P.
1995-01-01
In this paper we consider a formalism for multi-dimensional simple MHD waves using ideas developed by Boillat. For simple wave solutions one assumes that all the physical variables (the density rho, gas pressure p, fluid velocity V, gas entropy S, and magnetic induction B in the MHD case) depend on a single phase function phi(r,t). The simple wave solution ansatz and the MHD equations then require that the phase function has the form phi = r x n(phi) - lambda(phi)t, where = n(phi) = Delta phi / (absolute value of Delta phi) is the wave normal and lambda(phi) = omega/k = -phi t / (absolute value of Delta phi) is the normal speed of the wave front. The formalism allows for more general simple waves than that usually dealt with in which n(phi) is a constant unit vector that does not vary along the wave front. The formalism has implications for shock formation for multi-dimensional waves.
Low-dimensional Representation of Error Covariance
NASA Technical Reports Server (NTRS)
Tippett, Michael K.; Cohn, Stephen E.; Todling, Ricardo; Marchesin, Dan
2000-01-01
Ensemble and reduced-rank approaches to prediction and assimilation rely on low-dimensional approximations of the estimation error covariances. Here stability properties of the forecast/analysis cycle for linear, time-independent systems are used to identify factors that cause the steady-state analysis error covariance to admit a low-dimensional representation. A useful measure of forecast/analysis cycle stability is the bound matrix, a function of the dynamics, observation operator and assimilation method. Upper and lower estimates for the steady-state analysis error covariance matrix eigenvalues are derived from the bound matrix. The estimates generalize to time-dependent systems. If much of the steady-state analysis error variance is due to a few dominant modes, the leading eigenvectors of the bound matrix approximate those of the steady-state analysis error covariance matrix. The analytical results are illustrated in two numerical examples where the Kalman filter is carried to steady state. The first example uses the dynamics of a generalized advection equation exhibiting nonmodal transient growth. Failure to observe growing modes leads to increased steady-state analysis error variances. Leading eigenvectors of the steady-state analysis error covariance matrix are well approximated by leading eigenvectors of the bound matrix. The second example uses the dynamics of a damped baroclinic wave model. The leading eigenvectors of a lowest-order approximation of the bound matrix are shown to approximate well the leading eigenvectors of the steady-state analysis error covariance matrix.
Calculation of two-dimensional lambda modes
Belchior, A. Jr. ); Moreira, J.M.L. )
1991-01-01
A system for on-line monitoring of power distribution in small reactors (known as MAP) is under development at COPESP-IPEN. Signals of self-powered neutron detectors are input to a program that estimates the power distribution as an expansion of lambda modes. The modal coefficients are obtained from a least-mean-squares technique adequate for real-time analysis. Three-dimensional lambda modes are synthesized out of one- and two-dimensional lambda modes. As a part of this project, a modification of a computer code was carried out in order to obtain the lambda modes. The results of this effort are summarized. The lambda modes are the solutions of the time-independent multigroup neutron diffusion equation, an eigenvalue equation. Normally, the computer codes produce the fundamental mode corresponding to the largest eigenvalue; their respective interpretations are neutron flux distribution and effective multiplication factor. For calculating higher order lambda modes it is usually necessary to eliminate the contribution of the lower modes from the fission source.
Supersymmetric models with higher dimensional operators
NASA Astrophysics Data System (ADS)
Antoniadis, I.; Dudas, E.; Ghilencea, D. M.
2008-03-01
In 4D renormalisable theories, integrating out massive states generates in the low energy effective action higher dimensional operators (derivative or otherwise). Using a superfield language it is shown that a 4D N=1 supersymmetric theory with higher derivative operators in either the Kahler or the superpotential part of the Lagrangian and with an otherwise arbitrary superpotential, is equivalent to a 4D N=1 theory of second order (i.e. without higher derivatives) with additional superfields and renormalised interactions. We provide examples where a free theory with trivial supersymmetry breaking provided by a linear superpotential becomes, in the presence of higher derivatives terms and in the second order version, a non-trivial interactive one with spontaneous supersymmetry breaking. The couplings of the equivalent theory acquire a threshold correction through their dependence on the scale of the higher dimensional operator(s). The scalar potential in the second order theory is not necessarily positive definite, and one can in principle have a vanishing potential with broken supersymmetry. We provide an application to MSSM and argue that at tree-level and for a mass scale associated to a higher derivative term in the TeV range, the Higgs mass can be lifted above the current experimental limits.
Three-dimensional terahertz wave imaging.
Zhang, X-C
2004-02-15
Pulsed terahertz (THz) wave sensing and imaging is a coherent measurement technology. Like radar, based on the phase and amplitude of the THz pulse at each frequency, THz waves provide temporal and spectroscopic information that allows us to develop various three-dimensional (3D) terahertz tomographic imaging modalities. The 3D THz tomographic imaging methods we investigated include THz time-of-flight tomography, THz computed tomography (CT) and THz binary lens tomography. THz time-of-flight uses the THz pulses as a probe beam to temporally mark the target, and then constructs a 3D image of the target using the THz waves scattered by the target. THz CT is based on geometrical optics and inspired from X-ray CT. THz binary lens tomography uses the frequency-dependent focal-length property of binary lenses to obtain tomographic images of an object. Three-dimensional THz imaging has potential in such applications as non-destructive inspection. The interaction between a coherent THz pulse and an object provides rich information about the object under study; therefore, 3D THz imaging can be used to inspect or characterize dielectric and semiconductor objects. For example, 3D THz imaging has been used to detect and identify the defects inside a Space Shuttle insulation tile.
On the dimensionality of odor space
Meister, Markus
2015-01-01
There is great interest in understanding human olfactory experience from a principled and quantitative standpoint. The comparison is often made to color vision, where a solid framework with a three-dimensional perceptual space enabled a rigorous search for the underlying neural pathways, and the technological development of lifelike color display devices. A recent, highly publicized report claims that humans can discriminate at least 1 trillion odors, which exceeds by many orders of magnitude the known capabilities of color discrimination. This claim is wrong. I show that the failure lies in the mathematical method used to infer the size of odor space from a limited experimental sample. Further analysis focuses on establishing how many dimensions the perceptual odor space has. I explore the dimensionality of physical, neural, and perceptual spaces, drawing on results from bacteria to humans, and propose some experimental approaches to better estimate the number of discriminable odors. DOI: http://dx.doi.org/10.7554/eLife.07865.001 PMID:26151672
TSOM Method for Nanoelectronics Dimensional Metrology
Attota, Ravikiran
2011-11-10
Through-focus scanning optical microscopy (TSOM) is a relatively new method that transforms conventional optical microscopes into truly three-dimensional metrology tools for nanoscale to microscale dimensional analysis. TSOM achieves this by acquiring and analyzing a set of optical images collected at various focus positions going through focus (from above-focus to under-focus). The measurement resolution is comparable to what is possible with typical light scatterometry, scanning electron microscopy (SEM) and atomic force microscopy (AFM). TSOM method is able to identify nanometer scale difference, type of the difference and magnitude of the difference between two nano/micro scale targets using a conventional optical microscope with visible wavelength illumination. Numerous industries could benefit from the TSOM method--such as the semiconductor industry, MEMS, NEMS, biotechnology, nanomanufacturing, data storage, and photonics. The method is relatively simple and inexpensive, has a high throughput, provides nanoscale sensitivity for 3D measurements and could enable significant savings and yield improvements in nanometrology and nanomanufacturing. Potential applications are demonstrated using experiments and simulations.
TSOM Method for Nanoelectronics Dimensional Metrology
NASA Astrophysics Data System (ADS)
Attota, Ravikiran
2011-11-01
Through-focus scanning optical microscopy (TSOM) is a relatively new method that transforms conventional optical microscopes into truly three-dimensional metrology tools for nanoscale to microscale dimensional analysis. TSOM achieves this by acquiring and analyzing a set of optical images collected at various focus positions going through focus (from above-focus to under-focus). The measurement resolution is comparable to what is possible with typical light scatterometry, scanning electron microscopy (SEM) and atomic force microscopy (AFM). TSOM method is able to identify nanometer scale difference, type of the difference and magnitude of the difference between two nano/micro scale targets using a conventional optical microscope with visible wavelength illumination. Numerous industries could benefit from the TSOM method—such as the semiconductor industry, MEMS, NEMS, biotechnology, nanomanufacturing, data storage, and photonics. The method is relatively simple and inexpensive, has a high throughput, provides nanoscale sensitivity for 3D measurements and could enable significant savings and yield improvements in nanometrology and nanomanufacturing. Potential applications are demonstrated using experiments and simulations.
Three-dimensional visualization for large models
NASA Astrophysics Data System (ADS)
Roth, Michael W.
2001-09-01
High-resolution (0.3-1 m) digital-elevation data is widely available from commercial sources. Whereas the production of two-dimensional (2D) mapping products from such data is standard practice, the visualization of such three-dimensional (3D) data has been problematic. The basis for this problem is the same as that for the large-model problem in computer graphics-- large amounts of geometry are difficult for current rendering algorithms and hardware. This paper describes a cost-effective solution to this problem that has two parts. First is the employment of the latest in cost-effective 3D chips and video boards that have recently emerged. The second part is the employment of quad-tree data structures for efficient data storage and retrieval during rendering. The result is the capability for real-time display of large (over tens of millions of samples) digital elevation models on modest PC-based systems. This paper shows several demonstrations of this approach using airborne lidar data. The implication of this work is a paradigm shift for geo-spatial information systems--3D data can now be as easy to use as 2D data.
Three dimensional quantum geometry and deformed symmetry
NASA Astrophysics Data System (ADS)
Joung, E.; Mourad, J.; Noui, K.
2009-05-01
We study a three dimensional noncommutative space emerging in the context of three dimensional Euclidean quantum gravity. Our starting point is the assumption that the isometry group is deformed to the Drinfeld double D(SU(2)). We generalize to the deformed case the construction of E3 as the quotient of its isometry group ISU(2) by SU(2). We show that the algebra of functions on E3 becomes the noncommutative algebra of SU(2) distributions, C(SU(2))∗, endowed with the convolution product. This construction gives the action of ISU(2) on the algebra and allows the determination of plane waves and coordinate functions. In particular, we show the following: (i) plane waves have bounded momenta; (ii) to a given momentum are associated several SU(2) elements leading to an effective description of ϕ ɛC(SU(2))∗ in terms of several physical scalar fields on E3; (iii) their product leads to a deformed addition rule of momenta consistent with the bound on the spectrum. We generalize to the noncommutative setting the "local" action for a scalar field. Finally, we obtain, using harmonic analysis, another useful description of the algebra as the direct sum of the algebra of matrices. The algebra of matrices inherits the action of ISU(2): rotations leave the order of the matrices invariant, whereas translations change the order in a way we explicitly determine.
Two-dimensional shape memory graphene oxide
Chang, Zhenyue; Deng, Junkai; Chandrakumara, Ganaka G.; Yan, Wenyi; Liu, Jefferson Zhe
2016-01-01
Driven by the increasing demand for micro-/nano-technologies, stimuli-responsive shape memory materials at nanoscale have recently attracted great research interests. However, by reducing the size of conventional shape memory materials down to approximately nanometre range, the shape memory effect diminishes. Here, using density functional theory calculations, we report the discovery of a shape memory effect in a two-dimensional atomically thin graphene oxide crystal with ordered epoxy groups, namely C8O. A maximum recoverable strain of 14.5% is achieved as a result of reversible phase transition between two intrinsically stable phases. Our calculations conclude co-existence of the two stable phases in a coherent crystal lattice, giving rise to the possibility of constructing multiple temporary shapes in a single material, thus, enabling highly desirable programmability. With an atomic thickness, excellent shape memory mechanical properties and electric field stimulus, the discovery of a two-dimensional shape memory graphene oxide opens a path for the development of exceptional micro-/nano-electromechanical devices. PMID:27325441
Three-Dimensional Optical Coherence Tomography
NASA Technical Reports Server (NTRS)
Gutin, Mikhail; Wang, Xu-Ming; Gutin, Olga
2009-01-01
Three-dimensional (3D) optical coherence tomography (OCT) is an advanced method of noninvasive infrared imaging of tissues in depth. Heretofore, commercial OCT systems for 3D imaging have been designed principally for external ophthalmological examination. As explained below, such systems have been based on a one-dimensional OCT principle, and in the operation of such a system, 3D imaging is accomplished partly by means of a combination of electronic scanning along the optical (Z) axis and mechanical scanning along the two axes (X and Y) orthogonal to the optical axis. In 3D OCT, 3D imaging involves a form of electronic scanning (without mechanical scanning) along all three axes. Consequently, the need for mechanical adjustment is minimal and the mechanism used to position the OCT probe can be correspondingly more compact. A 3D OCT system also includes a probe of improved design and utilizes advanced signal- processing techniques. Improvements in performance over prior OCT systems include finer resolution, greater speed, and greater depth of field.
Photoemission Studies of Low Dimensional Metals
NASA Astrophysics Data System (ADS)
Grioni, Marco
1998-03-01
High-resolution angle resolved photoelectron spectroscopy (ARPES) is a powerful probe of the electronic structure and instabilities of low-dimensional metals. Quasi-2 dimensional materials, like the layered transition metal dichalcogenides, exhibit dispersing quasiparticle bands, normal Fermi liquid lineshapes, and the expected partial or total Fermi surface collapse induced by charge density wave transitions. By contrast, ARPES reveals unexpected and peculiar spectral properties in quasi 1D compounds. Quite generally, a strong suppression of spectral weight near the chemical potential (a pseudogap) is observed in the metallic state, indicative of strong correlations. This non-standard behavior is confirmed by ARPES results on typical 1D organic conductors like TTF-TCNQ and the Bechgaard salts (TMTSF)_2X (X=PF_6,ClO_4)(F. Zwick et al., Phys. Rev. Lett. 79), 3982 (1997). The absence of traces of the Fermi surface, and the spectral lineshapes, are incompatible with a Fermi liquid scenario, and hint to the charge-spin separation predicted by models for correlated fermions in 1D.
Electronic Properties of Low-Dimensional Systems
NASA Astrophysics Data System (ADS)
Rodin, Aleksandr
This work deals with transport and general electronic phenomena in low-dimensional systems. The first chapter is dedicated to Variable Range Hopping. It starts with a brief review of the general hopping formalism, based on previous work. Next, new methods and results are presented and discussed. In particular, studies of both Ohmic and non-Ohmic regime are performed and the stark differences between the two are elucidated. In addition, apparent power law dependence of current on voltage in disordered one-dimensional materials is analyzed. The results obtained compare favorably with the experiments. Finally, the behavior of the conducting network in d dimensions is discussed using the percolation approach. The second chapter deals with plasmonic effects in graphene. After giving a short introduction to graphene and plasmonic behavior, current work is presented. Charge oscillations in graphene half-plane are discussed and compared with experimental results obtained from near-field microscopy. In addition, plasmonic oscillations in a "narrow-flake" geometry are analyzed analytically and numerically, showing good agreement between the two methods.
On the Transition from Two-Dimensional to Three-Dimensional MHD Turbulence
NASA Technical Reports Server (NTRS)
Thess, A.; Zikanov, Oleg
2004-01-01
We report a theoretical investigation of the robustness of two-dimensional inviscid MHD flows at low magnetic Reynolds numbers with respect to three-dimensional perturbations. We analyze three model problems, namely flow in the interior of a triaxial ellipsoid, an unbounded vortex with elliptical streamlines, and a vortex sheet parallel to the magnetic field. We demonstrate that motion perpendicular to the magnetic field with elliptical streamlines becomes unstable with respect to the elliptical instability once the velocity has reached a critical magnitude whose value tends to zero as the eccentricity of the streamlines becomes large. Furthermore, vortex sheets parallel to the magnetic field, which are unstable for any velocity and any magnetic field, are found to emit eddies with vorticity perpendicular to the magnetic field and with an aspect ratio proportional to N(sup 1/2). The results suggest that purely two-dimensional motion without Joule energy dissipation is a singular type of flow which does not represent the asymptotic behaviour of three-dimensional MHD turbulence in the limit of infinitely strong magnetic fields.
Geroux, Christopher M.; Deupree, Robert G.
2015-02-10
Three-dimensional hydrodynamic simulations of full amplitude RR Lyrae stars have been computed for several models across the instability strip. The three-dimensional nature of the calculations allows convection to be treated without reference to a phenomenological approach such as the local mixing length theory. Specifically, the time-dependent interaction of large-scale eddies and radial pulsation is controlled by conservation laws, while the effects of smaller convective eddies are simulated by an eddy viscosity model. The light amplitudes for these calculations are quite similar to those of our previous two-dimensional calculations in the middle of the instability strip, but somewhat lower near the red edge, the fundamental blue edge, and for the one first overtone model we computed. The time-dependent interaction between the radial pulsation and the convective energy transport is essentially the same in three dimensions as it is in two dimensions. There are some differences between the light curves of the two- and three-dimensional simulations, particularly during decreasing light. Reasons for the differences, both numerical and physical, are explored.
Boundary Layer Receptivity to Three-Dimensional Freestream Disturbances at Two-Dimensional Roughness
NASA Technical Reports Server (NTRS)
Dietz, Anthony; Sheehan, Daniel; Davis, Sanford (Technical Monitor)
1997-01-01
The receptivity of a laminar boundary layer to an isolated three-dimensional convected disturbance is investigated in a low-speed wind tunnel experiment. The disturbance is created by the short-duration pulsed displacement of a small low-aspect-ratio wing located upstream of a flat plate. The height of the wing is set so that the convected disturbance grazes the edge of the flat-plate boundary layer. A receptivity site is provided by a two-dimensional roughness strip on the surface of the plate. The different propagation speeds of acoustic, convected and instability waves cause the various wave packets from the pulsed displacement to arrive at a downstream measurement station at different times, separating the phenomena and allowing them to be studied independently. Ensemble- averaged measurements are made with and without roughness on the plate. Preliminary analysis of the measurements suggest the presence of a two-dimensional T-S wave packet arising from an interaction between an acoustic wave and the roughness, and a three-dimensional T-S wave packet arising from an interaction between the localized convected disturbance and the roughness strip. The growth rates and spatial characteristics of the disturbances and the instability wave packets are measured as they propagate downstream.
Relating high dimensional stochastic complex systems to low-dimensional intermittency
NASA Astrophysics Data System (ADS)
Diaz-Ruelas, Alvaro; Jensen, Henrik Jeldtoft; Piovani, Duccio; Robledo, Alberto
2017-02-01
We evaluate the implication and outlook of an unanticipated simplification in the macroscopic behavior of two high-dimensional sto-chastic models: the Replicator Model with Mutations and the Tangled Nature Model (TaNa) of evolutionary ecology. This simplification consists of the apparent display of low-dimensional dynamics in the non-stationary intermittent time evolution of the model on a coarse-grained scale. Evolution on this time scale spans generations of individuals, rather than single reproduction, death or mutation events. While a local one-dimensional map close to a tangent bifurcation can be derived from a mean-field version of the TaNa model, a nonlinear dynamical model consisting of successive tangent bifurcations generates time evolution patterns resembling those of the full TaNa model. To advance the interpretation of this finding, here we consider parallel results on a game-theoretic version of the TaNa model that in discrete time yields a coupled map lattice. This in turn is represented, a la Langevin, by a one-dimensional nonlinear map. Among various kinds of behaviours we obtain intermittent evolution associated with tangent bifurcations. We discuss our results.
Crossover from 2-dimensional to 3-dimensional aggregations of clusters on square lattice substrates
NASA Astrophysics Data System (ADS)
Cheng, Yi; Zhu, Yu-Hong; Pan, Qi-Fa; Yang, Bo; Tao, Xiang-Ming; Ye, Gao-Xiang
2015-11-01
A Monte Carlo study on the crossover from 2-dimensional to 3-dimensional aggregations of clusters is presented. Based on the traditional cluster-cluster aggregation (CCA) simulation, a modified growth model is proposed. The clusters (including single particles and their aggregates) diffuse with diffusion step length l (1 ≤ l ≤ 7) and aggregate on a square lattice substrate. If the number of particles contained in a cluster is larger than a critical size sc, the particles at the edge of the cluster have a possibility to jump onto the upper layer, which results in the crossover from 2-dimensional to 3-dimensional aggregations. Our simulation results are in good agreement with the experimental findings. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374082 and 11074215), the Science Foundation of Zhejiang Province Department of Education, China (Grant No. Y201018280), the Fundamental Research Funds for Central Universities, China (Grant No. 2012QNA3010), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100101110005).
The use of virtual reality to reimagine two-dimensional representations of three-dimensional spaces
NASA Astrophysics Data System (ADS)
Fath, Elaine
2015-03-01
A familiar realm in the world of two-dimensional art is the craft of taking a flat canvas and creating, through color, size, and perspective, the illusion of a three-dimensional space. Using well-explored tricks of logic and sight, impossible landscapes such as those by surrealists de Chirico or Salvador Dalí seem to be windows into new and incredible spaces which appear to be simultaneously feasible and utterly nonsensical. As real-time 3D imaging becomes increasingly prevalent as an artistic medium, this process takes on an additional layer of depth: no longer is two-dimensional space restricted to strategies of light, color, line and geometry to create the impression of a three-dimensional space. A digital interactive environment is a space laid out in three dimensions, allowing the user to explore impossible environments in a way that feels very real. In this project, surrealist two-dimensional art was researched and reimagined: what would stepping into a de Chirico or a Magritte look and feel like, if the depth and distance created by light and geometry were not simply single-perspective illusions, but fully formed and explorable spaces? 3D environment-building software is allowing us to step into these impossible spaces in ways that 2D representations leave us yearning for. This art project explores what we gain--and what gets left behind--when these impossible spaces become doors, rather than windows. Using sketching, Maya 3D rendering software, and the Unity Engine, surrealist art was reimagined as a fully navigable real-time digital environment. The surrealist movement and its key artists were researched for their use of color, geometry, texture, and space and how these elements contributed to their work as a whole, which often conveys feelings of unexpectedness or uneasiness. The end goal was to preserve these feelings while allowing the viewer to actively engage with the space.
Wang, Xiaoxiao; Wang, Huan; Huang, Jinfeng; Zhou, Yifeng; Tzvetanov, Tzvetomir
2017-01-01
The contrast sensitivity function that spans the two dimensions of contrast and spatial frequency is crucial in predicting functional vision both in research and clinical applications. In this study, the use of Bayesian inference was proposed to determine the parameters of the two-dimensional contrast sensitivity function. Two-dimensional Bayesian inference was extensively simulated in comparison to classical one-dimensional measures. Its performance on two-dimensional data gathered with different sampling algorithms was also investigated. The results showed that the two-dimensional Bayesian inference method significantly improved the accuracy and precision of the contrast sensitivity function, as compared to the more common one-dimensional estimates. In addition, applying two-dimensional Bayesian estimation to the final data set showed similar levels of reliability and efficiency across widely disparate and established sampling methods (from classical one-dimensional sampling, such as Ψ or staircase, to more novel multi-dimensional sampling methods, such as quick contrast sensitivity function and Fisher information gain). Furthermore, the improvements observed following the application of Bayesian inference were maintained even when the prior poorly matched the subject's contrast sensitivity function. Simulation results were confirmed in a psychophysical experiment. The results indicated that two-dimensional Bayesian inference of contrast sensitivity function data provides similar estimates across a wide range of sampling methods. The present study likely has implications for the measurement of contrast sensitivity function in various settings (including research and clinical settings) and would facilitate the comparison of existing data from previous studies. PMID:28119563
Wang, Xiaoxiao; Wang, Huan; Huang, Jinfeng; Zhou, Yifeng; Tzvetanov, Tzvetomir
2016-01-01
The contrast sensitivity function that spans the two dimensions of contrast and spatial frequency is crucial in predicting functional vision both in research and clinical applications. In this study, the use of Bayesian inference was proposed to determine the parameters of the two-dimensional contrast sensitivity function. Two-dimensional Bayesian inference was extensively simulated in comparison to classical one-dimensional measures. Its performance on two-dimensional data gathered with different sampling algorithms was also investigated. The results showed that the two-dimensional Bayesian inference method significantly improved the accuracy and precision of the contrast sensitivity function, as compared to the more common one-dimensional estimates. In addition, applying two-dimensional Bayesian estimation to the final data set showed similar levels of reliability and efficiency across widely disparate and established sampling methods (from classical one-dimensional sampling, such as Ψ or staircase, to more novel multi-dimensional sampling methods, such as quick contrast sensitivity function and Fisher information gain). Furthermore, the improvements observed following the application of Bayesian inference were maintained even when the prior poorly matched the subject's contrast sensitivity function. Simulation results were confirmed in a psychophysical experiment. The results indicated that two-dimensional Bayesian inference of contrast sensitivity function data provides similar estimates across a wide range of sampling methods. The present study likely has implications for the measurement of contrast sensitivity function in various settings (including research and clinical settings) and would facilitate the comparison of existing data from previous studies.
Transport in low-dimensional conductors
NASA Astrophysics Data System (ADS)
Hruska, Marina Milan
In this thesis, I address the problems of transport in low-dimensional conductors and superconductors. The problem of how the onset of superconductivity takes place in low-dimensional superconductors has been studied for a long time. Until recently, the zero-temperature phase transition in thin films was believed to occur from the superconducting to an insulating state. The question of existence of an intermediate metallic phase in a superconductor-metal-insulator transition is still an open experimental question. The effects that need to be addressed are those of superconducting quantum fluctuations and the weak-localization effects. In this dissertation I neglect the weak-localization corrections. I present a model which shows the existence of a zero-temperature superconductor-metal transition in thin films. The transition takes place even in the absence of disorder, and at an arbitrarily large normal-state film conductance. Mesoscopic superconducting fluctuations in superconducting junctions have been studied since the 1980's, but only recently has experimental evidence appeared with advances in fabrication of superconductor-ferromagnet-superconductor junctions. I studied the case of thick superconductor-metallic ferromagnet-superconductor junctions and present how even in this case, when the current averaged over the impurity distribution is exponentially small in the ferromagnetic-layer thickness, mesoscopic effects can cause the sample specific current to oscillate with temperature. The conductance of an electron gas at low temperatures is dominated by quantum, interference effects, whereas at high temperatures the scattering events can be considered independent of each other, so the Boltzmann kinetic equation governs the electron dynamics and the Drude result is obtained. In the intermediate region of temperatures, there appear classical corrections to transport coefficients that are due to correlations between individual scattering events. The effects of
Fermion tunneling from higher-dimensional black holes
Lin Kai; Yang Shuzheng
2009-03-15
Via the semiclassical approximation method, we study the 1/2-spin fermion tunneling from a higher-dimensional black hole. In our work, the Dirac equations are transformed into a simple form, and then we simplify the fermion tunneling research to the study of the Hamilton-Jacobi equation in curved space-time. Finally, we get the fermion tunneling rates and the Hawking temperatures at the event horizon of higher-dimensional black holes. We study fermion tunneling of a higher-dimensional Schwarzschild black hole and a higher-dimensional spherically symmetric quintessence black hole. In fact, this method is also applicable to the study of fermion tunneling from four-dimensional or lower-dimensional black holes, and we will take the rainbow-Finsler black hole as an example in order to make the fact explicit.
3-Dimensional wireless sensor network localization: A review
NASA Astrophysics Data System (ADS)
Najib, Yasmeen Nadhirah Ahmad; Daud, Hanita; Aziz, Azrina Abd; Razali, Radzuan
2016-11-01
The proliferation of wireless sensor network (WSN) has shifted the focus to 3-Dimensional geometry rather than 2-Dimensional geometry. Since exact location of sensors has been the fundamental issue in wireless sensor network, node localization is essential for any wireless sensor network applications. Most algorithms mainly focus on 2-Dimensional geometry, where the application of this algorithm will decrease the accuracy on 3-Dimensional geometry. The low rank attribute in WSN's node estimation makes the application of nuclear norm minimization as a viable solution for dimensionality reduction problems. This research proposes a novel localization algorithm for 3-Dimensional WSN which is nuclear norm minimization. The node localization is formulated via Euclidean Distance Matrix (EDM) and is then optimized using Nuclear-Norm Minimization (NNM).
A comparison of two- and three-dimensional imaging
NASA Astrophysics Data System (ADS)
Hall, Ernest; Rosselot, Donald; Aull, Mark; Balapa, Manohar
2006-10-01
Three dimensional visual recognition and measurement are important in many machine vision applications. In some cases, a stationary camera base is used and a three-dimensional model will permit the measurement of depth information from a scene. One important special case is stereo vision for human visualization or measurements. In cases in which the camera base is also in motion, a seven dimensional model may be used. Such is the case for navigation of an autonomous mobile robot. The purpose of this paper is to provide a computational view and introduction of three methods to three-dimensional vision. Models are presented for each situation and example computations and images are presented. The significance of this work is that it shows that various methods based on three-dimensional vision may be used for solving two and three dimensional vision problems. We hope this work will be slightly iconoclastic but also inspirational by encouraging further research in optical engineering.
Two-dimensional convolute integers for analytical instrumentation
NASA Technical Reports Server (NTRS)
Edwards, T. R.
1982-01-01
As new analytical instruments and techniques emerge with increased dimensionality, a corresponding need is seen for data processing logic which can appropriately address the data. Two-dimensional measurements reveal enhanced unknown mixture analysis capability as a result of the greater spectral information content over two one-dimensional methods taken separately. It is noted that two-dimensional convolute integers are merely an extension of the work by Savitzky and Golay (1964). It is shown that these low-pass, high-pass and band-pass digital filters are truly two-dimensional and that they can be applied in a manner identical with their one-dimensional counterpart, that is, a weighted nearest-neighbor, moving average with zero phase shifting, convoluted integer (universal number) weighting coefficients.
Chaotic Advection in a Bounded 3-Dimensional Potential Flow
NASA Astrophysics Data System (ADS)
Metcalfe, Guy; Smith, Lachlan; Lester, Daniel
2012-11-01
3-dimensional potential, or Darcy flows, are central to understanding and designing laminar transport in porous media; however, chaotic advection in 3-dimensional, volume-preserving flows is still not well understood. We show results of advecting passive scalars in a transient 3-dimensional potential flow that consists of a steady dipole flow and periodic reorientation. Even for the most symmetric reorientation protocol, neither of the two invarients of the motion are conserved; however, one invarient is closely shadowed by a surface of revolution constructed from particle paths of the steady flow, creating in practice an adiabatic surface. A consequence is that chaotic regions cover 3-dimensional space, though tubular regular regions are still transport barriers. This appears to be a new mechanism generating 3-dimensional chaotic orbits. These results contast with the experimental and theoretical results for chaotic scalar transport in 2-dimensional Darcy flows. Wiggins, J. Fluid Mech. 654 (2010).
Radiative transfer for a three-dimensional raining cloud
NASA Technical Reports Server (NTRS)
Haferman, J. L.; Krajewski, W. F.; Smith, T. F.; Sanchez, A.
1993-01-01
Satellite-sensor-based microwave brightness temperatures for a three-dimensional raining cloud over a reflecting surface are computed by using a radiative transfer model based on the discrete-ordinates solution procedure. The three-dimensional model applied to a plane layer is validated by comparison with results from a one-dimensional model that is available in the literature. Results examining the effects of cloud height, rainfall rate, surface reflectance, rainfall footprint area, and satellite viewing position on one- and three-dimensional brightness temperature calculations are reported. The numerical experiments indicate that, under certain conditions, three-dimensional effects are significant in the analysis of satellite-sensor-based rainfall retrieval algorithms. The results point to the need to consider carefully three-dimensional effects as well as surface reflectance effects when interpreting satellite-measured radiation data.
Information Gain Based Dimensionality Selection for Classifying Text Documents
Dumidu Wijayasekara; Milos Manic; Miles McQueen
2013-06-01
Selecting the optimal dimensions for various knowledge extraction applications is an essential component of data mining. Dimensionality selection techniques are utilized in classification applications to increase the classification accuracy and reduce the computational complexity. In text classification, where the dimensionality of the dataset is extremely high, dimensionality selection is even more important. This paper presents a novel, genetic algorithm based methodology, for dimensionality selection in text mining applications that utilizes information gain. The presented methodology uses information gain of each dimension to change the mutation probability of chromosomes dynamically. Since the information gain is calculated a priori, the computational complexity is not affected. The presented method was tested on a specific text classification problem and compared with conventional genetic algorithm based dimensionality selection. The results show an improvement of 3% in the true positives and 1.6% in the true negatives over conventional dimensionality selection methods.
Three-dimensional rogue waves in nonstationary parabolic potentials.
Yan, Zhenya; Konotop, V V; Akhmediev, N
2010-09-01
Using symmetry analysis we systematically present a higher-dimensional similarity transformation reducing the (3+1) -dimensional inhomogeneous nonlinear Schrödinger (NLS) equation with variable coefficients and parabolic potential to the (1+1) -dimensional NLS equation with constant coefficients. This transformation allows us to relate certain class of localized exact solutions of the (3+1) -dimensional case to the variety of solutions of integrable NLS equation of the (1+1) -dimensional case. As an example, we illustrated our technique using two lowest-order rational solutions of the NLS equation as seeding functions to obtain rogue wavelike solutions localized in three dimensions that have complicated evolution in time including interactions between two time-dependent rogue wave solutions. The obtained three-dimensional rogue wavelike solutions may raise the possibility of relative experiments and potential applications in nonlinear optics and Bose-Einstein condensates.
Three-dimensional rogue waves in nonstationary parabolic potentials
Yan Zhenya; Konotop, V. V.; Akhmediev, N.
2010-09-15
Using symmetry analysis we systematically present a higher-dimensional similarity transformation reducing the (3+1)-dimensional inhomogeneous nonlinear Schroedinger (NLS) equation with variable coefficients and parabolic potential to the (1+1)-dimensional NLS equation with constant coefficients. This transformation allows us to relate certain class of localized exact solutions of the (3+1)-dimensional case to the variety of solutions of integrable NLS equation of the (1+1)-dimensional case. As an example, we illustrated our technique using two lowest-order rational solutions of the NLS equation as seeding functions to obtain rogue wavelike solutions localized in three dimensions that have complicated evolution in time including interactions between two time-dependent rogue wave solutions. The obtained three-dimensional rogue wavelike solutions may raise the possibility of relative experiments and potential applications in nonlinear optics and Bose-Einstein condensates.
Tripathy, Rohit Bilionis, Ilias Gonzalez, Marcial
2016-09-15
Uncertainty quantification (UQ) tasks, such as model calibration, uncertainty propagation, and optimization under uncertainty, typically require several thousand evaluations of the underlying computer codes. To cope with the cost of simulations, one replaces the real response surface with a cheap surrogate based, e.g., on polynomial chaos expansions, neural networks, support vector machines, or Gaussian processes (GP). However, the number of simulations required to learn a generic multivariate response grows exponentially as the input dimension increases. This curse of dimensionality can only be addressed, if the response exhibits some special structure that can be discovered and exploited. A wide range of physical responses exhibit a special structure known as an active subspace (AS). An AS is a linear manifold of the stochastic space characterized by maximal response variation. The idea is that one should first identify this low dimensional manifold, project the high-dimensional input onto it, and then link the projection to the output. If the dimensionality of the AS is low enough, then learning the link function is a much easier problem than the original problem of learning a high-dimensional function. The classic approach to discovering the AS requires gradient information, a fact that severely limits its applicability. Furthermore, and partly because of its reliance to gradients, it is not able to handle noisy observations. The latter is an essential trait if one wants to be able to propagate uncertainty through stochastic simulators, e.g., through molecular dynamics codes. In this work, we develop a probabilistic version of AS which is gradient-free and robust to observational noise. Our approach relies on a novel Gaussian process regression with built-in dimensionality reduction. In particular, the AS is represented as an orthogonal projection matrix that serves as yet another covariance function hyper-parameter to be estimated from the data. To train the
NASA Astrophysics Data System (ADS)
Tripathy, Rohit; Bilionis, Ilias; Gonzalez, Marcial
2016-09-01
Uncertainty quantification (UQ) tasks, such as model calibration, uncertainty propagation, and optimization under uncertainty, typically require several thousand evaluations of the underlying computer codes. To cope with the cost of simulations, one replaces the real response surface with a cheap surrogate based, e.g., on polynomial chaos expansions, neural networks, support vector machines, or Gaussian processes (GP). However, the number of simulations required to learn a generic multivariate response grows exponentially as the input dimension increases. This curse of dimensionality can only be addressed, if the response exhibits some special structure that can be discovered and exploited. A wide range of physical responses exhibit a special structure known as an active subspace (AS). An AS is a linear manifold of the stochastic space characterized by maximal response variation. The idea is that one should first identify this low dimensional manifold, project the high-dimensional input onto it, and then link the projection to the output. If the dimensionality of the AS is low enough, then learning the link function is a much easier problem than the original problem of learning a high-dimensional function. The classic approach to discovering the AS requires gradient information, a fact that severely limits its applicability. Furthermore, and partly because of its reliance to gradients, it is not able to handle noisy observations. The latter is an essential trait if one wants to be able to propagate uncertainty through stochastic simulators, e.g., through molecular dynamics codes. In this work, we develop a probabilistic version of AS which is gradient-free and robust to observational noise. Our approach relies on a novel Gaussian process regression with built-in dimensionality reduction. In particular, the AS is represented as an orthogonal projection matrix that serves as yet another covariance function hyper-parameter to be estimated from the data. To train the
Elliptic Length Scales in Laminar, Two-Dimensional Supersonic Flows
2015-06-01
AFRL-RQ-WP-TP-2015-0109 ELLIPTIC LENGTH SCALES IN LAMINAR, TWO- DIMENSIONAL SUPERSONIC FLOWS James H. Miller Vehicle Technology Branch...SUBTITLE ELLIPTIC LENGTH SCALES IN LAMINAR, TWO-DIMENSIONAL SUPERSONIC FLOWS 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...ANSI Std. Z39-18 1 Approved for public release; distribution unlimited. Elliptic Length Scales in Laminar, Two-Dimensional Supersonic Flows
Two-dimensional Phase Unwrapping for Digital Holography
2012-09-01
Two-dimensional Phase Unwrapping for Digital Holography by Neal K. Bambha, Justin R. Bickford, and Karl K. Klett, Jr. ARL-TR-6225...1197 ARL-TR-6225 September 2012 Two-dimensional Phase Unwrapping for Digital Holography Neal K. Bambha, Justin R. Bickford, and Karl K...2. REPORT TYPE Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Two-dimensional Phase Unwrapping for Digital Holography 5a. CONTRACT
Fabrication and Characterization of Two-Dimensional Periodic Plasmonic Nanostructures
2012-11-05
SUPPLEMENTARY NOTES During the project, we have investigated the linear and nonlinear response of two dimensional gold square- nanopatch arrays. We have shown...dimensional gold square- nanopatch arrays. We have shown that these arrays exhibit very narrow resonances corresponding to the formation of leaky modes...fabricated square nanopatches in a two-dimensional square array since this configuration makes the device insensible to the polarization as reported in the
Central Schemes for Multi-Dimensional Hamilton-Jacobi Equations
NASA Technical Reports Server (NTRS)
Bryson, Steve; Levy, Doron; Biegel, Bryan (Technical Monitor)
2002-01-01
We present new, efficient central schemes for multi-dimensional Hamilton-Jacobi equations. These non-oscillatory, non-staggered schemes are first- and second-order accurate and are designed to scale well with an increasing dimension. Efficiency is obtained by carefully choosing the location of the evolution points and by using a one-dimensional projection step. First-and second-order accuracy is verified for a variety of multi-dimensional, convex and non-convex problems.
Borsuk-Ulam theorem in infinite-dimensional Banach spaces
NASA Astrophysics Data System (ADS)
Gel'man, B. D.
2002-02-01
The well-known classical Borsuk-Ulam theorem has a broad range of applications to various problems. Its generalization to infinite-dimensional spaces runs across substantial difficulties because its statement is essentially finite-dimensional. A result established in the paper is a natural generalization of the Borsuk-Ulam theorem to infinite-dimensional Banach spaces. Applications of this theorem to various problems are discussed.
Three-dimensional study of the multi-cavity FEL
Krishnagopal, S.; Kumar, V.
1995-12-31
The Multi-Cavity Free-Electron Laser has been proposed earlier, as a new configuration to obtain short, intense pulses of radiation, the key idea being to pre-bunch the electron beam in a number of very short cavities. Those studies were one-dimensional. Here we use three-dimensional simulations to study the viability of this concept when three-dimensional effects are included, particularly with regard to the transverse modes of the optical beam.
Orthogonal grid generation in two dimensional space
NASA Astrophysics Data System (ADS)
Theodoropoulos, T.; Bergeles, G.; Athanassiadis, N.
A generalization of a numerical technique for orthogonal mapping, used by Ryskin and Leal (1983) for the construction of boundary-fitted curvilinear coordinate systems in two-dimensional space, is proposed. The boundary-fitted orthogonal curvilinear coordinates are assumed to transform to Cartesian coordinates by Laplace equations. The scale factors involved in the Laplace equations are computed on boundaries and estimated on internal points by means of an interpolation formula. Three types of boundary conditions have been tested: Dirichlet, Cauchy-Riemann, and pseudo-Dirichlet. It is shown that, using this method, grids appropriate for the calculation of flow fields over sharp edges, complex boundary shapes, etc., can be easily constructed. Examples on various geometries are presented, together with a convenient method to check the orthogonality of the resulting meshes.
Three-dimensional context regulation of metastasis.
Erler, Janine T; Weaver, Valerie M
2009-01-01
Tumor progression ensues within a three-dimensional microenvironment that consists of cellular and non-cellular components. The extracellular matrix (ECM) and hypoxia are two non-cellular components that potently influence metastasis. ECM remodeling and collagen cross-linking stiffen the tissue stroma to promote transformation, tumor growth, motility and invasion, enhance cancer cell survival, enable metastatic dissemination, and facilitate the establishment of tumor cells at distant sites. Matrix degradation can additionally promote malignant progression and metastasis. Tumor hypoxia is functionally linked to altered stromal-epithelial interactions. Hypoxia additionally induces the expression of pro-migratory, survival and invasion genes, and up-regulates expression of ECM components and modifying enzymes, to enhance tumor progression and metastasis. Synergistic interactions between matrix remodeling and tumor hypoxia influence common mechanisms that maximize tumor progression and cooperate to drive metastasis. Thus, clarifying the molecular pathways by which ECM remodeling and tumor hypoxia intersect to promote tumor progression should identify novel therapeutic targets.
Dimensional overlap between time and space.
Eikmeier, Verena; Schröter, Hannes; Maienborn, Claudia; Alex-Ruf, Simone; Ulrich, Rolf
2013-12-01
Several pieces of evidence suggest that our mental representations of time and space are linked. However, the extent of this linkage between the two domains has not yet been assessed. We present the results of two experiments that draw on the predictions of the dimensional overlap model (Kornblum, Hasbroucq, & Osman, Psychological Review 97:253-270, 1990). The stimulus and response sets in these reaction time experiments were related to either time or space. The obtained stimulus-response congruency effects were of about the same size for identical stimulus-response sets (time-time or space-space) and for different stimulus-response sets (time-space or space-time). These results support the view that our representations of time and space are strongly linked.
Two-dimensional Inductive Position Sensing System
NASA Technical Reports Server (NTRS)
Youngquist, Robert C. (Inventor); Starr, Stanley O. (Inventor)
2015-01-01
A two-dimensional inductive position sensing system uses four drive inductors arranged at the vertices of a parallelogram and a sensing inductor positioned within the parallelogram. The sensing inductor is movable within the parallelogram and relative to the drive inductors. A first oscillating current at a first frequency is supplied to a first pair of the drive inductors located at ends of a first diagonal of the parallelogram. A second oscillating current at a second frequency is supplied to a second pair of the drive inductors located at ends of a second diagonal of the parallelogram. As a result, the sensing inductor generates a first output voltage at the first frequency and a second output voltage at the second frequency. A processor determines a position of the sensing inductor relative to the drive inductors using the first output voltage and the second output voltage.
A roadmap to multifactor dimensionality reduction methods.
Gola, Damian; Mahachie John, Jestinah M; van Steen, Kristel; König, Inke R
2016-03-01
Complex diseases are defined to be determined by multiple genetic and environmental factors alone as well as in interactions. To analyze interactions in genetic data, many statistical methods have been suggested, with most of them relying on statistical regression models. Given the known limitations of classical methods, approaches from the machine-learning community have also become attractive. From this latter family, a fast-growing collection of methods emerged that are based on the Multifactor Dimensionality Reduction (MDR) approach. Since its first introduction, MDR has enjoyed great popularity in applications and has been extended and modified multiple times. Based on a literature search, we here provide a systematic and comprehensive overview of these suggested methods. The methods are described in detail, and the availability of implementations is listed. Most recent approaches offer to deal with large-scale data sets and rare variants, which is why we expect these methods to even gain in popularity.
Two-dimensional motions of rockets
NASA Astrophysics Data System (ADS)
Kang, Yoonhwan; Bae, Saebyok
2007-01-01
We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the descending parts of the trajectories tend to be gentler and straighter slopes than the ascending parts for relatively large launching angles due to the non-vanishing thrusts. We discuss the ranges, the maximum altitudes and the engine performances of the rockets. It seems that the exponential fuel exhaustion can be the most potent engine for the longest and highest flights.
Three-dimensional printing physiology laboratory technology
Sulkin, Matthew S.; Widder, Emily; Shao, Connie; Holzem, Katherine M.; Gloschat, Christopher; Gutbrod, Sarah R.
2013-01-01
Since its inception in 19th-century Germany, the physiology laboratory has been a complex and expensive research enterprise involving experts in various fields of science and engineering. Physiology research has been critically dependent on cutting-edge technological support of mechanical, electrical, optical, and more recently computer engineers. Evolution of modern experimental equipment is constrained by lack of direct communication between the physiological community and industry producing this equipment. Fortunately, recent advances in open source technologies, including three-dimensional printing, open source hardware and software, present an exciting opportunity to bring the design and development of research instrumentation to the end user, i.e., life scientists. Here we provide an overview on how to develop customized, cost-effective experimental equipment for physiology laboratories. PMID:24043254
AAOGlimpse: Three-dimensional Data Viewer
NASA Astrophysics Data System (ADS)
Shortridge, Keith
2011-10-01
AAOGlimpse is an experimental display program that uses OpenGL to display FITS data (and even JPEG images) as 3D surfaces that can be rotated and viewed from different angles, all in real-time. It is WCS-compliant and designed to handle three-dimensional data. Each plane in a data cube is surfaced in the same way, and the program allows the user to travel through a cube by 'peeling off' successive planes, or to look into a cube by suppressing the display of data below a given cutoff value. It can blink images and can superimpose images and contour maps from different sources using their world coordinate data. A limited socket interface allows communication with other programs.
Two-dimensional swimming behavior of bacteria
NASA Astrophysics Data System (ADS)
Li, Ye; Zhai, He; Sanchez, Sandra; Kearns, Daniel; Wu, Yilin
Many bacteria swim by flagella motility which is essential for bacterial dispersal, chemotaxis, and pathogenesis. Here we combined single-cell tracking, theoretical analysis, and computational modeling to investigate two-dimensional swimming behavior of a well-characterized flagellated bacterium Bacillus subtilis at the single-cell level. We quantified the 2D motion pattern of B. subtilis in confined space and studied how cells interact with each other. Our findings shed light on bacterial colonization in confined environments, and will serve as the ground for building more accurate models to understand bacterial collective motion. Mailing address: Room 306 Science Centre North Block, The Chinese University of Hong Kong, Shatin, N.T. Hong Kong SAR. Phone: +852-3943-6354. Fax: +852-2603-5204. E-mail: ylwu@phy.cuhk.edu.hk.
Three-dimensional printing physiology laboratory technology.
Sulkin, Matthew S; Widder, Emily; Shao, Connie; Holzem, Katherine M; Gloschat, Christopher; Gutbrod, Sarah R; Efimov, Igor R
2013-12-01
Since its inception in 19th-century Germany, the physiology laboratory has been a complex and expensive research enterprise involving experts in various fields of science and engineering. Physiology research has been critically dependent on cutting-edge technological support of mechanical, electrical, optical, and more recently computer engineers. Evolution of modern experimental equipment is constrained by lack of direct communication between the physiological community and industry producing this equipment. Fortunately, recent advances in open source technologies, including three-dimensional printing, open source hardware and software, present an exciting opportunity to bring the design and development of research instrumentation to the end user, i.e., life scientists. Here we provide an overview on how to develop customized, cost-effective experimental equipment for physiology laboratories.
Rationally synthesized two-dimensional polymers.
Colson, John W; Dichtel, William R
2013-06-01
Synthetic polymers exhibit diverse and useful properties and influence most aspects of modern life. Many polymerization methods provide linear or branched macromolecules, frequently with outstanding functional-group tolerance and molecular weight control. In contrast, extending polymerization strategies to two-dimensional periodic structures is in its infancy, and successful examples have emerged only recently through molecular framework, surface science and crystal engineering approaches. In this Review, we describe successful 2D polymerization strategies, as well as seminal research that inspired their development. These methods include the synthesis of 2D covalent organic frameworks as layered crystals and thin films, surface-mediated polymerization of polyfunctional monomers, and solid-state topochemical polymerizations. Early application targets of 2D polymers include gas separation and storage, optoelectronic devices and membranes, each of which might benefit from predictable long-range molecular organization inherent to this macromolecular architecture.
Versatile three-dimensional cryogenic micropositioning device
NASA Astrophysics Data System (ADS)
Heil, J.; Böhm, A.; Primke, M.; Wyder, P.
1996-01-01
A simple design for a mechanically driven three-dimensional cryogenic micropositioner is presented. The design is based on a parallelogram structure constructed from leaf springs and wires. Actuation is achieved by the elastic deformation of the parallelogram by screws. Positions within a volume of roughly (2 mm)3 are attainable. The precision and reproducibility of positioning are in the μm-range. The deviations from linearity are smaller than 10% for the whole working range and the deviation from orthogonality is smaller than 3°. Calibration measurements performed on a Cu-mesh with a lattice constant of 60 μm are presented. In an experiment investigating the ballistic transport of carriers in the semimetal Bi, two such devices are used. The first one is used as a scanning unit for an optical fiber and the second one is used as micropositioner for a Cu point contact.
Three-dimensional cultured glioma cell lines
NASA Technical Reports Server (NTRS)
Gonda, Steve R. (Inventor); Marley, Garry M. (Inventor)
1991-01-01
Three-dimensional glioma spheroids were produced in vitro with size and histological differentiation previously unattained. The spheroids were grown in liquid media suspension in a Johnson Space Center (JSC) Rotating Wall Bioreactor without using support matrices such as microcarrier beads. Spheroid volumes of greater than 3.5 cu mm and diameters of 2.5 mm were achieved with a viable external layer or rim of proliferating cells, a transitional layer beneath the external layer with histological differentiation, and a degenerative central region with a hypoxic necrotic core. Cell debris was evident in the degenerative central region. The necrotics centers of some of the spheroids had hyaline droplets. Granular bodies were detected predominantly in the necrotic center.
Multiscale modeling of three-dimensional genome
NASA Astrophysics Data System (ADS)
Zhang, Bin; Wolynes, Peter
The genome, the blueprint of life, contains nearly all the information needed to build and maintain an entire organism. A comprehensive understanding of the genome is of paramount interest to human health and will advance progress in many areas, including life sciences, medicine, and biotechnology. The overarching goal of my research is to understand the structure-dynamics-function relationships of the human genome. In this talk, I will be presenting our efforts in moving towards that goal, with a particular emphasis on studying the three-dimensional organization, the structure of the genome with multi-scale approaches. Specifically, I will discuss the reconstruction of genome structures at both interphase and metaphase by making use of data from chromosome conformation capture experiments. Computationally modeling of chromatin fiber at atomistic level from first principles will also be presented as our effort for studying the genome structure from bottom up.
Four-dimensional unsubtraction with massive particles
NASA Astrophysics Data System (ADS)
Sborlini, Germán F. R.; Driencourt-Mangin, Félix; Rodrigo, Germán
2016-10-01
We extend the four-dimensional unsubtraction method, which is based on the loop-tree duality (LTD), to deal with processes involving heavy particles. The method allows to perform the summation over degenerate IR configurations directly at integrand level in such a way that NLO corrections can be implemented directly in four space-time dimensions. We define a general momentum mapping between the real and virtual kinematics that accounts properly for the quasi-collinear configurations, and leads to an smooth massless limit. We illustrate the method first with a scalar toy example, and then analyse the case of the decay of a scalar or vector boson into a pair of massive quarks. The results presented in this paper are suitable for the application of the method to any multipartonic process.
Three-dimensional elastic lidar winds
Buttler, W.T.
1996-07-01
Maximum cross-correlation techniques have been used with satellite data to estimate winds and sea surface velocities for several years. Los Alamos National Laboratory (LANL) is currently using a variation of the basic maximum cross-correlation technique, coupled with a deterministic application of a vector median filter, to measure transverse winds as a function of range and altitude from incoherent elastic backscatter lidar data taken throughout large volumes within the atmospheric boundary layer. Hourly representations of three- dimensional wind fields, derived from elastic lidar data taken during an air-quality study performed in a region of complex terrain near Sunland Park, New Mexico, are presented and compared with results from an Environmental Protection Agency (EPA) approved laser doppler velocimeter. The wind fields showed persistent large scale eddies as well as general terrain following winds in the Rio Grande valley.
Automatic three-dimensional underground mine mapping
Huber, D.F.; Vandapel, N.
2006-01-15
For several years, our research group has been developing methods for automated modeling of three-dimensional environments. In September 2002, we were given the opportunity to demonstrate our mapping capability in an underground coal mine. The opportunity arose as a result of the Quecreek mine accident, in which an inaccurate map caused miners to breach an abandoned, water-filled mine, trapping them for several days. Our field test illustrates the feasibility and potential of high-resolution 3D mapping of an underground coal mine using a cart-mounted 3D laser scanner In this paper we present our experimental setup, the automatic 3D modeling method used, and the results of the field test.
Three one-dimensional structural heating programs
NASA Technical Reports Server (NTRS)
Wing, L. D.
1978-01-01
Two computer programs for calculating profiles in a ten-element structure consisting of up to ten materials are presented, along with a third program for calculating the mean temperature for a payload container placed in an orbiting vehicle cargo bay. The three programs are related by the sharing of a common analytical technique; the energy balance is based upon one-dimensional heat transfer. The first program, NQLDW112, assumes a non-ablating surface. NQLDW117 is very similar but allows the outermost element to ablate. NQLDW040 calculates an average temperature profile through an idealized model of the real payload cannister and contents in the cargo bay of an orbiting vehicle.
Higher-dimensional puncture initial data
NASA Astrophysics Data System (ADS)
Zilhão, Miguel; Ansorg, Marcus; Cardoso, Vitor; Gualtieri, Leonardo; Herdeiro, Carlos; Sperhake, Ulrich; Witek, Helvi
2011-10-01
We calculate puncture initial data, corresponding to single and binary black holes with linear momenta, which solve the constraint equations of D-dimensional vacuum gravity. The data are generated by a modification of the pseudospectral code presented in [M. Ansorg, B. Bruegmann, and W. Tichy, Phys. Rev. DPRVDAQ1550-7998 70, 064011 (2004).10.1103/PhysRevD.70.064011] and made available as the TwoPunctures thorn inside the Cactus computational toolkit. As examples, we exhibit convergence plots, the violation of the Hamiltonian constraint as well as the initial data for D=4,5,6,7. These initial data are the starting point to perform high-energy collisions of black holes in D dimensions.
Volumetric techniques: three-dimensional midface modeling
Pierzchała, Ewa; Placek, Waldemar
2014-01-01
Aging is a complex process caused by many factors. The most important factors include exposure to UV radiation, smoking, facial muscle movement, gravity, loss and displacement of fat and bone resorption. As a symptom of aging, face loses elasticity, volume and cheerful look. While changing face proportions, the dominant part of a face is its bottom instead of the mid part. The use of three-dimensional face modelling techniques, particularly the mid-face – tear through and cheeks, restores the skin firmness, volume and healthy look. For this purpose the hyaluronic acid is used, calcium hydroxyapatite, and L-polylactic acid fillers. Volumetric techniques require precision and proper selection of the filling agent to give a sense of satisfaction to both the patient and the doctor. PMID:25610354
Volumetric techniques: three-dimensional midface modeling.
Macierzyńska, Arleta; Pierzchała, Ewa; Placek, Waldemar
2014-12-01
Aging is a complex process caused by many factors. The most important factors include exposure to UV radiation, smoking, facial muscle movement, gravity, loss and displacement of fat and bone resorption. As a symptom of aging, face loses elasticity, volume and cheerful look. While changing face proportions, the dominant part of a face is its bottom instead of the mid part. The use of three-dimensional face modelling techniques, particularly the mid-face - tear through and cheeks, restores the skin firmness, volume and healthy look. For this purpose the hyaluronic acid is used, calcium hydroxyapatite, and L-polylactic acid fillers. Volumetric techniques require precision and proper selection of the filling agent to give a sense of satisfaction to both the patient and the doctor.
Quantum teleportation of four-dimensional qudits
Al-Amri, M.; Evers, Joerg; Zubairy, M. Suhail
2010-08-15
A protocol for the teleportation of arbitrary quantum states of four-dimensional qudits is presented. The qudit to be teleported is encoded in the combined state of two ensembles of atoms placed in a cavity at the sender's side. The receiver uses a similar setup, with his atoms prepared in a particular initial state. The teleportation protocol then consists of adiabatic mapping of the ensemble states onto photonic degrees of freedom, which are then directed onto a specific beam splitter and detection setup. For part of the measurement outcome, the qudit state is fully transferred to the receiver. Other detection events lead to partial teleportation or failed teleportation attempts. The interpretation of the different detection outcomes and possible ways of improving the full teleportation probability are discussed.
Recursive bias estimation for high dimensional smoothers
Hengartner, Nicolas W; Matzner-lober, Eric; Cornillon, Pierre - Andre
2008-01-01
In multivariate nonparametric analysis, sparseness of the covariates also called curse of dimensionality, forces one to use large smoothing parameters. This leads to biased smoothers. Instead of focusing on optimally selecting the smoothing parameter, we fix it to some reasonably large value to ensure an over-smoothing of the data. The resulting smoother has a small variance but a substantial bias. In this paper, we propose to iteratively correct the bias initial estimator by an estimate of the latter obtained by smoothing the residuals. We examine in detail the convergence of the iterated procedure for classical smoothers and relate our procedure to L{sub 2}-Boosting. We apply our method to simulated and real data and show that our method compares favorably with existing procedures.
Role of dimensionality in complex networks
Brito, Samuraí; da Silva, L. R.; Tsallis, Constantino
2016-01-01
Deep connections are known to exist between scale-free networks and non-Gibbsian statistics. For example, typical degree distributions at the thermodynamical limit are of the form , where the q-exponential form optimizes the nonadditive entropy Sq (which, for q → 1, recovers the Boltzmann-Gibbs entropy). We introduce and study here d-dimensional geographically-located networks which grow with preferential attachment involving Euclidean distances through . Revealing the connection with q-statistics, we numerically verify (for d = 1, 2, 3 and 4) that the q-exponential degree distributions exhibit, for both q and k, universal dependences on the ratio αA/d. Moreover, the q = 1 limit is rapidly achieved by increasing αA/d to infinity. PMID:27320047
Quantum interferometry with three-dimensional geometry.
Spagnolo, Nicolò; Aparo, Lorenzo; Vitelli, Chiara; Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto; Mataloni, Paolo; Sciarrino, Fabio
2012-01-01
Quantum interferometry uses quantum resources to improve phase estimation with respect to classical methods. Here we propose and theoretically investigate a new quantum interferometric scheme based on three-dimensional waveguide devices. These can be implemented by femtosecond laser waveguide writing, recently adopted for quantum applications. In particular, multiarm interferometers include "tritter" and "quarter" as basic elements, corresponding to the generalization of a beam splitter to a 3- and 4-port splitter, respectively. By injecting Fock states in the input ports of such interferometers, fringe patterns characterized by nonclassical visibilities are expected. This enables outperforming the quantum Fisher information obtained with classical fields in phase estimation. We also discuss the possibility of achieving the simultaneous estimation of more than one optical phase. This approach is expected to open new perspectives to quantum enhanced sensing and metrology performed in integrated photonics.
One-dimensional frequency-based spectroscopy.
Cygan, Agata; Wcisło, Piotr; Wójtewicz, Szymon; Masłowski, Piotr; Hodges, Joseph T; Ciuryło, Roman; Lisak, Daniel
2015-06-01
Recent developments in optical metrology have tremendously improved the precision and accuracy of the horizontal (frequency) axis in measured spectra. However, the vertical (typically absorbance) axis is usually based on intensity measurements that are subject to instrumental errors which limit the spectrum accuracy. Here we report a one-dimensional spectroscopy that uses only the measured frequencies of high-finesse cavity modes to provide complete information about the dispersive properties of the spectrum. Because this technique depends solely on the measurement of frequencies or their differences, it is insensitive to systematic errors in the detection of light intensity and has the potential to become the most accurate of all absorptive and dispersive spectroscopic methods. The experimental results are compared to measurements by two other high-precision cavity-enhanced spectroscopy methods. We expect that the proposed technique will have significant impact in fields such as fundamental physics, gas metrology and environmental remote sensing.
Multiloop integrals in dimensional regularization made simple.
Henn, Johannes M
2013-06-21
Scattering amplitudes at loop level can be expressed in terms of Feynman integrals. The latter satisfy partial differential equations in the kinematical variables. We argue that a good choice of basis for (multi)loop integrals can lead to significant simplifications of the differential equations, and propose criteria for finding an optimal basis. This builds on experience obtained in supersymmetric field theories that can be applied successfully to generic quantum field theory integrals. It involves studying leading singularities and explicit integral representations. When the differential equations are cast into canonical form, their solution becomes elementary. The class of functions involved is easily identified, and the solution can be written down to any desired order in ϵ within dimensional regularization. Results obtained in this way are particularly simple and compact. In this Letter, we outline the general ideas of the method and apply them to a two-loop example.
Computing myocardial motion in 4-dimensional echocardiography.
Mukherjee, Ryan; Sprouse, Chad; Pinheiro, Aurélio; Abraham, Theodore; Burlina, Philippe
2012-07-01
We describe a novel method for computing dense 3D myocardial motion with high accuracy in four-dimensional (4D) echocardiography (3 dimensions spatial plus time). The method is based on a classic variational optical flow technique but exploits modern developments in optical flow research to utilize the full capabilities of 4D echocardiography. Using a variety of metrics, we present an in-depth performance evaluation of the method on synthetic, phantom, and intraoperative 4D transesophageal echocardiographic data. When compared with state-of-the-art optical flow and speckle tracking techniques currently found in 4D echocardiography, the method we present shows notable improvements in error rates. We believe the performance improvements shown can have a positive impact when the method is used as input for various applications, such as strain computation, biomechanical modeling, and automated diagnostics.
Quantum interferometry with three-dimensional geometry
Spagnolo, Nicolò; Aparo, Lorenzo; Vitelli, Chiara; Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto; Mataloni, Paolo; Sciarrino, Fabio
2012-01-01
Quantum interferometry uses quantum resources to improve phase estimation with respect to classical methods. Here we propose and theoretically investigate a new quantum interferometric scheme based on three-dimensional waveguide devices. These can be implemented by femtosecond laser waveguide writing, recently adopted for quantum applications. In particular, multiarm interferometers include “tritter” and “quarter” as basic elements, corresponding to the generalization of a beam splitter to a 3- and 4-port splitter, respectively. By injecting Fock states in the input ports of such interferometers, fringe patterns characterized by nonclassical visibilities are expected. This enables outperforming the quantum Fisher information obtained with classical fields in phase estimation. We also discuss the possibility of achieving the simultaneous estimation of more than one optical phase. This approach is expected to open new perspectives to quantum enhanced sensing and metrology performed in integrated photonics. PMID:23181189
Five-dimensional Janis-Newman algorithm
NASA Astrophysics Data System (ADS)
Erbin, Harold; Heurtier, Lucien
2015-08-01
The Janis-Newman algorithm has been shown to be successful in finding new stationary solutions of four-dimensional gravity. Attempts for a generalization to higher dimensions have already been found for the restricted cases with only one angular momentum. In this paper we propose an extension of this algorithm to five-dimensions with two angular momenta—using the prescription of Giampieri—through two specific examples, that are the Myers-Perry and BMPV black holes. We also discuss possible enlargements of our prescriptions to other dimensions and maximal number of angular momenta, and show how dimensions higher than six appear to be much more challenging to treat within this framework. Nonetheless this general algorithm provides a unification of the formulation in d=3,4,5 of the Janis-Newman algorithm, from which several examples are exposed, including the BTZ black hole.
Dimensional synthesis of a leg mechanism
NASA Astrophysics Data System (ADS)
Pop, F.; Lovasz, E.-Ch; Pop, C.; Dolga, V.
2016-08-01
An eight bar leg mechanism dimensional synthesis is presented. The mathematical model regarding the synthesis is described and the results obtained after computation are verified with help of 2D mechanism simulation in Matlab. This mechanism, inspired from proposed solution of Theo Jansen, is integrated into the structure of a 2 DOF quadruped robot. With help of the kinematic synthesis method described, it is tried to determine new dimensions for the mechanism, based on a set of initial conditions. These are established by taking into account the movement of the end point of the leg mechanism, which enters in contact with the ground, during walking. An optimization process based on the results obtained can be conducted further in order to find a better solution for the leg mechanism.