Sample records for dimeric human ciliary

  1. Regulation of ciliary retrograde protein trafficking by the Joubert syndrome proteins ARL13B and INPP5E.

    PubMed

    Nozaki, Shohei; Katoh, Yohei; Terada, Masaya; Michisaka, Saki; Funabashi, Teruki; Takahashi, Senye; Kontani, Kenji; Nakayama, Kazuhisa

    2017-02-01

    ARL13B (a small GTPase) and INPP5E (a phosphoinositide 5-phosphatase) are ciliary proteins encoded by causative genes of Joubert syndrome. We here showed, by taking advantage of a visible immunoprecipitation assay, that ARL13B interacts with the IFT46 -: IFT56 (IFT56 is also known as TTC26) dimer of the intraflagellar transport (IFT)-B complex, which mediates anterograde ciliary protein trafficking. However, the ciliary localization of ARL13B was found to be independent of its interaction with IFT-B, but dependent on the ciliary-targeting sequence RVEP in its C-terminal region. ARL13B-knockout cells had shorter cilia than control cells and exhibited aberrant localization of ciliary proteins, including INPP5E. In particular, in ARL13B-knockout cells, the IFT-A and IFT-B complexes accumulated at ciliary tips, and GPR161 (a negative regulator of Hedgehog signaling) could not exit cilia in response to stimulation with Smoothened agonist. This abnormal phenotype was rescued by the exogenous expression of wild-type ARL13B, as well as by its mutant defective in the interaction with IFT-B, but not by its mutants defective in INPP5E binding or in ciliary localization. Thus, ARL13B regulates IFT-A-mediated retrograde protein trafficking within cilia through its interaction with INPP5E. © 2017. Published by The Company of Biologists Ltd.

  2. [THE STRUCTURE OF LYMPHATIC CAPILLARIES OF THE CILIARY BODY OF THE HUMAN EYE].

    PubMed

    Borodin, Yu I; Bgatova, N P; Chernykh, V V; Trunov, A N; Pozhidayeva, A A; Konenkov, V I

    2015-01-01

    Using light microscopy, immunohistochemistry and electron microscopy, the structural organization of interstitial spaces and vessels of the ciliary body of the human eye (n = 5) were studied. The ciliary body was found to contain wide interstitial spaces--tissue clefts bound by collagen fibers and fibroblasts. Organ-specific lymphatic capillaries were also demonstrated in the ciliary body. According to the present findings and the lymphatic region concept, the first 2 elements of the lymphatic region of the eye were described: tissue clefts--prelymphatics and lymphatic capillaries of the ciliary body. The third element of the lymphatic region are the lymph nodes of the head and neck.

  3. Amylin competes for binding sites of CGRP in the chamber angle and uvea of monkey, cat, and pig eye.

    PubMed

    Alajuuma, Päivi; Oksala, Olli; Uusitalo, Hannu

    2003-12-01

    Calcitonin gene-related peptide (CGRP) binding sites have been identified previously in the eyes of monkey, cat, pig, and guinea pig. In this study, the ability of cat, human, and rat amylins to displace the binding of CGRP in the anterior part of the eye of monkey, cat, and pig was studied. The location and displacement of 125I-hCGRPalpha by amylins as concentrations of 1-1000 nM were studied in cryosections by autoradiography. In the monkey eye, cat and rat amylins were able to compete for the binding sites of CGRP in ciliary muscle and ciliary processes. In the cat eye, cat and human amylins clearly displaced CGRP binding from ciliary muscle, ciliary processes, iris, and chamber angle. Furthermore, rat amylin clearly displaced CGRP binding from ciliary muscle and ciliary processes. In the pig eye, cat, human, and rat amylins competed for the binding sites of CGRP in ciliary muscle, ciliary processes, iris, and limbal conjunctiva. Specific amylin receptors or the possible physiological role of amylin in the eye have not hitherto been reported. It seems, however, that amylin can bind to ocular CGRP receptors and thus probably plays a role in the regulation of the same functions as CGRP, (e.g., aqueous humor outflow).

  4. KIAA0556 is a novel ciliary basal body component mutated in Joubert syndrome.

    PubMed

    Sanders, Anna A W M; de Vrieze, Erik; Alazami, Anas M; Alzahrani, Fatema; Malarkey, Erik B; Sorusch, Nasrin; Tebbe, Lars; Kuhns, Stefanie; van Dam, Teunis J P; Alhashem, Amal; Tabarki, Brahim; Lu, Qianhao; Lambacher, Nils J; Kennedy, Julie E; Bowie, Rachel V; Hetterschijt, Lisette; van Beersum, Sylvia; van Reeuwijk, Jeroen; Boldt, Karsten; Kremer, Hannie; Kesterson, Robert A; Monies, Dorota; Abouelhoda, Mohamed; Roepman, Ronald; Huynen, Martijn H; Ueffing, Marius; Russell, Rob B; Wolfrum, Uwe; Yoder, Bradley K; van Wijk, Erwin; Alkuraya, Fowzan S; Blacque, Oliver E

    2015-12-29

    Joubert syndrome (JBTS) and related disorders are defined by cerebellar malformation (molar tooth sign), together with neurological symptoms of variable expressivity. The ciliary basis of Joubert syndrome related disorders frequently extends the phenotype to tissues such as the eye, kidney, skeleton and craniofacial structures. Using autozygome and exome analyses, we identified a null mutation in KIAA0556 in a multiplex consanguineous family with hallmark features of mild Joubert syndrome. Patient-derived fibroblasts displayed reduced ciliogenesis potential and abnormally elongated cilia. Investigation of disease pathophysiology revealed that Kiaa0556 (-/-) null mice possess a Joubert syndrome-associated brain-restricted phenotype. Functional studies in Caenorhabditis elegans nematodes and cultured human cells support a conserved ciliary role for KIAA0556 linked to microtubule regulation. First, nematode KIAA0556 is expressed almost exclusively in ciliated cells, and the worm and human KIAA0556 proteins are enriched at the ciliary base. Second, C. elegans KIAA0056 regulates ciliary A-tubule number and genetically interacts with an ARL13B (JBTS8) orthologue to control cilium integrity. Third, human KIAA0556 binds to microtubules in vitro and appears to stabilise microtubule networks when overexpressed. Finally, human KIAA0556 biochemically interacts with ciliary proteins and p60/p80 katanins. The latter form a microtubule-severing enzyme complex that regulates microtubule dynamics as well as ciliary functions. We have identified KIAA0556 as a novel microtubule-associated ciliary base protein mutated in Joubert syndrome. Consistent with the mild patient phenotype, our nematode, mice and human cell data support the notion that KIAA0556 has a relatively subtle and variable cilia-related function, which we propose is related to microtubule regulation.

  5. Two Heteromeric Kinesin Complexes in Chemosensory Neurons and Sensory Cilia of Caenorhabditis elegans

    PubMed Central

    Signor, Dawn; Wedaman, Karen P.; Rose, Lesilee S.; Scholey, Jonathan M.

    1999-01-01

    Chemosensation in the nervous system of the nematode Caenorhabditis elegans depends on sensory cilia, whose assembly and maintenance requires the transport of components such as axonemal proteins and signal transduction machinery to their site of incorporation into ciliary structures. Members of the heteromeric kinesin family of microtubule motors are prime candidates for playing key roles in these transport events. Here we describe the molecular characterization and partial purification of two heteromeric kinesin complexes from C. elegans, heterotrimeric CeKinesin-II and dimeric CeOsm-3. Transgenic worms expressing green fluorescent protein driven by endogenous heteromeric kinesin promoters reveal that both CeKinesin-II and CeOsm-3 are expressed in amphid, inner labial, and phasmid chemosensory neurons. Additionally, immunolocalization experiments on fixed worms show an intense concentration of CeKinesin-II and CeOsm-3 polypeptides in the ciliated endings of these chemosensory neurons and a punctate localization pattern in the corresponding cell bodies and dendrites. These results, together with the phenotypes of known mutants in the pathway of sensory ciliary assembly, suggest that CeKinesin-II and CeOsm-3 drive the transport of ciliary components required for sequential steps in the assembly of chemosensory cilia. PMID:9950681

  6. [The protective effect of dexpanthenol in nasal sprays. First results of cytotoxic and ciliary-toxic studies in vitro].

    PubMed

    Klöcker, N; Verse, T; Rudolph, P

    2003-03-01

    In Germany more than 60 million units of nasal decongestants are prescribed or sold over the counter. The cytotoxic and ciliary-toxic potential of alpha-sympathomimetic decongestants is well established. Furthermore, in many of the marketed products preservatives are added, predominantly benzalchonium-chloride, which can lead to a further alteration of cell- and ciliary function. Recently a protective effect of dexpanthenol was found for the human nasal mucosa. The objective of the present studies was to prove the hypothesis that dexpanthenol is able to neutralise the toxic effects of both alpha-sympathomimetic decongestants, in particular those of xylometazoline, and those of benzalconium-chloride. Therefore, systematic cytotoxic and ex vivo in vitro ciliary-toxic studies were performed. After exposition to xylometazoline in concentrations of 0.1 % and 0.05 %, the influence of dexpanthenol (5 %) and benzalconium-chloride (0,01 %) was assessed by determination of a) cell growth of FL-cells of human amnion origin, and b) ciliary beat frequency of human nasal mucosa. All tests were performed placebo-controlled. Both hypotheses were confirmed. Dexpanthenol (5 %) reduces statistically significantly the concentration-dependent toxic effects of xylometazoline, and benzalchonium-cloride regarding cell growth and ciliary beat frequency (p < 0.001). The combination of xylometazoline with dexpanthenol, while benzalconium-chloride is eliminated, resulted in a further significant increase of cell growth and ciliary beat frequency (p < 0.001), similar to control. The additive application of dexpanthenol (5 %) with nasal decongestants and/or with preserved nasal sprays seems to be able to reduce the cell- and ciliary-toxic effects of these substances.

  7. [Regeneration of the ciliary beat of human ciliated cells].

    PubMed

    Wolf, G; Koidl, B; Pelzmann, B

    1991-10-01

    The influence of an isotonic, alkaline saline solution (diluted "Emser Sole" or brine from the spa of Bad Ems) on the ciliary beat of isolated cultured human ciliated cells of the upper respiratory tract was investigated. The ciliary beat was observed via an inverted phase contrast microscope (Zeiss Axiomat IDPC) and measured microphotometrically under physiological conditions and after the damaging influence of 1% propanal solution. Under physiological conditions the saline solution had a positive, although statistically not significant influence on the frequency of the ciliary beat. After damage of the cultivated cells by 1% propanal solution, the saline solution had a significant better influence on the regeneration of the cultured cells than a physiological sodium chloride solution. It is concluded that diluted brine from Bad Ems has a positive effect on the ciliary beat of the respiratory epithelium and accelerates its regeneration after damage by viral and bacterial infections, surgery or inhaled noxae.

  8. Defining the proteome of human iris, ciliary body, retinal pigment epithelium, and choroid.

    PubMed

    Zhang, Pingbo; Kirby, David; Dufresne, Craig; Chen, Yan; Turner, Randi; Ferri, Sara; Edward, Deepak P; Van Eyk, Jennifer E; Semba, Richard D

    2016-04-01

    The iris is a fine structure that controls the amount of light that enters the eye. The ciliary body controls the shape of the lens and produces aqueous humor. The retinal pigment epithelium and choroid (RPE/choroid) are essential in supporting the retina and absorbing light energy that enters the eye. Proteins were extracted from iris, ciliary body, and RPE/choroid tissues of eyes from five individuals and fractionated using SDS-PAGE. After in-gel digestion, peptides were analyzed using LC-MS/MS on an Orbitrap Elite mass spectrometer. In iris, ciliary body, and RPE/choroid, we identified 2959, 2867, and 2755 nonredundant proteins with peptide and protein false-positive rates of <0.1% and <1%, respectively. Forty-three unambiguous protein isoforms were identified in iris, ciliary body, and RPE/choroid. Four "missing proteins" were identified in ciliary body based on ≥2 proteotypic peptides. The mass spectrometric proteome database of the human iris, ciliary body, and RPE/choroid may serve as a valuable resource for future investigations of the eye in health and disease. The MS proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifiers PXD001424 and PXD002194. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Effect of cAMP on short-circuit current in isolated human ciliary body.

    PubMed

    Wu, Ren-yi; Ma, Ning; Hu, Qian-qian

    2013-07-01

    Cyclic adenosine monophosphate (cAMP) could activate chloride channels in bovine ciliary body and trigger an increase in the ionic current (short-circuit current, Isc) across the ciliary processes in pigs. The purpose of this study was to investigate how cAMP modulates Isc in isolated human ciliary processes and the possible involvement of chloride transport across the tissue in cAMP-induced Isc change. In an Ussing-type chamber system, the Isc changes induced by the cAMP analogue 8-bromo-cAMP and an adenylyl cyclase activator forskolin in isolated human ciliary processes were assessed. The involvement of Cl(-) component in the bath solution was investigated. The effect of Cl(-) channel (10 µmol/L niflumic acid and 1 mmol/L 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS)), K(+) channel (10 mmol/L tetraethylammonium chloride (TEA)), or Na(+) channel blockers (1 mmol/L amiloride) on 8-bromo-cAMP-induced Isc change was also studied. Dose-dependently, 8-bromo-cAMP (10 nmol/L-30 µmol/L) or forskolin (10 nmol/L-3 µmol/L) increased Isc across the ciliary processes with an increase in negative potential difference on the non-pigmented epithelium (NPE) side of the tissue. Isc increase induced by 8-bromo-cAMP was more pronounced when the drug was applied on the NPE side than on the pigmented epithelium side. When the tissue was bathed in low Cl(-) solutions, the Isc increase was significantly inhibited. Finally, niflumic acid and DIDS, but not TEA or amiloride, significantly prevented the Isc increase induced by 8-bromo-cAMP. cAMP stimulates stroma-to-aqueous anionic transport in isolated human ciliary processes. Chloride is likely to be among the ions, the transportation of which across the tissue is triggered by cAMP, suggesting the potential role of cAMP in the process of aqueous humor formation in human eyes.

  10. Molecular characterization and differential gene induction of the neuroendocrine-specific genes neurotensin, neurotensin receptor, PC1, PC2, and 7B2 in the human ocular ciliary epithelium.

    PubMed

    Ortego, J; Coca-Prados, M

    1997-11-01

    The ocular ciliary epithelium is a bilayer of neuroepithelial cells specialized in the secretion of aqueous humor fluid and the regulation of intraocular pressure. In this study, we report on the expression of the regulatory peptide neurotensin (NT) and a set of differentiated neuroendocrine markers including neurotensin receptors (NTrs), the prohormone convertases furin, PC1, and PC2, and the neuroendocrine polypeptide 7B2 in the ciliary epithelium. Using a human cell line, ODM-2, derived from the nonpigmented ciliary epithelium, we demonstrate that (1) NT expression is highly activated by nerve growth factor, glucocorticoid, and activators of adenylate cyclase; (2) NTr expression is up-regulated by selective ligand-activated beta2-adrenergic receptor; and (3) PC1 and PC2 expression are up-regulated via distinct signaling transduction pathways. PC1 gene expression is activated by phorbol ester, and PC2 by the same inducers as those of NT expression. A radioimmunoassay for NT detected an NT-like immunoreactivity in human ciliary epithelium and ODM-2 cell extracts, in aqueous humor, and in conditioned culture medium. The results support the view that the entire ciliary epithelium functions as a neuroendocrine tissue, synthesizing, processing, and releasing NT into the aqueous humor where it may exert important physiological functions through autocrine and/or paracrine mechanisms.

  11. Systematic discovery of novel ciliary genes through functional genomics in the zebrafish

    PubMed Central

    Choksi, Semil P.; Babu, Deepak; Lau, Doreen; Yu, Xianwen; Roy, Sudipto

    2014-01-01

    Cilia are microtubule-based hair-like organelles that play many important roles in development and physiology, and are implicated in a rapidly expanding spectrum of human diseases, collectively termed ciliopathies. Primary ciliary dyskinesia (PCD), one of the most prevalent of ciliopathies, arises from abnormalities in the differentiation or motility of the motile cilia. Despite their biomedical importance, a methodical functional screen for ciliary genes has not been carried out in any vertebrate at the organismal level. We sought to systematically discover novel motile cilia genes by identifying the genes induced by Foxj1, a winged-helix transcription factor that has an evolutionarily conserved role as the master regulator of motile cilia biogenesis. Unexpectedly, we find that the majority of the Foxj1-induced genes have not been associated with cilia before. To characterize these novel putative ciliary genes, we subjected 50 randomly selected candidates to a systematic functional phenotypic screen in zebrafish embryos. Remarkably, we find that over 60% are required for ciliary differentiation or function, whereas 30% of the proteins encoded by these genes localize to motile cilia. We also show that these genes regulate the proper differentiation and beating of motile cilia. This collection of Foxj1-induced genes will be invaluable for furthering our understanding of ciliary biology, and in the identification of new mutations underlying ciliary disorders in humans. PMID:25139857

  12. A pilot study exploring the impact of cardiac medications on ciliary beat frequency: possible implications for clinical management.

    PubMed

    Loomba, Rohit S; Bhushan, Abhinav; Afolayan, Adeleye J

    2018-05-03

    Cilia are involved in several physiologic processes, and at least a single primary cilium can be found on nearly every cell in the human body. Various factors, such as pH, temperature, exposure to medications and toxins can impact ciliary function as is manifested by changes in the ciliary beat frequency. Those with ciliary dyskinesia may also have congenital cardiac malformations and may require care in a cardiac intensive care unit. This study investigates the effect on the ciliary beat frequency of medications frequently used in a cardiac intensive care unit. The ciliated epithelial cells were obtained via nasal swab from a relatively healthy individual. These cells were cultured for 24 h. Video microscopy was then employed to determine the ciliary beat frequency at baseline and then at 15, 30, 60 and 90 min after exposure to either normal saline (control) or one of several medications. The ciliary beat frequency at each time point was then compared to the ciliary beat frequency at the same time point in the control sample as well as the baseline value for that particular sample. Epinephrine increased the ciliary beat frequency compared to the baseline and the controls up to 30 min and then subsequently led to a significant decrease in ciliary beat frequency at 90 min. On the one hand, norepinephrine, dexmedetomidine, procainamide, propranolol and enalapril all decreased ciliary beat frequency significantly throughout the 90-min observation period. On the other hand, Milrinone significantly increased the ciliary beat frequency throughout the observation period, while heparin had no impact on ciliary beat frequency. The medications frequently used in cardiac intensive care unit impact ciliary function, with most being ciliodepressant. Further investigation is needed to determine the clinical impacts and whether these effects are exaggerated in those with ciliary dyskinesia.

  13. Morphometric assessment of normal human ciliary body using ultrasound biomicroscopy.

    PubMed

    Okamoto, Yoshifumi; Okamoto, Fumiki; Nakano, Shinichiro; Oshika, Tetsuro

    2017-12-01

    To quantitatively assess the biometry of the ciliary body in normal human eyes using ultrasound biomicroscopy. We evaluated 85 eyes of 85 normal subjects (35 men and 50 women), whose age ranged from 11 to 86 years (mean ± SD, 56.8 ± 20.4 years). The eyes were assessed along the 3-, 6-, 9-, and 12-o'clock meridians relative to the center of the cornea. Clinical data were collected, including age, axial length, ciliary body length (CBL), ciliary body thickness (CBT), anterior chamber depth, iris root thickness, trabecular-iris angle, and scleral-ciliary process angle. Axial length was measured using A-scan ultrasonography. CBL and CBT tended to be larger in the superior than in the inferior quadrant, but the differences among the four quadrants were not statistically significant. The average CBL showed a significant positive correlation with the average CBT (r = 0.40, P < 0.001). Average CBL and CBT were significantly correlated with axial length (r = 0.33, P = 0.031; r = 0.46, P < 0.01 respectively). In addition, the average CBL was significantly correlated with anterior chamber depth (r = 0.23, P < 0.05), trabecular-iris angle (r = 0.29, P = 0.01), and scleral-ciliary process angle (r = 0.40, P < 0.001). Ultrasound biomicroscopic imaging demonstrated that the ciliary body is similar in size in all circumferences, and eyes with longer axial length have an elongated and thicker ciliary body. The values obtained in the present study may serve as standard clinical references.

  14. The accommodative ciliary muscle function is preserved in older humans

    NASA Astrophysics Data System (ADS)

    Tabernero, Juan; Chirre, Emmanuel; Hervella, Lucia; Prieto, Pedro; Artal, Pablo

    2016-05-01

    Presbyopia, the loss of the eye’s accommodation capability, affects all humans aged above 45-50 years old. The two main reasons for this to happen are a hardening of the crystalline lens and a reduction of the ciliary muscle functionality with age. While there seems to be at least some partial accommodating functionality of the ciliary muscle at early presbyopic ages, it is not yet clear whether the muscle is still active at more advanced ages. Previous techniques used to visualize the accommodation mechanism of the ciliary muscle are complicated to apply in the older subjects, as they typically require fixation stability during long measurement times and/or to have an ultrasound probe directly in contact with the eye. Instead, we used our own developed method based on high-speed recording of lens wobbling to study the ciliary muscle activity in a small group of pseudophakic subjects (around 80 years old). There was a significant activity of the muscle, clearly able to contract under binocular stimulation of accommodation. This supports a purely lenticular-based theory of presbyopia and it might stimulate the search for new solutions to presbyopia by making use of the remaining contraction force still presented in the aging eye.

  15. Muscarinic receptor M1 and M2 subtypes in the human eye: QNB, pirenzipine, oxotremorine, and AFDX-116 in vitro autoradiography.

    PubMed Central

    Gupta, N; McAllister, R; Drance, S M; Rootman, J; Cynader, M S

    1994-01-01

    Muscarinic cholinergic agents are used to lower intraocular pressure in the medical management of glaucoma and subtypes of muscarinic receptors have now been recognised in many tissues including the eye. To localise muscarinic receptors and their M1 and M2 subtypes in the human eye, in vitro ligand binding and autoradiographic techniques with densitometric quantitation on postmortem eye sections were used. As ligands, [3H] quinuclydinyl benzylate (QNB) (non-subtype specific muscarinic antagonist), [3H]pirenzipine (M1 antagonist), [3H]oxotremorine (M2 muscarinic agonist), [3H]AFDX-116(11[(2[diethylaminomethyl]1-piperidinyl)acetyl]5 , 11dihydro-6H-pyrido [2,3b][1,4]benzodiazepine-6-one) (M2 antagonist) were studied. Specific binding sites for QNB, pirenzipine, and AFDX-116 were localised in the entire ciliary muscle, the iris, and ciliary epithelium. [3H]oxotremorine localised only in the longitudinal portion of the ciliary muscle, and additionally, was not localised in the iris or ciliary epithelium. These results suggest that oxotremorine, by binding selectively to receptors on the longitudinal ciliary muscle and inducing its contraction, may modulate outflow facility independently from accommodation and miosis. Images PMID:7918268

  16. Evolutionary Proteomics Uncovers Ancient Associations of Cilia with Signaling Pathways.

    PubMed

    Sigg, Monika Abedin; Menchen, Tabea; Lee, Chanjae; Johnson, Jeffery; Jungnickel, Melissa K; Choksi, Semil P; Garcia, Galo; Busengdal, Henriette; Dougherty, Gerard W; Pennekamp, Petra; Werner, Claudius; Rentzsch, Fabian; Florman, Harvey M; Krogan, Nevan; Wallingford, John B; Omran, Heymut; Reiter, Jeremy F

    2017-12-18

    Cilia are organelles specialized for movement and signaling. To infer when during evolution signaling pathways became associated with cilia, we characterized the proteomes of cilia from sea urchins, sea anemones, and choanoflagellates. We identified 437 high-confidence ciliary candidate proteins conserved in mammals and discovered that Hedgehog and G-protein-coupled receptor pathways were linked to cilia before the origin of bilateria and transient receptor potential (TRP) channels before the origin of animals. We demonstrated that candidates not previously implicated in ciliary biology localized to cilia and further investigated ENKUR, a TRP channel-interacting protein identified in the cilia of all three organisms. ENKUR localizes to motile cilia and is required for patterning the left-right axis in vertebrates. Moreover, mutation of ENKUR causes situs inversus in humans. Thus, proteomic profiling of cilia from diverse eukaryotes defines a conserved ciliary proteome, reveals ancient connections to signaling, and uncovers a ciliary protein that underlies development and human disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Semi-Automatic Extraction Algorithm for Images of the Ciliary Muscle

    PubMed Central

    Kao, Chiu-Yen; Richdale, Kathryn; Sinnott, Loraine T.; Ernst, Lauren E.; Bailey, Melissa D.

    2011-01-01

    Purpose To development and evaluate a semi-automatic algorithm for segmentation and morphological assessment of the dimensions of the ciliary muscle in Visante™ Anterior Segment Optical Coherence Tomography images. Methods Geometric distortions in Visante images analyzed as binary files were assessed by imaging an optical flat and human donor tissue. The appropriate pixel/mm conversion factor to use for air (n = 1) was estimated by imaging calibration spheres. A semi-automatic algorithm was developed to extract the dimensions of the ciliary muscle from Visante images. Measurements were also made manually using Visante software calipers. Interclass correlation coefficients (ICC) and Bland-Altman analyses were used to compare the methods. A multilevel model was fitted to estimate the variance of algorithm measurements that was due to differences within- and between-examiners in scleral spur selection versus biological variability. Results The optical flat and the human donor tissue were imaged and appeared without geometric distortions in binary file format. Bland-Altman analyses revealed that caliper measurements tended to underestimate ciliary muscle thickness at 3 mm posterior to the scleral spur in subjects with the thickest ciliary muscles (t = 3.6, p < 0.001). The percent variance due to within- or between-examiner differences in scleral spur selection was found to be small (6%) when compared to the variance due to biological difference across subjects (80%). Using the mean of measurements from three images achieved an estimated ICC of 0.85. Conclusions The semi-automatic algorithm successfully segmented the ciliary muscle for further measurement. Using the algorithm to follow the scleral curvature to locate more posterior measurements is critical to avoid underestimating thickness measurements. This semi-automatic algorithm will allow for repeatable, efficient, and masked ciliary muscle measurements in large datasets. PMID:21169877

  18. TTC25 Deficiency Results in Defects of the Outer Dynein Arm Docking Machinery and Primary Ciliary Dyskinesia with Left-Right Body Asymmetry Randomization.

    PubMed

    Wallmeier, Julia; Shiratori, Hidetaka; Dougherty, Gerard W; Edelbusch, Christine; Hjeij, Rim; Loges, Niki T; Menchen, Tabea; Olbrich, Heike; Pennekamp, Petra; Raidt, Johanna; Werner, Claudius; Minegishi, Katsura; Shinohara, Kyosuke; Asai, Yasuko; Takaoka, Katsuyoshi; Lee, Chanjae; Griese, Matthias; Memari, Yasin; Durbin, Richard; Kolb-Kokocinski, Anja; Sauer, Sascha; Wallingford, John B; Hamada, Hiroshi; Omran, Heymut

    2016-08-04

    Multiprotein complexes referred to as outer dynein arms (ODAs) develop the main mechanical force to generate the ciliary and flagellar beat. ODA defects are the most common cause of primary ciliary dyskinesia (PCD), a congenital disorder of ciliary beating, characterized by recurrent infections of the upper and lower airways, as well as by progressive lung failure and randomization of left-right body asymmetry. Using a whole-exome sequencing approach, we identified recessive loss-of-function mutations within TTC25 in three individuals from two unrelated families affected by PCD. Mice generated by CRISPR/Cas9 technology and carrying a deletion of exons 2 and 3 in Ttc25 presented with laterality defects. Consistently, we observed immotile nodal cilia and missing leftward flow via particle image velocimetry. Furthermore, transmission electron microscopy (TEM) analysis in TTC25-deficient mice revealed an absence of ODAs. Consistent with our findings in mice, we were able to show loss of the ciliary ODAs in humans via TEM and immunofluorescence (IF) analyses. Additionally, IF analyses revealed an absence of the ODA docking complex (ODA-DC), along with its known components CCDC114, CCDC151, and ARMC4. Co-immunoprecipitation revealed interaction between the ODA-DC component CCDC114 and TTC25. Thus, here we report TTC25 as a new member of the ODA-DC machinery in humans and mice. Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  19. Magnetic resonance imaging of aging, accommodating, phakic, and pseudophakic ciliary muscle diameters

    PubMed Central

    Strenk, Susan A.; Strenk, Lawrence M.; Guo, Suqin

    2012-01-01

    PURPOSE To quantify in vivo accommodative changes in the aging human ciliary muscle diameter in phakic and pseudophakic eyes. SETTING Department of Surgery/Bioengineering, UMDNJ–Robert Wood Johnson Medical School, Piscataway, and the Institute of Ophthalmology and Visual Science UMDNJ–New Jersey Medical School, Newark, New Jersey, USA. METHODS Images were acquired from 48 eyes of 40 people between the ages of 22 and 91 years, 1 eye of 32 phakic volunteers and both eyes of 8 patients who had monocular implantation of a single-piece AcrySof intraocular lens (IOL) (Alcon Laboratories). Images were acquired during physiological accommodation and with accommodation at rest, and the diameter of the ciliary muscle ring was measured. RESULTS Results show the ciliary muscle remains active throughout life. The accommodative change in its diameter (mean 0.64 mm) (P<.00001) was undiminished by age or IOL implantation. Preliminary data showed that the accommodative decrease in muscle diameter in phakic and pseudophakic eyes was statistically identical. The phakic eyes had a marked decrease in ciliary muscle diameter with advancing age for both accommodative states (P<.000001 and P<.000001), which did not appear to be altered by IOL implantation. The lens equator was constant with age in the unaccommodated human eye, resulting in decreased circumlental space with advancing age in the phakic eyes. CONCLUSION Although the undiminished ability of the ciliary muscle to decrease its diameter with accommodation can be relied on in strategies for presbyopia correction, even in advanced presbyopia, the decreasing circumlental space and its potential effects on zonular tension must also be considered. PMID:17081859

  20. Remodeling Cildb, a popular database for cilia and links for ciliopathies

    PubMed Central

    2014-01-01

    Background New generation technologies in cell and molecular biology generate large amounts of data hard to exploit for individual proteins. This is particularly true for ciliary and centrosomal research. Cildb is a multi–species knowledgebase gathering high throughput studies, which allows advanced searches to identify proteins involved in centrosome, basal body or cilia biogenesis, composition and function. Combined to localization of genetic diseases on human chromosomes given by OMIM links, candidate ciliopathy proteins can be compiled through Cildb searches. Methods Othology between recent versions of the whole proteomes was computed using Inparanoid and ciliary high throughput studies were remapped on these recent versions. Results Due to constant evolution of the ciliary and centrosomal field, Cildb has been recently upgraded twice, with new species whole proteomes and new ciliary studies, and the latter version displays a novel BioMart interface, much more intuitive than the previous ones. Conclusions This already popular database is designed now for easier use and is up to date in regard to high throughput ciliary studies. PMID:25422781

  1. Expression of a chemokine by ciliary body epithelium in horses with naturally occurring recurrent uveitis and in cultured ciliary body epithelial cells.

    PubMed

    Gilger, Brian C; Yang, Ping; Salmon, Jacklyn H; Jaffe, Glenn J; Allen, Janice B

    2002-07-01

    To determine whether a chemokine (RANTES)-like protein expressed by ciliary epithelium plays a role in uveitis. 3 clinically normal horses intradermal, 5 eyes from 5 horses with recurrent uveitis, and 10 normal eyes from 5 age- and sex-matched horses. Cross-reactivity and sensitivity of recombinant human (rh)-regulated upon activation, normal T-cell expressed and secreted (RANTES) protein were evaluated in horses by use of intradermal hypersensitivity reactions and a chemotaxis assay. Aqueous humor and ciliary body of eyes from clinically normal horses and horses with uveitis were examined for RANTES expression by use of an ELISA and reverse transcription-polymerase chain reaction (RT-PCR). Expression of RANTES mRNA and protein content of primary cultures of equine ciliary pigmented epithelial cells (RT-PCR) and culture supernatant (ELISA) were measured 6 or 24 hours, respectively, after cultures were stimulated with interleukin-1beta and tumor necrosis factor-alpha. Strong reactions to intradermal hypersensitivity testing and significant chemotaxis of equine leukocytes to rh-RANTES wereas observed. Aqueous humor of eyes from horses with uveitis contained increased concentrations of rh-RANTES-like protein (mean +/- SD, 45.9+/-31.7 pg/ml), compared with aqueous humor from clinically normal horses (0 pg/ml). Ciliary body from horses with uveitis expressed RANTES mRNA, whereas ciliary body from clinically normal horses had low mRNA expression. Stimulated ciliary pigmented epithelial cells expressed increased amounts of rh-RANTES-like protein (506.1+/-298.3 pg/ml) and mRNA, compared with unstimulated samples. Ciliary epithelium may play a role in recruitment and activation of leukocytes through expression of RANTES.

  2. Effect of azelastine on sulphur dioxide induced impairment of ciliary motility in airway epithelium.

    PubMed Central

    Tamaoki, J; Chiyotani, A; Sakai, N; Takeyama, K; Konno, K

    1993-01-01

    OBJECTIVE--The effect of azelastine on airway mucociliary transport function was studied by measuring ciliary motility of human bronchial epithelium in vitro with a photoelectric method. METHOD--Bronchial epithelial cells were obtained by fibreoptic bronchoscopy, mounted in a Rose chamber, and perfused with Krebs-Henseleit solution. The preparations were placed on a microscope stage equipped with an illuminator, and the variations of light intensity caused by ciliary beating were detected by a photometer. RESULTS--The addition of azelastine to the perfusate increased ciliary beat frequency (CBF) in a dose dependent manner without ciliary discoordination. The mean (SE) maximal increase from the baseline value and the concentration required to produce a half maximal effect were 27.0 (4.2)% and 9.2 x 10(-6) mol/l, respectively. Exposure of the cells to the perfusate containing 3 ppm sulphur dioxide rapidly decreased CBF by 59.2 (5.0)%, and was accompanied by a reduction in intracellular cyclic AMP levels from 38.1 (4.3) to 10.1 (2.4) pmol/mg protein. This effect was prevented by pretreatment of cells with azelastine in a dose dependent manner. CONCLUSIONS--Azelastine not only stimulates ciliary motility of airway epithelium and hence mucociliary transport function, but may also protect against sulphur dioxide induced ciliary dysfunction, probably by inhibiting intracellular cyclic AMP loss. PMID:8322244

  3. Cyanide levels found in infected cystic fibrosis sputum inhibit airway ciliary function.

    PubMed

    Nair, Chandrika; Shoemark, Amelia; Chan, Mario; Ollosson, Sarah; Dixon, Mellissa; Hogg, Claire; Alton, Eric W F W; Davies, Jane C; Williams, Huw D

    2014-11-01

    We have previously reported cyanide at concentrations of up to 150 μM in the sputum of cystic fibrosis patients infected with Pseudomonas aeruginosa and a negative correlation with lung function. Our aim was to investigate possible mechanisms for this association, focusing on the effect of pathophysiologically relevant cyanide levels on human respiratory cell function. Ciliary beat frequency measurements were performed on nasal brushings and nasal air-liquid interface (ALI) cultures obtained from healthy volunteers and cystic fibrosis patients. Potassium cyanide decreased ciliary beat frequency in healthy nasal brushings (n = 6) after 60 min (150 μM: 47% fall, p<0.0012; 75 μM: 32% fall, p<0.0001). Samples from cystic fibrosis patients (n = 3) showed similar results (150 μM: 55% fall, p = 0.001). Ciliary beat frequency inhibition was not due to loss of cell viability and was reversible. The inhibitory mechanism was independent of ATP levels. KCN also significantly inhibited ciliary beat frequency in ALI cultures, albeit to a lesser extent. Ciliary beat frequency measurements on ALI cultures treated with culture supernatants from P. aeruginosa mutants defective in virulence factor production implicated cyanide as a key component inhibiting the ciliary beat frequency. If cyanide production similarly impairs mucocilliary clearance in vivo, it could explain the link with increased disease severity observed in cystic fibrosis patients with detectable cyanide in their airway. ©ERS 2014.

  4. Human Eye Development Is Characterized by Coordinated Expression of Fibrillin Isoforms

    PubMed Central

    Hubmacher, Dirk; Reinhardt, Dieter P.; Plesec, Thomas; Schenke-Layland, Katja; Apte, Suneel S.

    2014-01-01

    Purpose. Mutations in human fibrillin-1 and -2, which are major constituents of tissue microfibrils, can affect multiple ocular components, including the ciliary zonule, lens, drainage apparatus, cornea, and retina. However, the expression pattern of the three human fibrillins and an integral microfibrillar component, MAGP1, during human eye development is not known. Methods. We analyzed sections from human eyes at gestational weeks (GWs) 6, 8, and 11 and at 1 and 3 years of age with antibodies specific for each human fibrillin isoform or MAGP1, using immunofluorescence microscopy. Results. During embryonic development, each fibrillin isoform was detected in vascular structures bridging the ciliary body and the developing lens, hyaloid vasculature, and retina. In addition, they were present in the developing corneal basement membranes and lens capsule. MAGP1 codistributed with the fibrillin isoforms. In contrast, the juvenile zonule was composed of fibrillin-1 microfibrils containing MAGP1, but fibrillin-2 was absent and fibrillin-3 was only sparsely detected. Conclusions. Fibrillin-1, -2, and, unique to humans, fibrillin-3 are found in various ocular structures during human embryonic eye development, whereas fibrillin-1 dominates the postnatal zonule. We speculate that vasculature spanning the ciliary body and lens, which elaborates fibrillin-2 and -3, may provide an initial scaffold for fibrillin assembly and zonule formation. PMID:25406291

  5. Comparison of tight junction protein expression in the ciliary epithelia of mouse, rabbit, cat and human eyes.

    PubMed

    Karim, M J; Biswas, S; Bhattacherjee, P; Paterson, C A

    2011-06-01

    Tight junctions in the nonpigmented epithelium (NPE) of the ciliary processes and the iris vascular endothelium form the ocular blood aqueous barrier that prevents leakage of proteins, immune cells and non-immune cells of blood into the anterior chamber. We attempted to determine whether ultrastructural differences in tight junctions reported in earlier studies are reflected in the expression pattern of tight junction proteins (TJP) and whether the TJP in mice, rabbits and cats resemble those of humans. For immunohistochemistry, 10 μm thick cryosections were rehydrated in PBS and fixed in 50 mM ammonium chloride at room temperature. After rinses in PBS, the sections were incubated twice in 0.1% Triton X-100, 10% goat serum, specific primary antibody or in PBS. After rinses in PBS, the sections were incubated in FITC-conjugated secondary antibody. After rinses in PBS, the sections were mounted with Vectashield mounting medium with propidium iodide, examined and photographed using a confocal microscope. The expression patterns of TJP in ocular ciliary epithelium of human, rabbit, cat and mouse were similar. Occludin immunoreactivity was observed as a sharp line along the junction between pigmented epithelium (PE) and NPE, and along the apico-lateral surfaces of NPE. Very light staining of the ciliary stroma was observed in cat and mouse. Claudin-1 was expressed along the entire boundaries of NPE and was more distinct between PE and NPE in rabbit. The ciliary stroma showed faint staining in cat and mouse. ZO-1 showed staining between PE and NPE, and at the adjacent membrane. Moderate staining was seen in PE in cat and mouse, which suggests that claudin-1, occludin and ZO-1 are expressed along the junction between PE and NPE, and the apico-lateral border of NPE. Lack of major difference in the expression patterns among the different species is important for validating the use of rabbit, mouse and cat in studies of intraocular inflammation in humans.

  6. Ciliary dysfunction and obesity.

    PubMed

    Mok, C A; Héon, E; Zhen, M

    2010-01-01

    Obesity associates with increased health risks such as heart disease, stroke and diabetes. The steady rise in the obese population worldwide poses an increasing burden on health systems. Genetic factors contribute to the development of obesity, and the elucidation of their physiological functions helps to understand the cause, and improve the prevention, diagnosis and treatment for this disorder. Primary cilia are evolutionarily conserved organelles whose dysfunctions lead to human disorders now defined as ciliopathies. Human ciliopathies present pleiotropic and overlapping phenotypes that often include retinal degeneration, cystic renal anomalies and obesity. Increasing evidence implicates an intriguing involvement of cilia in lipid/energy homeostasis. Here we discuss recent studies in support of the key roles of ciliary genes in the development and pathology of obesity in various animal models. Genes affecting ciliary development and function may pose promising candidate underlying genetic factors that contribute to the development of common obesity.

  7. Pathogenesis of Congenital Rubella Virus Infection in Human Fetuses: Viral Infection in the Ciliary Body Could Play an Important Role in Cataractogenesis.

    PubMed

    Nguyen, Thong Van; Pham, Van Hung; Abe, Kenji

    2015-01-01

    Development of congenital rubella syndrome associated with rubella virus infection during pregnancy is clinically important, but the pathogenicity of the virus remains unclear. Pathological examination was conducted on 3 aborted fetuses with congenital rubella infection. At autopsy, all 3 aborted fetuses showed congenital cataract confirmed by gross observation. Rubella virus infection occurred via systemic organs including circulating hematopoietic stem cells confirmed by immunohistochemical and molecular investigations, and major histopathogical changes were found in the liver. It is noteworthy that the virus infected the ciliary body of the eye, suggesting a possible cause of cataracts. Our study based on the pathological examination demonstrated that the rubella virus infection occurred via systemic organs of human fetuses. This fact was confirmed by immunohistochemistry and direct detection of viral RNA in multiple organs. To the best of our knowledge, this study is the first report demonstrating that the rubella virus infection occurred via systemic organs of the human body. Importantly, virus infection of the ciliary body could play an important role in cataractogenesis.

  8. Analysis of ciliary beat frequency and ovum transport ability in the mouse oviduct.

    PubMed

    Shi, Dongbo; Komatsu, Kouji; Uemura, Tadashi; Fujimori, Toshihiko

    2011-03-01

    The oviduct is important in reproduction where fertilization occurs, and the fertilized eggs are conveyed to the uterus. Multi-ciliated cells of the oviductal epithelium and muscle contractions are believed to generate this unidirectional flow. Although there are many studies in human oviducts, there are few reports on mouse oviductal ciliary movements where we can dissect underlying genetic programs. To study ciliary movements in the mouse oviduct, we exposed the ovary-side of the oviduct (infundibulum) longitudinally and recorded the ciliary beatings in a hanging drop preparation. We calculated the ciliary beat frequency (CBF) by automated image analysis and found that the average CBF was 10.9 ± 3.3 and 8.5 ± 2.5 Hz (±standard deviation) during the diestrus and estrus stages, respectively. Mapping of the CBF to multiple locations in the epithelium showed that the cilia beat regularly at a local level, but have a range of frequencies within the entire plane. We also observed ova with cumulus cells were transported to the uterus side by the opened oviduct at the diestrus and estrus stages. These results suggest that the ciliated cells of the infundibulum can generate unidirectional flows and are able to deliver ova by their ciliary activities despite their discordance in beating periodicity. © 2011 The Authors. Journal compilation © 2011 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.

  9. Apical localization of glutamate in GLAST-1, glutamine synthetase positive ciliary body nonpigmented epithelial cells

    PubMed Central

    Langford, Marlyn P; Gosslee, Jeffrey M; Liang, Chanping; Chen, Dequan; Redens, Thomas B.; Welbourne, Tomas C

    2007-01-01

    The distribution of glutamate (Glu), the Glu transporter GLAST-1, and glutamine synthetase (GS) in human and monkey anterior uveal tissue, as well as serum (S) to aqueous humor (AH) Glu and glutamine (Gln) gradients were investigated. Cross-linked Glu (xGlu), GLAST-1, and GS were detected using the immunofluorescent antibody technique. S/AH Glu, Gln, and alanine (Ala) concentrations were quantified by high performance liquid chromatography. xGlu immunoreactivity was detected in melanocytes, posterior pigmented epithelial/dilator muscle cells, vascular endothelial cells, and lymphocytes of the iris, as well as the pigmented (PE) and nonpigmented epithelial (NPE) cells and muscle cells of ciliary body. xGlu immunoreactivity was highly concentrated at the apices of GLAST-1, GS positive ciliary body NPE cells, and in GLAST-1 positive iris melanocytes and iris dilator muscle cells. AH Glu concentrations were lower (p < 0.001), while Gln was higher in monkey (p = 0.01) and human cataractous (p = 0.15) AH than serum. The results indicate that Glu is concentrated within GLAST-1, GS positive NPE cells and are consistent with the suggestion that Glu and Gln concentrations in AH may be due in part to GLAST-1 and GS activity in iris and ciliary body epithelial cells. PMID:19668465

  10. LRRC6 Mutation Causes Primary Ciliary Dyskinesia with Dynein Arm Defects

    PubMed Central

    Horani, Amjad; Ferkol, Thomas W.; Shoseyov, David; Wasserman, Mollie G.; Oren, Yifat S.; Kerem, Batsheva; Amirav, Israel; Cohen-Cymberknoh, Malena; Dutcher, Susan K.; Brody, Steven L.; Elpeleg, Orly; Kerem, Eitan

    2013-01-01

    Despite recent progress in defining the ciliome, the genetic basis for many cases of primary ciliary dyskinesia (PCD) remains elusive. We evaluated five children from two unrelated, consanguineous Palestinian families who had PCD with typical clinical features, reduced nasal nitric oxide concentrations, and absent dynein arms. Linkage analyses revealed a single common homozygous region on chromosome 8 and one candidate was conserved in organisms with motile cilia. Sequencing revealed a single novel mutation in LRRC6 (Leucine-rich repeat containing protein 6) that fit the model of autosomal recessive genetic transmission, leading to a change of a highly conserved amino acid from aspartic acid to histidine (Asp146His). LRRC6 was localized to the cytoplasm and was up-regulated during ciliogenesis in human airway epithelial cells in a Foxj1-dependent fashion. Nasal epithelial cells isolated from affected individuals and shRNA-mediated silencing in human airway epithelial cells, showed reduced LRRC6 expression, absent dynein arms, and slowed cilia beat frequency. Dynein arm proteins were either absent or mislocalized to the cytoplasm in airway epithelial cells from a primary ciliary dyskinesia subject. These findings suggest that LRRC6 plays a role in dynein arm assembly or trafficking and when mutated leads to primary ciliary dyskinesia with laterality defects. PMID:23527195

  11. Anteriorly located zonular fibres as a tool for fine regulation in accommodation

    PubMed Central

    Flügel-Koch, Cassandra; Croft, Mary Ann; Kaufman, Paul L.; Lütjen-Drecoll, Elke

    2015-01-01

    Purpose To describe an anteriorly located system of zonular fibres that could be involved in fine-tuning of accommodation Methods Forty six human and 28 rhesus monkey eyes were dissected and special preparations were processed for scanning electron microscopy and reflected-light microscopy. Additional series of frontal and sagittal histological and ultrathin sections were analysed in respect to the origin and insertion of anteriorly located zonules. The presence of sensory terminals at the site of the originating zonules within the connective tissue of the ciliary body was studied by immunohistochemistry. For in-vivo visualization ultrasound biomicroscopy (UBM) was performed on 12 human subjects. Results Fine zonular fibres originated from the valleys and lateral walls of the most anterior pars plicata that covers the anterior and inner circular ciliary muscle portion. These most anterior zonules (MAZ) showed attachments either to the anterior or posterior tines or they inserted directly onto the surface of the lens. At the site of origin, the course of the MAZ merged into the connective tissue fibres connecting the adjacent pigmented epithelium to the ciliary muscle. Numerous afferent terminals directly at the site of this MAZ-origin were connected to the intrinsic nervous network of the ciliary muscle. Conclusions A newly described set of zonular fibres features the capabilities to register the tensions of the zonular fork and lens capsule. The close location and neural connection towards the circular ciliary muscle portion could provide the basis for stabilization and readjustment of focusing that serves fast and fine-tuned accommodation and disaccommodation. PMID:26490669

  12. PACS-1 Mediates Phosphorylation-Dependent Ciliary Trafficking of the CNG Channel in Olfactory Sensory Neurons

    PubMed Central

    Jenkins, Paul M.; Zhang, Lian; Thomas, Gary; Martens, Jeffrey R.

    2009-01-01

    Impaired ciliary protein transport in olfactory sensory neurons (OSNs) leads to anosmia, and is a newly recognized clinical manifestation of a class of human disorders called ciliopathies. Surprisingly little is known regarding the mechanisms controlling trafficking to this unique neuronal compartment. Here, we show a novel role for phosphofurin acidic cluster-sorting protein 1 (PACS-1) in the ciliary trafficking of the olfactory CNG channel. PACS-1 is an intracellular sorting protein that mediates its effects through the binding of acidic clusters on cargo protein. This interaction is dependent on CK2 phosphorylation of both PACS-1 and its cargo. We show that CNGB1b contains two putative PACS-1 binding sites, which are phosphorylated by the serine/threonine protein kinase, CK2. Additionally, we show that PACS-1 is expressed in OSNs and interacts in complex with the CNG channel. CK2 inhibition in native OSNs causes a loss of CNG channel from cilia and subsequent olfactory dysfunction, while adenoviral expression of mutant PACS-1 causes similar mislocalization. These results provide a mechanism for the subunit-dependent ciliary trafficking of the CNG channel and offer insight into the mechanisms of ciliary transport. PMID:19710307

  13. PACS-1 mediates phosphorylation-dependent ciliary trafficking of the cyclic-nucleotide-gated channel in olfactory sensory neurons.

    PubMed

    Jenkins, Paul M; Zhang, Lian; Thomas, Gary; Martens, Jeffrey R

    2009-08-26

    Impaired ciliary protein transport in olfactory sensory neurons (OSNs) leads to anosmia, and is a newly recognized clinical manifestation of a class of human disorders called ciliopathies. Surprisingly little is known regarding the mechanisms controlling trafficking to this unique neuronal compartment. Here, we show a novel role for phosphofurin acidic cluster-sorting protein 1 (PACS-1) in the ciliary trafficking of the olfactory cyclic-nucleotide-gated (CNG) channel. PACS-1 is an intracellular sorting protein that mediates its effects through the binding of acidic clusters on cargo protein. This interaction is dependent on CK2 phosphorylation of both PACS-1 and its cargo. We show that CNGB1b contains two putative PACS-1 binding sites, which are phosphorylated by the serine/threonine protein kinase, CK2. Additionally, we show that PACS-1 is expressed in OSNs and interacts in complex with the CNG channel. CK2 inhibition in native OSNs causes a loss of CNG channel from cilia and subsequent olfactory dysfunction, while adenoviral expression of mutant PACS-1 causes similar mislocalization. These results provide a mechanism for the subunit-dependent ciliary trafficking of the CNG channel and offer insight into the mechanisms of ciliary transport.

  14. CCDC65 Mutation Causes Primary Ciliary Dyskinesia with Normal Ultrastructure and Hyperkinetic Cilia

    PubMed Central

    Horani, Amjad; Brody, Steven L.; Ferkol, Thomas W.; Shoseyov, David; Wasserman, Mollie G.; Ta-shma, Asaf; Wilson, Kate S.; Bayly, Philip V.; Amirav, Israel; Cohen-Cymberknoh, Malena; Dutcher, Susan K.; Elpeleg, Orly; Kerem, Eitan

    2013-01-01

    Background Primary ciliary dyskinesia (PCD) is a genetic disorder characterized by impaired ciliary function, leading to chronic sinopulmonary disease. The genetic causes of PCD are still evolving, while the diagnosis is often dependent on finding a ciliary ultrastructural abnormality and immotile cilia. Here we report a novel gene associated with PCD but without ciliary ultrastructural abnormalities evident by transmission electron microscopy, but with dyskinetic cilia beating. Methods Genetic linkage analysis was performed in a family with a PCD subject. Gene expression was studied in Chlamydomonas reinhardtii and human airway epithelial cells, using RNA assays and immunostaining. The phenotypic effects of candidate gene mutations were determined in primary culture human tracheobronchial epithelial cells transduced with gene targeted shRNA sequences. Video-microscopy was used to evaluate cilia motion. Results A single novel mutation in CCDC65, which created a termination codon at position 293, was identified in a subject with typical clinical features of PCD. CCDC65, an orthologue of the Chlamydomonas nexin-dynein regulatory complex protein DRC2, was localized to the cilia of normal nasal epithelial cells but was absent in those from the proband. CCDC65 expression was up-regulated during ciliogenesis in cultured airway epithelial cells, as was DRC2 in C. reinhardtii following deflagellation. Nasal epithelial cells from the affected individual and CCDC65-specific shRNA transduced normal airway epithelial cells had stiff and dyskinetic cilia beating patterns compared to control cells. Moreover, Gas8, a nexin-dynein regulatory complex component previously identified to associate with CCDC65, was absent in airway cells from the PCD subject and CCDC65-silenced cells. Conclusion Mutation in CCDC65, a nexin-dynein regulatory complex member, resulted in a frameshift mutation and PCD. The affected individual had altered cilia beating patterns, and no detectable ultrastructural defects of the ciliary axoneme, emphasizing the role of the nexin-dynein regulatory complex and the limitations of certain methods for PCD diagnosis. PMID:23991085

  15. An organelle-specific protein landscape identifies novel diseases and molecular mechanisms

    PubMed Central

    Boldt, Karsten; van Reeuwijk, Jeroen; Lu, Qianhao; Koutroumpas, Konstantinos; Nguyen, Thanh-Minh T.; Texier, Yves; van Beersum, Sylvia E. C.; Horn, Nicola; Willer, Jason R.; Mans, Dorus A.; Dougherty, Gerard; Lamers, Ideke J. C.; Coene, Karlien L. M.; Arts, Heleen H.; Betts, Matthew J.; Beyer, Tina; Bolat, Emine; Gloeckner, Christian Johannes; Haidari, Khatera; Hetterschijt, Lisette; Iaconis, Daniela; Jenkins, Dagan; Klose, Franziska; Knapp, Barbara; Latour, Brooke; Letteboer, Stef J. F.; Marcelis, Carlo L.; Mitic, Dragana; Morleo, Manuela; Oud, Machteld M.; Riemersma, Moniek; Rix, Susan; Terhal, Paulien A.; Toedt, Grischa; van Dam, Teunis J. P.; de Vrieze, Erik; Wissinger, Yasmin; Wu, Ka Man; Apic, Gordana; Beales, Philip L.; Blacque, Oliver E.; Gibson, Toby J.; Huynen, Martijn A.; Katsanis, Nicholas; Kremer, Hannie; Omran, Heymut; van Wijk, Erwin; Wolfrum, Uwe; Kepes, François; Davis, Erica E.; Franco, Brunella; Giles, Rachel H.; Ueffing, Marius; Russell, Robert B.; Roepman, Ronald; Al-Turki, Saeed; Anderson, Carl; Antony, Dinu; Barroso, Inês; Bentham, Jamie; Bhattacharya, Shoumo; Carss, Keren; Chatterjee, Krishna; Cirak, Sebahattin; Cosgrove, Catherine; Danecek, Petr; Durbin, Richard; Fitzpatrick, David; Floyd, Jamie; Reghan Foley, A.; Franklin, Chris; Futema, Marta; Humphries, Steve E.; Hurles, Matt; Joyce, Chris; McCarthy, Shane; Mitchison, Hannah M.; Muddyman, Dawn; Muntoni, Francesco; O'Rahilly, Stephen; Onoufriadis, Alexandros; Payne, Felicity; Plagnol, Vincent; Raymond, Lucy; Savage, David B.; Scambler, Peter; Schmidts, Miriam; Schoenmakers, Nadia; Semple, Robert; Serra, Eva; Stalker, Jim; van Kogelenberg, Margriet; Vijayarangakannan, Parthiban; Walter, Klaudia; Whittall, Ros; Williamson, Kathy

    2016-01-01

    Cellular organelles provide opportunities to relate biological mechanisms to disease. Here we use affinity proteomics, genetics and cell biology to interrogate cilia: poorly understood organelles, where defects cause genetic diseases. Two hundred and seventeen tagged human ciliary proteins create a final landscape of 1,319 proteins, 4,905 interactions and 52 complexes. Reverse tagging, repetition of purifications and statistical analyses, produce a high-resolution network that reveals organelle-specific interactions and complexes not apparent in larger studies, and links vesicle transport, the cytoskeleton, signalling and ubiquitination to ciliary signalling and proteostasis. We observe sub-complexes in exocyst and intraflagellar transport complexes, which we validate biochemically, and by probing structurally predicted, disruptive, genetic variants from ciliary disease patients. The landscape suggests other genetic diseases could be ciliary including 3M syndrome. We show that 3M genes are involved in ciliogenesis, and that patient fibroblasts lack cilia. Overall, this organelle-specific targeting strategy shows considerable promise for Systems Medicine. PMID:27173435

  16. CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms

    PubMed Central

    Panizzi, Jennifer R.; Becker-Heck, Anita; Castleman, Victoria H.; Al-Mutairi, Dalal; Liu, Yan; Loges, Niki T.; Pathak, Narendra; Austin-Tse, Christina; Sheridan, Eamonn; Schmidts, Miriam; Olbrich, Heike; Werner, Claudius; Häffner, Karsten; Hellman, Nathan; Chodhari, Rahul; Gupta, Amar; Kramer-Zucker, Albrecht; Olale, Felix; Burdine, Rebecca D.; Schier, Alexander F.; O’Callaghan, Christopher; Chung, Eddie MK; Reinhardt, Richard; Mitchison, Hannah M.; King, Stephen M.; Omran, Heymut; Drummond, Iain A.

    2012-01-01

    Cilia are essential for fertilization, respiratory clearance, cerebrospinal fluid circulation, and to establish laterality1. Cilia motility defects cause Primary Ciliary Dyskinesia (PCD, MIM 242650), a disorder affecting 1:15-30,000 births. Cilia motility requires the assembly of multisubunit dynein arms that drive cilia bending2. Despite progress in understanding the genetic basis of PCD, mutations remain to be identified for several PCD linked loci3. Here we show that the zebrafish cilia paralysis mutant schmalhanstn222 (smh) mutant encodes the coiled-coil domain containing 103 protein (Ccdc103), a foxj1a regulated gene. Screening 146 unrelated PCD families identified patients in six families with reduced outer dynein arms, carrying mutations in CCDC103. Dynein arm assembly in smh mutant zebrafish was rescued by wild-type but not mutant human CCDC103. Chlamydomonas Ccdc103 functions as a tightly bound, axoneme-associated protein. The results identify Ccdc103 as a novel dynein arm attachment factor that when mutated causes Primary Ciliary Dyskinesia. PMID:22581229

  17. The Gene Ontology of eukaryotic cilia and flagella.

    PubMed

    Roncaglia, Paola; van Dam, Teunis J P; Christie, Karen R; Nacheva, Lora; Toedt, Grischa; Huynen, Martijn A; Huntley, Rachael P; Gibson, Toby J; Lomax, Jane

    2017-01-01

    Recent research into ciliary structure and function provides important insights into inherited diseases termed ciliopathies and other cilia-related disorders. This wealth of knowledge needs to be translated into a computational representation to be fully exploitable by the research community. To this end, members of the Gene Ontology (GO) and SYSCILIA Consortia have worked together to improve representation of ciliary substructures and processes in GO. Members of the SYSCILIA and Gene Ontology Consortia suggested additions and changes to GO, to reflect new knowledge in the field. The project initially aimed to improve coverage of ciliary parts, and was then broadened to cilia-related biological processes. Discussions were documented in a public tracker. We engaged the broader cilia community via direct consultation and by referring to the literature. Ontology updates were implemented via ontology editing tools. So far, we have created or modified 127 GO terms representing parts and processes related to eukaryotic cilia/flagella or prokaryotic flagella. A growing number of biological pathways are known to involve cilia, and we continue to incorporate this knowledge in GO. The resulting expansion in GO allows more precise representation of experimentally derived knowledge, and SYSCILIA and GO biocurators have created 199 annotations to 50 human ciliary proteins. The revised ontology was also used to curate mouse proteins in a collaborative project. The revised GO and annotations, used in comparative 'before and after' analyses of representative ciliary datasets, improve enrichment results significantly. Our work has resulted in a broader and deeper coverage of ciliary composition and function. These improvements in ontology and protein annotation will benefit all users of GO enrichment analysis tools, as well as the ciliary research community, in areas ranging from microscopy image annotation to interpretation of high-throughput studies. We welcome feedback to further enhance the representation of cilia biology in GO.

  18. hemingway is required for sperm flagella assembly and ciliary motility in Drosophila.

    PubMed

    Soulavie, Fabien; Piepenbrock, David; Thomas, Joëlle; Vieillard, Jennifer; Duteyrat, Jean-Luc; Cortier, Elisabeth; Laurençon, Anne; Göpfert, Martin C; Durand, Bénédicte

    2014-04-01

    Cilia play major functions in physiology and development, and ciliary dysfunctions are responsible for several diseases in humans called ciliopathies. Cilia motility is required for cell and fluid propulsion in organisms. In humans, cilia motility deficiencies lead to primary ciliary dyskinesia, with upper-airways recurrent infections, left-right asymmetry perturbations, and fertility defects. In Drosophila, we identified hemingway (hmw) as a novel component required for motile cilia function. hmw encodes a 604-amino acid protein characterized by a highly conserved coiled-coil domain also found in the human orthologue, KIAA1430. We show that HMW is conserved in species with motile cilia and that, in Drosophila, hmw is expressed in ciliated sensory neurons and spermatozoa. We created hmw-knockout flies and found that they are hearing impaired and male sterile. hmw is implicated in the motility of ciliated auditory sensory neurons and, in the testis, is required for elongation and maintenance of sperm flagella. Because HMW is absent from mature flagella, we propose that HMW is not a structural component of the motile axoneme but is required for proper acquisition of motile properties. This identifies HMW as a novel, evolutionarily conserved component necessary for motile cilium function and flagella assembly.

  19. DRC2/CCDC65 is a central hub for assembly of the nexin–dynein regulatory complex and other regulators of ciliary and flagellar motility

    PubMed Central

    Bower, Raqual; Tritschler, Douglas; Mills, Kristyn VanderWaal; Heuser, Thomas; Nicastro, Daniela; Porter, Mary E.

    2018-01-01

    The nexin–dynein regulatory complex (N-DRC) plays a central role in the regulation of ciliary and flagellar motility. In most species, the N-DRC contains at least 11 subunits, but the specific function of each subunit is unknown. Mutations in three subunits (DRC1, DRC2/CCDC65, DRC4/GAS8) have been linked to defects in ciliary motility in humans and lead to a ciliopathy known as primary ciliary dyskinesia (PCD). Here we characterize the biochemical, structural, and motility phenotypes of two mutations in the DRC2 gene of Chlamydomonas. Using high-resolution proteomic and structural approaches, we find that the C-terminal region of DRC2 is critical for the coassembly of DRC2 and DRC1 to form the base plate of N-DRC and its attachment to the outer doublet microtubule. Loss of DRC2 in drc2 mutants disrupts the assembly of several other N-DRC subunits and also destabilizes the assembly of several closely associated structures such as the inner dynein arms, the radial spokes, and the calmodulin- and spoke-associated complex. Our study provides new insights into the range of ciliary defects that can lead to PCD. PMID:29167384

  20. Bug22p, a Conserved Centrosomal/Ciliary Protein Also Present in Higher Plants, Is Required for an Effective Ciliary Stroke in Paramecium ▿ †

    PubMed Central

    Laligné, C.; Klotz, C.; Garreau de Loubresse, N.; Lemullois, M.; Hori, M.; Laurent, F. X.; Papon, J. F.; Louis, B.; Cohen, J.; Koll, F.

    2010-01-01

    Centrioles, cilia, and flagella are ancestral conserved organelles of eukaryotic cells. Among the proteins identified in the proteomics of ciliary proteins in Paramecium, we focus here on a protein, Bug22p, previously detected by cilia and basal-body high-throughput studies but never analyzed per se. Remarkably, this protein is also present in plants, which lack centrioles and cilia. Bug22p sequence alignments revealed consensus positions that distinguish species with centrioles/cilia from plants. In Paramecium, antibody and green fluorescent protein (GFP) fusion labeling localized Bug22p in basal bodies and cilia, and electron microscopy immunolabeling refined the localization to the terminal plate of the basal bodies, the transition zone, and spots along the axoneme, preferentially between the membrane and the microtubules. RNA interference (RNAi) depletion of Bug22p provoked a strong decrease in swimming speed, followed by cell death after a few days. High-speed video microscopy and morphological analysis of Bug22p-depleted cells showed that the protein plays an important role in the efficiency of ciliary movement by participating in the stroke shape and rigidity of cilia. The defects in cell swimming and growth provoked by RNAi can be complemented by expression of human Bug22p. This is the first reported case of complementation by a human gene in a ciliate. PMID:20118210

  1. Bug22p, a conserved centrosomal/ciliary protein also present in higher plants, is required for an effective ciliary stroke in Paramecium.

    PubMed

    Laligné, C; Klotz, C; de Loubresse, N Garreau; Lemullois, M; Hori, M; Laurent, F X; Papon, J F; Louis, B; Cohen, J; Koll, F

    2010-04-01

    Centrioles, cilia, and flagella are ancestral conserved organelles of eukaryotic cells. Among the proteins identified in the proteomics of ciliary proteins in Paramecium, we focus here on a protein, Bug22p, previously detected by cilia and basal-body high-throughput studies but never analyzed per se. Remarkably, this protein is also present in plants, which lack centrioles and cilia. Bug22p sequence alignments revealed consensus positions that distinguish species with centrioles/cilia from plants. In Paramecium, antibody and green fluorescent protein (GFP) fusion labeling localized Bug22p in basal bodies and cilia, and electron microscopy immunolabeling refined the localization to the terminal plate of the basal bodies, the transition zone, and spots along the axoneme, preferentially between the membrane and the microtubules. RNA interference (RNAi) depletion of Bug22p provoked a strong decrease in swimming speed, followed by cell death after a few days. High-speed video microscopy and morphological analysis of Bug22p-depleted cells showed that the protein plays an important role in the efficiency of ciliary movement by participating in the stroke shape and rigidity of cilia. The defects in cell swimming and growth provoked by RNAi can be complemented by expression of human Bug22p. This is the first reported case of complementation by a human gene in a ciliate.

  2. Three-dimensional high-resolution ultrasonic imaging of the eye

    NASA Astrophysics Data System (ADS)

    Silverman, Ronald H.; Lizzi, Frederick L.; Kalisz, Andrew; Coleman, D. J.

    2000-04-01

    Very high frequency (50 MHz) ultrasound provides spatial resolution on the order of 30 microns axially by 60 microns laterally. Our aim was to reconstruct the three-dimensional anatomy of the eye in the full detail permitted by this fine- scale transducer resolution. We scanned the eyes of human subjects and anesthetized rabbits in a sequence of parallel planes 50 microns apart. Within each scan plane, vectors were also spaced 50 microns apart. Radio-frequency data were digitized at a rate of 250 MHz or higher. A series of spectrum analysis and segmentation algorithms was applied to data acquired in each plane; the outputs of these procedures were used to produce color-coded 3-D representations of the sclera, iris and ciliary processes to enhance 3-D volume rendered presentation. We visualized the radial pattern of individual ciliary processes in humans and rabbits and the geodetic web of supporting connections between the ciliary processes and iris that exist only in the rabbit. By acquiring data such that adjacent vectors and planes are separated by less than the transducer's lateral resolution, we were able to visualize structures, such as the ciliary web, that had not been seen before in-vivo. Our techniques offer the possibility of high- precision imaging and measurement of anterior segment structures. This would be relevant in monitoring of glaucoma, tumors, foreign bodies and other clinical conditions.

  3. PhotoGate microscopy: tracking single molecules in a cytoplasm (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yildiz, Ahmet

    2016-02-01

    Tracking single molecules inside cells reveals the dynamics of biological processes, including receptor trafficking, signaling and cargo transport. However, individual molecules often cannot be resolved inside cells due to their high density in the cellular environment. We developed a photobleaching gate assay, which controls the number of fluorescent particles in a region of interest by repeatedly photobleaching its boundary. Using this method, we tracked single particles at surface densities two orders of magnitude higher than the single-molecule detection limit. We observed ligand-induced dimerization of epidermal growth factor receptors (EGFR) on a live cell membrane. In addition, we tracked individual intraflagellar transport (IFT) trains along the length of a cilium and observed their remodeling at the ciliary tip.

  4. Adenosine receptor distribution in Rhesus monkey ocular tissue.

    PubMed

    Beach, Krista M; Hung, Li-Fang; Arumugam, Baskar; Smith, Earl L; Ostrin, Lisa A

    2018-05-21

    Adenosine receptor (ADOR) antagonists, such as 7-methylxanthine (7-MX), have been shown to slow myopia progression in humans and animal models. Adenosine receptors are found throughout the body, and regulate the release of neurotransmitters such as dopamine and glutamate. However, the role of adenosine in eye growth is unclear. Evidence suggests that 7-MX increases scleral collagen fibril diameter, hence preventing axial elongation. This study used immunohistochemistry (IHC) and reverse-transcription quantitative polymerase chain reaction (RT-qPCR) to examine the distribution of the four ADORs in the normal monkey eye to help elucidate potential mechanisms of action. Eyes were enucleated from six Rhesus monkeys. Anterior segments and eyecups were separated into components and flash-frozen for RNA extraction or fixed in 4% paraformaldehyde and processed for immunohistochemistry against ADORA1, ADORA2a, ADORA2b, and ADORA3. RNA was reverse-transcribed, and qPCR was performed using custom primers. Relative gene expression was calculated using the ΔΔCt method normalizing to liver expression, and statistical analysis was performed using Relative Expression Software Tool. ADORA1 immunostaining was highest in the iris sphincter muscle, trabecular meshwork, ciliary epithelium, and retinal nerve fiber layer. ADORA2a immunostaining was highest in the corneal epithelium, trabecular meshwork, ciliary epithelium, retinal nerve fiber layer, and scleral fibroblasts. ADORA2b immunostaining was highest in corneal basal epithelium, limbal stem cells, iris sphincter, ciliary muscle, ciliary epithelium, choroid, isolated retinal ganglion cells and scattered scleral fibroblasts. ADORA3 immunostaining was highest in the iris sphincter, ciliary muscle, ciliary epithelium, choroid, isolated retinal ganglion cells, and scleral fibroblasts. Compared to liver mRNA, ADORA1 mRNA was significantly higher in the brain, retina and choroid, and significantly lower in the iris/ciliary body. ADORA2a expression was higher in brain and retina, ADORA2b expression was higher in retina, and ADORA3 was higher in the choroid. In conclusion, immunohistochemistry and RT-qPCR indicated differential patterns of expression of the four adenosine receptors in the ocular tissues of the normal non-human primate. The presence of ADORs in scleral fibroblasts and the choroid may support mechanisms by which ADOR antagonists prevent myopia. The potential effects of ADOR inhibition on both anterior and posterior ocular structures warrant investigation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Bioinformatics and reanalysis of subtracted expressed sequence tags from the human ciliary body: Identification of novel biological functions.

    PubMed

    Escribano, Julio; Coca-Prados, Miguel

    2002-08-28

    The ciliary body is largely known for its major roles in the regulation of aqueous humor secretion, intraocular pressure, and accommodation of the lens. In this review article we applied bioinformatics to re-examine hundreds of expressed sequence tags (ESTs) previously isolated by subtractive hybridization from a human ciliary body library [1]. The DNA sequences of these clones have been recently added to the web site of NEIBank. DNA sequence comparisons of subtracted ESTs were performed against all entries in the last available release of the non-redundant database containing GenBank, EMBL, DDBJ and PDB sequences using the BlastN program accessed through NCBI's BLAST services on the internet (NCBI). Sequences were also compared and mapped using the Blast search program provided through the Internet by the Human Genome Project (UCSC). A total number of 284 independent ESTs were classified in 17 functional groups. Analysis of their relationships allowed to define the expression of five major groups of known genes: (i) protein synthesis, folding, secretion and degradation (20%); (ii) energy supply and biosynthesis (12%); (iii) contractility and cytoskeleton structure (6%); (iv) cellular signaling and cell cycle regulation (7%); and (v) nerve cell related tasks (2%), including neuropeptide processing and putative non-visual phototransduction and circadian rhythm control. The largest group contain unidentified sequences, a total of 105 sequences, accounting for 37% of ESTs. The unidentified sequences show similarity to genomic non-coding regions, or genes of unknown function. The most highly represented EST, correspond to myocilin, a gene involved in glaucoma. The data also confirms the secretory functions of the ciliary epithelium, and its high metabolism; the presence of a neuroendocrine peptidergic system presumably involved in the regulation of the intraocular pressure and/or aqueous humor secretion. Additional genes may be related to a non-visual phototransduction cascade and/or to circadian rhythms. Overall this initial group of subtracted ESTs can lead to uncover novel physiological functions of the ciliary body in normal and in disease, as well as novel candidate genes for ocular diseases.

  6. Species variation in biology and physiology of the ciliary epithelium: similarities and differences.

    PubMed

    Do, Chi Wai; Civan, Mortimer M

    2009-04-01

    Glaucoma is a leading cause of irreversible blindness worldwide. Lowering intraocular pressure (IOP) is the only strategy documented to delay the appearance and retard the progression of vision loss. One major approach for lowering IOP is to slow the rate of aqueous humor formation by the ciliary epithelium. As discussed in the present review, the transport basis for this secretion is largely understood. However, several substantive issues are yet to be resolved, including the integrated regulation of secretion, the functional topography of the ciliary epithelium, and the degree and significance of species variation in aqueous humor inflow. This review discusses species differences in net secretion, particularly of Cl(-) and HCO(3)(-) secretion. Identifying animal models most accurately mimicking aqueous humor formation in the human will facilitate development of future novel initiatives to lower IOP.

  7. Super-Resolution Imaging Reveals TCTN2 Depletion-Induced IFT88 Lumen Leakage and Ciliary Weakening.

    PubMed

    Weng, Rueyhung Roc; Yang, T Tony; Huang, Chia-En; Chang, Chih-Wei; Wang, Won-Jing; Liao, Jung-Chi

    2018-06-01

    The primary cilium is an essential organelle mediating key signaling activities, such as sonic hedgehog signaling. The molecular composition of the ciliary compartment is distinct from that of the cytosol, with the transition zone (TZ) gated the ciliary base. The TZ is a packed and organized protein complex containing multiple ciliopathy-associated protein species. Tectonic 2 (TCTN2) is one of the TZ proteins in the vicinity of the ciliary membrane, and its mutation is associated with Meckel syndrome. Despite its importance in ciliopathies, the role of TCTN2 in ciliary structure and molecules remains unclear. Here, we created a CRISPR/Cas9 TCTN2 knockout human retinal pigment epithelial cell line and conducted quantitative analysis of geometric localization using both wide-field and super-resolution microscopy techniques. We found that TCTN2 depletion resulted in partial TZ damage, loss of ciliary membrane proteins, leakage of intraflagellar transport protein IFT88 toward the basal body lumen, and cilium shortening and curving. The basal body lumen occupancy of IFT88 was also observed in si-RPGRIP1L cells and cytochalasin-D-treated wild-type cells, suggesting varying lumen accessibility for intraflagellar transport proteins under different perturbed conditions. Our findings support two possible models for the lumen leakage of IFT88, i.e., a tip leakage model and a misregulation model. Together, our quantitative image analysis augmented by super-resolution microscopy facilitates the observation of structural destruction and molecular redistribution in TCTN2 -/- cilia, shedding light on mechanistic understanding of TZ-protein-associated ciliopathies. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Miyake-Apple view of inner side of sclerotomy during microincision vitrectomy surgery.

    PubMed

    Inoue, Makoto; Ota, Ichiro; Taniuchi, Shutaro; Nagamoto, Toshiyuki; Miyake, Kensaku; Hirakata, Akito

    2011-08-01

    To examine the inner surface of the sclerotomy during microincision vitrectomy surgery by Miyake-Apple view. The anterior half of porcine eyes was attached to a transparent acrylic plate with cyanoacrylate glue. Then, either a 23-gauge or a 25-gauge trocar-cannula was inserted through the sclera obliquely. The inner surface of the entrance site was observed posteriorly by Miyake-Apple view. These images were compared with the endoscopic view of two patients who underwent vitreous surgery for an epiretinal membrane. When the trocar-cannula was inserted obliquely, the Miyake-Apple view showed that the ciliary epithelium at the sclerotomy site was stretched. When the trocar-cannula was inserted vertically, the ciliary epithelium was folded, and the folds remained even after the trocar was removed. Vitreous strands were seen incarcerated into the sclerotomy site. In human eyes, a folding of the ciliary epithelium was not clearly seen with the endoscopic view but the incarcerated vitreous was seen. The Miyake-Apple view provided a precise, in vivo, observation of the inner surface of the entry site. It disclosed the morphological stress on the ciliary epithelium by the sclerotomy. © 2011 The Authors. Acta Ophthalmologica © 2011 Acta Ophthalmologica Scandinavica Foundation.

  9. Ciliary photoreceptors in the cerebral eyes of a protostome larva

    PubMed Central

    2011-01-01

    Background Eyes in bilaterian metazoans have been described as being composed of either ciliary or rhabdomeric photoreceptors. Phylogenetic distribution, as well as distinct morphologies and characteristic deployment of different photopigments (ciliary vs. rhabdomeric opsins) and transduction pathways argue for the co-existence of both of these two photoreceptor types in the last common bilaterian ancestor. Both receptor types exist throughout the Bilateria, but only vertebrates are thought to use ciliary photoreceptors for directional light detection in cerebral eyes, while all other invertebrate bilaterians studied utilize rhabdomeric photoreceptors for this purpose. In protostomes, ciliary photoreceptors that express c-opsin have been described only from a non-visual deep-brain photoreceptor. Their homology with vertebrate rods and cones of the human eye has been hypothesized to represent a unique functional transition from non-visual to visual roles in the vertebrate lineage. Results To test the hypothesis that protostome cerebral eyes employ exclusively rhabdomeric photoreceptors, we investigated the ultrastructure of the larval eyes in the brachiopod Terebratalia transversa. We show that these pigment-cup eyes consist of a lens cell and a shading pigment cell, both of which are putative photoreceptors, deploying a modified, enlarged cilium for light perception, and have axonal connections to the larval brain. Our investigation of the gene expression patterns of c-opsin, Pax6 and otx in these eyes confirms that the larval eye spots of brachiopods are cerebral eyes that deploy ciliary type photoreceptors for directional light detection. Interestingly, c-opsin is also expressed during early embryogenesis in all potential apical neural cells, becoming restricted to the anterior neuroectoderm, before expression is initiated in the photoreceptor cells of the eyes. Coincident with the expression of c-opsin in the presumptive neuroectoderm, we found that middle gastrula stage embryos display a positive photoresponse behavior, in the absence of a discrete shading pigment or axonal connections between cells. Conclusions Our results indicate that the dichotomy in the deployment of ciliary and rhabdomeric photoreceptors for directional light detection is not as clear-cut as previously thought. Analyses of brachiopod larval eyes demonstrate that the utilization of c-opsin expressing ciliary photoreceptors in cerebral eyes is not limited to vertebrates. The presence of ciliary photoreceptor-based eyes in protostomes suggests that the transition between non-visual and visual functions of photoreceptors has been more evolutionarily labile than previously recognized, and that co-option of ciliary and rhabdomeric photoreceptor cell types for directional light detection has occurred multiple times during animal evolution. In addition, positive photoresponse behavior in gastrula stage embryos suggests that a discrete shading pigment is not requisite for directional photoreception in metazoans. Scanning photoreception of light intensities mediating cell-autonomous changes of ciliary movement may represent an ancient mechanism for regulating locomotory behavior, and is likely to have existed prior to the evolution of eye-mediated directional light detection employing axonal connections to effector cells and a discreet shading pigment. PMID:21362157

  10. Sex steroid hormone metabolism takes place in human ocular cells.

    PubMed

    Coca-Prados, Miguel; Ghosh, Sikha; Wang, Yugang; Escribano, Julio; Herrala, Annakaisa; Vihko, Pirkko

    2003-08-01

    Steroids are potentially important mediators in the pathophysiology of ocular diseases. In this study, we report on the gene expression in the human eye of a group of enzymes, the 17beta-hydroxysteroid dehydrogenases (17HSDs), involved in the biosynthesis and inactivation of sex steroid hormones. In the eye, the ciliary epithelium, a neuroendocrine secretory epithelium, co-expresses the highest levels of 17HSD2 and 5 mRNAs, and in lesser level 17HSD7 mRNA. The regulation of gene expression of these enzymes was investigated in vitro in cell lines, ODM-C4 and chronic open glaucoma (GCE), used as cell models of the human ciliary epithelium. The estrogen, 17beta-estradiol (10(-7) M) and androgen agonist, R1881 (10(-8) M) elicited in ODM-C4 and GCE cells over a 24 h time course a robust up-regulation of 17HSD7 mRNA expression. 17HSD2 was up-regulated by estradiol in ODM-C4 cells, but not in GCE cells. Under steady-state conditions, ODM-C4 cells exhibited a predominant 17HSD2 oxidative enzymatic activity. In contrast, 17HSD2 activity was low or absent in GCE cells. Our collective data suggest that cultured human ciliary epithelial cells are able to metabolize estrogen, androgen and progesterone, and that 17HSD2 and 7 in these cells are sex steroid hormone-responsive genes and 17HSD7 is responsible to keep on intra/paracrine estrogenic milieu.

  11. Epithelial Cell Culture from Human Adenoids: A Functional Study Model for Ciliated and Secretory Cells

    PubMed Central

    González, Claudia; Espinosa, Marisol; Sánchez, María Trinidad; Droguett, Karla; Ríos, Mariana; Fonseca, Ximena; Villalón, Manuel

    2013-01-01

    Background. Mucociliary transport (MCT) is a defense mechanism of the airway. To study the underlying mechanisms of MCT, we have both developed an experimental model of cultures, from human adenoid tissue of ciliated and secretory cells, and characterized the response to local chemical signals that control ciliary activity and the secretion of respiratory mucins in vitro. Materials and Methods. In ciliated cell cultures, ciliary beat frequency (CBF) and intracellular Ca2+ levels were measured in response to ATP, UTP, and adenosine. In secretory cultures, mucin synthesis and secretion were identified by using immunodetection. Mucin content was taken from conditioned medium and analyzed in the presence or absence of UTP. Results. Enriched ciliated cell monolayers and secretory cells were obtained. Ciliated cells showed a basal CBF of 10.7 Hz that increased significantly after exposure to ATP, UTP, or adenosine. Mature secretory cells showed active secretion of granules containing different glycoproteins, including MUC5AC. Conclusion. Culture of ciliated and secretory cells grown from adenoid epithelium is a reproducible and feasible experimental model, in which it is possible to observe ciliary and secretory activities, with a potential use as a model to understand mucociliary transport control mechanisms. PMID:23484122

  12. BMP signaling is required for development of the ciliary body.

    PubMed

    Zhao, Shulei; Chen, Qin; Hung, Fang-Cheng; Overbeek, Paul A

    2002-10-01

    The ciliary body in the eye secretes aqueous humor and glycoproteins of the vitreous body and maintains the intraocular pressure. The ciliary muscle controls the shape of the lens through the ciliary zonules to focus the image onto the retina. During embryonic development, the ciliary epithelium is derived from the optic vesicle, but the molecular signals that control morphogenesis of the ciliary body are unknown. We report that lens-specific expression of a transgenic protein, Noggin, can block BMP signaling in the mouse eye and result in failure in formation of the ciliary processes. Co-expression of transgenic BMP7 restores normal development of the ciliary epithelium. Ectopic expression of Noggin also promotes differentiation of retinal ganglion cells. These results indicate that BMP signaling is required for development of the ciliary body and may also play a role in regulation of neuronal differentiation in the developing eye.

  13. Exploring the Transcriptome of Ciliated Cells Using In Silico Dissection of Human Tissues

    PubMed Central

    Ivliev, Alexander E.; 't Hoen, Peter A. C.; van Roon-Mom, Willeke M. C.; Peters, Dorien J. M.; Sergeeva, Marina G.

    2012-01-01

    Cilia are cell organelles that play important roles in cell motility, sensory and developmental functions and are involved in a range of human diseases, known as ciliopathies. Here, we search for novel human genes related to cilia using a strategy that exploits the previously reported tendency of cell type-specific genes to be coexpressed in the transcriptome of complex tissues. Gene coexpression networks were constructed using the noise-resistant WGCNA algorithm in 12 publicly available microarray datasets from human tissues rich in motile cilia: airways, fallopian tubes and brain. A cilia-related coexpression module was detected in 10 out of the 12 datasets. A consensus analysis of this module's gene composition recapitulated 297 known and predicted 74 novel cilia-related genes. 82% of the novel candidates were supported by tissue-specificity expression data from GEO and/or proteomic data from the Human Protein Atlas. The novel findings included a set of genes (DCDC2, DYX1C1, KIAA0319) related to a neurological disease dyslexia suggesting their potential involvement in ciliary functions. Furthermore, we searched for differences in gene composition of the ciliary module between the tissues. A multidrug-and-toxin extrusion transporter MATE2 (SLC47A2) was found as a brain-specific central gene in the ciliary module. We confirm the localization of MATE2 in cilia by immunofluorescence staining using MDCK cells as a model. While MATE2 has previously gained attention as a pharmacologically relevant transporter, its potential relation to cilia is suggested for the first time. Taken together, our large-scale analysis of gene coexpression networks identifies novel genes related to human cell cilia. PMID:22558177

  14. Inactivation of Ca2+-induced ciliary reversal by high-salt extraction in the cilia of Paramecium.

    PubMed

    Kutomi, Osamu; Seki, Makoto; Nakamura, Shogo; Kamachi, Hiroyuki; Noguchi, Munenori

    2013-10-01

    Intracellular Ca(2+) induces ciliary reversal and backward swimming in Paramecium. However, it is not known how the Ca(2+) signal controls the motor machinery to induce ciliary reversal. We found that demembranated cilia on the ciliated cortical sheets from Paramecium caudatum lost the ability to undergo ciliary reversal after brief extraction with a solution containing 0.5 M KCl. KNO(3), which is similar to KCl with respect to chaotropic effect; it had the same effect as that of KCl on ciliary response. Cyclic AMP antagonizes Ca(2+)-induced ciliary reversal. Limited trypsin digestion prevents endogenous A-kinase and cAMP-dependent phosphorylation of an outer arm dynein light chain and induces ciliary reversal. However, the trypsin digestion prior to the high-salt extraction did not affect the inhibition of Ca(2+)-induced ciliary reversal caused by the high-salt extraction. Furthermore, during the course of the high-salt extraction, some axonemal proteins were extracted from ciliary axonemes, suggesting that they may be responsible for Ca(2+)-induced ciliary reversal.

  15. Neuronal NOS localises to human airway cilia.

    PubMed

    Jackson, Claire L; Lucas, Jane S; Walker, Woolf T; Owen, Holly; Premadeva, Irnthu; Lackie, Peter M

    2015-01-30

    Airway NO synthase (NOS) isoenzymes are responsible for rapid and localised nitric oxide (NO) production and are expressed in airway epithelium. We sought to determine the localisation of neuronal NOS (nNOS) in airway epithelium due to the paucity of evidence. Sections of healthy human bronchial tissue in glycol methacrylate resin and human nasal polyps in paraffin wax were immunohistochemically labelled and reproducibly demonstrated nNOS immunoreactivity, particularly at the proximal portion of cilia; this immunoreactivity was blocked by a specific nNOS peptide fragment. Healthy human epithelial cells differentiated at an air-liquid interface (ALI) confirmed the presence of all three NOS isoenzymes by immunofluorescence labelling. Only nNOS immunoreactivity was specific to the ciliary axonemeand co-localised with the cilia marker β-tubulin in the proximal part of the ciliary axoneme. We report a novel localisation of nNOS at the proximal portion of cilia in airway epithelium and conclude that its independent and local regulation of NO levels is crucial for normal cilia function. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Repair of cyclobutyl pyrimidine dimers in human skin: variability among normal humans in nucleotide excision and in photorepair.

    PubMed

    Sutherland, Betsy M; Hacham, Haim; Bennett, Paula; Sutherland, John C; Moran, Michael; Gange, R W

    2002-06-01

    Photoreactivation (PR) of cyclobutyl pyrimidine dimers (CPD) in human skin remains controversial. Recently Whitmore et al. (1) reported negative results of experiments using two photorepair light (PRL) sources on UV-irradiated skin of volunteers. However, their PRL sources induced substantial levels of dimers in skin, suggesting that the additional dimers formed could have obscured PR. We met a similar problem of dimer induction by a PRL source. We designed and validated a PRL source of sufficient intensity to catalyse PR, but that did not induce CPD, and used it to measure photorepair in human skin. Using a solar simulator filtered with three types of UV-filters, we found significant dimer formation in skin, quantified by number average length analysis using electrophoretic gels of isolated skin DNA. To prevent scattered UV from reaching the skin, we interposed shields between the filters and skin, and showed that the UV-filtered/shielded solar simulator system did not induce damage in isolated DNA or in human skin. We exposed skin of seven healthy human volunteers to 302 nm radiation, then to the improved PRL source (control skin areas were kept in the dark for measurement of excision repair). Using a high intensity PRL source that did not induce dimers in skin, we found that three of seven subjects carried out rapid photorepair of dimers; two carried out moderate or slow dimer photorepair, and three did not show detectable photorepair. Excision repair was similarly variable in these volunteers. Subjects with slower excision repair showed rapid photorepair, whereas those with rapid excision generally showed little or no photoreactivation.

  17. A Dimeric Mutant of Human Pancreatic Ribonuclease with Selective Cytotoxicity toward Malignant Cells

    NASA Astrophysics Data System (ADS)

    Piccoli, Renata; di Gaetano, Sonia; de Lorenzo, Claudia; Grauso, Michela; Monaco, Carmen; Spalletti-Cernia, Daniela; Laccetti, Paolo; Cinatl, Jaroslav; Matousek, Josef; D'Alessio, Giuseppe

    1999-07-01

    Monomeric human pancreatic RNase, devoid of any biological activity other than its RNA degrading ability, was engineered into a dimeric protein with a cytotoxic action on mouse and human tumor cells, but lacking any appreciable toxicity on mouse and human normal cells. This dimeric variant of human pancreas RNase selectively sensitizes to apoptotic death cells derived from a human thyroid tumor. Because of its selectivity for tumor cells, and because of its human origin, this protein represents a potentially very attractive, novel tool for anticancer therapy.

  18. In vitro effects of anthocyanidins on sinonasal epithelial nitric oxide production and bacterial physiology

    PubMed Central

    Hariri, Benjamin M.; Payne, Sakeena J.; Chen, Bei; Mansfield, Corrine; Doghramji, Laurel J.; Adappa, Nithin D.; Palmer, James N.; Kennedy, David W.; Niv, Masha Y.

    2016-01-01

    Background: T2R bitter taste receptors play a crucial role in sinonasal innate immunity by upregulating mucociliary clearance and nitric oxide (NO) production in response to bitter gram-negative quorum-sensing molecules in the airway surface liquid. Previous studies showed that phytochemical flavonoid metabolites, known as anthocyanidins, taste bitter and have antibacterial effects. Our objectives were to examine the effects of anthocyanidins on NO production by human sinonasal epithelial cells and ciliary beat frequency, and their impact on common sinonasal pathogens Pseudomonas aeruginosa and Staphylococcus aureus. Methods: Ciliary beat frequency and NO production were measured by using digital imaging of differentiated air-liquid interface cultures prepared from primary human cells isolated from residual surgical material. Plate-based assays were used to determine the effects of anthocyanidins on bacterial swimming and swarming motility. Biofilm formation and planktonic growth were also assessed. Results: Anthocyanidin compounds triggered epithelial cells to produce NO but not through T2R receptors. However, anthocyanidins did not impact ciliary beat frequency. Furthermore, they did not reduce biofilm formation or planktonic growth of P. aeruginosa. In S. aureus, they did not reduce planktonic growth, and only one compound had minimal antibiofilm effects. The anthocyanidin delphinidin and anthocyanin keracyanin were found to promote bacterial swimming, whereas anthocyanidin cyanidin and flavonoid myricetin did not. No compounds that were tested inhibited bacterial swarming. Conclusion: Results of this study indicated that, although anthocyanidins may elicited an innate immune NO response from human cells, they do not cause an increase in ciliary beating and they may also cause a pathogenicity-enhancing effect in P. aeruginosa. Additional studies are necessary to understand how this would affect the use of anthocyanidins as therapeutics. This study emphasized the usefulness of in vitro screening of candidate compounds against multiple parameters of both epithelial and bacterial physiologies to prioritize candidates for in vivo therapeutic testing. PMID:27456596

  19. ACCOMMODATIVE MOVEMENTS OF THE LENS/CAPSULE AND THE STRAND THAT EXTENDS BETWEEN THE POSTERIOR VITREOUS ZONULE INSERTION ZONE & THE LENS EQUATOR, IN RELATION TO THE VITREOUS FACE AND AGING

    PubMed Central

    CROFT, MARY ANN; HEATLEY, GREGG; MCDONALD, JARED P.; KATZ, ALEXANDER; KAUFMAN, PAUL L.

    2016-01-01

    Purpose To elucidate the dynamic accommodative movements of the lens capsule, posterior lens and the strand that attaches to the posterior vitreous zonule insertion zone and posterior lens equator (PVZ INS-LE), and their age-related changes. Methods Twelve human subjects (ages 19–65 years) and twelve rhesus monkeys (ages 6–27 years) were studied. Accommodation was induced pharmacologically (humans) or by central electrical stimulation (monkeys). Ultrasound biomicroscopy was used to image intraocular structures in both species. Surgical procedures and contrast agents were utilized in the monkey eyes to elucidate function and allow visualization of the intraocular accommodative structures. Results Human: The posterior pole of the lens moves posteriorly during accommodation in proportion to accommodative amplitude and ciliary muscle movement. Monkey: Similar accommodative movements of the posterior lens pole were seen in the monkey eyes. Following extracapsular lens extraction (ECLE), the central capsule bows backward during accommodation in proportion to accommodative amplitude and ciliary muscle movement, while the peripheral capsule moves forward. During accommodation the ciliary muscle moved forward by ~1.0 mm, pulling forward the vitreous zonule and the PVZ INS-LE structure. During the accommodative response the PVZ INS-LE structure moved forward when the lens was intact and when the lens substance and capsule were removed. In both the monkey and the human eyes these movements declined with age. Conclusions The accommodative shape change of the central capsule may be due to the elastic properties of the capsule itself. For these capsule/lens accommodative posterior movements to occur, the vitreous face must either allow for it or facilitate it. The PVZ INS-LE structure may act as a “strut” to the posterior lens equator (pushing the lens equator forward) and thereby facilitate accommodative forward lens equator movement and lens thickening. The age-related posterior restriction of the ciliary muscle, vitreous zonule and the PVZ-INS LE structure dampens the accommodative lens shape change. Future descriptions of the accommodative mechanism, and approaches to presbyopia therapy, may need to incorporate these findings. PMID:26769326

  20. Age-related posterior ciliary muscle restriction – A link between trabecular meshwork and optic nerve head pathophysiology

    PubMed Central

    Lütjen-Drecoll, Elke; Kaufman, Paul L.

    2016-01-01

    The ciliary muscle plays a major role in controlling both accommodation and outflow facility in primates. The ciliary muscle and the choroid functionally form an elastic network that extends from the trabecular meshwork all the way to the back of the eye and ultimately attaches to the elastic fiber ring that surrounds the optic nerve and to the lamina cribrosa through which the nerve passes. The ciliary muscle governs the accommodative movement of the elastic network. With age ciliary muscle mobility is restricted by progressively inelastic posterior attachments and the posterior restriction makes the contraction progressively isometric; placing increased tension on the optic nerve region. In addition, outflow facility also declines with age and limbal corneoscleral contour bows inward. Age-related loss in muscle movement and altered limbal corneoscleral contour could both compromise the basal function of the trabecular meshwork. Further, recent studies in non-human primates show that the central vitreous moves posteriorly all the way back to the optic nerve region, suggesting a fluid current and a pressure gradient toward the optic nerve. Thus, there may be pressure and tension spikes on the optic nerve region during accommodation and these pressure and tension spikes may increase with age. This constellation of events could be relevant to glaucomatous optic neuropathy. In summary, our hypothesis is that glaucoma and presbyopia may be literally linked to each other, via the choroid, and that damage to the optic nerve may be inflicted by accommodative intraocular pressure and choroidal tension “spikes”, which may increase with age. PMID:27453343

  1. Age-related posterior ciliary muscle restriction - A link between trabecular meshwork and optic nerve head pathophysiology.

    PubMed

    Croft, Mary Ann; Lütjen-Drecoll, Elke; Kaufman, Paul L

    2017-05-01

    The ciliary muscle plays a major role in controlling both accommodation and outflow facility in primates. The ciliary muscle and the choroid functionally form an elastic network that extends from the trabecular meshwork all the way to the back of the eye and ultimately attaches to the elastic fiber ring that surrounds the optic nerve and to the lamina cribrosa through which the nerve passes. The ciliary muscle governs the accommodative movement of the elastic network. With age ciliary muscle mobility is restricted by progressively inelastic posterior attachments and the posterior restriction makes the contraction progressively isometric; placing increased tension on the optic nerve region. In addition, outflow facility also declines with age and limbal corneoscleral contour bows inward. Age-related loss in muscle movement and altered limbal corneoscleral contour could both compromise the basal function of the trabecular meshwork. Further, recent studies in non-human primates show that the central vitreous moves posteriorly all the way back to the optic nerve region, suggesting a fluid current and a pressure gradient toward the optic nerve. Thus, there may be pressure and tension spikes on the optic nerve region during accommodation and these pressure and tension spikes may increase with age. This constellation of events could be relevant to glaucomatous optic neuropathy. In summary, our hypothesis is that glaucoma and presbyopia may be literally linked to each other, via the choroid, and that damage to the optic nerve may be inflicted by accommodative intraocular pressure and choroidal tension "spikes", which may increase with age. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Purification and characterization of factors produced by Aspergillus fumigatus which affect human ciliated respiratory epithelium.

    PubMed

    Amitani, R; Taylor, G; Elezis, E N; Llewellyn-Jones, C; Mitchell, J; Kuze, F; Cole, P J; Wilson, R

    1995-09-01

    The mechanisms by which Aspergillus fumigatus colonizes the respiratory mucosa are unknown. Culture filtrates of eight of nine clinical isolates of A. fumigatus slowed ciliary beat frequency and damaged human respiratory epithelium in vitro. These changes appeared to occur concurrently. Culture filtrates of two clinical isolates of Candida albicans had no effect on ciliated epithelium. We have purified and characterized cilioinhibitory factors of a clinical isolate of A. fumigatus. The cilioinhibitory activity was heat labile, reduced by dialysis, and partially extractable into chloroform. The activity was associated with both high- and low-molecular-weight factors, as determined by gel filtration on Sephadex G-50. A low-molecular-weight cilioinhibitory factor was further purified by reverse-phase high-performance liquid chromatography and shown by mass spectrometry to be gliotoxin, a known metabolite of A. fumigatus. Gliotoxin significantly slowed ciliary beat frequency in association with epithelial damage at concentrations above 0.2 microgram/ml; other Aspergillus toxins, i.e., fumagillin and helvolic acid, were also cilioinhibitory but at much higher concentrations. High-molecular-weight (> or = 35,000 and 25,000) cilioinhibitory materials had neither elastolytic nor proteolytic activity and remain to be identified. Thus, A. fumigatus produces a number of biologically active substances which slow ciliary beating and damage epithelium and which may influence colonization of the airways.

  3. Human glucose-6-phosphate dehydrogenase: the crystal structure reveals a structural NADP(+) molecule and provides insights into enzyme deficiency.

    PubMed

    Au, S W; Gover, S; Lam, V M; Adams, M J

    2000-03-15

    Glucose-6-phosphate dehydrogenase (G6PD) catalyses the first committed step in the pentose phosphate pathway; the generation of NADPH by this enzyme is essential for protection against oxidative stress. The human enzyme is in a dimer<-->tetramer equilibrium and its stability is dependent on NADP(+) concentration. G6PD deficiency results from many different point mutations in the X-linked gene encoding G6PD and is the most common human enzymopathy. Severe deficiency causes chronic non-spherocytic haemolytic anaemia; the usual symptoms are neonatal jaundice, favism and haemolytic anaemia. We have determined the first crystal structure of a human G6PD (the mutant Canton, Arg459-->Leu) at 3 A resolution. The tetramer is a dimer of dimers. Despite very similar dimer topology, there are two major differences from G6PD of Leuconostoc mesenteroides: a structural NADP(+) molecule, close to the dimer interface but integral to the subunit, is visible in all subunits of the human enzyme; and an intrasubunit disulphide bond tethers the otherwise disordered N-terminal segment. The few dimer-dimer contacts making the tetramer are charge-charge interactions. The importance of NADP(+) for stability is explained by the structural NADP(+) site, which is not conserved in prokaryotes. The structure shows that point mutations causing severe deficiency predominate close to the structural NADP(+) and the dimer interface, primarily affecting the stability of the molecule. They also indicate that a stable dimer is essential to retain activity in vivo. As there is an absolute requirement for some G6PD activity, residues essential for coenzyme or substrate binding are rarely modified.

  4. Whole-Organism Developmental Expression Profiling Identifies RAB-28 as a Novel Ciliary GTPase Associated with the BBSome and Intraflagellar Transport

    PubMed Central

    Sanders, Anna A. W. M.; Li, Chunmei; Kennedy, Julie; Cai, Jerry; Scheidel, Noemie; Kennedy, Breandán N.; Morin, Ryan D.; Leroux, Michel R.; Blacque, Oliver E.

    2016-01-01

    Primary cilia are specialised sensory and developmental signalling devices extending from the surface of most eukaryotic cells. Defects in these organelles cause inherited human disorders (ciliopathies) such as retinitis pigmentosa and Bardet-Biedl syndrome (BBS), frequently affecting many physiological and developmental processes across multiple organs. Cilium formation, maintenance and function depend on intracellular transport systems such as intraflagellar transport (IFT), which is driven by kinesin-2 and IFT-dynein motors and regulated by the Bardet-Biedl syndrome (BBS) cargo-adaptor protein complex, or BBSome. To identify new cilium-associated genes, we employed the nematode C. elegans, where ciliogenesis occurs within a short timespan during late embryogenesis when most sensory neurons differentiate. Using whole-organism RNA-Seq libraries, we discovered a signature expression profile highly enriched for transcripts of known ciliary proteins, including FAM-161 (FAM161A orthologue), CCDC-104 (CCDC104), and RPI-1 (RP1/RP1L1), which we confirm are cilium-localised in worms. From a list of 185 candidate ciliary genes, we uncover orthologues of human MAP9, YAP, CCDC149, and RAB28 as conserved cilium-associated components. Further analyses of C. elegans RAB-28, recently associated with autosomal-recessive cone-rod dystrophy, reveal that this small GTPase is exclusively expressed in ciliated neurons where it dynamically associates with IFT trains. Whereas inactive GDP-bound RAB-28 displays no IFT movement and diffuse localisation, GTP-bound (activated) RAB-28 concentrates at the periciliary membrane in a BBSome-dependent manner and undergoes bidirectional IFT. Functional analyses reveal that whilst cilium structure, sensory function and IFT are seemingly normal in a rab-28 null allele, overexpression of predicted GDP or GTP locked variants of RAB-28 perturbs cilium and sensory pore morphogenesis and function. Collectively, our findings present a new approach for identifying ciliary proteins, and unveil RAB28, a GTPase most closely related to the BBS protein RABL4/IFT27, as an IFT-associated cargo with BBSome-dependent cell autonomous and non-autonomous functions at the ciliary base. PMID:27930654

  5. Whole-Organism Developmental Expression Profiling Identifies RAB-28 as a Novel Ciliary GTPase Associated with the BBSome and Intraflagellar Transport.

    PubMed

    Jensen, Victor L; Carter, Stephen; Sanders, Anna A W M; Li, Chunmei; Kennedy, Julie; Timbers, Tiffany A; Cai, Jerry; Scheidel, Noemie; Kennedy, Breandán N; Morin, Ryan D; Leroux, Michel R; Blacque, Oliver E

    2016-12-01

    Primary cilia are specialised sensory and developmental signalling devices extending from the surface of most eukaryotic cells. Defects in these organelles cause inherited human disorders (ciliopathies) such as retinitis pigmentosa and Bardet-Biedl syndrome (BBS), frequently affecting many physiological and developmental processes across multiple organs. Cilium formation, maintenance and function depend on intracellular transport systems such as intraflagellar transport (IFT), which is driven by kinesin-2 and IFT-dynein motors and regulated by the Bardet-Biedl syndrome (BBS) cargo-adaptor protein complex, or BBSome. To identify new cilium-associated genes, we employed the nematode C. elegans, where ciliogenesis occurs within a short timespan during late embryogenesis when most sensory neurons differentiate. Using whole-organism RNA-Seq libraries, we discovered a signature expression profile highly enriched for transcripts of known ciliary proteins, including FAM-161 (FAM161A orthologue), CCDC-104 (CCDC104), and RPI-1 (RP1/RP1L1), which we confirm are cilium-localised in worms. From a list of 185 candidate ciliary genes, we uncover orthologues of human MAP9, YAP, CCDC149, and RAB28 as conserved cilium-associated components. Further analyses of C. elegans RAB-28, recently associated with autosomal-recessive cone-rod dystrophy, reveal that this small GTPase is exclusively expressed in ciliated neurons where it dynamically associates with IFT trains. Whereas inactive GDP-bound RAB-28 displays no IFT movement and diffuse localisation, GTP-bound (activated) RAB-28 concentrates at the periciliary membrane in a BBSome-dependent manner and undergoes bidirectional IFT. Functional analyses reveal that whilst cilium structure, sensory function and IFT are seemingly normal in a rab-28 null allele, overexpression of predicted GDP or GTP locked variants of RAB-28 perturbs cilium and sensory pore morphogenesis and function. Collectively, our findings present a new approach for identifying ciliary proteins, and unveil RAB28, a GTPase most closely related to the BBS protein RABL4/IFT27, as an IFT-associated cargo with BBSome-dependent cell autonomous and non-autonomous functions at the ciliary base.

  6. Circular flow patterns induced by ciliary activity in reconstituted human bronchial epithelium

    NASA Astrophysics Data System (ADS)

    Viallat, Annie; Khelloufi, Kamel; Gras, Delphine; Chanez, Pascal; Aix Marseille Univ., CNRS, CINaM, Marseille, France Team; Aix Marseille Univ., CNRS, Inserm, LAI, Marseille, France Team

    2016-11-01

    Mucociliary clearance is the transport at the surface of airways of a complex fluid layer, the mucus, moved by the beats of microscopic cilia present on epithelial ciliated cells. We explored the coupling between the spatial organisation and the activity of cilia and the transport of surface fluids on reconstituted cultures of human bronchial epithelium at air-liquid interface, obtained by human biopsies. We reveal the existence of stable local circular surface flow patterns of mucus or Newtonian fluid at the epithelium surface. We find a power law over more than 3 orders of magnitude showing that the average ciliated cell density controls the size of these flow patterns, and, therefore the distance over which mucus can be transported. We show that these circular flow patterns result from the radial linear increase of the local propelling forces (due to ciliary beats) on each flow domain. This linear increase of local forces is induced by a fine self-regulation of both cilia density and orientation of ciliary beats. Local flow domains grow and merge during ciliogenesis to provide macroscopic mucus transport. This is possible only when the viscoelastic mucus continuously exerts a shear stress on beating cilia, revealing a mechanosensitive function of cilia. M. K. Khelloufi thanks the society MedBioMed for financial support. This work was supported by the ANR MUCOCIL project, Grant ANR-13-BSV5-0015 of the French Agence Nationale de la Recherche.

  7. Identification and quantitation of carotenoids and their metabolites in the tissues of the human eye.

    PubMed

    Bernstein, P S; Khachik, F; Carvalho, L S; Muir, G J; Zhao, D Y; Katz, N B

    2001-03-01

    There is increasing evidence that the macular pigment carotenoids, lutein and zeaxanthin, may play an important role in the prevention of age-related macular degeneration, cataract, and other blinding disorders. Although it is well known that the retina and lens are enriched in these carotenoids, relatively little is known about carotenoid levels in the uveal tract and in other ocular tissues. Also, the oxidative metabolism and physiological functions of the ocular carotenoids are not fully understood. Thus, we have set out to identify and quantify the complete spectrum of dietary carotenoids and their oxidative metabolites in a systematic manner in all tissues of the human eye in order to gain better insight into their ocular physiology. Human donor eyes were dissected, and carotenoid extracts from ocular tissues [retinal pigment epithelium/choroid (RPE/choroid), macula, peripheral retina, ciliary body, iris, lens, vitreous, cornea, and sclera] were analysed by high-performance liquid chromatography (HPLC). Carotenoids were identified and quantified by comparing their chromatographic and spectral profiles with those of authentic standards. Nearly all ocular structures examined with the exception of vitreous, cornea, and sclera had quantifiable levels of dietary (3R,3'R,6'R)-lutein, zeaxanthin, their geometrical (E / Z) isomers, as well as their metabolites, (3R,3'S,6'R)-lutein (3'-epilutein) and 3-hydroxy-beta,epsilon-caroten-3'-one. In addition, human ciliary body revealed the presence of monohydroxycarotenoids and hydrocarbon carotenoids, while only the latter group was detected in human RPE/choroid. Uveal structures (iris, ciliary body, and RPE/choroid) account for approximately 50% of the eye's total carotenoids and approximately 30% of the lutein and zeaxanthin. In the iris, these pigments are likely to play a role in filtering out phototoxic short-wavelength visible light, while they are more likely to act as antioxidants in the ciliary body. Both mechanisms, light screening and antioxidant, may be operative in the RPE/choroid in addition to a possible function of this tissue in the transport of dihydroxycarotenoids from the circulating blood to the retina. This report lends further support for the critical role of lutein, zeaxanthin, and other ocular carotenoids in protecting the eye from light-induced oxidative damage and aging. Copyright 2001 Academic Press.

  8. Regulation of polycystin-1 ciliary trafficking by motifs at its C-terminus and polycystin-2 but not by cleavage at the GPS site

    PubMed Central

    Su, Xuefeng; Wu, Maoqing; Yao, Gang; El-Jouni, Wassim; Luo, Chong; Tabari, Azadeh; Zhou, Jing

    2015-01-01

    ABSTRACT Failure to localize membrane proteins to the primary cilium causes a group of diseases collectively named ciliopathies. Polycystin-1 (PC1, also known as PKD1) is a large ciliary membrane protein defective in autosomal dominant polycystic kidney disease (ADPKD). Here, we developed a large set of PC1 expression constructs and identified multiple sequences, including a coiled-coil motif in the C-terminal tail of PC1, regulating full-length PC1 trafficking to the primary cilium. Ciliary trafficking of wild-type and mutant PC1 depends on the dose of polycystin-2 (PC2, also known as PKD2), and the formation of a PC1–PC2 complex. Modulation of the ciliary trafficking module mediated by the VxP ciliary-targeting sequence and Arf4 and Asap1 does not affect the ciliary localization of full-length PC1. PC1 also promotes PC2 ciliary trafficking. PC2 mutations truncating its C-terminal tail but not those changing the VxP sequence to AxA or impairing the pore of the channel, leading to a dead channel, affect PC1 ciliary trafficking. Cleavage at the GPCR proteolytic site (GPS) of PC1 is not required for PC1 trafficking to cilia. We propose a mutually dependent model for the ciliary trafficking of PC1 and PC2, and that PC1 ciliary trafficking is regulated by multiple cis-acting elements. As all pathogenic PC1 mutations tested here are defective in ciliary trafficking, ciliary trafficking might serve as a functional read-out for ADPKD. PMID:26430213

  9. Regulation of polycystin-1 ciliary trafficking by motifs at its C-terminus and polycystin-2 but not by cleavage at the GPS site.

    PubMed

    Su, Xuefeng; Wu, Maoqing; Yao, Gang; El-Jouni, Wassim; Luo, Chong; Tabari, Azadeh; Zhou, Jing

    2015-11-15

    Failure to localize membrane proteins to the primary cilium causes a group of diseases collectively named ciliopathies. Polycystin-1 (PC1, also known as PKD1) is a large ciliary membrane protein defective in autosomal dominant polycystic kidney disease (ADPKD). Here, we developed a large set of PC1 expression constructs and identified multiple sequences, including a coiled-coil motif in the C-terminal tail of PC1, regulating full-length PC1 trafficking to the primary cilium. Ciliary trafficking of wild-type and mutant PC1 depends on the dose of polycystin-2 (PC2, also known as PKD2), and the formation of a PC1-PC2 complex. Modulation of the ciliary trafficking module mediated by the VxP ciliary-targeting sequence and Arf4 and Asap1 does not affect the ciliary localization of full-length PC1. PC1 also promotes PC2 ciliary trafficking. PC2 mutations truncating its C-terminal tail but not those changing the VxP sequence to AxA or impairing the pore of the channel, leading to a dead channel, affect PC1 ciliary trafficking. Cleavage at the GPCR proteolytic site (GPS) of PC1 is not required for PC1 trafficking to cilia. We propose a mutually dependent model for the ciliary trafficking of PC1 and PC2, and that PC1 ciliary trafficking is regulated by multiple cis-acting elements. As all pathogenic PC1 mutations tested here are defective in ciliary trafficking, ciliary trafficking might serve as a functional read-out for ADPKD. © 2015. Published by The Company of Biologists Ltd.

  10. An autocrine ATP release mechanism regulates basal ciliary activity in airway epithelium.

    PubMed

    Droguett, Karla; Rios, Mariana; Carreño, Daniela V; Navarrete, Camilo; Fuentes, Christian; Villalón, Manuel; Barrera, Nelson P

    2017-07-15

    Extracellular ATP, in association with [Ca 2+ ] i regulation, is required to maintain basal ciliary beat frequency. Increasing extracellular ATP levels increases ciliary beating in airway epithelial cells, maintaining a sustained response by inducing the release of additional ATP. Extracellular ATP levels in the millimolar range, previously associated with pathophysiological conditions of the airway epithelium, produce a transient arrest of ciliary activity. The regulation of ciliary beat frequency is dependent on ATP release by hemichannels (connexin/pannexin) and P2X receptor activation, the blockage of which may even stop ciliary movement. The force exerted by cilia, measured by atomic force microscopy, is reduced following extracellular ATP hydrolysis. This result complements the current understanding of the ciliary beating regulatory mechanism, with special relevance to inflammatory diseases of the airway epithelium that affect mucociliary clearance. Extracellular nucleotides, including ATP, are locally released by the airway epithelium and stimulate ciliary activity in a [Ca 2+ ] i -dependent manner after mechanical stimulation of ciliated cells. However, it is unclear whether the ATP released is involved in regulating basal ciliary activity and mediating changes in ciliary activity in response to chemical stimulation. In the present study, we evaluated ciliary beat frequency (CBF) and ciliary beating forces in primary cultures from mouse tracheal epithelium, using videomicroscopy and atomic force microscopy (AFM), respectively. Extracellular ATP levels and [Ca 2+ ] i were measured by luminometric and fluorimetric assays, respectively. Uptake of ethidium bromide was measured to evaluate hemichannel functionality. We show that hydrolysis of constitutive extracellular ATP levels with apyrase (50 U ml -1 ) reduced basal CBF by 45% and ciliary force by 67%. The apyrase effect on CBF was potentiated by carbenoxolone, a hemichannel inhibitor, and oxidized ATP, an antagonist used to block P2X7 receptors, which reduced basal CBF by 85%. Additionally, increasing extracellular ATP levels (0.1-100 μm) increased CBF, maintaining a sustained response that was suppressed in the presence of carbenoxolone. We also show that high levels of ATP (1 mm), associated with inflammatory conditions, lowered basal CBF by reducing [Ca 2+ ] i and hemichannel functionality. In summary, we provide evidence indicating that airway epithelium ATP release is the molecular autocrine mechanism regulating basal ciliary activity and is also the mediator of the ciliary response to chemical stimulation. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  11. Overall conformation of covalently stabilized domain-swapped dimer of human cystatin C in solution

    NASA Astrophysics Data System (ADS)

    Murawska, Magdalena; Szymańska, Aneta; Grubb, Anders; Kozak, Maciej

    2017-11-01

    Human cystatin C (HCC), a small protein, plays a crucial role in inhibition of cysteine proteases. The most common structural form of human cystatin C in crystals is a dimer, which has been evidenced both for the native protein and its mutants. In these structures, HCC dimers were formed through the mechanism of domain swapping. The structure of the monomeric form of human cystatin C was determined for V57N mutant and the mutant with the engineered disulfide bond (L47C)-(G69C) (known as stab1-HCC). On the basis of stab1-HCC, a number of covalently stabilized oligomers, including also dimers have been obtained. The aim of this study was to analyze the structure of the covalently stabilized dimer HCC in solution by the small angle X-ray scattering (SAXS) technique and synchrotron radiation. Experimental data confirmed that in solution this protein forms a dimer, which is characterized by the radius of gyration RG = 3.1 nm and maximum intramolecular distance Dmax = 10.3 nm. Using the ab initio method and program DAMMIN, we propose a low resolution structure of stabilized covalently cystatin C in solution. Stab-HCC dimer adopts in solution an elongated conformation, which is well reconstructed by the ab initio model.

  12. Paramecium swimming and ciliary beating patterns: a study on four RNA interference mutations.

    PubMed

    Funfak, Anette; Fisch, Cathy; Abdel Motaal, Hatem T; Diener, Julien; Combettes, Laurent; Baroud, Charles N; Dupuis-Williams, Pascale

    2015-01-01

    Paramecium cells swim and feed by beating their thousands of cilia in coordinated patterns. The organization of these patterns and its relationship with cell motility has been the subject of a large body of work, particularly as a model for ciliary beating in human organs where similar organization is seen. However the rapid motion of the cells makes quantitative measurements very challenging. Here we provide detailed measurements of the swimming of Paramecium cells from high-speed video at high magnification, as they move in microfluidic channels. An image analysis protocol allows us to decouple the cell movement from the motion of the cilia, thus allowing us to measure the ciliary beat frequency (CBF) and the spatio-temporal organization into metachronal waves along the cell periphery. Two distinct values of the CBF appear at different regions of the cell: most of the cilia beat in the range of 15 to 45 Hz, while the cilia in the peristomal region beat at almost double the frequency. The body and peristomal CBF display a nearly linear relation with the swimming velocity. Moreover the measurements do not display a measurable correlation between the swimming velocity and the metachronal wave velocity on the cell periphery. These measurements are repeated for four RNAi silenced mutants, where proteins specific to the cilia or to their connection to the cell base are depleted. We find that the mutants whose ciliary structure is affected display similar swimming to the control cells albeit with a reduced efficiency, while the mutations that affect the cilia's anchoring to the cell lead to strongly reduced ability to swim. This reduction in motility can be related to a loss of coordination between the ciliary beating in different parts of the cell.

  13. Mass spectrometric characterization of human serum albumin dimer: A new potential biomarker in chronic liver diseases.

    PubMed

    Naldi, Marina; Baldassarre, Maurizio; Nati, Marina; Laggetta, Maristella; Giannone, Ferdinando Antonino; Domenicali, Marco; Bernardi, Mauro; Caraceni, Paolo; Bertucci, Carlo

    2015-08-10

    Human serum albumin (HSA) undergoes several structural alterations affecting its properties in pro-oxidant and pro-inflammatory environments, as it occurs during liver cirrhosis. These modifications include the formation of albumin dimers. Although HSA dimers were reported to be an oxidative stress biomarker, to date nothing is known about their role in liver cirrhosis and related complications. Additionally, no high sensitive analytical method was available for HSA dimers assessment in clinical settings. Thus the HSA dimeric form in human plasma was characterized by mass spectrometry using liquid chromatography tandem mass spectrometry (LC-ESI-Q-TOF) and matrix assisted laser desorption time of flight (MALDI-TOF) techniques. N-terminal and C-terminal truncated HSA, as well as the native HSA, undergo dimerization by binding another HSA molecule. This study demonstrated the presence of both homo- and hetero-dimeric forms of HSA. The dimerization site was proved to be at Cys-34, forming a disulphide bridge between two albumin molecules, as determined by LC-MS analysis after tryptic digestion. Interestingly, when plasma samples from cirrhotic subjects were analysed, the dimer/monomer ratio resulted significantly increased when compared to that of healthy subjects. These isoforms could represent promising biomarkers for liver disease. Additionally, this analytical approach leads to the relative quantification of the residual native HSA, with fully preserved structural integrity. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Imaging demonstration of a flexible micro-OCT endobronchial probe (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cui, Dongyao; Chu, Kengyeh K.; Ford, Timothy N.; Hyun, Daryl Chulho; Leung, Hui Min; Yin, Biwei; Birket, Susan E.; Solomon, George M.; Rowe, Steven M.; Tearney, Guillermo J.

    2017-04-01

    The human respiratory system is protected by a defense mechanism termed mucociliary clearance (MCC). Deficiency in MCC leads to respiratory obstruction and pulmonary infection, which often are the main causes of morbidity and mortality in diseases such as cystic fibrosis and chronic obstructive pulmonary disease (COPD). Studying key parameters that govern MCC, including ciliary beat frequency, velocity and volume of airway mucus transport, as well as periciliary liquid layer thickness are therefore of great importance in understanding human respiratory health. However, direct, in vivo visualization of ciliary function and MCC has been challenging, hindering the diagnosis of disease pathogenesis and mechanistic evaluation of novel therapeutics. Our laboratory has previously developed a 1-µm resolution optical coherence tomography method, termed Micro-OCT, which is a unique tool for visualizing the spatiotemporal features of ciliary function and MCC. We have previously described the design of a flexible 2.5 mm Micro-OCT probe that is compatible with standard flexible bronchoscopes. This device utilizes a common-path interferometer and annular sample arm apodization to attain a sharply focused spot over an extended depth of focus. Here, we present the most recent iteration of this probe and demonstrate its imaging performance in a mouse trachea tissue culture model. In addition, we have developed an ergonomic assembly for attaching the probe to a standard bronchoscope. The ergonomic assembly fixes the Micro-OCT probe's within the bronchoscope and contains a means transducing linear motion through the sheath so that the Micro-OCT beam can be scanned along the trachea. We have tested the performance of these devices for Micro-OCT imaging in an anatomically correct model of the human airway. Future studies are planned to use this technology to conduct Micro-OCT in human trachea and bronchi in vivo.

  15. Evaluation of iridociliary and lenticular elasticity using shear-wave elastography in rabbit eyes.

    PubMed

    Detorakis, Efstathios T; Drakonaki, Eleni E; Ginis, Harilaos; Karyotakis, Nikolaos; Pallikaris, Ioannis G

    2014-01-01

    A previous study has employed shear-wave ultrasound elastographic imaging to assess corneal rigidity in an ex-vivo porcine eye model. This study employs the same modality in vivo in a rabbit eye model in order to assess lens, ciliary body and total ocular rigidity changes following the instillation of atropine and pilocarpine. Ten non-pigmented female rabbits were examined. Measurements of the lens, ciliary body and total ocular rigidity as well as lens thickness and anterior chamber depth were taken with the Aixplorer system (SuperSonic Imagine, Aix-en-Provence, France) with the SuperLinear™ SL 15-4 transducer in both eyes at baseline as well as after pilocarpine and atropine instillation. The IOP was also measured with the TonoPen tonometer. Changes in rigidity in the examined areas following atropine instillation were statistically not significant. Ciliary body rigidity was significantly increased whereas lens and total ocular rigidity were significantly reduced following pilocarpine instillation. The decrease in lens rigidity following pilocarpine was significantly associated with the respective increase in ciliary body rigidity. Shear-wave ultrasound elastography can detect in vivo rigidity changes in the anterior segment of the rabbit eye model and may potentially be applied in human eyes, providing useful clinical information on conditions in which rigidity changes play an important role, such as glaucoma, pseudoexfoliation syndrome or presbyopia.

  16. IFT46 plays an essential role in cilia development

    PubMed Central

    Lee, Mi-Sun; Hwang, Kyu-Seok; Oh, Hyun-Woo; Ji-Ae, Kim; Kim, Hyun-Taek; Cho, Hyun-Soo; Lee, Jeong-Ju; Ko, Je Yeong; Choi, Jung-Hwa; Jeong, Yun-Mi; You, Kwan-Hee; Kim, Joon; Park, Doo-Sang; Nam, Ki-Hoan; Aizawa, Shinichi; Kiyonari, Hiroshi; Shioi, Go; Park, Jong-Hoon; Zhou, Weibin; Kim, Nam-Soon; Kim, Cheol-Hee

    2015-01-01

    Cilia are microtubule-based structures that project into the extracellular space. Ciliary defects are associated with several human diseases, including polycystic kidney disease, primary ciliary dyskinesia, left-right axis patterning, hydrocephalus and retinal degeneration. However, the genetic and cellular biological control of ciliogenesis remains poorly understood. The IFT46 is one of the highly conserved intraflagellar transport complex B proteins. In zebrafish, ift46 is expressed in various ciliated tissues such as Kupffer’s vesicle, pronephric ducts, ears and spinal cord. We show that ift46 is localized to the basal body. Knockdown of ift46 gene results in multiple phenotypes associated with various ciliopathies including kidney cysts, pericardial edema and ventral axis curvature. In ift46 morphants, cilia in kidney and spinal canal are shortened and abnormal. Similar ciliary defects are observed in otic vesicles, lateral line hair cells, olfactory pits, but not in Kupffer’s vesicle. To explore the functions of Ift46 during mouse development, we have generated Ift46 knock-out mice. The Ift46 mutants have developmental defects in brain, neural tube and heart. In particular Ift46(−/−) homozygotes displays randomization of the embryo heart looping, which is a hallmark of defective left-right (L/R) axis patterning. Taken together, our results demonstrated that IFT46 has an essential role in vertebrate ciliary development. PMID:25722189

  17. High-frequency ultrasound measurements of the normal ciliary body and iris.

    PubMed

    Garcia, Julian P S; Spielberg, Leigh; Finger, Paul T

    2011-01-01

    To determine the normal ultrasonographic thickness of the iris and ciliary body. This prospective 35-MHz ultrasonographic study included 80 normal eyes of 40 healthy volunteers. The images were obtained at the 12-, 3-, 6-, and 9-o'clock radial meridians, measured at three locations along the radial length of the iris and at the thickest section of the ciliary body. Mixed model was used to estimate eye site-adjusted means and standard errors and to test the statistical difference of adjusted results. Parameters included mean thickness, standard deviation, and range. Mean thicknesses at the iris root, midway along the radial length of the iris, and at the juxtapupillary margin were 0.4 ± 0.1, 0.5 ± 0.1, and 0.6 ± 0.1 mm, respectively. Those of the ciliary body, ciliary processes, and ciliary body + ciliary processes were 0.7 ± 0.1, 0.6 ± 0.1, and 1.3 ± 0.2 mm, respectively. This study provides standard, normative thickness data for the iris and ciliary body in healthy adults using ultrasonographic imaging. Copyright 2011, SLACK Incorporated.

  18. Negative regulation of ciliary length by ciliary male germ cell-associated kinase (Mak) is required for retinal photoreceptor survival.

    PubMed

    Omori, Yoshihiro; Chaya, Taro; Katoh, Kimiko; Kajimura, Naoko; Sato, Shigeru; Muraoka, Koichiro; Ueno, Shinji; Koyasu, Toshiyuki; Kondo, Mineo; Furukawa, Takahisa

    2010-12-28

    Cilia function as cell sensors in many organs, and their disorders are referred to as "ciliopathies." Although ciliary components and transport machinery have been well studied, regulatory mechanisms of ciliary formation and maintenance are poorly understood. Here we show that male germ cell-associated kinase (Mak) regulates retinal photoreceptor ciliary length and subcompartmentalization. Mak was localized both in the connecting cilia and outer-segment axonemes of photoreceptor cells. In the Mak-null retina, photoreceptors exhibit elongated cilia and progressive degeneration. We observed accumulation of intraflagellar transport 88 (IFT88) and IFT57, expansion of kinesin family member 3A (Kif3a), and acetylated α-tubulin signals in the Mak-null photoreceptor cilia. We found abnormal rhodopsin accumulation in the Mak-null photoreceptor cell bodies at postnatal day 14. In addition, overexpression of retinitis pigmentosa 1 (RP1), a microtubule-associated protein localized in outer-segment axonemes, induced ciliary elongation, and Mak coexpression rescued excessive ciliary elongation by RP1. The RP1 N-terminal portion induces ciliary elongation and increased intensity of acetylated α-tubulin labeling in the cells and is phosphorylated by Mak. These results suggest that Mak is essential for the regulation of ciliary length and is required for the long-term survival of photoreceptors.

  19. Negative regulation of ciliary length by ciliary male germ cell-associated kinase (Mak) is required for retinal photoreceptor survival

    PubMed Central

    Omori, Yoshihiro; Chaya, Taro; Katoh, Kimiko; Kajimura, Naoko; Sato, Shigeru; Muraoka, Koichiro; Ueno, Shinji; Koyasu, Toshiyuki; Kondo, Mineo; Furukawa, Takahisa

    2010-01-01

    Cilia function as cell sensors in many organs, and their disorders are referred to as “ciliopathies.” Although ciliary components and transport machinery have been well studied, regulatory mechanisms of ciliary formation and maintenance are poorly understood. Here we show that male germ cell-associated kinase (Mak) regulates retinal photoreceptor ciliary length and subcompartmentalization. Mak was localized both in the connecting cilia and outer-segment axonemes of photoreceptor cells. In the Mak-null retina, photoreceptors exhibit elongated cilia and progressive degeneration. We observed accumulation of intraflagellar transport 88 (IFT88) and IFT57, expansion of kinesin family member 3A (Kif3a), and acetylated α-tubulin signals in the Mak-null photoreceptor cilia. We found abnormal rhodopsin accumulation in the Mak-null photoreceptor cell bodies at postnatal day 14. In addition, overexpression of retinitis pigmentosa 1 (RP1), a microtubule-associated protein localized in outer-segment axonemes, induced ciliary elongation, and Mak coexpression rescued excessive ciliary elongation by RP1. The RP1 N-terminal portion induces ciliary elongation and increased intensity of acetylated α-tubulin labeling in the cells and is phosphorylated by Mak. These results suggest that Mak is essential for the regulation of ciliary length and is required for the long-term survival of photoreceptors. PMID:21148103

  20. Comparative Proteomics Reveals Timely Transport into Cilia of Regulators or Effectors as a Mechanism Underlying Ciliary Disassembly.

    PubMed

    Wang, Limei; Gu, Lixiao; Meng, Dan; Wu, Qiong; Deng, Haiteng; Pan, Junmin

    2017-07-07

    Primary cilia are assembled and disassembled during cell cycle progression. During ciliary disassembly, ciliary axonemal microtubules (MTs) are depolymerized accompanied by extensive posttranslational protein modifications of ciliary proteins including protein phosphorylation, methylation, and ubiquitination. These events are hypothesized to involve transport of effectors or regulators into cilia at the time of ciliary disassembly from the cell body. To prove this hypothesis and identify new proteins involved in ciliary disassembly, we analyzed disassembling flagella in Chlamydomonas using comparative proteomics with TMT labeling. Ninety-one proteins were found to increase more than 1.4-fold in four replicates. The proteins of the IFT machinery not only increase but also exhibit stoichiometric changes. The other proteins that increase include signaling molecules, chaperones, and proteins involved in microtubule dynamics or stability. In particular, we have identified a ciliopathy protein C21orf2, the AAA-ATPase CDC48, that is involved in segregating polypeptides from large assemblies or cellular structures, FAP203 and FAP236, which are homologous to stabilizers of axonemal microtubules. Our data demonstrate that ciliary transport of effectors or regulators is one of the mechanisms underlying ciliary disassembly. Further characterization of the proteins identified will provide new insights into our understanding of ciliary disassembly and likely ciliopathy.

  1. Reconstitution reveals motor activation for intraflagellar transport.

    PubMed

    Mohamed, Mohamed A A; Stepp, Willi L; Ökten, Zeynep

    2018-05-01

    The human body represents a notable example of ciliary diversification. Extending from the surface of most cells, cilia accomplish a diverse set of tasks. Predictably, mutations in ciliary genes cause a wide range of human diseases such as male infertility and blindness. In Caenorhabditis elegans sensory cilia, this functional diversity appears to be traceable to the differential regulation of the kinesin-2-powered intraflagellar-transport (IFT) machinery. Here we reconstituted the first, to our knowledge, functional multi-component IFT complex that is deployed in the sensory cilia of C. elegans. Our bottom-up approach revealed the molecular basis of specific motor recruitment to the IFT trains. We identified the key component that incorporates homodimeric kinesin-2 into its physiologically relevant context, which in turn allosterically activates the motor for efficient transport. These results will enable the molecular delineation of IFT regulation, which has eluded understanding since its discovery more than two decades ago.

  2. Value of transmission electron microscopy for primary ciliary dyskinesia diagnosis in the era of molecular medicine: Genetic defects with normal and non-diagnostic ciliary ultrastructure.

    PubMed

    Shapiro, Adam J; Leigh, Margaret W

    2017-01-01

    Primary ciliary dyskinesia (PCD) is a genetic disorder causing chronic oto-sino-pulmonary disease. No single diagnostic test will detect all PCD cases. Transmission electron microscopy (TEM) of respiratory cilia was previously considered the gold standard diagnostic test for PCD, but 30% of all PCD cases have either normal ciliary ultrastructure or subtle changes which are non-diagnostic. These cases are identified through alternate diagnostic tests, including nasal nitric oxide measurement, high-speed videomicroscopy analysis, immunofluorescent staining of axonemal proteins, and/or mutation analysis of various PCD causing genes. Autosomal recessive mutations in DNAH11 and HYDIN produce normal TEM ciliary ultrastructure, while mutations in genes encoding for radial spoke head proteins result in some cross-sections with non-diagnostic alterations in the central apparatus interspersed with normal ciliary cross-sections. Mutations in nexin link and dynein regulatory complex genes lead to a collection of different ciliary ultrastructures; mutations in CCDC65, CCDC164, and GAS8 produce normal ciliary ultrastructure, while mutations in CCDC39 and CCDC40 cause absent inner dynein arms and microtubule disorganization in some ciliary cross-sections. Mutations in CCNO and MCIDAS cause near complete absence of respiratory cilia due to defects in generation of multiple cellular basal bodies; however, the scant cilia generated may have normal ultrastructure. Lastly, a syndromic form of PCD with retinal degeneration results in normal ciliary ultrastructure through mutations in the RPGR gene. Clinicians must be aware of these genetic causes of PCD resulting in non-diagnostic TEM ciliary ultrastructure and refrain from using TEM of respiratory cilia as a test to rule out PCD.

  3. The Arf GEF GBF1 and Arf4 synergize with the sensory receptor cargo, rhodopsin, to regulate ciliary membrane trafficking.

    PubMed

    Wang, Jing; Fresquez, Theresa; Kandachar, Vasundhara; Deretic, Dusanka

    2017-12-01

    The small GTPase Arf4 and the Arf GTPase-activating protein (GAP) ASAP1 cooperatively sequester sensory receptor cargo into transport carriers targeted to primary cilia, but the input that drives Arf4 activation in this process remains unknown. Here, we show, by using frog retinas and recombinant human proteins, that during the carrier biogenesis from the photoreceptor Golgi/ trans -Golgi network (TGN) a functional complex is formed between Arf4, the Arf guanine nucleotide exchange factor (GEF) GBF1 and the light-sensing receptor, rhodopsin. Rhodopsin and Arf4 bind the regulatory N-terminal dimerization and cyclophillin-binding (DCB)-homology upstream of Sec7 (HUS) domain of GBF1. The complex is sensitive to Golgicide A (GCA), a selective inhibitor of GBF1 that accordingly blocks rhodopsin delivery to the cilia, without disrupting the photoreceptor Golgi. The emergence of newly synthesized rhodopsin in the endomembrane system is essential for GBF1-Arf4 complex formation in vivo Notably, GBF1 interacts with the Arf GAP ASAP1 in a GCA-resistant manner. Our findings indicate that converging signals on GBF1 from the influx of cargo into the Golgi/TGN and the feedback from Arf4, combined with input from ASAP1, control Arf4 activation during sensory membrane trafficking to primary cilia. © 2017. Published by The Company of Biologists Ltd.

  4. Insights into the Structure and Function of Ciliary and Flagellar Doublet Microtubules

    PubMed Central

    Linck, Richard; Fu, Xiaofeng; Lin, Jianfeng; Ouch, Christna; Schefter, Alexandra; Steffen, Walter; Warren, Peter; Nicastro, Daniela

    2014-01-01

    Cilia and flagella are conserved, motile, and sensory cell organelles involved in signal transduction and human disease. Their scaffold consists of a 9-fold array of remarkably stable doublet microtubules (DMTs), along which motor proteins transmit force for ciliary motility and intraflagellar transport. DMTs possess Ribbons of three to four hyper-stable protofilaments whose location, organization, and specialized functions have been elusive. We performed a comprehensive analysis of the distribution and structural arrangements of Ribbon proteins from sea urchin sperm flagella, using quantitative immunobiochemistry, proteomics, immuno-cryo-electron microscopy, and tomography. Isolated Ribbons contain acetylated α-tubulin, β-tubulin, conserved protein Rib45, >95% of the axonemal tektins, and >95% of the calcium-binding proteins, Rib74 and Rib85.5, whose human homologues are related to the cause of juvenile myoclonic epilepsy. DMTs contain only one type of Ribbon, corresponding to protofilaments A11-12-13-1 of the A-tubule. Rib74 and Rib85.5 are associated with the Ribbon in the lumen of the A-tubule. Ribbons contain a single ∼5-nm wide filament, composed of equimolar tektins A, B, and C, which interact with the nexin-dynein regulatory complex. A summary of findings is presented, and the functions of Ribbon proteins are discussed in terms of the assembly and stability of DMTs, ciliary motility, and other microtubule systems. PMID:24794867

  5. Purification and characterization of factors produced by Aspergillus fumigatus which affect human ciliated respiratory epithelium.

    PubMed Central

    Amitani, R; Taylor, G; Elezis, E N; Llewellyn-Jones, C; Mitchell, J; Kuze, F; Cole, P J; Wilson, R

    1995-01-01

    The mechanisms by which Aspergillus fumigatus colonizes the respiratory mucosa are unknown. Culture filtrates of eight of nine clinical isolates of A. fumigatus slowed ciliary beat frequency and damaged human respiratory epithelium in vitro. These changes appeared to occur concurrently. Culture filtrates of two clinical isolates of Candida albicans had no effect on ciliated epithelium. We have purified and characterized cilioinhibitory factors of a clinical isolate of A. fumigatus. The cilioinhibitory activity was heat labile, reduced by dialysis, and partially extractable into chloroform. The activity was associated with both high- and low-molecular-weight factors, as determined by gel filtration on Sephadex G-50. A low-molecular-weight cilioinhibitory factor was further purified by reverse-phase high-performance liquid chromatography and shown by mass spectrometry to be gliotoxin, a known metabolite of A. fumigatus. Gliotoxin significantly slowed ciliary beat frequency in association with epithelial damage at concentrations above 0.2 microgram/ml; other Aspergillus toxins, i.e., fumagillin and helvolic acid, were also cilioinhibitory but at much higher concentrations. High-molecular-weight (> or = 35,000 and 25,000) cilioinhibitory materials had neither elastolytic nor proteolytic activity and remain to be identified. Thus, A. fumigatus produces a number of biologically active substances which slow ciliary beating and damage epithelium and which may influence colonization of the airways. PMID:7543879

  6. Is the use of benzalkonium chloride as a preservative for nasal formulations a safety concern? A cautionary note based on compromised mucociliary transport.

    PubMed

    Bernstein, I L

    2000-01-01

    Topical nasal solution and suspension delivery systems are available for short- and long-acting vasoconstrictors, ipratropium, cromolyn, azelastine, and glucocorticosteroids. The use of intranasal glucocorticosteroids has increased substantially because the efficacy of these agents has been well established for the treatment of perennial and seasonal allergic rhinitis. Adverse local effects of burning, irritation, and dryness are occasionally associated with glucocorticosteroid nasal preparations. Benzalkonium chloride (BKC) is a quaternary ammonium antimicrobial agent included in some nasal solutions (including glucocorticosteroids) to prevent the growth of bacteria. Some reports suggest that BKC in nasal sprays may cause adverse effects, including reduced mucociliary transport, rhinitis medicamentosa, and neutrophil dysfunction. This article summarizes recent literature about possible adverse biologic effects associated with BKC as a nasal spray preservative by examining its effects on the following properties of mucociliary transport: ciliary motion, ciliary form, ciliary beat frequency, electron microscopy, and particle movement/saccharin clearance tests. Both animal and human in vitro data suggest that BKC promotes ciliostasis and reduction in mucociliary transport that may be partially masked by absorption and dilution effects occurring in respiratory mucus. These possible confounding factors may account for several disparate human in vivo results. The use of BKC-free glucocorticosteroid formulations should be considered, particularly in patients who complain of nasal burning, dryness, or irritation.

  7. Loss-of-Function Mutations in a Human Gene Related to Chlamydomonas reinhardtii Dynein IC78 Result in Primary Ciliary Dyskinesia

    PubMed Central

    Pennarun, Gaëlle; Escudier, Estelle; Chapelin, Catherine; Bridoux, Anne-Marie; Cacheux, Valère; Roger, Gilles; Clément, Annick; Goossens, Michel; Amselem, Serge; Duriez, Bénédicte

    1999-01-01

    Summary Primary ciliary dyskinesia (PCD) is a group of heterogeneous disorders of unknown origin, usually inherited as an autosomal recessive trait. Its phenotype is characterized by axonemal abnormalities of respiratory cilia and sperm tails leading to bronchiectasis and sinusitis, which are sometimes associated with situs inversus (Kartagener syndrome) and male sterility. The main ciliary defect in PCD is an absence of dynein arms. We have isolated the first gene involved in PCD, using a candidate-gene approach developed on the basis of documented abnormalities of immotile strains of Chlamydomonas reinhardtii, which carry axonemal ultrastructural defects reminiscent of PCD. Taking advantage of the evolutionary conservation of genes encoding axonemal proteins, we have isolated a human sequence (DNAI1) related to IC78, a C. reinhardtii gene encoding a dynein intermediate chain in which mutations are associated with the absence of outer dynein arms. DNAI1 is highly expressed in trachea and testis and is composed of 20 exons located at 9p13-p21. Two loss-of-function mutations of DNAI1 have been identified in a patient with PCD characterized by immotile respiratory cilia lacking outer dynein arms. In addition, we excluded linkage between this gene and similar PCD phenotypes in five other affected families, providing a clear demonstration of locus heterogeneity. These data reveal the critical role of DNAI1 in the development of human axonemal structures and open up new means for identification of additional genes involved in related developmental defects. PMID:10577904

  8. The Challenges of Diagnosing Primary Ciliary Dyskinesia

    PubMed Central

    O'Callaghan, Christopher; Knowles, Michael R.

    2011-01-01

    Primary ciliary dyskinesia (PCD) is a rare genetic disorder of ciliary structure and function. The diagnosis can be challenging, particularly when using nongenetic assays. The “gold standard” diagnostic test is ultrastructural analysis of respiratory cilia obtained by nasal scrape or brush biopsy. A few specialized centers use high-speed videomicroscopy to examine ciliary beat. Certain beat patterns correlate with ultrastructural defects, and, in some cases, subtle alterations in beat pattern can be seen when ultrastructure is normal. Recent studies have shown that nasal nitric oxide (NO) is very low in patients with PCD compared with healthy control subjects; therefore, this assay may be a useful screening or adjunctive test for PCD. Because acute respiratory illnesses may yield alterations in ciliary ultrastructure, ciliary beat, and nasal NO values, these tests should be performed during a stable baseline period. Identification of an array of PCD genes has provided the opportunity for making a definitive genetic diagnosis for PCD in some cases. All of these approaches have a role in diagnosing PCD. For example, PCD has been confirmed by identifying disease-causing mutations in a heavy dynein chain gene in individuals with normal ciliary ultrastructure but subtle defects in ciliary beat and low nasal NO. Priorities to improve nongenetic diagnostic capability include standardization of nasal NO as a screening test and the development of specialized centers using uniform approaches for the analysis of ciliary ultrastructure and ciliary beat pattern. Another chapter in this issue (see Zariwala and colleagues, pp. 430) addresses the progress toward improved capabilities for definitive genetic testing PMID:21926395

  9. Clinical and genetic aspects of primary ciliary dyskinesia/Kartagener syndrome.

    PubMed

    Leigh, Margaret W; Pittman, Jessica E; Carson, Johnny L; Ferkol, Thomas W; Dell, Sharon D; Davis, Stephanie D; Knowles, Michael R; Zariwala, Maimoona A

    2009-07-01

    Primary ciliary dyskinesia is a genetically heterogeneous disorder of motile cilia. Most of the disease-causing mutations identified to date involve the heavy (dynein axonemal heavy chain 5) or intermediate(dynein axonemal intermediate chain 1) chain dynein genes in ciliary outer dynein arms, although a few mutations have been noted in other genes. Clinical molecular genetic testing for primary ciliary dyskinesia is available for the most common mutations. The respiratory manifestations of primary ciliary dyskinesia (chronic bronchitis leading to bronchiectasis, chronic rhino-sinusitis, and chronic otitis media)reflect impaired mucociliary clearance owing to defective axonemal structure. Ciliary ultrastructural analysis in most patients (>80%) reveals defective dynein arms, although defects in other axonemal components have also been observed. Approximately 50% of patients with primary ciliary dyskinesia have laterality defects (including situs inversus totalis and, less commonly, heterotaxy, and congenital heart disease),reflecting dysfunction of embryological nodal cilia. Male infertility is common and reflects defects in sperm tail axonemes. Most patients with primary ciliary dyskinesia have a history of neonatal respiratory distress, suggesting that motile cilia play a role in fluid clearance during the transition from a fetal to neonatal lung. Ciliopathies involving sensory cilia, including autosomal dominant or recessive polycystic kidney disease, Bardet-Biedl syndrome, and Alstrom syndrome, may have chronic respiratory symptoms and even bronchiectasis suggesting clinical overlap with primary ciliary dyskinesia.

  10. Intraciliary calcium oscillations initiate vertebrate left-right asymmetry.

    PubMed

    Yuan, Shiaulou; Zhao, Lu; Brueckner, Martina; Sun, Zhaoxia

    2015-03-02

    Bilateral symmetry during vertebrate development is broken at the left-right organizer (LRO) by ciliary motility and the resultant directional flow of extracellular fluid. However, how ciliary motility is perceived and transduced into asymmetrical intracellular signaling at the LRO remains controversial. Previous work has indicated that sensory cilia and polycystin-2 (Pkd2), a cation channel, are required for sensing ciliary motility, yet their function and the molecular mechanism linking both to left-right signaling cascades are unknown. Here we report novel intraciliary calcium oscillations (ICOs) at the LRO that connect ciliary sensation of ciliary motility to downstream left-right signaling. Utilizing cilia-targeted genetically encoded calcium indicators in live zebrafish embryos, we show that ICOs depend on Pkd2 and are left-biased at the LRO in response to ciliary motility. Asymmetric ICOs occur with onset of LRO ciliary motility, thus representing the earliest known LR asymmetric molecular signal. Suppression of ICOs using a cilia-targeted calcium sink reveals that they are essential for LR development. These findings demonstrate that intraciliary calcium initiates LR development and identify cilia as a functional ion signaling compartment connecting ciliary motility and flow to molecular LR signaling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Neuropeptide Y family receptors traffic via the Bardet-Biedl syndrome pathway to signal in neuronal primary cilia.

    PubMed

    Loktev, Alexander V; Jackson, Peter K

    2013-12-12

    Human monogenic obesity syndromes, including Bardet-Biedl syndrome (BBS), implicate neuronal primary cilia in regulation of energy homeostasis. Cilia in hypothalamic neurons have been hypothesized to sense and regulate systemic energy status, but the molecular mechanism of this signaling remains unknown. Here, we report a comprehensive localization screen of 42 G-protein-coupled receptors (GPCR) revealing seven ciliary GPCRs, including the neuropeptide Y (NPY) receptors NPY2R and NPY5R. We show that mice modeling BBS disease or obese tubby mice fail to localize NPY2R to cilia in the hypothalamus and that BBS mutant mice fail to activate c-fos or decrease food intake in response to the NPY2R ligand PYY3-36. We find that cells with ciliary NPY2R show augmented PYY3-36-dependent cAMP signaling. Our data demonstrate that ciliary targeting of NPY receptors is important for controlling energy balance in mammals, revealing a physiologically defined ligand-receptor pathway signaling within neuronal cilia. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Change in human lens dimensions, lens refractive index distribution and ciliary body ring diameter with accommodation.

    PubMed

    Khan, Adnan; Pope, James M; Verkicharla, Pavan K; Suheimat, Marwan; Atchison, David A

    2018-03-01

    We investigated changes in ciliary body ring diameter, lens dimensions and lens refractive index distributions with accommodation in young adults. A 3T clinical magnetic resonance imaging scanner imaged right eyes of 38 18-29 year old participants using a multiple spin echo sequence to determine accommodation-induced changes along lens axial and equatorial directions. Accommodation stimuli were approximately 1 D and 5 D. With accommodation, ciliary body ring diameter, and equatorial lens diameter decreased (-0.43 ± 0.31 mm and -0.30 ± 0.23 mm, respectively), and axial lens thickness increased ( + 0.34 ± 0.16 mm). Lens shape changes cause redistribution of the lens internal structure, leading to change in refractive index distribution profiles. With accommodation, in the axial direction refractive index profiles became flatter in the center and steeper near the periphery of the lens, while in the equatorial direction they became steeper in the center and flatter in the periphery. The results suggest that the anatomical accuracy of lens optical models can be improved by accounting for changes in the refractive index profile during accommodation.

  13. Revealing the Molecular Structure and the Transport Mechanism at the Base of Primary Cilia Using Superresolution STED Microscopy

    NASA Astrophysics Data System (ADS)

    Yang, Tung-Lin

    The primary cilium is an organelle that serves as a signaling center of the cell and is involved in the hedgehog signaling, cAMP pathway, Wnt pathways, etc. Ciliary function relies on the transportation of molecules between the primary cilium and the cell, which is facilitated by intraflagellar transport (IFT). IFT88, one of the important IFT proteins in complex B, is known to play a role in the formation and maintenance of cilia in various types of organisms. The ciliary transition zone (TZ), which is part of the gating apparatus at the ciliary base, is home to a large number of ciliopathy molecules. Recent studies have identified important regulating elements for TZ gating in cilia. However, the architecture of the TZ region and its arrangement relative to intraflagellar transport (IFT) proteins remain largely unknown, hindering the mechanistic understanding of the regulation processes. One of the major challenges comes from the tiny volume at the ciliary base packed with numerous proteins, with the diameter of the TZ close to the diffraction limit of conventional microscopes. Using a series of stimulated emission depletion (STED) superresolution images mapped to electron microscopy images, we analyzed the structural organization of the ciliary base. Subdiffraction imaging of TZ components defines novel geometric distributions of RPGRIP1L, MKS1, CEP290, TCTN2 and TMEM67, shedding light on their roles in TZ structure, assembly, and function. We found TCTN2 at the outmost periphery of the TZ close to the ciliary membrane, with a 227+/-18 nm diameter. TMEM67 was adjacent to TCTN2, with a 205+/-20 nm diameter. RPGRIP1L was localized toward the axoneme at the same axial level as TCTN2 and TMEM67, with a 165+/-8 nm diameter. MKS1 was situated between TMEM67 and RPGRIP1L, with an 186+/-21 nm diameter. Surprisingly, CEP290 was localized at the proximal side of the TZ close to the distal end of the centrin-labeled basal body. The lateral width was unexpectedly close to the width of the basal body, distant from the potential Y-links region of the TZ. Moreover, IFT88 was intriguingly distributed in two distinct patterns, forming three puncta or a Y shape at the ciliary base found in human retinal pigment epithelial cells (RPE), human fibroblasts (HFF), mouse inner medullary collecting duct (IMCD) cells and mouse embryonic fibroblasts (MEFs). We hypothesize that the two distribution states of IFT88 correspond to the open and closed gating states of the TZ, where IFT particles aggregate to form three puncta when the gate is closed, and move to form the branches of the Y-shape pattern when the gate is open. Two reservoirs of IFT particles, correlating with phases of ciliary growth, were localized relative to the internal structure of the TZ. These subdiffraction images reveal unprecedented architectural details of the TZ, providing a basic structural framework for future functional studies. To visualize the dynamic movement of IFT particles within primary cilia, we further conducted superresolution live-cell imaging of IFT88 fused to EYFP in IMCD cells. Our findings, in particular, show IFT88 particles pass through the TZ at a reduced speed by approximately 50%, implying the gating mechanism is involved at this region to slow down IFT trafficking. Finally, we report the distinct transport pathways of IFT88 and Smo (Smoothened), an essential player to hedgehog signaling, to support our hypothesis that two proteins are transported in different mechanisms at the ciliary base, based on dual-color superresolution imaging.

  14. Quantification of the ciliary muscle and crystalline lens interaction during accommodation with synchronous OCT imaging

    PubMed Central

    Ruggeri, Marco; de Freitas, Carolina; Williams, Siobhan; Hernandez, Victor M.; Cabot, Florence; Yesilirmak, Nilufer; Alawa, Karam; Chang, Yu-Cherng; Yoo, Sonia H.; Gregori, Giovanni; Parel, Jean-Marie; Manns, Fabrice

    2016-01-01

    Abstract: Two SD-OCT systems and a dual channel accommodation target were combined and precisely synchronized to simultaneously image the anterior segment and the ciliary muscle during dynamic accommodation. The imaging system simultaneously generates two synchronized OCT image sequences of the anterior segment and ciliary muscle with an imaging speed of 13 frames per second. The system was used to acquire OCT image sequences of a non-presbyopic and a pre-presbyopic subject accommodating in response to step changes in vergence. The image sequences were processed to extract dynamic morphological data from the crystalline lens and the ciliary muscle. The synchronization between the OCT systems allowed the precise correlation of anatomical changes occurring in the crystalline lens and ciliary muscle at identical time points during accommodation. To describe the dynamic interaction between the crystalline lens and ciliary muscle, we introduce accommodation state diagrams that display the relation between anatomical changes occurring in the accommodating crystalline lens and ciliary muscle. PMID:27446660

  15. Quantification of the ciliary muscle and crystalline lens interaction during accommodation with synchronous OCT imaging.

    PubMed

    Ruggeri, Marco; de Freitas, Carolina; Williams, Siobhan; Hernandez, Victor M; Cabot, Florence; Yesilirmak, Nilufer; Alawa, Karam; Chang, Yu-Cherng; Yoo, Sonia H; Gregori, Giovanni; Parel, Jean-Marie; Manns, Fabrice

    2016-04-01

    Two SD-OCT systems and a dual channel accommodation target were combined and precisely synchronized to simultaneously image the anterior segment and the ciliary muscle during dynamic accommodation. The imaging system simultaneously generates two synchronized OCT image sequences of the anterior segment and ciliary muscle with an imaging speed of 13 frames per second. The system was used to acquire OCT image sequences of a non-presbyopic and a pre-presbyopic subject accommodating in response to step changes in vergence. The image sequences were processed to extract dynamic morphological data from the crystalline lens and the ciliary muscle. The synchronization between the OCT systems allowed the precise correlation of anatomical changes occurring in the crystalline lens and ciliary muscle at identical time points during accommodation. To describe the dynamic interaction between the crystalline lens and ciliary muscle, we introduce accommodation state diagrams that display the relation between anatomical changes occurring in the accommodating crystalline lens and ciliary muscle.

  16. Comparative anatomy of the accessory ciliary ganglion in mammals.

    PubMed

    Kuchiiwa, S; Kuchiiwa, T; Suzuki, T

    1989-01-01

    The orbits of 13 mammalian species (pig, sika deer, domestic sheep, horse, cat, fox, racoon dog, marten, rat, rabbit, crab-eating macaque, japanese macaque and man) were stained with silver nitrate and dissected under a dissecting microscope with special attention to the presence and location of the accessory ciliary ganglion. Some preparations were stained with thionin and examined as whole-mounts in a transmission microscope. The accessory ciliary ganglion was present in all 13 species, although the number and degree of development varied greatly from species to species. The accessory ciliary ganglion could be readily differentiated from the main ciliary ganglion in the following respects: it was located on the short ciliary nerve, and it had no root derived directly from the inferior trunk of the oculomotor nerve and it never attaches to this nerve. In many species, ganglion cells were also scattered in the short ciliary nerves in the stained whole preparations. In a few species, there were one or more small ganglia on the nerve to the inferior oblique muscle.

  17. Improved anticancer effects of albumin-bound paclitaxel nanoparticle via augmentation of EPR effect and albumin-protein interactions using S-nitrosated human serum albumin dimer.

    PubMed

    Kinoshita, Ryo; Ishima, Yu; Chuang, Victor T G; Nakamura, Hideaki; Fang, Jun; Watanabe, Hiroshi; Shimizu, Taro; Okuhira, Keiichiro; Ishida, Tatsuhiro; Maeda, Hiroshi; Otagiri, Masaki; Maruyama, Toru

    2017-09-01

    In the latest trend of anticancer chemotherapy research, there were many macromolecular anticancer drugs developed based on enhanced permeability and retention (EPR) effect, such as albumin bound paclitaxel nanoparticle (nab- PTX, also called Abraxane ® ). However, cancers with low vascular permeability posed a challenge for these EPR based therapeutic systems. Augmenting the intrinsic EPR effect with an intrinsic vascular modulator such as nitric oxide (NO) could be a promising strategy. S-nitrosated human serum albumin dimer (SNO-HSA Dimer) shown promising activity previously was evaluated for the synergistic effect when used as a pretreatment agent in nab-PTX therapy against various tumor models. In the high vascular permeability C26 murine colon cancer subcutaneous inoculation model, SNO-HSA Dimer enhanced tumor selectivity of nab-PTX, and attenuated myelosuppression. SNO-HSA Dimer also augmented the tumor growth inhibition of nab-PTX in low vascular permeability B16 murine melanoma subcutaneous inoculation model. Furthermore, nab-PTX therapy combined with SNO-HSA Dimer showed higher antitumor activity and improved survival rate of SUIT2 human pancreatic cancer orthotopic model. In conclusion, SNO-HSA Dimer could enhance the therapeutic effect of nab-PTX even in low vascular permeability or intractable pancreatic cancers. The possible underlying mechanisms of action of SNO-HSA Dimer were discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Diagnosis of primary ciliary dyskinesia*

    PubMed Central

    Olm, Mary Anne Kowal; Caldini, Elia Garcia; Mauad, Thais

    2015-01-01

    Primary ciliary dyskinesia (PCD) is a genetic disorder of ciliary structure or function. It results in mucus accumulation and bacterial colonization of the respiratory tract which leads to chronic upper and lower airway infections, organ laterality defects, and fertility problems. We review the respiratory signs and symptoms of PCD, as well as the screening tests for and diagnostic investigation of the disease, together with details related to ciliary function, ciliary ultrastructure, and genetic studies. In addition, we describe the difficulties in diagnosing PCD by means of transmission electron microscopy, as well as describing patient follow-up procedures. PMID:26176524

  19. Bioluminescence Resonance Energy Transfer Studies Reveal Constitutive Dimerization of the Human Lutropin Receptor and a Lack of Correlation between Receptor Activation and the Propensity for Dimerization*

    PubMed Central

    Guan, Rongbin; Feng, Xiuyan; Wu, Xueqing; Zhang, Meilin; Zhang, Xuesen; Hébert, Terence E.; Segaloff, Deborah L.

    2009-01-01

    Previous studies from our laboratory using co-immunoprecipitation techniques suggested that the human lutropin receptor (hLHR) constitutively self-associates into dimers/oligomers and that agonist treatment of cells either increased hLHR dimerization/oligomerization and/or stabilized hLHR dimers/oligomers to detergent solubilization (Tao, Y. X., Johnson, N. B., and Segaloff, D. L. (2004) J. Biol. Chem. 279, 5904–5914). In this study, bioluminescence resonance energy transfer (BRET2) analyses confirmed that the hLHR constitutively self-associates in living cells. After subcellular fractionation, hLHR dimers/oligomers were detected in both the plasma membrane and endoplasmic reticulum (ER). Further evidence supporting the constitutive formation of hLHR dimer/oligomers in the ER is provided by data showing homodimerization of misfolded hLHR mutants that are retained in the ER. These mutants, when co-expressed with wild-type receptor, are shown by BRET2 to heterodimerize, accounting for their dominant-negative effects on cell surface receptor expression. Hormone desorption assays using intact cells demonstrate allosterism between hLHR protomers, indicating functional cell surface hLHR dimers. However, quantitative BRET2 analyses in intact cells indicate a lack of effect of agonist on the propensity of the hLHR to dimerize. Using purified plasma membranes, human chorionic gonadotropin was similarly observed to have no effect on the BRET2 signal. An examination of the propensity for constitutively active and signaling inactive hLHR mutants to dimerize further showed no correlation between dimerization and the activation state of the hLHR. Taken altogether, our data suggest that hLHR dimers/oligomers are formed early in the biosynthetic pathway in the ER, are constitutively expressed on the plasma membrane, and are not affected by the activation state of the hLHR. PMID:19147490

  20. Prostaglandin F2 alpha and its analogs induce release of endogenous prostaglandins in iris and ciliary muscles isolated from cat and other mammalian species.

    PubMed

    Yousufzai, S Y; Ye, Z; Abdel-Latif, A A

    1996-09-01

    Prostaglandin F2 alpha (PGF 2 alpha) and its analog latanoprost are effective in lowering intraocular pressure (IOP) in both animal and human subjects. There is mounting experimental evidence now which indicates that the IOP-lowering effect of these PGs occurs through an increased uveoscleral outflow of aqueous humor. The ciliary muscle constitutes the main resistance in this pathway. Work from several laboratories, including our own, has shown that in this smooth muscle PGF 2 alpha has little effect on cAMP accumulation or on Ca2+ mobilization. In the present study, we hypothesized that some of the effects of PGF2 alpha and its analogs may be mediated through the release of endogenous PGs. The purpose of this work was to determine whether or not PGF2 alpha and its analogs can enhance the release of endogenous PGs in iris and ciliary muscles isolated from different species. This report documents for the first time that exogenous PGF2 alpha and its analogs, PhXA85 and latanoprost, stimulate the formation of PGE2, PGD2 and PGF2 alpha in iris and ciliary muscles isolated from cat, bovine, rabbit, dog, rhesus monkey and human. PG-induced PG release was demonstrated by means of both radioimmunoassay and radiochromatography. Kinetic studies on cat iris revealed that PGF2 alpha-induced PGE2 release is time (t 1/2 = 1.7 min) and dose-dependent (EC50 = 45 nM). The increase in PGE2 release was blocked by indomethacin (Indo) and by dexamethasone in a dose-dependent manner with IC50 s of 9.2 nM and 2.6 microM, respectively. Furthermore, dexamethasone inhibited arachidonic acid (AA) release, suggesting the involvement of phospholipase A2 in PGF2 alpha-induced PG release. The data presented demonstrate that PGF2 alpha and its analogs interact with the PG receptor to stimulate phospholipase A2 and release AA for PG synthesis. Relaxation of ciliary muscle by PGF2 alpha and its analogs, via release of endogenous PGE2, a potent activator of the adenylate cyclase system, could in part explain how these PGs may increase uveoscleral outflow and consequently lower IOP.

  1. Computational study of aggregation mechanism in human lysozyme[D67H

    PubMed Central

    Patel, Dharmeshkumar

    2017-01-01

    Aggregation of proteins is an undesired phenomena that affects both human health and bioengineered products such as therapeutic proteins. Finding preventative measures could be facilitated by a molecular-level understanding of dimer formation, which is the first step in aggregation. Here we present a molecular dynamics (MD) study of dimer formation propensity in human lysozyme and its D67H variant. Because the latter protein aggregates while the former does not, they offer an ideal system for testing the feasibility of the proposed MD approach which comprises three stages: i) partially unfolded conformers involved in dimer formation are generated via high-temperature MD simulations, ii) potential dimer structures are searched using docking and refined with MD, iii) free energy calculations are performed to find the most stable dimer structure. Our results provide a detailed explanation for how a single mutation (D67H) turns human lysozyme from non-aggregating to an aggregating protein. Conversely, the proposed method can be used to identify the residues causing aggregation in a protein, which can be mutated to prevent it. PMID:28467454

  2. Biophysical Characterization of the Dimer and Tetramer Interface Interactions of the Human Cytosolic Malic Enzyme

    PubMed Central

    Murugan, Sujithkumar; Hung, Hui-Chih

    2012-01-01

    The cytosolic NADP+-dependent malic enzyme (c-NADP-ME) has a dimer-dimer quaternary structure in which the dimer interface associates more tightly than the tetramer interface. In this study, the urea-induced unfolding process of the c-NADP-ME interface mutants was monitored using fluorescence and circular dichroism spectroscopy, analytical ultracentrifugation and enzyme activities. Here, we demonstrate the differential protein stability between dimer and tetramer interface interactions of human c-NADP-ME. Our data clearly demonstrate that the protein stability of c-NADP-ME is affected predominantly by disruptions at the dimer interface rather than at the tetramer interface. First, during thermal stability experiments, the melting temperatures of the wild-type and tetramer interface mutants are 8–10°C higher than those of the dimer interface mutants. Second, during urea denaturation experiments, the thermodynamic parameters of the wild-type and tetramer interface mutants are almost identical. However, for the dimer interface mutants, the first transition of the urea unfolding curves shift towards a lower urea concentration, and the unfolding intermediate exist at a lower urea concentration. Third, for tetrameric WT c-NADP-ME, the enzyme is first dissociated from a tetramer to dimers before the 2 M urea treatment, and the dimers then dissociated into monomers before the 2.5 M urea treatment. With a dimeric tetramer interface mutant (H142A/D568A), the dimer completely dissociated into monomers after a 2.5 M urea treatment, while for a dimeric dimer interface mutant (H51A/D90A), the dimer completely dissociated into monomers after a 1.5 M urea treatment, indicating that the interactions of c-NADP-ME at the dimer interface are truly stronger than at the tetramer interface. Thus, this study provides a reasonable explanation for why malic enzymes need to assemble as a dimer of dimers. PMID:23284632

  3. Targeting cysteine-mediated dimerization of the MUC1-C oncoprotein in human cancer cells

    PubMed Central

    RAINA, DEEPAK; AHMAD, REHAN; RAJABI, HASAN; PANCHAMOORTHY, GOVIND; KHARBANDA, SURENDER; KUFE, DONALD

    2012-01-01

    The MUC1 heterodimeric protein is aberrantly overexpressed in diverse human carcinomas and contributes to the malignant phenotype. The MUC1-C transmembrane subunit contains a CQC motif in the cytoplasmic domain that has been implicated in the formation of dimers and in its oncogenic function. The present study demonstrates that MUC1-C forms dimers in human breast and lung cancer cells. MUC1-C dimerization was detectable in the cytoplasm and was independent of MUC1-N, the N-terminal mucin subunit that extends outside the cell. We show that the MUC1-C cytoplasmic domain forms dimers in vitro that are disrupted by reducing agents. Moreover, dimerization of the MUC1-C subunit in cancer cells was blocked by reducing agents and increased by oxidative stress, supporting involvement of the CQC motif in forming disulfide bonds. In support of these observations, mutation of the MUC1-C CQC motif to AQA completely blocked MUC1-C dimerization. Importantly, this study was performed with MUC1-C devoid of fluorescent proteins, such as GFP, CFP and YFP. In this regard, we show that GFP, CFP and YFP themselves form dimers that are readily detectable with cross-linking agents. The present results further demonstrate that a cell-penetrating peptide that targets the MUC1-C CQC cysteines blocks MUC1-C dimerization in cancer cells. These findings provide definitive evidence that: i) the MUC1-C cytoplasmic domain cysteines are necessary and sufficient for MUC1-C dimerization, and ii) these CQC motif cysteines represent an Achilles’ heel for targeting MUC1-C function. PMID:22200620

  4. Genetics Home Reference: primary ciliary dyskinesia

    MedlinePlus

    ... mutations explain only 2% of primary ciliary dykinesia. Respiration. 2008;76(2):198-204. doi: 10.1159/ ... MR. Genetic causes of bronchiectasis: primary ciliary dyskinesia. Respiration. 2007;74(3):252-63. Review. Citation on ...

  5. Loss of Centrobin Enables Daughter Centrioles to Form Sensory Cilia in Drosophila.

    PubMed

    Gottardo, Marco; Pollarolo, Giulia; Llamazares, Salud; Reina, Jose; Riparbelli, Maria G; Callaini, Giuliano; Gonzalez, Cayetano

    2015-08-31

    Sensory cilia are organelles that convey information to the cell from the extracellular environment. In vertebrates, ciliary dysfunction results in ciliopathies that in humans comprise a wide spectrum of developmental disorders. In Drosophila, sensory cilia are found only in the neurons of type I sensory organs, but ciliary dysfunction also has dramatic consequences in this organism because it impairs the mechanosensory properties of bristles and chaetae and leads to uncoordination, a crippling condition that causes lethality shortly after eclosion. The cilium is defined by the ciliary membrane, a protrusion of the cell membrane that envelops the core structure known as the axoneme, a microtubule array that extends along the cilium from the basal body. In vertebrates, basal body function requires centriolar distal and subdistal appendages and satellites. Because these structures are acquired through centriole maturation, only mother centrioles can serve as basal bodies. Here, we show that although centriole maturity traits are lacking in Drosophila, basal body fate is reserved to mother centrioles in Drosophila type I neurons. Moreover, we show that depletion of the daughter-centriole-specific protein Centrobin (CNB) enables daughter centrioles to dock on the cell membrane and to template an ectopic axoneme that, although structurally defective, protrudes out of the cell and is enveloped by a ciliary membrane. Conversely, basal body capability is inhibited in mother centrioles modified to carry CNB. These results reveal the crucial role of CNB in regulating basal body function in Drosophila ciliated sensory organs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Influence of essential and fatty oils on ciliary beat frequency of human nasal epithelial cells.

    PubMed

    Neher, Andreas; Gstöttner, Michaela; Thaurer, Michael; Augustijns, Patrick; Reinelt, Monika; Schobersberger, Wolfgang

    2008-01-01

    In alternative and complementary medicine, the use of essential and fatty oils has become more and more popular. In addition to conventional medical therapies, self-medication is showing increasing popularity, using agents with unclear compounds and poorly controlled dosages. Among other disorders, these alternative treatments are used in bronchitis and rhinitis, including some topical applications. Thus, the influence on ciliated epithelia should be evaluated, because a disturbance of the ciliary function can lead to recurrent sinusitis and chronic rhinosinusitis. The aim of this study was to test the influence of fatty and essential oils on the ciliary beat frequency (CBF) of nasal mucosa in vivo. The influence of sesame oil, soy oil, peanut oil, Miglyol 840, thyme oil, lavender oil, eucalyptus oil, and menthol on the ciliary activity of nasal brushings was evaluated by digital high-speed imaging. The presence of most fatty oils resulted in an increase in CBF, the effect being highest for peanut oil. Miglyol 840 had no significant influence on CBF. The essential oils were tested at a concentration of 0.2 and 2%. Thyme oil did not affect CBF, whereas the presence of all other essentials oils resulted in an increase in CBF; the effect was higher at 0.2% than at 2%. Except thyme oil and Miglyol 840, all tested oils caused an increase in CBF. Interestingly, the 0.2% concentrations of essential oils resulted in stronger effects when compared with the 2% concentrations.

  7. Treatment of glaucoma with high intensity focused ultrasound.

    PubMed

    Aptel, Florent; Lafon, Cyril

    2015-05-01

    Glaucoma is a common disease mainly due to an increase in pressure inside the eye, leading to a progressive destruction of the optic nerve, potentially to blindness. Intraocular pressure (IOP) is the result of a balance between production of liquid that fills the eye--aqueous humour--and its resorption. All treatments for glaucoma aim to reduce IOP and can therefore have two mechanisms of action: reducing aqueous humour production by the partial destruction or medical inhibition of the ciliary body--the anatomical structure responsible for production of aqueous humour--or facilitating the evacuation of aqueous humour from the eye. Several physical methods can be used to destroy the ciliary body, e.g. laser, cryotherapy, microwave. All these methods have two major drawbacks: they are non-selective for the organ to be treated and they have an unpredictable dose–effect relationship. High intensity focused ultrasound (HIFU) can be used to coagulate the ciliary body and avoid these drawbacks. A commercially available device was marketed in the 1980s, but later abandoned, essentially for technical reasons. A smaller circular device using miniaturised transducers was recently developed and proposed for clinical practice. Experimental studies have shown selective coagulation necrosis of the treated ciliary body. The first three clinical trials in humans have shown that this device was well tolerated and allowed a significant, predictable and sustained reduction of IOP. The aim of this contribution is to present a summary of the work concerning the use of HIFU to treat glaucoma.

  8. Functional Architecture of the Outer Arm Dynein Conformational Switch*

    PubMed Central

    King, Stephen M.; Patel-King, Ramila S.

    2012-01-01

    Dynein light chain 1 (LC1/DNAL1) is one of the most highly conserved components of ciliary axonemal outer arm dyneins, and it associates with both a heavy chain motor unit and tubulin located within the A-tubule of the axonemal outer doublet microtubules. In a variety of model systems, lack of LC1 or expression of mutant forms leads to profound defects in ciliary motility, including the failure of the hydrodynamic coupling needed for ciliary metachronal synchrony, random stalling during the power/recovery stroke transition, an aberrant response to imposed viscous load, and in some cases partial failure of motor assembly. These phenotypes have led to the proposal that LC1 acts as part of a mechanical switch to control motor function in response to alterations in axonemal curvature. Here we have used NMR chemical shift mapping to define the regions perturbed by a series of mutations in the C-terminal domain that yield a range of phenotypic effects on motility. In addition, we have identified the subdomain of LC1 involved in binding microtubules and characterized the consequences of an Asn → Ser alteration within the terminal leucine-rich repeat that in humans causes primary ciliary dyskinesia. Together, these data define a series of functional subdomains within LC1 and allow us to propose a structural model for the organization of the dynein heavy chain-LC1-microtubule ternary complex that is required for the coordinated activity of dynein motors in cilia. PMID:22157010

  9. Each Monomer of the Dimeric Accessory Protein for Human Mitochondrial DNA Polymerase Has a Distinct Role in Conferring Processivity*

    PubMed Central

    Lee, Young-Sam; Lee, Sujin; Demeler, Borries; Molineux, Ian J.; Johnson, Kenneth A.; Yin, Y. Whitney

    2010-01-01

    The accessory protein polymerase (pol) γB of the human mitochondrial DNA polymerase stimulates the synthetic activity of the catalytic subunit. pol γB functions by both accelerating the polymerization rate and enhancing polymerase-DNA interaction, thereby distinguishing itself from the accessory subunits of other DNA polymerases. The molecular basis for the unique functions of human pol γB lies in its dimeric structure, where the pol γB monomer proximal to pol γA in the holoenzyme strengthens the interaction with DNA, and the distal pol γB monomer accelerates the reaction rate. We further show that human pol γB exhibits a catalytic subunit- and substrate DNA-dependent dimerization. By duplicating the monomeric pol γB of lower eukaryotes, the dimeric mammalian proteins confer additional processivity to the holoenzyme polymerase. PMID:19858216

  10. ICK is essential for cell type-specific ciliogenesis and the regulation of ciliary transport.

    PubMed

    Chaya, Taro; Omori, Yoshihiro; Kuwahara, Ryusuke; Furukawa, Takahisa

    2014-06-02

    Cilia and flagella are formed and maintained by intraflagellar transport (IFT) and play important roles in sensing and moving across species. At the distal tip of the cilia/flagella, IFT complexes turn around to switch from anterograde to retrograde transport; however, the underlying regulatory mechanism is unclear. Here, we identified ICK localization at the tip of cilia as a regulator of ciliary transport. In ICK-deficient mice, we found ciliary defects in neuronal progenitor cells with Hedgehog signal defects. ICK-deficient cells formed cilia with mislocalized Hedgehog signaling components. Loss of ICK caused the accumulation of IFT-A, IFT-B, and BBSome components at the ciliary tips. In contrast, overexpression of ICK induced the strong accumulation of IFT-B, but not IFT-A or BBSome components at ciliary tips. In addition, ICK directly phosphorylated Kif3a, while inhibition of this Kif3a phosphorylation affected ciliary formation. Our results suggest that ICK is a Kif3a kinase and essential for proper ciliogenesis in development by regulating ciliary transport at the tip of cilia. © 2014 The Authors.

  11. ICK is essential for cell type-specific ciliogenesis and the regulation of ciliary transport

    PubMed Central

    Chaya, Taro; Omori, Yoshihiro; Kuwahara, Ryusuke; Furukawa, Takahisa

    2014-01-01

    Cilia and flagella are formed and maintained by intraflagellar transport (IFT) and play important roles in sensing and moving across species. At the distal tip of the cilia/flagella, IFT complexes turn around to switch from anterograde to retrograde transport; however, the underlying regulatory mechanism is unclear. Here, we identified ICK localization at the tip of cilia as a regulator of ciliary transport. In ICK-deficient mice, we found ciliary defects in neuronal progenitor cells with Hedgehog signal defects. ICK-deficient cells formed cilia with mislocalized Hedgehog signaling components. Loss of ICK caused the accumulation of IFT-A, IFT-B, and BBSome components at the ciliary tips. In contrast, overexpression of ICK induced the strong accumulation of IFT-B, but not IFT-A or BBSome components at ciliary tips. In addition, ICK directly phosphorylated Kif3a, while inhibition of this Kif3a phosphorylation affected ciliary formation. Our results suggest that ICK is a Kif3a kinase and essential for proper ciliogenesis in development by regulating ciliary transport at the tip of cilia. PMID:24797473

  12. Regulation of ciliary motility: conserved protein kinases and phosphatases are targeted and anchored in the ciliary axoneme

    PubMed Central

    Wirschell, Maureen; Yamamoto, Ryosuke; Alford, Lea; Gokhale, Avanti; Gaillard, Anne; Sale, Winfield S.

    2011-01-01

    Recent evidence has revealed that the dynein motors and highly conserved signaling proteins are localized within the ciliary 9 + 2 axoneme. One key mechanism for regulation of motility is phosphorylation. Here, we review diverse evidence, from multiple experimental organisms, that ciliary motility is regulated by phosphorylation / dephosphorylation of the dynein arms through kinases and phosphatases that are anchored immediately adjacent to their axonemal substrates. PMID:21513695

  13. Melatonin synthesis in the human ciliary body triggered by TRPV4 activation: Involvement of AANAT phosphorylation.

    PubMed

    Alkozi, Hanan Awad; Perez de Lara, María J; Pintor, Jesús

    2017-09-01

    Melatonin is a substance synthesized in the pineal gland as well as in other organs. This substance is involved in many ocular functions, giving its synthesis in numerous eye structures. Melatonin is synthesized from serotonin through two enzymes, the first limiting step into the synthesis of melatonin being aralkylamine N-acetyltransferase (AANAT). In this current study, AANAT phosphorylation after the activation of TRPV4 was studied using human non-pigmented epithelial ciliary body cells. Firstly, it was necessary to determine the adequate time and dose of the TRPV4 agonist GSK1016790A to reach the maximal phosphorylation of AANAT. An increase of 72% was observed after 5 min incubation with 10 nM GSK (**p < 0.05, n = 6) with a concomitant rise in N-acetyl serotonin and melatonin synthesis. The involvement of a TRPV4 channel in melatonin synthesis was verified by antagonist and siRNA studies as a previous step to studying intracellular signalling. Studies performed on the second messengers involved in GSK induced AANAT phosphorylation were carried out by inhibiting several pathways. In conclusion, the activation of calmodulin and calmodulin-dependent protein kinase II was confirmed, as shown by the cascade seen in AANAT phosphorylation (***p < 0.001, n = 4). This mechanism was also established by measuring N-acetyl serotonin and melatonin levels. In conclusion, the activation of a TRPV4 present in human ciliary body epithelial cells produced an increase in AANAT phosphorylation and a further melatonin increase by a mechanism in which Ca-calmodulin and the calmodulin-dependent protein kinase II are involved. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Theoretical analysis of bimetallic nanorod dimer biosensors for label-free molecule detection

    NASA Astrophysics Data System (ADS)

    Das, Avijit; Talukder, Muhammad Anisuzzaman

    2018-02-01

    In this work, we theoretically analyze a gold (Au) core within silver (Ag) shell (Au@Ag) nanorod dimer biosensor for label-free molecule detection. The incident light on an Au@Ag nanorod strongly couples to localized surface plasmon modes, especially around the tip region. The field enhancement around the tip of a nanorod or between the tips of two longitudinally aligned nanorods as in a dimer can be exploited for sensitive detection of biomolecules. We derive analytical expressions for the interactions of an Au@Ag nanorod dimer with the incident light. We also study the detail dynamics of an Au@Ag nanorod dimer with the incident light computationally using finite difference time domain (FDTD) technique when core-shell ratio, relative position of the nanorods, and angle of incidence of light change. We find that the results obtained using the developed analytical model match well with that obtained using FDTD simulations. Additionally, we investigate the sensitivity of the Au@Ag nanorod dimer, i.e., shift in the resonance wavelength, when a target biomolecule such as lysozyme (Lys), human serum albumin (HSA), anti-biotin (Abn), human catalase (CAT), and human fibrinogen (Fb) protein molecules are attached to the tips of the nanorods.

  15. Culture of Primary Ciliary Dyskinesia Epithelial Cells at Air-Liquid Interface Can Alter Ciliary Phenotype but Remains a Robust and Informative Diagnostic Aid

    PubMed Central

    Coles, Janice L.; Williams, Gwyneth; Rutman, Andrew; Goggin, Patricia M.; Adam, Elizabeth C.; Page, Anthony; Evans, Hazel J.; Lackie, Peter M.; O’Callaghan, Christopher; Lucas, Jane S.

    2014-01-01

    Background The diagnosis of primary ciliary dyskinesia (PCD) requires the analysis of ciliary function and ultrastructure. Diagnosis can be complicated by secondary effects on cilia such as damage during sampling, local inflammation or recent infection. To differentiate primary from secondary abnormalities, re-analysis of cilia following culture and re-differentiation of epithelial cells at an air-liquid interface (ALI) aids the diagnosis of PCD. However changes in ciliary beat pattern of cilia following epithelial cell culture has previously been described, which has brought the robustness of this method into question. This is the first systematic study to evaluate ALI culture as an aid to diagnosis of PCD in the light of these concerns. Methods We retrospectively studied changes associated with ALI-culture in 158 subjects referred for diagnostic testing at two PCD centres. Ciliated nasal epithelium (PCD n = 54; non-PCD n = 111) was analysed by high-speed digital video microscopy and transmission electron microscopy before and after culture. Results Ciliary function was abnormal before and after culture in all subjects with PCD; 21 PCD subjects had a combination of static and uncoordinated twitching cilia, which became completely static following culture, a further 9 demonstrated a decreased ciliary beat frequency after culture. In subjects without PCD, secondary ciliary dyskinesia was reduced. Conclusions The change to ciliary phenotype in PCD samples following cell culture does not affect the diagnosis, and in certain cases can assist the ability to identify PCD cilia. PMID:24586956

  16. Region-Specific Relationships Between Refractive Error and Ciliary Muscle Thickness in Children

    PubMed Central

    Pucker, Andrew D.; Sinnott, Loraine T.; Kao, Chiu-Yen; Bailey, Melissa D.

    2013-01-01

    Purpose. To determine if there is a relationship between refractive error and ciliary muscle thickness in different muscle regions. Methods. An anterior segment optical coherence tomographer was used to measure cycloplegic ciliary muscle thicknesses at 1 mm (CMT1), 2 mm (CMT2), and 3 mm (CMT3) posterior to the scleral spur; maximum (CMTMAX) thickness was also assessed. An autorefractor was used to determine cycloplegic spherical equivalent refractive error (SPHEQ). Apical ciliary muscle fibers were obtained by subtracting corresponding CMT2 values from CMT1 and CMTMAX. Multilevel regression models were used to determine the relationship between ciliary muscle thickness in various regions of the muscle and refractive error. Results. Subjects included 269 children with a mean age of 8.71 ± 1.51 years and a mean refractive error of +0.41 ± 1.29 diopters. In linear models with ciliary muscle thicknesses and SPHEQ, SPHEQ was significantly associated only with CMT2 (β = −11.34, P = 0.0008) and CMT 3 (β = −6.97, P = 0.007). When corresponding values of CMT2 were subtracted from CMT1 and CMTMAX, apical fibers at CMT1 (β = 14.75, P < 0.0001) and CMTMAX (β = 18.16, P < 0.0001) had a significant relationship with SPHEQ. Conclusions. These data indicated that in children the posterior ciliary muscle fibers are thicker in myopia (CMT2 and CMT3), but paradoxically, the apical ciliary muscle fibers are thicker in hyperopia (CMTMAX and CMT1). This may be the first evidence that hyperopia is associated with a thicker apical ciliary muscle region. PMID:23761093

  17. Synchronous imaging of the pulse response of the ciliary muscle and lens with SD-OCT (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Cherng; Pham, Alex; Williams, Siobhan; Alawa, Karam A.; de Freitas, Carolina; Ruggeri, Marco; Parel, Jean-Marie A.; Manns, Fabrice

    2017-02-01

    Purpose: To determine the dynamic interaction between ciliary muscle and lens during accommodation and disaccommodation through synchronous imaging of ciliary muscle and lens response to pulse stimulus Methods: The ciliary muscle and lens were imaged simultaneously in a 33 year old subject responding to a 4D pulse stimulus (accommodative stimulus at 1.7 s, disaccommodative stimulus at 7.7 s) using an existing imaging system (Ruggeri et al, 2016) consisting of an Anterior Segment Optical Coherence Tomography system, Ciliary Muscle Optical Coherence Tomography system, and custom-built accommodation module. OCT images were recorded at an effective frame rate of 13.0 frames per second for a total scan time of 11.5 s. An automated segmentation algorithm was applied to images of the anterior segment to detect the boundaries of the cornea and lens, from which lens thickness was extracted. Segmentation of the ciliary muscle was performed manually and then corrected for distortion due to refraction of the beam to obtain measurements of thicknesses at the apex and fixed distances from the scleral spur. Results: The dynamic biometric response to a pulse stimulus at 4D was determined for both the ciliary muscle and lens, suggesting the ciliary muscle and lens interact differently in accommodation and disaccommodation. Conclusions: The study introduces new data and analyses of the ciliary muscle and lens interaction during a complete accommodative response from the relaxed to the accommodated state and back, providing insight into the interplay between individual elements in the accommodative system and how their relationships may change with age.

  18. Morphology and accommodative function of the vitreous zonule in human and monkey eyes.

    PubMed

    Lütjen-Drecoll, Elke; Kaufman, Paul L; Wasielewski, Rainer; Ting-Li, Lin; Croft, Mary Ann

    2010-03-01

    To explore the attachments of the posterior zonule and vitreous in relation to accommodation and presbyopia in monkeys and humans. Novel scanning electron microscopy (SEM) and ultrasound biomicroscopy (UBM) techniques were used to visualize the anterior, intermediate, and posterior vitreous zonule and their connections to the ciliary body, vitreous membrane, lens capsule, and ora serrata, and to characterize their age-related changes and correlate them with loss of accommodative forward movement of the ciliary body. alpha-Chymotrypsin was used focally to lyse the vitreous zonule and determine the effect on movement of the accommodative apparatus in monkeys. The vitreous attached to the peripheral lens capsule and the ora serrata directly. The pars plana zonule and the posterior tines of the anterior zonule were separated from the vitreous membrane except for strategically placed attachments, collectively termed the vitreous zonule, that may modulate and smooth the forward and backward movements of the entire system. Age-dependent changes in these relationships correlated significantly with loss of accommodative amplitude. Lysis of the intermediate vitreous zonule partially restored accommodative movement. The vitreous zonule system may help to smoothly translate to the lens the driving forces of accommodation and disaccommodation generated by the ciliary muscle, while maintaining visual focus and protecting the lens capsule and ora serrata from acute tractional forces. Stiffening of the vitreous zonular system may contribute to age-related loss of accommodation and offer a therapeutic target for presbyopia.

  19. Heterologous live infectious bronchitis virus vaccination in day-old commercial broiler chicks: clinical signs, ciliary health, immune responses and protection against variant infectious bronchitis viruses.

    PubMed

    Awad, Faez; Hutton, Sally; Forrester, Anne; Baylis, Matthew; Ganapathy, Kannan

    2016-01-01

    Groups of one-day-old broiler chicks were vaccinated via the oculo-nasal route with different live infectious bronchitis virus (IBV) vaccines: Massachusetts (Mass), 793B, D274 or Arkansas (Ark). Clinical signs and gross lesions were evaluated. Five chicks from each group were humanely killed at intervals and their tracheas collected for ciliary activity assessment and for the detection of CD4+, CD8+ and IgA-bearing B cells by immunohistochemistry (IHC). Blood samples were collected at intervals for the detection of anti-IBV antibodies. At 21 days post-vaccination (dpv), protection conferred by different vaccination regimes against virulent M41, QX and 793B was assessed. All vaccination programmes were able to induce high levels of CD4+, CD8+ and IgA-bearing B cells in the trachea. Significantly higher levels of CD4+ and CD8+ expression were observed in the Mass2 + 793B2-vaccinated group compared to the other groups (subscripts indicate different manufacturers). Protection studies showed that the group of chicks vaccinated with Mass2 + 793B2 produced 92% ciliary protection against QX challenge; compared to 53%, 68% and 73% ciliary protection against the same challenge virus by Mass1 + D274, Mass1 + 793B1 and Mass3 + Ark, respectively. All vaccination programmes produced more than 85% ciliary protection against M41 and 793B challenges. It appears that the variable levels of protection provided by different heterologous live IBV vaccinations are dependent on the levels of local tracheal immunity induced by the respective vaccine combination. The Mass2 + 793B2 group showed the worst clinical signs, higher mortality and severe lesions following vaccination, but had the highest tracheal immune responses and demonstrated the best protection against all three challenge viruses.

  20. PRIMARY CILIARY DYSKINESIA: DIAGNOSTIC AND PHENOTYPIC FEATURES

    EPA Science Inventory

    Primary ciliary dyskinesia (PCD) is a genetic disease characterized by abnormalities in ciliary structure/function. We hypothesized that the major clinical and biologic phenotypic markers of the disease could be evaluated by studying a cohort of subjects suspected of having PCD. ...

  1. Glucose Transporters are Abundant in Cells with "Occluding" Junctions at the Blood-Eye Barriers

    NASA Astrophysics Data System (ADS)

    Harik, Sami I.; Kalaria, Rajesh N.; Whitney, Paul M.; Andersson, Lars; Lundahl, Per; Ledbetter, Steven R.; Perry, George

    1990-06-01

    We studied the distribution of the "erythroid/brain" glucose transporter protein in the human and rat eye by immunocytochemistry with monoclonal and polyclonal antibodies to the C terminus of the human erythrocyte glucose transporter. We found intense immunocytochemical staining in the endothelium of microvessels of the retina, optic nerve, and iris but not in microvessels of the choroid, ciliary body, sclera, and other retro-orbital tissues. In addition, we found marked immunocytochemical staining of retinal pigment epithelium, ciliary body epithelium, and posterior epithelium of the iris. The common feature of all those endothelial and epithelial cells that stained intensely for the glucose transporter is the presence of "occluding" intercellular junctions, which constitute the anatomical bases of the blood-eye barriers. We propose that a high density of the glucose transporter is a biochemical concomitant of epithelial and endothelial cells with barrier characteristics, at least in tissues that have a high metabolic requirement for glucose.

  2. Tea Catechin Auto-oxidation Dimers are Accumulated and Retained by Caco-2 Human Intestinal Cells

    PubMed Central

    Neilson, Andrew P.; Song, Brian J.; Sapper, Teryn N.; Bomser, Joshua A.; Ferruzzi, Mario G.

    2010-01-01

    Despite the presence of bioactive catechin B-ring auto-oxidation dimers in tea, little is known regarding their absorption in humans. Our hypothesis for this research is that catechin auto-oxidation dimers are present in teas and are absorbable by human intestinal epithelial cells. Dimers [theasinensins (THSNs) and P-2 analogs) were quantified in commercial teas by HPLC-MS. (−)-Epigallocatechin (EGC) and (−)-epigallocatechin gallate (EGCG) homodimers were present at 10–43 and 0–62 µmol/g leaf, respectively. EGC-EGCG heterodimers were present at 0–79 µmol/g. The potential intestinal absorption of these dimers was assessed using Caco-2 intestinal cells. Catechin monomers and dimers were detected in cells exposed to media containing monomers and preformed dimers. Accumulation of dimers was significantly greater than monomers from test media. Three h accumulation of EGC and EGCG was 0.19– 0.55% and 1.24–1.35% respectively. Comparatively, 3h accumulation of the EGC P-2 analog, and THSNs C/E was 0.89 ± 0.28% and 1.53 ± 0.36%. Accumulation of P-2, and THSNs A/D was 6.93 ± 2.1%, and 10.1 ± 3.6%. EGCG-EGC heterodimer P-2 analog, and THSN B 3h accumulation was 4.87 ± 2.2%, and 4.65 ± 2.8% respectively. One h retention of P-2, and THSNs A/D was 171 ± 22%, and 29.6 ± 9.3% of accumulated amount suggesting intracellular oxidative conversion of THSNs to P-2. These data suggest that catechin dimers present in the gut lumen may be readily absorbed by intestinal epithelium. PMID:20579525

  3. Dynamics and asymmetry in the dimer of the norovirus major capsid protein.

    PubMed

    Tubiana, Thibault; Boulard, Yves; Bressanelli, Stéphane

    2017-01-01

    Noroviruses are the major cause of non-bacterial acute gastroenteritis in humans and livestock worldwide, despite being physically among the simplest animal viruses. The icosahedral capsid encasing the norovirus RNA genome is made of 90 dimers of a single ca 60-kDa polypeptide chain, VP1, arranged with T = 3 icosahedral symmetry. Here we study the conformational dynamics of this main building block of the norovirus capsid. We use molecular modeling and all-atom molecular dynamics simulations of the VP1 dimer for two genogroups with 50% sequence identity. We focus on the two points of flexibility in VP1 known from the crystal structure of the genogroup I (GI, human) capsid and from subsequent cryo-electron microscopy work on the GII capsid (also human). First, with a homology model of the GIII (bovine) VP1 dimer subjected to simulated annealing then classical molecular dynamics simulations, we show that the N-terminal arm conformation seen in the GI crystal structure is also favored in GIII VP1 but depends on the protonation state of critical residues. Second, simulations of the GI dimer show that the VP1 spike domain will not keep the position found in the GII electron microscopy work. Our main finding is a consistent propensity of the VP1 dimer to assume prominently asymmetric conformations. In order to probe this result, we obtain new SAXS data on GI VP1 dimers. These data are not interpretable as a population of symmetric dimers, but readily modeled by a highly asymmetric dimer. We go on to discuss possible implications of spontaneously asymmetric conformations in the successive steps of norovirus capsid assembly. Our work brings new lights on the surprising conformational range encoded in the norovirus major capsid protein.

  4. Tubby family proteins are adapters for ciliary trafficking of integral membrane proteins

    PubMed Central

    Shimada, Issei S.; Loriot, Evan

    2017-01-01

    The primary cilium is a paradigmatic organelle for studying compartmentalized signaling; however, unlike soluble protein trafficking, processes targeting integral membrane proteins to cilia are poorly understood. In this study, we determine that the tubby family protein TULP3 functions as a general adapter for ciliary trafficking of structurally diverse integral membrane cargo, including multiple reported and novel rhodopsin family G protein–coupled receptors (GPCRs) and the polycystic kidney disease–causing polycystin 1/2 complex. The founding tubby family member TUB also localizes to cilia similar to TULP3 and determines trafficking of a subset of these GPCRs to neuronal cilia. Using minimal ciliary localization sequences from GPCRs and fibrocystin (also implicated in polycystic kidney disease), we demonstrate these motifs to be sufficient and TULP3 dependent for ciliary trafficking. We propose a three-step model for TULP3/TUB-mediated ciliary trafficking, including the capture of diverse membrane cargo by the tubby domain in a phosphoinositide 4,5-bisphosphate (PI(4,5)P2)-dependent manner, ciliary delivery by intraflagellar transport complex A binding to the TULP3/TUB N terminus, and subsequent release into PI(4,5)P2-deficient ciliary membrane. PMID:28154160

  5. Comparative anatomy of the ciliary body of the West Indian manatee (Trichechus manatus) and selected species.

    PubMed

    Natiello, Michelle; Lewis, Patricia; Samuelson, Don

    2005-01-01

    To examine the anatomy of the ciliary body in the West Indian manatee (Trichechus manatus), paying close attention to its vascularization and to compare to those of its distant relative, the African elephant (Loxodonta africana), the amphibious hippopotamus (Hippopotamus amphibius) and the aquatic short-finned pilot whale (Globicephala macrorhynchus). Specimens from each species were preserved in 10% buffered formalin, and observed stereomicroscopically before being embedded in paraffin, sectioned and stained by Masson trichrome, hematoxylin and eosin, and periodic acid-Schiff for light microscopic evaluation. The network of blood vessels in the ciliary processes of the West Indian manatee appear to have an intricate pattern, especially with regard to venous outflow. Those of the elephant are slightly less complex, while those of the hippopotamus and whale have different vascular patterns within the ciliary body. Musculature within the ciliary body is absent within the manatee and pilot whale. In general, there appears to be a direct relationship between the increased development of vasculature and the loss of musculature within the ciliary bodies of the aquatic and amphibious mammals presently studied. Specifically, the ciliary body of the West Indian manatee has a comparatively unique construction, especially with regard to its vasculature.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    R Vasquez-Del Carpio; T Silverstein; S Lone

    Exposure of DNA to UV radiation causes covalent linkages between adjacent pyrimidines. The most common lesion found in DNA from these UV-induced linkages is the cis-syn cyclobutane pyrimidine dimer. Human DNA polymerase {Kappa} (Pol{Kappa}), a member of the Y-family of DNA polymerases, is unable to insert nucleotides opposite the 3'T of a cis-syn T-T dimer, but it can efficiently extend from a nucleotide inserted opposite the 3'T of the dimer by another DNA polymerase. We present here the structure of human Pol{Kappa} in the act of inserting a nucleotide opposite the 5'T of the cis-syn T-T dimer. The structure revealsmore » a constrained active-site cleft that is unable to accommodate the 3'T of a cis-syn T-T dimer but is remarkably well adapted to accommodate the 5'T via Watson-Crick base pairing, in accord with a proposed role for Pol{Kappa} in the extension reaction opposite from cyclobutane pyrimidine dimers in vivo.« less

  7. Structure of FGFR3 transmembrane domain dimer: implications for signaling and human pathologies.

    PubMed

    Bocharov, Eduard V; Lesovoy, Dmitry M; Goncharuk, Sergey A; Goncharuk, Marina V; Hristova, Kalina; Arseniev, Alexander S

    2013-11-05

    Fibroblast growth factor receptor 3 (FGFR3) transduces biochemical signals via lateral dimerization in the plasma membrane, and plays an important role in human development and disease. Eight different pathogenic mutations, implicated in cancers and growth disorders, have been identified in the FGFR3 transmembrane segment. Here, we describe the dimerization of the FGFR3 transmembrane domain in membrane-mimicking DPC/SDS (9/1) micelles. In the solved NMR structure, the two transmembrane helices pack into a symmetric left-handed dimer, with intermolecular stacking interactions occurring in the dimer central region. Some pathogenic mutations fall within the helix-helix interface, whereas others are located within a putative alternative interface. This implies that although the observed dimer structure is important for FGFR3 signaling, the mechanism of FGFR3-mediated transduction across the membrane is complex. We propose an FGFR3 signaling mechanism that is based on the solved structure, available structures of isolated soluble FGFR domains, and published biochemical and biophysical data. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Adhesive Dimerization of Human P-Cadherin Catalyzed by a Chaperone-like Mechanism.

    PubMed

    Kudo, Shota; Caaveiro, Jose M M; Tsumoto, Kouhei

    2016-09-06

    Orderly assembly of classical cadherins governs cell adhesion and tissue maintenance. A key event is the strand-swap dimerization of the extracellular ectodomains of two cadherin molecules from apposing cells. Here we have determined crystal structures of P-cadherin in six different conformational states to elaborate a motion picture of its adhesive dimerization at the atomic level. The snapshots revealed that cell-adhesive dimerization is facilitated by several intermediate states collectively termed X-dimer in analogy to other classical cadherins. Based on previous studies and on the combined structural, kinetic, thermodynamic, biochemical, and cellular data reported herein, we propose that the adhesive dimerization of human P-cadherin is achieved by a stepwise mechanism analogous to that of assembly chaperones. This mechanism, applicable to type I classical cadherins, confers high specificity and fast association rates. We expect these findings to guide innovative therapeutic approaches targeting P-cadherin in cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Targeted Resequencing of 29 Candidate Genes and Mouse Expression Studies Implicate ZIC3 and FOXF1 in Human VATER/VACTERL Association.

    PubMed

    Hilger, Alina C; Halbritter, Jan; Pennimpede, Tracie; van der Ven, Amelie; Sarma, Georgia; Braun, Daniela A; Porath, Jonathan D; Kohl, Stefan; Hwang, Daw-Yang; Dworschak, Gabriel C; Hermann, Bernhard G; Pavlova, Anna; El-Maarri, Osman; Nöthen, Markus M; Ludwig, Michael; Reutter, Heiko; Hildebrandt, Friedhelm

    2015-12-01

    The VATER/VACTERL association describes the combination of congenital anomalies including vertebral defects, anorectal malformations, cardiac defects, tracheoesophageal fistula with or without esophageal atresia, renal malformations, and limb defects. As mutations in ciliary genes were observed in diseases related to VATER/VACTERL, we performed targeted resequencing of 25 ciliary candidate genes as well as disease-associated genes (FOXF1, HOXD13, PTEN, ZIC3) in 123 patients with VATER/VACTERL or VATER/VACTERL-like phenotype. We detected no biallelic mutation in any of the 25 ciliary candidate genes; however, identified an identical, probably disease-causing ZIC3 missense mutation (p.Gly17Cys) in four patients and a FOXF1 de novo mutation (p.Gly220Cys) in a further patient. In situ hybridization analyses in mouse embryos between E9.5 and E14.5 revealed Zic3 expression in limb and prevertebral structures, and Foxf1 expression in esophageal, tracheal, vertebral, anal, and genital tubercle tissues, hence VATER/VACTERL organ systems. These data provide strong evidence that mutations in ZIC3 or FOXF1 contribute to VATER/VACTERL. © 2015 WILEY PERIODICALS, INC.

  10. Mucosal pathology of an experimental otitis media with effusion after X-ray irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohashi, Y.; Nakai, Y.; Ikeoka, H.

    1987-07-01

    Ten guinea pigs were irradiated with 30 Gy of x-radiation. Five were killed on the eighth day after irradiation, and the remainder were killed at the sixteenth day after irradiation. At the time of death, examination was made of the ciliary activity and the fine structure of the middle ear mucosa. Serous effusion was found in each tympanic cavity of all animals. It was shown also that the guinea pig, when irradiated with 30 Gy of x-radiation, exhibits pathologic abnormalities similar to those in humans with otitis media with effusion: degeneration of cilia or ciliated cells and changes in themore » vascular system (capillary injury and increased capillary permeability). Functional examinations showed that x-ray irradiation has delayed effects on ciliary activity, and the effects are much greater at the sixteenth day than at the eighth day. We speculate that the accumulation of effusion can be, at least partially, a consequence of ciliary dysfunction. The induction of sterile effusion by the use of x-ray irradiation provides a unique animal model for chronic otitis media with effusion of the serous type.« less

  11. Change in human lens dimensions, lens refractive index distribution and ciliary body ring diameter with accommodation

    PubMed Central

    Khan, Adnan; Pope, James M.; Verkicharla, Pavan K.; Suheimat, Marwan; Atchison, David A.

    2018-01-01

    We investigated changes in ciliary body ring diameter, lens dimensions and lens refractive index distributions with accommodation in young adults. A 3T clinical magnetic resonance imaging scanner imaged right eyes of 38 18-29 year old participants using a multiple spin echo sequence to determine accommodation-induced changes along lens axial and equatorial directions. Accommodation stimuli were approximately 1 D and 5 D. With accommodation, ciliary body ring diameter, and equatorial lens diameter decreased (–0.43 ± 0.31 mm and –0.30 ± 0.23 mm, respectively), and axial lens thickness increased ( + 0.34 ± 0.16 mm). Lens shape changes cause redistribution of the lens internal structure, leading to change in refractive index distribution profiles. With accommodation, in the axial direction refractive index profiles became flatter in the center and steeper near the periphery of the lens, while in the equatorial direction they became steeper in the center and flatter in the periphery. The results suggest that the anatomical accuracy of lens optical models can be improved by accounting for changes in the refractive index profile during accommodation. PMID:29541520

  12. Protein Interaction Analysis Provides a Map of the Spatial and Temporal Organization of the Ciliary Gating Zone.

    PubMed

    Takao, Daisuke; Wang, Liang; Boss, Allison; Verhey, Kristen J

    2017-08-07

    The motility and signaling functions of the primary cilium require a unique protein and lipid composition that is determined by gating mechanisms localized at the base of the cilium. Several protein complexes localize to the gating zone and may regulate ciliary protein composition; however, the mechanisms of ciliary gating and the dynamics of the gating components are largely unknown. Here, we used the BiFC (bimolecular fluorescence complementation) assay and report for the first time on the protein-protein interactions that occur between ciliary gating components and transiting cargoes during ciliary entry. We find that the nucleoporin Nup62 and the C termini of the nephronophthisis (NPHP) proteins NPHP4 and NPHP5 interact with the axoneme-associated kinesin-2 motor KIF17 and thus spatially map to the inner region of the ciliary gating zone. Nup62 and NPHP4 exhibit rapid turnover at the transition zone and thus define dynamic components of the gate. We find that B9D1, AHI1, and the N termini of NPHP4 and NPHP5 interact with the transmembrane protein SSTR3 and thus spatially map to the outer region of the ciliary gating zone. B9D1, AHI1, and NPHP5 exhibit little to no turnover at the transition zone and thus define components of a stable gating structure. These data provide the first comprehensive map of the molecular orientations of gating zone components along the inner-to-outer axis of the ciliary gating zone. These results advance our understanding of the functional roles of gating zone components in regulating ciliary protein composition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Regulation of human airway ciliary beat frequency by intracellular pH

    PubMed Central

    Sutto, Zoltan; Conner, Gregory E; Salathe, Matthias

    2004-01-01

    pHi affects a number of cellular functions, but the influence of pHi on mammalian ciliary beat frequency (CBF) is not known. CBF and pHi of single human tracheobronchial epithelial cells in submerged culture were measured simultaneously using video microscopy (for CBF) and epifluorescence microscopy with the pH-sensitive dye BCECF. Baseline CBF and pHi values in bicarbonate-free medium were 7.2 ± 0.2 Hz and 7.49 ± 0.02, respectively (n = 63). Alkalization by ammonium pre-pulse to pHi 7.78 ± 0.02 resulted in a 2.2 ± 0.1 Hz CBF increase (P < 0.05). Following removal of NH4Cl, pHi decreased to 7.24 ± 0.02 and CBF to 5.8 ± 0.1 Hz (P < 0.05). Removal of extracellular CO2 to change pHi resulted in similar CBF changes. Pre-activation of cAMP-dependent protein kinase (10 μm forskolin), broad inhibition of protein kinases (100 μm H-7), inhibition of PKA (10 μm H-89), nor inhibition of phosphatases (10 μm cyclosporin + 1.5 μm okadaic acid) changed pHi-mediated changes in CBF, nor were they due to [Ca2+]i changes. CBF of basolaterally permeabilized human tracheobronchial cells, re-differentiated at the air–liquid interface, was 3.9 ± 0.3, 5.7 ± 0.4, 7.0 ± 0.3 and 7.3 ± 0.3 Hz at basolateral i.e., intracellular pH of 6.8, 7.2, 7.6 and 8.0, respectively (n = 18). Thus, intracellular alkalization stimulates, while intracellular acidification attenuates human airway CBF. Since phosphorylation and [Ca2+]i changes did not seem to mediate pHi-induced CBF changes, pHi may directly act on the ciliary motile machinery. PMID:15308676

  14. BLOC-1 is required for selective membrane protein trafficking from endosomes to primary cilia

    PubMed Central

    2017-01-01

    Primary cilia perceive the extracellular environment through receptors localized in the ciliary membrane, but mechanisms directing specific proteins to this domain are poorly understood. To address this question, we knocked down proteins potentially important for ciliary membrane targeting and determined how this affects the ciliary trafficking of fibrocystin, polycystin-2, and smoothened. Our analysis showed that fibrocystin and polycystin-2 are dependent on IFT20, GMAP210, and the exocyst complex, while smoothened delivery is largely independent of these components. In addition, we found that polycystin-2, but not smoothened or fibrocystin, requires the biogenesis of lysosome-related organelles complex-1 (BLOC-1) for ciliary delivery. Consistent with the role of BLOC-1 in sorting from the endosome, we find that disrupting the recycling endosome reduces ciliary polycystin-2 and causes its accumulation in the recycling endosome. This is the first demonstration of a role for BLOC-1 in ciliary assembly and highlights the complexity of pathways taken to the cilium. PMID:28576874

  15. Inhibition of Human Cytomegalovirus Replication by Artemisinins: Effects Mediated through Cell Cycle Modulation

    PubMed Central

    Roy, Sujayita; He, Ran; Kapoor, Arun; Forman, Michael; Mazzone, Jennifer R.; Posner, Gary H.

    2015-01-01

    Artemisinin-derived monomers and dimers inhibit human cytomegalovirus (CMV) replication in human foreskin fibroblasts (HFFs). The monomer artesunate (AS) inhibits CMV at micromolar concentrations, while dimers inhibit CMV replication at nanomolar concentrations, without increased toxicity in HFFs. We report on the variable anti-CMV activity of AS compared to the consistent and reproducible CMV inhibition by dimer 606 and ganciclovir (GCV). Investigation of this phenomenon revealed that the anti-CMV activity of AS correlated with HFFs synchronized to the G0/G1 stage of the cell cycle. In contact-inhibited serum-starved HFFs or cells arrested at early/late G1 with specific checkpoint regulators, AS and dimer 606 efficiently inhibited CMV replication. However, in cycling HFFs, in which CMV replication was productive, virus inhibition by AS was significantly reduced, but inhibition by dimer 606 and GCV was maintained. Cell cycle analysis in noninfected HFFs revealed that AS induced early G1 arrest, while dimer 606 partially blocked cell cycle progression. In infected HFFs, AS and dimer 606 prevented the progression of cell cycle toward the G1/S checkpoint. AS reduced the expression of cyclin-dependent kinases (CDK) 2, 4, and 6 in noninfected cycling HFFs, while the effect of dimer 606 on these CDKs was moderate. Neither compound affected CDK expression in noninfected contact-inhibited HFFs. In CMV-infected cells, AS activity correlated with reduced CDK2 levels. CMV inhibition by AS and dimer 606 also correlated with hypophosphorylation (activity) of the retinoblastoma protein (pRb). AS activity was strongly associated with pRb hypophosphorylation, while its reduced anti-CMV activity was marked by pRb phosphorylation. Roscovitine, a CDK2 inhibitor, antagonized the anti-CMV activities of AS and dimer 606. These data suggest that cell cycle modulation through CDKs and pRb might play a role in the anti-CMV activities of artemisinins. Proteins involved in this modulation may be identified and targeted for CMV inhibition. PMID:25870074

  16. The role of molecular genetic analysis in the diagnosis of primary ciliary dyskinesia.

    PubMed

    Kim, Raymond H; A Hall, David; Cutz, Ernest; Knowles, Michael R; Nelligan, Kathleen A; Nykamp, Keith; Zariwala, Maimoona A; Dell, Sharon D

    2014-03-01

    Primary ciliary dyskinesia (PCD) is an autosomal recessive genetic disorder of motile cilia. The diagnosis of PCD has previously relied on ciliary analysis with transmission electron microscopy or video microscopy. However, patients with PCD may have normal ultrastructural appearance, and ciliary analysis has limited accessibility. Alternatively, PCD can be diagnosed by demonstrating biallelic mutations in known PCD genes. Genetic testing is emerging as a diagnostic tool to complement ciliary analysis where interpretation and access may delay diagnosis. To determine the diagnostic yield of genetic testing of patients with a confirmed or suspected diagnosis of PCD in a multiethnic urban center. Twenty-eight individuals with confirmed PCD on transmission electron microscopy of ciliary ultrastructure and 24 individuals with a probable diagnosis of PCD based on a classical PCD phenotype and low nasal nitric oxide had molecular analysis of 12 genes associated with PCD. Of 49 subjects who underwent ciliary biopsy, 28 (57%) were diagnosed with PCD through an ultrastructural defect. Of the 52 individuals who underwent molecular genetic analysis, 22 (42%) individuals had two mutations in known PCD genes. Twenty-four previously unreported mutations in known PCD genes were observed. Combining both diagnostic modalities of biopsy and molecular genetics, the diagnostic yield increased to 69% compared with 57% based on biopsy alone. The diagnosis of PCD is challenging and has traditionally relied on ciliary biopsy, which is unreliable as the sole criterion for a definitive diagnosis. Molecular genetic analysis can be used as a complementary test to increase the diagnostic yield.

  17. Formation of the transition zone by Mks5/Rpgrip1L establishes a ciliary zone of exclusion (CIZE) that compartmentalises ciliary signalling proteins and controls PIP2 ciliary abundance

    PubMed Central

    Jensen, Victor L; Li, Chunmei; Bowie, Rachel V; Clarke, Lara; Mohan, Swetha; Blacque, Oliver E; Leroux, Michel R

    2015-01-01

    Cilia are thought to harbour a membrane diffusion barrier within their transition zone (TZ) that compartmentalises signalling proteins. How this “ciliary gate” assembles and functions remains largely unknown. Contrary to current models, we present evidence that Caenorhabditis elegans MKS-5 (orthologue of mammalian Mks5/Rpgrip1L/Nphp8 and Rpgrip1) may not be a simple structural scaffold for anchoring > 10 different proteins at the TZ, but instead, functions as an assembly factor. This activity is needed to form TZ ultrastructure, which comprises Y-shaped axoneme-to-membrane connectors. Coiled-coil and C2 domains within MKS-5 enable TZ localisation and functional interactions with two TZ modules, consisting of Meckel syndrome (MKS) and nephronophthisis (NPHP) proteins. Discrete roles for these modules at basal body-associated transition fibres and TZ explain their redundant functions in making essential membrane connections and thus sealing the ciliary compartment. Furthermore, MKS-5 establishes a ciliary zone of exclusion (CIZE) at the TZ that confines signalling proteins, including GPCRs and NPHP-2/inversin, to distal ciliary subdomains. The TZ/CIZE, potentially acting as a lipid gate, limits the abundance of the phosphoinositide PIP2 within cilia and is required for cell signalling. Together, our findings suggest a new model for Mks5/Rpgrip1L in TZ assembly and function that is essential for establishing the ciliary signalling compartment. PMID:26392567

  18. cAMP Stimulates Transepithelial Short-Circuit Current and Fluid Transport Across Porcine Ciliary Epithelium.

    PubMed

    Cheng, Angela King-Wah; Civan, Mortimer M; To, Chi-Ho; Do, Chi-Wai

    2016-12-01

    To investigate the effects of cAMP on transepithelial electrical parameters and fluid transport across porcine ciliary epithelium. Transepithelial electrical parameters were determined by mounting freshly isolated porcine ciliary epithelium in a modified Ussing chamber. Similarly, fluid movement across intact ciliary body was measured with a custom-made fluid flow chamber. Addition of 1, 10, and 100 μM 8-Br-cAMP (cAMP) to the aqueous side (nonpigmented ciliary epithelium, NPE) induced a sustained increase in short-circuit current (Isc). Addition of niflumic acid (NFA) to the aqueous surface effectively blocked the cAMP-induced Isc stimulation. The administration of cAMP to the stromal side (pigmented ciliary epithelium, PE) triggered a significant stimulation of Isc only at 100 μM. No additive effect was observed with bilateral application of cAMP. Likewise, forskolin caused a significant stimulation of Isc when applied to the aqueous side. Concomitantly, cAMP and forskolin increased fluid transport across porcine ciliary epithelium, and this stimulation was effectively inhibited by aqueous NFA. Depleting Cl- in the bathing solution abolished the baseline Isc and inhibited the subsequent stimulation by cAMP. Pretreatment with protein kinase A (PKA) blockers (H89/KT5720) significantly inhibited the cAMP- and forskolin-induced Isc responses. Our results suggest that cAMP triggers a sustained stimulation of Cl- and fluid transport across porcine ciliary epithelium; Cl- channels in the NPE cells are potentially a cellular site for this PKA-sensitive cAMP-mediated response.

  19. Appearance of Sodium Dodecyl Sulfate-Stable Amyloid β-Protein (Aβ) Dimer in the Cortex During Aging

    PubMed Central

    Enya, Miho; Morishima-Kawashima, Maho; Yoshimura, Masahiro; Shinkai, Yasuhisa; Kusui, Kaoru; Khan, Karen; Games, Dora; Schenk, Dale; Sugihara, Shiro; Yamaguchi, Haruyasu; Ihara, Yasuo

    1999-01-01

    We previously noted that some aged human cortical specimens containing very low or negligible levels of amyloid β-protein (Aβ) by enzyme immunoassay (EIA) provided prominent signals at 6∼8 kd on the Western blot, probably representing sodium dodecyl sulfate (SDS)-stable Aβ dimer. Re-examination of the specificity of the EIA revealed that BAN50- and BNT77-based EIA, most commonly used for the quantitation of Aβ, capture SDS-dissociable Aβ but not SDS-stable Aβ dimer. Thus, all cortical specimens in which the levels of Aβ were below the detection limits of EIA were subjected to Western blot analysis. A fraction of such specimens contained SDS-stable dimer at 6∼8 kd, but not SDS-dissociable Aβ monomer at ∼4 kd, as judged from the blot. This Aβ dimer is unlikely to be generated after death, because (i) specimens with very short postmortem delay contained the Aβ dimer, and (ii) until 12 hours postmortem, such SDS-stable Aβ dimer is detected only faintly in PDAPP transgenic mice. The presence of Aβ dimer in the cortex may characterize the accumulation of Aβ in the human brain, which takes much longer than that in PDAPP transgenic mice. PMID:9916941

  20. Novel pathways to erythropoiesis induced by dimerization of intracellular C-Mpl in human hematopoietic progenitors.

    PubMed

    Parekh, Chintan; Sahaghian, Arineh; Kim, William; Scholes, Jessica; Ge, Shundi; Zhu, Yuhua; Asgharzadeh, Shahab; Hollis, Roger; Kohn, Donald; Ji, Lingyun; Malvar, Jemily; Wang, Xiaoyan; Crooks, Gay

    2012-04-01

    The cytokine thrombopoietin (Tpo) plays a critical role in hematopoiesis by binding to the extracellular domain and inducing homodimerization of the intracellular signaling domain of its receptor, c-Mpl. Mpl homodimerization can also be accomplished by binding of a synthetic ligand to a constitutively expressed fusion protein F36VMpl consisting of a ligand binding domain (F36V) and the intracellular signaling domain of Mpl. Unexpectedly, in contrast to Tpo stimulation, robust erythropoiesis is induced after dimerization of F36VMpl in human CD34+ progenitor cells. The goal of this study was to define the hematopoietic progenitor stages at which dimerization of intracellular Mpl induces erythropoiesis and the downstream molecular events that mediate this unanticipated effect. Dimerization (in the absence of erythropoietin and other cytokines) in human common myeloid progenitors and megakaryocytic erythroid progenitors caused a significant increase in CD34+ cells (p < .01) and induced all stages of erythropoiesis including production of enucleated red blood cells. In contrast, erythropoiesis was not seen with Tpo stimulation. CD34+ cell expansion was the result of increased cell cycling and survival (p < .05). Microarray profiling of CD34+ cells demonstrated that a unique transcriptional pattern is activated in progenitors by F36VMpl dimerization. Ligand-inducible dimerization of intracellular Mpl in human myeloerythroid progenitors induces progenitor expansion and erythropoiesis through molecular mechanisms that are not shared by Tpo stimulation of endogenous Mpl. Copyright © 2012 AlphaMed Press.

  1. Expression of human inducible nitric oxide synthase in a tetrahydrobiopterin (H4B)-deficient cell line: H4B promotes assembly of enzyme subunits into an active dimer.

    PubMed Central

    Tzeng, E; Billiar, T R; Robbins, P D; Loftus, M; Stuehr, D J

    1995-01-01

    Murine inducible nitric oxide (NO) synthase (iNOS) is catalytically active only in dimeric form. Assembly of its purified subunits into a dimer requires H4B. To understand the structure-activity relationships of human iNOS, we constitutively expressed recombinant human iNOS in NIH 3T3 cells by using a retroviral vector. These cells are deficient in de novo H4B biosynthesis and the role of H4B in the expression and assembly of active iNOS in an intact cell system could be studied. In the absence of added H4B, NO synthesis by the cells was minimal, whereas cells grown with supplemental H4B or the H4B precursor sepiapterin generated NO (74.1 and 63.3 nmol of nitrite per 10(6) cells per 24 h, respectively). NO synthesis correlated with an increase in intracellular H4B but no increase in iNOS protein. Instead, an increased percentage of dimeric iNOS was observed, rising from 20% in cytosols from unsupplemented cells to 66% in H4B-supplemented cell cytosols. In all cases, only dimeric iNOS displayed catalytic activity. Cytosols prepared from H4B-deficient cells exhibited little iNOS activity but acquired activity during a 60- to 120-min incubation with H4B, reaching final activities of 60-72 pmol of citrulline per mg of protein per min. Reconstitution of cytosolic NO synthesis activity was associated with conversion of monomers into dimeric iNOS during the incubation. Thus, human iNOS subunits dimerize to form an active enzyme, and H4B plays a critical role in promoting dimerization in intact cells. This reveals a post-translational mechanism by which intracellular H4B can regulate iNOS expression. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 PMID:8524846

  2. Gorilloflasca africana n.g., n.sp., (Entodiniomorphida) from wild habituated Virunga mountain gorillas (Gorilla beringei beringei) in Rwanda.

    PubMed

    Ito, Akira; Eckardt, Winnie; Stoinski, Tara S; Gillespie, Thomas R; Tokiwa, Toshihiro

    2017-08-01

    A new entodiniomorphid ciliate species, Gorilloflasca africana n. g., n. sp. was described from the Virunga mountain gorillas, Gorilla beringei beringei, in Rwanda. It is characterized by a flask-shaped body, a long tubular vestibulum, a round frontal lobe, a large posterior cavity, an ellipsoidal or peanut-shaped macronucleus and a single contractile vacuole. G. africana has the adoral and the vestibular ciliary zones in the buccal area. The adoral ciliary zone is non-retractable, encircling the vestibular opening. The vestibular ciliary zone extends posteriorly in the vestibulum. The somatic ciliary zones are the cavity ciliary zone in the posterior cavity along the ventral side of its opening and two longitudinal ciliary zones on the dorsal body surface. The buccal infraciliary bands of G. africana are a C-shaped adoral polybrachykinety, a stick-shaped vestibular kinety band, and paralabial kineties. The anterior region of the vestibular kinety band is composed of short kineties whereas, kineties in the remaining region are longitudinal. The somatic infraciliary bands are a cavity polybrachykinety and two longitudinal polybrachykineties. Gorilloflasca is a member of the family Blepharocorythidae based on the non-retractable adoral ciliary zone, the frontal lobe, the large posterior cavity and the vestibular longitudinal kineties. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Dimerization Interface of 3-Hydroxyacyl-CoA Dehydrogenase Tunes the Formation of Its Catalytic Intermediate

    PubMed Central

    Jin, Ying-Hua; Fan, Jun; Sun, Fei

    2014-01-01

    3-hydroxyacyl-CoA dehydrogenase (HAD, EC 1.1.1.35) is a homodimeric enzyme localized in the mitochondrial matrix, which catalyzes the third step in fatty acid β-oxidation. The crystal structures of human HAD and subsequent complexes with cofactor/substrate enabled better understanding of HAD catalytic mechanism. However, numerous human diseases were found related to mutations at HAD dimerization interface that is away from the catalytic pocket. The role of HAD dimerization in its catalytic activity needs to be elucidated. Here, we solved the crystal structure of Caenorhabditis elegans HAD (cHAD) that is highly conserved to human HAD. Even though the cHAD mutants (R204A, Y209A and R204A/Y209A) with attenuated interactions on the dimerization interface still maintain a dimerization form, their enzymatic activities significantly decrease compared to that of the wild type. Such reduced activities are in consistency with the reduced ratios of the catalytic intermediate formation. Further molecular dynamics simulations results reveal that the alteration of the dimerization interface will increase the fluctuation of a distal region (a.a. 60–80) that plays an important role in the substrate binding. The increased fluctuation decreases the stability of the catalytic intermediate formation, and therefore the enzymatic activity is attenuated. Our study reveals the molecular mechanism about the essential role of the HAD dimerization interface in its catalytic activity via allosteric effects. PMID:24763278

  4. Vasodilatory effect of L-arginine on isolated rabbit and human posterior ciliary arteries in vitro and increased optic disc blood flow in vivo.

    PubMed

    Chuman, Hideki; Sugimoto, Takako; Nao-I, Nobuhisa

    2017-12-01

    This study aimed to clarify the vasodilatory effect of L-arginine on isolated rabbit and human posterior ciliary arteries (PCAs) and to investigate changes in optic disc blood flow after an infusion of L-arginine in vivo. Vascular ring segments were mounted on a double myograph system. After obtaining maximal contraction following administration of high-K solution, L-arginine was administrated. Six volunteers received an intravenous drip infusion of 100 ml of L-arginine or saline. Changes in optic disc blood flow were measured by laser speckle flowgraphy. L-arginine relaxed high-K solution-induced contracted rabbit PCAs. Carboxy-PTIO (nitric oxide scavenger) and L-NAME (nitric oxide synthase inhibitor) inhibited L-arginine-induced relaxation in rabbit PCAs. After removal of the endothelium of the rabbit PCAs, L-arginine still relaxed rabbit PCAs. L-arginine relaxed human PCAs, despite the lack of nitric oxide production. In the L-arginine infusion group, the mean blur rate was significantly greater than that of the control group in vivo. L-arginine has both nitric oxide-dependent and independent vasodilatory effect on high K- induced contractions in isolated rabbit and human PCAs. L-arginine increased optic disc blood flow in vivo.

  5. The effects of VEGF-A-inhibitors aflibercept and ranibizumab on the ciliary body and iris of monkeys.

    PubMed

    Ludinsky, Maximilian; Christner, Sarah; Su, Nan; Taubitz, Tatjana; Tschulakow, Alexander; Biesemeier, Antje; Julien-Schraermeyer, Sylvie; Schraermeyer, Ulrich

    2016-06-01

    To investigate the effects of intravitreal ranibizumab (Lucentis®) and aflibercept (Eylea®) on the ciliary body and the iris of 12 cynomolgus monkeys with regard to the fenestrations of their blood vessels. Structural changes in the ciliary body and in the iris were investigated with light, fluorescent, and transmission electron microscopy (TEM). The latter was used to specifically quantify fenestrations of the endothelium of blood vessels after treatment with aflibercept and ranibizumab. Each of the two ciliary bodies treated with aflibercept and the two treated with ranibizumab and their controls were examined after 1 and 7 days respectively. Ophthalmological investigations including funduscopy and intraocular pressure measurements were also applied. Ophthalmological investigations did not reveal any changes within the groups. Both drugs reduced the VEGF concentration in the ciliary body pigmented epithelium. The structure of the ciliary body was not influenced, while the posterior pigmented epithelium of the iris showed vacuoles after aflibercept treatment. Ranibizumab was mainly concentrated on the surface layer of the ciliary epithelium, in the blood vessel walls and the lumen of some of the blood vessels, and in the cells of the epithelium of the ciliary body. Aflibercept was more concentrated in the stroma and not in the cells of the epithelium, but as with ranibizumab, also in the blood vessel walls and some of their lumina, and again on the surface layer of the epithelium. Both aflibercept-and ranibizumab-treated eyes showed a decreased number of fenestrations of the capillaries in the ciliary body compared to the untreated controls. On day 1 and day 7, aflibercept had fewer fenestrations than the ranibizumab samples of the same day. Both aflibercept and ranibizumab were found to reach the blood vessel walls of the ciliary body, and effectively reduced their fenestrations. Aflibercept might eliminate VEGF to a greater extent, possibly due to a higher elimination of fenestrations in a shorter time. Moreover, the vacuoles found in the iris need further research, in order to evaluate whether they carry a possible pathological potential.

  6. Development and characterization of a complete set of Triticum aestivum-Roegneria ciliaris disomic addition lines.

    PubMed

    Kong, Lingna; Song, Xinying; Xiao, Jin; Sun, Haojie; Dai, Keli; Lan, Caixia; Singh, Pawan; Yuan, Chunxia; Zhang, Shouzhong; Singh, Ravi; Wang, Haiyan; Wang, Xiue

    2018-05-31

    A complete set wheat-R. ciliaris disomic addition lines (DALs) were characterized and the homoeologous groups and genome affinities of R. ciliaris chromosomes were determined. Wild relatives are rich gene resources for cultivated wheat. The development of alien addition chromosome lines not only greatly broadens the genetic diversity, but also provides genetic stocks for comparative genomics studies. Roegneria ciliaris (genome S c S c Y c Y c ), a tetraploid wild relative of wheat, is tolerant or resistant to many abiotic and biotic stresses. To develop a complete set of wheat-R. ciliaris disomic addition lines (DALs), we undertook a euplasmic backcrossing program to overcome allocytoplasmic effects and preferential chromosome transmission. To improve the efficiency of identifying chromosomes from S c and Y c , we established techniques including sequential genomic in situ hybridization/fluorescence in situ hybridization (FISH) and molecular marker analysis. Fourteen DALs of wheat, each containing one pair of R. ciliaris chromosomes pairs, were characterized by FISH using four repetitive sequences [pTa794, pTa71, RcAfa and (GAA) 10 ] as probes. One hundred and sixty-two R. ciliaris-specific markers were developed. FISH and marker analysis enabled us to assign the homoeologous groups and genome affinities of R. ciliaris chromosomes. FHB resistance evaluation in successive five growth seasons showed that the amphiploid, DA2Y c , DA5Y c and DA6S c had improved FHB resistance, indicating their potential value in wheat improvement. The 14 DALs are likely new gene resources and will be phenotyped for more agronomic performances traits.

  7. Case report: imaging and treatment of ophthalmic manifestations in oculodentodigital dysplasia.

    PubMed

    Mosaed, Sameh; Jacobsen, Bradley H; Lin, Ken Young

    2016-01-07

    Diagnostic and surgical management of severe chronic angle- closure glaucoma secondary to ciliary body cysts can be difficult to manage in a patient with oculodentodigital dysplasia. A 6-year old girl with oculodentodigital dysplasia, with progressive chronic angle- closure glaucoma secondary to ciliary body cysts presented to our clinic. The initial examination revealed counting fingers vision in the left eye. Intraocular pressure (IOP), as assessed by tonopen, was 31 mm Hg. Ultrasound biomicroscopy revealed ciliary body cysts in the left eye, and gonioscopy confirmed chronic angle closure. A tube shunt was placed to control the elevated IOP. A year after her tube shunt placement in the left eye, ultrasound biomiscropy was performed on her right eye and showed no ciliary body cysts. Gonioscopy in the right eye revealed an open angle to the ciliary body band. Subsequent serial gonioscopy every 3 months showed gradual narrowing of the right eye angle and finally three-and-a-half years after tube placement of the left eye, her right eye IOP became uncontrolled with medications alone and a tube shunt was similarly placed in the right eye. Intraoperative ultrasound biomicroscopy performed at the time of the right eye tube shunt revealed extensive ciliary body cysts in the right eye. Her IOP in both eyes have been well controlled since the placement of tube shunts. This is one of the first reported cases of severe chronic angle- closure glaucoma secondary to ciliary body cysts in a patient with oculodentodigital dysplasia. We believe that early screening for ciliary body cysts is important in patients with oculodentodigital dysplasia.

  8. Mutations in ZMYND10, a Gene Essential for Proper Axonemal Assembly of Inner and Outer Dynein Arms in Humans and Flies, Cause Primary Ciliary Dyskinesia

    PubMed Central

    Moore, Daniel J.; Onoufriadis, Alexandros; Shoemark, Amelia; Simpson, Michael A.; zur Lage, Petra I.; de Castro, Sandra C.; Bartoloni, Lucia; Gallone, Giuseppe; Petridi, Stavroula; Woollard, Wesley J.; Antony, Dinu; Schmidts, Miriam; Didonna, Teresa; Makrythanasis, Periklis; Bevillard, Jeremy; Mongan, Nigel P.; Djakow, Jana; Pals, Gerard; Lucas, Jane S.; Marthin, June K.; Nielsen, Kim G.; Santoni, Federico; Guipponi, Michel; Hogg, Claire; Antonarakis, Stylianos E.; Emes, Richard D.; Chung, Eddie M.K.; Greene, Nicholas D.E.; Blouin, Jean-Louis; Jarman, Andrew P.; Mitchison, Hannah M.

    2013-01-01

    Primary ciliary dyskinesia (PCD) is a ciliopathy characterized by airway disease, infertility, and laterality defects, often caused by dual loss of the inner dynein arms (IDAs) and outer dynein arms (ODAs), which power cilia and flagella beating. Using whole-exome and candidate-gene Sanger resequencing in PCD-affected families afflicted with combined IDA and ODA defects, we found that 6/38 (16%) carried biallelic mutations in the conserved zinc-finger gene BLU (ZMYND10). ZMYND10 mutations conferred dynein-arm loss seen at the ultrastructural and immunofluorescence level and complete cilia immotility, except in hypomorphic p.Val16Gly (c.47T>G) homozygote individuals, whose cilia retained a stiff and slowed beat. In mice, Zmynd10 mRNA is restricted to regions containing motile cilia. In a Drosophila model of PCD, Zmynd10 is exclusively expressed in cells with motile cilia: chordotonal sensory neurons and sperm. In these cells, P-element-mediated gene silencing caused IDA and ODA defects, proprioception deficits, and sterility due to immotile sperm. Drosophila Zmynd10 with an equivalent c.47T>G (p.Val16Gly) missense change rescued mutant male sterility less than the wild-type did. Tagged Drosophila ZMYND10 is localized primarily to the cytoplasm, and human ZMYND10 interacts with LRRC6, another cytoplasmically localized protein altered in PCD. Using a fly model of PCD, we conclude that ZMYND10 is a cytoplasmic protein required for IDA and ODA assembly and that its variants cause ciliary dysmotility and PCD with laterality defects. PMID:23891471

  9. Cis elements and trans-acting factors involved in the RNA dimerization of the human immunodeficiency virus HIV-1.

    PubMed

    Darlix, J L; Gabus, C; Nugeyre, M T; Clavel, F; Barré-Sinoussi, F

    1990-12-05

    The retroviral genome consists of two identical RNA molecules joined at their 5' ends by the Dimer Linkage Structure (DLS). To study the mechanism of dimerization and the DLS of HIV-1 RNA, large amounts of bona fide HIV-1 RNA and of mutants have been synthesized in vitro. We report that HIV-1 RNA forms dimeric molecules and that viral nucleocapsid (NC) protein NCp15 greatly activates dimerization. Deletion mutagenesis in the RNA 5' 1333 nucleotides indicated that a small domain of 100 nucleotides, located between positions 311 to 415 from the 5' end, is necessary and sufficient to promote HIV-1 RNA dimerization. This dimerization domain encompasses an encapsidation element located between the 5' splice donor site and initiator AUG of gag and shows little sequence variations in different strains of HIV-1. Furthermore, cross-linking analysis of the interactions between NC and HIV-1 RNA (311 to 415) locates a major contact site in the encapsidation element of HIV-1 RNA. The genomic RNA dimer is tightly associated with nucleocapsid protein molecules in avian and murine retroviruses, and this ribonucleoprotein structure is believed to be the template for reverse transcription. Genomic RNA-protein interactions have been analyzed in human immunodeficiency virus (HIV) virions and results showed that NC protein molecules are tightly bound to the genomic RNA dimer. Since retroviral RNA dimerization and packaging appear to be under the control of the same cis element, the encapsidation sequences, and trans-acting factor, the NC protein, they are probably related events in the course of virion assembly.

  10. Ciliary body toxicities of systemic oxcarbazepine and valproic acid treatments: electron microscopic study.

    PubMed

    Göktaş, Güleser; Aktaş, Zeynep; Erdoğan, Deniz; Seymen, Cemile Merve; Karaca, Emine Esra; Cansu, Ali; Serdaroğlu, Ayşe; Kaplanoğlu, Gülnur Take

    2015-01-01

    Ciliary body is responsible for humour aqueous production in posterior chamber. Valproic acid (VPA) has been widely used for the treatment of epilepsy and other neuropsychiatric diseases such as bipolar disease and major depression. Oxcarbazepine (OXC) is a new anti-epileptic agent that has been used recently for childhood epilepsies such as VPA. In this study, we aimed to investigate the effects of VPA and OXC treatments used as antiepileptic in ciliary body by electron microscopy. In our study, 40 Wistar rats (21 days old) were divided equally into four groups which were applied saline (group 1), VPA (group 2), OXC (group 3) and VPA + OXC (group 4). The as-prepared ocular tissues were characterized by transmission electron microscopy (TEM) technique in scanning and transmission electron microscopy (SEM-TEM) (Carl Zeiss EVO LS10). The results confirmed that VPA caused dense ciliary body degeneration. Additionally, ciliary body degeneration in group 4 was supposed to be due to VPA treatment. Ciliary body damage and secondary outcomes should be considered in patients with long-term VPA therapy.

  11. Short- and long-term effects on the ciliary body and the aqueous outflow pathways of high-intensity focused ultrasound cyclocoagulation.

    PubMed

    Aptel, Florent; Béglé, Aurélie; Razavi, Arash; Romano, Fabrice; Charrel, Thomas; Chapelon, Jean-Yves; Denis, Philippe; Lafon, Cyril

    2014-09-01

    Several physical methods can be used to coagulate the ciliary body and decrease intra-ocular pressure in patients with glaucoma. The study described here investigated the short- and long-term effects of high-intensity focused ultrasound (HIFU) cyclocoagulation on the aqueous humor production structures and outflow pathways. Thirty-four rabbit eyes were sonicated with a ring-shaped probe containing six miniaturized HIFU transducers. Light, scanning electron and transmission electron microscopy and corrosion casts were performed. In the affected regions, the epithelium of the ciliary processes was degenerated or necrotic and sloughed off. Examinations performed several months afterward revealed involution of the ciliary processes. Vascular corrosion cast revealed focal interruption of the ciliary body microvasculature. In most animals, a sustained fluid space was seen between the sclera, the ciliary body and the choroid, likely indicating an increase in the aqueous outflow by the uveoscleral pathway. These results suggest that HIFU cyclocoagulation has a dual effect on aqueous humor dynamics. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  12. Circumferential Ciliary Body Cysts Presenting as Acute Pigment Dispersion and Ocular Hypertension.

    PubMed

    Sarıgül Sezenöz, Almila; Güngör, Sirel Gür; Kıratlı, Hayyam; Akman, Ahmet

    2017-09-15

    To report a case of circumferential neuroepithelial cyst of the ciliary body presenting with pigment dispersion (PD) and ocular hypertension. 48-year-old female patient presented with a complaint of pain in the left eye. On examination, visual acuity of the left eye was 0.9, and the intraocular pressure was 48 mmHg. Biomicroscopic anterior segment examination of the left eye revealed 4+ pigmented cells in the anterior chamber. Active PD from the pupillary region at 11 o'clock was noticed at the time of the examination. Ultrasound biomicroscopy demonstrated 360º cystic lesions of the ciliary body in the left eye. The patient was diagnosed as neuroepithelial cyst of the ciliary body. Our case is unique as it is the first case of circumferential neuroepithelial ciliary body cyst presenting with acute PD and ocular hypertension.

  13. [Non-ciliary functions of cilia proteins].

    PubMed

    Taulet, Nicolas; Delaval, Bénédicte

    2014-11-01

    Cilia proteins have long been characterized for their role in cilia formation and function, and their implications in ciliopathies. However, several cellular defects induced by cilia proteins deregulation suggest that they could have non-ciliary roles. Indeed, several non-ciliary functions have been recently characterized for cilia proteins including roles in intra-cellular and in vesicular transport, in spindle orientation or in the maintenance of genomic stability. These observations thus raise the crucial question of the contribution of non-ciliary functions of cilia proteins to the pathological manifestations associated with ciliopathies such as polycystic kidney disease. © 2014 médecine/sciences – Inserm.

  14. Untangling ciliary access and enrichment of two rhodopsin-like receptors using quantitative fluorescence microscopy reveals cell-specific sorting pathways

    PubMed Central

    Geneva, Ivayla I.; Tan, Han Yen; Calvert, Peter D.

    2017-01-01

    Resolution limitations of optical systems are major obstacles for determining whether proteins are enriched within cell compartments. Here we use an approach to determine the degree of membrane protein ciliary enrichment that quantitatively accounts for the differences in sampling of the ciliary and apical membranes inherent to confocal microscopes. Theory shows that cilia will appear more than threefold brighter than the surrounding apical membrane when the densities of fluorescently labeled proteins are the same, thus providing a benchmark for ciliary enrichment. Using this benchmark, we examined the ciliary enrichment signals of two G protein–coupled receptors (GPCRs)—the somatostatin receptor 3 and rhodopsin. Remarkably, we found that the C-terminal VxPx motif, required for efficient enrichment of rhodopsin within rod photoreceptor sensory cilia, inhibited enrichment of the somatostatin receptor in primary cilia. Similarly, VxPx inhibited primary cilium enrichment of a chimera of rhodopsin and somatostatin receptor 3, where the dual Ax(S/A)xQ ciliary targeting motifs within the third intracellular loop of the somatostatin receptor replaced the third intracellular loop of rhodopsin. Rhodopsin was depleted from primary cilia but gained access, without being enriched, with the dual Ax(S/A)xQ motifs. Ciliary enrichment of these GPCRs thus operates via distinct mechanisms in different cells. PMID:27974638

  15. Structure of glutathione reductase from Escherichia coli at 1.86 A resolution: comparison with the enzyme from human erythrocytes.

    PubMed Central

    Mittl, P. R.; Schulz, G. E.

    1994-01-01

    The crystal structure of the dimeric flavoenzyme glutathione reductase from Escherichia coli was determined and refined to an R-factor of 16.8% at 1.86 A resolution. The molecular 2-fold axis of the dimer is local but very close to a possible crystallographic 2-fold axis; the slight asymmetry could be rationalized from the packing contacts. The 2 crystallographically independent subunits of the dimer are virtually identical, yielding no structural clue on possible cooperativity. The structure was compared with the well-known structure of the homologous enzyme from human erythrocytes with 52% sequence identity. Significant differences were found at the dimer interface, where the human enzyme has a disulfide bridge, whereas the E. coli enzyme has an antiparallel beta-sheet connecting the subunits. The differences at the glutathione binding site and in particular a deformation caused by a Leu-Ile exchange indicate why the E. coli enzyme accepts trypanothione much better than the human enzyme. The reported structure provides a frame for explaining numerous published engineering results in detail and for guiding further ones. PMID:8061609

  16. Kinetics and thermodynamics of the interchange of the morpheein forms of human porphobilinogen synthase.

    PubMed

    Selwood, Trevor; Tang, Lei; Lawrence, Sarah H; Anokhina, Yana; Jaffe, Eileen K

    2008-03-11

    A morpheein is a homo-oligomeric protein that can adopt different nonadditive quaternary assemblies (morpheein forms) with different functionalities. The human porphobilinogen synthase (PBGS) morpheein forms are a high activity octamer, a low activity hexamer, and two structurally distinct dimer conformations. Conversion between hexamer and octamer involves dissociation to dimers, conformational change at the dimer level, followed by association to the alternate assembly. The current work promotes an alternative and novel view of the physiologically relevant dimeric structures, which are derived from the crystal structures, but are distinct from the asymmetric units of their crystal forms. Using a well characterized heteromeric system (WT+F12L; Tang, L. et al. (2005) J. Biol. Chem. 280, 15786-15793), extensive study of the human PBGS morpheein reequilibration process now reveals that the intervening dimers do not dissociate to monomers. The morpheein equilibria of wild type (WT) human PBGS are found to respond to changes in pH, PBGS concentration, and substrate turnover. Notably, the WT enzyme is predominantly an octamer at neutral pH, but increasing pH results in substantial conversion to lower order oligomers. Most significantly, the free energy of activation for the conversion of WT+F12L human PBGS heterohexamers to hetero-octamers is determined to be the same as that for the catalytic conversion of substrate to product by the octamer, remarkably suggesting a common rate-limiting step for both processes, which is postulated to be the opening/closing of the active site lid.

  17. Evaluation of protective and therapeutic effects of dexpanthenol on nasal decongestants and preservatives: results of cytotoxic studies in vitro.

    PubMed

    Klöcker, Norbert; Rudolph, Peter; Verse, Thomas

    2004-01-01

    More than 600 million units of nasal decongestants are sold worldwide annually. The cytotoxic and ciliary toxic potential of decongestants, as well as the preservatives of these products, in particular benzalkonium chloride (BKC), is well established. Recently, a beneficial effect of dexpanthenol on the tolerability of the alpha-sympathomimetic xylometazoline and BKC has been described; however, it was unclear if this effect, resulting in significantly higher cell counts in a cytotoxicity study and an increase in ciliary beat frequency in a ciliary toxicity study was of protective or therapeutic nature. The objective of this study was (a) to evaluate whether dexpanthenol would be a useful additive to nasal decongestants to counter the cytotoxic and ciliary toxic effects of the active ingredient and the preservative and (b) to find out whether this beneficial effect is of protective or therapeutic nature. Systematic cytotoxic in vitro tests were performed. After exposure to xylometazoline (0.1%), the effect of dexpanthenol (5%) and BKC (0.01%) was determined by placebo-controlled assessment of cell growth in a human amniotic cell line. Dexpanthenol significantly reduces the toxic effects of xylometazoline regarding cell growth (p < 0.001) when applied in advance. When BKC is eliminated from the nasal sprays, a further significant increase of cell growth was found (p < 0.001). When dexpanthenol is therapeutically applied after xylometazoline, effects on cell growth are only one-half of those of the protective approach. The additive application of dexpanthenol (5%) given before nasal decongestants or preserved nasal sprays is able to improve the tolerability of these substances and to counteract the toxic effects.

  18. Effects of dorzolamide on choroidal blood flow, ciliary blood flow, and aqueous production in rabbits.

    PubMed

    Reitsamer, Herbert A; Bogner, Barbara; Tockner, Birgit; Kiel, Jeffrey W

    2009-05-01

    To determine the effects of topical dorzolamide (a carbonic anhydrase inhibitor) on choroidal and ciliary blood flow and the relationship between ciliary blood flow and aqueous flow. The experiments were performed in four groups of pentobarbital-anesthetized rabbits treated with topical dorzolamide (2%, 50 microL). In all groups, intraocular pressure (IOP) and mean arterial pressure (MAP) at the eye level were measured continuously by direct cannulation. In group 1, aqueous flow was measured by fluorophotometry before and after dorzolamide treatment. In group 2, aqueous flow was measured after dorzolamide at normal MAP and while MAP was held constant at 80, 55, or 40 mm Hg with occluders on the aorta and vena cava. In group 3, the same MAP levels were used, and ciliary blood flow was measured transsclerally by laser Doppler flowmetry (LDF). In group 4, choroidal blood flow was measured by LDF with the probe tip positioned in the vitreous over the posterior pole during ramp increases and decreases in MAP before and after dorzolamide. Dorzolamide lowered IOP by 19% (P < 0.01) and aqueous flow by 17% (P < 0.01), and increased ciliary blood flow by 18% (P < 0.01), which was associated with a significant reduction in ciliary vasculature resistance (-7%, P < 0.01). Dorzolamide shifted the relationship between ciliary blood flow and aqueous flow downward relative to the previously determined control relationship in the rabbit. Dorzolamide did not alter choroidal blood flow, choroidal vascular resistance, or the choroidal pressure flow relationship. Acute topical dorzolamide is a ciliary vasodilator and has a direct inhibitory effect on aqueous production, but it does not have a detectable effect on choroidal hemodynamics at the posterior pole in the rabbit.

  19. Development of the larval nervous system of the sand dollar, Dendraster excentricus.

    PubMed

    Burke, R D

    1983-01-01

    Transformation of the gastrula to the pluteus includes development of the ability of the larva to control the direction of ciliary beat and coordinate activities of the ciliary band with activities of the esophageal muscles (48-60 h, 15 degrees C). Glyoxylic acid-induced fluorescence shows several cells of the animal plate to contain catecholamines in the 36-h gastrula. As the ectoderm thickens to form the ciliary band (36 48 h), the catecholamine-containing cells increase in number and occur dispersed throughout the band. Tissues with the ultrastructural characteristics of nerves first became apparent associated with the ciliary band in 60-h larvae. The coincident development of coordinated behaviour and the appearance of cells with ultrastructural and histochemical characteristics of nerves suggests that the larval nervous system is derived at least in part from cells of the animal plate and develops in association with the ciliary bands.

  20. Variability of manual ciliary muscle segmentation in optical coherence tomography images.

    PubMed

    Chang, Yu-Cherng; Liu, Keke; Cabot, Florence; Yoo, Sonia H; Ruggeri, Marco; Ho, Arthur; Parel, Jean-Marie; Manns, Fabrice

    2018-02-01

    Optical coherence tomography (OCT) offers new options for imaging the ciliary muscle allowing direct in vivo visualization. However, variation in image quality along the length of the muscle prevents accurate delineation and quantification of the muscle. Quantitative analyses of the muscle are accompanied by variability in segmentation between examiners and between sessions for the same examiner. In processes such as accommodation where changes in muscle thickness may be tens of microns- the equivalent of a small number of image pixels, differences in segmentation can influence the magnitude and potentially the direction of thickness change. A detailed analysis of variability in ciliary muscle thickness measurements was performed to serve as a benchmark for the extent of this variability in studies on the ciliary muscle. Variation between sessions and examiners were found to be insignificant but the magnitude of variation should be considered when interpreting ciliary muscle results.

  1. Collagen scaffolds combined with collagen-binding ciliary neurotrophic factor facilitate facial nerve repair in mini-pigs.

    PubMed

    Lu, Chao; Meng, Danqing; Cao, Jiani; Xiao, Zhifeng; Cui, Yi; Fan, Jingya; Cui, Xiaolong; Chen, Bing; Yao, Yao; Zhang, Zhen; Ma, Jinling; Pan, Juli; Dai, Jianwu

    2015-05-01

    The preclinical studies using animal models play a very important role in the evaluation of facial nerve regeneration. Good models need to recapitulate the distance and time for axons to regenerate in humans. Compared with the most used rodent animals, the structure of facial nerve in mini-pigs shares more similarities with humans in microanatomy. To evaluate the feasibility of repairing facial nerve defects by collagen scaffolds combined with ciliary neurotrophic factor (CNTF), 10-mm-long gaps were made in the buccal branch of mini-pigs' facial nerve. Three months after surgery, electrophysiological assessment and histological examination were performed to evaluate facial nerve regeneration. Immunohistochemistry and transmission electron microscope observation showed that collagen scaffolds with collagen binding (CBD)-CNTF could promote better axon regeneration, Schwann cell migration, and remyelination at the site of implant device than using scaffolds alone. Electrophysiological assessment also showed higher recovery rate in the CNTF group. In summary, combination of collagen scaffolds and CBD-CNTF showed promising effects on facial nerve regeneration in mini-pig models. © 2014 Wiley Periodicals, Inc.

  2. Irradiation as a hazard for mucociliary clearance.

    PubMed

    Foltin, Viktor; Schrott-Fischer, Annelies; Zilinek, Viliam; Freysinger, Wolfgang

    2016-07-01

    In this paper we study effects of irradiation to pulmonary tissue on a micro and ultrastructural level to get insights into the dynamics of morphological changes and associated post-radiative physiological conditions. Animal and human pulmonary tissue with and without radiation damage was subject to light, transmission, scanning and polarization microscopy and morphometric evaluation. The present investigations on the influence of irradiation on experimental and human lung tissue demonstrate that complex changes are induced in the cells which are essential for mucociliary clearance. These changes are a shortage of alveolar macrophages, cell apoptosis, proliferation of collagen ligament in the barrier of gaseous exchange, retraction of endothelial lining of capillaries and significant broadening of the gaseous exchange barrier, resulting in serious damage for the O2 and CO2 exchange. These changes at microscopic, cellular, and ciliary level trigger conditions for various diseases of the respiratory system, which is further assessed by a simultaneous computer aided estimation of ciliary function. With the concurrent world-wide increase of respiratory diseases, these findings are important knowledge for the clinical practice.

  3. Rapid diagnosis of primary ciliary dyskinesia: cell culture and soft computing analysis.

    PubMed

    Pifferi, Massimo; Bush, Andrew; Montemurro, Francesca; Pioggia, Giovanni; Piras, Martina; Tartarisco, Gennaro; Di Cicco, Maria; Chinellato, Iolanda; Cangiotti, Angela M; Boner, Attilio L

    2013-04-01

    Diagnosis of primary ciliary dyskinesia (PCD) sometimes requires repeated nasal brushing to exclude secondary ciliary alterations. Our aim was to evaluate whether the use of a new method of nasal epithelial cell culture can speed PCD diagnosis in doubtful cases and to identify which are the most informative parameters by means of a multilayer artificial neural network (ANN). A cross-sectional study was performed in patients with suspected PCD. All patients underwent nasal brushing for ciliary motion analysis, ultrastructural assessment and evaluation of ciliary function after ciliogenesis in culture by ANN. 151 subjects were studied. A diagnostic suspension cell culture was obtained in 117 nasal brushings. A diagnosis of PCD was made in 36 subjects (29 of whom were children). In nine out of the 36 patients the diagnosis was made only after a second brushing, because of equivocal results of both tests at first examination. In each of these subjects diagnosis of PCD was confirmed by cell culture results. Cell culture in suspension evaluated by means of ANN allows the separation of PCD from secondary ciliary dyskinesia patients after only 5 days of culture and allows diagnosis to be reached in doubtful cases, thus avoiding the necessity of a second sample.

  4. Emerging ciliopathies: are respiratory cilia compromised in Usher syndrome?

    PubMed

    Piatti, G; De Santi, M M; Brogi, M; Castorina, P; Ambrosetti, U

    2014-01-01

    Usher syndrome is a ciliopathy involving photoreceptors and cochlear hair cells (sensory cilia): since sensory and motor ciliopathies can overlap, we analysed the respiratory cilia (motile) in 17 patients affected by Usher syndrome and 18 healthy control subject. We studied the mucociliary transport time with the saccharine test, ciliary motility and ultrastructure of respiratory cilia obtained by nasal brushing; we also recorded the classical respiratory function values by spirometry. All enrolled subjects showed normal respiratory function values. The mean mucociliary transport time with saccharine was 22.33 ± 17.96 min, which is in the range of normal values. The mean ciliary beat frequency of all subjects was 8.81 ± 2.18 Hz, which is a value approaching the lower physiological limit. None of the classical ciliary alterations characterizing the "ciliary primary dyskinesia" was detected, although two patients showed alterations in number and arrangement of peripheral microtubules and one patient had abnormal ciliary roots. Respiratory cilia in Usher patients don't seem to have evident ultrastructural alterations, as expected, but the fact that the ciliary motility appeared slightly reduced could emphasize that a rigid distinction between sensory and motor ciliopathies may not reflect what really occurs. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Structural Determinants Underlying Constitutive Dimerization of Unoccupied Human Follitropin Receptors

    PubMed Central

    Guan, Rongbin; Wu, Xueqing; Feng, Xiuyan; Zhang, Meilin; Hébert, Terence E.; Segaloff, Deborah L.

    2009-01-01

    The human follitropin receptor (hFSHR) is a G protein-coupled receptor (GPCR) central to reproductive physiology that is composed of an extracellular domain (ECD) fused to a serpentine region. Using bioluminescence resonance energy transfer (BRET) in living cells, we show that hFSHR dimers form constitutively during their biosynthesis. Mutations in TM1 and TM4 had no effect on hFSHR dimerization, alone or when combined with mutation of Tyr110 in the ECD, a residue predicted to mediate dimerization of the soluble hormone-binding portion of the ECD complexed with FSH (Q. Fan and W. Hendrickson, Nature 433:269–277, 2005). Expressed individually, the serpentine region and a membrane-anchored form of the hFSHR ECD each exhibited homodimerization, suggesting that both domains contribute to dimerization of the full-length receptor. However, even in the context of only the membrane-anchored ECD, mutation of Tyr110 to alanine did not inhibit dimerization. The full-length hFSHR and the membrane-anchored ECD were then each engineered to introduce a consensus site for N-linked glycosylation at residue 110. Despite experimental validation of the presence of carbohydrate on residue 110, we failed to observe disruption of dimerization of either the full-length hFSHR or membrane-anchored ECD containing the inserted glycan wedge. Taken altogether, our data suggest that both the serpentine region and the ECD contribute to hFSHR dimerization and that the dimerization interface of the unoccupied hFSHR does not involve Tyr110 of the ECD. PMID:19800402

  6. Autonomic control of the eye

    PubMed Central

    McDougal, David H.; Gamlin, Paul D.

    2016-01-01

    The autonomic nervous system influences numerous ocular functions. It does this by way of parasympathetic innervation from postganglionic fibers that originate from neurons in the ciliary and pterygopalatine ganglia, and by way of sympathetic innervation from postganglionic fibers that originate from neurons in the superior cervical ganglion. Ciliary ganglion neurons project to the ciliary body and the sphincter pupillae muscle of the iris to control ocular accommodation and pupil constriction, respectively. Superior cervical ganglion neurons project to the dilator pupillae muscle of the iris to control pupil dilation. Ocular blood flow is controlled both via direct autonomic influences on the vasculature of the optic nerve, choroid, ciliary body, and iris, as well as via indirect influences on retinal blood flow. In mammals, this vasculature is innervated by vasodilatory fibers from the pterygopalatine ganglion, and by vasoconstrictive fibers from the superior cervical ganglion. Intraocular pressure is regulated primarily through the balance of aqueous humor formation and outflow. Autonomic regulation of ciliary body blood vessels and the ciliary epithelium is an important determinant of aqueous humor formation; autonomic regulation of the trabecular meshwork and episcleral blood vessels is an important determinant of aqueous humor outflow. These tissues are all innervated by fibers from the pterygopalatine and superior cervical ganglia. In addition to these classical autonomic pathways, trigeminal sensory fibers exert local, intrinsic influences on many of these regions of the eye, as well as on some neurons within the ciliary and pterygopalatine ganglia. PMID:25589275

  7. Anti-CTGF single-chain variable fragment dimers inhibit human airway smooth muscle (ASM) cell proliferation by down-regulating p-Akt and p-mTOR levels.

    PubMed

    Gao, Wei; Cai, Liting; Xu, Xudong; Fan, Juxiang; Xue, Xiulei; Yan, Xuejiao; Qu, Qinrong; Wang, Xihua; Zhang, Chen; Wu, Guoqiu

    2014-01-01

    Connective tissue growth factor (CTGF) contributes to airway smooth muscle (ASM) cell hyperplasia in asthma. Humanized single-chain variable fragment antibody (scFv) was well characterized as a CTGF antagonist in the differentiation of fibroblast into myofibroblast and pulmonary fibrosis in our previous studies. To further improve the bioactivity of scFv, we constructed a plasmid to express scFv-linker-matrilin-6×His fusion proteins that could self-assemble into the scFv dimers by disulfide bonds in matrilin under non-reducing conditions. An immunoreactivity assay demonstrated that the scFv dimer could highly bind to CTGF in a concentration-dependent manner. The MTT and EdU assay results revealed that CTGF (≥10 ng/mL) promoted the proliferation of ASM cells, and this effect was inhibited when the cells were treated with anti-CTGF scFv dimer. The western blot analysis results showed that increased phosphorylation of Akt and mTOR induced by CTGF could be suppressed by this scFv dimer. Based on these findings, anti-CTGF scFv dimer may be a potential agent for the prevention of airway remodeling in asthma.

  8. Anti-CTGF Single-Chain Variable Fragment Dimers Inhibit Human Airway Smooth Muscle (ASM) Cell Proliferation by Down-Regulating p-Akt and p-mTOR Levels

    PubMed Central

    Xu, Xudong; Fan, Juxiang; Xue, Xiulei; Yan, Xuejiao; Qu, Qinrong; Wang, Xihua; Zhang, Chen; Wu, Guoqiu

    2014-01-01

    Connective tissue growth factor (CTGF) contributes to airway smooth muscle (ASM) cell hyperplasia in asthma. Humanized single-chain variable fragment antibody (scFv) was well characterized as a CTGF antagonist in the differentiation of fibroblast into myofibroblast and pulmonary fibrosis in our previous studies. To further improve the bioactivity of scFv, we constructed a plasmid to express scFv-linker-matrilin-6×His fusion proteins that could self-assemble into the scFv dimers by disulfide bonds in matrilin under non-reducing conditions. An immunoreactivity assay demonstrated that the scFv dimer could highly bind to CTGF in a concentration-dependent manner. The MTT and EdU assay results revealed that CTGF (≥10 ng/mL) promoted the proliferation of ASM cells, and this effect was inhibited when the cells were treated with anti-CTGF scFv dimer. The western blot analysis results showed that increased phosphorylation of Akt and mTOR induced by CTGF could be suppressed by this scFv dimer. Based on these findings, anti-CTGF scFv dimer may be a potential agent for the prevention of airway remodeling in asthma. PMID:25478966

  9. Localization of multidrug resistance-associated protein 2 in the nonpigmented ciliary epithelium of the eye.

    PubMed

    Pelis, Ryan M; Shahidullah, Mohammad; Ghosh, Sikha; Coca-Prados, Miguel; Wright, Stephen H; Delamere, Nicholas A

    2009-05-01

    The nonpigmented epithelium (NPE) of the ciliary body represents an important component of the blood-aqueous barrier of the eye. Many therapeutic drugs penetrate poorly across the NPE into the aqueous humor of the eye interior. Several of these therapeutic drugs, such as methotrexate, vincristine, and etoposide, are substrates of the multidrug resistance-associated protein 2 (MRP2). Abundant MRP2 protein was detected by Western blot in homogenates of human ciliary body and freshly dissected porcine NPE. In cultured porcine NPE, the intracellular accumulation of the MRP2 substrates calcein (1.8-fold), 5-(and-6)-carboxy-2',7'-dichlorofluorescein (22.1-fold), and doxorubicin (1.9-fold) was significantly increased in the presence of 50 microM MK571 ((E)-3-[[[3-[2-(7-chloro-2-quinolinyl)-ethenyl]phenyl]-[[3-dimethylamino)-3-oxopropyl]thio]methyl]thio]-propanoic acid), an MRP inhibitor. In addition, the intracellular accumulation of the MRP2 substrate glutathione methylfluorescein was increased by 50 microM MK571 (4.3-fold), 500 microM indomethacin (2.6-fold), and 50 microM cyclosporin A (2.1-fold) but not by 500 microM sulfinpyrazone. These data are consistent with MRP2-mediated transport activity in cultured NPE, and MRP2 mRNA (reverse transcriptase-polymerase chain reaction) and protein (Western blot) were detected in the cultured cells. Immunolocalization studies in native human and porcine eyes showed MRP2 protein at the apical interface of the NPE and pigmented cell layers. Close examination of MRP2 immunoreactivity supported the conclusion that MRP2 is localized in the apical membrane of the NPE. MRP2 at the apical membrane of NPE cells may be involved in protecting intraocular tissues from exposure to potentially harmful toxins.

  10. Safety assessment of thiolated polymers: effect on ciliary beat frequency in human nasal epithelial cells.

    PubMed

    Palmberger, Thomas F; Augustijns, Patrick; Vetter, Anja; Bernkop-Schnürch, Andreas

    2011-12-01

    The aim of this study was to investigate the nasal safety of gel formulations of thiolated polymers (thiomers) by assessing their effect on ciliary beat frequency (CBF) in human nasal epithelial cells. Poly(acrylic acid) 450 kDa-cysteine (PAA-cys) and alginate-cysteine (alg-cys) were synthesized by covalent attachment of L-cysteine to the polymeric backbone. The cationic polymer chitosan-thiobutylamidine (chito-TBA) was synthesized by attaching iminothiolane to chitosan. CBF using was measured by a photometric system. CBF was measured before incubating the cells with test gels, during incubation and after washing out the polymeric test gels to evaluate reversibility of cilio-inhibition. The influence of viscosity on CBF was determined by using hydroxyethylcellulose (HEC)-gels of various concentrations. Ciliary beating was observed to be affected by viscosity, but cilia were still beating in the presence of a HEC-gel displaying an apparent viscosity of 25 Pa.s. In case of thiolated polymers and their unmodified control, a concentration-dependent decrease in CBF could be observed. PAA-cys, alg-cys, chito-TBA and their corresponding unmodified controls exhibited a moderate cilio-inhibitory effect, followed by a partial recovery of CBF when used at a concentration of 1%. Alg-cys 2% and chito-TBA 2% (m/v) gels exhibited severe cilio-inhibition, which was partially reversible. L-cysteine and reduced glutathione led to mild cilio-inhibition at concentrations of 3% (m/v). Taking into account that dilution after application and cilio-modifying effects is usually more pronounced under in vitro conditions, thiomers can be considered as suitable excipients for nasal drug delivery systems.

  11. Carcinogens induce loss of the primary cilium in human renal proximal tubular epithelial cells independently of effects on the cell cycle

    PubMed Central

    Radford, Robert; Slattery, Craig; Jennings, Paul; Blacque, Oliver; Pfaller, Walter; Gmuender, Hans; Van Delft, Joost; Ryan, Michael P.

    2012-01-01

    The primary cilium is an immotile sensory and signaling organelle found on the majority of mammalian cell types. Of the multitude of roles that the primary cilium performs, perhaps some of the most important include maintenance of differentiation, quiescence, and cellular polarity. Given that the progression of cancer requires disruption of all of these processes, we have investigated the effects of several carcinogens on the primary cilium of the RPTEC/TERT1 human proximal tubular epithelial cell line. Using both scanning electron microscopy and immunofluorescent labeling of the ciliary markers acetylated tubulin and Arl13b, we confirmed that RPTEC/TERT1 cells express primary cilium upon reaching confluence. Treatment with the carcinogens ochratoxin A (OTA) and potassium bromate (KBrO3) caused a significant reduction in the number of ciliated cells, while exposure to nifedipine, a noncarcinogenic renal toxin, had no effect on primary cilium expression. Flow cytometric analysis of the effects of all three compounds on the cell cycle revealed that only KBrO3 resulted in an increase in the proportion of cells entering the cell cycle. Microarray analysis revealed dysregulation of multiple pathways affecting ciliogenesis and ciliary maintenance following OTA and KBrO3 exposure, which were unaffected by nifedipine exposure. The primary cilium represents a unique physical checkpoint with relevance to carcinogenesis. We have shown that the renal carcinogens OTA and KBrO3 cause significant deciliation in a model of the proximal tubule. With KBrO3, this was followed by reentry into the cell cycle; however, deciliation was not found to be associated with reentry into the cell cycle following OTA exposure. Transcriptomic analysis identified dysregulation of Wnt signaling and ciliary trafficking in response to OTA and KBrO3 exposure. PMID:22262483

  12. Ciliary neurotrophic factor activates leptin-like pathways and reduces body fat, without cachexia or rebound weight gain, even in leptin-resistant obesity.

    PubMed

    Lambert, P D; Anderson, K D; Sleeman, M W; Wong, V; Tan, J; Hijarunguru, A; Corcoran, T L; Murray, J D; Thabet, K E; Yancopoulos, G D; Wiegand, S J

    2001-04-10

    Ciliary Neurotrophic Factor (CNTF) was first characterized as a trophic factor for motor neurons in the ciliary ganglion and spinal cord, leading to its evaluation in humans suffering from motor neuron disease. In these trials, CNTF caused unexpected and substantial weight loss, raising concerns that it might produce cachectic-like effects. Countering this possibility was the suggestion that CNTF was working via a leptin-like mechanism to cause weight loss, based on the findings that CNTF acts via receptors that are not only related to leptin receptors, but also similarly distributed within hypothalamic nuclei involved in feeding. However, although CNTF mimics the ability of leptin to cause fat loss in mice that are obese because of genetic deficiency of leptin (ob/ob mice), CNTF is also effective in diet-induced obesity models that are more representative of human obesity, and which are resistant to leptin. This discordance again raised the possibility that CNTF might be acting via nonleptin pathways, perhaps more analogous to those activated by cachectic cytokines. Arguing strongly against this possibility, we now show that CNTF can activate hypothalamic leptin-like pathways in diet-induced obesity models unresponsive to leptin, that CNTF improves prediabetic parameters in these models, and that CNTF acts very differently than the prototypical cachectic cytokine, IL-1. Further analyses of hypothalamic signaling reveals that CNTF can suppress food intake without triggering hunger signals or associated stress responses that are otherwise associated with food deprivation; thus, unlike forced dieting, cessation of CNTF treatment does not result in binge overeating and immediate rebound weight gain.

  13. Subcutaneous insulin absorption explained by insulin's physicochemical properties. Evidence from absorption studies of soluble human insulin and insulin analogues in humans.

    PubMed

    Kang, S; Brange, J; Burch, A; Vølund, A; Owens, D R

    1991-11-01

    To study the influence of molecular aggregation on rates of subcutaneous insulin absorption and to attempt to elucidate the mechanism of absorption of conventional soluble human insulin in humans. Seven healthy male volunteers aged 22-43 yr and not receiving any drugs comprised the study. This study consisted of a single-blind randomized comparison of equimolar dosages of 125I-labeled forms of soluble hexameric 2 Zn2+ human insulin and human insulin analogues with differing association states at pharmaceutical concentrations (AspB10, dimeric; AspB28, mixture of monomers and dimers; AspB9, GluB27, monomeric). After an overnight fast and a basal period of 1 h, 0.6 nmol/kg of either 125I-labeled human soluble insulin (Actrapid HM U-100) or 125I-labeled analogue was injected subcutaneously on 4 separate days 1 wk apart. Absorption was assessed by measurement of residual radioactivity at the injection site by external gamma-counting. The mean +/- SE initial fractional disappearance rates for the four preparations were 20.7 +/- 1.9 (hexameric soluble human insulin), 44.4 +/- 2.5 (dimeric analogue AspB10), 50.6 +/- 3.9 (analogue AspB28), and 67.4 +/- 7.4%/h (monomeric analogue AspB9, GluB27). Absorption of the dimeric analogue was significantly faster than that of hexameric human insulin (P less than 0.001); absorption of monomeric insulin analogue AspB9, GluB27 was significantly faster than that of dimeric analogue AspB10 (P less than 0.01). There was an inverse linear correlation between association state and the initial fractional disappearance rates (r = -0.98, P less than 0.02). Analysis of the disappearance data on a log linear scale showed that only the monomeric analogue had a monoexponential course throughout. Two phases in the rates of absorption were identified for the dimer and three for hexameric human insulin. The fractional disappearance rates (%/h) calculated by log linear regression analysis were monomer 73.3 +/- 6.8; dimer 44.4 +/- 2.5 from 0 to 2 h and 68.9 +/- 3.5 from 2.5 h onward; and hexameric insulin 20.7 +/- 1.9 from 0 to 2 h, 45.6 +/- 5.0 from 2.5 to 5 h, and 70.6 +/- 6.3 from 5 h onward. Association state is a major determinant of rates of absorption of insulin and insulin analogues. The lag phase and the subsequent increasing rate of subcutaneous soluble insulin absorption can be explained by the associated state of native insulin in pharmaceutical formulation and its progressive dissociation into smaller units during the absorption process.

  14. Jozilebomines A and B, Naphthylisoquinoline Dimers from the Congolese Liana Ancistrocladus ileboensis, with Antiausterity Activities against the PANC-1 Human Pancreatic Cancer Cell Line.

    PubMed

    Li, Jun; Seupel, Raina; Bruhn, Torsten; Feineis, Doris; Kaiser, Marcel; Brun, Reto; Mudogo, Virima; Awale, Suresh; Bringmann, Gerhard

    2017-10-27

    Two new naphthylisoquinoline dimers, jozilebomines A (1a) and B (1b), were isolated from the roots of the Congolese plant Ancistrocladus ileboensis, along with the known dimer jozimine A 2 (2). These compounds are Dioncophyllaceae-type metabolites, i.e., lacking oxygen functions at C-6 and with an R-configuration at C-3 in their tetrahydroisoquinoline moieties. The dimers 1a and 1b consist of two 7,1'-coupled naphthylisoquinoline monomers linked through an unprecedented 3',6″-coupling in the binaphthalene core and not, as in 2, via the C-3-positions of the two naphthalene units. Thus, different from the C 2 -symmetric jozimine A 2 (2), the new jozilebomines are constitutionally unsymmetric. The central biaryl axis of each of the three dimers is rotationally hindered, so that 1a, 1b, and 2 possess three consecutive chiral axes. The two jozilebomines have identical constitutions and the same absolute configurations at all four stereogenic centers, but differ from each other in their axial chirality. Their structural elucidation was achieved by HRESIMS, 1D and 2D NMR, oxidative degradation, and experimental and calculated ECD data. They exhibited distinct and specific antiplasmodial activities. All dimers showed potent cytotoxicity against HeLa human cervical cancer cells and preferential cytotoxicity against PANC-1 human pancreatic cancer cells under nutrition-deprived conditions. Furthermore, these dimers significantly inhibited the colony formation of PANC-1 cells, even when exposed to noncytotoxic concentration for a short time. Jozilebomines A (1a) and B (1b) and jozimine A 2 (2) represent novel potential candidates for future drug development against pancreatic cancer.

  15. Seeing cilia: imaging modalities for ciliary motion and clinical connections.

    PubMed

    Peabody, Jacelyn E; Shei, Ren-Jay; Bermingham, Brent M; Phillips, Scott E; Turner, Brett; Rowe, Steven M; Solomon, George M

    2018-06-01

    The respiratory tract is lined with multiciliated epithelial cells that function to move mucus and trapped particles via the mucociliary transport apparatus. Genetic and acquired ciliopathies result in diminished mucociliary clearance, contributing to disease pathogenesis. Recent innovations in imaging technology have advanced our understanding of ciliary motion in health and disease states. Application of imaging modalities including transmission electron microscopy, high-speed video microscopy, and micron-optical coherence tomography could improve diagnostics and be applied for precision medicine. In this review, we provide an overview of ciliary motion, imaging modalities, and ciliopathic diseases of the respiratory system including primary ciliary dyskinesia, cystic fibrosis, chronic obstructive pulmonary disease, and idiopathic pulmonary fibrosis.

  16. [Subretinal transplantation of human fetal lung fibroblasts expressed ciliary neurotrophic factor gene prevent photoreceptor degeneration in RCS rats].

    PubMed

    Huang, Qian; Xu, Ping; Xia, Xin; Hu, Hong-hui; Wang, Feng; Li, Hui-ming

    2006-02-01

    To investigate the efficacy of subretinal transplantation of CNTF gene transfected fibroblasts for preventing photoreceptor degeneration in RCS. The human fetal lung fibroblasts with high level expression of CNTF were established by liposome mediated gene transfer and MTX selection. A 5 microl of cell suspension, containing 1 x 10(5) cells, was injected through pars plana of ciliary body into the subretinal space of the right eye at postnatal 4-5 weeks, the left eye was left without injection or injected with PBS as controls. The both eyes were enucleated for histopathological examinations at 2, 4, 6, 8, 10, 12 and 15 weeks following transplantation. The level of CNTF protein (91,046.15 pg/ml) expressed in the transfected cells was determined by sandwich enzyme-linked immunosorbent assay (ELISA). The four of seven eyes examined by light microscopy and the ten of 14 eyes examined by electro microscopy showed rescue effect. The prolonged photoreceptor survival, reduction of apoptotic cells and debris were observed in transplanted eyes in comparison with untreated or sham-injected eyes. This study provides the first indication that transplanted human fibroblasts with high level expression of CNTF are able to rescue photoreceptor degeneration in RCS dystrophic rat retina.

  17. Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) pathway

    DOE PAGES

    Nan, Xiaolin; Tamgüney, Tanja M.; Collisson, Eric A.; ...

    2015-06-16

    Rat sarcoma (Ras) GTPases regulate cell proliferation and survival through effector pathways including Raf-MAPK, and are the most frequently mutated genes in human cancer. Although it is well established that Ras activity requires binding to both GTP and the membrane, details of how Ras operates on the cell membrane to activate its effectors remain elusive. Efforts to target mutant Ras in human cancers to therapeutic benefit have also been largely unsuccessful. Here we show that Ras-GTP forms dimers to activate MAPK. We used quantitative photoactivated localization microscopy (PALM) to analyze the nanoscale spatial organization of PAmCherry1-tagged KRas 4B (hereafter referredmore » to KRas) on the cell membrane under various signaling conditions. We found that at endogenous expression levels KRas forms dimers, and KRas G12D, a mutant that constitutively binds GTP, activates MAPK. Overexpression of KRas leads to formation of higher order Ras nanoclusters. Conversely, at lower expression levels, KRas G12D is monomeric and activates MAPK only when artificially dimerized. Moreover, dimerization and signaling of KRas are both dependent on an intact CAAX (C, cysteine; A, aliphatic; X, any amino acid) motif that is also known to mediate membrane localization. These results reveal a new, dimerization-dependent signaling mechanism of Ras, and suggest Ras dimers as a potential therapeutic target in mutant Ras-driven tumors.« less

  18. Ras-GTP dimers activate the Mitogen-Activated Protein Kinase (MAPK) pathway

    PubMed Central

    Nan, Xiaolin; Tamgüney, Tanja M.; Collisson, Eric A.; Lin, Li-Jung; Pitt, Cameron; Galeas, Jacqueline; Lewis, Sophia; Gray, Joe W.; McCormick, Frank; Chu, Steven

    2015-01-01

    Rat sarcoma (Ras) GTPases regulate cell proliferation and survival through effector pathways including Raf-MAPK, and are the most frequently mutated genes in human cancer. Although it is well established that Ras activity requires binding to both GTP and the membrane, details of how Ras operates on the cell membrane to activate its effectors remain elusive. Efforts to target mutant Ras in human cancers to therapeutic benefit have also been largely unsuccessful. Here we show that Ras-GTP forms dimers to activate MAPK. We used quantitative photoactivated localization microscopy (PALM) to analyze the nanoscale spatial organization of PAmCherry1-tagged KRas 4B (hereafter referred to KRas) on the cell membrane under various signaling conditions. We found that at endogenous expression levels KRas forms dimers, and KRasG12D, a mutant that constitutively binds GTP, activates MAPK. Overexpression of KRas leads to formation of higher order Ras nanoclusters. Conversely, at lower expression levels, KRasG12D is monomeric and activates MAPK only when artificially dimerized. Moreover, dimerization and signaling of KRas are both dependent on an intact CAAX (C, cysteine; A, aliphatic; X, any amino acid) motif that is also known to mediate membrane localization. These results reveal a new, dimerization-dependent signaling mechanism of Ras, and suggest Ras dimers as a potential therapeutic target in mutant Ras-driven tumors. PMID:26080442

  19. Domain-Swapped Dimers of Intracellular Lipid-Binding Proteins: Evidence for Ordered Folding Intermediates.

    PubMed

    Assar, Zahra; Nossoni, Zahra; Wang, Wenjing; Santos, Elizabeth M; Kramer, Kevin; McCornack, Colin; Vasileiou, Chrysoula; Borhan, Babak; Geiger, James H

    2016-09-06

    Human Cellular Retinol Binding Protein II (hCRBPII), a member of the intracellular lipid-binding protein family, is a monomeric protein responsible for the intracellular transport of retinol and retinal. Herein we report that hCRBPII forms an extensive domain-swapped dimer during bacterial expression. The domain-swapped region encompasses almost half of the protein. The dimer represents a novel structural architecture with the mouths of the two binding cavities facing each other, producing a new binding cavity that spans the length of the protein complex. Although wild-type hCRBPII forms the dimer, the propensity for dimerization can be substantially increased via mutation at Tyr60. The monomeric form of the wild-type protein represents the thermodynamically more stable species, making the domain-swapped dimer a kinetically trapped entity. Hypothetically, the wild-type protein has evolved to minimize dimerization of the folding intermediate through a critical hydrogen bond (Tyr60-Glu72) that disfavors the dimeric form. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Redescription of Tintinnopsis cylindrica Daday, 1887 (Ciliophora: Spirotricha) and Unification of Tintinnid Terminology

    PubMed Central

    AGATHA, Sabine; RIEDEL-LORJÉ, Jeannette Cornelie

    2010-01-01

    Summary Although Tintinnopsis cylindrica Daday, 1887 is apparently widely distributed in the plankton of marine and brackish coastal waters, its ciliary pattern remained unknown. Without detailed knowledge of the cell morphology, however, the proposed synonymies cannot be proved. Hence, the cell and lorica features of T. cylindrica are redescribed from live and protargol-impregnated specimens collected in mixo-polyhaline basins at the German North Sea coast. An improved species diagnosis and a comprehensive unified terminology are provided. The somatic ciliary pattern of T. cylindrica is complex, comprising a ventral, dorsal, and posterior kinety as well as a right, left, and lateral ciliary field. Accordingly, the species differs from its congener T. cylindrata that has merely a right and left ciliary field and ventral organelles. On the other hand, the genera Codonella, Codonellopsis, Cymatocylis, Helicostomella, Leprotintinnus, and Stenosemella share this pattern. The oral primordium of T. cylindrica develops hypoapokinetally posterior to the lateral ciliary field as in Codonella cratera and Cymatocylis convallaria. PMID:20368769

  1. N-terminal dual lipidation-coupled molecular targeting into the primary cilium.

    PubMed

    Kumeta, Masahiro; Panina, Yulia; Yamazaki, Hiroya; Takeyasu, Kunio; Yoshimura, Shige H

    2018-06-13

    The primary cilium functions as an "antenna" for cell signaling, studded with characteristic transmembrane receptors and soluble protein factors, raised above the cell surface. In contrast to the transmembrane proteins, targeting mechanisms of nontransmembrane ciliary proteins are poorly understood. We focused on a pathogenic mutation that abolishes ciliary localization of retinitis pigmentosa 2 protein and revealed a dual acylation-dependent ciliary targeting pathway. Short N-terminal sequences which contain myristoylation and palmitoylation sites are sufficient to target a marker protein into the cilium in a palmitoylation-dependent manner. A Golgi-localized palmitoyltransferase DHHC-21 was identified as the key enzyme controlling this targeting pathway. Rapid turnover of the targeted protein was ensured by cholesterol-dependent membrane fluidity, which balances highly and less-mobile populations of the molecules within the cilium. This targeting signal was found in a set of signal transduction molecules, suggesting a general role of this pathway in proper ciliary organization, and dysfunction in ciliary disorders. © 2018 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  2. Asymmetrically localized proteins stabilize basal bodies against ciliary beating forces

    PubMed Central

    Galati, Domenico F.

    2016-01-01

    Basal bodies are radially symmetric, microtubule-rich structures that nucleate and anchor motile cilia. Ciliary beating produces asymmetric mechanical forces that are resisted by basal bodies. To resist these forces, distinct regions within the basal body ultrastructure and the microtubules themselves must be stable. However, the molecular components that stabilize basal bodies remain poorly defined. Here, we determine that Fop1 functionally interacts with the established basal body stability components Bld10 and Poc1. We find that Fop1 and microtubule glutamylation incorporate into basal bodies at distinct stages of assembly, culminating in their asymmetric enrichment at specific triplet microtubule regions that are predicted to experience the greatest mechanical force from ciliary beating. Both Fop1 and microtubule glutamylation are required to stabilize basal bodies against ciliary beating forces. Our studies reveal that microtubule glutamylation and Bld10, Poc1, and Fop1 stabilize basal bodies against the forces produced by ciliary beating via distinct yet interdependent mechanisms. PMID:27807131

  3. MD-2 residues tyrosine 42, arginine 69, aspartic acid 122, and leucine 125 provide species specificity for lipid IVA.

    PubMed

    Meng, Jianmin; Drolet, Joshua R; Monks, Brian G; Golenbock, Douglas T

    2010-09-03

    Lipopolysaccharide (LPS) activates the innate immune response through the Toll-like receptor 4 (TLR4).MD-2 complex. A synthetic lipid A precursor, lipid IV(A), induces an innate immune response in mice but not in humans. Both TLR4 and MD-2 are required for the agonist activity of lipid IV(A) in mice, with TLR4 interacting through specific surface charges at the dimerization interface. In this study, we used site-directed mutagenesis to identify the MD-2 residues that determine lipid IV(A) species specificity. A single mutation of murine MD-2 at the hydrophobic pocket entrance, E122K, substantially reduced the response to lipid IV(A). Combining the murine MD-2 E122K with the murine TLR4 K367E/S386K/R434Q mutations completely abolished the response to lipid IV(A), effectively converting the murine cellular response to a human-like response. In human cells, however, simultaneous mutations of K122E, K125L, Y41F, and R69G on human MD-2 were required to promote a response to lipid IV(A). Combining the human MD-2 quadruple mutations with the human TLR4 E369K/Q436R mutations completely converted the human MD-2/human TLR4 receptor to a murine-like receptor. Because MD-2 residues 122 and 125 reside at the dimerization interface near the pocket entrance, surface charge differences here directly affect receptor dimerization. In comparison, residues 42 and 69 reside at the MD-2/TLR4 interaction surface opposite the dimerization interface. Surface charge differences there likely affect the binding angle and/or rigidity between MD-2 and TLR4, exerting an indirect influence on receptor dimerization and activation. Thus, surface charge differences at the two MD-2/TLR4 interfaces determine the species-specific activation of lipid IV(A).

  4. Laser light-scattering spectroscopy: a new application in the study of ciliary activity.

    PubMed Central

    Lee, W I; Verdugo, P

    1976-01-01

    A uniquely precise and simple method to study ciliary activity by laser light-scattering spectroscopy has been developed and validated. A concurrent study of the effect of Ca2+ on ciliary activity in vitro by laser scattering spectroscopy and high speed cinematography has demonstrated that this new method is simpler and as accurate and reproducible as the high speed film technique. PMID:963208

  5. Characterization of primary cilia in human airway smooth muscle cells.

    PubMed

    Wu, Jun; Du, Hui; Wang, Xiangling; Mei, Changlin; Sieck, Gary C; Qian, Qi

    2009-08-01

    Considerable evidence indicates a key role for primary cilia of mammalian cells in mechanochemical sensing. Dysfunctions of primary cilia have been linked to the pathogenesis of several human diseases. However, cilia-related research has been limited to a few cell and tissue types; to our knowledge, no literature exists on primary cilia in airway smooth muscle (ASM). The aim of this study was to characterize primary cilia in human ASM. Primary cilia of human bronchial smooth muscle cells (HBSMCs) were examined using immunofluorescence confocal microscopy, and scanning and transmission electron microscopy. HBSMC migration and injury repair were examined by scratch-wound and epidermal growth factor (EGF)-induced migration assays. Cross-sectional images of normal human bronchi revealed that primary cilia of HBSMCs within each ASM bundle aggregated at the same horizontal level, forming a "cilium layer." Individual cilia of HBSMCs projected into extracellular matrix and exhibited varying degrees of deflection. Mechanochemical sensing molecules, polycystins, and alpha2-, alpha5-, and beta1-integrins were enriched in cilia, as was EGF receptor, known to activate jointly with integrins during cell migration. Migration assays demonstrated a ciliary contribution to HBSMC migration and wound repair. The primary cilia of ASM cells exert a role in sensing and transducing extracellular mechanochemical signals and in ASM injury repair. Defects in ASM ciliary function could potentially affect airway wall maintenance and/or remodeling, possibly relating to the genesis of bronchiectasis in autosomal dominant polycystic kidney disease, a disease of ciliopathy.

  6. Dimerization of human immunodeficiency virus (type 1) RNA: stimulation by cations and possible mechanism.

    PubMed

    Marquet, R; Baudin, F; Gabus, C; Darlix, J L; Mougel, M; Ehresmann, C; Ehresmann, B

    1991-05-11

    The retroviral genome consists of two identical RNA molecules joined close to their 5' ends by the dimer linkage structure. Recent findings indicated that retroviral RNA dimerization and encapsidation are probably related events during virion assembly. We studied the cation-induced dimerization of HIV-1 RNA and results indicate that all in vitro generated HIV-1 RNAs containing a 100 nucleotide domain downstream from the 5' splice site are able to dimerize. RNA dimerization depends on the concentration of RNA, mono- and multivalent cations, the size of the monovalent cation, temperature, and pH. Up to 75% of HIV-1 RNA is dimeric in the presence of spermidine. HIV-1 RNA dimer is fairly resistant to denaturing agents and unaffected by intercalating drugs. Antisense HIV-1 RNA does not dimerize but heterodimers can be formed between HIV-1 RNA and either MoMuLV or RSV RNA. Therefore retroviral RNA dimerization probably does not simply proceed through mechanisms involving Watson-Crick base-pairing. Neither adenine and cytosine protonation, nor quartets containing only guanines appear to determine the stability of the HIV-1 RNA dimer, while quartets involving both adenine(s) and guanine(s) could account for our results. A consensus sequence PuGGAPuA found in the putative dimerization-encapsidation region of all retroviral genomes examined may participate in the dimerization process.

  7. Dimerization of human immunodeficiency virus (type 1) RNA: stimulation by cations and possible mechanism.

    PubMed Central

    Marquet, R; Baudin, F; Gabus, C; Darlix, J L; Mougel, M; Ehresmann, C; Ehresmann, B

    1991-01-01

    The retroviral genome consists of two identical RNA molecules joined close to their 5' ends by the dimer linkage structure. Recent findings indicated that retroviral RNA dimerization and encapsidation are probably related events during virion assembly. We studied the cation-induced dimerization of HIV-1 RNA and results indicate that all in vitro generated HIV-1 RNAs containing a 100 nucleotide domain downstream from the 5' splice site are able to dimerize. RNA dimerization depends on the concentration of RNA, mono- and multivalent cations, the size of the monovalent cation, temperature, and pH. Up to 75% of HIV-1 RNA is dimeric in the presence of spermidine. HIV-1 RNA dimer is fairly resistant to denaturing agents and unaffected by intercalating drugs. Antisense HIV-1 RNA does not dimerize but heterodimers can be formed between HIV-1 RNA and either MoMuLV or RSV RNA. Therefore retroviral RNA dimerization probably does not simply proceed through mechanisms involving Watson-Crick base-pairing. Neither adenine and cytosine protonation, nor quartets containing only guanines appear to determine the stability of the HIV-1 RNA dimer, while quartets involving both adenine(s) and guanine(s) could account for our results. A consensus sequence PuGGAPuA found in the putative dimerization-encapsidation region of all retroviral genomes examined may participate in the dimerization process. Images PMID:1645868

  8. Voltage-gated calcium channels of Paramecium cilia

    PubMed Central

    Lodh, Sukanya; Valentine, Megan S.; Van Houten, Judith L.

    2016-01-01

    ABSTRACT Paramecium cells swim by beating their cilia, and make turns by transiently reversing their power stroke. Reversal is caused by Ca2+ entering the cilium through voltage-gated Ca2+ (CaV) channels that are found exclusively in the cilia. As ciliary Ca2+ levels return to normal, the cell pivots and swims forward in a new direction. Thus, the activation of the CaV channels causes cells to make a turn in their swimming paths. For 45 years, the physiological characteristics of the Paramecium ciliary CaV channels have been known, but the proteins were not identified until recently, when the P. tetraurelia ciliary membrane proteome was determined. Three CaVα1 subunits that were identified among the proteins were cloned and confirmed to be expressed in the cilia. We demonstrate using RNA interference that these channels function as the ciliary CaV channels that are responsible for the reversal of ciliary beating. Furthermore, we show that Pawn (pw) mutants of Paramecium that cannot swim backward for lack of CaV channel activity do not express any of the three CaV1 channels in their ciliary membrane, until they are rescued from the mutant phenotype by expression of the wild-type PW gene. These results reinforce the correlation of the three CaV channels with backward swimming through ciliary reversal. The PwB protein, found in endoplasmic reticulum fractions, co-immunoprecipitates with the CaV1c channel and perhaps functions in trafficking. The PwA protein does not appear to have an interaction with the channel proteins but affects their appearance in the cilia. PMID:27707864

  9. A novel ICK mutation causes ciliary disruption and lethal endocrine-cerebro-osteodysplasia syndrome.

    PubMed

    Oud, Machteld M; Bonnard, Carine; Mans, Dorus A; Altunoglu, Umut; Tohari, Sumanty; Ng, Alvin Yu Jin; Eskin, Ascia; Lee, Hane; Rupar, C Anthony; de Wagenaar, Nathalie P; Wu, Ka Man; Lahiry, Piya; Pazour, Gregory J; Nelson, Stanley F; Hegele, Robert A; Roepman, Ronald; Kayserili, Hülya; Venkatesh, Byrappa; Siu, Victoria M; Reversade, Bruno; Arts, Heleen H

    2016-01-01

    Endocrine-cerebro-osteodysplasia (ECO) syndrome [MIM:612651] caused by a recessive mutation (p.R272Q) in Intestinal cell kinase (ICK) shows significant clinical overlap with ciliary disorders. Similarities are strongest between ECO syndrome, the Majewski and Mohr-Majewski short-rib thoracic dysplasia (SRTD) with polydactyly syndromes, and hydrolethalus syndrome. In this study, we present a novel homozygous ICK mutation in a fetus with ECO syndrome and compare the effect of this mutation with the previously reported ICK variant on ciliogenesis and cilium morphology. Through homozygosity mapping and whole-exome sequencing, we identified a second variant (c.358G > T; p.G120C) in ICK in a Turkish fetus presenting with ECO syndrome. In vitro studies of wild-type and mutant mRFP-ICK (p.G120C and p.R272Q) revealed that, in contrast to the wild-type protein that localizes along the ciliary axoneme and/or is present in the ciliary base, mutant proteins rather enrich in the ciliary tip. In addition, immunocytochemistry revealed a decreased number of cilia in ICK p.R272Q-affected cells. Through identification of a novel ICK mutation, we confirm that disruption of ICK causes ECO syndrome, which clinically overlaps with the spectrum of ciliopathies. Expression of ICK-mutated proteins result in an abnormal ciliary localization compared to wild-type protein. Primary fibroblasts derived from an individual with ECO syndrome display ciliogenesis defects. In aggregate, our findings are consistent with recent reports that show that ICK regulates ciliary biology in vitro and in mice, confirming that ECO syndrome is a severe ciliopathy.

  10. The Developmental Process of the Growing Motile Ciliary Tip Region.

    PubMed

    Reynolds, Matthew J; Phetruen, Tanaporn; Fisher, Rebecca L; Chen, Ke; Pentecost, Brian T; Gomez, George; Ounjai, Puey; Sui, Haixin

    2018-05-22

    Eukaryotic motile cilia/flagella play vital roles in various physiological processes in mammals and some protists. Defects in cilia formation underlie multiple human disorders, known as ciliopathies. The detailed processes of cilia growth and development are still far from clear despite extensive studies. In this study, we characterized the process of cilium formation (ciliogenesis) by investigating the newly developed motile cilia of deciliated protists using complementary techniques in electron microscopy and image analysis. Our results demonstrated that the distal tip region of motile cilia exhibit progressive morphological changes as cilia develop. This developmental process is time-dependent and continues after growing cilia reach their full lengths. The structural analysis of growing ciliary tips revealed that B-tubules of axonemal microtubule doublets terminate far away from the tip end, which is led by the flagellar tip complex (FTC), demonstrating that the FTC might not directly mediate the fast turnover of intraflagellar transport (IFT).

  11. Light entrainment of the murine intraocular pressure circadian rhythm utilizes non-local mechanisms.

    PubMed

    Tsuchiya, Shunsuke; Buhr, Ethan D; Higashide, Tomomi; Sugiyama, Kazuhisa; Van Gelder, Russell N

    2017-01-01

    Intraocular pressure (IOP) is known to have a strong circadian rhythm, yet how light/dark cycles entrain this rhythm is unknown. The purpose of this study was to assess whether, like the retina, the mammalian ciliary body and IOP clocks have an intrinsic ability to entrain to light/dark cycles. Iris-ciliary body complexes were obtained from period2:luciferase (PER2::LUC) mice and cultured to measure bioluminescence rhythmicity. Pairs of the iris-ciliary body complex were exposed to antiphasic 9:15 h light/dark cycle in vitro. After 4 days of exposure to light/dark cycles, bioluminescence was recorded to establish their circadian phases. In addition, pairs of the iris-ciliary body complex co-cultured with the retinas or corneas of wild-type mice were also investigated. The IOP circadian changes of free-running Opn4-/-;rd1/rd1 mice whose behavior was antiphasic to wild-type were measured by a rebound tonometry, and compared with wild-type mice. Opn3, Opn4, and Opn5 mRNA expression in the iris-ciliary body were analyzed using RT-PCR. The iris/ciliary body complex expressed Opn3, Opn4, and Opn5 mRNA; however, unlike in retina and cornea, neither the iris-CB complex nor the co-cultured complex was directly entrained by light-dark cycle in vitro. The diurnal IOP change of Opn4-/-;rd1/rd1 mice showed an antiphasic pattern to wild-type mice and their rhythms followed the whole-animal behavioral rhythm. Despite expressing mRNA for several non-visual opsins, circadian rhythms of the iris-ciliary body complex of mice do not entrain directly to light-dark cycles ex vivo. Unlike retina, the iris/ciliary body clocks of blind mice remain synchronized to the organismal behavioral rhythm rather than local light-dark cycles. These results suggest that IOP rhythm entrainment is mediated by a systemic rather than local signal in mice.

  12. Light entrainment of the murine intraocular pressure circadian rhythm utilizes non-local mechanisms

    PubMed Central

    Tsuchiya, Shunsuke; Buhr, Ethan D.; Higashide, Tomomi; Sugiyama, Kazuhisa

    2017-01-01

    Purpose Intraocular pressure (IOP) is known to have a strong circadian rhythm, yet how light/dark cycles entrain this rhythm is unknown. The purpose of this study was to assess whether, like the retina, the mammalian ciliary body and IOP clocks have an intrinsic ability to entrain to light/dark cycles. Methods Iris-ciliary body complexes were obtained from period2:luciferase (PER2::LUC) mice and cultured to measure bioluminescence rhythmicity. Pairs of the iris-ciliary body complex were exposed to antiphasic 9:15 h light/dark cycle in vitro. After 4 days of exposure to light/dark cycles, bioluminescence was recorded to establish their circadian phases. In addition, pairs of the iris-ciliary body complex co-cultured with the retinas or corneas of wild-type mice were also investigated. The IOP circadian changes of free-running Opn4-/-;rd1/rd1 mice whose behavior was antiphasic to wild-type were measured by a rebound tonometry, and compared with wild-type mice. Opn3, Opn4, and Opn5 mRNA expression in the iris-ciliary body were analyzed using RT-PCR. Results The iris/ciliary body complex expressed Opn3, Opn4, and Opn5 mRNA; however, unlike in retina and cornea, neither the iris-CB complex nor the co-cultured complex was directly entrained by light-dark cycle in vitro. The diurnal IOP change of Opn4-/-;rd1/rd1 mice showed an antiphasic pattern to wild-type mice and their rhythms followed the whole-animal behavioral rhythm. Conclusions Despite expressing mRNA for several non-visual opsins, circadian rhythms of the iris-ciliary body complex of mice do not entrain directly to light-dark cycles ex vivo. Unlike retina, the iris/ciliary body clocks of blind mice remain synchronized to the organismal behavioral rhythm rather than local light-dark cycles. These results suggest that IOP rhythm entrainment is mediated by a systemic rather than local signal in mice. PMID:28934261

  13. Analytical study of avian reticuloendotheliosis virus dimeric RNA generated in vivo and in vitro.

    PubMed

    Darlix, J L; Gabus, C; Allain, B

    1992-12-01

    The retroviral genome consists of two identical RNA molecules associated at their 5' ends by a stable structure called the dimer linkage structure. The dimer linkage structure, while maintaining the dimer state of the retroviral genome, might also be involved in packaging and reverse transcription, as well as recombination during proviral DNA synthesis. To study the dimer structure of the retroviral genome and the mechanism of dimerization, we analyzed features of the dimeric genome of reticuloendotheliosis virus (REV) type A and identified elements required for its dimerization. Here we report that the REV dimeric genome extracted from virions and infected cells, as well as that synthesized in vitro, is more resistant to heat denaturation than avian sarcoma and leukemia virus, murine leukemia virus, or human immunodeficiency virus type 1 dimeric RNA. The minimal domain required to form a stable REV RNA dimer in vitro was found to map between positions 268 and 452 (KpnI and SalI sites), thus corresponding to the E encapsidation sequence (J. E. Embretson and H. M. Temin, J. Virol. 61:2675-2683, 1987). In addition, both the 5' and 3' halves of E are necessary in cis for RNA dimerization and the extent of RNA dimerization is influenced by viral sequences flanking E. Rapid and efficient dimerization of REV RNA containing gag sequences in addition to the E sequences and annealing of replication primer tRNA(Pro) to the primer-binding site necessitate the nucleocapsid protein.

  14. Analytical study of avian reticuloendotheliosis virus dimeric RNA generated in vivo and in vitro.

    PubMed Central

    Darlix, J L; Gabus, C; Allain, B

    1992-01-01

    The retroviral genome consists of two identical RNA molecules associated at their 5' ends by a stable structure called the dimer linkage structure. The dimer linkage structure, while maintaining the dimer state of the retroviral genome, might also be involved in packaging and reverse transcription, as well as recombination during proviral DNA synthesis. To study the dimer structure of the retroviral genome and the mechanism of dimerization, we analyzed features of the dimeric genome of reticuloendotheliosis virus (REV) type A and identified elements required for its dimerization. Here we report that the REV dimeric genome extracted from virions and infected cells, as well as that synthesized in vitro, is more resistant to heat denaturation than avian sarcoma and leukemia virus, murine leukemia virus, or human immunodeficiency virus type 1 dimeric RNA. The minimal domain required to form a stable REV RNA dimer in vitro was found to map between positions 268 and 452 (KpnI and SalI sites), thus corresponding to the E encapsidation sequence (J. E. Embretson and H. M. Temin, J. Virol. 61:2675-2683, 1987). In addition, both the 5' and 3' halves of E are necessary in cis for RNA dimerization and the extent of RNA dimerization is influenced by viral sequences flanking E. Rapid and efficient dimerization of REV RNA containing gag sequences in addition to the E sequences and annealing of replication primer tRNA(Pro) to the primer-binding site necessitate the nucleocapsid protein. Images PMID:1331519

  15. Human monoclonal antibody homodimers. Effect of valency on in vitro and in vivo antibacterial activity.

    PubMed

    Wolff, E A; Esselstyn, J; Maloney, G; Raff, H V

    1992-04-15

    Human IgG1 mAb dimers specific for either group B streptococci or Escherichia coli K1 bacteria were formed using chemical cross-linkers. The effect of antibody valency on biologic efficacy was investigated by comparing the IgG dimers against the corresponding IgG monomers. Binding activity and relative avidity were assessed using Ag binding and competition ELISA, and functional activity was analyzed using opsonophagocytic assays. These in vitro assays revealed that the dimers were greater than or equal to 50-fold more active than the monomers. A neonatal rat infection model showed the in vivo protective efficacy of the dimers was greater than or equal to 20-fold greater than that of the monomers. Enhancing the activity of mAb by chemical cross-linking may be a useful strategy for salvaging low affinity IgG mAb that possess poor functional properties.

  16. Direct Assessment of the Effect of the Gly380Arg Achondroplasia Mutation on FGFR3 Dimerization Using Quantitative Imaging FRET

    PubMed Central

    Placone, Jesse; Hristova, Kalina

    2012-01-01

    The Gly380Arg mutation in FGFR3 is the genetic cause for achondroplasia (ACH), the most common form of human dwarfism. The mutation has been proposed to increase FGFR3 dimerization, but the dimerization propensities of wild-type and mutant FGFR3 have not been compared. Here we use quantitative imaging FRET to characterize the dimerization of wild-type FGFR3 and the ACH mutant in plasma membrane-derived vesicles from HEK293T cells. We demonstrate a small, but statistically significant increase in FGFR3 dimerization due to the ACH mutation. The data are consistent with the idea that the ACH mutation causes a structural change which affects both the stability and the activity of FGFR3 dimers in the absence of ligand. PMID:23056398

  17. Which iodinated contrast media is the least cytotoxic to human disc cells?

    PubMed

    Kim, Kyung-Hyun; Park, Jeong-Yoon; Park, Hyo-Suk; Kuh, Sung-Uk; Chin, Dong-Kyu; Kim, Keun-Su; Cho, Yong-Eun

    2015-05-01

    Iodinated contrast media (CM) is commonly used for various intradiscal injections such as in discography and endoscopic spinal surgery. However, CM has been shown to be toxic to renal tissue due to its ionic strength and osmolarity and as a result of iodine-induced cytotoxicity, which has raised concern over whether there are similar negative effects on disc cells. This in vitro study was designed to identify the least cytotoxic iodinated CM to the human disc cell among four different physiochemical iodinated contrast dyes. In vitro laboratory study. Intervertebral disc tissue was obtained by discectomy from a total of 10 lumbar disc patients undergoing surgery and disc cells were isolated. The human disc cells were grown in 3D alginate bead culture with 0, 0.1, 10, and 100 mg/mL CM solutions (ionic dimer, ionic monomer, non-ionic dimer, and non-ionic monomer) and mannitol as a control for 2 days. The living cells were analyzed with trypan blue staining. Fluorescence-activated cell sorting analysis was performed using Annexin V and propidium iodide (PI) and 3D alginate bead immunostaining to identify live, apoptotic, and necrotic cells. Human disc cell death was time- and dose-dependent in response to CM and more necrosis was observed than apoptosis. In addition, non-ionic dimeric CM (iodixanol) showed the least toxic effect on human disc cells, followed by non-ionic monomeric (iopromide), ionic dimeric (ioxaglate), and ionic monomeric CM (ioxithalamate). Contrast media is cytotoxic to human disc cells in a dose- and time-dependent manner. This in vitro study revealed that, among four different CM preparations, non-ionic dimeric CM is the least detrimental to human disc cell viability. Careful attention should be paid to the type of CM chosen for discography and endoscopic spinal surgery. It is also necessary to investigate the detrimental effects of CM on disc cells and disc degeneration in further in vivo studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Loss-of-function of the ciliopathy protein Cc2d2a disorganizes the vesicle fusion machinery at the periciliary membrane and indirectly affects Rab8-trafficking in zebrafish photoreceptors

    PubMed Central

    Gesemann, Matthias; Mateos, José M.; Barmettler, Gery; Forbes, Austin; Ziegler, Urs

    2017-01-01

    Ciliopathies are human disorders caused by dysfunction of primary cilia, ubiquitous organelles involved in transduction of environmental signals such as light sensation in photoreceptors. Concentration of signal detection proteins such as opsins in the ciliary membrane is achieved by RabGTPase-regulated polarized vesicle trafficking and by a selective barrier at the ciliary base, the transition zone (TZ). Dysfunction of the TZ protein CC2D2A causes Joubert/Meckel syndromes in humans and loss of ciliary protein localization in animal models, including opsins in retinal photoreceptors. The link between the TZ and upstream vesicle trafficking has been little explored to date. Moreover, the role of the small GTPase Rab8 in opsin-carrier vesicle (OCV) trafficking has been recently questioned in a mouse model. Using correlative light and electron microscopy and live imaging in zebrafish photoreceptors, we provide the first live characterization of Rab8-mediated trafficking in photoreceptors in vivo. Our results support a possibly redundant role for both Rab8a/b paralogs in OCV trafficking, based on co-localization of Rab8 and opsins in vesicular structures, and joint movement of Rab8-tagged particles with opsin. We further investigate the role of the TZ protein Cc2d2a in Rab8-mediated trafficking using cc2d2a zebrafish mutants and identify a requirement for Cc2d2a in the latest step of OCV trafficking, namely vesicle fusion. Progressive accumulation of opsin-containing vesicles in the apical portion of photoreceptors lacking Cc2d2a is caused by disorganization of the vesicle fusion machinery at the periciliary membrane with mislocalization and loss of the t-SNAREs SNAP25 and Syntaxin3 and of the exocyst component Exoc4. We further observe secondary defects on upstream Rab8-trafficking with cytoplasmic accumulation of Rab8. Taken together, our results support participation of Rab8 in OCV trafficking and identify a novel role for the TZ protein Cc2d2a in fusion of incoming ciliary-directed vesicles, through organization of the vesicle fusion machinery at the periciliary membrane. PMID:29281629

  19. Loss-of-function of the ciliopathy protein Cc2d2a disorganizes the vesicle fusion machinery at the periciliary membrane and indirectly affects Rab8-trafficking in zebrafish photoreceptors.

    PubMed

    Ojeda Naharros, Irene; Gesemann, Matthias; Mateos, José M; Barmettler, Gery; Forbes, Austin; Ziegler, Urs; Neuhauss, Stephan C F; Bachmann-Gagescu, Ruxandra

    2017-12-01

    Ciliopathies are human disorders caused by dysfunction of primary cilia, ubiquitous organelles involved in transduction of environmental signals such as light sensation in photoreceptors. Concentration of signal detection proteins such as opsins in the ciliary membrane is achieved by RabGTPase-regulated polarized vesicle trafficking and by a selective barrier at the ciliary base, the transition zone (TZ). Dysfunction of the TZ protein CC2D2A causes Joubert/Meckel syndromes in humans and loss of ciliary protein localization in animal models, including opsins in retinal photoreceptors. The link between the TZ and upstream vesicle trafficking has been little explored to date. Moreover, the role of the small GTPase Rab8 in opsin-carrier vesicle (OCV) trafficking has been recently questioned in a mouse model. Using correlative light and electron microscopy and live imaging in zebrafish photoreceptors, we provide the first live characterization of Rab8-mediated trafficking in photoreceptors in vivo. Our results support a possibly redundant role for both Rab8a/b paralogs in OCV trafficking, based on co-localization of Rab8 and opsins in vesicular structures, and joint movement of Rab8-tagged particles with opsin. We further investigate the role of the TZ protein Cc2d2a in Rab8-mediated trafficking using cc2d2a zebrafish mutants and identify a requirement for Cc2d2a in the latest step of OCV trafficking, namely vesicle fusion. Progressive accumulation of opsin-containing vesicles in the apical portion of photoreceptors lacking Cc2d2a is caused by disorganization of the vesicle fusion machinery at the periciliary membrane with mislocalization and loss of the t-SNAREs SNAP25 and Syntaxin3 and of the exocyst component Exoc4. We further observe secondary defects on upstream Rab8-trafficking with cytoplasmic accumulation of Rab8. Taken together, our results support participation of Rab8 in OCV trafficking and identify a novel role for the TZ protein Cc2d2a in fusion of incoming ciliary-directed vesicles, through organization of the vesicle fusion machinery at the periciliary membrane.

  20. Voltage-gated calcium channels of Paramecium cilia.

    PubMed

    Lodh, Sukanya; Yano, Junji; Valentine, Megan S; Van Houten, Judith L

    2016-10-01

    Paramecium cells swim by beating their cilia, and make turns by transiently reversing their power stroke. Reversal is caused by Ca 2+ entering the cilium through voltage-gated Ca 2+ (Ca V ) channels that are found exclusively in the cilia. As ciliary Ca 2+ levels return to normal, the cell pivots and swims forward in a new direction. Thus, the activation of the Ca V channels causes cells to make a turn in their swimming paths. For 45 years, the physiological characteristics of the Paramecium ciliary Ca V channels have been known, but the proteins were not identified until recently, when the P. tetraurelia ciliary membrane proteome was determined. Three Ca V α1 subunits that were identified among the proteins were cloned and confirmed to be expressed in the cilia. We demonstrate using RNA interference that these channels function as the ciliary Ca V channels that are responsible for the reversal of ciliary beating. Furthermore, we show that Pawn (pw) mutants of Paramecium that cannot swim backward for lack of Ca V channel activity do not express any of the three Ca V 1 channels in their ciliary membrane, until they are rescued from the mutant phenotype by expression of the wild-type PW gene. These results reinforce the correlation of the three Ca V channels with backward swimming through ciliary reversal. The PwB protein, found in endoplasmic reticulum fractions, co-immunoprecipitates with the Ca V 1c channel and perhaps functions in trafficking. The PwA protein does not appear to have an interaction with the channel proteins but affects their appearance in the cilia. © 2016. Published by The Company of Biologists Ltd.

  1. Preoperative and postoperative size and movements of the lens capsular bag: ultrasound biomicroscopy analysis.

    PubMed

    Modesti, Marina; Pasqualitto, Giacomo; Appolloni, Rossella; Pecorella, Irene; Sourdille, Philippe

    2011-10-01

    To evaluate capsular bag size and accommodative movement before and after cataract surgery using ultrasound biomicroscopy (UBM) and anterior segment optical coherence tomography (AS-OCT). Ophthalmology Unit, Fabia Mater Clinic, Rome, Italy. Cohort study. Eyes having cataract surgery and monofocal intraocular lens (IOL) implantation were studied using UBM. The following parameters were measured preoperatively and 1, 2, and 12 months postoperatively: anterior chamber depth (ACD) (also by AS-OCT), capsular bag thickness, capsular bag diameter, ciliary ring diameter, sulcus-to-sulcus (STS) diameter, ciliary process-capsular bag distance, ciliary apex-capsular bag plane, and IOL tilting. The preoperative and postoperative capsular bag volumes were calculated at 12 months. The results were compared with the changes during accommodation. The study comprised 24 eyes. With the exception of the ciliary apex-capsular bag plane, which appeared to be unmodified postoperatively, all measured parameters showed significant variation after IOL implantation. Only the ACD did not change significantly during accommodation. After cataract surgery, the capsular bag stretched horizontally and with reduced vertical diameter as a result of adaptation to the implanted IOL. The capsular bag-IOL complex filled all available space, compressing the zonular fibers and almost abolishing the space between the ciliary apex and the capsular bag. There was anterior chamber deepening and a decrease in the ciliary ring diameter and STS diameter. In the absence of zonular fiber tension, the shape of the ciliary processes may be modified. No author has a financial or proprietary interest in any material or method mentioned. Additional disclosures are found in the footnotes. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  2. Untangling ciliary access and enrichment of two rhodopsin-like receptors using quantitative fluorescence microscopy reveals cell-specific sorting pathways.

    PubMed

    Geneva, Ivayla I; Tan, Han Yen; Calvert, Peter D

    2017-02-15

    Resolution limitations of optical systems are major obstacles for determining whether proteins are enriched within cell compartments. Here we use an approach to determine the degree of membrane protein ciliary enrichment that quantitatively accounts for the differences in sampling of the ciliary and apical membranes inherent to confocal microscopes. Theory shows that cilia will appear more than threefold brighter than the surrounding apical membrane when the densities of fluorescently labeled proteins are the same, thus providing a benchmark for ciliary enrichment. Using this benchmark, we examined the ciliary enrichment signals of two G protein-coupled receptors (GPCRs)-the somatostatin receptor 3 and rhodopsin. Remarkably, we found that the C-terminal VxPx motif, required for efficient enrichment of rhodopsin within rod photoreceptor sensory cilia, inhibited enrichment of the somatostatin receptor in primary cilia. Similarly, VxPx inhibited primary cilium enrichment of a chimera of rhodopsin and somatostatin receptor 3, where the dual Ax(S/A)xQ ciliary targeting motifs within the third intracellular loop of the somatostatin receptor replaced the third intracellular loop of rhodopsin. Rhodopsin was depleted from primary cilia but gained access, without being enriched, with the dual Ax(S/A)xQ motifs. Ciliary enrichment of these GPCRs thus operates via distinct mechanisms in different cells. © 2017 Geneva et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. A novel mouse model of anterior segment dysgenesis (ASD): conditional deletion of Tsc1 disrupts ciliary body and iris development

    PubMed Central

    Hägglund, Anna-Carin; Jones, Iwan

    2017-01-01

    ABSTRACT Development of the cornea, lens, ciliary body and iris within the anterior segment of the eye involves coordinated interaction between cells originating from the ciliary margin of the optic cup, the overlying periocular mesenchyme and the lens epithelium. Anterior segment dysgenesis (ASD) encompasses a spectrum of developmental syndromes that affect these anterior segment tissues. ASD conditions arise as a result of dominantly inherited genetic mutations and result in both ocular-specific and systemic forms of dysgenesis that are best exemplified by aniridia and Axenfeld–Rieger syndrome, respectively. Extensive clinical overlap in disease presentation amongst ASD syndromes creates challenges for correct diagnosis and classification. The use of animal models has therefore proved to be a robust approach for unravelling this complex genotypic and phenotypic heterogeneity. However, despite these successes, it is clear that additional genes that underlie several ASD syndromes remain unidentified. Here, we report the characterisation of a novel mouse model of ASD. Conditional deletion of Tsc1 during eye development leads to a premature upregulation of mTORC1 activity within the ciliary margin, periocular mesenchyme and lens epithelium. This aberrant mTORC1 signalling within the ciliary margin in particular leads to a reduction in the number of cells that express Pax6, Bmp4 and Msx1. Sustained mTORC1 signalling also induces a decrease in ciliary margin progenitor cell proliferation and a consequent failure of ciliary body and iris development in postnatal animals. Our study therefore identifies Tsc1 as a novel candidate ASD gene. Furthermore, the Tsc1-ablated mouse model also provides a valuable resource for future studies concerning the molecular mechanisms underlying ASD and acts as a platform for evaluating therapeutic approaches for the treatment of visual disorders. PMID:28250050

  4. Differential Effects of RET and TRKB on Axonal Branching and Survival of Parasympathetic Neurons

    PubMed Central

    Simpson, Julie; Keefe, Julie; Nishi, Rae

    2014-01-01

    Interactions between neurons and their targets of innervation influence many aspects of neural development. To examine how synaptic activity interacts with neurotrophic signaling, we determined the effects of blocking neuromuscular transmission on survival and axonal outgrowth of ciliary neurons from the embryonic chicken ciliary ganglion. Ciliary neurons undergo a period of cell loss due to programmed cell death between embryonic Days (E) 8 and 14 and they innervate the striated muscle of the iris. The nicotinic antagonist d-tubocurarine (dTC) induces an increase in branching measured by counting neurofilament-positive voxels (NF-VU) in the iris between E14–17 while reducing ciliary neuron survival. Blocking ganglionic transmission with dihyro-β-erythroidin and α-methyllycacontine does not mimic dTC. At E8, many trophic factors stimulate neurite outgrowth and branching of neurons placed in cell culture; however, at E13, only GDNF stimulates branching selectively in cultured ciliary neurons. The GDNF-induced branching at E13 could be inhibited by BDNF. Blocking ret signaling in vivo with a dominant negative (dn)ret decreases survival of ciliary and choroid neurons at E14 and prevents dTC induced increases in NF-VU in the iris at E17. Blocking TRKB signaling with dn TRKB increases NF-VU in the iris at E17 and decreases neuronal survival at E17, but not at E14. Thus, RET promotes survival during programmed cell death in the ciliary ganglion and contributes to promoting branching when synaptic transmission is blocked while TRKB inhibits branching and promotes maintenance of neuronal survival. These studies highlight the multifunctional nature of trophic molecule function during neuronal development. PMID:22648743

  5. Synthesis and evaluation of a dimer of 2-(4-pyridylmethyl)-1-indanone as a novel nonsteroidal aromatase inhibitor.

    PubMed

    Gupta, Ranju; Jindal, Dharam Paul; Jit, Birinder; Narang, Gaurav; Palusczak, Anja; Hartmann, Rolf W

    2004-07-01

    A novel dimer of 2-(4-pyridylmethyl)-1-indanone (2) was obtained while carrying out aldol condensation of 1-indanone with pyridine-4-carboxaldehyde in potassium hydroxide. The structure of dimer 3 has been established using various spectral techniques and was screened for its ability to inhibit the cytochrome P(450) enzyme aromatase. The dimer showed strong inhibition of human placental aromatase and was found 3 times more potent (RP = 3, IC(50) = 10.2 microM) as compared to aminoglutethimide (RP = 1, IC(50) = 18.5 microM.

  6. Transmembrane protein OSTA-1 shapes sensory cilia morphology via regulation of intracellular membrane trafficking in C. elegans.

    PubMed

    Olivier-Mason, Anique; Wojtyniak, Martin; Bowie, Rachel V; Nechipurenko, Inna V; Blacque, Oliver E; Sengupta, Piali

    2013-04-01

    The structure and function of primary cilia are critically dependent on intracellular trafficking pathways that transport ciliary membrane and protein components. The mechanisms by which these trafficking pathways are regulated are not fully characterized. Here we identify the transmembrane protein OSTA-1 as a new regulator of the trafficking pathways that shape the morphology and protein composition of sensory cilia in C. elegans. osta-1 encodes an organic solute transporter alpha-like protein, mammalian homologs of which have been implicated in membrane trafficking and solute transport, although a role in regulating cilia structure has not previously been demonstrated. We show that mutations in osta-1 result in altered ciliary membrane volume, branch length and complexity, as well as defects in localization of a subset of ciliary transmembrane proteins in different sensory cilia types. OSTA-1 is associated with transport vesicles, localizes to a ciliary compartment shown to house trafficking proteins, and regulates both retrograde and anterograde flux of the endosome-associated RAB-5 small GTPase. Genetic epistasis experiments with sensory signaling, exocytic and endocytic proteins further implicate OSTA-1 as a crucial regulator of ciliary architecture via regulation of cilia-destined trafficking. Our findings suggest that regulation of transport pathways in a cell type-specific manner contributes to diversity in sensory cilia structure and might allow dynamic remodeling of ciliary architecture via multiple inputs.

  7. Swimming Speed of Larval Snail Does Not Correlate with Size and Ciliary Beat Frequency

    PubMed Central

    Chan, Kit Yu Karen; Jiang, Houshuo; Padilla, Dianna K.

    2013-01-01

    Many marine invertebrates have planktonic larvae with cilia used for both propulsion and capturing of food particles. Hence, changes in ciliary activity have implications for larval nutrition and ability to navigate the water column, which in turn affect survival and dispersal. Using high-speed high-resolution microvideography, we examined the relationship between swimming speed, velar arrangements, and ciliary beat frequency of freely swimming veliger larvae of the gastropod Crepidula fornicata over the course of larval development. Average swimming speed was greatest 6 days post hatching, suggesting a reduction in swimming speed towards settlement. At a given age, veliger larvae have highly variable speeds (0.8–4 body lengths s−1) that are independent of shell size. Contrary to the hypothesis that an increase in ciliary beat frequency increases work done, and therefore speed, there was no significant correlation between swimming speed and ciliary beat frequency. Instead, there are significant correlations between swimming speed and visible area of the velar lobe, and distance between centroids of velum and larval shell. These observations suggest an alternative hypothesis that, instead of modifying ciliary beat frequency, larval C. fornicata modify swimming through adjustment of velum extension or orientation. The ability to adjust velum position could influence particle capture efficiency and fluid disturbance and help promote survival in the plankton. PMID:24367554

  8. Effect of Phenylephrine on the Accommodative System

    PubMed Central

    Del Águila-Carrasco, Antonio J.; Bernal-Molina, Paula; Ferrer-Blasco, Teresa; López-Gil, Norberto; Montés-Micó, Robert

    2016-01-01

    Accommodation is controlled by the action of the ciliary muscle and mediated primarily by parasympathetic input through postganglionic fibers that originate from neurons in the ciliary and pterygopalatine ganglia. During accommodation the pupil constricts to increase the depth of focus of the eye and improve retinal image quality. Researchers have traditionally faced the challenge of measuring the accommodative properties of the eye through a small pupil and thus have relied on pharmacological agents to dilate the pupil. Achieving pupil dilation (mydriasis) without affecting the accommodative ability of the eye (cycloplegia) could be useful in many clinical and research contexts. Phenylephrine hydrochloride (PHCl) is a sympathomimetic agent that is used clinically to dilate the pupil. Nevertheless, first investigations suggested some loss of functional accommodation in the human eye after PHCl instillation. Subsequent studies, based on different measurement procedures, obtained contradictory conclusions, causing therefore an unexpected controversy that has been spread almost to the present days. This manuscript reviews and summarizes the main research studies that have been performed to analyze the effect of PHCl on the accommodative system and provides clear conclusions that could help clinicians know the real effects of PHCl on the accommodative system of the human eye. PMID:28053778

  9. TRPV4 Stimulation Induced Melatonin Secretion by Increasing Arylalkymine N-acetyltransferase (AANAT) Protein Level.

    PubMed

    Alkozi, Hanan Awad; Perez de Lara, Maria J; Sánchez-Naves, Juan; Pintor, Jesús

    2017-04-01

    Melatonin is a molecule which has gained a great deal of interest in many areas of science; its synthesis was classically known to be in the pineal gland. However, many organs synthesize melatonin, such as several ocular structures. Melatonin is known to participate in many functions apart from its main action regulating the circadian rhythm. It is synthesized from serotonin in two steps, with a rate-limiting step carried out by arylalkymine N -acetyltransferase (AANAT). In this report, the role of TRPV4 channel present in human ciliary body epithelial cells in AANAT production was studied. Several experiments were undertaken to verify the adequate time to reach the maximal effect by using the TRPV4 agonist GSK1016790A, together with a dose-response study. An increase of 2.4 folds in AANAT was seen after 18 h of incubation with 10 nM of GSK1016790A ( p < 0.001, n = 6). This increment was verified by antagonist assays. In summary, AANAT levels and therefore melatonin synthesis change after TRPV4 channel stimulation. Using this cell model together with human ciliary body tissue it is possible to suggest that AANAT plays an important role in pathologies related to intraocular pressure.

  10. The Dimeric Architecture of Checkpoint Kinases Mec1ATR and Tel1ATM Reveal a Common Structural Organization.

    PubMed

    Sawicka, Marta; Wanrooij, Paulina H; Darbari, Vidya C; Tannous, Elias; Hailemariam, Sarem; Bose, Daniel; Makarova, Alena V; Burgers, Peter M; Zhang, Xiaodong

    2016-06-24

    The phosphatidylinositol 3-kinase-related protein kinases are key regulators controlling a wide range of cellular events. The yeast Tel1 and Mec1·Ddc2 complex (ATM and ATR-ATRIP in humans) play pivotal roles in DNA replication, DNA damage signaling, and repair. Here, we present the first structural insight for dimers of Mec1·Ddc2 and Tel1 using single-particle electron microscopy. Both kinases reveal a head to head dimer with one major dimeric interface through the N-terminal HEAT (named after Huntingtin, elongation factor 3, protein phosphatase 2A, and yeast kinase TOR1) repeat. Their dimeric interface is significantly distinct from the interface of mTOR complex 1 dimer, which oligomerizes through two spatially separate interfaces. We also observe different structural organizations of kinase domains of Mec1 and Tel1. The kinase domains in the Mec1·Ddc2 dimer are located in close proximity to each other. However, in the Tel1 dimer they are fully separated, providing potential access of substrates to this kinase, even in its dimeric form. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Efficient mucociliary transport relies on efficient regulation of ciliary beating.

    PubMed

    Braiman, Alex; Priel, Zvi

    2008-11-30

    The respiratory mucociliary epithelium is a synchronized and highly effective waste-disposal system. It uses mucus as a vehicle, driven by beating cilia, to transport unwanted particles, trapped in the mucus, away from the respiratory system. The ciliary machinery can function in at least two different modes: a low rate of beating that requires only ATP, and a high rate of beating regulated by second messengers. The mucus propelling velocity is linearly dependent on ciliary beat frequency (CBF). The linear dependence implies that a substantial increase in transport efficiency requires an equally substantial rise in CBF. The ability to enhance beating in response to various physiological cues is a hallmark of mucociliary cells. An intricate signaling network controls ciliary activity, which relies on interplay between calcium and cyclic nucleotide pathways.

  12. Quantitative optical coherence tomography imaging of intermediate flow defect phenotypes in ciliary physiology and pathophysiology

    NASA Astrophysics Data System (ADS)

    Huang, Brendan K.; Gamm, Ute A.; Jonas, Stephan; Khokha, Mustafa K.; Choma, Michael A.

    2015-03-01

    Cilia-driven fluid flow is a critical yet poorly understood aspect of pulmonary physiology. Here, we demonstrate that optical coherence tomography-based particle tracking velocimetry can be used to quantify subtle variability in cilia-driven flow performance in Xenopus, an important animal model of ciliary biology. Changes in flow performance were quantified in the setting of normal development, as well as in response to three types of perturbations: mechanical (increased fluid viscosity), pharmacological (disrupted serotonin signaling), and genetic (diminished ciliary motor protein expression). Of note, we demonstrate decreased flow secondary to gene knockdown of kif3a, a protein involved in ciliogenesis, as well as a dose-response decrease in flow secondary to knockdown of dnah9, an important ciliary motor protein.

  13. Erythropoiesis from Human Embryonic Stem Cells Through Erythropoietin-Independent AKT Signaling

    PubMed Central

    Kim, William S.; Zhu, Yuhua; Deng, Qiming; Chin, Chee Jia; He, Chong Bin; Grieco, Amanda J.; Dravid, Gautam G.; Parekh, Chintan; Hollis, Roger P.; Lane, Timothy F.; Bouhassira, Eric E.; Kohn, Donald B.; Crooks, Gay M.

    2014-01-01

    Unlimited self renewal capacity and differentiation potential make human pluripotent stem cells (PSC) a promising source for the ex vivo manufacture of red blood cells (RBC) for safe transfusion. Current methods to induce erythropoiesis from PSC suffer from low yields of RBCs, most of which are immature and contain embryonic and fetal rather than adult hemoglobins. We have previously shown that homo-dimerization of the intracellular component of MPL (ic-MPL) induces erythropoiesis from human cord blood progenitors. The goal of the present study was to investigate the potential of ic-MPL dimerization to induce erythropoiesis from human embryonic stem cells (hESC) and to identify the signaling pathways activated by this strategy. We present here evidence that ic-MPL dimerization induces erythropoietin (EPO)-independent erythroid differentiation from hESC by inducing the generation of erythroid progenitors and by promoting more efficient erythroid maturation with increased RBC enucleation as well as increased gamma:epsilon globin ratio and production of beta-globin protein. ic-MPL dimerization is significantly more potent than EPO in inducing erythropoiesis and its effect is additive to EPO. Signaling studies show that dimerization of ic-MPL, unlike stimulation of the wild type MPL receptor, activates AKT in the absence of JAK2/STAT5 signaling. AKT activation upregulates the GATA-1 and FOXO3 transcriptional pathways with resulting inhibition of apoptosis, modulation of cell cycle and enhanced maturation of erythroid cells. These findings open up potential new targets for the generation of therapeutically relevant RBC products from hPSC. PMID:24677652

  14. Preferential recognition of undisruptable dimers of inducible nitric oxide synthase by a monoclonal antibody directed against an N-terminal epitope.

    PubMed

    Mazumdar, Tuhina; Eissa, N Tony

    2005-02-15

    Overproduction of NO by inducible NO synthase (iNOS) has been implicated in the pathogenesis of many diseases. iNOS is active only as a homodimer in which the subunits align in a head-to-head manner, with the N-terminal oxygenase domains forming the dimer interface and a zinc metal center stabilizing the dimer. Thus, dimerization represents a critical locus for therapeutic interventions for regulation of NO synthesis. We have recently shown that intracellular iNOS forms dimers that are "undisruptable (UD)" by heat, SDS, strong denaturants, and/or reducing agents. Our data further suggest that the zinc metal center plays a role in forming and/or stabilizing iNOS undisruptable dimers (UD-dimers). In this study, we show that a mAb directed against a unique epitope at the oxygenase domain of human iNOS preferentially recognizes UD-dimers. This observation has implications for the mechanism of formation and regulation of dimer formation of iNOS. Our data suggest that UD-dimers of iNOS, in spite of SDS-PAGE denaturation, still maintain features of the quaternary structure of iNOS particularly at its N-terminal end and including head-to-head contact of the oxygenase domains.

  15. Plasma membrane association facilitates conformational changes in the Marburg virus protein VP40 dimer.

    PubMed

    Bhattarai, Nisha; Gc, Jeevan B; Gerstman, Bernard S; Stahelin, Robert V; Chapagain, Prem P

    2017-04-26

    Filovirus infections cause hemorrhagic fever in humans and non-human primates that often results in high fatality rates. The Marburg virus is a lipid-enveloped virus from the Filoviridae family and is closely related to the Ebola virus. The viral matrix layer underneath the lipid envelope is formed by the matrix protein VP40 (VP40), which is also involved in other functions during the viral life-cycle. As in the Ebola virus VP40 (eVP40), the recently determined X-ray crystal structure of the Marburg virus VP40 (mVP40) features loops containing cationic residues that form a lipid binding basic patch. However, the mVP40 basic patch is significantly flatter with a more extended surface than in eVP40, suggesting the possibility of differences in the plasma membrane interactions and phospholipid specificity between the VP40 dimers. In this paper, we report on molecular dynamics simulations that investigate the roles of various residues and lipid types in PM association as well as the conformational changes of the mVP40 dimer facilitated by membrane association. We compared the structural changes of the mVP40 dimer with the mVP40 dimer in both lipid free and membrane associated conditions. Despite the significant structural differences in the crystal structure, the Marburg VP40 dimer is found to adopt a configuration very similar to the Ebola VP40 dimer after associating with the membrane. This conformational rearrangement upon lipid binding allows Marburg VP40 to localize and stabilize at the membrane surface in a manner similar to the Ebola VP40 dimer. Consideration of the structural information in its lipid-interacting condition may be important in targeting mVP40 for novel drugs to inhibit viral budding from the plasma membrane.

  16. Vanadate and aqueous humor dynamics. Proctor Lecture.

    PubMed

    Becker, B

    1980-10-01

    Topical administration of 0.5% vanadate lowers intraocular pressure in monkey and rabbit eyes. This appears to be a consequence of a reduction in the rate of aqueous humor secretion, probably resulting from the inhibition of ciliary epithelium membrane. NaK ATPase. The ubiquitous vanadate and its interactions with catecholamines and ascorbate may play a role in regulating the sodium pump of the ciliary epithelium. Adrenergic blocking agents may also lower intraocular pressure by inhibiting the NaK ATPase of the ciliary epithelium.

  17. The Meckel syndrome- associated protein MKS1 functionally interacts with components of the BBSome and IFT complexes to mediate ciliary trafficking and hedgehog signaling

    PubMed Central

    Barrington, Chloe L.; Katsanis, Nicholas

    2017-01-01

    The importance of primary cilia in human health is underscored by the link between ciliary dysfunction and a group of primarily recessive genetic disorders with overlapping clinical features, now known as ciliopathies. Many of the proteins encoded by ciliopathy-associated genes are components of a handful of multi-protein complexes important for the transport of cargo to the basal body and/or into the cilium. A key question is whether different complexes cooperate in cilia formation, and whether they participate in cilium assembly in conjunction with intraflagellar transport (IFT) proteins. To examine how ciliopathy protein complexes might function together, we have analyzed double mutants of an allele of the Meckel syndrome (MKS) complex protein MKS1 and the BBSome protein BBS4. We find that Mks1; Bbs4 double mutant mouse embryos exhibit exacerbated defects in Hedgehog (Hh) dependent patterning compared to either single mutant, and die by E14.5. Cells from double mutant embryos exhibit a defect in the trafficking of ARL13B, a ciliary membrane protein, resulting in disrupted ciliary structure and signaling. We also examined the relationship between the MKS complex and IFT proteins by analyzing double mutant between Mks1 and a hypomorphic allele of the IFTB component Ift172. Despite each single mutant surviving until around birth, Mks1; Ift172avc1 double mutants die at mid-gestation, and exhibit a dramatic failure of cilia formation. We also find that Mks1 interacts genetically with an allele of Dync2h1, the IFT retrograde motor. Thus, we have demonstrated that the MKS transition zone complex cooperates with the BBSome to mediate trafficking of specific trans-membrane receptors to the cilium. Moreover, the genetic interaction of Mks1 with components of IFT machinery suggests that the transition zone complex facilitates IFT to promote cilium assembly and structure. PMID:28291807

  18. Ciliary dyslexia candidate genes DYX1C1 and DCDC2 are regulated by Regulatory Factor X (RFX) transcription factors through X-box promoter motifs

    PubMed Central

    Tammimies, Kristiina; Bieder, Andrea; Lauter, Gilbert; Sugiaman-Trapman, Debora; Torchet, Rachel; Hokkanen, Marie-Estelle; Burghoorn, Jan; Castrén, Eero; Kere, Juha; Tapia-Páez, Isabel; Swoboda, Peter

    2016-01-01

    DYX1C1, DCDC2, and KIAA0319 are three of the most replicated dyslexia candidate genes (DCGs). Recently, these DCGs were implicated in functions at the cilium. Here, we investigate the regulation of these DCGs by Regulatory Factor X transcription factors (RFX TFs), a gene family known for transcriptionally regulating ciliary genes. We identify conserved X-box motifs in the promoter regions of DYX1C1, DCDC2, and KIAA0319 and demonstrate their functionality, as well as the ability to recruit RFX TFs using reporter gene and electrophoretic mobility shift assays. Furthermore, we uncover a complex regulation pattern between RFX1, RFX2, and RFX3 and their significant effect on modifying the endogenous expression of DYX1C1 and DCDC2 in a human retinal pigmented epithelial cell line immortalized with hTERT (hTERT-RPE1). In addition, induction of ciliogenesis increases the expression of RFX TFs and DCGs. At the protein level, we show that endogenous DYX1C1 localizes to the base of the cilium, whereas DCDC2 localizes along the entire axoneme of the cilium, thereby validating earlier localization studies using overexpression models. Our results corroborate the emerging role of DCGs in ciliary function and characterize functional noncoding elements, X-box promoter motifs, in DCG promoter regions, which thus can be targeted for mutation screening in dyslexia and ciliopathies associated with these genes.—Tammimies, K., Bieder, A., Lauter, G., Sugiaman-Trapman, D., Torchet, R., Hokkanen, M.-E., Burghoorn, J., Castrén, E., Kere, J., Tapia-Páez, I., Swoboda, P. Ciliary dyslexia candidate genes DYX1C1 and DCDC2 are regulated by Regulatory Factor (RF) X transcription factors through X-box promoter motifs. PMID:27451412

  19. Ciliary dyslexia candidate genes DYX1C1 and DCDC2 are regulated by Regulatory Factor X (RFX) transcription factors through X-box promoter motifs.

    PubMed

    Tammimies, Kristiina; Bieder, Andrea; Lauter, Gilbert; Sugiaman-Trapman, Debora; Torchet, Rachel; Hokkanen, Marie-Estelle; Burghoorn, Jan; Castrén, Eero; Kere, Juha; Tapia-Páez, Isabel; Swoboda, Peter

    2016-10-01

    DYX1C1, DCDC2, and KIAA0319 are three of the most replicated dyslexia candidate genes (DCGs). Recently, these DCGs were implicated in functions at the cilium. Here, we investigate the regulation of these DCGs by Regulatory Factor X transcription factors (RFX TFs), a gene family known for transcriptionally regulating ciliary genes. We identify conserved X-box motifs in the promoter regions of DYX1C1, DCDC2, and KIAA0319 and demonstrate their functionality, as well as the ability to recruit RFX TFs using reporter gene and electrophoretic mobility shift assays. Furthermore, we uncover a complex regulation pattern between RFX1, RFX2, and RFX3 and their significant effect on modifying the endogenous expression of DYX1C1 and DCDC2 in a human retinal pigmented epithelial cell line immortalized with hTERT (hTERT-RPE1). In addition, induction of ciliogenesis increases the expression of RFX TFs and DCGs. At the protein level, we show that endogenous DYX1C1 localizes to the base of the cilium, whereas DCDC2 localizes along the entire axoneme of the cilium, thereby validating earlier localization studies using overexpression models. Our results corroborate the emerging role of DCGs in ciliary function and characterize functional noncoding elements, X-box promoter motifs, in DCG promoter regions, which thus can be targeted for mutation screening in dyslexia and ciliopathies associated with these genes.-Tammimies, K., Bieder, A., Lauter, G., Sugiaman-Trapman, D., Torchet, R., Hokkanen, M.-E., Burghoorn, J., Castrén, E., Kere, J., Tapia-Páez, I., Swoboda, P. Ciliary dyslexia candidate genes DYX1C1 and DCDC2 are regulated by Regulatory Factor (RF) X transcription factors through X-box promoter motifs. © The Author(s).

  20. Extralenticular and lenticular aspects of accommodation and presbyopia in human versus monkey eyes.

    PubMed

    Croft, Mary Ann; McDonald, Jared P; Katz, Alexander; Lin, Ting-Li; Lütjen-Drecoll, Elke; Kaufman, Paul L

    2013-07-26

    To determine if the accommodative forward movements of the vitreous zonule and lens equator occur in the human eye, as they do in the rhesus monkey eye; to investigate the connection between the vitreous zonule posterior insertion zone and the posterior lens equator; and to determine which components-muscle apex width, lens thickness, lens equator position, vitreous zonule, circumlental space, and/or other intraocular dimensions, including those stated in the objectives above-are most important in predicting accommodative amplitude and presbyopia. Accommodation was induced pharmacologically in 12 visually normal human subjects (ages 19-65 years) and by midbrain electrical stimulation in 11 rhesus monkeys (ages 6-27 years). Ultrasound biomicroscopy imaged the entire ciliary body, anterior and posterior lens surfaces, and the zonule. Relevant distances were measured in the resting and accommodated eyes. Stepwise regression analysis determined which variables were the most important predictors. The human vitreous zonule and lens equator move forward (anteriorly) during accommodation, and their movements decline with age, as in the monkey. Over all ages studied, age could explain accommodative amplitude, but not as well as accommodative lens thickening and resting muscle apex thickness did together. Accommodative change in distances between the vitreous zonule insertion zone and the posterior lens equator or muscle apex were important for predicting accommodative lens thickening. Our findings quantify the movements of the zonule and ciliary muscle during accommodation, and identify their age-related changes that could impact the optical change that occurs during accommodation and IOL function.

  1. A short autocomplementary sequence plays an essential role in avian sarcoma-leukosis virus RNA dimerization.

    PubMed

    Fossé, P; Motté, N; Roumier, A; Gabus, C; Muriaux, D; Darlix, J L; Paoletti, J

    1996-12-24

    Retroviral genomes consist of two identical RNA molecules joined noncovalently near their 5'-ends. Recently, two models have been proposed for RNA dimer formation on the basis of results obtained in vitro with human immunodeficiency virus type 1 RNA and Moloney murine leukemia virus RNA. It was first proposed that viral RNA dimerizes by forming an interstrand quadruple helix with purine tetrads. The second model postulates that RNA dimerization is initiated by a loop-loop interaction between the two RNA molecules. In order to better characterize the dimerization process of retroviral genomic RNA, we analyzed the in vitro dimerization of avian sarcoma-leukosis virus (ASLV) RNA using different transcripts. We determined the requirements for heterodimer formation, the thermal dissociation of RNA dimers, and the influence of antisense DNA oligonucleotides on dimer formation. Our results strongly suggest that purine tetrads are not involved in dimer formation. Data show that an autocomplementary sequence located upstream from the splice donor site and within a major packaging signal plays a crucial role in ASLV RNA dimer formation in vitro. This sequence is able to form a stem-loop structure, and phylogenetic analysis reveals that it is conserved in 28 different avian sarcoma and leukosis viruses. These results suggest that dimerization of ASLV RNA is initiated by a loop-loop interaction between two RNA molecules and provide an additional argument for the ubiquity of the dimerization process via loop-loop interaction.

  2. Functional short- and long-term effects of nasal CPAP with and without humidification on the ciliary function of the nasal respiratory epithelium.

    PubMed

    Sommer, J Ulrich; Kraus, Marius; Birk, Richard; Schultz, Johannes D; Hörmann, Karl; Stuck, Boris A

    2014-03-01

    Continuous positive airway pressure (CPAP) is the gold standard in the treatment of obstructive sleep apnea (OSA), but its impact on ciliary function is unclear to date. Furthermore, CPAP is associated with numerous side effects related to the nose and upper airway. Humidified CPAP is used to relieve these symptoms, but again, little is known regarding its effect on ciliary function of the nasal respiratory epithelium. In this prospective, randomized, crossover trial, 31 patients with OSA (AHI >15/h) were randomized to two treatment arms: nasal continuous positive airway pressure (nCPAP) with humidification or nCPAP without humidification for one night in each modality to assess short-term effects of ciliary beat frequency (CBF) and mucus transport time (MTT) and consecutively for 8 weeks in each modality to assess long-term effects in a crossover fashion. The baseline CBF was 4.8 ± 0.6 Hz, and baseline MTT was 540 ± 221 s. After one night of CPAP with and without humidification, ciliary function increased moderately yet with statistical significance (p <0.05). The short-term groups with and without humidification did not differ statistically significant. Regarding long-term effects of CPAP, a statistically significant increase in ciliary function above the baseline level and above the short-term level was shown without humidification (7.2 ± 0.4 Hz; 402 ± 176 s; p <0.01). The increase above baseline level was even more pronounced with humidification (9.3 ± 0.7 Hz; 313 ± 95 s; p <0.01). There was a statistically significant difference between both groups at long-term assessment with regard to CBF (p <0.01). Independent of airway humidification, nCPAP has moderate effects on short-term ciliary function of the nasal respiratory epithelium. However, a significant increase in ciliary function-both in terms of an increased CBF and a decreased MTT-was detected after long-term use. The effect was more pronounced when humidification was used during nCPAP.

  3. Cloning and sequencing of the cDNA species for mammalian dimeric dihydrodiol dehydrogenases.

    PubMed Central

    Arimitsu, E; Aoki, S; Ishikura, S; Nakanishi, K; Matsuura, K; Hara, A

    1999-01-01

    Cynomolgus and Japanese monkey kidneys, dog and pig livers and rabbit lens contain dimeric dihydrodiol dehydrogenase (EC 1.3.1.20) associated with high carbonyl reductase activity. Here we have isolated cDNA species for the dimeric enzymes by reverse transcriptase-PCR from human intestine in addition to the above five animal tissues. The amino acid sequences deduced from the monkey, pig and dog cDNA species perfectly matched the partial sequences of peptides digested from the respective enzymes of these animal tissues, and active recombinant proteins were expressed in a bacterial system from the monkey and human cDNA species. Northern blot analysis revealed the existence of a single 1.3 kb mRNA species for the enzyme in these animal tissues. The human enzyme shared 94%, 85%, 84% and 82% amino acid identity with the enzymes of the two monkey strains (their sequences were identical), the dog, the pig and the rabbit respectively. The sequences of the primate enzymes consisted of 335 amino acid residues and lacked one amino acid compared with the other animal enzymes. In contrast with previous reports that other types of dihydrodiol dehydrogenase, carbonyl reductases and enzymes with either activity belong to the aldo-keto reductase family or the short-chain dehydrogenase/reductase family, dimeric dihydrodiol dehydrogenase showed no sequence similarity with the members of the two protein families. The dimeric enzyme aligned with low degrees of identity (14-25%) with several prokaryotic proteins, in which 47 residues are strictly or highly conserved. Thus dimeric dihydrodiol dehydrogenase has a primary structure distinct from the previously known mammalian enzymes and is suggested to constitute a novel protein family with the prokaryotic proteins. PMID:10477285

  4. Integrated analysis reveals that STAT3 is central to the crosstalk between HER/ErbB receptor signaling pathways in human mammary epithelial cells

    DOE PAGES

    Gong, Chunhong; Zhang, Yi; Shankaran, Harish; ...

    2014-10-02

    Human epidermal growth factor receptors (HER, also known as ErbB) drive cellular proliferation, pro-survival and stress responses by activating several downstream kinases, in particular ERK, p38, JNK (SAPK), the PI3K/AKT, as well as various transcriptional regulators such as STAT3. When co-expressed, first three members of HER family (HER1-3) can form homo- and hetero-dimers. Based on the considerable evidence which suggest that every receptor dimer activates intracellular signaling pathways differentially, we hypothesized that the HER dimerization pattern is a better predictor of downstream signaling than the total receptor activation levels. We validated our hypothesis using a combination of model-based analysis tomore » quantify the HER dimerization patterns and multi-factorial experiments where HER dimerization patterns and signaling crosstalk were rationally perturbed. We have measured the activation of HER1-3 receptors and of the sentinel signaling proteins ERK, AKT, p38, JNK, STAT3 as a function of time in a panel of human mammary epithelial (HME) cells expressing different levels of HER1-3 stimulated with various ligand combinations. Our analysis using multiple ways of clustering the activation data has confirmed that the HER receptor dimer is a better predictor of the signaling through p38, ERK and AKT pathways than the total HER receptor expression and activation levels. Targeted inhibition studies to identify the causal effects allowed us to obtain a consensus regulatory interaction model, which revealed that STAT3 occupies a central role in the crosstalk between the studied pathways.« less

  5. A dimeric form of a small-sized protein binder exhibits enhanced anti-tumor activity through prolonged blood circulation.

    PubMed

    Kim, Tae Yoon; Seo, Hyo-Deok; Lee, Joong-Jae; Kang, Jung Ae; Kim, Woo Sik; Kim, Hye-Min; Song, Ha-Yeon; Park, Ji Min; Lee, Dong-Eun; Kim, Hak-Sung

    2018-06-10

    Small-sized non-antibody scaffolds have attracted considerable interest as alternatives to immunoglobulin antibodies. However, their short half-life is considered a drawback in the development of therapeutic agents. Here we demonstrate that a homo-dimeric form of a repebody enhances the anti-tumor activity than a monomeric form through prolonged blood circulation. Spytag and spycatcher were genetically fused to the C-terminus of a respective human IL-6-specific repebody, and the resulting two repebody constructs were mixed at an equimolar ratio to produce a homo-dimeric form through interaction between spytag and spycatcher. The homo-dimeric repebody was detected as a single band in the SDS-PAGE analysis with an expected molecular size (78 kDa), showing high stability and homogeneity. The dimeric repebody was shown to simultaneously accommodate two hIL-6 molecules, and its binding affinity for hIL-6 was estimated to be comparable to a monomeric repebody. The serum concentration of the dimeric repebody was observed to be about 5.5 times higher than a monomeric repebody, consequently leading to considerably higher tumor suppression effect in human tumor xenograft mice. The present approach can be effectively used for prolonging the blood half-life of small-sized protein binders, resulting in enhanced therapeutic efficacy. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Neural control of the ciliary muscle.

    DOT National Transportation Integrated Search

    1963-03-01

    The cat ciliary muscle was shown to respond to both parasympathetic and sympathetic nerve impulses in vitro. Sympathetic responses were directionally opposite to parasympathetic responses and are interpreted as active contractions of the radial muscl...

  7. Fiber optic laser light scattering measurement of ciliary function of the fallopian tube

    NASA Astrophysics Data System (ADS)

    Halbert, Sheridan A.; Lim, Kap; Lee, Wylie I.

    1990-07-01

    A fiber-optic laser light-scattering system (FLS) for measuring ciliary function was evaluated by means of three sets of in vitro experiments. First, FLS performance was compared to that of a previously proven benchtop laser system (BLS). Using tissue excised from rabbit fallopian tubes, ciliary beat frequency (CBF) of each sample was measured with FLS and BLS. Paired CBF measurements showed excellent correlation between the two systems (r =0.93). Second, the FLS was used to evaluate the dependency of CBF on temperature (T) by using tissue sampies of rabbit oviductal fimbna. Regression analysis of CBF vs T showed a linear relationship over the range of 18-37°C for both individual samples (r =0.98) and pooled data from all experiments (r = 0.84). Fmally, the relalionship between CBF and ciliary ovum transport rate (TR) was tested by using T to modulate CBF of rabbit fimbria, in vitro. The relationship was linear over the range of CBF from 10 to 30 Hz (r2 = 0.83). At 37°C, CBF = 31+/-1 Hz, and TR = O.12+/-.02 mm/sec. equal to ovum transport rate in situ. The FLS is a valuable tool for characterizing ciliary activity and thus ovum transport function. Owing to the fact that ciliary dyskinesia resulting from disease of the fallopian tube is associated with infeitility, the FLS may be useful to acquire data important to the clinical evaluation of fallopian tube function and female infertility.

  8. Cell- and subunit-specific mechanisms of CNG channel ciliary trafficking and localization in C. elegans

    PubMed Central

    Wojtyniak, Martin; Brear, Andrea G.; O'Halloran, Damien M.; Sengupta, Piali

    2013-01-01

    Summary Primary cilia are ubiquitous sensory organelles that concentrate transmembrane signaling proteins essential for sensing environmental cues. Mislocalization of crucial ciliary signaling proteins, such as the tetrameric cyclic nucleotide-gated (CNG) channels, can lead to cellular dysfunction and disease. Although several cis- and trans-acting factors required for ciliary protein trafficking and localization have been identified, whether these mechanisms act in a protein- and cell-specific manner is largely unknown. Here, we show that CNG channel subunits can be localized to discrete ciliary compartments in individual sensory neurons in C. elegans, suggesting that channel composition is heterogeneous across the cilium. We demonstrate that ciliary localization of CNG channel subunits is interdependent on different channel subunits in specific cells, and identify sequences required for efficient ciliary targeting and localization of the TAX-2 CNGB and TAX-4 CNGA subunits. Using a candidate gene approach, we show that Inversin, transition zone proteins, intraflagellar transport motors and a MYND-domain protein are required to traffic and/or localize CNG channel subunits in both a cell- and channel subunit-specific manner. We further find that TAX-2 and TAX-4 are relatively immobile in specific sensory cilia subcompartments, suggesting that these proteins undergo minimal turnover in these domains in mature cilia. Our results uncover unexpected diversity in the mechanisms that traffic and localize CNG channel subunits to cilia both within and across cell types, highlighting the essential contribution of this process to cellular functions. PMID:23886944

  9. Cell- and subunit-specific mechanisms of CNG channel ciliary trafficking and localization in C. elegans.

    PubMed

    Wojtyniak, Martin; Brear, Andrea G; O'Halloran, Damien M; Sengupta, Piali

    2013-10-01

    Primary cilia are ubiquitous sensory organelles that concentrate transmembrane signaling proteins essential for sensing environmental cues. Mislocalization of crucial ciliary signaling proteins, such as the tetrameric cyclic nucleotide-gated (CNG) channels, can lead to cellular dysfunction and disease. Although several cis- and trans-acting factors required for ciliary protein trafficking and localization have been identified, whether these mechanisms act in a protein- and cell-specific manner is largely unknown. Here, we show that CNG channel subunits can be localized to discrete ciliary compartments in individual sensory neurons in C. elegans, suggesting that channel composition is heterogeneous across the cilium. We demonstrate that ciliary localization of CNG channel subunits is interdependent on different channel subunits in specific cells, and identify sequences required for efficient ciliary targeting and localization of the TAX-2 CNGB and TAX-4 CNGA subunits. Using a candidate gene approach, we show that Inversin, transition zone proteins, intraflagellar transport motors and a MYND-domain protein are required to traffic and/or localize CNG channel subunits in both a cell- and channel subunit-specific manner. We further find that TAX-2 and TAX-4 are relatively immobile in specific sensory cilia subcompartments, suggesting that these proteins undergo minimal turnover in these domains in mature cilia. Our results uncover unexpected diversity in the mechanisms that traffic and localize CNG channel subunits to cilia both within and across cell types, highlighting the essential contribution of this process to cellular functions.

  10. A new ex vivo method for the study of nasal drops on ciliary function.

    PubMed

    Levrier, J; Molon-Noblot, S; Duval, D; Lloyd, K G

    1989-01-01

    Any pharmaceutical nasal preparation should respect the physiological function of the mucociliary transport system and should undergo testing to this effect. An experimental protocol has been developed using the guinea pig in order to assess the effects of commercial nasal drop preparations on mucociliary function. The method presented here consists of applying in vivo the test solution on the nasal respiratory epithelium. After a specified contact time and following rapid sacrifice of the animal, the mucosa is removed; the beating frequency of the cilia is then recorded ex vivo by micro-photo-oscillography. The method is sensitive to compounds known to diminish mucociliary function as sodium mercurothiolate inhibits ciliary movement of the nasal epithelium ex vivo. This inhibition of ciliary movement is long-lasting, although reversible. This method can be used to test the action of intranasally administered pharmaceutical preparations on mucociliary function. Commercially available solutions of the nasal vasoconstrictors tymazoline, fenoxazoline or oxymetazoline do not alter ciliary movement ex vivo at dose levels equal to or greater than those clinically utilized. ATP significantly enhances nasal ciliary frequency in instances where a low basal rate occurred. Thus, this method can be used for the testing of the maintenance of nasal ciliary function in the presence of compounds and preparations which will be applied into the nostrils. The advantages over previous techniques include a closer approach to the therapeutic utilization and the maintained physiological conditions of the mucosa during drug administration.

  11. Physical basis behind achondroplasia, the most common form of human dwarfism.

    PubMed

    He, Lijuan; Horton, William; Hristova, Kalina

    2010-09-24

    Fibroblast growth factor receptor 3 (FGFR3) is a receptor tyrosine kinase that plays an important role in long bone development. The G380R mutation in FGFR3 transmembrane domain is known as the genetic cause for achondroplasia, the most common form of human dwarfism. Despite many studies, there is no consensus about the exact mechanism underlying the pathology. To gain further understanding into the physical basis behind the disorder, here we measure the activation of wild-type and mutant FGFR3 in mammalian cells using Western blots, and we analyze the activation within the frame of a physical-chemical model describing dimerization, ligand binding, and phosphorylation probabilities within the dimers. The data analysis presented here suggests that the mutation does not increase FGFR3 dimerization, as proposed previously. Instead, FGFR3 activity in achondroplasia is increased due to increased probability for phosphorylation of the unliganded mutant dimers. This finding has implications for the design of targeted molecular treatments for achondroplasia.

  12. Physical Basis behind Achondroplasia, the Most Common Form of Human Dwarfism*

    PubMed Central

    He, Lijuan; Horton, William; Hristova, Kalina

    2010-01-01

    Fibroblast growth factor receptor 3 (FGFR3) is a receptor tyrosine kinase that plays an important role in long bone development. The G380R mutation in FGFR3 transmembrane domain is known as the genetic cause for achondroplasia, the most common form of human dwarfism. Despite many studies, there is no consensus about the exact mechanism underlying the pathology. To gain further understanding into the physical basis behind the disorder, here we measure the activation of wild-type and mutant FGFR3 in mammalian cells using Western blots, and we analyze the activation within the frame of a physical-chemical model describing dimerization, ligand binding, and phosphorylation probabilities within the dimers. The data analysis presented here suggests that the mutation does not increase FGFR3 dimerization, as proposed previously. Instead, FGFR3 activity in achondroplasia is increased due to increased probability for phosphorylation of the unliganded mutant dimers. This finding has implications for the design of targeted molecular treatments for achondroplasia. PMID:20624921

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrila, J.; Gabelli, S; Bacha, U

    Coronaviruses are responsible for a significant proportion of annual respiratory and enteric infections in humans and other mammals. The most prominent of these viruses is the severe acute respiratory syndrome coronavirus (SARS-CoV) which causes acute respiratory and gastrointestinal infection in humans. The coronavirus main protease, 3CL{sup pro}, is a key target for broad-spectrum antiviral development because of its critical role in viral maturation and high degree of structural conservation among coronaviruses. Dimerization is an indispensable requirement for the function of SARS 3CL{sup pro} and is regulated through mechanisms involving both direct and long-range interactions in the enzyme. While many ofmore » the binding interactions at the dimerization interface have been extensively studied, those that are important for long-range control are not well-understood. Characterization of these dimerization mechanisms is important for the structure-based design of new treatments targeting coronavirus-based infections. Here we report that Asn28, a residue 11 {angstrom} from the closest residue in the opposing monomer, is essential for the enzymatic activity and dimerization of SARS 3CLpro. Mutation of this residue to alanine almost completely inactivates the enzyme and results in a 19.2-fold decrease in the dimerization K{sub d}. The crystallographic structure of the N28A mutant determined at 2.35 {angstrom} resolution reveals the critical role of Asn28 in maintaining the structural integrity of the active site and in orienting key residues involved in binding at the dimer interface and substrate catalysis. These findings provide deeper insight into complex mechanisms regulating the activity and dimerization of SARS 3CL{sup pro}.« less

  14. Automated software for analysis of ciliary beat frequency and metachronal wave orientation in primary ciliary dyskinesia.

    PubMed

    Mantovani, Giulia; Pifferi, Massimo; Vozzi, Giovanni

    2010-06-01

    Patients with primary ciliary dyskinesia (PCD) have structural and/or functional alterations of cilia that imply deficits in mucociliary clearance and different respiratory pathologies. A useful indicator for the difficult diagnosis is the ciliary beat frequency (CBF) that is significantly lower in pathological cases than in physiological ones. The CBF computation is not rapid, therefore, the aim of this study is to propose an automated method to evaluate it directly from videos of ciliated cells. The cells are taken from inferior nasal turbinates and videos of ciliary movements are registered and eventually processed by the developed software. The software consists in the extraction of features from videos (written with C++ language) and the computation of the frequency (written with Matlab language). This system was tested both on the samples of nasal cavity and software models, and the results were really promising because in a few seconds, it can compute a reliable frequency if compared with that measured with visual methods. It is to be noticed that the reliability of the computation increases with the quality of acquisition system and especially with the sampling frequency. It is concluded that the developed software could be a useful mean for PCD diagnosis.

  15. Molecular basis for CPAP-tubulin interaction in controlling centriolar and ciliary length

    PubMed Central

    Zheng, Xiangdong; Ramani, Anand; Soni, Komal; Gottardo, Marco; Zheng, Shuangping; Ming Gooi, Li; Li, Wenjing; Feng, Shan; Mariappan, Aruljothi; Wason, Arpit; Widlund, Per; Pozniakovsky, Andrei; Poser, Ina; Deng, Haiteng; Ou, Guangshuo; Riparbelli, Maria; Giuliano, Callaini; Hyman, Anthony A.; Sattler, Michael; Gopalakrishnan, Jay; Li, Haitao

    2016-01-01

    Centrioles and cilia are microtubule-based structures, whose precise formation requires controlled cytoplasmic tubulin incorporation. How cytoplasmic tubulin is recognized for centriolar/ciliary-microtubule construction remains poorly understood. Centrosomal-P4.1-associated-protein (CPAP) binds tubulin via its PN2-3 domain. Here, we show that a C-terminal loop-helix in PN2-3 targets β-tubulin at the microtubule outer surface, while an N-terminal helical motif caps microtubule's α-β surface of β-tubulin. Through this, PN2-3 forms a high-affinity complex with GTP-tubulin, crucial for defining numbers and lengths of centriolar/ciliary-microtubules. Surprisingly, two distinct mutations in PN2-3 exhibit opposite effects on centriolar/ciliary-microtubule lengths. CPAPF375A, with strongly reduced tubulin interaction, causes shorter centrioles and cilia exhibiting doublet- instead of triplet-microtubules. CPAPEE343RR that unmasks the β-tubulin polymerization surface displays slightly reduced tubulin-binding affinity inducing over-elongation of newly forming centriolar/ciliary-microtubules by enhanced dynamic release of its bound tubulin. Thus CPAP regulates delivery of its bound-tubulin to define the size of microtubule-based cellular structures using a ‘clutch-like' mechanism. PMID:27306797

  16. Structural features of the KPI domain control APP dimerization, trafficking, and processing.

    PubMed

    Ben Khalifa, Naouel; Tyteca, Donatienne; Marinangeli, Claudia; Depuydt, Mathieu; Collet, Jean-François; Courtoy, Pierre J; Renauld, Jean-Christophe; Constantinescu, Stefan; Octave, Jean-Noël; Kienlen-Campard, Pascal

    2012-02-01

    The two major isoforms of human APP, APP695 and APP751, differ by the presence of a Kunitz-type protease inhibitor (KPI) domain in the extracellular region. APP processing and function is thought to be regulated by homodimerization. We used bimolecular fluorescence complementation (BiFC) to study dimerization of different APP isoforms and mutants. APP751 was found to form significantly more homodimers than APP695. Mutation of dimerization motifs in the TM domain did not affect fluorescence complementation, but native folding of KPI is critical for APP751 homodimerization. APP751 and APP695 dimers were mostly localized at steady state in the Golgi region, suggesting that most of the APP751 and 695 dimers are in the secretory pathway. Mutation of the KPI led to the retention of the APP homodimers in the endoplasmic reticulum. We finally showed that APP751 is more efficiently processed through the nonamyloidogenic pathway than APP695. These findings provide new insight on the particular role of KPI domain in APP dimerization. The correlation observed between dimerization, subcellular localization, and processing suggests that dimerization acts as an efficient regulator of APP trafficking in the secretory compartments that has major consequences on its processing.

  17. Single-molecule photobleaching reveals increased MET receptor dimerization upon ligand binding in intact cells

    PubMed Central

    2013-01-01

    Background The human receptor tyrosine kinase MET and its ligand hepatocyte growth factor/scatter factor are essential during embryonic development and play an important role during cancer metastasis and tissue regeneration. In addition, it was found that MET is also relevant for infectious diseases and is the target of different bacteria, amongst them Listeria monocytogenes that induces bacterial uptake through the surface protein internalin B. Binding of ligand to the MET receptor is proposed to lead to receptor dimerization. However, it is also discussed whether preformed MET dimers exist on the cell membrane. Results To address these issues we used single-molecule fluorescence microscopy techniques. Our photobleaching experiments show that MET exists in dimers on the membrane of cells in the absence of ligand and that the proportion of MET dimers increases significantly upon ligand binding. Conclusions Our results indicate that partially preformed MET dimers may play a role in ligand binding or MET signaling. The addition of the bacterial ligand internalin B leads to an increase of MET dimers which is in agreement with the model of ligand-induced dimerization of receptor tyrosine kinases. PMID:23731667

  18. MD-2-mediated Ionic Interactions between Lipid A and TLR4 Are Essential for Receptor Activation*

    PubMed Central

    Meng, Jianmin; Lien, Egil; Golenbock, Douglas T.

    2010-01-01

    Lipopolysaccharide (LPS) activates innate immune responses through TLR4·MD-2. LPS binds to the MD-2 hydrophobic pocket and bridges the dimerization of two TLR4·MD-2 complexes to activate intracellular signaling. However, exactly how lipid A, the endotoxic moiety of LPS, activates myeloid lineage cells remains unknown. Lipid IVA, a tetra-acylated lipid A precursor, has been used widely as a model for lipid A activation. For unknown reasons, lipid IVA activates proinflammatory responses in rodent cells but inhibits the activity of LPS in human cells. Using stable TLR4-expressing cell lines and purified monomeric MD-2, as well as MD-2-deficient bone marrow-derived macrophages, we found that both mouse TLR4 and mouse MD-2 are required for lipid IVA activation. Computational studies suggested that unique ionic interactions exist between lipid IVA and TLR4 at the dimerization interface in the mouse complex only. The negatively charged 4′-phosphate on lipid IVA interacts with two positively charged residues on the opposing mouse, but not human, TLR4 (Lys367 and Arg434) at the dimerization interface. When replaced with their negatively charged human counterparts Glu369 and Gln436, mouse TLR4 was no longer responsive to lipid IVA. In contrast, human TLR4 gained lipid IVA responsiveness when ionic interactions were enabled by charge reversal at the dimerization interface, defining the basis of lipid IVA species specificity. Thus, using lipid IVA as a selective lipid A agonist, we successfully decoupled and coupled two sequential events required for intracellular signaling: receptor engagement and dimerization, underscoring the functional role of ionic interactions in receptor activation. PMID:20018893

  19. One-step affinity tag purification of full-length recombinant human AP-1 complexes from bacterial inclusion bodies using a polycistronic expression system

    PubMed Central

    Wang, Wei-Ming; Lee, A-Young; Chiang, Cheng-Ming

    2008-01-01

    The AP-1 transcription factor is a dimeric protein complex formed primarily between Jun (c-Jun, JunB, JunD) and Fos (c-Fos, FosB, Fra-1, Fra-2) family members. These distinct AP-1 complexes are expressed in many cell types and modulate target gene expression implicated in cell proliferation, differentiation, and stress responses. Although the importance of AP-1 has long been recognized, the biochemical characterization of AP-1 remains limited in part due to the difficulty in purifying full-length, reconstituted dimers with active DNA-binding and transcriptional activity. Using a combination of bacterial coexpression and epitope-tagging methods, we successfully purified all 12 heterodimers (3 Jun × 4 Fos) of full-length human AP-1 complexes as well as c-Jun/c-Jun, JunD/JunD, and c-Jun/JunD dimers from bacterial inclusion bodies using one-step nickel-NTA affinity tag purification following denaturation and renaturation of coexpressed AP-1 subunits. Coexpression of two constitutive components in a dimeric AP-1 complex helps stabilize the proteins when compared with individual protein expression in bacteria. Purified dimeric AP-1 complexes are functional in sequence-specific DNA binding, as illustrated by electrophoretic mobility shift assays and DNase I footprinting, and are also active in transcription with in vitro-reconstituted human papillomavirus (HPV) chromatin containing AP-1-binding sites in the native configuration of HPV nucleosomes. The availability of these recombinant full-length human AP-1 complexes has greatly facilitated mechanistic studies of AP-1-regulated gene transcription in many biological systems. PMID:18329890

  20. Measurement of ciliary beat frequency using ultra-high resolution optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Chen, Jason J.; Jing, Joseph C.; Su, Erica; Badger, Christopher; Coughlan, Carolyn A.; Chen, Zhongping; Wong, Brian J. F.

    2016-02-01

    Ciliated epithelial cells populate up to 80% of the surface area of the human airway and are responsible for mucociliary transport, which is the key protective mechanism that provides the first line of defense in the respiratory tract. Cilia beat in a rhythmic pattern and may be easily affected by allergens, pollutants, and pathogens, altering ciliary beat frequency (CBF) subsequently. Diseases including cystic fibrosis, chronic obstructive pulmonary disease, and primary ciliary dyskinesia may also decrease CBF. CBF is therefore a critical component of respiratory health. The current clinical method of measuring CBF is phase-contrast microscopy, which involves a tissue biopsy obtained via brushing of the nasal cavity. While this method is minimally invasive, the tissue sample must be oriented to display its profile view, making the visualization of a single layer of cilia challenging. In addition, the conventional method requires subjective analysis of CBF, e.g., manually counting by visual inspection. On the contrary, optical coherence tomography (OCT) has been used to study the retina in ophthalmology as well as vasculature in cardiology, and offers higher resolution than conventional computed tomography and magnetic resonance imaging. Based on this technology, our lab specifically developed an ultra-high resolution OCT system to image the microstructure of the ciliated epithelial cells. Doppler analysis was also performed to determine CBF. Lastly, we also developed a program that utilizes fast Fourier transform to determine CBF under phase-contrast microscopy, providing a more objective method compared to the current method.

  1. Hsa-miR-1587 G-quadruplex formation and dimerization induced by NH4+, molecular crowding environment and jatrorrhizine derivatives.

    PubMed

    Tan, Wei; Yi, Long; Zhu, Zhentao; Zhang, Lulu; Zhou, Jiang; Yuan, Gu

    2018-03-01

    A guanine-rich human mature microRNA, miR-1587, was discovered to form stable intramolecular G-quadruplexes in the presence of K + , Na + and low concentration of NH 4 + (25mM) by electrospray ionization mass spectrometry (ESI-MS) combined with circular dichroism (CD) spectroscopy. Furthermore, under high concentration of NH 4 + (100mM) or molecular crowding environments, miR-1587 formed a dimeric G-quadruplex through 3'-to-3' stacking of two monomeric G-quadruplex subunits with one ammonium ion sandwiched between the interfaces. Specifically, two synthesized jatrorrhizine derivatives with terminal amine groups could also induce the dimerization of miR-1587 G-quadruplex and formed 1:1 and 2:1 complexes with the dimeric G-quadruplex. In contrast, jatrorrhizine could bind with the dimeric miR-1587 G-quadruplex, but could not induce dimerization of miR-1587 G-quadruplex. These results provide a new strategy to regulate the functions of miR-1587 through induction of G-quadruplex formation and dimerization. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Growth, biomass production and photosynthesis of Cenchrus ciliaris L. under Acacia tortilis (Forssk.) Hayne based silvopastoral systems in semi arid tropics.

    PubMed

    Mishra, A K; Tiwari, H S; Bhatt, R K

    2010-11-01

    The growth, biomass production and photosynthesis of Cenchrus ciliaris was studied under the canopies of 17 yr old Acacia tortilis trees in semi arid tropical environment. On an average the full grown canopy of A. tortilis at the spacing of 4 x 4 m allowed 55% of total Photosynthetically Active Radiation (PAR) which in turn increased Relative Humidity (RH) and reduced under canopy temperature to -1.75 degrees C over the open air temperature. C. ciliaris attained higher height under the shade of A. tortilis. The tiller production and leaf area index decreased marginally under the shade of tree canopies as compared to the open grown grasses. C. ciliaris accumulated higher chlorophyll a and b under the shade of tree canopies indicating its shade adaptation potential. The assimilatory functions such as rate of photosynthesis, transpiration, stomatal conductance, photosynthetic water use efficiency (PN/TR) and carboxylation efficiency (PN/CINT) decreased under the tree canopies due to low availability of PAR. The total biomass production in term of fresh and dry weight decreased under the tree canopies. On average of 2 yr C. ciliaris had produced 12.78 t ha(-1) green and 3.72 -t ha(-1) dry biomass under the tree canopies of A. tortilis. The dry matter yield reduced to 38% under the tree canopies over the open grown grasses. The A. tortilis + C. ciliaris maintained higher soil moisture, organic carbon content and available N P K for sustainable biomass production for the longer period. The higher accumulation of crude protein, starch, sugar and nitrogen in leaves and stem of C. ciliaris indicates that this grass species also maintained its quality under A. tortilis based silvopastoral system. The photosynthesis and dry matter accumulation are closely associated with available PAR indicating that for sustainable production of this grass species in the silvopasture systems for longer period about 55% or more PAR is required.

  3. Measuring Changes in Ciliary Muscle Thickness with Accommodation in Young Adults

    PubMed Central

    Lossing, Laura Ashley; Sinnott, Loraine T.; Kao, Chiu-Yen; Richdale, Kathryn; Bailey, Melissa D.

    2012-01-01

    Purpose To develop a measurement protocol for changes in the shape and size of the ciliary muscle with accommodation using the Zeiss Visante™ Anterior Segment Optical Coherence Tomographer (AS-OCT) and to determine the test-retest repeatability of these measurements. Methods Subjects were 25 adults ages 23–28 years. The ciliary muscle was imaged at two visits with the Visante™ while accommodative response was monitored during imaging using the PowerRefractor. Ciliary muscle thickness was measured at 1 mm (CMT1), 2 mm (CMT2), and 3 mm (CMT3) posterior to the scleral spur and at the point of maximal thickness (CMTMAX). Thickness was measured at these locations while subjects viewed a target at distance and at a 4.00-D accommodative stimulus. Outcome measures were the change in thickness between distance and the 4.00-D stimulus and the change in thickness per diopter of accommodative response (PowerRefractor). Finally, the repeatability measurements between visit 1 and visit 2 were determined with a Bland-Altman analysis. Results The statistically significant modeled changes in ciliary muscle thickness were as follows: CMTMAX = 69.2 μm (4.00-D stimulus) and 18.1 μm (per diopter of accommodation); CMT1 = 45.2 μm (4.00-D stimulus) and 12.3 μm (per diopter of accommodation); and CMT3 = −45.9 μm (4.00-D stimulus) and −12.0 μm (per diopter of accommodation); p < 0.0001 for all. Conclusions The combination of the Visante™ and the PowerRefractor is a feasible tool for measuring thickening of ciliary muscle at more anterior locations and thinning at more posterior locations during accommodation. We noted a wide range of accommodative responses during the time of image capture in this study indicating that the most accurate estimates of the change in ciliary muscle dimensions with accommodation may be obtained by using accommodative response rather than stimulus values and by using measurements taken simultaneously with image capture. PMID:22504328

  4. A novel mouse model of anterior segment dysgenesis (ASD): conditional deletion of Tsc1 disrupts ciliary body and iris development.

    PubMed

    Hägglund, Anna-Carin; Jones, Iwan; Carlsson, Leif

    2017-03-01

    Development of the cornea, lens, ciliary body and iris within the anterior segment of the eye involves coordinated interaction between cells originating from the ciliary margin of the optic cup, the overlying periocular mesenchyme and the lens epithelium. Anterior segment dysgenesis (ASD) encompasses a spectrum of developmental syndromes that affect these anterior segment tissues. ASD conditions arise as a result of dominantly inherited genetic mutations and result in both ocular-specific and systemic forms of dysgenesis that are best exemplified by aniridia and Axenfeld-Rieger syndrome, respectively. Extensive clinical overlap in disease presentation amongst ASD syndromes creates challenges for correct diagnosis and classification. The use of animal models has therefore proved to be a robust approach for unravelling this complex genotypic and phenotypic heterogeneity. However, despite these successes, it is clear that additional genes that underlie several ASD syndromes remain unidentified. Here, we report the characterisation of a novel mouse model of ASD. Conditional deletion of Tsc1 during eye development leads to a premature upregulation of mTORC1 activity within the ciliary margin, periocular mesenchyme and lens epithelium. This aberrant mTORC1 signalling within the ciliary margin in particular leads to a reduction in the number of cells that express Pax6, Bmp4 and Msx1 Sustained mTORC1 signalling also induces a decrease in ciliary margin progenitor cell proliferation and a consequent failure of ciliary body and iris development in postnatal animals. Our study therefore identifies Tsc1 as a novel candidate ASD gene. Furthermore, the Tsc1 -ablated mouse model also provides a valuable resource for future studies concerning the molecular mechanisms underlying ASD and acts as a platform for evaluating therapeutic approaches for the treatment of visual disorders. © 2017. Published by The Company of Biologists Ltd.

  5. Innervation of the Uvea by Galanin and Somatostatin Immunoreactive Axons in Macaques and Baboons

    PubMed Central

    Firth, Sally I.; Kaufman, Paul L.; De Jean, Baptiste J.; Byers, John M.; Marshak, David W.

    2014-01-01

    The neuropeptide galanin has not been localized previously in the primate uvea, and the neuropeptide somatostatin has not been localized in the uvea of any mammal. Here, the distribution of galanin-like and somatostatin-like immunoreactive axons in the iris, ciliary body and choroid of macaques and baboons using double and triple immunofluorescence labeling techniques and confocal microscopy was reported. In the ciliary body, galanin-like immunoreactive axons innervated blood vessels and the ciliary processes, particularly at their bases. In the iris, the majority of these axons was associated with the loose connective tissue in the stroma. Somatostatin-like immunoreactive axons were found in many of the same areas of the uvea supplied by cholinergic nerves. In the ciliary body, there were labelled axons within the ciliary processes and ciliary muscle. They were also found alongside blood vessels in the ciliary stroma. In the iris, somatostatin-like immunoreactive axons were abundant in the sphincter muscle and less so in the dilator muscle. A unilateral sympathectomy had no effect on the distribution of somatostatin-like or galanin-like immunoreactive axons, and these axons did not contain the sympathetic marker tyrosine hydroxylase. They did not contain the parasympathetic marker choline acetyltransferase, either. The galanin-like immunoreactive axons contained other neuropeptides found in sensory nerves, including calcitonin gene-related peptide, substance P and cholecystokinin. Somatostatin-like immunoreactive axons did not contain any of these sensory neuropeptides or galanin-like immunoreactivity, and they were neither labelled with an antibody to 200 kDa neurofilament protein, nor did they bind isolectin-IB4. Nevertheless, they are likely to be of sensory origin because somatostatin-like immunoreactive perikarya have previously been localized in the trigeminal ganglion of primates. Taken together, these findings indicate galanin and somatostatin are present in two different subsets of sensory axons in primate uvea. PMID:12123636

  6. Ciliary neurotrophic factor analogue aggravates CCl4-induced acute hepatic injury in rats.

    PubMed

    Cui, Ming-Xia; Jiang, Jun-Feng; Min, Guang-Ning; Han, Wei; Wu, Yong-Jie

    2017-05-01

    Ciliary neurotrophic factor (CNTF) and CNTF analogs were reported to have hepatoprotective effect and ameliorate hepatic steatosis in db/db or high-fat-diet-fed mice. Because hepatic steatosis and injury are also commonly induced by hepatotoxin, the aim of the present study is to clarify whether CNTF could alleviate hepatic steatosis and injury induced by carbon tetrachloride (CCl 4 ). Unexpectedly, when combined with CCl 4 , CNTF aggravated hepatic steatosis and liver injury. The mechanism is associated with effects of CNTF that inhibited lipoprotein secretion and drastically impaired the ability of lipoproteins to act as transport vehicles for lipids from the liver to the circulation. While injected after CCl 4 cessation, CNTF could improve liver function. These data suggest that CNTF could be a potential hepatoprotective agent against CCl 4 -induced hepatic injury after the cessation of CCl 4 exposure. However, it is forbidden to combine recombinant mutant of human CNTF treatment with CCl 4 .

  7. Genome-wide transcriptional analysis of flagellar regeneration in Chlamydomonas reinhardtii identifies orthologs of ciliary disease genes

    NASA Technical Reports Server (NTRS)

    Stolc, Viktor; Samanta, Manoj Pratim; Tongprasit, Waraporn; Marshall, Wallace F.

    2005-01-01

    The important role that cilia and flagella play in human disease creates an urgent need to identify genes involved in ciliary assembly and function. The strong and specific induction of flagellar-coding genes during flagellar regeneration in Chlamydomonas reinhardtii suggests that transcriptional profiling of such cells would reveal new flagella-related genes. We have conducted a genome-wide analysis of RNA transcript levels during flagellar regeneration in Chlamydomonas by using maskless photolithography method-produced DNA oligonucleotide microarrays with unique probe sequences for all exons of the 19,803 predicted genes. This analysis represents previously uncharacterized whole-genome transcriptional activity profiling study in this important model organism. Analysis of strongly induced genes reveals a large set of known flagellar components and also identifies a number of important disease-related proteins as being involved with cilia and flagella, including the zebrafish polycystic kidney genes Qilin, Reptin, and Pontin, as well as the testis-expressed tubby-like protein TULP2.

  8. Experimental models for studying mucociliary clearance.

    PubMed

    King, M

    1998-01-01

    Respiratory tract mucus is a viscoelastic gel, the rheological properties of which are determined mainly by its content of mucous glycoproteins and water. The rheology and quantity of mucus, in concert with ciliary factors, are the major determinants of mucociliary clearance. A wide range of animal models for studying the secretion and clearance of mucus are available. Ex vivo models, such as the frog palate or excised bovine trachea, provide direct, meaningful data regarding the clearability of mucus. Rodent models of chronic bronchitis, based on irritant gas or cigarette smoke exposure, show important features of the human condition in a relatively short time. The rheological characterization of mucus is made difficult by the small quantities obtainable, particularly from normal animals. Large animal models, such as the dog or sheep, although more expensive, offer many advantages, such as the ability to carry out long-term serial measurements, and to make integrated measurements of the clearance of mucus, ciliary function, epithelial ion transport, and the rheology of mucus in the same preparation.

  9. Enzymes of the γ-Glutamyl Cycle in the Ciliary Body and Lens

    PubMed Central

    Ross, Leonard L.; Barber, Lee; Tate, Suresh S.; Meister, Alton

    1973-01-01

    The enzymes of the γ-glutamyl cycle have been found in rabbit ciliary body and, except for 5-oxoprolinase, also in the ocular lens. Histochemical studies show that γ-glutamyl transpeptidase is localized mainly in the basal portions of the epithelial cells of the ciliary body; the findings are similar to those observed in the chloroid plexuses. The histochemical staining reaction in the ciliary epithelium is more intense than in the chloroid plexus, intestine, and kidney. γ-Glutamyl transpeptidase staining activity in the epithelium of the intestinal and renal proximal convoluted tubules is confined to the microvillus border. Moderate transpeptidase activity was found in the cytoplasm of nonpigmented epithelial cells of the iris at the posterior pupillary margin. The histochemical and enzyme activity studies are consistent with the thesis that the γ-glutamyl cycle functions in transport of amino acids across the blood-aqueous humor barrier. Images PMID:4152058

  10. Activin-A as an intraovarian modulator: actions, localization, and regulation of the intact dimer in human ovarian cells.

    PubMed Central

    Rabinovici, J; Spencer, S J; Doldi, N; Goldsmith, P C; Schwall, R; Jaffe, R B

    1992-01-01

    The actions, localization, and regulation of activin in the human ovary are unknown. Therefore, the aims of this study were (a) to define the effects of recombinant activin-A and its structural homologue, inhibin-A, on mitogenesis and steroidogenesis (progesterone secretion and aromatase activity) in human preovulatory follicular cells; (b) to localize the activin-A dimer in the human ovary by immunohistochemistry; and (c) to examine regulation of intracellular activin-A production in cultured human follicular cells. In addition to stimulating mitogenic activity, activin-A causes a dose- and time-dependent inhibition of basal and gonadotropin-stimulated progesterone secretion and aromatase activity in human luteinizing follicular cells on day 2 and day 4 of culture. Inhibin-A exerts no effects on mitogenesis, basal or gonadotropin-stimulated progesterone secretion and aromatase activity, and does not alter effects observed with activin-A alone. Immunostaining for dimeric activin-A occurs in granulosa and cumulus cells of human ovarian follicles and in granulosa-lutein cells of the human corpus luteum. cAMP, and to a lesser degree human chorionic gonadotropin and follicle-stimulating hormone, but not inhibin-A, activin-A, or phorbol 12-myristate 13-acetate, increased the immunostaining for activin-A in cultured granulosa cells. These results indicate that activin-A may function as an autocrine or paracrine regulator of follicular function in the human ovary. Images PMID:1569191

  11. Regulation of anterior chamber drainage by bicarbonate-sensitive soluble adenylyl cyclase in the ciliary body.

    PubMed

    Lee, Yong S; Tresguerres, Martin; Hess, Kenneth; Marmorstein, Lihua Y; Levin, Lonny R; Buck, Jochen; Marmorstein, Alan D

    2011-12-02

    Glaucoma is a leading cause of blindness affecting as many as 2.2 million Americans. All current glaucoma treatment strategies aim to reduce intraocular pressure (IOP). IOP results from the resistance to drainage of aqueous humor (AH) produced by the ciliary body in a process requiring bicarbonate. Once secreted into the anterior chamber, AH drains from the eye via two pathways: uveoscleral and pressure-dependent or conventional outflow (C(t)). Modulation of "inflow" and "outflow" pathways is thought to occur via distinct, local mechanisms. Mice deficient in the bicarbonate channel bestrophin-2 (Best2), however, exhibit a lower IOP despite an increase in AH production. Best2 is expressed uniquely in nonpigmented ciliary epithelial (NPE) cells providing evidence for a bicarbonate-dependent communicative pathway linking inflow and outflow. Here, we show that bicarbonate-sensitive soluble adenylyl cyclase (sAC) is highly expressed in the ciliary body in NPE cells, but appears to be absent from drainage tissues. Pharmacologic inhibition of sAC in mice causes a significant increase in IOP due to a decrease in C(t) with no effect on inflow. In mice deficient in sAC IOP is elevated, and C(t) is decreased relative to wild-type mice. Pharmacologic inhibition of sAC did not alter IOP or C(t) in sAC-deficient mice. Based on these data we propose that the ciliary body can regulate C(t) and that sAC serves as a critical sensor of bicarbonate in the ciliary body regulating the secretion of substances into the AH that govern outflow facility independent of pressure.

  12. Vasodilatory effects of nipradilol, an alpha- and beta-adrenergic blocker with nitric oxide releasing action, in rabbit ciliary artery.

    PubMed

    Yoshitomi, Takeshi; Yamaji, Kazutsuna; Ishikawa, Hitoshi; Ohnishi, Yoshitaka

    2002-12-01

    Nipradilol is a new antiglaucoma ophthalmic agent used in Japan. Topical application of nipradilol is reported to increase ocular blood flow. To investigate the action of this drug, we studied the effect of nipradilol on the isolated rabbit ciliary artery. Under the dissecting microscope, ciliary arteries were prepared from rabbit eyes and mounted on a myograph system. The effects of nipradilol on the isolated rabbit ciliary artery were investigated using isometric tension recording methods. Nipradilol provoked a dose-dependent (10 microM-1m M) relaxation in ciliary arteries that were pre-contracted with high-K solutions (K(+): 100.7 m M). It also inhibited the amplitude of smooth muscle contraction evoked by field stimulation. Nipradilol was more effective in relaxing phenylephrine-induced contraction (EC(50): 21.6+/-16.3 microM) compared to high-K solution-induced contractions (EC(50): 230+/-130 microM). Application of N(w)-nitro- L -arginine methylester (300 microM), a nitric oxide (NO) synthase inhibitor, or denudations of endothelium by rubbing the inner surface with a scalp hair did not affect this relaxation. However, NO scavenger carboxy-PTIO (1m M) or methylene blue (10 microM), a guanylate cyclase inhibitor, inhibited the nipradilol-induced relaxation. These results indicate that nipradilol relaxes the rabbit ciliary artery by two different mechanisms. First, the relaxation is due to the NO produced by denitrification of nipradilol itself. Second, nipradilol may act as an alpha-adrenergic antagonist. These actions of nipradilol may explain the mechanisms of increased ocular blood flow in vivo.

  13. Sensory Regulation of Network Components Underlying Ciliary Locomotion in Hermissenda

    PubMed Central

    Crow, Terry; Tian, Lian-Ming

    2008-01-01

    Ciliary locomotion in the nudibranch mollusk Hermissenda is modulated by the visual and graviceptive systems. Components of the neural network mediating ciliary locomotion have been identified including aggregates of polysensory interneurons that receive monosynaptic input from identified photoreceptors and efferent neurons that activate cilia. Illumination produces an inhibition of type Ii (off-cell) spike activity, excitation of type Ie (on-cell) spike activity, decreased spike activity in type IIIi inhibitory interneurons, and increased spike activity of ciliary efferent neurons. Here we show that pairs of type Ii interneurons and pairs of type Ie interneurons are electrically coupled. Neither electrical coupling or synaptic connections were observed between Ie and Ii interneurons. Coupling is effective in synchronizing dark-adapted spontaneous firing between pairs of Ie and pairs of Ii interneurons. Out-of-phase burst activity, occasionally observed in dark-adapted and light-adapted pairs of Ie and Ii interneurons, suggests that they receive synaptic input from a common presynaptic source or sources. Rhythmic activity is typically not a characteristic of dark-adapted, light-adapted, or light-evoked firing of type I interneurons. However, burst activity in Ie and Ii interneurons may be elicited by electrical stimulation of pedal nerves or generated at the offset of light. Our results indicate that type I interneurons can support the generation of both rhythmic activity and changes in tonic firing depending on sensory input. This suggests that the neural network supporting ciliary locomotion may be multifunctional. However, consistent with the nonmuscular and nonrhythmic characteristics of visually modulated ciliary locomotion, type I interneurons exhibit changes in tonic activity evoked by illumination. PMID:18768639

  14. Qualitative evaluation of the iris and ciliary body by ultrasound biomicroscopy in subjects with angle closure.

    PubMed

    Ku, Judy Y; Nongpiur, Monisha E; Park, Judy; Narayanaswamy, Arun K; Perera, Shamira A; Tun, Tin A; Kumar, Rajesh S; Baskaran, Mani; Aung, Tin

    2014-12-01

    To qualitatively analyze anterior chamber structures imaged by ultrasound biomicroscopy (UBM) in primary angle-closure patients. Subjects diagnosed as primary angle-closure suspect (PACS), primary angle-closure glaucoma (PACG), and previous acute primary angle closure (APAC) were recruited prospectively along with a group of normal controls. UBM was performed under standardized dark room conditions and qualitative assessment was carried out using a set of reference photographs of standard UBM images to categorize the various anatomic features related to angle configuration. These included overall and basal iris thicknesses, iris convexity, iris angulation, ciliary body size, and ciliary sulcus. A total of 60 PACS, 114 PACG, 41 APAC, and 33 normal controls were included. Patients were predominantly older Chinese females. After controlling the confounding effect of age and sex, eyes with overall thicker irides [medium odds ratio (OR) 3.58, thick OR 2.84] when compared with thin irides have a significantly higher likelihood of having PACS/PACG/APAC versus controls. Thicker basal iris component (medium OR 4.13, thick OR 3.39) also have higher likelihood of having angle closure when compared with thin basal iris thickness. Subjects with basal iris insertion, mild iris angulation, and large ciliary body have a higher OR of having angle closure. In contrast, the presence/absence of a ciliary sulcus did not influence the likelihood of angle closure. Eyes with thicker overall and basal iris thicknesses are more likely to have angle closure than controls. Other features that increase the likelihood of angle closure include basal iris insertion, mild iris angulation, and large ciliary body.

  15. Age-Related Changes in Centripetal Ciliary Body Movement Relative to Centripetal Lens Movement in Monkeys

    PubMed Central

    Croft, Mary Ann; McDonald, Jared P.; Nadkarni, Nivedita V.; Lin, Ting-Li; Kaufman, Paul L.

    2009-01-01

    The goal was to determine the age-related changes in accommodative movements of the lens and ciliary body in rhesus monkeys. Varying levels of accommodation were stimulated via the Edinger-Westphal (E-W) nucleus in 26 rhesus monkeys, aged 6-27 years, and the refractive changes were measured by coincidence refractometry. Centripetal ciliary process (CP) and lens movements were measured by computerized image analysis of goniovideographic images. Ultrasound biomicroscopy (UBM) at 50 MHz was used to visualize and measure accommodative forward movements of the ciliary body in relation to age, accommodative amplitude, and centripetal CP and lens movements. At ∼3 diopters of accommodation, the amount of centripetal lens movement required did not significantly change with age (p=0.10; n=18 monkeys); however, the amount of centripetal CP movement required significantly increased with age (p=0.01; n=18 monkeys), while the amount of forward ciliary body movement significantly decreased with age (p=0.007; n=11 monkeys). In the middle-aged animals (12-16.5 years), a greater amount of centripetal CP movement was required to induce a given level of lens movement and thereby a given level of accommodation (p=0.01), compared to the young animals (6-10 yrs). Collectively, the data suggests that, with age, the accommodative system may be attempting to compensate for the loss of forward ciliary body movement by increasing the amount of centripetal CP movement. This, in turn, would allow enough zonular relaxation to achieve the magnitude of centripetal lens movement necessary for a given amplitude of accommodation. PMID:19635475

  16. Can Vitamin A be Improved to Prevent Blindness due to Age-Related Macular Degeneration, Stargardt Disease and Other Retinal Dystrophies?

    PubMed

    Saad, Leonide; Washington, Ilyas

    2016-01-01

    We discuss how an imperfect visual cycle results in the formation of vitamin A dimers, thought to be involved in the pathogenesis of various retinal diseases, and summarize how slowing vitamin A dimerization has been a therapeutic target of interest to prevent blindness. To elucidate the molecular mechanism of vitamin A dimerization, an alternative form of vitamin A, one that forms dimers more slowly yet maneuvers effortlessly through the visual cycle, was developed. Such a vitamin A, reinforced with deuterium (C20-D3-vitamin A), can be used as a non-disruptive tool to understand the contribution of vitamin A dimers to vision loss. Eventually, C20-D3-vitamin A could become a disease-modifying therapy to slow or stop vision loss associated with dry age-related macular degeneration (AMD), Stargardt disease and retinal diseases marked by such vitamin A dimers. Human clinical trials of C20-D3-vitamin A (ALK-001) are underway.

  17. Structural History of Human SRGAP2 Proteins

    PubMed Central

    Sporny, Michael; Guez-Haddad, Julia; Kreusch, Annett; Shakartzi, Sivan; Neznansky, Avi; Cross, Alice; Isupov, Michail N.; Qualmann, Britta; Kessels, Michael M.

    2017-01-01

    Abstract In the development of the human brain, human-specific genes are considered to play key roles, conferring its unique advantages and vulnerabilities. At the time of Homo lineage divergence from Australopithecus, SRGAP2C gradually emerged through a process of serial duplications and mutagenesis from ancestral SRGAP2A (3.4–2.4 Ma). Remarkably, ectopic expression of SRGAP2C endows cultured mouse brain cells, with human-like characteristics, specifically, increased dendritic spine length and density. To understand the molecular mechanisms underlying this change in neuronal morphology, we determined the structure of SRGAP2A and studied the interplay between SRGAP2A and SRGAP2C. We found that: 1) SRGAP2A homo-dimerizes through a large interface that includes an F-BAR domain, a newly identified F-BAR extension (Fx), and RhoGAP-SH3 domains. 2) SRGAP2A has an unusual inverse geometry, enabling associations with lamellipodia and dendritic spine heads in vivo, and scaffolding of membrane protrusions in cell culture. 3) As a result of the initial partial duplication event (∼3.4 Ma), SRGAP2C carries a defective Fx-domain that severely compromises its solubility and membrane-scaffolding ability. Consistently, SRGAP2A:SRAGP2C hetero-dimers form, but are insoluble, inhibiting SRGAP2A activity. 4) Inactivation of SRGAP2A is sensitive to the level of hetero-dimerization with SRGAP2C. 5) The primal form of SRGAP2C (P-SRGAP2C, existing between ∼3.4 and 2.4 Ma) is less effective in hetero-dimerizing with SRGAP2A than the modern SRGAP2C, which carries several substitutions (from ∼2.4 Ma). Thus, the genetic mutagenesis phase contributed to modulation of SRGAP2A’s inhibition of neuronal expansion, by introducing and improving the formation of inactive SRGAP2A:SRGAP2C hetero-dimers, indicating a stepwise involvement of SRGAP2C in human evolutionary history. PMID:28333212

  18. The residual repair capacity of xeroderma pigmentosum complementation group C fibroblasts is highly specific for transcriptionally active DNA.

    PubMed Central

    Venema, J; van Hoffen, A; Natarajan, A T; van Zeeland, A A; Mullenders, L H

    1990-01-01

    We have measured removal of pyrimidine dimers in defined DNA sequences in confluent and actively growing normal human and xeroderma pigmentosum complementation group C (XP-C) fibroblasts exposed to 10 J/m2 UV-irradiation. In normal fibroblasts 45% and 90% of the dimers are removed from the transcriptionally active adenosine deaminase (ADA) gene within 4 and 24 hours after irradiation respectively. Equal repair efficiencies are found in fragments located entirely within the transcription unit or partly in the 3' flanking region of the ADA gene. The rate and extent of dimer removal from the dihydrofolate reductase (DHFR) gene is very similar to that of the ADA gene. Repair of the transcriptionally inactive 754 locus is less efficient: 18% and 52% of the dimers are removed within 4 and 24 hours respectively. In spite of the limited overall repair capacity, confluent XP-C fibroblasts efficiently remove dimers from the ADA and DHFR genes: about 90% and 50% within 24 hours respectively. The 3' end of the ADA gene is repaired as efficiently as in normal human fibroblasts, but less efficient repair occurs in DNA fragments located in the DHFR gene and at the 5' end of the ADA gene. Repair of the inactive 754 locus does not exceed the very slow rate of dimer removal from the genome overall. Confluent and actively growing XP-C cells show similar efficiencies of repair of the ADA, DHFR and 754 genes. Our findings suggest the existence of two independently operating pathways directed towards repair of pyrimidine dimers in either active or inactive chromatin. XP-C cells have lost the capacity to repair inactive chromatin, but are still able to repair active chromatin. Images PMID:2308842

  19. Crystal Structure of a Human IκB Kinase β Asymmetric Dimer

    PubMed Central

    Liu, Shenping; Misquitta, Yohann R.; Olland, Andrea; Johnson, Mark A.; Kelleher, Kerry S.; Kriz, Ron; Lin, Laura L.; Stahl, Mark; Mosyak, Lidia

    2013-01-01

    Phosphorylation of inhibitor of nuclear transcription factor κB (IκB) by IκB kinase (IKK) triggers the degradation of IκB and migration of cytoplasmic κB to the nucleus where it promotes the transcription of its target genes. Activation of IKK is achieved by phosphorylation of its main subunit, IKKβ, at the activation loop sites. Here, we report the 2.8 Å resolution crystal structure of human IKKβ (hIKKβ), which is partially phosphorylated and bound to the staurosporine analog K252a. The hIKKβ protomer adopts a trimodular structure that closely resembles that from Xenopus laevis (xIKKβ): an N-terminal kinase domain (KD), a central ubiquitin-like domain (ULD), and a C-terminal scaffold/dimerization domain (SDD). Although hIKKβ and xIKKβ utilize a similar dimerization mode, their overall geometries are distinct. In contrast to the structure resembling closed shears reported previously for xIKKβ, hIKKβ exists as an open asymmetric dimer in which the two KDs are further apart, with one in an active and the other in an inactive conformation. Dimer interactions are limited to the C-terminal six-helix bundle that acts as a hinge between the two subunits. The observed domain movements in the structures of IKKβ may represent trans-phosphorylation steps that accompany IKKβ activation. PMID:23792959

  20. Evaluation of the Effects of Acupuncture on Blood Flow in Humans with Ultrasound Color Doppler Imaging

    PubMed Central

    Takayama, Shin; Watanabe, Masashi; Kusuyama, Hiroko; Nagase, Satoru; Seki, Takashi; Nakazawa, Toru; Yaegashi, Nobuo

    2012-01-01

    Color Doppler imaging (CDI) can be used to noninvasively create images of human blood vessels and quantitatively evaluate blood flow in real-time. The purpose of this study was to assess the effects of acupuncture on the blood flow of the peripheral, mesenteric, and retrobulbar arteries by CDI. Statistical significance was defined as P values less than 0.05. Blood flow in the radial and brachial arteries was significantly lower during needle stimulation on LR3 than before in healthy volunteers, but was significantly higher after needle stimulation than before. LR3 stimulation also resulted in a significant decrease in the vascular resistance of the short posterior ciliary artery and no significant change of blood flow through the superior mesenteric artery (SMA) during acupuncture. In contrast, ST36 stimulation resulted in a significant increase in blood flow through the SMA and no significant change in the vascular resistance of the retrobulbar arteries. Additionally, acupuncture at previously determined acupoints in patients with open-angle glaucoma led to a significant reduction in the vascular resistance of the central retinal artery and short posterior ciliary artery. Our results suggest that acupuncture can affect blood flow of the peripheral, mesenteric, and retrobulbar arteries, and CDI can be useful to evaluate hemodynamic changes by acupuncture. PMID:22778772

  1. A unique chromatin complex occupies young α-satellite arrays of human centromeres

    PubMed Central

    Henikoff, Jorja G.; Thakur, Jitendra; Kasinathan, Sivakanthan; Henikoff, Steven

    2015-01-01

    The intractability of homogeneous α-satellite arrays has impeded understanding of human centromeres. Artificial centromeres are produced from higher-order repeats (HORs) present at centromere edges, although the exact sequences and chromatin conformations of centromere cores remain unknown. We use high-resolution chromatin immunoprecipitation (ChIP) of centromere components followed by clustering of sequence data as an unbiased approach to identify functional centromere sequences. We find that specific dimeric α-satellite units shared by multiple individuals dominate functional human centromeres. We identify two recently homogenized α-satellite dimers that are occupied by precisely positioned CENP-A (cenH3) nucleosomes with two ~100–base pair (bp) DNA wraps in tandem separated by a CENP-B/CENP-C–containing linker, whereas pericentromeric HORs show diffuse positioning. Precise positioning is largely maintained, whereas abundance decreases exponentially with divergence, which suggests that young α-satellite dimers with paired ~100-bp particles mediate evolution of functional human centromeres. Our unbiased strategy for identifying functional centromeric sequences should be generally applicable to tandem repeat arrays that dominate the centromeres of most eukaryotes. PMID:25927077

  2. Model-based Analysis of HER Activation in Cells Co-Expressing EGFR, HER2 and HER3.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shankaran, Harish; Zhang, Yi; Tan, Yunbing

    2013-08-22

    The HER/ErbB family of receptor tyrosine kinases drive critical responses in normal physiology and cancer, and the expression levels of the various HER receptors are critical determinants of clinical outcomes. HER activation is driven by the formation of various dimer complexes between members of this receptor family. The HER dimer types can have differential effects on downstream signaling and phenotypic outcomes. We constructed an integrated mathematical model of HER activation and trafficking to quantitatively link receptor expression levels to dimerization and activation. We parameterized the model with a comprehensive set of HER phosphorylation and abundance data collected in a panelmore » of human mammary epithelial cells expressing varying levels of EGFR, HER2 and HER3. Although parameter estimation yielded multiple solutions, predictions for dimer phosphorylation were in agreement with each other. We validated the model using experiments where pertuzumab was used to block HER2 dimerization. We used the model to predict HER dimerization and activation patterns in a panel of epithelial cells lines with known HER expression levels. Simulations over the range of expression levels seen in various cell lines indicate that: i) EGFR phosphorylation is driven by HER1/1 and HER1/2 dimers, and not HER1/3 dimers, ii) HER1/2 and HER2/3 dimers both contribute significantly to HER2 activation with the EGFR expression level determining the relative importance of these species, and iii) the HER2/3 dimer is largely responsible for HER3 activation. The model can be used to predict phosphorylated dimer levels for any given HER expression profile. This information in turn can be used to quantify the potencies of the various HER dimers, and can potentially inform personalized therapeutic approaches.« less

  3. Calcium stone lithoptysis in promary ciliary dyskinesia

    EPA Science Inventory

    BACKGROUND: An association between lithoptysis and primary ciliary dyskinesia (PCD) has not been previously reported. However, reports of lithoptysis from 2 older patients (>60 yr) prompted a study of this association. METHODS: We performed a prospective study of all PCD patients...

  4. The evolution of rod photoreceptors

    PubMed Central

    Morshedian, Ala

    2017-01-01

    Photoreceptors in animals are generally of two kinds: the ciliary or c-type and the rhabdomeric or r-type. Although ciliary photoreceptors are found in many phyla, vertebrates seem to be unique in having two distinct kinds which together span the entire range of vision, from single photons to bright light. We ask why the principal photoreceptors of vertebrates are ciliary and not rhabdomeric, and how rods evolved from less sensitive cone-like photoreceptors to produce our duplex retina. We suggest that the principal advantage of vertebrate ciliary receptors is that they use less ATP than rhabdomeric photoreceptors. This difference may have provided sufficient selection pressure for the development of a completely ciliary eye. Although many of the details of rod evolution are still uncertain, present evidence indicates that (i) rods evolved very early before the split between the jawed and jawless vertebrates, (ii) outer-segment discs make no contribution to rod sensitivity but may have evolved to increase the efficiency of protein renewal, and (iii) evolution of the rod was incremental and multifaceted, produced by the formation of several novel protein isoforms and by changes in protein expression, with no one alteration having more than a few-fold effect on transduction activation or inactivation. This article is part of the themed issue ‘Vision in dim light’. PMID:28193819

  5. The evolution of rod photoreceptors.

    PubMed

    Morshedian, Ala; Fain, Gordon L

    2017-04-05

    Photoreceptors in animals are generally of two kinds: the ciliary or c-type and the rhabdomeric or r-type. Although ciliary photoreceptors are found in many phyla, vertebrates seem to be unique in having two distinct kinds which together span the entire range of vision, from single photons to bright light. We ask why the principal photoreceptors of vertebrates are ciliary and not rhabdomeric, and how rods evolved from less sensitive cone-like photoreceptors to produce our duplex retina. We suggest that the principal advantage of vertebrate ciliary receptors is that they use less ATP than rhabdomeric photoreceptors. This difference may have provided sufficient selection pressure for the development of a completely ciliary eye. Although many of the details of rod evolution are still uncertain, present evidence indicates that (i) rods evolved very early before the split between the jawed and jawless vertebrates, (ii) outer-segment discs make no contribution to rod sensitivity but may have evolved to increase the efficiency of protein renewal, and (iii) evolution of the rod was incremental and multifaceted, produced by the formation of several novel protein isoforms and by changes in protein expression, with no one alteration having more than a few-fold effect on transduction activation or inactivation.This article is part of the themed issue 'Vision in dim light'. © 2017 The Author(s).

  6. European Respiratory Society guidelines for the diagnosis of primary ciliary dyskinesia.

    PubMed

    Lucas, Jane S; Barbato, Angelo; Collins, Samuel A; Goutaki, Myrofora; Behan, Laura; Caudri, Daan; Dell, Sharon; Eber, Ernst; Escudier, Estelle; Hirst, Robert A; Hogg, Claire; Jorissen, Mark; Latzin, Philipp; Legendre, Marie; Leigh, Margaret W; Midulla, Fabio; Nielsen, Kim G; Omran, Heymut; Papon, Jean-Francois; Pohunek, Petr; Redfern, Beatrice; Rigau, David; Rindlisbacher, Bernhard; Santamaria, Francesca; Shoemark, Amelia; Snijders, Deborah; Tonia, Thomy; Titieni, Andrea; Walker, Woolf T; Werner, Claudius; Bush, Andrew; Kuehni, Claudia E

    2017-01-01

    The diagnosis of primary ciliary dyskinesia is often confirmed with standard, albeit complex and expensive, tests. In many cases, however, the diagnosis remains difficult despite the array of sophisticated diagnostic tests. There is no "gold standard" reference test. Hence, a Task Force supported by the European Respiratory Society has developed this guideline to provide evidence-based recommendations on diagnostic testing, especially in light of new developments in such tests, and the need for robust diagnoses of patients who might enter randomised controlled trials of treatments. The guideline is based on pre-defined questions relevant for clinical care, a systematic review of the literature, and assessment of the evidence using the GRADE (Grading of Recommendations, Assessment, Development and Evaluation) approach. It focuses on clinical presentation, nasal nitric oxide, analysis of ciliary beat frequency and pattern by high-speed video-microscopy analysis, transmission electron microscopy, genotyping and immunofluorescence. It then used a modified Delphi survey to develop an algorithm for the use of diagnostic tests to definitively confirm and exclude the diagnosis of primary ciliary dyskinesia; and to provide advice when the diagnosis was not conclusive. Finally, this guideline proposes a set of quality criteria for future research on the validity of diagnostic methods for primary ciliary dyskinesia. Copyright ©ERS 2017.

  7. Proline Substitution of Dimer Interface β-strand Residues as a Strategy for the Design of Functional Monomeric Proteins

    PubMed Central

    Joseph, Prem Raj B.; Poluri, Krishna Mohan; Gangavarapu, Pavani; Rajagopalan, Lavanya; Raghuwanshi, Sandeep; Richardson, Ricardo M.; Garofalo, Roberto P.; Rajarathnam, Krishna

    2013-01-01

    Proteins that exist in monomer-dimer equilibrium can be found in all organisms ranging from bacteria to humans; this facilitates fine-tuning of activities from signaling to catalysis. However, studying the structural basis of monomer function that naturally exists in monomer-dimer equilibrium is challenging, and most studies to date on designing monomers have focused on disrupting packing or electrostatic interactions that stabilize the dimer interface. In this study, we show that disrupting backbone H-bonding interactions by substituting dimer interface β-strand residues with proline (Pro) results in fully folded and functional monomers, by exploiting proline’s unique feature, the lack of a backbone amide proton. In interleukin-8, we substituted Pro for each of the three residues that form H-bonds across the dimer interface β-strands. We characterized the structures, dynamics, stability, dimerization state, and activity using NMR, molecular dynamics simulations, fluorescence, and functional assays. Our studies show that a single Pro substitution at the middle of the dimer interface β-strand is sufficient to generate a fully functional monomer. Interestingly, double Pro substitutions, compared to single Pro substitution, resulted in higher stability without compromising native monomer fold or function. We propose that Pro substitution of interface β-strand residues is a viable strategy for generating functional monomers of dimeric, and potentially tetrameric and higher-order oligomeric proteins. PMID:24048001

  8. Extralenticular and Lenticular Aspects of Accommodation and Presbyopia in Human Versus Monkey Eyes

    PubMed Central

    Croft, Mary Ann; McDonald, Jared P.; Katz, Alexander; Lin, Ting-Li; Lütjen-Drecoll, Elke; Kaufman, Paul L.

    2013-01-01

    Purpose. To determine if the accommodative forward movements of the vitreous zonule and lens equator occur in the human eye, as they do in the rhesus monkey eye; to investigate the connection between the vitreous zonule posterior insertion zone and the posterior lens equator; and to determine which components—muscle apex width, lens thickness, lens equator position, vitreous zonule, circumlental space, and/or other intraocular dimensions, including those stated in the objectives above—are most important in predicting accommodative amplitude and presbyopia. Methods. Accommodation was induced pharmacologically in 12 visually normal human subjects (ages 19–65 years) and by midbrain electrical stimulation in 11 rhesus monkeys (ages 6–27 years). Ultrasound biomicroscopy imaged the entire ciliary body, anterior and posterior lens surfaces, and the zonule. Relevant distances were measured in the resting and accommodated eyes. Stepwise regression analysis determined which variables were the most important predictors. Results. The human vitreous zonule and lens equator move forward (anteriorly) during accommodation, and their movements decline with age, as in the monkey. Over all ages studied, age could explain accommodative amplitude, but not as well as accommodative lens thickening and resting muscle apex thickness did together. Accommodative change in distances between the vitreous zonule insertion zone and the posterior lens equator or muscle apex were important for predicting accommodative lens thickening. Conclusions. Our findings quantify the movements of the zonule and ciliary muscle during accommodation, and identify their age-related changes that could impact the optical change that occurs during accommodation and IOL function. PMID:23745002

  9. Non-vascular smooth muscle cells in the human choroid: distribution, development and further characterization

    PubMed Central

    May, Christian Albrecht

    2005-01-01

    To characterize further non-vascular smooth muscle cells (NVSMC) in the choroid of the human eye, extensive morphological studies were performed including a three-dimensional distribution of NVSMC in the adult human eye and their appearance during development. Whole mounts and sections through the choroid and sclera of eyes of 42 human donors (between the 13th week of gestation and 89 years of age) were stained with antibodies against smooth muscle actin and other markers for smooth muscle cells. On the basis of their morphological localization, three groups of NVSMC could be distinguished in the adult eyes: (a) a semicircular arrangement of NVSMC in the suprachoroid and inner sclera, around the entry of posterior ciliary arteries and nerves; (b) NVSMC parallel to the vessels in the posterior eye segment between the point of entry of the posterior ciliary arteries and the point of exit of the vortex veins; and (c) a dense plaque-like arrangement of NVSMC in the suprachoroid, overlying the foveal region. The last of these groups showed most pronounced interindividual differences. During development, the first NVSMC to be observed at the 20th week of gestation belonged to group b. A complete NVSMC network was first observed in a 6-year-old donor eye. All three groups stained positive for smoothelin, caldesmon and calponin in all localizations. The NVSMC show a distinct distribution that might reflect different aspects of their function in the choroid and suprachoroid. All cells could be histochemically characterized as truly contractile. PMID:16191166

  10. An inducible caspase 9 safety switch for T-cell therapy

    PubMed Central

    Straathof, Karin C.; Pulè, Martin A.; Yotnda, Patricia; Dotti, Gianpietro; Vanin, Elio F.; Brenner, Malcolm K.; Heslop, Helen E.; Spencer, David M.; Rooney, Cliona M.

    2005-01-01

    The efficacy of adoptive T-cell therapy as treatment for malignancies may be enhanced by genetic modification of infused cells. However, oncogenic events due to vector/transgene integration, and toxicities due to the infused cells themselves, have tempered enthusiasm. A safe and efficient means of removing aberrant cells in vivo would ameliorate these concerns. We describe a “safety switch” that can be stably and efficiently expressed in human T cells without impairing phenotype, function, or antigen specificity. This reagent is based on a modified human caspase 9 fused to a human FK506 binding protein (FKBP) to allow conditional dimerization using a small molecule pharmaceutical. A single 10-nM dose of synthetic dimerizer drug induces apoptosis in 99% of transduced cells selected for high transgene expression in vitro and in vivo. This system has several advantages over currently available suicide genes. First, it consists of human gene products with low potential immunogenicity. Second, administration of dimerizer drug has no effects other than the selective elimination of transduced T cells. Third, inducible caspase 9 maintains function in T cells overexpressing antiapoptotic molecules. These characteristics favor incorporation of inducible caspase 9 as a safety feature in human T-cell therapies. PMID:15728125

  11. Competition through dimerization between antiapoptotic and proapoptotic HS-1-associated protein X-1 (Hax-1).

    PubMed

    Koontz, Jason; Kontrogianni-Konstantopoulos, Aikaterini

    2014-02-07

    Studies on Hax-1 have mainly focused on variant (v) 1, demonstrating its antiapoptotic properties. However, HAX1 is heavily spliced, generating structurally distinct isoforms. We sought to characterize the Hax-1 isoforms expressed in rat heart before and after insult. We confirmed the presence of at least four Hax-1 transcripts in healthy rat cardiac muscle. These exhibited differential expression before and after induction of myocardial infarction, with v2 being up-regulated 12-fold at the transcript level and 1.5-fold at the protein level post-insult. Contrary to antiapoptotic rat and human v1, overexpression of rat v2 or human v4 (the human homologue of rat v2) in epithelial cells exacerbated cell death by 30% following H2O2 treatment compared with control vector. Coexpression of rat v1 and v2 or human v1 and v4 neutralized the protective effects of rat and human v1 and the proapoptotic effects of rat v2 and human v4 by modulating cytochrome c release. This is, at least partly, mediated by the ability of Hax-1 proteins to form homotypic and heterotypic dimers with binding affinities ranging from ~3.8 nm for v1 dimers to ~97 nm for v1/v2 dimers. The minimal binding region supporting these interactions lies between amino acids 97-278, which are shared by nearly all Hax-1 proteins, indicating that additional factors regulate the preferential formation of Hax-1 homo- or heterodimers. Our studies are the first to show that Hax-1 is a family of anti- and proapoptotic regulators that may modulate cell survival and death through homo- or heterodimerization.

  12. Apolipoproteins A-I, A-II and E are independently distributed among intracellular and newly secreted HDL of human hepatoma cells

    PubMed Central

    Gillard, Baiba K.; Lin, Hu-Yu Alice; Massey, John B.; Pownall, Henry J.

    2009-01-01

    Whereas hepatocytes secrete the major human plasma high density lipoproteins (HDL)-protein, apo A-I, as lipid-free and lipidated species, the biogenic itineraries of apo A-II and apo E are unknown. Human plasma and HepG2 cell-derived apo A-II and apo E occur as monomers, homodimers and heterodimers. Dimerization of apo A-II, which is more lipophilic than apo A-I, is catalyzed by lipid surfaces. Thus, we hypothesized that lipidation of intracellular and secreted apo A-II exceeds that of apo A-I, and once lipidated, apo A-II dimerizes. Fractionation of HepG2 cell lysate and media by size exclusion chromatography showed that intracellular apo A-II and apo E are fully lipidated and occur on nascent HDL and VLDL respectively, while only 45% of intracellular apo A-I is lipidated. Secreted apo A-II and apo E occur on small HDL and on LDL and large HDL respectively. HDL particles containing both apo A-II and apo A-I form only after secretion from both HepG2 and Huh7 hepatoma cells. Apo A-II dimerizes intracellularly while intracellular apo E is monomeric but after secretion associates with HDL and subsequently dimerizes. Thus, HDL apolipoproteins A-I, A-II and E have distinct intracellular and post-secretory pathways of hepatic lipidation and dimerization in the process of HDL formation. These early forms of HDL are expected to follow different apolipoprotein-specific pathways through plasma remodeling and reverse cholesterol transport. PMID:19635584

  13. Structural insights into 5‧ flap DNA unwinding and incision by the human FAN1 dimer

    NASA Astrophysics Data System (ADS)

    Zhao, Qi; Xue, Xiaoyu; Longerich, Simonne; Sung, Patrick; Xiong, Yong

    2014-12-01

    Human FANCD2-associated nuclease 1 (FAN1) is a DNA structure-specific nuclease involved in the processing of DNA interstrand crosslinks (ICLs). FAN1 maintains genomic stability and prevents tissue decline in multiple organs, yet it confers ICL-induced anti-cancer drug resistance in several cancer subtypes. Here we report three crystal structures of human FAN1 in complex with a 5‧ flap DNA substrate, showing that two FAN1 molecules form a head-to-tail dimer to locate the lesion, orient the DNA and unwind a 5‧ flap for subsequent incision. Biochemical experiments further validate our model for FAN1 action, as structure-informed mutations that disrupt protein dimerization, substrate orientation or flap unwinding impair the structure-specific nuclease activity. Our work elucidates essential aspects of FAN1-DNA lesion recognition and a unique mechanism of incision. These structural insights shed light on the cellular mechanisms underlying organ degeneration protection and cancer drug resistance mediated by FAN1.

  14. Structure and mechanism of human DNA polymerase [eta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biertümpfel, Christian; Zhao, Ye; Kondo, Yuji

    2010-11-03

    The variant form of the human syndrome xeroderma pigmentosum (XPV) is caused by a deficiency in DNA polymerase {eta} (Pol{eta}), a DNA polymerase that enables replication through ultraviolet-induced pyrimidine dimers. Here we report high-resolution crystal structures of human Pol{eta} at four consecutive steps during DNA synthesis through cis-syn cyclobutane thymine dimers. Pol{eta} acts like a 'molecular splint' to stabilize damaged DNA in a normal B-form conformation. An enlarged active site accommodates the thymine dimer with excellent stereochemistry for two-metal ion catalysis. Two residues conserved among Pol{eta} orthologues form specific hydrogen bonds with the lesion and the incoming nucleotide to assistmore » translesion synthesis. On the basis of the structures, eight Pol{eta} missense mutations causing XPV can be rationalized as undermining the molecular splint or perturbing the active-site alignment. The structures also provide an insight into the role of Pol{eta} in replicating through D loop and DNA fragile sites.« less

  15. Efficient killing of CD22{sup +} tumor cells by a humanized diabody-RNase fusion protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krauss, Juergen; Arndt, Michaela A.E.; Vu, Bang K.

    2005-06-03

    We report on the generation of a dimeric immunoenzyme capable of simultaneously delivering two ribonuclease (RNase) effector domains on one molecule to CD22{sup +} tumor cells. As targeting moiety a diabody derived from the previously humanized scFv SGIII with grafted specificity of the murine anti-CD22 mAb RFB4 was constructed. Further engineering the interface of this construct (V{sub L}36{sub Leu{yields}}{sub Tyr}) resulted in a highly robust bivalent molecule that retained the same high affinity as the murine mAb RFB4 (K{sub D} 0.2 nM). A dimeric immunoenzyme comprising this diabody and Rana pipiens liver ribonuclease I (rapLRI) was generated, expressed as solublemore » protein in bacteria, and purified to homogeneity. The dimeric fusion protein killed several CD22{sup +} tumor cell lines with high efficacy (IC{sub 50} = 3-20 nM) and exhibited 9- to 48-fold stronger cytotoxicity than a monovalent rapLRI-scFv counterpart. Our results demonstrate that engineering of dimeric antibody-ribonuclease fusion proteins can markedly enhance their biological efficacy.« less

  16. Structures of closed and open conformations of dimeric human ATM

    PubMed Central

    Baretić, Domagoj; Pollard, Hannah K.; Fisher, David I.; Johnson, Christopher M.; Santhanam, Balaji; Truman, Caroline M.; Kouba, Tomas; Fersht, Alan R.; Phillips, Christopher; Williams, Roger L.

    2017-01-01

    ATM (ataxia-telangiectasia mutated) is a phosphatidylinositol 3-kinase–related protein kinase (PIKK) best known for its role in DNA damage response. ATM also functions in oxidative stress response, insulin signaling, and neurogenesis. Our electron cryomicroscopy (cryo-EM) suggests that human ATM is in a dynamic equilibrium between closed and open dimers. In the closed state, the PIKK regulatory domain blocks the peptide substrate–binding site, suggesting that this conformation may represent an inactive or basally active enzyme. The active site is held in this closed conformation by interaction with a long helical hairpin in the TRD3 (tetratricopeptide repeats domain 3) domain of the symmetry-related molecule. The open dimer has two protomers with only a limited contact interface, and it lacks the intermolecular interactions that block the peptide-binding site in the closed dimer. This suggests that the open conformation may be more active. The ATM structure shows the detailed topology of the regulator-interacting N-terminal helical solenoid. The ATM conformational dynamics shown by the structures represent an important step in understanding the enzyme regulation. PMID:28508083

  17. Variation of Ciliary Beat Pattern in Three Different Beating Planes in Healthy Subjects.

    PubMed

    Kempeneers, Celine; Seaton, Claire; Chilvers, Mark A

    2017-05-01

    Digital high-speed video microscopy (DHSV) allows analysis of ciliary beat frequency (CBF) and ciliary beat pattern (CBP) of respiratory cilia in three planes. Normal reference data use a sideways edge to evaluate ciliary dyskinesia and calculate CBF using the time needed for a cilium to complete 10 beat cycles. Variability in CBF within the respiratory epithelium has been described, but data concerning variation of CBP is limited in healthy epithelium. This study aimed to document variability of CBP in normal samples, to compare ciliary function in three profiles, and to compare CBF calculated over five or 10 beat cycles. Nasal brushing samples from 13 healthy subjects were recorded using DHSV in three profiles. CBP and CBF over a 10-beat cycle were evaluated in all profiles, and CBF was reevaluated over five-beat cycles in the sideways edges. A uniform CBP was seen in 82.1% of edges. In the sideways profile, uniformity within the edge was lower (uniform normal CBP, 69.1% [sideways profile]; 97.1% [toward the observer], 92.0% [from above]), and dyskinesia was higher. Interobserver agreement for dyskinesia was poor. CBF was not different between profiles (P = .8097) or between 10 and five beat cycles (P = .1126). Our study demonstrates a lack of uniformity and consistency in manual CBP analysis of samples from healthy subjects, emphasizing the risk of automated CBP analysis in limited regions of interest and of single and limited manual CBP analysis. The toward the observer and from above profiles may be used to calculate CBF but may be less sensitive for evaluation of ciliary dyskinesia and CBP. CBF can be measured reliably by evaluation of only five-beat cycles. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  18. A novel inhibitor of STAT3 homodimerization selectively suppresses STAT3 activity and malignant transformation.

    PubMed

    Zhang, Xiaolei; Sun, Ying; Pireddu, Roberta; Yang, Hua; Urlam, Murali K; Lawrence, Harshani R; Guida, Wayne C; Lawrence, Nicholas J; Sebti, Saïd M

    2013-03-15

    STAT3-STAT3 dimerization, which involves reciprocal binding of the STAT3-SH2 domain to phosphorylated tyrosine-705 (Y-705), is required for STAT3 nuclear translocation, DNA binding, and transcriptional regulation of downstream target genes. Here, we describe a small molecule S3I-1757 capable of disrupting STAT3-STAT3 dimerization, activation, and malignant transforming activity. Fluorescence polarization assay and molecular modeling suggest that S3I-1757 interacts with the phospho-Y-705-binding site in the SH2 domain and displaces fluorescein-labeled GpYLPQTV phosphotyrosine peptide from binding to STAT3. We generated hemagglutinin (HA)-tagged STAT3 and FLAG-tagged STAT3 and showed using coimmunoprecipitation and colocalization studies that S3I-1757 inhibits STAT3 dimerization and STAT3-EGF receptor (EGFR) binding in intact cells. Treatment of human cancer cells with S3I-1757 (but not a closely related analog, S3I-1756, which does not inhibit STAT3 dimerization), inhibits selectively the phosphorylation of STAT3 over AKT1 and ERK1/2 (MAPK3/1), nuclear accumulation of P-Y705-STAT3, STAT3-DNA binding, and transcriptional activation and suppresses the expression levels of STAT3 target genes, such as Bcl-xL (BCL2L1), survivin (BIRC5), cyclin D1 (CCND1), and matrix metalloproteinase (MMP)-9. Furthermore, S3I-1757, but not S3I-1756, inhibits anchorage-dependent and -independent growth, migration, and invasion of human cancer cells, which depend on STAT3. Finally, STAT3-C, a genetically engineered mutant of STAT3 that forms a constitutively dimerized STAT3, rescues cells from the effects of S3I-1757 inhibition. Thus, we have developed S3I-1757 as a STAT3-STAT3 dimerization inhibitor capable of blocking hyperactivated STAT3 and suppressing malignant transformation in human cancer cells that depend on STAT3.

  19. A novel inhibitor of STAT3 homodimerization selectively suppresses STAT3 activity and malignant transformation

    PubMed Central

    Zhang, Xiaolei; Sun, Ying; Pireddu, Roberta; Yang, Hua; Urlam, Murali K.; Lawrence, Harshani R.; Guida, Wayne C.; Lawrence, Nicholas J.; Sebti, Saïd M.

    2014-01-01

    STAT3-STAT3 dimerization, which involves reciprocal binding of the STAT3-SH2 domain to phosphorylated tyrosine-705 (Y-705), is required for STAT3 nuclear translocation, DNA binding and transcriptional regulation of downstream target genes. Here we describe a small molecule S3I-1757 capable of disrupting STAT3-STAT3 dimerization, activation and malignant transforming activity. Fluorescence polarization assays and molecular modeling suggest that S3I-1757 interacts with the Y-705 binding site in the SH2 domain and displaces fluorescein-labelled GpYLPQTV phosphotyrosine peptide from binding to STAT3. We generated HA-tagged STAT3 and FLAG-tagged STAT3 and showed using co-immunoprecipitation and co-localization studies that S3I-1757 inhibits STAT3 dimerization and STAT3-EGF receptor binding in intact cells. Treatment of human cancer cells with S3I-1757 (but not a closely related analogue, S3I-1756, that does not inhibit STAT3 dimerization), inhibits selectively the phosphorylation of STAT3 over AKT1 and ERK1/2 (MAPK3/1), nuclear accumulation of P-Y705-STAT3, STAT3-DNA binding and transcriptional activation and suppresses the expression levels of STAT3 target genes such as Bcl-xL (BCL2L1), survivin (BIRC5), cyclin D1 (CCND1) and MMP9. Furthermore, S3I-1757 but not S3I-1756 inhibits anchorage-dependent and -independent growth, migration and invasion of human cancer cells which depend on STAT3. Finally, STAT3-C, a genetically engineered mutant of STAT3 that forms a constitutively dimerized STAT3, rescues cells from the effects of S3I-1757 inhibition. Thus, we have developed S3I-1757 as a STAT3-STAT3 dimerization inhibitor capable of blocking hyper activated STAT3 and suppressing malignant transformation in human cancer cells that depend on STAT3. PMID:23322008

  20. Engineering Human Immunodeficiency Virus 1 Protease Heterodimers as Macromolecular Inhibitors of Viral Maturation

    NASA Astrophysics Data System (ADS)

    McPhee, Fiona; Good, Andrew C.; Kuntz, Irwin D.; Craik, Charles S.

    1996-10-01

    Dimerization of human immunodeficiency virus type 1 protease (HIV-1 PR) monomers is an essential prerequisite for viral proteolytic activity and the subsequent generation of infectious virus particles. Disruption of the dimer interface inhibits this activity as does formation of heterodimers between wild-type and defective monomers. A structure-based approach was used to identify amino acid substitutions at the dimer interface of HIV-1 PR that facilitate preferential association of heterodimers and inhibit self-association of the defective monomers. Expression of the designed PR monomers inhibits activity of wild-type HIV-1 PR and viral infectivity when assayed in an ex vivo model system. These results show that it is possible to design PR monomers as macromolecular inhibitors that may provide an alternative to small molecule inhibitors for the treatment of HIV infection.

  1. AZD2171 in Treating Patients With Recurrent or Stage IV Melanoma

    ClinicalTrials.gov

    2015-06-01

    Acral Lentiginous Malignant Melanoma; Ciliary Body and Choroid Melanoma, Medium/Large Size; Ciliary Body and Choroid Melanoma, Small Size; Extraocular Extension Melanoma; Intraocular Melanoma; Iris Melanoma; Lentigo Maligna Malignant Melanoma; Recurrent Melanoma; Stage, Intraocular Melanoma; Stage IV Melanoma; Superficial Spreading Malignant Melanoma

  2. Adjuvant Sunitinib or Valproic Acid in High-Risk Patients With Uveal Melanoma

    ClinicalTrials.gov

    2017-10-25

    Ciliary Body and Choroid Melanoma, Medium/Large Size; Ciliary Body and Choroid Melanoma, Small Size; Iris Melanoma; Stage I Intraocular Melanoma; Stage IIA Intraocular Melanoma; Stage IIB Intraocular Melanoma; Stage IIIA Intraocular Melanoma; Stage IIIB Intraocular Melanoma; Stage IIIC Intraocular Melanoma

  3. dTULP, the Drosophila melanogaster Homolog of Tubby, Regulates Transient Receptor Potential Channel Localization in Cilia

    PubMed Central

    Shim, Jaewon; Han, Woongsu; Lee, Jinu; Bae, Yong Chul; Chung, Yun Doo; Kim, Chul Hoon; Moon, Seok Jun

    2013-01-01

    Mechanically gated ion channels convert sound into an electrical signal for the sense of hearing. In Drosophila melanogaster, several transient receptor potential (TRP) channels have been implicated to be involved in this process. TRPN (NompC) and TRPV (Inactive) channels are localized in the distal and proximal ciliary zones of auditory receptor neurons, respectively. This segregated ciliary localization suggests distinct roles in auditory transduction. However, the regulation of this localization is not fully understood. Here we show that the Drosophila Tubby homolog, King tubby (hereafter called dTULP) regulates ciliary localization of TRPs. dTULP-deficient flies show uncoordinated movement and complete loss of sound-evoked action potentials. Inactive and NompC are mislocalized in the cilia of auditory receptor neurons in the dTulp mutants, indicating that dTULP is required for proper cilia membrane protein localization. This is the first demonstration that dTULP regulates TRP channel localization in cilia, and suggests that dTULP is a protein that regulates ciliary neurosensory functions. PMID:24068974

  4. Fetal adenoma of the pigmented ciliary epithelium associated with persistent hyperplastic primary vitreous.

    PubMed

    Doro, S; Werblin, T P; Haas, B; Iwamoto, T; Jakobiec, F A

    1986-10-01

    A 1.5-year-old girl presented with a peripheral iris mass. When the girl was 3 years old, the lesion was excised after it had manifested significant growth. A stalk of fibrovascular tissue was noted to extend from the lesion to the optic disc. Histopathologically, the tumor was a well-circumscribed, pigmented ciliary body adenoma. Electron microscopy revealed characteristic neuroepithelial melanosomes, distinct from those of choroidal melanocytes, and occasional annulate lamellae. A fibrovascular membrane extended over the tumor surface and was adherent to lens capsule. The association of this adenoma with a persistent stalk of primary vitreous indicates a congenital origin of this tumor. Both adenoma and adenocarcinoma of the pigmented and nonpigmented ciliary epithelium tend to be disorders of adults. The authors report the youngest presentation of a pigment epithelium adenoma, the only well-documented case associated with persistent hyperplastic primary vitreous, and the only documentation of annulate lamellae in a ciliary body tumor.

  5. Three-dimensional reconstruction of the angioarchitecture of the ciliary body of the West Indian manatee (Trichechus manatus).

    PubMed

    Natiello, Michelle; Samuelson, Don

    2005-01-01

    To examine the angioarchitecture of the ciliary body in the West Indian manatee (Trichechus manatus), through the use of three-dimensional reconstruction. Specimens from West Indian manatee were preserved in 10% buffered formalin, embedded in paraffin, serial sectioned and stained by Masson trichrome for light microscopic three-dimensional reconstruction and evaluation. The network of blood vessels in the ciliary processes of the West Indian manatee is fed by the major arterial circle that lies mostly near the base of the iris. The branching arterioles give rise to a capillary-sinusoidal bed that extends internally along each process, emptying into two sets of veins, one being elevated. The elevated and nonelevated veins join posteriorly before emptying into the choroidal venous system. The angioarchitecture of the ciliary body of the West Indian manatee is clearly unique when compared to those previously examined in land mammals. Three-dimensional reconstruction of paraffin sections is an effective means to evaluate vascular patterns in ocular specimens, especially those unavailable for corrosion casting.

  6. ciliaFA: a research tool for automated, high-throughput measurement of ciliary beat frequency using freely available software

    PubMed Central

    2012-01-01

    Background Analysis of ciliary function for assessment of patients suspected of primary ciliary dyskinesia (PCD) and for research studies of respiratory and ependymal cilia requires assessment of both ciliary beat pattern and beat frequency. While direct measurement of beat frequency from high-speed video recordings is the most accurate and reproducible technique it is extremely time consuming. The aim of this study was to develop a freely available automated method of ciliary beat frequency analysis from digital video (AVI) files that runs on open-source software (ImageJ) coupled to Microsoft Excel, and to validate this by comparison to the direct measuring high-speed video recordings of respiratory and ependymal cilia. These models allowed comparison to cilia beating between 3 and 52 Hz. Methods Digital video files of motile ciliated ependymal (frequency range 34 to 52 Hz) and respiratory epithelial cells (frequency 3 to 18 Hz) were captured using a high-speed digital video recorder. To cover the range above between 18 and 37 Hz the frequency of ependymal cilia were slowed by the addition of the pneumococcal toxin pneumolysin. Measurements made directly by timing a given number of individual ciliary beat cycles were compared with those obtained using the automated ciliaFA system. Results The overall mean difference (± SD) between the ciliaFA and direct measurement high-speed digital imaging methods was −0.05 ± 1.25 Hz, the correlation coefficient was shown to be 0.991 and the Bland-Altman limits of agreement were from −1.99 to 1.49 Hz for respiratory and from −2.55 to 3.25 Hz for ependymal cilia. Conclusions A plugin for ImageJ was developed that extracts pixel intensities and performs fast Fourier transformation (FFT) using Microsoft Excel. The ciliaFA software allowed automated, high throughput measurement of respiratory and ependymal ciliary beat frequency (range 3 to 52 Hz) and avoids operator error due to selection bias. We have included free access to the ciliaFA plugin and installation instructions in Additional file 1 accompanying this manuscript that other researchers may use. PMID:23351276

  7. Ick Ciliary Kinase Is Essential for Planar Cell Polarity Formation in Inner Ear Hair Cells and Hearing Function.

    PubMed

    Okamoto, Shio; Chaya, Taro; Omori, Yoshihiro; Kuwahara, Ryusuke; Kubo, Shun; Sakaguchi, Hirofumi; Furukawa, Takahisa

    2017-02-22

    Cellular asymmetries play crucial roles in development and organ function. The planar cell polarity (PCP) signaling pathway is involved in the establishment of cellular asymmetry within the plane of a cell sheet. Inner ear sensory hair cells (HCs), which have several rows of staircase-like stereocilia and one kinocilium located at the vertex of the stereocilia protruding from the apical surface of each HC, exhibit a typical form of PCP. Although connections between cilia and PCP signaling in vertebrate development have been reported, their precise nature is not well understood. During inner ear development, several ciliary proteins are known to play a role in PCP formation. In the current study, we investigated a functional role for intestinal cell kinase (Ick), which regulates intraflagellar transport (IFT) at the tip of cilia, in the mouse inner ear. A lack of Ick in the developing inner ear resulted in PCP defects in the cochlea, including misorientation or misshaping of stereocilia and aberrant localization of the kinocilium and basal body in the apical and middle turns, leading to auditory dysfunction. We also observed abnormal ciliary localization of Ift88 in both HCs and supporting cells. Together, our results show that Ick ciliary kinase is essential for PCP formation in inner ear HCs, suggesting that ciliary transport regulation is important for PCP signaling. SIGNIFICANCE STATEMENT The cochlea in the inner ear is the hearing organ. Planar cell polarity (PCP) in hair cells (HCs) in the cochlea is essential for mechanotransduction and refers to the asymmetric structure consisting of stereociliary bundles and the kinocilium on the apical surface of the cell body. We reported previously that a ciliary kinase, Ick, regulates intraflagellar transport (IFT). Here, we found that loss of Ick leads to abnormal localization of the IFT component in kinocilia, PCP defects in HCs, and hearing dysfunction. Our study defines the association of ciliary transport regulation with PCP formation in HCs and hearing function. Copyright © 2017 the authors 0270-6474/17/372073-13$15.00/0.

  8. Intestinal cell kinase, a protein associated with endocrine-cerebro-osteodysplasia syndrome, is a key regulator of cilia length and Hedgehog signaling.

    PubMed

    Moon, Heejung; Song, Jieun; Shin, Jeong-Oh; Lee, Hankyu; Kim, Hong-Kyung; Eggenschwiller, Jonathan T; Bok, Jinwoong; Ko, Hyuk Wan

    2014-06-10

    Endocrine-cerebro-osteodysplasia (ECO) syndrome is a recessive genetic disorder associated with multiple congenital defects in endocrine, cerebral, and skeletal systems that is caused by a missense mutation in the mitogen-activated protein kinase-like intestinal cell kinase (ICK) gene. In algae and invertebrates, ICK homologs are involved in flagellar formation and ciliogenesis, respectively. However, it is not clear whether this role of ICK is conserved in mammals and how a lack of functional ICK results in the characteristic phenotypes of human ECO syndrome. Here, we generated Ick knockout mice to elucidate the precise role of ICK in mammalian development and to examine the pathological mechanisms of ECO syndrome. Ick null mouse embryos displayed cleft palate, hydrocephalus, polydactyly, and delayed skeletal development, closely resembling ECO syndrome phenotypes. In cultured cells, down-regulation of Ick or overexpression of kinase-dead or ECO syndrome mutant ICK resulted in an elongation of primary cilia and abnormal Sonic hedgehog (Shh) signaling. Wild-type ICK proteins were generally localized in the proximal region of cilia near the basal bodies, whereas kinase-dead ICK mutant proteins accumulated in the distal part of bulged ciliary tips. Consistent with these observations in cultured cells, Ick knockout mouse embryos displayed elongated cilia and reduced Shh signaling during limb digit patterning. Taken together, these results indicate that ICK plays a crucial role in controlling ciliary length and that ciliary defects caused by a lack of functional ICK leads to abnormal Shh signaling, resulting in congenital disorders such as ECO syndrome.

  9. Ciliary locomotion in presence of boundaries

    NASA Astrophysics Data System (ADS)

    Jana, Saikat; Um, Soong Ho; Jung, Sunghwan

    2010-11-01

    Micro-organisms in nature navigate through a variety of fluidic geometries and chemical conditions. We investigate the effect of confined spaces in nature by introducing Paramecium Multimicronucleatum in two different configurations: a capillary tube & a wavy PDMS channel. Paramecium swims by creating the metachronal waves due to ciliary beating. The influence of the walls on Paramecia is characterized by measuring the velocity and observing the ciliary beating pattern. Theoretically, we also model the system by solving the stream-function with a pressure gradient. The theoretical and experimental observations are compared and conclusions are drawn about the change in the swimming characteristics as compared to free swimming without the boundaries.

  10. Proton irradiation of malignant melanoma of the ciliary body.

    PubMed Central

    Gragoudas, E S; Goitein, M; Koehler, A; Wagner, M S; Verhey, L; Tepper, J; Suit, H D; Schneider, R J; Johnson, K N

    1979-01-01

    This is our first case of malignant melanoma of the ciliary body treated with proton beam irradiation, a technique that we developed for irradiating choroidal melanomas. After 21 months of follow-up no growth of the tumour has been observed, and shrinkage of the tumour was noted on the follow-up photographs and by ultrasonography. The 32P uptake test, which was positive before treatment, turned negative 14 months after irradiation. The described technique of proton beam irradiation might offer an alternative for the treatment of ciliary body melanomas when the present techniques of iridocyclectomy cannot be applied because of the size of the lesion. Images PMID:106873

  11. Oligomeric Properties of Survival Motor Neuron·Gemin2 Complexes*

    PubMed Central

    Gupta, Kushol; Martin, Renee; Sharp, Robert; Sarachan, Kathryn L.; Ninan, Nisha S.; Van Duyne, Gregory D.

    2015-01-01

    The survival motor neuron (SMN) protein forms the oligomeric core of a multiprotein complex required for the assembly of spliceosomal small nuclear ribonucleoproteins. Deletions and mutations in the SMN1 gene are associated with spinal muscular atrophy (SMA), a devastating neurodegenerative disease that is the leading heritable cause of infant mortality. Oligomerization of SMN is required for its function, and some SMA patient mutations disrupt the ability of SMN to self-associate. Here, we investigate the oligomeric nature of the SMN·Gemin2 complexes from humans and fission yeast (hSMN·Gemin2 and ySMN·Gemin2). We find that hSMN·Gemin2 forms oligomers spanning the dimer to octamer range. The YG box oligomerization domain of SMN is both necessary and sufficient to form these oligomers. ySMN·Gemin2 exists as a dimer-tetramer equilibrium with Kd = 1.0 ± 0.9 μm. A 1.9 Å crystal structure of the ySMN YG box confirms a high level of structural conservation with the human ortholog in this important region of SMN. Disulfide cross-linking experiments indicate that SMN tetramers are formed by self-association of stable, non-dissociating dimers. Thus, SMN tetramers do not form symmetric helical bundles such as those found in glycine zipper transmembrane oligomers. The dimer-tetramer nature of SMN complexes and the dimer of dimers organization of the SMN tetramer provide an important foundation for ongoing studies to understand the mechanism of SMN-assisted small nuclear ribonucleoprotein assembly and the underlying causes of SMA. PMID:26092730

  12. Flagellar Synchronization Is a Simple Alternative to Cell Cycle Synchronization for Ciliary and Flagellar Studies

    PubMed Central

    Dutta, Soumita

    2017-01-01

    ABSTRACT The unicellular green alga Chlamydomonas reinhardtii is an ideal model organism for studies of ciliary function and assembly. In assays for biological and biochemical effects of various factors on flagellar structure and function, synchronous culture is advantageous for minimizing variability. Here, we have characterized a method in which 100% synchronization is achieved with respect to flagellar length but not with respect to the cell cycle. The method requires inducing flagellar regeneration by amputation of the entire cell population and limiting regeneration time. This results in a maximally homogeneous distribution of flagellar lengths at 3 h postamputation. We found that time-limiting new protein synthesis during flagellar synchronization limits variability in the unassembled pool of limiting flagellar protein and variability in flagellar length without affecting the range of cell volumes. We also found that long- and short-flagella mutants that regenerate normally require longer and shorter synchronization times, respectively. By minimizing flagellar length variability using a simple method requiring only hours and no changes in media, flagellar synchronization facilitates the detection of small changes in flagellar length resulting from both chemical and genetic perturbations in Chlamydomonas. This method increases our ability to probe the basic biology of ciliary size regulation and related disease etiologies. IMPORTANCE Cilia and flagella are highly conserved antenna-like organelles that found in nearly all mammalian cell types. They perform sensory and motile functions contributing to numerous physiological and developmental processes. Defects in their assembly and function are implicated in a wide range of human diseases ranging from retinal degeneration to cancer. Chlamydomonas reinhardtii is an algal model system for studying mammalian cilium formation and function. Here, we report a simple synchronization method that allows detection of small changes in ciliary length by minimizing variability in the population. We find that this method alters the key relationship between cell size and the amount of protein accumulated for flagellar growth. This provides a rapid alternative to traditional methods of cell synchronization for uncovering novel regulators of cilia. PMID:28289724

  13. Flagellar Synchronization Is a Simple Alternative to Cell Cycle Synchronization for Ciliary and Flagellar Studies.

    PubMed

    Dutta, Soumita; Avasthi, Prachee

    2017-01-01

    The unicellular green alga Chlamydomonas reinhardtii is an ideal model organism for studies of ciliary function and assembly. In assays for biological and biochemical effects of various factors on flagellar structure and function, synchronous culture is advantageous for minimizing variability. Here, we have characterized a method in which 100% synchronization is achieved with respect to flagellar length but not with respect to the cell cycle. The method requires inducing flagellar regeneration by amputation of the entire cell population and limiting regeneration time. This results in a maximally homogeneous distribution of flagellar lengths at 3 h postamputation. We found that time-limiting new protein synthesis during flagellar synchronization limits variability in the unassembled pool of limiting flagellar protein and variability in flagellar length without affecting the range of cell volumes. We also found that long- and short-flagella mutants that regenerate normally require longer and shorter synchronization times, respectively. By minimizing flagellar length variability using a simple method requiring only hours and no changes in media, flagellar synchronization facilitates the detection of small changes in flagellar length resulting from both chemical and genetic perturbations in Chlamydomonas . This method increases our ability to probe the basic biology of ciliary size regulation and related disease etiologies. IMPORTANCE Cilia and flagella are highly conserved antenna-like organelles that found in nearly all mammalian cell types. They perform sensory and motile functions contributing to numerous physiological and developmental processes. Defects in their assembly and function are implicated in a wide range of human diseases ranging from retinal degeneration to cancer. Chlamydomonas reinhardtii is an algal model system for studying mammalian cilium formation and function. Here, we report a simple synchronization method that allows detection of small changes in ciliary length by minimizing variability in the population. We find that this method alters the key relationship between cell size and the amount of protein accumulated for flagellar growth. This provides a rapid alternative to traditional methods of cell synchronization for uncovering novel regulators of cilia.

  14. Skin sensitization potency of isoeugenol and its dimers evaluated by a non-radioisotopic modification of the local lymph node assay and guinea pig maximization test.

    PubMed

    Takeyoshi, Masahiro; Iida, Kenji; Suzuki, Keiko; Yamazaki, Shunsuke

    2008-05-01

    Allergic contact dermatitis is the serious unwanted effect arising from the use of consumer products such as cosmetics. Isoeugenol is a fragrance chemical with spicy, carnation-like scent, is used in many kinds of cosmetics and is a well-known moderate human sensitizer. It was previously reported that the dimerization of eugenol yielded two types of dimer possessing different sensitization potencies. This study reports the differences in skin sensitization potencies for isoeugenol and two types of dimer, beta-O-4-dilignol and dehydrodiisoeugenol (DIEG), as evaluated by the non-radioisotopic local lymph node assay (non-RI LLNA) and guinea pig maximization test. In the guinea pig maximization test, isoeugenol, beta-O-4-dilignol and DIEG were classified as extreme, weak and moderate sensitizers, respectively. As for the results of non-RI LLNA, the EC3 for isoeugenol, beta-O-4-dilignol and DIEG were calculated as 12.7%, >30% and 9.4%, respectively. The two types of isoeugenol dimer showed different sensitizing activities similar to the case for eugenol dimers. A reduction of sensitization potency achieved by dimerization may lead to developing safer cosmetic ingredients. Isoeugenol dimers are not currently used for fragrance chemicals. However, the dimerization of isoeugenol may yield a promising candidate as a cosmetic ingredient with low sensitization risk. The data may also provide useful information for the structure-activity relationship (SAR) in skin sensitization. Copyright (c) 2007 John Wiley & Sons, Ltd.

  15. Proline substitution of dimer interface β-strand residues as a strategy for the design of functional monomeric proteins.

    PubMed

    Joseph, Prem Raj B; Poluri, Krishna Mohan; Gangavarapu, Pavani; Rajagopalan, Lavanya; Raghuwanshi, Sandeep; Richardson, Ricardo M; Garofalo, Roberto P; Rajarathnam, Krishna

    2013-09-17

    Proteins that exist in monomer-dimer equilibrium can be found in all organisms ranging from bacteria to humans; this facilitates fine-tuning of activities from signaling to catalysis. However, studying the structural basis of monomer function that naturally exists in monomer-dimer equilibrium is challenging, and most studies to date on designing monomers have focused on disrupting packing or electrostatic interactions that stabilize the dimer interface. In this study, we show that disrupting backbone H-bonding interactions by substituting dimer interface β-strand residues with proline (Pro) results in fully folded and functional monomers, by exploiting proline's unique feature, the lack of a backbone amide proton. In interleukin-8, we substituted Pro for each of the three residues that form H-bonds across the dimer interface β-strands. We characterized the structures, dynamics, stability, dimerization state, and activity using NMR, molecular dynamics simulations, fluorescence, and functional assays. Our studies show that a single Pro substitution at the middle of the dimer interface β-strand is sufficient to generate a fully functional monomer. Interestingly, double Pro substitutions, compared to single Pro substitution, resulted in higher stability without compromising native monomer fold or function. We propose that Pro substitution of interface β-strand residues is a viable strategy for generating functional monomers of dimeric, and potentially tetrameric and higher-order oligomeric proteins. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Centrosomal protein Dzip1l binds Cby, promotes ciliary bud formation, and acts redundantly with Bromi to regulate ciliogenesis in the mouse.

    PubMed

    Wang, Chengbing; Li, Jia; Takemaru, Ken-Ichi; Jiang, Xiaogang; Xu, Guoqiang; Wang, Baolin

    2018-03-15

    The primary cilium is a microtubule-based organelle required for Hedgehog (Hh) signaling and consists of a basal body, a ciliary axoneme and a compartment between the first two structures, called the transition zone (TZ). The TZ serves as a gatekeeper to control protein composition in cilia, but less is known about its role in ciliary bud formation. Here, we show that centrosomal protein Dzip1l is required for Hh signaling between Smoothened and Sufu. Dzip1l colocalizes with basal body appendage proteins and Rpgrip1l, a TZ protein. Loss of Dzip1l results in reduced ciliogenesis and dysmorphic cilia in vivo Dzip1l interacts with, and acts upstream of, Cby, an appendage protein, in ciliogenesis. Dzip1l also has overlapping functions with Bromi (Tbc1d32) in ciliogenesis, cilia morphogenesis and neural tube patterning. Loss of Dzip1l arrests ciliogenesis at the stage of ciliary bud formation from the TZ. Consistent with this, Dzip1l mutant cells fail to remove the capping protein Cp110 (Ccp110) from the distal end of mother centrioles and to recruit Rpgrip1l to the TZ. Therefore, Dzip1l promotes ciliary bud formation and is required for the integrity of the TZ. © 2018. Published by The Company of Biologists Ltd.

  17. Applications of emerging transmission electron microscopy technology in PCD research and diagnosis.

    PubMed

    Shoemark, Amelia

    2017-01-01

    Primary Ciliary Dyskinesia (PCD) is a heterogeneous genetic condition characterized by dysfunction of motile cilia. Patients suffer from chronic infection and inflammation of the upper and lower respiratory tract. Diagnosis of PCD is confirmed by identification of a hallmark defect of ciliary ultrastructure or by identification of biallelic pathogenic mutations in a known PCD gene. Since the first description of PCD in 1976, assessment of ciliary ultrastructure by transmission electron microscopy (TEM) has been central to diagnosis and research. Electron tomography is a technique whereby a series of transmission electron micrographs are collected at different angles and reconstructed into a single 3D model of a specimen. Electron tomography provides improved spatial information and resolution compared to a single micrograph. Research by electron tomography has revealed new insight into ciliary ultrastructure and consequently ciliary function at a molecular and cellular level. Gene discovery studies in PCD have utilized electron tomography to define the structural consequences of variants in cilia genes. Modern transmission electron microscopes capable of electron tomography are increasingly being installed in clinical laboratories. This presents the possibility for the use of tomography technique in a diagnostic setting. This review describes the electron tomography technique, the contribution tomography has made to the understanding of basic cilia structure and function and finally the potential of the technique for use in PCD diagnosis.

  18. Ciliary muscle contraction force and trapezius muscle activity during manual tracking of a moving visual target.

    PubMed

    Domkin, Dmitry; Forsman, Mikael; Richter, Hans O

    2016-06-01

    Previous studies have shown an association of visual demands during near work and increased activity of the trapezius muscle. Those studies were conducted under stationary postural conditions with fixed gaze and artificial visual load. The present study investigated the relationship between ciliary muscle contraction force and trapezius muscle activity across individuals during performance of a natural dynamic motor task under free gaze conditions. Participants (N=11) tracked a moving visual target with a digital pen on a computer screen. Tracking performance, eye refraction and trapezius muscle activity were continuously measured. Ciliary muscle contraction force was computed from eye accommodative response. There was a significant Pearson correlation between ciliary muscle contraction force and trapezius muscle activity on the tracking side (0.78, p<0.01) and passive side (0.64, p<0.05). The study supports the hypothesis that high visual demands, leading to an increased ciliary muscle contraction during continuous eye-hand coordination, may increase trapezius muscle tension and thus contribute to the development of musculoskeletal complaints in the neck-shoulder area. Further experimental studies are required to clarify whether the relationship is valid within each individual or may represent a general personal trait, when individuals with higher eye accommodative response tend to have higher trapezius muscle activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Effects of antiglaucoma drugs on [32P]orthophosphate incorporation into phospholipids of cat iris and ciliary process.

    PubMed

    Yorio, T; DeLoach, G; Satumtira, N

    1985-01-01

    The effects of antiglaucoma drugs on [32P]-orthophosphate incorporation into phospholipids of iris and ciliary process were investigated. Both iris and ciliary process rapidly incorporated 32Pi into the major phospholipids, with the acidic phosphoinositides demonstrating a greater labelling than phosphatidylcholine, indicating a greater turnover. The muscarinic agonists, carbachol and pilocarpine, stimulated 32Pi-labelling of phosphatidylinositol (PI) and phosphatidic acid (PA) in both iris and ciliary process. These effects were blocked by atropine, suggesting that the response was mediated through muscarinic receptors. The beta blocking ocular hypotensive drugs, propranolol, timolol and atenolol, produced varying effects on 32P incorporation into phospholipids of iris and ciliary process. Propranolol stimulated 32Pi-labelling into phosphatidylinositol 4', 5' bisphosphate (PIP2), phosphatidylinositol 4' phosphate (PIP), PI and PA. Timolol decreased 32Pi-incorporation into PIP2 and PI, whereas atenolol, a selective beta 1 antagonist, had no significant effect on 32Pi-labelling of phospholipids. The above findings on propranolol agree with previous observations which demonstrated that propranolol redirects glycerolipid metabolism through multiple effects on the enzymes in phospholipid biosynthesis, particularly in stimulating phosphatidylinositol kinases. The results with timolol suggest that this drug may decrease phosphoinositide hydrolysis. The effects of these ocular hypotensive, non-selective beta blocking drugs on phospholipid turnover may ultimately limit the accumulation of breakdown products which could serve as cellular messengers.

  20. Molecular evidence of stereo-specific lactoferrin dimers in solution.

    PubMed

    Persson, Björn A; Lund, Mikael; Forsman, Jan; Chatterton, Dereck E W; Akesson, Torbjörn

    2010-10-01

    Gathering experimental evidence suggests that bovine as well as human lactoferrin self-associate in aqueous solution. Still, a molecular level explanation is unavailable. Using force field based molecular modeling of the protein-protein interaction free energy we demonstrate (1) that lactoferrin forms highly stereo-specific dimers at neutral pH and (2) that the self-association is driven by a high charge complementarity across the contact surface of the proteins. Our theoretical predictions of dimer formation are verified by electrophoretic mobility and N-terminal sequence analysis on bovine lactoferrin. 2010 Elsevier B.V. All rights reserved.

  1. Engineering human immunodeficiency virus 1 protease heterodimers as macromolecular inhibitors of viral maturation.

    PubMed Central

    McPhee, F; Good, A C; Kuntz, I D; Craik, C S

    1996-01-01

    Dimerization of human immunodeficiency virus type 1 protease (HIV-1 PR) monomers is an essential prerequisite for viral proteolytic activity and the subsequent generation of infectious virus particles. Disruption of the dimer interface inhibits this activity as does formation of heterodimers between wild-type and defective monomers. A structure-based approach was used to identify amino acid substitutions at the dimer interface of HIV-1 PR that facilitate preferential association of heterodimers and inhibit self-association of the defective monomers. Expression of the designed PR monomers inhibits activity of wild-type HIV-1 PR and viral infectivity when assayed in an ex vivo model system. These results show that it is possible to design PR monomers as macromolecular inhibitors that may provide an alternative to small molecule inhibitors for the treatment of HIV infection. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8876160

  2. Visualization of ligand-induced transmembrane signaling in the full-length human insulin receptor

    PubMed Central

    2018-01-01

    Insulin receptor (IR) signaling plays a critical role in the regulation of metabolism and growth in multicellular organisms. IRs are unique among receptor tyrosine kinases in that they exist exclusively as covalent (αβ)2 homodimers at the cell surface. Transmembrane signaling by the IR can therefore not be based on ligand-induced dimerization as such but must involve structural changes within the existing receptor dimer. In this study, using glycosylated full-length human IR reconstituted into lipid nanodiscs, we show by single-particle electron microscopy that insulin binding to the dimeric receptor converts its ectodomain from an inverted U-shaped conformation to a T-shaped conformation. This structural rearrangement of the ectodomain propagates to the transmembrane domains, which are well separated in the inactive conformation but come close together upon insulin binding, facilitating autophosphorylation of the cytoplasmic kinase domains. PMID:29453311

  3. Structure elucidation of dimeric transmembrane domains of bitopic proteins.

    PubMed

    Bocharov, Eduard V; Volynsky, Pavel E; Pavlov, Konstantin V; Efremov, Roman G; Arseniev, Alexander S

    2010-01-01

    The interaction between transmembrane helices is of great interest because it directly determines biological activity of a membrane protein. Either destroying or enhancing such interactions can result in many diseases related to dysfunction of different tissues in human body. One much studied form of membrane proteins known as bitopic protein is a dimer containing two membrane-spanning helices associating laterally. Establishing structure-function relationship as well as rational design of new types of drugs targeting membrane proteins requires precise structural information about this class of objects. At present time, to investigate spatial structure and internal dynamics of such transmembrane helical dimers, several strategies were developed based mainly on a combination of NMR spectroscopy, optical spectroscopy, protein engineering and molecular modeling. These approaches were successfully applied to homo- and heterodimeric transmembrane fragments of several bitopic proteins, which play important roles in normal and in pathological conditions of human organism.

  4. Free radicals impair the anti-oxidative stress activity of DJ-1 through the formation of SDS-resistant dimer.

    PubMed

    Yasuda, Tatsuki; Niki, Takeshi; Ariga, Hiroyoshi; Iguchi-Ariga, Sanae M M

    2017-04-01

    DJ-1 is a causative gene for familial Parkinson's disease (PD). Loss-of-function of DJ-1 protein is suggested to contribute to the onset of PD, but the causes of DJ-1 dysfunction remain insufficiently elucidated. In this study, we found that the SDS-resistant irreversible dimer of DJ-1 protein was formed in human dopaminergic neuroblastoma SH-SY5Y cells when the cells were exposed to massive superoxide inducers such as paraquat and diquat. The dimer was also formed in vitro by superoxide in PQ redox cycling system and hydroxyl radical produced in Fenton reaction. We, thus, found a novel phenomenon that free radicals directly affect DJ-1 to form SDS-resistant dimers. Moreover, the formation of the SDS-resistant dimer impaired anti-oxidative stress activity of DJ-1 both in cell viability assay and H 2 O 2 -elimination assay in vitro. Similar SDS-resistant dimers were steadily formed with several mutants of DJ-1 found in familial PD patients. These findings suggest that DJ-1 is impaired due to the formation of SDS-resistant dimer when the protein is directly attacked by free radicals yielded by external and internal stresses and that the DJ-1 impairment is one of the causes of sporadic PD.

  5. Primary and secondary dimer interfaces of the fibroblast growth factor receptor 3 transmembrane domain: characterization via multiscale molecular dynamics simulations.

    PubMed

    Reddy, Tyler; Manrique, Santiago; Buyan, Amanda; Hall, Benjamin A; Chetwynd, Alan; Sansom, Mark S P

    2014-01-21

    Receptor tyrosine kinases are single-pass membrane proteins that form dimers within the membrane. The interactions of their transmembrane domains (TMDs) play a key role in dimerization and signaling. Fibroblast growth factor receptor 3 (FGFR3) is of interest as a G380R mutation in its TMD is the underlying cause of ~99% of the cases of achondroplasia, the most common form of human dwarfism. The structural consequences of this mutation remain uncertain: the mutation shifts the position of the TMD relative to the lipid bilayer but does not alter the association free energy. We have combined coarse-grained and all-atom molecular dynamics simulations to study the dimerization of wild-type, heterodimer, and mutant FGFR3 TMDs. The simulations reveal that the helices pack together in the dimer to form a flexible interface. The primary packing mode is mediated by a Gx3G motif. There is also a secondary dimer interface that is more highly populated in heterodimer and mutant configurations that may feature in the molecular mechanism of pathology. Both coarse-grained and atomistic simulations reveal a significant shift of the G380R mutant dimer TMD relative to the bilayer to allow interactions of the arginine side chain with lipid headgroup phosphates.

  6. Primary and Secondary Dimer Interfaces of the FGFR3 Transmembrane Domain: Characterization via Multiscale Molecular Dynamics Simulations

    PubMed Central

    Reddy, Tyler; Manrique, Santiago; Buyan, Amanda; Hall, Benjamin A.; Chetwynd, Alan; Sansom, Mark S.P.

    2016-01-01

    Receptor tyrosine kinases are single pass membrane proteins which form dimers within the membrane. The interactions of their transmembrane domains (TMDs) play a key role in dimerization and signaling. The fibroblast growth factor receptor 3 (FGFR3) is of interest as a G380R mutation in its TMD is the underlying cause of ~99% of cases of achondroplasia, the most common form of human dwarfism. The structural consequences of this mutation remain uncertain: the mutation shifts the position relative of the TMD relative to the lipid bilayer but does not alter the association free energy. We have combined coarse-grained and all-atom molecular dynamics simulations to study the dimerization of wild-type, heterodimer, and mutant FGFR3 TMDs. The simulations reveal that the helices pack together in the dimer to form a flexible interface. The primary packing mode is mediated by a Gx3G motif. There is also a secondary dimer interface which is more highly populated in heterodimer and mutant configurations which may feature in the molecular mechanism of pathology. Both coarse-grained and atomistic simulations reveal a significant shift of the G380R mutant dimer TMD relative to the bilayer so as to enable interactions of the arginine sidechain with lipid head group phosphates. PMID:24397339

  7. Structural characterization of V57D and V57P mutants of human cystatin C, an amyloidogenic protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orlikowska, Marta; Szymańska, Aneta; Borek, Dominika

    2013-04-01

    Val57 point mutants of human cystatin C, which were designed to assess the influence of changes in the properties of the L1 loop on the dimerization propensity, were structurally characterized. Wild-type human cystatin C (hCC wt) is a low-molecular-mass protein (120 amino-acid residues, 13 343 Da) that is found in all nucleated cells. Physiologically, it functions as a potent regulator of cysteine protease activity. While the biologically active hCC wt is a monomeric protein, all crystallization efforts to date have resulted in a three-dimensional domain-swapped dimeric structure. In the recently published structure of a mutated hCC, the monomeric fold wasmore » preserved by a stabilization of the conformationally constrained loop L1 caused by a single amino-acid substitution: Val57Asn. Additional hCC mutants were obtained in order to elucidate the relationship between the stability of the L1 loop and the propensity of human cystatin C to dimerize. In one mutant Val57 was substituted by an aspartic acid residue, which is favoured in β-turns, and in the second mutant proline, a residue known for broadening turns, was substituted for the same Val57. Here, 2.26 and 3.0 Å resolution crystal structures of the V57D andV57P mutants of hCC are reported and their dimeric architecture is discussed in terms of the stabilization and destabilization effects of the introduced mutations.« less

  8. Calcium-dependent interaction of monomeric S100P protein with serum albumin.

    PubMed

    Kazakov, Alexei S; Shevelyova, Marina P; Ismailov, Ramis G; Permyakova, Maria E; Litus, Ekaterina A; Permyakov, Eugene A; Permyakov, Sergei E

    2018-03-01

    S100 proteins are multifunctional (intra/extra)cellular mostly dimeric calcium-binding proteins engaged into numerous diseases. We have found that monomeric recombinant human S100P protein interacts with intact human serum albumin (HSA) in excess of calcium ions with equilibrium dissociation constant of 25-50nM, as evidenced by surface plasmon resonance spectroscopy and fluorescent titration by HSA of S100P labelled by fluorescein isothiocyanate. Calcium removal or S100P dimerization abolish the S100P-HSA interaction. The interaction is selective, since S100P does not bind bovine serum albumin and monomeric human S100B lacks interaction with HSA. In vitro glycation of HSA disables its binding to S100P. The revealed selective and highly specific conformation-dependent interaction between S100P and HSA shows that functional properties of monomeric and dimeric forms of S100 proteins are different, and raises concerns on validity of cell-based assays and animal models used for studies of (patho)physiological roles of extracellular S100 proteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Immunolocalization of ciliary neurotrophic factor receptor alpha (CNTFRalpha) in mammalian photoreceptor cells.

    PubMed

    Beltran, William A; Rohrer, Hermann; Aguirre, Gustavo D

    2005-04-01

    To characterize the site of expression of the alpha subunit of the receptor for ciliary neurotrophic factor (CNTFRalpha) in the retina of a variety of mammalian species, and determine whether CNTFRalpha is localized to photoreceptor cells. The cellular distribution of CNTFRalpha(protein) was examined by immunocytochemistry in the adult retinas of several mammalian species that included mouse, rat, dog, cat, sheep, pig, horse, monkey, and human. Developing retinas from 3-day-old and 6-day-old rats were also included in this study. The molecular weight of CNTFRalpha in rat, dog, cat, pig, and human retinas was determined by immunoblotting. CNTFRalpha immunolabeling was present in the retina of all species. A common pattern was observed in all species, and represented labeling of the nerve fiber layer (NFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), and outer plexiform layer (OPL). CNTFRalpha did not immunolocalize to photoreceptor cells in both adult and developing rodent retinas, but was consistently observed in both rods and cones of non-rodent species. The molecular weight of CNTFRalpha in mammalian retinas was approximately 61-64 kDa. These findings highlight a significant difference in the expression of CNTFRalpha in the retina of rodent and non-rodent mammalian species. The expression of CNTFRalpha by rods and cones in non-rodent species may suggest a direct mechanism of action if CNTF administration results in photoreceptor rescue.

  10. Dimer interface of bovine cytochrome c oxidase is influenced by local posttranslational modifications and lipid binding

    PubMed Central

    Liko, Idlir; Degiacomi, Matteo T.; Mohammed, Shabaz; Yoshikawa, Shinya; Schmidt, Carla; Robinson, Carol V.

    2016-01-01

    Bovine cytochrome c oxidase is an integral membrane protein complex comprising 13 protein subunits and associated lipids. Dimerization of the complex has been proposed; however, definitive evidence for the dimer is lacking. We used advanced mass spectrometry methods to investigate the oligomeric state of cytochrome c oxidase and the potential role of lipids and posttranslational modifications in its subunit interfaces. Mass spectrometry of the intact protein complex revealed that both the monomer and the dimer are stabilized by large lipid entities. We identified these lipid species from the purified protein complex, thus implying that they interact specifically with the enzyme. We further identified phosphorylation and acetylation sites of cytochrome c oxidase, located in the peripheral subunits and in the dimer interface, respectively. Comparing our phosphorylation and acetylation sites with those found in previous studies of bovine, mouse, rat, and human cytochrome c oxidase, we found that whereas some acetylation sites within the dimer interface are conserved, suggesting a role for regulation and stabilization of the dimer, phosphorylation sites were less conserved and more transient. Our results therefore provide insights into the locations and interactions of lipids with acetylated residues within the dimer interface of this enzyme, and thereby contribute to a better understanding of its structure in the natural membrane. Moreover dimeric cytochrome c oxidase, comprising 20 transmembrane, six extramembrane subunits, and associated lipids, represents the largest integral membrane protein complex that has been transferred via electrospray intact into the gas phase of a mass spectrometer, representing a significant technological advance. PMID:27364008

  11. Forkhead Transcription Factor Fd3F Cooperates with Rfx to Regulate a Gene Expression Program for Mechanosensory Cilia Specialization

    PubMed Central

    Newton, Fay G.; zur Lage, Petra I.; Karak, Somdatta; Moore, Daniel J.; Göpfert, Martin C.; Jarman, Andrew P.

    2012-01-01

    Summary Cilia have evolved hugely diverse structures and functions to participate in a wide variety of developmental and physiological processes. Ciliary specialization requires differences in gene expression, but few transcription factors are known to regulate this, and their molecular function is unclear. Here, we show that the Drosophila Forkhead box (Fox) gene, fd3F, is required for specialization of the mechanosensory cilium of chordotonal (Ch) neurons. fd3F regulates genes for Ch-specific axonemal dyneins and TRPV ion channels, which are required for sensory transduction, and retrograde transport genes, which are required to differentiate their distinct motile and sensory ciliary zones. fd3F is reminiscent of vertebrate Foxj1, a motile cilia regulator, but fd3F regulates motility genes as part of a broader sensory regulation program. Fd3F cooperates with the pan-ciliary transcription factor, Rfx, to regulate its targets directly. This illuminates pathways involved in ciliary specialization and the molecular mechanism of transcription factors that regulate them. PMID:22698283

  12. Kin5 Knockdown in Tetrahymena thermophila Using RNAi Blocks Cargo Transport of Gef1

    PubMed Central

    Awan, Aashir; Bell, Aaron J.; Satir, Peter

    2009-01-01

    A critical process that builds and maintains the eukaryotic cilium is intraflagellar transport (IFT). This process utilizes members of the kinesin-2 superfamily to transport cargo into the cilium (anterograde transport) and a dynein motor for the retrograde traffic. Using a novel RNAi knockdown method, we have analyzed the function of the homodimeric IFT kinesin-2, Kin5, in Tetrahymena ciliary transport. In RNAi transformants, Kin5 was severely downregulated and disappeared from the cilia, but cilia did not resorb, although tip structure was affected. After deciliation of the knockdown cell, cilia regrew and cells swam, which suggested that Kin5 is not responsible for the trafficking of axonemal precursors to build the cilium, but could be transporting molecules that act in ciliary signal transduction, such as guanine nucleotide exchange proteins (GEFs). Gef1 is a Tetrahymena ciliary protein, and current coimmunoprecipitation and immunofluorescence studies showed that it is absent in regrowing cilia of the knockdown cells lacking ciliary Kin5. We suggest that one important cargo of Kin5 is Gef1 and knockdown of Kin5 results in cell lethality. PMID:19290045

  13. Recent advances in primary ciliary dyskinesia genetics

    PubMed Central

    Kurkowiak, Małgorzata; Ziętkiewicz, Ewa; Witt, Michał

    2015-01-01

    Primary ciliary dyskinesia (PCD) is a rare genetically heterogeneous disorder caused by the abnormal structure and/or function of motile cilia. The PCD diagnosis is challenging and requires a well-described clinical phenotype combined with the identification of abnormalities in ciliary ultrastructure and/or beating pattern as well as the recognition of genetic cause of the disease. Regarding the pace of identification of PCD-related genes, a rapid acceleration during the last 2–3 years is notable. This is the result of new technologies, such as whole-exome sequencing, that have been recently applied in genetic research. To date, PCD-causative mutations in 29 genes are known and the number of causative genes is bound to rise. Even though the genetic causes of approximately one-third of PCD cases still remain to be found, the current knowledge can already be used to create new, accurate genetic tests for PCD that can accelerate the correct diagnosis and reduce the proportion of unexplained cases. This review aims to present the latest data on the relations between ciliary structure aberrations and their genetic basis. PMID:25351953

  14. Ciliopathy proteins establish a bipartite signaling compartment in a C. elegans thermosensory neuron

    PubMed Central

    Nguyen, Phuong Anh T.; Liou, Willisa; Hall, David H.; Leroux, Michel R.

    2014-01-01

    ABSTRACT How signaling domains form is an important, yet largely unexplored question. Here, we show that ciliary proteins help establish two contiguous, yet distinct cyclic GMP (cGMP) signaling compartments in Caenorhabditis elegans thermosensory AFD neurons. One compartment, a bona fide cilium, is delineated by proteins associated with Bardet–Biedl syndrome (BBS), Meckel syndrome and nephronophthisis at its base, and requires NPHP-2 (known as inversin in mammals) to anchor a cGMP-gated ion channel within the proximal ciliary region. The other, a subcompartment with profuse microvilli and a different lipid environment, is separated from the dendrite by a cellular junction and requires BBS-8 and DAF-25 (known as Ankmy2 in mammals) for correct localization of guanylyl cyclases needed for thermosensation. Consistent with a requirement for a membrane diffusion barrier at the subcompartment base, we reveal the unexpected presence of ciliary transition zone proteins where no canonical transition zone ultrastructure exists. We propose that differential compartmentalization of signal transduction components by ciliary proteins is important for the functions of ciliated sensory neurons. PMID:25335890

  15. Vortex arrays and ciliary tangles underlie the feeding-swimming trade-off in starfish larvae

    NASA Astrophysics Data System (ADS)

    Gilpin, William; Prakash, Vivek N.; Prakash, Manu

    2017-04-01

    Many marine invertebrates have larval stages covered in linear arrays of beating cilia, which propel the animal while simultaneously entraining planktonic prey. These bands are strongly conserved across taxa spanning four major superphyla, and they are responsible for the unusual morphologies of many invertebrate larvae. However, few studies have investigated their underlying hydrodynamics. Here, we study the ciliary bands of starfish larvae, and discover a beautiful pattern of slowly evolving vortices that surrounds the swimming animals. Closer inspection of the bands reveals unusual ciliary `tangles' analogous to topological defects that break up and re-form as the animal adjusts its swimming stroke. Quantitative experiments and modelling demonstrate that these vortices create a physical trade-off between feeding and swimming in heterogeneous environments, which manifests as distinct flow patterns or `eigenstrokes' representing each behaviour--potentially implicating neuronal control of cilia. This quantitative interplay between larval form and hydrodynamic function may generalize to other invertebrates with ciliary bands, and illustrates the potential effects of active boundary conditions in other biological and synthetic systems.

  16. Unique among ciliopathies: primary ciliary dyskinesia, a motile cilia disorder.

    PubMed

    Praveen, Kavita; Davis, Erica E; Katsanis, Nicholas

    2015-01-01

    Primary ciliary dyskinesia (PCD) is a ciliopathy, but represents the sole entity from this class of disorders that results from the dysfunction of motile cilia. Characterized by respiratory problems appearing in childhood, infertility, and situs defects in ~50% of individuals, PCD has an estimated prevalence of approximately 1 in 10,000 live births. The diagnosis of PCD can be prolonged due to a lack of disease awareness, coupled with the fact that symptoms can be confused with other more common genetic disorders, such as cystic fibrosis, or environmental insults that result in frequent respiratory infections. A primarily autosomal recessive disorder, PCD is genetically heterogeneous with >30 causal genes identified, posing significant challenges to genetic diagnosis. Here, we provide an overview of PCD as a disorder underscored by impaired ciliary motility; we discuss the recent advances towards uncovering the genetic basis of PCD; we discuss the molecular knowledge gained from PCD gene discovery, which has improved our understanding of motile ciliary assembly; and we speculate on how accelerated diagnosis, together with detailed phenotypic data, will shape the genetic and functional architecture of this disorder.

  17. Recombination within the apospory specific genomic region leads to the uncoupling of apomixis components in Cenchrus ciliaris.

    PubMed

    Conner, Joann A; Gunawan, Gunawati; Ozias-Akins, Peggy

    2013-07-01

    Apomixis enables the clonal propagation of maternal genotypes through seed. If apomixis could be harnessed via genetic engineering or introgression, it would have a major economic impact for agricultural crops. In the grass species Pennisetum squamulatum and Cenchrus ciliaris (syn. P. ciliare), apomixis is controlled by a single dominant "locus", the apospory-specific genomic region (ASGR). For P. squamulatum, 18 published sequenced characterized amplified region (SCAR) markers have been identified which always co-segregate with apospory. Six of these markers are conserved SCARs in the closely related species, C. ciliaris and co-segregate with the trait. A screen of progeny from a cross of sexual × apomictic C. ciliaris genotypes identified a plant, A8, retaining two of the six ASGR-linked SCAR markers. Additional and newly identified ASGR-linked markers were generated to help identify the extent of recombination within the ASGR. Based on analysis of missing markers, the A8 recombinant plant has lost a significant portion of the ASGR but continues to form aposporous embryo sacs. Seedlings produced from aposporous embryo sacs are 6× in ploidy level and hence the A8 recombinant does not express parthenogenesis. The recombinant A8 plant represents a step forward in reducing the complexity of the ASGR locus to determine the factor(s) required for aposporous embryo sac formation and documents the separation of expression of the two components of apomixis in C. ciliaris.

  18. Introduction of Lens-angle Reconstruction Surgery in Rabbit Eyes

    PubMed Central

    Kim, Min Hee; Hwang, Ho Sik; Park, Kyoung Jin; Hwang, Je Hyung

    2014-01-01

    Purpose In this study, we examined the stability of the lens-angle supporter (LAS) for accommodation restoration by comparing intraocular lens (IOL) location, after-cataract and ciliary body damage after cataract surgery in rabbits. Methods Eight rabbits were divided into experimental and control groups of four rabbits each. Phacoemulsification and irrigation and aspiration were performed in all rabbits. This was followed by an LAS and IOL insertion in the four experimental rabbits. In the four control rabbits, only an IOL insertion was performed. Six months after the surgery, the location of the IOL, the conditions of the lens capsule and ciliary body were evaluated using a slitl-amp examination and Miyake-Apple view. Results For the experimental group, the ultrasound biomicroscope results showed normal LAS and IOL positioning in all four cases. According to the slitlamp examination and Miyake-Apple view, the IOL was positioned at the center, with less after-cataract and damage to the ciliary body. For the control group, ultrasound biomicroscope results indicated a higher IOL position than normal, as well as a single case of IOL decentering. According to the slit-lamp examination and Miyake-Apple view, the IOL was decentered with more severe after-cataract and ciliary body damage. Conclusions The LAS has the potential to maintain a stable IOL position while producing less after-cataract when used in lens-angle reconstruction for correction of presbyopia. Moreover, LAS implantation incurs less damage to the ciliary body. PMID:25435752

  19. Ciliary Body Thickness and Refractive Error in Children

    PubMed Central

    Bailey, Melissa D.; Sinnott, Loraine T.; Mutti, Donald O.

    2010-01-01

    Purpose To determine whether ciliary body thickness (CBT) is related to refractive error in school-age children. Methods Fifty-three children, 8 to 15 years of age, were recruited. CBT was measured from anterior segment OCT images (Visante; Carl Zeiss Meditec, Inc., Dublin, CA) at 1 (CBT1), 2 (CBT2) and 3 (CBT3) mm posterior to the scleral spur. Cycloplegic refractive error was measured with an autorefractor, and axial length was measured with an optical biometer. Multilevel regression models determined the relationship between CBT measurements and refractive error or axial length. A Bland-Altman analysis was used to assess the between-visit repeatability of the ciliary body measurements. Results The between-visits coefficients of repeatability for CBT1, -2, and -3 were 148.04, 165.68, and 110.90, respectively. Thicker measurements at CBT2 (r = −0.29, P = 0.03) and CBT3 (r = −0.38, P = 0.005) were associated with increasingly myopic refractive errors (multilevel model: P < 0.001). Thicker measurements at CBT2 (r = 0.40, P = 0.003) and CBT3 (r = 0.51, P < 0.001) were associated with longer axial lengths (multilevel model: P < 0.001). Conclusions Thicker ciliary body measurements were associated with myopia and a longer axial length. Future studies should determine whether this relationship is also present in animal models of myopia and determine the temporal relationship between thickening of the ciliary muscle and the onset of myopia. PMID:18566470

  20. Diagnosis of primary ciliary dyskinesia: summary of the ERS Task Force report

    PubMed Central

    Lucas, Jane S.

    2017-01-01

    Key points Primary ciliary dyskinesia (PCD) is a genetically and clinically heterogeneous disease characterised by abnormal motile ciliary function. There is no “gold standard” diagnostic test for PCD. The European Respiratory Society (ERS) Task Force Guidelines for diagnosing PCD recommend that patients should be referred for diagnostic testing if they have several of the following features: persistent wet cough; situs anomalies; congenital cardiac defects; persistent rhinitis; chronic middle ear disease with or without hearing loss; or a history, in term infants, of neonatal upper and lower respiratory symptoms or neonatal intensive care admission. The ERS Task Force recommends that patients should be investigated in a specialist PCD centre with access to a range of complementary tests: nasal nitric oxide, high-speed video microscopy analysis and transmission electron microscopy. Additional tests including immunofluorescence labelling of ciliary proteins and genetic testing may also help determine the diagnosis. Educational aims This article is intended for primary and secondary care physicians interested in primary ciliary dyskinesia (PCD), i.e. those who identify patients for testing, and those involved in diagnosing and managing PCD patients. It aims: to inform readers about the new European Respiratory Society Task Force Guidelines for diagnosing patients with PCDto enable primary and secondary care physicians to: identify patients who need diagnostic testing; understand the diagnostic tests that their patients will undergo, the results of the tests and their limitations; and ensure that appropriate care is subsequently delivered. PMID:28894478

  1. Failure of matrix metalloproteinase-9 dimer induction by phorbol 12-myristate 13-acetate in normal human cell lines.

    PubMed

    Waheed Roomi, Mohd; Kalinovsky, Tatiana; Rath, Matthias; Niedzwiecki, Aleksandra

    2015-06-01

    Increasing experimental and clinical data has identified an association between increased levels of matrix metalloproteinase (MMP)-9 and shortened patient survival, cancer progression and metastasis. MMP-9 has a significant role in tumor cell invasion and metastasis, as it digests the basement membrane and components of the extracellular matrix. MMP-9 is secreted in either a monomeric or dimeric form. Although limited evidence exists concerning MMP-9 dimers, certain studies have demonstrated that the dimer is associated with aggressive tumor progression. This is believed to be due to the fact that cellular migration depends upon the MMP-9 dimer, and not the monomer. Our previous study revealed that cancer cell MMP-9 dimer secretion patterns could be divided into different categories, and that high MMP-9 and MMP-9 dimer secretion levels were correlated with the most aggressive cancer cell lines. It has been established that signal transduction pathways and cytokines, including those activated by phorbol 12-myristate 13-acetate (PMA), regulate the expression of MMPs. The aim of the present study was to analyze the expression patterns of MMP-2, MMP-9 and MMP-9 dimer in normal human cells from a number of tissues treated with PMA. Muscle, epithelial and connective tissues were selected for use in the present study, since adenosarcomas, carcinomas and sarcomas are derived from these tissue types, respectively. The cell lines were first cultured in 24-well tissue culture plates containing recommended media that was supplemented with 10% fetal bovine serum and antibiotics. When at confluency, the cells were washed and fresh medium was added. In addition, a parallel set of cultures was treated with PMA. Subsequent to a 24-h incubation period, the media were collected and analyzed using gelatinase zymography for the expression of MMP-2 and MMP-9 monomer and dimer forms. The results revealed that the cellular expression of MMP-2 and MMP-9 was dependent upon the primary tissue subtype. All cell lines, regardless of tissue origin, expressed MMP-2. PMA induced the expression of MMP-9 in muscle tissue, glandular epithelia and supportive connective tissue cell lines. By contrast, cell lines of endothelial origin and proper connective tissue were insensitive to treatment with PMA. MMP-9 dimer secretion was not observed in any of the cell lines, which indicated that cellular migration is not supported by these cells.

  2. Orchid-pollinator interactions and potential vulnerability to biological invasion.

    PubMed

    Chupp, Adam D; Battaglia, Loretta L; Schauber, Eric M; Sipes, Sedonia D

    2015-08-17

    Mutualistic relationships between plants and their pollinators have played a major role in the evolution of biodiversity. While the vulnerability of these relationships to environmental change is a major concern, studies often lack a framework for predicting impacts from emerging threats (e.g. biological invasions). The objective of this study was to determine the reliance of Platanthera ciliaris (orange-fringed orchid) on Papilio palamedes (Palamedes swallowtail butterfly) for pollination and the relative availability of alternative pollinators. Recent declines of P. palamedes larval host plants due to laurel wilt disease (LWD) could endanger P. ciliaris populations that rely heavily on this butterfly for pollination. We monitored pollinator visitation and fruit set and measured nectar spur lengths of P. ciliaris flowers and proboscis lengths of its floral visitors in Jackson County, MS, USA. Papilio palamedes was the primary visitor with minimal visitation by Phoebis sennae (cloudless sulfur butterfly). Lengths of P. ciliaris nectar spurs were similar to proboscis lengths of both pollinator species. Fruit set was moderate with access to pollinators (55 ± 10.8 %), yet failed (0 %) when pollinators were excluded. Visitation increased with inflorescence size, but there was no such pattern in fruit set, indicating that fruit set was not limited by pollinator visitation within the range of visitation rates we observed. Our results are supported by historical data that suggest P. palamedes and P. sennae are important pollinators of P. ciliaris. Although P. sennae may provide supplemental pollination service, this is likely constrained by habitat preferences that do not always overlap with those of P. cilaris. Observed declines of P. palamedes due to LWD could severely limit the reproductive success and persistence of P. ciliaris and similar orchid species populations. This empirical-based prediction is among the first to document exotic forest pests and pathogens as an indirect threat to plant-pollinator interactions. Published by Oxford University Press on behalf of the Annals of Botany Company.

  3. Orchid–pollinator interactions and potential vulnerability to biological invasion

    PubMed Central

    Chupp, Adam D.; Battaglia, Loretta L.; Schauber, Eric M.; Sipes, Sedonia D.

    2015-01-01

    Mutualistic relationships between plants and their pollinators have played a major role in the evolution of biodiversity. While the vulnerability of these relationships to environmental change is a major concern, studies often lack a framework for predicting impacts from emerging threats (e.g. biological invasions). The objective of this study was to determine the reliance of Platanthera ciliaris (orange-fringed orchid) on Papilio palamedes (Palamedes swallowtail butterfly) for pollination and the relative availability of alternative pollinators. Recent declines of P. palamedes larval host plants due to laurel wilt disease (LWD) could endanger P. ciliaris populations that rely heavily on this butterfly for pollination. We monitored pollinator visitation and fruit set and measured nectar spur lengths of P. ciliaris flowers and proboscis lengths of its floral visitors in Jackson County, MS, USA. Papilio palamedes was the primary visitor with minimal visitation by Phoebis sennae (cloudless sulfur butterfly). Lengths of P. ciliaris nectar spurs were similar to proboscis lengths of both pollinator species. Fruit set was moderate with access to pollinators (55 ± 10.8 %), yet failed (0 %) when pollinators were excluded. Visitation increased with inflorescence size, but there was no such pattern in fruit set, indicating that fruit set was not limited by pollinator visitation within the range of visitation rates we observed. Our results are supported by historical data that suggest P. palamedes and P. sennae are important pollinators of P. ciliaris. Although P. sennae may provide supplemental pollination service, this is likely constrained by habitat preferences that do not always overlap with those of P. cilaris. Observed declines of P. palamedes due to LWD could severely limit the reproductive success and persistence of P. ciliaris and similar orchid species populations. This empirical-based prediction is among the first to document exotic forest pests and pathogens as an indirect threat to plant–pollinator interactions. PMID:26286221

  4. Morphological studies of the developing human esophageal epithelium.

    PubMed

    Ménard, D

    1995-06-15

    This article focusses on the structural development of human esophageal ciliated epithelium. A combination of transmission electron microscopic (TEM), scanning electron microscopic (SEM), radioautographic, and light microscopic (LM) analyses were carried out using intact fetal tissues between 8 and 20 weeks of gestation as well as cultured esophageal explants. Up to the age of 10 weeks, the stratified esophageal epithelium consisted of two longitudinal primary folds. The surface cells were undifferentiated and contained large glycogen aggregates. Between 11 and 16 weeks, the primary folds (now up to four) had developed secondary folds. The thickness of the epithelium drastically increased (123%) in concomittance with a differentiation of surface columnar ciliated cells. These highly specialized surface cells exhibited junctional complexes and well-developed organelles with numerous microvilli interspersed among the cilia. Transverse sections revealed the internal structure of the cilia with a consistent pattern of nine doublet microtubules surrounding a central pair of single microtubules. Freeze-fracture studies illustrated the presence of a ciliary necklace composed of 6 ring-like rows of intramembranous particles. They also revealed the structure of ciliary cell tight junctions consisting of up to nine anastomosing strands (P-face) or complementary grooves (E-face). Ultrastructural studies (LM, TEM, SEM) of the esophageal squamous epithelium obtained after 15 days of culture showed that the newly formed epithelium was similar to adult human epithelium. Finally LM and SEM observations established that the esophagogastric junction was not yet well delineated, consisting of a transitional area composed of a mixture of esophageal ciliated cells and gastric columnar mucous cells.

  5. Human dynamic closed-loop accommodation augmented by sympathetic inhibition.

    PubMed

    Culhane, H M; Winn, B; Gilmartin, B

    1999-05-01

    A ciliary alpha-adrenoceptor accommodative effect has been proposed, caused by a small population of alpha1-inhibitory receptors in excised human ciliary muscle. This study was intended to investigate the effect on the closed-loop dynamic accommodative process of modulating alpha1-adrenoceptor activity by topical instillation of the alpha1-adrenergic agonist, phenylephrine hydrochloride. A group of 10 visually normal subjects viewed a photopic (30 candela/m2) high-contrast Maltese cross, which was modulated sinusoidally (0.05-0.6Hz) and stepwise over a 2-D range (2-4 D). Monocular temporal accommodation responses were measured using a continuously recording dynamic tracking infrared optometer under two trial conditions: after instillation of saline control solution and 50 minutes subsequent to the instillation of 0.27 microl 0.4% benoxinate hydrochloride and 0.27 microl 2.5% phenylephrine hydrochloride. Pupil size and accommodative amplitude were measured at 90-second intervals for 50 minutes after drug instillation. All accommodative measurements were recorded through a fixed 4-mm pupil. A significant reduction in accommodative amplitude (11%; P < 0.05) was recorded, whereas pupil size showed a significant increase (33%; P < 0.05). No significant change in step-response dynamics was observed. However, phenylephrine hydrochloride caused a significant increase in accommodative gain in the low and midtemporal frequency ranges compared with the effect of a saline control treatment. No significant variation in phase lag was observed. For the first time in humans, this study shows that augmentation of the alpha1-inhibitory sympathetic contribution results in increased accommodative gain at low and midtemporal frequencies, which is consistent with findings in animal studies.

  6. Conformational antigenic determinants generated by interactions between a bacterially expressed recombinant peptide of the hepatitis E virus structural protein.

    PubMed

    Zhang, J Z; Ng, M H; Xia, N S; Lau, S H; Che, X Y; Chau, T N; Lai, S T; Im, S W

    2001-06-01

    A 23 kDa peptide locating to amino acid residues 394 to 604 of the major Hepatitis E Virus (HEV) structural protein was expressed in E. coli. This peptide was found to interact naturally with one another to form homodimers and it was recognized strongly and commonly in its dimeric form by HEV reactive human sera. The antigenic activity associated with the dimeric form was abrogated when the dimer was dissociated into monomer and the activity was reconstituted after the monomer was re-associated into dimer again. The dimeric form of the peptide elicited a vigorous antibody response in experimental animals and the resulting antisera were found to cross-react against HEV, effecting an efficient immune capture of the virus. These results attributed the antigenic activity associated with the dimeric form of the peptide to conformational antigenic determinants generated as a result of interaction between the peptide molecules. It is suggested that some of these antigenic determinants may be expressed by the HEV capsid and raised the possibility of this bacterially expressed peptide as an HEV vaccine candidate. Copyright 2001 Wiley-Liss, Inc.

  7. Mitochondrial Hsp90 is a ligand-activated molecular chaperone coupling ATP binding to dimer closure through a coiled-coil intermediate

    PubMed Central

    Sung, Nuri; Lee, Jungsoon; Kim, Ji-Hyun; Chang, Changsoo; Joachimiak, Andrzej; Lee, Sukyeong; Tsai, Francis T. F.

    2016-01-01

    Heat-shock protein of 90 kDa (Hsp90) is an essential molecular chaperone that adopts different 3D structures associated with distinct nucleotide states: a wide-open, V-shaped dimer in the apo state and a twisted, N-terminally closed dimer with ATP. Although the N domain is known to mediate ATP binding, how Hsp90 senses the bound nucleotide and facilitates dimer closure remains unclear. Here we present atomic structures of human mitochondrial Hsp90N (TRAP1N) and a composite model of intact TRAP1 revealing a previously unobserved coiled-coil dimer conformation that may precede dimer closure and is conserved in intact TRAP1 in solution. Our structure suggests that TRAP1 normally exists in an autoinhibited state with the ATP lid bound to the nucleotide-binding pocket. ATP binding displaces the ATP lid that signals the cis-bound ATP status to the neighboring subunit in a highly cooperative manner compatible with the coiled-coil intermediate state. We propose that TRAP1 is a ligand-activated molecular chaperone, which couples ATP binding to dramatic changes in local structure required for protein folding. PMID:26929380

  8. Herpes Simplex Virus 1 Reactivates from Autonomic Ciliary Ganglia Independently from Sensory Trigeminal Ganglia To Cause Recurrent Ocular Disease

    PubMed Central

    Lee, Sungseok; Ives, Angela M.

    2015-01-01

    ABSTRACT Herpes simplex virus 1 (HSV-1) and HSV-2 establish latency in sensory and autonomic neurons after ocular or genital infection, but their recurrence patterns differ. HSV-1 reactivates from latency to cause recurrent orofacial disease, and while HSV-1 also causes genital lesions, HSV-2 recurs more efficiently in the genital region and rarely causes ocular disease. The mechanisms regulating these anatomical preferences are unclear. To determine whether differences in latent infection and reactivation in autonomic ganglia contribute to differences in HSV-1 and HSV-2 anatomical preferences for recurrent disease, we compared HSV-1 and HSV-2 clinical disease, acute and latent viral loads, and viral gene expression in sensory trigeminal and autonomic superior cervical and ciliary ganglia in a guinea pig ocular infection model. HSV-2 produced more severe acute disease, correlating with higher viral DNA loads in sensory and autonomic ganglia, as well as higher levels of thymidine kinase expression, a marker of productive infection, in autonomic ganglia. HSV-1 reactivated in ciliary ganglia, independently from trigeminal ganglia, to cause more frequent recurrent symptoms, while HSV-2 replicated simultaneously in autonomic and sensory ganglia to cause more persistent disease. While both HSV-1 and HSV-2 expressed the latency-associated transcript (LAT) in the trigeminal and superior cervical ganglia, only HSV-1 expressed LAT in ciliary ganglia, suggesting that HSV-2 is not reactivation competent or does not fully establish latency in ciliary ganglia. Thus, differences in replication and viral gene expression in autonomic ganglia may contribute to differences in HSV-1 and HSV-2 acute and recurrent clinical disease. IMPORTANCE Herpes simplex virus 1 (HSV-1) and HSV-2 establish latent infections, from which the viruses reactivate to cause recurrent disease throughout the life of the host. However, the viruses exhibit different manifestations and frequencies of recurrent disease. HSV-1 and HSV-2 establish latency in both sensory and autonomic ganglia. Autonomic ganglia are more responsive than sensory ganglia to stimuli associated with recurrent disease in humans, such as stress and hormone fluctuations, suggesting that autonomic ganglia may play an important role in recurrent disease. We show that HSV-1 can reactivate from autonomic ganglia, independently from sensory ganglia, to cause recurrent ocular disease. We found no evidence that HSV-2 could reactivate from autonomic ganglia independently from sensory ganglia after ocular infection, but HSV-2 did replicate in both ganglia simultaneously to cause persistent disease. Thus, viral replication and reactivation in autonomic ganglia contribute to different clinical disease manifestations of HSV-1 and HSV-2 after ocular infection. PMID:26041294

  9. Development and validation of a high-content bimolecular fluorescence complementation assay for small-molecule inhibitors of HIV-1 Nef dimerization.

    PubMed

    Poe, Jerrod A; Vollmer, Laura; Vogt, Andreas; Smithgall, Thomas E

    2014-04-01

    Nef is a human immunodeficiency virus 1 (HIV-1) accessory factor essential for viral pathogenesis and AIDS progression. Many Nef functions require dimerization, and small molecules that block Nef dimerization may represent antiretroviral drug leads. Here we describe a cell-based assay for Nef dimerization inhibitors based on bimolecular fluorescence complementation (BiFC). Nef was fused to nonfluorescent, complementary fragments of yellow fluorescent protein (YFP) and coexpressed in the same cell population. Dimerization of Nef resulted in juxtaposition of the YFP fragments and reconstitution of the fluorophore. For automation, the Nef-YFP fusion proteins plus a monomeric red fluorescent protein (mRFP) reporter were expressed from a single vector, separated by picornavirus "2A" linker peptides to permit equivalent translation of all three proteins. Validation studies revealed a critical role for gating on the mRFP-positive subpopulation of transfected cells, as well as use of the mRFP signal to normalize the Nef-BiFC signal. Nef-BiFC/mRFP ratios resulting from cells expressing wild-type versus dimerization-defective Nef were very clearly separated, with Z factors consistently in the 0.6 to 0.7 range. A fully automated pilot screen of the National Cancer Institute Diversity Set III identified several hit compounds that reproducibly blocked Nef dimerization in the low micromolar range. This BiFC-based assay has the potential to identify cell-active small molecules that directly interfere with Nef dimerization and function.

  10. Ras Dimer Formation as a New Signaling Mechanism and Potential Cancer Therapeutic Target

    PubMed Central

    Chen, Mo; Peters, Alec; Huang, Tao; Nan, Xiaolin

    2016-01-01

    The K-, N-, and HRas small GTPases are key regulators of cell physiology and are frequently mutated in human cancers. Despite intensive research, previous efforts to target hyperactive Ras based on known mechanisms of Ras signaling have been met with little success. Several studies have provided compelling evidence for the existence and biological relevance of Ras dimers, establishing a new mechanism for regulating Ras activity in cells additionally to GTP-loading and membrane localization. Existing data also start to reveal how Ras proteins dimerize on the membrane. We propose a dimer model to describe Ras-mediated effector activation, which contrasts existing models of Ras signaling as a monomer or as a 5-8 membered multimer. We also discuss potential implications of this model in both basic and translational Ras biology. PMID:26423697

  11. Unique and Highly Selective Anticytomegalovirus Activities of Artemisinin-Derived Dimer Diphenyl Phosphate Stem from Combination of Dimer Unit and a Diphenyl Phosphate Moiety

    PubMed Central

    He, Ran; Forman, Michael; Mott, Bryan T.; Venkatadri, Rajkumar; Posner, Gary H.

    2013-01-01

    We report that the artemisinin-derived dimer diphenyl phosphate (DPP; dimer 838) is the most selective inhibitor of human cytomegalovirus (CMV) replication among a series of artemisinin-derived monomers and dimers. Dimer 838 was also unique in being an irreversible CMV inhibitor. The peroxide unit within artemisinins' chemical structures is critical to their activities, and its absence results in loss of anti-CMV activities. Surprisingly, the deoxy dimer of 838 retained modest anti-CMV activity, suggesting that the DPP moiety of dimer 838 contributes to its anti-CMV activities. DPP alone did not inhibit CMV replication, but triphenyl phosphate (TPP) had modest CMV inhibition, although its selectivity index was low. Artemisinin DPP derivatives dimer 838 and monomer diphenyl phosphate (compound 558) showed stronger CMV inhibition and a higher selectivity index than their analogs lacking the DPP unit. An add-on and removal assay revealed that removing DPP derivatives (compounds 558 and 838) but not the non-DPP backbones (artesunate and compound 606) at 24 h postinfection (hpi) already resulted in dominant CMV inhibition. CMV inhibition was fully irreversible with 838 and partially irreversible with 558, while non-DPP artemisinins were reversible inhibitors. While all artemisinin derivatives and TPP reduced the expression of the CMV immediate early 2 (IE2), UL44, and pp65 proteins at or after 48 hpi, only TPP inhibited the expression of both IE1 and IE2. Combination of a non-DPP dimer (compound 606) with TPP was synergistic in CMV inhibition, while ganciclovir and TPP were additive. Although TPP shared structural similarity with monomer DPP (compound 558) and dimer DPP (compound 838), its pattern of CMV inhibition was significantly different from the patterns of the artemisinins. These findings demonstrate that the DPP group contributes to the unique activities of compound 838. PMID:23774439

  12. Mutations in CEP78 Cause Cone-Rod Dystrophy and Hearing Loss Associated with Primary-Cilia Defects.

    PubMed

    Nikopoulos, Konstantinos; Farinelli, Pietro; Giangreco, Basilio; Tsika, Chrysanthi; Royer-Bertrand, Beryl; Mbefo, Martial K; Bedoni, Nicola; Kjellström, Ulrika; El Zaoui, Ikram; Di Gioia, Silvio Alessandro; Balzano, Sara; Cisarova, Katarina; Messina, Andrea; Decembrini, Sarah; Plainis, Sotiris; Blazaki, Styliani V; Khan, Muhammad Imran; Micheal, Shazia; Boldt, Karsten; Ueffing, Marius; Moulin, Alexandre P; Cremers, Frans P M; Roepman, Ronald; Arsenijevic, Yvan; Tsilimbaris, Miltiadis K; Andréasson, Sten; Rivolta, Carlo

    2016-09-01

    Cone-rod degeneration (CRD) belongs to the disease spectrum of retinal degenerations, a group of hereditary disorders characterized by an extreme clinical and genetic heterogeneity. It mainly differentiates from other retinal dystrophies, and in particular from the more frequent disease retinitis pigmentosa, because cone photoreceptors degenerate at a higher rate than rod photoreceptors, causing severe deficiency of central vision. After exome analysis of a cohort of individuals with CRD, we identified biallelic mutations in the orphan gene CEP78 in three subjects from two families: one from Greece and another from Sweden. The Greek subject, from the island of Crete, was homozygous for the c.499+1G>T (IVS3+1G>T) mutation in intron 3. The Swedish subjects, two siblings, were compound heterozygotes for the nearby mutation c.499+5G>A (IVS3+5G>A) and for the frameshift-causing variant c.633delC (p.Trp212Glyfs(∗)18). In addition to CRD, these three individuals had hearing loss or hearing deficit. Immunostaining highlighted the presence of CEP78 in the inner segments of retinal photoreceptors, predominantly of cones, and at the base of the primary cilium of fibroblasts. Interaction studies also showed that CEP78 binds to FAM161A, another ciliary protein associated with retinal degeneration. Finally, analysis of skin fibroblasts derived from affected individuals revealed abnormal ciliary morphology, as compared to that of control cells. Altogether, our data strongly suggest that mutations in CEP78 cause a previously undescribed clinical entity of a ciliary nature characterized by blindness and deafness but clearly distinct from Usher syndrome, a condition for which visual impairment is due to retinitis pigmentosa. Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  13. A common variant in combination with a nonsense mutation in a member of the thioredoxin family causes primary ciliary dyskinesia

    PubMed Central

    Duriez, Bénédicte; Duquesnoy, Philippe; Escudier, Estelle; Bridoux, Anne-Marie; Escalier, Denise; Rayet, Isabelle; Marcos, Elisabeth; Vojtek, Anne-Marie; Bercher, Jean-François; Amselem, Serge

    2007-01-01

    Thioredoxins belong to a large family of enzymatic proteins that function as general protein disulfide reductases, therefore participating in several cellular processes via redox-mediated reactions. So far, none of the 18 members of this family has been involved in human pathology. Here we identified TXNDC3, which encodes a thioredoxin–nucleoside diphosphate kinase, as a gene implicated in primary ciliary dyskinesia (PCD), a genetic condition characterized by chronic respiratory tract infections, left–right asymmetry randomization, and male infertility. We show that the disease, which segregates as a recessive trait, results from the unusual combination of the following two transallelic defects: a nonsense mutation and a common intronic variant found in 1% of control chromosomes. This variant affects the ratio of two physiological TXNDC3 transcripts: the full-length isoform and a novel isoform, TXNDC3d7, carrying an in-frame deletion of exon 7. In vivo and in vitro expression data unveiled the physiological importance of TXNDC3d7 (whose expression was reduced in the patient) and the corresponding protein that was shown to bind microtubules. PCD is known to result from defects of the axoneme, an organelle common to respiratory cilia, embryonic nodal cilia, and sperm flagella, containing dynein arms, with, to date, the implication of genes encoding dynein proteins. Our findings, which identify a another class of molecules involved in PCD, disclose the key role of TXNDC3 in ciliary function; they also point to an unusual mechanism underlying a Mendelian disorder, which is an SNP-induced modification of the ratio of two physiological isoforms generated by alternative splicing. PMID:17360648

  14. Forensic differentiation between peripheral and menstrual blood in cases of alleged sexual assault-validating an immunochromatographic multiplex assay for simultaneous detection of human hemoglobin and D-dimer.

    PubMed

    Holtkötter, Hannah; Dias Filho, Claudemir Rodrigues; Schwender, Kristina; Stadler, Christian; Vennemann, Marielle; Pacheco, Ana Claudia; Roca, Gabriela

    2018-05-01

    Sexual assault is a serious offense and identification of body fluids originating from sexual activity has been a crucial aspect of forensic investigations for a long time. While reliable tests for the detection of semen and saliva have been successfully implemented into forensic laboratories, the detection of other body fluids, such as vaginal or menstrual fluid, is more challenging. Especially, the discrimination between peripheral and menstrual blood can be highly relevant for police investigations because it provides potential evidence regarding the issue of consent. We report the forensic validation of an immunochromatographic test that allows for such discrimination in forensic stains, the SERATEC PMB test, and its performance on real casework samples. The PMB test is a duplex test combining human hemoglobin and D-dimer detection and was developed for the identification of blood and menstrual fluid, both at the crime scene and in the laboratory. The results of this study showed that the duplex D-dimer/hemoglobin assay reliably detects the presence of human hemoglobin and identifies samples containing menstrual fluid by detecting the presence of D-dimers. The method distinguished between menstrual and peripheral blood in a swab from a historical artifact and in real casework samples of alleged sexual assaults. Results show that the development of the new duplex test is a substantial progress towards analyzing and interpreting evidence from sexual assault cases.

  15. Symmetrical dimer of the human dopamine transporter revealed by cross-linking Cys-306 at the extracellular end of the sixth transmembrane segment

    PubMed Central

    Hastrup, Hanne; Karlin, Arthur; Javitch, Jonathan A.

    2001-01-01

    There is evidence both for and against Na+- and Cl−-dependent neurotransmitter transporters forming oligomers. We found that cross-linking the human dopamine transporter (DAT), which is heterologously expressed in human embryonic kidney 293 cells, either with copper phenanthroline (CuP) or the bifunctional reagent bis-(2-methanethiosulfonatoethyl)amine hydrochloride (bis-EA) increased the apparent molecular mass determined with nonreducing SDS/PAGE from ≈85 to ≈195 kDa. After cross-linking, but not before, coexpressed, differentially epitope-tagged DAT molecules, solubilized in Triton X-100, were coimmunoprecipitated. Thus, the 195-kDa complex was a homodimer. Cross-linking of DAT did not affect tyramine uptake. Replacement of Cys-306 with Ala prevented cross-linking. Replacement of all of the non-disulfide-bonded cysteines in the extracellular and membrane domains, except for Cys-306, did not prevent cross-linking. We conclude that the cross-link is between Cys-306 at the extracellular end of TM6 in each of the two DATs. The motif GVXXGVXXA occurs at the intracellular end of TM6 in DAT and is found in a number of other neurotransmitter transporters. This sequence was originally found at the dimerization interface in glycophorin A, and it promotes dimerization in model systems. Mutation of either glycine disrupted DAT expression and function. The intracellular end of TM6, like the extracellular end, is likely to be part of the dimerization interface. PMID:11526230

  16. Symmetrical dimer of the human dopamine transporter revealed by cross-linking Cys-306 at the extracellular end of the sixth transmembrane segment.

    PubMed

    Hastrup, H; Karlin, A; Javitch, J A

    2001-08-28

    There is evidence both for and against Na(+)- and Cl(-)-dependent neurotransmitter transporters forming oligomers. We found that cross-linking the human dopamine transporter (DAT), which is heterologously expressed in human embryonic kidney 293 cells, either with copper phenanthroline (CuP) or the bifunctional reagent bis-(2-methanethiosulfonatoethyl)amine hydrochloride (bis-EA) increased the apparent molecular mass determined with nonreducing SDS/PAGE from approximately 85 to approximately 195 kDa. After cross-linking, but not before, coexpressed, differentially epitope-tagged DAT molecules, solubilized in Triton X-100, were coimmunoprecipitated. Thus, the 195-kDa complex was a homodimer. Cross-linking of DAT did not affect tyramine uptake. Replacement of Cys-306 with Ala prevented cross-linking. Replacement of all of the non-disulfide-bonded cysteines in the extracellular and membrane domains, except for Cys-306, did not prevent cross-linking. We conclude that the cross-link is between Cys-306 at the extracellular end of TM6 in each of the two DATs. The motif GVXXGVXXA occurs at the intracellular end of TM6 in DAT and is found in a number of other neurotransmitter transporters. This sequence was originally found at the dimerization interface in glycophorin A, and it promotes dimerization in model systems. Mutation of either glycine disrupted DAT expression and function. The intracellular end of TM6, like the extracellular end, is likely to be part of the dimerization interface.

  17. Human Neural Cell-Based Biosensor

    DTIC Science & Technology

    2010-04-26

    SNAP25 (SNAP25), GluR1 (GRIA1) glutamate receptor , ionotropic , AMPA1, Nav1.2 (SCN2A), Nav1.6 (SCN8A), CaV 2.1 (CACNA1A), HERG (KCNH2), and KCC2...transitions to mesenchymal progenitor cells." Tissue Eng Part A 15(8): 1897-907. Haltiwanger, R. S. and P. Stanley (2002). "Modulation of receptor ...cytometry studies previously conducted by the Stice lab identified ciliary neurotrophic factor receptor alpha (CNTFRα) as a novel cell surface marker to

  18. In situ Localization of the Human Multidrug‐resistance Gene mRNA Using Thymine‐Thymine Dimerized Single‐stranded cDNA

    PubMed Central

    Koji, Takehiko; Ueda, Kazumitsu; Pastan, Ira; Gottesman, Michael M.; Nakane, Paul K.; Mori, Shigeo

    1990-01-01

    In order to detect the mRNA transcribed from the multidrug‐resistance gene (MDR1), thymine‐thymine (T‐T) dimerized single‐stranded DNA probes have been utilized for hybridization with mRNA either on nitrocellulose filters or in cells and tissues. S1 nuclease digestion rather than sonication was used to obtain short T‐T dimerized single‐stranded DNA (300–400 bases) so that they could penetrate well into the cytoplasm. The hybridized T‐T DNA was detected immunohisto‐chemically using rabbit anti‐T‐T DNA antibody (Ab) and peroxidase‐labeled goat anti‐rabbit IgG Ab. Employing this system, MDR1 mRNA could be localized clearly in the human multidrug‐resistant cell lines K562/ADM, CEM/VLB, 2780ad, and KBC4 cells as well as in human fetal kidney and gastric carcinoma. Furthermore, our system successfully detected the expression of MDR1 mRNA in cell lines of increasing resistance. These results paralleled results obtained at the protein level by immunohistochemistry. The analysis of MDR1 RNA expression by this in situ hybridization technique should be useful in the study of normal human tissues and tumor samples expressing the MDR1 gene. PMID:1977730

  19. Canine REIC/Dkk-3 interacts with SGTA and restores androgen receptor signalling in androgen-independent prostate cancer cell lines.

    PubMed

    Kato, Yuiko; Ochiai, Kazuhiko; Kawakami, Shota; Nakao, Nobuhiro; Azakami, Daigo; Bonkobara, Makoto; Michishita, Masaki; Morimatsu, Masami; Watanabe, Masami; Omi, Toshinori

    2017-06-09

    The pathological condition of canine prostate cancer resembles that of human androgen-independent prostate cancer. Both canine and human androgen receptor (AR) signalling are inhibited by overexpression of the dimerized co-chaperone small glutamine-rich tetratricopeptide repeat-containing protein α (SGTA), which is considered to cause the development of androgen-independency. Reduced expression in immortalised cells (REIC/Dkk-3) interferes with SGTA dimerization and rescues AR signalling. This study aimed to assess the effects of REIC/Dkk-3 and SGTA interactions on AR signalling in the canine androgen-independent prostate cancer cell line CHP-1. Mammalian two-hybrid and Halo-tagged pull-down assays showed that canine REIC/Dkk-3 interacted with SGTA and interfered with SGTA dimerization. Additionally, reporter assays revealed that canine REIC/Dkk-3 restored AR signalling in both human and canine androgen-independent prostate cancer cells. Therefore, we confirmed the interaction between canine SGTA and REIC/Dkk-3, as well as their role in AR signalling. Our results suggest that this interaction might contribute to the development of a novel strategy for androgen-independent prostate cancer treatment. Moreover, we established the canine androgen-independent prostate cancer model as a suitable animal model for the study of this type of treatment-refractory human cancer.

  20. Novel Monoclonal Antibodies for Studies of Human and Rhesus Macaque Secretory Component and Human J-Chain

    PubMed Central

    Zhang, Ruijun; Alam, S. Munir; Yu, Jae-Sung; Scearce, Richard; Lockwood, Bradley; Hwang, Kwan-Ki; Parks, Robert; Permar, Sallie; Brandtzaeg, Per; Haynes, Barton F.

    2016-01-01

    Immunoglobulin A (IgA) antibodies exist in monomeric, dimeric, and secretory forms. Dimerization of IgA depends on a 15-kD polypeptide termed “joining (J) chain,” which is also part of the binding site for an epithelial glycoprotein called “secretory component (SC),” whether this after apical cleavage on secretory epithelia is ligand bound in secretory IgA (SIgA) or in a free form. Uncleaved membrane SC, also called the “polymeric Ig receptor,” is thus crucial for transcytotic export of SIgA to mucosal surfaces, where it interacts with and modulates commensal bacteria and mediates protective immune responses against exogenous pathogens. To evaluate different forms of IgA, we have produced mouse monoclonal antibodies (MAbs) against human J-chain and free SC. We found that J-chain MAb 9A8 and SC MAb 9H7 identified human dimeric IgA and SIgA in enzyme-linked immunoassay and western blot analysis, as well as functioning in immunohistochemistry to identify cytoplasmic IgA of intestinal lamina propria plasmablasts/plasma cells and crypt epithelium of distal human intestine. Finally, we demonstrated that SC MAb 9H7 cross-reacted with rhesus macaque SIgA. These novel reagents should be of use in the study of the biology of various forms of IgA in humans and SIgA in macaques, as well as in monitoring the production and/or isolation of these forms of IgA. PMID:27386924

  1. Differential effects of ascorbate on endothelium-derived hyperpolarizing factor (EDHF)-mediated vasodilatation in the bovine ciliary vascular bed and coronary artery.

    PubMed

    McNeish, Alister J; Nelli, Silvia; Wilson, William S; Dowell, Fiona J; Martin, William

    2003-03-01

    1. The ability of ascorbate to inhibit endothelium-derived hyperpolarizing factor (EDHF)-mediated vasodilatation was compared in the bovine perfused ciliary vascular bed and isolated rings of coronary artery. 2. Acetylcholine-induced, EDHF-mediated vasodilatation of the ciliary circulation was blocked following inclusion of ascorbate (50 micro M, 120 min) in the perfusion fluid. The blockade was highly selective since ascorbate had no effect on the vasodilator actions of the K(ATP) channel opener, levcromakalim, nor on the tonic vasodepressor action of basally released nitric oxide. 3. The possibility that concentration of ascorbate by the ciliary body was a prerequisite for blockade to occur was ruled out, since EDHF was still blocked when the anterior and posterior chambers were continuously flushed with Krebs solution or when both the aqueous and vitreous humour were drained. 4. Ascorbate at 50 micro M failed to affect bradykinin- or acetylcholine-induced, EDHF-mediated vasodilatation in rings of bovine coronary artery. Raising the concentration to 3 mM did produce blockade of EDHF, but this was nonselective, since vasodilator responses to endothelium-derived nitric oxide were also inhibited. 5. Thus, ascorbate (50 micro M) is not a universal blocker of EDHF. Whether its ability to block in the bovine ciliary circulation, but not in the coronary artery, is due to differences in the nature of EDHF at the two sites, differences in vessel size (resistance arterioles versus conduit artery), the presence or absence of flow, or to some other factor remains to be determined.

  2. Accuracy of Immunofluorescence in the Diagnosis of Primary Ciliary Dyskinesia

    PubMed Central

    Frost, Emily; Dixon, Mellisa; Ollosson, Sarah; Kilpin, Kate; Patel, Mitali; Scully, Juliet; Rogers, Andrew V.; Mitchison, Hannah M.; Bush, Andrew; Hogg, Claire

    2017-01-01

    Rationale: The standard approach to diagnosis of primary ciliary dyskinesia (PCD) in the United Kingdom consists of assessing ciliary function by high-speed microscopy and ultrastructure by election microscopy, but equipment and expertise is not widely available internationally. The identification of biallelic disease-causing mutations is also diagnostic, but many disease-causing genes are unknown, and testing is not widely available outside the United States. Fluorescent antibodies to ciliary proteins are used to validate research genetic studies, but diagnostic utility in this disease has not been systematically evaluated. Objectives: To determine utility of a panel of six fluorescent labeled antibodies as a diagnostic tool for PCD. Methods: The study used immunofluorescent labeling of nasal brushings from a discovery cohort of 35 patients diagnosed with PCD by ciliary ultrastructure, and a diagnostic accuracy cohort of 386 patients referred with symptoms suggestive of disease. The results were compared with diagnostic outcome. Measurements and Main Results: Immunofluorescence correctly identified mislocalized or absent staining in 100% of the discovery cohort. In the diagnostic cohort immunofluorescence successfully identified 22 of 25 patients with PCD and normal staining in all 252 in whom PCD was considered highly unlikely. In addition, immunofluorescence provided a result in 55% (39) of cases that were previously inconclusive. Immunofluorescence results were available within 14 days, costing $187 per sample compared with electron microscopy (27 days; cost $1,452). Conclusions: Immunofluorescence is a highly specific diagnostic test for PCD, and it improves the speed and availability of diagnostic testing. However, sensitivity is limited and immunofluorescence is not suitable as a stand-alone test. PMID:28199173

  3. Qualitative Assessment of Ultrasound Biomicroscopic Images Using Standard Photographs: The Liwan Eye Study

    PubMed Central

    Jiang, Yuzhen; Huang, Wenyong; Huang, Qunxiao; Zhang, Jian; Foster, Paul J.

    2010-01-01

    Objective. To classify anatomic features related to anterior chamber angles by a qualitative assessment system based on ultrasound biomicroscopy (UBM) images. Methods. Cases of primary angle-closure suspect (PACS), defined by pigmented trabecular meshwork that is not visible in two or more quadrants on static gonioscopy (cases) and systematically selected subjects (1 of every 10) who did not meet this criterion (controls) were enrolled during a population-based survey in Guangzhou, China. All subjects underwent UBM examination. A set of standard UBM images was used to qualitatively classify anatomic features related to the angle configuration, including iris thickness, iris convexity, iris angulation, ciliary body size, and ciliary process position. All analysis was conducted on right eye images. Results. Based on the qualitative grades, the difference in overall iris thickness between gonioscopically narrow eyes (n = 117) and control eyes (n = 57) was not statistically significant. The peripheral one third of the iris tended to be thicker in all quadrants of the PACS eyes, although the difference was statistically significant only in the superior quadrant (P = 0.008). No significant differences were found in the qualitative classifications of iris insertion, iris angulation, ciliary body size, and ciliary process position. The findings were similar when compared with the control group of eyes with wide angles in all quadrants. Conclusions. Basal iris thickness seems to be more relevant to narrow angle configuration than to overall iris thickness. Otherwise, the anterior rotation and size of the ciliary body, the iris insertion, and the overall iris thickness are comparable in narrow- and wide-angle eyes. PMID:19834039

  4. The pupillary and ciliary components of the cat Edinger-Westphal nucleus: a transsynaptic transport investigation.

    PubMed

    Erichsen, Jonathan T; May, Paul J

    2002-01-01

    The distribution of preganglionic motoneurons supplying the ciliary ganglion in the cat was defined both qualitatively and quantitatively. These cells were retrogradely labeled directly, following injections of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) into the ciliary ganglion, or were transsynaptically labeled following injections of WGA into the vitreous chamber. Almost half of the cells are distributed rostral to the oculomotor nucleus, both in and lateral to the anteromedian nucleus. Of the remaining preganglionic motoneurons, roughly 20% of the total are located dorsal to the oculomotor nucleus. Strikingly few of these neurons are actually found within the Edinger-Westphal nucleus proper. Instead, the majority are found in the adjacent supraoculomotor area or along the midline between the two somatic nuclei. An additional population, roughly 30% of the total, is located ventral to the oculomotor nucleus. This study also provides evidence for a functional subdivision of this preganglionic population. Pupil-related preganglionic motoneurons were transsynaptically labeled by injecting WGA into the anterior chamber, while lens-related preganglionic motoneurons were transsynaptically labeled by injecting WGA into the ciliary muscle. The results suggest that the pupil-related preganglionic motoneurons, that is, those controlling the iris sphincter pupillae muscle, are located rostrally, in and lateral to the anteromedian nucleus. In contrast, lens-related preganglionic motoneurons, that is, those controlling the ciliary muscle are particularly prevalent caudally, both dorsal and ventral to the oculomotor nucleus. Thus, the cat intraocular muscle preganglionic innervation is spatially organized with respect to function, despite the dispersed nature of its distribution.

  5. Vaccine Therapy in Treating Patients With Stage IIC-IV Melanoma

    ClinicalTrials.gov

    2014-05-20

    Ciliary Body and Choroid Melanoma, Medium/Large Size; Ciliary Body and Choroid Melanoma, Small Size; Extraocular Extension Melanoma; Iris Melanoma; Metastatic Intraocular Melanoma; Mucosal Melanoma; Recurrent Intraocular Melanoma; Recurrent Melanoma; Stage IIC Melanoma; Stage IIIA Intraocular Melanoma; Stage IIIA Melanoma; Stage IIIB Intraocular Melanoma; Stage IIIB Melanoma; Stage IIIC Intraocular Melanoma; Stage IIIC Melanoma; Stage IV Intraocular Melanoma; Stage IV Melanoma

  6. Collagen induces activation of DDR1 through lateral dimer association and phosphorylation between dimers

    PubMed Central

    Juskaite, Victoria; Corcoran, David S; Leitinger, Birgit

    2017-01-01

    The collagen-binding receptor tyrosine kinase DDR1 (discoidin domain receptor 1) is a drug target for a wide range of human diseases, but the molecular mechanism of DDR1 activation is poorly defined. Here we co-expressed different types of signalling-incompetent DDR1 mutants (‘receiver’) with functional DDR1 (‘donor’) and demonstrate phosphorylation of receiver DDR1 by donor DDR1 in response to collagen. Making use of enforced covalent DDR1 dimerisation, which does not affect receptor function, we show that receiver dimers are phosphorylated in trans by the donor; this process requires the kinase activity of the donor but not that of the receiver. The receiver ectodomain is not required, but phosphorylation in trans is abolished by mutation of the transmembrane domain. Finally, we show that mutant DDR1 that cannot bind collagen is recruited into DDR1 signalling clusters. Our results support an activation mechanism whereby collagen induces lateral association of DDR1 dimers and phosphorylation between dimers. DOI: http://dx.doi.org/10.7554/eLife.25716.001 PMID:28590245

  7. Redescription of the Tintinnid Stenosemella pacifica Kofoid and Campbell, 1929 (Ciliophora, Spirotricha) Based on Live Observation, Protargol Impregnation, and Scanning Electron Microscopy

    PubMed Central

    AGATHA, SABINE; TSAI, SHENG-FANG

    2010-01-01

    The tintinnid ciliate Stenosemella pacifica Kofoid and Campbell, 1929 was occasionally recorded from the pelagial of temperate, subtropical, and tropical neritic waters. Since its cytological features were unknown, the species is redescribed from material collected in the pelagial of the Irish Sea, using live observation, protargol impregnation, and scanning electron microscopy. Furthermore, the species diagnosis is improved to include new characteristics, e.g. the somatic ciliary pattern comprising a ventral, dorsal, and posterior kinety as well as a right, left, and lateral ciliary field. The stomatogenesis of S. pacifica is typical for species with such a complex somatic ciliary pattern: the oral primordium develops hypoapokinetally posterior to the lateral ciliary field. The presence of windows in the lorica collar of Stenosemella ventricosa, the type of the genus, necessitates (i) an improved genus diagnosis, (ii) a synonymization of the genus Luminella Kofoid and Campbell, 1939, and (iii) a transfer of the Luminella species to the genus Stenosemella, including Luminella neocalifornica, which becomes Stenosemella neocalifornica nov. comb. Owing to the lack of a description, Stenosemella crateri is considered a nomen nudum. PMID:18318859

  8. Effects of theophylline on expression of the long cilia phenotype in sand dollar blastulae.

    PubMed

    Riederer-Henderson, M A

    1988-04-01

    Previously, increases in ciliary length have only been obtained through genetic mutation in Chlamydomonas or by incubation of swimming echinoderm blastulae in trypsin or elastase. We have found that the phenotypic switch from short to long cilia on sand dollar blastulae can also be effected by incubation in theophylline. Cilia detached from control blastulae have a mean length of 21 +/- 7 microns with 10% of the cilia being greater than 30 microns. Upon incubation in 10 mM theophylline additional long cilia appeared after 10 hours and by 24-32 hours 1/2-3/4 of the embryo was covered with long cilia. The percentage of long cilia increased to 65% with a mean length of 40.0 +/- 17.6 microns. Incubation in other methylxanthines, such as aminophylline, caffeine, or isobutylmethylxanthine, inhibited development but had no effect on ciliary length distribution. Dibutyryl cAMP, 8-bromoadenosine, and calcium ionophore also had no effect on ciliary length. Cyclic AMP levels were measured and showed only slight differences among controls and embryos incubated in trypsin, caffeine, or theophylline. These data suggest that theophylline may be altering ciliary length control through some mechanism other than elevations in cAMP.

  9. Sequence-Based Identification of a Zoophilic Strain of Trichophyton interdigitale in a Rare Case of Tinea Blepharo-Ciliaris Associated with Tinea Barbae.

    PubMed

    Buruiana, Adrian M; Mihali, Ciprian V; Popescu, Cristina

    2015-12-01

    Impaired hair at blepharo-ciliaris area by dermatophytes is a rare clinical entity. This infection is often misdiagnosed or underdiagnosed, being mistakenly referred to as an infection of bacterial origin. Herein, we present a rare case of tinea blepharo-ciliaris associated with tinea barbae in an adult male. Considering the two lesions of the patient, mycological examination was performed by phenotypic methods, including environmental electronic scanning microscopy. Trichophyton interdigitale zoophilic strain was identified as the etiological agent by direct examination of the hair, primary culture analysis of the developed colonies and PCR sequencing of the ITS1 region of the rDNA gene. Homology search showed 100% similarity with T. interdigitale (GenBank accession number: KC595993), Arthroderma vanbreuseghemii (GenBank accession number: JQ407190) and zoophilic strain of T. interdigitale (GenBank accession number: AY062119.1.). Four weeks of oral and local treatment with itraconazole (100 mg twice a day) and fluconazole 0.3% (eyedrops) induced complete remission. To our knowledge, this is the first report of tinea blepharo-ciliaris associated with tinea barbae in Romania.

  10. Head sensory organs of Dactylopodola baltica (Macrodasyida, Gastrotricha): a combination of transmission electron microscopical and immunocytochemical techniques.

    PubMed

    Liesenjohann, Thilo; Neuhaus, Birger; Schmidt-Rhaesa, Andreas

    2006-08-01

    The anterior and posterior head sensory organs of Dactylopodola baltica (Macrodasyida, Gastrotricha) were investigated by transmission electron microscopy (TEM). In addition, whole individuals were labeled with phalloidin to mark F-actin and with anti-alpha-tubulin antibodies to mark microtubuli and studied with confocal laser scanning microscopy. Immunocytochemistry reveals that the large number of ciliary processes in the anterior head sensory organ contain F-actin; no signal could be detected for alpha-tubulin. Labeling with anti-alpha-tubulin antibodies revealed that the anterior and posterior head sensory organs are innervated by a common stem of nerves from the lateral nerve cords just anterior of the dorsal brain commissure. TEM studies showed that the anterior head sensory organ is composed of one sheath cell and one sensory cell with a single branching cilium that possesses a basal inflated part and regularly arranged ciliary processes. Each ciliary process contains one central microtubule. The posterior head sensory organ consists of at least one pigmented sheath cell and several probably monociliary sensory cells. Each cilium branches into irregularly arranged ciliary processes. These characters are assumed to belong to the ground pattern of the Gastrotricha. Copyright 2006 Wiley-Liss, Inc.

  11. Force-response considerations in ciliary mechanosensation.

    PubMed

    Resnick, Andrew; Hopfer, Ulrich

    2007-08-15

    Considerable experimental evidence indicates that the primary, nonmotile cilium is a mechanosensory organelle in several epithelial cell types. As the relationship between cellular responses and nature and magnitude of applied forces is not well understood, we have investigated the effects of exposure of monolayers of renal collecting duct chief cells to orbital shaking and quantified the forces incident on cilia. An exposure of 24 h of these cells to orbital shaking resulted in a decrease of amiloride-sensitive sodium current by approximately 60% and ciliary length by approximately 30%. The sensitivity of the sodium current to shaking was dependent on intact cilia. The drag force on cilia due to induced fluid flow during orbital shaking was estimated at maximally 5.2x10(-3) pN at 2 Hz, approximately 4 times that of thermal noise. The major structural feature of cilia contributing to their sensitivity appears to be ciliary length. As more than half of the total drag force is exerted on the ciliary cap, one function of the slender stalk may be to expose the cap to greater drag force. Regardless, the findings indicate that the cilium is a mechanosensory organelle with a sensitivity much lower than previously recognized.

  12. ARL2BP, a protein linked to Retinitis Pigmentosa, is needed for normal photoreceptor cilia doublets and outer segment structure.

    PubMed

    Moye, Abigail R; Singh, Ratnesh; Kimler, Victoria A; Dilan, Tanya L; Munezero, Daniella; Saravanan, Thamaraiselvi; Goldberg, Andrew F X; Ramamurthy, Visvanathan

    2018-05-02

    The outer segment (OS) of photoreceptor cells is an elaboration of a primary cilium with organized stacks of membranous discs that contain the proteins needed for phototransduction and vision. Though cilia formation and function has been well characterized, little is known about the role of cilia in the development of photoreceptor OS. Nevertheless, progress has been made by studying mutations in ciliary proteins which often result in malformed outer segments and lead to blinding diseases. To investigate how ciliary proteins contribute to outer segment formation, we generated a knockout mouse model for ARL2BP, a ciliary protein linked to Retinitis Pigmentosa. The knockout mice display an early and progressive reduction in visual response. Prior to photoreceptor degeneration we observed disorganization of the photoreceptor OS, with vertically aligned discs and shortened axonemes. Interestingly, ciliary doublet microtubule structure was also impaired, displaying open B-tubule doublets, paired with loss of singlet microtubules. Based on results from this study, we conclude that ARL2BP is necessary for photoreceptor cilia doublet formation and axoneme elongation, which is required for outer segment morphogenesis and vision.

  13. Primary ciliary dyskinesia: improving the diagnostic approach

    PubMed Central

    Leigh, Margaret W.; Zariwala, Maimoona A.; Knowles, Michael R.

    2009-01-01

    Purpose of review The diagnosis of primary ciliary dyskinesia (PCD) has relied on analysis of ciliary motility and ultrastructure; however, these tests are not readily available and have not been standardized. Consequently, the diagnosis of PCD may be delayed or missed or made incorrectly. This review outlines the potential utility of new diagnostic tests, including measurement of nasal nitric oxide (NO) production and systematic analysis for mutations in gene encoding ciliary proteins. Recent findings Clinical manifestations of PCD have been expanded to include neonatal respiratory distress and heterotaxy. Measurement of nasal NO has emerged as a useful screening test for PCD based on the very low levels in PCD (approximately 1/10 of normal values). Genetic testing is emerging for PCD and demonstrates extensive genetic heterogeneity. Some genes and gene mutations involved in PCD have been defined. Approximately one third of PCD cases have identifiable gene mutations in one of 6 different genes. An international effort is focused on defining PCD-causing defects in other genes. Summary The incorporation of nasal NO measurement as a screening test to define probable PCD cases and gene mutation analysis to make a definitive diagnosis of PCD should enhance diagnostic evaluation of PCD. PMID:19300264

  14. Long-Range Structural Effects of a Charcot-Marie-Tooth Disease-Causing Mutation in Human Glycyl-TRNA Synthetase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, W.; Nangle, L.A.; Zhang, W.

    2009-06-04

    Functional expansion of specific tRNA synthetases in higher organisms is well documented. These additional functions may explain why dominant mutations in glycyl-tRNA synthetase (GlyRS) and tyrosyl-tRNA synthetase cause Charcot-Marie-Tooth (CMT) disease, the most common heritable disease of the peripheral nervous system. At least 10 disease-causing mutant alleles of GlyRS have been annotated. These mutations scatter broadly across the primary sequence and have no apparent unifying connection. Here we report the structure of wild type and a CMT-causing mutant (G526R) of homodimeric human GlyRS. The mutation is at the site for synthesis of glycyl-adenylate, but the rest of the two structuresmore » are closely similar. Significantly, the mutant form diffracts to a higher resolution and has a greater dimer interface. The extra dimer interactions are located {approx}30 {angstrom} away from the G526R mutation. Direct experiments confirm the tighter dimer interaction of the G526R protein. The results suggest the possible importance of subtle, long-range structural effects of CMT-causing mutations at the dimer interface. From analysis of a third crystal, an appended motif, found in higher eukaryote GlyRSs, seems not to have a role in these long-range effects.« less

  15. Early-Stage Aggregation of Human Islet Amyloid Polypeptide

    NASA Astrophysics Data System (ADS)

    Guo, Ashley; de Pablo, Juan

    Human islet amyloid polypeptide (hIAPP, or human amylin) is implicated in the development of type II diabetes. hIAPP is known to aggregate into amyloid fibrils; however, it is prefibrillar oligomeric species, rather than mature fibrils, that are proposed to be cytotoxic. In order to better understand the role of hIAPP aggregation in the onset of disease, as well as to design effective diagnostics and therapeutics, it is crucial to understand the mechanism of early-stage hIAPP aggregation. In this work, we use atomistic molecular dynamics simulations combined with multiple advanced sampling techniques to examine the formation of the hIAPP dimer and trimer. Metadynamics calculations reveal a free energy landscape for the hIAPP dimer, which suggest multiple possible transition pathways. We employ finite temperature string method calculations to identify favorable pathways for dimer and trimer formation, along with relevant free energy barriers and intermediate structures. Results provide valuable insights into the mechanisms and energetics of hIAPP aggregation. In addition, this work demonstrates that the finite temperature string method is an effective tool in the study of protein aggregation. Funded by National Institute of Standards and Technology.

  16. Cell-free synthesis of functional human epidermal growth factor receptor: Investigation of ligand-independent dimerization in Sf21 microsomal membranes using non-canonical amino acids

    PubMed Central

    Quast, Robert B.; Ballion, Biljana; Stech, Marlitt; Sonnabend, Andrei; Varga, Balázs R.; Wüstenhagen, Doreen A.; Kele, Péter; Schiller, Stefan M.; Kubick, Stefan

    2016-01-01

    Cell-free protein synthesis systems represent versatile tools for the synthesis and modification of human membrane proteins. In particular, eukaryotic cell-free systems provide a promising platform for their structural and functional characterization. Here, we present the cell-free synthesis of functional human epidermal growth factor receptor and its vIII deletion mutant in a microsome-containing system derived from cultured Sf21 cells. We provide evidence for embedment of cell-free synthesized receptors into microsomal membranes and asparagine-linked glycosylation. Using the cricket paralysis virus internal ribosome entry site and a repetitive synthesis approach enrichment of receptors inside the microsomal fractions was facilitated thereby providing analytical amounts of functional protein. Receptor tyrosine kinase activation was demonstrated by monitoring receptor phosphorylation. Furthermore, an orthogonal cell-free translation system that provides the site-directed incorporation of p-azido-L-phenylalanine is characterized and applied to investigate receptor dimerization in the absence of a ligand by photo-affinity cross-linking. Finally, incorporated azides are used to generate stable covalently linked receptor dimers by strain-promoted cycloaddition using a novel linker system. PMID:27670253

  17. Maintaining protein composition in cilia.

    PubMed

    Stephen, Louise A; Elmaghloob, Yasmin; Ismail, Shehab

    2017-12-20

    The primary cilium is a sensory organelle that is vital in regulating several signalling pathways. Unlike most organelles cilia are open to the rest of the cell, not enclosed by membranes. The distinct protein composition is crucial to the function of cilia and many signalling proteins and receptors are specifically concentrated within distinct compartments. To maintain this composition, a mechanism is required to deliver proteins to the cilium whilst another must counter the entropic tendency of proteins to distribute throughout the cell. The combination of the two mechanisms should result in the concentration of ciliary proteins to the cilium. In this review we will look at different cellular mechanisms that play a role in maintaining the distinct composition of cilia, including regulation of ciliary access and trafficking of ciliary proteins to, from and within the cilium.

  18. 99mTc-labeling of HYNIC-conjugated cyclic RGDfK dimer and tetramer using EDDA as coligand.

    PubMed

    Wang, Jianjun; Kim, Young-Seung; Liu, Shuang

    2008-03-01

    In this study, EDDA (ethylenediamine- N, N'-diacetic acid) was used as the coligand for 99mTc-labeling of cyclic RGDfK conjugates: HYNIC-dimer (HYNIC = 6-hydrazinonicotinamide; dimer = E[c(RGDfK)]2) and HYNIC-tetramer (tetramer = E{E[c(RGDfK)]2}2). First, HYNIC-dimer was allowed to react with 99mTcO4 (-) in the presence of excess tricine and stannous chloride to form the intermediate complex [99mTc(HYNIC-dimer)(tricine)2], which was then allowed to react with EDDA to afford [99mTc(HYNIC-dimer)(EDDA)] with high yield (>90%) and high specific activity ( approximately 8.0 Ci/micromol). Under the same radiolabeling conditions, the yield for [99mTc(HYNIC-tetramer)(EDDA)] was always <65%. The results from a mixed-ligand experiment show that there is only one EDDA bonding to the 99mTc-HYNIC core in [99mTc(HYNIC-dimer)(EDDA)]. The athymic nude mice bearing subcutaneous U87MG human glioma xenografts were used to evaluate the impact of EDDA coligand on the biodistribution characteristics and excretion kinetics of the 99mTc-labeled HYNIC-dimer and HYNIC-tetramer. Surprisingly, [99mTc(HYNIC-dimer)(EDDA)] and [99mTc(HYNIC-tetramer)(EDDA)] had almost identical tumor uptake over the 2 h period. The use of EDDA as coligand to replace tricine/TPPTS (TPPTS = trisodium triphenylphosphine-3,3',3''-trisulfonate) did not significantly change the uptake of the 99mTc-labeled HYNIC-dimer in noncancerous organs, such as the liver, kidneys, and lungs; but it did result in a significantly lower kidney uptake for the 99mTc-labeled HYNIC-tetramer due to faster renal excretion. It was also found that the radiotracer tumor uptake decreases in a linear fashion as the tumor size increases. The smaller the tumors are, the higher the tumor uptake is regardless of the identity of radiotracer.

  19. Formation of an active dimer during storage of interleukin-1 receptor antagonist in aqueous solution.

    PubMed Central

    Chang, B S; Beauvais, R M; Arakawa, T; Narhi, L O; Dong, A; Aparisio, D I; Carpenter, J F

    1996-01-01

    The degradation products of recombinant human interleukin-1 receptor antagonist (rhIL-1ra) formed during storage at 30 degrees C in aqueous solution were characterized. Cationic exchange chromatography of the stored sample showed two major, new peaks eluting before (P1) and after (L2) the native protein, which were interconvertible. Size-exclusion chromatography and electrophoresis documented that both the P1 and L2 fractions were irreversible dimers, formed by noncovalent interactions. A competition assay with interleukin-1 indicated that on a per monomer basis the P1 and L2 dimers retained about two-thirds of the activity of the native monomer. Infrared and far-UV circular dichroism spectroscopies showed that only minor alterations in secondary structure arose upon the formation of the P1 dimer. However, alteration in the near-UV circular dichroism spectrum suggested the presence of disulfide bonds in the P1 dimer, which are absent in the native protein. Mass spectroscopy and tryptic mapping, before and after carboxymethylation, demonstrated that the P1 dimer contained an intramolecular disulfide bond between Cys-66 and Cys-69. Although conversion of native protein to the P1 dimer was irreversible in buffer alone, the native monomer could be regained by denaturing the P1 dimer with guanidine hydrochloride and renaturing it by dialysis, suggesting that the intramolecular disulfide bond does not interfere with refolding. Analysis of the time course of P1 formation during storage at 30 degrees C indicated that the process followed first-order, and not second-order, kinetics, suggesting that the rate-limiting step was not dimerization. It is proposed that a conformational change in the monomer is the rate-limiting step in the formation of the P1 dimer degradation product. Sucrose stabilized the native monomer against this process. This result can be explained by the general stabilization mechanism for this additive, which is due to its preferential exclusion from the protein surface. PMID:8968609

  20. Conformational Ensemble of hIAPP Dimer: Insight into the Molecular Mechanism by which a Green Tea Extract inhibits hIAPP Aggregation

    NASA Astrophysics Data System (ADS)

    Mo, Yuxiang; Lei, Jiangtao; Sun, Yunxiang; Zhang, Qingwen; Wei, Guanghong

    2016-09-01

    Small oligomers formed early along human islet amyloid polypeptide (hIAPP) aggregation is responsible for the cell death in Type II diabetes. The epigallocatechin gallate (EGCG), a green tea extract, was found to inhibit hIAPP fibrillation. However, the inhibition mechanism and the conformational distribution of the smallest hIAPP oligomer - dimer are mostly unknown. Herein, we performed extensive replica exchange molecular dynamic simulations on hIAPP dimer with and without EGCG molecules. Extended hIAPP dimer conformations, with a collision cross section value similar to that observed by ion mobility-mass spectrometry, were observed in our simulations. Notably, these dimers adopt a three-stranded antiparallel β-sheet and contain the previously reported β-hairpin amyloidogenic precursor. We find that EGCG binding strongly blocks both the inter-peptide hydrophobic and aromatic-stacking interactions responsible for inter-peptide β-sheet formation and intra-peptide interaction crucial for β-hairpin formation, thus abolishes the three-stranded β-sheet structures and leads to the formation of coil-rich conformations. Hydrophobic, aromatic-stacking, cation-π and hydrogen-bonding interactions jointly contribute to the EGCG-induced conformational shift. This study provides, on atomic level, the conformational ensemble of hIAPP dimer and the molecular mechanism by which EGCG inhibits hIAPP aggregation.

  1. Fiber optic D dimer biosensor

    DOEpatents

    Glass, Robert S.; Grant, Sheila A.

    1999-01-01

    A fiber optic sensor for D dimer (a fibrinolytic product) can be used in vivo (e.g., in catheter-based procedures) for the diagnosis and treatment of stroke-related conditions in humans. Stroke is the third leading cause of death in the United States. It has been estimated that strokes and stroke-related disorders cost Americans between $15-30 billion annually. Relatively recently, new medical procedures have been developed for the treatment of stroke. These endovascular procedures rely upon the use of microcatheters. These procedures could be facilitated with this sensor for D dimer integrated with a microcatheter for the diagnosis of clot type, and as an indicator of the effectiveness, or end-point of thrombolytic therapy.

  2. Fiber optic D dimer biosensor

    DOEpatents

    Glass, R.S.; Grant, S.A.

    1999-08-17

    A fiber optic sensor for D dimer (a fibrinolytic product) can be used in vivo (e.g., in catheter-based procedures) for the diagnosis and treatment of stroke-related conditions in humans. Stroke is the third leading cause of death in the United States. It has been estimated that strokes and stroke-related disorders cost Americans between $15-30 billion annually. Relatively recently, new medical procedures have been developed for the treatment of stroke. These endovascular procedures rely upon the use of microcatheters. These procedures could be facilitated with this sensor for D dimer integrated with a microcatheter for the diagnosis of clot type, and as an indicator of the effectiveness, or end-point of thrombolytic therapy. 4 figs.

  3. Synthesis of Artemisinin-Derived Dimers, Trimers and Dendrimers: Investigation of Their Antimalarial and Antiviral Activities Including Putative Mechanisms of Action.

    PubMed

    Fröhlich, Tony; Hahn, Friedrich; Belmudes, Lucid; Leidenberger, Maria; Friedrich, Oliver; Kappes, Barbara; Couté, Yohann; Marschall, Manfred; Tsogoeva, Svetlana B

    2018-06-07

    Generation of dimers, trimers and dendrimers of bioactive compounds is an approach that has recently been developed for the discovery of new potent drug candidates. Herein, we present the synthesis of new artemisinin-derived dimers and dendrimers and investigate their action against malaria parasite Plasmodium falciparum 3D7 strain and human cytomegalovirus (HCMV). Dimer 7 was the most active compound (EC 50 1.4 nm) in terms of antimalarial efficacy and was even more effective than the standard drugs dihydroartemisinin (EC 50 2.4 nm), artesunic acid (EC 50 8.9 nm) and chloroquine (EC 50 9.8 nm). Trimer 4 stood out as the most active agent against HCMV in vitro replication and exerted an EC 50 value of 0.026 μm, representing an even higher activity than the two reference drugs ganciclovir (EC 50 2.60 μm) and artesunic acid (EC 50 5.41 μm). In addition, artemisinin-derived dimer 13 and trimer 15 were for the first time both immobilized on TOYOPEARL AF-Amino-650M beads and used for mass spectrometry-based target identification experiments using total lysates of HCMV-infected primary human fibroblasts. Two major groups of novel target candidates, namely cytoskeletal and mitochondrial proteins were obtained. Two putatively compound-binding viral proteins, namely major capsid protein (MCP) and envelope glycoprotein pUL132, which are both essential for HCMV replication, were identified. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Computational modeling of the bHLH domain of the transcription factor TWIST1 and R118C, S144R and K145E mutants

    PubMed Central

    2012-01-01

    Background Human TWIST1 is a highly conserved member of the regulatory basic helix-loop-helix (bHLH) transcription factors. TWIST1 forms homo- or heterodimers with E-box proteins, such as E2A (isoforms E12 and E47), MYOD and HAND2. Haploinsufficiency germ-line mutations of the twist1 gene in humans are the main cause of Saethre-Chotzen syndrome (SCS), which is characterized by limb abnormalities and premature fusion of cranial sutures. Because of the importance of TWIST1 in the regulation of embryonic development and its relationship with SCS, along with the lack of an experimentally solved 3D structure, we performed comparative modeling for the TWIST1 bHLH region arranged into wild-type homodimers and heterodimers with E47. In addition, three mutations that promote DNA binding failure (R118C, S144R and K145E) were studied on the TWIST1 monomer. We also explored the behavior of the mutant forms in aqueous solution using molecular dynamics (MD) simulations, focusing on the structural changes of the wild-type versus mutant dimers. Results The solvent-accessible surface area of the homodimers was smaller on wild-type dimers, which indicates that the cleft between the monomers remained more open on the mutant homodimers. RMSD and RMSF analyses indicated that mutated dimers presented values that were higher than those for the wild-type dimers. For a more careful investigation, the monomer was subdivided into four regions: basic, helix I, loop and helix II. The basic domain presented a higher flexibility in all of the parameters that were analyzed, and the mutant dimer basic domains presented values that were higher than the wild-type dimers. The essential dynamic analysis also indicated a higher collective motion for the basic domain. Conclusions Our results suggest the mutations studied turned the dimers into more unstable structures with a wider cleft, which may be a reason for the loss of DNA binding capacity observed for in vitro circumstances. PMID:22839202

  5. Quantifying Ciliary Dynamics during Assembly Reveals Step-wise Waveform Maturation in Airway Cells.

    PubMed

    Oltean, Alina; Schaffer, Andrew J; Bayly, Philip V; Brody, Steven L

    2018-05-31

    Motile cilia are essential for clearance of particulates and pathogens from airways. For effective transport, ciliary motor proteins and axonemal structures interact to generate the rhythmic, propulsive bending, but the mechanisms that produce a dynamic waveform remain incompletely understood. Biomechanical measures of human cilia motion and their relationships to cilia assembly are needed to illuminate the biophysics of normal cilia function, and to quantify dysfunction in ciliopathies. To these ends, we analyzed cilia motion from high-speed video microscopy of ciliated cells sampled from human lung airways compared to primary-culture cells that undergo ciliogenesis in vitro. Quantitative assessment of waveform parameters showed variations in waveform shape between individual cilia; however, general trends in waveform parameters emerged, associated with progression of cilia length and stage of differentiation. When cilia emerged from cultured cells, beat frequency was initially elevated, then fell and remained stable as cilia lengthened. In contrast, the average bending amplitude and the ability to generate force gradually increased and eventually approached values observed in ex vivo samples. Dynein arm motor proteins DNAH5, DNAH9, DNAH11, and DNAH6 were localized within specific regions of the axoneme in the ex vivo cells; however distinct stages of in vitro waveform development identified by biomechanical features were associated with the progressive movement of dyneins to the appropriate proximal or distal sections of the cilium. These observations suggest that the step-wise variation in waveform development during ciliogenesis is dependent on cilia length and potentially outer dynein arm assembly.

  6. [Kartagener sindrome (primary ciliary dyskinesia). Report of a case and literature review].

    PubMed

    Pino Rivero, V; Pardo Romero, G; Iglesias González, R J; Rodríguez Carmona, M; del Castillo Beneyto, F

    2007-01-01

    Kartagener syndrome (a clinical variant of primary ciliary dyskinesia) is a recessive autossomical disease characterized by the triad of chronic sinusitis, bronchiectasis and situs inversus with dextrocardia. We report one case described in a 8 years old boy who besides presented a seromucous otitis and bronchitis of repetition. Finally we performed a short bibliographic review at respect of this uncommon pathology.

  7. Cochliotoxin, a Dihydropyranopyran-4,5-dione, and its analogues produced by Cochliobolus australiensis display phytotoxic activity against buffelgrass (Cenchrus ciliaris)

    Treesearch

    Marco Masi; Susan Meyer; Suzette Clement; Alessio Cimmino; Massimo Cristofaro; Antonio Evidente

    2017-01-01

    Buffelgrass (Pennisetum ciliare or Cenchrus ciliaris) is a perennial grass that has become highly invasive in the Sonoran Desert of southern Arizona. In the search for novel control strategies against this weed, strains of the foliar fungal pathogen Cochliobolus australiensis from buffelgrass have been screened for their ability to produce phytotoxic metabolites that...

  8. Two new cytotoxic stilbenoid dimers isolated from Cajanus cajan.

    PubMed

    Zhang, Nenling; Shen, Xiangchun; Jiang, Xiaofei; Cai, Jiazhong; Shen, Xiaoling; Hu, Yingjie; Qiu, Samuel X

    2018-01-01

    Two new stilbenoid dimers, cajanstilbenoids A (1) and B (2), were isolated from the leaves of Cajanus cajan. Planar structures of these compounds were verified by NMR (1D and 2D) and high-resolution electrospray ionization mass spectroscopy (HR-ESI-MS). Absolute configurations were assigned by comparing experimental and calculated electronic CD values. The cytotoxicity of 1 and 2 against human hepatoma (HepG2), human breast adenocarcinoma (MCF-7), and human lung cancer (A549) cells were evaluated in vitro. Compound 1 showed strong cytotoxicity against all the tested cell lines (IC 50 values: 2.14-2.56 µM), whereas compound 2 showed strong toxicity only against HepG2 (IC 50 value: 5.99 µM) and A549 cells (IC 50 value: 6.18 µM).

  9. Complete Structure of an Epithelial Keratin Dimer: Implications for Intermediate Filament Assembly.

    PubMed

    Bray, David J; Walsh, Tiffany R; Noro, Massimo G; Notman, Rebecca

    2015-01-01

    Keratins are cytoskeletal proteins that hierarchically arrange into filaments, starting with the dimer sub-unit. They are integral to the structural support of cells, in skin, hair and nails. In skin, keratin is thought to play a critical role in conferring the barrier properties and elasticity of skin. In general, the keratin dimer is broadly described by a tri-domain structure: a head, a central rod and a tail. As yet, no atomistic-scale picture of the entire dimer structure exists; this information is pivotal for establishing molecular-level connections between structure and function in intermediate filament proteins. The roles of the head and tail domains in facilitating keratin filament assembly and function remain as open questions. To address these, we report results of molecular dynamics simulations of the entire epithelial human K1/K10 keratin dimer. Our findings comprise: (1) the first three-dimensional structural models of the complete dimer unit, comprising of the head, rod and tail domains; (2) new insights into the chirality of the rod-domain twist gained from analysis of the full domain structure; (3) evidence for tri-subdomain partitioning in the head and tail domains; and, (4) identification of the residue characteristics that mediate non-covalent contact between the chains in the dimer. Our findings are immediately applicable to other epithelial keratins, such as K8/K18 and K5/K14, and to intermediate filament proteins in general.

  10. Comparison of the protein-protein interfaces in the p53-DNA crystal structures: towards elucidation of the biological interface.

    PubMed

    Ma, Buyong; Pan, Yongping; Gunasekaran, K; Venkataraghavan, R Babu; Levine, Arnold J; Nussinov, Ruth

    2005-03-15

    p53, the tumor suppressor protein, functions as a dimer of dimers. However, how the tetramer binds to the DNA is still an open question. In the crystal structure, three copies of the p53 monomers (containing chains A, B, and C) were crystallized with the DNA-consensus element. Although the structure provides crucial data on the p53-DNA contacts, the active oligomeric state is unclear because the two dimeric (A-B and B-C) interfaces present in the crystal cannot both exist in the tetramer. Here, we address the question of which of these two dimeric interfaces may be more biologically relevant. We analyze the sequence and structural properties of the p53-p53 dimeric interfaces and carry out extensive molecular dynamics simulations of the crystal structures of the human and mouse p53 dimers. We find that the A-B interface residues are more conserved than those of the B-C. Molecular dynamics simulations show that the A-B interface can provide a stable DNA-binding motif in the dimeric state, unlike B-C. Our results indicate that the interface between chains A-B in the p53-DNA complex constitutes a better candidate for a stable biological interface, whereas the B-C interface is more likely to be due to crystal packing. Thus, they have significant implications toward our understanding of DNA binding by p53 as well as p53-mediated interactions with other proteins.

  11. Immunoassays distinguishing between HNL/NGAL released in urine from kidney epithelial cells and neutrophils.

    PubMed

    Mårtensson, Johan; Xu, Shengyuan; Bell, Max; Martling, Claes-Roland; Venge, Per

    2012-10-09

    The distinction between monomeric human neutrophil lipocalin/neutrophil gelatinase-associated lipocalin (HNL/NGAL), secreted by injured kidney tubular cells, and dimeric HNL/NGAL, released by activated neutrophils, is important to accurately diagnose acute kidney injury (AKI). 132 urine samples from 44 intensive care unit (ICU) patients and five urine samples from non-ICU patients with urinary tract infections (UTIs) were analyzed by two monoclonal enzyme-linked immunosorbent assays (ELISA-1 and ELISA-2). The presence of monomeric and/or dimeric HNL/NGAL in each sample was visualized by Western blotting. The ELISA-1 detected both monomeric and dimeric HNL/NGAL whereas the ELISA-2 almost exclusively detected dimeric HNL/NGAL with an area under the receiver-operating characteristics curve (AuROC) of 0.90. The ELISA-1/ELISA-2 ratio detected the monomeric form with an AuROC of 0.92. In 32 AKI patients, dimer-specific ELISA-2 levels decreased pre-AKI whereas the monomer-specific ELISA-1/ELISA-2 ratio gradually increased beyond AKI diagnosis. High ELISA-2 levels and/or low ELISA-1/ELISA-2 ratios detected a predominance of dimeric HNL/NGAL in urine from the patients with UTIs. In combination, our two ELISAs distinguish monomeric HNL/NGAL, produced by the kidney epithelium, from dimeric HNL/NGAL, released by neutrophils during AKI development, as well as reduce the confounding effect of neutrophil involvement when bacteriuria is present. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. The influence of thapsigargin on Na,K-ATPase activity in cultured nonpigmented ciliary epithelial cells.

    PubMed

    Mito, T; Kuwahara, S; Delamere, N A

    1995-08-01

    Experiments were conducted to test the influence of thapsigargin on the NaK-ATPase activity of cultured cells (ODM2) derived from human nonpigmented ciliary epithelium. The rate of ouabain-sensitive ATP hydrolysis (Na,K-ATPase activity) was diminished in cells that had been pretreated with thapsigargin then permeabilized. Following 20 min exposure of intact cells to thapsigargin, the cells were permeabilized with digitonin and the rate of ouabain-sensitive ATP hydrolysis (Na,K-ATPase activity) was measured immediately in a calcium-free buffer. In permeabilized cells that had been pretreated with 1 microM thapsigargin for 20 min, the rate of ouabain-sensitive ATP hydrolysis (Na,K-ATPase activity) was reduced by 38%. Pretreatment with lesser concentrations of thapsigargin caused smaller changes of Na,K-ATPase activity. The decrease of Na,K-ATPase activity was the same whether or not calmodulin antagonists W7 or trifluoperazine were present during the thapsigargin pretreatment period. This inhibitory effect upon the Na,K-ATPase may serve to limit the extent of sodium pump activation that takes place in intact cells when thapsigargin causes sodium pump stimulation by a mechanism that appears to involve changes in cytoplasmic ion levels when potassium channels open.

  13. Respiratory Syncytial Virus Inhibits Ciliagenesis in Differentiated Normal Human Bronchial Epithelial Cells: Effectiveness of N-Acetylcysteine

    PubMed Central

    Mata, Manuel; Sarrion, Irene; Armengot, Miguel; Carda, Carmen; Martinez, Isidoro; Melero, Jose A.; Cortijo, Julio

    2012-01-01

    Persistent respiratory syncytial virus (RSV) infections have been associated with the exacerbation of chronic inflammatory diseases, including chronic obstructive pulmonary disease (COPD). This virus infects the respiratory epithelium, leading to chronic inflammation, and induces the release of mucins and the loss of cilia activity, two factors that determine mucus clearance and the increase in sputum volume. These alterations involve reactive oxygen species-dependent mechanisms. The antioxidant N-acetylcysteine (NAC) has proven useful in the management of COPD, reducing symptoms, exacerbations, and accelerated lung function decline. NAC inhibits RSV infection and mucin release in human A549 cells. The main objective of this study was to analyze the effects of NAC in modulating ciliary activity, ciliagenesis, and metaplasia in primary normal human bronchial epithelial cell (NHBEC) cultures infected with RSV. Our results indicated that RSV induced ultrastructural abnormalities in axonemal basal bodies and decreased the expression of β-tubulin as well as two genes involved in ciliagenesis, FOXJ1 and DNAI2. These alterations led to a decrease in ciliary activity. Furthermore, RSV induced metaplastic changes to the epithelium and increased the number of goblet cells and the expression of MUC5AC and GOB5. NAC restored the normal functions of the epithelium, inhibiting ICAM1 expression, subsequent RSV infection through mechanisms involving nuclear receptor factor 2, and the expression of heme oxygenase 1, which correlated with the restoration of the antioxidant capacity, the intracellular H2O2 levels and glutathione content of NHBECs. The results presented in this study support the therapeutic use of NAC for the management of chronic respiratory diseases, including COPD. PMID:23118923

  14. A new hydroxychavicol dimer from the roots of Piper betle.

    PubMed

    Lin, Chwan-Fwu; Hwang, Tsong-Long; Chien, Chun-Chien; Tu, Huei-Yu; Lay, Horng-Liang

    2013-02-26

    A new hydroxychavicol dimer, 2-(g'-hydroxychavicol)-hydroxychavicol (1), was isolated from the roots of Piper betle Linn. along with five known compounds, hydroxychavicol (2), aristololactam A II (3), aristololactam B II (4), piperolactam A (5) and cepharadione A (6). The structures of these isolated compounds were elucidated by spectroscopic methods. Compounds 1 and 2 exhibited inhibitory effects on the generation of superoxide anion and the release of elastase by human neutrophils.

  15. On the origin of the chordate central nervous system: expression of onecut in the sea urchin embryo.

    PubMed

    Poustka, Albert J; Kühn, Alexander; Radosavljevic, Vesna; Wellenreuther, Ruth; Lehrach, Hans; Panopoulou, Georgia

    2004-01-01

    We identified a transcription factor of the onecut class in the sea urchin Strongylocentrotus purpuratus that represents an ortholog of the mammalian gene HNF6, the founding member of the onecut class of proteins. The isolated sea urchin gene, named SpOnecut, encodes a protein of 483 amino acids with one cut domain and a homeodomain. Phylogenetic analysis clearly places the sea urchin gene into this family, most closely related to the ascidian onecut gene HNF-6. Nevertheless, phylogenetic analysis reveals a difficult phylogeny indicating that certain members of the family evolve more rapidly than others and also that the cut domain and homeodomain evolve at a different pace. In fly, worm, ascidian, and teleost fish, the onecut genes isolated so far are exclusively expressed in cells of the central nervous system (CNS), whereas in mammals the two copies of the gene have acquired additional functions in liver and pancreas development. In the sea urchin embryo, expression is first detected in the emerging ciliary band at the late blastula stage. During the gastrula stage, expression is limited to the ciliary band. In the early pluteus stage, SpOnecut is expressed at the apical organ and the elongating arms but continues most prominently in the ciliary band. This is the first gene known that exclusively marks the ciliary band and therein the apical organ in a pluteus larva, whereas chordate orthologs execute essential functions in dorsal CNS development. The significance of this finding for the hypothesis that the ciliary bands and apical organs of the hypothetical "dipleurula"-like chordate ancestor and the chordate/vertebrate CNS are of common origin is discussed.

  16. Unexpected genetic heterogeneity for primary ciliary dyskinesia in the Irish Traveller population.

    PubMed

    Casey, Jillian P; McGettigan, Paul A; Healy, Fiona; Hogg, Claire; Reynolds, Alison; Kennedy, Breandan N; Ennis, Sean; Slattery, Dubhfeasa; Lynch, Sally A

    2015-02-01

    We present a study of five children from three unrelated Irish Traveller families presenting with primary ciliary dyskinesia (PCD). As previously characterized disorders in the Irish Traveller population are caused by common homozygous mutations, we hypothesised that all three PCD families shared the same recessive mutation. However, exome sequencing showed that there was no pathogenic homozygous mutation common to all families. This finding was supported by histology, which showed that each family has a different type of ciliary defect; transposition defect (family A), nude epithelium (family B) and absence of inner and outer dynein arms (family C). Therefore, each family was analysed independently using homozygosity mapping and exome sequencing. The affected siblings in family A share a novel 1 bp duplication in RSPH4A (NM_001161664.1:c.166dup; p.Arg56Profs*11), a radial-spoke head protein involved in ciliary movement. In family B, we identified three candidate genes (CCNO, KCNN3 and CDKN1C), with a 5-bp duplication in CCNO (NM_021147.3:c.258_262dup; p.Gln88Argfs*8) being the most likely cause of ciliary aplasia. This is the first study to implicate CCNO, a DNA repair gene reported to be involved in multiciliogenesis, in PCD. In family C, we identified a ∼3.5-kb deletion in DYX1C1, a neuronal migration gene previously associated with PCD. This is the first report of a disorder in the relatively small Irish Traveller population to be caused by >1 disease gene. Our study identified at least three different PCD genes in the Irish Traveller population, highlighting that one cannot always assume genetic homogeneity, even in small consanguineous populations.

  17. PARAMETERS OF GASEOUS ION EFFECTS ON THE MAMMALIAN TRACHEA

    PubMed Central

    Krueger, Albert P.; Smith, Richard F.

    1959-01-01

    A. Duration of Effects Groups of mice exposed to high densities of unipolar light air ions for 72 hours exhibited persistent alterations in the functional efficiency of their tracheas. These effects lasted at least 4 weeks, and in the case of animals treated with (+) ions included diminished ciliary activity, pale and contracted tracheal mucosa, and enhanced vulnerability to trauma. Following treatment with (-) ions, animals displayed increased ciliary activity with no other detectable changes. It required at least 60 minutes of exposure to ions to induce such "permanent" functional changes. B. Minimal Effective Ion Densities The minimal ion densities producing changes in ciliary activity within an arbitrary period of 30 minutes were determined with extirpated tracheal strips from rabbits and guinea pigs. The threshold value for (-) ions was approximately 2.5 x 103 ions/cm.2/sec. and that for (+) ions was in the range between 1 x 104 and 2.5 x 105 ions/cm.2/sec.The minimal ion densities producing changes in ciliary activity within an arbitrary period of 30 minutes were determined with extirpated tracheal strips from rabbits and guinea pigs. The threshold value for (-) ions was approximately 2.5 x 103 ions/cm.2/sec. and that for (+) ions was in the range between 1 x 104 and 2.5 x 105 ions/cm.2/sec. The evidence indicates that ion-induced functional changes in the ciliated epithelium of the pulmonary tree are the results of direct contact of ions with surface cells and do not involve participation of the central nervous system or circulation. So far as ciliary activity is concerned, the number of ions required to produce a change in rate is very small. PMID:13654744

  18. Synthesis and Turnover of Embryonic Sea Urchin Ciliary Proteins during Selective Inhibition of Tubulin Synthesis and Assembly

    PubMed Central

    Stephens, Raymond E.

    1997-01-01

    When ciliogenesis first occurs in sea urchin embryos, the major building block proteins, tubulin and dynein, exist in substantial pools, but most 9+2 architectural proteins must be synthesized de novo. Pulse-chase labeling with [3H]leucine demonstrates that these proteins are coordinately up-regulated in response to deciliation so that regeneration ensues and the tubulin and dynein pools are replenished. Protein labeling and incorporation into already-assembled cilia is high, indicating constitutive ciliary gene expression and steady-state turnover. To determine whether either the synthesis of tubulin or the size of its available pool is coupled to the synthesis or turnover of the other 9+2 proteins in some feedback manner, fully-ciliated mid- or late-gastrula stage Strongylocentrotus droebachiensis embryos were pulse labeled in the presence of colchicine or taxol at concentrations that block ciliary growth. As a consequence of tubulin autoregulation mediated by increased free tubulin, no labeling of ciliary tubulin occurred in colchicine-treated embryos. However, most other proteins were labeled and incorporated into steady-state cilia at near-control levels in the presence of colchicine or taxol. With taxol, tubulin was labeled as well. An axoneme-associated 78 kDa cognate of the molecular chaperone HSP70 correlated with length during regeneration; neither colchicine nor taxol influenced the association of this protein in steady-state cilia. These data indicate that 1) ciliary protein synthesis and turnover is independent of tubulin synthesis or tubulin pool size; 2) steady-state incorporation of labeled proteins cannot be due to formation or elongation of cilia; 3) substantial tubulin exchange takes place in fully-motile cilia; and 4) chaperone presence and association in steady-state cilia is independent of background ciliogenesis, tubulin synthesis, and tubulin assembly state. PMID:9362062

  19. Structure and dynamics of human vimentin intermediate filament dimer and tetramer in explicit and implicit solvent models.

    PubMed

    Qin, Zhao; Buehler, Markus J

    2011-01-01

    Intermediate filaments, in addition to microtubules and microfilaments, are one of the three major components of the cytoskeleton in eukaryotic cells, and play an important role in mechanotransduction as well as in providing mechanical stability to cells at large stretch. The molecular structures, mechanical and dynamical properties of the intermediate filament basic building blocks, the dimer and the tetramer, however, have remained elusive due to persistent experimental challenges owing to the large size and fibrillar geometry of this protein. We have recently reported an atomistic-level model of the human vimentin dimer and tetramer, obtained through a bottom-up approach based on structural optimization via molecular simulation based on an implicit solvent model (Qin et al. in PLoS ONE 2009 4(10):e7294, 9). Here we present extensive simulations and structural analyses of the model based on ultra large-scale atomistic-level simulations in an explicit solvent model, with system sizes exceeding 500,000 atoms and simulations carried out at 20 ns time-scales. We report a detailed comparison of the structural and dynamical behavior of this large biomolecular model with implicit and explicit solvent models. Our simulations confirm the stability of the molecular model and provide insight into the dynamical properties of the dimer and tetramer. Specifically, our simulations reveal a heterogeneous distribution of the bending stiffness along the molecular axis with the formation of rather soft and highly flexible hinge-like regions defined by non-alpha-helical linker domains. We report a comparison of Ramachandran maps and the solvent accessible surface area between implicit and explicit solvent models, and compute the persistence length of the dimer and tetramer structure of vimentin intermediate filaments for various subdomains of the protein. Our simulations provide detailed insight into the dynamical properties of the vimentin dimer and tetramer intermediate filament building blocks, which may guide the development of novel coarse-grained models of intermediate filaments, and could also help in understanding assembly mechanisms.

  20. Structural and biochemical studies on Vibrio cholerae Hsp31 reveals a novel dimeric form and Glutathione-independent Glyoxalase activity

    PubMed Central

    Dey, Sanjay

    2017-01-01

    Vibrio cholerae experiences a highly hostile environment at human intestine which triggers the induction of various heat shock genes. The hchA gene product of V. cholerae O395, referred to a hypothetical intracellular protease/amidase VcHsp31, is one such stress-inducible homodimeric protein. Our current study demonstrates that VcHsp31 is endowed with molecular chaperone, amidopeptidase and robust methylglyoxalase activities. Through site directed mutagenesis coupled with biochemical assays on VcHsp31, we have confirmed the role of residues in the vicinity of the active site towards amidopeptidase and methylglyoxalase activities. VcHsp31 suppresses the aggregation of insulin in vitro in a dose dependent manner. Through crystal structures of VcHsp31 and its mutants, grown at various temperatures, we demonstrate that VcHsp31 acquires two (Type-I and Type-II) dimeric forms. Type-I dimer is similar to EcHsp31 where two VcHsp31 monomers associate in eclipsed manner through several intersubunit hydrogen bonds involving their P-domains. Type-II dimer is a novel dimeric organization, where some of the intersubunit hydrogen bonds are abrogated and each monomer swings out in the opposite directions centering at their P-domains, like twisting of wet cloth. Normal mode analysis (NMA) of Type-I dimer shows similar movement of the individual monomers. Upon swinging, a dimeric surface of ~400Å2, mostly hydrophobic in nature, is uncovered which might bind partially unfolded protein substrates. We propose that, in solution, VcHsp31 remains as an equilibrium mixture of both the dimers. With increase in temperature, transformation to Type-II form having more exposed hydrophobic surface, occurs progressively accounting for the temperature dependent increase of chaperone activity of VcHsp31. PMID:28235098

  1. Structural basis for controlling the dimerization and stability of the WW domains of an atypical subfamily

    PubMed Central

    Ohnishi, Satoshi; Tochio, Naoya; Tomizawa, Tadashi; Akasaka, Ryogo; Harada, Takushi; Seki, Eiko; Sato, Manami; Watanabe, Satoru; Fujikura, Yukiko; Koshiba, Seizo; Terada, Takaho; Shirouzu, Mikako; Tanaka, Akiko; Kigawa, Takanori; Yokoyama, Shigeyuki

    2008-01-01

    The second WW domain in mammalian Salvador protein (SAV1 WW2) is quite atypical, as it forms a β-clam-like homodimer. The second WW domain in human MAGI1 (membrane associated guanylate kinase, WW and PDZ domain containing 1) (MAGI1 WW2) shares high sequence similarity with SAV1 WW2, suggesting comparable dimerization. However, an analytical ultracentrifugation study revealed that MAGI1 WW2 (Leu355–Pro390) chiefly exists as a monomer at low protein concentrations, with an association constant of 1.3 × 102 M−1. We determined its solution structure, and a structural comparison with the dimeric SAV1 WW2 suggested that an Asp residue is crucial for the inhibition of the dimerization. The substitution of this acidic residue with Ser resulted in the dimerization of MAGI1 WW2. The spin-relaxation data suggested that the MAGI1 WW2 undergoes a dynamic process of transient dimerization that is limited by the charge repulsion. Additionally, we characterized a longer construct of this WW domain with a C-terminal extension (Leu355–Glu401), as the formation of an extra α-helix was predicted. An NMR structural determination confirmed the formation of an α-helix in the extended C-terminal region, which appears to be independent from the dimerization regulation. A thermal denaturation study revealed that the dimerized MAGI1 WW2 with the Asp-to-Ser mutation gained apparent stability in a protein concentration-dependent manner. A structural comparison between the two constructs with different lengths suggested that the formation of the C-terminal α-helix stabilized the global fold by facilitating contacts between the N-terminal linker region and the main body of the WW domain. PMID:18562638

  2. Structural basis for controlling the dimerization and stability of the WW domains of an atypical subfamily.

    PubMed

    Ohnishi, Satoshi; Tochio, Naoya; Tomizawa, Tadashi; Akasaka, Ryogo; Harada, Takushi; Seki, Eiko; Sato, Manami; Watanabe, Satoru; Fujikura, Yukiko; Koshiba, Seizo; Terada, Takaho; Shirouzu, Mikako; Tanaka, Akiko; Kigawa, Takanori; Yokoyama, Shigeyuki

    2008-09-01

    The second WW domain in mammalian Salvador protein (SAV1 WW2) is quite atypical, as it forms a beta-clam-like homodimer. The second WW domain in human MAGI1 (membrane associated guanylate kinase, WW and PDZ domain containing 1) (MAGI1 WW2) shares high sequence similarity with SAV1 WW2, suggesting comparable dimerization. However, an analytical ultracentrifugation study revealed that MAGI1 WW2 (Leu355-Pro390) chiefly exists as a monomer at low protein concentrations, with an association constant of 1.3 x 10(2) M(-1). We determined its solution structure, and a structural comparison with the dimeric SAV1 WW2 suggested that an Asp residue is crucial for the inhibition of the dimerization. The substitution of this acidic residue with Ser resulted in the dimerization of MAGI1 WW2. The spin-relaxation data suggested that the MAGI1 WW2 undergoes a dynamic process of transient dimerization that is limited by the charge repulsion. Additionally, we characterized a longer construct of this WW domain with a C-terminal extension (Leu355-Glu401), as the formation of an extra alpha-helix was predicted. An NMR structural determination confirmed the formation of an alpha-helix in the extended C-terminal region, which appears to be independent from the dimerization regulation. A thermal denaturation study revealed that the dimerized MAGI1 WW2 with the Asp-to-Ser mutation gained apparent stability in a protein concentration-dependent manner. A structural comparison between the two constructs with different lengths suggested that the formation of the C-terminal alpha-helix stabilized the global fold by facilitating contacts between the N-terminal linker region and the main body of the WW domain.

  3. Molecular dynamics simulations and modelling of the residue interaction networks in the BRAF kinase complexes with small molecule inhibitors: probing the allosteric effects of ligand-induced kinase dimerization and paradoxical activation.

    PubMed

    Verkhivker, G M

    2016-10-20

    Protein kinases are central to proper functioning of cellular networks and are an integral part of many signal transduction pathways. The family of protein kinases represents by far the largest and most important class of therapeutic targets in oncology. Dimerization-induced activation has emerged as a common mechanism of allosteric regulation in BRAF kinases, which play an important role in growth factor signalling and human diseases. Recent studies have revealed that most of the BRAF inhibitors can induce dimerization and paradoxically stimulate enzyme transactivation by conferring an active conformation in the second monomer of the kinase dimer. The emerging connections between inhibitor binding and BRAF kinase domain dimerization have suggested a molecular basis of the activation mechanism in which BRAF inhibitors may allosterically modulate the stability of the dimerization interface and affect the organization of residue interaction networks in BRAF kinase dimers. In this work, we integrated structural bioinformatics analysis, molecular dynamics and binding free energy simulations with the protein structure network analysis of the BRAF crystal structures to determine dynamic signatures of BRAF conformations in complexes with different types of inhibitors and probe the mechanisms of the inhibitor-induced dimerization and paradoxical activation. The results of this study highlight previously unexplored relationships between types of BRAF inhibitors, inhibitor-induced changes in the residue interaction networks and allosteric modulation of the kinase activity. This study suggests a mechanism by which BRAF inhibitors could promote or interfere with the paradoxical activation of BRAF kinases, which may be useful in informing discovery efforts to minimize the unanticipated adverse biological consequences of these therapeutic agents.

  4. Uveal Melanoma Regression after Brachytherapy: Relationship with Chromosome 3 Monosomy Status.

    PubMed

    Salvi, Sachin M; Aziz, Hassan A; Dar, Suhail; Singh, Nakul; Hayden-Loreck, Brandy; Singh, Arun D

    2017-07-01

    The objective was to evaluate the relationship between the regression rate of ciliary body melanoma and choroidal melanoma after brachytherapy and chromosome 3 monosomy status. We conducted a prospective and consecutive case series of patients who underwent biopsy and brachytherapy for ciliary/choroidal melanoma. Tumor biopsy performed at the time of radiation plaque placement was analyzed with fluorescence in situ hybridization to determine the percentage of tumor cells with chromosome 3 monosomy. The regression rate was calculated as the percent change in tumor height at months 3, 6, and 12. The relationship between regression rate and tumor location, initial tumor height, and chromosome 3 monosomy (percentage) was assessed by univariate linear regression (R version 3.1.0). Of the 75 patients included in the study, 8 had ciliary body melanoma, and 67 were choroidal melanomas. The mean tumor height at the time of diagnosis was 5.2 mm (range: 1.90-13.00). The percentage composition of chromosome 3 monosomy ranged from 0-20% (n = 35) to 81-100% (n = 40). The regression of tumor height at months 3, 6, and 12 did not statistically correlate with tumor location (ciliary or choroidal), initial tumor height, or chromosome 3 monosomy (percentage). The regression rate of choroidal melanoma following brachytherapy did not correlate with chromosome 3 monosomy status.

  5. Chlamydomonas DYX1C1/PF23 is essential for axonemal assembly and proper morphology of inner dynein arms

    PubMed Central

    Yamamoto, Ryosuke; Alford, Lea M.; Ide, Takahiro; Owa, Mikito; Hwang, Juyeon; Inaba, Kazuo; James, Noliyanda; Ishikawa, Takashi

    2017-01-01

    Cytoplasmic assembly of ciliary dyneins, a process known as preassembly, requires numerous non-dynein proteins, but the identities and functions of these proteins are not fully elucidated. Here, we show that the classical Chlamydomonas motility mutant pf23 is defective in the Chlamydomonas homolog of DYX1C1. The pf23 mutant has a 494 bp deletion in the DYX1C1 gene and expresses a shorter DYX1C1 protein in the cytoplasm. Structural analyses, using cryo-ET, reveal that pf23 axonemes lack most of the inner dynein arms. Spectral counting confirms that DYX1C1 is essential for the assembly of the majority of ciliary inner dynein arms (IDA) as well as a fraction of the outer dynein arms (ODA). A C-terminal truncation of DYX1C1 shows a reduction in a subset of these ciliary IDAs. Sucrose gradients of cytoplasmic extracts show that preassembled ciliary dyneins are reduced compared to wild-type, which suggests an important role in dynein complex stability. The role of PF23/DYX1C1 remains unknown, but we suggest that DYX1C1 could provide a scaffold for macromolecular assembly. PMID:28892495

  6. De novo 14q24.2q24.3 microdeletion including IFT43 is associated with intellectual disability, skeletal anomalies, cardiac anomalies, and myopia.

    PubMed

    Stokman, Marijn F; Oud, Machteld M; van Binsbergen, Ellen; Slaats, Gisela G; Nicolaou, Nayia; Renkema, Kirsten Y; Nijman, Isaac J; Roepman, Ronald; Giles, Rachel H; Arts, Heleen H; Knoers, Nine V A M; van Haelst, Mieke M

    2016-06-01

    We report an 11-year-old girl with mild intellectual disability, skeletal anomalies, congenital heart defect, myopia, and facial dysmorphisms including an extra incisor, cup-shaped ears, and a preauricular skin tag. Array comparative genomic hybridization analysis identified a de novo 4.5-Mb microdeletion on chromosome 14q24.2q24.3. The deleted region and phenotype partially overlap with previously reported patients. Here, we provide an overview of the literature on 14q24 microdeletions and further delineate the associated phenotype. We performed exome sequencing to examine other causes for the phenotype and queried genes present in the 14q24.2q24.3 microdeletion that are associated with recessive disease for variants in the non-deleted allele. The deleted region contains 65 protein-coding genes, including the ciliary gene IFT43. Although Sanger and exome sequencing did not identify variants in the second IFT43 allele or in other IFT complex A-protein-encoding genes, immunocytochemistry showed increased accumulation of IFT-B proteins at the ciliary tip in patient-derived fibroblasts compared to control cells, demonstrating defective retrograde ciliary transport. This could suggest a ciliary defect in the pathogenesis of this disorder. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Neutral endopeptidase inhibitor potentiates the tachykinin-induced increase in ciliary beat frequency in rabbit trachea.

    PubMed

    Kondo, M; Tamaoki, J; Takizawa, T

    1990-08-01

    We used cultured rabbit tracheal epithelium to determine the effect of mammalian-derived tachykinin on airway ciliary activity and its modulation by neutral endopeptidase EC 3.4.24.11 (NEP). Neurokinin A (NKA) caused dose-dependent increases in ciliary beat frequency (CBF), as measured by a photoelectric method, with the maximal increase from the baseline 15.7 +/- 1.7% (mean +/- SEM, p less than 0.01), whereas substance P (SP) had no effect. The NKA-induced increase in CBF was not inhibited by phentolamine, propranolol, or atropine, but it was abolished by the tachykinin antagonist [D-Pro2, D-Trp7,9]SP. Pretreatment of tissue with thiorphan (10(-5) M), a NEP inhibitor, had little effect on CBF responses to NKA; however, it significantly potentiated the responses to SP (14.9 +/- 3.0%, p less than 0.01). Other peptidase inhibitors, including captopril, bestatin, and leupeptin, did not alter the tachykinin-induced CBF response, suggesting that angiotensin converting enzyme, aminopeptidases, and serine proteinases do not modulate ciliary activity in response to tachykinins. These results suggest that NKA increases CBF by acting directly on tachykinin receptors and that NEP may play a role in modulating the tachykinin-induced stimulatory effects on CBF.

  8. [Microscopic structure of the epithelium of the oviducts in cows during the estrus cycle].

    PubMed

    Uhrín, V

    1983-03-01

    The mucous membrane of a cow is covered with ciliary and secretory cells. The so-called basal cells occur at the basal membrane. The counts of ciliary cells vary during the sexual cycle: they reach the maximum (up to 68%) during oestrus. About 13% of cells lose cilia during metoestrus and at the beginning of dioestrus. Reciliation occurs during pro-oestrus. Light and dark ciliary cells can be discerned by the staining of cytoplasm and by the density of nuclei. A higher variability was found in the secretory cells. There are light and dark cells, cells with a wedge shape and rod-shaped cells. Their frequency and function are discussed. Mitoses of epithelium were found in rare cases. The relative volume of epithelium and the mucous membrane of connective tissues change during the sexual cycle. The volume of secretory cells increases during metoestrus and dioestrus and the volume of ciliary cells increases during pro-oestrus and heat. The volume of nuclei decreases in metoestrus and mainly in dioestrus. PAS positive granules occur in the cytoplasm of secretory cells, mainly during metoestrus, in the apical regions. Ptyalin-resistant polysaccharides, besides glycogen, were detected in the cells. The occurrence rate of lipids varies just slightly during the oestrous cycle.

  9. Clinical and Genetic Aspects of Primary Ciliary Dyskinesia / Kartagener Syndrome

    PubMed Central

    Leigh, Margaret W.; Pittman, Jessica E.; Carson, Johnny L.; Ferkol, Thomas W.; Dell, Sharon D.; Davis, Stephanie D.; Knowles, Michael R.; Zariwala, Maimoona A.

    2013-01-01

    Primary ciliary dyskinesia (PCD) is a genetically heterogeneous disorder of motile cilia. Most of the disease-causing mutations identified to date involve the heavy (DNAH5) or intermediate (DNAI1) chain dynein genes in ciliary outer dynein arms, although a few mutations have been noted in other genes. Clinical molecular genetic testing for PCD is available for the most common mutations. The respiratory manifestations of PCD (chronic bronchitis leading to bronchiectasis, chronic rhino-sinusitis and chronic otitis media) reflect impaired mucociliary clearance owing to defective axonemal structure. Ciliary ultrastructural analysis in most patients (>80%) reveals defective dynein arms, although defects in other axonemal components have also been observed. Approximately 50% of PCD patients have laterality defects (including situs inversus totalis and, less commonly, heterotaxy and congenital heart disease), reflecting dysfunction of embryological nodal cilia. Male infertility is common and reflects defects in sperm tail axonemes. Most PCD patients have a history of neonatal respiratory distress, suggesting that motile cilia play a role in fluid clearance during the transition from a fetal to neonatal lung. Ciliopathies involving sensory cilia, including autosomal dominant or recessive polycystic kidney disease, Bardet-Biedl syndrome, and Alstrom syndrome, may have chronic respiratory symptoms and even bronchiectasis suggesting clinical overlap with PCD. PMID:19606528

  10. An Outer Arm Dynein Conformational Switch Is Required for Metachronal Synchrony of Motile Cilia in Planaria

    PubMed Central

    Rompolas, Panteleimon; Patel-King, Ramila S.

    2010-01-01

    Motile cilia mediate the flow of mucus and other fluids across the surface of specialized epithelia in metazoans. Efficient clearance of peri-ciliary fluids depends on the precise coordination of ciliary beating to produce metachronal waves. The role of individual dynein motors and the mechanical feedback mechanisms required for this process are not well understood. Here we used the ciliated epithelium of the planarian Schmidtea mediterranea to dissect the role of outer arm dynein motors in the metachronal synchrony of motile cilia. We demonstrate that animals that completely lack outer dynein arms display a significant decline in beat frequency and an inability of cilia to coordinate their oscillations and form metachronal waves. Furthermore, lack of a key mechanosensitive regulatory component (LC1) yields a similar phenotype even though outer arms still assemble in the axoneme. The lack of metachrony was not due simply to a decrease in ciliary beat frequency, as reducing this parameter by altering medium viscosity did not affect ciliary coordination. In addition, we did not observe a significant temporal variability in the beat cycle of impaired cilia. We propose that this conformational switch provides a mechanical feedback system within outer arm dynein that is necessary to entrain metachronal synchrony. PMID:20844081

  11. Chemical crosslinking of the subunits of HIV-1 reverse transcriptase.

    PubMed Central

    Debyser, Z.; De Clercq, E.

    1996-01-01

    The reverse transcriptase (RT) of the human immunodeficiency virus type 1 (HIV-1) is composed of two subunits of 66 and 51 kDa in a 1 to 1 ratio. Because dimerization is a prerequisite for enzymatic activity, interference with the dimerization process could constitute an alternative antiviral strategy for RT inhibition. Here we describe an in vitro assay for the study of the dimerization state of HIV-1 reverse transcriptase based on chemical crosslinking of the subunits with dimethylsuberimidate. Crosslinking results in the formation of covalent bonds between the subunits, so that the crosslinked species can be resolved by denaturing gel electrophoresis. Crosslinked RT species with molecular weight greater than that of the dimeric form accumulate during a 1-15-min time course. Initial evidence suggests that those high molecular weight species represent trimers and tetramers and may be the result of intramolecular crosslinking of the subunits of a higher-order RT oligomer. A peptide that corresponds to part of the tryptophan repeat motif in the connection domain of HIV-1 RT inhibits crosslink formation as well as enzymatic activity. The crosslinking assay thus allows the investigation of the effect of inhibitors on the dimerization of HIV-1 RT. PMID:8745406

  12. Role of Protein Dimeric Interface in Allosteric Inhibition of N-Acetyl-Aspartate Hydrolysis by Human Aspartoacylase.

    PubMed

    Kots, Ekaterina D; Lushchekina, Sofya V; Varfolomeev, Sergey D; Nemukhin, Alexander V

    2017-08-28

    The results of molecular modeling suggest a mechanism of allosteric inhibition upon hydrolysis of N-acetyl-aspartate (NAA), one of the most abundant amino acid derivatives in brain, by human aspartoacylase (hAsp). Details of this reaction are important to suggest the practical ways to control the enzyme activity. Search for allosteric sites using the Allosite web server and SiteMap analysis allowed us to identify substrate binding pockets located at the interface between the subunits of the hAsp dimer molecule. Molecular docking of NAA to the pointed areas at the dimer interface predicted a specific site, in which the substrate molecule interacts with the Gly237, Arg233, Glu290, and Lys292 residues. Analysis of multiple long-scaled molecular dynamics trajectories (the total simulation time exceeded 1.5 μs) showed that binding of NAA to the identified allosteric site induced significant rigidity to the protein loops with the amino acid side chains forming gates to the enzyme active site. Application of the protein dynamical network algorithms showed that substantial reorganization of the signal propagation pathways of intersubunit communication in the dimer occurred upon allosteric NAA binding to the remote site. The modeling approaches provide an explanation to the observed decrease of the reaction rate of NAA hydrolysis by hAsp at high substrate concentrations.

  13. CENPT bridges adjacent CENPA nucleosomes on young human α-satellite dimers

    PubMed Central

    Thakur, Jitendra; Henikoff, Steven

    2016-01-01

    Nucleosomes containing the CenH3 (CENPA or CENP-A) histone variant replace H3 nucleosomes at centromeres to provide a foundation for kinetochore assembly. CENPA nucleosomes are part of the constitutive centromere associated network (CCAN) that forms the inner kinetochore on which outer kinetochore proteins assemble. Two components of the CCAN, CENPC and the histone-fold protein CENPT, provide independent connections from the ∼171-bp centromeric α-satellite repeat units to the outer kinetochore. However, the spatial relationship between CENPA nucleosomes and these two branches remains unclear. To address this issue, we use a base-pair resolution genomic readout of protein–protein interactions, comparative chromatin immunoprecipitation (ChIP) with sequencing, together with sequential ChIP, to infer the in vivo molecular architecture of the human CCAN. In contrast to the currently accepted model in which CENPT associates with H3 nucleosomes, we find that CENPT is centered over the CENPB box between two well-positioned CENPA nucleosomes on the most abundant centromeric young α-satellite dimers and interacts with the CENPB/CENPC complex. Upon cross-linking, the entire CENPA/CENPB/CENPC/CENPT complex is nuclease-protected over an α-satellite dimer that comprises the fundamental unit of centromeric chromatin. We conclude that CENPA/CENPC and CENPT pathways for kinetochore assembly are physically integrated over young α-satellite dimers. PMID:27384170

  14. Synthetic Covalently Linked Dimeric Form of H2 Relaxin Retains Native RXFP1 Activity and Has Improved In Vitro Serum Stability

    PubMed Central

    Nair, Vinojini B.; Bathgate, Ross A. D.; Separovic, Frances; Samuel, Chrishan S.; Hossain, Mohammed Akhter; Wade, John D.

    2015-01-01

    Human (H2) relaxin is a two-chain peptide member of the insulin superfamily and possesses potent pleiotropic roles including regulation of connective tissue remodeling and systemic and renal vasodilation. These effects are mediated through interaction with its cognate G-protein-coupled receptor, RXFP1. H2 relaxin recently passed Phase III clinical trials for the treatment of congestive heart failure. However, its in vivo half-life is short due to its susceptibility to proteolytic degradation and renal clearance. To increase its residence time, a covalent dimer of H2 relaxin was designed and assembled through solid phase synthesis of the two chains, including a judiciously monoalkyne sited B-chain, followed by their combination through regioselective disulfide bond formation. Use of a bisazido PEG7 linker and “click” chemistry afforded a dimeric H2 relaxin with its active site structurally unhindered. The resulting peptide possessed a similar secondary structure to the native monomeric H2 relaxin and bound to and activated RXFP1 equally well. It had fewer propensities to activate RXFP2, the receptor for the related insulin-like peptide 3. In human serum, the dimer had a modestly increased half-life compared to the monomeric H2 relaxin suggesting that additional oligomerization may be a viable strategy for producing longer acting variants of H2 relaxin. PMID:25685807

  15. New Insights into Molecular Organization of Human Neuraminidase-1: Transmembrane Topology and Dimerization Ability

    NASA Astrophysics Data System (ADS)

    Maurice, Pascal; Baud, Stéphanie; Bocharova, Olga V.; Bocharov, Eduard V.; Kuznetsov, Andrey S.; Kawecki, Charlotte; Bocquet, Olivier; Romier, Beatrice; Gorisse, Laetitia; Ghirardi, Maxime; Duca, Laurent; Blaise, Sébastien; Martiny, Laurent; Dauchez, Manuel; Efremov, Roman G.; Debelle, Laurent

    2016-12-01

    Neuraminidase 1 (NEU1) is a lysosomal sialidase catalyzing the removal of terminal sialic acids from sialyloconjugates. A plasma membrane-bound NEU1 modulating a plethora of receptors by desialylation, has been consistently documented from the last ten years. Despite a growing interest of the scientific community to NEU1, its membrane organization is not understood and current structural and biochemical data cannot account for such membrane localization. By combining molecular biology and biochemical analyses with structural biophysics and computational approaches, we identified here two regions in human NEU1 - segments 139-159 (TM1) and 316-333 (TM2) - as potential transmembrane (TM) domains. In membrane mimicking environments, the corresponding peptides form stable α-helices and TM2 is suited for self-association. This was confirmed with full-size NEU1 by co-immunoprecipitations from membrane preparations and split-ubiquitin yeast two hybrids. The TM2 region was shown to be critical for dimerization since introduction of point mutations within TM2 leads to disruption of NEU1 dimerization and decrease of sialidase activity in membrane. In conclusion, these results bring new insights in the molecular organization of membrane-bound NEU1 and demonstrate, for the first time, the presence of two potential TM domains that may anchor NEU1 in the membrane, control its dimerization and sialidase activity.

  16. Intricate Crystal Structure of Dihydrolipoamide Dehydrogenase (E3) with its Binding Protein: Multiple Copies, Dynamic and Static Disorders

    NASA Technical Reports Server (NTRS)

    Makal, A.; Hong, Y. S.; Potter, R.; Vettaikkorumakankauv, A. K.; Korotchkina, L. G.; Patel, M. S.; Ciszak, E.

    2004-01-01

    Human E3 and binding protein E3BP are two components of the pyruvate dehydrogenase complex. Crystallization of E3 with 221-amino acid fragment of E3BP (E3BPdd) led to crystals that diffracted to a resolution of 2.6 Angstroms. Structure determination involved molecular replacement using a dimer of E3 homolog as a search model and de novo building of the E3BPdd peptide. Solution was achieved by inclusion of one E3 dimer at a time, followed by refinement until five E3 dimers were located. This complete content of E3 provided electron density maps suitable for tracing nine peptide chains of E3BPdd, eight of them being identified with partial occupancies. Final content of the asymmetric unit consists of five E3 dimers, each binding one E3BPdd molecule. In four of these molecular complexes, E3BPdd is in static disorder resulting in E3BPdd binding to either one or the other monomer of the E3 dimer. However, E3BPdd of the fifth E3 dimer forms specific contacts that lock it at one monomer. In addition to this static disorder, E3BPdd reveals high mobility in the limited space of the crystal lattice. Support from NIH and NASA.

  17. Functional identification of a novel 14-3-3 epsilon splicing variant suggests dimerization is not necessary for 14-3-3 epsilon to inhibit UV-induced apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Dingding; Ye, Guangming; Liu, Tingting

    2010-05-28

    14-3-3 proteins function as a dimer and have been identified to involve in diverse signaling pathways. Here we reported the identification of a novel splicing variant of human 14-3-3 epsilon (14-3-3 epsilon sv), which is derived from a novel exon 1' insertion. The insertion contains a stop codon and leads to a truncated splicing variant of 14-3-3 epsilon. The splicing variant is translated from the exon 2 and results in the deletion of an N-terminal {alpha}-helix which is crucial for the dimerization. Therefore, the 14-3-3 epsilon sv could not form a dimer with 14-3-3 zeta. However, after UV irradiation 14-3-3more » epsilon sv could also support cell survival, suggesting monomer of 14-3-3 epsilon is sufficient to protect cell from apoptosis.« less

  18. Fibrinolytic activity in cerebrospinal fluid of dogs with different neurological disorders.

    PubMed

    de la Fuente, C; Monreal, L; Cerón, J; Pastor, J; Viu, J; Añor, S

    2012-01-01

    Fibrinolytic activity in cerebrospinal fluid (CSF) is activated in humans by different pathologic processes. To investigate fibrinolytic activity in the CSF of dogs with neurological disorders by measuring CSF D-dimer concentrations. One hundred and sixty-nine dogs with neurological disorders, 7 dogs with systemic inflammatory diseases without central nervous system involvement (SID), and 7 healthy Beagles were included in the study. Dogs with neurological disorders included 11 with steroid-responsive meningitis-arteritis (SRMA), 37 with other inflammatory neurological diseases (INF), 38 with neoplasia affecting the central nervous system (NEO), 28 with spinal compressive disorders (SCC), 15 with idiopathic epilepsy (IE), and 40 with noninflammatory neurological disorders (NON-INF). Prospective observational study. D-dimers and C-reactive protein (CRP) were simultaneously measured in paired CSF and blood samples. D-dimers and CRP were detected in 79/183 (43%) and in 182/183 (99.5%) CSF samples, respectively. All dogs with IE, SID, and controls had undetectable concentrations of D-dimers in the CSF. CSF D-dimer concentrations were significantly (P < .001) higher in dogs with SRMA than in dogs with other diseases and controls. CSF CRP concentration in dogs with SRMA was significantly (P < .001) higher than in dogs of other groups and controls, except for the SID group. No correlation was found between blood and CSF D-dimer concentrations. Intrathecal fibrinolytic activity seems to be activated in some canine neurological disorders, and it is high in severe meningeal inflammatory diseases. CSF D-dimer concentrations may be considered a diagnostic marker for SRMA. Copyright © 2012 by the American College of Veterinary Internal Medicine.

  19. Subunit stoichiometry of human muscle chloride channels.

    PubMed

    Fahlke, C; Knittle, T; Gurnett, C A; Campbell, K P; George, A L

    1997-01-01

    Voltage-gated Cl- channels belonging to the ClC family appear to function as homomultimers, but the number of subunits needed to form a functional channel is controversial. To determine subunit stoichiometry, we constructed dimeric human skeletal muscle Cl- channels in which one subunit was tagged by a mutation (D136G) that causes profound changes in voltage-dependent gating. Sucrose-density gradient centrifugation experiments indicate that both monomeric and dimeric hClC-1 channels in their native configurations exhibit similar sedimentation properties consistent with a multimeric complex having a molecular mass of a dimer. Expression of the heterodimeric channel in a mammalian cell line results in a homogenous population of Cl- channels exhibiting novel gating properties that are best explained by the formation of heteromultimeric channels with an even number of subunits. Heteromultimeric channels were not evident in cells cotransfected with homodimeric WT-WT and D136G-D136G constructs excluding the possibility that functional hClC-1 channels are assembled from more than two subunits. These results demonstrate that the functional hClC-1 unit consists of two subunits.

  20. Mechanism of DNA-binding enhancement by the human T-cell leukaemia virus transactivator Tax.

    PubMed

    Baranger, A M; Palmer, C R; Hamm, M K; Giebler, H A; Brauweiler, A; Nyborg, J K; Schepartz, A

    1995-08-17

    Tax protein activates transcription of the human T-cell leukaemia virus type I (HTLV-I) genome through three imperfect cyclic AMP-responsive element (CRE) target sites located within the viral promoter. Previous work has shown that Tax interacts with the bZIP element of proteins that bind the CRE target site to promote peptide dimerization, suggesting an association between Tax and bZIP coiled coil. Here we show that the site of interaction with Tax is not the coiled coil, but the basic segment. This interaction increases the stability of the GCN4 bZIP dimer by 1.7 kcal mol-1 and the DNA affinity of the dimer by 1.9 kcal mol-1. The differential effect of Tax on several bZip-DNA complexes that differ in peptide sequence or DNA conformation suggests a model for Tax action based on stabilization of a distinct DNA-bound protein structure. This model may explain how Tax interacts with transcription factors of considerable sequence diversity to alter patterns of gene expression.

  1. Design of a potent antibiotic peptide based on the active region of human defensin 5.

    PubMed

    Wang, Cheng; Shen, Mingqiang; Gohain, Neelakshi; Tolbert, William D; Chen, Fang; Zhang, Naixin; Yang, Ke; Wang, Aiping; Su, Yongping; Cheng, Tianmin; Zhao, Jinghong; Pazgier, Marzena; Wang, Junping

    2015-04-09

    Human defensin 5 (HD5) is a broad-spectrum antibacterial peptide with a C-terminal active region. To promote the development of this peptide into an antibiotic, we initially substituted Glu21 with Arg because it is an electronegative residue located around the active region. Although detrimental to dimer formation, the E21R substitution markedly enhanced the antibacterial activity of HD5 and increased its ability to penetrate cell membranes, demonstrating that increasing the electropositive charge compensated for the effect of dimer disruption. Subsequently, a partial Arg scanning mutagenesis was performed, and Thr7 was selected for replacement with Arg to further strengthen the antibacterial activity. The newly designed peptide, T7E21R-HD5, exhibited potent antibacterial activity, even in saline and serum solutions. In contrast to monomeric E21R-HD5, T7E21R-HD5 assembled into an atypical dimer with parallel β strands, thus expanding the role of increasing electropositive charge in bactericidal activity and providing a useful guide for further defensin-derived antibiotic design.

  2. Single chain Fc-dimer-human growth hormone fusion protein for improved drug delivery.

    PubMed

    Zhou, Li; Wang, Hsuan-Yao; Tong, Shanshan; Okamoto, Curtis T; Shen, Wei-Chiang; Zaro, Jennica L

    2017-02-01

    Fc fusion protein technology has been successfully used to generate long-acting forms of several protein therapeutics. In this study, a novel Fc-based drug carrier, single chain Fc-dimer (sc(Fc) 2 ), was designed to contain two Fc domains recombinantly linked via a flexible linker. Since the Fc dimeric structure is maintained through the flexible linker, the hinge region was omitted to further stabilize it against proteolysis and reduce FcγR-related effector functions. The resultant sc(Fc) 2 candidate preserved the neonatal Fc receptor (FcRn) binding. sc(Fc) 2 -mediated delivery was then evaluated using a therapeutic protein with a short plasma half-life, human growth hormone (hGH), as the protein drug cargo. This novel carrier protein showed a prolonged in vivo half-life and increased hGH-mediated bioactivity compared to the traditional Fc-based drug carrier. sc(Fc) 2 technology has the potential to greatly advance and expand the use of Fc-technology for improving the pharmacokinetics and bioactivity of protein therapeutics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Cri du Chat Syndrome and Primary Ciliary Dyskinesia: A Common Genetic Cause on Chromosome 5p

    PubMed Central

    Shapiro, Adam J.; Weck, Karen E.; Chao, Kay C.; Rosenfeld, Margaret; Nygren, Anders O. H.; Knowles, Michael R.; Leigh, Margaret W.; Zariwala, Maimoona A.

    2014-01-01

    Cri du chat syndrome (CdCS) and primary ciliary dyskinesia (PCD) are rare diseases that present with frequent respiratory symptoms. PCD can be caused by hemizygous DNAH5 mutation in combination with a 5p segmental deletion attributable to CdCS on the opposite chromosome. Chronic oto-sino-pulmonary symptoms or organ laterality defects in CdCS should prompt an evaluation for PCD. PMID:25066065

  4. A kinetic comparison of the processing and secretion of the alpha beta dimer and the uncombined alpha and beta subunits of chorionic gonadotropin synthesized by human choriocarcinoma cells.

    PubMed

    Peters, B P; Krzesicki, R F; Hartle, R J; Perini, F; Ruddon, R W

    1984-12-25

    Human choriocarcinoma cells (JAR) synthesize the alpha and beta subunits of the glycoprotein hormone chorionic gonadotropin (hCG) (R.W. Ruddon, C.A. Hanson, A. H. Bryan, G.J. Putterman, E.L. White, F. Perini, K. S. Meade, and P.H. Aldenderfer (1980) J. Biol. Chem. 255, 1000-1007). In addition to the hCG dimer (alpha beta), JAR cells secrete uncombined alpha and beta subunits into the culture medium (L.A. Cole, R.J. Hartle, J.A. Laferla, and R.W. Ruddon (1983) Endocrinology 113, 1176-1178). Pulse-chase studies with [35S]methionine or [3H]mannose were carried out in order to compare free alpha, free beta, and the alpha beta dimer with regard to the kinetics of synthesis, N-linked oligosaccharide processing, and secretion and to determine the kinetics of alpha-beta subunit combination. A panel of three antisera was used to immunoprecipitate directly the free subunits and the alpha beta dimer sequentially from the same cell lysates and culture media. The alpha subunit of hCG was synthesized in a slight molar excess (1.2-1.5-fold) over the beta subunit, and alpha beta dimer was rapidly formed by combination of the intracellular alpha and beta precursors. Dimer formation was already apparent in JAR cells following a 10-min biosynthetic labeling incubation with [35S]methionine. The combination of subunits ceased by 30 min of chase even though 51% of alpha and 44% of beta remained free within the cells. Combination of the alpha and beta precursors had occurred before their N-linked oligosaccharides were processed beyond the Man8GlcNAc2 structure. The initial trimming of glucosyl and mannosyl units from the high-mannose oligosaccharides of the hCG precursors occurred more rapidly for free alpha and CG-alpha than for free beta and CG-beta. JAR cells accumulated alpha precursors bearing mostly Man8GlcNAc2 units and beta precursors bearing Man8GlcNAc2 units that represent the substrates of the rate-limiting step in the secretory pathway. In spite of the fact that their N-linked oligosaccharides were trimmed at different rates, free alpha, free beta, and alpha beta dimer were all secreted into the medium at the same rate, with a half-time of 35 min. The secreted hCG forms were stable in the chase medium between 4 and 8h, indicating that extracellular degradation, combination of free subunits to form dimer, or dissociation of dimer to form free subunits did not occur.(ABSTRACT TRUNCATED AT 400 WORDS)

  5. Novel Insights into the Development and Function of Cilia Using the Advantages of the Paramecium Cell and Its Many Cilia

    PubMed Central

    Yano, Junji; Valentine, Megan S.; Van Houten, Judith L.

    2015-01-01

    Paramecium species, especially P. tetraurelia and caudatum, are model organisms for modern research into the form and function of cilia. In this review, we focus on the ciliary ion channels and other transmembrane proteins that control the beat frequency and wave form of the cilium by controlling the signaling within the cilium. We put these discussions in the context of the advantages that Paramecium brings to the understanding of ciliary motility: mutants for genetic dissections of swimming behavior, electrophysiology, structural analysis, abundant cilia for biochemistry and modern proteomics, genomics and molecular biology. We review the connection between behavior and physiology, which allows the cells to broadcast the function of their ciliary channels in real time. We build a case for the important insights and advantages that this model organism continues to bring to the study of cilia. PMID:26230712

  6. Handedness and situs inversus in primary ciliary dyskinesia.

    PubMed Central

    McManus, I. C.; Martin, N.; Stubbings, G. F.; Chung, E. M. K.; Mitchison, H. M.

    2004-01-01

    ...The limbs on the right side are stronger. [The] cause may be ... [that] ... motion, and abilities of moving, are somewhat holpen from the liver, which lieth on the right side. (Sir Francis Bacon, Sylva sylvarum (1627).)Fifty per cent of people with primary ciliary dyskinesia (PCD) (also known as immotile cilia syndrome or Siewert-Kartagener syndrome) have situs inversus, which is thought to result from absent nodal ciliary rotation and failure of normal symmetry breaking. In a study of 88 people with PCD, only 15.2% of 46 individuals with situs inversus, and 14.3% of 42 individuals with situs solitus, were left handed. Because cerebral lateralization is therefore still present, the nodal cilia cannot be the primary mechanism responsible for symmetry breaking in the vertebrate body. Intriguingly, one behavioural lateralization, wearing a wrist-watch on the right wrist, did correlate with situs inversus. PMID:15615683

  7. Handedness and situs inversus in primary ciliary dyskinesia.

    PubMed

    McManus, I C; Martin, N; Stubbings, G F; Chung, E M K; Mitchison, H M

    2004-12-22

    ... The limbs on the right side are stronger. [The] cause may be ... [that] ... motion, and abilities of moving, are somewhat holpen from the liver, which lieth on the right side. (Sir Francis Bacon, Sylva sylvarum (1627).)Fifty per cent of people with primary ciliary dyskinesia (PCD) (also known as immotile cilia syndrome or Siewert-Kartagener syndrome) have situs inversus, which is thought to result from absent nodal ciliary rotation and failure of normal symmetry breaking. In a study of 88 people with PCD, only 15.2% of 46 individuals with situs inversus, and 14.3% of 42 individuals with situs solitus, were left handed. Because cerebral lateralization is therefore still present, the nodal cilia cannot be the primary mechanism responsible for symmetry breaking in the vertebrate body. Intriguingly, one behavioural lateralization, wearing a wrist-watch on the right wrist, did correlate with situs inversus.

  8. Fabrication and Manipulation of Ciliary Microrobots with Non-reciprocal Magnetic Actuation

    PubMed Central

    Kim, Sangwon; Lee, Seungmin; Lee, Jeonghun; Nelson, Bradley J.; Zhang, Li; Choi, Hongsoo

    2016-01-01

    Magnetically actuated ciliary microrobots were designed, fabricated, and manipulated to mimic cilia-based microorganisms such as paramecia. Full three-dimensional (3D) microrobot structures were fabricated using 3D laser lithography to form a polymer base structure. A nickel/titanium bilayer was sputtered onto the cilia part of the microrobot to ensure magnetic actuation and biocompatibility. The microrobots were manipulated by an electromagnetic coil system, which generated a stepping magnetic field to actuate the cilia with non-reciprocal motion. The cilia beating motion produced a net propulsive force, resulting in movement of the microrobot. The magnetic forces on individual cilia were calculated with various input parameters including magnetic field strength, cilium length, applied field angle, actual cilium angle, etc., and the translational velocity was measured experimentally. The position and orientation of the ciliary microrobots were precisely controlled, and targeted particle transportation was demonstrated experimentally. PMID:27470077

  9. Primary ciliary dyskinesia: current state of the art

    PubMed Central

    Bush, Andrew; Chodhari, Rahul; Collins, Nicola; Copeland, Fiona; Hall, Pippa; Harcourt, Jonny; Hariri, Mohamed; Hogg, Claire; Lucas, Jane; Mitchison, Hannah M; O'Callaghan, Christopher; Phillips, Gill

    2007-01-01

    Primary ciliary dyskinesia (PCD) is usually inherited as an autosomal recessive disorder and presents with upper and lower respiratory tract infection, and mirror image arrangement in around 50% of cases. Cilia dysfunction is also implicated in a wider spectrum of disease, including polycystic liver and kidney disease, central nervous system problems including retinopathy and hydrocephalus, and biliary atresia. Cilia are complex structures, containing more than 250 proteins; recent studies have begun to locate PCD genes scattered throughout the genome. Screening tests for PCD include nasal nitric oxide and in vivo tests of ciliary motility such as the saccharin test. Specific diagnosis requires examination of cilia by light and electron microscopy, with epithelial culture in doubtful cases. This is only available in supra‐regional centres, recently centrally funded by the National Commissioning Group. Treatment is not evidence based and recommendations are largely extrapolated from cystic fibrosis and other suppurative lung diseases. PMID:17634184

  10. Spectrum of Clinical Diseases Caused By Disorders of Primary Cilia

    PubMed Central

    Aygun, Meral Gunay-; Hildebrandt, Friedhelm

    2011-01-01

    The ciliopathies are a category of diseases caused by disruption of the physiological functions of cilia. Ciliary dysfunction results in a broad range of phenotypes, including renal, hepatic, and pancreatic cyst formation; situs abnormalities; retinal degeneration; anosmia; cerebellar or other brain anomalies; postaxial polydactyly; bronchiectasis; and infertility. The specific clinical features are dictated by the subtype, structure, distribution, and function of the affected cilia. This review highlights the clinical variability caused by dysfunction of motile and nonmotile primary cilia and emphasizes the genetic heterogeneity and phenotypic overlap that are characteristics of these disorders. There is a need for additional research to understand the shared and unique functions of motile and nonmotile cilia and the pathophysiology resulting from mutations in cilia, basal bodies, or centrosomes. Increased understanding of ciliary biology will improve the diagnosis and management of primary ciliary dyskinesia, syndromic ciliopathies, and cilia-related cystic diseases. PMID:21926397

  11. Novel Insights into the Development and Function of Cilia Using the Advantages of the Paramecium Cell and Its Many Cilia.

    PubMed

    Yano, Junji; Valentine, Megan S; Van Houten, Judith L

    2015-07-29

    Paramecium species, especially P. tetraurelia and caudatum, are model organisms for modern research into the form and function of cilia. In this review, we focus on the ciliary ion channels and other transmembrane proteins that control the beat frequency and wave form of the cilium by controlling the signaling within the cilium. We put these discussions in the context of the advantages that Paramecium brings to the understanding of ciliary motility: mutants for genetic dissections of swimming behavior, electrophysiology, structural analysis, abundant cilia for biochemistry and modern proteomics, genomics and molecular biology. We review the connection between behavior and physiology, which allows the cells to broadcast the function of their ciliary channels in real time. We build a case for the important insights and advantages that this model organism continues to bring to the study of cilia.

  12. Studies on the Detection, Expression, Glycosylation, Dimerization, and Ligand Binding Properties of Mouse Siglec-E*

    PubMed Central

    Siddiqui, Shoib; Schwarz, Flavio; Springer, Stevan; Khedri, Zahra; Yu, Hai; Deng, Lingquan; Verhagen, Andrea; Naito-Matsui, Yuko; Jiang, Weiping; Kim, Daniel; Zhou, Jie; Ding, Beibei; Chen, Xi; Varki, Nissi; Varki, Ajit

    2017-01-01

    CD33-related Siglecs are a family of proteins widely expressed on innate immune cells. Binding of sialylated glycans or other ligands triggers signals that inhibit or activate inflammation. Immunomodulation by Siglecs has been extensively studied, but relationships between structure and functions are poorly explored. Here we present new data relating to the structure and function of Siglec-E, the major CD33-related Siglec expressed on mouse neutrophils, monocytes, macrophages, and dendritic cells. We generated nine new rat monoclonal antibodies specific to mouse Siglec-E, with no cross-reactivity to Siglec-F. Although all antibodies detected Siglec-E on transfected human HEK-293T cells, only two reacted with mouse bone marrow neutrophils by flow cytometry and on spleen sections by immunohistochemistry. Moreover, whereas all antibodies recognized Siglec-E-Fc on immunoblots, binding was dependent on intact disulfide bonds and N-glycans, and only two antibodies recognized native Siglec-E within spleen lysates. Thus, we further investigated the impact of Siglec-E homodimerization. Homology-based structural modeling predicted a cysteine residue (Cys-298) in position to form a disulfide bridge between two Siglec-E polypeptides. Mutagenesis of Cys-298 confirmed its role in dimerization. In keeping with the high level of 9-O-acetylation found in mice, sialoglycan array studies indicate that this modification has complex effects on recognition by Siglec-E, in relationship to the underlying structures. However, we found no differences in phosphorylation or SHP-1 recruitment between dimeric and monomeric Siglec-E expressed on HEK293A cells. Phylogenomic analyses predicted that only some human and mouse Siglecs form disulfide-linked dimers. Notably, Siglec-9, the functionally equivalent human paralog of Siglec-E, occurs as a monomer. PMID:27920204

  13. The Hinge Region as a Key Regulatory Element of Androgen Receptor Dimerization, DNA Binding and Transactivation

    DTIC Science & Technology

    2006-05-01

    Mutations in the human androgen receptor gene as a learning tool for molecular endocrinology’ III. Poster presentations at international meetings...nonconsensus half-site, the cognate half-complex buries slightly more surface area from solvent (1,230 Å2) than the noncognate one (960 Å2). AR Mutations ...energetic penalty in- Fig. 4. (A) The AR DBD dimer interface. The molecular surfaces of the AR subunits are shown in red and blue. Dashed black lines

  14. Structural Analysis of the Dimerization Domain of the Human Estrogen Receptor and a Peptide Inhibitor of Dimerization

    DTIC Science & Technology

    1998-08-01

    communication). Various hER fragments were expressed in Esherichia coli (E. coli ) as glutathione-S-transferace (GST) fusion proteins, separated by...Using an E. coli expression vector, we successfully overexpressed hER[253-341] as a fusion protein with an N-terminal poly-histidine tag (Figure 1A...of hER fused to GST were expressed in E. coli , and they were then separated on SDS PAGE, and then transferred to a blotting membrane. The membrane was

  15. (+)- and (-)-Cajanusine, a pair of new enantiomeric stilbene dimers with a new skeleton from the leaves of Cajanus cajan.

    PubMed

    Li, Xiao-Long; Zhao, Bing-Xin; Huang, Xiao-Jun; Zhang, Dong-Mei; Jiang, Ren-Wang; Li, Ying-Jie; Jian, Yu-Qing; Wang, Ying; Li, Yao-Lan; Ye, Wen-Cai

    2014-01-03

    A pair of new enantiomeric stilbene dimers, (+)- and (-)-cajanusine [(+)-1 and (-)-1], with a unique coupling pattern were isolated from the leaves of Cajanus cajan . Their structures including absolute configurations were elucidated on the basis of comprehensive spectroscopic and single-crystal X-ray diffraction analyses, as well as CD calculations. The plausible biogenetic pathway of 1 was also proposed. Additionally, (±)-1, (+)-1, and (-)-1 exhibited inhibitory activities on the growth of human hepatocellular carcinoma cells.

  16. Embryonic and post-embryonic development of the polyclad flatworm Maritigrella crozieri; implications for the evolution of spiralian life history traits

    PubMed Central

    2010-01-01

    Background Planktonic life history stages of spiralians share some muscular, nervous and ciliary system characters in common. The distribution of these characters is patchy and can be interpreted either as the result of convergent evolution, or as the retention of primitive spiralian larval features. To understand the evolution of these characters adequate taxon sampling across the Spiralia is necessary. Polyclad flatworms are the only free-living Platyhelminthes that exhibit a continuum of developmental modes, with direct development at one extreme, and indirect development via a trochophore-like larval stage at the other. Here I present embryological and larval anatomical data from the indirect developing polyclad Maritrigrella crozieri, and consider these data within a comparative spiralian context. Results After 196 h hours of embryonic development, M. crozieri hatches as a swimming, planktotrophic larva. Larval myoanatomy consists of an orthogonal grid of circular and longitudinal body wall muscles plus parenchymal muscles. Diagonal body wall muscles develop over the planktonic period. Larval neuroanatomy consists of an apical plate, neuropile, paired nerve cords, a peri-oral nerve ring, a medial nerve, a ciliary band nerve net and putative ciliary photoreceptors. Apical neural elements develop first followed by posterior perikarya and later pharyngeal neural elements. The ciliated larva is encircled by a continuous, pre-oral band of longer cilia, which follows the distal margins of the lobes; it also possesses distinct apical and caudal cilia. Conclusions Within polyclads heterochronic shifts in the development of diagonal bodywall and pharyngeal muscles are correlated with life history strategies and feeding requirements. In contrast to many spiralians, M. crozieri hatch with well developed nervous and muscular systems. Comparisons of the ciliary bands and apical organs amongst spiralian planktonic life-stages reveal differences; M. crozieri lack a distinct ciliary band muscle and flask-shaped epidermal serotonergic cells of the apical organ. Based on current phylogenies, the distribution of ciliary bands and apical organs between polyclads and other spiralians is not congruent with a hypothesis of homology. However, some similarities exist, and this study sets an anatomical framework from which to investigate cellular and molecular mechanisms that will help to distinguish between parallelism, convergence and homology of these features. PMID:20426837

  17. Morphological significance of the pectineal ligament of the eye.

    PubMed

    Costa-Vila, J; Barastegui, C; Ruano-Gil, D

    1987-01-01

    We have studied the arrangement of the pectineal ligament or its equivalent, the uveal trabecula, in herbivores, carnivores, primates and humans. From our investigations, the pectineal ligament, the uveal trabecula and the so-called processes of the iris form a morphological unit that is made up of the tendinous fibres of the longitudinal portion of the ciliary muscle, that are inserted into the periphery of Descemet's membrane and send out ahead prolongations that extend to the anterior face of the iris. The so-called processes of the iris cannot be considered as independent structures since they represent the innermost fibres of the trabecular or uveal meshwork; in some species these have a thicker appearance, an arrangement that can occasionally be found in the human eye.

  18. LruA and LruB Antibodies in Sera of Humans with Leptospiral Uveitis▿

    PubMed Central

    Verma, Ashutosh; Rathinam, S. R.; Priya, C. Gowri; Muthukkaruppan, V. R.; Stevenson, Brian; Timoney, John F.

    2008-01-01

    Uveitis can be a serious complication of leptospirosis. Previous studies indicated that the leptospiral lipoproteins LruA and LruB are expressed in the eyes of uveitic horses and that antibodies directed against those proteins show in vitro cross-reactivity with components of equine lens, ciliary body, and/or retina. We now demonstrate that sera from a significant proportion of humans who have leptospiral uveitis also contain antibodies against LruA and LruB. Different categories of nonleptospiral uveitis and autoimmune uveitis were also screened; patients diagnosed with Fuchs uveitis or Behçet's syndrome produced antibodies that cross-reacted with LruA and LruB, suggesting similarities of the autoimmune responses in those diseases with those of leptospiral uveitis. PMID:18400972

  19. Effects of glaucoma medications and preservatives on cultured human trabecular meshwork and non-pigmented ciliary epithelial cell lines.

    PubMed

    Ammar, David A; Kahook, Malik Y

    2011-10-01

    We investigated the potential cytotoxicity of various topical ophthalmic glaucoma formulations containing different preservatives in cultured human trabecular meshwork (TM) and non-pigmented ciliary epithelial (NPCE) cell lines. We tested 0.004% travoprost preserved with either 0.015% benzalkonium chloride (BAK), sofZia or 0.001% Polyquad (PQ); and 0.005% latanoprost preserved with 0.020% BAK. We also tested a range of BAK concentrations in balanced salt solution (BSS). TM cells were treated for 10 min at 37°C with solutions diluted 1:10 to mimic the reduced penetration of topical preparations to the anterior chamber. Viability was determined by the uptake of the fluorescent vital dye calcein-AM (n = 6). BAK solutions (diluted 1:10) demonstrated a dose-dependent reduction in cell viability in both cell types (TM and NPCE). With a 1:10 dilution of 0.020% BAK, there were significantly more living NPCE cells (89 ± 6%) than TM cells (57 ± 6%; p < 0.001). In TM cells, travoprost + BAK had statistically fewer live cells (83 ± 5%) than both travoprost + sofZia (97 ± 5%) and travoprost + PQ (97 ± 6%; p < 0.05). Compared with BSS-treated NPCE cells, travoprost had statistically fewer live cells (p < 0.05) when preserved with BAK (85 ± 16%), sofZia (91 ± 6%) or PQ (94 ± 2%). These results demonstrate that substitution of BAK from topical ophthalmic drugs results in greater viability of cultured TM cells, the cells involved in the conventional outflow pathway. Cultured NPCE, responsible for aqueous inflow, appear more resilient to BAK.

  20. Cri du chat syndrome and primary ciliary dyskinesia: a common genetic cause on chromosome 5p.

    PubMed

    Shapiro, Adam J; Weck, Karen E; Chao, Kay C; Rosenfeld, Margaret; Nygren, Anders O H; Knowles, Michael R; Leigh, Margaret W; Zariwala, Maimoona A

    2014-10-01

    Cri du chat syndrome (CdCS) and primary ciliary dyskinesia (PCD) are rare diseases that present with frequent respiratory symptoms. PCD can be caused by hemizygous DNAH5 mutation in combination with a 5p segmental deletion attributable to CdCS on the opposite chromosome. Chronic oto-sino-pulmonary symptoms or organ laterality defects in CdCS should prompt an evaluation for PCD. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. A solid-state control system for dynein-based ciliary/flagellar motility

    PubMed Central

    2013-01-01

    Ciliary and flagellar beating requires the coordinated action of multiple dyneins with different enzymatic and motor properties. In this issue, Yamamoto et al. (2013. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201211048) identify the MIA (modifier of inner arms) complex within the Chlamydomonas reinhardtii axoneme that physically links to a known regulatory structure and provides a signaling conduit from the radial spokes to an inner arm dynein essential for waveform determination. PMID:23569213

  2. Palladium-103 plaque radiation therapy for ciliary body melanoma through a functioning glaucoma filtering bleb.

    PubMed

    Pathan, Arif H K; Barash, Alexander; Tena, Lawrence B; Finger, Paul T

    2018-01-01

    To provide a clinical description of the long-term outcome of a 103 Pd plaque-irradiated ciliary body melanoma with extrascleral extension while attempting to preserve a subadjacent glaucoma filtering bleb. A 75-year-old woman with pseudoexfoliative glaucoma for 17 years, 16 years status post argon laser trabeculoplasty, and 15 years status post trabeculectomy in the left eye, was diagnosed with an ipsilateral ciliary body melanoma with visible extrascleral extension. Treatment involved insertion of a 103 Pd radioactive plaque over the functioning trabeculectomy, with removal 7 days later. At plaque insertion, amniotic membrane grafts were used to cover the plaque and protect the filtering site. The tumor was successfully treated without clinical evidence of harm to the filtering bleb, with resultant stable intraocular pressure. However, the patient developed blebitis 1.5 years later. Though it resolved with topical antibiotic therapy, the bleb became less succulent. Two years postoperatively, she developed a spontaneous hyphema that resolved after one injection of transscleral bevacizumab 1.25 mg. Her tumor continually regressed in thickness. Without additional glaucoma surgery, her intraocular pressure remained well-controlled on topical medications for 6 years. Ciliary body melanoma with minimal extrascleral extension beneath a functioning filtering bleb can be treated using radioactive plaque therapy. In this case, we were able to achieve both tumor regression and glaucoma control by covering the plaque with an amniotic membrane graft.

  3. Short Communication: An apospory-specific genomic region is conserved between Buffelgrass (Cenchrus ciliaris L.) and Pennisetum squamulatum Fresen.

    PubMed

    Roche; Cong; Chen; Hanna; Gustine; Sherwood; Ozias-Akins

    1999-07-01

    Twelve molecular markers linked to pseudogamous apospory, a form of gametophytic apomixis, were previously isolated from Pennisetum squamulatum Fresen. No recombination between these markers was found in a segregating population of 397 individuals (Ozias-Akins et al. 1998, Proc. Natl Acad. Sci. USA, 95, 5127-5132). The objective of the present study was to test if these markers were also linked to the aposporous mode of reproduction in two small segregating populations of Cenchrus ciliaris (= Pennisetum ciliare (L.)Link), another apomictic grass species. Among 12 markers (sequence characterized amplified regions, SCARs), six were scored as dominant markers between aposporous and sexual C. ciliaris genotypes (presence/absence, respectively). Five were always linked to apospory and one showed a low level of recombination in 84 progenies. Restriction fragment length polymorphisms (RFLPs) were observed between sexual and apomictic phenotypes for three of the six remaining SCARs from P. squamulatum when used as probes. No recombination was observed in the F1 progenies. Preliminary data from megabase DNA analysis and sequencing in both species indicate that an apospory-specific genomic region (ASGR) is highly conserved between the two species. Although C. ciliaris has a smaller genome size to P. squamulatum, a higher copy number for markers linked to apospory found in the former may impair the progress of positional cloning of gene(s) for apomixis in this species.

  4. Loss and gain of cone types in vertebrate ciliary photoreceptor evolution.

    PubMed

    Musser, Jacob M; Arendt, Detlev

    2017-11-01

    Ciliary photoreceptors are a diverse cell type family that comprises the rods and cones of the retina and other related cell types such as pineal photoreceptors. Ciliary photoreceptor evolution has been dynamic during vertebrate evolution with numerous gains and losses of opsin and phototransduction genes, and changes in their expression. For example, early mammals lost all but two cone opsins, indicating loss of cone receptor types in response to nocturnal lifestyle. Our review focuses on the comparison of specifying transcription factors and cell type-specific transcriptome data in vertebrate retinae to build and test hypotheses on ciliary photoreceptor evolution. Regarding cones, recent data reveal that a combination of factors specific for long-wavelength sensitive opsin (Lws)- cones in non-mammalian vertebrates (Thrb and Rxrg) is found across all differentiating cone photoreceptors in mice. This suggests that mammalian ancestors lost all but one ancestral cone type, the Lws-cone. We test this hypothesis by a correlation analysis of cone transcriptomes in mouse and chick, and find that, indeed, transcriptomes of all mouse cones are most highly correlated to avian Lws-cones. These findings underscore the importance of specifying transcription factors in tracking cell type evolution, and shed new light on the mechanisms of cell type loss and gain in retina evolution. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Pigment dispersion glaucoma induced by the chafing effect of intraocular lens haptics in Asian eyes.

    PubMed

    Hong, Ying; Sun, Yan-Xiu; Qi, Hong; Zhou, Ji-Chao; Hao, Yan-Sheng

    2013-03-01

    To study the possible mechanism and treatment for pigment dispersion glaucoma (PDG) caused by single-piece acrylic (SPA) intraocular lens (IOL) ciliary sulcus fixation in Asian eyes. Patients referred for PDG caused by SPA IOL ciliary sulcus fixation to our hospital from April 2005 to June 2011 were included. The patients' general information, IOL type, interval between initial surgery and PDG occurrence, examination findings, antiglaucoma medicine regimen and surgical interventions were recorded. In total, six eyes from five Chinese patients were included in this study. The intraocular pressure (IOP) increased 19-30 days after cataract surgery and was not satisfactorily controlled with antiglaucoma medication. Dense pigmentation was deposited on the IOLs and on the anterior chamber angle. IOL haptic chafing was noted on the rear iris surface. IOL repositioning in the capsular bag was performed in three eyes and was combined with trabeculectomy in two eyes with progressive glaucoma. An IOL exchange with three-piece IOL ciliary sulcus fixation was performed in the other three eyes. Scanning electron microscopy of the explanted IOLs demonstrated a rough edge on the IOL haptics. SPA IOLs were not suitable for ciliary sulcus fixation. The chafing effect of the IOL haptics on the posterior iris pigment epithelium could induce PDG in Asian eyes. IOLs should be positioned in the capsular bag or a three-piece IOL should be used instead.

  6. Ciliary targeting of olfactory CNG channels requires the CNGB1b subunit and the kinesin-2 motor protein, KIF17.

    PubMed

    Jenkins, Paul M; Hurd, Toby W; Zhang, Lian; McEwen, Dyke P; Brown, R Lane; Margolis, Ben; Verhey, Kristen J; Martens, Jeffrey R

    2006-06-20

    Nonmotile cilia on olfactory sensory neurons (OSNs) compartmentalize signaling molecules, including odorant receptors and cyclic nucleotide-gated (CNG) channels, allowing for efficient, spatially confined responses to sensory stimuli . Little is known about the mechanisms of the ciliary targeting of olfactory CNG channels, composed of three subunits: CNGA2, CNGA4, and CNGB1b . Recent reports suggest that subunit composition of the retinal CNG channel influences localization, leading to disease . However, the mechanistic role of subunits in properly targeting native olfactory CNG channels remains unclear. Here, we show that heteromeric assembly with CNGB1b, containing a critical carboxy-terminal motif (RVxP), is required for ciliary trafficking of olfactory CNG channels. Movement of proteins within the cilia is governed by intraflagellar transport (IFT), a process that facilitates bidirectional movement of cargo along microtubules. Work in C. elegans has established that heterotrimeric and homodimeric kinesin-2 family members play a critical role in anterograde transport . In mammalian systems, the heterotrimeric KIF3a/KIF3b/KAP-3 complex plays a clear role in IFT; however, no role has been established for KIF17, the mammalian homolog of OSM-3 . Here, we demonstrate that KIF17 is required for olfactory CNG channel targeting, providing novel insights into mechanisms of mammalian ciliary transport.

  7. [Mesectodermal leiomyoma. Unusual tumor of the ciliary body].

    PubMed

    Rentería-Ruiz, Nancy Paulina; de Wit-Carter, Guillermo; Villaseñor-Diez, Jaime; Flores-Estrada, José Javier; Rodríguez-Reyes, Abelardo Antonio

    2014-01-01

    Mesectodermal leiomyoma is a benign tumor of smooth muscle of the ciliary body, which is derived from the neural crest. We report the case of a 35-year-old Mexican woman with visually impaired and blurred vision of the right eye of 2 months duration. The clinical and imaging presuntional diagnosis was adenoma of the non pigmented epithelium of the ciliary body and it was surgically resected. Microscopically, the tumor was composed of cells with round nuclei and scant cytoplasm without atypia or mitosis, arranged in a fibrillary background. The immunohistochemical markers for vimentin, muscle specific actin, smooth muscle actin and calponin were strongly positive in the cytoplasm of the neoplastic cells, while for glial fibrillary acidic protein and S-100 protein were negative in the same cellular population. Mesectodermal leiomyoma of the ciliary body is benign tumor of smooth muscle extremely rare in this location. Until now, there are just 25 previous reported cases in the literature and, the main differential diagnosis is uveal malignant melanoma, therefore some eyes were enucleated. The ultrabiomicroscopy, A and B-scan imaging studies are useful in the evaluation, however, is mandatory the microsocpic examination with routine and histochemical stains as well as the use of immunohistochemical markers such as vimentin, specific muscle actin, smooth muscle actin andcalponin to stablish the smooth muscle origin of this neoplasm, and rule out other malignant neoplams such as malignant melanoma.

  8. Heterologous Quaternary Structure of CXCL12 and its Relationship to the CC Chemokine Family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, J.; Yuan, H; Kong, Y

    2010-01-01

    X-ray crystallographic studies reveal that CXCL12 is able to form multiple dimer types, a traditional CXC dimer and a 'CC-like' form. Phylogenetic analysis of all known human chemokines demonstrates CXCL12 is more closely related to the CC chemokine class than other CXC chemokines. These observations indicate that CXCL12 contains genomic and structural elements characteristic of both CXC and CC chemokines.Chemokines are members of a superfamily of proteins involved in the migration of cells to the proper anatomical position during embryonic development or in response to infection or stress during an immune response. There are two major (CC and CXC) andmore » two minor (CX3C and XC) families based on the sequence around the first conserved cysteine. The topology of all structures is essentially identical with a flexible N-terminal region of 3-8 amino acids, a 10-20 residue N-terminal loop, a short 3{sub 10}-helix, three {beta}-strands, and a {alpha}-helix. The major consequence of the subtle difference between the families occurs at the oligomeric level. Monomers of the CC, CXC, and CX3C families form dimers in a family-specific manner. The XCL1 chemokine is a monomer that can interconvert between two folded states. All chemokines activate GPCRs according to family-specificity, however there are a few examples of chemokines crossing the family boundary to function as antagonists. A two-stage mechanism for chemokine activation of GPCRs has been proposed. The N-terminal region of the receptor interacts with the chemokine, followed by receptor activation by the chemokine N-terminal region. Monomeric chemokines have been demonstrated to be the active form for receptor function. There are numerous examples of both chemokines and their receptors forming dimers. While family-specific dimerization may be an attractive explanation for why specific chemokines only activate GPCRs within their own family, the role of dimers in the function of chemokines has not been resolved. Given that CXCL12 is in the CXC family, the CXC dimer is considered the physiologic dimer in all previous studies based on crystallographic evidence. NMR and mutational studies agree with the CXC dimer form in solution. The CXC form of the dimer is seen in recent structures of CXCL12 bound to a heparin disaccharide and several CXCR4 peptides. In one case, crystals of the CXC-type dimer were soaked in a heparin disaccharide solution to determine the interactions between this dimer and bound disaccharide. In another case, in order to overcome NMR chemical shift line broadening when CXCR4 peptides are added, a 'locked' dimer was constructed by introducing a cysteine mutant that linked subunits as a CXC dimer through an inter-subunit disulfide bond. The solution structures of the locked CXC dimer with CXCR4 peptides were determined. The locked CXC dimer retained Ca{sup 2+} mobilization yet lost chemotaxis activity, presumably because the monomer is the active form. In addition to existing as a monomer and CXC dimer, CXCL12 is now demonstrated to have the capacity to form CC type dimers in the presence of a CXCR4 peptide.« less

  9. Structural characterizations of human periostin dimerization and cysteinylation.

    PubMed

    Liu, Jianmei; Zhang, Junying; Xu, Fei; Lin, Zhaohan; Li, Zhiqiang; Liu, Heli

    2018-05-12

    Human periostin plays a multifaceted role in remodeling the extracellular matrix milieu by interacting with other proteins and itself in both a heterophilic and homophilic manner. However, the structural mechanism for its extensive interactions has remained elusive. Here, we report the crystal structures of human periostin (EMI-Fas1 I- IV ) and its Cys60Ala mutant. In combination with multi-angle light scattering analysis and biochemical assays, the crystal structures reveal that periostin mainly exists as a dimer in solution and its homophilic interaction is mainly mediated by the EMI domain. Furthermore, Cys60 undergoes cysteinylation as confirmed by mass spectroscopy, and this site hardly affects the homophilic interaction. Also, the structures yield insights into how periostin forms heterophilic interactions with other proteins under physiological or pathological conditions. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Dimeric c-di-GMP is required for post-translational regulation of alginate production in Pseudomonas aeruginosa

    DOE PAGES

    Whitney, John C.; Robinson, Howard; Whitfield, Gregory B.; ...

    2015-05-15

    Pseudomonas aeruginosa is an opportunistic human pathogen that secretes the exopolysaccharide alginate during infection of the respiratory tract of individuals afflicted with cystic fibrosis and chronic obstructive pulmonary disease. Among the proteins required for alginate production, Alg44 has been identified as an inner membrane protein whose bis-(3',5')-cyclic dimeric guanosine monophosphate (c-di-GMP) binding activity post-translationally regulates alginate secretion. In this study, we report the 1.8 Å crystal structure of the cytoplasmic region of Alg44 in complex with dimeric self-intercalated c-di-GMP and characterize its dinucleotide-binding site using mutational analysis. The structure shows that the c-di-GMP binding region of Alg44 adopts a PilZmore » domain fold with a dimerization mode not previously observed for this family of proteins. Moreover, calorimetric binding analysis of residues in the c-di-GMP binding site demonstrate that mutation of Arg-17 and Arg-95 alters the binding stoichiometry between c-di-GMP and Alg44 from 2:1 to 1:1. Introduction of these mutant alleles on the P. aeruginosa chromosome show that the residues required for binding of dimeric c-di-GMP in vitro are also required for efficient alginate production in vivo. Our results suggest that the dimeric form of c-di-GMP represents the biologically active signaling molecule needed for the secretion of an important virulence factor produced by P. aeruginosa.« less

  11. Dimeric c-di-GMP is required for post-translational regulation of alginate production in Pseudomonas aeruginosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitney, John C.; Robinson, Howard; Whitfield, Gregory B.

    Pseudomonas aeruginosa is an opportunistic human pathogen that secretes the exopolysaccharide alginate during infection of the respiratory tract of individuals afflicted with cystic fibrosis and chronic obstructive pulmonary disease. Among the proteins required for alginate production, Alg44 has been identified as an inner membrane protein whose bis-(3',5')-cyclic dimeric guanosine monophosphate (c-di-GMP) binding activity post-translationally regulates alginate secretion. In this study, we report the 1.8 Å crystal structure of the cytoplasmic region of Alg44 in complex with dimeric self-intercalated c-di-GMP and characterize its dinucleotide-binding site using mutational analysis. The structure shows that the c-di-GMP binding region of Alg44 adopts a PilZmore » domain fold with a dimerization mode not previously observed for this family of proteins. Moreover, calorimetric binding analysis of residues in the c-di-GMP binding site demonstrate that mutation of Arg-17 and Arg-95 alters the binding stoichiometry between c-di-GMP and Alg44 from 2:1 to 1:1. Introduction of these mutant alleles on the P. aeruginosa chromosome show that the residues required for binding of dimeric c-di-GMP in vitro are also required for efficient alginate production in vivo. Our results suggest that the dimeric form of c-di-GMP represents the biologically active signaling molecule needed for the secretion of an important virulence factor produced by P. aeruginosa.« less

  12. Number and brightness image analysis reveals ATF-induced dimerization kinetics of uPAR in the cell membrane

    PubMed Central

    Hellriegel, Christian; Caiolfa, Valeria R.; Corti, Valeria; Sidenius, Nicolai; Zamai, Moreno

    2011-01-01

    We studied the molecular forms of the GPI-anchored urokinase plasminogen activator receptor (uPAR-mEGFP) in the human embryo kidney (HEK293) cell membrane and demonstrated that the binding of the amino-terminal fragment (ATF) of urokinase plasminogen activator is sufficient to induce the dimerization of the receptor. We followed the association kinetics and determined precisely the dimeric stoichiometry of uPAR-mEGFP complexes by applying number and brightness (N&B) image analysis. N&B is a novel fluctuation-based approach for measuring the molecular brightness of fluorophores in an image time sequence in live cells. Because N&B is very sensitive to long-term temporal fluctuations and photobleaching, we have introduced a filtering protocol that corrects for these important sources of error. Critical experimental parameters in N&B analysis are illustrated and analyzed by simulation studies. Control experiments are based on mEGFP-GPI, mEGFP-mEGFP-GPI, and mCherry-GPI, expressed in HEK293. This work provides a first direct demonstration of the dimerization of uPAR in live cells. We also provide the first methodological guide on N&B to discern minor changes in molecular composition such as those due to dimerization events, which are involved in fundamental cell signaling mechanisms.—Hellriegel, C., Caiolfa, V. R., Corti, V., Sidenius, N., Zamai, M. Number and brightness image analysis reveals ATF-induced dimerization kinetics of uPAR in the cell membrane. PMID:21602447

  13. A small and efficient dimerization/packaging signal of rat VL30 RNA and its use in murine leukemia virus-VL30-derived vectors for gene transfer.

    PubMed

    Torrent, C; Gabus, C; Darlix, J L

    1994-02-01

    Retroviral genomes consist of two identical RNA molecules associated at their 5' ends by the dimer linkage structure located in the packaging element (Psi or E) necessary for RNA dimerization in vitro and packaging in vivo. In murine leukemia virus (MLV)-derived vectors designed for gene transfer, the Psi + sequence of 600 nucleotides directs the packaging of recombinant RNAs into MLV virions produced by helper cells. By using in vitro RNA dimerization as a screening system, a sequence of rat VL30 RNA located next to the 5' end of the Harvey mouse sarcoma virus genome and as small as 67 nucleotides was found to form stable dimeric RNA. In addition, a purine-rich sequence located at the 5' end of this VL30 RNA seems to be critical for RNA dimerization. When this VL30 element was extended by 107 nucleotides at its 3' end and inserted into an MLV-derived vector lacking MLV Psi +, it directed the efficient encapsidation of recombinant RNAs into MLV virions. Because this VL30 packaging signal is smaller and more efficient in packaging recombinant RNAs than the MLV Psi + and does not contain gag or glyco-gag coding sequences, its use in MLV-derived vectors should render even more unlikely recombinations which could generate replication-competent viruses. Therefore, utilization of the rat VL30 packaging sequence should improve the biological safety of MLV vectors for human gene transfer.

  14. Dimeric c-di-GMP Is Required for Post-translational Regulation of Alginate Production in Pseudomonas aeruginosa*

    PubMed Central

    Whitney, John C.; Whitfield, Gregory B.; Marmont, Lindsey S.; Yip, Patrick; Neculai, A. Mirela; Lobsanov, Yuri D.; Robinson, Howard; Ohman, Dennis E.; Howell, P. Lynne

    2015-01-01

    Pseudomonas aeruginosa is an opportunistic human pathogen that secretes the exopolysaccharide alginate during infection of the respiratory tract of individuals afflicted with cystic fibrosis and chronic obstructive pulmonary disease. Among the proteins required for alginate production, Alg44 has been identified as an inner membrane protein whose bis-(3′,5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) binding activity post-translationally regulates alginate secretion. In this study, we report the 1.8 Å crystal structure of the cytoplasmic region of Alg44 in complex with dimeric self-intercalated c-di-GMP and characterize its dinucleotide-binding site using mutational analysis. The structure shows that the c-di-GMP binding region of Alg44 adopts a PilZ domain fold with a dimerization mode not previously observed for this family of proteins. Calorimetric binding analysis of residues in the c-di-GMP binding site demonstrate that mutation of Arg-17 and Arg-95 alters the binding stoichiometry between c-di-GMP and Alg44 from 2:1 to 1:1. Introduction of these mutant alleles on the P. aeruginosa chromosome show that the residues required for binding of dimeric c-di-GMP in vitro are also required for efficient alginate production in vivo. These results suggest that the dimeric form of c-di-GMP represents the biologically active signaling molecule needed for the secretion of an important virulence factor produced by P. aeruginosa. PMID:25817996

  15. Dimeric Architecture of the Hendra Virus Attachment Glycoprotein: Evidence for a Conserved Mode of Assembly▿ †

    PubMed Central

    Bowden, Thomas A.; Crispin, Max; Harvey, David J.; Jones, E. Yvonne; Stuart, David I.

    2010-01-01

    Hendra virus is a negative-sense single-stranded RNA virus within the Paramyxoviridae family which, together with Nipah virus, forms the Henipavirus genus. Infection with bat-borne Hendra virus leads to a disease with high mortality rates in humans. We determined the crystal structure of the unliganded six-bladed β-propeller domain and compared it to the previously reported structure of Hendra virus attachment glycoprotein (HeV-G) in complex with its cellular receptor, ephrin-B2. As observed for the related unliganded Nipah virus structure, there is plasticity in the Glu579-Pro590 and Lys236-Ala245 ephrin-binding loops prior to receptor engagement. These data reveal that henipaviral attachment glycoproteins undergo common structural transitions upon receptor binding and further define the structural template for antihenipaviral drug design. Our analysis also provides experimental evidence for a dimeric arrangement of HeV-G that exhibits striking similarity to those observed in crystal structures of related paramyxovirus receptor-binding glycoproteins. The biological relevance of this dimer is further supported by the positional analysis of glycosylation sites from across the paramyxoviruses. In HeV-G, the sites lie away from the putative dimer interface and remain accessible to α-mannosidase processing on oligomerization. We therefore propose that the overall mode of dimer assembly is conserved for all paramyxoviruses; however, while the geometry of dimerization is rather closely similar for those viruses that bind flexible glycan receptors, significant (up to 60°) and different reconfigurations of the subunit packing (associated with a significant decrease in the size of the dimer interface) have accompanied the independent switching to high-affinity protein receptor binding in Hendra and measles viruses. PMID:20375167

  16. The human dopamine transporter forms a tetramer in the plasma membrane: cross-linking of a cysteine in the fourth transmembrane segment is sensitive to cocaine analogs.

    PubMed

    Hastrup, Hanne; Sen, Namita; Javitch, Jonathan A

    2003-11-14

    Using cysteine cross-linking, we demonstrated previously that the dopamine transporter (DAT) is at least a homodimer, with the extracellular end of transmembrane segment (TM) 6 at a symmetrical dimer interface. We have now explored the possibility that DAT exists as a higher order oligomer in the plasma membrane. Cysteine cross-linking of wild type DAT resulted in bands on SDS-PAGE consistent with dimer, trimer, and tetramer, suggesting that DAT forms a tetramer in the plasma membrane. A cysteine-depleted DAT (CD-DAT) into which only Cys243 or Cys306 was reintroduced was cross-linked to dimer, suggesting that these endogenous cysteines in TM4 and TM6, respectively, were cross-linked at a symmetrical dimer interface. Reintroduction of both Cys243 and Cys306 into CD-DAT led to a pattern of cross-linking indistinguishable from that of wild type, with dimer, trimer, and tetramer bands. This indicated that the TM4 interface and the TM6 interface are distinct and further suggested that DAT may exist in the plasma membrane as a dimer of dimers, with two symmetrical homodimer interfaces. The cocaine analog MFZ 2-12 and other DAT inhibitors, including benztropine and mazindol, protected Cys243 against cross-linking. In contrast, two substrates of DAT, dopamine and tyramine, did not significantly impact cross-linking. We propose that the impairment of cross-linking produced by the inhibitors results from a conformational change at the TM4 interface, further demonstrating that these compounds are not neutral blockers but by themselves have effects on the structure of the transporter.

  17. Contribution of Kunitz protease inhibitor and transmembrane domains to amyloid precursor protein homodimerization.

    PubMed

    Ben Khalifa, N; Tyteca, D; Courtoy, P J; Renauld, J C; Constantinescu, S N; Octave, J N; Kienlen-Campard, P

    2012-01-01

    The two major isoforms of the human amyloid precursor protein (APP) are APP695 and APP751. They differ by the insertion of a Kunitz-type protease inhibitor (KPI) sequence in the extracellular domain of APP751. APP-KPI isoforms are increased in Alzheimer's disease brains, and they could be associated with disease progression. Recent studies have shown that APP processing to Aβ is regulated by homodimerization, which involves both extracellular and juxtamembrane/transmembrane (JM/TM) regions. Our aim is to understand the mechanisms controlling APP dimerization and the contribution of the ectodomain and JM/TM regions to this process. We used bimolecular fluorescence complementation approaches coupled to fluorescence-activated cell sorting analysis to measure the dimerization level of different APP isoforms and APP C-terminal fragments (C99) mutated in their JM/TM region. APP751 was found to form significantly more homodimers than APP695. Mutation of dimerization motifs in the TM domain of APP or C99 did not significantly affect fluorescence complementation. These findings indicate that the KPI domain plays a major role in APP dimerization. They set the basis for further investigation of the relation between dimerization, metabolism and function of APP. Copyright © 2012 S. Karger AG, Basel.

  18. Resolving Hot Spots in the C-Terminal Dimerization Domain that Determine the Stability of the Molecular Chaperone Hsp90

    PubMed Central

    Reimann, Sven; Smits, Sander H. J.; Schmitt, Lutz; Groth, Georg; Gohlke, Holger

    2014-01-01

    Human heat shock protein of 90 kDa (hHsp90) is a homodimer that has an essential role in facilitating malignant transformation at the molecular level. Inhibiting hHsp90 function is a validated approach for treating different types of tumors. Inhibiting the dimerization of hHsp90 via its C-terminal domain (CTD) should provide a novel way to therapeutically interfere with hHsp90 function. Here, we predicted hot spot residues that cluster in the CTD dimerization interface by a structural decomposition of the effective energy of binding computed by the MM-GBSA approach and confirmed these predictions using in silico alanine scanning with DrugScorePPI. Mutation of these residues to alanine caused a significant decrease in the melting temperature according to differential scanning fluorimetry experiments, indicating a reduced stability of the mutant hHsp90 complexes. Size exclusion chromatography and multi-angle light scattering studies demonstrate that the reduced stability of the mutant hHsp90 correlates with a lower complex stoichiometry due to the disruption of the dimerization interface. These results suggest that the identified hot spot residues can be used as a pharmacophoric template for identifying and designing small-molecule inhibitors of hHsp90 dimerization. PMID:24760083

  19. Structural basis for ligand-dependent dimerization of phenylalanine hydroxylase regulatory domain

    PubMed Central

    Patel, Dipali; Kopec, Jolanta; Fitzpatrick, Fiona; McCorvie, Thomas J.; Yue, Wyatt W.

    2016-01-01

    The multi-domain enzyme phenylalanine hydroxylase (PAH) catalyzes the hydroxylation of dietary I-phenylalanine (Phe) to I-tyrosine. Inherited mutations that result in PAH enzyme deficiency are the genetic cause of the autosomal recessive disorder phenylketonuria. Phe is the substrate for the PAH active site, but also an allosteric ligand that increases enzyme activity. Phe has been proposed to bind, in addition to the catalytic domain, a site at the PAH N-terminal regulatory domain (PAH-RD), to activate the enzyme via an unclear mechanism. Here we report the crystal structure of human PAH-RD bound with Phe at 1.8 Å resolution, revealing a homodimer of ACT folds with Phe bound at the dimer interface. This work delivers the structural evidence to support previous solution studies that a binding site exists in the RD for Phe, and that Phe binding results in dimerization of PAH-RD. Consistent with our structural observation, a disease-associated PAH mutant impaired in Phe binding disrupts the monomer:dimer equilibrium of PAH-RD. Our data therefore support an emerging model of PAH allosteric regulation, whereby Phe binds to PAH-RD and mediates the dimerization of regulatory modules that would bring about conformational changes to activate the enzyme. PMID:27049649

  20. Multiciliated Cells in Animals.

    PubMed

    Meunier, Alice; Azimzadeh, Juliette

    2016-12-01

    Many animal cells assemble single cilia involved in motile and/or sensory functions. In contrast, multiciliated cells (MCCs) assemble up to 300 motile cilia that beat in a coordinate fashion to generate a directional fluid flow. In the human airways, the brain, and the oviduct, MCCs allow mucus clearance, cerebrospinal fluid circulation, and egg transportation, respectively. Impairment of MCC function leads to chronic respiratory infections and increased risks of hydrocephalus and female infertility. MCC differentiation during development or repair involves the activation of a regulatory cascade triggered by the inhibition of Notch activity in MCC progenitors. The downstream events include the simultaneous assembly of a large number of basal bodies (BBs)-from which cilia are nucleated-in the cytoplasm of the differentiating MCCs, their migration and docking at the plasma membrane associated to an important remodeling of the actin cytoskeleton, and the assembly and polarization of motile cilia. The direction of ciliary beating is coordinated both within cells and at the tissue level by a combination of planar polarity cues affecting BB position and hydrodynamic forces that are both generated and sensed by the cilia. Herein, we review the mechanisms controlling the specification and differentiation of MCCs and BB assembly and organization at the apical surface, as well as ciliary assembly and coordination in MCCs. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  1. Sentan: A Novel Specific Component of the Apical Structure of Vertebrate Motile Cilia

    PubMed Central

    Yuba-Kubo, Akiko; Tsukita, Sachiko; Tsukita, Shoichiro; Amagai, Masayuki

    2008-01-01

    Human respiratory and oviductal cilia have specific apical structures characterized by a narrowed distal portion and a ciliary crown. These structures are conserved among vertebrates that have air respiration systems; however, the molecular components of these structures have not been defined, and their functions are unknown. To identify the molecular component(s) of the cilia apical structure, we screened EST libraries to identify gene(s) that are exclusively expressed in ciliated tissues, are transcriptionally up-regulated during in vitro ciliogenesis, and are not expressed in testis (because sperm flagella have no such apical structures). One of the identified gene products, named sentan, was localized to the distal tip region of motile cilia. Using anti-sentan polyclonal antibodies and electron microscopy, sentan was shown to localize exclusively to the bridging structure between the cell membrane and peripheral singlet microtubules, which specifically exists in the narrowed distal portion of cilia. Exogenously expressed sentan showed affinity for the membrane protrusions, and a protein–lipid binding assay revealed that sentan bound to phosphatidylserine. These findings suggest that sentan is the first molecular component of the ciliary tip to bridge the cell membrane and peripheral singlet microtubules, making the distal portion of the cilia narrow and stiff to allow for better airway clearance or ovum transport. PMID:18829862

  2. Particulate matter in cigarette smoke increases ciliary axoneme beating through mechanical stimulation.

    PubMed

    Navarrette, Chelsea R; Sisson, Joseph H; Nance, Elizabeth; Allen-Gipson, Diane; Hanes, Justin; Wyatt, Todd A

    2012-06-01

    The lung's ability to trap and clear foreign particles via the mucociliary elevator is an important mechanism for protecting the lung against respirable irritants and microorganisms. Although cigarette smoke (CS) exposure and particulate inhalation are known to alter mucociliary clearance, little is known about how CS and nanoparticles (NPs) modify cilia beating at the cytoskeletal infrastructure, or axonemal, level. We used a cell-free model to introduce cigarette smoke extract (CSE) and NPs with variant size and surface chemistry to isolated axonemes and measured changes in ciliary motility. We hypothesized that CSE would alter cilia beating and that alterations in ciliary beat frequency (CBF) due to particulate matter would be size- and surface chemistry-dependent. Demembranated axonemes were isolated from ciliated bovine tracheas and exposed to adenosine triphosphate (ATP) to initiate motility. CBF was measured in response to 5% CSE, CSE filtrate, and carboxyl-modified (COOH), sulphate (SO(4))-modified (sulfonated), or PEG-coated polystyrene (PS) latex NPs ranging in size from 40 nm to 500 nm. CSE concentrations as low as 5% resulted in rapid, significant stimulation of CBF (p<0.05 vs. baseline control). Filtering CSE through a 0.2-μm filter attenuated this effect. Introduction of sulphate-modified PS beads ~300 nm in diameter resulted in a similar increase in CBF above baseline ATP levels. Uncharged, PEG-coated beads had no effect on CBF regardless of size. Similarly, COOH-coated particles less than 200 nm in diameter did not alter ciliary motility. However, COOH-coated PS particles larger than 300 nm increased CBF significantly and increased the number of motile points. These data show that NPs, including those found in CSE, mechanically stimulate axonemes in a size- and surface chemistry-dependent manner. Alterations in ciliary motility due to physicochemical properties of NPs may be important for inhalational lung injury and efficient drug delivery of respirable particles.

  3. Pharmacological characterization of NMDA-like receptors in the single-celled organism Paramecium primaurelia.

    PubMed

    Ramoino, Paola; Candiani, Simona; Pittaluga, Anna Maria; Usai, Cesare; Gallus, Lorenzo; Ferrando, Sara; Milanese, Marco; Faimali, Marco; Bonanno, Giambattista

    2014-02-01

    Paramecium primaurelia is a unicellular eukaryote that moves in freshwater by ciliary beating and responds to environmental stimuli by altering motile behaviour. The movements of the cilia are controlled by the electrical changes of the cell membrane: when the intraciliary Ca(2+) concentration associated with plasma membrane depolarization increases, the ciliary beating reverses its direction, and consequently the swimming direction changes. The ciliary reversal duration is correlated with the amount of Ca(2+) influx. Here, we evaluated the effects due to the activation or blockade of N-methyl-d-aspartic acid (NMDA) receptors on swimming behaviour in Paramecium. Paramecia normally swim forward, drawing almost linear tracks. We observed that the simultaneous administration of NMDA and glycine induced a partial ciliary reversal (PaCR) leading to a continuous spiral-like swim. Furthermore, the duration of continuous ciliary reversal (CCR), triggered by high external KCl concentrations, was longer in NMDA+glycine-treated cells. NMDA action required the presence of Ca(2+), as the normal forward swimming was restored when the ion was omitted from the extracellular milieu. The PaCR and the enhancement of CCR duration significantly decreased when the antagonists of the glutamate site D-AP5 or CGS19755, the NMDA channel blocker MK-801 or the glycine site antagonist DCKA was added. The action of NMDA+glycine was also abolished by Zn(2+) or ifenprodil, the GluN2A and the GluN2B NMDA-containing subunit blockers, respectively. Searches of the Paramecium genome database currently available indicate that the NMDA-like receptor with ligand-binding characteristics of an NMDA receptor-like complex, purified from rat brain synaptic membranes and found in some metazoan genomes, is also present in Paramecium. These results provide evidence that functional NMDA receptors similar to those typical of mammalian neuronal cells are present in the single-celled organism Paramecium and thus suggest that the glutamatergic NMDA system is a phylogenetically old behaviour-controlling mechanism.

  4. Molecular and functional identification of a novel photopigment in Pecten ciliary photoreceptors.

    PubMed

    Arenas, Oscar; Osorno, Tomás; Malagón, Gerardo; Pulido, Camila; Gomez, María Del Pilar; Nasi, Enrico

    2018-01-26

    The two basic animal photoreceptor types, ciliary and microvillar, use different light-transduction schemes: their photopigments couple to G t versus G q proteins, respectively, to either mobilize cyclic nucleotides or trigger a lipid signaling cascade. A third class of photoreceptors has been described in the dual retina of some marine invertebrates; these present a ciliary morphology but operate via radically divergent mechanisms, prompting the suggestion that they comprise a novel lineage of light sensors. In one of these organisms, an uncommon putative opsin was uncovered that was proposed to signal through G o Orthologues subsequently emerged in diverse phyla, including mollusks, echinoderms, and chordates, but the cells in which they express have not been identified, and no studies corroborated their function as visual pigments or their suggested signaling mode. Conversely, in only one invertebrate species, Pecten irradians , have the ciliary photoreceptors been physiologically characterized, but their photopigment has not been identified molecularly. We used the transcriptome of Pecten retina to guide the cloning by polymerase chain reaction (PCR) and rapid amplification of cDNA ends (RACE) extensions of a new member of this group of putative opsins. In situ hybridization shows selective transcription in the distal retina, and specific antibodies identify a single band of the expected molecular mass in Western blots and distinctly label ciliary photoreceptors in retina sections. RNA interference knockdown resulted in a reduction in the early receptor current-the first manifestation of light transduction-and prevented the prolonged aftercurrent, which requires a large buildup of activated rhodopsin. We also obtained a full-length clone of the α-subunit of a G o from Pecten retina complementary DNA and localized it by in situ hybridization to the distal photoreceptors. Small interfering RNA targeting this G o caused a specific depression of the photocurrent. These results establish this novel putative opsin as a bona fide visual pigment that couples to G o to convey the light signal. © 2018 Arenas et al.

  5. Clinical and histopathological features of adenomas of the ciliary pigment epithelium.

    PubMed

    Chang, Ying; Wei, Wen Bin; Shi, Ji Tong; Xian, Jun Fang; Yang, Wen Li; Xu, Xiao Lin; Bai, Hai Xia; Li, Bin; Jonas, Jost B

    2016-11-01

    Adenomas of the ciliary pigment epithelium (CPE) are rare benign tumours which have mainly to be differentiated from malignant ciliary body melanomas. Here we report on a consecutive series of patients with CPE adenomas and describe their characteristics. The retrospective hospital-based case series study included all patients who were consecutively operated for CPE adenomas. Of the 110 patients treated for ciliary body tumours, five patients (4.5%) had a CPE adenoma. Mean age was 59.0 ± 9.9 years (range: 46-72 years). Mean tumour apical thickness was 6.6 ± 1.7 mm. Tumour colour was mostly homogenously brown to black, and the tumour surface was smooth. The tumour masses pushed the iris tissue forward without infiltrating iris or anterior chamber angle. Sonography revealed an irregular echogram with sharp lesion borders and signs of blood flow in Color Doppler flow imaging. Ultrasonographic biomicroscopy demonstrated medium-low internal reflectivity and acoustic attenuation. In magnetic resonance imaging (MRI), the tumours as compared to brain were hyperintense on T1-weighted images and hypointense on T2-weighted images. Tumour tissue consisted of cords and nests of pigment epithelium cells separated by septa of vascularized fibrous connective tissue, leading to a pseudo-glandular appearance. The melanin granules in the cytoplasm were large and mostly spherical in shape. In four patients, the tumours were hyperpigmented. Tumour cells were large with round or oval nuclei and clearly detectable nucleoli. These clinical characteristics of CPE adenomas, such as homogenous dark brown colour, smooth surface, iris dislocation and anterior chamber angle narrowing but no iris infiltration, segmental cataract, pigment dispersion, and, as compared to brain tissue, hypointensity and, as compared to extraocular muscles or lacrimal gland, hyperintensity on T2-weighted MRI images, may be helpful for the differentiation from ciliary body malignant melanomas. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  6. Ciliary Muscle Thickness in Anisometropia

    PubMed Central

    Kuchem, Mallory K; Sinnott, Loraine T; Kao, Chiu-Yen; Bailey, Melissa D

    2014-01-01

    Purpose The purpose of this study was to investigate the relationships between ciliary muscle thickness (CMT), refractive error, and axial length both across subjects and between the more and less myopic eyes of adults with anisometropia. Methods Both eyes of 29 adult subjects with at least 1.00 D of anisometropia were measured. Ciliary muscle thickness was measured at the maximum thickness (CMTMAX) and at 1.0 mm (CMT1), 2.0 mm (CMT2), and 3.0 mm (CMT3) posterior to the scleral spur, and also at the apical region (Apical CMTMAX = CMTMAX – CMT2, and Apical CMT1 = CMT1 – CMT2). Multilevel regression models were used to determine the relationship between the various CMT measures and cycloplegic refractive error or axial length, and to assess whether there are CMT differences between the more and less myopic eyes of an anisometropic adult. Results CMTMAX, CMT1, CMT2 and CMT3 were negatively associated with mean refractive error (all p ≤ 0.03), and the strongest association was in the posterior region (CMT2 and CMT3). Apical CMTMAX and Apical CMT1, however, were positively associated with mean refractive error (both p < 0.0001) across subjects. Within a subject, i.e., comparing the two anisometropic eyes, there was no statistically significant difference in CMT in any region. Conclusions Similar to previous studies, across anisometropic subjects, a thicker posterior region of the ciliary muscle (CMT2 and CMT3) was associated with increased myopic refractive error. Conversely, shorter, more hyperopic eyes tended to have thicker anterior, apical fiber portions of their ciliary muscle (Apical CMTMAX and Apical CMT1). There was no difference between the two eyes for any CMT measurement, indicating that in anisometropia, an eye can grow longer and more myopic than its fellow eye without resulting in an increase in CMT. PMID:24100479

  7. Uncovering the Forgotten Effect of Superior Cervical Ganglia on Pupil Diameter in Subarachnoid Hemorrhage: An Experimental Study.

    PubMed

    Onen, Mehmet Resid; Yilmaz, Ilhan; Ramazanoglu, Leyla; Aydin, Mehmet Dumlu; Keles, Sadullah; Baykal, Orhan; Aydin, Nazan; Gundogdu, Cemal

    2018-01-01

    To investigate the relationship between neuron density of the superior cervical sympathetic ganglia and pupil diameter in subarachnoid hemorrhage. This study was conducted on 22 rabbits; 5 for the baseline control group, 5 for the SHAM group and 12 for the study group. Pupil diameters were measured via sunlight and ocular tomography on day 1 as the control values. Pupil diameters were re-measured after injecting 0.5 cc saline to the SHAM group, and autologous arterial blood into the cisterna magna of the study group. After 3 weeks, the brain, superior cervical sympathetic ganglia and ciliary ganglia were extracted with peripheral tissues bilaterally and examined histopathologically. Pupil diameters were compared with neuron densities of the sympathetic ganglia and ciliary ganglia which were examined using stereological methods. Baseline values were; normal pupil diameter 7.180±620 ?m and mean neuron density of the superior cervical sympathetic ganglia 6.321±510/mm3, degenerated neuron density of ciliary ganglia was 5±2/mm3 after histopathological examination in the control group. These values were measured as 6.850±578 ?m, 5.950±340/mm3 and 123±39/mm3 in the SHAM group and 9.910±840 ?m, 7.950±764/mm3 and 650±98/mm3 in the study group. A linear relationship was determined between neuron density of the superior cervical sympathetic ganglia and pupil diameters (p < 0.005). Degenerated ciliary ganglia neuron density had an inverse effect on pupil diameters in all groups (p < 0.0001). Highly degenerated neuron density of the ciliary ganglion is not responsible for pupil dilatation owing to parasympathetic pupilloconstrictor palsy, but high neuron density of the pupillodilatatory superior cervical sympathetic ganglia should be considered an important factor for pupil dilatation.

  8. Anterior Segment Morphology in Primary Angle Closure Glaucoma using Ultrasound Biomicroscopy

    PubMed Central

    Balakrishna, Nagalla

    2017-01-01

    Aim To evaluate the configuration of the anterior chamber angle quantitatively and study the morphological changes in the eye with ultrasound biomicroscopy (UBM) in primary angle closure glaucoma (PACG) patients after laser peripheral iridotomy (LPI). Materials and methods A total of 185 eyes of 185 PACG patients post-LPI and 126 eyes of 126 normal subjects were included in this prospective study. All subjects underwent complete ophthalmic evaluation, A-scan biometry, and UBM. The anterior segment and angle parameters were measured quantitatively and compared in both groups using Student’s t-test. Results The PACG patients had shorter axial length, shallower central anterior chamber depth anterior chamber depth (ACD), and anteriorly located lens when compared with normal subjects. Trabecular iris angle (TIA) was significantly narrow (5.73 ± 7.76°) in patients with PACG when compared with normal subjects (23.75 ± 9.38°). The angle opening distance at 500 pm from scleral spur (AOD 500), trabecular-ciliary process distance (TCPD), iris-ciliary process distance (ICPD), and iris-zonule distance (IZD) were significantly shorter in patients with PACG than in normal subjects (p < 0.0001). The iris lens angle (ILA), scleral-iris angle (SIA), and scleral-ciliary process angle (SCPA) were significantly narrower in patients with PACG than in normal subjects (p < 0.0001). The iris-lens contact distance (ILCD) was greater in PACG group than in normal (p = 0.001). Plateau iris was seen in 57/185 (30.8%) of the eyes. Anterior positioned ciliary processes were seen in 130/185 eyes (70.3%) of eyes. Conclusion In PACG patients, persistent apposition angle closure is common even after LPI, which could be due to anterior rotation of ciliary body and plateau iris and overcrowding of anterior segment due to shorter axial length and relative anterior lens position. How to cite this article: Mansoori T, Balakrishna N. Anterior Segment Morphology in Primary Angle Closure Glaucoma using Ultrasound Biomicroscopy. J Curr Glaucoma Pract 2017;11(3):86-91. PMID:29151682

  9. Radiation induced violations of blood circulation in the ciliary body and changes of the anterior chamber angle in the pathogenesis of glaucoma in clean up workers of the Chornobyl NPP accident and residents of contaminated areas.

    PubMed

    Garkava, N A; Fedirko, P A; Babenko, T F; Dorichevska, R E

    2017-12-01

    Estimate changes blood filling of the ciliary body and changes of the anterior chamber angle; study their influence to glaucoma pathogenesis in irradiated persons. Used the results of a randomly selected group survey of 41 clean up workers of the Chornobyl NPP accident (clean up workers), and 18 inhabitants of the zone of guaranteed voluntary resettlement; age at the time of the survey was 45-50 years. The control group consisted of 41 persons of the same age had not radiation exposure. State of the anterior chamber angle studied by gonioscopy, which was conducted 35 clean up workers and 35 persons of the control group. Changes of the blood circulation in the ciliary body examine by the ophtalmoreog raphy, what was done on 12 eyes of 6 clean up workers, control was 12 eyes of 6 persons had not radiation exposure. Detection revealed of the blood circulation in the ciliary body in all clean up workers, reography coefficient was probably lower (p < 0.05), than in the control group. The research of the state of the anterior chamber angle revealed a higher relative risk of appearance of involution changes of the anterior chamber angle in clean up work ers of ChNPP accident, in comparison with the control group was 3.5 (1.27; 9.5) χ2 = 7.48, p = 0.031. The same changes are characteristic for inhabitants of radiation polluted territories. Influence ionizing radiation causes a blood circulation decrease in the ciliary body and development changes of the angle of the anterior chamber. Presence of these changes can explain the features of the pathogene sis of glaucoma in irradiated late manifestation and, at the same time, severe course. N. A. Garkava, P. A. Fedirko, T. F. Babenko, R. E. Dorichevska.

  10. Comparative study of 64Cu/NOTA-[D-Tyr6,βAla11,Thi13,Nle14]BBN(6-14) monomer and dimers for prostate cancer PET imaging

    PubMed Central

    2012-01-01

    Background Gastrin-releasing peptide receptors [GRPR] are highly over-expressed in multiple cancers and have been studied as a diagnostic target. Multimeric gastrin-releasing peptides are expected to have enhanced tumor uptake and affinity for GRPR. In this study, a 64Cu-labeled 1,4,7-triazacyclononane-1,4,7-triacetic acid [NOTA]-monomer and two NOTA-dimers of [D-Tyr6,βAla11, Thi13, Nle14]bombesin(6-14) ] [BBN(6-14)] were compared. Methods Monomeric and dimeric peptides were synthesized on solid phase support and radiolabeled with 64Cu. NOTA-dimer 1 consists of asymmetrically linked BBN(6-14), while NOTA-dimer 2 has similar spacer between the two BBN(6-14) ligands and the chelator. In vitro GRPR-binding affinities were determined with competitive binding assays on PC3 human prostate cancer cells. In vivo stability and biodistribution of radiolabeled compounds were assessed in Balb/c mice. Cellular uptake and efflux were measured with radiolabeled NOTA-monomer and NOTA-dimer 2 on PC3 cells for up to 4 h. In vivo biodistribution kinetics were measured in PC3 tumor-bearing Balb/c nude mice by μ-positron emission tomography [μPET] imaging and confirmed by dissection and counting. Results NOTA-monomer, NOTA-dimers 1 and 2 were prepared with purity of 99%. The inhibition constants of the three BBN peptides were comparable and in the low nanomolar range. All 64Cu-labeled peptides were stable up to 24 h in mouse plasma and 1 h in vivo. 64Cu/NOTA-dimer 2 featuring a longer spacer between the two BBN(6-14) ligands is a more potent GRPR-targeting probe than 64Cu/NOTA-dimer 1. PC3 tumor uptake profiles are slightly different for 64Cu/NOTA-monomer and 64Cu/NOTA-dimer 2; the monomeric BBN-peptide tracer exhibited higher tumor uptake during the first 0.5 h and a fast renal clearance resulting in higher tumor-to-muscle ratio when compared to 64Cu/NOTA-dimer 2. The latter exhibited higher tumor-to-blood ratio and was retained longer at the tumor site when compared to 64Cu/NOTA-monomer. Lower ratios of tumor-to-blood and tumor-to-muscle in blocking experiments showed GRPR-dependant tumor uptake for both tracers. Conclusion Both 64Cu/NOTA-monomer and 64Cu/NOTA-dimer 2 are suitable for detecting GRPR-positive prostate cancer in vivo by PET. Tumor retention was improved in vivo with 64Cu/NOTA-dimer 2 by applying polyvalency effect and/or statistical rebinding. PMID:22333272

  11. Comparative study of 64Cu/NOTA-[D-Tyr6,βAla11,Thi13,Nle14]BBN(6-14) monomer and dimers for prostate cancer PET imaging.

    PubMed

    Fournier, Patrick; Dumulon-Perreault, Véronique; Ait-Mohand, Samia; Langlois, Réjean; Bénard, François; Lecomte, Roger; Guérin, Brigitte

    2012-02-14

    Gastrin-releasing peptide receptors [GRPR] are highly over-expressed in multiple cancers and have been studied as a diagnostic target. Multimeric gastrin-releasing peptides are expected to have enhanced tumor uptake and affinity for GRPR. In this study, a 64Cu-labeled 1,4,7-triazacyclononane-1,4,7-triacetic acid [NOTA]-monomer and two NOTA-dimers of [D-Tyr6,βAla11, Thi13, Nle14]bombesin(6-14) ] [BBN(6-14)] were compared. Monomeric and dimeric peptides were synthesized on solid phase support and radiolabeled with 64Cu. NOTA-dimer 1 consists of asymmetrically linked BBN(6-14), while NOTA-dimer 2 has similar spacer between the two BBN(6-14) ligands and the chelator. In vitro GRPR-binding affinities were determined with competitive binding assays on PC3 human prostate cancer cells. In vivo stability and biodistribution of radiolabeled compounds were assessed in Balb/c mice. Cellular uptake and efflux were measured with radiolabeled NOTA-monomer and NOTA-dimer 2 on PC3 cells for up to 4 h. In vivo biodistribution kinetics were measured in PC3 tumor-bearing Balb/c nude mice by μ-positron emission tomography [μPET] imaging and confirmed by dissection and counting. NOTA-monomer, NOTA-dimers 1 and 2 were prepared with purity of 99%. The inhibition constants of the three BBN peptides were comparable and in the low nanomolar range. All 64Cu-labeled peptides were stable up to 24 h in mouse plasma and 1 h in vivo. 64Cu/NOTA-dimer 2 featuring a longer spacer between the two BBN(6-14) ligands is a more potent GRPR-targeting probe than 64Cu/NOTA-dimer 1. PC3 tumor uptake profiles are slightly different for 64Cu/NOTA-monomer and 64Cu/NOTA-dimer 2; the monomeric BBN-peptide tracer exhibited higher tumor uptake during the first 0.5 h and a fast renal clearance resulting in higher tumor-to-muscle ratio when compared to 64Cu/NOTA-dimer 2. The latter exhibited higher tumor-to-blood ratio and was retained longer at the tumor site when compared to 64Cu/NOTA-monomer. Lower ratios of tumor-to-blood and tumor-to-muscle in blocking experiments showed GRPR-dependant tumor uptake for both tracers. Both 64Cu/NOTA-monomer and 64Cu/NOTA-dimer 2 are suitable for detecting GRPR-positive prostate cancer in vivo by PET. Tumor retention was improved in vivo with 64Cu/NOTA-dimer 2 by applying polyvalency effect and/or statistical rebinding.

  12. Study of plasmonics in hybrids made from a quantum emitter and double metallic nanoshell dimer

    NASA Astrophysics Data System (ADS)

    Guo, Jiaohan; Black, Kevin; Hu, Jiawen; Singh, Mahi

    2018-05-01

    We developed a theory for the fluorescence (FL) for quantum emitter and double metallic nanoshell dimer hybrids using the density matrix method. The dimer is made from two identical double metallic nanoshells, which are made of a dielectric core, a gold metallic shell and a dielectric spacer layer. The quantum emitters are deposited on the surface of the spacer layers of the dimers due to the electrostatic absorptions. We consider that dimer hybrids are surrounded by biological cells. This can be achieved by injecting them into human or animal cells. The surface plasmon polaritons (SPP) are calculated for the dimer using Maxwell’s equations in the static wave approximation. The calculated SPP energy agrees with experimental data from Zhai et al (2017 Plasmonics 12 263) for the dimer made from a silica core, a gold metallic nanoshell and a silica spacer layer. We have also obtained an analytical expression of the FL using the density matrix method. We compare our theory with FL experimental data from Zhai et al (2017 Plasmonics 12 263) where the FL spectrum was measured by varying the thickness of the spacer layer from 9 nm to 40 nm. A good agreement between theory and experiment is found. We have shown that the enhancement of the FL increases as the thickness of the spacer layer decreases. We have also found that the enhancement of the FL increases as the distance between the double metallic nanoshells in the dimer decreases. These are interesting findings which are consistent with the experiments of Zhai et al (2017 Plasmonics 12 263) and can be used to control the FL enhancement in the FL-based biomedical imaging and cancer treatment. These interesting findings may also be useful in the fabrication of nanosensors and nanoswitches for applications in medicine.

  13. Flow Field Analysis of Micromixer Powered by Ciliary Motion of Vorticella

    NASA Astrophysics Data System (ADS)

    Hayasaka, Yo; Nagai, Moeto; Matsumoto, Nobuyoshi; Kawashima, Takahiro; Shibata, Takayuki

    We demonstrate the observation of a flow field generated by ciliary motion of Vorticella in a microfluidic chamber. We applied the property that Vorticella vibrates its cilia and create a flow field to a micromixer. The stability and mixing performance of Vorticella were measured by PIV (Particle Image Velocimetry). One cell of Vorticella mixed the half area of the microchamber. We revealed that the flow field of a single cell in a chamber was more stable than that of multiple cells.

  14. In situ detection of estrogen receptor dimers in breast carcinoma cells in archival materials using proximity ligation assay (PLA).

    PubMed

    Iwabuchi, Erina; Miki, Yasuhiro; Ono, Katsuhiko; Onodera, Yoshiaki; Suzuki, Takashi; Hirakawa, Hisashi; Ishida, Takanori; Ohuchi, Noriaki; Sasano, Hironobu

    2017-01-01

    Estrogen receptor (ER) is required for carcinoma cell proliferation in the great majority of breast cancer and also functions as a dimer. ER dimeric proteins have been largely identified by BRET/FRET analyses but their in situ visualization have not yet been reported. Recently, in situ Proximity Ligation Assay (PLA) has been developed as the methods detecting protein interactions in situ. Therefore, in this study we firstly demonstrated the dimerization of ERα in breast carcinoma cell lines and tissues using PLA. The human breast carcinoma cell lines MCF-7, T-47D and MDA-MB-231 were used in this study. Cells were treated with ER agonist or antagonist and fixed in 4% PFA, and ER dimers were subsequently detected using PLA. The evaluation of ER dimers in breast carcinoma cell lines were quantified by measuring the area of dots localized in the nuclei using image analysis. We also firstly demonstrated the visualization of ER dimer patterns in 10% formalin-fixed paraffin-embedded tissues of breast cancer using PLA technique. Estradiol (E2) administration induced ERα homodimers in the nuclei of MCF-7 and T-47D but not in ER-negative MDA-MB-231. 4-OH tamoxifen also induced ERα homodimers but the subcellular localization of these ERα homodimers was predominant in cytoplasm instead of the nuclei induced by E2 treatment. ICI182,780 treatment did decrease the number of formation of ERα homodimers in MCF-7. In breast cancer patients, ERα PLA score was significantly correlated positively with ERα- or PgR (progesterone receptor) immunohistochemical scores and inversely with Ki-67-labeling index, respectively. We also demonstrated the ERα/β heterodimer as well as ERα homodimers in both breast carcinoma cell lines and surgical pathology specimens. In summary, we did firstly succeed in the visualization of ER dimeric proteins using PLA method. The evaluation of ER dimer patterns could provide pivotal information as to the prediction of response to endocrine therapy of breast cancer patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Staufen1 dimerizes via a conserved motif and a degenerate dsRNA-binding domain to promote mRNA decay

    PubMed Central

    Gleghorn, Michael L.; Gong, Chenguang; Kielkopf, Clara L.; Maquat, Lynne E.

    2014-01-01

    Staufen (STAU)1-mediated mRNA decay (SMD) degrades mammalian-cell mRNAs that bind the double-stranded (ds)RNA-binding protein STAU1 in their 3′-untranslated region. We report a new motif, which typifies STAU homologs from all vertebrate classes, that is responsible for human (h)STAU1 homodimerization. Our crystal structure and mutagenesis analyses reveal that this motif, now named the Staufen-swapping motif (SSM), and dsRNA-binding domain 5 (‘RBD’5) mediate protein dimerization: the two SSM α-helices of one molecule interact primarily through a hydrophobic patch with the two ‘RBD’5 α-helices of a second molecule. ‘RBD’5 adopts the canonical α-β-β-β-α fold of a functional RBD, but it lacks residues and features needed to bind duplex RNA. In cells, SSM-mediated hSTAU1 dimerization increases the efficiency of SMD by augmenting hSTAU1 binding to the ATP-dependent RNA helicase hUPF1. Dimerization regulates keratinocyte-mediated wound-healing and, undoubtedly, many other cellular processes. PMID:23524536

  16. Fragment-based protein-protein interaction antagonists of a viral dimeric protease

    PubMed Central

    Gable, Jonathan E.; Lee, Gregory M.; Acker, Timothy M.; Hulce, Kaitlin R.; Gonzalez, Eric R.; Schweigler, Patrick; Melkko, Samu; Farady, Christopher J.; Craik, Charles S.

    2016-01-01

    Fragment-based drug discovery has shown promise as an approach for challenging targets such as protein-protein interfaces. We developed and applied an activity-based fragment screen against dimeric Kaposi’s sarcoma-associated herpesvirus protease (KSHV Pr) using an optimized fluorogenic substrate. Dose response determination was performed as a confirmation screen and NMR spectroscopy was used to map fragment inhibitor binding to KSHV Pr. Kinetic assays demonstrated that several initial hits also inhibit human cytomegalovirus protease (HCMV Pr). Binding of these hits to HCMV Pr was also confirmed via NMR spectroscopy. Despite the use of a target-agnostic fragment library, more than 80% of confirmed hits disrupted dimerization and bound to a previously reported pocket at the dimer interface of KSHV Pr, not to the active site. One class of fragments, an aminothiazole scaffold, was further explored using commercially available analogs. These compounds demonstrated greater than 100-fold improvement of inhibition. This study illustrates the power of fragment-based screening for these challenging enzymatic targets and provides an example of the potential druggability of pockets at protein-protein interfaces. PMID:26822284

  17. Structure and Misfolding of the Flexible Tripartite Coiled-Coil Domain of Glaucoma-Associated Myocilin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Shannon E.; Nguyen, Elaine; Donegan, Rebecca K.

    2017-11-01

    Glaucoma-associated myocilin is a member of the olfactomedins, a protein family involved in neuronal development and human diseases. Molecular studies of the myocilin N-terminal coiled coil demonstrate a unique tripartite architecture: a Y-shaped parallel dimer-of-dimers with distinct tetramer and dimer regions. The structure of the dimeric C-terminal 7-heptad repeats elucidates an unexpected repeat pattern involving inter-strand stabilization by oppositely charged residues. Molecular dynamics simulations reveal an alternate accessible conformation in which the terminal inter-strand disulfide limits the extent of unfolding and results in a kinked configuration. By inference, full-length myocilin is also branched, with two pairs of C-terminal olfactomedin domains.more » Selected variants within the N-terminal region alter the apparent quaternary structure of myocilin but do so without compromising stability or causing aggregation. In addition to increasing our structural knowledge of naturally occurring extracellular coiled coils and biomedically important olfactomedins, this work broadens the scope of protein misfolding in the pathogenesis of myocilin-associated glaucoma.« less

  18. Chemically induced and light-independent cryptochrome photoreceptor activation.

    PubMed

    Rosenfeldt, Gesa; Viana, Rafael Muñoz; Mootz, Henning D; von Arnim, Albrecht G; Batschauer, Alfred

    2008-01-01

    The cryptochrome photoreceptors of higher plants are dimeric proteins. Their N-terminal photosensory domain mediates dimerization, and the unique C-terminal extension (CCT) mediates signaling. We made use of the human FK506-binding protein (FKBP) that binds with high affinity to rapamycin or rapamycin analogs (rapalogs). The FKBP-rapamycin complex is recognized by another protein, FRB, thus allowing rapamycin-induced dimerization of two target proteins. Here we demonstrate by bioluminescence resonance energy transfer (BRET) assays the applicability of this regulated dimerization system to plants. Furthermore, we show that fusion proteins consisting of the C-terminal domain of Arabidopsis cryptochrome 2 fused to FKBP and FRB and coexpressed in Arabidopsis cells specifically induce the expression of cryptochrome-controlled reporter and endogenous genes in darkness upon incubation with the rapalog. These results demonstrate that the activation of cryptochrome signal transduction can be chemically induced in a dose-dependent fashion and uncoupled from the light signal, and provide the groundwork for gain-of-function experiments to study specifically the role of photoreceptors in darkness or in signaling cross-talk even under light conditions that activate members of all photoreceptor families.

  19. Structure and Misfolding of the Flexible Tripartite Coiled-Coil Domain of Glaucoma-Associated Myocilin.

    PubMed

    Hill, Shannon E; Nguyen, Elaine; Donegan, Rebecca K; Patterson-Orazem, Athéna C; Hazel, Anthony; Gumbart, James C; Lieberman, Raquel L

    2017-11-07

    Glaucoma-associated myocilin is a member of the olfactomedins, a protein family involved in neuronal development and human diseases. Molecular studies of the myocilin N-terminal coiled coil demonstrate a unique tripartite architecture: a Y-shaped parallel dimer-of-dimers with distinct tetramer and dimer regions. The structure of the dimeric C-terminal 7-heptad repeats elucidates an unexpected repeat pattern involving inter-strand stabilization by oppositely charged residues. Molecular dynamics simulations reveal an alternate accessible conformation in which the terminal inter-strand disulfide limits the extent of unfolding and results in a kinked configuration. By inference, full-length myocilin is also branched, with two pairs of C-terminal olfactomedin domains. Selected variants within the N-terminal region alter the apparent quaternary structure of myocilin but do so without compromising stability or causing aggregation. In addition to increasing our structural knowledge of naturally occurring extracellular coiled coils and biomedically important olfactomedins, this work broadens the scope of protein misfolding in the pathogenesis of myocilin-associated glaucoma. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Cytotoxic bibenzyl dimers from the stems of Dendrobium fimbriatum Hook.

    PubMed

    Xu, Feng-Qing; Xu, Fang-Cheng; Hou, Bo; Fan, Wei-Wei; Zi, Cheng-Ting; Li, Yan; Dong, Fa-Wu; Liu, Yu-Qing; Sheng, Jun; Zuo, Zhi-Li; Hu, Jiang-Miao

    2014-11-15

    The bioassay-guided chemical investigation of the stems of Dendrobium fimbriatum Hook led to the isolation of seven first reported bibenzyl dimers with a linkage of a methylene moiety, fimbriadimerbibenzyls A-G (1-7), together with a new dihydrophenanthrene derivative (S)-2,4,5,9-tetrahydroxy-9,10-dihydrophenanthrene (8) and thirteen known compounds (9-21). The structure of the new compound was established by spectroscopic analysis. Biological evaluation of bibenzyl derivatives against five human cell lines indicated that seven of those compounds exhibited broad-spectrum and cytotoxic activities with IC50 values ranging from 2.2 to 21.2 μM. Those rare bibenzyl dimers exhibited cytotoxic activities in vitro and the cytotoxicity decreased as the number of oxygen-containing groups in the structure decreases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Ascorbate elevates perfusion pressure in the bovine extraocular long posterior ciliary artery: role of endothelium-derived hyperpolarizing factor (EDHF).

    PubMed

    Stirrat, Alison; Nelli, Silvia; McGuckin, Alicia; Ho, Vivian Wing Man; Wilson, William S; Martin, William

    2006-03-18

    Ascorbate blocks agonist-induced, endothelium-derived hyperpolarizing factor (EDHF)-mediated vasodilatation in the bovine perfused ciliary artery and this is associated with a rise in perfusion pressure. We now report the origins of this ascorbate-induced rise in perfusion pressure. In segments of ciliary artery perfused at 2.5 ml/min, the addition of ascorbate (10-150 microM) enhanced U46619-induced perfusion pressure. Ascorbate produced no enhancement in the absence of U46619, suggesting that its effects resulted not from a constrictor action but through removal of a tonic vasodilator influence. Experiments revealed the endothelial source of this vasodilator influence, and EDHF, but not nitric oxide or prostanoids, appeared to be involved. The ascorbate-induced enhancement of vasoconstrictor tone was not seen in a static myograph or in segments perfused at low rates of flow, but was seen at flow rates of 2.5 ml(-1) and above. We conclude that ascorbate augments vasoconstrictor tone through inhibition of flow-induced EDHF activity.

  2. Evolution of the genetic machinery of the visual cycle: a novelty of the vertebrate eye?

    PubMed

    Albalat, Ricard

    2012-05-01

    The discovery in invertebrates of ciliary photoreceptor cells and ciliary (c)-opsins established that at least two of the three elements that characterize the vertebrate photoreceptor system were already present before vertebrate evolution. However, the origin of the third element, a series of biochemical reactions known as the "retinoid cycle," remained uncertain. To understand the evolution of the retinoid cycle, I have searched for the genetic machinery of the cycle in invertebrate genomes, with special emphasis on the cephalochordate amphioxus. Amphioxus is closely related to vertebrates, has a fairly prototypical genome, and possesses ciliary photoreceptor cells and c-opsins. Phylogenetic and structural analyses of the amphioxus sequences related with the vertebrate machinery do not support a function of amphioxus proteins in chromophore regeneration but suggest that the genetic machinery of the retinoid cycle arose in vertebrates due to duplications of ancestral nonvisual genes. These results favor the hypothesis that the retinoid cycle machinery was a functional innovation of the primitive vertebrate eye.

  3. Dynamic remodeling of membrane composition drives cell cycle through primary cilia excision

    PubMed Central

    Phua, Siew Cheng; Chiba, Shuhei; Suzuki, Masako; Su, Emily; Roberson, Elle C.; Pusapati, Ganesh V.; Setou, Mitsutoshi; Rohatgi, Rajat; Reiter, Jeremy F.; Ikegami, Koji; Inoue, Takanari

    2017-01-01

    The life cycle of a primary cilium begins in quiescence and ends prior to mitosis. In quiescent cells, primary cilium insulates itself from contiguous dynamic membrane processes on the cell surface to function as a stable signaling apparatus. Here, we demonstrate that basal restriction of ciliary structure dynamics is established by cilia-enriched phosphoinositide 5-phosphatase, Inpp5e. Growth induction displaces ciliary Inpp5e and accumulates phosphatidylinositol 4,5-bisphosphate to distal cilia. This triggers otherwise forbidden actin polymerization in primary cilia, which excises cilia tips in a process we call cilia decapitation. Whilst cilia disassembly is traditionally thought to occur solely through resorption, we show that an acute loss of IFT-B through cilia decapitation precedes resorption. Finally, we propose that cilia decapitation induces mitogenic signaling and constitutes a molecular link between the cilia life cycle and cell-division cycle. This newly defined ciliary mechanism may find significance in cell proliferation control during normal development and cancer. PMID:28086093

  4. An in vitro assay for entry into cilia reveals unique properties of the soluble diffusion barrier

    PubMed Central

    Breslow, David K.; Koslover, Elena F.; Seydel, Federica; Spakowitz, Andrew J.

    2013-01-01

    Specific proteins are concentrated within primary cilia, whereas others remain excluded. To understand the mechanistic basis of entry into cilia, we developed an in vitro assay using cells in which the plasma membrane was permeabilized, but the ciliary membrane was left intact. Using a diffusion-to-capture system and quantitative analysis, we find that proteins >9 nm in diameter (∼100 kD) are restricted from entering cilia, and we confirm these findings in vivo. Interference with the nuclear pore complex (NPC) or the actin cytoskeleton in permeabilized cells demonstrated that the ciliary diffusion barrier is mechanistically distinct from those of the NPC or the axon initial segment. Moreover, applying a mass transport model to this system revealed diffusion coefficients for soluble and membrane proteins within cilia that are compatible with rapid exploration of the ciliary space in the absence of active transport. Our results indicate that large proteins require active transport for entry into cilia but not necessarily for movement inside cilia. PMID:24100294

  5. [A case of ring melanoma found while treating traumatic glaucoma].

    PubMed

    Manabe, Kazuyo; Jo, Nobuo; Tateno, Hiroko; Shishidon, Nami; Takahashi, Kanji; Iwashita, Kenshiro; Isei, Taiki; Ohe, Chisato; Sakaida, Noriko; Uemura, Yoshiko

    2013-04-01

    Ring melanoma, a malignant melanoma which infiltrates over 180 degrees degrees of the ciliary body is very rare in Japan. We report a case of ring melanoma found while treating treatment of traumatic glaucoma with an ultrasound biomicroscope (UBM). A 44-year old woman presented with high intraocular pressure after blunt trauma in her left eye. Best-corrected visual acuity OS was 1.2, and intraocular pressure was 30 mmHg. Gonioscopy showed about 180 degrees of the angle recession. Intraocular pressure was difficult to control in spite of anti-glaucoma drug treatment. Rapid progression of iris elevation and 360 degrees thickening of the ciliary body were detected by UBM. We detected atypical cells with melanine granules in the aqueous fluid and positive findings in PET-CT, leading to a diagnosis of ciliary body malignant melanoma. Consequently we enucleated the left eye. The histopathological diagnosis was ring melanoma. Ring melanoma is an important element in the differential diagnosis for untreatable secondary glaucoma.

  6. Vortex arrays and ciliary tangles underlie the feeding-swimming tradeoff in starfish larvae

    NASA Astrophysics Data System (ADS)

    Gilpin, William; Prakash, Vivek N.; Prakash, Manu

    2016-11-01

    Many marine invertebrates have larval stages covered in linear arrays of beating cilia, which propel the animal while simultaneously entraining planktonic prey. These bands are strongly conserved across taxa spanning four major superphyla, and they are responsible for the unusual morphologies of many invertebrates. However, few studies have investigated their underlying hydrodynamics. Here, we study the ciliary bands of starfish larvae, and discover a beautiful pattern of slowly-evolving vortices that surrounds the swimming animals. Closer inspection of the bands reveals unusual ciliary "tangles" analogous to topological defects that break-up and re-form as the animal adjusts its swimming stroke. Quantitative experiments and modeling demonstrate that these vortices create a physical tradeoff between feeding and swimming in heterogenous environments, which manifests as distinct flow patterns or "eigenstrokes" representing each behavior-potentially implicating neuronal control of cilia. This quantitative interplay between larval form and hydrodynamic function generalizes to other invertebrates, and illustrates the potential effects of active boundary conditions in other biological and synthetic systems.

  7. Synthesis of monomeric and dimeric steroids containing [1,2,4]triazolo[1,5-a]pyrimidines.

    PubMed

    Arenas-González, Ailed; Mendez-Delgado, Luis Antonio; Merino-Montiel, Penélope; Padrón, José M; Montiel-Smith, Sara; Vega-Báez, José Luis; Meza-Reyes, Socorro

    2016-12-01

    The synthesis of several monomeric and dimeric steroidal [1,2,4]triazolo[1,5-a]pyrimidines (TPs) derived from steroids are described. These derivatives were prepared from α,β-unsaturated carbonyl compounds through a Claisen Schmidt condensation and rearrangement of the spiro moiety followed by a cycloaddition with 3-amino-1,2,4-triazole. The antiproliferative activity of compounds 7, 13-15 was tested against human cancer cells; several IG 50 values were below 10μM. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Structural basis for the suppression of skin cancers by DNA polymerase [eta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silverstein, Timothy D.; Johnson, Robert E.; Jain, Rinku

    2010-09-13

    DNA polymerase {eta} (Pol{eta}) is unique among eukaryotic polymerases in its proficient ability for error-free replication through ultraviolet-induced cyclobutane pyrimidine dimers, and inactivation of Pol{eta} (also known as POLH) in humans causes the variant form of xeroderma pigmentosum (XPV). We present the crystal structures of Saccharomyces cerevisiae Pol{eta} (also known as RAD30) in ternary complex with a cis-syn thymine-thymine (T-T) dimer and with undamaged DNA. The structures reveal that the ability of Pol{eta} to replicate efficiently through the ultraviolet-induced lesion derives from a simple and yet elegant mechanism, wherein the two Ts of the T-T dimer are accommodated in anmore » active site cleft that is much more open than in other polymerases. We also show by structural, biochemical and genetic analysis that the two Ts are maintained in a stable configuration in the active site via interactions with Gln55, Arg73 and Met74. Together, these features define the basis for Pol{eta}'s action on ultraviolet-damaged DNA that is crucial in suppressing the mutagenic and carcinogenic consequences of sun exposure, thereby reducing the incidence of skin cancers in humans.« less

  9. 1H NMR spectrum of the native human insulin monomer. Evidence for conformational differences between the monomer and aggregated forms.

    PubMed

    Roy, M; Lee, R W; Brange, J; Dunn, M F

    1990-04-05

    The effects of high dilution on the 1H Fourier transform NMR spectrum of native human insulin at pH* 8.0 and 9.3 have been examined at 500 MHz resolution. The dependence of the spectrum on concentration and comparison with the spectrum of a biologically highly potent monomeric insulin mutant (SerB9----Asp) establish that at 36 microM (pH* 9.3) or 18 microM (pH* 8) and no added buffer or salts, human insulin is monomeric. Under these conditions of dilution, ionic strength, and pH*, human insulin and the SerB9----Asp mutant exhibit nearly identical 1H NMR spectra. At higher concentrations (i.e. greater than 36 microM to 0.91 mM), native human insulin dimerizes, and this aggregation causes a change in insulin conformation. Although there are many changes in the spectrum, the TyrB26 ring H3,5 proton signals located at 6.63 ppm and the methyl signal located at 0.105 ppm (characteristics of monomeric insulin) are particularly distinct signatures of the conformation change that accompanies dimerization. Magnetization transfer experiments show that the 0.105 ppm methyl signal shifts downfield to a new position at 0.45 ppm. We conclude that the 0.105 ppm methyl signal is due to a conformation in which a Leu methyl group is centered over and in van der Waals contact with the ring of an aromatic side chain. Dimerization causes a conformation change that alters this interaction, thereby causing the downfield shift. Nuclear Overhauser studies indicate that the methyl group involved is located within a cluster of aromatic side chains and that the closest ring-methyl group interaction is with the ring of PheB24.

  10. 21 CFR 177.2420 - Polyester resins, cross-linked.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only... this section: (1) Acids: Adipic. Fatty acids, and dimers thereof, from natural sources. Fumaric...

  11. 21 CFR 177.2420 - Polyester resins, cross-linked.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only... this section: (1) Acids: Adipic. Fatty acids, and dimers thereof, from natural sources. Fumaric...

  12. Vanadate monomers and dimers both inhibit the human prostatic acid phosphatase.

    PubMed

    Crans, D C; Simone, C M; Saha, A K; Glew, R H

    1989-11-30

    A combination of enzyme kinetics and 51V NMR spectroscopy was used to identify the species of vanadate that inhibits acid phosphatases. Monomeric vanadate was shown to inhibit wheat germ and potato acid phosphatases. At pH 5.5, the vanadate dimer inhibits the human prostatic acid phosphatase whereas at pH 7.0 it is the vanadate monomer that inhibits this enzyme. The pH-dependent shift in the affinity of the prostatic phosphatase for vanadate is presumably due to deprotonation of an amino acid side chain in or near the binding site resulting in a conformational change in the protein. pH may be a subtle effector of the insulin-like vanadate activity in biological systems and may explain some of the differences in selectivity observed with the protein phosphatases.

  13. Impact and benefit of A(2B)-adenosine receptor agonists for the respiratory tract: mucociliary clearance, ciliary beat frequency, trachea muscle tonus and cytokine release.

    PubMed

    Walaschewski, Robin; Begrow, Frank; Verspohl, Eugen J

    2013-01-01

    Adenosine is known to induce a bronchospasm in asthma- and COPD patients. The role of A(2B) receptors was investigated with respect to several parameters of the respiratory tract: tonus of smooth muscle, ciliary beat frequency as measured by high-speed video camera connected to a microscope (both in rats) and mucociliary clearance (MCC; transport of a fluorescent dye using a microdialysis procedure) in mice.  NECA (5'-N-ethylcarboxamidoadenosine) (a non-selective adenosine receptor agonist) was able to acutely induce a contraction, which was reversed to a relaxation after repeated dosing. This relaxation was completely abolished by PSB-1115, an A(2B) receptor antagonist. IL-13 (cytokine) was not involved mediating acute contractility effects. MCC was increased by BAY 60-6583 (A(2B) receptor agonist) and NECA (counteracted by the A(2B) receptor antagonist PSB-1115). Activation of A(2B) adenosine receptors by BAY 60-6583 induced an increase of the ciliary beat frequency, which could be reduced by administration of PSB-1115. Several cytokines were increased by NECA although only some are relevant because they are not blocked by A(2B) receptor antagonism. The A(2B) receptors are involved in airway relaxation, MCC improvement and ciliary beat frequency. A(2B) receptor agonists may be of therapeutic value and should be developed. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  14. Effect of Cilia Beat Frequency on Muco-ciliary Clearance

    PubMed Central

    Sedaghat, M.H.; Shahmardan, M.M.; Norouzi, M.; Heydari, M.

    2016-01-01

    Background: The airway surface liquid (ASL), which is a fluid layer coating the interior epithelial surface of the bronchi and bronchiolesis, plays an important defensive role against foreign particles and chemicals entering lungs. Objective: Numerical investigation has been employed to solve two-layer model consisting of mucus layer as a viscoelastic fluid and periciliary liquid layer as a Newtonian fluid to study the effects of cilia beat frequency (CBF) at various amounts of mucus properties on muco-ciliary transport problem. Methods: Hybrid finite difference-lattice Boltzmann-method (FB-LBM) has been used to solve the momentum equations and to simulate cilia forces, and also the PCL-mucus interface more accurately, immersed boundary method (IBM) has been employed. The main contribution of the current study is to use an Oldroyd-B model as the constitutive equation of mucus. Results: Our results show that increasing CBF and decreasing mucus viscosity ratio have great effects on mucus flow, but the effect of viscosity ratio is more significant. The results also illustrate that the relation between cilia beat frequency and mean mucus velocity is almost linear and it has similar behavior at different values of viscosity ratio. Conclusion: Numerical investigation based on hybrid IB-FD-LBM has been used to study the effect of CBF at various mounts of mucus viscosity ratio on the muco-ciliary clearance. The results showed that the effect of viscosity ratio on the muco-ciliary transport process is more significant compared with CBF. PMID:28144596

  15. Arrestin in ciliary invertebrate photoreceptors: molecular identification and functional analysis in vivo.

    PubMed

    Gomez, Maria Del Pilar; Espinosa, Lady; Ramirez, Nelson; Nasi, Enrico

    2011-02-02

    Arrestin was identified in ciliary photoreceptors of Pecten irradians, and its role in terminating the light response was established electrophysiologically. Downstream effectors in these unusual visual cells diverge from both microvillar photoreceptors and rods and cones; the finding that key regulatory mechanisms of the early steps of visual excitation are conserved across such distant lineages of photoreceptors underscores that a common blueprint for phototransduction exists across metazoa. Arrestin was detected by Western blot analysis of retinal lysates, and localized in ciliary photoreceptors by immunostaining of whole-eye cryosections and dissociated cells. Two arrestin isoforms were molecularly identified by PCR; these present the canonical N- and C-arrestin domains, and are identical at the nucleotide level over much of their sequence. A high degree of homology to various β-arrestins (up to 70% amino acid identity) was found. In situ hybridization localized the two transcripts within the retina, but failed to reveal finer spatial segregation, possibly because of insufficient differences between the riboprobes. Intracellular dialysis of anti arrestin antibodies into voltage-clamped ciliary photoreceptors produced a gradual slow-down of the photocurrent falling phase, leaving a tail that decayed over many seconds after light termination. The antibodies also caused spectrally neutral flashes to elicit prolonged aftercurrents in the absence of large metarhodopsin accumulation; such aftercurrents could be quenched by chromatic illumination that photoconverts metarhodopsin back to rhodopsin. These observations indicate that the antibodies depleted functionally available arrestin, and implicate this molecule in the deactivation of the photoresponse at the rhodopsin level.

  16. Comparative responses of the Savanna grasses Cenchrus ciliaris and Themeda triandra to defoliation.

    PubMed

    Hodgkinson, K C; Ludlow, M M; Mott, J J; Baruch, Z

    1989-04-01

    Two perennial tussock grasses of savannas were compared in a glasshouse study to determine why they differed in their ability to withstand frequent, heavy grazing; Cenchrus ciliaris is tolerant and Themeda triandra is intolerant of heavy grazing. Frequent defoliation at weekly intervals for six weeks reduced shoot biomass production over a subsequent 42 day regrowth period compared with previously undefoliated plants (infrequent) in T. triandra, but not in C. ciliaris. Leaf area of T. triandra expanded rapidly following defoliation but high initial relative growth rates of shoots were not sustained after 14 days of regrowth because of reducing light utilising efficiency of leaves. Frequently defoliated plants were slower in rate of leaf area expansion and this was associated with reduced photosynthetic capacity of newly formed leaves, lower allocation of photosynthate to leaves but not lower tiller numbers. T. triandra appears well adapted to a regime where defoliation is sufficiently infrequent to allow carbon to be fixed to replace that used in initial leaf area expansion. In contrast, C. ciliaris is better adapted to frequent defoliation than is T. triandra, because horizontally orientated nodal tillers are produced below the defoliation level. This morphological adaptation resulted in a 10-fold higher leaf area remaining after defoliation compared with similarly defoliated T. triandra, which together with the maintenance of moderate levels of light utilising efficiency, contributed to the higher leaf area and shoot weight throughout the regrowth period.

  17. Ciliary behavior of a negatively phototactic Chlamydomonas reinhardtii.

    PubMed

    Josef, Keith; Saranak, Jureepan; Foster, Kenneth W

    2005-06-01

    With an instrument that can record the motion of both cilia of the unicellular alga Chlamydomonas reinhardtii for many hours, the behavioral differences of its two cilia have been studied to determine their specific role in phototaxis. The organism was held on a fixed micropipette with the plane of ciliary beating rotated into the imaging plane of a quadrant photodetector. The responses to square-wave light patterns of a wide range of temporal frequencies were used to characterize the responses of each cilium. Eighty-one cells were examined showing an unexpectedly diverse range of responses. Plausible common signals for the linear and nonlinear signals from the cell body are suggested. Three independent ciliary measures--the beat frequency, stroke velocity, and phasing of the two cilia--have been identified. The cell body communicates to the cilia the direction of phototaxis the cell desires to go, the absolute light intensity, and the appropriate graded transient response for tracking the light source. The complexity revealed by each measure of the ciliary response indicates many independent variables are involved in the net phototactic response. In spite of their morphological similarity, the two cilia of Chlamydomonas respond uniquely. Probably the signals from the cell body fan out to independent pathways in the cilia. Each cilium modifies the input in its own way. The change in the pattern of the effective and recovery strokes of each cilium associated with negative phototaxis has been demonstrated and its involvement in phototactic turning is described. Copyright (c) 2005 Wiley-Liss, Inc.

  18. Measurements of intracellular calcium signals in polarized primary cultures of normal and cystic fibrosis human airway epithelia.

    PubMed

    Ribeiro, Carla M P

    2011-01-01

    The airways are continuously challenged by a variety of stimuli including bacteria, viruses, allergens, and inflammatory factors that act as agonists for G protein-coupled receptors (GPCR). Intracellular calcium (Ca(2+) (i)) mobilization in airway epithelia in response to extracellular stimuli regulates key airway innate defense functions, e.g., Ca(2+)-activated Cl(-) secretion, ciliary beating, mucin secretion, and inflammatory responses. Because Ca(2+) (i) mobilization in response to luminal stimuli is larger in CF vs. normal human airway epithelia, alterations in Ca(2+) (i) signals have been associated with the pathogenesis of CF airway disease. Hence, assessment of Ca(2+) (i) signaling has become an important area of CF research. This chapter will focus on measurements of cytoplasmic and mitochondrial Ca(2+) signals resulting from GPCR activation in polarized primary cultures of normal and CF human bronchial epithelia (HBE).

  19. Molecular cloning and biochemical characterization of rabbit factor XI.

    PubMed Central

    Sinha, Dipali; Marcinkiewicz, Mariola; Gailani, David; Walsh, Peter N

    2002-01-01

    Human factor XI, a plasma glycoprotein required for normal haemostasis, is a homodimer (160 kDa) formed by a single interchain disulphide bond linking the Cys-321 of each Apple 4 domain. Bovine, porcine and murine factor XI are also disulphide-linked homodimers. Rabbit factor XI, however, is an 80 kDa polypeptide on non-reducing SDS/PAGE, suggesting that rabbit factor XI exists and functions physiologically either as a monomer, as does prekallikrein, a structural homologue to factor XI, or as a non-covalent homodimer. We have investigated the structure and function of rabbit factor XI to gain insight into the relation between homodimeric structure and factor XI function. Characterization of the cDNA sequence of rabbit factor XI and its amino acid translation revealed that in the rabbit protein a His residue replaces the Cys-321 that forms the interchain disulphide linkage in human factor XI, explaining why rabbit factor XI is a monomer in non-reducing SDS/PAGE. On size-exclusion chromatography, however, purified plasma rabbit factor XI, like the human protein and unlike prekallikrein, eluted as a dimer, demonstrating that rabbit factor XI circulates as a non-covalent dimer. In functional assays rabbit factor XI and human factor XI behaved similarly. Both monomeric and dimeric factor XI were detected in extracts of cells expressing rabbit factor XI. We conclude that the failure of rabbit factor XI to form a covalent homodimer due to the replacement of Cys-321 with His does not impair its functional activity because it exists in plasma as a non-covalent homodimer and homodimerization is an intracellular process. PMID:12084014

  20. A small and efficient dimerization/packaging signal of rat VL30 RNA and its use in murine leukemia virus-VL30-derived vectors for gene transfer.

    PubMed Central

    Torrent, C; Gabus, C; Darlix, J L

    1994-01-01

    Retroviral genomes consist of two identical RNA molecules associated at their 5' ends by the dimer linkage structure located in the packaging element (Psi or E) necessary for RNA dimerization in vitro and packaging in vivo. In murine leukemia virus (MLV)-derived vectors designed for gene transfer, the Psi + sequence of 600 nucleotides directs the packaging of recombinant RNAs into MLV virions produced by helper cells. By using in vitro RNA dimerization as a screening system, a sequence of rat VL30 RNA located next to the 5' end of the Harvey mouse sarcoma virus genome and as small as 67 nucleotides was found to form stable dimeric RNA. In addition, a purine-rich sequence located at the 5' end of this VL30 RNA seems to be critical for RNA dimerization. When this VL30 element was extended by 107 nucleotides at its 3' end and inserted into an MLV-derived vector lacking MLV Psi +, it directed the efficient encapsidation of recombinant RNAs into MLV virions. Because this VL30 packaging signal is smaller and more efficient in packaging recombinant RNAs than the MLV Psi + and does not contain gag or glyco-gag coding sequences, its use in MLV-derived vectors should render even more unlikely recombinations which could generate replication-competent viruses. Therefore, utilization of the rat VL30 packaging sequence should improve the biological safety of MLV vectors for human gene transfer. Images PMID:8289369

  1. [Histological structure of the trabecular meshwork in the eyeball: challenging the traditional concept and preliminary findings in rabbits, rats and mice].

    PubMed

    Shi, Yun; Zhou, Fan-Qi; Luo, Zhou-Cai; Chen, Ying-Hua; Chen, Yu; Dong, Wei-Ren

    2017-10-20

    To verify that the trabecular meshwork (TM) in the wall of the eyeball consists of smooth muscle fibers instead of collagen fibers or endothelial cells. Eighteen fresh eyeballs from 3 rabbits, 3 SD rats and 3 mice were sectioned along the sagittal plane and sliced after paraffin embedding for HE staining, VG staining, Masson staining, α-SMA immunohistochemistry or CD31 immunohistochemistry. These slices were observed under microscope and the structure of the TM was compared with those of scleral collagen fibers, ciliary muscles and endothelial cells. HE staining of the eyeball slices from the 3 animal species resulted in purplish red staining of the TM, which was highly consistent with ciliary muscle fibers. The cell?like structures on the surface of the TM were not clearly outlined, with flat nuclei showing a dark purple staining; these structures did not show obvious boundaries from the TM. Ciliary muscle fibers, which were smooth muscle cells in nature, were aligned in bundles in various directions. The longitudinally sectioned cells were flat and contained purplish cytoplasm and highly flattened nuclei. Scleral collagen fibers were stained dark red with a few fibroblasts sandwiched among them. The long axis of the fibroblasts was in parallel with that of the collagen fibers. The outline of the fibroblast was not clear and the nucleus was flat in dark blue. The vascular endothelial cells presented with different morphologies and contained light purplish cytoplasm and dark nuclei, protruding into the vascular cavity. VG staining of the TM revealed a pale red filamentous structure, and the collagen fibers were stained bright red. Masson staining of the TM showed a reticular structure consisting mainly of dark red fibers intermingled with thin green fibers. Scleral collagen fibers presented with a cord?like green wavy structure. The endothelial cells were green and flat, while the ciliary smooth muscle fibers were purple. In immunohistochemistry for α?SMA, the TM and the ciliary smooth muscle fibers showed a strong positivity in the cytoplasm, while the scleral collagen fibers and vascular endothelial cells showed negative staining; immunohistochemistry for CD31 showed no obvious positive staining in the TM, collagen fibers or ciliary smooth muscle cells from all the animals in spite of slight differences among them. The TM consists mainly of smooth muscle fibers with a thin layer of peripheral endomysium without endothelial cells.

  2. Electrostatic repulsion, compensatory mutations, and long-range non-additive effects at the dimerization interface of the HIV capsid protein.

    PubMed

    del Alamo, Marta; Mateu, Mauricio G

    2005-01-28

    In previous studies, thermodynamic dissection of the dimerization interface in CA-C, the C-terminal domain of the capsid protein of human immunodeficiency virus type 1, revealed that individual mutation to alanine of Ser178, Glu180, Glu187 or Gln192 led to significant increases in dimerization affinity. Four related aspects derived from this observation have been now addressed, and the results can be summarized as follows: (i) thermodynamic analyses indicate the presence of an intersubunit electrostatic repulsion between both Glu180 residues. (ii) The mutation Glu180 to Ala was detected in nearly all type 2 human immunodeficiency virus variants, and in several simian immunodeficiency viruses analyzed. However, this mutation was strictly co-variant with mutations Ser178Asp in a neighboring residue, and Glu187Gln. Thermodynamic analysis of multiple mutants showed that Ser178Asp compensated, alone or together with Glu187Gln, the increase in affinity caused by the mutation Glu180Ala, and restored a lower dimerization affinity. (iii) The increase in the affinity constant caused by the multiple mutation to Ala of Ser178, Glu180, Glu187 and Gln192 was more than one order of magnitude lower than predicted if additivity were present, despite the fact that the 178/180 pair and the two other residues were located more than 10A apart. (iv) Mutations in CA-C that caused non-additive increases in dimerization affinity also caused a non-additive increase in the capacity of the isolated CA-C domain to inhibit the assembly of capsid-like HIV-1 particles in kinetic assays. In summary, the study of a protein-protein interface involved in the building of a viral capsid has revealed unusual features, including intersubunit electrostatic repulsions, co-variant, compensatory mutations that may evolutionarily preserve a low association constant, and long-range, large magnitude non-additive effects on association.

  3. Ultrastructural observation on ‘transitional tubules’ in human oviductal ciliogenic cells

    PubMed Central

    HAGIWARA, HARUO; AOKI, TAKEO; FUJIMOTO, TOYOSHI

    1997-01-01

    In the human oviduct epithelium during ciliogenesis, short tubular structures were found in the transitional zone between the basal body and cilium. The tubules, termed transitional tubules from their location, were 34–36 nm in diameter and 0.13±0.06 μm in length; the number around a basal body was variable, but usually 4–6. The cytoplasmic leaflets of the tubule membranes were coated by electron-dense material and appeared to be connected to alar sheets. The transitional tubules existed transiently during ciliogenesis. The exact role of transitional tubules is unknown, but considering their location, they may fix the basal body in the apical cytoplasm during ciliary elongation and/or may be related to formation of alar sheets. PMID:9306204

  4. Oral Fusobacterium nucleatum subsp. polymorphum binds to human salivary α-amylase.

    PubMed

    Zulfiqar, M; Yamaguchi, T; Sato, S; Oho, T

    2013-12-01

    Fusobacterium nucleatum acts as an intermediate between early and late colonizers in the oral cavity. In this study, we showed that F. nucleatum subsp. polymorphum can bind to a salivary component with a molecular weight of approximately 110 kDa and identified the protein and another major factor of 55 kDa, as salivary α-amylase by time-of-flight mass spectrometry and immuno-reactions. Salivary α-amylase is present in both monomeric and dimeric forms and we found that formation of the dimer depends on copper ions. The F. nucleatum adhered to both monomeric and dimeric salivary α-amylases, but the numbers of bacteria bound to the dimeric form were more than those bound to the monomeric form. The degree of adherence of F. nucleatum to four α-amylases from different sources was almost the same, however its binding to β-amylase was considerably decreased. Among four α-amylase inhibitors tested, acarbose and type 1 and 3 inhibitors derived from wheat flour showed significant activity against the adhesion of F.nucleatum to monomeric and dimeric amylases, however voglibose had little effect. Moreover F. nucleatum cells inhibited the enzymatic activity of salivary α-amylase in a dose-dependent manner. These results suggest that F. nucleatum plays more important and positive role as an early colonizer for maturation of oral microbial colonization. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Dimeric MHC-peptides inserted into an immunoglobulin scaffold as new immunotherapeutic agents

    PubMed Central

    Goldberg, Burt; Bona, Constantin

    2011-01-01

    Abstract The interactions of the T cell receptor (TCR) with cognate MHC-peptide and co-stimulatory molecules expressed at surface of antigen presenting cells (APC) leads to activation or tolerance of T cells. The development of molecular biological tools allowed for the preparation of soluble MHC-peptide molecules as surrogate for the APC. A decade ago a monomeric class II MHC molecule in which the peptide was covalently linked to β-chain of class II molecule was generated. This type of molecule had a low-binding affinity and did not cause the multimerization of TCR. The requirement of multimerization of TCR led to development of a new class of reagents, chimeric peptides covalently linked to MHC that was dimerized via Fc fragment of an immunoglobulin and linked to 3′ end of the β-chain of MHC class II molecule. These soluble dimerized MHC-peptide chimeric molecules display high affinity for the TCR and caused multimerization of TCR without processing by an APC. Because dimeric molecules are devoid of co-stimulatory molecules interacting with CD28, a second signal, they induce anergy rather the activation of T cells. In this review, we compare the human and murine dimerized MHC class II-peptides and their effect on CD4+ T cells, particularly the generation of T regulatory cells, which make these chimeric molecules an appealing approach for the treatment of autoimmune diseases. PMID:21435177

  6. 1.8 Å structure of murine GITR ligand dimer expressed in Drosophila melanogaster S2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chattopadhyay, Kausik; Ramagopal, Udupi A.; Nathenson, Stanley G., E-mail: nathenso@aecom.yu.edu

    2009-05-01

    1.8 Å X-ray crystal structure of mouse GITRL expressed in D. melanogaster S2 cells shows an identical ‘strand-exchanged’ dimeric assembly similar to that observed previously for the E. coli-expressed protein. Glucocorticoid-induced TNF receptor ligand (GITRL), a prominent member of the TNF superfamily, activates its receptor on both effector and regulatory T cells to generate critical costimulatory signals that have been implicated in a wide range of T-cell immune functions. The crystal structures of murine and human orthologs of GITRL recombinantly expressed in Escherichia coli have previously been determined. In contrast to all classical TNF structures, including the human GITRL structure,more » murine GITRL demonstrated a unique ‘strand-exchanged’ dimeric organization. Such a novel assembly behavior indicated a dramatic impact on receptor activation as well as on the signaling mechanism associated with the murine GITRL costimulatory system. In this present work, the 1.8 Å resolution crystal structure of murine GITRL expressed in Drosophila melanogaster S2 cells is reported. The eukaryotic protein-expression system allows transport of the recombinant protein into the extracellular culture medium, thus maximizing the possibility of obtaining correctly folded material devoid of any folding/assembly artifacts that are often suspected with E. coli-expressed proteins. The S2 cell-expressed murine GITRL adopts an identical ‘strand-exchanged’ dimeric structure to that observed for the E. coli-expressed protein, thus conclusively demonstrating the novel quaternary structure assembly behavior of murine GITRL.« less

  7. Anti-Cancer Activity of Resveratrol and Derivatives Produced by Grapevine Cell Suspensions in a 14 L Stirred Bioreactor.

    PubMed

    Nivelle, Laetitia; Hubert, Jane; Courot, Eric; Jeandet, Philippe; Aziz, Aziz; Nuzillard, Jean-Marc; Renault, Jean-Hugues; Clément, Christophe; Martiny, Laurent; Delmas, Dominique; Tarpin, Michel

    2017-03-16

    In the present study, resveratrol and various oligomeric derivatives were obtained from a 14 L bioreactor culture of elicited grapevine cell suspensions (Vitis labrusca L.). The crude ethyl acetate stilbene extract obtained from the culture medium was fractionated by centrifugal partition chromatography (CPC) using a gradient elution method and the major stilbenes contained in the fractions were subsequently identified by using a 13 C-NMR-based dereplication procedure and further 2D NMR analyses including HSQC, HMBC, and COSY. Beside δ-viniferin (2), leachianol F (4) and G (4'), four stilbenes (resveratrol (1), ε-viniferin (5), pallidol (3) and a newly characterized dimer (6)) were recovered as pure compounds in sufficient amounts to allow assessment of their biological activity on the cell growth of three different cell lines, including two human skin malignant melanoma cancer cell lines (HT-144 and SKMEL-28) and a healthy human dermal fibroblast HDF line. Among the dimers obtained in this study, the newly characterized resveratrol dimer (6) has never been described in nature and its biological potential was evaluated here for the first time. ε-viniferin as well as dimer (6) showed IC 50 values on the three tested cell lines lower than the ones exerted by resveratrol and pallidol. However, activities of the first two compounds were significantly decreased in the presence of fetal bovine serum although that of resveratrol and pallidol was not. The differential tumor activity exerted by resveratrol on healthy and cancer lines was also discussed.

  8. Human orexin/hypocretin receptors form constitutive homo- and heteromeric complexes with each other and with human CB{sub 1} cannabinoid receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jäntti, Maria H., E-mail: maria.jantti@helsinki.fi; Mandrika, Ilona, E-mail: ilona@biomed.lu.lv; Kukkonen, Jyrki P., E-mail: jyrki.kukkonen@helsinki.fi

    Highlights: • OX{sub 1} and OX{sub 2} orexin and CB{sub 1} cannabinoid receptor dimerization was investigated. • Bioluminescence resonance energy transfer method was used. • All receptors readily formed constitutive homo- and heteromeric complexes. - Abstract: Human OX{sub 1} orexin receptors have been shown to homodimerize and they have also been suggested to heterodimerize with CB{sub 1} cannabinoid receptors. The latter has been suggested to be important for orexin receptor responses and trafficking. In this study, we wanted to assess the ability of the other combinations of receptors to also form similar complexes. Vectors for expression of human OX{sub 1},more » OX{sub 2} and CB{sub 1} receptors, C-terminally fused with either Renilla luciferase or GFP{sup 2} green fluorescent protein variant, were generated. The constructs were transiently expressed in Chinese hamster ovary cells, and constitutive dimerization between the receptors was assessed by bioluminescence energy transfer (BRET). Orexin receptor subtypes readily formed homo- and hetero(di)mers, as suggested by significant BRET signals. CB{sub 1} receptors formed homodimers, and they also heterodimerized with both orexin receptors. Interestingly, BRET efficiency was higher for homodimers than for almost all heterodimers. This is likely to be due to the geometry of the interaction; the putatively symmetric dimers may place the C-termini in a more suitable orientation in homomers. Fusion of luciferase to an orexin receptor and GFP{sup 2} to CB{sub 1} produced more effective BRET than the opposite fusions, also suggesting differences in geometry. Similar was seen for the OX{sub 1}–OX{sub 2} interaction. In conclusion, orexin receptors have a significant propensity to make homo- and heterodi-/oligomeric complexes. However, it is unclear whether this affects their signaling. As orexin receptors efficiently signal via endocannabinoid production to CB{sub 1} receptors, dimerization could be an effective way of forming signal complexes with optimal cannabinoid concentrations available for cannabinoid receptors.« less

  9. Bilateral buphthalmia in a 4-month-old Texas longhorn steer.

    PubMed

    Jones, M L; Beck, A P; Dubielzig, R R

    2013-01-01

    Congenital ocular disease occurs uncommonly in cattle, with multiple abnormalities reported only sporadically in the literature. This report describes a case of anterior segment dysgenesis resulting in glaucoma in a 4-month-old Texas Longhorn steer. On clinical exam, bilateral buphthalmia was present and intraocular pressures exceeded 47 mm Hg in both eyes. On histopathologic examination, the iridocorneal angle and filtration apparatus were distorted due to collapse of the ciliary cleft and anterior displacement of the anterior portion of the ciliary body. No evidence of inflammation or other causes of glaucoma were recognized.

  10. Differential antiviral activities of respiratory syncytial virus (RSV) inhibitors in human airway epithelium.

    PubMed

    Mirabelli, Carmen; Jaspers, Martine; Boon, Mieke; Jorissen, Mark; Koukni, Mohamed; Bardiot, Dorothée; Chaltin, Patrick; Marchand, Arnaud; Neyts, Johan; Jochmans, Dirk

    2018-03-27

    We report the use of reconstituted 3D human airway epithelium cells (HuAECs) of bronchial origin in an air-liquid interface to study respiratory syncytial virus (RSV) infection and to assess the efficacy of RSV inhibitors in (pre-)clinical development. HuAECs were infected with RSV-A Long strain (0.01 CCID50/cell, where CCID50 represents 50% cell culture infectious dose in HEp2 cells) on the apical compartment of the culture. At the time of infection or at 1 or 3 days post-infection, selected inhibitors were added and refreshed daily on the basal compartment of the culture. Viral shedding was followed up by apical washes collected daily and quantifying viral RNA by RT-qPCR. RSV-A replicates efficiently in HuAECs and viral RNA is shed for weeks after infection. RSV infection reduces the ciliary beat frequency of the ciliated cells as of 4 days post-infection, with complete ciliary dyskinesia observed by day 10. Treatment with RSV fusion inhibitors resulted in an antiviral effect only when added at the time of infection. In contrast, the use of replication inhibitors (both nucleoside and non-nucleoside) elicited a marked antiviral effect even when the start of treatment was delayed until 1 day or even 3 days after infection. Levels of the inflammation marker RANTES (mRNA) increased ∼200-fold in infected, untreated cultures (at 3 weeks post-infection), but levels were comparable to those of uninfected cultures in the presence of PC786, an RSV replication inhibitor, suggesting that an efficient antiviral treatment might inhibit virus-induced inflammation in this model. Overall, HuAECs offer a robust and physiologically relevant model to study RSV replication and to assess the efficacy of antiviral compounds.

  11. High hydrostatic pressure enables almost 100% refolding of recombinant human ciliary neurotrophic factor from inclusion bodies at high concentration.

    PubMed

    Wang, Qi; Liu, Yongdong; Zhang, Chun; Guo, Fangxia; Feng, Cui; Li, Xiunan; Shi, Hong; Su, Zhiguo

    2017-05-01

    Protein refolding from inclusion bodies (IBs) often encounters a problem of low recovery at high protein concentration. In this study, we demonstrated that high hydrostatic pressure (HHP) could simultaneously achieve high refolding concentration and high refolding yield for IBs of recombinant human ciliary neurotrophic factor (rhCNTF), a potential therapeutic for neurodegenerative diseases. The use of dilution refolding obtained 18% recovery at 3 mg/mL, even in the presence of 4 M urea. In contrast, HHP refolding could efficiently increase the recovery up to almost 100% even at 4 mg/mL. It was found that in the dilution, hydrophobic aggregates were the off-path products and their amount increased with the protein concentration. However, HHP could effectively minimize the formation of hydrophobic aggregates, leading to almost complete conversion of the rhCNTF IBs to the correct configuration. The stable operation range of concentration is 0.5-4.0 mg/mL, in which the refolding yield was almost 100%. Compared with the literatures where HHP failed to increase the refolding yield beyond 90%, the reason could be attributed to the structural difference that rhCNTF has no disulfide bond and is a monomeric protein. After purification by one-step of anionic chromatography, the purity of rhCNTF reached 95% with total process recovery of 54.1%. The purified rhCNTF showed similar structure and in vitro bioactivity to the native species. The whole process featured integration of solubilization/refolding, a high refolding yield of 100%, a high concentration of 4 mg/mL, and a simple chromatography to ensure a high productivity. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. The Effect of Age, Accommodation and Refractive Error on the Adult Human Eye

    PubMed Central

    Richdale, Kathryn; Bullimore, Mark A.; Sinnott, Loraine T.; Zadnik, Karla

    2015-01-01

    Purpose To quantify changes in ocular dimensions associated with age, refractive error, and accommodative response, in vivo, in 30- to 50-year-old human subjects. Methods The right eyes of 91 adults were examined using ultrasonography, phakometry, keratometry, pachymetry, interferometry, anterior segment optical coherence tomography, and high resolution magnetic resonance imaging. Accommodation was measured subjectively with a push-up test and objectively using open-field autorefraction. Regression analyses were used to assess differences in ocular parameters with age, refractive error and accommodation. Results With age, crystalline lens thickness increased (0.03 mm/yr), anterior lens curvature steepened (0.11 mm/yr), anterior chamber depth decreased (0.02 mm/y) and lens equivalent refractive index decreased (0.001 /y) (all p < 0.01). With increasing myopia, there were significant increases in axial length (0.37 mm/D), vitreous chamber depth (0.34 mm/D), vitreous chamber height (0.09 mm/D) and ciliary muscle ring diameter (0.10 mm/D) (all p < 0.05). Increasing myopia was also associated with steepening of both the cornea (0.16 mm/D) and anterior lens surface (0.011 mm/D) (both p < 0.04). With accommodation, the ciliary muscle ring diameter decreased (0.08 mm/D), and the muscle thinned posteriorly (0.008 mm/D), allowing the lens to shorten equatorially (0.07 mm/D) and thicken axially (0.06 mm/D) (all p < 0.03). Conclusions Refractive error is significantly correlated with not only the axial dimensions, but the anterior equatorial dimension of the adult eye. Further testing and development of accommodating intraocular lenses should account for differences in patients’ preoperative refractive error. PMID:26703933

  13. Assessment of a new hydrophilic acrylic supplementary IOL for sulcus fixation in pseudophakic cadaver eyes

    PubMed Central

    Reiter, N; Werner, L; Guan, J; Li, J; Tsaousis, K T; Mamalis, N; Srinivasan, S

    2017-01-01

    Purpose Management of refractive errors after cataract surgery includes spectacles or contact lens, secondary laser vision correction, intraocular lens (IOL) exchange, or piggyback lens implantation. We evaluated for the first time a single-piece hydrophilic acrylic IOL designed for supplementary sulcus fixation in postmortem pseudophakic human eyes. Methods Pseudophakic human cadaver eyes were imaged by anterior segment optical coherence tomography (AS-OCT) to assess position of the primary IOL. Eyes were prepared as per the Miyake-Apple technique. The supplementary IOL (Medicontur A4 Addon IOL family) was then inserted into the ciliary sulcus. AS-OCT and photographs from anterior and posterior views were used to assess IOL centration, tilt, and interlenticular distance from the primary IOL. Results Data were obtained from 12 eyes having primary IOLs of varying materials and designs in the bag and representing different sizes of eyes and severity of Soemmering's ring formation. The A4 Addon IOL was successfully inserted into the ciliary sulcus and was well centered in all cases. Four cases of tilt were observed on AS-OCT: three with mild tilt due to pre-existing zonular dehiscence, and one due to a localized area of Soemmering's ring formation. Interlenticular distance ranged from 0.34 to 1.24 mm and was not dependent on severity of Soemmering's ring or type of primary IOL. Conclusions The A4 Addon IOL was designed for sulcus fixation as a supplementary lens, with a large diameter, a square-shaped optic, four smooth loop haptics, and a convex–concave optical surface. It exhibited appropriate centration and interlenticular distance with different primary in-the-bag IOLs. PMID:28106890

  14. UV-Light Exposure of Insulin: Pharmaceutical Implications upon Covalent Insulin Dityrosine Dimerization and Disulphide Bond Photolysis

    PubMed Central

    Correia, Manuel; Neves-Petersen, Maria Teresa; Jeppesen, Per Bendix; Gregersen, Søren; Petersen, Steffen B.

    2012-01-01

    In this work we report the effects of continuous UV-light (276 nm, ∼2.20 W.m−2) excitation of human insulin on its absorption and fluorescence properties, structure and functionality. Continuous UV-excitation of the peptide hormone in solution leads to the progressive formation of tyrosine photo-product dityrosine, formed upon tyrosine radical cross-linkage. Absorbance, fluorescence emission and excitation data confirm dityrosine formation, leading to covalent insulin dimerization. Furthermore, UV-excitation of insulin induces disulphide bridge breakage. Near- and far-UV-CD spectroscopy shows that UV-excitation of insulin induces secondary and tertiary structure losses. In native insulin, the A and B chains are held together by two disulphide bridges. Disruption of either of these bonds is likely to affect insulin’s structure. The UV-light induced structural changes impair its antibody binding capability and in vitro hormonal function. After 1.5 and 3.5 h of 276 nm excitation there is a 33.7% and 62.1% decrease in concentration of insulin recognized by guinea pig anti-insulin antibodies, respectively. Glucose uptake by human skeletal muscle cells decreases 61.7% when the cells are incubated with pre UV-illuminated insulin during 1.5 h. The observations presented in this work highlight the importance of protecting insulin and other drugs from UV-light exposure, which is of outmost relevance to the pharmaceutical industry. Several drug formulations containing insulin in hexameric, dimeric and monomeric forms can be exposed to natural and artificial UV-light during their production, packaging, storage or administration phases. We can estimate that direct long-term exposure of insulin to sunlight and common light sources for indoors lighting and UV-sterilization in industries can be sufficient to induce irreversible changes to human insulin structure. Routine fluorescence and absorption measurements in laboratory experiments may also induce changes in protein structure. Structural damage includes insulin dimerization via dityrosine cross-linking or disulphide bond disruption, which affects the hormone’s structure and bioactivity. PMID:23227203

  15. UV-light exposure of insulin: pharmaceutical implications upon covalent insulin dityrosine dimerization and disulphide bond photolysis.

    PubMed

    Correia, Manuel; Neves-Petersen, Maria Teresa; Jeppesen, Per Bendix; Gregersen, Søren; Petersen, Steffen B

    2012-01-01

    In this work we report the effects of continuous UV-light (276 nm, ~2.20 W.m(-2)) excitation of human insulin on its absorption and fluorescence properties, structure and functionality. Continuous UV-excitation of the peptide hormone in solution leads to the progressive formation of tyrosine photo-product dityrosine, formed upon tyrosine radical cross-linkage. Absorbance, fluorescence emission and excitation data confirm dityrosine formation, leading to covalent insulin dimerization. Furthermore, UV-excitation of insulin induces disulphide bridge breakage. Near- and far-UV-CD spectroscopy shows that UV-excitation of insulin induces secondary and tertiary structure losses. In native insulin, the A and B chains are held together by two disulphide bridges. Disruption of either of these bonds is likely to affect insulin's structure. The UV-light induced structural changes impair its antibody binding capability and in vitro hormonal function. After 1.5 and 3.5 h of 276 nm excitation there is a 33.7% and 62.1% decrease in concentration of insulin recognized by guinea pig anti-insulin antibodies, respectively. Glucose uptake by human skeletal muscle cells decreases 61.7% when the cells are incubated with pre UV-illuminated insulin during 1.5 h. The observations presented in this work highlight the importance of protecting insulin and other drugs from UV-light exposure, which is of outmost relevance to the pharmaceutical industry. Several drug formulations containing insulin in hexameric, dimeric and monomeric forms can be exposed to natural and artificial UV-light during their production, packaging, storage or administration phases. We can estimate that direct long-term exposure of insulin to sunlight and common light sources for indoors lighting and UV-sterilization in industries can be sufficient to induce irreversible changes to human insulin structure. Routine fluorescence and absorption measurements in laboratory experiments may also induce changes in protein structure. Structural damage includes insulin dimerization via dityrosine cross-linking or disulphide bond disruption, which affects the hormone's structure and bioactivity.

  16. Fibrillar dimer formation of islet amyloid polypeptides

    DOE PAGES

    Chiu, Chi -cheng; de Pablo, Juan J.

    2015-05-08

    Amyloid deposits of human islet amyloid polypeptide (hIAPP), a 37-residue hormone co-produced with insulin, have been implicated in the development of type 2 diabetes. Residues 20 – 29 of hIAPP have been proposed to constitute the amyloidogenic core for the aggregation process, yet the segment is mostly unstructured in the mature fibril, according to solid-state NMR data. Here we use molecular simulations combined with bias-exchange metadynamics to characterize the conformational free energies of hIAPP fibrillar dimer and its derivative, pramlintide. We show that residues 20 – 29 are involved in an intermediate that exhibits transient β-sheets, consistent with recent experimentalmore » and simulation results. By comparing the aggregation of hIAPP and pramlintide, we illustrate the effects of proline residues on inhibition of the dimerization of IAPP. The mechanistic insights presented here could be useful for development of therapeutic inhibitors of hIAPP amyloid formation.« less

  17. Cytotoxic cassaine diterpenoid-diterpenoid amide dimers and diterpenoid amides from the leaves of Erythrophleum fordii.

    PubMed

    Du, Dan; Qu, Jing; Wang, Jia-Ming; Yu, Shi-Shan; Chen, Xiao-Guang; Xu, Song; Ma, Shuang-Gang; Li, Yong; Ding, Guang-Zhi; Fang, Lei

    2010-10-01

    Detailed phytochemical investigation from the leaves of Erythrophleum fordii resulted in the isolation of 13 compounds, including three cassaine diterpenoid-diterpenoid amide dimers (1, 3 and 5), and seven cassaine diterpenoid amides (6 and 8-13), together with three previously reported ones, erythrophlesins D (2), C (4) and 3beta-hydroxynorerythrosuamide (7). Compounds 1, 3 and 5 are further additions to the small group of cassaine diterpenoid dimers represented by erythrophlesins A-D. Their structures were determined by analysis of extensive one- and two-dimensional NMR experiments and ESIMS methods. Cytotoxic activities of the isolated compounds were tested against HCT-8, Bel-7402, BGC-823, A549 and A2780 human cancer cell lines in the MTT test. Results showed that compounds 1 and 3-5 exhibited significantly selective cytotoxic activities (IC(50)<10 microM) against these cells, respectively. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Fibrillar dimer formation of islet amyloid polypeptides

    NASA Astrophysics Data System (ADS)

    Chiu, Chi-cheng; de Pablo, Juan J.

    2015-09-01

    Amyloid deposits of human islet amyloid polypeptide (hIAPP), a 37-residue hormone co-produced with insulin, have been implicated in the development of type 2 diabetes. Residues 20 - 29 of hIAPP have been proposed to constitute the amyloidogenic core for the aggregation process, yet the segment is mostly unstructured in the mature fibril, according to solid-state NMR data. Here we use molecular simulations combined with bias-exchange metadynamics to characterize the conformational free energies of hIAPP fibrillar dimer and its derivative, pramlintide. We show that residues 20 - 29 are involved in an intermediate that exhibits transient β-sheets, consistent with recent experimental and simulation results. By comparing the aggregation of hIAPP and pramlintide, we illustrate the effects of proline residues on inhibition of the dimerization of IAPP. The mechanistic insights presented here could be useful for development of therapeutic inhibitors of hIAPP amyloid formation.

  19. Dimerization model of the C-terminal RNA Recognition Motif of HuR.

    PubMed

    Díaz-Quintana, Antonio; García-Mauriño, Sofía M; Díaz-Moreno, Irene

    2015-04-28

    Human antigen R (HuR) is a ubiquitous 32 kDa protein comprising three RNA Recognition Motifs (RRMs), whose main function is to bind Adenylate and uridylate Rich Elements (AREs) in 3' UnTranslated Regions (UTRs) of mRNAs. In addition to binding RNA molecules, the third domain (RRM3) is involved in HuR oligomerization and apoptotic signaling. The RRM3 monomer is able to dimerize, with its self-binding affinity being dependent on ionic strength. Here we provide a deeper structural insight into the nature of the encounter complexes leading to the formation of RRM3 dimers by using Brownian Dynamics and Molecular Dynamics. Our computational data show that the initial unspecific encounter follows a downhill pathway until reaching an optimum conformation stabilized by hydrophobic interactions. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  20. Crystal Structure of Ripk4 Reveals Dimerization-Dependent Kinase Activity.

    PubMed

    Huang, Christine S; Oberbeck, Nina; Hsiao, Yi-Chun; Liu, Peter; Johnson, Adam R; Dixit, Vishva M; Hymowitz, Sarah G

    2018-05-01

    Receptor-interacting protein kinase 4 (RIPK4) is a highly conserved regulator of epidermal differentiation. Members of the RIPK family possess a common kinase domain as well as unique accessory domains that likely dictate subcellular localization and substrate preferences. Mutations in human RIPK4 manifest as Bartsocas-Papas syndrome (BPS), a genetic disorder characterized by severe craniofacial and limb abnormalities. We describe the structure of the murine Ripk4 (MmRipk4) kinase domain, in ATP- and inhibitor-bound forms. The crystallographic dimer of MmRipk4 is similar to those of RIPK2 and BRAF, and we show that the intact dimeric entity is required for MmRipk4 catalytic activity through a series of engineered mutations and cell-based assays. We also assess the impact of BPS mutations on protein structure and activity to elucidate the molecular origins of the disease. Copyright © 2018 Elsevier Ltd. All rights reserved.

Top